
Educational Data Mining

for Analysis of Students’ Solutions

Karel Vacuĺık, Leona Nezvalová, and Luboš Popeĺınský

KD Lab, FI MU Brno
{xvaculi4,popel}@fi.muni.cz, xnezva36@mail.muni.cz

Abstract. We introduce a novel method for analysis of logical proofs
constructed by undergraduate students that employs sequence mining
for manipulation with temporal information about all actions that a
student performed, and also graph mining for finding frequent subgraphs
on different levels of generalisation. We show that this representation
allows one to find interesting subgroups of similar solutions and also
to detect outlying solutions. Specifically, distribution of errors is not
independent of behavioural patterns and we are able to find clusters of
erroneous solutions. We also observed significant dependence between
time duration and an appearance of the most serious error.

Keywords: educational data mining, logical proofs, clustering, outlier
detection, sequence mining.

1 Introduction

Teaching constructive tasks, i.e. tasks that a student has to build in several steps,
like tasks in descriptive geometry or logical and math proofs, requires advanced
evaluation techniques. For example, in the case of resolution proofs in logic, see
examples in Fig. 1, it is not sufficient to assign the mark based only on the
conclusion that the student reached. To evaluate a student solution properly, a
teacher needs not only to check the final result of a solution (the set of clauses is
or is not contradictory) but also to analyse the sequence of steps that a student
performed, with respect to correctness of each step and with respect to correct-
ness of that sequence. We show that novel machine learning methods, such as
graph mining and sequence mining, can be very helpful in that situation because
of their capability to process structural and temporal information. Specifically,
graph mining methods work with data represented as graphs, in our case one
graph for each instance, and take into account the structural information of
the graphs. An overview of graph mining methods can be found in [5]. Sequence
mining is another topic of data mining oriented to structured data. In compar-
ison to graph mining, data are arranged in sequences, usually ordered by time,
and they are assumed to be discrete. More information on sequence mining can
be found in [6].

Up to our knowledge, there is no work on analysis of student solutions of logical
proofs by means of graph mining. Definitely, solving logical proofs, especially

G. Agre et al. (Eds.): AIMSA 2014, LNAI 8722, pp. 150–161, 2014.
c© Springer International Publishing Switzerland 2014



Educational Data Mining for Analysis of Students’ Solutions 151

Fig. 1. An example of a correct and an incorrect resolution proof

by means of resolution principle, is one of basic graph-based models of problem
solving in logic. In problem-solving processes, graph mining has been used in [21]
for mining concept maps, i.e. structures that model knowledge and behaviour
patterns of a student, for finding commonly observed subconcept structures.
The combination of multivariate pattern analysis and hidden Markov models
for the discovery of major phases that students go through in solving complex
problems in algebra is introduced in [1]. Markov decision processes for generating
hints to students in logical proof tutoring from historical data has been solved
in [2,3,18]. Authors of [11] analyzed students’ ordinary handwritten coursework
with a digital pen by means of sequence mining techniques to identify patterns
of actions that are more frequently exhibited by either good- or poor-performing
students. In [14] sequential pattern mining was used for analysis of activity
around an interactive tabletop and finding frequent sequences that differentiate
high achieving from low achieving groups.

In our previous work [19] we presented a method for analysis of students’
solutions of resolution proofs that employed graph mining. It used frequent sub-
graph mining algorithm Sleuth [23] for finding frequently occurring subgraphs.
These subgraphs were then generalized and used as new features for representing
the data. In [20] we extended this procedure and left out the frequent subgraph
mining algorithm. More information can be found in Section 5.1. Although the
method displayed very high accuracy in classification, it was unable to exploit
temporal information about how the students solve the task, neither was appro-
priate for finding outliers – anomalous solutions.

In this paper we propose a novel method that is much more robust and
is actually independent of a particular student task. In addition, it processes
also information about the sequence of steps that a student performed, like
adding/deleting a node or edge in the proof and also about text (i.e. a formula)
modification. It also exploits information about the time a particular operation
was performed and uses temporal information for finding outlying solutions. We
use three different feature extraction methods and show that by using those
new temporal and structural features we are able to find clusters of erroneous



152 K. Vacuĺık, L. Nezvalová, and L. Popeĺınský

solutions. We also show that there is a significant dependence between time du-
ration and appearance of errors in a student solution. Moreover, by means of
class outlier detection we are able to find solutions that are anomalous and for
that reason difficult to detect automatically.

It has to be stressed at the very beginning that we do not aim at building
a tool for automatic classification of students’ solutions. The goal that we cope
with here is different: to find typical and abnormal patterns in data that are
strongly correlated with wrong solutions and with particular errors. We show
that with the proposed feature extraction methods we are able to find students
that are at risk of producing wrong solutions. We are also able to detect outliers,
i.e. solutions that are hard to detect as incorrect.

The paper is structured as follows. Section 2 contains a description of data
and two representations of frequent subsequences (episodes). In Section 3 we
use clustering on those two representations and show our first results about the
distribution of errors in the clustered data. In Section 4 we analyse explicit time
stamps and show that there is a significant dependence between time intervals
of particular operations (as well as total time duration) and an appearance of
the most serious error. Outlier detection in resolution proofs is solved in Section
5. A discussion and conclusion are presented in the last two sections.

2 Data and Data Pre-Processing

The data, 873 solutions altogether, was obtained in the course on Introduction to
logic. Via a web-based tool, each of the 351 students solved at least three tasks
randomly chosen from 19 exercises. The data set contained the resolution tree and
also dynamics of the solutions, i.e. all the actions performed togetherwith temporal
information. Among these 873 different students’ solutions of resolution proofs in
propositional calculus, 101 of them were classified as incorrect and 772 as correct.

The most serious error in resolution is resolving on two literals. In this text
we denote this error as E3. Other common errors in resolution proofs are the
following: repetition of the same literal in the clause, a literal is missing in
the resolved clause, resolving on the same literals (not on one positive and one
negative), resolving within one clause, resolved literal is not removed, the clause
is incorrectly copied, switching the order of literals in the clause, proof is not
finished, intentional negation of literals in a clause. Information about the error
that appeared in the logical proof is also part of the data.

All actions that a student performed, such as adding/deleting a node, draw-
ing/removing an edge, writing/deleting a text into a node, were saved into a
database. The collected data contains also a timestamp for each action per-
formed by a student. The timestamps also allow us to get the order of actions
and use techniques for sequence mining as discussed in the following sections.

2.1 Types of Sequences

For processing temporal information, we used two sequence representations
of the data. Each resolution proof can be represented as a sequence in either



Educational Data Mining for Analysis of Students’ Solutions 153

representation. The first one is composed of two events: addition of a node
(clause) into a proof and addition of an edge. An example of such sequence is
CCCCCEEEE, where C denotes node addition and E denotes edge addition. The
second representation uses the same events as the first one, but it also contains
events of text modification1. An example of a sequence in the second representa-
tion is CTCTCTCTCTEEEE, where elements C, T and E denote node addition,
text modification and edge addition, respectively. From now on, we will use CE
and CET abbreviations for the representations.

2.2 Frequent Subsequences

As sequences cannot be processed by commonly used machine learning algo-
rithms, such as classification, clustering or outlier detection algorithms, we need
to transform the data. Simple and common practice is to use subsequences as
features [6]. We considered only subsequences consisting of elements that are
consecutive in original sequences, i.e. without gaps, because subsequences with
gaps are not descriptive in case of our sequences. Formally, we say that a se-
quence α = α1α2...αn is a subsequence of another sequence β = β1β2...βm with
m ≥ n, if there exists an integer 1 ≤ k ≤ m − n+ 1 such that αj = βk+j−1 for
each 1 ≤ j ≤ n.

To find all potentially useful subsequences, we employed cSpade [22] algo-
rithm for frequent sequence mining. For a given value min support ∈ [0, 1], this
algorithm finds all subsequences whose support ≥ min support. Support of a
subsequence α is a fraction of input sequences which contain α as a subsequence.
Specifically, we set min support = 0.1 to get only subsequences that occur at
least in 10% of all input sequences. We obtained 121 frequent subsequences from
sequences in CE representation, and 242 subsequences in case of CET represen-
tation. Each frequent subsequence is used as a new feature with value equal to
1 if the subsequence appears in the given sequence, and 0 otherwise.

3 Sequence Clustering

3.1 Method

Having the resolution proofs represented by features constructed from the two
representations of sequences, we performed clustering on features of each repre-
sentation. For the purpose of clustering, we set the values of features as follows:
if the sequence contains the corresponding subsequence, we set the value as the
squared length of the subsequence. Otherwise we set the value to 0. The ratio-
nale for this is that long subsequences should be more explanatory so they carry
more weight.

On this representation of data we performed cluster analysis using the AGNES
(AGglomerative NESting) hierarchical clustering and PAM (Partitioning Around

1 We also tried sequences with node- and edge-deletion events, but these events did
not affect the results due to their sparse occurrence.



154 K. Vacuĺık, L. Nezvalová, and L. Popeĺınský

Table 1. Internal evaluation of CE-2, CE-8, CET-2, and CET-8 clusterings by Dunn
index (DI) and avg. silhouette width (SIL)

AGNES PAM

clustering DI SIL DI SIL

CE-2 0.14 0.60 0.01 0.60

CE-8 0.35 0.78 0.05 0.76

CET-2 0.09 0.53 0.14 0.57

CET-8 0.16 0.64 0.02 0.61

Medoids) algorithms, description of both algorithms can be found in [13]. In case
of AGNES we used average linkage method and for both algorithms we used
Manhattan distance metric.

To evaluate different numbers of clusters, i.e. different cuts in AGNES den-
drogram and different number of PAM medoids, we utilized two metrics, Dunn
index [7] and average silhouette width [17]. Higher value of either metric indi-
cates better clustering. For each algorithm we performed clustering with different
numbers of clusters, specifically we used all integers from the interval [2, 12]. To
select the most appropriate number of clusters, we ranked the values of the two
metrics for each algorithm. The higher the value of a metric, the lower the rank.
Then we calculated the total rank by summing over all four ranks. For the CE
representation, the value of total rank decreased with larger number of clusters,
but from 8 clusters onward, the change was not substantial, so we selected 8
clusters as sufficient. Specifically, the values of total rank from 2 to 12 clusters
were following: 60, 56, 50, 43, 46, 31, 25, 31, 24, 21, and 21. In case of CET
representation, the lowest value of total rank was calculated for 8 clusters. Re-
sults for both cases are depicted in Table 1, clustering is encoded as [sequence
representation]–[# of clusters ]. We also included results for CE-2 and CET-2,
cases with the smallest number of clusters, for comparison. These two clustering
divisions are also considered in statistical tests described later. In Table 1 we can
see that the Dunn index was generally quite low, especially for PAM algorithm.

For each cluster we also looked for the most representative sequence. In case
of PAM algorithm, it was enough to take the medoids. However, hierarchical
clustering algorithms does not use medoids, so we designed and used the follow-
ing procedure. First, we computed the average value for each feature on the set
of sequences from a specific cluster. The features were the same as for clustering.
Then we used the same distance metric, Manhattan distance, to find a sequence
most similar to the average.

3.2 Clustering Results

Resulting representative sequences for the above mentioned clusterings are shown
in Table 2. By comparing both algorithms, we can see that they share a lot of
similar representatives. Simple division of the proofs can be seen in case of the



Educational Data Mining for Analysis of Students’ Solutions 155

CE-2 clustering for both algorithms, see the first two rows of the table. The first
cluster groups proofs solved in a step-by-step fashion, where a step means an
application of the resolution rule and relevant edges are added immediately after
clauses (nodes) in each step. The second cluster groups proofs solved in such a
way that the nodes are added first and all the edges afterwards.

Table 2. Cluster representatives of CE-2, CE-8, CET-2, and CET-8 clusterings

Clustering AGNES PAM

CE-2 CCCEECCCCEECEECEE CCCEECCEECCCCEEEE

CCCCCCCCCEEEEEEEE CCCCCCCCCEEEEEEEE

CE-8 CCCEECCEECCEECCEE CCCEECCEECCEECCEE

CCCCEECEECCCCEEEE CCCCCEEEECCCCEEEE

CCCCCCCEEEEEE CCCCCCCEEEEEE

CCCEECCEECCEE CCCEECCEECCEE

CCCCCCCCCEEEEEEEE CCCCCCCCCCCEEEEEEEEEE

CCCEECCCECEEE CCCEECCEECCEECCEECCEE

CCCCCEEEE CCCCCEEEE

CCCEECCEE CCCCCCCCCEEEEEEEE

CET-2 CTTCTCTCTCTCTCTCTEEEEEECTEE CTCTCTCTEECEETCTCEECTTCTEE

CCCCCCTTTTTTCTEEEEEE CTCTCTCTCTCTCTCTCTEEEEEEEE

CET-8 CTCTCTCTCTCTCTCTCTEEEEEEEE CTCTCTCTCTCTCTCTCTEEEEEEEE

CCCCCCTTTTTTCCCTTTEEEEEEEE CCCCCTTTTTCCCTTTCTEEEEEEEE

CCCCCCCTTTTTTTEEEEEE CCCCCCCTTTTTTTEEEEEE

CTCTCTCTCTEEEE CTCTCTCTCTEEEE

CTTCTCTEETCTCEETCTCTEECTCTEE CTTCTCTEECTCEETCTECTE

CTCTCTEECTCTEE CTCTTCTCTCTCTCTEEEEEE

CCCCTTEETTTCCCEETTEETCTCTEET CTCTCTCTEECEETCTCEECTTCTEE

CTCTCTEE CCCCCCCCTTTTTTTTTTTCTEEEEEEEE

On the other hand, CET-8 clustering of AGNES, for example, is slightly more
difficult to analyse than CE-2. Nevertheless, several distinctive characteristics
can be seen from the representatives. In the first half of sequences, all edges
are added last, and in the second half, they are added approximately after each
step. Similar phenomenon can be observed for the T events with respect to the
C events – in some cases, most of the C events are added first, and in some cases,
these events are alternating with the T events.

In addition, the first and the fifth clusters from CET-8 of AGNES contained
most of the instances, precisely 696 out of 873 instances. This means that for
most of the proofs, it should hold that they are not short, node and text addition
is alternating, and there is no prevailing way of edge addition. The last cluster
in the table, represented by the CTCTCTEE sequence, was also interesting, as
its 12 out of 16 instances contained E3 error. Let us remind that there were only
53 instances with E3 error in total. It means that almost 1/4 of all erroneous
solutions appeared in that cluster. We can exploit the information from the
representative sequence for detecting potential error and maybe warn a student
or offer them a hint even before finishing their solution.



156 K. Vacuĺık, L. Nezvalová, and L. Popeĺınský

3.3 Analysis of Sequence Clusters

As we want to find whether some behavioural patterns of students are connected
with errors in solutions, we analysed our sequential data with respect to solution
errors. From the set of common errors, we considered the most serious error –
the error of resolving on two or more literals at the same time, i.e. the E3 error.
This error is the most common and also the only one with occurrence rate greater
than 5%. We performed Fisher’s exact test [9] to compare the occurrence of the
E3 error and each of the four sequence clusterings, taken for both clustering algo-
rithms. Considering the 5% significance level, we can conclude from the test results
that the data provides convincing evidence that the occurrence of E3 error is not
independent of any of those four clusterings of any of the two algorithms. More-
over, by analysing clusters as in the previous section, we can discover more useful
patterns, such that for CET-8 there was a cluster withmajority of wrong solutions.
Such information may help early detect students that are at risk of performing the
E3 error.

4 Time Duration

4.1 Time Features

We also analysed explicit time information. For each resolution proof, we com-
puted several time characteristics. They are expressed in seconds and can be
divided into two groups. The first group reflects time duration between simple
events such as node addition and deletion, edge addition and deletion, and text
modification. As there was no time limit for solving a resolution proof, students
could keep the web tool opened for a long time without actually solving the ex-
ercise. Therefore we marked 5% of the longest durations as outliers and replaced
each such outlier by a mean value of non-outlying durations of the correspond-
ing proof. Specifically, the threshold for outliers was 15 seconds in this case.
From these new values of durations we calculated the mean and the maximum
value2 and also the sum of durations, which represents the total duration of
proof solving.

The second group was derived from durations of resolution rule application.
In particular, for each application of resolution rule, we calculated time interval
between text modification of parents and text modification of the corresponding
resolvent. We omitted cases in which a parent was modified after its resolvent
and, again, 5% of the longest durations were replaced by mean values. In this
case, the outlier threshold was 60 seconds exactly. At the end, the maximum, the
minimum and the mean values were calculated as well as the sum of the values.

4.2 Analysis of Time Duration

Then we investigated the relation between errors and time duration of a res-
olution proof solution. Although the duration is a continuous variable, we did

2 We omitted the minimum value as it was almost always equal to zero because some
actions were saved simultaneously.



Educational Data Mining for Analysis of Students’ Solutions 157

0.0

0.2

0.4

0.6

0.8

2 3 4 5
mean duration [s]

de
ns

ity

group

with error E3

without error E3

0.000

0.002

0.004

0.006

0 300 600 900
total duration [s]

de
ns

ity

group

with error E3

without error E3

Fig. 2. Density plots for mean duration (top) and total duration (bottom) with respect
to E3 error

not use the Kolmogorov-Smirnov test because the data contains mostly integer
values with many ties between groups. Instead, we performed a permutation test
which is based on a comparison of means. More precisely, we used two-sample
exact permutation test estimated by Monte Carlo [8] on data consisting of du-
ration summary statistics of simple events. For each summary statistic, this test
compared distributions corresponding to erroneous and correct solutions for a
given type of error.

Significant results were obtained only for the E3 error and for mean values of
durations and sums of durations, i.e. total durations of resolution proofs. The
significance level was 0.05. In both cases, the test even yielded the p-value of
0.002. This means that the distribution of mean values of durations for solutions
without the E3 error is different from the distribution for solutions with the error.
The same holds for the two distributions of sums of durations. Distributions of
mean values can be found in the density plot at the top of Fig. 2. At the bottom
of the same figure, the density plot of the distributions of total durations is
depicted. We can conclude that solutions built in short time but on the basis of
slow actions are more likely to contain the E3 error.

5 Outlier Detection in Resolution Graphs

5.1 Generalized Subgraphs

As in the case of sequences, graph features may be constructed from graph sub-
structures found by an algorithm for frequent subgraph mining [5]. The task
of frequent subgraph mining is very similar to the frequent sequence mining,
but now the frequently occurring subgraphs are looked up in a set of graphs.
Next, boolean features are used and the value of a feature depends on whether
the corresponding substructure occurs in the given instance or not. Because the



158 K. Vacuĺık, L. Nezvalová, and L. Popeĺınský

node labels of incorrect solutions have very small support and frequent subgraph
mining can be inefficient for small values of minimum support, we created a new
method for finding interesting patterns. The other reason was that similar sub-
graphs differed only in alphabet letters and in the order of literals in text labels or
in the order of parent nodes. The main idea is to generalize and unify subgraphs
consisting of two parent nodes and a resolvent. Such generalized subgraphs may
be expressed shortly in the following form: parent1; parent2−− > resolvent. An
example of generalized subgraph is {¬Y, Z}; {¬Y,¬Z}−− > {¬Y }, where Y, Z
are variables that can match any propositional letter. We also created a new,
higher-level, generalization [20], which further generalizes the patterns found
earlier. As a result, new patterns in added; dropped form are created. The added
component simply denotes literals which were added erroneously to the resolvent
and the dropped component denotes literals from parents which participated in
the resolution process. Continuing with the example, the higher-level pattern
will be {}; {¬Z,Z}. The detailed description can be found in [20].

5.2 Method

The data we process has been labeled. We focused only on the E3 error as it
was the most common and the most serious error. Specifically, there were two
values of the class attribute, corresponding to the occurrence or nonoccurrence
of the error. Unlike in common outlier detection, where we look for outliers that
differ from the rest of “normal” data, we need to exploit information about
a class. That is why we used weka-peka [16] that looks for class outliers [15]
using Random Forests (RF) [4]. It extends the outlier detection method in RF
implemented in Weka [10] that actually works for classical settings – normal
vs. anomalous data to manage class information. The main idea lies in different
computation of the proximity matrix that exploits also information about a class
label [16].

5.3 Results

When analysing the strongest outliers that weka-peka discovered, we found three
groups according to the outlier score. The two most outlying examples, with
outlier factor overcoming 130, significantly differ from the others. The second
cluster consists of four examples with the outlier score between 50 and 100, and
the last group is comprised of instances with the lowest score of 15.91. Analysis of
individual outliers let us draw several conclusions. Two most outlying instances
contain one specific pattern, looping. This pattern represents the ellipsis in a
resolution tree, which is used for tree termination if the tree cannot lead to a
refutation. Both instances contain this pattern, but neither of them contains
the pattern of correct usage of the resolution rule. The important thing is that
these two instances contain neither the E3 error nor other errors. This shows
that it is not sufficient to find all errors and check the termination of proofs,
but we should also check whether the student performed at least few steps by
using the resolution rule. Otherwise we are not able to evaluate the student’s



Educational Data Mining for Analysis of Students’ Solutions 159

skills. Instances with the outlier score less than 100 are less different from other
instances.

6 Discussion

The other method that we used for outlier detection was CODB [12]. However,
when compared with weka-peka, CODB returned much worse results mainly
because of using density and distances (to nearest neighbours and to all members
of the class) for outlier detection. Such poor results may be caused by the fact
that those metrics are too rough for our task. Moreover, it is much more difficult
to obtain a comprehensive explanation of why a particular solution is an outlier.

As we stressed in the introduction, this method has not been developed for
recognition of correct or incorrect solutions. However, to verify that the feature
construction is appropriate, we also learned various classifiers of that kind. Best
result was achieved by SMO (SVM implementation in Weka) – 96.9% accuracy3.
Similar results were obtained when only the higher level of subgraph generaliza-
tion was used, again with SMO.

7 Conclusion

We proposed three different feature extraction methods for temporal as well as
structural information in logical proof solutions. We showed that by using those
new features we are able to find clusters of erroneous solutions, dependence
between time duration and errors in a student solution, and also solutions that
are anomalous and for that reason difficult to detect automatically.

We believe that this method can be used even by non-expert in machine
learning. There are only few parameters to be set: the minimum support for
frequent subsequences and also frequent subgraphs, maximum number of clusters
in sequence clustering, and the length of delay that indicates outliers in time
duration analysis.

This method is general. It can be used also for other logical proofs, such as
tableaux proofs, and for any construction tasks that are based on graphs. The
main idea, frequent subgraph mining and sequential frequent mining, can be
used without a change. However, a new way of subgraph pattern generalization
must be developed for a specific construction task.

There is a big potential of the results displayed above in practical education.
By using the detection and the analysis of clusters with higher frequency of
erroneous solutions a teacher can detect potential reasons of errors and find
shortcomings in tutoring. Even in the process of solving the task, it is possible
to detect behavioural patterns before completing the proof and warn the student.
Outlier detection particularly helps to discover picturesque students’ solutions
and fix drawbacks in automatic evaluation.

3 The rate of correct predictions made by the model.



160 K. Vacuĺık, L. Nezvalová, and L. Popeĺınský

In future we will use this method for resolution in predicate logic and also for
tableaux proofs. This may require an extraction of different structural features
(frequent subgraphs) but the rest can be used without changes. A challenge is
also the use of inductive logic programming that can better cope with domain
knowledge.

Acknowledgments. This work has been supported by Faculty of Informat-
ics, Masaryk University and the grant CZ.1.07/2.2.00/28.0209 Computer-aided-
teaching for computational and constructional exercises. We would like to thank
Alex Popa and members of KD lab for their help.

References

1. Anderson, J.R.: Discovering the Structure of Mathematical Problem Solving. In:
Proceedings of EDM (2013)

2. Barnes, T., Stamper, J.: Toward automatic hint generation for logic proof tutoring
using historical student data. In: Woolf, B.P., Aı̈meur, E., Nkambou, R., Lajoie,
S. (eds.) ITS 2008. LNCS, vol. 5091, pp. 373–382. Springer, Heidelberg (2008)

3. Barnes, T., Stamper, J.: Automatic Hint Generation for Logic Proof Tutoring Using
Historical Data. Educational Technology and Society 13(1), 3–12 (2010)

4. Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001)
5. Cook, D.J., Holder, L.B.: Mining graph data. Wiley-Interscience, Hoboken (2007)
6. Dong, G., Pei, J.: Sequence data mining. Springer, New York (2007)
7. Dunn, J.C.: A Fuzzy Relative of the ISODATA Process and Its Use in Detecting

Compact Well-Separated Clusters. Journal of Cybernetics 3(3), 32–57 (1973)
8. Fay, M.P., Shaw, P.A.: Exact and Asymptotic Weighted Logrank Tests for Interval

Censored Data: The interval R package. Journal of Statistical Software 36(2), 1–34
(2010), http://www.jstatsoft.org/v36/i02/

9. Fisher, R.A.: Statistical Methods for Research Workers. Oliver & Boyd (1970)
10. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The

WEKA Data Mining Software: An Update. SIGKDD Explor. Newsl. 11(1), 10–18
(2009)

11. Herold, J., Zundal, A., Stahovich, T.F.: Mining Meaningful Patterns from Students’
Handwritten Coursework. In: Proceedings of EDM (2013)

12. Hewahi, N., Saad, M.: Class outliers mining: Distance-based approach. Interna-
tional Journal of Intelligent Technology 2(1), 55–68 (2007)

13. Kaufman, L., Rousseeuw, P.J.: Finding groups in data: an introduction to cluster
analysis. Wiley, Hoboken (2005)

14. Martinez, R., Yacef, K., Kay, J., Al-Qaraghuli, A., Kharrufa, A.: Analysing frequent
sequential patterns of collaborative learning activity around an interactive tabletop.
In: Proceedings of EDM (2011)

15. Papadimitriou, S., Faloutsos, C.: Cross-outlier detection. In: Hadzilacos, T.,
Manolopoulos, Y., Roddick, J., Theodoridis, Y. (eds.) SSTD 2003. LNCS, vol. 2750,
pp. 199–213. Springer, Heidelberg (2003)

16. Pekarč́ıková, Z.: Supervised outlier detection. Master’s thesis (in Czech). Masaryk
University (2013), http://is.muni.cz/th/207719/fi m/diplomova

praca pekarcikova.pdf

http://www.jstatsoft.org/v36/i02/
http://is.muni.cz/th/207719/fi_m/diplomova_praca_pekarcikova.pdf
http://is.muni.cz/th/207719/fi_m/diplomova_praca_pekarcikova.pdf


Educational Data Mining for Analysis of Students’ Solutions 161

17. Rousseeuw, P.J.: Silhouettes: a Graphical Aid to the Interpretation and Validation
of Cluster Analysis. Computational and Applied Mathematics 20, 53–65 (1987)

18. Stamper, J.C., Eagle, M., Barnes, T., Croy, M.J.: Experimental Evaluation of Au-
tomatic Hint Generation for a Logic Tutor. I. J. Artificial Intelligence in Educa-
tion 22(1-2), 3–17 (2013)

19. Vacuĺık, K., Popeĺınský, L.: Graph Mining for Automatic Classification of Logical
Proofs. In: CSEDU (2014)

20. Vacuĺık, K., Popeĺınský, L., Nezvalová, L.: Graph mining and outlier detection
meet logic proof tutoring. Submitted to Graph-based Educational Datamining 2014
(2014)

21. Yoo, J.S., Cho, M.H.: Mining Concept Maps to Understand University Students’
Learning. In: Proceedings of EDM (2012)

22. Zaki, M.J.: Sequences Mining in Categorical Domains: Incorporating Constraints.
In: 9th ACM CIKM, pp. 422–429 (2000)

23. Zaki, M.J.: Efficiently Mining Frequent Embedded Unordered Trees. Fundamenta
Informaticae 66(1-2), 33–52 (2005)


	Educational Data Mining
for Analysis of Students’ Solutions

	1 Introduction
	2 Data and Data Pre-Processing
	2.1 Types of Sequences
	2.2 Frequent Subsequences

	3 Sequence Clustering
	3.1 Method
	3.2 Clustering Results
	3.3 Analysis of Sequence Clusters

	4 Time Duration
	4.1 Time Features
	4.2 Analysis of Time Duration

	5 Outlier Detection in Resolution Graphs
	5.1 Generalized Subgraphs
	5.2 Method
	5.3 Results

	6 Discussion
	7 Conclusion
	References




