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Dedication

This tenth publication is dedicated to my
parents Ghazi Ghulam Hussain Bahadur and
Mukhtar Begum who spent the prime of their
lives in fighting for the freedom and indepen-
dence of their country. At a very young age,
my father joined a paramilitary movement
with the mission to engage in peaceful strug-
gle to free the country from foreign occupa-
tion. Although the struggle for independence
started many decades before, his organiza-
tion together with similar movements and
political parties, decided to stage a much
more decisive countrywide peaceful protest
on 19 March 1940. The government, fear-
ing the shutdown of the country, had already
banned the gatherings but people were out
in such huge numbers that the army patrol-
ling the streets received orders to shoot to
kill. Live bullets were fired; many thousands
were killed or injured and many more taken
as political prisoners. That day, my father
was leading a group of 313 men—totally
unarmed. Several dozen of them were mar-
tyred or injured; many were captured and
tried. There were 13 who were sentenced to
political imprisonment for life—my father
was one of the 13. His organization honored
him with the titles of Ghazi (survivor in the



fight between right and wrong) and Baha-
dur (valiant). Four days later, an all-party
confederation passed a unanimous resolution
demanding the formation of an independent
state. Soon after, a declaration was signed
to transfer power to the leading political
party. Eventually, after another 7 years, the
country achieved independence on 14 August
1947. On this day, all freedom fighters were
released; my father also returned home ghazi
and victorious. My mother, a young girl
at the time, was no less courageous in her
struggles: she fully supported her husband s
mission and raised a young girl indepen-
dently, single handedly, while my father was
away. Now that the mission was achieved,
my father devoted his time to engage in the
study of Oriental languages and theology,
bringing up his family and serving the com-
munity. Achieve excellence ... make a dif-
ference: my parents would constantly remind
us. They most certainly were excellent in
what they did and made a huge difference.
They are my heroes and my inspiration
in life.

Zaigham Mahmood

19 March 2014



Preface

Overview

Cloud Computing is an attractive paradigm that allows consumers to self-provision
cloud based software systems, application services, development platforms and vir-
tualized infrastructures. Large enterprises can migrate their applications and data to
cloud environments to achieve the benefits of scalability, availability and reduction
in capital expenditure; small organisations and start-up ventures can realize benefits
by leasing ready-made development environments and computing infrastructure on
a pay-as-you-go basis; and general public can enjoy the use of cloud based applica-
tion such as email systems and storage space, which are often freely available.

The benefits that the cloud paradigm promises are numerous and already proven.
However, like any other emerging technology, the limitations, issues and barriers
are also many. There are issues of security due to virtualisation and multi-tenant
nature of cloud environments; concerns with respect to the loss of governance and
control; legal and jurisdiction implications of entrusting private and confidential
data to cloud providers; and concerns due to evolving cloud related standards. The
lack of knowledge on the part of the cloud consumers is also resulting in vendor
lock-ins and inappropriate service level agreements.

Notwithstanding the above, cloud consumers are becoming more knowledgeable
and beginning to dictate what they require. Cloud providers are also learning from
experience and beginning to provide what consumers actually need. Robust new
technologies are appearing and standards organisations, in the process of develop-
ing the necessary controls, are keen to enforce the standards for the benefit of all.
Other cloud related industries are also appearing to provide specialist services to
support cloud providers as well as the cloud consumers. Alongside this, research-
ers, practitioners and R&D departments within the organisations are coming up
with strategies and solutions to resolve the existing issues and remove the barriers.
New areas being investigated include: cloud security, interoperability, service level
agreements, identity and access management, cloud governance, big data analytics
and broker services. New frameworks and methodologies are also being developed
for construction, deployment and delivery of cloud services to benefit all.

vii



viii Preface

This book, Cloud Computing: Challenges, Limitations and R&D Solutions, aims
to present discussions on issues and limitations relating to the cloud computing
paradigm and suggest latest research methodologies, emerging developments and
R&D solutions to benefit the computing community. In this volume, 39 research-
ers and practitioners of international repute have presented latest research devel-
opments, current trends, state of the art reports, case studies and suggestions for
further development of the cloud computing paradigm.

Objectives

The aim of this text is to present the current research and R&D solutions to the
limitations, barriers and issues that currently exist in the cloud computing paradigm.
The key objectives include:

» Capturing the state-of-the-art research and practice relating to cloud computing
issues

» Exploring limitations and barriers with respect to cloud provision and cloud en-
vironments

* Analyzing the implications of the new cloud paradigms for the benefit of con-
sumers

» Discussing R&D solutions and strategies with respect to concerns relating to the
cloud paradigm

* In general, advancing the understanding of the emerging new methodologies
relevant to the cloud paradigm

Organization

There are 14 chapters in Cloud Computing: Challenges, Limitations and R&D Solu-
tions. These are organized in three parts, as follows:

» Part I: Limitations and Challenges of Cloud Environments. This section has a
focus on issues and limitations of the cloud computing paradigm. There are three
chapters in this section. The first chapter looks into the security issues of public
clouds. The second contribution focuses on architectural choices for DBM Sys-
tems for cloud environment and the third chapter discusses the challenges and
issues with respect to QoS and SLAs.

o Part II: Current Developments and R&D Solutions. This second part comprises
six chapters. The first contribution discusses a methodology for cloud security
management, while the second chapter suggests a framework for secure data
storage and identity management in the cloud. The third contribution presents a
simulation tool for energy aware cloud environments and the chapter, that fol-
lows, presents an efficient congestion control system for data center networks.



Preface ix

The fifth chapter is devoted to looking into energy aware VM consolidation in
the TaaS provision. The last contribution in this section focuses on software de-
fined networking for cloud related applications.

o Part III: Advances in Cloud Technologies and Future Trends: There are five
chapters in this part. The first chapter discusses future developments with re-
spect to virtualization and cloud security and the second contribution discusses
recent trends in QoS data warehouses in relation to the selection of cloud based
services. The next chapter focuses on cloud federation approaches. The forth
contribution discusses the security aspects of database-as-a-service provision
and the final chapter looks into the future to see how the next generation utility
computing infrastructures will be designed.

Target Audiences

The current volume is a reference text aimed to support a number of potential audi-
ences, including the following:

o Enterprise architects, business analysts and software developers who are keen to
adopt the newer approaches to developing and deploying cloud-based services,
taking into account the current research.

o [T infrastructure managers and business leaders who need to have a clear under-
standing and knowledge of the limitations and issues that currently exist in the
emerging cloud computing paradigm.

» Students and lecturers of cloud computing who have an interest in further en-
hancing the knowledge of the current developments and R&D solutions to the
barriers, limitations and issues that currently exist.

* Researchers in this field who wish to have the up to date knowledge of the cur-
rent practice, mechanisms and research developments relevant to the cloud para-
digm to further develop the same.

Zaigham Mahmood
University of Derby UK & North West University S Africa
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Chapter 1
Attacks in Public Clouds: Can They Hinder
the Rise of the Cloud?

Saeed Shafieian, Mohammad Zulkernine and Anwar Haque

Abstract Since the advent of Cloud Computing, security has been one of the main
barriers to the adoption of the Cloud paradigm, especially by large organizations
dealing with customers’ sensitive information. The rapid growth of the Cloud has
made it a desirable attack target for both external attackers and malicious insiders.
Many of the security attacks that occur in non-Cloud environments can occur in the
Cloud as well, but some of those may be exacerbated, and some may remain unaf-
fected in the new Cloud paradigm. There are also new threats that have arisen, and
Cloud users now face Cloud-specific attacks that did not exist or rarely occurred in
traditional environments. In this chapter, we discuss attacks that are exacerbated by
exploitation of the multi-tenancy attribute in public Clouds that occur because of
the virtualization technology or are due to the pay-as-you-go model in the Cloud.
We discuss some of the most common threats and attacks with respect to the Cloud
attribute exploitations which are capable of exacerbating attacks by causing more
potential consequences, or making detection and prevention mechanisms more
challenging. We also assess the attacks to find out how they may affect confiden-
tiality, integrity, and availability of data and services for Cloud users. Being aware
of the threats to the Cloud may help organizations and individuals have a more
informed switch to the Cloud from their non-Cloud environments. This will also
keep up the rise of the Cloud.

Keywords Cloud - Security + Denial of Service * Security attack + Virtualization *
Multi-tenancy
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1.1 Introduction

Cloud Computing is rapidly becoming the de facto standard for hosting and running
medium- to large-scale software applications and services on the Internet [1]. Many
companies, individuals and even government sectors are switching to the Cloud
environment due to several advantages that this new paradigm offers, including the
reduction of operational and training costs, the reduction of upfront capitalizations,
rapid scalability, ease of development, unlimited storage, and ubiquitous accessi-
bility. By using the Cloud paradigm, Cloud consumers may be able to concentrate
more on the core application functionality instead. Cloud Computing is not a new
technology but a combination of existing technologies such as the Web and virtu-
alization. Therefore, any vulnerability in one of these underlying technologies may
be exploited as a security attack in the Cloud.

There are, however, disadvantages in utilizing the Cloud infrastructure, most no-
tably issues related to security, privacy, and trust. According to independent surveys
[2, 3], the most daunting obstacle in switching to the Cloud from a traditional archi-
tecture is security concerns. All of these surveys and studies show the significance
of security in the Cloud from the perspective of both providers and consumers. If
security issues are well addressed and potential consumers are aware of them, it
may help a more confident transition to the new Cloud environment and will conse-
quently help the continued rise of the Cloud.

1.1.1 Cloud Computing

The most commonly referenced definition of the Cloud is the one proposed by the
U.S. National Institute of Standards and Technology (NIST) [4]. Based on this defi-
nition, the Cloud model is composed of five essential characteristics, three service
models, and four deployment models. The five characteristics of the Cloud are on-
demand self-service, broad network access, resource pooling, rapid elasticity, and
measured service.

The three service models of the Cloud include Software as a Service (SaaS),
Platform as a Service (PaaS), and Infrastructure as a Service (IaaS). Each of these
service models can be deployed as any of the four deployment models: private,
community, hybrid, and public.

Regarding the three service models and the four deployment models, there can
be six different combinations of service and deployment models for any Cloud.
However, some of these may only exist in theory and not offered by any Cloud Ser-
vice Provider (CSP), the entity which offers the Cloud services. In this chapter, we
only focus on one of these combinations, i.c., the public [aaS Cloud, which is one
of the most frequently used combinations and is offered by most prominent CSPs.

In the IaaS model, all the Cloud infrastructure resources are provisioned for the
consumer. In this model, the consumer is normally able to deploy and run any op-
erating systems or software applications in the Cloud. Famous examples of IaaS
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include Amazon EC2, Rackspace Cloud, Google Compute Engine, IBM Smart-
Cloud, and Microsoft Azure. In the public deployment model, the Cloud infrastruc-
ture is provisioned to be openly used by the general public. Unlike the other deploy-
ment models, in the public model the infrastructure only exists on the premises of
the Cloud provider.

One of the most important attributes in a public [aaS Cloud is multi-tenancy.
Multi-tenancy enables different consumers to have virtual machines (VMs) on the
same physical machine. This attribute is not considered as one of the five essential
Cloud characteristics mentioned earlier, but it normally exists in public Clouds and
is the main justifying factor for the lower costs in the Cloud as compared to non-
Cloud environments. All the VMs running on top of the same physical machine
are controlled by a hypervisor. A hypervisor, also called a virtual machine monitor
(VMM), controls all the guest operating systems running on top of a host operating
system.

1.1.2  Cloud Attributes Affecting Security

We identify attributes which may be exploited to exacerbate the attacks in the Cloud
compared to non-Cloud environments. By exploiting these attributes, attackers may
be able to launch attacks that have more consequences or are harder to detect or pre-
vent in a public Cloud. By “having more consequence,” we refer to either affecting
more users or causing more asset losses. These attributes are as follows:

» Ubiquitous Network Access: Cloud consumers can access and provision all the
services and resources provided by the CSP using public networks especially the
Internet and via conventional devices.

*  Measured Service: The CSP measures the provided service to its consumers
based on appropriate units. Consumers can monitor and track their resource us-
age online through the transparent measured service.

*  Multi-tenancy: In a public [aaS Cloud, different consumers may have their VMs
coresident with other consumers’ VMs on the same physical server. This allows
for lower resource usage costs compared to the single-tenant model in traditional
environments or private Clouds.

» Off-premise Infrastructure: In a public Cloud, the infrastructure is owned and
operated by a third party and is off premises of the consumer’s organization. As
a result, the consumer loses physical control over their resources, and needs to
rely on the CSP’s physical security measures.

The ubiquitous network access and measured service are essential Cloud character-
istics, and are therefore required to be provided by any CSP regardless of the service
or the deployment model. Multi-tenancy does not exist in the private Cloud as there
is only one consumer utilizing the Cloud resources. Nevertheless, multi-tenancy is
a vital attribute in all public Clouds. Finally, off-premise infrastructure is an intrin-
sic attribute in any public Cloud which contributes as one of the major concerns
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for any Cloud consumer. Each of the aforementioned attributes might be exploited
in order to exacerbate the attacks. If an attack is exacerbated in the Cloud through
exploitation of one of the Cloud attributes, it means that the attribute contributes in
increasing attack motivation, attack consequence, or making detection, prevention,
and response mechanisms for that specific attack more challenging compared to
those in non-Cloud environments.

1.1.3  Chapter Overview

We consider security as the preservation of confidentiality, integrity, and availabil-
ity. Here, we are concerned mostly with the [aaS security. For the two other service
models, most of the countermeasures and mitigation techniques are to be taken by
the CSPs. For example, Amazon is responsible for maintaining security from the
physical level of the data centers up to the hypervisor level. On the other hand,
consumers are kept responsible for all the rest such as operating system (OS) se-
curity, application security, etc. [5]. As a result, the Cloud consumers are not free
to implement their desired security solutions and need to rely on the provided level
of security by the CSP. For the IaaS model, a consumer has the highest degree of
control over infrastructure compared to other models. On the other hand, a CSP has
the lowest responsibilities for maintaining security in the [aaS. Regarding maintain-
ing confidentiality, integrity, and availability as the three pillars of security, a CSP is
generally responsible for only preserving availability in the [aaS and the remaining
two attributes should be of the consumer’s concern [6].

In this chapter, we discuss and assess attacks in public [aaS Clouds. We are main-
ly focused on two groups of attacks: attacks that are common between the Cloud
and non-Cloud environments but are exacerbated in the Cloud by exploiting multi-
tenancy, and attacks that occur because of the virtualization technology or the utility
pricing model used in the Cloud. We provide Cloud scenarios as to how each of the
attacks occurs in the Cloud and discuss current solutions for them. We compare the
first group of attacks with those in non-Cloud environments based on the proposed
Cloud attributes that affect security. Furthermore, we assess how any of these at-
tacks could compromise confidentiality, integrity, or availability in the Cloud.

1.1.4 Chapter Organization

The rest of the chapter is organized as follows: Section 1.2 provides the related
work and discusses the motivation for a new survey. Section 1.3 discusses attacks
in the public Cloud and provides assessment in terms of the Cloud attributes which
may be exploited in order to exacerbate the attacks. Moreover, it shows how at-
tacks compromise confidentiality, integrity, and availability in the Cloud. Finally,
Sect. 1.4 concludes the chapter and discusses some open issues.
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1.2 Related Literature

There exist a number of surveys in the literature that discuss general Cloud security
issues and provide overviews of the challenges [7-25]. In this section, we discuss
the works that propose classifications with respect to the attacks in the Cloud.

Gruschka et al. [26] suggest a classification of the attacks in the Cloud based on
the notion of attack surfaces. They identify three major participants in a Cloud en-
vironment: users, services, and the Cloud provider. They suggest six combinations
of possible interactions between any two of these entities proposing that an attack
in the Cloud exploits one or a combination of these surfaces.

Srinivasan et al. [27] also propose a classification of the security challenges in
the Cloud. They categorize the security challenges as being either based on archi-
tectural and technological aspects, or process and regulatory-related aspects. They
suggest different subcategories within each of those two categories. In another
work, Chow et al. [28] identify the security concerns in the Cloud as traditional
security, availability and third-party security. They suggest different subcategories
within each of the mentioned categories.

Grobauer et al. [29] categorize vulnerabilities in the Cloud as core technology or
Cloud-specific vulnerabilities. They suggest that Cloud Computing is built on three
core technologies i.e., Web applications and services, virtualization, and cryptogra-
phy. A vulnerability is Cloud-specific if it is inherent in a core Cloud technology, is
caused mainly due to one of the NIST’s essential Cloud characteristics, is because
of inefficiency of the conventional security controls in the Cloud, or is common in
prominent Cloud offerings.

You et al. [9] propose a classification of Cloud security issues into three differ-
ent categories: data security, virtualization-related security, and application-related
security. They describe each category in terms of security issues and threats related
to each category.

Sen [30] proposes a classification of security issues in the Cloud consisting of
traditional security concerns, availability issues, and third-party data control-related
issues. The author claims that the traditional security concerns will be aggravated
by moving to the Cloud. By pointing out real availability incidents for well-known
CSPs such as Amazon and Google, the author identifies availability issues as one
of the biggest concerns for critical applications hosted in the Cloud. Legal, contrac-
tual, and auditability issues are also identified as concerns raised by third-party data
control.

Molnar et al. [31] classify threats that arise from moving from self-hosting to
Cloud-hosting into two sets: threats that may be caused by having leased resources
instead of owned ones, and threats which may be caused by having shared instead
of dedicated resources. For the first group, they identify threats to infrastructure as-
sembly, contractual threats, and legal and jurisdictional threats. The second group
consists of threats from other tenants, legal and jurisdictional threats, threats to
availability and service costs, and restricted audit, detection, and response capabili-
ties. They also discuss countermeasures to each group of threats.
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1.3 Attacks in the Cloud

In this chapter, we investigate attacks in the Cloud from the perspective of consum-
ers and clients who do not operate the Cloud infrastructure themselves. We are in-
terested in the IaaS service model because in the other service models there is little
freedom for a consumer in terms of countermeasures they can put in place to miti-
gate the security vulnerabilities. We consider public deployment model of the Cloud
since it is the most-widely used model. Public model has not been customized for
specific high-security demand entities like financial institutions or government sec-
tors. As a result, it may be the most vulnerable model to the attacks.

Many of the attacks that can occur in a Cloud environment are preexisting at-
tacks that have occurred in non-Cloud environments before. Due to the nature of
the Cloud, which is a combination of existing technologies such as the Web and
virtualization, any security vulnerability that can occur in the presence of these
technologies has the potential of occurring in the Cloud as well. However, there
are attacks that may only occur in the Cloud environment because of the specific
Cloud paradigm and architecture. In this section, we provide an overview of some
of the attacks that are common between the Cloud and non-Cloud environments but
may be exacerbated in the Cloud through exploiting multi-tenancy. Furthermore,
we discuss and assess attacks that occur due to the virtualization technology used in
the Cloud. In this chapter, we do not discuss well-known Web-based attacks such as
cross site scripting (XSS), cross site request forgery (CSRF), SQL injection (SQLI),
and phishing. These attacks can all occur in the Cloud because of the similar un-
derlying technologies used as non-Cloud systems. However, these have been well
studied, and we refer the interested reader to the related references on these attacks
[e.g., 32].

1.3.1 Common Attacks

There are attacks that are common between the Cloud and non-Cloud environments.
These attacks, however, may be exacerbated in the public Cloud via exploitation
of the inherent multi-tenancy attribute in the public Clouds. Here, we discuss three
attacks that may be aggravated in the Cloud because of the coresident consumers
sharing the same physical hardware.

1.3.1.1 Distributed Denial of Service Attacks

Distributed Denial of Service (DDoS) attacks are one of the dominant attacks in
the Cloud [2]. In a DDoS attack, the adversary exploits a number of compromised
machines called bots to compose a botnet in order to consume critical resources at
the victim’s machine(s). The goal of the attacker is to force a computer or network
to become incapable of providing normal services by blocking access to or degrad-
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ing services. DDoS attacks can target different layers of a computer system stack
including network device level, operating system level, and application level [33].
Using internet protocol (IP) spoofing techniques, the attacker may be able to send
attack packets from spoofed IP addresses. This might make the fraudulent traffic
difficult to filter and the source of attack undistinguishable.

The Cloud is a combination of preexisting technologies such as Web and net-
works, so DDoS attacks can be targeted to Cloud machines. However, there are
differences between a DDoS attack on the Cloud and non-Cloud environments. In
the context of the Cloud, the attack can also be launched from within the Cloud by
exploiting a number of VMs as internal bots in order to flood malicious requests
towards the victim’s VM(s) [7]. This may make detecting such an attack very dif-
ficult, if intrusion detection and prevention systems operate only at the perimeter of
the Cloud. In this case, they may be unable to detect DDoS attacks launched from
within the Cloud. This can increase the chance of having successful DDoS attacks
on the Cloud. Another difference between the Cloud and non-Cloud environments
which exacerbates DDoS attacks in the Cloud is that unlike non-Cloud environ-
ments, a DDoS attack in the Cloud can have impact on multiple consumers as sev-
eral consumers may be using the compromised physical machine.

The conventional countermeasures to mitigate DDoS attacks include Intrusion
Detections Systems (IDSs) and Intrusion Prevention Systems (IPSs). These systems
can be both software-based and hardware-based and deploy various techniques such
as resource multiplication, traffic pattern detection, and traffic anomaly detection
to prevent and detect DDoS attacks [34-36]. Yu et al. [37] propose using idle re-
sources to form multiple parallel IPSs in the Cloud in order to help the attacked ma-
chine to defeat a DDoS attack. This may save the victim from having its resources
blocked or degraded, but it may incur a considerable amount of charges for many
idle resources that might have been used.

1.3.1.2 Keystroke Timing Attacks

Keystroke timing attacks occur when the attacker tries to steal the victim’s confi-
dential information, especially login passwords, via eavesdropping on their key-
strokes. Song et al. [38] show that the timing information of keystrokes may leak
information about the keys’ sequence types. They show that by applying advanced
statistical techniques on timing information collected from the network, an attacker
can learn substantial information about the characters the victim has typed in a se-
cure shell (SSH) session.

In a Cloud environment, the attacker’s goal is to measure the time between key-
strokes while the victim is typing a password. If the inter-stroke times are measured
with sufficient resolution, they can be used to perform password recovery. Having
coresidency, the attack can be launched in real time via measuring cache-based
loads while the victim is typing sensitive information. However, a successful attack
requires the two VMs to share the same CPU core at the time of the attack which
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decreases the chance of having a successful attack [39]. We are not aware of any
countermeasures for keystroke timing attacks other than avoiding coresidency in
the Cloud. A mitigation technique used in Amazon EC2 is to frequently change the
processor cores among VMs such that the chance of a successful attack decreases.

1.3.1.3 Side-Channel Attacks

Due to the multi-tenancy attribute in the public Clouds which enables multiple VMs
to run on the same physical machine, a consumer’s VM could be running on the
same server as their adversary. This may allow the adversary to infiltrate the iso-
lation between the VMs and compromise the consumer’s confidentiality. A side-
channel attack consists of two main steps: placement and extraction. In the place-
ment phase, the attacker tries to place his/her malicious VM on the same physical
machine as that of the target consumer. Ristenpart et al. [39] show that by using
careful empirical mappings on Amazon EC2 public IaaS Cloud, they can increase
the chance of placing the malicious VM on the right physical machine. In fact, they
suggest that two VM instances in EC2 are likely to be coresident if they have match-
ing Xen Dom0 IP addresses, small packet round-trip times, or numerically close
EC2 internal IP addresses. After the intruder manages to place a VM coresident
with the target, the next step involves extracting the confidential information via a
cross-VM attack. One of the ways to do this is through side-channels, i.e., cross-
VM information leakage due to the sharing of the physical resources, for instance a
CPU’s data cache. By using a technique called Cloud cartography, the EC2 service
can be mapped in order to make an educated guess as to where the potential target
VMs are located. This can be achieved by using network probing tools. The cache-
based side-channel attacks have been shown to be able to extract Rivest Shamir
Adleman (RSA) and advanced encryption standard (AES) secret keys [17, 18]. Ina
recent work, Zhang et al. [42] were also able to extract the ElGamal decryption key
from a victim VM managed by the modern Xen hypervisor.

Zhang et al. [43] propose a technique called HomeAlone to allow a tenant to
verify their exclusive residency of the physical machine on which their VMs are
running. This happens when a tenant has purchased isolated resources from a CSP,
but they still need to verify physical isolation of their VMs. The proposed technique
employs an L2 memory cache side-channel not as an attack but as a defensive de-
tection tool. The technique helps the tenant ascertain whether there is a rival VM
coresident with their VMs on the same physical machine. To achieve this, all the
friendly VMs silence their activity in a selected cache region for a specific period of
time. The tenant then measures the cache usage during this period and checks to see
if there is any unexpected activity. Any activity during this period would indicate
the presence of a rival VM.

One of the proposed solutions to mitigate side-channel attacks includes obscur-
ing the internal structure of the services as well as the VM placement policy. These
should be done by CSPs in order to complicate the placement procedure for an at-
tacker. The other approach is to minimize the information that can be leaked once
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Table 1.1 Consequences of Cloud attribute exploitations

11

Attack Ubiquitous Measured Multi-tenancy Off-premise
network service infrastructure

DDoS + + + +

Keystroke timing 0 0 + 0

Side-channel 0 0 + 0

+: exacerbated, 0: not affected

the attack occurs [39]. Godfrey et al. [44] propose a server-side approach to mitigate
cache-based side-channel attacks. They modify the Xen hypervisor so that a cache
flush occurs only when a context switch changes to a VM that has the ability to es-
tablish a side-channel with the first. However, none of these countermeasures stops
an adversary, launching side-channel attacks, and the best solution would be for the
consumer to utilize physical machine resources exclusively. Although more costs
would be incurred by the underutilization of the resources, the consumer makes sure
no such attacks can occur.

1.3.1.4 Discussion

DDoS, keystroke timing and side-channel attacks may all be exacerbated in the
Cloud compared to non-Cloud environments. Table 1.1 shows the consequences
of Cloud attribute exploitations by attacks. As shown in Table 1.1, all these attacks
may be exacerbated in the Cloud through exploitation of the multi-tenancy attri-
bute. A DDoS attack may be exacerbated via exploitation of other attributes too.
In a Cloud environment, not only do there exist DDoS attacks initiated outside of
the Cloud but also there can be DDoS attacks launched from inside the Cloud by
exploiting VMs to form an internal botnet. Here, exploitation of ubiquitous network
access and multi-tenancy attributes may exacerbate the DDoS attack, making it
more difficult for firewalls and intrusion detection systems to detect, as attacks are
coming from an internal as well as an external source. Moreover, as the consumer is
charged according to measured services, this attribute can also incur more charges
to the victim due to the unwanted inbound and outbound traffic and resource usage.
Having off-premise infrastructure may also delay an immediate response to the at-
tack. There is another opportunity for an attacker to perform DDoS attacks in the
Cloud: usually with public CSPs, one can register for an laaS service by just enter-
ing credit card information or even benefit from trial periods without entering any
valid data. Due to this type of loose registration, attackers can exploit VMs while
hiding their identities [45]. In this way, an adversary can launch attacks against
victims that reside both inside and outside the Cloud, by exploiting the Cloud re-
sources. For those DDoS attacks launched from inside the Cloud against victims
that are inside as well, firewalls and intrusion detection and prevention systems
might not be able to block the attacks.
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In our assessment of the attacks in the Cloud, we also consider keystroke tim-
ing attacks as having more consequence in a Cloud rather than a non-Cloud envi-
ronment due to multi-tenancy attribute exploitation. The keystroke timing attacks
require coresidency with the victim’s VM. This can happen when there are multi-
tenant consumers in an IaaS Cloud. Multi-tenancy attribute of the Cloud may be
exploited to exacerbate the keystroke timing attack by increasing the chance of
having a successful attack. However, this attack may be very difficult to succeed
in practice if the CSP migrates VMs between different cores of a physical machine
processor as implemented in Amazon EC2. If the attacker VM and the victim’s VMs
are using one of the cores on a four-core processor, the chance of having a success-
ful keystroke timing attack would be less than 25 % [39].

Side-channel attacks can also occur in Cloud as well as non-Cloud environ-
ments. However, even in a non-Cloud environment which uses virtualization tech-
nology such as Virtual Private Server (VPS) hosting, the attacker has no way of
placing their malicious VM on a target server. Therefore, the placement step which
is the first required step in performing a successful side-channel attack cannot be
performed, leaving little chance of success for the attacker. Nonetheless, in a public
Cloud scenario, an adversary may be able to place their malicious VMs coresident
with the victim’s VMs by exploiting the multi-tenancy attribute, and launching a
successful side-channel attack as described earlier. As a result, multi-tenancy ex-
ploitation may exacerbate side-channel attacks by bringing more motivation to the
attacker, compared to traditional environments.

1.3.2 Cloud-Specific Attacks

Cloud-specific attacks are those attacks that occur via exploiting vulnerabilities in
the virtualization or utility pricing. These attacks may also occur in any non-Cloud
environment which uses virtualization technology. Nevertheless, multi-tenancy and
pay-as-you-go features offered by the public Clouds, make the Cloud an ideal attack
target for adversaries targeting to exploit such vulnerabilities. In this section, we
discuss this class of attacks in the Cloud.

1.3.2.1 VM Denial of Service Attacks

A Virtual Machine Denial of Service (VM DoS) attack occurs when the adversary
who is the owner of a VM in the Cloud exploits a vulnerability in the hypervisor in
order to consume all or most of the available resources of the physical machine the
VM is running on [11]. This will lead to other tenants being deprived of the required
resources and encountering malfunctions with their services.

The VM DoS attack can occur in any environment that uses the virtualization
technology and offers coresidency to the consumers. Most current hypervisors are
capable of detecting excessive resource consumption by the VMs running on top
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of them. After detecting a malicious VM, one of the techniques to prevent denial of
service for other VMs residing on the same physical server is to restart the malicious
VM. This costs less than restarting the entire physical machine.

1.3.2.2 Hypervisor Attacks

A Cloud administrator who has privileged access to the hypervisor is able to pen-
etrate into guest VMs through the hypervisor even without having any direct privi-
leges on the target VMs. For example, if Xen is used as the hypervisor, the XenAc-
cess library allows a privileged VM to view the contents of another VM’s memory
at runtime. This technique is called virtual machine introspection [46]. In another
type of hypervisor attack, a malicious administrator installs a malicious hypervisor
into a Cloud server to eavesdrop on a consumer’s activities and steal their sensitive
information. Moreover, considering the root-level access of system administrators,
it may be difficult for a guest OS to detect the fraudulent activity using conventional
detection mechanisms [47].

Santos et al. [48] propose a Trusted Cloud Computing Platform (TCCP) for en-
suring the confidentiality and integrity of computations that are outsourced to IaaS
services. They suggest that the approach enables a closed box execution environ-
ment preventing a user with full privileges on the host VM to gain access to the
guest VMs.

Another type of attack targets vulnerabilities in a hypervisor scheduler. Zou et al.
[49] show that an attacker can exploit a VM so that it uses more processor time
than its fair share and escapes the periodic sampling performed by the hypervisor.
In this attack, the adversary makes the processor idle just before the scheduler tick
occurs and resumes the run after the tick finishes. This enables the attacker VM to
consume most of the processor cycles without incurring any charges and deprives
the cotenant VMs from consuming their required cycles. They have implemented
sample hypervisor scheduling attacks on Amazon EC2 to demonstrate the practical-
ity of these types of attacks. The proposed solutions to this attack include using a
high-precision clock or a random scheduler to prevent scheduler escaping.

1.3.2.3 Cloud Malware Injection Attacks

In a Cloud malware injection attack, the adversary tries to inject a malicious VM
into the Cloud with different purposes including eavesdropping, functionality al-
tering, or blockings [10]. The attacker needs to create their own malicious VM
instance into an IaaS Cloud. In order for this attack to be successful, the malicious
instance should be designed in such a way that the Cloud treats it as a valid instance.

In Amazon EC2 public IaaS Cloud, a consumer can simply create an image of
their VM, called Amazon Machine Image (AMI). Once the image is created, it can
be easily made public by editing AMI permissions and changing the visibility from
private to public. As a result, if a malicious image is created in this way, it will be
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visible to all other EC2 consumers, and they can launch VM instances based on this
image. All the VMs created based on the malicious image may be vulnerable to at-
tacks such as stealing of sensitive data.

One of the countermeasures to be taken by CSPs in order to resolve these types
of attacks is not to allow an image to go public unless it has been fully scanned to
ensure that it is free from any potential malware. However, new malware may not
be detected by malware detection tools, thus, consumers should always undertake
the risk of using public images, and do not solely rely on the service provider’s
security measures.

1.3.2.4 VM Image Attacks

Typically, in a Cloud environment such as Amazon EC2, VM images are shared
among Cloud consumers. These include both CSP-provided and user-provided im-
ages. CSP-provided images help consumers instantiate their required VMs rapidly
by providing them with the standard OSs and applications. On the other hand, a
user is able to make an image of their VM and make it publicly available to all other
users of the Cloud. VM images can be easily saved, copied, encrypted, moved, and
restored.

There are three types of risks associated with VM images: publisher’s risk, re-
triever’s risk, and Cloud administrator’s risk [50]. The publisher risks disclosing
their sensitive information, such as saved passwords, browsing history, cookies,
etc., by sharing a VM image for the public. On the other hand, there is a high risk
for the consumer who runs vulnerable or malicious images. When a malicious VM
is run by a victim consumer, the attacker is in fact bypassing security measures
such as intrusion detection and prevention systems and firewalls around the Cloud
network. The Cloud administrator also risks distributing the images with malicious
content over the Cloud network. The infected machines appear shortly, infect other
machines, and disappear before they can be detected. As a result, the infections
would persist indefinitely and the system may never reach a steady state [51].

Inadequate data deletion can be the root for another type of VM image attack
[52]. Cloud consumers normally delete their VMs after they are finished using them
in order not to incur the cost of having idle VMs. Nevertheless, if the data is not
properly deleted, there is the risk of being recovered by a malicious CSP insider or
even by another Cloud consumer who has been allocated the same disk area on that
specific server. This can occur due to the fact that in many OSs when data is deleted,
its space is marked as free by the system, but the contents will remain on the disk.
In a recent work, Balduzzi et al. [53] show that 98 % of Windows images and 58 %
of Linux images in Amazon EC2 contain software with critical vulnerabilities based
on analyzing a total of 5303 Amazon machine images.

These types of attacks are similar to malware injection attacks when a mali-
cious VM becomes publicly available in the Cloud. However, when a consumer
publishes an image publicly, they need to make sure that any sensitive data has been
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thoroughly erased in such a way that it will not be recoverable by subsequent users
of the image or even CSP administrators.

1.3.2.5 VM Relocation Attacks

VM mobility is one of the advantageous features of using VMs, as opposed to physi-
cal machines, and is essential for load balancing and system maintenance. However,
it imposes security risks for the owner as VMs can be stolen by malicious insiders
even without the owner’s awareness. In an offline attack, the adversary can simply
copy the entire victim’s VM to a remote machine or even a portable storage device
[51]. Moreover, there exist attacks that can occur in a live VM migration scenario.
A live VM migration is normally done by copying memory pages of a VM from
the source hypervisor to the destination hypervisor over the network. The attacks
have been empirically demonstrated on Xen and VMware, the two most deployed
hypervisors [54]. One of these attacks includes initiating unauthorized migration
of a victim VM to the attacker’s physical machine. The adversary can then gain
full control over the victim’s VM or launch attacks that exploit coresidency such
as side-channel. Another type of attack is to initiate an unauthorized migration of a
large number of VMs to a victim machine in order to cause denial of service for the
victim. Mutual authentication of the source and the destination hypervisors is a sug-
gested solution in order to achieve a secure migration and prevent potential attacks.

1.3.2.6 Resource-Freeing Attacks

Resource-freeing attacks (RFAs) are a new type of attack in the Cloud that exploit
the coresidency and resource sharing among VMs in order to modify the workload
of a victim VM to release resources for an attacker VM [55]. Any hypervisor such
as Xen tries to provide performance isolation by allocating required resources to
each VM. However, if two VMs require heavy use of the shared memory or the
processor at the same time, the performances of both VMs degrade, since the hyper-
visor is not able to allocate the required resources to both VMs. The competition to
acquire resources may lead to a malicious consumer crashing the rival VM in order
to free resources for their own use.

A hypervisor scheduler may provide a fair-share allocation of the processor by
distributing idle processor time to running VMs (work-conserving), or by putting a
limit on the maximum amount allowed for each VM (non-work-conserving). The
former increases performance, but reduces isolation, whereas the latter increases the
isolation with the cost of decreasing the performance. A resource-freeing attack can
occur only when a work-conserving scheduler is used. The first step to launch an
RFA attack is to increase the resource usage of the victim so that it reaches a bottle-
neck. This step is performed by using a helper process that can be run either on the
same or another machine. Then, the next step would involve shifting the victim’s
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resource usage to the bottleneck resource. This would free up other resources to be
used by the attacker.

An RFA has been shown to be able to increase the performance of a VM by up
to 60% on a local test bed, and up to 13 % when launched on Amazon EC2 [56].
The low rate on Amazon EC2 is in part due to the fact that non-work-conserving
scheduler is used by Xen to schedule processor timing in EC2. One of the ways to
prevent RFAs is to use dedicated instances. This costly approach is supported by
Amazon EC2 and allows a consumer to request dedicated resources for their VMs
on a physical machine. The other approach to prevent an RFA is to use schedulers
that do not distribute idle resources, such as non-work-conserving schedulers. How-
ever, as previously mentioned, this places a boundary on the maximum resource
share to be used by each VM, and may reduce the performance.

1.3.2.7 Fraudulent Resource Consumption Attacks

One of the few unique attacks in the Cloud is Fraudulent Resource Consumption
(FRC) [56]. In this Cloud-specific attack, the adversary aims to exploit the utility
pricing model of the Cloud by launching an attack similar to a DDoS attack. The
utility pricing in the Cloud is similar to the pricing model of utilities such as elec-
tricity and gas for which a consumer pays only for the amount they have used.

By fraudulently using the consumer’s Cloud resources, the adversary’s intension
is to divest the victim of their long-term economic benefits. There are two major
differences between FRC and DDoS attacks. First, FRC attacks aim to make Cloud
resources economically unsustainable for the victim, whereas a DDoS attack aims
to degrade or block Cloud services. Second, FRC attacks tend to be more subtle and
are carried out over a longer period of time compared to DDoS attacks. In order to
fraudulently consume resources, the attacker exploits a botnet to send malicious
requests to the Cloud to gradually increase the cost of resource usage for the victim
consumer. The idea of FRC attacks is originated from the notion of Economic De-
nial of Sustainability (EDoS) [57] where an attacker targets the long-term sustain-
ability of the victim.

Detecting an FRC attack could be very difficult because the way an attacker
requests Web resources is like that of any legitimate client, and the only differentiat-
ing attribute is their intention. An FRC attack occurs just above the normal activity
threshold and below the DDoS attack threshold. Therefore, it may be unlikely to be
detected by traditional intrusion detection systems. FRC attacks are new and unique
to the Cloud because they exploit the utility pricing model of the Cloud, which is
not applicable to non-Cloud environments.

In a normal traffic activity to a website, the frequency of visiting a Web page is
proportional to the popularity of that page. For example, the Home page is usually
the most visited page in normal traffic and the About Us page may be visited less
frequently. Now if for a given website, the incoming page requests from a client
hit the About Us page much more than the home page, most probably the traffic
is being automatically generated from a botnet and therefore should be detected as
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Table 1.2 Security attri- Style3Attack Confidentiality | Integrity | Availability

butes affected by the attacks DDoS N N Y
Keystroke timing | Y N N
Side-Channel Y N N
VM DoS N N Y
Hypervisor Y Y Y
Malware injection | Y Y Y
VM image Y Y Y
VM relocation Y N N
RFA N N Y
FRC N N N

Y compromises, N does not compromise

fraudulent. Another approach to mitigate EDoS attacks is to try to verify benign and
malicious requests by creating a white list and a blacklist of IP addresses based on
the first packet received from a requesting source [58]. As a result, if the first re-
quest is from a benign user, all the subsequent requests from the user will be passed
to the Cloud server, but if the first packet is detected to be from a malicious user, all
the subsequent requests will be denied for that user. The downside of this technique
is that it may not be possible to distinguish between malicious and benign users by
only examining the first packet received from them.

1.3.2.8 Discussion

Cloud-specific attacks are those attacks that can occur in the Cloud due to the spe-
cific Cloud paradigm and technologies. Most of these attacks exploit vulnerabilities
in the virtualization. These attacks are able to make Cloud services unavailable or
significantly degraded for the tenants. Attackers can also penetrate into other VMs
coresident with them in order to steal private information, alter data, etc. Moreover,
a malicious VM can escape the fair processor sharing and not incur any charges
for the processor cycles that have been used. The other type of attack is to inject
a malicious VM in the Cloud. There are also threats associated with sharing VM
images and relocating VMs in public Clouds. Fraudulent resource consumption or
economic denial of sustainability attacks target the long-term sustainability of the
Cloud resources for consumers. These types of attacks are unique to the Cloud and
may be among the most difficult attacks to detect.

1.3.3 Security Attributes in the Cloud

The three fundamental attributes of security, i.e., confidentiality, integrity, and avail-
ability, can be affected by the attacks in the Cloud. Nonetheless, not every attack
compromises every attribute of the triad. Table 1.2 shows how these three attributes
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of security are affected by different attacks in the Cloud. As Table 1.2 shows, some
of the attacks affect all, whereas some others only affect one or two of the attributes.
The only exception is the FRC attack. This attack does not compromise any of the
three security attributes; however, fraudulent resource consumption is considered
an attack which exploits utility pricing model of the Cloud.

Once a DDoS attack occurs, data may not be available to the authorized users,
thus violating the availability attribute. Nonetheless, confidentiality and integrity
may not be compromised by a DDoS attack. A successful keystroke timing attack
may lead to the leakage of sensitive data thus compromising the confidentiality
attribute. This attack normally cannot put the other security attributes at risk. Side-
channel attacks are able to compromise the victim’s confidentiality by extracting
confidential information through side-channels.

A VM DoS attack may deprive a victim tenant of the shared resources. As a
result, it compromises the availability attribute. If a hypervisor attack is success-
ful, based on the level of privileges the attacker may acquire, any of the three se-
curity attributes can be at risk. This is also true for a malware injection attack.
By eavesdropping, functionality changing, and blocking services for other VMs,
the confidentiality, integrity, and availability of the victims can be compromised.
A consumer who publishes their VM to the public, risks compromising the confi-
dentiality of their private data in case of not being thoroughly deleted. Moreover, a
consumer who runs a shared VM may put all the three security attributes at risk by
inviting potential malware into their VM instance. If a VM is stolen during the pro-
cess of its relocation, the confidentiality of the victim may be compromised since
the adversary gains access to the victim’s entire data located on the VM. Finally, an
RFA compromises the availability of the victim VM via shifting its resource usage
towards a bottlenecked resource.

There are also risks associated with image backups in the Cloud. Image backups
should always be stored encrypted, but if an unencrypted backup is accessed by
an adversary, the confidentiality of the owner may be at risk. Furthermore, if the
attacker alters the contents of the backup, the integrity may also be compromised
once the backup image is restored.

1.4 Conclusions and Open Issues

Security concerns are among the biggest barriers that may hinder the rising adop-
tion of the Cloud. In this chapter, we described the attacks that can occur in the pub-
lic Clouds. We discussed and compared the attacks that are common between the
Cloud and traditional systems, but are exacerbated in the Cloud due to exploitation
of multi-tenancy. These included distributed denial of service, keystroke timing,
and side-channel attacks. Furthermore, we discussed attacks that are specific to the
Cloud paradigm. These attacks exploit vulnerabilities in hypervisors and are able
to carry out malicious actions such as blocking the Cloud resources for consumers,
eavesdropping on consumers’ activities, and escaping fair share scheduling. EDoS
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or fraudulent resource consumption is another type of Cloud-specific attack that
exploits the utility pricing model of the Cloud. We also discussed how each of the
three security attributes may be compromised by each attack. We believe that when
consumer applications run in the Cloud, they generally face more potential attacks,
and the evolving nature of the Cloud may also suggest newer threats in future.

This study may help organizations and individuals who are considering the
Cloud as the future infrastructure for hosting and running their business applica-
tions. These consumers can decide more wisely by identifying the potential attacks
on their specific assets and by comparing the consequence of those attacks between
the two environments before they move to the Cloud.

In this chapter, we did not investigate attacks in the SaaS and PaaS models of the
Cloud. For those two service models, most of the countermeasures are to be taken
by CSPs. We discussed attacks in the public IaaS Cloud as it is the most popular
Cloud model.

The Cloud should be monitored for new attacks. As the Cloud is yet a new and
evolving environment, new Cloud-specific attacks may always be discovered by
carefully investigating the underlying interactions between different components
in the architecture. There are attacks in the Cloud that require new solutions and
countermeasures, or improvements to the current countermeasures. This is espe-
cially true for EDoS attacks which are the Cloud-specific variant of DDoS attacks.
These attacks are capable of making the Cloud services unsustainable for the victim
consumer. Consequently, designing appropriate detection and prevention mecha-
nisms may help the potential victims to become more resilient against these attacks.
This is particularly due to the fact that most solutions and countermeasures have
only been experimented in controlled lab environments, or have been only proposed
without undergoing any experimental validation as a proof of concept.
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Chapter 2
Distributed Database Management Systems:
Architectural Design Choices for the Cloud

Joarder Mohammad Mustafa Kamal and Manzur Murshed

Abstract Cloud computing has changed the way we used to exploit software and
systems. The two decades’ practice of architecting solutions and services over the
Internet has just revolved within the past few years. End users are now relying
more on paying for what they use instead of purchasing a full-phase license. System
owners are also in rapid hunt for business profits by deploying their services in the
Cloud and thus maximising global outreach and minimising overall management
costs. However, deploying and scaling Cloud applications regionally and globally
are highly challenging. In this context, distributed data management systems in the
Cloud promise rapid elasticity and horizontal scalability so that Cloud applications
can sustain enormous growth in data volume, velocity, and value. Besides, distrib-
uted data replication and rapid partitioning are the two fundamental hammers to nail
down these challenges. While replication ensures database read scalability and geo-
reachability, data partitioning favours database write scalability and system-level
load balance. System architects and administrators often face difficulties in man-
aging a multi-tenant distributed database system in Cloud scale as the underlying
workload characteristics change frequently. In this chapter, the inherent challenges
of such phenomena are discussed in detail alongside their historical backgrounds.
Finally, potential way outs to overcome such architectural barriers are presented
under the light of recent research and development in this area.
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2.1 Introduction

In recent years, with the widespread use of Cloud computing based platform and
virtual infrastructure services, each and every user-facing Web application is thrust-
ing to achieve both ‘high availability’ and ‘high scalability’ at the same time. Data
replication techniques are long being used as a key way forward to achieve fault-
tolerance (i.e., high availability) and improving performance (i.e., maintaining
system throughput and response time for an increasing number of users) in both
distributed systems and database implementations [29]. The primary challenges for
replication strategies include: (1) replica control mechanisms—‘where’ and ‘when’
to update replicated copies, (2) replication architecture—‘where’ replication logic
should be implemented and finally (3) ‘how’ to ensure both the ‘consistency’ and
the ‘reliability’ requirements for the target application. These challenges fundamen-
tally depend on the typical workload patterns that the target application will be
going to handle as well as the particular business goals it will try to meet.

Even in the absence of failure, some degree of replication is needed to guarantee
both ‘high availability’ and ’high scalability’ simultaneously. And, to achieve the
highest level of these two properties, data should be replicated over wide area
networks. Thus, the replicated system inherently imposes design trade-offs be-
tween consistency, availability, responsiveness and scalability. And, this is true for
deployments either within a single data centre over local area network (LAN) or in
multiple data centres over wide area network (WAN).

A high-level Cloud system block diagram is portrayed in Fig. 2.1, where a typi-
cal layout of a multi-tier Cloud application has been shown in a layered approach.

According to Fig. 2.1, end-users’ requests originate from the typical client-side
applications such as browsers and desktop/mobile apps through HTTP (which is a
request/reply based protocol) interactions. Database name server (DNS), Web and
content delivery network (CDN) servers are the typical first-tier Cloud services
(typically stateless) to accept and handle these client requests. If it is a read-only
request, then clients can be served immediately using cached data, otherwise update
(i.e., insert, update, delete) requests need to be forwarded to the second-tier services.

Application servers, on the other hand, process these forwarded requests based
on the coded logic and process the operation using in-memory data objects (if avail-
able) or fetch the required data from the underlying database-tier. Model view con-
troller (MVC) pattern-based logic implementation can be considered as an example.
In an MVC application, user requests (typically URLs) are mapped into ‘controller’
actions which then fetch data from appropriate ‘model’ representation and finally
set variables and eventually render the ‘view’. If in-memory representation of the
model data is not available then the model component needs to initiate a transac-
tional operation (like using ActiveRecord or DataMapper patterns) in the inner-tier
database services. Otherwise, in-memory update can take place and updated infor-
mation can be later pushed into the database.

Note that, application servers are typically ‘stateful’ and may need to store state
values (e.g., login information) as session objects into another highly scalable
key-value store. While in the inner-tier, database can be partitioned (i.e., Shards)
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the Cloud computing model. DNS database name server, CDN content delivery network, DDMS
distributed database management systems

as well as replicated based on application functionality and requirements. Based
on the replica control and placement policies, data can be fetched (if read-only) or
updated accordingly and ultimately reply back to the model component in the MVC
implementation at the upper-tier.

Our curiosity is to investigate how this end-to-end request—reply procedure
access and utilise these durable and consistent data objects into different tiers of a
typical Cloud system. And, gradually this will also clarify the system—design trade-
offs for different components in a large-scale distributed systems. Read-only user
requests for static information (and some form of dynamic information) can be
directly served by first-tier Cloud servers based on the data staleness bound. As du-
rability is not guaranteed in this stateless tier, stored information can be lost due to
failures. Again, high availability (by means of rapid responsiveness) and high scal-
ability are needed to handle client requests with a typically converging consistency
requirement, which also depend on cache expiration and freshness policies.

For read requests which cannot be served due to expiry now can be fetched
from the in-memory data objects that reside in the application tier. Update and
scan requests typically routed to the second-tier services and mapped according-
ly as explained earlier. In this tier, application logics are typically executed using
the in-memory data representations which offer scalable consistency with semi-
durability. Based on the implementation mechanism of this second-tier services,
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consistency guarantees reside in the development of soft-state services with recon-
structible data pieces. If the required data are not available, then the application
logic initiates transactional operations into the inner-tier databases. And they usu-
ally offer strong consistency (via atomicity, consistency, isolation and durability
(ACID) properties) and durable data (via replication services). However, scalability
is hard to achieve in this tier as stronger form of consistency comes with the price
of responsiveness.

2.1.1 Why ACID Properties Are Hard to Scale

It is well known that scale-out and utilisation are far more cost-effective using thou-
sands of commodity hardware than through high-end server machines [3]. However,
deploying user facing Web applications with typical transactional workload in such
shared nothing architecture [41] is not trivial. Again, the underlying database sys-
tem itself needs to be replicated and/or partitioned to provide required read/write
scalability for the end users. The problem resides in the fact that if a transaction
needs to access data which span over multiple machines, it is pretty complex to
guarantee ACID properties. At the same time, managing distributed transaction and
executing them in parallel into a number of replicas to ensure atomic success or
abort is also challenging.

Atomicity property (in ACID) requires a distributed commit protocol such as
‘2-phase commit’ (2PC) to run across multiple machines involved in a particu-
lar transaction. In the meanwhile, the isolation property insists that the transac-
tions should acquire all of its necessary locks for the total duration of the run of
a 2PC. Thus, each transaction (whether it is a simple or complex one) requires a
considerable amount of time to complete a 2PC round while performing several
round trips in a typical failure-free case. While in case of failure of 2PC coordinator,
the total system blocks and a near-success transaction can be aborted due to a single
suddenly failed replica.

Again, having data replication schemes in action, to achieve strong system-wise
consistency (e.g., possibly via synchronous update) requires to make trade-off with
the system response-time (as well as transactional throughput). Finally, in a shared-
nothing system with failing hardware ensuring durable transactional operation in
the face of strong consistency is far away from reality and practice. As mentioned
earlier, real system designers have to make diverse set of trade-offs to ensure differ-
ent levels of consistency, availability and latency requirements in face of scalable
ACID semantics.

2.1.2 CAP Confusion

Current Cloud solutions support a very restricted level of consistency guarantees
for systems which require high assurance and security. The issue develops from the
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misunderstanding of the design space and principle like consistency, availability and
partition (CAP) devised by Eric Brewer [10], and later proved by Gilbert and Nancy
[16]. According to the CAP principle, the system designer must choose between con-
sistency and availability in the face of network partition. And, this trade-off comes
from the fact that to ensure ‘high availability’ in case of failure (i.e., crash-recovery,
partition, Byzantine, etc.) data should be replicated across physical machines.

In recent years, due to the need for higher system throughput in the face of in-
creased workload and high scalability, distributed database systems (DDBS) have
drawn the utmost attention in the computing industry. However, building DDBSs
are difficult and complex. Thus, understanding of the design space alongside with
the application requirement is always helpful for the system designers. Indeed, the
CAP theorem has been widely in use to understand the trade-offs between the im-
portant system properties—the CAP tolerance.

Unfortunately, today’s development trend indicates that many system designers
have misapplied CAP to build somewhat restrictive models of DDBSs. The narrower
set of definitions presented in the proof of CAP theorem [16] may be one of the
reasons. In their proof, Gilbert and Nancy considered ‘atomic/linear consistency’
which is more difficult to achieve in a DDBS while being at fault and partition tol-
erant. However, Brewer actually considered a more relaxed definition of the ‘Con-
sistency’ property referring to the case considered in the first-tier of a typical Cloud
application as shown in Fig. 2.1.

In reality, the probability of partition in today’s highly reliable data centre is rare
although short-lived partitions are common in WANS. So, according to CAP theo-
rem, DDBSs should provide both ‘availability’ and ‘consistency’, while there are
no ‘partitions’. Still, due to extreme workload or sudden failure, it might be the case
that the responsiveness of inner-tier services is lagging behind comparing to the
requirements for the first-tier and second-tiers services. In such a situation, it would
be better to value quick responses to the end users using cached data to be remaining
act as available. The goal is to have a scalable Cloud system that remains available
and responsive to the users even at the cost of tolerable inconsistency, which can be
deliberately engineered in the application logic to hide the effects.

In his recent article [11], Eric Brewer has revisited the CAP trade-offs and men-
tioned the unavoidable relationship between latency, availability and partition. He
argued that a partition is just time bounded on communication. It means that fail-
ing to achieve consistency in a time-bound frame, i.e. facing P, leads to a choice
between C and A. Thus, to achieve strong ACID consistency in cases either there
is a partition or not, a system should both compensate responsiveness (by means of
latency) and availability. On the other hand, a system can achieve rapid responsive-
ness and high availability within the same conditions while tolerating acceptable
inconsistency.

To this end, it is fair enough to suggest that design decisions should be made
based on specific business requirements and application goals. If an application
strives for consistent and durable data, all time scalability will be limited, and high
availability will not be visible (due to low responsiveness). Otherwise, if the target
is to achieve scalability and high availability, the application should be able to live
with acceptable level of inconsistency.
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In Sect. 2.2, important components and concepts of distributed databases, i.e.,
transactional properties, are discussed. Strategies to update replicated data and dif-
ferent replication architectures, partitioning schemes and architectures along with
classifications based on update processing overhead and in context of multi-tier
Web application have been elaborated in Sect. 2.3. In Sect. 2.4, the evolution of
modern distributed database systems has been explored in parallel with the archi-
tectural design choices and innovative management of replicated and partitioned
databases in details. Finally, Sect. 2.5 concludes with the remarks on the important
characteristics (i.e., data replication and partitioning) of modern distributed data-
base systems which have been shaped the Cloud paradigm over the past years and
thus provided the opportunity to build Internet-scale applications and services with
high availability and scalability guarantees.

2.2 Background of Distributed Database Concepts

In the following sub-subsections, the building blocks of a modern distributed da-
tabase management system is discussed, which will eventually help the reader to
understand the ACID properties and their implications in great extent.

2.2.1 Transaction and ACID Properties

A transaction T} is a sequence of read operation r(x) and write operation w(x) on
data items within a database. Since, a database system usually provides ACID prop-
erties within the lifetime of a transaction, these properties can be defined as shown
below:

» Atomicity—guarantees that a transaction executes entirely and commits, or
aborts and does not leave any effects in the database.

» Consistency—assuming the database is in a consistent state before a transaction
starts, it guarantees that the database will again be in a consistent state when the
transaction ends.

» Isolation—guarantees that concurrent transactions will be isolated from each
other to maintain the consistency.

* Durability—guarantees that committed transactions are not lost even in the case
of failures or partitions.

In contrast to a stand-alone database system, a replicated database is a distributed
database in which multiple copies of same data items are stored at multiple sites.
And, replicated database systems should be acted as a ‘1-copy equivalence’ of a
non-replicated system providing ACID guarantees. Thus, within a replicated envi-
ronment the ACID properties can be redefined as below:
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» [-copy atomicity—guarantees that a transaction should have the same decision
of either all (commit) or nothing (abort) at every replicas which it performs the
operation. Thus, some form of ‘agreement protocol’ is necessary to run among
the replicas which should force this guarantee.

» [-copy consistency—guarantees that a consistent database state should be main-
tained across all replicas in such a way that the restrictions imposed by the ‘in-
tegrity constraints’ (e.g., primary/foreign key) while executing a transaction, are
not violated after it ends.

» [-copy isolation—guarantees that concurrent executions of a set of transactions
across multiple replicas to be equivalent to a serial execution (i.e., order) of this
set (as if the set of transactions are running serially in a non-replicated system).
Also defined as the ‘1-copy-serialisability’ (1SR) property.

» [-copy durability—guarantees that when a replica fails then later recovers, it
does not only require to redo the transactions that had been committed locally
but also make itself up-to-date with the changes that committed globally during
the downtime.

2.2.2 Distributed Transactions and Atomic Commit

When a transaction attempts to update data on two or more replicas, 1-copy-atomi-
city property needs to be ensured which also influences consistency and durability
properties of the data item. To guarantee this, 2PC protocol [17] is typically used.
As shown in Fig. 2.2, initially 2PC is originated from the local replica and the
scheme includes all the other remote replicas that hold a copy of the data items that
are accessed by the executing transaction.

At phase-1, the local replica sends a ‘prepare-to-commit’ message to all partici-
pants. Upon receiving this message, the remote replica, if it is willing to commit
replies with a ‘prepared’ message, otherwise sends back an ‘abort’ message. The
remote replicas also write a copy of the result in its persistent log which can be
used to perform the ‘commit’ in case of failure recovery. While the coordinating
local replica receive ‘prepared’ messages from all of the participants (means all
remote replicas have persistently written the result into log), only then it enters into
phase-2.

Fig. 2.2 The 2-phase commit

protocol Replica-A Replica-A

(Transaction Coordinator) |} (Transaction Coordinator)

Replica-A Replica-B Replica-A Replica-B

Phase-1 (Prepare) Phase-2 (Commit)
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The second round message from the coordinator tells the replicas to actually
‘commit’ the transaction. 2PC aims to handle every possible failure and recovery
scenarios (like in case of the coordinator fails); thus, transactions are often ‘blocked’
for an unbounded amount of time. ‘3-phase commit’ [40] protocol was proposed
lately which is non-blocking. However, it requires more costly implementation in
real system as well as only assumes fail-stop-failure model. Thus, in face of net-
work partition, the protocol simply fails to progress. A more elaborate description
of distributed transaction processing can be found in [8].

Note that, both 2PC and 3PC protocols are within the solution family of Con-
sensus [50] problems. More recently, Paxos [27, 51], which is another family of
protocols (more resilient to failures) to solve the consensus problems, has received
much attention in both academia and industry.

2.2.3 Distributed Concurrency Control

Concurrency control mechanism [8] in a database system maintains an impression
that concurrent transactions are executing in isolation. There are two families of
concurrency control protocols that exist: ‘pessimistic’ and ‘optimistic’. Pessimistic
approach is typically implemented using ‘locking’. A ‘shared lock’ is acquired by a
transaction to get read-access in the database record (typically the whole ‘row’ in a
database ‘table’) and an ‘exclusive lock’ is acquired to have write-access. If a lock
cannot be granted by the concurrency control manager, then the involving transac-
tion is blocked in waiting until conflicting locks are released. A shared lock can be
granted if there are at most other shared locks currently held on to a record.

On the other hand, an exclusive-lock can only be granted if there are no other
locks currently on hold. Thus, read operations are permitted to execute concurrently
while write operations must go through serially. Also note that read-only operations
may also ‘block’ during a period of exclusive-lock holds by another transaction. Al-
ternatively, a write operation may also ‘block’ during a period of shared-lock holds
by another transaction. In order to ensure strict serialisability, all acquired locks are
typically released only after the transaction commit or abort. This total mechanism
can be implemented through either using ‘2-phase locking (2PL)’ or ‘strong strict
2-phase locking (SS2PL)’ protocol. In phase-1, all required locks are requested and
acquired step-by-step from the beginning of a transaction towards its execution. In
phase-2, all locks are released in one step based upon commit/abort decision.

As shown in Fig. 2.3, deadlocks can be created by due concurrent transactions
racing to acquire locks. In such situations, the concurrency control manager should
be able to detect such deadlocks. 2PL/SS2PL can still be used to guarantee 1-copy
serialisability; however, it pays the costly penalty in system throughput and latency,
i.e., responsiveness. One of the conflicting transactions has to be aborted in all rep-
licas to release its locks, which allow the other transaction to proceed and complete
its operations. Sometimes, locking may create unwanted delays through blocking,
while the transactional operations could be serialisable.
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Fig. 2.3 Deadlocks with pes-
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Alternatively, simple ‘atomic commitment protocol’ could be used where all the
transactional executions are done within an atomic operation in the participating
replicas. Optimistic approach on the other hand, allows concurrent transactions to
proceed in parallel. A transaction can create its local copy and perform all the nec-
essary update operations in it. At the end of transaction, a validation phase takes
place and checks whether the read-sets of the considered transaction overlaps with
the write-set of any transaction that has already successfully validated. If true, it has
to be aborted, otherwise it can be committed successfully via writing its changes
persistently back to the database.

In DDBS with replication mechanism enabled, a distributed lock manager is
required which will try to detect and resolve distributed deadlocks among conflict-
ing replicas in a pessimistic approach. Atomic commit protocols like 2PC/3PC
could still be used along with 2PL/SS2PL. One such approach is to achieve global
serialisation order instead of distributed locking by using 2PC atomic commit glob-
ally while locally applying 2PL/SS2PL. However, achieving global serialisation
order is costly and pays the price with restricted system performance. On the other
hand, an optimistic approach would try to perform distributed or centralised conflict
detection and resolution procedure to rescue. Whichever the case is, the bottom line
is implementing distributed concurrency control through locking always creates
‘race condition’ locally which may lead to deadlocks or alternatively require costly
conflict and serialisation order management schemes globally.

Cursor stability (CS) is another kind of concurrency control mechanism which
uses short ‘read’ locks. A read lock on a data item x is acquired and released directly
after the read operation is executed. In situations when a data item is accessed
by a read-only operation simultaneously and a write operation is blocked for an
unbounded amount of time CS can be used in rescue. Short ‘read’ locks gradu-
ally upgraded to exclusive write locks to prioritise the blocked write operations to
complete. However, inconsistencies may occur due to ‘lost update’ from another
transaction in progress.
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2.2.4 Multi-Version Concurrency Control and Snapshot Isolation

In multi-version concurrency control (MCC or MVCC) approach, a database sys-
tem always performs update operation by creating a new version of the old data
item instead of overwriting it. MVCC typically utilises timestamps or transaction
IDs in increasing order to implement and identify new data version copies. The ben-
efit of using MVCC is reads will be never blocked by write operations. Read-only
access in the database will always retrieve a committed version of the data item.
Obviously, the cost incurs in the storing of multiple versions of the same data items.
Database that supports MVCC implementation typically adopts snapshot isolation
(SI) [8] which performs better with low overhead working with such multiple data
versions. However, Sl is less restrictive in nature than serialisability thus may allow
non-serialisable operations leading to anomalies. In practice, commercial systems
also provide lower level of isolation as it is always hard to scale with increasing
number of concurrent transactions with serialisability.

SI assumes whenever a transaction writes a data item x, it creates a new version
of x; and when the transaction commits, the version is installed. Formally, if trans-
action 7, and T, both write data item x, then 7, commits before T, and if no other
transaction commits in between 7, and 7, and writes x, then 7°’s version is directly
ordered before Tj’s version of x. SI adopts two important properties:

*  Snapshot reads—provides each transaction a snapshot of the database as of the
time it starts, i.e., last installed version. It guarantees high transaction concur-
rency for read-only operations and reads never interfere with writes.

* Snapshot writes—writes that occur after the transaction are not visible. It disal-
lows two concurrent transactions (neither commits before the other starts) to
update the same data item. It avoids well-known anomalies that can occur in the
use of lower-level isolation guarantee.

2.2.5 Isolation Anomalies

Based on the above discussion on different concurrency control mechanism and
isolation levels, it would be better to introduce few isolation anomalies which are
typically used to appear in the system [21, 8]:

* Dirty read—reading an uncommitted version of a data item. For example, a
transaction T, reads an uncommitted version a data tuple x which has been up-
dated by another transaction 7. However, if T later aborts due to any reason, this
will also force T to abort as well. This is called ‘cascading aborts effect’.

* Lost update—overwriting updates by concurrent transactions. For example, T,
writes (i.e., overwrites) x based upon its own read without considering the new
version of x created by T'. T/’s update will be lost.

* Non-repeatable read—reading two different versions of a data item during a
transaction execution period.
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* Read skew—if MVCC is allowed, then it might be possible that by reading dif-
ferent versions of multiple data items which are casually dependent on any ap-
plied constraint, is violated.

» Write skew—similar to read skew, constraints between casually dependent data
items may be violated due to two concurrent writes.

2.3 Replication and Partitioning Mechanisms

2.3.1 Replica Control Strategies

Replica control strategies can be categorised based on two primary dimensions:
where updates will be taken place and when these updates will be propagated to
remote replicas. Considering these criteria, the classification based on [14] is shown
in Table 2.1. Considering the ‘when’ dimension, there can be two classes of replica
control mechanisms. One is the ‘eager’ replication that is a proactive approach,
where tentative conflicts between concurrent transactions are detected before they
commit while synchronously propagate updates among replicas. Thus, data consis-
tency can be preserved while in the cost of high communication overhead which
increases the latency. It is also called the active replication. The second is the lazy
replication which is a reactive approach which allows concurrent transactions to
execute in parallel and make changes in their individual local copies. Therefore,
inconsistency between replicas may arise as update propagations are delayed by
performing asynchronously after the local transaction commits. It is also called as
passive replication.

Again, based on the ‘where’ dimension, both ‘eager’ and ‘lazy’ replication
scheme can be further divided into two categories. One is the primary copy update
which restricts data items to be updated in a centralised fashion. All transactions
have to perform its operations in the primary copy first which then can be prop-
agated either synchronously or asynchronously to other replicas. This scheme is
benefited from a simplified concurrency control approach and reduces the number
of concurrent updates in different replicas. However, the single primary copy itself
may be a single point of failure and potentially create bottleneck in the system. On

Table 2.1 Typical classification of replica control strategies [18]

Propagation vs. Eager Lazy Remark
ownership
Primary copy 1 transaction N transactions Single owner (can be
1 owner 1 owner potential bottleneck)
Update anywhere | 1 transaction N transactions Multiple owner (harder
N owners N owners to achieve consistency)
Synchronous update Asynchronous update
(converging consistency) | (diverging consistency)
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the other hand, the second category of update anywhere approach allows transac-
tional operations to be executed at any replicas in a distributed fashion. Coordina-
tion between different replicas is required which may lead to high communication
cost while using eager update propagation. While using lazy propagation poten-
tially leads to potential inconsistencies which require expansive conflict detection
and reconciliation procedure to resolve.

A trade-off is typically considered where high performance can be achieved by
sacrificing consistency via using ‘lazy’ replication schemes. Alternatively, one can
get consistency in the price of performance and scalability via using ‘eager’ replica-
tion scheme. Further classification of replica control mechanisms can be deduced
in this regard. One of the popular replication technique is to implement read-one-
write-all (ROWA) solution where read operations acquire local locks while write
operations need distributed locks among replicas.

The correctness of the scheme can be satisfied with ‘1SR’. 2PC and SS2PL are
also required to ensure atomic transactional commits. An improved version of this
approach is read-one-write-all-available (ROWAA) which improves the concurren-
cy control performance in the face of failure. Quorum-based replication solutions are
also an alternative choice which typically reduces the replication overhead through
only allowing a subset of replicas to be updated in each transaction. However, quo-
rum systems also do not scale well in situations where update rates are high. An
excellent analytical comparison can be found at [21] regarding this analogy.

In [18], Jim Gray was the first to explore the inherent dangers of replication in
these schemes when scalability matters. Gray pointed out that as the number of rep-
licas increase, it also exponentially increases the number of conflicting operations,
response time and deadlock probabilities.

For ‘eager’ schemes, the probability of deadlocks increased by the power of three
of the number of replicas in the system. Again, disconnected and failed nodes also
cannot use this approach. In the ‘lazy’ scheme, the reconciliation rates (in update
anywhere) and the number of deadlocks (in primary copy) sharply rise with the
increase of the number of replicas.

Alternatively, Gray [ 18] proposed the convergence property instead of strict seri-
alisability provided by the ACID semantics. It considers that if there are no updates
within a sufficient amount of time, then all participating replicas will gradually
converge to a consistent state after exchanging ongoing update results. He coined
the examples of Lotus Notes, Microsoft Access and Oracle 7 which were typically
proving such kind of convergence property at that time.

Commercial implementation of replica control schemes also followed the ‘lazy’
approaches and offered different options for appropriate reconciliation procedure
for a long time. Research efforts were also engaged in solving and optimising the
inconsistencies that arise from ‘lazy’ approaches like weak consistency models, epi-
demic strategies, restrictive node placement, using ‘lazy’ primary approach and dif-
ferent kinds of hybrid solutions. However, maintaining consistency over the impacts
of inconsistency is much simpler to implement, but hard to optimise for scalability.

To meet this challenge, Postgres-R [22] was developed which provides replication
through an ‘eager’ approach using group communication primitives, thus totally
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avoids the cost of distributed locking and deadlocks. The Postgres-R approach uses
a ‘shadow copy’ of the local data item to perform updates, check integrity con-
straints, identify read-write conflicts and fire triggers. The changes that are made
into a shadow copy propagate to the remote replicas at commit time, thus vastly
decreases the message/synchronisation overhead in the system. Read operations are
always performed locally as following a ROWA/ROWAA approach.

Thus, there are no overheads for read operations in the system. Update (i.e., write)
operations of a transaction are bundled together into a write-set message and multi-
cast in total order to all replicas (including itself) to determine the serialisation orders
of the running transactions. Each replica uses this order to acquire all locks required
by that transaction in a single atomic step. The total order is used to serialise the read/
write conflicts at all replicas at the same time. Thus, by acquiring locks in the order
in which the transactions arrive, all replicas are performing the conflicting operations
in the same order. As a plus point, there will be no chance for deadlocks. In case of
read/write conflicts, reads are typically aborted as a straightforward solution while
different optimisations can also be possible. After completion/abortion of the write
operations in the local replica, the decision is propagated to the remote replicas.

Performance results from [22] indicate that Postgres-R can scale well with
increasing workloads and at the same time boost system throughput by reducing
communication overheads and by eliminating the possibility of deadlocks. A more
detail of this work can be found at [23]. However, replica control, i.e., coordination
is still a challenging task in practical systems and two essential properties always
need to ensure: (1) Agreement—every non-faulty replicas receive every intended
request and (2) order—every non-faulty replica processes the request it receives in
the same order. Interested readers can find an elaborate discussion in [51] on how
we can maintain these properties, thus understand how state machine replication
works using consensus protocol like Paxos [27] and what determinism in database
replication really means.

2.3.2 Replication Architectures

One of the most crucial choices is ‘where’ to implement the replication logic. It
might be implemented tightly with the database in its kernel. Alternative approach
might be using a middleware to separate the replication logic from the concurrency
control logic implemented in the database. Based on these choices, replication logic
can be implemented in the following ways (see Fig. 2.4):

» Kernel-based—replication logic is implemented in the database kernel and
therefore has the full access to database internals. The benefit is that clients can
directly communicate with the database. On the other hand, any change in the
database internals (e.g., concurrency control module) will directly impact the
functionalities of replica control module. Again, refactoring database source
code is cumbersome and the implementation is always vendor specific. Also
called as ‘white-box replication’.
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Fig. 2.4 Different replication architectures

Centralised middleware-based—replication logic can be separately implement-
ed into a middleware layer. It provides much flexibility and independence to
integrate with any database. However, the functionalities of concurrency control
module have to be re-implemented. It is also called as ‘black-box replication’.
A modified version of this scheme can be called ‘gray-box replication” where the
database itself should expose the required concurrency control functionalities
through specific interface for the middleware to utilise in replica control scheme.
Replicated centralised middleware-based—to avoid single point of failure and
bottlenecks, backup middleware can be introduced. However, failover mecha-
nisms are hard to implement to support hot-swap for running transactions and
coordinating with the application layer modules.

Distributed middleware-based—every database replica is coupled with a mid-
dleware instance and act as a single unit of replication. In case of failover, the
total unit can be swapped. Again, the approach is more suitable in WANSs reduc-
ing the overhead of clients to communicate with the centralised middleware each
time it wants to initiate transactional operations.

2.3.3 Partitioning Architecture

It is obvious that replicating data to an extent will increase the read capacity of the
system. However, after a certain replication factor, it might be difficult to main-
tain consistency even if ‘eager’ replication and synchronous update processing are
used. On the other hand, write capacity can be scaled through partial replication
where only subsets of nodes are holding a particular portion of the database. Thus,
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Fig. 2.5 Database partitioning techniques—vertically and horizontally

write operations can be localised and the overheads of concurrent update processing
can be reduced. Sharding is a technique to split data into multiple partitions (i.e.,
Shards). There are two basic ways of partitioning data as shown in Fig. 2.5:

o Jertical partitioning—Dby splitting the table attributes (i.e., columns) and thus
creating tables with small number of attributes. It only offers limited scalability
in spite of the ease of deployment. The main idea is to map different functional
areas of an application into different partitions. Both the datasets and workload
scalability are driven by different functional aspects of an application. Thus, it
is necessary to pick up the right tables and column(s) to create the correct parti-
tion, because the ‘join’ operations in a relational database will now need to be
performed within the application code. Hence, the underlying database will no
longer support relational schema, and apparently the application scalability is
restricts to its hosting node’s resource capacity.
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» Horizontal partitioning—by splitting the tuples (i.e., rows) across different
tables. It allows scaling into any number of partitions. The tuples are partitioned
based on a key which can be hash based, range based or directory based. Join
operations are similarly discouraged to avoid cross-partition queries. The per-
formance of write operations mostly depends on the appropriate choice of shard
key. If sharding is done properly, then the application controller can route the
write operations towards the right server.

The bottom line is that sharding a database results in partitioned datasets spread
over single-to-multiple data centres, thus forcing the beauty of relational model to
reduce. In recent years, NoSQL communities have picked up the trend to abandon
relational properties and SQL in favour of high-scalability by only supporting key-
value type accesses in their data stores. However, many researchers have already
pointed out that abandoning SQL and its feature has nothing to do scalability.
Alternatively, many have also indicated ways where careful system and applica-
tion design can lead to the desired level of scalability [39]. There has been a debate
going on in the recent years between these two communities and interested readers
may head towards [42, 44, 28] to get a glimpse of it.

2.3.4 Classification Based on Update Processing Overheads

Replication architecture also depends on “how’ data is actually replicated. Depending
on the overheads incurred by the update processing operations, data items can be
replicated into all nodes participating in the system or into a subset of nodes. The
former one is called full replication while the later one is called partial replication.
It is to be noted here that the primary overhead in replication resides in the update
processing operations for the local and remote submissions.

There are two basic choices: symmetric update processing and asymmetric
update processing. The former choice requires a substantial amount of resources
(i.e., CPU, I/O in the remote replicas); it may also initiate divergence consistency
for non-deterministic database operations (like updating a value with current time).
Alternatively, in the asymmetric update processing, the operations are first per-
formed locally and only the changes (along with corresponding primary identifiers
and after-image values) are bundled together in the write sets, then forwarded to the
remote replicas in a single message. This approach of processing still holds even if
the system is using ‘eager’/‘active’ replication scheme.

Depending on the update processing approaches, we can consider the trade-offs
between using the full replication and partial replication schemes. Full replication
technique requires an exact snapshot of the local database into every other remote
replicas, which may face high-system overheads in the face of increased update
workloads. Both symmetric and asymmetric update processing introduce a level of
overhead as data needs to be updated into every replicas. However, by using partial
replication scheme, one can reduce this overhead and localise the update processing
based on their origination.
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Surprisingly, partial replication also comes with its own challenges. There are
several variants of the partial replication, e.g., (1) pure partial replication—where
each node has only copies of a subset of the data items, but no node contains a full
copy of the total database and (2) hybrid partial replication—where a set of nodes
contain a full set of the data items, while another set of nodes are partial replicas
containing only a fraction of the data sets.

Now, depending on the transaction, it might want to access data items on dif-
ferent replicas in a pure partial replication scheme. It is non-trivial to know which
operation will access which data items in the partial replicas. Thus, flexibility is
somehow reduced by typical SQL transactions which often need to perform ‘join’
operations between two tables. However, if the database schema can be partitioned
accordingly and workload pattern is not changing frequently, then the benefits of
localising of update processing can be revealed.

Considering the case of hybrid partial replication, update operations need to be
applied fully in the replicas which contain the full set of database. With the increase
in the number of transactions, these nodes might create hotspots and bottlenecks.
The beauty of the hybrid approach is that while read operations can be centralised
to provide more consistent snapshots of data items, the write operations can be
distributed among partial replicas to reduce writing overheads. The bottom line is
that it has been always challenging to know the transactional properties (like which
data items need to access) and apply partial replication accordingly. However, if the
application requirements are understood properly and workload patterns are more
or less static, then partial replication can exploit the scalability goals.

2.3.5 (Classification Based on Multi-Tier Web Architecture

Recalling the example drawn in Fig. 2.1, real-life Web applications are typically
deployed in multi-tier Cloud platforms. Each tier is responsible to perform spe-
cific functionalities and coordination between these tiers and is necessary to pro-
vide the expected services to the end users. Hence, replicating a single tier always
restricts scalability and availability limits. Again, apart from being read-only or
update operations, workloads can be compute intensive (require more resource and
scalability at the application/logic tier) or data intensive (require more ability in the
inner database tier).

Again, considering failure conditions, replication logic should work in such
ways that the interdependencies between multiple tiers should not lead to multiple
workload execution both in the database and application servers [24]. For exam-
ple, despite failure, ‘exactly-one’ update transaction should be taken place in the
corresponding database tier and its entire replica for a single transactional request
forwarded from the application tier. Based on this analogy, there can be two archi-
tectural patterns for replicating multi-tier platforms [20] as listed below:

o Vertical replication pattern—this pairs one application and one database server
to create a unit of replication. Such units can be then replicated vertically to
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increase the scalability of the system. The benefit of this approach is that replica-
tion logic is transparent to both application and database servers; thus, they can
work seamlessly. However, challenges reside in the fact that particular applica-
tion functionalities and corresponding data need to be partitioned appropriately
across the whole system to get the target scalability. Much engineering cost and
effort are needed for such kind of implementation; thus, in reality, these systems
can be still seen very few in numbers.

» Horizontal replication pattern—here, each tier implements replication indepen-
dently and requires some ‘replication awareness’ mechanism to run in between
to make necessary coordination. In contrast to the vertical replication pattern, the
beauty here is that one can scale flexibly based on the necessity across individual
tier. However, without any awareness support to know whether the cooperating
tier is replicated or not, it is not able to provide the utmost performance the sys-
tem could achieve. In reality, this type of systems can be seen almost everywhere
in the computing industry; however, they are still in lack of appropriate replica-
tion awareness mechanism which is still left as an open challenge.

To support these two categories, other architectural patterns also need to be consid-
ered like replica discovery and replication proxy, session maintenance, multi-tier
coordination, etc. Several examples of real implementations based on these patterns
can be found at [20, 33, 34, 35]. However, replication control via multi-tier coordi-
nation is still an open research problem both in academia and industry.

2.4 Distributed Database Systems in the Cloud

2.4.1 BASE and Eventual Consistency

The BASE (Basically Available, Soft state, Eventually consistent) acronym
[36] captures the CAP reasoning. It devises that if a system can be partitioned
functionally (by grouping data by functions and spreading functionality groups
across multiple databases, i.e., shards), then one can break down sequence of opera-
tions individually and pipeline them for asynchronous update on each replicas while
responding to the end user without waiting for their completion. Managing database
transactions in a way that avoids locking, highly pipelined, and mostly depends on
caching raise all kinds of consistency worries into surface.

While ACID can be seen as a more pessimistic approach, BASE, in contrast,
envisions for a more optimistic approach. Availability in BASE systems is ensured
through accepting partial partitions. Let us consider a ‘user’ table in a database
which is sharded across three different physical machines by utilising user’s ‘last
name’ as a shard key which partitions the total datasets into the following shards
A-H, I-P and Q-Z. Now, if one of the shards is suddenly unavailable due to failure or
partition, then only 33.33 % users will be affected and the rest of the system is still
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operational. But, ensuring consistency in such kind of system is not trivial and not
readily available like ACID systems. Thus, the consideration of relaxed consistency
guarantees arises. One can consider achieving consistency individually across func-
tional groups by decoupling the dependencies between them. As proposed in [36],
a persistent pipelined system can tackle the situations where relative ordering and
casual relationship is necessary to maintain or one consider de-normalised database
schema design.

The ‘E’ in BASE which stands for ‘eventual consistency’ [45, 46] guarantees that
in the face of inconsistency the underlying system should work in the background to
catch up. The assumption is that in many cases it is hard to distinguish these incon-
sistent states from the end-user perspective which is usually bounded by different
staleness criteria (i.e., time-bounded, value-bounded or update-based staleness).
Later, Eric Brewer [11] had also argued against locking and actually favoured the
use of cached data but only for ‘soft’ state service developments, while DDBSs
should continue to provide strong consistency and durability guarantees. However,
this implication of inconsistency requires a higher level of reconfigurability and
self-repair capability of a system that tends to expansive engineering effort.

In [45], Werner Vogels from Amazon described several variations of eventual
consistency which can also be combined together to provide a stronger notion while
ensuring client-side consistency as follows:

» Casual consistency—guarantees that if there is any casual dependencies between
two processes, then a committed update by one process will be seen by another
process and can be superseded by another update.

* Read-your-writes consistency—guarantees that after an update of a data item,
consecutive reads always get that updated value.

» Session consistency—guarantees that as long as the session exist, read-your-
write consistency can be provided.

*  Monotonic read consistency—guarantees if a process reads a particular value
of an object, then any subsequent reads will not see any previously committed
value.

* Monotonic write consistency—guarantees to serialise writes by the same process.

At the server-side consistency, Vogels [45] argues that one should look at the flow
of update propagation. One can consider a quorum-based replicated DDBS [35]
with N nodes where I/ nodes replicas are responsible to accept a write and R repli-
cas are contacted while performing a read. Then, if W+R>N, then read and write
sets are always overlapped, and the system provides stronger form of consistency.
Again, if W<(N+1)/2, then there is a definite possibility of conflicting writes as the
write sets do not overlap. On the other hand, if the read and writes do not overlap as
W+R<=N, then a weaker form of eventual consistency is provided by the system
where stale data can be read. In case of network partitions, quorum systems can still
handle read and write requests separately as long as these sets can communicate
with a group of clients independently. And, later reconciliation procedures can run
to manage conflicting updates within replicas.
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In [9], Ken Birman has effectively shown ideas that it is possible to develop scal-
able and consistent soft-state services for the first tier of the Cloud system if one is
ready to give up durability guarantee. He argues that the ‘C’ from the CAP theorem
actually relates to both ‘C’ and ‘D’ in ACID semantics. Therefore, by sacrificing
durability, one can scale through first to inner-tier Cloud services while at the same
time can guarantee strong consistency.

In reality, systems that utilises group communication semantics (e.g., mem-
bership management, message ordering, failure coordination, recovery, etc.) can
achieve consistent replication schemes to support both high availability and high
scalability. Google’s Spanner [14] is one of the most prominent examples of this
kind. Although these systems can exploit the requirements for first-to-inner service
tiers, the consistency guarantee usually comes with a high engineering cost and
lacks generalised patterns/solutions.

Lastly, based on the current usage of Cloud systems, inconsistencies can some-
what be tolerated for improving read/write performances under increasing work-
loads and handling partition cases. However, the level of scalability that Cloud
systems can achieve is a long cherished dream for system which prefers high
assurance (i.e., both availability and consistency), reliability and security.

2.4.2 Revisiting Architectural Design Space

To overcome the confusion that arises from the CAP theorem, it is necessary to
revisit the design space in the light of distributed replication and data partitioning
techniques. This insight will also enable to clarify the relationship between the re-
lated challenges with ACID and BASE as discussed above. In [1], Daniel Abadi was
the first to pinpoint the exact confusion that arises from CAP and clarifies the rela-
tionship between consistency and latency. He proposed a new acronym PACELC
which he believed to be the actual representation of reality.

PACELC in a single formulation: if there is a partition (P), how does the system
trade-off exist between availability and consistency (A and C); else (E) when the
system is running as normal in the absence of partitions, how does the system trade-
off exist between latency (L) and consistency (C)?

The PACELC formulation is shown in Fig. 2.6 under several considerations like
based on replication factor, consistency level, system responsiveness and partition-
tolerance level. We will explain this phenomenon with respect to PACELC classi-
fication for distributed system design. As Abadi explained in [2], there can be four
possible system types as follows:

* A-L systems—always give up consistency in favour of availability in case of
partition otherwise prefer latency during normal operating periods. Example—
Apache Cassandra [4], Amazon’s DynamoDB [3] and Riak [38] (in their default
settings).

* A-C systems—provide consistent reads/writes in the typical failure-free scenar-
ios; however, in failure cases, consistency sacrifices (for limited period until
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Fig. 2.6 Design space for Replication Factor
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the failure recovers) would remain available. Example: MongoDB [31] and
CouchDB [5].

» (C-L systems—provide baseline consistency (as defined by the system, e.g., time-
line consistency) for latency during normal operations, while in case of partitions
it prioritises consistency over availability (or, being slow responsiveness which
imposes high latency). Example: Yahoo! PNUTS [13].

» (C-C systems—disallow to give up consistency either in the case of partition or
not and thus incur availability (i.e., responsiveness), and latency costs as the
trade-off. Example: BigTable [12]/HBase [6] and H-Store [19]/VoltDB [46].

This is to be noted here that, completely giving up availability is not possible at all;
otherwise it will be a useless system. Availability actually spans over two dimen-
sions: (1) resilient to failures, and (2) responsiveness in both failure and failure-free
cases. Interested readers are also encouraged to read Dan Weinreb’s blog entry [49]
which further clarifies how availability and latency relate to each other. Similarly,
completely inconsistent systems are also useless; thus, the level of consistency var-
ies in between its weaker and stronger forms. Let us now discuss these system
design choices in more detail under the light of the above mentioned considerations.

2.4.2.1 Consistency Factor

Stronger consistency models which are tightly coupled with a DBMS always ease
the life of the application developer. Depending on the application requirement, giv-
ing up ACID properties in favour of BASE is also inadequate in many situations.
However, stronger consistency levels can also be viable to achieve by decoupling
logic from the underlying DBMS and implementing along with the replica control
scheme.

Quorum-based systems are one of the possible choices in this regard where one
can control the level of consistency by restricting read/write quorum requirements.
Alternatively, consistency can be ensured in a much fine-granularity [37]. Ensuring
entity-level or object-level consistency within a single database can also provide a
notion of ACID semantics. Furthermore, entity groups can be considered as a unit
of consistency and even multiple groups might act as a unit.
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A-L systems which can be viewed as the BASE equivalent tend to provide dif-
ferent variations of eventual consistency all the time. Similar adaption is also true
while the system design space gradually shifts towards C-L systems in failure cases.
On the other hand, A-C and C-C systems by default tend to achieve stronger form
of consistency either in the case of failure or not. However, as indicated earlier
providing ACID level consistency (i.e., serialisability) is challenging and costly in
DDBSs. Therefore, providing soft level of consistency guarantees like snapshot
isolation or even timeline consistency (as provided in Yahoo’s PNUTS [13]) seems
to be more adaptable in such scenarios.

2.4.2.2 Responsiveness Factor

Responsiveness is the perceived ‘delay’ between when an end-user or internal sys-
tem component takes an action such as clicking on a link or forwarding a request,
and when the user/component perceives a response. It wraps up two other technical
pieces, namely: (1) latency—initial delay to start receiving replies for a correspond-
ing request, and (2) throughput—total time taken for all the contents of a reply to be
received completely. These factors are imposed by the service level objective (SLO)
goals while considering the design spaces.

One can consider the ‘8 second rule’ [30] which still fits well to measure the
responsiveness of modern Cloud applications. It states that ‘if a computer system
responds to a user action within 100 ms, it’s perceived as ‘instantaneous’; within
1 s, the user will still perceive a cause-and-effect connection between their action
and the response, but will perceive the system as ‘sluggish’; and after about 8 s, the
user’s attention drifts away from the task while waiting for a response’.

Based upon this observation, A-L systems should be chosen where strict and
rapid responsiveness is the requirement. Both the A-C and C-L systems will be
better on ensuring flexible responsiveness requirements in the face of failure and
failure-free cases, respectively. C-C systems pay the costs to keep the system up-
to-date and consistent, therefore, slow responsive will be incurred while they are
overloaded.

2.4.2.3 Partition-Tolerance Factor

Partitions are not always created from network/communication outage. Sometimes,
it might be the case that the system is overloaded and may not be able to respond
within the timeout period. Improper network configurations in the intermediate
nodes can also cause similar results. Again, the possibility of partition highly de-
pends on whether the system is deployed in a WAN across multiple data centres
or LAN within a single data centre. An interesting discussion of practical database
errors which can lead to partitioned networks in DDBS can be found in [43].
Primarily based on the deployment strategies, one can consider choosing A-L
or C-L system to deploy across multiple data centre distributed over WAN due to
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their latency awareness during normal operation periods. On the other hand, A-C
and C-C systems will be more preferred in deploying within single data centre over
the LAN.

2.4.2.4 Replication Factor

The scalability of today’s Cloud systems and DDBS primarily depends on how they
are replicated to provide high read/write throughput, although increasing the num-
ber of replicas blindly will not make the success. It may create potential bottlenecks
and unresponsiveness in the system. As discussed in [2], three types of replication
strategies are popularly seen in today’s deployment, viz.: (1) Data updates sent to
all replicas at the same time (synchronous), (2) data updates sent to an agreed-upon
location first (synchronous/asynchronous/hybrid), and (3) data updates sent to an
arbitrary location first (synchronous/asynchronous).

Considering the above analogies, option-1 provides stronger consistency level in
the costs of increased latency and communication overhead. Thus, it might primari-
ly be suitable for C-C systems. Option-2 with synchronous-update propagation also
ensures consistency but only limited to while deployed in LAN/single data centre.
With asynchronous propagation, option-2 provides several options for distributing
read and write operations. If a primary/master node is responsible for providing
read replies and accepting writes, then inconsistencies can be avoided. However,
it may be the source of potential bottleneck in case of failures. On the other hand,
if reads are served from any node, while the primary node is only responsible for
accepting writes, then read results probably reflect inconsistencies.

A combination of synchronous and asynchronous is also possible considering a
quorum-based replication strategy. If R+ >N, then the system will provide consis-
tent results while gradually divergent in the condition where R+ W<=N. Both A-L
and C-L systems are well suited for the approaches mentioned above under option-2
as they are flexible and dynamic with latency-consistency trade-offs. Option-3,
which is similar to option-2 apart from preferring any node to accept reads and
writes, can also be used either in a synchronous or asynchronous fashion. While
synchronous setting can incur increased latency, potential inconsistencies will arise
using asynchronous setting. A-C and some of the C-L systems might be suitable to
fit in this category.

To this end, it seems worthwhile to revisit the design choices as it broadens
our mind to think beyond what the CAP theorem actually meant. It also helps to
visualise how we can fit the multi-tier Cloud application within the architectural
model. Although a more analytical approach to explain these trade-offs will be defi-
nitely profound. Modern software-as-a-service (SaaS) applications deployed over
very large-scale distributed systems strive for the following performance goals:
(1) Availability or uptime—what percentage of time the system is up and prop-
erly accessible, (2) responsiveness—measure of latency and throughput, and (3)
scalability—as the number of users, i.e., workloads increase how to maintain the
target responsiveness without increasing cost/user.
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2.4.3 Data Partitioning and Replication Management

Typical distributed database systems (e.g., HBase [6], Cloud SQL, MongoDB [31]
and MySQL Cluster [32]) which usually provide automatic partitioning and load-
balancing features only support pre-configured partitioning rules. The system splits
and merges the partitions based on the number of nodes (e.g., MySQL Cluster [32]),
predefined data volume size (e.g., in HBase [6]), predefined key (e.g., MongoDB
[31]) or even based on partitioned schema (Cloud SQL). All of these approaches
are unable to adopt to dynamic workload patterns and current resource utilisation
profile of the system. Again, sudden increase in workload volume, occurrences
of data spikes and hotspots can also influence the change in normal workload
characteristics.

However, dynamic partitioning decision making is not possible and often re-
quires human intervention. Hence, these systems normally suffer from sudden
workload spikes in any particular partition, hot-spotted partition or database table,
partitioning storm and load-balancing problems. These are the potential reasons of
restricted system behaviour, unresponsiveness, failures and bottlenecks. In a WAN
setting, this leads to replication nightmare and inconsistency problems on top of
added latency.

As Cloud systems are growing bigger and bigger day by day with the explosion
of big data, automated management of these large-scale distributed systems are
often desirable to maintain high scalability and elasticity. Automatic replication/
partitioning management schemes are believed to stand as the solution towards
these worries and opportunities. These systems can exploit the self-managerial
properties (i.e., healing, optimisation, and provisioning) of a typical Cloud platform
and ensure more reliability to achieve the target SLO.

Automatic management of partitioning and replication are also necessary
in cases where the database is spanned in multiple data centres over WAN in a
geographically distributed fashion. It can be also recognised as a classical match for
the case of partial replication where individual partitions of the distributed database
management systems can be distributed over WAN. The primary challenge here
is to maintain rapid consistency among the replicas with an acceptable latency
requirement. The trade-offs between replication and partitioning considering parti-
tioning size as an impacting factor can be also explored in this context.

The particular emphasis is on how to find an optimal partition size for load distri-
bution (arise from hot-spotted partitions due to workload pattern) in geo-distributed
data centres. Determining an optimal partition size is essential for effective rep-
lication and data transfer between physical machines over WAN. In overall, the
choice of availability, consistency, and latency play an important role in developing
a scheme over WAN where network partitions occur very often and usually are not
avoidable.

To understand the significance, one can be motivated by the scenarios of mas-
sively multi-player online role playing games (MMOG) and virtual worlds. Scal-
ability in such environment is really challenging and not trivial in contrast to other
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Cloud applications. Game and virtual world users are geographically distributed
and can personalise the game environment as well as make interactions with other
online users. Two kinds of partitioning strategies are generally seen: one is to de-
compose the game or virtual world based on the application design and functional-
ity, while another possibility is to partition the system, based on the current work-
load pattern.

Distributing the workloads evenly among the physical servers is really tedious
for both of the cases as they may spread in a WAN over several geographical loca-
tions. Again, users residing in one system partition are naturally forbidden to access
or interact with other users in different partitions. Even if they wish to do so, costly
replication process needs to be taken out. Games and virtual worlds like World of
Warcraft, Farmville, SimCity, and Second Life are a few of the examples which
have such evolving architectures and geographically distributed workload patterns
over the WAN; thus, face these challenges. Jim Waldo has mentioned these chal-
lenges from a real-world point in [48] while others like the authors in [52, 25, 26]
have also discussed related challenges and the significance of reliable scalability
issues in MMOG.

Recent development of the Google’s Big Data platform Spanner [14] also focused
on a geographically distributed consistent data service platform which spans over
multiple data centres in the WAN. The argument of whether existing NoSQL solu-
tions are adequate to handle such scalability challenges effectively is still an active
topic of discussion among the community [15], and it is believed that the above
mentioned approach can direct an appropriate pathway towards the right vision.

2.5 Conclusion

Cloud computing backed up by modern scalable distributed databases provides sig-
nificant opportunities for the start-up and established businesses as well as presents
potential challenges for the system administrators. The development of distributed
databases has been continuing over the past four decades, and is still emerging to
adopt the Cloud paradigm. However, system designers and administrators should be
well aware of the past trials and potential pitfalls. The design space should be well
adopted and possible user cases need to be well studied beforehand. This is required
to fit target application scenarios into the architectural design space. Although, re-
cent developments have shown notable promises over the past years, most of the
approaches are static in nature and not adaptable with dynamic workload behav-
iours. SaaS applications deployed within Cloud platforms also span over multiple
geographical regions and thus require special attentions to adopt with distributed
workload characteristics.

Designing a scalable Cloud system requires a high level understanding of the
life-cycle management of a modern multi-tier Web application and characterisa-
tion of system workloads. These interpretations lead us straight to the exploration
of available architectural design choices and off-the-shelf distributed databases to
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support underlying high scalability and availability requirements. However, the
misunderstanding of CAP theorem over the past decade, and consequent develop-
ments of hundreds of NoSQL systems providing relaxed consistency guarantees did
not hold us back. In reality, all these efforts have helped the system architects to
understand the actual design space for Cloud applications and thus have provided
the necessary momentum to modernise the development of distributed database sys-
tems in a whole. Again, the core building blocks of a distributed database system
have also helped in shaping the general ideas behind effective data replication and
partitioning strategies. Eventually these apprehensions have influenced the devel-
opment of high available, high scalable and partition tolerance Internet-scale Cloud
applications. Nowadays, without having a clear picture of the architectural design
choices in front, it is tedious to design a scalable Cloud platform. The PACELC
acronym clearly identifies this challenge and helped us grasp the relationship be-
tween ACID and BASE properties. Still, automatic management of data replica-
tion and partitioning in line with workload characteristics and issues arise from
multi-tenant environments that are potential challenges to deal with. With the rapid
advancement in database and system research and development, it can be hoped that
innovative solutions will be soon in place to rescue us from back-breaking labours
of system administrations and disaster response situations.

In this chapter, a trail of modern distributed database systems has been
drawn alongside the challenges which require urgent attention from the research
community. The relationship between how to adopt the past to overcome the chal-
lenges at present has been also discussed in a great extent. Different data replica-
tion and partitioning techniques have been discussed in details which are essential
to achieve massive scalability and elasticity for the Cloud applications. Finally,
several approaches have been shown as potential way out to achieve Cloud scale
modernisation of distributed database management systems in a dynamic environ-
ment for the years to come.
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Chapter 3
Quality of Service and Service Level Agreements
for Cloud Environments: Issues and Challenges

Inderveer Chana and Sukhpal Singh

Abstract The increasing use of Cloud computing makes the development of high-
quality Cloud-based applications a vital research area. Cloud computing, which
provides inexpensive computing resources on the pay-as-you-go basis, is promptly
gaining momentum as a substitute for traditional information technology (IT)-based
organizations. As more and more users migrate their applications to Cloud envi-
ronments, service level agreements (SLAs) between clients and Cloud providers
become a key element to consider. Due to the dynamic nature of the Cloud, endless
supervision of quality of service (QoS) attributes is necessary to honor the SLAs.
Thus, Cloud computing faces the challenge of QoS, especially in relation to how a
service provider can ensure appropriate QoS for its Cloud services. QoS is an inher-
ent element, part of service-oriented architecture (SOA), to direct nonfunctional
quality attributes of a service, such as the response time, price, or the supported
security rules. Consequently, there is a requirement to grow architectures in order
to respond correctly to the QoS requirements. The architecture should be able to
change dynamically the amount of resources made available to the applications it
hosts. Optimal resource utilization should be attained by providing (and maintain-
ing at run time) each hosted application with the number of resources which is
adequate to guarantee that the application SLA will not be violated. This chapter
reflects the essential perceptions behind the QoS provision in the Cloud, identi-
fies current and innovative quality attributes based on customers’ desires associated
with SLA and identifies metrics to measure the deviation of QoS from predictables,
with possible resolution in the outline of architecture for spontaneous supervision of
QoS without violation of SLA. The existing intent of Cloud SLAs is inspected with
a focus on QoS and customer requirements. Further, foremost research problems
and scientific challenges in Cloud SLAs have been considered with possible rea-
sons. Autonomic management architecture for dynamic provisioning of resources
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based on users QoS requirements to maximize efficiency and automatic fulfillment
of SLA has also been proposed.

Keywords Cloud computing - Service level agreement (SLA) + Service-oriented
architecture + SOA - Quality of service * QoS + Autonomic Cloud computing + SLA
challenges

3.1 Introduction

Cloud computing is a computing model for permitting omnipresent, suitable and
on-demand service access to a common group of configurable computing resources
(e.g., networks, servers, storage, and applications) that can be quickly provided and
released with minimum management struggle [21]. Public Cloud platforms are usu-
ally superior at providing IT services over the open Internet than the on-premise
enterprise IT resources. Therefore, the public Cloud can well serve as a workforce
that is expected to work at the local region because processing, storage, and enter-
prise applications to a middle tier between the company and the Cloud consumer
can be done easily [31]. The services provided by a Cloud are shown in Fig. 3.1.
As a Cloud offers three types of services such as infrastructure as a service (IaaS),
or platform as a service (PaaS), or software as a service (SaaS), it requires quality
of service (QoS) to efficiently monitor and measure the delivered services and thus
needs to follow service level agreements (SLAs) [1, 11]. The complex nature of the
Cloud environment requires a cultured means of handling of SLAs as the demands
of the service users vary considerably. The QoS attributes that are frequently part
of an SLA (response time, throughput, etc.) vary repeatedly and to implement the
contract, these parameters need to be carefully controlled [1, 5].

An SLA is part of a service contract where a service is defined based on the agree-
ment between a provider and a customer [19]. In other words, the term SLA denotes
the contracted service and its performance. An SLA is a document that specifies the
description of the service level parameter, service level objective, agreed service,

Fig. 3.1 Cloud computing
services. /aasS infrastructure
as a service, PaasS platform
as a service, SaasS software as
a service

PaaS

IaaS
SaaS
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warranties, and action in case of violation. An SLA is a conveyed bargain that has
been documented between two parties which are customer and service provider [2].
The SLA is very significant to define the availability, reliability, and scalability of
services. In the literature, the following definitions of SLA are prevalent:

» “SLA is an officially exchanged document that describes (or tries to express) in
measurable (and maybe qualitative) terms the service being presented to a cus-
tomer. Any metrics involved in a SLA should be capable of being controlled on
a systematic basis and the SLA should record by whom” [4].

* “A contract is an officially binding bargain between two or more parties. Con-
tracts are subject to particular authorized explanations” [9].

Although, Cloud consumers do not have full supervisory control over the funda-
mental computing resources, they do require ensuring attributes such as quality,
accessibility, trustworthiness, and performance of these resources when users have
transferred their fundamental business functions onto their honored Cloud. In other
words, it is vital for users to acquire assurances from suppliers on service provisions
[18]. Usually, these are delivered through SLAs discussed between the providers
and customers [30]. The very first problem is the description of SLA terms in such a
way that has a suitable level of granularity, namely the compromises between accu-
racy and complexity, so that they can ensure most of the user hopes and is compara-
tively simple to be prejudiced, certified, calculated, and imposed by the resource
provisioning mechanism on the Cloud [3, 25]. In addition, different Cloud service
models (IaaS, PaaS, and SaaS) will need to express different SLA meta disclaimers
[13]. This also increases a number of implementation issues for the Cloud provid-
ers. Moreover, innovative SLA mechanisms require to continuously integrate con-
sumer response and customization features into the SLA assessment framework [8].

As the Cloud service models develop and become omnipresent, there is an in-
crease in the probability of clarifying the way the services are provisioned and
managed. It, therefore, permits the providers to address the different requirements
of their customers. In this perspective, SLAs appear as a significant characteristic
which subsequently serve as the establishment for the predictable quality level of
the services made available to customers by the providers [38]. Nonetheless, the
collection of the recommended SLAs by providers (with marginal overlaps), has
directed to manifold different definitions of Cloud SLAs [6]. Moreover, confusions
exist on what is (if there is) the difference between SLAs and agreement, what is the
marginal quality, what are the terms involved in each one of these documents, and
if and how are these associated.

SLAs are a corporate way to officially specify the particular circumstances (both
functional and non-functional) under which services are or should be provided.
Customers and providers can use top-level SLAs to monitor whether their actual
service delivery conforms to the contracted SLA terms [34]. In the case of SLA
violations, top-level SLAs permit for penalties or compensations to be paid [16]. In
a service-oriented world, services presented are generally self-possessed of or built
on a complete set of other services [24]. These services may reside in the domain
of the provider itself, or be hosted by external providers. Such services contain
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business services, software services, and infrastructure services. The quality of a
presented service depends comprehensively on the quality of the services it uses
[39]. Service quality also depends on the components used and the structure of the
basic IT system appreciating the service. Presently, service providers cannot design
their service landscapes using the SLAs of dependent services [4, 28]. They have no
means by which to control, why a certain SLA violation might have happened, or
how to express an associated penalty. SLA guarantee terms are not unambiguously
associated to quantifiable metrics, nor are their relation to lower-level services well
defined. As a consequence, service providers cannot define the mandatory super-
vision required in confirming top-level SLAs. This missing relationship between
top-level SLAs and (lower-level) metrics is a main obstacle to effective service
planning and expectation or improvement processes in service stacks [15, 36].

Further, Cloud computing allows for organizations to move applications and data
to remote servers. Due to virtual computing, Cloud computing can deliver better
approach to consumption of available resources. Hosted solutions and on-demand
server resources are two cases where the use of external vendors may provide for
a lower overall price of computing. As the data is moved to remote resources, the
control or governance of the data becomes difficult [29].

In this chapter, we first present the concept of SLA in the context of Cloud com-
puting. The remainder of this chapter is then organized as follows: Sect. 3.2 de-
scribes interweaving of QoS and SLA with respect to the Cloud; Sect. 3.3 presents
the SLA challenges and benefits with respect to Cloud environments; Sect. 3.4 in-
troduces the Cloud SLA (CSLA) architecture; and Sect. 3.5 presents the discussion
of work done. Section 3.6 describes our conclusions and future research directions.

3.2 QoS and SLA: Intertwined in the Cloud

This section presents the background of QoS and SLA, SLA Management, SLA
of Cloud provider, SLA levels, Metrics in SLA, and SLA deviation in the area of
Cloud computing.

3.2.1 QoS and SLA

QoS is increasingly significant when composing services because a degrading QoS
in one of the services can dangerously disturb the QoS of the complete composition.
Cloud service providers want to confirm that sufficient amount of resources are
provisioned to ensure that QoS requirements of Cloud service consumers such as
deadline, response time, and budget constraints are met [36]. Consequently, Cloud
service providers want to confirm that these violations are avoided or reduced by
dynamically provisioning the exact amount of resources in a timely fashion. The
success of next-generation Cloud computing infrastructures will depend on how
capably these infrastructures will discover and dynamically tolerate computing
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platforms, which meet randomly varying resource and service requirements of
Cloud costumer applications [29]. Logically, based on QoS requirements such as
scalability, high availability, trust, and security, these applications will be character-
ized, identified in the so called SLAs. The current Cloud technology is not com-
pletely personalized to honor probable SLAs, though industrial and the academic,
both the research groups are presenting increasing interest on problems of QoS as-
surance within the context of Cloud computing. Broadly, an SLA needs a precise as-
sessment of the characteristics of the required resources [19]. Application services
introduced in Clouds (e.g., Web applications, Web services) are frequently charac-
terized by great load inconsistency; therefore, the amount of resources required to
honor their SLAs may vary particularly over time [8]. An important challenge for
Cloud providers is to automate the management of virtual servers while keeping
into account both high-level QoS requirements of hosted applications and resource
supervision expenses. Cloud market mechanisms are consistently static and cannot
react on dynamic variation of consumer desires [26]. To respond to these issues,
there is a requirement of an adaptive methodology for autonomically springing SLA
patterns based on consumer requirements. The present research in Cloud SLA lim-
its the capability of matching conformation metrics to acceptable benchmarks [1].
These metrics comprise statistical measures such as standard deviation that want
to be computed from the expected and actual outcomes of services delivered to
customer. Semantic Web technologies can be used to improve the descriptions and
therefore increase the quality of these matches.

3.2.2 Cloud and SLA

Resource reservation is one of the main characteristics in parallel and distributed
environment like the Cloud. While preserving the services in the Cloud, we require
initiating SLAs through settlement. The settlement between consumers and Cloud
service providers fundamentally comprise of parameters like price, time, and other
QoS parameters. There are presently numerous methods which resolve the issue of
expense and time slot settlement mechanism without taking into account the sig-
nificant characteristics of QoS [23]. Knowingly handling and assigning resources
among numerous consumers in a commercial manner is significant for service pro-
viders [41]. Thus, SLA shows a chief role in resource provisioning. In practice, the
term SLA is occasionally used to mention the limited delivery time (of the service)
or performance.

The Cloud is a parallel and distributed system containing a huge collection of
interrelated and virtualized resources that are dynamically self-provisioned and of-
fered as one or more merged computing resources based on SLAs [19]. During
negotiation/agreement, there are parameters considered like price, time, and other
QoS. Since there is an opposing relationship between price and time-slot feasibili-
ties (e.g., a customer desires to pay a higher price to use a service at a more expected
time slot—attaining a higher time-slot utility), expense and time slot have to be
exchanged suddenly [25].
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Another parameter taken into account is about expanding the QoS through su-
pervising the Cloud services by the use of SLA-based Cloud architecture [13, 36].
Cloud supervising environment comprises of measuring the properties of the net-
work to guarantee that the system functions with required parameters. The manage-
ment station inquires the state of the network in order to respond to alarm circum-
stances that may develop in the network system parameter, which is defined as a
conjunctive predicate on the local properties of different network elements. In such
cases, after identifying local variations, each network element has to successively
originate alarms in order to ensure that global parameters are not violated. Even
though data may be hosted remotely, it is still an organization’s accountability to
offer for its security. The problem for the organization is to ponder on what mecha-
nisms it has to provide for the safety of data which it may no longer directly control.

3.2.3 SLA Management

SLA management is the element that retains track of SLAs of consumers with
Cloud providers and their satisfaction history. Based on SLA terms, the security
mechanism preserves the real usage of resources by needs so that the absolute price
can be calculated and charged from the consumers [8]. In addition, the preserved
past-usage statistics can be utilized by the service request assessor and admission
governor mechanism to expand resource distribution assessments.

An SLA is a document that describes the relationship between two parties: the
provider and the consumer. This is obviously a very significant item of documen-
tation for both parties. If used appropriately it should: recognize and describe the
consumer’s requirements, make all the difficult concerns simpler, decrease areas
of clash, inspire dialog in the event of disagreements, and eliminate impossible
viewpoints [3, 34]. It should resolve an extensive collection of disputes clearly
and unambiguously. Amongst these, the following are some of the most frequent
services to provide performance, tracking and reporting problem management, le-
gitimate agreement and resolution of disagreements, consumer responsibilities and
accountabilities, reservation and trustworthy information termination. Typical SLA
substances [3, 4, 15, 16, 19, 24, 25] to be considered are:

1. Description of services: This is the most serious section of the contract as it
designates the services and the way in which those services are to be provided.
Standard services are frequently separated from adapted services but this dis-
agreement is not of serious concern. The information on the services must be
correct and comprised through requirements of what is being delivered.

2. Performance supervision: An important part of a SLA deals with supervising
and evaluating service level performance. Fundamentally, every service must be
capable of being measured and the outcomes inspected and informed. The stan-
dards, objectives, and metrics to utilize must be quantified in the contract. The
two parties must examine the service performance level consistently.
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. Problem administration: The determination of problem administration is to

reduce the violent influence of occurrences and difficulties. This regularly speci-
fies that there must be a suitable process to control and solve unexpected occur-
rences and that there must also be preemptive action to reduce happening of
unexpected happenings.

. Consumer responsibilities and accountabilities: It is significant for the consumer

to understand that it also has accountabilities to sustain the service delivery pro-
cess. The SLA describes the association, which of course is a two-way unit. Typ-
ically, the consumer must organize for entrance, accommodations, and resources
for the provider’s workforces who require working on-site.

. Licenses and cures: This section of the SLA stereotypically covers the follow-

ing vital issues: service quality protections, third party claims, and cures for
loopholes.

. Reservation: Reservation is mainly a serious feature of any SLA. The consumer

must deliver well-ordered physical and logical entrance to its principles and
information. Correspondingly, the contractor must respect and obey with the
consumer’s reservation rules and techniques.

. Catastrophe recovery and commercial strength: It can be of dangerous status.

This factor should be conveyed within the SLA. The topic is catastrophe recov-
ery frequently incorporated within the reservation section; though, it is also regu-
larly involved within the problem administration area. At the highest level, both
these areas typically state that there must be acceptable provision for catastrophe
recovery and commercial strength forecasting to protect the continuity of the
services being distributed.

. Service termination: The SLA agreement naturally covers the following funda-

mental areas: services are finished at completion of preliminary term, finish for
suitability, finish for reason, and expenditures on closure.

3.2.4 SLA of a Cloud Provider

Quality attributes play a significant role in SOA environments [23]. An SLA for-
mally describes the level of service. Organizations seek to develop SLAs for numer-
ous causes. From a simple viewpoint, an SLA is developed between two parties to
spell out who are responsible for what, what each party will do, and occasionally
more clearly what each party will not do [38]. Also an SLA describes the interac-
tion between a service provider and a service consumer. An SLA contains several
elements of details [6, 18, 30], viz.:

AW N —

. The set of services the provider will offer.

. A comprehensive, full definition of each service.

. The responsibilities of the provider and the consumer.

. A set of metrics to define whether the provider is providing the service as

guaranteed.

. The inspecting mechanism to supervise the service.
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6. The courses of action available to the consumer and provider if the terms of the
SLA are not fulfilled.
7. How will the SLA vary with respect to time?

A typical SLA of a Cloud provider has the following components [8, 12—-14, 17, 20,
28,29, 32, 35, 36]:

1. Service assurance: It specifies the metrics which a provider struggles to meet
over a service agreement time period. Failure to attain those metrics will out-
come in service recognition to the consumer. Availability (e.g., 99.9 %), response
time (e.g., less than 50 ms), catastrophe recovery, and fault perseverance time
(e.g., within one hour of discovery) are examples of service assurances. Some
service assurances can be on a per action basis, such as zeroing out a VM disk
when it is deprovisioned.

2. Service Assurance Time Period: 1t describes the duration over which a service
guarantee should be happened. The time period can be a billing month or time
occurred since the previous advantage was filed. The time period can also be
insignificant, e.g., one hour. The smaller the time period, the more difficult is the
service assurance.

3. Service assurance granularity: It defines the resource scale on which a provider
specifies a service guarantee. For example, the granularity can be as per service,
per data center, per instance, or per transaction basis. Related to time period,
the service assurance can be inflexible if the granularity of service assurance is
fine-grained. Service assurance granularity can also be designed as a cumulative
of the deliberated resources, such as contacts. For example, aggregate uptime of
all running instances must be greater than 99.95%. Though, such an assurance
denotes that some instances in the collective SLA computation can hypotheti-
cally have a lesser percentage uptime than 99.95 % while still meeting the collec-
tive SLA. As significant, collective SLA computation leaves provider the room
to better accomplish its presented services.

4. Service guarantee: Omissions are the instances that are excluded from ser-
vice guarantee metric calculations. These omissions typically include misuse
of the system by a customer, or any downtime associated with the scheduled
maintenance.

5. Service recognition: It is the amount credited to the consumer or applied towards
upcoming expenditures if the service assurance is not met. The amount can be a
comprehensive or restricted recognition of the consumer compensation for the
miscalculated service.

6. Service Violation Measurement and Reporting: It describes how and who mea-
sures and reports the violation of service assurance, respectively.

3.2.5 SLA Levels

Cloud SLAs may provide safety at different stages through infrastructure operating
systems (OSs) and applications [8, 38]. Some of the significant attention levels that
could be included in a Cloud SLA are described in Table 3.1.
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Table 3.1 Cloud SLA levels
SLA levels Description

Facilities level SLA Here, the Cloud provider will normally deliver an SLA including
the data center services necessary to maintain the customer-owned
infrastructure. These comprise items such as electric power, on-site
generators, cooling, etc

Platform level SLA The next level of safety in a Cloud usually covers physical servers,
virtualization platforms and hardware related to network retained by
the provider and used by the Cloud consumer. Usually, the physical
server and virtualization software are hidden by a platform SLA

OS level SLA OS is the subsequent possible area of coverage for a Cloud SLA.
Providers proposing an OS level SLA normally deliver some amount
of managed services to a client. This extra service permits the
provider to guarantee that the OS is suitably sustained so that it is
dependably accessible and normally has some warnings
Application level SLA | This category of SLA delivers safety against application level
catastrophes up to and comprising the custom application executing
on the infrastructure provided by SLA. Under this model, the Cloud
provider is ensuring the availability and performance of their Cloud
customer software, which is a hard guarantee to encounter
Availability level SLA | The Cloud network (network among Cloud servers) may be covered
by a distinct availability level SLA

3.2.6 Metrics in SLA

Realization of Cloud computing requires that both consumers and suppliers can
be confident that contracted SLA are supporting their corresponding business ac-
complishments to their best degree [19]. Current SLAs usually fail in providing
such confidence, exclusively when Cloud providers outsource resources to other
Cloud providers. These Cloud providers typically provision very modest metrics, or
metrics that hinder an efficient misuse of their Cloud resources [2]. We have identi-
fied some of the service-level metrics for specifying fine-grain guarantees of QoS.
These metrics sanction resource providers to assign dynamically their resources
among the executing Cloud services depending on their request. This is accom-
plished by including the consumer’s service usage in the metric description, but
avoiding false SLA violations when the consumer’s application does not use all its
assigned resources [13, 20, 25].

Through metrics, the defects can be easily identified. Assigning a severity type to
defects helps prioritize the development of Cloud services [17, 25]. Table 3.2 dem-
onstrates each type of defect associated with it, as well as SLA that describes the
time within which Cloud provider promises to fix the defect measured by metrics.

Normally, a Cloud provider approves the QoS with its consumers through a
SLA, which is a two-sided agreement between the consumer and the supplier that
states not only the circumstances of a Cloud service, but also describes the con-
tracted QoS between them using a set of metrics. Cloud service providers certainly
offer service-level metrics (service accomplishment deadline) to their consumers
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Table 3.2 Defect types and SLAs

Defect type | Metric description SLA
Type 1 Business critical features absent or do not Fix within 424 h
function; program may crash
Type 2 Business critical features function most of the Fix within 1 week
time. No work around exists
Type 3 Noncritical features absent or do not function; Fix within 2 weeks
work around exists
Type 4 Inconsequential function may not work as Fix for next software release
expected, typos in documents, etc

for specifying the QoS. The Cloud providers must offer service level metrics that
can be used to deliver fine-grain QoS assurances. First, the QoS contract can be
obviously expressed using general metrics (e.g., number of processors, frequency of
processors, etc.), meanwhile underdone resources are the functioned good. Second,
having fine-grain metrics, which assures a given resource distribution during a time
period, is particularly significant for service providers that outsource resources to
Cloud providers, as we have specified before.

3.2.7 SLA Deviation

Customers desire that composed data should be put into expressive perspective.
This situation produces the restriction for a procedure which gathers data from dif-
ferent sources and implements appropriate algorithms for controlling expressive
consequences. Such metrics comprise statistical measures such as average or stan-
dard deviation that want to be computed from the expected and actual outcomes of
services delivered to customer [16]. With the rise of the number of Virtual Machines
(VMs), the standard deviation of the customer load falls. Due to this unpredictabil-
ity, the standard deviations of resource utilization and performance are difficult to
measure.

At the application’s SLA Level, along with the benchmarks, QoS metrics to esti-
mate the performance and SLA deviation are also required [12, 17, 25, 35]. This is
appreciated through a distributed supervising framework that is able to combine su-
pervising information coming from several sources and at different stages. For this
trend, the assessment method of the platform is capable to evaluate on the cause of
the application’s performance deviation, i.c., whether it establishes a breach of the
application usage terms and if so, whether the application SLA specifies activities to
be executed, whether it is an adequate deviation that can be accurately controlled or
a real breach of the SLAs. In the previous situation, more evaluation is required in
order to accomplish on the particular nature of the SLA breach to recognize the real
object or objects that failed to deliver the granted QoS level [36]. An SLA is typical-
ly a two-way written contract which outlines the service and principles the provid-
ers deliver to their consumers whether these are scholars, supervisor in universities,
and/or other central management teams. It also describes what the providers require
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from their consumers/service customers in order to provide the service specified. It
needs assurance and support from both parties to provision and follow the contract
in order for the SLA to work efficiently [6]. In SLA, both the parties (Cloud pro-
vider and Cloud consumer) should have specified the possible deviations to achieve
appropriate quality attributes. If taking availability as a quality attribute and if it
should be 95 %, then it means that the system should be available for 22.8 h per day
with maximum deviation of 1.2 h per day (5 %). In the case of system performance,
if the desired deadline is 9 ms with deviation (10%) of 1 ms, then maximum re-
sponse time should be 10 ms for a particular task without violation of agreement.
The Cloud provider’s SLA will give an indication of how much actual availability
of service the provider views as adequate, and to what amount it is agreeable to re-
quire its own financial resources to compensate for unexpected outages. Usually, no
Cloud provider considers compensation because 85 % resource providers do not ac-
tually provide penalty enforcement for SLA violation presently [10]. There should
be penalty delay cost or consumers’ compensation if the Cloud provider misses the
deadline. Moreover, it provides a risk transfer for IaaS providers, when the terms
are violated by the Cloud provider. Penalty delay cost is equivalent to how much the
service provider has to give concession to users for SLA violation. It is dependent
on the penalty rate and penalty delay time period. The effect of inaccuracy could
be reduced by two approaches: first, considering the penalty compensation clause
in SLAs with IaaS provider and impose SLA violation; second, adding some slack
time during scheduling for avoiding risk [27].

3.2.8 Existing SLA Architectures in the Cloud

Not much has been written in the area of Cloud SLA. We have surveyed only three
related architectures in this context. Casalicchio et al. [7] presented an architectural
model for the autonomic service provisioning system that investigated the problem
from the outlook of an application service provider that uses a Cloud infrastructure
to attain scalable provisioning of its Cloud services in the respect of QoS restric-
tions for autonomic resource management of Cloud-based systems. This architec-
ture describes the functional desires of an autonomic service provisioning system
and recognized features and services presented by many IaaS providers that might
be used to implement such desires [7].

Happe et al. [33] have proposed a reference architecture for multi-level SLA
management that provisions the inclusive supervision of possibly difficult service
stacks and discussed how SLAs are used for handling the nonfunctional features of
the complete Cloud service life cycle. The presented architecture is based on capa-
bilities extended from an SLA framework constructed around a particular reference
application. Emeakaroha et al. [14] have presented DeSVi—an architecture for ob-
serving and identifying SLA destructions in Cloud computing infrastructures. This
architecture is accountable for the provision of resources and for mapping of tasks,
accountable for the implementation of consumer applications, and visualizes the
execution of the applications and converts low-level metrics into high-level SLAs.
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It is used to recognize the intervals for applications with stable resource consump-
tion only.

However, all these architectures do not take into account the dependency of
SLA on QoS requirements? Therefore a new architecture is required that considers
SLA deviation status, heterogeneous Cloud workloads and their resource consump-
tion dynamically, assigns priority to Cloud workloads and different states of Cloud
workloads and also assures the relation between QoS and SLA.

3.3 SLA Challenges and Benefits in Cloud

This section describes the SLA key challenges along with the reasons of their occur-
rences as well as benefits and potential barriers/issues of SLA in Cloud computing
[11, 18, 21, 31].

3.3.1 SLA Challenges

1. SLAs are hard to express in the Cloud in part because areas of the infrastructure
(in specific the network) are outside of the scope of either consumer or provider.
This hints to the challenge of offering a predetermined contract for something
which is only comparatively in the provider’s control [36]. Additionally, as the
infrastructure is shared (multi-tenanted) SLA’s are more challenging to deliver
since they rest on capacity which must be shared [22].

2. The consumer accessing services in the Cloud also face a challenge. New Cloud
SaaS providers, who are growing their business and attracting more consumers
to their multi-tenanted data center, are unlikely to offer serviceably defined SLA
for their services as compared to a data-center provider who can bargain where it
supervises all fundamentals of the supplied infrastructure [1]. As their business
is increasing and an SLA is a massive threat (since it is a multi-tenanted break of
one SLA and is possibly a break of lots), the expenditure might look insignificant
and unfortunate to the consumer but is great for a SaaS provider). Additionally
with each new consumer, the difficulties on the data center, and therefore danger,
increase [12].

Every new consumer brings the advantage of growing stress testing of the SaaS
platform and improving growth of abilities within the SaaS provider. While the
SLA may remain to be neglected, the risk of dissatisfaction of the data center may
well reduce as the SaaS transmits [35]. The objective of an SLA is accordingly not
just to deliver a predetermined contract but rather to set out the level of service on
which the cooperation between customer and supplier is constructed. In this way, an
SLA is about the predictable quality demanded of the supplier and with the above
model the expected quality may well improve with more consumers—not reduction
as is frequently predicted for a Cloud [17]. SLA’s for Cloud providers may well be
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insignificant and neglected, but the universal risk of using Clouds is not as simple
as is often competed. Whereas it is probable that Cloud providers’ compromise run-
down SLA’s, it does not mean that the QoS is, or will stay, underprivileged.

The integration of QoS aware aspects in each Cloud component in order to con-
trol and inform the system about its current behavior is required. Further, the opti-
mization of energy consumption in the Cloud computing environment according to
user-specified budget constraint is necessary. Thus, maximizing energy efficiency,
cost effectiveness, and utilization for applications while ensuring performance and
other QoS guarantees, requires controlling important and extremely challenging
tradeoffs. These challenges and issues occur due to the following important factors
related to the Cloud:

e SLA deviation occurs due to shared nature of the Cloud, and it leads to SLA
violations.

» Service quality fluctuations occur due to fluctuations in QoS requirements of
different Cloud users.

* Problems in invoices occur due to the various modes of payments along with
their own constraints.

» Risk of SLA violations due to urgent execution of Cloud workloads (while as-
signing priorities to the most urgent workloads), whether the Cloud providers
provide the compensation to the user in case of SLA violations or not.

 Difficulty in maintaining the security, due to the multi-tenanted data center, ac-
cess to the database and type of encryption and decryption.

» Efficient storage is required as memory is wasted due to multiple copies of same
data by different or same Cloud users.

* VM migration demands high bandwidth which further leads to complexity.

» Lack of standard QoS-oriented SLA architecture in the Cloud due to heteroge-
neous nature of Cloud workloads.

The required architecture will focus on developing a resource provisioning and
scheduling technique that will automatically manage QoS requirement of Cloud
users and would be based on energy efficient usage of the Cloud infrastructure. So,
what the customer should deliberate in considering the SLA, in terms of service
quality [22, 36, 37], are:

* How does the Cloud SaaS provider determine its progress? The progress of
a SaaS service means larger demand on the supplier’s data center. Therefore,
greater risk that the SLA’s will be broken for their multi-tenanted data center.

* How vulnerable is the Cloud SaaS provider in permitting analysis of its services
by fresh consumers?

* How well the Cloud SaaS provider engages in planned motivation for service
quality alignment with your requirements for service quality?

To address these challenges, SLA can respond to the following issues and questions
[2,3,6,8,9,13,16, 19, 25, 38]:

*  What are the resources delivered to the consumer? How resources will support
the consumer? Are there any limitations to the number of resources?
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How the invoices are created? What are the payment methods? How the services
are affected if the customer postpones in compensating invoices? This should
comprise refinement period and how the consumer can acquire the services back
after the payment when the services are blocked?

What happens if the SLA is not met? How data is controlled when the service
agreement finishes, the sort of data compensated to the company?

What happens if the service contract is withdrawn? How data is handled and
returned to the company?

How does the service use event logs and who actually has access to the data on
the backend?

Who will check the security of Cloud providers?

Which of the SaaS employees has root and database access, and will anything
prevent them from getting access to your corporate data? What controls are in
place?

Is the held data separated between clients or is it all stored on one huge database
out there? How is this data separated? How will the legal question of e-discovery
be addressed should it arise as a business concern?

In terms of service availability, can you get your vendor to sign a service level
agreement?

What security arrangements do you have in place with Cloud service providers
that you rely on to deliver your service? What are you doing to build “trust in
depth” in the Cloud?

Many significant issues in Cloud computing occur at the boundary between the
provider’s infrastructure and the Cloud environment [4, 15, 24, 34], e.g.:

How do you move resources from one side to the other? Is the Cloud application
dependent on storage that exists on your side of the boundary?

What influence will that have on the bandwidth desires? And, how do you per-
fectly move VMs between the Cloud and your data center as demand raises and
failures occur?

These are all legal and motivating problems. But an even larger question forthcom-
ing like a dark Cloud on the perspective is that of the right and authorized grade [8];
i.e., is the matter in the Cloud on the same legitimate footing as the matter in the
data center? For example:

How will the switch occur to a public Cloud when the private Cloud infrastruc-
ture gets mixed out? Or would you be using the public Cloud for just executing
your services?

How much confident can be placed on the encryption patterns?

How safe is the data from natural disasters?

Is it probable for all of the data to be fully encoded?

What algorithms are used? Who holds, maintains, and issues the keys?

And so on.

Thus, it can be construed that SLAs are elements of a quality methodology to help
the support teams in classifying and agreeing on what ‘good quality’ looks like and
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deliver a framework for quantifying and supervising the realization of service qual-
ity [9, 17].

3.3.2 Prospective Benefits

QoS and appropriate SLA collectively offer huge benefits to Cloud computing para-
digm. A few of such benefits are listed below:

» Enables strong understanding of the service and accountabilities of all parties
» Helps you to achieve your service consumers viewpoints

* Encourages clearness, responsibility, and reliability

» Notifies team performance, capabilities, and staffing judgments

» Provisions supportive and collective functioning

* Emphases teams on uninterrupted enhancement

3.3.3 Potential Barriers/Issues of SLAs

Following are some of the potential barriers that hinder the implementation of QoS
through SLAs:

» Adequate resources not being available at the desired time.

» Lack of assurance from management to implement the solutions within granted
schedule.

» Unavailability of desired staff and momentum, in case of urgency.

» SLA’s excessive optimization may become difficult and even may lead to rejec-
tion.

* The development of SLAs should be team’s strength, and if recommendations
made within the team are not appreciated, then it may be difficult to preserve
staff commitment in the process.

These barriers can be overcome by deliberating the SLAs as follows: Adjust the
work roles and responsibilities to reproduce the necessities of the new structure.
Note that stronger work roles and responsibilities can help on specific basis but not
in terms of the general service nor will this methodology enable endless improve-
ment, added value, and simplicity of service delivery [3, 18]. Observations and
prospects of central services will unavoidably adjust as consumers will search for
reasonable service delivery and proof of price/profit/worth of services they use [20].

3.4 The Proposed Cloud SLA Architecture

This section proposes Cloud SLA (CSLA) architecture that can ensure better SLAs
for both Cloud provider and consumers, as shown in Fig. 3.2. The objective of
the proposed CSLA architecture is to reduce the standard deviation of resource
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Fig. 3.2 Cloud SLA (CSLA) architecture. SLA service level agreement, QoS quality of service
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Fig. 3.3 Autonomic service level agreement (SLA) manager in Cloud SLA (CSLA) architecture.
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utilization and performance to attain a well-proportioned load scattering in the
Cloud environments, where the load is characterized as the VM utilization. Further-
more, we define the standard deviation of resource utilization and performance so
as, to prevent any hurdle in evaluating the degree of inconsistency. Consequently,
the CSLA architecture also targets to reduce the degree of inconsistency. The con-
sideration of standard deviation would aid to avoid the unstable workload of cus-
tomers during the VMs distribution. The main components of the proposed archi-
tecture are as follows:

1.

Authentication: The user should have valid username and password.

2. Submit workload: After authentication, the user will submit their Cloud work-

load that will be executed in this CSLA architecture.

. Workload description: All the workload should have their key QoS requirements,

based on that the workload is executed with some user defined constraints.

. Workload queue: All the submitted Cloud workloads will be put into a workload

queue for execution.

. QoS manager: Based on the key QoS requirements of a particular workload, the

QoS manager puts the workload into critical and non-critical queues through
QoS assessment.

. Autonomic SLA manager: Based on SLA information, SLA document will be

prepared and accordingly urgent Cloud workloads would be placed in priority
queue for earlier execution. Deviation status is used to measure the deviation of
QoS from predictable with their possible resolution. If the deviation is more than
the allowed, then it will allocate the reserve resources to the particular job or
workload. Flowchart of autonomic SLA manager in CSLA architecture is shown
in Fig. 3.3.

. Resource manager: It contains the information about the available resources

and reserved resource along with resource description (resource name, resource
type, configuration, availability information, usage information, and price of
resource).
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8. Service manager: Based on SLA information, workload information and
resource information, the service manger map the workloads to the appropriate
resource by taking care of both SLA and QoS. Dynamic scheduler will schedule
the workload for execution and billing for that execution will be generated. After
payment, the workload executer will execute the workloads.

As shown in Fig. 3.3, the SLA Manager will calculate the execution time of work-
load and find the approximate workload turnaround time or completion time (CT).
If the CT is lesser than the desired deadline (DD), then it will execute immedi-
ately with the available resources and release the resource back to resource man-
ager for another execution, otherwise calculate extra number of resources required
and provide from the reserved stock for current execution after recreating the SLA
document with new user constraints. There are 11 states through which a submitted
workload can move as shown in Fig. 3.4.

The first state for every workload is ‘workload submission’. Based on key QoS
requirements of workload, the next state will be decided either as non-QoS or QoS
(quality oriented workloads). After non-QoS state, if there is no other workload
pending, then it will execute directly other workload that is waiting into non-critical
queue. After successful execution of workload, the workload is completed. On the
other hand, all the QoS-oriented workloads are put into critical queue and sorted
based on their priority decided by QoS manager and then scheduled for execu-
tion. If there is no obstacle (urgency, more resource requirement, etc.), then execute
directly with available resources, otherwise put it into under-scheduling state to
fulfill the user requirements. If all the conditions meet the given budget, resource,
and time constraints, then it will execute, otherwise it will not be executed. CSLA
architecture is the key mechanism that ensures that Cloud providers can serve large
amount of requests without violating SLA terms. It dynamically manages the re-
sources by using efficient resource scheduling techniques. For instance, when a
workload requires low amount of resources, it will assign resources with lower
capability, so that new requests can be served.
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3.5 Discussion

As designated in the suggested architecture, we observe a very sincere require-
ment of CSLA architecture to administrate SLAs in the perspective of the Cloud
environment. The proposed CSLA architecture recommends a very flexible design
for handling SLAs between Cloud providers and Cloud users. We perceive this as
one of the strong facets of CSLA architecture where, realistic to the prototype of
SOA, each functionality is delivered as a Cloud service that could not essentially
come from the similar Cloud provider. One vital remark we make in the framework
of Clouds is the absence of standardization. This is especially essential when we
try to relate through manifold Clouds. Even though it is possible to provide service
for diverse Cloud interfaces through a middleware, there is no general collection
of metrics that can be supervised through Cloud providers. There are challenges
to organize the Clouds and we highlight the importance of such determinations in
the light of observing abilities. As a part of these standardization determinations,
we also recommend four types of straightforward metrics for measurements to be
recognized. Clouds would not be capable of scaling indefinitely when a resource
restriction is faced. A service provider may choose to assign the Cloud workloads
or applications or tasks to another provider to avoid important SLA violation penal-
ties. Such a situation generates research prospects in SLA supervision. We proceed
to analyze SLA characteristics like accounting, monitoring of QoS restrictions, and
condition damage in related situations as upcoming research.

3.6 Conclusions and Future Research Directions

This chapter discussed significant factors that could be considered when developing
Cloud SLAs. Four types of metrics have been recognized for specifying fine-grain
guarantees of QoS. The defects in the Cloud service can be easily identified and
SLA deviation can be measured through these metrics. This work mainly focuses
on enhancing the QoS provided by CSLA architecture. The concept and challenges
of SLA-based provisioning and QoS for applications and workloads implementa-
tion in the Cloud environment have been presented. We have also proposed and
presented a CSLA architecture that enables adaptive and dynamic provisioning
of the resources based on workload-defined policies for satisfying their own SLA
performance requirements, avoiding the price of any SLA violation and govern-
ing the budgetary cost of the distributed computing resources. Future research in
this area can be recognized in many ways. One such opportunity is based on QoS
requirements, which is considered as a vital characteristic of Cloud computing. The
work presented here can be extended along several lines. From the research method
viewpoint, our investigative method should evolve into theory building and a sup-
position testing as more experimental data about Cloud computing adoption be-
comes available. From the research output perception, the work regarding different
service and deployment models, the comparative importance of SLA components as
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associated to industry-specific features, and new characteristics and perceptions in
the innovativeness modeling of the Cloud computing subcontracting judgment can
be initiated. Some more QoS parameters can be analyzed and incorporated to find
the critical success factors of the CSLA architecture and offer a model that will fur-
ther help in accomplishing SLA in the Cloud environment using an automated tool.
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Chapter 4
A Methodology for Cloud Security Risks
Management

Mariam Kiran

Abstract Cloud computing is an extremely attractive model for both the users and
the providers of Cloud-based infrastructure, who have their own business angle
for using and providing these services. However, as with many business ventures,
as the use of Cloud environments grow, the risks and the threats associated with
a successful use of the model also increase. Although, the Cloud paradigm is an
evolution of grid systems, Clouds have particular threats specific to virtualized
and multi-tenant environments, which need to be managed with proper method-
ologies to ensure that the entire ecosystem is secure. Security consists of three
main aspects—availability, integrity and confidentiality—and each of these needs
to be considered to make sure that the complete ecosystem is secure. This chapter
presents a comprehensive discussion of the concerns associated with the Cloud
security depicting the best practices currently used in the industry. This chapter
presents an in-depth analysis of these issues with an innovative holistic approach
on how to manage and assess security risks for different kinds of Cloud ecosystems
which allows documentation as well as design tools which can be in place to moni-
tor security at both deployment and operation phases. The proposed risk methodol-
ogy approach allows better management and mitigation of security threats when
they occur during the service lifecycle of any kind of Cloud ecosystem and Cloud
services provision.

Keywords Cloud computing - Risk modelling - Security - Threats - Service lifecycle

4.1 Introduction

Cloud computing is a market, which was worth US$ 42 billion in 2012, but is tech-
nologically still being developed [1]. Being attractive to the IT industry, where the
leasing model can allow powerful software tools to be developed on top of the infra-
structures, which are not always available, the Cloud brings a number of advantages
which include remote accessibilities to resources, elasticity, scalability based on
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user demands, pay-per-use models to save energy and costs, to name but a few [2].
However, Clouds still have a long way to go to build the trust of the average Cloud
users on issues of risks, data securities, the kind of services being processed and the
governance characteristics in general [3].

Forrester Research [4] describes the market potential of Cloud computing through
the hype curve, divided into 12 segments, based upon level of sharing and business
value (see Fig. 4.1). Figure 4.2 shows that Cloud computing is a field, which covers
a wide range of abilities being offered, estimated worth around $ 18 billion.

Security is a priority concern for many Cloud computing customers where it can
affect the reputation of the providers in terms of confidentiality, resilience and in-
tegrity of the company. Kiran et al. [6] have described some of these examples such
as data leakage that has been investigated with access control measures like discre-
tionary access control [7] or mandatory access control [8] to control access to an
object. Both of these approaches can be used to control access to virtual machines
(VM) via the hypervisor or VM monitor. However, traditional access control mod-
els focus on the assumption that the data controller and data owner is in the same
trust domain, an assumption which does not hold for Cloud computing. Another
example is network access control software like Symantec data-loss prevention [9],
which cannot control data leakage within an organisation, as only the end points or
network points are scanned for violation of enterprise security policy. Hypervisor
attacks are the most serious security threats to the Cloud environment [10] where if
infected, such attacks can be used to gain control over a VM (Bluepill) [11]. Even
the smart meters cannot monitor false data injections; cyber-attacks having serious
implications on the infrastructures [12].
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Fig. 4.1 Hype cycle for Cloud computing 2011 [5]
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Fig. 4.2 Cloud computing business value [5]. /aaS infrastructure as a service, PaaS platform as
a service, SaaS software as a service, BPaasS business process as a service, BPO business process
outsourcing

This chapter discusses the research challenges in security and the best practices
employed by the industry with the various policies and measures adopted. Based on
these approaches, a uniform risk methodology is presented discussing a step-by-step
procedure for handling security risks on Cloud ecosystems. This involves the poli-
cies, documentations, governance checks as well as designs tools, which can be im-
plemented based on local infrastructures to implement security checks at the deploy-
ment and operations phases of the service lifecycle. The chapter has been organised
to present a comprehensive detail on security concerns and findings in the Cloud.
Section 4.2 starts with the security concerns and some general characteristics found
in industry with a distribution of money spent on the different sectors to improve its
issues. Sections 4.3 and 4.4 present different Cloud ecosystems and the service life-
cycle as a background on which the methodology applies relevant to security risk as-
sessment. Section 4.5 presents the actual risk assessment methodology introducing
the documentation methods, which include reviewer documentation, provider poli-
cies, legal implications and risk assessment data sheets that can be filled in advance
as a risk report for monitoring security concerns of the Cloud ecosystems. Based on
this analysis, the next section identifies six Cloud threat categories which encom-
pass all kinds of threats on Clouds. This identification is extended in Sects. 4.7—4.9,
where the risk methodology for the Cloud is presented with accompanying algo-
rithm and simulation results. Section 4.10 discusses the issues with Cloud security
testing and the potential future within this domain. This chapter concludes with a
case study applying the methodology to a video scalability problem using Clouds
and concludes with further future work to be carried out in this domain.

4.2 Security Concerns in Clouds

The UK government is investing in the G-Cloud programme initiative in order to
improve the economic sustainability by delivering information and communication
technologies (ICT) systems that are flexible, on-demand and in compliance with
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the government policies in order to support emerging small business suppliers [13].
However, to target the issues relating to security, they released a statement saying
that they will ease these issues by promoting the use of open source software [14].
Open sourcing the software’s will not be a solution to securing the already be-
ing used initiatives of the G-Cloud. For securing data transfer and hosting, various
considerations need to be taken for data management on multi-tenancy in Clouds
[15]. But these still lack detailed analysis in terms of what needs to be done to target
these issues [16]. Comparatively, the National Institute of Standards and Technol-
ogy (NIST) have come up with a list of security risk and mitigation mechanisms
with reference to a strategy for performing risk assessment [17]. Whistle et al. [18]
discuss the certification and accreditation for threats in accordance with the govern-
ment laws analysed per stage accompanied with a detailed analysis.

Security can make or break deals, either convincing organisations to use the
Cloud or deferring on security concerns. Best performances in a survey conducted
by Ried et al. [4] show the following characteristics on security issues and how they
are influenced by various factors, grouping them into three areas:

» Policies and control: security control objectives prioritised as functions of re-
quirements for risk, audits and compliance(69 %), policies for protection (85 %),
acceptable use (81 %) and regular monitoring, analysis and reporting (70 %) on
information assets, baseline security requirements for all applications, databases
and network infrastructures (74 %)

» Organisation: responsible team with ownership for security (67 %), formal end-
user awareness and training programs (70 %), non-disclosure agreements in place
and reviewed at intervals (74 %), defined steps for employee termination (67 %)

»  Knowledge and performance management: audit plans agreed in advisory boards
(70%), compliance with SLAs demonstrated at various intervals (69 %), formal
risk ass at regular intervals (52 %)

Risk models in security can be used to define and document some of the security
concerns. Pullman [19] conducts an in-depth threat analysis for concerns making
sure every part is covered. Microsoft has described a similar threat modelling tech-
nique to keep security concerns intact. Figure 4.3 shows a preliminary investigation
in threat analysis for data loss in the Cloud and how it can be worked through to
assets and mitigation strategies.

Figure 4.3 shows a threat analysis tree of the threat of data loss. The process
involves working out each possibility which may have lead to this threat. It then
links up with which assets need to be protected for this. As a result of this analysis,
various mitigation actions can be identified such as security audits, hardware wipe
policy whenever data moved, encrypting data and keeping the protected keys safe.
Therefore the risks categories help identify each risk separately and the different
models to analyse them separately.

4.2.1 General Security Characteristics

Security is a major concern for organisations and for businesses who are interested
in Cloud investments [20—22]. The Aberdeen group [22] conducted a survey of
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Fig. 4.3 Security threat analysis carried out by Microsoft [19]
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Fig. 4.4 Leading pressures driving the current investments in security for Cloud initiatives.

(Adapted from [22])

security practices relating to risks and the leading pressure for areas of investments
in the Cloud initiatives. Their findings are presented in Fig. 4.4.

Table 4.1 summarises their findings in terms of the best practices adopted across
the different dimensions of security mechanisms on Cloud infrastructures.
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Table 4.1 Best practices across various domains [22]. Numbers represent percentage of respon-

dents with N=104

Best practices across following
domains

Data security

Best in class (%) Industry average (%) Laggards (%)

Policies and controls to ensure data
security (e.g. access controls, data
loss prevention, encryption)

85

60

55

Encryption of sensitive data in storage
(e.g. file servers, databases, end-user
endpoints)

50

46

45

Encryption of sensitive data during
transmission (e.g. over public net-
works, electronic messaging)

70

62

65

Effective key management to support
encryption of data in storage and in
transmission

56

53

45

An audit function is involved if the
integrity of enterprise data has poten-
tially been compromised (e.g. data
loss or exposure, unauthorised access)

59

56

55

Identity and access management

Consistent minimum standards
for user authentication and access
controls

96

81

70

Minimum authentication require-
ments for secure remote access

96

86

75

All requirements for access to data
are identified and in place prior to
access being granted

74

69

50

Timely suspension/revocation/de-
provisioning of end-user access upon
termination or change in role

85

71

65

Periodic validation that end users
have appropriate access rights
(attestation)

74

56

55

Enforcement for separate of duties

74

56

50

Data governance

All data (and objects containing data)
have been identified and classified

54

46

32

All data has a designated owner/
steward

58

38

37

Policies and processes are in place for
data labelling and data handling

54

51

42

Production data is not replicated or
used in non-production environments

64

56

37

Data backup and recovery mecha-
nisms, tested at regular and planned
intervals

74

72

63
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Table 4.1 (continued)
Best practices across following
domains
Policies for secure disposal and
complete removal of data from all
storage media

Best in class (%)

70

Industry average (%)

57

81

Laggards (%)

47

Security mechanisms to prevent data
leakage

58

56

39

Network access, mobility and application security

Network infrastructure is designed
and configured to restrict connec-
tions between trusted and un-trusted
segments

81

73

70

Policies ad controls to protect wire-
less network environments

78

76

65

Policies and controls to limit access
to sensitive data from mobile devices
(e.g. laptops, smart-phones, tablets)

74

49

40

Policies and controls with respect to
code for mobile devices

37

35

All functions and application pro-
gramming interfaces (APIs) that will
be used in conjunction with software
development are analysed for security
risk

52

38

30

Monitoring, auditing, forensics and incident response

Security-related logs, information
and events are retained and regularly
reviewed

69

68

58

Monitoring and tracking of security-
related incidents and events (e.g.
types, volumes, time and cost to
remediate)

78

70

56

Communications channels and escala-
tion procedures for security-related
incidents and events

52

50

Forensic procedures (e.g. chain of
custody) for collection, retention and
presentation of evidence in support of
potential legal action

52

48

35

Segmentation and access controls to
prevent compromise and misuses of
log data

65

59

55

Access to diagnostic and configura-
tion ports is restricted to authorised
individuals and applications

71

68

55
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4.3 Cloud Ecosystems

To make them more attractive for users, Cloud providers attempt to hide a lot of the
processes in the background to promote the easy usability for users. Having auto-
mated security policies and access control measures are examples of these, but there
are still a lack of standards to be followed during these activities. These have been
on the active research agenda of bodies like NIST [23] and Gartner [5].

NIST describes the Cloud as a convenient model using efficient computing re-
sources stressing on four deployment models [24]:

* Private Cloud: operated for an organisation by either itself or a third party

* Public Cloud: for general public use and is owned by an organisation selling
Cloud services

¢ Community Cloud: an infrastructure that is shared by several organisations, also
called federation of Clouds

» Hybrid Cloud: a composition of two, more Clouds or multi-Clouds (community,
private, public)

Each of these models or Cloud ecosystems brings different issues in terms of data
hosting, security, risks and business models. This chapter discusses Cloud ecosystems
in relation to the roles of the actors—namely service provider, infrastructure provider
and brokers—involved in the ecosystem, which do not have a direct mapping from
the NIST documentations. This is done to ease discussion in the later sections.
Figure 4.5 describes the different Cloud ecosystems and shows the roles of the ac-
tors who play in them. A private Cloud involves only a service and an infrastructure
provider who communicate directly to each other and possibly in the same geograph-
ical location. A Cloud-bursting environment is when one infrastructure provider is
close to running out of resources and thus bursts to another. Figure 4.5¢ describes
a federation of infrastructure providers working together as a team to complete the

LBl ‘}iigji' -!";i-a' !“;u

SP
Private Cloud Scenario Cloud bursting to a public Cloud
wiompwp e e
sp P o P SP P P
P !i J
Federation of Clouds working together as a team d Service Provider using Multiple Clouds of
SP: Service Provider :] ':], :];
IP: Infrastructure Provider sp Brober P

€ Involving a broker to act as the middle man for the service and infrastructure provider

Fig. 4.5 a—e Various Cloud scenarios or ecosystems
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service execution. Figure 4.5d shows a similar situation, but this time the infrastruc-
tures are working independently of each other and only guided by the service provid-
er. Lastly, Fig. 4.5¢ describes a situation which involves a broker to mediate between
the two parties. The broker can take responsibilities to monitor, test and make sure
the service is completed and delivered at the right time to the service provider.

In addition to the Cloud ecosystems, Clouds can be recognised by the form of
functionality they offer. These are as follows:

» Software as a service (SaaS): Uses the Web to deliver third-party applications to
Clients. Example: Gmail

» Platform as a service (PaaS): Provides framework to build applications on top
as well. This provides the client highly scalable infrastructure and hardware for
computing. Examples: GoogleAppEngine [25], Heroku [26]

+ Infrastructure as a service (IaaS): Third party allows you to install a virtual server
on their IT infrastructure

This chapter focuses on Cloud security in terms of the different ecosystems and the
security threats that need to be monitored. Functionality models of Clouds form part
of these ecosystems, depicting how the services will be offered. Based on the func-
tionality and ecosystems, various threats can be highlighted which would otherwise
not need to be monitored in a different scenario. Section 4.7 provides a case study
for a video scalability application to demonstrate this use of identifying threats for
the particular scenarios.

4.4 Cloud Service Lifecycle

Before we discuss the different kind of threats across the ecosystems, we have to rec-
ognise the different phases in which the services can exist. This also highlights that
only particular threats will be active during, either the service engineering phase,
onboarding or operation phase. The services lifecycle is represented in Fig. 4.6,
where the first phase of service engineering is when the service is constructed, the
second phase is when the service is actually deployed on to the Cloud and the third
phase is when the service is in operation and executing on the Cloud.

4.5 Risk Assessment of Security threats on Clouds

Security can essentially be broken into three main aspects, which, if guaranteed,
becomes fully optimal (Fig. 4.7). These are:

Service construction or Engineering Service onboarding Service operation

Fig. 4.6 Service lifecycle covering construction, deployment and operation of the service on the
Cloud
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Fig. 4.7 Security triangle Availability

Confidentiélity Int.egritv

* Availability: The data is available when needed.
 Integrity: The data is not modified without being detected.
» Confidentiality: The data remains undisclosed to unauthorised parties.

Comparing to grid infrastructures, due to their nature, Clouds have additional
threats that need to be considered for security reasons. For instance, data access in
Clouds is a huge threat because geographically the data can be hosted anywhere as a
service. This would not be a threat on Grid infrastructure which are usually business
owned and located internally. Therefore there is a need to consider the geographical
location and the access rights to the Cloud for safety of the data. Another example is
when migrating the VMs securely across the different infrastructures on the Cloud.
Depending on the situation, the data manager on the Cloud should consider if the
VM’s new location still complies with the legal agreements made between the end
user and the Cloud for where the data is allowed to be hosted. Various authentica-
tion models can be introduced to make it more secure as a mechanism to overcome
this threat.

There is a need to identify the different kinds of security issues in Cloud com-
puting. For example, Fig. 4.8 describes how data being hosted in isolation, can be
compromised.

Figure 4.8 describes a tree structure which can be used to perform a fault-tree
analysis style to find, where human errors, faults and the business being affected
helps to determine how to mitigate similar situations if this happens in real life.

4.5.1 Documenting a Security Risk Assessment

Different Cloud ecosystems and the services executing on them, are prone to dif-
ferent number of threats, particularly the public or hybrid Cloud scenarios. In
public Clouds, the data is hosted externally on a Cloud, being used by multiple
users of the public. Hybrid Clouds can include different Clouds joining to form a
federation or multiple Clouds working together to fulfil a service. Threats, such
as unauthorised data access, are a problem on public Clouds rather than a private
Cloud, where everything is maintained internally. Not having formal procedures
in place is a major problem because of these different natures. When using mul-
tiple Clouds a few common rules should be maintained to allow uniform proto-
cols that are followed by all Cloud providers in case certain security threats are
realised. Cloud networks can be set up with various sensors to gather the informa-
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Fig. 4.8 Tree analysis for threat of data leakage. (Adapted from [1])

tion, on how the service is performing on the Cloud within the applications. The
introduction of formal methods can make Clouds secure by applying them to the
Cloud industry as a whole [6]:

* Reviewing various documentations: These include using sniffers to filter output
logs produced by the monitoring software installed on the infrastructures. These
can include system logs (for details of service start-up, downtimes, file and ac-
count access and changes to file privileges), firewall logs (authorisation attempts
from various locations and identify the users, if possible), antivirus logs (for
detecting malicious code accessing the system), and intrusion detection system
logs (detecting the changes to the hypervisor code), and legal implications of
security threats have to be set to measure the impact of certain threats.

* Provider interaction policies: Policies have to be set for the providers, which in-
clude action management policies for necessary legal steps to be taken, if threats
happen and how to mitigate them. These should include an incident response
plan, which may include communication protocols (how information will be
displaced to within the team or outside such as the attacking internet protocol
(IP) addresses to block those organisations) [6], software vendors providing the
software, (if the actual software being installed is corrupted), internal team man-
agement procedures, vulnerability assessment with certain auditing procedures
and using these for future incident planning. An important issue is revealing the
performance information to Cloud customers. Should the end users be told of
threats occurring at the time their services were hosted on the Cloud and when?
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In cases of multiple locations hosting data, this can be an attractive requirement
from the users to ensure their data is secure.

» Legal implications on the security aspects: Data protection and security can be
specified in a legal contract, being drawn with the end users and the providers.
This may include analysing all privacy concerns specific to the Cloud usage. This
may start with analysing the data flow in the Cloud use cases and understand-
ing the legal issues with the multiple vendor situations and how these should be
handled. Information security-related standard (ISO/IEC 27001:2005) has rec-
ognised protection of personal data including protection against alteration, unau-
thorised modifications and against unauthorised access as a standard [3]. Further
recommendations concerning information security are mainly based on control
and industry best practices relevant to Cloud providers (security framework).
However, this needs to be defined, clarifying questions concerning intellectual
properties and ownership rights in information and services placed in the Cloud.
This also involves clarifying ownership rights among all potential stakeholders
and includes them within the service level agreements (SLAs) drawn.

4.5.2 Security Risk Assessment Data Sheet

An example of a data sheet used to perform a security risk assessment has been de-
scribed below: This can be filled out by the providers or the end user as part of the
SLA, when they try to ask for certain security measures to be taken.

1. Details:

Service name:

Department: Service provider/infrastructure provider
Date of this assessment:

Risk reference no:

2. Hazards overview:

— Example unencrypted data
— Example lost keys

3. Control measures:

(Option to complete this section for any risk which is rated as four or more, or
for which the likelihood is three).

For each hazard name responsible person and action

Note: The choice of controls should be implemented according to the follow-
ing hierarchy:

1. Eliminate the hazard
2. Substitute
3. Reduce
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4. Isolate (enclose the hazard)

5. Regulate (e.g. numbers at risk, engineering controls or safe system of work)
6. Protection

7. Discipline

Copies: (a) The original of this form is to be retained by the originating
department and a copy is to be supplied to the safety department. (b) Rel-
evant information on risks and preventive/protective measures are required
by law to be provided to employees so that they can ensure their own health
and safety and not put others at risk.

4. Evaluation of risk:

Hazard details Services at risk | Fre- Controls | Residual | Risk
quency/ | inplace | risk rating
(duration) evaluation
Hazard | Nature of Insert Insert | Insert Severity | Likeli- Multiply
hazard/ code code code of harm | hood of sever-
adverse and letter | numbers | score occur- ity x like-
effects (num- and 1-3 rence lihood
(how is ber of | (dura- score 1-3
the hazard | people) | tion)
likely to put
services at
risk?)
Unen- | Third party |4, B, D |DA4) 1,3,5 3 3 9
crypted | acquires 5)
data data
Lost Third party | 4, B,D | D/4) | 2,4,5 2 3 6
keys has data (10)

Key: services at risk:
(a) Operator (skilled), (b) operator (inexperienced), (c) end users, (d) office
staff

Key controls:
(1) Data encryption algorithms, (2) refreshing keys, (3) segregating data, (4)
assessment of personnel, (5) monitoring login logs

Severity of harm:
(1) Slight, e.g. minor data leaks, less important data, (2) serious, e.g. personal
data compromised, (3) major, e.g. business lost, reputation jeopardised

Likelihood of occurrence:
(1) Low (harm will seldom occur), (2) medium (harm will often occur), (3)
high (certain or near certain)

87
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Table 4.2 Security threats and their categories (C confidentiality, / integrity, 4 availability) [6]

Threat category Description (specific to Clouds) | Factor | Example

External attacks These include all the threats in C,I,A | Carrying out of denial
scenarios involving use of public of service (DoS) attack
infrastructures

Theft Cloud computing supports multi- | C,[, A | Gaining unauthorised
tenant architecture with multiple access to systems or
users using same resources. This networks

can lead to the theft of data by
an adversary

System malfunction Some software used extensively | A, 1 Malfunction of
on Clouds has bugs software

Service interruption Unavailability of service/data C,I,A | Natural disaster
due to DoS attacks

Human error No control on how users use the | C User error
system

System specific System specific threats and C,I,A | Usage control
abuse

4.6 Identifying Cloud Threat Categories

Khan et al. [6, 24] describe how the various security threats can be bunched together
in six specific categories, represented by Table 4.2. The main differences from grids
to Clouds have added a few unique threats, such as data leakage (an unauthorised
transmission of data from within an organisation to outside or the unauthorised
access to the system, which compromises the confidentiality of the data), usage
control (access control to cover conditions independent of environmental factors),
hypervisor level attacks (enable an adversary to exploit vulnerability at the virtuali-
sation layer that is running underneath the VMs). Most threats have a domino effect
on the other components, where one affects multiple components. For instance, if
the hypervisor gets corrupted, all the corresponding VMs, their locations and data
can be compromised. Inappropriate use of any technical or data available on the
Cloud affects the trust customers place on the Cloud, having implications on the
business objectives of the Cloud providers.

4.7 Need for Risk Management

Risk management addresses the possibility that future events may cause adverse ef-
fects and is defined as “the process whereby organisations methodically address the
risks attaching to their activities with the goal of achieving sustained benefit within
each activity and across the portfolio of all activities” [2]. Figure 4.13 describes the
stages in a risk management cycle. The most important concepts in risk manage-
ment are as follows:

* An asset: to which has a value and hence for which the party requires protection.
* An unwanted incident: an event that harms or reduces the value of an asset.
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Fig. 4.9 Risk management process

* A threat is a potential cause of an unwanted incident whereas vulnerability is a
weakness that opens for, or may be exploited by, a threat to cause harm or reduce
the value of an asset.

* Risk is the likelihood of an unwanted incident and its consequence for a specific
asset, and risk level is the level or value of a risk derived from its likelihood
and consequence. For example, a server is an asset; a threat may be a computer
virus and the vulnerability a virus protection not up to date, which leads to an
unwanted incident.

A risk management process consists of a risk identification stage, where it is identi-
fied, assessed for likelihood and impact, managed through planning and resolved
with a plan on what to do if it occurs. Risk monitoring phase allows it to be continu-
ally monitored in case it becomes active in the future (Fig. 4.9).

4.7.1 Cloud Threats ldentified

The security risk methodology uses the threat modelling as an approach for iden-
tifying the threats and vulnerabilities of the system. Two sources of information
were used to collect the threats, unique to Clouds. The sources of information are
as follows:

For collection purposes:

* The information security forum [1, 3] for providing data on attacks on IT sys-
tems and the frequency of attacks

* The public data on attacks on the Cloud platforms such as Amazon EC2 and
Google Apps Engine [8, 9]

For evaluation purposes:

* Defense Advanced Research Projects Agency (DARPA) intrusion detection
evaluation data sets [3]

Based on the data collected, a risk catalogue can be created to document the threats,
the affected assets and their vulnerabilities. An entry into the risk catalogue can be
stated and shown in the example in Table 4.3.

The data from the threat analysis tool [28] helps to identify the form the threats
in the form of ids, assets, and the values for priority and likelihood. The ecosystems
relate to Cloud scenarios being private, bursting, federation and multi-Clouds. The
lifecycle stage shows which phase of the service lifecycle, during execution, is the
threat active—during deployment or operation. A risk methodology is then generated
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Table 4.3 Example of Threat id 27

EE\G/;E:(G):; entry in the risk Name of threat Theft of business information
Cloud ecosystem at which All (private, bursting, federa-
active tion, multi, brokerage)
Service lifecycle stage Operation
Asset affected Customer data
Priority assigned 4
Likelihood assigned 2

which will use this risk catalogue as a reference database when making decisions on
the security risks in the Cloud.

4.8 Risk Methodology Stages

This section describes the various stages involved when performing a risk assessment
for Cloud computing environments. The methodology follows a 5-stage procedure
from a high level analysis of the system to the asset identification, threat assessment
and then the final evaluation of risk from the matrix to calculate as the assessment of
the risks that need to be managed in order of high probability and impacts.

Stage 1: High-Level Analysis of the System An initial high-level analysis of the
Cloud ecosystem or scenarios, to help identify the actions and assets involved. This
will help isolate the assets involved and how they change over time to identify the
vulnerabilities of the Cloud environment.

Generally security needs to be assessed before deployment of the service to
check for security concerns of other provider or if the SLAs demand certain security
aspects. During the operation, as security concerns are monitored while the service
is executing, certain live data have to be assessed continuously.

Stage 2: Identifying the Assets Involved There are various assets involved either at
the deployment or operation stage such as the SLA or customer data. These can be
monitored in relation to the specific threats in the environment.

Stage 3: Identify the Threats in Each Cloud Deployment Scenario This is where
a threat analysis tool can be used to perform a detailed analysis of each threat.
Figures 4.10 and 4.11 describe the threat distribution across the six threat categories
identified earlier [28].

The threat analysis, accompanied by an expert opinion, sets the threat and vul-
nerability ratings for each threat from a scale of 1-5 (very low, low, medium, high
and very high). The tool also allows mapping the threat with respect to business
impact produced as an information risk profile. These results have been shown in
Table 4.4.

Stage 4: High-Level Analysis of Each Threat Each of the threats can be further ana-
lysed in terms of who/what causes them and the incidents leading up to them, which
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=
— Breaks into system and steals
— data
Hacker I.nsul‘ﬁc_ient (-] Customer data or service
security []

Fig. 4.12 Analysing the threat hacking, drawn using the CORAS (A Framework for Risk Analysis
of Security Critical Systems) risk modeling tool [27]

Table 4.5 Risk evaluation matrix. (Adapted from [24])

Consequence
Insignificant | Minor Moderate Major Catastrophic
Likeli- Rare T40 T10 T2, T4, T5, T8,
hood TI11,T12
Unlikely T29 T9 T3, T27
Possible T41 T13 T1, TS50 |T51,T52
Likely T15,T34 T16
Certain T35

Table 4.6 Range of threats for confidentiality, availability and integrity. (Adapted from [24])

Likelihood rating

- Very Low | Low | Medium High Very
s High
2.
E Very High
2 High
£ & | Medium Availability
= Low
Ma <

= Very Low

can then be prioritised depending on this information. This also helps to measure the
impact of the security risk on the service and the providers. Figure 4.12 depicts an
example of the hacking threat and its related asset and vulnerabilities.

Stage 5: Risk Evaluation Depending on the priority of the assets and likelihoods
of the threats occurring, the threat items can be plotted into an evaluation matrix to
document their occurrences. Table 4.5 depicts this in relation to the threats identi-
fied in Table 4.4.

The likelihood and impact rating is set using the data collected and the threat
analysis. The impact values also denote the affect the threat will have on the busi-
ness such as loss of confidentiality or availability eventually leading to loss of mon-
ey. The loss in trust has the highest impact (Table 4.6).

Once the inventory has been created for security risks, the level of risk can be
calculated by the following algorithms. These are different both for deployment and
operation phases.
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4.9 Algorithms for Security Risk Assessment

The algorithms used to measure security risks can be unique depending on the de-
ployment and operation phases. These are described below:

4.9.1 Algorithm: Deployment Phase

Security risk_at deployment (Cloud_ecosystem)

1. Calculate number of threats recorded, at deployment stage and the involved
ecosystem.

2. For each threat, calculate:
a. probability of likelihood given the assetis affected (p(B|4)) =likelihood / 5.0
b. probability of asset priority (p(A4)) = priority /5.0
c. probability of likelihood regardless of asset (p(B))= p(B|A)

*p(A)+ p(4')

d. probability of threat occurring (p(4| B)) = ((p(B| A)* p(A)))/ p(B)

3. Security risk = sum all probabilities of threats occurring/threats found

The maximum value of the asset priority and the likelihood of it being affected are
set in the range 1-5. Based on the list of threats that need to be monitored, these
can be assessed based on each asset and the likelihood that each asset actually fails
as a result of the threat. Bayes rule can be used to calculate the underlying prob-
ability:

Let A= “Something is wrong with asset with its priority”

Let B= Asset has failed as a result

In steps 2c¢ and 2d, the aim is to calculate P(A| B), the probability that the asset
has indicated a risky event as a result of the threat.

P(A| B)= P(B| A)* P(4)/ P(B)

P(B] A4), indicates that likelihood that the asset has been affected when something
is wrong but not related to the kind of threat. P(A) gives the asset affected with its
priority. P(B) is then defined by calculating the total probability:

P(B) = P(B| A)x P(A)+ P(B| A")x P(4’)

Note: 4 and A’ are mutually exclusive where (4") means any kind of fault in the
system without this asset being involved.

P(A")=1-P(A4)
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Assuming P(B| A”) =1, because this means that P(B) (probability that the asset has
failed) given the asset is not present P(A"). Thus this determines that if the asset is
not present, the system has failed already.

Therefore:

P(B)=P(B| A)P(A)+1x P(4’)

Once calculated, using substitution to find P(A4|B) probability that the asset has
failed due to this threat is given by:

P(A| B)= P(B| A)x P(4)/ P(B)

The algorithm above shows how the security risk probability is calculated at de-
ployment stage. Considering the recorded risks in the risk inventory (Table 4.4) for
each particular use case and using the values of priority and likelihood as described
in the algorithm, the probability of that particular threat can be calculated. The se-
curity risk values are depicted in Fig. 4.13 which show the probabilities returned for
each of the use cases, private, bursting, federation and multi-Cloud during deploy-
ment and operation (Fig. 4.14).

0.5
0.45
0.4
0.35
03
0.25
0.2
0.15
0.1

0.05

Private Bursting Federation Multi
o Deployment = Operation

Fig. 4.13 Security risk probability as calculated from the risk catalogue from value 0—1 and the
different use cases. (categories are private (private at deployment and operation), bursting (burst-
ing at deployment and operation), federation (federation at deployment and operation), multi
(multi-Cloud at deployment and operation))
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Fig. 4.14 State changes

for each asset from good,
attacked or compromised. P//
probability likelihood 1 can

PI2

be calculated using the risk 00:: Nk
inventory, P/2 probability S0 A8
2 is calculated at operation PIT S
depending on the monitored PI1 A
logs, PIT the relative prob- Comprom

ability threshold is measured ised

using the relative probability
between P11 and P12

4.9.2 Algorithm: Operation Phase

Security_risk_at_operation (Cloud_ecosystem)

1. Make a list of threats to be monitored at operation stage for the particular eco-
System.

2. Make a list of the affected threats to be monitored.

3. For each asset make observations Oi for every 10 min.

4. Return the sample to the risk assessor, which records the probability of the
event occurring.

5. Calculate total event rate=events found/total monitored time.

6. Relative risk (RR)=total event rate/risk (risk from catalogue).

7. If RR=1 do nothing, RR <1 accept risk, if RR > 1 apply mitigation strategy.

A collection of monitoring logs can be parsed to calculate the event rate for the risk
assessor to calculate the relative risk. Figure 4.15 shows the states of a particular
asset changing with time, 1 h 40 min (collecting 10 min samples). The probability
collected is returned to the risk assessor, which calculates the relative risk as shown
in the algorithm at operation stage.

Various monitoring logs will be assessing its state during operation. Initially the
asset starts with state “good”, but because it is to be monitored, it moves into the
“attacked” state where the various logs are counting the number of events occur-
ring. This is the event rate returned to the risk assessor.

During this time, if the risk assessor receives an event rate, which is too high,
this causes the relative risk to go above 1, the asset moves into a “compromised”
state.

When the risk assessor witnesses the assets in a compromised state, if then fires
relative mitigation strategies to allow the asset to be repaired and go back to a
“good” state. Then once in the “good” state, it will then again move to an “attacked”
state so that it can be continuously monitored for attacks and return event rates to
the risk assessor.
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States of the asset: Data
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Fig. 4.15 Example of rates counted for asset data. The asset data being monitored for 10 samples
and the corresponding state changes (good, attacked, compromised) with event rate (fop graph) is
shown in relation to the relative risk (bottom graph)

4.10 Testing Security

A kind of testing, particularly “penetration testing”, seeks to get past security proto-
cols. Security as a whole involves static design issues, as well as run-time verifica-
tion of security. In this sense, security is a measure of reliability, to test if the data is
secure assessing in terms of vulnerability, availability and integrity.

Non-functional requirements specify how a system should perform, in terms
of its efficiency and reliability in the SLAs. Some of these aspects can also be
defined as specific variables, such as response time, scalability, reliability, avail-
ability, security or maintainability. Various kinds of testing included here are per-
formance testing, security testing or dependability testing for satisfying customer
needs.
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4.11 Application: Case Study for Video Scalability in
Cloud Environment

Khan et al. [29] describe an implementation of threat methodology to assess the
video scalability when being distributed as an IaaS on the Cloud. Scalable video is
a means of distributing media content to many users using Clouds, as this allows
heterogeneous networks to be connected to devices. This is a highly distributed
environment with an IaaS focus, but centralized with many users connecting to it.

Security measures have to be taken to make sure copyright laws are intact, pay-
per-view models for business value and economic return and it caters to the differ-
ent levels of bandwidth used by the users. Usually, past models have distributed
encrypted video files when broadcasted, such as satellite television, investing in
set-top box to subscribe to encrypted channels. Shared encryption keys are used
with each subscriber, which changed periodically.

Figure 4.16 describes the unique service lifecycle, which would exist in this
particular scenario. To prevent past users accessing the data, when unsubscribed,
there will be a continuous pre-deployment stage, where new keys will be generated,
deployed and used periodically.

When identifying the threats, some of these do not apply to video broadcasting,
from the general Cloud scenarios such as the following [29]:

» Isolation of tenant application: Affects integrity, confidentiality and does not
apply to video broadcasting.

* Data encryptions: Applies to all three availability, confidentiality and integrity
and is already covered in the key authentication process during the pre-deploy-
ment process.

* Data segregation: Affects the availability and integrity also does not affect
broadcasting issues.

» Tracking and reporting service effectiveness can be given by customer review
and end-user experience affecting the credibility of the server.

» Compliance with laws and regulations of copyright issues and contract breach.
Affects the confidentiality and integrity of the business during the pre-deploy-
ment stage.

Based on Table 4.4, the threats which apply in this scenario are identified in
Table 4.7, with corresponding risk evaluation in Table 4.8 and priority concerns for
business in scalable video in Table 4.9.

Fig. 4.16 Service lifecycle predeploy ment
for scalable video. (Adapted
from [29])
depl t
operation opaymen
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Table 4.8 Risk evaluation Matrix for scalable video

Consequence
Insignificant | Minor Moderate Major Catastrophic
Likelihood | Rare T5, T11, | T2, T4,T12, | T40
T14,T15 | T8
Unlikely | T29, T41 T9 T27, T50, T53,
Possible | T35 T42 T3,T10,T16,
T54
Likely T34 Tl
Certain

Table 4.9 Range of threats for confidentiality, availability and integrity for scalable video

Likelihood rating

5 Very Low | Medium High Very High
8 Low
E

Very High
w»
g Confidentiality
£ =
2 E

Based on the above analysis, availability is the highest concern, so we can imple-
ment changes that target these threats like implementing fast authentication key
mechanisms and secure access to data throughput.

The above threat analysis can help determine the important threats to watch for,
concentrating staff efforts and costs to make sure they do not occur. This helps
manage the critical parts of the systems and also manage the costs.

4.12 Conclusions

Cloud computing refers to on-demand access to a shared pool of computing
resources, providing reduced costs, reduced management responsibilities and in-
crease in business agility. For these reasons, it is a popular paradigm to be used by
end users from different professions. Security is, however, a major player in this
equation as it can make or break deals for Cloud users and infrastructure providers
alike.

The way forward is to come up with standards on how security can be assessed to
minimize the risks in the systems as well as manage the costs as efficiently as possi-
ble. This chapter discussed a security risk methodology approach to assess the items
which can jeopardise the security of the Cloud ecosystems and the actors involved in
the Cloud. By performing a detailed documentation assessment and assigning a like-
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lihood and priority to each of these threats, the items can be listed in order of priority
to see which particular measure need to be taken first to reduce that kind of security
risk. This allows work to be categorized in terms of the most important first when
assessing complex ecosystems such as Cloud environments which have too many
components that can go wrong during the service deployment or operation phases.

There is a further need for proper documentation and legal agreements to be
drawn up to restore the trust of consumers in Clouds and effectively making busi-
ness more aware of a detail approach to take when securing their systems.
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Chapter 5
SecDSIM: A Framework for Secure Data
Storage and Identity Management in the Cloud

Shaga Praveen and G. R. Gangadharan

Abstract Cloud storage is a model of networked online storage where data are
stored in virtualized pools of storage devices. Cloud storage requires users to host
their data on the servers of cloud service providers. This raises issues of confiden-
tiality, integrity, and availability of the data stored in the cloud environment. In this
chapter, we propose a framework for secure data storage and identity management
(SecDSIM) that can store data securely in the servers of cloud service providers
using multi-user searchable encryption technique. The framework supports the pro-
cess of verifying proof of storage correctness of the data by retrieving data identi-
fiers any time around the cloud. The framework also supports dynamic updates for
the encrypted data and indexes stored in the servers of cloud service providers.

Keywords Multi-user searchable symmetric encryption - Grade-based access
control - Cloud data storage - Identity management - Aided keyword search -
Precise keyword search

5.1 Introduction

Cloud computing is a way of delivering IT-enabled capabilities to users in the
form of “services” with elasticity and scalability, where users can make use of
resources, platform, or software without having to possess and manage the underly-
ing complexity of the technology. Cloud computing becomes popular because of
its characteristics including scalability, elasticity, and cost effectiveness. However,
from the perspective of a cloud consumer, security of the data in the cloud is one of
the main obstacles for adopting cloud computing services [1-5].

Cloud storage is a specific sub-offering within infrastructure as a service (IaaS)
of Cloud computing and promises high data availability and reduced infrastructure
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costs by storing data of users with remote third-party providers [6]. In recent years,
cryptography has become a critical tool in theoretical analysis of security model and
architecture for cloud storage and emerged as an important technique in designing
secure identity management for cloud storage systems [6—8].

Our goal in this chapter is to propose a multi-user searchable symmetric encryp-
tion scheme that provides an efficient isolation and a secure storage mechanism for
users’ data and to provide an identity management using grade-based access control
when users share their data with other trusted users.

5.2 Cryptographic Cloud Storage and Identity
Management Schemes

Users are required to store their data on the servers of cloud service providers
(CSPs), which discard the control over their data. A CSP physically stores users’
data in one location that could lead to several data security and privacy issues such
as unauthorized access by internal employees of CSP and by outsiders. As a result,
CSPs could not provide confidentiality, integrity, and availability of data. In such
cases, a CSP must provide an efficient isolation and secure storage mechanism for
users’ data.

Mostly, data are accessed through a search operation performed on a cloud stor-
age server. Generally data are stored in encrypted form in a cloud storage server.
Traditionally, we download the whole encrypted data on the local machine, de-
crypt all its contents, and then perform the search on the plain text. Note that this
searching scheme is inefficient and impractical.

We now present some of the common cryptography-based cloud storage schemes.

5.2.1 Broadcast Encryption

Broadcast Encryption (BE), introduced by Fiat and Naor [9], distributes encrypted
data along with a decryption key to a group of users with whom the broadcaster
wishes to share the data via a secure channel. While encrypting the data, the broad-
caster can choose a set of users to allow decrypting the data. However, in the real
world, there could be a large number of owners who may want to store their data in
the cloud as well as a large number of users who may want to access the stored data.
Later, several other BE schemes [10—14], are proposed. However, these schemes re-
quire public parameters for every user and the public parameters need to be updated
every time a user wants to join or leave the system.

5.2.2 Identity-Based Encryption

Identity-based encryption (IBE), introduced by Shamir [15], encrypts the data
using a public key encryption scheme in which the public key can be an arbitrary
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string (called as identity). Boneh et al. [16] presented a secure IBE scheme in
which the sender uses the identity of the receiver as the public key to encrypt
the data. Canetti et al. [17] proposed the construction of IBE that was provably
secure outside the random oracle model. Later Boneh and Boyen [18] gave two
schemes with improved efficiency and prove security in the selective-ID model
without random oracles. IBE schemes lack management and secure communica-
tion models.

5.2.3 Attribute-Based Encryption

In an attribute-based encryption (ABE) scheme, proposed by Sahai and Waters [19],
ciphertexts are labeled with sets of attributes and private keys are associated with
access structures. Nail et al. [20] proposed a threshold attribute-based encryption
which can prevent the collusion attacks. Based on access policy, ABE schemes are
classified into two types: Key policy attribute-based encryption (KP-ABE) and ci-
pher text policy attribute-based encryption (CP-ABE). In the KP-ABE scheme, pro-
posed by Goyal et al. [21], the access policy is derived from the user’s private key
and a set of attributes are used to decrypt the data. In CP-ABE scheme, introduced
by Bethencourt et al. [22], the user keys are associated with sets of attributes and the
ciphertexts are associated with the access policies.

Several other variations of the CP-ABE-based and KP-ABE-based schemes have
been proposed in [23-25]. However these schemes have disadvantages in practice
such as the ability to achieve revocation of users’ key.

5.2.4 Searchable Encryption

The problem of searching on outsourced encrypted database was solved by Gold-
rich and Ostrovsky [26] over oblivious random access memory (RAM). However,
this approach is unrealistic because it suffers from poly-logarithmic computation
and communication overheads. Song et al. [27] proposed the first construction of
searchable symmetric encryption scheme in which each word in the document is
encrypted independently under a special two-layered encryption scheme called
Song, Wagner, and Perrig (SWP). As an extended version to [27], Boneh et al. [28]
presented a public-key based searchable encryption scheme. Goh [29] described a
secure index (SI) to build a symmetric searchable encryption scheme. However,
SWP and SI schemes are slow in retrieving documents.

Curtmola et al. [30] proposed a searchable symmetric encryption that includes
a constant computational complexity to perform the search operation on the
ciphertext. However, it does not support efficient updates to the database. Later,
Kamara et al. [31] proposed cryptography-based public cloud storage scenarios
where the service provider is not completely trusted by the user. Here, when a
user wants to store data in the cloud storage, the data processor indexes data and
encrypts using advanced encryption standard (AES). Then, the data processor en-
crypts the index using a searchable encryption scheme and the unique key using an
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ABE scheme. Further, Kamara et al. [32] used searchable symmetric encryption,
search authenticator, and proof of storage to achieve confidentiality, integrity, and
verifiability in the cloud. However, these papers compromise on confidentiality
by revealing the files that contain a common keyword to a cloud provider while
retrieving the encrypted data. Moreover, [31] and [32] are inefficient in handling
dynamic updates on indexes. To address the problem of dynamic updates, Kamara
et al. [33] presented a dynamic searchable symmetric encryption scheme which
provides an efficient dynamic updates to the encrypted data that are stored on third
party servers.

Searchable encryption techniques leak information about the search patterns
(i.e., the number of keywords of the document collection or metadata that it con-
tains). Furthermore, most of the searchable encryption schemes are inefficient in
updating the ciphertext [27-36].

5.2.5 Role-Based Encryption

Zhu et al. [37] proposed a new hierarchical role-based access control model
to encrypt the data. Zhou et al. [38, 39] proposed a hybrid scheme called role-
based encryption (RBE) that combines access control with cryptography and key
distribution to address security requirements for data storage in the cloud. However,
these schemes lack the ability of user revocation.

5.2.6 Identity Management

Cryptographic cloud storage techniques provide identity management using several
access control mechanisms such as attribute based, identity based, and role based.
Torres et al. [40] presented a survey on various identity management techniques or
methods for future network. Celesti et al. [41] proposed a reference architecture
based on identity management and service provider (IdM/SP) model to address the
identity management problem in InterCloud context where identity is managed by
the third party. Several access control models that are used for identity and access
privilege management are presented in [42].

5.3 Searching on Encrypted Data

Searchable encryption is a technique that provides functionalities to search en-
crypted data without requiring the decryption key [43]. In this chapter, we follow a
keyword-based access scheme, where all the keywords related to the encrypted data
are stored in an index. There are two approaches to implement a keyword-based
access scheme:
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» The first approach is to store an index of the data locally, and for each search op-
eration, query the index and use the results to retrieve the appropriate encrypted
data from the cloud storage server.

» The second approach avoids using local storage for indexes; instead, the index
is stored in the cloud storage server in an encrypted form. Then, for each search,
the index is retrieved and queried locally before the encrypted data are fetched.

Consider the following multi-user scenario. Imagine that Alice wishes to store her
medical records on a personal health record (PHR) server, such that the data are
available to her anywhere and anytime. She also wants to share some of her medi-
cal records to a “physician” for treatment. Bob is a physician who uses the PHR
server to treat the patients. If Alice’s records are in plaintext, then Bob can simply
check the designation of each medical record of her and proceed for treatment.
However, Alice wishes to use an encryption scheme to maintain the confidential-
ity of her medical records. In this setting, if Bob wants to access Alice’s medical
records designated with “physician”, either Alice has to reveal her decryption key
to Bob, or Alice has to decrypt her medical records by herself and send only the
medical records which are designated with “physician” to Bob. The first solution
compromises the confidentiality of all medical records, and the second solution is
not efficient.

The above scenario requires a cryptographic technique that is used to store the
data securely in cloud storage servers with efficient multi-user retrieval support.

Searchable encryption is a technique that provides functionalities to search en-
crypted data without requiring the decryption key. Each message of data is associ-
ated with a set of keywords. Searchable encryption transforms both the message and
the associated keywords into an encrypted form, in such a way that the encrypted
keywords can be queried later using a trapdoor. This allows a client to retrieve or
decrypt only the messages of the data that contain a particular keyword without
decrypting the data.

Let D=(M,, M,,..., M) be data consisting of n messages M, M,,..., M . Each
message M, (i=1,...,n) is associated with a metadata item W,={ Wl.’l, Wl.’z,...}
which is actually a set of keywords chosen from a finite set . Searchable encryp-
tion stores the data D on a server such that:

* A message M, is retrieved from the server, only in case a particular keyword oc-
curs in its associated metadata ¥, while leaking as little information as possible.
» The confidentiality of the data is preserved as much as possible.

The searchable symmetric encryption is used to retrieve encrypted data from a third
party storage server, when the metadata associated with the message contains a
particular keyword. Searchable symmetric encryption allows only to the user who
stores the data on third party server can search the encrypted data. Initially each
message M, is encrypted, using a standard symmetric key encryption scheme, and
stored on a third party server. To store the metadata items on the third party server
that can be queried later, searchable symmetric encryption schemes with the follow-
ing algorithms are used:
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* Keygen (p): Given the security parameter p, outputs a master secret key msk.

. Encx( W, msk): Given the metadata W, and the master secret key msk, outputs a
searchable ciphertext S,.

* Trapdoor (W, msk): Given the keyword J, and the master secret key msk, out-
puts a trapdoor Tw.

* Search(Tw, §),): Given the trapdoor Tiv, and the searchable ciphertext S, outputs
Lif WeW.

The Keygen, Enc, and Trapdoor algorithms are invoked by the client, and the search
algorithm is invoked by the server. If search = 1, the server sends back the encrypted
message whose associated metadata is 7.

5.4 Grade-Based Access Control

The goal of identity and access control management is to ensure that accesses to
data stored in cloud storage servers are given only to authorized users. Access con-
trol mechanisms are used to mitigate the risks of unauthorized access to the data,
resources, and systems. Figure 5.1 shows a general access control model which
includes principal, auction, guard, and protected system. Principal can be a user, a
program, etc.; auction can be a query; guard can be a security manager or a server;
and a protected system can be repository or a file, etc. Guard verifies the identity of
the entity (usually the principal) called authentication. Then the guard checks the
access control policies that consist of rules that describe what is allowed and what
not to access the protection system.

We introduce grade-based access control (GAC), a new mechanism to provide
identity and access control management based on the grades of users. Access to a
resource is determined based on the level of the relationship, typically the grades

G

a
s . " .| Protected
Principal @ .; ! system

| |

Authentication Authorization

Fig. 5.1 General access control model



5 SecDSIM: A Framework for Secure Data Storage and Identity Management ... 111
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of the user in an organization. In other words, the permissions are associated with
grades, and users are assigned to appropriate grades.

Figure 5.2 shows the basic structure of GAC model. Consider that Alice and
Bob are two employees of an organization A holding assistant manager as their
roles. Assume that an organization A has implemented the role-based access control
mechanism for identity management. Assume that Alice has joined in the organiza-
tion prior to Bob. Therefore, Alice holds grade II position and Bob holds grade 1
(assuming grade II is superior to grade I).

Consider that there is a payment approval application that can be accessed by
the employees of the organization A who hold their role as senior manager having
a minimum of grade II level. In this scenario, if the organization A had not imple-
mented role-based access control mechanism, then Alice could access payment ap-
proval application. However, in our case, the organization A has implemented role
based access control mechanism for identity management.

In this case, if the organization A wants to give access permission to Alice for
payment approval application, then there are two solutions:

» The organization A has to create another account to Alice which holds a role as
senior manager and provide access permission.
» The organization A has to promote Alice to senior manager.

None of the above two solutions are practically implementable as organizations
may have many employees like Alice. From the above scenario, it is clear that the
role-based access control having its own disadvantage, i.e., classifying and provid-
ing access permissions to people based on roles makes it more difficult to define
granular access controls for each person.

Grades of a user can be of two types as shown in Fig. 5.3. For a role, say R1,
there may be different grades, say G1 and G2 as shown in Fig. 5.3a. For different
roles, say R1 and R2, there may be same grade, say G1 as shown in Fig. 5.3b. This
makes GAC mechanism more flexible than role-based access control.

GAC can provide the functionalities provided by the role based access control.
GAC is not replaceable for role-based access control. If we use GAC with role-
based access control as a hybrid access control model, it may serve as a better
granular and flexible access control mechanism.
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5.5 Multi-User Searchable Symmetric Encryption

We extend the concept of multi-user searchable symmetric encryption (mSSE) de-
fined in [30] and apply to our framework for data storage and identity management
in the cloud. Table 5.1 specifies the notations used in the rest of the chapter.

We illustrate the modified mSSE scheme as follows.

mSSE = (GDid, Enc, GAC, Trpdr, Search, Dec).

Our mSSE is composed of the following six algorithms:

Did «— GDid(Uid, Date, N): It takes Uid, date (in DDMMMYYYY format),
and a 5-digit unique random number as input and generates a unique Did for new-
ly created/generated data by the user (see Fig. 5.4). Here we used 5-digit random
number because even if a user continuously creates new data or file per second, he
can create a maximum of 86400 files per day.

(EnData, EnKws) «— Enc(w, D): It takes keywords and data as input and gener-
ates EnData and EnKws.

AData «— GAC (Uid, pswd, grade): 1t takes Uid, pswd, and grade as input to
verify the authorization based on GAC and provides access to the data.

T «— Trpdr(Uskw).: Trapdoor is an encrypted search keyword provided by the
user to access the data.

Table 5.1 Notations

Notation Description
mSSE Multi-user searchable symmetric encryption
GDid Generating data identifier
Did Data identifier
Uid User identity
N 5 digit unique random number
EnData Encrypted data
EnKws Encrypted keywords
w Keywords collection
D User generated data
Pswd Password
GAC Grade based access control
AData Access permission to the data.
Uskw User search keyword
T Encrypted user search keyword (Trapdoor)
Enc Encryption
Dec Decryption
Ver Number of times the data accessed
CSP Cloud service provider
Ll e lwlwlslilololols [ilalnlolol i [slslaloli]s
USER ID DATE OF DATA CREATED 5 DIGIT RANDOM
NUMBER

Fig. 5.4 Data identifier (Did) format
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Did «+— Search(T) and EnDatac«— Search(Did): 1t takes initially Trpdr as input
and searches it on “local index” based on aided keyword search which contains
EnKWs, Did and Ver. It generates output as a set of Dids. Then it takes Did as input
and searches it on the “cloud index” based on precise keyword search and generates
EnData as output.

Data ««+— Dec(EnData): 1t takes EnData and decrypts.

5.6 SecDSIM Framework

In this section, we discuss our proposed framework, SecDSIM. It is a secure cryp-
tographic cloud storage based on mSSE which provides identity management using
GAC. SecDSIM is composed of the following four components (see Fig. 5.5):

» User: User can be an employee of an organization or a trusted employee of a
partner company.

» Dedicated local server (DLS): DLS resides in the own premises of an organiza-
tion which manages outgoing data and incoming data. DLS encrypts the data and
generates the Did for each data received at the first time (as shown in Fig. 5.5)
and decrypts the encrypted data received from the CSP.

* Data Verifier Server (DVS): DVS checks the proof of storage-correctness of the
data around the clock by checking the version value of the data.

* Credential Generator (CG): CG creates credentials for users.

The following are the steps involved in SecDSIM:

Step 1: Credential generation
Initially CG creates user credentials.

Step 2: Data creation by user
A user creates data and keywords and sends to DLS by using his credentials to
encrypt the data.

Step 3: Preparing encrypted data and passing to CSP communication server

DLS verifies user credentials. If the user credentials are valid, then DLS encrypts
data and keyword using master key and generates Did. The method of generating
Did is given in algorithm 1. Also, DLS sets a version value ver to EnData and the
associated Did (initially this version value is set to zero, i.e., ver=0) and sends
EnData, Did, and ver to the communication server of CSP. EnKw, Did, and ver
are stored in the local index along with some metadata (e.g., data last accessed)
for further use.

Fig. 5.5 SecDSIM
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Step 4: Accessing the data by the user
Whenever a user wants to access data, the user sends keywords to DLS as a
request.
DLS verifies his credentials for accessing the data. If his credentials are valid,
then DLS fetches the Enkw from the local index (referred as aided keyword
search, AKS), where a user performs a keyword search.
If the EnKw is found in local index, then the corresponding grade in the local
index is verified by the user-provided grade for authorization is based on
GAC (access privileges are implemented using GAC).
If the user grade satisfies the accessible grade, then the corresponding Did
from the local index is retrieved and sent to the user.
The user selects the Did from the retrieved Did list for the user keyword, then
DLS sends Did as a request to the communication server of CSP for accessing
the encrypted data.
The communication server of CSP fetches Did from the cloud index what
we refer to as precise keyword search (PKS), where communication server
performs exact keyword search operation on the cloud index.
If Did is found in the cloud index, then the communication server of CSP
sends the corresponding EnData to DLS and updates the ver value of the
retrieved EnData in the cloud index.
After receiving the EnData from the communication server of CSP, DLS decrypts
the data and sends it back to the user. DLS updates the ver value of the received
data in local index. The method of search operation is given in algorithm 2.

Step 5: Process of verifying proof of storage correctness
Whenever data verifier wants to check the correctness of the data, DVS sends
Did to the communication server of CSP to get ver. Then DVS compares the
ver value with locally stored ver value of that data to check the correctness of
the data stored in the cloud. DVS updates the ver value in the local index. The
method of proof of storage-correctness is given in algorithm 3.

In our framework, we are generating Did as a keyword for accessing the
encrypted data stored in the cloud. Did is unique and the cloud provider cannot learn
anything from it. The generation of Did is shown in algorithm 1, which ensures
confidentiality and integrity.

Algorithm 1. Generating Data Identifier (Did)

Procedure

Choose Parameters N, i, Uid, Date, Did, n

N « Random.nextInt (99999)

for i-0 to n-1 do
if N already generated then

goto step 3

end if

end for

Did « Append (Uid, Date, N)

0: end Procedure

R O O ~J o U b w N -
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The search operation is shown in algorithm 2. This is composed of three critical op-
erations, i.e., authentication, authorization, and search. Whenever the user wants to
update (modify, append, insert), he provides the Did to get the data from the cloud
and updates it dynamically. Note that the update operation can be performed only
by the owner of the data.

Algorithm 2. Search Operation

1: Procedure

2: Choose Parameters Uid, kw, T, G, n, Kk,
CGrade, ver

3: Identify the user details provided

//Authentication

4: if grade (Uid) == G then

5: T — Enc(kw, k)

6: for i-0 to n-1 do

7 if T == secureindex (Enkws) then // Aided

Keyword Search

8: CGrade—secureindex (grade)

9 if G == CGrade then // Authorization based
on GAC

10: print secureindex (Did)

11: end if

12: end if

13: end for

14: To send a request select the Did from the list

15: for i-0 to n-1 do

16: if Did == cloudindex (Did) then // Precise Key-
word Search

17: EnData— repository(Did)

18: update cloudindex (ver=ver+l of Did)

19: return EnData

20: end if

21: end for

22: update secureindex (ver=ver+l of Did)

23: print Data « Dec (EnData, k)

24: else restart Procedure

25: end if
26: end Procedure
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The proof of storage correctness is shown in algorithm 3. DVS verifies the cor-
rectness of the data by checking ver value stored locally and in the cloud. If any
unauthorized views happen to user data, the ver value automatically increases in the
cloud index but not in the local index. In such cases, DVS informs the user and the
cloud provider. Thus, it achieves the integrity of the user data stored in the cloud
storage server.

Algorithm 3. Proof of Storage-Correctness

1: Procedure

2: Choose Parameters n, i, Did, ver, v, verl
3: Did « secureindex (Did)

4: send (Did) to cloud

5: verle cloudindex (ver of Did)

6: update cloudindex (ver=ver+l of Did)

5: vV « return verl

4: for i-0 to n-1 do

5: if secureindex (Did) then

6: ver « secureindex(ver of Did)

7 end if

8: end for

9: if ver == v then

10: Data stored correctly and Not viewed by any
11: else Alert User and Cloud provider

12: end if

13: ver « ver+l

14: update secureindex (ver)

15: end Procedure

5.7 Experimental Evaluation and Discussions

We implemented SecDSIM in Java over the Java cryptography architecture (JAC)
API [44]. The standard 128-bit and 192-bit AES [45] algorithms are used to imple-
ment the searchable encryption techniques under the Cipher-Block-Chaining mode.
Data created by users are encrypted and stored in a text file. All these text files are
stored in a repository located in the cloud server.
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5.7.1 Results Analysis

To analyse the data storage in the cloud, we created a set of text files that are less
than or equal to 1 Mb and another set of text files that are greater than 1 Mb. For
example, different sizes of text files including 25, 57, 72, 95, 115, 130, 162, 192,
and 225 kb in set I and 1.24, 2.52, 4.2, and 6.03 Mb in set II.

Figure 5.6 shows encryption and storage timings in milliseconds for different
data sizes starting from 25 kb to 225 kb by using AES 128-bit key and 192-bit key
algorithms in SecDSIM framework.

Figure 5.7 shows encryption and storage timings in milliseconds for large data
sizes ranging from 1.2 to 6.03 Mb by using AES 128-bit key and 192-bit key al-
gorithms in SecDSIM framework. By observing Figs. 5.6 and 5.7, we can notice
that the encryption and storage timings for different sizes of data sets in SecDSIM
framework are linear in nature.

Figure 5.8 presents the difference in data sizes before encryption and after
encryption for data set I by using AES 128-bit key and 192-bit key algorithms.
Figure 5.9 shows the different data sizes for data set II by using AES 128-bit key
and 192-bit key.

Table 5.2 compares encryption timings and data file sizes after encryption using
AES 128-bit key algorithm and AES 192-bit key algorithm in set I. Table 5.3 com-
pares encryption timings and data file sizes after encryption using AES 128-bit key
algorithm and AES 192-bit key algorithm in set II.

Table 5.4 compares the decryption timings of Set I data files using AES 128-bit
key algorithm and AES 192-bit key algorithm. Table 5.5 compares the decryption
timings of Set II data files using AES 128-bit key algorithm and AES 192-bit key
algorithm.
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Fig. 5.6 Set I data encryption timings
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Fig. 5.7 Set II data encryp- 60
tion timings
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Fig. 5.8 Set I data size after encryption

By observing Tables 5.2 and 5.3, we can identify that the encrypted data sizes in
SecDSIM framework are in linear in nature. We also observe that there is a small
difference in AES 128-bit key algorithm and AES 192-bit key algorithm for data
encryption, storing and decryption timings as well as for encrypted data sizes.

5.7.2  Comparison of Cloud Storages

Table 5.6 compares the encryption results of the SecDSIM framework with broker
cloud communication paradigm (BCCP) model [46]. Figure 5.10 shows the data
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Table 5.2 Summary of set 1

S. No.| Set I data/file, No. of words | AES(192) AES(128)
size before
encryption
(in KB)
Time (In Data/file size| Time (in Data/file size
milliseconds)| after encryp- | milliseconds)| after encryp-
tion (in KB) tion (in KB)
1 25 4623 16 38 16 353
2 57 9824 17 75 16 70
3 72 14,447 19.7 113 19 110
4 95 17,213 25 136 24 131
5 115 20,927 274 172 26 159
6 130 23,392 27 183 25 178
7 162 25,857 31 231 27 219
8 192 34,334 32 274 31 262
9 225 40,444 33 323 32 308

AES advanced encryption standard

encryption timings (in seconds) for different data sizes starting from 25 to 225 kb
by using AES 128-bit key algorithm in SecDSIM framework and in BCCP model.
Figure 5.11 shows the encrypted data sizes (in kb) for different data sizes using AES
128-bit key algorithm in SecDSIM framework and in BCCP model. In BCCP, we
observe that cloud data exchange between a user and cloud storage requires more
communications, thereby increasing the encryption and storage timings.

Table 5.7 shows different cryptographic techniques used in different cloud stor-
age schemes and their role in achieving security properties. Our proposed SecD-
SIM framework achieves many security properties compared to other cloud storage
schemes proposed by other reserchers.
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Table 5.3 Summary of set I1
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S.no. | Set Il data/ | No. of words | AES(192) AES(128)
file size
before
encryption
(in KB)
Time (in Data/file size| Time (in Data/file size
milliseconds)| after encryp- | milliseconds)| after encryp-
tion (in KB} tion (in KB)
1 25 4623 16 38 16 353
2 115 20,927 25 172 24 159
3 225 40,444 33 323 32 308
4 1224 219,433 44.6 2052.4 43.2 1720.3
5 2581 462,258 47.1 3434 443 3092.48
6 4301 771,206 49.3 5401.21 459 5079.04
7 6175 107,384 54.7 8674.43 48.9 8294.4
AES advanced encryption standard
Table 5.4 Comparison of set I description timings
S. No.| Set 1 Data/File Size after AES (192) AES (128)
Decryption (in KB) Time (in milliseconds) Time (in milliseconds)
1 25 13.1 13
2 57 13.7 13
3 72 14.2 13.4
4 95 15 13.9
5 115 15.7 15
6 130 16.4 15.3
7 162 17.1 16
8 192 17.9 16.8
9 225 18.4 17.6
AES advanced encryption standard
Table 5.5 Comparison of set II description timings
S.No. | Set II data/file size after AES (192) AES (128)
decryption (in KB) Time (in milliseconds) Time (in milliseconds)
1 25 13 13
2 115 15.6 15
3 225 18.4 17.6
4 1224 31.01 27.7
5 2581 35.23 32.5
6 4301 46 42.7
7 6175 51.9 46.3

AES advanced encryption standard
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Table 5.6 SecDSIM versus BCCP

S.No. | Data/file size AES (128) AES (128)
before encryp- | Time (in Data/file size Time (in Data/file size
tion (in KB) seconds) after encryption | seconds) after encryption
(in KB) (in KB)
1 25 0.5 129.04 0.016 353
2 57 0.7 129.04 0.016 70.01
3 72 0.9 221.65 0.019 110
4 95 0.9 222.65 0.027 131
5 115 0.9 376.18 0.022 159
6 130 1.0 406.25 0.025 178
7 162 1.2 471.47 0.027 219
8 192 1.5 477.0 0.031 262
9 225 1.9 477.15 0.032 308
2
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Fig. 5.10 Comparison of encryption timings with broker cloud communication paradigm (BCCP)
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Table 5.7 Role of cryptography in the cloud storage schemes

Cloud storage scheme | Cryptographic technique Security properties and techniques
achieved
Kamara et al. [31] Searchable encryption, Confidentiality
attribute-based encryption
Kamara et al. [32] Searchable encryption, search | Confidentiality, global integrity, verifi-
authenticator ability, and searchability
Barua et al. [23] Attribute-based encryption, Access control, confidentiality

identity-based encryption
Zarandioon et al. [25] | Attribute-based encryption and | Access control

signature

Chow et al. [47] Group signature, identity-based | Access control, confidentiality
broadcast encryption

Seiger et al. [48] Symmetric encryption with Confidentiality, integrity, and
IDAs and CMAC availability

SecDSIM Multi-user searchable sym- Confidentiality, integrity, effi-
metric encryption, grade-based | cient retrieval, data sharing, and
access control verifiability

1IDAs Information Dispersal Algorithms; CMAC Cipher based Message Authentication Code

5.8 Concluding Remarks

In this chapter, we addressed the problem of storing data in the cloud and retrieving
data securely and efficiently using the mSSE scheme, which provides an efficient
isolation and secure storage mechanism for users’ data and an identity management
scheme using GAC. The research question that this chapter addresses is as follows:
Can we develop a provably secure searchable encryption scheme with efficient se-
cure cloud storage which is supportable for multi-user applications? For this, we
constructed a secure data storage scheme in the cloud that comprises two steps:

» Create a secure index also called a local index for user data and create a unique
data identifier for the user data.

* Encrypt and encode the user data and data identifier and store encrypted user
data in the cloud as well as a data identifier in the cloud index for further access.

We implemented identity management using GAC when a user performs a search
on own/other’s data.

In our future work, we will attempt to further enhance our SecDSIM model for
multimedia data and to address searchable symmetric encryption with wild card sup-
port and proximity-based keyword search on a local index to improve the efficiency.
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