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Dedication

This tenth publication is dedicated to my 
parents Ghazi Ghulam Hussain Bahadur and 
Mukhtar Begum who spent the prime of their 
lives in fighting for the freedom and indepen-
dence of their country. At a very young age, 
my father joined a paramilitary movement 
with the mission to engage in peaceful strug-
gle to free the country from foreign occupa-
tion. Although the struggle for independence 
started many decades before, his organiza-
tion together with similar movements and 
political parties, decided to stage a much 
more decisive countrywide peaceful protest 
on 19 March 1940. The government, fear-
ing the shutdown of the country, had already 
banned the gatherings but people were out 
in such huge numbers that the army patrol-
ling the streets received orders to shoot to 
kill. Live bullets were fired; many thousands 
were killed or injured and many more taken 
as political prisoners. That day, my father 
was leading a group of 313 men—totally 
unarmed. Several dozen of them were mar-
tyred or injured; many were captured and 
tried. There were 13 who were sentenced to 
political imprisonment for life—my father 
was one of the 13. His organization honored 
him with the titles of Ghazi (survivor in the 



fight between right and wrong) and Baha-
dur (valiant). Four days later, an all-party 
confederation passed a unanimous resolution 
demanding the formation of an independent 
state. Soon after, a declaration was signed 
to transfer power to the leading political 
party. Eventually, after another 7 years, the 
country achieved independence on 14 August 
1947. On this day, all freedom fighters were 
released; my father also returned home ghazi 
and victorious. My mother, a young girl 
at the time, was no less courageous in her 
struggles: she fully supported her husband’s 
mission and raised a young girl indepen-
dently, single handedly, while my father was 
away. Now that the mission was achieved, 
my father devoted his time to engage in the 
study of Oriental languages and theology, 
bringing up his family and serving the com-
munity. Achieve excellence … make a dif-
ference: my parents would constantly remind 
us. They most certainly were excellent in 
what they did and made a huge difference. 
They are my heroes and my inspiration  
in life.

Zaigham Mahmood
19 March 2014
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Preface

Overview

Cloud Computing is an attractive paradigm that allows consumers to self-provision 
cloud based software systems, application services, development platforms and vir-
tualized infrastructures. Large enterprises can migrate their applications and data to 
cloud environments to achieve the benefits of scalability, availability and reduction 
in capital expenditure; small organisations and start-up ventures can realize benefits 
by leasing ready-made development environments and computing infrastructure on 
a pay-as-you-go basis; and general public can enjoy the use of cloud based applica-
tion such as email systems and storage space, which are often freely available.

The benefits that the cloud paradigm promises are numerous and already proven. 
However, like any other emerging technology, the limitations, issues and barriers 
are also many. There are issues of security due to virtualisation and multi-tenant 
nature of cloud environments; concerns with respect to the loss of governance and 
control; legal and jurisdiction implications of entrusting private and confidential 
data to cloud providers; and concerns due to evolving cloud related standards. The 
lack of knowledge on the part of the cloud consumers is also resulting in vendor 
lock-ins and inappropriate service level agreements.

Notwithstanding the above, cloud consumers are becoming more knowledgeable 
and beginning to dictate what they require. Cloud providers are also learning from 
experience and beginning to provide what consumers actually need. Robust new 
technologies are appearing and standards organisations, in the process of develop-
ing the necessary controls, are keen to enforce the standards for the benefit of all. 
Other cloud related industries are also appearing to provide specialist services to 
support cloud providers as well as the cloud consumers. Alongside this, research-
ers, practitioners and R&D departments within the organisations are coming up 
with strategies and solutions to resolve the existing issues and remove the barriers. 
New areas being investigated include: cloud security, interoperability, service level 
agreements, identity and access management, cloud governance, big data analytics 
and broker services. New frameworks and methodologies are also being developed 
for construction, deployment and delivery of cloud services to benefit all.
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This book, Cloud Computing: Challenges, Limitations and R&D Solutions, aims 
to present discussions on issues and limitations relating to the cloud computing 
paradigm and suggest latest research methodologies, emerging developments and 
R&D solutions to benefit the computing community. In this volume, 39 research-
ers and practitioners of international repute have presented latest research devel-
opments, current trends, state of the art reports, case studies and suggestions for 
further development of the cloud computing paradigm.

Objectives

The aim of this text is to present the current research and R&D solutions to the 
limitations, barriers and issues that currently exist in the cloud computing paradigm. 
The key objectives include:

•	 Capturing the state-of-the-art research and practice relating to cloud computing 
issues

•	 Exploring limitations and barriers with respect to cloud provision and cloud en-
vironments

•	 Analyzing the implications of the new cloud paradigms for the benefit of con-
sumers

•	 Discussing R&D solutions and strategies with respect to concerns relating to the 
cloud paradigm

•	 In general, advancing the understanding of the emerging new methodologies 
relevant to the cloud paradigm

Organization

There are 14 chapters in Cloud Computing: Challenges, Limitations and R&D Solu-
tions. These are organized in three parts, as follows:

•	 Part I: Limitations and Challenges of Cloud Environments. This section has a 
focus on issues and limitations of the cloud computing paradigm. There are three 
chapters in this section. The first chapter looks into the security issues of public 
clouds. The second contribution focuses on architectural choices for DBM Sys-
tems for cloud environment and the third chapter discusses the challenges and 
issues with respect to QoS and SLAs.

•	 Part II: Current Developments and R&D Solutions. This second part comprises 
six chapters. The first contribution discusses a methodology for cloud security 
management, while the second chapter suggests a framework for secure data 
storage and identity management in the cloud. The third contribution presents a 
simulation tool for energy aware cloud environments and the chapter, that fol-
lows, presents an efficient congestion control system for data center networks. 
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The fifth chapter is devoted to looking into energy aware VM consolidation in 
the IaaS provision. The last contribution in this section focuses on software de-
fined networking for cloud related applications.

•	 Part III: Advances in Cloud Technologies and Future Trends: There are five 
chapters in this part. The first chapter discusses future developments with re-
spect to virtualization and cloud security and the second contribution discusses 
recent trends in QoS data warehouses in relation to the selection of cloud based 
services. The next chapter focuses on cloud federation approaches. The forth 
contribution discusses the security aspects of database-as-a-service provision 
and the final chapter looks into the future to see how the next generation utility 
computing infrastructures will be designed.

Target Audiences

The current volume is a reference text aimed to support a number of potential audi-
ences, including the following:

•	 Enterprise architects, business analysts and software developers who are keen to 
adopt the newer approaches to developing and deploying cloud-based services, 
taking into account the current research.

•	 IT infrastructure managers and business leaders who need to have a clear under-
standing and knowledge of the limitations and issues that currently exist in the 
emerging cloud computing paradigm.

•	 Students and lecturers of cloud computing who have an interest in further en-
hancing the knowledge of the current developments and R&D solutions to the 
barriers, limitations and issues that currently exist.

•	 Researchers in this field who wish to have the up to date knowledge of the cur-
rent practice, mechanisms and research developments relevant to the cloud para-
digm to further develop the same.

� Zaigham Mahmood
� University of Derby UK & North West University S Africa
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Chapter 1
Attacks in Public Clouds: Can They Hinder  
the Rise of the Cloud?

Saeed Shafieian, Mohammad Zulkernine and Anwar Haque
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e-mail: anwar.haque@bell.ca

Abstract  Since the advent of Cloud Computing, security has been one of the main 
barriers to the adoption of the Cloud paradigm, especially by large organizations 
dealing with customers’ sensitive information. The rapid growth of the Cloud has 
made it a desirable attack target for both external attackers and malicious insiders. 
Many of the security attacks that occur in non-Cloud environments can occur in the 
Cloud as well, but some of those may be exacerbated, and some may remain unaf-
fected in the new Cloud paradigm. There are also new threats that have arisen, and 
Cloud users now face Cloud-specific attacks that did not exist or rarely occurred in 
traditional environments. In this chapter, we discuss attacks that are exacerbated by 
exploitation of the multi-tenancy attribute in public Clouds that occur because of 
the virtualization technology or are due to the pay-as-you-go model in the Cloud. 
We discuss some of the most common threats and attacks with respect to the Cloud 
attribute exploitations which are capable of exacerbating attacks by causing more 
potential consequences, or making detection and prevention mechanisms more 
challenging. We also assess the attacks to find out how they may affect confiden-
tiality, integrity, and availability of data and services for Cloud users. Being aware 
of the threats to the Cloud may help organizations and individuals have a more 
informed switch to the Cloud from their non-Cloud environments. This will also 
keep up the rise of the Cloud.

Keywords  Cloud · Security · Denial of Service · Security attack · Virtualization · 
Multi-tenancy
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1.1 � Introduction

Cloud Computing is rapidly becoming the de facto standard for hosting and running 
medium- to large-scale software applications and services on the Internet [1]. Many 
companies, individuals and even government sectors are switching to the Cloud 
environment due to several advantages that this new paradigm offers, including the 
reduction of operational and training costs, the reduction of upfront capitalizations, 
rapid scalability, ease of development, unlimited storage, and ubiquitous accessi-
bility. By using the Cloud paradigm, Cloud consumers may be able to concentrate 
more on the core application functionality instead. Cloud Computing is not a new 
technology but a combination of existing technologies such as the Web and virtu-
alization. Therefore, any vulnerability in one of these underlying technologies may 
be exploited as a security attack in the Cloud.

There are, however, disadvantages in utilizing the Cloud infrastructure, most no-
tably issues related to security, privacy, and trust. According to independent surveys 
[2, 3], the most daunting obstacle in switching to the Cloud from a traditional archi-
tecture is security concerns. All of these surveys and studies show the significance 
of security in the Cloud from the perspective of both providers and consumers. If 
security issues are well addressed and potential consumers are aware of them, it 
may help a more confident transition to the new Cloud environment and will conse-
quently help the continued rise of the Cloud.

1.1.1 � Cloud Computing

The most commonly referenced definition of the Cloud is the one proposed by the 
U.S. National Institute of Standards and Technology (NIST) [4]. Based on this defi-
nition, the Cloud model is composed of five essential characteristics, three service 
models, and four deployment models. The five characteristics of the Cloud are on-
demand self-service, broad network access, resource pooling, rapid elasticity, and 
measured service.

The three service models of the Cloud include Software as a Service (SaaS), 
Platform as a Service (PaaS), and Infrastructure as a Service (IaaS). Each of these 
service models can be deployed as any of the four deployment models: private, 
community, hybrid, and public.

Regarding the three service models and the four deployment models, there can 
be six different combinations of service and deployment models for any Cloud. 
However, some of these may only exist in theory and not offered by any Cloud Ser-
vice Provider (CSP), the entity which offers the Cloud services. In this chapter, we 
only focus on one of these combinations, i.e., the public IaaS Cloud, which is one 
of the most frequently used combinations and is offered by most prominent CSPs.

In the IaaS model, all the Cloud infrastructure resources are provisioned for the 
consumer. In this model, the consumer is normally able to deploy and run any op-
erating systems or software applications in the Cloud. Famous examples of IaaS 
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include Amazon EC2, Rackspace Cloud, Google Compute Engine, IBM Smart-
Cloud, and Microsoft Azure. In the public deployment model, the Cloud infrastruc-
ture is provisioned to be openly used by the general public. Unlike the other deploy-
ment models, in the public model the infrastructure only exists on the premises of 
the Cloud provider.

One of the most important attributes in a public IaaS Cloud is multi-tenancy. 
Multi-tenancy enables different consumers to have virtual machines (VMs) on the 
same physical machine. This attribute is not considered as one of the five essential 
Cloud characteristics mentioned earlier, but it normally exists in public Clouds and 
is the main justifying factor for the lower costs in the Cloud as compared to non-
Cloud environments. All the VMs running on top of the same physical machine 
are controlled by a hypervisor. A hypervisor, also called a virtual machine monitor 
(VMM), controls all the guest operating systems running on top of a host operating 
system.

1.1.2 � Cloud Attributes Affecting Security

We identify attributes which may be exploited to exacerbate the attacks in the Cloud 
compared to non-Cloud environments. By exploiting these attributes, attackers may 
be able to launch attacks that have more consequences or are harder to detect or pre-
vent in a public Cloud. By “having more consequence,” we refer to either affecting 
more users or causing more asset losses. These attributes are as follows:

•	 Ubiquitous Network Access: Cloud consumers can access and provision all the 
services and resources provided by the CSP using public networks especially the 
Internet and via conventional devices.

•	 Measured Service: The CSP measures the provided service to its consumers 
based on appropriate units. Consumers can monitor and track their resource us-
age online through the transparent measured service.

•	 Multi-tenancy: In a public IaaS Cloud, different consumers may have their VMs 
coresident with other consumers’ VMs on the same physical server. This allows 
for lower resource usage costs compared to the single-tenant model in traditional 
environments or private Clouds.

•	 Off-premise Infrastructure: In a public Cloud, the infrastructure is owned and 
operated by a third party and is off premises of the consumer’s organization. As 
a result, the consumer loses physical control over their resources, and needs to 
rely on the CSP’s physical security measures.

The ubiquitous network access and measured service are essential Cloud character-
istics, and are therefore required to be provided by any CSP regardless of the service 
or the deployment model. Multi-tenancy does not exist in the private Cloud as there 
is only one consumer utilizing the Cloud resources. Nevertheless, multi-tenancy is 
a vital attribute in all public Clouds. Finally, off-premise infrastructure is an intrin-
sic attribute in any public Cloud which contributes as one of the major concerns 



S. Shafieian et al.6

for any Cloud consumer. Each of the aforementioned attributes might be exploited 
in order to exacerbate the attacks. If an attack is exacerbated in the Cloud through 
exploitation of one of the Cloud attributes, it means that the attribute contributes in 
increasing attack motivation, attack consequence, or making detection, prevention, 
and response mechanisms for that specific attack more challenging compared to 
those in non-Cloud environments.

1.1.3 � Chapter Overview

We consider security as the preservation of confidentiality, integrity, and availabil-
ity. Here, we are concerned mostly with the IaaS security. For the two other service 
models, most of the countermeasures and mitigation techniques are to be taken by 
the CSPs. For example, Amazon is responsible for maintaining security from the 
physical level of the data centers up to the hypervisor level. On the other hand, 
consumers are kept responsible for all the rest such as operating system (OS) se-
curity, application security, etc. [5]. As a result, the Cloud consumers are not free 
to implement their desired security solutions and need to rely on the provided level 
of security by the CSP. For the IaaS model, a consumer has the highest degree of 
control over infrastructure compared to other models. On the other hand, a CSP has 
the lowest responsibilities for maintaining security in the IaaS. Regarding maintain-
ing confidentiality, integrity, and availability as the three pillars of security, a CSP is 
generally responsible for only preserving availability in the IaaS and the remaining 
two attributes should be of the consumer’s concern [6].

In this chapter, we discuss and assess attacks in public IaaS Clouds. We are main-
ly focused on two groups of attacks: attacks that are common between the Cloud 
and non-Cloud environments but are exacerbated in the Cloud by exploiting multi-
tenancy, and attacks that occur because of the virtualization technology or the utility 
pricing model used in the Cloud. We provide Cloud scenarios as to how each of the 
attacks occurs in the Cloud and discuss current solutions for them. We compare the 
first group of attacks with those in non-Cloud environments based on the proposed 
Cloud attributes that affect security. Furthermore, we assess how any of these at-
tacks could compromise confidentiality, integrity, or availability in the Cloud.

1.1.4 � Chapter Organization

The rest of the chapter is organized as follows: Section 1.2 provides the related 
work and discusses the motivation for a new survey. Section 1.3 discusses attacks 
in the public Cloud and provides assessment in terms of the Cloud attributes which 
may be exploited in order to exacerbate the attacks. Moreover, it shows how at-
tacks compromise confidentiality, integrity, and availability in the Cloud. Finally, 
Sect. 1.4 concludes the chapter and discusses some open issues.
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1.2 � Related Literature

There exist a number of surveys in the literature that discuss general Cloud security 
issues and provide overviews of the challenges [7–25]. In this section, we discuss 
the works that propose classifications with respect to the attacks in the Cloud.

Gruschka et al. [26] suggest a classification of the attacks in the Cloud based on 
the notion of attack surfaces. They identify three major participants in a Cloud en-
vironment: users, services, and the Cloud provider. They suggest six combinations 
of possible interactions between any two of these entities proposing that an attack 
in the Cloud exploits one or a combination of these surfaces.

Srinivasan et al. [27] also propose a classification of the security challenges in 
the Cloud. They categorize the security challenges as being either based on archi-
tectural and technological aspects, or process and regulatory-related aspects. They 
suggest different subcategories within each of those two categories. In another 
work, Chow et al. [28] identify the security concerns in the Cloud as traditional 
security, availability and third-party security. They suggest different subcategories 
within each of the mentioned categories.

Grobauer et al. [29] categorize vulnerabilities in the Cloud as core technology or 
Cloud-specific vulnerabilities. They suggest that Cloud Computing is built on three 
core technologies i.e., Web applications and services, virtualization, and cryptogra-
phy. A vulnerability is Cloud-specific if it is inherent in a core Cloud technology, is 
caused mainly due to one of the NIST’s essential Cloud characteristics, is because 
of inefficiency of the conventional security controls in the Cloud, or is common in 
prominent Cloud offerings.

You et al. [9] propose a classification of Cloud security issues into three differ-
ent categories: data security, virtualization-related security, and application-related 
security. They describe each category in terms of security issues and threats related 
to each category.

Sen [30] proposes a classification of security issues in the Cloud consisting of 
traditional security concerns, availability issues, and third-party data control-related 
issues. The author claims that the traditional security concerns will be aggravated 
by moving to the Cloud. By pointing out real availability incidents for well-known 
CSPs such as Amazon and Google, the author identifies availability issues as one 
of the biggest concerns for critical applications hosted in the Cloud. Legal, contrac-
tual, and auditability issues are also identified as concerns raised by third-party data 
control.

Molnar et al. [31] classify threats that arise from moving from self-hosting to 
Cloud-hosting into two sets: threats that may be caused by having leased resources 
instead of owned ones, and threats which may be caused by having shared instead 
of dedicated resources. For the first group, they identify threats to infrastructure as-
sembly, contractual threats, and legal and jurisdictional threats. The second group 
consists of threats from other tenants, legal and jurisdictional threats, threats to 
availability and service costs, and restricted audit, detection, and response capabili-
ties. They also discuss countermeasures to each group of threats.
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1.3 � Attacks in the Cloud

In this chapter, we investigate attacks in the Cloud from the perspective of consum-
ers and clients who do not operate the Cloud infrastructure themselves. We are in-
terested in the IaaS service model because in the other service models there is little 
freedom for a consumer in terms of countermeasures they can put in place to miti-
gate the security vulnerabilities. We consider public deployment model of the Cloud 
since it is the most-widely used model. Public model has not been customized for 
specific high-security demand entities like financial institutions or government sec-
tors. As a result, it may be the most vulnerable model to the attacks.

Many of the attacks that can occur in a Cloud environment are preexisting at-
tacks that have occurred in non-Cloud environments before. Due to the nature of 
the Cloud, which is a combination of existing technologies such as the Web and 
virtualization, any security vulnerability that can occur in the presence of these 
technologies has the potential of occurring in the Cloud as well. However, there 
are attacks that may only occur in the Cloud environment because of the specific 
Cloud paradigm and architecture. In this section, we provide an overview of some 
of the attacks that are common between the Cloud and non-Cloud environments but 
may be exacerbated in the Cloud through exploiting multi-tenancy. Furthermore, 
we discuss and assess attacks that occur due to the virtualization technology used in 
the Cloud. In this chapter, we do not discuss well-known Web-based attacks such as 
cross site scripting (XSS), cross site request forgery (CSRF), SQL injection (SQLI), 
and phishing. These attacks can all occur in the Cloud because of the similar un-
derlying technologies used as non-Cloud systems. However, these have been well 
studied, and we refer the interested reader to the related references on these attacks 
[e.g., 32].

1.3.1 � Common Attacks

There are attacks that are common between the Cloud and non-Cloud environments. 
These attacks, however, may be exacerbated in the public Cloud via exploitation 
of the inherent multi-tenancy attribute in the public Clouds. Here, we discuss three 
attacks that may be aggravated in the Cloud because of the coresident consumers 
sharing the same physical hardware.

1.3.1.1 � Distributed Denial of Service Attacks

Distributed Denial of Service (DDoS) attacks are one of the dominant attacks in 
the Cloud [2]. In a DDoS attack, the adversary exploits a number of compromised 
machines called bots to compose a botnet in order to consume critical resources at 
the victim’s machine(s). The goal of the attacker is to force a computer or network 
to become incapable of providing normal services by blocking access to or degrad-
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ing services. DDoS attacks can target different layers of a computer system stack 
including network device level, operating system level, and application level [33]. 
Using internet protocol (IP) spoofing techniques, the attacker may be able to send 
attack packets from spoofed IP addresses. This might make the fraudulent traffic 
difficult to filter and the source of attack undistinguishable.

The Cloud is a combination of preexisting technologies such as Web and net-
works, so DDoS attacks can be targeted to Cloud machines. However, there are 
differences between a DDoS attack on the Cloud and non-Cloud environments. In 
the context of the Cloud, the attack can also be launched from within the Cloud by 
exploiting a number of VMs as internal bots in order to flood malicious requests 
towards the victim’s VM(s) [7]. This may make detecting such an attack very dif-
ficult, if intrusion detection and prevention systems operate only at the perimeter of 
the Cloud. In this case, they may be unable to detect DDoS attacks launched from 
within the Cloud. This can increase the chance of having successful DDoS attacks 
on the Cloud. Another difference between the Cloud and non-Cloud environments 
which exacerbates DDoS attacks in the Cloud is that unlike non-Cloud environ-
ments, a DDoS attack in the Cloud can have impact on multiple consumers as sev-
eral consumers may be using the compromised physical machine.

The conventional countermeasures to mitigate DDoS attacks include Intrusion 
Detections Systems (IDSs) and Intrusion Prevention Systems (IPSs). These systems 
can be both software-based and hardware-based and deploy various techniques such 
as resource multiplication, traffic pattern detection, and traffic anomaly detection 
to prevent and detect DDoS attacks [34–36]. Yu et al. [37] propose using idle re-
sources to form multiple parallel IPSs in the Cloud in order to help the attacked ma-
chine to defeat a DDoS attack. This may save the victim from having its resources 
blocked or degraded, but it may incur a considerable amount of charges for many 
idle resources that might have been used.

1.3.1.2 � Keystroke Timing Attacks

Keystroke timing attacks occur when the attacker tries to steal the victim’s confi-
dential information, especially login passwords, via eavesdropping on their key-
strokes. Song et al. [38] show that the timing information of keystrokes may leak 
information about the keys’ sequence types. They show that by applying advanced 
statistical techniques on timing information collected from the network, an attacker 
can learn substantial information about the characters the victim has typed in a se-
cure shell (SSH) session.

In a Cloud environment, the attacker’s goal is to measure the time between key-
strokes while the victim is typing a password. If the inter-stroke times are measured 
with sufficient resolution, they can be used to perform password recovery. Having 
coresidency, the attack can be launched in real time via measuring cache-based 
loads while the victim is typing sensitive information. However, a successful attack 
requires the two VMs to share the same CPU core at the time of the attack which 
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decreases the chance of having a successful attack [39]. We are not aware of any 
countermeasures for keystroke timing attacks other than avoiding coresidency in 
the Cloud. A mitigation technique used in Amazon EC2 is to frequently change the 
processor cores among VMs such that the chance of a successful attack decreases.

1.3.1.3 � Side-Channel Attacks

Due to the multi-tenancy attribute in the public Clouds which enables multiple VMs 
to run on the same physical machine, a consumer’s VM could be running on the 
same server as their adversary. This may allow the adversary to infiltrate the iso-
lation between the VMs and compromise the consumer’s confidentiality. A side-
channel attack consists of two main steps: placement and extraction. In the place-
ment phase, the attacker tries to place his/her malicious VM on the same physical 
machine as that of the target consumer. Ristenpart et al. [39] show that by using 
careful empirical mappings on Amazon EC2 public IaaS Cloud, they can increase 
the chance of placing the malicious VM on the right physical machine. In fact, they 
suggest that two VM instances in EC2 are likely to be coresident if they have match-
ing Xen Dom0 IP addresses, small packet round-trip times, or numerically close 
EC2 internal IP addresses. After the intruder manages to place a VM coresident 
with the target, the next step involves extracting the confidential information via a 
cross-VM attack. One of the ways to do this is through side-channels, i.e., cross-
VM information leakage due to the sharing of the physical resources, for instance a 
CPU’s data cache. By using a technique called Cloud cartography, the EC2 service 
can be mapped in order to make an educated guess as to where the potential target 
VMs are located. This can be achieved by using network probing tools. The cache-
based side-channel attacks have been shown to be able to extract Rivest Shamir 
Adleman (RSA) and advanced encryption standard (AES) secret keys [17, 18]. In a 
recent work, Zhang et al. [42] were also able to extract the ElGamal decryption key 
from a victim VM managed by the modern Xen hypervisor.

Zhang et al. [43] propose a technique called HomeAlone to allow a tenant to 
verify their exclusive residency of the physical machine on which their VMs are 
running. This happens when a tenant has purchased isolated resources from a CSP, 
but they still need to verify physical isolation of their VMs. The proposed technique 
employs an L2 memory cache side-channel not as an attack but as a defensive de-
tection tool. The technique helps the tenant ascertain whether there is a rival VM 
coresident with their VMs on the same physical machine. To achieve this, all the 
friendly VMs silence their activity in a selected cache region for a specific period of 
time. The tenant then measures the cache usage during this period and checks to see 
if there is any unexpected activity. Any activity during this period would indicate 
the presence of a rival VM.

One of the proposed solutions to mitigate side-channel attacks includes obscur-
ing the internal structure of the services as well as the VM placement policy. These 
should be done by CSPs in order to complicate the placement procedure for an at-
tacker. The other approach is to minimize the information that can be leaked once 
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the attack occurs [39]. Godfrey et al. [44] propose a server-side approach to mitigate 
cache-based side-channel attacks. They modify the Xen hypervisor so that a cache 
flush occurs only when a context switch changes to a VM that has the ability to es-
tablish a side-channel with the first. However, none of these countermeasures stops 
an adversary, launching side-channel attacks, and the best solution would be for the 
consumer to utilize physical machine resources exclusively. Although more costs 
would be incurred by the underutilization of the resources, the consumer makes sure 
no such attacks can occur.

1.3.1.4 � Discussion

DDoS, keystroke timing and side-channel attacks may all be exacerbated in the 
Cloud compared to non-Cloud environments. Table  1.1 shows the consequences 
of Cloud attribute exploitations by attacks. As shown in Table 1.1, all these attacks 
may be exacerbated in the Cloud through exploitation of the multi-tenancy attri-
bute. A DDoS attack may be exacerbated via exploitation of other attributes too. 
In a Cloud environment, not only do there exist DDoS attacks initiated outside of 
the Cloud but also there can be DDoS attacks launched from inside the Cloud by 
exploiting VMs to form an internal botnet. Here, exploitation of ubiquitous network 
access and multi-tenancy attributes may exacerbate the DDoS attack, making it 
more difficult for firewalls and intrusion detection systems to detect, as attacks are 
coming from an internal as well as an external source. Moreover, as the consumer is 
charged according to measured services, this attribute can also incur more charges 
to the victim due to the unwanted inbound and outbound traffic and resource usage. 
Having off-premise infrastructure may also delay an immediate response to the at-
tack. There is another opportunity for an attacker to perform DDoS attacks in the 
Cloud: usually with public CSPs, one can register for an IaaS service by just enter-
ing credit card information or even benefit from trial periods without entering any 
valid data. Due to this type of loose registration, attackers can exploit VMs while 
hiding their identities [45]. In this way, an adversary can launch attacks against 
victims that reside both inside and outside the Cloud, by exploiting the Cloud re-
sources. For those DDoS attacks launched from inside the Cloud against victims 
that are inside as well, firewalls and intrusion detection and prevention systems 
might not be able to block the attacks.

Table 1.1   Consequences of Cloud attribute exploitations
Attack Ubiquitous 

network
Measured 
service

Multi-tenancy Off-premise 
infrastructure

DDoS  +   +   +   + 
Keystroke timing 0 0  +  0
Side-channel 0 0  +  0

+: exacerbated, 0: not affected
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In our assessment of the attacks in the Cloud, we also consider keystroke tim-
ing attacks as having more consequence in a Cloud rather than a non-Cloud envi-
ronment due to multi-tenancy attribute exploitation. The keystroke timing attacks 
require coresidency with the victim’s VM. This can happen when there are multi-
tenant consumers in an IaaS Cloud. Multi-tenancy attribute of the Cloud may be 
exploited to exacerbate the keystroke timing attack by increasing the chance of 
having a successful attack. However, this attack may be very difficult to succeed 
in practice if the CSP migrates VMs between different cores of a physical machine 
processor as implemented in Amazon EC2. If the attacker VM and the victim’s VMs 
are using one of the cores on a four-core processor, the chance of having a success-
ful keystroke timing attack would be less than 25 % [39].

Side-channel attacks can also occur in Cloud as well as non-Cloud environ-
ments. However, even in a non-Cloud environment which uses virtualization tech-
nology such as Virtual Private Server (VPS) hosting, the attacker has no way of 
placing their malicious VM on a target server. Therefore, the placement step which 
is the first required step in performing a successful side-channel attack cannot be 
performed, leaving little chance of success for the attacker. Nonetheless, in a public 
Cloud scenario, an adversary may be able to place their malicious VMs coresident 
with the victim’s VMs by exploiting the multi-tenancy attribute, and launching a 
successful side-channel attack as described earlier. As a result, multi-tenancy ex-
ploitation may exacerbate side-channel attacks by bringing more motivation to the 
attacker, compared to traditional environments.

1.3.2 � Cloud-Specific Attacks

Cloud-specific attacks are those attacks that occur via exploiting vulnerabilities in 
the virtualization or utility pricing. These attacks may also occur in any non-Cloud 
environment which uses virtualization technology. Nevertheless, multi-tenancy and 
pay-as-you-go features offered by the public Clouds, make the Cloud an ideal attack 
target for adversaries targeting to exploit such vulnerabilities. In this section, we 
discuss this class of attacks in the Cloud.

1.3.2.1 � VM Denial of Service Attacks

A Virtual Machine Denial of Service (VM DoS) attack occurs when the adversary 
who is the owner of a VM in the Cloud exploits a vulnerability in the hypervisor in 
order to consume all or most of the available resources of the physical machine the 
VM is running on [11]. This will lead to other tenants being deprived of the required 
resources and encountering malfunctions with their services.

The VM DoS attack can occur in any environment that uses the virtualization 
technology and offers coresidency to the consumers. Most current hypervisors are 
capable of detecting excessive resource consumption by the VMs running on top 
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of them. After detecting a malicious VM, one of the techniques to prevent denial of 
service for other VMs residing on the same physical server is to restart the malicious 
VM. This costs less than restarting the entire physical machine.

1.3.2.2 � Hypervisor Attacks

A Cloud administrator who has privileged access to the hypervisor is able to pen-
etrate into guest VMs through the hypervisor even without having any direct privi-
leges on the target VMs. For example, if Xen is used as the hypervisor, the XenAc-
cess library allows a privileged VM to view the contents of another VM’s memory 
at runtime. This technique is called virtual machine introspection [46]. In another 
type of hypervisor attack, a malicious administrator installs a malicious hypervisor 
into a Cloud server to eavesdrop on a consumer’s activities and steal their sensitive 
information. Moreover, considering the root-level access of system administrators, 
it may be difficult for a guest OS to detect the fraudulent activity using conventional 
detection mechanisms [47].

Santos et al. [48] propose a Trusted Cloud Computing Platform (TCCP) for en-
suring the confidentiality and integrity of computations that are outsourced to IaaS 
services. They suggest that the approach enables a closed box execution environ-
ment preventing a user with full privileges on the host VM to gain access to the 
guest VMs.

Another type of attack targets vulnerabilities in a hypervisor scheduler. Zou et al. 
[49] show that an attacker can exploit a VM so that it uses more processor time 
than its fair share and escapes the periodic sampling performed by the hypervisor. 
In this attack, the adversary makes the processor idle just before the scheduler tick 
occurs and resumes the run after the tick finishes. This enables the attacker VM to 
consume most of the processor cycles without incurring any charges and deprives 
the cotenant VMs from consuming their required cycles. They have implemented 
sample hypervisor scheduling attacks on Amazon EC2 to demonstrate the practical-
ity of these types of attacks. The proposed solutions to this attack include using a 
high-precision clock or a random scheduler to prevent scheduler escaping.

1.3.2.3 � Cloud Malware Injection Attacks

In a Cloud malware injection attack, the adversary tries to inject a malicious VM 
into the Cloud with different purposes including eavesdropping, functionality al-
tering, or blockings [10]. The attacker needs to create their own malicious VM 
instance into an IaaS Cloud. In order for this attack to be successful, the malicious 
instance should be designed in such a way that the Cloud treats it as a valid instance.

In Amazon EC2 public IaaS Cloud, a consumer can simply create an image of 
their VM, called Amazon Machine Image (AMI). Once the image is created, it can 
be easily made public by editing AMI permissions and changing the visibility from 
private to public. As a result, if a malicious image is created in this way, it will be 
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visible to all other EC2 consumers, and they can launch VM instances based on this 
image. All the VMs created based on the malicious image may be vulnerable to at-
tacks such as stealing of sensitive data.

One of the countermeasures to be taken by CSPs in order to resolve these types 
of attacks is not to allow an image to go public unless it has been fully scanned to 
ensure that it is free from any potential malware. However, new malware may not 
be detected by malware detection tools, thus, consumers should always undertake 
the risk of using public images, and do not solely rely on the service provider’s 
security measures.

1.3.2.4 � VM Image Attacks

Typically, in a Cloud environment such as Amazon EC2, VM images are shared 
among Cloud consumers. These include both CSP-provided and user-provided im-
ages. CSP-provided images help consumers instantiate their required VMs rapidly 
by providing them with the standard OSs and applications. On the other hand, a 
user is able to make an image of their VM and make it publicly available to all other 
users of the Cloud. VM images can be easily saved, copied, encrypted, moved, and 
restored.

There are three types of risks associated with VM images: publisher’s risk, re-
triever’s risk, and Cloud administrator’s risk [50]. The publisher risks disclosing 
their sensitive information, such as saved passwords, browsing history, cookies, 
etc., by sharing a VM image for the public. On the other hand, there is a high risk 
for the consumer who runs vulnerable or malicious images. When a malicious VM 
is run by a victim consumer, the attacker is in fact bypassing security measures 
such as intrusion detection and prevention systems and firewalls around the Cloud 
network. The Cloud administrator also risks distributing the images with malicious 
content over the Cloud network. The infected machines appear shortly, infect other 
machines, and disappear before they can be detected. As a result, the infections 
would persist indefinitely and the system may never reach a steady state [51].

Inadequate data deletion can be the root for another type of VM image attack 
[52]. Cloud consumers normally delete their VMs after they are finished using them 
in order not to incur the cost of having idle VMs. Nevertheless, if the data is not 
properly deleted, there is the risk of being recovered by a malicious CSP insider or 
even by another Cloud consumer who has been allocated the same disk area on that 
specific server. This can occur due to the fact that in many OSs when data is deleted, 
its space is marked as free by the system, but the contents will remain on the disk. 
In a recent work, Balduzzi et al. [53] show that 98 % of Windows images and 58 % 
of Linux images in Amazon EC2 contain software with critical vulnerabilities based 
on analyzing a total of 5303 Amazon machine images.

These types of attacks are similar to malware injection attacks when a mali-
cious VM becomes publicly available in the Cloud. However, when a consumer 
publishes an image publicly, they need to make sure that any sensitive data has been 
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thoroughly erased in such a way that it will not be recoverable by subsequent users 
of the image or even CSP administrators.

1.3.2.5 � VM Relocation Attacks

VM mobility is one of the advantageous features of using VMs, as opposed to physi-
cal machines, and is essential for load balancing and system maintenance. However, 
it imposes security risks for the owner as VMs can be stolen by malicious insiders 
even without the owner’s awareness. In an offline attack, the adversary can simply 
copy the entire victim’s VM to a remote machine or even a portable storage device 
[51]. Moreover, there exist attacks that can occur in a live VM migration scenario. 
A live VM migration is normally done by copying memory pages of a VM from 
the source hypervisor to the destination hypervisor over the network. The attacks 
have been empirically demonstrated on Xen and VMware, the two most deployed 
hypervisors [54]. One of these attacks includes initiating unauthorized migration 
of a victim VM to the attacker’s physical machine. The adversary can then gain 
full control over the victim’s VM or launch attacks that exploit coresidency such 
as side-channel. Another type of attack is to initiate an unauthorized migration of a 
large number of VMs to a victim machine in order to cause denial of service for the 
victim. Mutual authentication of the source and the destination hypervisors is a sug-
gested solution in order to achieve a secure migration and prevent potential attacks.

1.3.2.6 � Resource-Freeing Attacks

Resource-freeing attacks (RFAs) are a new type of attack in the Cloud that exploit 
the coresidency and resource sharing among VMs in order to modify the workload 
of a victim VM to release resources for an attacker VM [55]. Any hypervisor such 
as Xen tries to provide performance isolation by allocating required resources to 
each VM. However, if two VMs require heavy use of the shared memory or the 
processor at the same time, the performances of both VMs degrade, since the hyper-
visor is not able to allocate the required resources to both VMs. The competition to 
acquire resources may lead to a malicious consumer crashing the rival VM in order 
to free resources for their own use.

A hypervisor scheduler may provide a fair-share allocation of the processor by 
distributing idle processor time to running VMs (work-conserving), or by putting a 
limit on the maximum amount allowed for each VM (non-work-conserving). The 
former increases performance, but reduces isolation, whereas the latter increases the 
isolation with the cost of decreasing the performance. A resource-freeing attack can 
occur only when a work-conserving scheduler is used. The first step to launch an 
RFA attack is to increase the resource usage of the victim so that it reaches a bottle-
neck. This step is performed by using a helper process that can be run either on the 
same or another machine. Then, the next step would involve shifting the victim’s 
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resource usage to the bottleneck resource. This would free up other resources to be 
used by the attacker.

An RFA has been shown to be able to increase the performance of a VM by up 
to 60 % on a local test bed, and up to 13 % when launched on Amazon EC2 [56]. 
The low rate on Amazon EC2 is in part due to the fact that non-work-conserving 
scheduler is used by Xen to schedule processor timing in EC2. One of the ways to 
prevent RFAs is to use dedicated instances. This costly approach is supported by 
Amazon EC2 and allows a consumer to request dedicated resources for their VMs 
on a physical machine. The other approach to prevent an RFA is to use schedulers 
that do not distribute idle resources, such as non-work-conserving schedulers. How-
ever, as previously mentioned, this places a boundary on the maximum resource 
share to be used by each VM, and may reduce the performance.

1.3.2.7 � Fraudulent Resource Consumption Attacks

One of the few unique attacks in the Cloud is Fraudulent Resource Consumption 
(FRC) [56]. In this Cloud-specific attack, the adversary aims to exploit the utility 
pricing model of the Cloud by launching an attack similar to a DDoS attack. The 
utility pricing in the Cloud is similar to the pricing model of utilities such as elec-
tricity and gas for which a consumer pays only for the amount they have used.

By fraudulently using the consumer’s Cloud resources, the adversary’s intension 
is to divest the victim of their long-term economic benefits. There are two major 
differences between FRC and DDoS attacks. First, FRC attacks aim to make Cloud 
resources economically unsustainable for the victim, whereas a DDoS attack aims 
to degrade or block Cloud services. Second, FRC attacks tend to be more subtle and 
are carried out over a longer period of time compared to DDoS attacks. In order to 
fraudulently consume resources, the attacker exploits a botnet to send malicious 
requests to the Cloud to gradually increase the cost of resource usage for the victim 
consumer. The idea of FRC attacks is originated from the notion of Economic De-
nial of Sustainability (EDoS) [57] where an attacker targets the long-term sustain-
ability of the victim.

Detecting an FRC attack could be very difficult because the way an attacker 
requests Web resources is like that of any legitimate client, and the only differentiat-
ing attribute is their intention. An FRC attack occurs just above the normal activity 
threshold and below the DDoS attack threshold. Therefore, it may be unlikely to be 
detected by traditional intrusion detection systems. FRC attacks are new and unique 
to the Cloud because they exploit the utility pricing model of the Cloud, which is 
not applicable to non-Cloud environments.

In a normal traffic activity to a website, the frequency of visiting a Web page is 
proportional to the popularity of that page. For example, the Home page is usually 
the most visited page in normal traffic and the About Us page may be visited less 
frequently. Now if for a given website, the incoming page requests from a client 
hit the About Us page much more than the home page, most probably the traffic 
is being automatically generated from a botnet and therefore should be detected as 
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fraudulent. Another approach to mitigate EDoS attacks is to try to verify benign and 
malicious requests by creating a white list and a blacklist of IP addresses based on 
the first packet received from a requesting source [58]. As a result, if the first re-
quest is from a benign user, all the subsequent requests from the user will be passed 
to the Cloud server, but if the first packet is detected to be from a malicious user, all 
the subsequent requests will be denied for that user. The downside of this technique 
is that it may not be possible to distinguish between malicious and benign users by 
only examining the first packet received from them.

1.3.2.8 � Discussion

Cloud-specific attacks are those attacks that can occur in the Cloud due to the spe-
cific Cloud paradigm and technologies. Most of these attacks exploit vulnerabilities 
in the virtualization. These attacks are able to make Cloud services unavailable or 
significantly degraded for the tenants. Attackers can also penetrate into other VMs 
coresident with them in order to steal private information, alter data, etc. Moreover, 
a malicious VM can escape the fair processor sharing and not incur any charges 
for the processor cycles that have been used. The other type of attack is to inject 
a malicious VM in the Cloud. There are also threats associated with sharing VM 
images and relocating VMs in public Clouds. Fraudulent resource consumption or 
economic denial of sustainability attacks target the long-term sustainability of the 
Cloud resources for consumers. These types of attacks are unique to the Cloud and 
may be among the most difficult attacks to detect.

1.3.3 � Security Attributes in the Cloud

The three fundamental attributes of security, i.e., confidentiality, integrity, and avail-
ability, can be affected by the attacks in the Cloud. Nonetheless, not every attack 
compromises every attribute of the triad. Table 1.2 shows how these three attributes 

Style3Attack Confidentiality Integrity Availability
DDoS N N Y
Keystroke timing Y N N
Side-Channel Y N N
VM DoS N N Y
Hypervisor Y Y Y
Malware injection Y Y Y
VM image Y Y Y
VM relocation Y N N
RFA N N Y
FRC N N N
Y compromises, N does not compromise

Table 1.2   Security attri-
butes affected by the attacks



S. Shafieian et al.18

of security are affected by different attacks in the Cloud. As Table 1.2 shows, some 
of the attacks affect all, whereas some others only affect one or two of the attributes. 
The only exception is the FRC attack. This attack does not compromise any of the 
three security attributes; however, fraudulent resource consumption is considered 
an attack which exploits utility pricing model of the Cloud.

Once a DDoS attack occurs, data may not be available to the authorized users, 
thus violating the availability attribute. Nonetheless, confidentiality and integrity 
may not be compromised by a DDoS attack. A successful keystroke timing attack 
may lead to the leakage of sensitive data thus compromising the confidentiality 
attribute. This attack normally cannot put the other security attributes at risk. Side-
channel attacks are able to compromise the victim’s confidentiality by extracting 
confidential information through side-channels.

A VM DoS attack may deprive a victim tenant of the shared resources. As a 
result, it compromises the availability attribute. If a hypervisor attack is success-
ful, based on the level of privileges the attacker may acquire, any of the three se-
curity attributes can be at risk. This is also true for a malware injection attack. 
By eavesdropping, functionality changing, and blocking services for other VMs, 
the confidentiality, integrity, and availability of the victims can be compromised. 
A consumer who publishes their VM to the public, risks compromising the confi-
dentiality of their private data in case of not being thoroughly deleted. Moreover, a 
consumer who runs a shared VM may put all the three security attributes at risk by 
inviting potential malware into their VM instance. If a VM is stolen during the pro-
cess of its relocation, the confidentiality of the victim may be compromised since 
the adversary gains access to the victim’s entire data located on the VM. Finally, an 
RFA compromises the availability of the victim VM via shifting its resource usage 
towards a bottlenecked resource.

There are also risks associated with image backups in the Cloud. Image backups 
should always be stored encrypted, but if an unencrypted backup is accessed by 
an adversary, the confidentiality of the owner may be at risk. Furthermore, if the 
attacker alters the contents of the backup, the integrity may also be compromised 
once the backup image is restored.

1.4 � Conclusions and Open Issues

Security concerns are among the biggest barriers that may hinder the rising adop-
tion of the Cloud. In this chapter, we described the attacks that can occur in the pub-
lic Clouds. We discussed and compared the attacks that are common between the 
Cloud and traditional systems, but are exacerbated in the Cloud due to exploitation 
of multi-tenancy. These included distributed denial of service, keystroke timing, 
and side-channel attacks. Furthermore, we discussed attacks that are specific to the 
Cloud paradigm. These attacks exploit vulnerabilities in hypervisors and are able 
to carry out malicious actions such as blocking the Cloud resources for consumers, 
eavesdropping on consumers’ activities, and escaping fair share scheduling. EDoS 
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or fraudulent resource consumption is another type of Cloud-specific attack that 
exploits the utility pricing model of the Cloud. We also discussed how each of the 
three security attributes may be compromised by each attack. We believe that when 
consumer applications run in the Cloud, they generally face more potential attacks, 
and the evolving nature of the Cloud may also suggest newer threats in future.

This study may help organizations and individuals who are considering the 
Cloud as the future infrastructure for hosting and running their business applica-
tions. These consumers can decide more wisely by identifying the potential attacks 
on their specific assets and by comparing the consequence of those attacks between 
the two environments before they move to the Cloud.

In this chapter, we did not investigate attacks in the SaaS and PaaS models of the 
Cloud. For those two service models, most of the countermeasures are to be taken 
by CSPs. We discussed attacks in the public IaaS Cloud as it is the most popular 
Cloud model.

The Cloud should be monitored for new attacks. As the Cloud is yet a new and 
evolving environment, new Cloud-specific attacks may always be discovered by 
carefully investigating the underlying interactions between different components 
in the architecture. There are attacks in the Cloud that require new solutions and 
countermeasures, or improvements to the current countermeasures. This is espe-
cially true for EDoS attacks which are the Cloud-specific variant of DDoS attacks. 
These attacks are capable of making the Cloud services unsustainable for the victim 
consumer. Consequently, designing appropriate detection and prevention mecha-
nisms may help the potential victims to become more resilient against these attacks. 
This is particularly due to the fact that most solutions and countermeasures have 
only been experimented in controlled lab environments, or have been only proposed 
without undergoing any experimental validation as a proof of concept.
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Abstract  Cloud computing has changed the way we used to exploit software and 
systems. The two decades’ practice of architecting solutions and services over the 
Internet has just revolved within the past few years. End users are now relying 
more on paying for what they use instead of purchasing a full-phase license. System 
owners are also in rapid hunt for business profits by deploying their services in the 
Cloud and thus maximising global outreach and minimising overall management 
costs. However, deploying and scaling Cloud applications regionally and globally 
are highly challenging. In this context, distributed data management systems in the 
Cloud promise rapid elasticity and horizontal scalability so that Cloud applications 
can sustain enormous growth in data volume, velocity, and value. Besides, distrib-
uted data replication and rapid partitioning are the two fundamental hammers to nail 
down these challenges. While replication ensures database read scalability and geo-
reachability, data partitioning favours database write scalability and system-level 
load balance. System architects and administrators often face difficulties in man-
aging a multi-tenant distributed database system in Cloud scale as the underlying 
workload characteristics change frequently. In this chapter, the inherent challenges 
of such phenomena are discussed in detail alongside their historical backgrounds. 
Finally, potential way outs to overcome such architectural barriers are presented 
under the light of recent research and development in this area.

Keywords  Cloud computing · Distributed database · ACID · CAP · Replication · 
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2.1 � Introduction

In recent years, with the widespread use of Cloud computing based platform and 
virtual infrastructure services, each and every user-facing Web application is thrust-
ing to achieve both ‘high availability’ and ‘high scalability’ at the same time. Data 
replication techniques are long being used as a key way forward to achieve fault-
tolerance (i.e., high availability) and improving performance (i.e., maintaining 
system throughput and response time for an increasing number of users) in both 
distributed systems and database implementations [29]. The primary challenges for 
replication strategies include: (1) replica control mechanisms—‘where’ and ‘when’ 
to update replicated copies, (2) replication architecture—‘where’ replication logic 
should be implemented and finally (3) ‘how’ to ensure both the ‘consistency’ and 
the ‘reliability’ requirements for the target application. These challenges fundamen-
tally depend on the typical workload patterns that the target application will be 
going to handle as well as the particular business goals it will try to meet.

Even in the absence of failure, some degree of replication is needed to guarantee 
both ‘high availability’ and ’high scalability’ simultaneously. And, to achieve the 
highest level of these two properties, data should be replicated over wide area 
networks. Thus, the replicated system inherently imposes design trade-offs be-
tween consistency, availability, responsiveness and scalability. And, this is true for 
deployments either within a single data centre over local area network (LAN) or in 
multiple data centres over wide area network (WAN).

A high-level Cloud system block diagram is portrayed in Fig. 2.1, where a typi-
cal layout of a multi-tier Cloud application has been shown in a layered approach.

According to Fig. 2.1, end-users’ requests originate from the typical client-side 
applications such as browsers and desktop/mobile apps through HTTP (which is a 
request/reply based protocol) interactions. Database name server (DNS), Web and 
content delivery network (CDN) servers are the typical first-tier Cloud services 
(typically stateless) to accept and handle these client requests. If it is a read-only 
request, then clients can be served immediately using cached data, otherwise update 
(i.e., insert, update, delete) requests need to be forwarded to the second-tier services.

Application servers, on the other hand, process these forwarded requests based 
on the coded logic and process the operation using in-memory data objects (if avail-
able) or fetch the required data from the underlying database-tier. Model view con-
troller (MVC) pattern-based logic implementation can be considered as an example. 
In an MVC application, user requests (typically URLs) are mapped into ‘controller’ 
actions which then fetch data from appropriate ‘model’ representation and finally 
set variables and eventually render the ‘view’. If in-memory representation of the 
model data is not available then the model component needs to initiate a transac-
tional operation (like using ActiveRecord or DataMapper patterns) in the inner-tier 
database services. Otherwise, in-memory update can take place and updated infor-
mation can be later pushed into the database.

Note that, application servers are typically ‘stateful’ and may need to store state 
values (e.g., login information) as session objects into another highly scalable 
key-value store. While in the inner-tier, database can be partitioned (i.e., Shards) 
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as well as replicated based on application functionality and requirements. Based 
on the replica control and placement policies, data can be fetched (if read-only) or 
updated accordingly and ultimately reply back to the model component in the MVC 
implementation at the upper-tier.

Our curiosity is to investigate how this end-to-end request–reply procedure 
access and utilise these durable and consistent data objects into different tiers of a 
typical Cloud system. And, gradually this will also clarify the system–design trade-
offs for different components in a large-scale distributed systems. Read-only user 
requests for static information (and some form of dynamic information) can be 
directly served by first-tier Cloud servers based on the data staleness bound. As du-
rability is not guaranteed in this stateless tier, stored information can be lost due to 
failures. Again, high availability (by means of rapid responsiveness) and high scal-
ability are needed to handle client requests with a typically converging consistency 
requirement, which also depend on cache expiration and freshness policies.

For read requests which cannot be served due to expiry now can be fetched 
from the in-memory data objects that reside in the application tier. Update and 
scan requests typically routed to the second-tier services and mapped according-
ly as explained earlier. In this tier, application logics are typically executed using 
the in-memory data representations which offer scalable consistency with semi-
durability. Based on the implementation mechanism of this second-tier services, 
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consistency guarantees reside in the development of soft-state services with recon-
structible data pieces. If the required data are not available, then the application 
logic initiates transactional operations into the inner-tier databases. And they usu-
ally offer strong consistency (via atomicity, consistency, isolation and durability 
(ACID) properties) and durable data (via replication services). However, scalability 
is hard to achieve in this tier as stronger form of consistency comes with the price 
of responsiveness.

2.1.1 � Why ACID Properties Are Hard to Scale

It is well known that scale-out and utilisation are far more cost-effective using thou-
sands of commodity hardware than through high-end server machines [3]. However, 
deploying user facing Web applications with typical transactional workload in such 
shared nothing architecture [41] is not trivial. Again, the underlying database sys-
tem itself needs to be replicated and/or partitioned to provide required read/write 
scalability for the end users. The problem resides in the fact that if a transaction 
needs to access data which span over multiple machines, it is pretty complex to 
guarantee ACID properties. At the same time, managing distributed transaction and 
executing them in parallel into a number of replicas to ensure atomic success or 
abort is also challenging.

Atomicity property (in ACID) requires a distributed commit protocol such as 
‘2-phase commit’ (2PC) to run across multiple machines involved in a particu-
lar transaction. In the meanwhile, the isolation property insists that the transac-
tions should acquire all of its necessary locks for the total duration of the run of 
a 2PC. Thus, each transaction (whether it is a simple or complex one) requires a 
considerable amount of time to complete a 2PC round while performing several 
round trips in a typical failure-free case. While in case of failure of 2PC coordinator, 
the total system blocks and a near-success transaction can be aborted due to a single 
suddenly failed replica.

Again, having data replication schemes in action, to achieve strong system-wise 
consistency (e.g., possibly via synchronous update) requires to make trade-off with 
the system response-time (as well as transactional throughput). Finally, in a shared-
nothing system with failing hardware ensuring durable transactional operation in 
the face of strong consistency is far away from reality and practice. As mentioned 
earlier, real system designers have to make diverse set of trade-offs to ensure differ-
ent levels of consistency, availability and latency requirements in face of scalable 
ACID semantics.

2.1.2 � CAP Confusion

Current Cloud solutions support a very restricted level of consistency guarantees 
for systems which require high assurance and security. The issue develops from the 
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misunderstanding of the design space and principle like consistency, availability and 
partition (CAP) devised by Eric Brewer [10], and later proved by Gilbert and Nancy 
[16]. According to the CAP principle, the system designer must choose between con-
sistency and availability in the face of network partition. And, this trade-off comes 
from the fact that to ensure ‘high availability’ in case of failure (i.e., crash-recovery, 
partition, Byzantine, etc.) data should be replicated across physical machines.

In recent years, due to the need for higher system throughput in the face of in-
creased workload and high scalability, distributed database systems (DDBS) have 
drawn the utmost attention in the computing industry. However, building DDBSs 
are difficult and complex. Thus, understanding of the design space alongside with 
the application requirement is always helpful for the system designers. Indeed, the 
CAP theorem has been widely in use to understand the trade-offs between the im-
portant system properties—the CAP tolerance.

Unfortunately, today’s development trend indicates that many system designers 
have misapplied CAP to build somewhat restrictive models of DDBSs. The narrower 
set of definitions presented in the proof of CAP theorem [16] may be one of the 
reasons. In their proof, Gilbert and Nancy considered ‘atomic/linear consistency’ 
which is more difficult to achieve in a DDBS while being at fault and partition tol-
erant. However, Brewer actually considered a more relaxed definition of the ‘Con-
sistency’ property referring to the case considered in the first-tier of a typical Cloud 
application as shown in Fig. 2.1.

In reality, the probability of partition in today’s highly reliable data centre is rare 
although short-lived partitions are common in WANs. So, according to CAP theo-
rem, DDBSs should provide both ‘availability’ and ‘consistency’, while there are 
no ‘partitions’. Still, due to extreme workload or sudden failure, it might be the case 
that the responsiveness of inner-tier services is lagging behind comparing to the 
requirements for the first-tier and second-tiers services. In such a situation, it would 
be better to value quick responses to the end users using cached data to be remaining 
act as available. The goal is to have a scalable Cloud system that remains available 
and responsive to the users even at the cost of tolerable inconsistency, which can be 
deliberately engineered in the application logic to hide the effects.

In his recent article [11], Eric Brewer has revisited the CAP trade-offs and men-
tioned the unavoidable relationship between latency, availability and partition. He 
argued that a partition is just time bounded on communication. It means that fail-
ing to achieve consistency in a time-bound frame, i.e. facing P, leads to a choice 
between C and A. Thus, to achieve strong ACID consistency in cases either there 
is a partition or not, a system should both compensate responsiveness (by means of 
latency) and availability. On the other hand, a system can achieve rapid responsive-
ness and high availability within the same conditions while tolerating acceptable 
inconsistency.

To this end, it is fair enough to suggest that design decisions should be made 
based on specific business requirements and application goals. If an application 
strives for consistent and durable data, all time scalability will be limited, and high 
availability will not be visible (due to low responsiveness). Otherwise, if the target 
is to achieve scalability and high availability, the application should be able to live 
with acceptable level of inconsistency.

2  Distributed Database Management Systems
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In Sect. 2.2, important components and concepts of distributed databases, i.e., 
transactional properties, are discussed. Strategies to update replicated data and dif-
ferent replication architectures, partitioning schemes and architectures along with 
classifications based on update processing overhead and in context of multi-tier 
Web application have been elaborated in Sect. 2.3. In Sect. 2.4, the evolution of 
modern distributed database systems has been explored in parallel with the archi-
tectural design choices and innovative management of replicated and partitioned 
databases in details. Finally, Sect. 2.5 concludes with the remarks on the important 
characteristics (i.e., data replication and partitioning) of modern distributed data-
base systems which have been shaped the Cloud paradigm over the past years and 
thus provided the opportunity to build Internet-scale applications and services with 
high availability and scalability guarantees.

2.2 � Background of Distributed Database Concepts

In the following sub-subsections, the building blocks of a modern distributed da-
tabase management system is discussed, which will eventually help the reader to 
understand the ACID properties and their implications in great extent.

2.2.1 � Transaction and ACID Properties

A transaction Ti is a sequence of read operation ri( x) and write operation wi( x) on 
data items within a database. Since, a database system usually provides ACID prop-
erties within the lifetime of a transaction, these properties can be defined as shown 
below:

•	 Atomicity—guarantees that a transaction executes entirely and commits, or 
aborts and does not leave any effects in the database.

•	 Consistency—assuming the database is in a consistent state before a transaction 
starts, it guarantees that the database will again be in a consistent state when the 
transaction ends.

•	 Isolation—guarantees that concurrent transactions will be isolated from each 
other to maintain the consistency.

•	 Durability—guarantees that committed transactions are not lost even in the case 
of failures or partitions.

In contrast to a stand-alone database system, a replicated database is a distributed 
database in which multiple copies of same data items are stored at multiple sites. 
And, replicated database systems should be acted as a ‘1-copy equivalence’ of a 
non-replicated system providing ACID guarantees. Thus, within a replicated envi-
ronment the ACID properties can be redefined as below:
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•	 1-copy atomicity—guarantees that a transaction should have the same decision 
of either all (commit) or nothing (abort) at every replicas which it performs the 
operation. Thus, some form of ‘agreement protocol’ is necessary to run among 
the replicas which should force this guarantee.

•	 1-copy consistency—guarantees that a consistent database state should be main-
tained across all replicas in such a way that the restrictions imposed by the ‘in-
tegrity constraints’ (e.g., primary/foreign key) while executing a transaction, are 
not violated after it ends.

•	 1-copy isolation—guarantees that concurrent executions of a set of transactions 
across multiple replicas to be equivalent to a serial execution (i.e., order) of this 
set (as if the set of transactions are running serially in a non-replicated system). 
Also defined as the ‘1-copy-serialisability’ (1SR) property.

•	 1-copy durability—guarantees that when a replica fails then later recovers, it 
does not only require to redo the transactions that had been committed locally 
but also make itself up-to-date with the changes that committed globally during 
the downtime.

2.2.2 � Distributed Transactions and Atomic Commit

When a transaction attempts to update data on two or more replicas, 1-copy-atomi-
city property needs to be ensured which also influences consistency and durability 
properties of the data item. To guarantee this, 2PC protocol [17] is typically used. 
As shown in Fig.  2.2, initially 2PC is originated from the local replica and the 
scheme includes all the other remote replicas that hold a copy of the data items that 
are accessed by the executing transaction.

At phase-1, the local replica sends a ‘prepare-to-commit’ message to all partici-
pants. Upon receiving this message, the remote replica, if it is willing to commit 
replies with a ‘prepared’ message, otherwise sends back an ‘abort’ message. The 
remote replicas also write a copy of the result in its persistent log which can be 
used to perform the ‘commit’ in case of failure recovery. While the coordinating 
local replica receive ‘prepared’ messages from all of the participants (means all 
remote replicas have persistently written the result into log), only then it enters into 
phase-2.

Replica-A Replica-B 

Replica-A 
(Transac�on Coordinator) 

Phase-1 (Prepare) 

Replica-A Replica-B 

Replica-A 
(Transac�on Coordinator) 

Phase-2 (Commit) 

Fig. 2.2   The 2-phase commit 
protocol
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The second round message from the coordinator tells the replicas to actually 
‘commit’ the transaction. 2PC aims to handle every possible failure and recovery 
scenarios (like in case of the coordinator fails); thus, transactions are often ‘blocked’ 
for an unbounded amount of time. ‘3-phase commit’ [40] protocol was proposed 
lately which is non-blocking. However, it requires more costly implementation in 
real system as well as only assumes fail-stop-failure model. Thus, in face of net-
work partition, the protocol simply fails to progress. A more elaborate description 
of distributed transaction processing can be found in [8].

Note that, both 2PC and 3PC protocols are within the solution family of Con-
sensus [50] problems. More recently, Paxos [27, 51], which is another family of 
protocols (more resilient to failures) to solve the consensus problems, has received 
much attention in both academia and industry.

2.2.3 � Distributed Concurrency Control

Concurrency control mechanism [8] in a database system maintains an impression 
that concurrent transactions are executing in isolation. There are two families of 
concurrency control protocols that exist: ‘pessimistic’ and ‘optimistic’. Pessimistic 
approach is typically implemented using ‘locking’. A ‘shared lock’ is acquired by a 
transaction to get read-access in the database record (typically the whole ‘row’ in a 
database ‘table’) and an ‘exclusive lock’ is acquired to have write-access. If a lock 
cannot be granted by the concurrency control manager, then the involving transac-
tion is blocked in waiting until conflicting locks are released. A shared lock can be 
granted if there are at most other shared locks currently held on to a record.

On the other hand, an exclusive-lock can only be granted if there are no other 
locks currently on hold. Thus, read operations are permitted to execute concurrently 
while write operations must go through serially. Also note that read-only operations 
may also ‘block’ during a period of exclusive-lock holds by another transaction. Al-
ternatively, a write operation may also ‘block’ during a period of shared-lock holds 
by another transaction. In order to ensure strict serialisability, all acquired locks are 
typically released only after the transaction commit or abort. This total mechanism 
can be implemented through either using ‘2-phase locking (2PL)’ or ‘strong strict 
2-phase locking (SS2PL)’ protocol. In phase-1, all required locks are requested and 
acquired step-by-step from the beginning of a transaction towards its execution. In 
phase-2, all locks are released in one step based upon commit/abort decision.

As shown in Fig. 2.3, deadlocks can be created by due concurrent transactions 
racing to acquire locks. In such situations, the concurrency control manager should 
be able to detect such deadlocks. 2PL/SS2PL can still be used to guarantee 1-copy 
serialisability; however, it pays the costly penalty in system throughput and latency, 
i.e., responsiveness. One of the conflicting transactions has to be aborted in all rep-
licas to release its locks, which allow the other transaction to proceed and complete 
its operations. Sometimes, locking may create unwanted delays through blocking, 
while the transactional operations could be serialisable.
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Alternatively, simple ‘atomic commitment protocol’ could be used where all the 
transactional executions are done within an atomic operation in the participating 
replicas. Optimistic approach on the other hand, allows concurrent transactions to 
proceed in parallel. A transaction can create its local copy and perform all the nec-
essary update operations in it. At the end of transaction, a validation phase takes 
place and checks whether the read-sets of the considered transaction overlaps with 
the write-set of any transaction that has already successfully validated. If true, it has 
to be aborted, otherwise it can be committed successfully via writing its changes 
persistently back to the database.

In DDBS with replication mechanism enabled, a distributed lock manager is 
required which will try to detect and resolve distributed deadlocks among conflict-
ing replicas in a pessimistic approach. Atomic commit protocols like 2PC/3PC 
could still be used along with 2PL/SS2PL. One such approach is to achieve global 
serialisation order instead of distributed locking by using 2PC atomic commit glob-
ally while locally applying 2PL/SS2PL. However, achieving global serialisation 
order is costly and pays the price with restricted system performance. On the other 
hand, an optimistic approach would try to perform distributed or centralised conflict 
detection and resolution procedure to rescue. Whichever the case is, the bottom line 
is implementing distributed concurrency control through locking always creates 
‘race condition’ locally which may lead to deadlocks or alternatively require costly 
conflict and serialisation order management schemes globally.

Cursor stability (CS) is another kind of concurrency control mechanism which 
uses short ‘read’ locks. A read lock on a data item x is acquired and released directly 
after the read operation is executed. In situations when a data item is accessed 
by a read-only operation simultaneously and a write operation is blocked for an 
unbounded amount of time CS can be used in rescue. Short ‘read’ locks gradu-
ally upgraded to exclusive write locks to prioritise the blocked write operations to 
complete. However, inconsistencies may occur due to ‘lost update’ from another 
transaction in progress.
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2.2.4 � Multi-Version Concurrency Control and Snapshot Isolation

In multi-version concurrency control (MCC or MVCC) approach, a database sys-
tem always performs update operation by creating a new version of the old data 
item instead of overwriting it. MVCC typically utilises timestamps or transaction 
IDs in increasing order to implement and identify new data version copies. The ben-
efit of using MVCC is reads will be never blocked by write operations. Read-only 
access in the database will always retrieve a committed version of the data item. 
Obviously, the cost incurs in the storing of multiple versions of the same data items. 
Database that supports MVCC implementation typically adopts snapshot isolation 
(SI) [8] which performs better with low overhead working with such multiple data 
versions. However, SI is less restrictive in nature than serialisability thus may allow 
non-serialisable operations leading to anomalies. In practice, commercial systems 
also provide lower level of isolation as it is always hard to scale with increasing 
number of concurrent transactions with serialisability.

SI assumes whenever a transaction writes a data item x, it creates a new version 
of x; and when the transaction commits, the version is installed. Formally, if trans-
action Ti and Tj both write data item x, then Ti commits before Tj and if no other 
transaction commits in between Ti and Tj and writes x, then Ti’s version is directly 
ordered before Tj’s version of x. SI adopts two important properties:

•	 Snapshot reads—provides each transaction a snapshot of the database as of the 
time it starts, i.e., last installed version. It guarantees high transaction concur-
rency for read-only operations and reads never interfere with writes.

•	 Snapshot writes—writes that occur after the transaction are not visible. It disal-
lows two concurrent transactions (neither commits before the other starts) to 
update the same data item. It avoids well-known anomalies that can occur in the 
use of lower-level isolation guarantee.

2.2.5 � Isolation Anomalies

Based on the above discussion on different concurrency control mechanism and 
isolation levels, it would be better to introduce few isolation anomalies which are 
typically used to appear in the system [21, 8]:

•	 Dirty read—reading an uncommitted version of a data item. For example, a 
transaction Tj reads an uncommitted version a data tuple x which has been up-
dated by another transaction Ti. However, if Ti later aborts due to any reason, this 
will also force Tj to abort as well. This is called ‘cascading aborts effect’.

•	 Lost update—overwriting updates by concurrent transactions. For example, Tj 
writes (i.e., overwrites) x based upon its own read without considering the new 
version of x created by Ti. Ti’s update will be lost.

•	 Non-repeatable read—reading two different versions of a data item during a 
transaction execution period.
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•	 Read skew—if MVCC is allowed, then it might be possible that by reading dif-
ferent versions of multiple data items which are casually dependent on any ap-
plied constraint, is violated.

•	 Write skew—similar to read skew, constraints between casually dependent data 
items may be violated due to two concurrent writes.

2.3 � Replication and Partitioning Mechanisms

2.3.1 � Replica Control Strategies

Replica control strategies can be categorised based on two primary dimensions: 
where updates will be taken place and when these updates will be propagated to 
remote replicas. Considering these criteria, the classification based on [14] is shown 
in Table 2.1. Considering the ‘when’ dimension, there can be two classes of replica 
control mechanisms. One is the ‘eager’ replication that is a proactive approach, 
where tentative conflicts between concurrent transactions are detected before they 
commit while synchronously propagate updates among replicas. Thus, data consis-
tency can be preserved while in the cost of high communication overhead which 
increases the latency. It is also called the active replication. The second is the lazy 
replication which is a reactive approach which allows concurrent transactions to 
execute in parallel and make changes in their individual local copies. Therefore, 
inconsistency between replicas may arise as update propagations are delayed by 
performing asynchronously after the local transaction commits. It is also called as 
passive replication.

Again, based on the ‘where’ dimension, both ‘eager’ and ‘lazy’ replication 
scheme can be further divided into two categories. One is the primary copy update 
which restricts data items to be updated in a centralised fashion. All transactions 
have to perform its operations in the primary copy first which then can be prop-
agated either synchronously or asynchronously to other replicas. This scheme is 
benefited from a simplified concurrency control approach and reduces the number 
of concurrent updates in different replicas. However, the single primary copy itself 
may be a single point of failure and potentially create bottleneck in the system. On 

Table 2.1   Typical classification of replica control strategies [18]
Propagation vs. 
ownership

Eager Lazy Remark

Primary copy 1 transaction
1 owner

N transactions
1 owner

Single owner (can be 
potential bottleneck)

Update anywhere 1 transaction
N owners

N transactions
N owners

Multiple owner (harder 
to achieve consistency)

Synchronous update
(converging consistency)

Asynchronous update 
(diverging consistency)
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the other hand, the second category of update anywhere approach allows transac-
tional operations to be executed at any replicas in a distributed fashion. Coordina-
tion between different replicas is required which may lead to high communication 
cost while using eager update propagation. While using lazy propagation poten-
tially leads to potential inconsistencies which require expansive conflict detection 
and reconciliation procedure to resolve.

A trade-off is typically considered where high performance can be achieved by 
sacrificing consistency via using ‘lazy’ replication schemes. Alternatively, one can 
get consistency in the price of performance and scalability via using ‘eager’ replica-
tion scheme. Further classification of replica control mechanisms can be deduced 
in this regard. One of the popular replication technique is to implement read-one-
write-all (ROWA) solution where read operations acquire local locks while write 
operations need distributed locks among replicas.

The correctness of the scheme can be satisfied with ‘1SR’. 2PC and SS2PL are 
also required to ensure atomic transactional commits. An improved version of this 
approach is read-one-write-all-available (ROWAA) which improves the concurren-
cy control performance in the face of failure. Quorum-based replication solutions are 
also an alternative choice which typically reduces the replication overhead through 
only allowing a subset of replicas to be updated in each transaction. However, quo-
rum systems also do not scale well in situations where update rates are high. An 
excellent analytical comparison can be found at [21] regarding this analogy.

In [18], Jim Gray was the first to explore the inherent dangers of replication in 
these schemes when scalability matters. Gray pointed out that as the number of rep-
licas increase, it also exponentially increases the number of conflicting operations, 
response time and deadlock probabilities.

For ‘eager’ schemes, the probability of deadlocks increased by the power of three 
of the number of replicas in the system. Again, disconnected and failed nodes also 
cannot use this approach. In the ‘lazy’ scheme, the reconciliation rates (in update 
anywhere) and the number of deadlocks (in primary copy) sharply rise with the 
increase of the number of replicas.

Alternatively, Gray [18] proposed the convergence property instead of strict seri-
alisability provided by the ACID semantics. It considers that if there are no updates 
within a sufficient amount of time, then all participating replicas will gradually 
converge to a consistent state after exchanging ongoing update results. He coined 
the examples of Lotus Notes, Microsoft Access and Oracle 7 which were typically 
proving such kind of convergence property at that time.

Commercial implementation of replica control schemes also followed the ‘lazy’ 
approaches and offered different options for appropriate reconciliation procedure 
for a long time. Research efforts were also engaged in solving and optimising the 
inconsistencies that arise from ‘lazy’ approaches like weak consistency models, epi-
demic strategies, restrictive node placement, using ‘lazy’ primary approach and dif-
ferent kinds of hybrid solutions. However, maintaining consistency over the impacts 
of inconsistency is much simpler to implement, but hard to optimise for scalability.

To meet this challenge, Postgres-R [22] was developed which provides replication 
through an ‘eager’ approach using group communication primitives, thus totally 
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avoids the cost of distributed locking and deadlocks. The Postgres-R approach uses 
a ‘shadow copy’ of the local data item to perform updates, check integrity con-
straints, identify read-write conflicts and fire triggers. The changes that are made 
into a shadow copy propagate to the remote replicas at commit time, thus vastly 
decreases the message/synchronisation overhead in the system. Read operations are 
always performed locally as following a ROWA/ROWAA approach.

Thus, there are no overheads for read operations in the system. Update (i.e., write) 
operations of a transaction are bundled together into a write-set message and multi-
cast in total order to all replicas (including itself) to determine the serialisation orders 
of the running transactions. Each replica uses this order to acquire all locks required 
by that transaction in a single atomic step. The total order is used to serialise the read/
write conflicts at all replicas at the same time. Thus, by acquiring locks in the order 
in which the transactions arrive, all replicas are performing the conflicting operations 
in the same order. As a plus point, there will be no chance for deadlocks. In case of 
read/write conflicts, reads are typically aborted as a straightforward solution while 
different optimisations can also be possible. After completion/abortion of the write 
operations in the local replica, the decision is propagated to the remote replicas.

Performance results from [22] indicate that Postgres-R can scale well with 
increasing workloads and at the same time boost system throughput by reducing 
communication overheads and by eliminating the possibility of deadlocks. A more 
detail of this work can be found at [23]. However, replica control, i.e., coordination 
is still a challenging task in practical systems and two essential properties always 
need to ensure: (1) Agreement—every non-faulty replicas receive every intended 
request and (2) order—every non-faulty replica processes the request it receives in 
the same order. Interested readers can find an elaborate discussion in [51] on how 
we can maintain these properties, thus understand how state machine replication 
works using consensus protocol like Paxos [27] and what determinism in database 
replication really means.

2.3.2 � Replication Architectures

One of the most crucial choices is ‘where’ to implement the replication logic. It 
might be implemented tightly with the database in its kernel. Alternative approach 
might be using a middleware to separate the replication logic from the concurrency 
control logic implemented in the database. Based on these choices, replication logic 
can be implemented in the following ways (see Fig. 2.4):

•	 Kernel-based—replication logic is implemented in the database kernel and 
therefore has the full access to database internals. The benefit is that clients can 
directly communicate with the database. On the other hand, any change in the 
database internals (e.g., concurrency control module) will directly impact the 
functionalities of replica control module. Again, refactoring database source 
code is cumbersome and the implementation is always vendor specific. Also 
called as ‘white-box replication’.

2  Distributed Database Management Systems
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•	 Centralised middleware-based—replication logic can be separately implement-
ed into a middleware layer. It provides much flexibility and independence to 
integrate with any database. However, the functionalities of concurrency control 
module have to be re-implemented. It is also called as ‘black-box replication’. 
A modified version of this scheme can be called ‘gray-box replication’ where the 
database itself should expose the required concurrency control functionalities 
through specific interface for the middleware to utilise in replica control scheme.

•	 Replicated centralised middleware-based—to avoid single point of failure and 
bottlenecks, backup middleware can be introduced. However, failover mecha-
nisms are hard to implement to support hot-swap for running transactions and 
coordinating with the application layer modules.

•	 Distributed middleware-based—every database replica is coupled with a mid-
dleware instance and act as a single unit of replication. In case of failover, the 
total unit can be swapped. Again, the approach is more suitable in WANs reduc-
ing the overhead of clients to communicate with the centralised middleware each 
time it wants to initiate transactional operations.

2.3.3 � Partitioning Architecture

It is obvious that replicating data to an extent will increase the read capacity of the 
system. However, after a certain replication factor, it might be difficult to main-
tain consistency even if ‘eager’ replication and synchronous update processing are 
used. On the other hand, write capacity can be scaled through partial replication 
where only subsets of nodes are holding a particular portion of the database. Thus, 
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write operations can be localised and the overheads of concurrent update processing 
can be reduced. Sharding is a technique to split data into multiple partitions (i.e., 
Shards). There are two basic ways of partitioning data as shown in Fig. 2.5:

•	 Vertical partitioning—by splitting the table attributes (i.e., columns) and thus 
creating tables with small number of attributes. It only offers limited scalability 
in spite of the ease of deployment. The main idea is to map different functional 
areas of an application into different partitions. Both the datasets and workload 
scalability are driven by different functional aspects of an application. Thus, it 
is necessary to pick up the right tables and column(s) to create the correct parti-
tion, because the ‘join’ operations in a relational database will now need to be 
performed within the application code. Hence, the underlying database will no 
longer support relational schema, and apparently the application scalability is 
restricts to its hosting node’s resource capacity.
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•	 Horizontal partitioning—by splitting the tuples (i.e., rows) across different 
tables. It allows scaling into any number of partitions. The tuples are partitioned 
based on a key which can be hash based, range based or directory based. Join 
operations are similarly discouraged to avoid cross-partition queries. The per-
formance of write operations mostly depends on the appropriate choice of shard 
key. If sharding is done properly, then the application controller can route the 
write operations towards the right server.

The bottom line is that sharding a database results in partitioned datasets spread 
over single-to-multiple data centres, thus forcing the beauty of relational model to 
reduce. In recent years, NoSQL communities have picked up the trend to abandon 
relational properties and SQL in favour of high-scalability by only supporting key-
value type accesses in their data stores. However, many researchers have already 
pointed out that abandoning SQL and its feature has nothing to do scalability. 
Alternatively, many have also indicated ways where careful system and applica-
tion design can lead to the desired level of scalability [39]. There has been a debate 
going on in the recent years between these two communities and interested readers 
may head towards [42, 44, 28] to get a glimpse of it.

2.3.4 � Classification Based on Update Processing Overheads

Replication architecture also depends on ‘how’ data is actually replicated. Depending 
on the overheads incurred by the update processing operations, data items can be 
replicated into all nodes participating in the system or into a subset of nodes. The 
former one is called full replication while the later one is called partial replication. 
It is to be noted here that the primary overhead in replication resides in the update 
processing operations for the local and remote submissions.

There are two basic choices: symmetric update processing and asymmetric 
update processing. The former choice requires a substantial amount of resources 
(i.e., CPU, I/O in the remote replicas); it may also initiate divergence consistency 
for non-deterministic database operations (like updating a value with current time). 
Alternatively, in the asymmetric update processing, the operations are first per-
formed locally and only the changes (along with corresponding primary identifiers 
and after-image values) are bundled together in the write sets, then forwarded to the 
remote replicas in a single message. This approach of processing still holds even if 
the system is using ‘eager’/‘active’ replication scheme.

Depending on the update processing approaches, we can consider the trade-offs 
between using the full replication and partial replication schemes. Full replication 
technique requires an exact snapshot of the local database into every other remote 
replicas, which may face high-system overheads in the face of increased update 
workloads. Both symmetric and asymmetric update processing introduce a level of 
overhead as data needs to be updated into every replicas. However, by using partial 
replication scheme, one can reduce this overhead and localise the update processing 
based on their origination.
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Surprisingly, partial replication also comes with its own challenges. There are 
several variants of the partial replication, e.g., (1) pure partial replication—where 
each node has only copies of a subset of the data items, but no node contains a full 
copy of the total database and (2) hybrid partial replication—where a set of nodes 
contain a full set of the data items, while another set of nodes are partial replicas 
containing only a fraction of the data sets.

Now, depending on the transaction, it might want to access data items on dif-
ferent replicas in a pure partial replication scheme. It is non-trivial to know which 
operation will access which data items in the partial replicas. Thus, flexibility is 
somehow reduced by typical SQL transactions which often need to perform ‘join’ 
operations between two tables. However, if the database schema can be partitioned 
accordingly and workload pattern is not changing frequently, then the benefits of 
localising of update processing can be revealed.

Considering the case of hybrid partial replication, update operations need to be 
applied fully in the replicas which contain the full set of database. With the increase 
in the number of transactions, these nodes might create hotspots and bottlenecks. 
The beauty of the hybrid approach is that while read operations can be centralised 
to provide more consistent snapshots of data items, the write operations can be 
distributed among partial replicas to reduce writing overheads. The bottom line is 
that it has been always challenging to know the transactional properties (like which 
data items need to access) and apply partial replication accordingly. However, if the 
application requirements are understood properly and workload patterns are more 
or less static, then partial replication can exploit the scalability goals.

2.3.5 � Classification Based on Multi-Tier Web Architecture

Recalling the example drawn in Fig. 2.1, real-life Web applications are typically 
deployed in multi-tier Cloud platforms. Each tier is responsible to perform spe-
cific functionalities and coordination between these tiers and is necessary to pro-
vide the expected services to the end users. Hence, replicating a single tier always 
restricts scalability and availability limits. Again, apart from being read-only or 
update operations, workloads can be compute intensive (require more resource and 
scalability at the application/logic tier) or data intensive (require more ability in the 
inner database tier).

Again, considering failure conditions, replication logic should work in such 
ways that the interdependencies between multiple tiers should not lead to multiple 
workload execution both in the database and application servers [24]. For exam-
ple, despite failure, ‘exactly-one’ update transaction should be taken place in the 
corresponding database tier and its entire replica for a single transactional request 
forwarded from the application tier. Based on this analogy, there can be two archi-
tectural patterns for replicating multi-tier platforms [20] as listed below:

•	 Vertical replication pattern—this pairs one application and one database server 
to create a unit of replication. Such units can be then replicated vertically to 
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increase the scalability of the system. The benefit of this approach is that replica-
tion logic is transparent to both application and database servers; thus, they can 
work seamlessly. However, challenges reside in the fact that particular applica-
tion functionalities and corresponding data need to be partitioned appropriately 
across the whole system to get the target scalability. Much engineering cost and 
effort are needed for such kind of implementation; thus, in reality, these systems 
can be still seen very few in numbers.

•	 Horizontal replication pattern—here, each tier implements replication indepen-
dently and requires some ‘replication awareness’ mechanism to run in between 
to make necessary coordination. In contrast to the vertical replication pattern, the 
beauty here is that one can scale flexibly based on the necessity across individual 
tier. However, without any awareness support to know whether the cooperating 
tier is replicated or not, it is not able to provide the utmost performance the sys-
tem could achieve. In reality, this type of systems can be seen almost everywhere 
in the computing industry; however, they are still in lack of appropriate replica-
tion awareness mechanism which is still left as an open challenge.

To support these two categories, other architectural patterns also need to be consid-
ered like replica discovery and replication proxy, session maintenance, multi-tier 
coordination, etc. Several examples of real implementations based on these patterns 
can be found at [20, 33, 34, 35]. However, replication control via multi-tier coordi-
nation is still an open research problem both in academia and industry.

2.4 � Distributed Database Systems in the Cloud

2.4.1 � BASE and Eventual Consistency

The BASE (Basically Available, Soft state, Eventually consistent) acronym 
[36] captures the CAP reasoning. It devises that if a system can be partitioned 
functionally (by grouping data by functions and spreading functionality groups 
across multiple databases, i.e., shards), then one can break down sequence of opera-
tions individually and pipeline them for asynchronous update on each replicas while 
responding to the end user without waiting for their completion. Managing database 
transactions in a way that avoids locking, highly pipelined, and mostly depends on 
caching raise all kinds of consistency worries into surface.

While ACID can be seen as a more pessimistic approach, BASE, in contrast, 
envisions for a more optimistic approach. Availability in BASE systems is ensured 
through accepting partial partitions. Let us consider a ‘user’ table in a database 
which is sharded across three different physical machines by utilising user’s ‘last_
name’ as a shard key which partitions the total datasets into the following shards 
A-H, I-P and Q-Z. Now, if one of the shards is suddenly unavailable due to failure or 
partition, then only 33.33 % users will be affected and the rest of the system is still 
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operational. But, ensuring consistency in such kind of system is not trivial and not 
readily available like ACID systems. Thus, the consideration of relaxed consistency 
guarantees arises. One can consider achieving consistency individually across func-
tional groups by decoupling the dependencies between them. As proposed in [36], 
a persistent pipelined system can tackle the situations where relative ordering and 
casual relationship is necessary to maintain or one consider de-normalised database 
schema design.

The ‘E’ in BASE which stands for ‘eventual consistency’ [45, 46] guarantees that 
in the face of inconsistency the underlying system should work in the background to 
catch up. The assumption is that in many cases it is hard to distinguish these incon-
sistent states from the end-user perspective which is usually bounded by different 
staleness criteria (i.e., time-bounded, value-bounded or update-based staleness). 
Later, Eric Brewer [11] had also argued against locking and actually favoured the 
use of cached data but only for ‘soft’ state service developments, while DDBSs 
should continue to provide strong consistency and durability guarantees. However, 
this implication of inconsistency requires a higher level of reconfigurability and 
self-repair capability of a system that tends to expansive engineering effort.

In [45], Werner Vogels from Amazon described several variations of eventual 
consistency which can also be combined together to provide a stronger notion while 
ensuring client-side consistency as follows:

•	 Casual consistency—guarantees that if there is any casual dependencies between 
two processes, then a committed update by one process will be seen by another 
process and can be superseded by another update.

•	 Read-your-writes consistency—guarantees that after an update of a data item, 
consecutive reads always get that updated value.

•	 Session consistency—guarantees that as long as the session exist, read-your-
write consistency can be provided.

•	 Monotonic read consistency—guarantees if a process reads a particular value 
of an object, then any subsequent reads will not see any previously committed 
value.

•	 Monotonic write consistency—guarantees to serialise writes by the same process.

At the server-side consistency, Vogels [45] argues that one should look at the flow 
of update propagation. One can consider a quorum-based replicated DDBS [35] 
with N nodes where W nodes replicas are responsible to accept a write and R repli-
cas are contacted while performing a read. Then, if W + R > N, then read and write 
sets are always overlapped, and the system provides stronger form of consistency. 
Again, if W < ( N + 1)/2, then there is a definite possibility of conflicting writes as the 
write sets do not overlap. On the other hand, if the read and writes do not overlap as 
W + R < = N, then a weaker form of eventual consistency is provided by the system 
where stale data can be read. In case of network partitions, quorum systems can still 
handle read and write requests separately as long as these sets can communicate 
with a group of clients independently. And, later reconciliation procedures can run 
to manage conflicting updates within replicas.
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In [9], Ken Birman has effectively shown ideas that it is possible to develop scal-
able and consistent soft-state services for the first tier of the Cloud system if one is 
ready to give up durability guarantee. He argues that the ‘C’ from the CAP theorem 
actually relates to both ‘C’ and ‘D’ in ACID semantics. Therefore, by sacrificing 
durability, one can scale through first to inner-tier Cloud services while at the same 
time can guarantee strong consistency.

In reality, systems that utilises group communication semantics (e.g., mem-
bership management, message ordering, failure coordination, recovery, etc.) can 
achieve consistent replication schemes to support both high availability and high 
scalability. Google’s Spanner [14] is one of the most prominent examples of this 
kind. Although these systems can exploit the requirements for first-to-inner service 
tiers, the consistency guarantee usually comes with a high engineering cost and 
lacks generalised patterns/solutions.

Lastly, based on the current usage of Cloud systems, inconsistencies can some-
what be tolerated for improving read/write performances under increasing work-
loads and handling partition cases. However, the level of scalability that Cloud 
systems can achieve is a long cherished dream for system which prefers high 
assurance (i.e., both availability and consistency), reliability and security.

2.4.2 � Revisiting Architectural Design Space

To overcome the confusion that arises from the CAP theorem, it is necessary to 
revisit the design space in the light of distributed replication and data partitioning 
techniques. This insight will also enable to clarify the relationship between the re-
lated challenges with ACID and BASE as discussed above. In [1], Daniel Abadi was 
the first to pinpoint the exact confusion that arises from CAP and clarifies the rela-
tionship between consistency and latency. He proposed a new acronym PACELC 
which he believed to be the actual representation of reality.

PACELC in a single formulation: if there is a partition (P), how does the system 
trade-off exist between availability and consistency (A and C); else (E) when the 
system is running as normal in the absence of partitions, how does the system trade-
off exist between latency (L) and consistency (C)?

The PACELC formulation is shown in Fig. 2.6 under several considerations like 
based on replication factor, consistency level, system responsiveness and partition-
tolerance level. We will explain this phenomenon with respect to PACELC classi-
fication for distributed system design. As Abadi explained in [2], there can be four 
possible system types as follows:

•	 A-L systems—always give up consistency in favour of availability in case of 
partition otherwise prefer latency during normal operating periods. Example– 
Apache Cassandra [4], Amazon’s DynamoDB [3] and Riak [38] (in their default 
settings).

•	 A-C systems—provide consistent reads/writes in the typical failure-free scenar-
ios; however, in failure cases, consistency sacrifices (for limited period until 
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the failure recovers) would remain available. Example: MongoDB [31] and 
CouchDB [5].

•	 C-L systems—provide baseline consistency (as defined by the system, e.g., time-
line consistency) for latency during normal operations, while in case of partitions 
it prioritises consistency over availability (or, being slow responsiveness which 
imposes high latency). Example: Yahoo! PNUTS [13].

•	 C-C systems—disallow to give up consistency either in the case of partition or 
not and thus incur availability (i.e., responsiveness), and latency costs as the 
trade-off. Example: BigTable [12]/HBase [6] and H-Store [19]/VoltDB [46].

This is to be noted here that, completely giving up availability is not possible at all; 
otherwise it will be a useless system. Availability actually spans over two dimen-
sions: (1) resilient to failures, and (2) responsiveness in both failure and failure-free 
cases. Interested readers are also encouraged to read Dan Weinreb’s blog entry [49] 
which further clarifies how availability and latency relate to each other. Similarly, 
completely inconsistent systems are also useless; thus, the level of consistency var-
ies in between its weaker and stronger forms. Let us now discuss these system 
design choices in more detail under the light of the above mentioned considerations.

2.4.2.1 � Consistency Factor

Stronger consistency models which are tightly coupled with a DBMS always ease 
the life of the application developer. Depending on the application requirement, giv-
ing up ACID properties in favour of BASE is also inadequate in many situations. 
However, stronger consistency levels can also be viable to achieve by decoupling 
logic from the underlying DBMS and implementing along with the replica control 
scheme.

Quorum-based systems are one of the possible choices in this regard where one 
can control the level of consistency by restricting read/write quorum requirements. 
Alternatively, consistency can be ensured in a much fine-granularity [37]. Ensuring 
entity-level or object-level consistency within a single database can also provide a 
notion of ACID semantics. Furthermore, entity groups can be considered as a unit 
of consistency and even multiple groups might act as a unit.
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A-L systems which can be viewed as the BASE equivalent tend to provide dif-
ferent variations of eventual consistency all the time. Similar adaption is also true 
while the system design space gradually shifts towards C-L systems in failure cases. 
On the other hand, A-C and C-C systems by default tend to achieve stronger form 
of consistency either in the case of failure or not. However, as indicated earlier 
providing ACID level consistency (i.e., serialisability) is challenging and costly in 
DDBSs. Therefore, providing soft level of consistency guarantees like snapshot 
isolation or even timeline consistency (as provided in Yahoo’s PNUTS [13]) seems 
to be more adaptable in such scenarios.

2.4.2.2 � Responsiveness Factor

Responsiveness is the perceived ‘delay’ between when an end-user or internal sys-
tem component takes an action such as clicking on a link or forwarding a request, 
and when the user/component perceives a response. It wraps up two other technical 
pieces, namely: (1) latency—initial delay to start receiving replies for a correspond-
ing request, and (2) throughput—total time taken for all the contents of a reply to be 
received completely. These factors are imposed by the service level objective (SLO) 
goals while considering the design spaces.

One can consider the ‘8 second rule’ [30] which still fits well to measure the 
responsiveness of modern Cloud applications. It states that ‘if a computer system 
responds to a user action within 100 ms, it’s perceived as ‘instantaneous’; within 
1 s, the user will still perceive a cause-and-effect connection between their action 
and the response, but will perceive the system as ‘sluggish’; and after about 8 s, the 
user’s attention drifts away from the task while waiting for a response’.

Based upon this observation, A-L systems should be chosen where strict and 
rapid responsiveness is the requirement. Both the A-C and C-L systems will be 
better on ensuring flexible responsiveness requirements in the face of failure and 
failure-free cases, respectively. C-C systems pay the costs to keep the system up-
to-date and consistent, therefore, slow responsive will be incurred while they are 
overloaded.

2.4.2.3 � Partition-Tolerance Factor

Partitions are not always created from network/communication outage. Sometimes, 
it might be the case that the system is overloaded and may not be able to respond 
within the timeout period. Improper network configurations in the intermediate 
nodes can also cause similar results. Again, the possibility of partition highly de-
pends on whether the system is deployed in a WAN across multiple data centres 
or LAN within a single data centre. An interesting discussion of practical database 
errors which can lead to partitioned networks in DDBS can be found in [43].

Primarily based on the deployment strategies, one can consider choosing A-L 
or C-L system to deploy across multiple data centre distributed over WAN due to 
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their latency awareness during normal operation periods. On the other hand, A-C 
and C-C systems will be more preferred in deploying within single data centre over 
the LAN.

2.4.2.4 � Replication Factor

The scalability of today’s Cloud systems and DDBS primarily depends on how they 
are replicated to provide high read/write throughput, although increasing the num-
ber of replicas blindly will not make the success. It may create potential bottlenecks 
and unresponsiveness in the system. As discussed in [2], three types of replication 
strategies are popularly seen in today’s deployment, viz.: (1) Data updates sent to 
all replicas at the same time (synchronous), (2) data updates sent to an agreed-upon 
location first (synchronous/asynchronous/hybrid), and (3) data updates sent to an 
arbitrary location first (synchronous/asynchronous).

Considering the above analogies, option-1 provides stronger consistency level in 
the costs of increased latency and communication overhead. Thus, it might primari-
ly be suitable for C-C systems. Option-2 with synchronous-update propagation also 
ensures consistency but only limited to while deployed in LAN/single data centre. 
With asynchronous propagation, option-2 provides several options for distributing 
read and write operations. If a primary/master node is responsible for providing 
read replies and accepting writes, then inconsistencies can be avoided. However, 
it may be the source of potential bottleneck in case of failures. On the other hand, 
if reads are served from any node, while the primary node is only responsible for 
accepting writes, then read results probably reflect inconsistencies.

A combination of synchronous and asynchronous is also possible considering a 
quorum-based replication strategy. If R + W > N, then the system will provide consis-
tent results while gradually divergent in the condition where R + W < = N. Both A-L 
and C-L systems are well suited for the approaches mentioned above under option-2 
as they are flexible and dynamic with latency-consistency trade-offs. Option-3, 
which is similar to option-2 apart from preferring any node to accept reads and 
writes, can also be used either in a synchronous or asynchronous fashion. While 
synchronous setting can incur increased latency, potential inconsistencies will arise 
using asynchronous setting. A-C and some of the C-L systems might be suitable to 
fit in this category.

To this end, it seems worthwhile to revisit the design choices as it broadens 
our mind to think beyond what the CAP theorem actually meant. It also helps to 
visualise how we can fit the multi-tier Cloud application within the architectural 
model. Although a more analytical approach to explain these trade-offs will be defi-
nitely profound. Modern software-as-a-service (SaaS) applications deployed over 
very large-scale distributed systems strive for the following performance goals: 
(1) Availability or uptime—what percentage of time the system is up and prop-
erly accessible, (2) responsiveness—measure of latency and throughput, and (3) 
scalability—as the number of users, i.e., workloads increase how to maintain the 
target responsiveness without increasing cost/user.
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2.4.3 � Data Partitioning and Replication Management

Typical distributed database systems (e.g., HBase [6], Cloud SQL, MongoDB [31] 
and MySQL Cluster [32]) which usually provide automatic partitioning and load-
balancing features only support pre-configured partitioning rules. The system splits 
and merges the partitions based on the number of nodes (e.g., MySQL Cluster [32]), 
predefined data volume size (e.g., in HBase [6]), predefined key (e.g., MongoDB 
[31]) or even based on partitioned schema (Cloud SQL). All of these approaches 
are unable to adopt to dynamic workload patterns and current resource utilisation 
profile of the system. Again, sudden increase in workload volume, occurrences 
of data spikes and hotspots can also influence the change in normal workload 
characteristics.

However, dynamic partitioning decision making is not possible and often re-
quires human intervention. Hence, these systems normally suffer from sudden 
workload spikes in any particular partition, hot-spotted partition or database table, 
partitioning storm and load-balancing problems. These are the potential reasons of 
restricted system behaviour, unresponsiveness, failures and bottlenecks. In a WAN 
setting, this leads to replication nightmare and inconsistency problems on top of 
added latency.

As Cloud systems are growing bigger and bigger day by day with the explosion 
of big data, automated management of these large-scale distributed systems are 
often desirable to maintain high scalability and elasticity. Automatic replication/
partitioning management schemes are believed to stand as the solution towards 
these worries and opportunities. These systems can exploit the self-managerial 
properties (i.e., healing, optimisation, and provisioning) of a typical Cloud platform 
and ensure more reliability to achieve the target SLO.

Automatic management of partitioning and replication are also necessary 
in cases where the database is spanned in multiple data centres over WAN in a 
geographically distributed fashion. It can be also recognised as a classical match for 
the case of partial replication where individual partitions of the distributed database 
management systems can be distributed over WAN. The primary challenge here 
is to maintain rapid consistency among the replicas with an acceptable latency 
requirement. The trade-offs between replication and partitioning considering parti-
tioning size as an impacting factor can be also explored in this context.

The particular emphasis is on how to find an optimal partition size for load distri-
bution (arise from hot-spotted partitions due to workload pattern) in geo-distributed 
data centres. Determining an optimal partition size is essential for effective rep-
lication and data transfer between physical machines over WAN. In overall, the 
choice of availability, consistency, and latency play an important role in developing 
a scheme over WAN where network partitions occur very often and usually are not 
avoidable.

To understand the significance, one can be motivated by the scenarios of mas-
sively multi-player online role playing games (MMOG) and virtual worlds. Scal-
ability in such environment is really challenging and not trivial in contrast to other 
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Cloud applications. Game and virtual world users are geographically distributed 
and can personalise the game environment as well as make interactions with other 
online users. Two kinds of partitioning strategies are generally seen: one is to de-
compose the game or virtual world based on the application design and functional-
ity, while another possibility is to partition the system, based on the current work-
load pattern.

Distributing the workloads evenly among the physical servers is really tedious 
for both of the cases as they may spread in a WAN over several geographical loca-
tions. Again, users residing in one system partition are naturally forbidden to access 
or interact with other users in different partitions. Even if they wish to do so, costly 
replication process needs to be taken out. Games and virtual worlds like World of 
Warcraft, Farmville, SimCity, and Second Life are a few of the examples which 
have such evolving architectures and geographically distributed workload patterns 
over the WAN; thus, face these challenges. Jim Waldo has mentioned these chal-
lenges from a real-world point in [48] while others like the authors in [52, 25, 26] 
have also discussed related challenges and the significance of reliable scalability 
issues in MMOG.

Recent development of the Google’s Big Data platform Spanner [14] also focused 
on a geographically distributed consistent data service platform which spans over 
multiple data centres in the WAN. The argument of whether existing NoSQL solu-
tions are adequate to handle such scalability challenges effectively is still an active 
topic of discussion among the community [15], and it is believed that the above 
mentioned approach can direct an appropriate pathway towards the right vision.

2.5 � Conclusion

Cloud computing backed up by modern scalable distributed databases provides sig-
nificant opportunities for the start-up and established businesses as well as presents 
potential challenges for the system administrators. The development of distributed 
databases has been continuing over the past four decades, and is still emerging to 
adopt the Cloud paradigm. However, system designers and administrators should be 
well aware of the past trials and potential pitfalls. The design space should be well 
adopted and possible user cases need to be well studied beforehand. This is required 
to fit target application scenarios into the architectural design space. Although, re-
cent developments have shown notable promises over the past years, most of the 
approaches are static in nature and not adaptable with dynamic workload behav-
iours. SaaS applications deployed within Cloud platforms also span over multiple 
geographical regions and thus require special attentions to adopt with distributed 
workload characteristics.

Designing a scalable Cloud system requires a high level understanding of the 
life-cycle management of a modern multi-tier Web application and characterisa-
tion of system workloads. These interpretations lead us straight to the exploration 
of available architectural design choices and off-the-shelf distributed databases to 
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support underlying high scalability and availability requirements. However, the 
misunderstanding of CAP theorem over the past decade, and consequent develop-
ments of hundreds of NoSQL systems providing relaxed consistency guarantees did 
not hold us back. In reality, all these efforts have helped the system architects to 
understand the actual design space for Cloud applications and thus have provided 
the necessary momentum to modernise the development of distributed database sys-
tems in a whole. Again, the core building blocks of a distributed database system 
have also helped in shaping the general ideas behind effective data replication and 
partitioning strategies. Eventually these apprehensions have influenced the devel-
opment of high available, high scalable and partition tolerance Internet-scale Cloud 
applications. Nowadays, without having a clear picture of the architectural design 
choices in front, it is tedious to design a scalable Cloud platform. The PACELC 
acronym clearly identifies this challenge and helped us grasp the relationship be-
tween ACID and BASE properties. Still, automatic management of data replica-
tion and partitioning in line with workload characteristics and issues arise from 
multi-tenant environments that are potential challenges to deal with. With the rapid 
advancement in database and system research and development, it can be hoped that 
innovative solutions will be soon in place to rescue us from back-breaking labours 
of system administrations and disaster response situations.

In this chapter, a trail of modern distributed database systems has been 
drawn alongside the challenges which require urgent attention from the research 
community. The relationship between how to adopt the past to overcome the chal-
lenges at present has been also discussed in a great extent. Different data replica-
tion and partitioning techniques have been discussed in details which are essential 
to achieve massive scalability and elasticity for the Cloud applications. Finally, 
several approaches have been shown as potential way out to achieve Cloud scale 
modernisation of distributed database management systems in a dynamic environ-
ment for the years to come.
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Abstract  The increasing use of Cloud computing makes the development of high-
quality Cloud-based applications a vital research area. Cloud computing, which 
provides inexpensive computing resources on the pay-as-you-go basis, is promptly 
gaining momentum as a substitute for traditional information technology (IT)-based 
organizations. As more and more users migrate their applications to Cloud envi-
ronments, service level agreements (SLAs) between clients and Cloud providers 
become a key element to consider. Due to the dynamic nature of the Cloud, endless 
supervision of quality of service (QoS) attributes is necessary to honor the SLAs. 
Thus, Cloud computing faces the challenge of QoS, especially in relation to how a 
service provider can ensure appropriate QoS for its Cloud services. QoS is an inher-
ent element, part of service-oriented architecture (SOA), to direct nonfunctional 
quality attributes of a service, such as the response time, price, or the supported 
security rules. Consequently, there is a requirement to grow architectures in order 
to respond correctly to the QoS requirements. The architecture should be able to 
change dynamically the amount of resources made available to the applications it 
hosts. Optimal resource utilization should be attained by providing (and maintain-
ing at run time) each hosted application with the number of resources which is 
adequate to guarantee that the application SLA will not be violated. This chapter 
reflects the essential perceptions behind the QoS provision in the Cloud, identi-
fies current and innovative quality attributes based on customers’ desires associated 
with SLA and identifies metrics to measure the deviation of QoS from predictables, 
with possible resolution in the outline of architecture for spontaneous supervision of 
QoS without violation of SLA. The existing intent of Cloud SLAs is inspected with 
a focus on QoS and customer requirements. Further, foremost research problems 
and scientific challenges in Cloud SLAs have been considered with possible rea-
sons. Autonomic management architecture for dynamic provisioning of resources 
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based on users QoS requirements to maximize efficiency and automatic fulfillment 
of SLA has also been proposed.

Keywords  Cloud computing · Service level agreement (SLA) · Service-oriented 
architecture · SOA · Quality of service · QoS · Autonomic Cloud computing · SLA 
challenges

3.1 � Introduction

Cloud computing is a computing model for permitting omnipresent, suitable and 
on-demand service access to a common group of configurable computing resources 
(e.g., networks, servers, storage, and applications) that can be quickly provided and 
released with minimum management struggle [21]. Public Cloud platforms are usu-
ally superior at providing IT services over the open Internet than the on-premise 
enterprise IT resources. Therefore, the public Cloud can well serve as a workforce 
that is expected to work at the local region because processing, storage, and enter-
prise applications to a middle tier between the company and the Cloud consumer 
can be done easily [31]. The services provided by a Cloud are shown in Fig. 3.1. 
As a Cloud offers three types of services such as infrastructure as a service (IaaS), 
or platform as a service (PaaS), or software as a service (SaaS), it requires quality 
of service (QoS) to efficiently monitor and measure the delivered services and thus 
needs to follow service level agreements (SLAs) [1, 11]. The complex nature of the 
Cloud environment requires a cultured means of handling of SLAs as the demands 
of the service users vary considerably. The QoS attributes that are frequently part 
of an SLA (response time, throughput, etc.) vary repeatedly and to implement the 
contract, these parameters need to be carefully controlled [1, 5].

An SLA is part of a service contract where a service is defined based on the agree-
ment between a provider and a customer [19]. In other words, the term SLA denotes 
the contracted service and its performance. An SLA is a document that specifies the 
description of the service level parameter, service level objective, agreed service, 

Fig. 3.1   Cloud computing 
services. IaaS infrastructure 
as a service, PaaS platform 
as a service, SaaS software as 
a service
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warranties, and action in case of violation. An SLA is a conveyed bargain that has 
been documented between two parties which are customer and service provider [2]. 
The SLA is very significant to define the availability, reliability, and scalability of 
services. In the literature, the following definitions of SLA are prevalent:

•	 “SLA is an officially exchanged document that describes (or tries to express) in 
measurable (and maybe qualitative) terms the service being presented to a cus-
tomer. Any metrics involved in a SLA should be capable of being controlled on 
a systematic basis and the SLA should record by whom” [4].

•	 “A contract is an officially binding bargain between two or more parties. Con-
tracts are subject to particular authorized explanations” [9].

Although, Cloud consumers do not have full supervisory control over the funda-
mental computing resources, they do require ensuring attributes such as quality, 
accessibility, trustworthiness, and performance of these resources when users have 
transferred their fundamental business functions onto their honored Cloud. In other 
words, it is vital for users to acquire assurances from suppliers on service provisions 
[18]. Usually, these are delivered through SLAs discussed between the providers 
and customers [30]. The very first problem is the description of SLA terms in such a 
way that has a suitable level of granularity, namely the compromises between accu-
racy and complexity, so that they can ensure most of the user hopes and is compara-
tively simple to be prejudiced, certified, calculated, and imposed by the resource 
provisioning mechanism on the Cloud [3, 25]. In addition, different Cloud service 
models (IaaS, PaaS, and SaaS) will need to express different SLA meta disclaimers 
[13]. This also increases a number of implementation issues for the Cloud provid-
ers. Moreover, innovative SLA mechanisms require to continuously integrate con-
sumer response and customization features into the SLA assessment framework [8].

As the Cloud service models develop and become omnipresent, there is an in-
crease in the probability of clarifying the way the services are provisioned and 
managed. It, therefore, permits the providers to address the different requirements 
of their customers. In this perspective, SLAs appear as a significant characteristic 
which subsequently serve as the establishment for the predictable quality level of 
the services made available to customers by the providers [38]. Nonetheless, the 
collection of the recommended SLAs by providers (with marginal overlaps), has 
directed to manifold different definitions of Cloud SLAs [6]. Moreover, confusions 
exist on what is (if there is) the difference between SLAs and agreement, what is the 
marginal quality, what are the terms involved in each one of these documents, and 
if and how are these associated.

SLAs are a corporate way to officially specify the particular circumstances (both 
functional and non-functional) under which services are or should be provided. 
Customers and providers can use top-level SLAs to monitor whether their actual 
service delivery conforms to the contracted SLA terms [34]. In the case of SLA 
violations, top-level SLAs permit for penalties or compensations to be paid [16]. In 
a service-oriented world, services presented are generally self-possessed of or built 
on a complete set of other services [24]. These services may reside in the domain 
of the provider itself, or be hosted by external providers. Such services contain 
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business services, software services, and infrastructure services. The quality of a 
presented service depends comprehensively on the quality of the services it uses 
[39]. Service quality also depends on the components used and the structure of the 
basic IT system appreciating the service. Presently, service providers cannot design 
their service landscapes using the SLAs of dependent services [4, 28]. They have no 
means by which to control, why a certain SLA violation might have happened, or 
how to express an associated penalty. SLA guarantee terms are not unambiguously 
associated to quantifiable metrics, nor are their relation to lower-level services well 
defined. As a consequence, service providers cannot define the mandatory super-
vision required in confirming top-level SLAs. This missing relationship between 
top-level SLAs and (lower-level) metrics is a main obstacle to effective service 
planning and expectation or improvement processes in service stacks [15, 36].

Further, Cloud computing allows for organizations to move applications and data 
to remote servers. Due to virtual computing, Cloud computing can deliver better 
approach to consumption of available resources. Hosted solutions and on-demand 
server resources are two cases where the use of external vendors may provide for 
a lower overall price of computing. As the data is moved to remote resources, the 
control or governance of the data becomes difficult [29].

In this chapter, we first present the concept of SLA in the context of Cloud com-
puting. The remainder of this chapter is then organized as follows: Sect. 3.2 de-
scribes interweaving of QoS and SLA with respect to the Cloud; Sect. 3.3 presents 
the SLA challenges and benefits with respect to Cloud environments; Sect. 3.4 in-
troduces the Cloud SLA (CSLA) architecture; and Sect. 3.5 presents the discussion 
of work done. Section 3.6 describes our conclusions and future research directions.

3.2 � QoS and SLA: Intertwined in the Cloud

This section presents the background of QoS and SLA, SLA Management, SLA 
of Cloud provider, SLA levels, Metrics in SLA, and SLA deviation in the area of 
Cloud computing.

3.2.1 � QoS and SLA

QoS is increasingly significant when composing services because a degrading QoS 
in one of the services can dangerously disturb the QoS of the complete composition. 
Cloud service providers want to confirm that sufficient amount of resources are 
provisioned to ensure that QoS requirements of Cloud service consumers such as 
deadline, response time, and budget constraints are met [36]. Consequently, Cloud 
service providers want to confirm that these violations are avoided or reduced by 
dynamically provisioning the exact amount of resources in a timely fashion. The 
success of next-generation Cloud computing infrastructures will depend on how 
capably these infrastructures will discover and dynamically tolerate computing 
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platforms, which meet randomly varying resource and service requirements of 
Cloud costumer applications [29]. Logically, based on QoS requirements such as 
scalability, high availability, trust, and security, these applications will be character-
ized, identified in the so called SLAs. The current Cloud technology is not com-
pletely personalized to honor probable SLAs, though industrial and the academic, 
both the research groups are presenting increasing interest on problems of QoS as-
surance within the context of Cloud computing. Broadly, an SLA needs a precise as-
sessment of the characteristics of the required resources [19]. Application services 
introduced in Clouds (e.g., Web applications, Web services) are frequently charac-
terized by great load inconsistency; therefore, the amount of resources required to 
honor their SLAs may vary particularly over time [8]. An important challenge for 
Cloud providers is to automate the management of virtual servers while keeping 
into account both high-level QoS requirements of hosted applications and resource 
supervision expenses. Cloud market mechanisms are consistently static and cannot 
react on dynamic variation of consumer desires [26]. To respond to these issues, 
there is a requirement of an adaptive methodology for autonomically springing SLA 
patterns based on consumer requirements. The present research in Cloud SLA lim-
its the capability of matching conformation metrics to acceptable benchmarks [1]. 
These metrics comprise statistical measures such as standard deviation that want 
to be computed from the expected and actual outcomes of services delivered to 
customer. Semantic Web technologies can be used to improve the descriptions and 
therefore increase the quality of these matches.

3.2.2 � Cloud and SLA

Resource reservation is one of the main characteristics in parallel and distributed 
environment like the Cloud. While preserving the services in the Cloud, we require 
initiating SLAs through settlement. The settlement between consumers and Cloud 
service providers fundamentally comprise of parameters like price, time, and other 
QoS parameters. There are presently numerous methods which resolve the issue of 
expense and time slot settlement mechanism without taking into account the sig-
nificant characteristics of QoS [23]. Knowingly handling and assigning resources 
among numerous consumers in a commercial manner is significant for service pro-
viders [41]. Thus, SLA shows a chief role in resource provisioning. In practice, the 
term SLA is occasionally used to mention the limited delivery time (of the service) 
or performance.

The Cloud is a parallel and distributed system containing a huge collection of 
interrelated and virtualized resources that are dynamically self-provisioned and of-
fered as one or more merged computing resources based on SLAs [19]. During 
negotiation/agreement, there are parameters considered like price, time, and other 
QoS. Since there is an opposing relationship between price and time-slot feasibili-
ties (e.g., a customer desires to pay a higher price to use a service at a more expected 
time slot—attaining a higher time-slot utility), expense and time slot have to be 
exchanged suddenly [25].
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Another parameter taken into account is about expanding the QoS through su-
pervising the Cloud services by the use of SLA-based Cloud architecture [13, 36]. 
Cloud supervising environment comprises of measuring the properties of the net-
work to guarantee that the system functions with required parameters. The manage-
ment station inquires the state of the network in order to respond to alarm circum-
stances that may develop in the network system parameter, which is defined as a 
conjunctive predicate on the local properties of different network elements. In such 
cases, after identifying local variations, each network element has to successively 
originate alarms in order to ensure that global parameters are not violated. Even 
though data may be hosted remotely, it is still an organization’s accountability to 
offer for its security. The problem for the organization is to ponder on what mecha-
nisms it has to provide for the safety of data which it may no longer directly control.

3.2.3 � SLA Management

SLA management is the element that retains track of SLAs of consumers with 
Cloud providers and their satisfaction history. Based on SLA terms, the security 
mechanism preserves the real usage of resources by needs so that the absolute price 
can be calculated and charged from the consumers [8]. In addition, the preserved 
past-usage statistics can be utilized by the service request assessor and admission 
governor mechanism to expand resource distribution assessments.

An SLA is a document that describes the relationship between two parties: the 
provider and the consumer. This is obviously a very significant item of documen-
tation for both parties. If used appropriately it should: recognize and describe the 
consumer’s requirements, make all the difficult concerns simpler, decrease areas 
of clash, inspire dialog in the event of disagreements, and eliminate impossible 
viewpoints [3, 34]. It should resolve an extensive collection of disputes clearly 
and unambiguously. Amongst these, the following are some of the most frequent 
services to provide performance, tracking and reporting problem management, le-
gitimate agreement and resolution of disagreements, consumer responsibilities and 
accountabilities, reservation and trustworthy information termination. Typical SLA 
substances [3, 4, 15, 16, 19, 24, 25] to be considered are:

1.	 Description of services: This is the most serious section of the contract as it 
designates the services and the way in which those services are to be provided. 
Standard services are frequently separated from adapted services but this dis-
agreement is not of serious concern. The information on the services must be 
correct and comprised through requirements of what is being delivered.

2.	 Performance supervision: An important part of a SLA deals with supervising 
and evaluating service level performance. Fundamentally, every service must be 
capable of being measured and the outcomes inspected and informed. The stan-
dards, objectives, and metrics to utilize must be quantified in the contract. The 
two parties must examine the service performance level consistently.
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3.	 Problem administration: The determination of problem administration is to 
reduce the violent influence of occurrences and difficulties. This regularly speci-
fies that there must be a suitable process to control and solve unexpected occur-
rences and that there must also be preemptive action to reduce happening of 
unexpected happenings.

4.	 Consumer responsibilities and accountabilities: It is significant for the consumer 
to understand that it also has accountabilities to sustain the service delivery pro-
cess. The SLA describes the association, which of course is a two-way unit. Typ-
ically, the consumer must organize for entrance, accommodations, and resources 
for the provider’s workforces who require working on-site.

5.	 Licenses and cures: This section of the SLA stereotypically covers the follow-
ing vital issues: service quality protections, third party claims, and cures for 
loopholes.

6.	 Reservation: Reservation is mainly a serious feature of any SLA. The consumer 
must deliver well-ordered physical and logical entrance to its principles and 
information. Correspondingly, the contractor must respect and obey with the 
consumer’s reservation rules and techniques.

7.	 Catastrophe recovery and commercial strength: It can be of dangerous status. 
This factor should be conveyed within the SLA. The topic is catastrophe recov-
ery frequently incorporated within the reservation section; though, it is also regu-
larly involved within the problem administration area. At the highest level, both 
these areas typically state that there must be acceptable provision for catastrophe 
recovery and commercial strength forecasting to protect the continuity of the 
services being distributed.

8.	 Service termination: The SLA agreement naturally covers the following funda-
mental areas: services are finished at completion of preliminary term, finish for 
suitability, finish for reason, and expenditures on closure.

3.2.4 � SLA of a Cloud Provider

Quality attributes play a significant role in SOA environments [23]. An SLA for-
mally describes the level of service. Organizations seek to develop SLAs for numer-
ous causes. From a simple viewpoint, an SLA is developed between two parties to 
spell out who are responsible for what, what each party will do, and occasionally 
more clearly what each party will not do [38]. Also an SLA describes the interac-
tion between a service provider and a service consumer. An SLA contains several 
elements of details [6, 18, 30], viz.:

1.	 The set of services the provider will offer.
2.	 A comprehensive, full definition of each service.
3.	 The responsibilities of the provider and the consumer.
4.	 A set of metrics to define whether the provider is providing the service as 

guaranteed.
5.	 The inspecting mechanism to supervise the service.
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6.	 The courses of action available to the consumer and provider if the terms of the 
SLA are not fulfilled.

7.	 How will the SLA vary with respect to time?

A typical SLA of a Cloud provider has the following components [8, 12–14, 17, 20, 
28, 29, 32, 35, 36]:

1.	 Service assurance: It specifies the metrics which a provider struggles to meet 
over a service agreement time period. Failure to attain those metrics will out-
come in service recognition to the consumer. Availability (e.g., 99.9 %), response 
time (e.g., less than 50 ms), catastrophe recovery, and fault perseverance time 
(e.g., within one hour of discovery) are examples of service assurances. Some 
service assurances can be on a per action basis, such as zeroing out a VM disk 
when it is deprovisioned.

2.	 Service Assurance Time Period: It describes the duration over which a service 
guarantee should be happened. The time period can be a billing month or time 
occurred since the previous advantage was filed. The time period can also be 
insignificant, e.g., one hour. The smaller the time period, the more difficult is the 
service assurance.

3.	 Service assurance granularity: It defines the resource scale on which a provider 
specifies a service guarantee. For example, the granularity can be as per service, 
per data center, per instance, or per transaction basis. Related to time period, 
the service assurance can be inflexible if the granularity of service assurance is 
fine-grained. Service assurance granularity can also be designed as a cumulative 
of the deliberated resources, such as contacts. For example, aggregate uptime of 
all running instances must be greater than 99.95 %. Though, such an assurance 
denotes that some instances in the collective SLA computation can hypotheti-
cally have a lesser percentage uptime than 99.95 % while still meeting the collec-
tive SLA. As significant, collective SLA computation leaves provider the room 
to better accomplish its presented services.

4.	 Service guarantee: Omissions are the instances that are excluded from ser-
vice guarantee metric calculations. These omissions typically include misuse 
of the system by a customer, or any downtime associated with the scheduled 
maintenance.

5.	 Service recognition: It is the amount credited to the consumer or applied towards 
upcoming expenditures if the service assurance is not met. The amount can be a 
comprehensive or restricted recognition of the consumer compensation for the 
miscalculated service.

6.	 Service Violation Measurement and Reporting: It describes how and who mea-
sures and reports the violation of service assurance, respectively.

3.2.5 � SLA Levels

Cloud SLAs may provide safety at different stages through infrastructure operating 
systems (OSs) and applications [8, 38]. Some of the significant attention levels that 
could be included in a Cloud SLA are described in Table 3.1.
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3.2.6 � Metrics in SLA

Realization of Cloud computing requires that both consumers and suppliers can 
be confident that contracted SLA are supporting their corresponding business ac-
complishments to their best degree [19]. Current SLAs usually fail in providing 
such confidence, exclusively when Cloud providers outsource resources to other 
Cloud providers. These Cloud providers typically provision very modest metrics, or 
metrics that hinder an efficient misuse of their Cloud resources [2]. We have identi-
fied some of the service-level metrics for specifying fine-grain guarantees of QoS. 
These metrics sanction resource providers to assign dynamically their resources 
among the executing Cloud services depending on their request. This is accom-
plished by including the consumer’s service usage in the metric description, but 
avoiding false SLA violations when the consumer’s application does not use all its 
assigned resources [13, 20, 25].

Through metrics, the defects can be easily identified. Assigning a severity type to 
defects helps prioritize the development of Cloud services [17, 25]. Table 3.2 dem-
onstrates each type of defect associated with it, as well as SLA that describes the 
time within which Cloud provider promises to fix the defect measured by metrics.

Normally, a Cloud provider approves the QoS with its consumers through a 
SLA, which is a two-sided agreement between the consumer and the supplier that 
states not only the circumstances of a Cloud service, but also describes the con-
tracted QoS between them using a set of metrics. Cloud service providers certainly 
offer service-level metrics (service accomplishment deadline) to their consumers 

Table 3.1   Cloud SLA levels
SLA levels Description
Facilities level SLA Here, the Cloud provider will normally deliver an SLA including 

the data center services necessary to maintain the customer-owned 
infrastructure. These comprise items such as electric power, on-site 
generators, cooling, etc

Platform level SLA The next level of safety in a Cloud usually covers physical servers, 
virtualization platforms and hardware related to network retained by 
the provider and used by the Cloud consumer. Usually, the physical 
server and virtualization software are hidden by a platform SLA

OS level SLA OS is the subsequent possible area of coverage for a Cloud SLA. 
Providers proposing an OS level SLA normally deliver some amount 
of managed services to a client. This extra service permits the 
provider to guarantee that the OS is suitably sustained so that it is 
dependably accessible and normally has some warnings

Application level SLA This category of SLA delivers safety against application level 
catastrophes up to and comprising the custom application executing 
on the infrastructure provided by SLA. Under this model, the Cloud 
provider is ensuring the availability and performance of their Cloud 
customer software, which is a hard guarantee to encounter

Availability level SLA The Cloud network (network among Cloud servers) may be covered 
by a distinct availability level SLA
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for specifying the QoS. The Cloud providers must offer service level metrics that 
can be used to deliver fine-grain QoS assurances. First, the QoS contract can be 
obviously expressed using general metrics (e.g., number of processors, frequency of 
processors, etc.), meanwhile underdone resources are the functioned good. Second, 
having fine-grain metrics, which assures a given resource distribution during a time 
period, is particularly significant for service providers that outsource resources to 
Cloud providers, as we have specified before.

3.2.7 � SLA Deviation

Customers desire that composed data should be put into expressive perspective. 
This situation produces the restriction for a procedure which gathers data from dif-
ferent sources and implements appropriate algorithms for controlling expressive 
consequences. Such metrics comprise statistical measures such as average or stan-
dard deviation that want to be computed from the expected and actual outcomes of 
services delivered to customer [16]. With the rise of the number of Virtual Machines 
(VMs), the standard deviation of the customer load falls. Due to this unpredictabil-
ity, the standard deviations of resource utilization and performance are difficult to 
measure.

At the application’s SLA Level, along with the benchmarks, QoS metrics to esti-
mate the performance and SLA deviation are also required [12, 17, 25, 35]. This is 
appreciated through a distributed supervising framework that is able to combine su-
pervising information coming from several sources and at different stages. For this 
trend, the assessment method of the platform is capable to evaluate on the cause of 
the application’s performance deviation, i.e., whether it establishes a breach of the 
application usage terms and if so, whether the application SLA specifies activities to 
be executed, whether it is an adequate deviation that can be accurately controlled or 
a real breach of the SLAs. In the previous situation, more evaluation is required in 
order to accomplish on the particular nature of the SLA breach to recognize the real 
object or objects that failed to deliver the granted QoS level [36]. An SLA is typical-
ly a two-way written contract which outlines the service and principles the provid-
ers deliver to their consumers whether these are scholars, supervisor in universities, 
and/or other central management teams. It also describes what the providers require 

Table 3.2   Defect types and SLAs
Defect type Metric description SLA
Type 1 Business critical features absent or do not 

function; program may crash
Fix within 4–24 h

Type 2 Business critical features function most of the 
time. No work around exists

Fix within 1 week

Type 3 Noncritical features absent or do not function; 
work around exists

Fix within 2 weeks

Type 4 Inconsequential function may not work as 
expected, typos in documents, etc

Fix for next software release
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from their consumers/service customers in order to provide the service specified. It 
needs assurance and support from both parties to provision and follow the contract 
in order for the SLA to work efficiently [6]. In SLA, both the parties (Cloud pro-
vider and Cloud consumer) should have specified the possible deviations to achieve 
appropriate quality attributes. If taking availability as a quality attribute and if it 
should be 95 %, then it means that the system should be available for 22.8 h per day 
with maximum deviation of 1.2 h per day (5 %). In the case of system performance, 
if the desired deadline is 9 ms with deviation (10 %) of 1 ms, then maximum re-
sponse time should be 10 ms for a particular task without violation of agreement. 
The Cloud provider’s SLA will give an indication of how much actual availability 
of service the provider views as adequate, and to what amount it is agreeable to re-
quire its own financial resources to compensate for unexpected outages. Usually, no 
Cloud provider considers compensation because 85 % resource providers do not ac-
tually provide penalty enforcement for SLA violation presently [10]. There should 
be penalty delay cost or consumers’ compensation if the Cloud provider misses the 
deadline. Moreover, it provides a risk transfer for IaaS providers, when the terms 
are violated by the Cloud provider. Penalty delay cost is equivalent to how much the 
service provider has to give concession to users for SLA violation. It is dependent 
on the penalty rate and penalty delay time period. The effect of inaccuracy could 
be reduced by two approaches: first, considering the penalty compensation clause 
in SLAs with IaaS provider and impose SLA violation; second, adding some slack 
time during scheduling for avoiding risk [27].

3.2.8 � Existing SLA Architectures in the Cloud

Not much has been written in the area of Cloud SLA. We have surveyed only three 
related architectures in this context. Casalicchio et al. [7] presented an architectural 
model for the autonomic service provisioning system that investigated the problem 
from the outlook of an application service provider that uses a Cloud infrastructure 
to attain scalable provisioning of its Cloud services in the respect of QoS restric-
tions for autonomic resource management of Cloud-based systems. This architec-
ture describes the functional desires of an autonomic service provisioning system 
and recognized features and services presented by many IaaS providers that might 
be used to implement such desires [7].

Happe et  al. [33] have proposed a reference architecture for multi-level SLA 
management that provisions the inclusive supervision of possibly difficult service 
stacks and discussed how SLAs are used for handling the nonfunctional features of 
the complete Cloud service life cycle. The presented architecture is based on capa-
bilities extended from an SLA framework constructed around a particular reference 
application. Emeakaroha et al. [14] have presented DeSVi—an architecture for ob-
serving and identifying SLA destructions in Cloud computing infrastructures. This 
architecture is accountable for the provision of resources and for mapping of tasks, 
accountable for the implementation of consumer applications, and visualizes the 
execution of the applications and converts low-level metrics into high-level SLAs. 
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It is used to recognize the intervals for applications with stable resource consump-
tion only.

However, all these architectures do not take into account the dependency of 
SLA on QoS requirements? Therefore a new architecture is required that considers 
SLA deviation status, heterogeneous Cloud workloads and their resource consump-
tion dynamically, assigns priority to Cloud workloads and different states of Cloud 
workloads and also assures the relation between QoS and SLA.

3.3 � SLA Challenges and Benefits in Cloud

This section describes the SLA key challenges along with the reasons of their occur-
rences as well as benefits and potential barriers/issues of SLA in Cloud computing 
[11, 18, 21, 31].

3.3.1 � SLA Challenges

1.	 SLAs are hard to express in the Cloud in part because areas of the infrastructure 
(in specific the network) are outside of the scope of either consumer or provider. 
This hints to the challenge of offering a predetermined contract for something 
which is only comparatively in the provider’s control [36]. Additionally, as the 
infrastructure is shared (multi-tenanted) SLA’s are more challenging to deliver 
since they rest on capacity which must be shared [22].

2.	 The consumer accessing services in the Cloud also face a challenge. New Cloud 
SaaS providers, who are growing their business and attracting more consumers 
to their multi-tenanted data center, are unlikely to offer serviceably defined SLA 
for their services as compared to a data-center provider who can bargain where it 
supervises all fundamentals of the supplied infrastructure [1]. As their business 
is increasing and an SLA is a massive threat (since it is a multi-tenanted break of 
one SLA and is possibly a break of lots), the expenditure might look insignificant 
and unfortunate to the consumer but is great for a SaaS provider). Additionally 
with each new consumer, the difficulties on the data center, and therefore danger, 
increase [12].

Every new consumer brings the advantage of growing stress testing of the SaaS 
platform and improving growth of abilities within the SaaS provider. While the 
SLA may remain to be neglected, the risk of dissatisfaction of the data center may 
well reduce as the SaaS transmits [35]. The objective of an SLA is accordingly not 
just to deliver a predetermined contract but rather to set out the level of service on 
which the cooperation between customer and supplier is constructed. In this way, an 
SLA is about the predictable quality demanded of the supplier and with the above 
model the expected quality may well improve with more consumers—not reduction 
as is frequently predicted for a Cloud [17]. SLA’s for Cloud providers may well be 
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insignificant and neglected, but the universal risk of using Clouds is not as simple 
as is often competed. Whereas it is probable that Cloud providers’ compromise run-
down SLA’s, it does not mean that the QoS is, or will stay, underprivileged.

The integration of QoS aware aspects in each Cloud component in order to con-
trol and inform the system about its current behavior is required. Further, the opti-
mization of energy consumption in the Cloud computing environment according to 
user-specified budget constraint is necessary. Thus, maximizing energy efficiency, 
cost effectiveness, and utilization for applications while ensuring performance and 
other QoS guarantees, requires controlling important and extremely challenging 
tradeoffs. These challenges and issues occur due to the following important factors 
related to the Cloud:

•	 SLA deviation occurs due to shared nature of the Cloud, and it leads to SLA 
violations.

•	 Service quality fluctuations occur due to fluctuations in QoS requirements of 
different Cloud users.

•	 Problems in invoices occur due to the various modes of payments along with 
their own constraints.

•	 Risk of SLA violations due to urgent execution of Cloud workloads (while as-
signing priorities to the most urgent workloads), whether the Cloud providers 
provide the compensation to the user in case of SLA violations or not.

•	 Difficulty in maintaining the security, due to the multi-tenanted data center, ac-
cess to the database and type of encryption and decryption.

•	 Efficient storage is required as memory is wasted due to multiple copies of same 
data by different or same Cloud users.

•	 VM migration demands high bandwidth which further leads to complexity.
•	 Lack of standard QoS-oriented SLA architecture in the Cloud due to heteroge-

neous nature of Cloud workloads.

The required architecture will focus on developing a resource provisioning and 
scheduling technique that will automatically manage QoS requirement of Cloud 
users and would be based on energy efficient usage of the Cloud infrastructure. So, 
what the customer should deliberate in considering the SLA, in terms of service 
quality [22, 36, 37], are:

•	 How does the Cloud SaaS provider determine its progress? The progress of 
a SaaS service means larger demand on the supplier’s data center. Therefore, 
greater risk that the SLA’s will be broken for their multi-tenanted data center.

•	 How vulnerable is the Cloud SaaS provider in permitting analysis of its services 
by fresh consumers?

•	 How well the Cloud SaaS provider engages in planned motivation for service 
quality alignment with your requirements for service quality?

To address these challenges, SLA can respond to the following issues and questions 
[2, 3, 6, 8, 9, 13, 16, 19, 25, 38]:

•	 What are the resources delivered to the consumer? How resources will support 
the consumer? Are there any limitations to the number of resources?
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•	 How the invoices are created? What are the payment methods? How the services 
are affected if the customer postpones in compensating invoices? This should 
comprise refinement period and how the consumer can acquire the services back 
after the payment when the services are blocked?

•	 What happens if the SLA is not met? How data is controlled when the service 
agreement finishes, the sort of data compensated to the company?

•	 What happens if the service contract is withdrawn? How data is handled and 
returned to the company?

•	 How does the service use event logs and who actually has access to the data on 
the backend?

•	 Who will check the security of Cloud providers?
•	 Which of the SaaS employees has root and database access, and will anything 

prevent them from getting access to your corporate data? What controls are in 
place?

•	 Is the held data separated between clients or is it all stored on one huge database 
out there? How is this data separated? How will the legal question of e-discovery 
be addressed should it arise as a business concern?

•	 In terms of service availability, can you get your vendor to sign a service level 
agreement?

•	 What security arrangements do you have in place with Cloud service providers 
that you rely on to deliver your service? What are you doing to build “trust in 
depth” in the Cloud?

Many significant issues in Cloud computing occur at the boundary between the 
provider’s infrastructure and the Cloud environment [4, 15, 24, 34], e.g.:

•	 How do you move resources from one side to the other? Is the Cloud application 
dependent on storage that exists on your side of the boundary?

•	 What influence will that have on the bandwidth desires? And, how do you per-
fectly move VMs between the Cloud and your data center as demand raises and 
failures occur?

These are all legal and motivating problems. But an even larger question forthcom-
ing like a dark Cloud on the perspective is that of the right and authorized grade [8]; 
i.e., is the matter in the Cloud on the same legitimate footing as the matter in the 
data center? For example:

•	 How will the switch occur to a public Cloud when the private Cloud infrastruc-
ture gets mixed out? Or would you be using the public Cloud for just executing 
your services?

•	 How much confident can be placed on the encryption patterns?
•	 How safe is the data from natural disasters?
•	 Is it probable for all of the data to be fully encoded?
•	 What algorithms are used? Who holds, maintains, and issues the keys?
•	 And so on.

Thus, it can be construed that SLAs are elements of a quality methodology to help 
the support teams in classifying and agreeing on what ‘good quality’ looks like and 
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deliver a framework for quantifying and supervising the realization of service qual-
ity [9, 17].

3.3.2 � Prospective Benefits

QoS and appropriate SLA collectively offer huge benefits to Cloud computing para-
digm. A few of such benefits are listed below:

•	 Enables strong understanding of the service and accountabilities of all parties
•	 Helps you to achieve your service consumers viewpoints
•	 Encourages clearness, responsibility, and reliability
•	 Notifies team performance, capabilities, and staffing judgments
•	 Provisions supportive and collective functioning
•	 Emphases teams on uninterrupted enhancement

3.3.3 � Potential Barriers/Issues of SLAs

Following are some of the potential barriers that hinder the implementation of QoS 
through SLAs:

•	 Adequate resources not being available at the desired time.
•	 Lack of assurance from management to implement the solutions within granted 

schedule.
•	 Unavailability of desired staff and momentum, in case of urgency.
•	 SLA’s excessive optimization may become difficult and even may lead to rejec-

tion.
•	 The development of SLAs should be team’s strength, and if recommendations 

made within the team are not appreciated, then it may be difficult to preserve 
staff commitment in the process.

These barriers can be overcome by deliberating the SLAs as follows: Adjust the 
work roles and responsibilities to reproduce the necessities of the new structure. 
Note that stronger work roles and responsibilities can help on specific basis but not 
in terms of the general service nor will this methodology enable endless improve-
ment, added value, and simplicity of service delivery [3, 18]. Observations and 
prospects of central services will unavoidably adjust as consumers will search for 
reasonable service delivery and proof of price/profit/worth of services they use [20].

3.4 � The Proposed Cloud SLA Architecture

This section proposes Cloud SLA (CSLA) architecture that can ensure better SLAs 
for both Cloud provider and consumers, as shown in Fig.  3.2. The objective of 
the proposed CSLA architecture is to reduce the standard deviation of resource 
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Fig. 3.2   Cloud SLA (CSLA) architecture. SLA service level agreement, QoS quality of service
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utilization and performance to attain a well-proportioned load scattering in the 
Cloud environments, where the load is characterized as the VM utilization. Further-
more, we define the standard deviation of resource utilization and performance so 
as, to prevent any hurdle in evaluating the degree of inconsistency. Consequently, 
the CSLA architecture also targets to reduce the degree of inconsistency. The con-
sideration of standard deviation would aid to avoid the unstable workload of cus-
tomers during the VMs distribution. The main components of the proposed archi-
tecture are as follows:

1.	 Authentication: The user should have valid username and password.
2.	 Submit workload: After authentication, the user will submit their Cloud work-

load that will be executed in this CSLA architecture.
3.	 Workload description: All the workload should have their key QoS requirements, 

based on that the workload is executed with some user defined constraints.
4.	 Workload queue: All the submitted Cloud workloads will be put into a workload 

queue for execution.
5.	 QoS manager: Based on the key QoS requirements of a particular workload, the 

QoS manager puts the workload into critical and non-critical queues through 
QoS assessment.

6.	 Autonomic SLA manager: Based on SLA information, SLA document will be 
prepared and accordingly urgent Cloud workloads would be placed in priority 
queue for earlier execution. Deviation status is used to measure the deviation of 
QoS from predictable with their possible resolution. If the deviation is more than 
the allowed, then it will allocate the reserve resources to the particular job or 
workload. Flowchart of autonomic SLA manager in CSLA architecture is shown 
in Fig. 3.3.

7.	 Resource manager: It contains the information about the available resources 
and reserved resource along with resource description (resource name, resource 
type, configuration, availability information, usage information, and price of 
resource).

Fig. 3.3   Autonomic service level agreement (SLA) manager in Cloud SLA (CSLA) architecture. 
CT completion time, DD desired deadline
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8.	 Service manager: Based on SLA information, workload information and 
resource information, the service manger map the workloads to the appropriate 
resource by taking care of both SLA and QoS. Dynamic scheduler will schedule 
the workload for execution and billing for that execution will be generated. After 
payment, the workload executer will execute the workloads.

As shown in Fig. 3.3, the SLA Manager will calculate the execution time of work-
load and find the approximate workload turnaround time or completion time (CT). 
If the CT is lesser than the desired deadline (DD), then it will execute immedi-
ately with the available resources and release the resource back to resource man-
ager for another execution, otherwise calculate extra number of resources required 
and provide from the reserved stock for current execution after recreating the SLA 
document with new user constraints. There are 11 states through which a submitted 
workload can move as shown in Fig. 3.4.

The first state for every workload is ‘workload submission’. Based on key QoS 
requirements of workload, the next state will be decided either as non-QoS or QoS 
(quality oriented workloads). After non-QoS state, if there is no other workload 
pending, then it will execute directly other workload that is waiting into non-critical 
queue. After successful execution of workload, the workload is completed. On the 
other hand, all the QoS-oriented workloads are put into critical queue and sorted 
based on their priority decided by QoS manager and then scheduled for execu-
tion. If there is no obstacle (urgency, more resource requirement, etc.), then execute 
directly with available resources, otherwise put it into under-scheduling state to 
fulfill the user requirements. If all the conditions meet the given budget, resource, 
and time constraints, then it will execute, otherwise it will not be executed. CSLA 
architecture is the key mechanism that ensures that Cloud providers can serve large 
amount of requests without violating SLA terms. It dynamically manages the re-
sources by using efficient resource scheduling techniques. For instance, when a 
workload requires low amount of resources, it will assign resources with lower 
capability, so that new requests can be served.

Fig. 3.4   States in Cloud SLA (CSLA) architecture. SLA service level agreement, QoS quality of 
service
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3.5 � Discussion

As designated in the suggested architecture, we observe a very sincere require-
ment of CSLA architecture to administrate SLAs in the perspective of the Cloud 
environment. The proposed CSLA architecture recommends a very flexible design 
for handling SLAs between Cloud providers and Cloud users. We perceive this as 
one of the strong facets of CSLA architecture where, realistic to the prototype of 
SOA, each functionality is delivered as a Cloud service that could not essentially 
come from the similar Cloud provider. One vital remark we make in the framework 
of Clouds is the absence of standardization. This is especially essential when we 
try to relate through manifold Clouds. Even though it is possible to provide service 
for diverse Cloud interfaces through a middleware, there is no general collection 
of metrics that can be supervised through Cloud providers. There are challenges 
to organize the Clouds and we highlight the importance of such determinations in 
the light of observing abilities. As a part of these standardization determinations, 
we also recommend four types of straightforward metrics for measurements to be 
recognized. Clouds would not be capable of scaling indefinitely when a resource 
restriction is faced. A service provider may choose to assign the Cloud workloads 
or applications or tasks to another provider to avoid important SLA violation penal-
ties. Such a situation generates research prospects in SLA supervision. We proceed 
to analyze SLA characteristics like accounting, monitoring of QoS restrictions, and 
condition damage in related situations as upcoming research.

3.6 � Conclusions and Future Research Directions

This chapter discussed significant factors that could be considered when developing 
Cloud SLAs. Four types of metrics have been recognized for specifying fine-grain 
guarantees of QoS. The defects in the Cloud service can be easily identified and 
SLA deviation can be measured through these metrics. This work mainly focuses 
on enhancing the QoS provided by CSLA architecture. The concept and challenges 
of SLA-based provisioning and QoS for applications and workloads implementa-
tion in the Cloud environment have been presented. We have also proposed and 
presented a CSLA architecture that enables adaptive and dynamic provisioning 
of the resources based on workload-defined policies for satisfying their own SLA 
performance requirements, avoiding the price of any SLA violation and govern-
ing the budgetary cost of the distributed computing resources. Future research in 
this area can be recognized in many ways. One such opportunity is based on QoS 
requirements, which is considered as a vital characteristic of Cloud computing. The 
work presented here can be extended along several lines. From the research method 
viewpoint, our investigative method should evolve into theory building and a sup-
position testing as more experimental data about Cloud computing adoption be-
comes available. From the research output perception, the work regarding different 
service and deployment models, the comparative importance of SLA components as 
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associated to industry-specific features, and new characteristics and perceptions in 
the innovativeness modeling of the Cloud computing subcontracting judgment can 
be initiated. Some more QoS parameters can be analyzed and incorporated to find 
the critical success factors of the CSLA architecture and offer a model that will fur-
ther help in accomplishing SLA in the Cloud environment using an automated tool.
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Abstract  Cloud computing is an extremely attractive model for both the users and 
the providers of Cloud-based infrastructure, who have their own business angle 
for using and providing these services. However, as with many business ventures, 
as the use of Cloud environments grow, the risks and the threats associated with 
a successful use of the model also increase. Although, the Cloud paradigm is an 
evolution of grid systems, Clouds have particular threats specific to virtualized 
and multi-tenant environments, which need to be managed with proper method-
ologies to ensure that the entire ecosystem is secure. Security consists of three 
main aspects—availability, integrity and confidentiality—and each of these needs 
to be considered to make sure that the complete ecosystem is secure. This chapter 
presents a comprehensive discussion of the concerns associated with the Cloud 
security depicting the best practices currently used in the industry. This chapter 
presents an in-depth analysis of these issues with an innovative holistic approach 
on how to manage and assess security risks for different kinds of Cloud ecosystems 
which allows documentation as well as design tools which can be in place to moni-
tor security at both deployment and operation phases. The proposed risk methodol-
ogy approach allows better management and mitigation of security threats when 
they occur during the service lifecycle of any kind of Cloud ecosystem and Cloud 
services provision.

Keywords  Cloud computing · Risk modelling · Security · Threats · Service lifecycle

4.1  Introduction

Cloud computing is a market, which was worth US$ 42 billion in 2012, but is tech-
nologically still being developed [1]. Being attractive to the IT industry, where the 
leasing model can allow powerful software tools to be developed on top of the infra-
structures, which are not always available, the Cloud brings a number of advantages 
which include remote accessibilities to resources, elasticity, scalability based on 
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user demands, pay-per-use models to save energy and costs, to name but a few [2]. 
However, Clouds still have a long way to go to build the trust of the average Cloud 
users on issues of risks, data securities, the kind of services being processed and the 
governance characteristics in general [3].

Forrester Research [4] describes the market potential of Cloud computing through 
the hype curve, divided into 12 segments, based upon level of sharing and business 
value (see Fig. 4.1). Figure 4.2 shows that Cloud computing is a field, which covers 
a wide range of abilities being offered, estimated worth around $ 18 billion.

Security is a priority concern for many Cloud computing customers where it can 
affect the reputation of the providers in terms of confidentiality, resilience and in-
tegrity of the company. Kiran et al. [6] have described some of these examples such 
as data leakage that has been investigated with access control measures like discre-
tionary access control [7] or mandatory access control [8] to control access to an 
object. Both of these approaches can be used to control access to virtual machines 
(VMs) via the hypervisor or VM monitor. However, traditional access control mod-
els focus on the assumption that the data controller and data owner is in the same 
trust domain, an assumption which does not hold for Cloud computing. Another 
example is network access control software like Symantec data-loss prevention [9], 
which cannot control data leakage within an organisation, as only the end points or 
network points are scanned for violation of enterprise security policy. Hypervisor 
attacks are the most serious security threats to the Cloud environment [10] where if 
infected, such attacks can be used to gain control over a VM (Bluepill) [11]. Even 
the smart meters cannot monitor false data injections; cyber-attacks having serious 
implications on the infrastructures [12].

Fig. 4.1   Hype cycle for Cloud computing 2011 [5]
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This chapter discusses the research challenges in security and the best practices 
employed by the industry with the various policies and measures adopted. Based on 
these approaches, a uniform risk methodology is presented discussing a step-by-step 
procedure for handling security risks on Cloud ecosystems. This involves the poli-
cies, documentations, governance checks as well as designs tools, which can be im-
plemented based on local infrastructures to implement security checks at the deploy-
ment and operations phases of the service lifecycle. The chapter has been organised 
to present a comprehensive detail on security concerns and findings in the Cloud. 
Section 4.2 starts with the security concerns and some general characteristics found 
in industry with a distribution of money spent on the different sectors to improve its 
issues. Sections 4.3 and 4.4 present different Cloud ecosystems and the service life-
cycle as a background on which the methodology applies relevant to security risk as-
sessment. Section 4.5 presents the actual risk assessment methodology introducing 
the documentation methods, which include reviewer documentation, provider poli-
cies, legal implications and risk assessment data sheets that can be filled in advance 
as a risk report for monitoring security concerns of the Cloud ecosystems. Based on 
this analysis, the next section identifies six Cloud threat categories which encom-
pass all kinds of threats on Clouds. This identification is extended in Sects. 4.7–4.9, 
where the risk methodology for the Cloud is presented with accompanying algo-
rithm and simulation results. Section 4.10 discusses the issues with Cloud security 
testing and the potential future within this domain. This chapter concludes with a 
case study applying the methodology to a video scalability problem using Clouds 
and concludes with further future work to be carried out in this domain.

4.2  Security Concerns in Clouds

The UK government is investing in the G-Cloud programme initiative in order to 
improve the economic sustainability by delivering information and communication 
technologies (ICT) systems that are flexible, on-demand and in compliance with 

Fig. 4.2   Cloud computing business value [5]. IaaS infrastructure as a service, PaaS platform as 
a service, SaaS software as a service, BPaaS business process as a service, BPO business process 
outsourcing
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the government policies in order to support emerging small business suppliers [13]. 
However, to target the issues relating to security, they released a statement saying 
that they will ease these issues by promoting the use of open source software [14]. 
Open sourcing the software’s will not be a solution to securing the already be-
ing used initiatives of the G-Cloud. For securing data transfer and hosting, various 
considerations need to be taken for data management on multi-tenancy in Clouds 
[15]. But these still lack detailed analysis in terms of what needs to be done to target 
these issues [16]. Comparatively, the National Institute of Standards and Technol-
ogy (NIST) have come up with a list of security risk and mitigation mechanisms 
with reference to a strategy for performing risk assessment [17]. Whistle et al. [18] 
discuss the certification and accreditation for threats in accordance with the govern-
ment laws analysed per stage accompanied with a detailed analysis.

Security can make or break deals, either convincing organisations to use the 
Cloud or deferring on security concerns. Best performances in a survey conducted 
by Ried et al. [4] show the following characteristics on security issues and how they 
are influenced by various factors, grouping them into three areas:

•	 Policies and control: security control objectives prioritised as functions of re-
quirements for risk, audits and compliance(69 %), policies for protection (85 %), 
acceptable use (81 %) and regular monitoring, analysis and reporting (70 %) on 
information assets, baseline security requirements for all applications, databases 
and network infrastructures (74 %)

•	 Organisation: responsible team with ownership for security (67 %), formal end-
user awareness and training programs (70 %), non-disclosure agreements in place 
and reviewed at intervals (74 %), defined steps for employee termination (67 %)

•	 Knowledge and performance management: audit plans agreed in advisory boards 
(70 %), compliance with SLAs demonstrated at various intervals (69 %), formal 
risk ass at regular intervals (52 %)

Risk models in security can be used to define and document some of the security 
concerns. Pullman [19] conducts an in-depth threat analysis for concerns making 
sure every part is covered. Microsoft has described a similar threat modelling tech-
nique to keep security concerns intact. Figure 4.3 shows a preliminary investigation 
in threat analysis for data loss in the Cloud and how it can be worked through to 
assets and mitigation strategies.

Figure 4.3 shows a threat analysis tree of the threat of data loss. The process 
involves working out each possibility which may have lead to this threat. It then 
links up with which assets need to be protected for this. As a result of this analysis, 
various mitigation actions can be identified such as security audits, hardware wipe 
policy whenever data moved, encrypting data and keeping the protected keys safe. 
Therefore the risks categories help identify each risk separately and the different 
models to analyse them separately.

4.2.1  General Security Characteristics

Security is a major concern for organisations and for businesses who are interested 
in Cloud investments [20–22]. The Aberdeen group [22] conducted a survey of 
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security practices relating to risks and the leading pressure for areas of investments 
in the Cloud initiatives. Their findings are presented in Fig. 4.4.

Table 4.1 summarises their findings in terms of the best practices adopted across 
the different dimensions of security mechanisms on Cloud infrastructures.

Fig. 4.3   Security threat analysis carried out by Microsoft [19]

 

Fig. 4.4   Leading pressures driving the current investments in security for Cloud initiatives. 
(Adapted from [22])
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Best practices across following 
domains

Best in class (%) Industry average (%) Laggards (%)

Data security
Policies and controls to ensure data 
security (e.g. access controls, data 
loss prevention, encryption)

85 60 55

Encryption of sensitive data in storage 
(e.g. file servers, databases, end-user 
endpoints)

50 46 45

Encryption of sensitive data during 
transmission (e.g. over public net-
works, electronic messaging)

70 62 65

Effective key management to support 
encryption of data in storage and in 
transmission

56 53 45

An audit function is involved if the 
integrity of enterprise data has poten-
tially been compromised (e.g. data 
loss or exposure, unauthorised access)

59 56 55

Identity and access management
Consistent minimum standards 
for user authentication and access 
controls

96 81 70

Minimum authentication require-
ments for secure remote access

96 86 75

All requirements for access to data 
are identified and in place prior to 
access being granted

74 69 50

Timely suspension/revocation/de-
provisioning of end-user access upon 
termination or change in role

85 71 65

Periodic validation that end users 
have appropriate access rights 
(attestation)

74 56 55

Enforcement for separate of duties 74 56 50
Data governance
All data (and objects containing data) 
have been identified and classified

54 46 32

All data has a designated owner/
steward

58 38 37

Policies and processes are in place for 
data labelling and data handling

54 51 42

Production data is not replicated or 
used in non-production environments

64 56 37

Data backup and recovery mecha-
nisms, tested at regular and planned 
intervals

74 72 63

Table 4.1   Best practices across various domains [22]. Numbers represent percentage of respon-
dents with N = 104
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Best practices across following 
domains

Best in class (%) Industry average (%) Laggards (%)

Policies for secure disposal and 
complete removal of data from all 
storage media

70 57 47

Security mechanisms to prevent data 
leakage

58 56 39

Network access, mobility and application security
Network infrastructure is designed 
and configured to restrict connec-
tions between trusted and un-trusted 
segments

81 73 70

Policies ad controls to protect wire-
less network environments

78 76 65

Policies and controls to limit access 
to sensitive data from mobile devices 
(e.g. laptops, smart-phones, tablets)

74 49 40

Policies and controls with respect to 
code for mobile devices

52 37 35

All functions and application pro-
gramming interfaces (APIs) that will 
be used in conjunction with software 
development are analysed for security 
risk

52 38 30

Monitoring, auditing, forensics and incident response
Security-related logs, information 
and events are retained and regularly 
reviewed

69 68 58

Monitoring and tracking of security-
related incidents and events (e.g. 
types, volumes, time and cost to 
remediate)

78 70 56

Communications channels and escala-
tion procedures for security-related 
incidents and events

59 52 50

Forensic procedures (e.g. chain of 
custody) for collection, retention and 
presentation of evidence in support of 
potential legal action

52 48 35

Segmentation and access controls to 
prevent compromise and misuses of 
log data

65 59 55

Access to diagnostic and configura-
tion ports is restricted to authorised 
individuals and applications

77 68 55

Table 4.1  (continued)
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4.3  Cloud Ecosystems

To make them more attractive for users, Cloud providers attempt to hide a lot of the 
processes in the background to promote the easy usability for users. Having auto-
mated security policies and access control measures are examples of these, but there 
are still a lack of standards to be followed during these activities. These have been 
on the active research agenda of bodies like NIST [23] and Gartner [5].

NIST describes the Cloud as a convenient model using efficient computing re-
sources stressing on four deployment models [24]:

•	 Private Cloud: operated for an organisation by either itself or a third party
•	 Public Cloud: for general public use and is owned by an organisation selling 

Cloud services
•	 Community Cloud: an infrastructure that is shared by several organisations, also 

called federation of Clouds
•	 Hybrid Cloud: a composition of two, more Clouds or multi-Clouds (community, 

private, public)

Each of these models or Cloud ecosystems brings different issues in terms of data 
hosting, security, risks and business models. This chapter discusses Cloud ecosystems 
in relation to the roles of the actors—namely service provider, infrastructure provider 
and brokers—involved in the ecosystem, which do not have a direct mapping from 
the NIST documentations. This is done to ease discussion in the later sections.

Figure 4.5 describes the different Cloud ecosystems and shows the roles of the ac-
tors who play in them. A private Cloud involves only a service and an infrastructure 
provider who communicate directly to each other and possibly in the same geograph-
ical location. A Cloud-bursting environment is when one infrastructure provider is 
close to running out of resources and thus bursts to another. Figure 4.5c describes 
a federation of infrastructure providers working together as a team to complete the 

Fig. 4.5   a–e Various Cloud scenarios or ecosystems
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service execution. Figure 4.5d shows a similar situation, but this time the infrastruc-
tures are working independently of each other and only guided by the service provid-
er. Lastly, Fig. 4.5e describes a situation which involves a broker to mediate between 
the two parties. The broker can take responsibilities to monitor, test and make sure 
the service is completed and delivered at the right time to the service provider.

In addition to the Cloud ecosystems, Clouds can be recognised by the form of 
functionality they offer. These are as follows:

•	 Software as a service (SaaS): Uses the Web to deliver third-party applications to 
Clients. Example: Gmail

•	 Platform as a service (PaaS): Provides framework to build applications on top 
as well. This provides the client highly scalable infrastructure and hardware for 
computing. Examples: GoogleAppEngine [25], Heroku [26]

•	 Infrastructure as a service (IaaS): Third party allows you to install a virtual server 
on their IT infrastructure

This chapter focuses on Cloud security in terms of the different ecosystems and the 
security threats that need to be monitored. Functionality models of Clouds form part 
of these ecosystems, depicting how the services will be offered. Based on the func-
tionality and ecosystems, various threats can be highlighted which would otherwise 
not need to be monitored in a different scenario. Section 4.7 provides a case study 
for a video scalability application to demonstrate this use of identifying threats for 
the particular scenarios.

4.4  Cloud Service Lifecycle

Before we discuss the different kind of threats across the ecosystems, we have to rec-
ognise the different phases in which the services can exist. This also highlights that 
only particular threats will be active during, either the service engineering phase, 
onboarding or operation phase. The services lifecycle is represented in Fig.  4.6, 
where the first phase of service engineering is when the service is constructed, the 
second phase is when the service is actually deployed on to the Cloud and the third 
phase is when the service is in operation and executing on the Cloud.

4.5  Risk Assessment of Security threats on Clouds

Security can essentially be broken into three main aspects, which, if guaranteed, 
becomes fully optimal (Fig. 4.7). These are:

Fig. 4.6   Service lifecycle covering construction, deployment and operation of the service on the 
Cloud
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•	 Availability: The data is available when needed.
•	 Integrity: The data is not modified without being detected.
•	 Confidentiality: The data remains undisclosed to unauthorised parties.

Comparing to grid infrastructures, due to their nature, Clouds have additional 
threats that need to be considered for security reasons. For instance, data access in 
Clouds is a huge threat because geographically the data can be hosted anywhere as a 
service. This would not be a threat on Grid infrastructure which are usually business 
owned and located internally. Therefore there is a need to consider the geographical 
location and the access rights to the Cloud for safety of the data. Another example is 
when migrating the VMs securely across the different infrastructures on the Cloud. 
Depending on the situation, the data manager on the Cloud should consider if the 
VM’s new location still complies with the legal agreements made between the end 
user and the Cloud for where the data is allowed to be hosted. Various authentica-
tion models can be introduced to make it more secure as a mechanism to overcome 
this threat.

There is a need to identify the different kinds of security issues in Cloud com-
puting. For example, Fig. 4.8 describes how data being hosted in isolation, can be 
compromised.

Figure 4.8 describes a tree structure which can be used to perform a fault-tree 
analysis style to find, where human errors, faults and the business being affected 
helps to determine how to mitigate similar situations if this happens in real life.

4.5.1  Documenting a Security Risk Assessment

Different Cloud ecosystems and the services executing on them, are prone to dif-
ferent number of threats, particularly the public or hybrid Cloud scenarios. In 
public Clouds, the data is hosted externally on a Cloud, being used by multiple 
users of the public. Hybrid Clouds can include different Clouds joining to form a 
federation or multiple Clouds working together to fulfil a service. Threats, such 
as unauthorised data access, are a problem on public Clouds rather than a private 
Cloud, where everything is maintained internally. Not having formal procedures 
in place is a major problem because of these different natures. When using mul-
tiple Clouds a few common rules should be maintained to allow uniform proto-
cols that are followed by all Cloud providers in case certain security threats are 
realised. Cloud networks can be set up with various sensors to gather the informa-

Fig. 4.7   Security triangle 
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tion, on how the service is performing on the Cloud within the applications. The 
introduction of formal methods can make Clouds secure by applying them to the 
Cloud industry as a whole [6]:

•	 Reviewing various documentations: These include using sniffers to filter output 
logs produced by the monitoring software installed on the infrastructures. These 
can include system logs (for details of service start-up, downtimes, file and ac-
count access and changes to file privileges), firewall logs (authorisation attempts 
from various locations and identify the users, if possible), antivirus logs (for 
detecting malicious code accessing the system), and intrusion detection system 
logs (detecting the changes to the hypervisor code), and legal implications of 
security threats have to be set to measure the impact of certain threats.

•	 Provider interaction policies: Policies have to be set for the providers, which in-
clude action management policies for necessary legal steps to be taken, if threats 
happen and how to mitigate them. These should include an incident response 
plan, which may include communication protocols (how information will be 
displaced to within the team or outside such as the attacking internet protocol 
(IP) addresses to block those organisations) [6], software vendors providing the 
software, (if the actual software being installed is corrupted), internal team man-
agement procedures, vulnerability assessment with certain auditing procedures 
and using these for future incident planning. An important issue is revealing the 
performance information to Cloud customers. Should the end users be told of 
threats occurring at the time their services were hosted on the Cloud and when? 

Fig. 4.8   Tree analysis for threat of data leakage. (Adapted from [1])
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In cases of multiple locations hosting data, this can be an attractive requirement 
from the users to ensure their data is secure.

•	 Legal implications on the security aspects: Data protection and security can be 
specified in a legal contract, being drawn with the end users and the providers. 
This may include analysing all privacy concerns specific to the Cloud usage. This 
may start with analysing the data flow in the Cloud use cases and understand-
ing the legal issues with the multiple vendor situations and how these should be 
handled. Information security-related standard (ISO/IEC 27001:2005) has rec-
ognised protection of personal data including protection against alteration, unau-
thorised modifications and against unauthorised access as a standard [3]. Further 
recommendations concerning information security are mainly based on control 
and industry best practices relevant to Cloud providers (security framework). 
However, this needs to be defined, clarifying questions concerning intellectual 
properties and ownership rights in information and services placed in the Cloud. 
This also involves clarifying ownership rights among all potential stakeholders 
and includes them within the service level agreements (SLAs) drawn.

4.5.2  Security Risk Assessment Data Sheet

An example of a data sheet used to perform a security risk assessment has been de-
scribed below: This can be filled out by the providers or the end user as part of the 
SLA, when they try to ask for certain security measures to be taken.

1.	 Details:
Service name: ________
Department: Service provider/infrastructure provider
Date of this assessment: ________
Risk reference no: ________

2.	 Hazards overview:
−	 Example unencrypted data
−	 Example lost keys

3.	 Control measures:
(Option to complete this section for any risk which is rated as four or more, or 
for which the likelihood is three).
For each hazard name responsible person and action
Note: The choice of controls should be implemented according to the follow-
ing hierarchy:

1.	 Eliminate the hazard
2.	 Substitute
3.	 Reduce
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4.	 Isolate (enclose the hazard)
5.	� Regulate (e.g. numbers at risk, engineering controls or safe system of work)
6.	 Protection
7.	 Discipline

Copies: (a) The original of this form is to be retained by the originating 
department and a copy is to be supplied to the safety department. (b) Rel-
evant information on risks and preventive/protective measures are required 
by law to be provided to employees so that they can ensure their own health 
and safety and not put others at risk.

4.	Evaluation of risk:

Hazard details Services at risk Fre-
quency/
(duration)

Controls 
in place

Residual 
risk 
evaluation

Risk 
rating

Hazard Nature of 
hazard/
adverse 
effects
(how is 
the hazard 
likely to put 
services at 
risk?)

Insert 
code 
and 
(num-
ber of 
people)

Insert 
code 
letter 
and 
(dura-
tion)

Insert 
code 
numbers

Severity 
of harm 
score 
1–3

Likeli-
hood of 
occur-
rence 
score 1–3

Multiply 
sever-
ity × like-
lihood

Unen-
crypted 
data

Third party 
acquires 
data

A, B, D 
(5)

D/(4) 1, 3, 5 3 3 9

Lost 
keys

Third party 
has data

A, B, D 
(10)

D/(4) 2, 4, 5 2 3 6

Key: services at risk:
(a) Operator (skilled), (b) operator (inexperienced), (c) end users, (d) office 
staff

Key controls:
(1) Data encryption algorithms, (2) refreshing keys, (3) segregating data, (4) 
assessment of personnel, (5) monitoring login logs

Severity of harm:
(1) Slight, e.g. minor data leaks, less important data, (2) serious, e.g. personal 
data compromised, (3) major, e.g. business lost, reputation jeopardised

Likelihood of occurrence:
(1) Low (harm will seldom occur), (2) medium (harm will often occur), (3) 
high (certain or near certain)
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4.6  Identifying Cloud Threat Categories

Khan et al. [6, 24] describe how the various security threats can be bunched together 
in six specific categories, represented by Table 4.2. The main differences from grids 
to Clouds have added a few unique threats, such as data leakage (an unauthorised 
transmission of data from within an organisation to outside or the unauthorised 
access to the system, which compromises the confidentiality of the data), usage 
control (access control to cover conditions independent of environmental factors), 
hypervisor level attacks (enable an adversary to exploit vulnerability at the virtuali-
sation layer that is running underneath the VMs). Most threats have a domino effect 
on the other components, where one affects multiple components. For instance, if 
the hypervisor gets corrupted, all the corresponding VMs, their locations and data 
can be compromised. Inappropriate use of any technical or data available on the 
Cloud affects the trust customers place on the Cloud, having implications on the 
business objectives of the Cloud providers.

4.7  Need for Risk Management

Risk management addresses the possibility that future events may cause adverse ef-
fects and is defined as “the process whereby organisations methodically address the 
risks attaching to their activities with the goal of achieving sustained benefit within 
each activity and across the portfolio of all activities” [2]. Figure 4.13 describes the 
stages in a risk management cycle. The most important concepts in risk manage-
ment are as follows:

•	 An asset: to which has a value and hence for which the party requires protection.
•	 An unwanted incident: an event that harms or reduces the value of an asset.

M. Kiran 

Table 4.2   Security threats and their categories ( C confidentiality, I integrity, A availability) [6]
Threat category Description (specific to Clouds) Factor Example
External attacks These include all the threats in 

scenarios involving use of public 
infrastructures

C, I, A Carrying out of denial 
of service (DoS) attack

Theft Cloud computing supports multi-
tenant architecture with multiple 
users using same resources. This 
can lead to the theft of data by 
an adversary

C, I, A Gaining unauthorised 
access to systems or 
networks

System malfunction Some software used extensively 
on Clouds has bugs

A, I Malfunction of 
software

Service interruption Unavailability of service/data 
due to DoS attacks

C, I, A Natural disaster

Human error No control on how users use the 
system

C User error

System specific System specific threats and 
abuse

C, I, A Usage control
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•	 A threat is a potential cause of an unwanted incident whereas vulnerability is a 
weakness that opens for, or may be exploited by, a threat to cause harm or reduce 
the value of an asset.

•	 Risk is the likelihood of an unwanted incident and its consequence for a specific 
asset, and risk level is the level or value of a risk derived from its likelihood 
and consequence. For example, a server is an asset; a threat may be a computer 
virus and the vulnerability a virus protection not up to date, which leads to an 
unwanted incident.

A risk management process consists of a risk identification stage, where it is identi-
fied, assessed for likelihood and impact, managed through planning and resolved 
with a plan on what to do if it occurs. Risk monitoring phase allows it to be continu-
ally monitored in case it becomes active in the future (Fig. 4.9).

4.7.1  Cloud Threats Identified

The security risk methodology uses the threat modelling as an approach for iden-
tifying the threats and vulnerabilities of the system. Two sources of information 
were used to collect the threats, unique to Clouds. The sources of information are 
as follows:

For collection purposes:

•	 The information security forum [1, 3] for providing data on attacks on IT sys-
tems and the frequency of attacks

•	 The public data on attacks on the Cloud platforms such as Amazon EC2 and 
Google Apps Engine [8, 9]

For evaluation purposes:

•	 Defense Advanced Research Projects Agency (DARPA) intrusion detection 
evaluation data sets [3]

Based on the data collected, a risk catalogue can be created to document the threats, 
the affected assets and their vulnerabilities. An entry into the risk catalogue can be 
stated and shown in the example in Table 4.3.

The data from the threat analysis tool [28] helps to identify the form the threats 
in the form of ids, assets, and the values for priority and likelihood. The ecosystems 
relate to Cloud scenarios being private, bursting, federation and multi-Clouds. The 
lifecycle stage shows which phase of the service lifecycle, during execution, is the 
threat active—during deployment or operation. A risk methodology is then generated  

Fig. 4.9   Risk management process
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which will use this risk catalogue as a reference database when making decisions on 
the security risks in the Cloud.

4.8  Risk Methodology Stages

This section describes the various stages involved when performing a risk assessment 
for Cloud computing environments. The methodology follows a 5-stage procedure 
from a high level analysis of the system to the asset identification, threat assessment 
and then the final evaluation of risk from the matrix to calculate as the assessment of 
the risks that need to be managed in order of high probability and impacts.

Stage 1: High-Level Analysis of the System  An initial high-level analysis of the 
Cloud ecosystem or scenarios, to help identify the actions and assets involved. This 
will help isolate the assets involved and how they change over time to identify the 
vulnerabilities of the Cloud environment.

Generally security needs to be assessed before deployment of the service to 
check for security concerns of other provider or if the SLAs demand certain security 
aspects. During the operation, as security concerns are monitored while the service 
is executing, certain live data have to be assessed continuously.

Stage 2: Identifying the Assets Involved  There are various assets involved either at 
the deployment or operation stage such as the SLA or customer data. These can be 
monitored in relation to the specific threats in the environment.

Stage 3: Identify the Threats in Each Cloud Deployment Scenario  This is where 
a threat analysis tool can be used to perform a detailed analysis of each threat. 
Figures 4.10 and 4.11 describe the threat distribution across the six threat categories 
identified earlier [28].

The threat analysis, accompanied by an expert opinion, sets the threat and vul-
nerability ratings for each threat from a scale of 1–5 (very low, low, medium, high 
and very high). The tool also allows mapping the threat with respect to business 
impact produced as an information risk profile. These results have been shown in 
Table 4.4.

Stage 4: High-Level Analysis of Each Threat  Each of the threats can be further ana-
lysed in terms of who/what causes them and the incidents leading up to them, which 

Threat id 27
Name of threat Theft of business information
Cloud ecosystem at which 
active

All (private, bursting, federa-
tion, multi, brokerage)

Service lifecycle stage Operation
Asset affected Customer data
Priority assigned 4
Likelihood assigned 2

Table 4.3   Example of 
the threat entry in the risk 
inventory
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Fig. 4.10   Business impact, threat and vulnerability rating for the six threat caetgories. (Adapted 
from [28])

 

Fig. 4.11   Overall threat rating in terms of business impact. (Adapted from [28])
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can then be prioritised depending on this information. This also helps to measure the 
impact of the security risk on the service and the providers. Figure 4.12 depicts an 
example of the hacking threat and its related asset and vulnerabilities.

Stage 5: Risk Evaluation  Depending on the priority of the assets and likelihoods 
of the threats occurring, the threat items can be plotted into an evaluation matrix to 
document their occurrences. Table 4.5 depicts this in relation to the threats identi-
fied in Table 4.4.

The likelihood and impact rating is set using the data collected and the threat 
analysis. The impact values also denote the affect the threat will have on the busi-
ness such as loss of confidentiality or availability eventually leading to loss of mon-
ey. The loss in trust has the highest impact (Table 4.6).

Once the inventory has been created for security risks, the level of risk can be 
calculated by the following algorithms. These are different both for deployment and 
operation phases.

Table 4.5   Risk evaluation matrix. (Adapted from [24])
Consequence
Insignificant Minor Moderate Major Catastrophic

Likeli-
hood

Rare T40 T10 T2, T4, T5, T8, 
T11, T12

Unlikely T29 T9 T3, T27
Possible T41 T13 T1, T50 T51, T52
Likely T15,T34 T16
Certain T35

Table 4.6   Range of threats for confidentiality, availability and integrity. (Adapted from [24])

Fig. 4.12   Analysing the threat hacking, drawn using the CORAS (A Framework for Risk Analysis 
of Security Critical Systems) risk modeling tool [27]
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4.9  Algorithms for Security Risk Assessment

The algorithms used to measure security risks can be unique depending on the de-
ployment and operation phases. These are described below:

4.9.1  Algorithm: Deployment Phase

Security_risk_at_deployment (Cloud_ecosystem)

1.	� Calculate number of threats recorded, at deployment stage and the involved 
ecosystem.

2.	 For each threat, calculate:
a.	� probability of likelihood given the asset is affected ( ( | ))p B A = likelihood / .5 0
b.	 probability of asset priority ( ( )) / .p A = priority 5 0
c.	� probability of likelihood regardless of asset ( ( )) ( | )p B p B A=

* ( ) ( ) p A p A+ ′
d.	 probability of threat occurring ( ( | )) (( ( | )* ( ))) / ( )p A B p B A p A p B=

3.	 Security risk = sum all probabilities of threats occurring/threats found

The maximum value of the asset priority and the likelihood of it being affected are 
set in the range 1–5. Based on the list of threats that need to be monitored, these 
can be assessed based on each asset and the likelihood that each asset actually fails 
as a result of the threat. Bayes rule can be used to calculate the underlying prob-
ability:

Let A = “Something is wrong with asset with its priority”
Let B = Asset has failed as a result
In steps 2c and 2d, the aim is to calculate P A B( | ) , the probability that the asset 

has indicated a risky event as a result of the threat.

P B A( | ), indicates that likelihood that the asset has been affected when something 
is wrong but not related to the kind of threat. P( A) gives the asset affected with its 
priority. P( B) is then defined by calculating the total probability:

Note: A and A′ are mutually exclusive where ( A′) means any kind of fault in the 
system without this asset being involved.

P A B P B A P A P B( | ) ( | )* ( ) / ( )=

P B P B A P A P B A P A( ) ( | ) ( ) ( | ) ( )= × + ′ × ′

P A P A( ) ( )′ = −1
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Assuming P B A( | )′ = 1, because this means that P( B) (probability that the asset has 
failed) given the asset is not present P( A′). Thus this determines that if the asset is 
not present, the system has failed already.

Therefore:

Once calculated, using substitution to find P( A|B) probability that the asset has 
failed due to this threat is given by:

The algorithm above shows how the security risk probability is calculated at de-
ployment stage. Considering the recorded risks in the risk inventory (Table 4.4) for 
each particular use case and using the values of priority and likelihood as described 
in the algorithm, the probability of that particular threat can be calculated. The se-
curity risk values are depicted in Fig. 4.13 which show the probabilities returned for 
each of the use cases, private, bursting, federation and multi-Cloud during deploy-
ment and operation (Fig. 4.14).

P B P B A P A P A( ) ( | ) ( ) ( )= + × ′1

P A B P B A P A P B( | ) ( | ) ( ) / ( )= ×

Fig. 4.13   Security risk probability as calculated from the risk catalogue from value 0–1 and the 
different use cases. (categories are private (private at deployment and operation), bursting (burst-
ing at deployment and operation), federation (federation at deployment and operation), multi 
(multi-Cloud at deployment and operation))
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4.9.2  Algorithm: Operation Phase

Security_risk_at_operation (Cloud_ecosystem)

1.	� Make a list of threats to be monitored at operation stage for the particular eco-
system.

2.	 Make a list of the affected threats to be monitored.
3.	 For each asset make observations Oi for every 10 min.
4.	� Return the sample to the risk assessor, which records the probability of the 

event occurring.
5.	 Calculate total_event_rate = events_found/total monitored time.
6.	 Relative risk (RR) = total_event_rate/risk (risk from catalogue).
7.	 If RR = 1 do nothing, RR < 1 accept risk, if RR > 1 apply mitigation strategy.

A collection of monitoring logs can be parsed to calculate the event rate for the risk 
assessor to calculate the relative risk. Figure 4.15 shows the states of a particular 
asset changing with time, 1 h 40 min (collecting 10 min samples). The probability 
collected is returned to the risk assessor, which calculates the relative risk as shown 
in the algorithm at operation stage.

Various monitoring logs will be assessing its state during operation. Initially the 
asset starts with state “good”, but because it is to be monitored, it moves into the 
“attacked” state where the various logs are counting the number of events occur-
ring. This is the event rate returned to the risk assessor.

During this time, if the risk assessor receives an event rate, which is too high, 
this causes the relative risk to go above 1, the asset moves into a “compromised” 
state.

When the risk assessor witnesses the assets in a compromised state, if then fires 
relative mitigation strategies to allow the asset to be repaired and go back to a 
“good” state. Then once in the “good” state, it will then again move to an “attacked” 
state so that it can be continuously monitored for attacks and return event rates to 
the risk assessor.

Fig. 4.14   State changes 
for each asset from good, 
attacked or compromised. Pl1 
probability likelihood 1 can 
be calculated using the risk 
inventory, Pl2 probability 
2 is calculated at operation 
depending on the monitored 
logs, PlT the relative prob-
ability threshold is measured 
using the relative probability 
between Pl1 and Pl2
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4.10  Testing Security

A kind of testing, particularly “penetration testing”, seeks to get past security proto-
cols. Security as a whole involves static design issues, as well as run-time verifica-
tion of security. In this sense, security is a measure of reliability, to test if the data is 
secure assessing in terms of vulnerability, availability and integrity.

Non-functional requirements specify how a system should perform, in terms 
of its efficiency and reliability in the SLAs. Some of these aspects can also be 
defined as specific variables, such as response time, scalability, reliability, avail-
ability, security or maintainability. Various kinds of testing included here are per-
formance testing, security testing or dependability testing for satisfying customer 
needs.

Fig. 4.15   Example of rates counted for asset data. The asset data being monitored for 10 samples 
and the corresponding state changes (good, attacked, compromised) with event rate ( top graph) is 
shown in relation to the relative risk ( bottom graph)
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4.11 � Application: Case Study for Video Scalability in 
Cloud Environment

Khan et al. [29] describe an implementation of threat methodology to assess the 
video scalability when being distributed as an IaaS on the Cloud. Scalable video is 
a means of distributing media content to many users using Clouds, as this allows 
heterogeneous networks to be connected to devices. This is a highly distributed 
environment with an IaaS focus, but centralized with many users connecting to it.

Security measures have to be taken to make sure copyright laws are intact, pay-
per-view models for business value and economic return and it caters to the differ-
ent levels of bandwidth used by the users. Usually, past models have distributed 
encrypted video files when broadcasted, such as satellite television, investing in 
set-top box to subscribe to encrypted channels. Shared encryption keys are used 
with each subscriber, which changed periodically.

Figure  4.16 describes the unique service lifecycle, which would exist in this 
particular scenario. To prevent past users accessing the data, when unsubscribed, 
there will be a continuous pre-deployment stage, where new keys will be generated, 
deployed and used periodically.

When identifying the threats, some of these do not apply to video broadcasting, 
from the general Cloud scenarios such as the following [29]:

•	 Isolation of tenant application: Affects integrity, confidentiality and does not 
apply to video broadcasting.

•	 Data encryptions: Applies to all three availability, confidentiality and integrity 
and is already covered in the key authentication process during the pre-deploy-
ment process.

•	 Data segregation: Affects the availability and integrity also does not affect 
broadcasting issues.

•	 Tracking and reporting service effectiveness can be given by customer review 
and end-user experience affecting the credibility of the server.

•	 Compliance with laws and regulations of copyright issues and contract breach. 
Affects the confidentiality and integrity of the business during the pre-deploy-
ment stage.

Based on Table  4.4, the threats which apply in this scenario are identified in 
Table 4.7, with corresponding risk evaluation in Table 4.8 and priority concerns for 
business in scalable video in Table 4.9.

Fig. 4.16   Service lifecycle 
for scalable video. (Adapted 
from [29])
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Based on the above analysis, availability is the highest concern, so we can imple-
ment changes that target these threats like implementing fast authentication key 
mechanisms and secure access to data throughput.

The above threat analysis can help determine the important threats to watch for, 
concentrating staff efforts and costs to make sure they do not occur. This helps 
manage the critical parts of the systems and also manage the costs.

4.12  Conclusions

Cloud computing refers to on-demand access to a shared pool of computing 
resources, providing reduced costs, reduced management responsibilities and in-
crease in business agility. For these reasons, it is a popular paradigm to be used by 
end users from different professions. Security is, however, a major player in this 
equation as it can make or break deals for Cloud users and infrastructure providers 
alike.

The way forward is to come up with standards on how security can be assessed to 
minimize the risks in the systems as well as manage the costs as efficiently as possi-
ble. This chapter discussed a security risk methodology approach to assess the items 
which can jeopardise the security of the Cloud ecosystems and the actors involved in 
the Cloud. By performing a detailed documentation assessment and assigning a like-

M. Kiran 

Table 4.8   Risk evaluation Matrix for scalable video
Consequence
Insignificant Minor Moderate Major Catastrophic

Likelihood Rare T5, T11, 
T14, T15

T2, T4, T12, 
T8

T40

Unlikely T29, T41 T9 T27, T50, T53,
Possible T35 T42 T3, T10, T16, 

T54
Likely T34 T1
Certain

Table 4.9   Range of threats for confidentiality, availability and integrity for scalable video
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lihood and priority to each of these threats, the items can be listed in order of priority 
to see which particular measure need to be taken first to reduce that kind of security 
risk. This allows work to be categorized in terms of the most important first when 
assessing complex ecosystems such as Cloud environments which have too many 
components that can go wrong during the service deployment or operation phases.

There is a further need for proper documentation and legal agreements to be 
drawn up to restore the trust of consumers in Clouds and effectively making busi-
ness more aware of a detail approach to take when securing their systems.
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Abstract  Cloud storage is a model of networked online storage where data are 
stored in virtualized pools of storage devices. Cloud storage requires users to host 
their data on the servers of cloud service providers. This raises issues of confiden-
tiality, integrity, and availability of the data stored in the cloud environment. In this 
chapter, we propose a framework for secure data storage and identity management 
(SecDSIM) that can store data securely in the servers of cloud service providers 
using multi-user searchable encryption technique. The framework supports the pro-
cess of verifying proof of storage correctness of the data by retrieving data identi-
fiers any time around the cloud. The framework also supports dynamic updates for 
the encrypted data and indexes stored in the servers of cloud service providers.

Keywords  Multi-user searchable symmetric encryption · Grade-based access 
control · Cloud data storage · Identity management · Aided keyword search · 
Precise keyword search

5.1 � Introduction

Cloud computing is a way of delivering IT-enabled capabilities to users in the 
form of “services” with elasticity and scalability, where users can make use of 
resources, platform, or software without having to possess and manage the underly-
ing complexity of the technology. Cloud computing becomes popular because of 
its characteristics including scalability, elasticity, and cost effectiveness. However, 
from the perspective of a cloud consumer, security of the data in the cloud is one of 
the main obstacles for adopting cloud computing services [1–5].

Cloud storage is a specific sub-offering within infrastructure as a service (IaaS) 
of Cloud computing and promises high data availability and reduced infrastructure 
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costs by storing data of users with remote third-party providers [6]. In recent years, 
cryptography has become a critical tool in theoretical analysis of security model and 
architecture for cloud storage and emerged as an important technique in designing 
secure identity management for cloud storage systems [6–8].

Our goal in this chapter is to propose a multi-user searchable symmetric encryp-
tion scheme that provides an efficient isolation and a secure storage mechanism for 
users’ data and to provide an identity management using grade-based access control 
when users share their data with other trusted users.

5.2 � Cryptographic Cloud Storage and Identity 
Management Schemes

Users are required to store their data on the servers of cloud service providers 
(CSPs), which discard the control over their data. A CSP physically stores users’ 
data in one location that could lead to several data security and privacy issues such 
as unauthorized access by internal employees of CSP and by outsiders. As a result, 
CSPs could not provide confidentiality, integrity, and availability of data. In such 
cases, a CSP must provide an efficient isolation and secure storage mechanism for 
users’ data.

Mostly, data are accessed through a search operation performed on a cloud stor-
age server. Generally data are stored in encrypted form in a cloud storage server. 
Traditionally, we download the whole encrypted data on the local machine, de-
crypt all its contents, and then perform the search on the plain text. Note that this 
searching scheme is inefficient and impractical.

We now present some of the common cryptography-based cloud storage schemes.

5.2.1 � Broadcast Encryption

Broadcast Encryption (BE), introduced by Fiat and Naor [9], distributes encrypted 
data along with a decryption key to a group of users with whom the broadcaster 
wishes to share the data via a secure channel. While encrypting the data, the broad-
caster can choose a set of users to allow decrypting the data. However, in the real 
world, there could be a large number of owners who may want to store their data in 
the cloud as well as a large number of users who may want to access the stored data. 
Later, several other BE schemes [10–14], are proposed. However, these schemes re-
quire public parameters for every user and the public parameters need to be updated 
every time a user wants to join or leave the system.

5.2.2 � Identity-Based Encryption

Identity-based encryption (IBE), introduced by Shamir [15], encrypts the data 
using a public key encryption scheme in which the public key can be an arbitrary 
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string (called as identity). Boneh et  al. [16] presented a secure IBE scheme in 
which the sender uses the identity of the receiver as the public key to encrypt 
the data. Canetti et al. [17] proposed the construction of IBE that was provably 
secure outside the random oracle model. Later Boneh and Boyen [18] gave two 
schemes with improved efficiency and prove security in the selective-ID model 
without random oracles. IBE schemes lack management and secure communica-
tion models.

5.2.3 � Attribute-Based Encryption

In an attribute-based encryption (ABE) scheme, proposed by Sahai and Waters [19], 
ciphertexts are labeled with sets of attributes and private keys are associated with 
access structures. Nail et al. [20] proposed a threshold attribute-based encryption 
which can prevent the collusion attacks. Based on access policy, ABE schemes are 
classified into two types: Key policy attribute-based encryption (KP-ABE) and ci-
pher text policy attribute-based encryption (CP-ABE). In the KP-ABE scheme, pro-
posed by Goyal et al. [21], the access policy is derived from the user’s private key 
and a set of attributes are used to decrypt the data. In CP-ABE scheme, introduced 
by Bethencourt et al. [22], the user keys are associated with sets of attributes and the 
ciphertexts are associated with the access policies.

Several other variations of the CP-ABE-based and KP-ABE-based schemes have 
been proposed in [23–25]. However these schemes have disadvantages in practice 
such as the ability to achieve revocation of users’ key.

5.2.4 � Searchable Encryption

The problem of searching on outsourced encrypted database was solved by Gold-
rich and Ostrovsky [26] over oblivious random access memory (RAM). However, 
this approach is unrealistic because it suffers from poly-logarithmic computation 
and communication overheads. Song et al. [27] proposed the first construction of 
searchable symmetric encryption scheme in which each word in the document is 
encrypted independently under a special two-layered encryption scheme called 
Song, Wagner, and Perrig (SWP). As an extended version to [27], Boneh et al. [28] 
presented a public-key based searchable encryption scheme. Goh [29] described a 
secure index (SI) to build a symmetric searchable encryption scheme. However, 
SWP and SI schemes are slow in retrieving documents.

Curtmola et al. [30] proposed a searchable symmetric encryption that includes 
a constant computational complexity to perform the search operation on the 
ciphertext. However, it does not support efficient updates to the database. Later, 
Kamara et  al. [31] proposed cryptography-based public cloud storage scenarios 
where the service provider is not completely trusted by the user. Here, when a 
user wants to store data in the cloud storage, the data processor indexes data and 
encrypts using advanced encryption standard (AES). Then, the data processor en-
crypts the index using a searchable encryption scheme and the unique key using an 



S. Praveen and G. R. Gangadharan108

ABE scheme. Further, Kamara et al. [32] used searchable symmetric encryption, 
search authenticator, and proof of storage to achieve confidentiality, integrity, and 
verifiability in the cloud. However, these papers compromise on confidentiality 
by revealing the files that contain a common keyword to a cloud provider while 
retrieving the encrypted data. Moreover, [31] and [32] are inefficient in handling 
dynamic updates on indexes. To address the problem of dynamic updates, Kamara 
et  al. [33] presented a dynamic searchable symmetric encryption scheme which 
provides an efficient dynamic updates to the encrypted data that are stored on third 
party servers.

Searchable encryption techniques leak information about the search patterns 
(i.e., the number of keywords of the document collection or metadata that it con-
tains). Furthermore, most of the searchable encryption schemes are inefficient in 
updating the ciphertext [27–36].

5.2.5 � Role-Based Encryption

Zhu et  al. [37] proposed a new hierarchical role-based access control model 
to encrypt the data. Zhou et  al. [38, 39] proposed a hybrid scheme called role-
based encryption (RBE) that combines access control with cryptography and key 
distribution to address security requirements for data storage in the cloud. However, 
these schemes lack the ability of user revocation.

5.2.6 � Identity Management

Cryptographic cloud storage techniques provide identity management using several 
access control mechanisms such as attribute based, identity based, and role based. 
Torres et al. [40] presented a survey on various identity management techniques or 
methods for future network. Celesti et  al. [41] proposed a reference architecture 
based on identity management and service provider (IdM/SP) model to address the 
identity management problem in InterCloud context where identity is managed by 
the third party. Several access control models that are used for identity and access 
privilege management are presented in [42].

5.3 � Searching on Encrypted Data

Searchable encryption is a technique that provides functionalities to search en-
crypted data without requiring the decryption key [43]. In this chapter, we follow a 
keyword-based access scheme, where all the keywords related to the encrypted data 
are stored in an index. There are two approaches to implement a keyword-based 
access scheme:
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•	 The first approach is to store an index of the data locally, and for each search op-
eration, query the index and use the results to retrieve the appropriate encrypted 
data from the cloud storage server.

•	 The second approach avoids using local storage for indexes; instead, the index 
is stored in the cloud storage server in an encrypted form. Then, for each search, 
the index is retrieved and queried locally before the encrypted data are fetched.

Consider the following multi-user scenario. Imagine that Alice wishes to store her 
medical records on a personal health record (PHR) server, such that the data are 
available to her anywhere and anytime. She also wants to share some of her medi-
cal records to a “physician” for treatment. Bob is a physician who uses the PHR 
server to treat the patients. If Alice’s records are in plaintext, then Bob can simply 
check the designation of each medical record of her and proceed for treatment. 
However, Alice wishes to use an encryption scheme to maintain the confidential-
ity of her medical records. In this setting, if Bob wants to access Alice’s medical 
records designated with “physician”, either Alice has to reveal her decryption key 
to Bob, or Alice has to decrypt her medical records by herself and send only the 
medical records which are designated with “physician” to Bob. The first solution 
compromises the confidentiality of all medical records, and the second solution is 
not efficient.

The above scenario requires a cryptographic technique that is used to store the 
data securely in cloud storage servers with efficient multi-user retrieval support.

Searchable encryption is a technique that provides functionalities to search en-
crypted data without requiring the decryption key. Each message of data is associ-
ated with a set of keywords. Searchable encryption transforms both the message and 
the associated keywords into an encrypted form, in such a way that the encrypted 
keywords can be queried later using a trapdoor. This allows a client to retrieve or 
decrypt only the messages of the data that contain a particular keyword without 
decrypting the data.

Let D = ( M1, M2,…, Mn) be data consisting of n messages M1, M2,…, Mn. Each 
message Mi ( i = 1,…,n) is associated with a metadata item Wi = { Wi,1, Wi,2,…} 
which is actually a set of keywords chosen from a finite set W. Searchable encryp-
tion stores the data D on a server such that:

•	 A message Mi is retrieved from the server, only in case a particular keyword oc-
curs in its associated metadata Wi, while leaking as little information as possible.

•	 The confidentiality of the data is preserved as much as possible.

The searchable symmetric encryption is used to retrieve encrypted data from a third 
party storage server, when the metadata associated with the message contains a 
particular keyword. Searchable symmetric encryption allows only to the user who 
stores the data on third party server can search the encrypted data. Initially each 
message Mi is encrypted, using a standard symmetric key encryption scheme, and 
stored on a third party server. To store the metadata items on the third party server 
that can be queried later, searchable symmetric encryption schemes with the follow-
ing algorithms are used:
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•	 Keygens(p): Given the security parameter p, outputs a master secret key msk.
•	 Encs(W, msk): Given the metadata W, and the master secret key msk, outputs a 

searchable ciphertext SW.
•	 Trapdoors(W, msk): Given the keyword W, and the master secret key msk, out-

puts a trapdoor Tw.
•	 Search(Tw, SW): Given the trapdoor Tw, and the searchable ciphertext SW, outputs 

1 if W є W.

The Keygen, Enc, and Trapdoor algorithms are invoked by the client, and the search 
algorithm is invoked by the server. If search = 1, the server sends back the encrypted 
message whose associated metadata is W.

5.4 � Grade-Based Access Control

The goal of identity and access control management is to ensure that accesses to 
data stored in cloud storage servers are given only to authorized users. Access con-
trol mechanisms are used to mitigate the risks of unauthorized access to the data, 
resources, and systems. Figure  5.1 shows a general access control model which 
includes principal, auction, guard, and protected system. Principal can be a user, a 
program, etc.; auction can be a query; guard can be a security manager or a server; 
and a protected system can be repository or a file, etc. Guard verifies the identity of 
the entity (usually the principal) called authentication. Then the guard checks the 
access control policies that consist of rules that describe what is allowed and what 
not to access the protection system.

We introduce grade-based access control (GAC), a new mechanism to provide 
identity and access control management based on the grades of users. Access to a 
resource is determined based on the level of the relationship, typically the grades 

Fig. 5.1   General access control model

 



1115  SecDSIM: A Framework for Secure Data Storage and Identity Management …

of the user in an organization. In other words, the permissions are associated with 
grades, and users are assigned to appropriate grades.

Figure 5.2 shows the basic structure of GAC model. Consider that Alice and 
Bob are two employees of an organization A holding assistant manager as their 
roles. Assume that an organization A has implemented the role-based access control 
mechanism for identity management. Assume that Alice has joined in the organiza-
tion prior to Bob. Therefore, Alice holds grade II position and Bob holds grade I 
(assuming grade II is superior to grade I).

Consider that there is a payment approval application that can be accessed by 
the employees of the organization A who hold their role as senior manager having 
a minimum of grade II level. In this scenario, if the organization A had not imple-
mented role-based access control mechanism, then Alice could access payment ap-
proval application. However, in our case, the organization A has implemented role 
based access control mechanism for identity management.

In this case, if the organization A wants to give access permission to Alice for 
payment approval application, then there are two solutions:

•	 The organization A has to create another account to Alice which holds a role as 
senior manager and provide access permission.

•	 The organization A has to promote Alice to senior manager.

None of the above two solutions are practically implementable as organizations 
may have many employees like Alice. From the above scenario, it is clear that the 
role-based access control having its own disadvantage, i.e., classifying and provid-
ing access permissions to people based on roles makes it more difficult to define 
granular access controls for each person.

Grades of a user can be of two types as shown in Fig. 5.3. For a role, say R1, 
there may be different grades, say G1 and G2 as shown in Fig. 5.3a. For different 
roles, say R1 and R2, there may be same grade, say G1 as shown in Fig. 5.3b. This 
makes GAC mechanism more flexible than role-based access control.

GAC can provide the functionalities provided by the role based access control. 
GAC is not replaceable for role-based access control. If we use GAC with role-
based access control as a hybrid access control model, it may serve as a better 
granular and flexible access control mechanism.

Fig. 5.3   Grades versus roles 

Fig. 5.2   Grade-based access 
control
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5.5 � Multi-User Searchable Symmetric Encryption

We extend the concept of multi-user searchable symmetric encryption (mSSE) de-
fined in [30] and apply to our framework for data storage and identity management 
in the cloud. Table 5.1 specifies the notations used in the rest of the chapter.

We illustrate the modified mSSE scheme as follows.

Our mSSE is composed of the following six algorithms:
Did ‹← GDid(Uid, Date, N): It takes Uid, date (in DDMMMYYYY format), 

and a 5-digit unique random number as input and generates a unique Did for new-
ly created/generated data by the user (see Fig. 5.4). Here we used 5-digit random 
number because even if a user continuously creates new data or file per second, he 
can create a maximum of 86400 files per day.

(EnData, EnKws) ‹← Enc(w, D): It takes keywords and data as input and gener-
ates EnData and EnKws.

AData ‹← GAC (Uid, pswd, grade): It takes Uid, pswd, and grade as input to 
verify the authorization based on GAC and provides access to the data.

T ‹← Trpdr(Uskw): Trapdoor is an encrypted search keyword provided by the 
user to access the data.

mSSE GDid Enc GAC Trpdr Search Dec       = ( ), , , , , .

1 1 M C M B 3 1 0 0 0 3 J A N 2 0 1 3 7 4 9 1 2

USER ID DATE OF DATA CREATED 5 DIGIT RANDOM 

NUMBER

Fig. 5.4   Data identifier (Did) format

 

Notation Description
mSSE Multi-user searchable symmetric encryption
GDid Generating data identifier
Did Data identifier
Uid User identity
N 5 digit unique random number
EnData Encrypted data
EnKws Encrypted keywords
W Keywords collection
D User generated data
Pswd Password
GAC Grade based access control
AData Access permission to the data.
Uskw User search keyword
T Encrypted user search keyword (Trapdoor)
Enc Encryption
Dec Decryption
Ver Number of times the data accessed
CSP Cloud service provider

Table 5.1   Notations



1135  SecDSIM: A Framework for Secure Data Storage and Identity Management …

Did ‹← Search(T) and EnData‹← Search(Did): It takes initially Trpdr as input 
and searches it on “local index” based on aided keyword search which contains 
EnKWs, Did and Ver. It generates output as a set of Dids. Then it takes Did as input 
and searches it on the “cloud index” based on precise keyword search and generates 
EnData as output.

Data ‹← Dec(EnData): It takes EnData and decrypts.

5.6 � SecDSIM Framework

In this section, we discuss our proposed framework, SecDSIM. It is a secure cryp-
tographic cloud storage based on mSSE which provides identity management using 
GAC. SecDSIM is composed of the following four components (see Fig. 5.5):

•	 User: User can be an employee of an organization or a trusted employee of a 
partner company.

•	 Dedicated local server (DLS): DLS resides in the own premises of an organiza-
tion which manages outgoing data and incoming data. DLS encrypts the data and 
generates the Did for each data received at the first time (as shown in Fig. 5.5) 
and decrypts the encrypted data received from the CSP.

•	 Data Verifier Server (DVS): DVS checks the proof of storage-correctness of the 
data around the clock by checking the version value of the data.

•	 Credential Generator (CG): CG creates credentials for users.

The following are the steps involved in SecDSIM:

Step 1: Credential generation
Initially CG creates user credentials.

Step 2: Data creation by user
A user creates data and keywords and sends to DLS by using his credentials to 
encrypt the data.

Step 3: Preparing encrypted data and passing to CSP communication server
DLS verifies user credentials. If the user credentials are valid, then DLS encrypts 
data and keyword using master key and generates Did. The method of generating 
Did is given in algorithm 1. Also, DLS sets a version value ver to EnData and the 
associated Did (initially this version value is set to zero, i.e., ver = 0) and sends 
EnData, Did, and ver to the communication server of CSP. EnKw, Did, and ver 
are stored in the local index along with some metadata (e.g., data last accessed) 
for further use.

Fig. 5.5   SecDSIM 
framework
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Step 4: Accessing the data by the user
	 Whenever a user wants to access data, the user sends keywords to DLS as a 

request.
	 DLS verifies his credentials for accessing the data. If his credentials are valid, 

then DLS fetches the Enkw from the local index (referred as aided keyword 
search, AKS), where a user performs a keyword search.

	 If the EnKw is found in local index, then the corresponding grade in the local 
index is verified by the user-provided grade for authorization is based on 
GAC (access privileges are implemented using GAC).

	 If the user grade satisfies the accessible grade, then the corresponding Did 
from the local index is retrieved and sent to the user.

	 The user selects the Did from the retrieved Did list for the user keyword, then 
DLS sends Did as a request to the communication server of CSP for accessing 
the encrypted data.

	 The communication server of CSP fetches Did from the cloud index what 
we refer to as precise keyword search (PKS), where communication server 
performs exact keyword search operation on the cloud index.

	 If Did is found in the cloud index, then the communication server of CSP 
sends the corresponding EnData to DLS and updates the ver value of the 
retrieved EnData in the cloud index.

	 After receiving the EnData from the communication server of CSP, DLS decrypts 
the data and sends it back to the user. DLS updates the ver value of the received 
data in local index. The method of search operation is given in algorithm 2.

Step 5: Process of verifying proof of storage correctness
Whenever data verifier wants to check the correctness of the data, DVS sends 
Did to the communication server of CSP to get ver. Then DVS compares the 
ver value with locally stored ver value of that data to check the correctness of 
the data stored in the cloud. DVS updates the ver value in the local index. The 
method of proof of storage-correctness is given in algorithm 3.

In our framework, we are generating Did as a keyword for accessing the 
encrypted data stored in the cloud. Did is unique and the cloud provider cannot learn 
anything from it. The generation of Did is shown in algorithm 1, which ensures 
confidentiality and integrity.
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The search operation is shown in algorithm 2. This is composed of three critical op-
erations, i.e., authentication, authorization, and search. Whenever the user wants to 
update (modify, append, insert), he provides the Did to get the data from the cloud 
and updates it dynamically. Note that the update operation can be performed only 
by the owner of the data.
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The proof of storage correctness is shown in algorithm 3. DVS verifies the cor-
rectness of the data by checking ver value stored locally and in the cloud. If any 
unauthorized views happen to user data, the ver value automatically increases in the 
cloud index but not in the local index. In such cases, DVS informs the user and the 
cloud provider. Thus, it achieves the integrity of the user data stored in the cloud 
storage server.

5.7 � Experimental Evaluation and Discussions

We implemented SecDSIM in Java over the Java cryptography architecture (JAC) 
API [44]. The standard 128-bit and 192-bit AES [45] algorithms are used to imple-
ment the searchable encryption techniques under the Cipher-Block-Chaining mode. 
Data created by users are encrypted and stored in a text file. All these text files are 
stored in a repository located in the cloud server.
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5.7.1 � Results Analysis

To analyse the data storage in the cloud, we created a set of text files that are less 
than or equal to 1 Mb and another set of text files that are greater than 1 Mb. For 
example, different sizes of text files including 25, 57, 72, 95, 115, 130, 162, 192, 
and 225 kb in set I and 1.24, 2.52, 4.2, and 6.03 Mb in set II.

Figure 5.6 shows encryption and storage timings in milliseconds for different 
data sizes starting from 25 kb to 225 kb by using AES 128-bit key and 192-bit key 
algorithms in SecDSIM framework.

Figure 5.7 shows encryption and storage timings in milliseconds for large data 
sizes ranging from 1.2  to 6.03 Mb by using AES 128-bit key and 192-bit key al-
gorithms in SecDSIM framework. By observing Figs. 5.6 and 5.7, we can notice 
that the encryption and storage timings for different sizes of data sets in SecDSIM 
framework are linear in nature.

Figure  5.8 presents the difference in data sizes before encryption and after 
encryption for data set I by using AES 128-bit key and 192-bit key algorithms. 
Figure 5.9 shows the different data sizes for data set II by using AES 128-bit key 
and 192-bit key.

Table 5.2 compares encryption timings and data file sizes after encryption using 
AES 128-bit key algorithm and AES 192-bit key algorithm in set I. Table 5.3 com-
pares encryption timings and data file sizes after encryption using AES 128-bit key 
algorithm and AES 192-bit key algorithm in set II.

Table 5.4 compares the decryption timings of Set I data files using AES 128-bit 
key algorithm and AES 192-bit key algorithm. Table 5.5 compares the decryption 
timings of Set II data files using AES 128-bit key algorithm and AES 192-bit key 
algorithm.
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By observing Tables 5.2 and 5.3, we can identify that the encrypted data sizes in 
SecDSIM framework are in linear in nature. We also observe that there is a small 
difference in AES 128-bit key algorithm and AES 192-bit key algorithm for data 
encryption, storing and decryption timings as well as for encrypted data sizes.

5.7.2 � Comparison of Cloud Storages

Table 5.6 compares the encryption results of the SecDSIM framework with broker 
cloud communication paradigm (BCCP) model [46]. Figure 5.10 shows the data 
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encryption timings (in seconds) for different data sizes starting from 25 to 225 kb 
by using AES 128-bit key algorithm in SecDSIM framework and in BCCP model. 
Figure 5.11 shows the encrypted data sizes (in kb) for different data sizes using AES 
128-bit key algorithm in SecDSIM framework and in BCCP model. In BCCP, we 
observe that cloud data exchange between a user and cloud storage requires more 
communications, thereby increasing the encryption and storage timings.

Table 5.7 shows different cryptographic techniques used in different cloud stor-
age schemes and their role in achieving security properties. Our proposed SecD-
SIM framework achieves many security properties compared to other cloud storage 
schemes proposed by other reserchers.

Table 5.2   Summary of set 1
S. No. Set I data/file 

size before 
encryption 
(in KB)

No. of words AES(I92) AES(128)

Time (In 
milliseconds)

Data/file size 
after encryp-
tion (in KB)

Time (in 
milliseconds)

Data/file size 
after encryp-
tion (in KB)

1 25 4623 16 38 16 35.3
2 57 9824 17 75 16 70
3 72 14,447 19.7 113 19 110
4 95 17,213 25 136 24 131
5 115 20,927 27.4 172 26 159
6 130 23,392 27 183 25 178
7 162 25,857 31 231 27 219
8 192 34,334 32 274 31 262
9 225 40,444 33 323 32 308

AES advanced encryption standard
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Table 5.4   Comparison of set I description timings
S. No. Set 1 Data/File Size after 

Decryption (in KB)
AES (192) AES (128)
Time (in milliseconds) Time (in milliseconds)

1 25 13.1 13
2 57 13.7 13
3 72 14.2 13.4
4 95 15 13.9
5 115 15.7 15
6 130 16.4 15.3
7 162 17.1 16
8 192 17.9 16.8
9 225 18.4 17.6

AES advanced encryption standard

Table 5.5   Comparison of set II description timings
S.No. Set II data/file size after 

decryption (in KB)
AES (192) AES (128)
Time (in milliseconds) Time (in milliseconds)

1 25 13 13
2 115 15.6 15
3 225 18.4 17.6
4 1224 31.01 27.7
5 2581 35.23 32.5
6 4301 46 42.7
7 6175 51.9 46.3

AES advanced encryption standard

Table 5.3   Summary of set II
S. no. Set II data/

file size 
before 
encryption 
(in KB)

No. of words AES(192) AES(128)

Time (in 
milliseconds)

Data/file size 
after encryp-
tion (in KB}

Time (in 
milliseconds)

Data/file size 
after encryp-
tion (in KB)

1 25 4623 16 38 16 35.3
2 115 20,927 25 172 24 159
3 225 40,444 33 323 32 308
4 1224 219,433 44.6 2052.4 43.2 1720.3
5 2581 462,258 47.1 3434 44.3 3092.48
6 4301 771,206 49.3 5401.21 45.9 5079.04
7 6175 107,384 54.7 8674.43 48.9 8294.4

AES advanced encryption standard
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Table 5.6   SecDSIM versus BCCP
S.No. Data/file size 

before encryp-
tion (in KB)

AES (128) AES (128)
Time (in 
seconds)

Data/file size 
after encryption 
(in KB)

Time (in 
seconds)

Data/file size 
after encryption 
(in KB)

1 25 0.5 129.04 0.016 35.3
2 57 0.7 129.04 0.016 70.01
3 72 0.9 221.65 0.019 110
4 95 0.9 222.65 0.027 131
5 115 0.9 376.18 0.022 159
6 130 1.0 406.25 0.025 178
7 162 1.2 471.47 0.027 219
8 192 1.5 477.0 0.031 262
9 225 1.9 477.15 0.032 308
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Fig. 5.11   Comparison of encrypted data sizes with broker cloud communication paradigm (BCCP)
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5.8 � Concluding Remarks

In this chapter, we addressed the problem of storing data in the cloud and retrieving 
data securely and efficiently using the mSSE scheme, which provides an efficient 
isolation and secure storage mechanism for users’ data and an identity management 
scheme using GAC. The research question that this chapter addresses is as follows: 
Can we develop a provably secure searchable encryption scheme with efficient se-
cure cloud storage which is supportable for multi-user applications? For this, we 
constructed a secure data storage scheme in the cloud that comprises two steps:

•	 Create a secure index also called a local index for user data and create a unique 
data identifier for the user data.

•	 Encrypt and encode the user data and data identifier and store encrypted user 
data in the cloud as well as a data identifier in the cloud index for further access.

We implemented identity management using GAC when a user performs a search 
on own/other’s data.

In our future work, we will attempt to further enhance our SecDSIM model for 
multimedia data and to address searchable symmetric encryption with wild card sup-
port and proximity-based keyword search on a local index to improve the efficiency.
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Chapter 6
CloudReports: An Extensible Simulation 
Tool for Energy-Aware Cloud Computing 
Environments

Thiago Teixeira Sá, Rodrigo N. Calheiros and Danielo G. Gomes

Abstract  The cloud computing paradigm integrates several technological models 
to provide services to a large number of clients distributed around the world. It 
involves the management of large data centers that represent very complex sce-
narios and demand sophisticated techniques for optimization of resource utiliza-
tion and power consumption. Since the utilization of real testbeds to validate such 
optimization techniques requires large investments, simulation tools often represent 
the most viable way to conduct experimentation in this field. This chapter pres-
ents CloudReports, an extensible simulation tool for energy-aware cloud computing 
environments to enable researchers to model multiple complex simulation scenarios 
through an easy-to-use graphical user interface. It provides report generation fea-
tures and a simple API (Application Programming Interface) that makes possible the 
development of extensions that are added to the system as plugins. CloudReports 
is an open-source project composed of five mandatory modules and an optional 
extensions module. This chapter describes all these modules, their integration with 
the CloudSim toolkit, and a case study that demonstrates an evaluation of power 
consumption of data centers with a power model that is created as a CloudReports 
extension.
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6.1 � Introduction

The cloud computing paradigm proposes the integration of different technological 
models to provide hardware infrastructure, development platforms, and applica-
tions as services available worldwide. It involves complex scenarios composed of 
multiple large data centers that provide services to clients located around the world 
and with different sets of requirements. The management of such complex environ-
ments demand new system architectures, protocols, and policies in order to enable 
optimization of resources utilization and power consumption. Since the utilization 
of real testbeds to validate experiments on this field requires large investments and 
makes replication and control of experiments harder, simulation alternatives have 
been broadly used. However, simulation tools either generate a large amount of 
data as output or force researchers to develop their own techniques to collect data, 
which demands an extra effort to organize and extract useful results. Thus, a tool 
that combines the flexibility and extensibility of simulation frameworks with func-
tionalities that facilitate modeling and data collection would represent a significant 
contribution to the cloud computing research field.

Aiming to provide this contribution, CloudReports has been developed as an ex-
tensible simulation tool for energy-aware cloud computing environments. CloudRe-
ports uses the CloudSim toolkit [1] as its simulation engine and enables researchers 
to model multiple complex simulation environments through an easy-to-use graphi-
cal user interface. CloudReports also provides report generation features which au-
tomatically organizes simulation results and presents them with a high level of de-
tails. Additionally, it provides an API that enables the creation of extensions that are 
loaded as plugins using the Java Reflection API. CloudReports is an open-source 
project designed with multiple modules. This chapter describes all these modules 
and how they are integrated with CloudSim. Moreover, it presents a case study that 
demonstrates an evaluation of power consumption of two data centers with different 
power models, one of which is created as a CloudReports extension.

The rest of the chapter is organized as follows. Section 6.2 reports the state-of-
the-art simulation tools aimed at distributed systems and energy-aware cloud com-
puting environments. Sections 6.3 and 6.4 provide an overview of the CloudSim 
toolkit; describe the proposed CloudReports thoroughly and suggest how simulation 
environments are modeled to depict the software architecture with all its modules. 
Section 6.5 presents a case study that uses reports generation and data exporting 
features and demonstrates its application on the evaluation of power consumption 
aspects of cloud data centers. Finally, Section 6.6 presents conclusions and future 
work opportunities.

6.2 � Related Works

A fair amount of simulation tools aimed at distributed systems and grid computing 
can be found, but alternatives for simulating energy-aware cloud computing envi-
ronments are still very scarce. For example, the SimGrid framework [2] provides 
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means to simulate parallel and distributed large-scale systems, and the GridSim 
toolkit [3] offers a flexible way to model distributed environments, applications, 
resources, and scheduling algorithms. However, these tools lack the key cloud com-
puting concept of resource virtualization, thus creating the need of extensions or 
entirely new simulators. A toolkit that exemplifies such extensions is presented by 
Sulistio et al. [4], notwithstanding it is not specifically focused on cloud computing 
environments.

Regarding cloud computing simulation tools, the iCanCloud platform [5] is an 
open-source project written in C++ that aims to model and simulate cloud comput-
ing systems. It is based on the OMNET network simulation framework and offers a 
POSIX-based API for modeling applications. However, it does not provide means 
to model or simulate any aspect related to power consumption.

The GreenCloud simulator [6] is an extension to the network simulator ns2 with 
additional features to analyze cloud computing environments. It offers power con-
sumption modeling for servers and network elements such as switches and links. 
However, it does not support virtual machines representation and application-level 
aspects such as job scheduling policies.

The CloudSim framework [1], which is described in the next section, is a simu-
lation engine that supports virtual machines representation, creation of schedul-
ing algorithms, and power consumption modeling. CloudReports is a tool that uses 
CloudSim as its simulation engine and manages all the data created during experi-
ments. Furthermore, it provides a graphical user interface for modeling and manag-
ing environments to be simulated.

Aksanli et al. [7] performed a comparative study where they analyzed data center 
simulation tools in order to evaluate green computing performance. The study high-
lights the features of eight simulators according to the types of resources that are 
simulated, how workloads are modeled, the queuing model that is used, the ability 
to simulate power models, the support to virtual machines simulation, the licensing 
applied to the project, and the type of information that each simulator generates as 
output. It also introduces a new simulator (GENSim) and evaluates its use to ana-
lyze different green energy integration methods in a data center in order to find the 
most energy-efficient solution. Additionally, Kocaoglu et al. [8] explore some of the 
key aspects of green computing and communications as it stresses the importance of 
simulation tools for evaluating new system architectures and protocols. Finally, op-
portunities and challenges that arise with the advent of energy-aware cloud comput-
ing environments simulators are discussed by Buyya et al. [9], and results obtained 
from the use of these tools are presented in the derived works [1, 10, 11].

6.3 � CloudSim Toolkit

CloudSim is a toolkit for modeling and simulation of cloud computing environments. 
It offers abstractions representing physical hosts, data centers, virtual machines, and 
costumers of cloud services. Latest versions of the tool also support modeling of in-
ternal data center networks and energy consumption of different physical elements. 
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Abstractions provided by the toolkit support mainly simulation of IaaS-related (In-
frastructure as a Service) components, but they can be extended by users to support 
simulation of PaaS (Platform as a Service), and SaaS (Software as a Service).

A simulation is constituted by the interaction between cloud providers (repre-
sented as data centers) and cloud users (modeled in the form of brokers, that may 
represent one or more users generating requests for the cloud providers). Users can 
query data center about its capabilities, request creation of virtual machines, and 
submit requests for execution of applications (named Cloudlets in CloudSim). The 
decision about how the requested virtual machines are mapped to the data center’s 
hosts is defined by a provisioning policy. Similarly, decisions on how the host re-
sources are divided among VMs (Virtual Machines) running on the host, and how 
resources assigned to a VM are divided among applications running on it are de-
fined by VM scheduling and Cloudlet scheduling policies, respectively. A few de-
fault policies are part of CloudSim, and users can develop and evaluate their own 
policies for these purposes.

The modeling of application execution is achieved with a field length in the 
Cloudlet object that represents the amount of computing instructions required to 
complete the execution of the Cloudlet. CPU cores, which are other characteristic 
of hosts, have a processing capacity expressed in instructions per second. Notice 
that both the properties are generic in the sense that no specific unit for measuring 
the processing capacity and processing requirement is specified. Therefore, cores 
can either be modeled based on well known CPU benchmarks, such as the SPEC 
CPU, or can assume a user-defined arbitrary value to represent relative computing 
capacity among different processors and relative execution time among Cloudlets. 
When a Cloudlet is scheduled to a specific VM, an estimation of the required execu-
tion time is computed based on the amount of resources allocated to the VM, the 
specific scheduling policy in place, and the number of other Cloudlets executing on 
the same machine. Once the estimation is calculated, an internal event is generated 
in the data center entity and scheduled for the estimated finish time. When such an 
event is triggered, executions of Cloudlets are updated, and the number of instruc-
tions already computed is updated. When all the instructions of a Cloudlet are com-
puted, the Cloudlet is considered completed. At each update round, the expected 
completion time of Cloudlets is also recalculated and update events are generated 
accordingly because the number of Cloudlets in a VM may have changed, and thus 
more resources might have become available for other Cloudlets, that might have 
reduced the expected time for completion.

Besides abstractions to model cloud-related entities, CloudSim contains a dis-
crete-event simulation core that coordinates interactions between cloud providers 
and cloud users. The core receives messages from the entities, controls clock ad-
vance, and delivers messages to the destination entities respecting event delivery 
time stamps. In the earlier versions of CloudSim, the SimJava [12] library provided 
the simulation core. However, the utilization of such a library imposes restrictions 
on the scalability and performance of CloudSim. This is because the SimJava en-
gine is based on threads, and in fact, three threads were generated for each entity: 
one for the input channel (to receive messages from other entities), the second for 
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the output channel (to send messages to other entities) and the third for the entity 
itself (to control the entity operation). As threads are scarce resources that are man-
aged by operating systems, there is a limit on the maximum number of threads that 
can run in the operating system at any moment. This indirectly limits the scalability 
of the simulation, as the number of users and data centers are bounded by such a 
limit. Furthermore, utilization of threads generates inefficiencies at the operating 
system scheduling process because, eventually threads that have no operation to 
perform will receive CPU time.

To counter the above factors limiting the scalability of the simulator, CloudSim, 
since its version 2.0, contains a single-threaded simulation core that replaced the 
SimJava library. In order to keep backward compatibility with simulations written 
with earlier versions of CloudSim, the new core implements the same APIs than 
SimJava and contains equivalent objects that are accessible by user-generated code. 
Therefore, data centers and users still extend a SimEntity class whose message pas-
sage is controlled by the simulation core; and messages are SimEvents that contain 
a destination, tag, send time, and a generic payload, which is unpacked and inter-
preted by each entity. The new core also adds new features to the simulation engine 
such as the possibility of defining predicates that enable filtering events based on 
their characteristics, such as source, destination, and type. Filtered events can be 
handled in a different way by the system, if required for meeting particular demands 
of CloudSim users.

At the end of a simulation, information about execution time of Cloudlets, cost 
related to resource usage, and other user-defined information are available in ob-
jects generated during the execution. CloudSim users are responsible for writing the 
code for extracting such information from objects and presenting them. Neverthe-
less, the only type of output offered by CloudSim toolkit is printing in a command 
line terminal. Similarly, the only native way offered to CloudSim users to write a 
simulation is writing the corresponding Java code. Therefore, if richer visualization 
or more intuitive methods for expression of simulations are required, they have to 
be written by users. This motivated the design and development of CloudReports, 
which is detailed in the next section.

6.4 � CloudReports Simulation Tool

CloudReports is a highly extensible simulation tool for energy-aware Cloud Com-
puting environments. The tool uses the CloudSim toolkit as its simulation engine 
and provides features such as a graphic user interface, reports generation, simula-
tion data exportation, and an API that enables researchers to develop their own 
policies by creating extensions. CloudReports simplifies the creation and configura-
tion of simulation environments which can be manipulated and saved for later use. 
Researchers can create multiple data centers with different amount of resources 
and configure each of their hosts individually. Moreover, client behavior can be 
customized by setting the amount of virtual machines to be deployed and specifying 
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the applications (Cloudlets) that will run on them. The resources required by each 
virtual machine is also entirely customizable.

CloudReports allows simulations to be executed in batches, which means that re-
searchers can determine how many realizations must be executed and the amount of 
time that will be simulated. After completion of all simulations, the tool generates a 
full report composed of a log of operations and several charts with detailed informa-
tion related to resources usage, virtual machine allocations, Cloudlet execution, and 
data center energy consumption. Furthermore, additional files are created to enable 
output data to be exported to third-party applications such as MATLAB and Octave.

As previously mentioned, CloudSim uses scheduling policies and provisioning 
policies to make decisions during the simulation process. CloudReports provides 
an API that enables researchers to develop new policies which are loaded during 
execution time using the Java Reflection API. In order to develop an extension, 
researchers do not need to make any modifications to the CloudReports source code 
whatsoever. Notwithstanding, due to the modular characteristics of CloudReports 
architecture, new scheduling and provisioning algorithms can be created separately 
without loss of generality while making use of all CloudSim features. The following 
subsections address CloudReports simulation environments, its core entities, the 
extensions functionalities, how simulations are managed, the persistence layer, the 
reports manager, and the graphical user interface.

6.4.1 � Simulation Environments

CloudReports manages one or more simulation environments simultaneously. 
These environments reproduce the interaction between IaaS providers and cloud 
users. As depicted in Fig. 6.1, the provider owns a cloud with an arbitrary number 
of data centers, which are modeled according to their operating systems, proces-
sors architecture, hypervisors, available network bandwidth, utilization costs, and 
virtual machines allocation policies. Moreover, each data center is composed of a 
customizable number of hosts that are configured according to their available RAM, 
network bandwidth, storage capacity, processing power, virtual machine schedul-
ers, and energy consumption models.

Clients are modeled through a resource utilization profile and settings regarding 
their virtual machines that will be deployed on hosts located at the provider’s infra-
structure. The resource utilization profile describes the clients’ applications and a 
high-level policy that selects data centers to deploy virtual machines. This policy is 
represented by a simulation entity called broker that also defines how Cloudlets will 
be managed, and in which virtual machine they will be executed.

Cloudlets are modeled using characteristics such as necessary amount of proces-
sor cores, size in million instructions per second (MIPS), length of input and output 
files that are transferred between clients and providers, and utilization models for 
CPU, bandwidth, and memory. A virtual machine configuration includes its im-
age size, number of processors, processing capacity in MIPS, amount of RAM and 
bandwidth, type of hypervisor, and Cloudlet scheduling policy.
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6.4.2 � Software Architecture

The CloudReports software architecture follows a modular design as depicted in 
Fig. 6.2. It currently contains five mandatory modules and an optional extensions 
module. The next sections describe in detail the functionalities of each of these ele-
ments and how they interact with each other.

6.4.2.1 � CloudReports Core Entities

The core entities define the basic structure supporting CloudReports operation. They 
consist of classes that represent entities such as customers, data centers, physical 

Fig. 6.1   CloudReports’ simulation environment

 

Fig. 6.2   Modular software 
architecture of CloudReports
 

6  CloudReports: An Extensible Simulation Tool for Energy-Aware Cloud …



134 T. Teixeira Sá et al.

machines, virtual machines, networks, and storage area networks. Although being 
a part of CloudReports, these classes work in tandem with the Simulation Manager 
module to translate environments created through the graphical user interface into 
CloudSim entities, which are the only entities that are used during simulation time. 
Therefore, CloudReports works as an abstraction layer that helps users to manipu-
late simulation data easily, whereas CloudSim remains as the simulation engine.

Additionally, some of CloudReports core entities help in the management aspect 
of simulation events and settings of the software itself. These include virtual ma-
chine migrations, true random number generation, reports data, and settings such as 
number of simulations to perform and e-mail notifications.

In order to enable researchers to create new policies, CloudReports provides 
a simple API that consists of a set of enumerations, interfaces, and an extensions 
loader. The enumerations classify all kinds of extensions that CloudReports sup-
port, whilst the extensions loader is responsible for loading all extensions during the 
execution time using the Java Reflection API.

Table 6.1 lists all types of enumerations and shows which classes must be in-
herited as well as which interfaces must be implemented in order to develop an 
extension.

The AllocationPolicy extension extends VmAllocationPolicy and implements 
VmAllocationPolicyExtensible. It determines how data centers allocate virtual ma-
chines among servers. The BrokerPolicy extends the Broker class and describes 
a set of rules that clients make use to define how virtual machines are sent to al-
location and how Cloudlets are sent to execution considering all the available data 
centers. The BwProvisioner, RamProvisioner, and PeProvisioner extensions inherit 
from CloudSim’s namesake classes and define how servers provide bandwidth, 
RAM, and processing elements to the virtual machines they allocate. Moreover, 
the VmScheduler extension inherits from CloudSim’s VmScheduler and describes 
how servers schedule the execution of these virtual machines. The CloudSched-
uler inherits from CloudSim’s CloudletScheduler that determines how virtual 
machines schedule the Cloudlets they run. The UtilizationModel extension imple-
ments CloudSim’s UtilizationModel interface and enables defining how Cloudlets 

Table 6.1   List of enumerations, classes, and interfaces used to develop CloudReports extensions
CloudReports enumeration Extensions

Must inherit from Must implement
AllocationPolicy VmAllocationPolicy VmAllocationPolicy—Exten-

sible
BrokerPolicy Broker –
BwProvisioner BwProvisioner –
RamProvisioner RamProvisioner –
PeProvisioner PeProvisioner –
VmScheduler VmScheduler –
CloudletScheduler CloudletScheduler –
UtilizationModel – UtilizationModel
PowerModel – PowerModel
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make use of the resources provided to them. Finally, the PowerModel extension 
implements CloudSim’s PowerModel interface and makes it possible to create new 
CloudSim power models.

6.4.2.2 � Extensions

The extensions module is entirely composed of user-implemented code. Although 
its existence is not mandatory, it represents one of the main features of CloudRe-
ports, as it enables researchers to simulate their own algorithms without modifying 
CloudSim or CloudReports source code. By following a small set of rules, research-
ers can add new virtual machine allocation policies, data center brokers, Cloudlet 
schedulers, resource utilization models, virtual machine schedulers, processing ele-
ments, RAM, and bandwidth provisioners. Moreover, this module also enables the 
development of new power consumption models. CloudSim 3.0 already offers over 
a dozen types of power consumption models including options with specific hard-
ware specifications. Researches can either extend these models or create entirely 
new ones as long as they follow the rules set by the extensions API provided by 
CloudReports.

In order to create a new extension, the researcher first needs to identify which of 
the aforementioned extension categories better models the algorithm that needs to 
be simulated. For instance, if the researcher needs to simulate a new broker policy, 
Table 6.1 states that it is necessary to implement a new class that inherits from 
CloudReport’s Broker class. This new class will only contain code that is related 
to the new broker policy. Therefore, the researcher will be able to focus entirely 
on creating the new algorithm instead of having to deal with code that is related 
to simulator configuration. After creating this new class, a JAR (Java Archive) file 
needs to be created with the implementation of the new broker policy including all 
possible code dependencies it may have. Finally, a descriptive XML (Extensible 
Markup Language) file is created with all information that is necessary for Clou-
dReports to load the new extension. Technically detailed information regarding 
development of extensions can be found in CloudReports project’s official reposi-
tory on GitHub.

6.4.2.3 � Simulation Manager

The simulation manager module consists of two basic elements, namely an enti-
ty factory and a simulations handler. The entity factory is responsible for turning 
CloudReports environments into a set of CloudSim entities, which will then be 
used during simulation time. The simulations handler retrieves all settings related to 
simulation execution and starts the simulation process. After the execution of each 
simulation instance, it triggers the generation of the respective report and then starts 
the next realization. The module is also responsible for sending e-mail notifications 
and handling simulation time errors.

6  CloudReports: An Extensible Simulation Tool for Energy-Aware Cloud …
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6.4.2.4 � Persistence Layer

The persistence layer stores all application and simulation data in a single SQLite 
database file per environment. This approach facilitates the management of mul-
tiple environments as each file can be used independently and handled without ex-
ecution of the application for means of backup. Moreover, since each environment 
makes use of a different database, it prevents tables from getting too large and keeps 
data access time reasonably low. However, since SQLite databases are not suitable 
for applications that need to process very large amounts of data, it is recommended 
that researchers replace the persistence layer module with more robust database so-
lutions if they wish to perform highly scalable data-intensive simulations and keep 
data access time at low levels.

6.4.2.5 � Reports Manager

The reports manager collects, organizes, and processes simulation data from da-
tabase files and generates simulation reports. The reports are composed of HTML 
(HyperText Markup Language) and raw data files. The HTML files contain general 
information about data centers and customers, which include overall and per host 
power consumption. The report manager uses all simulation data to generate charts 
automatically and include them in the HTML report files. Raw data files consist 
of a compilation of simulation data in a single text file that is ready to be imported 
by third-party applications such as MATLAB and Octave. This module acts every 
time the simulation manager triggers a report generation. After completing a re-
port, it notifies the simulation manager so the next simulation realization can take 
place.

6.4.2.6 � Graphical User Interface

As the topmost module, the graphical user interface provides a simple way for re-
searchers to manage environments and keep track of simulation progress. The GUI 
(Graphical User Interface) allows creation and manipulation of data centers, hosts, 
storage area networks, customers, virtual machines, and network links. Further-
more, researchers can set data centers’ costs of operation, modify application set-
tings, select scheduling and provisioning policies, and resource utilization models, 
and also determine which environments should be used during the next simulations 
batch. This module is written using the Swing Java GUI widget toolkit, thus, it is 
also platform-independent and highly customizable. Figure 6.3 shows a screenshot 
of CloudReports GUI.
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6.5 � Case Study

The simulation environments created using CloudReports are composed of an IaaS 
provider and an arbitrary amount of cloud users. The IaaS provider may have one 
or more data centers, each of which are modeled independently with characteristics 
such as virtual machines allocation policies, operational costs and resource utiliza-
tion thresholds. Moreover, it is possible to configure every data center’s host indi-
vidually. The cloud users are modeled as a set of virtual machines to be allocated 
by the infrastructure managed by the IaaS provider and a utilization profile. Each 
virtual machine can be configured using characteristics such as CPU and memory 
demand, type of hypervisor, and a Cloudlet scheduler. The utilization profile deter-
mines how Cloudlets are going to behave regarding resource utilization once they 
are executed. Furthermore, it provides a brokering policy through which it is pos-
sible to determine which data center is going to deploy a specific virtual machine.

As workload modeling plays a decisive role on the results of simulation experi-
ments, it is necessary to use a model that is as similar as possible to real data center 
environments. Therefore, the experiments presented in this case study made use of 
data collected from the Google Cluster Data project which makes publicly available 
a set of resource utilization traces from a real cluster with approximately 12,000 
machines managed by Google.

The workload applied to the simulated environments is modeled in CloudSim as 
tasks which are represented by the Cloudlet class, to be run on virtual machines that 

Fig. 6.3   A screenshot of CloudReports graphical user interface
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are allocated in hosts. On the other hand, the traces extracted from Google Cluster 
Data have information regarding the use of resources (e.g., CPU, memory, and disk) 
and are presented as jobs run on real machines from the monitored cluster. In order 
to use these traces on the simulation experiments, information from the jobs was 
represented as Cloudlets. Thus, it was possible to simulate environments with up 
to 10,000 hosts with a workload that was similar to the usage of a real data center.

Based on related works, the experiments made use of power consumption traces 
collected from a benchmark of real machines that is made available by the Standard 
Performance Evaluation Corporation. In order to use the benchmark information 
in the experiments, it was necessary to develop a new class that implements the 
CloudSim’s PowerModel interface to represent a Dell PowerEdge R820 machine. 
Therefore, all data centers represented in the experiments of this case study are 
composed of a set of machines of the same model. As the benchmark data provides 
power consumption information in Watts based on discrete levels of load applied to 
a machine, creating this new power consumption model on CloudSim was straight-
forward as the framework already deals with power consumption based on load 
levels applied to the simulated hosts.

Four different virtual machine allocation policies were used in the experiments. 
These policies determine how the controller node should distribute virtual machines 
among all the available hosts. Therefore, such policies play a decisive role on the 
overall power consumption of the data center. The simulated policies are listed be-
low:

•	 Single Static Threshold (SST): this policy has a single utilization threshold that 
determines if a host is overloaded.

•	 Double Static Threshold (DST): this policy has two utilization thresholds. The 
first determines if a host is overloaded and the second is used to identify under-
used hosts.

•	 Median Absolute Deviation-Minimum Migration Time: this policy has dynamic 
utilization thresholds and was extracted from a related work [13].

•	 Local Regression-Minimum Migration Time: this policy also has dynamic utili-
zation thresholds and, such as the previous policy, was extracted from a related 
work [13].

Regarding the virtual machines configuration, the experiments used four types of 
profiles based on services from a real IaaS provider. Table 6.2 shows detailed in-
formation about computing capacity and available memory for each of the four 
profiles. All experiments made use of equal amounts of virtual machines for each 
of the profiles.

Table 6.2   Instance types of simulated virtual machines
Instance type CPU RAM
Extra-small Single 1 GHz shared core 768 MB
Small Single 1.6 GHz core 1.75 GB
Medium Two 1.6 GHz cores 3.5 GB
Large Four 1.6 GHz cores 7 GB
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Figure 6.4 shows the power consumption of a data center with 10,000 hosts dur-
ing a 48 h period of operation with the Single Static Threshold allocation policy. 
Each line represents a different rate of virtual machines allocated per host. The 
shaded areas around the lines represent a 90 % level confidence interval. The chart 
shows that power consumption increases proportionally with the amount of virtual 
machines allocated per host. Such behavior was expected, since, the higher the load 
applied to the system, the higher will be the level of resource usage, which increases 
the overall power consumption of the data center.

Figure 6.5 shows simulation results for an environment similar to the aforemen-
tioned but using the Double Static Threshold allocation policy. In this case, it is 
possible to identify a nearly linear relation between the amount of virtual machines 
allocated per host and the Consumption Stabilization Interval (CSI), which is de-
fined as the period of time from the beginning of the simulation setup interval until 
the moment when the power consumption of the data center reaches a stable level. 
For the specific rate of 30 virtual machines per host, the DST policy performance 
is very similar to the SST policy. This happens because this rate of virtual machine 
allocation always keeps the data center with overloaded hosts, which undermines 
the DST capacity to identify underused hosts and reallocate virtual machines ap-
propriately. This type of reallocations define what is commonly called consolidation 
techniques. For all other rates of virtual machines allocated per host, it is noticeable 
that immediately after the simulation setup time, virtual machines start to be con-
solidated which decreases the power consumption levels significantly.

Fig. 6.4   Power consumption of a 10,000 nodes data center with a Single Static Threshold alloca-
tion policy
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The boxplot in Fig. 6.6 shows the number of virtual machine migrations per-
formed for each of the allocation policies. The lowest levels are shown for the SST 

Fig. 6.5   Power consumption of a 10,000 nodes data center with a Double Static Threshold alloca-
tion policy

 

Fig. 6.6   Number of virtual machine migrations performed on a 10,000 nodes data center
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policy due to the lack of consolidation techniques as this policy cannot identify 
underused hosts. Hence, despite the low amount of migrations for the SST policy, 
the previous charts showed that the lack of consolidation techniques has a negative 
impact on the power consumption of the data center. On the other hand, all the other 
allocation policies present higher amounts of migrations, which result in lower lev-
els of power consumption. It is important to notice that virtual machine migrations 
have a significant impact on the Quality of Service (QoS) provided to the end user. 
Therefore, there is a trade-off relationship between power consumption and QoS 
that must be considered while deciding which allocation policy should be applied in 
order to manage virtual machine migrations in a data center.

6.6 � Conclusion

This chapter presented CloudReports as a tool aimed at facilitating the modeling 
of energy-aware cloud computing environments and data collection of simulation 
results from the CloudSim simulation toolkit. Related works were discussed in order 
to provide an overview of existing options for simulating energy-aware cloud com-
puting environments. Moreover, some of CloudSim’s key functionalities were ad-
dressed. As CloudSim represents the core simulation engine used by CloudReports, 
a description of how its components work and their evolution to the current version 
of the project was provided. Then, the architecture of CloudReports was fully de-
scribed. In order to provide a clear and complete understanding of how the simulator 
works, the core entities were discussed, followed by descriptions on how to cre-
ate new extensions and how CloudReports’ modules work together. Moreover, the 
chapter presented a case study that used CloudReports and a power model extension 
to evaluate the power consumption of a data center with 10,000 machines. The case 
study applied different virtual machine allocation policies and showed that there is a 
trade-off between the QoS offered to the end user and the total power consumption 
of the data center. Furthermore, it also became clear that the virtual machine alloca-
tion policy applied in the data center has a great influence is this trade-off.

As the future work, we intend to add statistical analysis to the reports and inte-
grate new CloudSim features to the graphic user interface such as intra-data center 
networks and the utilization of real workloads. As CloudReports is an open-source 
project, its source code is available online on GitHub, what enables researchers to 
create feature branches that can later be integrated to CloudReports’ main project.

References

1.	 Calheiros RN, Ranjan R, Beloglazov A, De Rose CAF, Buyya R (2011) Cloudsim: a toolkit 
for modeling and simulation of cloud computing environments and evaluation of resource 
provisioning algorithms. Softw Pract Exp 41:23–50

2.	 Casanova H, Legrand A, Quinson M (2008) SimGrid: a generic framework for large-scale 
distributed experiments. Proceedings of the tenth international conference on computer mod-
eling and simulation, UKSIM’08. IEEE Computer Society, Washington, DC, pp 126–131

6  CloudReports: An Extensible Simulation Tool for Energy-Aware Cloud …



142 T. Teixeira Sá et al.

  3.	 Buyya R, Murshed M (2002) Gridsim: a toolkit for the modeling and simulation of distrib-
uted resource management and scheduling for grid computing. Concurr Comput Pract Exp 
14:1175–1220

  4.	 Sulistio A, Cibej U, Venugopal S, Robic B, Buyya R (2008) A toolkit for modelling and 
simulating data grids: an extension to gridsim. Concurr Comput Pract Exp 20:1591–1609

  5.	 Nez A, Vzquez-Poletti A, Caminero A, Casta G, Carretero J, Llorente I (2012) iCanCloud: a 
flexible and scalable cloud infrastructure simulator. J Grid Comput 10:185–209. doi:10.1007/
s10723-012-9208-5

  6.	 Kliazovich D, Bouvry P, Audzevich Y, Khan S (2010) Greencloud: a packet-level simulator 
of energy-aware cloud computing data centers. In: Global Telecommunications Conference 
(GLOBECOM 2010), IEEE, pp 1–5

  7.	 Aksanli B, Venkatesh J, Rosing T (2012) Using datacenter simulation to evaluate green en-
ergy integration. Computer 45:56–64

  8.	 Kocaoglu M, Malak D, Akan O (2012) Fundamentals of green communications and comput-
ing: modeling and simulation. Computer 45:40–46

  9.	 Buyya R, Ranjan R, Calheiros RN (2009) Modeling and simulation of scalable cloud com-
puting environments and the cloudsim toolkit: challenges and opportunities. Proceedings of 
the international conference on high performance computing & simulation (HPC & S’09), 
IEEE Computer Society, Leipzig, pp 1–11

10.	 Beloglazov A, Buyya R (2010) Energy efficient allocation of virtual machines in cloud data 
centers, 2010. In: 10th IEEE/ACM international conference on cluster, cloud and grid com-
puting (CCGrid), Melbourne, pp 577–578

11.	 Kim KH, Beloglazov A, Buyya R (2009) Power-aware provisioning of cloud resources for 
real-time services. Proceedings of the 7th international workshop on middleware for grids, 
clouds and e-science, MGC’09, ACM, New York, 1:1–1:6

12.	 Howell F, Mcnab R (1998) SimJava: a discrete event simulation library for java. Proceedings 
of the first international conference on web-based modeling and simulation, SCS, San Diego, 
pp 51–56

13.	 Beloglazov A, Buyya R (2012) Optimal online deterministic algorithms and adaptive heuris-
tics for energy and performance efficient dynamic consolidation of virtual machines in cloud 
data centers. Concurr Comput Pract Exp 24:1397–1420



Chapter 7
Cloud Computing: Efficient Congestion Control 
in Data Center Networks

Chi Harold Liu, Jian Shi and Jun Fan

C. H. Liu () · J. Shi · J. Fan
School of Software, Beijing Institute of Technology, 100081 Beijing, P.R. China
e-mail: chiliu@bit.edu.cn

J. Shi
e-mail: mirroer@gmail.com

J. Fan
e-mail: jfan@bit.edu.cn

Abstract  Today’s data center networks (DCNs) are expected to support large number 
of different bandwidth-hungry applications with increased amounts of data for pur-
poses such as real-time search and data analysis. As a result, significant challenges 
are imposed to identify the cause of link congestion between any pair of switch 
ports that may severely damage the overall network performance. Generally, it is 
expected that the granularity of the flow monitoring to diagnose network congestion 
in DCNs needs to be down to the flow level on a physical port of a switch in real 
time with high estimation accuracy, low computational complexity, and good scal-
ability. In this chapter, motivated by a comprehensive study of a real DCN trace, we 
propose two sketch-based algorithms, namely “α-CU” and “P( d)-CU,” which are 
based on the existing conservative update (CU) approach. The α-CU algorithm adds 
no extra implementation cost to the traditional CU, and also successfully trades off 
the achieved error with time complexity. The P( d)-CU algorithm fully considers the 
amount of skew for different types of network services to aggregate traffic statistics 
of each type of network traffic at an individual and horizontally partitioned sketch. 
We also introduce a way to produce the real-time moving average of the reported 
results. By theoretical analysis and sufficient experimental results on a real DCN 
trace, we extensively evaluate the proposed and existing algorithms on their error 
performance, recall, space cost, and time complexity.

Keywords  Data center networks · Flow monitoring · Flow analysis · Sketching 
techniques · Streaming algorithms · Trace study · sFlow
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7.1 � Introduction

Recent years have been witnessing the evolving trend of data center networks 
(DCNs) [2] from relatively a small-scale to lining up tens of thousands of servers 
and harnessing petaflops of computation power with petabytes of storage in a cost-
efficient manner [8]. The analysis of massive data sets is a major driver for today’s 
data centers. For example, the web-based information retrieval highly relies on the 
continuous collection and mining countless web pages and click-stream data to build 
fresh indexes and improve search quality. To support a variety of distinct applica-
tions and manage the exploding data, adequate bandwidth ultimately becomes the 
most critical part for the smooth running of many distributed infrastructures, e.g., 
GFS, BigTable [19, 23], Yahoo’s Hadoop, PIG [13, 33], and Microsoft’s Cosmos 
Scope [4]. Furthermore, these bandwidth-hungry applications in a DCN are (most-
ly) running distributed algorithms, such as MapReduce [12], which shuffles the data 
with growing size from one virtual machine to the other sitting across potentially 
different server rack. DCNs are typically constructed as a tree-based hierarchical 
topology, as shown in Fig. 7.1, where top-of-rack (ToR) switches, switches in the 
aggregation layer, and routers in core layers form a multiroot tree. As the number of 
core layer routers is far smaller than that of the servers at the bottom, the root nodes 
can easily become the bottleneck of the entire network performance. The flows, 
generated by applications, usually come and go very quickly and dynamically, and 
thus the unexpected sudden traffic increase may cause some links between a pair of 
switch port in a DCN to be highly congested and cause bandwidth overuse.

Although, various redundant topologies and routing algorithms [2] have been 
proposed to optimize the DCN architecture so that the potential congestion can be 
alleviated, they all rely on the accurate and efficient flow monitoring and analysis 
method to identify the cause of congestion on a physical port of a switch. It is then 
expected to infer a taxonomy of network traffic and classify flows as “elephant” and 
“mice” [24], where the elephant’s bursty behavior may cause network congestion. 
To facilitate the flow monitoring and analysis in an efficient manner, protocols such 
as NetFlow [25] and IFPIX [10] are proposed to collect IP traffic information from 
switches, and later sFlow [31] is instrumented to sample packets (typically, 1 in 
1000) from the switch hardware so that only a subset of packet headers from overall 
huge volume of data are transferred to the flow analyzer. Even so, the aggregated 
amount of records in a short period of time is still overwhelming and growing over 
time. Thus, it is impractical to store all of them in a persistent database and further 
identify elephants via database querying. Then, application-oriented [30] and per-
flow based approaches [27] are proposed, but the former type of methods needs 
specific application support, and the latter suffers from the scalability issues.

Towards this end, streaming algorithms [32] are used as runtime solutions. The 
input items to the algorithm are the key–value pairs as a stream, where the key 
can represent the distinct pair of source–destination IP addresses, and the value is 
the amount of carried workload in that flow. Therefore, the same key may appear 
randomly and repetitively many times when time passes by; and the goal of the 
algorithm is to identify a set of IP pairs carrying most of the workload within a time 
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period, as elephants. The algorithms can be implemented in different kinds of data 
structures. The first category of methods are the counter-based algorithms, which 
use a one-dimensional array of counters to track a small portion of inputs. Some 
examples are Lossy Counting (LC) [11] and Space Saving (SS) [14]. For limited 
storage space, they decide whether to store the newly arrived item or not, but un-
fortunately fail to provide estimations for any particular flow from the entire inputs 
with satisfactory accuracy. The second category is the sketch-based algorithms [5], 
which uses a fixed two-dimensional array of counters to track/summarize a large 
number of statistics over time (while none of the inputs are lost track of). Some 
examples are Count-Min (CM) and Conservative Update (CU) [3, 6]. Although, 
streaming algorithms are easy to implement and show good scalability, current pro-
posals have not sufficiently considered the trade-off between error performance, 
memory cost, and time complexity. Especially, SS and LC suffer from the scale of 
inputs, CM achieves good time complexity but with inevitable estimation error, and 
CU improves the error performance with the sacrifice of running time.

Motivated by these facts, we reexamined the performance of existing streaming 
techniques to profile the DCN performance and explicitly made the following five 
contributions in this chapter:

We also provide a comprehensive analysis of a real DCN traffic data set on the 
carried workload and traffic classifications which provides insights to enhance the 
existing sketch-based streaming algorithms.

•	 We propose “α-CU” to trade-off the estimation accuracy and time complexity 
between CM and CU algorithms with zero implementation cost to existing ap-
proaches.

•	 We propose “P( d)-CU” to partition CU along the vertical dimension of the 
sketch, while fully considering the amount of skew for different network services 
to achieve both high accuracy and low computational complexity.

Internet
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Fig. 7.1   An illustrative 
example of the commod-
ity hierarchical DCN 
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•	 We propose a way to perform real-time moving average on the reported results 
for sketch-based algorithms with high accuracy.

•	 We show extensive experimental results on a real DCN trace against the space 
cost, update, recall, average relative error (ARE), and compute time, compared 
with existing approaches.

The rest of the chapter is organized as follows. Section 7.2 highlights the related 
research activities. Section 7.3 presents the insights to DCN traffic by a real trace. 
Section 7.4 presents the existing sketching algorithms. Enhanced CU algorithms 
and detailed theoretical analysis are given in Sects. 7.5 and 7.6. Section 7.7 pro-
vides the end-to-end system architecture of the proposed analysis algorithms, and 
Sect. 7.8 shows the extensive experimental results. Finally, conclusions are drawn 
in Sect. 7.9.

This chapter significantly extends the approch discussed in [1], by providing a 
more specific and detailed survey on the related research activities in Sect. 7.2, giv-
ing a comprehensive analysis of a real DCN traffic data set to introduce the motiva-
tion of our proposed algorithms and system in Sect. 7.3, presenting entire system 
architecture for DCN traffic monitoring and analysis (in Sect. 7.7), and demonstrat-
ing more extensive performance evaluation results and corresponding analysis in 
Sect. 7.8.

7.2 � Related Works

Much research efforts have been expanded to identify the elephant flows [16–18] 
consisting of three categories: application-oriented approaches [9, 30], per-flow 
based traffic monitoring [15, 27], and streaming algorithms [3, 6, 11, 14, 20–22, 
32].

In the application-oriented approaches, the research reported in [30] focuses on 
giving higher priority to latency and throughput-sensitive flows like voice and vid-
eo applications, which is impractical for traffic management in data centers because 
it needs the modification of each application. Another approach is to classify traffic 
by the source applications which initiates them using stochastic machine learning 
techniques [9]. Nevertheless, it suffers from the difficulty in obtaining flow traces 
to train the classification algorithms.

The per-flow based approaches, e.g., Hedera [27] and Helios [15], monitor each 
flow at the ingress switch. Then, the controller will pull the statistical data from 
switches at regular intervals to further classify the elephant flows. However, this ap-
proach does not scale to large networks due to its significant consumption of switch 
resources. Moreover, the limited bandwidth between switches and the controller 
also becomes the bottleneck for network traffic management.

The streaming algorithms [32] can generally be classified into two categories. 
The first category consists of the counter-based algorithms, which track a subset 
of items from the inputs and monitor counts associated with these items. Demaine 
et  al. [21] proposed the Frequent algorithm to solve the Hot Items problem that 
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keeps counters to monitor elements. If a monitored element is observed, its counter 
is incremented, else all counters are decremented. In case any counter reaches 0, it 
is assigned the next observed element. Manku and Motwani [11] proposed the LC, 
which splits an input stream of elements into fixed-size windows and processes 
each window sequentially. For each element in a window, it inserts an entry into a 
table, or, if the element is already in the table, it updates its frequency. At the end of 
each window, the algorithm removes elements of small frequency from the table. 
In [14], the authors proposed SS, where (item, count) pairs are stored, initialized by 
the first distinct items and their exact counts. When the next item in the sequence 
corresponds to a monitored item, its count is incremented. But, when the next item 
does not match a monitored item, the (item, count) pair with the smallest count has 
its item value replaced with the new item and the count incremented. Unfortunately, 
LC and SS are only applicable when tracking a very small amount of items from the 
input stream but fail to provide aggregated statistics for any particular flow.

The second category consists of the sketch-based algorithms. Sketch-based tech-
niques do not monitor a subset of elements but rather provide frequency estima-
tion for all elements by using bit-maps of counters with less-stringent guarantees. 
Usually, each element is hashed into the space of counters using a family of hash 
functions, and the hashed-to counters are updated for every hit of this element. Cor-
mode and Muthukrishnan [20] proposed the GroupTest algorithm that maintains a 
small space data structure that monitors the transactions on the relation, and when 
required, quickly outputs all hot items without rescanning the relation in the data-
base. Estan and Varghese [22] proposed the Multistage filters approach by hashing 
every element to a number of counters which are updated every time the element is 
observed in the stream. Other well-known approaches are  CM [6] and  CU [3], as 
detailed in Sect. 7.4. They aim to use a fixed two-dimensional array of counters to 
summarize a large number of statistics over time. Nevertheless, CM always overes-
timates the exact value, and although CU improves it by conservatively updating a 
counter, it comes with a huge time complexity to perform the point query for each 
update.

Finally, Cormode et al. [5] reported that the workload distribution of different 
network services (DNS, HTTP, etc.) can exhibit significant and different amount 
of skew defined as a measure of the asymmetry to the probability distribution of 
the carried workload. This amount can be well modeled by the Zipfian parameter. 
However, none of these algorithms successfully capture this property during the 
analysis phase.

7.3 � Motivation from a Real DCN Trace

We performed a trace study on a real DCN hosting a trial-running commercial air-
line travel booking service in 2008. It is composed of four BLADE Network Tech-
nologies (BNT) virtual fabric 10 G switches that periodically export sFlow packets 
to a commercial server. From the packet header of sFlow packets, we extract useful 
information including the source and destination IP addresses, workload of that 
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flow, destination port number, and time. For every extracted information from a 
packet header, we save it in a CSV format record line. In this way, we received 
29,614,720 record lines that represent the traffic flow of the DCN during the moni-
toring phase. The results are computed offline by database queries.

First, we analyze the distribution of workload exchanged between all source–
destination IP pairs and plot the probability distribution function (PDF) and cumula-
tive distribution function (CDF), for both the entire DCN and on each switch. Then, 
we show the evolving trend of the workload over time and analyze its composition 
by different types of network services. As shown in the following, the results de-
mostrate that the amount of traffic moving between different IP pairs are unevenly 
distributed and most of the traffic is highly concentrated on only a small fraction of 
the IP pairs. Furthermore, bursty traffic is observed that may incur significant tem-
poral link congestion to a DCN. Therefore, we need to design an efficient conges-
tion identifcation algorithm. As our study also confirms the existence of Zipf’s law 
for different types of network services, as presented originally by [5], the accuracy 
of CM algorithm is not only related to the space of the sketch but also the param-
eters indicate that different network services may use different space of the sketch 
to achieve the same error performance; it inspires a new way to enhance the exist-
ing sketch-based approaches. We aim to provide a new way to enhance the existing 
sketch-based approaches, reducing the computational complexity and estimation 
error at the same time.

7.3.1 � Overall Workload Analysis

To investigate the traffic conditions between the communicating parties via the 
DCN, we extract all source–destination IP pairs with their workload from the ob-
tained trace data. Figure 7.2 shows the logarithmic amount of workload exchanged 
between all source–destination IP pairs during the day. For illustration purposes, 
we anonymize their actual IP addresses and arbitrarily set a unique number ranging 
from 0 to 6481, i.e., in total we have 6481 IP addresses (or users in the network). 
It is observed that the amount of traffic moving between different IP pairs are un-
evenly distributed, and most traffic are highly concentrated on a small fraction of 
the IP pairs. This implies different user behaviors that some users may generate 
larger amount of traffic as “elephants” while most of the users behave as “mice.”

Figure 7.3 shows the workload for both the entire DCN (in Fig. 7.3a, b), and on 
each switch (in Fig. 7.3c, d). Observing the PDF and CDF of the reported workload 
flowing through the entire DCN, we see that a flow of less than 10 KB eventually 
occupies more than 80 % of the entire traffic, since the considered network provides 
travel booking services where HTTP and DNS flows dominate. Additionally, we 
see that the workload on two switches are quite similar to the overall DCN traffic 
behavior, which implies that this is a relatively load-balanced network from the 
switch’s perspective.

To visualize the evolving trend of traffic over time, we show both its magnitude 
and normalized difference which is defined as| ( ) ( ) | / | ( ),M t M t M tτ+ −  where 
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Fig. 7.3   DCN workload distribution. a PDF of entire DCN workload. b CDF of entire DCN 
workload. c PDF of per-switch workload. d CDF of per-switch workload
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Fig. 7.2   Workload exchanged between all source–destination IP pairs during the day
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M t( ) is the workload magnitude at time t and τ  is the step size for both the entire 
DCN (see Fig. 7.4a, b) and on each switch (see Fig. 7.4c, d). It is expected to observe 
that results comply well with the users’ daily routine. That is, traffic is quite low 
early in the morning between 12:00 and 6:00 am (most people are asleep); it starts 
to increase after 12:00 pm and reaches the top after 6 pm. Besides, we observe four 
spikes that are mainly caused by the switch 10.75.22.11 (see Fig. 4c, d), distributing 
at 2:10−2:30  am, 3:00−3:30  am, 5:00−5:50  am and 10:00−10:40  am local time, 
respectively, which may cause significant network congestion and bandwidth 
overuse. We shall further analyze the cause of these spikes in the next section.

7.3.2 � Workload Composition Analysis

Figure 7.5 analyzes the composition of the carried workload in terms of the type of 
network services. Figure 7.5a shows the percentage of appearance frequency where 
HTTP occupies the most portion of 48 %, followed by DNS and HTTPs, consistent 
with the offered travel booking service by web browsing. Figure 7.5b shows the per-
centage of the carried workload, where HTTP also occupies the most by more than 
50 %, followed by Secure Computing Sidewinder Remote Administration (SCSRA, 
a protocol for secure connections) and HTTPs. Specially, we can conclude that the 
magnitude of each SCSRA flow is relatively large compared with HTTP, DNS, and 
HTTPs, as SCSRA occupies a considerable amount of total workload but it appears 
less frequently than the rest. This is due to the nature of SCSRA that helps users set 
up the secure connection only when an actual transaction is placed.

Zipf’s law [28] is an empirical law formulated using mathematical statistics that 
refers to the fact that many types of data in the physical and social sciences can be 
approximated with a Zipfian distribution. Our analysis on this data set also confirms 
the finding in [5] that the workload of each type of network service exhibits strong 
Zipfian distribution. As shown in Fig. 7.6, we plot the data on a logarithm-logarithm 
plot. The horizontal axis denotes the rank of the carried workload by each type of 
network service, ranking by the packet size. The vertical axis is the logarithmic 
amount of the corresponding frequency. It is observed that the logarithm-logarithm 
plot is approximately linear. The fitted Z parameters are zHTTP = 1 53. , zDNS = 1 93. , 
zothers = 1 02.  (coefficient 0.95), respectively.

Our study on workload composition analysis shows that the main source of the 
observed four workload spikes comes from only a small category of network servic-
es, which are empirically confirmed to follow the Zipfian distribution. Moreover, 
in [5], it proves that the accuracy of CM algorithm is not only related to the space 
of the sketch but also the parameters, indicating that different network services may 
use different space of the sketch to achieve the same error performance. This angle 
provides a new way to enhance the existing sketch-based approaches, reducing the 
computational complexity and estimation error at the same time.

Spike Analysis  In each CSV format record line, we can get the time, workload, 
and the port numbers of that traffic record. Distinguishing flows via TCP destina-
tion port numbers, we analyze the cause of spikes in terms of their associated type 
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of network service. As shown in Fig. 7.7, for four spikes, 44, 37, 18, and 30 % of 
total workload comes from HTTP and HTTPs protocol, respectively, and 40, 47, 72, 
and 53 % of total workload comes from the SCSRA protocol to establish the secure 
connection (for real booking transactions).

Fig. 7.4   Workload changing curve over time for 24 h. a, b Entire DCN workload and its normal-
ized difference. c, d Per-switch workload and its normalized difference

 

Fig. 7.5   Workload composition analysis for entire traffic, where ( left) appearance frequency of a 
type of network service, and ( right) workload of a type of network service
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Fig. 7.6   Zipf distribution for different types of network services in the considered data set
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To summarize, in a DCN, there exists a few workload spikes over time which 
may cause bandwidth overuse and degrade the network performance, and the traffic 
between any pair of source–destination IP addresses are also unevenly distributed. 
Therefore, it is necessary and also possible to extract the high-traffic sources by 
carefully designing the flow monitoring/analysis techniques to ultimately avoid the 
network congestion. One interesting application is to retrieve the top K  records 
from all packets received on a list of physical ports of a specific switch in the past T  
seconds, grouped by specified fingerprint information which can uniquely identify 
a flow. The fingerprint information can be the source/destination IP addresses, 
source/destination port numbers, etc. The output top-K records can be ranked by the 
sum of flow workload, or counting the number of appearances (i.e., heavy hitters).

7.4 � Existing Sketching Algorithms

To illustrate the existing sketching algorithms, we consider the following congestion 
management application (which can provide key results for many commercial flow 
analysis software like IBM Security QRadar QFlow Collector [29]): providing 
estimations when retrieving the top-K (e.g., default 100) source–destination IP 
pairs sorted by their carried sum of workload, on a specific physical port of a 
switch in the lastT (e.g., default 5000) seconds. Without loss of generality, we de-
note the distinct input items as a vectora with dimension m, presented in an implicit, 
incremental fashion, where for each element a i mi ≥ ∀ = …0 1 2, , , , . Its current state 
at time t is denoted by [ ]1( ) ( ), , ( ), , ( ) .i ma t a t a t a t= … …  In the above example, a ti ( ) 
represents a distinct IP pair, and the value denotes the aggregated amount of the 
carried workload within a time period T . For convenience, we shall usually drop t 
and refer only to the current “state” of the vector, and when time evolves it behaves 
identically in the same process. Initially, a is the zero vector. Updates to individual 
entries of the vector are presented as a stream of pairs, as (item, update) or ( , ).a ci i  
In practice, update c can be the newly carried workload on an IP pair, or c = 1 if the 
application aims to count the number of appearances of that IP pair, or heavy hitters. 
We next describe the existing sketching algorithms to produce the vector estimate 
a of dimension m.

7.4.1 � CM Sketch

CM sketch [6] is named after the two basic operations used to handle the updates to 
individual entries, i.e., counting first and computing the minimum next. Initially, a is 
a zero vector. Updates to individual entries of the vector are presented as a stream of 
pairs ( , )i c , e.g., the ith IP pair’s total workload is increased by amount c. As shown 
in Fig. 7.8a, the data structure of a CM sketch is represented by a two-dimensional 
array of counters with width w and depth d: [ ] [ ]1,1 , .cell cell d w…  Each counter is 
initially zero. Additionally, we choose d hash functions h h m wd1 1 1… … → …:{ } { } 



154 C. H. Liu et al.

uniformly at random from a pairwise-independent family, hashing the ith element  
d times to d different cells [ , ( )]jj h i , ∀ ≤ ≤1 j d of each row in the data structure. 
When the new updates arrive, all hashed cells are increased with the according 
amount c. The ideal case is that each cell only stores a unique input element, 
however as in practice m w� , each cell may store the aggregated values of multiple 
items which will inevitably cause collisions. Fortunately, this collision rarely 
repeats in all rows simultaneously due to the different hash functions chosen. Then, 
the estimation ˆia  from the structure is given by 1ˆ min [ , ( )],i j d ja cell j h i≤ ≤=  i.e., the 
minimum of d  hashed cells. Note that the size of sketch is related to the estimation 
accuracy, where  /w e ε=  and  lnd δ= −  can produce ε  estimation accuracy with 
probability of at least 1 :δ−

� (7.1)

where � �a a
i

n
i1 1

=
=∑ . An example is illustrated in Fig. 7.8a, b, where the new arrival 

update item ( , )i 5  gets mapped by four hash functions, and finally updates the counts 
from (2,9,4,8) to (7,14,9,13). For the query operation, the estimation for ai is given 
by 7 as the minimum over (7,14,9,13).

Obviously, given a data type in each cell, the space cost of CM sketch is O wd( ). 
The update process only takes O( )1  by hashing to one cell, thus for a data stream of 
n records, its update complexity is t O ndCM = ( ).

7.4.2 � CU Sketch

As discussed earlier, since m is sufficiently larger than w, one hash function may 
hash multiple items to the same cell, and this collision would cause erroneous 
aggregation of streaming updates from different items. Therefore, CM always 

{ }1ˆ > ,i iPr a a aε δ− ≤ 

Fig. 7.8   An illustrative example of CM sketch and CU algorithms, where: a sketch before update, 
b sketch after the CM update, and c sketch after the CU update
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overestimates the exact value of the vector. Estan and Varghese introduced the idea 
of conservative update [3] in the context of networking, and later extended in [7] 
to further improve the estimation accuracy. In CU, counters are conservatively up-
dated according to:

This means that we will update a counter only if it is necessary as indicated by 
the above equation. This heuristic approach avoids the unnecessary updates of 
counter values and thus reduces the estimation error. An example is also illustrated 
in Fig. 7.8a, c, where the counts (2,9,4,8) are updated to (7,9,9,8) by performing 
conservative update.

Since, CU needs to perform the point query (of complexity O d( ) among d 
independent cells) whenever there is a new update arrival, and thus, its time 
complexity is t O ndCU = ( )2  for n input records. To this end, we have identified the 
trade-off between time complexity and error performance between CM and CU, and 
in the following, we aim to enhance CU’s performance.

7.5 � Enhanced CU Algorithms

In this section, first we introduce two enhanced CU algorithms, namely: α-CU and 
partitioned CU. The α-CU maintains all basic features of CU, but only performs CU 
process probabilistically for an arrival update. Partitioned CU algorithms maintain 
a new data structure compared with CU that performs sketch partition along the 
horizontal or vertical dimension.

7.5.1  �α-CU

As the CM algorithm sacrifices its error performance with time complexity, one 
immediate improvement is to “probabilistically” perform CU for an arrival update. 
Without loss of generality, we use parameter ](0,1α ∈  to denote this switching 
probability between CM and CU processes. That is, at any time when a new update 
arrives at the sketch, e.g., a particular IP pair’s carried workload is incremented, 
we probabilistically decide whether to adopt the CU with probability .α  We call 
this improvement method as “α-CU”. Note that the realization of this switching 
probability can be different, but none of them eventually adds any extra imple-
mentation cost to existing CU and CM. For simplicity reasons, we assume that this 
switching probability is a uniformly distributed random variable. It is clear that when 

1,α =  α-CU approach is identical to the CU approach. The smaller the α , higher is 
the probability of CM used. To this end, it is expected that the error performance and 
time complexity is trading off by ,α  as (2 (1 ) ) ((1 ) ).CUt O nd nd O ndα α α α− = + − = +

ˆ ˆ( ), ( )
, .

i iupdateby a c ifcellvalue a c
remainthesamecellvalue otherwise

+ < +


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7.5.2 � Partitioned CU

Although, α-CU can reduce the time complexity (compared with the classic CU 
approach), it proportionally sacrifices the error performance when CM is adopted 
more frequently. Furthermore, it does not explicitly consider the amount of skew 
for different types of network services, e.g., HTTP, DNS, etc. According to the 
observations that different types of network services in the network conform to 
different Zipf’s law, and more importantly, in [5], it proves that to answer point 
queries (or estimations) by CM with ε  accuracy with probability at least 1 δ−  needs 
space min{1,1/ }( ln1/ ),zO ε δ−  and thus different types of network services may use 
distinct space cost of the sketch to achieve the same error performance. Therefore, 
we aim to propose an enhanced algorithm to reduce the computational complexity 
and estimation error from this angle.

We reduce the computational complexity of CU by requesting different sketch 
sizes for each type of network services, while satisfactorily guaranteeing the er-
ror performance of each individual sketch. It is obvious that the partition can be 
performed either along the horizontal or vertical dimension of the sketch, denot-
ed as “P( d)-CU” and “P(w)-CU” algorithms, respectively, while preserving the 
other dimension as constant. For the sake of comparison fairness, we guarantee 
equal space cost of the sketch before (i.e., the original one) and after the partition 
(as the sum of the sizes for individual sketch). Let w and d denote the width and 
depth of the original sketch before partition, respectively. Then, after the partition 

along either dimension, d d dk k

K
k( )=

=∑ 1
 denotes the depth of the kth partition, and 

w w wk kk

K
( )=

=∑ 1
 denotes the width of the kth partition. Finally, let n n nk kk

K
( )=

=∑ 1
 

denote the size of the input stream to the kth sketch, while K  is the number of parti-
tions in total. The updates of each type of network services are performed at the cor-
responding individual sketch, respectively, and for one type of network service, its 
associated updates will not be sent and processed in two sketches. To better explain 
the process, Fig. 7.9 shows an illustrative example. Note that the similar process can 
be applied for P(w)-CU, where the only difference is to partition the sketch along 
the horizontal dimension.

The processing steps of P( d)-CU are illustrated in Fig. 7.9a, b as an example. 
The entire sketch of w d= =7 6,  is horizontally divided into K = 3 sketches, each of 
which has 2 1 3, ,  rows to process flows from HTTP, DNS, and other types of network 
services, respectively. As shown in Fig. 7.9a, assume items a a a1 2 3, ,  (representing 
different source/destination IP pairs exchanging different types of network services) 
from three categories are monitored, they are hashed into cells of different sub-
sketches, and the stored counts before update were (2,9), 4, and (2,3,9), respec-
tively. Then, to return the estimation of a a a1 2 3, , , we perform the point query on 
three sketches and the results are 1 2 3ˆ ˆ ˆmin{2,9} 2, 4, min{2,3,9} 2,a a a= = = = =  
i.e., the minimum of all counts in the hashed cells. Now suppose new updates arrive 
c c c1 2 35 9 6= = =, , . In this particular case, the update rule increases the cell value, 
only if its stored value is less than sum of estimation result and new update, i.e., 

1 1ˆ 7,a c+ =  2 2ˆ 13,a c+ =  3 3ˆ 8.a c+ =  As a result, Fig 7.9b shows the cell values after 
the update which become (7,9), 13, and (8,8,9), respectively.
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7.5.3 � Performance Analysis

The implementation of these K sketches can either be parallel or serial, and we next 
show its superiority even if serialized approach is adopted.

Compute/Update Time  When considering the time complexity, we refer to the time, 
when performing all n updates in a sketch, of P(w)-CU is the same as CU since the 

width w does not control the update time: t O n d O ndP w CU k

K
k( ) ( ).− =

= ( ) =∑2 2
1

 The 

proposed P( d)-CU exhibits the time complexity as the sum of K  CU algorithms, or 

O n d
k

K
k k2

1=∑( ). Through simple derivations, we show that it is far lower than that 
of CU approach:

� (7.2)

Theorem 5.1  A CU sketch with width w and depth d is able to achieve the minimum 
computational complexity O nd K( / )2  if partitioned into K sketches, irrespective 
of how the partition is performed as long as the input data stream (with size n) is 
equally fed into K sketches.

Proof  We form the following optimization problem, i.e., to minimize the update 
time of P( d)-CU given the constraint of the sum of partitioned sketch depths equals 
the original sketch:

�
(7.3)

1 1 1

2 2 2 ( ) 2 .
K K K

k k k k k k
k k k

nd n d n d d n d
= = =

= + −∑ ∑ ∑�

1 1

{ } arg min . . ,
k

K K

k k k kd
k k

d n d s t d d
= =

= =∑ ∑

Fig. 7.9   An illustrative example of P( d)-CU algorithm, where: a sketch before update, b Sketch 
after update
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where 
1

.
K

kk
n n

=
= ∑  It is a classic constrained optimization problem which could 

be solved by using the Lagrangian multiplier .λ  We take the gradient ∂ ∂ =L dk/ ,0  
where 

1 1
( ) ( ),

K K
k k kk k

L n d d dλ λ
= =

= − −∑ ∑  and we have ,kn kλ = ∀  (since 

,kk k
n nλ= =∑ ∑  n n K kk = ∀/ , ). Therefore, it is clear that irrespective of how 

the partition is performed, the lowest computational complexity is always achieved 
if the input data stream is equally fed into each of the K  sketches. Replace n n Kk = /  
into the objective function, we complete the proof. As the width w does not control 
the update time, we conclude that P(w)-CU is the same as CU on time complexity.

Finally, We have ( ) ( ) .CM P d CU CU p w CUt t t t− −≤ =�

Error Performance  The error performance of all sketching algorithms depends both 
on the width and depth of a sketch. This is because the width decides the collision 
probability when a hash function maps different items into the same cell. The smaller 
the width, higher the probability that any of the two items will collide. As a result, 
a cell will store the wrongly aggregated values of different items. Furthermore, 
when the output is generated from the sketch, the point query returns the minimum 
value of d hashed cells, and thus larger depth will spread out the collisions and as 
a result to decrease the estimation error. Therefore, the estimation error is inversely 
proportional to width and depth. Meanwhile, width has a higher impact on the 
derived error than depth, since it directly controls the collision probability, and thus 
P( )w -CU would not yield any better performance, and can be even worse than CM 
due to its significantly less allocated width (more erroneous aggregated results). 
α-CU’s error performance depends on the value of switching probability α P( d)-CU 
achieves better error performance than the traditional CU, since the reduction of the 
input data size has larger impact than the reduced data structure. This is because we 
feed different types of network services to different sketches, and thus potentially 
each small sketch will produce less collision when hashing and this is confirmed at 
a later section of this chapter.

7.6 � Real-Time Moving Averages

In this section, we propose an approach to produce the real-time moving average of 
workload using only one sketch without any implementation cost.

In all previous analysis, we drop the time notation and focus on estimating 
item counts periodically from the sketch. However, reports may be generated by 
a “sliding window” whose length is T  and moving speed is l (l T� ). A typical 
example in a DCN is to report results every 10 s while always considering the sum-
marized statistics in the past 300 s. Unfortunately, none of the existing streaming 
algorithms is applicable for this domain.

The problem can be solved by using T l/  sketches of the same size. That 
is, each sketch stores the aggregated statistics within a period of l. When time 
evolves, the sketch storing the most outdated statistics beyond the time window T  
is reset to zero, and starts to collect newly arrived ones in the current time frame.  
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Meanwhile, all other T l/  −1 sketches remain the same. When reporting the re-
sult, each sketch exports the summarized statistics individually, and then combined 
together. Although, this approach is straightforward and accurate by nature, it re-
quires significant space cost (from one single sketch to T l/   separate sketches of 
the same size), and imposes implementation complexities like sketch coordination, 
result merge, and sort.

We propose a “real-time exponential moving average” approach that maintains 
only one sketch without any implementation cost to P( d)-CU. Every l when a up-
date arrives, we first exponentially discount the stored value of all cells by a factor 
of ,γ  which is defined as the ratio between the speed of sliding window movement 
l and the looking-back interval T , i.e., 1 / (0,1).l Tγ = − ∈  Then, we add the new up-
date value to the discounted cells. The intuition is that smaller step size l results in 
the slow historical forgetting effect (bigger γ ), and the smaller observation window 
size T  results in faster forgetting effect (smaller γ ).

The main advantage of this approach is to save the space cost. Also, it exhibits 
exponential behaviors in the long-run, given that each cell stores all arrived data 
(i.e., none of them is discarded) but they are added up together after exponentially 
discounted in a scale proportional to its lifetime in the data structure. For example, 
most recent update is only discounted once in contrast with the first update, so that 
the effect of the historical measurements is mitigated from time being, and abrupt 
changes like spikes can be tracked.

7.7 � System Architecture

To facilitate the above designs as a part of the software in real DCN management, 
in this section, we present the entire system design. For the sake of simplicity, we 
take the sFlow datagram as an illustrative example to implement the end-to-end 
system. However, it is worth noting that the proposed sketching techniques are not 
constrained in the sFlow standard, but have wide applicability to any data stream 
inputs exported from the switches in a data center. The principle is this [31]: sFlow 
packets contains the IP packet length information of that sampled packet and the 
sampling rate enforced in the hardware, so that one is able to compute the total 
amount of workload before sampling. If further grouped by different soruce/desti-
nation IP pairs, and/or switch port, we can estimate the aggregated traffic load after 
the sketch processing.

Figure 7.10 shows the system flow for both implementing a single sketch (i.e., 
SS, CM, CU, and α-CU, as shown in Fig. 7.10a) and partitioned sketch (i.e., P( d)-
CU and P(w)-CU, as shown in Fig. 7.10b). The considered inputs to the analyzer 
can be either the real-time streaming packets like sFlow datagram generated by 
any compatible switch, or the historical flow records stored in a persistent database 
(and here we consider the .csv format). Having both real-time and historical data as 
inputs can satisfy the requirements of different applications, and they both serve as 
the inputs to a First-In-First-Out (FIFO) queue. The queue successfully caches the 
input data to decouple from the actual sketch computations. Take real-time inputs 
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sFlow datagram as an example, packets dequeued from the cache are used for head-
er analysis, where all needed information are included, e.g., the source/destination 
IP/MAC addresses, source/destination port numbers, flow workload, the port of the 
exported switch, connection type, etc. Then, according to the user-specified ranking 
criterion in the output, a key generator module is employed to hash those ranking 
information (potentially of multiple fields) to a single unique identifier, which is 
used to update the sketch. For example, if one is interested in identifying which 
particular pairs of source/destination IP addresses exchanging packets become the 
cause of link congestion on a switch, we hash their IP addresses (i.e., in this case 
we have two fields) together into one single unique key, and later all arrival packets 
belonging to that IP pair are updated in the sketch accordingly. Finally, the sketch 
module is the core of the entire system, which may vary from different employed 
techniques. In general, it is a two-dimensional array with width w and depth d , and 
its output are the sorted list of records satisfying different application requirements.

As for the partitioned sketching algorithms, the only two differences are the 
dispatcher module before the FIFO queue, distinguishing their associated type of 
network service, and the aggregator module after the results are produced by each 
individual sketch to generate an entire list of records, irrespective of their associated 
type of network service. The implementation of these two modules at both ends can 
be in many classic ways.

Finally, it is worth noting that the reduced processing supported by the two 
sketch-based algorithms means that they could be implemented in NetFPGA [26] or 
other programmable switches, which would (potentially) be a good way to offload 

Fig. 7.10   System architecture of the flow monitoring and analysis. a Single sketch. b Partitioned 
sketch
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that work from the end hosts, and just give input to the load balancers, flow schedul-
ers (or Explicit Congestion Notification (ECN) to Multipath TCP weights if being 
used).

7.8 � Performance Evaluation

In this section, we first conducted a comprehensive study of the performance pro-
duced by existing three streaming techniques, namely: SS, CM, and CU. Then, we 
compared our proposed α-CU and Partitioned CU approach in terms of compute 
time and estimation error. Finally, we showed the effects of performing real-time 
moving average on P( d)-CU under different settings.

To assess the performance of different algorithms, we use the same data trace as 
in Sect. 7.3, because it provides a good diversity of m = 6482 distinct source–des-
tination IP pairs, which is satisfactory to testify the sketch-based algorithms since 
the larger m would potentially cause more collisions in the data structure. Therefore, 
the algorithms’ estimation accuracy can be verified. The considered application is to 
retrieve the estimated workload of all IP pairs. We received n = 29 614 720, ,  records. 
All results are computed on an ordinary laptop Thinkpad x220i with hardware 
configurations of Intel(R) Core(TM) i3–2310M, CPU@2.10 GHz and 4 GB RAM. 
Specially, we aim to study the performance of the existing/new proposed algorithms 
in term of the following:

•	 Space cost: the size of memory needed to perform the streaming algorithm 
(measured in bytes).

•	 Update : the processed number of updates per second.
•	 Recall: measured in the total number of true workload/heavy hitters reported 

over the number of true workload/heavy hitters given by an exact approach 
(e.g., database query).

•	 Compute time: the period of time generating the estimations of the reported 
workload/heavy hitters.

•	 Average relative error (ARE) of the reported workload/heavy hitters, as: 

1

ˆ| |1 ,
m i i
i

i

a a
m a=

−∑  where m is the dimension of a.

7.8.1 � Existing Approaches: SS, CM, and CU

Workload Ranking  Figures. 7.11 and 7.12 show the experimental results for space 
cost, update, recall, and ARE of SS, CM, and CU algorithms, when ranking the 
exchanged workload between any source/destination IP pair. We vary the param-
eters of width w, depth d , and the number of output records K , respectively.

Specifically, Fig. 7.11a shows the space cost of these three algorithms. To track 
the inputs and perform stream estimations, both CM and CU need a two-dimension-
al array of counters of size wd , while SS uses a one-dimensional array of counters 
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of size w. Figure 7.11b illustrates that, unlike storing data in a database with grow-
ing size, all three algorithms consume a fixed size of memory although different 
amount of output records are produced, showing good scalability with the increase 
of the amount of top-K outputs. Figure 7.11c shows the change of update versus 
the size of array. For SS, it is clear that the update decreases when increasing the 
array size (also confirmed in Fig. 7.11d by three red lines). This is because, in SS, 
if a new arrival item does not match any monitored items in the array, the item with 
smallest count will be replaced; hence, a larger size of array needs more time to find 
the smallest count and consequently increases the time of item replacement. For 
CM and CU, they behave consistently with our analyzed update time complexity, 
i.e., t O ndCM = ( ), t O ndCU = ( ),2  in Sect. 7.4. Figure 7.11c shows that the update for 
CM and CU is inversely proportional to depth d while it remains unchanged when 
varying w (which is also confirmed in Fig. 7.11d, as three blues/green lines repre-
senting CM and CU with different w overlap), and CM performs always faster than 
CU. Figure 7.11c also indicates that SS is much slower than CM and CU in terms of 
running time, especially when the utilized memory size is relatively large. Finally, 
from Fig. 7.1d we see that increasing the desired number of output records has no 
impact on the update, since time complexity is only related to the size of array and 
the size of input data stream.

For the recall performance, as shown in Fig. 7.12a, increasing the array size can 
promote the obtained recall for all three algorithms, since a larger allocated memory 
decreases the probability of item replacement for SS and lowers the collision prob-
ability of CM/CU while performing the item hashing. It is worth noting that with a 
small piece of memory ( , )w d= =1000 6  the algorithms has already achieved more 
than 95 % recall when handling a huge amount of input data stream. Figure 7.12b 
shows that the recall performance suffers from the increasing of desired number of 
output records, especially for SS. However, CU always achieves the highest recall 
by conservatively updating the counters to avoid overestimations.

For ARE, as shown in Fig. 7.12c, SS slightly outperforms CM around 3 % less 
ARE, but CU achieves the least error always lower than 0.2 % and only 1/10th 
of the SS and CM algorithms, when d = 14. This gain becomes weak when the w 
increases and after w = 2500, all three algorithms succeed in achieving almost 0 % 
ARE. Furthermore, when increasing the sketch depth, CM performs better, e.g., 
when w = 512 with doubled depth, its ARE can be halved. Therefore, among exist-
ing streaming algorithms, CU’s error performance is the best. This is also confirmed 
in Fig. 7.12d. Although ARE decreases when the number of top-K records increase, 
CU still achieves the least estimation error using the same size of memory.

7.8.2  �α-CU and Partitioned CU

We next demonstrate both the ARE and compute time of the proposed α-CU and 
Partitioned CU algorithms, while varying different ,α  w, and d values. In Fig. 7.13a, 
for the fixed sketch depth, when α  increases from 0.1–1.0, i.e., with higher 
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probability to perform CU, the achieved ARE decreases gradually. Meanwhile, 
with the increase of the depth, the error also decreases, and after d = 33, its value 
can reach as low as 1.5 %. As for the time complexity shown in Fig. 7.13b, when α  
increases by 30 %, the amount of time required for processing all updates increases 
by around 16 %, which clearly confirms the trade-off between time and error perfor-
mance of CM and CU algorithms. Figure 7.13c, d shows the results when varying 
the sketch width, and it clearly confirms that w has no relationship with compute 
time, and ARE decreases with the growing size of the data structure to reduce the 
collision probability when processing the input items.

To facilitate the sketch partition, we use the TCP destination port number to 
distinguish the HTTP and DNS flows. Then, based on the inverse ratio of the fitted 
Z parameters (for Zipfian distribution) from the trace (where we have zHTTP = 1 53. , 
zDNS = 1 93. , zothers = 1 02.  with fitting coefficient 0.95), we partition the sketch into 
three small sketches, whose depth ratio is 3:2:4 between HTTP, DNS, and all other 
service types.

Figures 7.14a and 7.12b show both the ARE and compute time versus the depth 
of the sketch d , while setting w = 8192 as a constant. It can be seen that P( d)-CU 
successfully reduces the estimation error by at least 50 % when compared to CU 
when d = 12, and this effect continuously holds when d increases as the lowest to 
0 %. The curve of P(w)-CU further confirms that partitioning the horizontal dimen-
sion of the sketch would not yield extra benefits of lower ARE since width strictly 
controls the amount of collisions. As for time complexity, P( d)-CU shows its su-
periority over CU approach and very close to CM algorithm. This gain becomes 
clearer when d increases and the complexity reduction can reach up to 18 % when 
d = 36. As an overall trend, the time complexities of four algorithms conform to 
the strict linearity showing good scalability with the space cost of the sketch. The 
effect of changing the width of sketch is depicted in Fig. 7.14c, d. Bigger w will 
decrease the ARE for all four approaches and P( d)-CU always achieves the best 
error performance and good time complexity compared with CM. We also perform 
an evaluation while processing 70 and 35 % of total data by P( d)-CU, and found 
that when w = 2560 it only requires 52 and 17 % of compute time showing that the 
algorithm itself contributes 18 % less time consumption apart from the help in the 
reduction of data size.

7.8.3 � Real-Time Moving Averages

Finally, we arbitrarily pick up some specific IP pairs and show the effects of per-
forming real-time moving average on P( d)-CU, while setting the looking-back in-
terval at T = 300 s and moving speed at l = { , }10 100  s and comparing with the exact 
value from database querying. We show the results obtained from three different IP 
pairs whose moving average curve of the workload exhibit different shapes over 
time. Case 1 has a curve with an early peak happened before 8:30 am in the morn-
ing as shown in Fig. 7.15a, b. Figure 7.15c, d of Case 2 both have a late peak that 
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appears after 8:30  am. For the last case in Fig.  7.16a, b, there are two peaks of 
workload

Figures  7.15b, d and 7.16b show the result when l = 100s or 0.67,γ =  where 
the estimated value successfully tracks the exact value when the workload slowly 
changes. Meanwhile, when abrupt changes like spikes occur we observe certain 
amount of latency in tracing the change. This is primarily because that the his-
torical data out of 300 s still have certain impacts on the aggregated statistics, al-
though they have been exponentially discounted. Figures 7.15a, c and 7.16a show 
the result when l = 10s, or 0.97,γ =  which is expected to be more fine-grained (i.e., 
the window move slower) and the effect of historical observations are more obvi-
ous. From the three cases, we confirm that the proposed moving average approach 
successfully tracks the abrupt changes with satisfactory response time. It is also 
worth noting that the performance of our proposed approach behaves stably under 
different scenarios when the peak of workload appears arbitrarily.
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Fig. 7.13  Experimental results for ARE versus depth (a). b Compute time versus depth of α-CU 
algorithm.
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Finally, Fig. 16c, d shows the compute time for all IP pairs during the simula-
tion period from 8:00 to 9:00 am, plotting under different l values. We can see that 
the curve of Fig. 7.16c is much more fine-grained than Fig. 7.16d. This is because 
a small moving speed indicates more calculating counts and avoids the possible 
severe jitter of compute time, forming a more smooth curve accordingly.

7.9 � Conclusion

Emerging bandwidth-hungry applications in DCNs impose significant challenges to 
identify the cause of congestion and bandwidth overuse. In this chapter, at first, we 
provide a comprehensive study of a real DCN traffic data set and analyze its opera-
tional characteristics. Then, motivated by the analysis results, we reexamine various 
streaming techniques to approximate the DCN traffic characteristics in real-time, 
and propose two enhanced algorithms, α-CU and P( d)-CU, based on existing CU 

Fig. 7.13   Experimental results for ARE versus depth. c ARE versus width. d Compute time versus 
width of α-CU algorithm
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algorithm, together with the end-to-end system architecture. α-CU targets to serve 
as a zero-cost alternative to the existing flow analyzers that already run CM and CU, 
providing a configurable trade-off between the error performance and time com-
plexity. P( d)-CU, which successfully improves both accuracy and time complexity, 
is a significant enhancement to any existing sketching techniques that requires the 
known Zipfian parameter for different network services at the configuration phase. 
Further, we propose a way to produce real-time moving average of the reported 
results. Finally, sufficient experiments by a real DCN trace verify the effectiveness 
of the proposed algorithms on error performance, space cost, and time complexity.
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Fig. 7.14   Experimental results for ARE versus depth  c ARE versus width. d Compute time versus 
width of P( d)/P(w)-CU algorithms
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Fig. 7.15   Experimental results for real-time moving average of P( d)-CU algorithm (Case 1).  
a 10 s interval. b 100 s interval. Experimental results for real-time moving average of P( d)-CU 
algorithm (Case 2) 
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Fig. 7.15   Experimental results for real-time moving average of P( d)-CU algorithm (Case 1).  
c 10 s interval. d 100 s interval
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Fig. 7.16   Experimental results for real-time moving average of P( d)-CU algorithm (Case 3).  
a 10  s interval. b 100  s interval. Experimental results for compute time of real-time moving 
average of P( d)-CU algorithm (Compute time)
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Fig. 7.16   Experimental results for real-time moving average of P( d)-CU algorithm (Case 3).  
c 10 s interval. d 100 s interval
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Abstract  With immense success and rapid growth within the past few years, cloud 
computing has been established as the dominant paradigm of IT industry. To meet 
the increasing demand of computing and storage resources, infrastructure cloud 
providers are deploying planet-scale data centers across the world, consisting of 
hundreds of thousands, even millions of servers. These data centers incur very high 
investment and operating costs for the compute and network devices as well as for 
the energy consumption. Moreover, because of the huge energy usage, such data 
centers leave large carbon footprints and thus have adverse effects on the environ-
ment. As a result, efficient computing resource utilization and energy consumption 
reduction are becoming crucial issues to make cloud computing successful. Intel-
ligent workload placement and relocation is one of the primary means to address 
these issues. This chapter presents an overview of the infrastructure resource man-
agement systems and technologies and detailed description of the proposed solu-
tion approaches for efficient cloud resource utilization and minimization of power 
consumption and resource wastages. Different types of server consolidation mecha-
nisms are presented along with the solution approaches proposed by the researchers 
of both academia and industry. Various aspects of workload reconfiguration mecha-
nisms and existing works on workload relocation techniques are described.
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8.1 � Introduction

With the rapid development of computing and storage technologies and the extreme 
success of the Internet, computing resources have become more powerful, cheaper, 
and ubiquitously available than ever before. This technological shift has enabled 
the realization of a new computing paradigm called Cloud Computing. Technically 
speaking, clouds are large pool of easily accessible and readily usable virtualized 
resources, such as hardware (e.g., CPU, memory, storage), development platforms 
(e.g., Java,.NET, Go), and services (e.g., Email, CRM, HR) that can be dynamically 
reconfigured to adjust to a variable load in terms of scalability, elasticity, and load 
balancing, and thus allow opportunities for optimal resource utilization. This pool 
of resources is typically provisioned as a pay-per-use business model in which very 
high availability and guarantee (e.g., 99.99 % for Amazon S3) are offered by the 
cloud infrastructure provider by means of service level agreements (SLAs) [49]. 
Consumers of cloud can access resources and services based on their requirements 
without any regard of the location of the consumed resource and service. A similar 
concept of delivering computing resources has been termed Utility Computing in 
the arena of information technology for a few decades. Recent advancement in tech-
nologies like high-speed internet, virtualization, and web 2.0, and high availability 
of commodity computing equipment have paved the way of cloud computing to a 
quick success.

According to the National Institute of Standards and Technology (NIST) defini-
tion [32], the five essential elements of cloud computing are:

•	 On-demand computing service
•	 Broad network access
•	 Resource pooling
•	 Rapid elasticity, and
•	 Measured service

In addition to these five essential characteristics, the cloud community has exten-
sively used the following service models to categorize the cloud services [49]:

•	 Infrastructure as a service (IaaS): Cloud provides provision for computing re-
sources (e.g., processing, network, storage) to cloud customers in the form of 
virtual machines (VM), for example Amazon EC2 and Google compute engine.

•	 Platform as a service (PaaS): PaaS providers offer a development platform (pro-
gramming environment, tools, etc.) that allows cloud consumers to develop 
cloud services and applications as well as a deployment platform that hosts those 
services and applications, thus supports full software lifecycle. Examples in-
clude Google App Engine and Windows Azure.

•	 Software as a service (SaaS): Cloud consumers release their applications on a 
hosting environment fully managed and controlled by SaaS cloud providers and 
the applications can be accessed through internet from various clients (e.g., web 
browser and smartphones). Examples are Google Apps and Salesforce.com.



1818  Energy-Aware Virtual Machine Consolidation in IaaS Cloud Computing

To respond to the rapid growth of customer demands for processing power and 
storage, cloud providers like Amazon, Microsoft, and Google are deploying large 
number of planet-scale power-hungry data centers across the world. Cloud giants 
like Microsoft and Google individually have more than 1 million servers in their 
data center infrastructures, as recent report shows [35]. As a consequence, a huge 
amount of energy is required to run the servers and keep the cooling systems operat-
ing for these gigantic data centers. As per the Data Center Knowledge report [42], 
power is one of the critical total cost of ownership (TCO) variables in managing 
data centers, and servers and data equipment are responsible for 55 % of energy 
used by the data center followed by 30 % for the cooling equipment.

Large data centers are not only expensive to maintain, but also have enormous 
effects on environment. According to McKinsey report [25], world data centers 
consume 0.5 % of world’s electricity and drive in more carbon emission than both 
Argentina and the Netherlands. The reason behind this extremely high energy con-
sumption is not just the amount of computing resources used and the power inef-
ficiency of the hardware, but also lies in inefficient use of these resources. Data 
collected from more than 5000 production servers over 6-month period showed that 
on average servers operate only at 10–15 % of their full capacity most of the time, 
leading to expenses on overprovisioning of resources [4]. Narrow dynamic power 
range of server further aggrandizes the problem: even completely idle servers con-
sume about 70 % of their peak power usage [17]. As cloud promises unlimited re-
sources through elastic provisioning, absolute reliability and availability, as well 
as customer demands show high dynamics, overprovisioning of resources in cloud 
data centers is a common phenomenon.

Among all the service models, the key for the success of cloud computing is 
the IaaS substrate that enables cloud service providers to provision the computing 
infrastructure needed to deliver the services simply by renting resources as long as 
needed without even buying a single component. Cloud infrastructures depend on 
one or more data centers, either centralized or distributed and on the use of various 
cutting-edge resource virtualization technologies, which enable the same physical 
resource (computing, network, or storage) to be shared among multiple application 
environments. Virtualization technologies allow data centers to address resource 
and energy inefficiency by creating multiple VMs in a single physical machine, each 
of which representing a runtime environment completely isolated from one another 
and by live migrating VMs [11] from one server to another, and thus improving re-
source utilization. Reduction of energy consumption can be achieved by switching 
idle physical servers to lower power states (suspended or turned off) while still pre-
serving customers performance requirements. Thus, monitoring server utilization, 
making appropriate workload relocation decision, and by this process, improving 
data center resource utilization and energy consumption, technically termed VM 
Consolidation (or Server Consolidation or Workload Consolidation) is an essential 
part of resource management of virtualized data centers [54], including cloud data 
centers.

Higher resource utilization and energy efficiency in cloud data centers through 
server consolidation come with the associated overhead or cost of reconfiguration 
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of the workloads. Relocation of VM from one machine to another using VM live mi-
gration consumes nonnegligible amount of computing and network resources [11]. 
Also, VM live migration may lead to significant performance issues for the hosted 
applications depending on the current resource utilization conditions in the physical 
servers, network traffic, types of applications, and other colocated workloads [1, 
24, 55]. The most obvious effect of VM live migration that hosted applications per-
ceive is the VM downtime when the applications will be unavailable to the clients. 
The domain of applications that leverages the cloud platforms is broad, including 
high performance computing (HPC), video processing, scientific simulation, and 
web applications. With the wide adaptation of Web 2.0 technologies, modern web 
applications such as social networking and e-commerce websites exhibit highly dy-
namic and interactive characteristics and thus, resulting in particular client/server 
communication patterns, write patterns, and server load compared with traditional 
static web applications. Proper estimation of the total cost or overhead of reconfigu-
ration through VM live migration techniques in a cloud setting is essential to guide 
server consolidation, VM multiplexing and scheduling schemes so that trade-off 
between VM packing efficiency that gives measure of server resource utilization 
and reconfiguration overhead that impacts customer SLA can be performed. As a 
response, research community has contributed to the appropriate design, model-
ing, and validation techniques to estimate realistic reconfiguration costs considering 
both system parameters and application characteristics.

The rest of the chapter is organized as follows: Sect. 8.2 presents a brief over-
view of the architectural components and underlying technologies of IaaS cloud 
infrastructure. Resource management issues and challenges of IaaS clouds includ-
ing server resource utilization and energy management along with the solution ap-
proaches in existing works are described in Sect. 8.3. Finally, Sect. 8.4 summarizes 
the content of the chapter.

8.2 � IaaS Cloud Management Systems

While the number and scale of cloud computing services and systems are continuing 
to grow rapidly, significant amount of research is being conducted both in academia 
and industry to determine the directions to the goal of making the future cloud com-
puting platforms and services successful. As most of the major cloud computing of-
ferings and platforms are proprietary or depend on software that is not accessible or 
amenable to experimentation or instrumentation, researchers interested in pursuing 
cloud computing infrastructure questions as well as future cloud service providers 
have very few tools to work with [41]. Moreover, data security and privacy issues 
have created concerns for enterprises and individuals to adopt public cloud services 
[2]. As a result, several attempts and ventures of building open-source cloud com-
puting solutions came out of both academia and industry collaborations including 
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Eucalyptus [41], OpenStack, OpenNebula [44], and Nimbus1. These cloud solutions 
provide various aspects of cloud infrastructure management such as:

•	 Management services for VM life cycle, compute resources, networking, and 
scalability.

•	 Distributed and consistent data storage with built-in redundancy, failsafe mecha-
nisms, and scalability.

•	 Discovery, registration, and delivery services for virtual disk images with sup-
port of different image formats (VDI, VHD, qcow2, VMDK).

•	 User authentication and authorization services for all components of cloud man-
agement.

•	 Web and console-based user interface for managing instances, images, crypto-
graphic keys, volume attachment/detachment to instances, and similar functions.

From the architectural perspective, the cloud computing environment is divided in 
to four layers as presented in Fig. 8.1, as follows:

•	 Hardware layer: This layer is responsible for managing the physical resources 
of the cloud, including physical servers, routers, switches, power, and cooling 
systems.

•	 Infrastructure layer: This layer (also known as Virtualization layer) creates a 
pool of computing and storage resources by partitioning the physical resources 
using virtualization technologies such as Xen [3] and VMware.

•	 Platform layer: Built on top of the infrastructure layer, this consists of operating 
systems and application frameworks and minimizes the burden of deploying ap-
plications directly on the VM containers.

1  Nimbus Project. http://www.nimbusproject.org/.
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•	 Application layer: This layer consists of the actual cloud applications, which are 
different from traditional applications and can leverage the automatic-scaling 
feature of cloud to achieve better performance, availability, and lower operating 
cost. 

8.2.1 � Virtualization Technologies

One of the main enabling technologies that paved the way of cloud computing to-
ward its extreme success is virtualization. Cloud leverages various virtualization 
technologies (machine, network, storage) to provide users an abstraction layer that 
provides a uniform and seamless computing platform by hiding its hardware het-
erogeneity, geographic boundaries, and internal management complexities [59]. It 
is a promising technique by which resources of physical servers can be abstracted 
and shared through partial or full machine simulation by time-sharing and hardware 
and software partitioning into multiple execution environments each of which runs 
as complete and isolated system. It allows dynamic sharing and reconfiguration of 
physical resources in cloud computing infrastructure that makes it possible to run 
multiple applications in separate VMs having different performance metrics. It is 
virtualization that makes it possible for the cloud providers to improve utilization 
of physical servers through VM multiplexing [33] and multitenancy (i.e., simulta-
neous sharing of physical resources of same server by multiple cloud customers). 
It also enables on-demand resource pooling through which computing resources, 
like CPU and memory, and storage resources are provisioned to customers only 
when needed [27]. This feature helps avoid static resource allocation based on peak 
resource demand characteristics. In short, virtualization enables higher resource 
utilization, dynamic resource sharing, and better energy management, as well as 
improves scalability, availability, and reliability of cloud resources and services [9].

Virtualization in modern computing has been implemented using different ap-
proaches. Two significant techniques that have been heavily deployed in cloud 
computing infrastructures are full virtualization and paravirtualization:

•	 Full virtualization [3] provides a complete VM enabling unmodified guest oper-
ating systems (guest OS) to run in isolation. It provides flexibility to run different 
versions of different operating systems and the guest OS does not know that it is 
being virtualized. However, full virtualization requires Hardware Virtualization 
support (e.g., Intel-VT, AMD-V) from underlying host server.

•	 Paravirtualization [14] provides a complete but specialized VM to each guest 
OS allowing modified guests to run in isolation. It provides a lightweight and 
near native speed, and allows the guest OS to cooperate with hypervisor to im-
prove performance. However, this technology is only limited to open source 
guest OS.

Hypervisor, also termed Virtual Machine Monitor (VMM), is the piece of software 
that multiplexes hardware among the VMs that it provides, the way traditional op-
erating systems multiplexes hardware among the various processes [43]. Among 
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the various virtualization systems, VMware, Xen, and KVM (Kernel-based Virtual 
Machine) [26], as listed below, have proved to be the most successful by combing 
features that make them uniquely well suited for many important applications:

•	 VMware Inc. is the first company to offer commercial virtualization technology. 
It offers a hypervisor called ESXi2 server that supports full virtualization. Para-
virtualization can also be supported by using VMI [31].

•	 Xen [15] is one of a few Linux hypervisors that support both full virtualiza-
tion and paravirtualization. Each guest OS (termed domain in Xen terminology) 
uses a preconfigured share of the physical server. A privileged domain called 
Domain0 is a bare-bone OS that actually controls physical hardware and create, 
configure, migrate, or terminate other VMs.

•	 KVM [26] also supports full virtualization. It is a modification to the Linux 
kernel that actually makes Linux into a hypervisor on inserting a KVM kernel 
module. One of the most interesting KVM features is that each guest OS running 
on it is actually executed in user space of the host system. This approach makes 
each guest OS look like a normal process to the underlying host kernel.

8.2.2 � VM Migration Techniques

One of the most prominent features of the virtualization systems is the VM Live Mi-
gration [11], which allows for the transfer of a running VM from one physical ma-
chine to another, with little downtime of the services hosted by the VM. It transfers 
the current working state and memory of a VM across the network while they are 
running. This has been already a built-in feature for both Xen and KVM. VMware 
also added live migration feature called VMotion [39]. Other architectures includ-
ing Microsoft Hyper-V, Oracle VirtualBox, and OpenVZ also support this feature.

Another approach for VM migration is Cold or Static Migration [47] in which 
the VM to be migrated is shut down and a configuration file is sent from the source 
machine to the destination machine. The same VM can be started on the target ma-
chine by using the configuration file. This is a much faster and convenient way to 
migrate a VM with negligible increase in network traffic, but static VM migration 
incurs high downtime.

8.3 � Energy-Aware VM Consolidation and 
Reconfiguration in IaaS Cloud Data Centers

Resource allocation in cloud has been challenging because of the unique service 
features that cloud claims to provide; on-demand resource provisioning and pay-
as-you-go pricing policy not only create flexible and attractive business models, 
but also intricate the resource management functions and operations. To support 

2  vSphere ESX and ESXi, VMware Inc. http://www.vmware.com/au/products/esxi-and-esx/.
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such service models, cloud providers need to deploy dynamic resource manage-
ment systems that would maximize resource utilization while minimizing energy 
consumption and operating costs. Cloud provides elasticity and high scalability of 
resources that require autonomous and self-configured management systems [59]. 
To ensure constant high resource utilization, clouds allow multitenancy and shared 
resource pooling where workloads and VMs from different users and possibly of 
different application environments can colocate on the same physical servers [8]. 
Clouds leverage virtualization technologies [14] that allow integration of flexible 
and efficient resource management strategies into cloud infrastructure. Resource 
management policies and algorithms in the arena of public clouds are not disclosed 
due to business reason. Moreover, the current open-source cloud management sys-
tems like OpenStack and Eucalyptus take simplistic views on resource management 
and provide very basic algorithms such as random, round-robin, or uniform with 
primary focus on load balancing.

8.3.1 � Energy-Efficient VM Consolidation

While cloud computing provides many advanced features, it still has some short-
comings such as the relatively high operating costs for both public and private 
clouds. The area of Green Computing is also becoming increasingly important in 
a world with limited energy resources and an ever-rising demand for more com-
putational power. As pointed out before, energy costs are among the primary fac-
tors that contribute to the TCO and its influence will grow rapidly due to the ever 
increasing demands of resources and continuously increasing electricity costs [21]. 
As a consequence, optimization of energy consumption through efficient resource 
utilization and management is equivalent to operating cost reduction in data center 
management. To optimize the energy consumption of the physical devices, different 
techniques have been proposed and used, including server consolidation, energy-
aware resource management frameworks and design strategies, and energy-efficient 
hardware devices.

Resource management and optimization is getting more challenging day-by-
day for large-scale data centers like cloud data centers due to their rapid growth, 
high dynamics of hosted services, resource elasticity, and guaranteed availability 
and reliability. Static resource allocation techniques used in traditional data cen-
ters are simply inadequate to address these newly immerged challenges [23]. With 
the advent of virtualization technologies, server resources are now better managed 
and utilized through server consolidation by placing multiple VMs hosting several 
applications and services in a single physical server, and thus ensuring efficient 
resource utilization. Energy-efficiency is achieved by consolidating the running 
VMs in minimum number of servers and transitioning idle servers into lower power 
states (i.e., sleep or shut down mode).

VM consolidation techniques provide VM placement decisions that indicates 
the mapping of each running VM to appropriate server. Depending on the initial 
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condition of data centers that VM consolidation techniques start with, it is catego-
rized into two variants: Static and Dynamic VM Consolidation.

8.3.1.1 � Static VM Consolidation

The static VM consolidation techniques start with a set of fully empty physical 
servers, either homogenous or heterogeneous with specific resource capacity and 
a set of workloads in the form of VMs with specific resource requirements. Thus, 
such consolidation mechanisms require prior knowledge about all the workloads 
and their associated resource demands. Such techniques are useful in situations like 
initial VM placement phase or migration of a set of workload from one data center 
to another. Static consolidation does not consider the current VM-to-server assign-
ments and thus unaware of the associated VM migration overheads on both the 
underlying network traffic and hosted application performance [19]. Considering 
the predominant energy-costs of running large data centers and low utilization of 
servers resulted by traditional resource management technologies, and through the 
blessings of virtualization techniques, VM placement strategies like server consoli-
dation have become a hot area of research [18, 20, 22, 40, 48, 50].

8.3.1.2 � Dynamic VM Consolidation

Consolidation mechanisms that consider the current VM-to-server assignments for 
the consolidation decision fall in the category of dynamic consolidation. Contrary 
to static consolidations where the current allocations are disregarded and whole new 
solution of VM placement is constructed without considering the cost of realloca-
tion of resources, dynamic consolidation techniques include the cost or overhead of 
relocation of existing workloads into the modeling of consolidation and try to mini-
mize relocation overhead and maximize consolidation. Such server consolidation 
mechanisms employ VM live or cold migration techniques [11, 39] to move around 
workloads from servers with low utilization and consolidate them into minimum 
number of servers, thus improving overall resource utilization of the data center and 
minimizing power consumption.

As clouds offer an on-demand pay-as-you-go business model, customers can 
demand any number of VMs and can terminate their VMs when needed. As a re-
sult, VMs are created and terminated in the cloud data centers dynamically. This 
causes resource fragmentation in the servers, and thus leads to degradation in server 
resource utilization. However, efficient resource management in clouds is not a 
trivial task, as modern service applications exhibit highly variable workloads caus-
ing dynamic resource usage patterns. As a result, aggressive consolidation of VMs 
can lead to degradation of performance when hosted applications experience an 
increasing customer demand resulting in a rise in resource usage. As cloud provid-
ers ensure reliable quality of service (QoS) defined by SLAs, resource management 
systems in cloud data centers need to deal with the energy-performance trade-off. 
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To estimate the cost of relocation of workloads by the dynamic VM consolidation 
techniques, several system and network level metrics and parameters are used as 
modeling elements, such as the number of VM live migrations required to achieve 
the new VM-to-server placement [19], VM active memory size, speed of network 
links used for the migration [1, 23, 51], page dirty rate [52], and application-specific 
performance model [24].

8.3.1.3 � VM Consolidation Modeling Techniques

Cloud data centers consist of hundreds or thousands, or even millions of high-end 
servers, for example rack-mount servers and blade servers with virtualization en-
abled to allow on-demand creation and termination of VMs on them. Popular cloud 
providers (e.g., Google, Amazon, and Rackspace) offer their customers different 
categories of VM instances to run with specification for each type of resource like 
the number of CPU cores, amount of memory, network bandwidth, and storage ca-
pacity. According to modern data center architectures3, data storage is implemented 
as storage area network (SAN) or network attached storage (NAS) and is architec-
turally separate from compute servers. This type of architectural separation pro-
vides IaaS cloud providers the flexibility to offer on-demand storage blocks (e.g., 
Amazon EBS) to their customers. As a consequence, most of the recent works on 
VM placement considers compute (CPU and memory) and network resource (net-
work I/O) that are relevant to the physical servers and the VMs running on them.

Moreover, VM instances offered by public cloud providers differ in their indi-
vidual resource capacities: some instances are larger than others (e.g., AWS EC2 
instances: small, large, extra-large, etc.) whereas some instances have relatively 
higher capacity for one type of resource compared with their other resources (e.g., 
Google instances: High CPU, High Memory, etc.). Such diverse range of VM in-
stances are offered to match the workload characteristics of the hosted cloud appli-
cations that range from web and enterprise business applications to HPC, scientific, 
and complex workload applications.

As cloud VM in stances host various types of applications, the active VMs in 
cloud data centers exhibit dynamic resource demands during run-time. This dynam-
ic nature of VMs can be captured and intelligently used to perform workload predic-
tion and estimation mechanisms [57]. Because of the various types of VM instances 
offered by the providers with emphasis on size and types of resources and dynamic 
change in workload demands, it is very common that they will have random and 
nonuniform resource demands in difference resource dimensions of CPU, memory, 
and network I/O. To appropriately capture the various types of resource capaci-
ties of physical servers and the different types of resource requirements of hosted 
VMs, the VM consolidation problem is usually modeled as a variant of multi-di-
mensional vector packing problem (mDVPP) [20, 36] and multi-dimensional bin 

3  Cloud-ready Data Center Reference Architecture. Juniper Networks, Inc. http://www.juniper.net/
us/en/local/pdf/reference-architectures/8030001-en.pdf.

http://www.juniper.net/us/en/local/pdf/reference-architectures/8030001-en.pdf
http://www.juniper.net/us/en/local/pdf/reference-architectures/8030001-en.pdf
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packing problem (mDBPP) [18, 19, 23], and sometimes as multiple knapsack prob-
lem (MKP) [40, 48]. In [36], the authors argued that VM consolidation is in fact 
an instance of mDVPP rather than mDBPP and some analysis is presented in their 
work. All of the aforementioned problems fall in the broad category of Discrete 
Combinatorial Optimization and from computational complexity perspective, these 
problems are NP-hard in nature and the best known algorithms that guarantee to 
identify an optimal solution have exponential time worst case complexity [13].

Most of the research works on VM consolidation consider the cloud data center 
environment consisting of homogeneous physical servers (or PMs) having same 
types of resources (e.g., CPU, memory, and network I/O) with different capacity 
represented as 2-tuple (CPU, MEM)or 3-tuple (CPU, MEM, IO). Resource de-
mands of active VMs are also represented in a similar fashion. It is assumed that 
individual VM resource demand does not exceed individual PM resource capacity; 
otherwise the VM request is rejected. Given the set of servers with their respective 
resource capacities and the VM with their respective resource demands, the VM 
consolidation algorithms try to find VM-to-server placement mappings with some 
defined objective function that they try to minimize or maximize while maintaining 
the physical servers’ resource capacity constraints. In the case of static VM consoli-
dation, the objective function is very often modeled as a minimization function that 
tries to minimize the number of active servers that are used for VMs assignments 
[18, 23, 40, 48]. On the other hand, in the case of dynamic VM consolidation, the 
objective function is often formulated as a combination of maximization of the 
number of released servers (i.e. servers that are made empty and turned to power 
saving states) and resource utilization of active servers, as well as minimization of 
the number of VM migrations required for the new VM placement [19].

Depending on the modeling technique, static VM consolidation is often regarded 
as a single-objective problem where dynamic VM consolidation is considered as a 
multiobjective problem [19]. However in [20], the authors modeled the static VM 
consolidation problem as a multi-objective combinatorial optimization problem 
with the goal of simultaneously optimizing the total resource wastage and power 
consumption.

Server Resource Utilization and Wastage Modeling  Depending on the VM 
placement decisions, the remaining resources available to use in physical servers 
may vary greatly. As different VMs have different resource demands along multiple 
resource dimensions, server resource utilization and wastage models need to cap-
ture the level of imbalance in utilization for particular VM-to-server assignments. 
A simple approach of capturing the utilization of multidimensional resources of a 
server as presented in [18] that uses L1 norm based mean estimator, is:

CPU MEM IO ,U U U U= + +  

where U CPU, U MEM, and U IO represent the normalized CPU, memory, and network 
I/O utilization (i.e. the ratio of used resource to total resource) after the VM assign-
ments.



190 M. H. Ferdaus and M. Murshed

As the goal of static VM consolidation is to minimize the number of active serv-
ers by placing as many VMs as possible in those servers, minimization of resource 
wastage along every possible resource dimension is essential to improve the VM 
packing efficiency of the consolidation algorithm. Focusing on this goal, authors in 
[20] presented server resource wastage model by the following formulation (consid-
ering CPU and memory resources only):

CPU MEM

CPU MEM ,
L L

W
U U

ε− +
=

+

where UCPU and UMEM represent the normalized CPU and memory resource usage, 
and LCPU and LMEM denote the normalized remaining CPU and memory resource, 
and ε is a very small positive real number that is set to be 0.0001. The key point 
of the above resource wastage modeling is to make effective use of the server re-
sources along each dimension and balance the left out resources across different 
dimensions.

Power Consumption Modeling  It has been shown experimentally that power con-
sumption of physical servers is dominated by their CPU utilization and increases 
linearly [17]. As a result, the electricity energy drawn by a server is usually repre-
sented as a linear function of its current normalized CPU utilization UCPU:

E
E E U E if U

=
−( ) × + >








max ,
,

,idle
CPU

idle
CPU

otherwise
0

0

where Emax and Eidle are the average electrical power drawn when the server is fully 
utilized and idle, respectively.

Finally, the estimate of the total energy consumed by a VM placement decision 
is computed as the sum of the individual energy consumption of the active servers 
[18, 20]. Due to the nonproportional power usage (i.e. high idle power) of com-
modity servers, the idle servers (i.e., servers that do not host any running VM) are 
turned off or put in suspended or sleep mode after the new VM placement and are 
not considered in the total energy consumption model. If a data center consists of 
n servers, the overall energy consumption of a VM placement decision x is formu-
lated as follows:

E x E p
p

n

( ) ( ).=
=

∑
1

8.3.1.4 � Taxonomy and Survey of VM Consolidation Mechanisms

With the increasing adoption of virtualization technologies and rapid success of 
hosting services, and very recently of cloud computing, VM consolidation tech-
niques have been very attractive to reduce energy costs and increase data center 
resource utilization. As resource management mechanisms of public clouds (such 
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as Amazon AWS) are not known in the public domain due to business policies, 
several open-source cloud projects (such as Eucalyptus [41], OpenStack, and Open-
Nebula [44]) have emerged as a means of alternative solutions to the proprietary 
cloud infrastructures. However, one of the major limitations of these current cloud 
frameworks is the absence of efficient energy-aware workload consolidation mech-
anisms. As a result, a good amount of research works have been conducted and 
published within the past few years with focus on different aspects of consolidation 
ranging from energy saving and resource usage optimization to minimization of 
VM migration overhead and SLA violations.

To analyze, assess, and compare among the various research works, taxonomy 
and characterization have been established as proven methodologies in any research 
area. The proposed research works on VM consolidation have incorporated state-of-
the-art technologies in data center management, including virtualization, autonomic 
data center management platforms, cloud management systems, and various types 
of simulated and real-world workloads and benchmarking tools. A brief description 
of the identified aspects of the research works used in the course of taxonomy is 
given below:

1.	 System assumption: Server resources in data center or IT infrastructure are pri-
marily modeled as either homogeneous or heterogeneous. Homogeneous cluster 
of servers normally represent servers with same capacity for certain fixed types 
of resources (e.g., CPU, memory, and storage), whereas heterogeneous cluster of 
servers can represent either mean servers having different capacities of resources 
or different types of resources (e.g., virtualized servers powered by Xen or 
VMWare hypervisor, and servers with graphics processing units (GPUs)).

2.	 Server resource: Generally, optimization across different ranges of resources 
(i.e. CPU, memory, network I/O, storage, etc.) is harder than single resource 
optimization. Often various mean estimators (such as L1 norm, vector algebra, 
etc.) are used to compute equivalent scalar estimation while trying to optimize 
across multiple types of server resources. This aspect has direct influence on the 
modeling techniques applied in the research works and also on the consolidation 
performance.

3.	 Modeling technique: As for any research problem, the solution approach varies 
depending on the modeling (mathematical, analytical, or algorithmic) applied for 
the addressed problem. The characteristics of VM consolidation problem make 
it most resemble to the general mDBPP/mDVPP. Furthermore, depending on 
the objectives/goals set in the research projects, modeling can vary across other 
theoretical problems such as multiple multidimensional knapsack problem, con-
straint satisfaction problem (CSP), and multiobjective optimization problems.

4.	 Objective: Most of the works set objective as to minimize the overall power 
consumption of the data center and maximization of server resource utilization 
by increasing the VM/workload packing efficiency using minimum number 
of active/running servers. With the consolidation process comes the tradeoff 
between application performance (and hence, SLA) and power consumption. 
With given importance on SLA violations, some of the works consider the cost 
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of reconfiguration primarily due to VM live migrations, and thus incorporate this 
cost in the objective function modeling. Moreover, some the works further focus 
on automated and co-ordinated management frameworks with the VM consoli-
dation as an integral component of the proposed frameworks.

5.	 Solution approach/Algorithm: Considering the fact that the VM consolidation 
is a strictly NP-hard problem, algorithmic approaches in the research works 
vary from simple greedy approaches to metaheuristic strategies and local search 
methods. Greedy approaches such as First Fit Decreasing (FFD) and Best Fit 
Decreasing (BFD) are very fast in producing results but are not guaranteed to 
produce optimal solutions. Metaheuristics such as Ant Colony Optimization 
(ACO), Genetic Algorithms (GA), and Simulated Annealing (SA) work on ini-
tial or existing solutions and refine them to improve on objective function value. 
Exhaustive search methods (e.g., Constraint Programming (CP)) normally fix 
the domain of possible values for the model variables to compute the optimal 
solution within a reasonable amount of time; however, in this process these 
methods effectively limit the size of the data center (in terms of the number of 
servers) or the volume of the workload (in terms of the number of VMs).

6.	 Evaluation/Experimental platform: Evaluation methodologies have direct impact 
on the performance and practicality of the research works, most importantly in 
the competency analysis. Proposals that primarily have theoretical contributions 
mostly apply simulation based evaluation to focus highly on the algorithmic and 
complexity aspects, whereas works involving various workload patterns and 
application characteristics conduct their performance evaluation on real test beds 
or experimental data centers, or even on emulated platforms.

7.	 Workload: Depending on the experimental environment, the workload data used 
as input for the evaluation of various consolidation techniques varies from syn-
thetic data to real-time application/VM workloads. Simulation-based evaluation 
primarily relies on synthetic workload data generated using various statisti-
cal models such as random, Gaussian, or Poisson distribution, or on workload 
dataset collected from real data centers. Evaluations based on experimental test 
beds mostly use real time workload data generated from the applications that 
are deployed and run in the test bed servers. Such test beds though capture real-
istic behaviors of applications and systems suffer from scalability issues in the 
domain of VM consolidation.

Analysis of VM Consolidation Solution Approaches  Table  8.1 illustrates the 
most significant aspects of the notable recent research works in the area of energy-
aware VM consolidation based on the contents and description found in the pub-
lished materials. Depending on the analytical modeling techniques used in the 
existing works, various algorithmic and problem solving techniques are applied 
to solve server consolidation and related energy management problems [20], e.g.:

•	 Greedy algorithms: mDVPP and mDBPP as well as various knapsack problems 
have been well studied over the past few decades, and as a result a good amount 
of greedy heuristics have been proposed for both bin packing and knapsack prob-
lems in the fields of computer science and operations research. First-fit (FF), 
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best-fit (BF), next-fit (NF), FFD, BFD, choose pack (CP), and permutation pack 
(PP) are among the widely used greedy approaches [18]. A survey on the exist-
ing greedy solutions on single-dimensional bin packing problem can be found in 
[12]. In [5], the authors have presented a modified version of the BFD algorithm 
for the workload placement problem and have reported substantial energy sav-
ing based on simulation-driven results. Similarly in [29], a framework called 
EnaCloud is presented where a modified version of the BF algorithm is used. In 
[51], Verma et al. proposed pMapper, a VM placement scheme that models the 
workload placement as an instance of single-dimensional bin-packing problem 
and applies a modified version of the FFD heuristic to perform server consoli-
dation. Further works on greedy algorithm based energy-aware VM placement 
approaches can be found in [30] and [46].

•	 Linear programming: This is a popular and traditional analytical approach to 
solve combinatorial optimization problems. Such linear programming formula-
tions for server consolidation problems are presented in [6] and [45]. The authors 
also described constraints for limiting the number of VMs to be assigned to a sin-
gle server and the total number of VM migrations, ensuring that some VMs are 
placed in different servers and placement of VMs to specific set of servers that 
has some unique properties. To minimize the cost of solving the linear program-
ming problem, the authors further developed an LP-relaxation-based heuristic. 
Based on linear and quadratic programming model, Chaisiri et al. [10] presented 
an algorithm for finding optimal solutions to VM placement with the objective 
of minimizing the number of active servers.

•	 CP: VM placement and packing problem is also modeled as CSP, which is de-
fined as a set of variables, a set of domains that represent the set of possible 
values for each variable and a set of constraints that denote the required relations 
between the values of the variables [48]. A solution of the CSP is a variable 
assignment that tries to maximize or minimize the value of a particular vari-
able while maintain all the defined constraints. Based on CP, Hermenier et al. 
[23] proposed Entropy, a dynamic server consolidation manager for clusters that 
finds solutions for VM placement with the goal of active server minimization 
and tries to find any reconfiguration plan of the proposed VM placement so-
lution with objective to minimize the necessary VM migration costs. Both the 
problems are solved using CP solver CHOCO [37]. The authors have provided 
detailed analysis and experimental results of the impacts of VM activity and VM 
memory size on the necessary VM migration duration and VM performance. 
Furthermore, several optimizations for the constraint solver are also suggested. 
Authors in [40] and [50] proposed an autonomic virtual resource management 
framework that separates the VM provisioning and VM packing phases. The VM 
provisioning phase takes resource level utility function [56] for each applica-
tion environment as input and determines the necessary VMs from a list of pre-
defined VM classes while maximizing a global utility function. The VM packing 
phase determines the best possible placement for all the VMs in the servers with 
the goal of minimizing the number of active servers. Both the phases resort to 
CHOCO CP solver [37]. Later in [48], the authors proposed extensions to their 
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framework with multiple components for modeling performance of applications, 
costs of provisioned VMs, and scheduling the VM provisioning and placement 
(with packing) phases. However, the proposed analysis does not allow scaling-
up of VMs in terms of resources and does not consider multiplexing of VMs in 
a time-sharing manner, which is very often used as an efficient way to improve 
resource utilization in virtualized environments, especially in clouds.

•	 Evolutionary algorithms: Evolutionary algorithms like GA have already been 
proven as efficient techniques for solving optimization problem including com-
binatorial problems. Jing et al. [58] formulated the VM placement problem as a 
multiobjective optimization problem with objective of minimizing power con-
sumption, total resource wastage, and thermal dissipation costs. As a solution, 
the authors proposed a modified GA with fuzzy multiobjective evaluation to 
search the large solution space efficiently and combining possibly conflicting 
objectives. In [34], the authors proposed GABA, a GA based adaptive and self-
reconfiguration mechanism for VMs in cloud data centers that consist of hetero-
geneous servers. Based on time-varying requirements and dynamic environmen-
tal conditions, GABA can efficiently decide the optimal VM placements.

•	 Swarm intelligence: Swarm Intelligence is a relatively new approach to problem 
solving that takes inspiration from the social behaviors of insects and animals. 
Within the past two decades, ants have inspired a number of methods and tech-
niques among which the most studied and the most successful is the general 
purpose optimization technique known as ACO [16]. In ACO, multiple artificial 
agents work independently within its local search space in a random, decentral-
ized fashion with indirect form of interaction, and after multiple interactions 
the produced solutions converge to near optimality. ACO metaheuristics have 
been proven to be efficient in different problem domains and so far it has been 
tested on more than 100 different NP-hard problems, including discrete optimi-
zation problems. First work on solving single-dimensional bin-packing problem 
based on ACO metaheuristics was proposed in [28]. The authors argued that the 
complementary nature of ACO metaheuristics and local search can benefit from 
each other and presented experimental results and showed that their proposed 
algorithm can compete with the contemporary best known solutions. In [7], the 
authors have proposed AntPacking, an improvement over the previous algorithm 
shown to perform as good as the best known GA. In [18], Feller et al. first pro-
posed a single-objective static VM consolidation algorithm based on a variant 
of ACO, namely Max-Min Ant System and presented improved performance 
over FFD greedy algorithm. Later in [19], the authors presented a multiobjective 
dynamic VM consolidation schema using appropriate adaptation of ACO me-
taheuristics. They proposed decentralized approach to solve the problem based 
on an unstructured peer-to-peer network of servers to address the issues of scal-
ability and improved packing efficiency. Another ACO based multi-objective 
static VM consolidation algorithm is presented in [20] where the authors have 
developed models for server resource wastage and power consumption with fo-
cus on balanced resource utilization across multiple resource dimensions. The 
algorithm simultaneously tries to minimize the power consumption and total re-
source wastage of the servers that host running VMs.
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8.3.1.5 � Advantages and Disadvantages of VM Consolidation

Virtualization technologies have revolutionized the IT management works and 
opened up a new horizon of opportunities and possibilities. It has enabled appli-
cation environments to be compartmentalized and encapsulated within VMs. By 
the use of VM and VM live migration techniques, virtualized data centers have 
emerged as highly dynamic environments where VMs hosting various applications 
are created, migrated, resized, and terminated instantaneously as required. Utilizing 
virtualization, IT infrastructure management has widely adapted VM consolidation 
techniques to reduce operating costs and increase data center resource utilization. 
The most notable advantages of adopting VM consolidation techniques are men-
tioned below:

1.	 Reduction in physical resources: By the help of efficient dynamic VM consolida-
tion, multiple VMs can be hosted in single physical server without compromis-
ing hosted application performance. As a result, compared with static resource 
allocations where computing resources such as CPU cycles and memory fre-
quently lay idle, through dynamic VM consolidation fewer numbers of physical 
machines can provide the same QoS and maintain SLAs, and thus effectively cut 
the TCO. Reduction in the number of servers also implies reduction in the cool-
ing equipment necessary for the cooling operations in data centers.

2.	 Energy consumption minimization: Unlike other approaches of energy efficiency 
(e.g., implementing efficient hardware and operating systems), VM consolida-
tion is a mechanism under the disposal of data center management team. If same 
level of service can be provided by fewer servers through VM consolidation, it 
implies minimization of energy costs both for the running servers and the operat-
ing cool systems. As energy costs continue to escalate, this implies a significant 
saving that will continue during the course of the data center operation.

3.	 Environmental benefits: World data centers contribute a significant portion of 
CO2 emission and thus have enormous effects of environment. With recent trend 
toward Green Data Centers, VM consolidation is a major business drive in IT 
industry to contribute to the Green Computing.

4.	 Minimization of physical space: Reduction in the number of hardware implies 
reduction in the space needed to accommodate the servers, storage, network, and 
cooling equipment. Again, this contributes to the reduction of the TCO, as well 
as the operating costs.

5.	 Decreased labor cost: A major portion of the TCO of data centers is derived from 
administrative, support, and outsourced services, and thus VM consolidation can 
help trim down these costs significantly by reducing the maintenance effort.

6.	 Automate maintenance: By incorporating autonomic and self-organizing VM 
consolidation and VM migration techniques, much of the administrative and 
support tasks can be reduced and automated; and therefore, it can further reduce 
the maintenance overhead and costs.

With all the above mentioned benefits, if not managed and applied appropriately, 
VM consolidation can be detrimental to the services provided by the data center in 
at least the following ways:
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1.	 System failure and disaster recovery: VM Consolidation puts multiple VMs 
hosting multiple service applications in a single physical server, and therefore 
can create single-point-of-failure (SPOF) for all the hosted applications. More-
over, upgrade and maintenance of a single server can cause multiple applications 
to be unavailable to users. Proper replication and disaster recovery plans can 
effectively remedy such situations. Since VMs can be saved in storage devices as 
disk files, virtualization technologies provide tools for taking snapshots of run-
ning VMs and resuming from saved checkpoints. Thus, with the help of shared 
storages such as NAS or SAN, virtualization can be used as convenient disaster 
recovery tool.

2.	 Effects on application performance: Consolidation can have adverse effects on 
hosted application performances due to resource contention, as they would share 
the same physical resources. Delay sensitive applications such as voice-over-IP 
(VoIP) and online audio-visual conferencing services as well as database man-
agement systems that require heavy disk activity need to be given special consid-
eration during resource allocation phase of VM consolidation. Such applications 
can be given dedicated resources whereas delay-tolerant and less resource hun-
gry applications can be scheduled with proper workload prediction and VM mul-
tiplexing schemes.

3.	 VM migration and reconfiguration overhead: Performing VM consolidation 
dynamically requires VM live migrations that have overheads on network links 
of the data center as well as on the CPU cycles of servers executing the migration 
operations. As a consequence, VM migrations and postmigration reconfigura-
tions can have non-negligible impact on application performance. Experimental 
results [53] show that applications that are being migrated as well as colocated 
applications can suffer from performance degradation due to VM live migra-
tions. As a consequence, VM consolidation mechanisms need to minimize the 
number of VM live migrations and its effects on applications.

Despite all the drawbacks of VM consolidation, due to its benefits in continuous 
reduction in energy and operating costs and increasing resource utilizations data 
center owners are increasing adopting VM consolidation mechanisms, especially 
for large data centers. As VM consolidation can have adverse effects on applica-
tion performance, various characteristics and features of data center resources and 
hosted applications need to be taken into account during the design and implemen-
tation of VM consolidation schemes, such as heterogeneity of servers and storage 
devices, system software and tools, middleware and deployment platforms, physi-
cal and virtual network parameters, as well as application types, workload patterns, 
and load forecasting.

8.3.2 � VM Migration and Reconfiguration

Dynamic reconfiguration of workloads in virtualized data centers is achieved 
through VM resizing and VM live migration techniques [11, 39]. While VM resizing 
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overhead in modern hypervisors is negligible, anecdotal evidence and experimental 
findings [24, 55] identified the VM live migration as reconfiguration mechanism 
with significant performance impact both on application and system resources. 
Thus, achievement of high packing efficiency with large number of VM migrations 
can effectively null and void the benefit of workload consolidation with the risk of 
possible high number of SLA violations of hosted applications and high resource 
wastage due to handling the migrations. However, the number of VM migrations 
alone does not represent the true overhead of the reconfiguration, as the total migra-
tion time and total VM downtime primarily depend on the Active Memory size of 
VM and speed of the network links used for the migration [1].

Moreover, both the source server and destination server experience extra CPU 
overhead during live migration, mostly due to the successive precopying phases 
[11, 39], which is an essential part of the state-of-the-art live migration subsys-
tems in modern hypervisors like Xen [3], KVM [26], and VMWare ESXi. As 
multitenancy in cloud infrastructures is a common characteristic in today’s clouds 
where VMs (and also applications) from different cloud customers can colocate in 
a single physical server, VM live migration overhead can have adverse effects on 
other customers’ applications. Current cloud-hosted application domain is domi-
nated by web applications, especially multitier web applications, and it is shown 
experimentally in [24] that the different J2EE-based tiers of RUBiS4, a widely used 
multitier benchmark, experience 40 % to more than 200 % change in their end-to-
end mean response time due to live VM migrations. Furthermore, an extra amount 
of network bandwidth is consumed due to live migration, potentially affecting the 
responsiveness of hosted internet applications. Last but not the least, a slowdown 
of VM performance is also expected due to the cache warm-up at the destination 
server after the migration [38].

8.3.2.1 � Reconfiguration Cost Modelling Principles

To design an efficient and pragmatic workload consolidation mechanism, it is im-
portant to properly estimate the associated overall cost of the reconfiguration plans, 
which is mostly dominated by cost of VM migrations. Several existing approaches 
for dynamic consolidation consider migration cost to be a function of single system 
parameter, like VM active memory size [23, 51], page dirty rate [52], or use an ap-
plication-specific model [24], and thus being oblivious to server resource utilization 
levels, other colocated workloads, and resource usage characteristics as well as the 
demands of the hosted applications. The importance of considering such aspects in 
migration overhead estimation is evident from the report [51], which shows that the 
duration of a live migration for an application running identical workloads can vary 
by 50 % or more depending on server utilization and other colocated VMs. There-
fore, a usable model for live migration not only needs to be aware of application 

4  RUBiS Benchmark, OW2 Consortium. http://rubis.ow2.org/.
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and system parameters like active memory and write rate, but also take into account 
other colocated VMs, physical server utilization, as well as network parameters. A 
practical and accurate model of live migration is needed to complement dynamic 
consolidation schemes and provide an estimate of the cost of reconfiguration in 
cloud data centers.

Technically, live migration at the level of an entire VM refers to the process of 
transferring the active memory and execution state from the source server to the 
destination server. As in a typical cloud data center, the secondary memory or stor-
age is implemented by SAN/NAS connected to compute servers through Internet 
small computer system interface (iSCSI), network file system (NFS), or server mes-
sage block (SMB) protocols, VM disks are not transferred during migration. The 
most important aspect in terms of the performance impact of a live migration activ-
ity is the copying of in-memory state, as pre- and postmigration overheads (e.g., 
reattaching device drivers, advertising moved IP addresses) are pretty static [1, 11]. 
Among the several techniques for live migration in modern hypervisors, Pre-copy 
Migration is proven to be the most effective in terms of VM. Precopy migration 
involves two phases:

1.	 Push phase when Active Memory pages of running VM are copied from source 
to the target server in multiple rounds until some stop condition is fulfilled (e.g., 
the number of dirty pages during the last pre-copy iteration is less than some 
constant, like 50 for Xen) and

2.	 Stop-and-copy phase when the stop condition is met and the VM is stopped (and 
also its application) and all the remaining dirty pages are copied to the target 
server.

Two obvious temporal parameters are defined to measure the performance of a live 
migration, viz:

1.	 Total migration time: The total time required to move the VM between physical 
servers and

2.	 Total downtime: The portion of total migration time when the VM is not running.

Generally, the stop-and-copy phase is comparatively small for typical applications, 
usually between 1 to 3  s [55] and the push phase is much longer and increases 
with the size of memory being copied, page write patterns of applications, server 
resource utilization levels, and network link speed. As VM live migration requires 
significant amount of spare CPU, current resource utilization and the resource de-
mands from colocated workloads, it can have significant effects on the total migra-
tion time and hosted application performance.

8.3.2.2 � Related Works

Though the designers of the VM live migration technology do provide empirical 
evidence that suggests that the performance impact of live migration is manageable 
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[11, 39], recent experiments on live migrating VMs hosting different applications 
indicates that live migration can have significant impact on application performance 
and system resources [24, 55].

In [1], Akoush et al. addressed reconfiguration overhead solely in terms of the 
migration times and provided analytical derivation to define the upper and lower 
bounds of migration times, with particular emphasis on the Xen virtualization plat-
form [3] and its live migration subsystem [11]. They have identified that link speed 
and page dirty rates are the major factors impacting migration behavior (in terms 
of migration times) and have a nonlinear effect on migration performance largely 
because of the hard stop conditions of Xen live migration algorithm that forces the 
migration to its final stop-and-copy phase. They also provided two migration simu-
lation models based on average memory page dirty rate and historical data on page 
modification to predict migration times. The authors have also presented the effects 
of the following system and network parameters:

•	 Network link bandwidth: It is perhaps the most influential parameter on migra-
tion performance. Total migration time and VM downtime are inversely propor-
tional to the migration link capacity.

•	 Page dirty rate: It is the rate at which memory pages of each VM are modified 
that directly affects the number of pages transferred in each push phase of the 
precopy migration. Higher page dirty rate causes more data to be sent per itera-
tion leading to longer total migration time. Moreover, higher page dirty rates re-
sults in longer VM downtime, as more pages need to be sent in the final transfer 
round.

•	 VM memory size: In the precopy migration, the first iteration tries to copy across 
the entire VM allocated memory to the destination. As a result, on average the 
total migration time increases linearly with VM memory size.

•	 Pre- and postmigration overhead: It refers to operations that are not part of the 
actual transfer process. These are operations related to initializing a container on 
the destination host, mirroring block devices, maintaining free resources, etc.

In [38], an autonomic and transparent mechanism for proactive fault tolerance for 
arbitrary message passing interface (MPI) application has been studied and imple-
mented using Xen live migration technology. In their research, the authors have 
given a general overview on the total migration time and possible parameters that 
affects it, but emphasis was given primarily on the amount of memory allocated to 
guest VMs.

In [24], Jung et al. have shown that runtime reconfiguration actions such as VM 
replication and migration can impose significant performance costs in multitier ap-
plications running in virtualized data center environments and proposed a middle-
ware for generating cost-sensitive adaptation actions using a combination of predic-
tive models and graph search techniques.

Voorsluys et al. in [55] showed experimental results of VM live migration on 
Internet applications using Web 2.0 benchmarking tool. They have shown that the 
average response times of typical multitier web application increases rapidly dur-
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ing the live migration period, especially due to the postmigration overhead. Their 
results also demonstrate that in an instance of a nearly oversubscribed system, 
live migration causes a significant downtime (up to 3 s), a larger value than ex-
pected. The work presents valuable and realistic insights on the effects of VM live 
migration on SLA violations of today’s web applications. However, the work lacks 
proper characterization and modelling of the factors and parameters that contribute 
to the migration cost.

In [52], Verma et al. presents a study on the cost of reconfiguration of cloud-based 
IT infrastructure with response to workload variations. Their study suggests that VM 
live migration requires a significant amount of spare CPU capacity on the source 
server. The study also suggests that if space CPU cycles are not available, it impacts 
both the duration of migration and the performance of the hosted application. Later, 
in [53], the authors designed CosMig model that predicts (1) the total VM migration 
time, (2) performance impact of migration on the migrating VM, and (3) perfor-
mance impact of migration on other colocated VMs. This model is based on CPU 
utilization and active memory size as these two parameters are normally monitored 
in large data centers. The authors also showed that by the use of selected microben-
chmarks and representative applications, CosMig model has been able to accurately 
estimate the impact of live migration in a cloud environment. The following param-
eters were used in CosMig to determine the performance impact of migrating VM Vi:

•	 Duration: Time duration for the full migration completion.
•	 VM self-impact: Ratio between the drop in throughput of the hosted application 

of Vi during the migration period and the throughput without migration.
•	 VM coimpact: Ratio between the drop in throughput of any other application 

in colocated VM Vj during the migration period of Vi and the throughput of the 
same without migration of Vi.

8.4 � Conclusions and Future Research Directions

Cloud computing is quite a new computing paradigm and from the very beginning 
it has been growing rapidly in terms of scale, reliability, and availability. Because 
of its flexible pay-as-you-go business model, virtually infinite pool of on-demand 
resources, guaranteed QoS, and almost perfect reliability, consumer base of cloud 
computing is increasing day-by-day. As a result, cloud providers are deploying 
large data centers across the globe. Such gigantic data centers not only incur huge 
energy costs, but also have environmental effects. Power consumption of such 
data centers can be improved by employing efficient resource allocation and man-
agement strategies through better server resource utilization. This chapter has 
discussed various virtual resource management technologies used in virtualized 
data centers including cloud data centers, as well as algorithms and mechanisms 
for achieving higher resource utilization and optimization of energy consumption 
through VM consolidation and data center reconfiguration. An in depth analysis 
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on the different approaches proposed by the recent research works has also been 
presented.

Virtual resource allocation and VM placement strategies play significant roles 
in resource management and optimization decisions in data centers. Modern cloud 
applications are composed of multiple compute and storage components, and such 
components exhibit communication correlations among themselves. Incorporation 
of the communication correlations during VM placement decisions is a very im-
portant area of research that is not yet explored enough. A typical objective for 
network-aware VM placement and relocation would be keeping the heavily com-
municating VMs in the same server so that inter-VM communication would take 
place through memory or in near proximity under the same edge switch, and thus 
keeping the overall network overhead minimum on the physical network infrastruc-
ture. Development of realistic power consumption models for network devices and 
VM placement and reallocation policies with power management capabilities are 
areas of potential optimization in data center management.

VM consolidation and resource reallocation through VM migrations with focus 
on both energy-awareness and network overhead is yet another area of research 
that requires much attention. VM placement decisions focusing primarily on server 
resource utilization and energy consumption reduction can produce data center con-
figurations that are not traffic-aware or network optimized, and thus can lead to 
higher SLA violations. As a consequence, VM placement strategies utilizing both 
VM resource requirements information and interVM traffic load can come up with 
placement decisions that are more realistic and efficient.

Cloud environments allow their consumers to deploy any kind of applications in 
an on-demand fashion, ranging from compute intensive applications such as HPC 
and scientific applications, to network and disk I/O intensive applications like video 
streaming and file sharing applications. Colocating similar kinds of applications in 
the same physical server can lead to resource contentions for some types of resourc-
es while leaving other types under-utilized. Moreover, such resource contention will 
have adverse effects on application performance, thus leading to SLA violations 
and profit minimization. Therefore, it is important to understand the behavior and 
resource usage patterns of the hosted applications to efficiently place VMs and al-
locate resources to the applications. Utilization of historical workload data and ap-
plication of appropriate load prediction mechanisms need to be integrated with VM 
consolidation techniques to minimize resource contentions among applications and 
increase resource utilization and energy efficiency of data centers.

Centralized VM consolidation and placement mechanisms can suffer from the 
problems of scalability and SPOF, especially for cloud data centers. One possible 
solution approach would be replication of VM consolidation managers; however, 
such decentralized approach is nontrivial, as VMs in the date centers are created and 
terminated dynamically through on-demand requests of cloud consumers, and as a 
consequence consolidation managers need to have updated information about the 
data center. As initial solution, servers can be clustered and assigned to the respec-
tive consolidation managers and appropriate communication and synchronization 
among the managers need to be ensured to avoid possible race conditions.
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Abstract  One of the key requirements of cloud computing is the dynamic provision-
ing and configuration of communications networks that interconnect dynamically 
provisioned and configured computing and storage elements. Traditional 
networking approaches are often not optimal for this type of usage since these tend 
to build and tune the network infrastructure based on information available at the 
lower networking layers only, without tying into the time-varying communication 
needs of the mix of applications that are currently running. These, then, lack the 
programmability needed to directly control the network based on higher-layer infor-
mation or a more global view of network resource utilization. Software-defined 
networking (SDN), which separates the control plane of a network from its data 
plane and enables programmability of network behavior, is a new architecture that 
aims to support flexible application-driven networking. This chapter introduces the 
architecture of SDN, and gives a brief overview of its development including the 
key previous works, the current state of the art, and implementation challenges. The 
chapter also illustrates what SDN can do for infrastructure-as-a-service (IaaS) cloud 
computing through a number of open-source technology examples including Open-
Stack, OpenFlow, and Floodlight. After examining some cloud datacenter usage 
scenarios in the areas of network virtualization, network functions virtualization, 
and traffic engineering, we conclude by looking at how SDN techniques may be 
applied to unified communications cloud applications which depend on the integra-
tion of voice and data networking.
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9.1 � Introduction

Cloud computing requires dynamic provisioning, configuration, and reconfiguration 
of not only computing elements but also the communications networks that 
interconnect these elements. For example, a virtual machine that runs an application 
which needs to communicate with end-user devices or other applications needs to 
“bring its networking configuration along” when it is first set up or when it is relocated. 
As another example, an application that provides audio/video conferencing with 
shared whiteboarding may require varying amounts of bandwidth for the different 
media flows involved at different times depending on the number of users served, 
their locations, and the types of media that they choose to use.

In many cases, building and tuning the network infrastructure based on information 
available at the network level only—without tying into the time-varying communica-
tions requirements of the mix of applications that are currently running—will result 
in high overhead in coordinating applications with the networking configurations 
that they need, as well as nonoptimal usage of network resources. Since the quantity 
and nature of computing tasks in a cloud environment change constantly, what is 
often needed to achieve greater efficiency is a way of programmatically setting up/
tearing down networks and controlling network flows based on information from 
above the network layer or a more global view of network resource utilization, rather 
than “simply letting distributed networking algorithms converge.” 

Software-defined networking (SDN), a technology that separates the control 
plane of a network from its data plane and enables programmability of network 
behavior, can potentially provide useful solutions to the problems described above.

This chapter aims to explore how SDN techniques can be used in cloud computing 
and applications. It is divided into the following sections:

•	 SDN architecture. This section gives an overview of the concept of SDN, 
common architectural approaches to SDN, and the architecture of OpenFlow/
SDN which is currently the more prevalent approach in the industry.

•	 The IaaS cloud—SDN software stack. The OpenStack platform is described as 
an example of an IaaS cloud framework, and the OpenFlow protocol and SDN 
controllers are introduced in this context.

•	 The software-defined data center. This section discusses some of the ways in which 
SDN techniques can be used to build a flexible software-defined cloud data center 
in which networking is provisioned, configured, and reconfigured programmati-
cally from a logically centralized point that has a global view of the network and 
can leverage information about the data center’s current application workload.

•	 SDN implementation challenges. This section discusses some of the key issues 
that current SDN implementations face and what is being/could potentially be 
done about these issues.

•	 SDN for unified communications applications. Two use cases are examined 
in this section to illustrate some ways in which a specific type of application, 
unified communications (UC), can make use of SDN. A high-level interaction 
model between UC and SDN is also presented.
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9.2 � SDN Architecture

SDN is a new networking paradigm that offers: (1) Decoupling of the control plane 
of a network from its data plane; (2) Direct programmability of network control; as 
well as (3) Standardized application programming interfaces (APIs).

The control plane of a network consists of functions that control the behavior 
of the network, such as network paths or forwarding patterns, while the data plane 
consists of functions that are responsible for the actual forwarding (or not forwarding) 
of traffic, which are usually instantiated as flow tables in network switches, routers, 
and middleboxes (e.g., firewalls, network address translators, etc.).

By decoupling the control plane from the data plane, an SDN enables 
administrators to dynamically adjust network-wide traffic flow to meet changing 
requirements. It is also this decoupling that makes direct programmability of network 
control possible, so that applications can interact programmatically with the SDN 
control plane and control the operation of the network through standardized APIs.

9.2.1 � SDN Architectural Approaches

The Internet Research Task Force’s SDN Research Group identified three common 
architectural approaches to SDN [1], based on distinctions including centralized vs. 
distributed control, different degrees of separation of control and data planes, and 
different programmability points. These approaches are:

•	 OpenFlow/SDN (OF/SDN), which is characterized by complete separation of 
control and data planes, open programmable interfaces to the data plane, and 
logically centralized control.

•	 Control Plane/SDN (CP/SDN), which aims to make existing distributed control 
planes programmable.

•	 Overlay/SDN (OL/SDN), which overlays a new programmable control plane (or 
in some cases a new programmable data plane) on top of existing control and 
data planes.

Instead of being cut-and-dried, these three approaches are actually points in 
a continuous architectural feature space, and it is possible to mix and match the 
features that the three approaches represent.

Currently in the industry (at the time of writing in 2014), OF/SDN and OL/SDN 
are the more prevalent approaches and the two are often used together, with OF/SDN 
occupying the primary position and leveraging OL/SDN through its centralized 
control capability. The SDN discussed in the rest of this chapter will be this blend 
of OF/SDN and OL/SDN.
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9.2.2 � OF/SDN Architecture

In the OF/SDN architecture, applications and cloud operating environments interact 
programmatically with the SDN controller, which (logically) centralizes network 
intelligence and maintains a global view of the network, and appears to the applica-
tions as a single, logical switch. The controller presents a northbound interface to the 
application layer, and a southbound interface to the network devices that it controls.

Network administrators can configure, manage, secure, and optimize network 
resources dynamically using programs which they can write themselves to interact 
with the controller. Some of these tasks can also be delegated to business logic 
residing in the applications or embedded in cloud operating environments when 
it is desirable to do so for efficiency reasons (i.e., when “the application knows its 
requirements best” and can achieve efficient utilization of network resources more 
readily and rapidly by directly controlling the network).

When implemented through open standards, SDN simplifies network design and 
operation by presenting a single controller interface to the application layer instead 
of multiple vendor-specific device-level interfaces. This effectively abstracts the 
network infrastructure for ease of utilization by applications and services. 

Figure 9.1 presents a high-level view of OF/SDN architecture.

Network 
Service

Network 
Service

Network 
Service

Applica�on

Applica�ons

Cloud Pla�orm

Control Plane

Data Plane

Applica�on

Cloud Service Cloud Service

Northbound
API

Northbound API

Southbound API

Fig. 9.1   Software-defined networking architecture

 



9  Software-Defined Networking (SDN) for Cloud Applications 213

9.2.3 � A Brief Overview of SDN Developments

Although the field of SDN is relatively new, the basic ideas of network program-
mability and control plane decoupling have actually been discussed at length in 
the industry since at least the mid−1990s. For example, the Open Signalling Work-
group [2] held workshops as early as 1995 with the goal of “making ATM, Internet 
and mobile networks more open, extensible, and programmable.” Research in the 
area of active networking [3] around the same timeframe also led to mechanisms 
for sending remote code capsules and performing local programming on switches, 
although they were not adopted in practice due to the lack of compelling use cases 
at the time.

The concept of OF/SDN started around 2004 from the SANE [4] and Ethane 
[5] projects which defined an architecture that employs a centralized controller to 
manage security policies in a network. In this architecture, the controller, which is 
responsible for deciding if a packet should be forwarded or not, instructs the simple 
Ethernet switches to modify their flow tables, thereby directly implementing the 
security policy.

SANE and Ethane were the immediate predecessors of OpenFlow [6], 
which is currently (as of 2014) the most widely adopted mechanism for SDN 
programmability. The first version of the OpenFlow protocol specification was 
published in 2009. In 2011, the Open Networking Foundation (ONF) was formed 
by a group of service providers to commercialize, standardize, and promote the use 
of OpenFlow in production networks. A number of vendors, including Brocade, HP, 
Juniper, IBM, NEC, and others, have implemented support for OpenFlow in their 
physical switches. In addition, there are several software-based virtual switches 
available, such as Open vSwitch and VMware’s virtual switch.

Quite a few SDN controllers have been developed, including both open-source 
and commercial implementations. Some examples include NOX and POX by 
Nicira, Floodlight by Big Switch, and OpenDaylight by multiple contributors. 
Further information on various available controllers can be found in [7]; while [8] 
describes the operation of the NOX controller in some detail.

Although, OpenFlow is a standardized protocol for the southbound SDN 
controller interface, it should be recognized that SDN controllers can use a variety 
of other open or proprietary interfaces to communicate with switches, and it is 
necessary to do so from a practical point of view so that SDN can work with existing 
switches without requiring a complete upgrade.

As for the northbound SDN controller interface, there is currently no standard-
ization, although standards are likely to be formulated as usage of SDN increases.
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9.3 � The IaaS Cloud—SDN Software Stack

9.3.1 � OpenStack

We start by examining an IaaS cloud to identify what an SDN would be called upon 
to implement. To be specific, we will look at OpenStack [9]. Its feature set is very 
similar to that of the commonly-used Amazon Elastic Compute Cloud (EC2) and 
Simple Storage Service (S3), but being open-source, one can readily see how SDNs 
fit in.

OpenStack originated from compute code from NASA and storage code from 
Rackspace. It is now managed by the nonprofit OpenStack Foundation and released 
on a 6-month cycle. The discussion that follows is based on the Havana release that 
is current at the time of writing. 

As shown in Fig. 9.2, OpenStack consists of a set of interacting services:

•	 Nova: Virtual machines (VMs)
•	 Neutron: Virtual networks
•	 Cinder: Block storage
•	 Swift: Object storage
•	 Glance: VM images
•	 Keystone: Identity management
•	 Ceilometer: Usage metering
•	 Horizon: Web-based dashboard
•	 Heat: Orchestration

Many of the services use external components to do the actual work, and only 
provide the APIs themselves and offer choice in component selection through the 
use of plugins and drivers. In this sense, OpenStack is really cloud middleware. The 
relevant services are now briefly described below:

Server Virtualization  Nova provides virtual machines. It manages a set of 
physical compute nodes; in particular, it picks the server on which to instantiate a 
VM. It uses an actual hypervisor such as Kernel-based Virtual Machine (KVM) or 
Xen to implement VMs. VMs come in different flavors that differ by the amount of 
processor, memory, disk space, and network bandwidth.

A VM can be migrated from one physical server to another. This can be used, for 
example, to dynamically consolidate active VMs onto fewer servers, thus allowing 
a data center to save on electricity and cooling. 

Glance provides disk images containing the guest operating system and applica-
tion for a VM. It is a catalogue; the actual images are stored in file systems or object 
stores.

Storage Virtualization  Three types of storage are available to a VM, viz:

•	 Ephemeral storage: that behaves like a disk, except that its contents are lost when 
the VM is deleted. Typical uses include hosting the root file system that holds a 
copy of the VM image and providing temporary directories.
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•	 Block storage: that also behaves like a disk, but its lifetime is independent of 
VMs. It comes in the form of volumes that may be attached and detached from 
VMs. Cinder provides volumes by calling on an actual volume manager such as 
the Linux Logical Volume Manager (LVM). A VM accesses a volume using the 
Internet small computer system interface (iSCSI). A typical use of block storage 
is to hold a database.

•	 Object storage: that provides highly scalable and reliable storage for files. It is 
not a traditional file system; files are uploaded and downloaded in their entirety 
over HTTP. It is typically slower than ephemeral or block storage. Swift imple-
ments object storage by distributing replicas of a file over a set of storage nodes.

Network Virtualization  VMs are connected to virtual networks. Every tenant of an 
OpenStack cloud can define its very own set of virtual networks. Networks belonging 
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to different tenants are logically independent; they can have overlapping addresses 
and do not see each other’s traffic. 

An OpenStack installation has four physical networks:

•	 Data network: Hosts the virtual networks populated by VMs.
•	 Management network: Communication between OpenStack components.
•	 External network: Provides connection to the Internet.
•	 API network: Provides access to OpenStack web services from the Internet.

Neutron is OpenStack’s networking component. Its base API has three abstractions 
as given below:

•	 A network is a layer 2 broadcast domain.
•	 A network can have one or more subnets, which are blocks of IPv4 or IPv6 

addresses. A subnet may further be configured with Internet protocol (IP) 
addresses for the default gateway and domain name servers.

•	 VMs connect to networks via ports, which have media access control (MAC) 
addresses.

When one calls the Neutron API to create a network, for example, one is talking 
to a network controller. The latter, in turn, uses a plugin to direct agents on each 
compute node to make the necessary changes. Before the Havana release, plugins 
and matching agents encapsulated different implementations of virtual networks, 
e.g., Linux bridge or Open vSwitch. Havana introduced the Modular Layer 2 (ML2) 
plugin. ML2 uses type drivers for each class of implementation. The types are:

•	 Local: VMs within the same compute node.
•	 Flat: Single virtual network per physical network.
•	 VLAN: Virtual local area network—Multiple virtual networks per physical 

network using 802.1Q VLAN tags.
•	 GRE: Generic routing encapsulation (RFC 2784), a layer 2 over IP tunnel.
•	 VXLAN: Virtual extensible local area network, a layer 2 over user datagram 

protocol (UDP) tunnel.

ML2 mechanism drivers are specific to each implementation and communicate with 
the agents. 

The Neutron API has a growing number of extensions. Provider networks are 
virtual networks that map to a specific physical network. They are used to provide 
connectivity to the Internet or to parts of a tenant’s private network outside of the 
cloud.

Virtual routers are used to connect virtual networks. They can also perform 
network address translation. A floating IP address can be assigned to a port in a 
network. When the router (as the network’s default gateway) receives a packet from 
the port’s fixed address, it rewrites the source address to the floating address before 
forwarding. The destination is similarly rewritten in the opposite direction.

Network Functions Virtualization  Neutron’s security groups extension controls 
what network traffic is allowed into and out of a VM. A group contains rules which 
specify filtering by protocol, port, and source address. A VM can be a member of 
one or more groups. Firewall functionality is distributed across compute nodes.
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Havana introduced an experimental firewall as a service extension. A virtual 
firewall attaches to one or more networks, either at layer 2 or 3. A firewall carries 
out a policy, which is a set of filtering rules. In this sense, a firewall policy is similar 
to a security group. 

Load balancing as a service is another extension. The reference implementation 
wraps the HAProxy load balancer.

9.3.2 � OpenFlow

OpenFlow is a widely-implemented protocol between the controller and the network 
devices in an SDN for the purposes of enabling network programmability from a 
centralized viewpoint.

The OpenFlow switch specification [10] covers the components and basic 
functions of an (abstract) OpenFlow switch, and the protocol for an external 
controller to control the switch’s operation by adding, updating, and deleting rules in 
the switch for forwarding and packet modification. 

Support for OpenFlow switches can be plugged in to OpenStack Neutron as 
mechanism drivers for the ML2 plugin (preferred) or as their own plugins. The 
mechanism driver for Open vSwitch, a software switch that implements OpenFlow, 
is included with the Neutron distribution.

9.3.2.1 � OpenFlow Switch

Figure 9.3 presents a model of an OpenFlow switch, which consists of the following:

Group ta

Switch

ble Flow table Meter table

Controller

OpenFlow

Match fields Priority Counters Instruc�ons Timeouts Cookie

Group ID Group type Counters Ac�on buckets Meter ID Meter bands Counters

Fig. 9.3   OpenFlow switch
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•	 One or more flow tables: Each flow table contains a set of flow entries; each 
flow entry consists of match fields, counters, and a set of instructions to apply to 
matching packets.

•	 A group table that contains group entries; each group entry contains a list of 
action buckets. The actions in one or more action buckets are applied to packets 
sent to the group.

•	 A meter table that contains meter entries; each meter entry defines a per-flow 
meter used to measure packet rate and enable rate limiting or other similar 
operations.

•	 An OpenFlow channel to an external controller.

The controller uses the OpenFlow protocol to add, update, and delete entries in the 
flow and group tables, both proactively and reactively (in response to packets). 

The tables in the OpenFlow switch form a pipeline for processing incoming 
packets, as shown in Fig. 9.4.

When a packet arrives at a switch, the header fields are matched against the 
entries in the first flow table. Flow entries match packets in priority order, and the 
first matching entry in the table is used. If a matching entry is found, the counters 
indicated in that entry are updated and the instructions specified are executed. If 
no match is found in a flow table, the instructions specified by the table-miss flow 
entry are executed. A variety of actions may be taken such as forwarding the packet 
to the controller over the OpenFlow channel, dropping the packet, or continuing on 
to the next flow table.

Each flow entry has an associated timeout so that the entry is either removed 
after a fixed amount of time, or after it has been idle (i.e., not used to process any 
packets) for a given duration. 

The match fields that all OpenFlow switches are required to implement include:

•	 Ingress port
•	 Ethernet source and destination addresses (arbitrary bit masks)
•	 Ethernet type of the packet payload
•	 IP v4/v6 protocol number
•	 IP v4/v6 source and destination addresses (subnet masks or arbitrary bit masks)
•	 Transmission control protocol (TCP) source and destination ports
•	 UDP source and destination ports
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It can be seen that OpenFlow matching enables forwarding and packet modifica-
tion actions to be based on more fields compared to traditional destination-based 
forwarding. 

Counters are intended to provide readings (e.g., on a per-flow or per-port basis) 
that enable the controller to measure and optimize network traffic.

Instructions associated with each flow entry either contain actions or modify 
pipeline processing by directing the packet to a higher-numbered flow table. The 
actions may be executed immediately if so specified, or accumulated in the packet’s 
action set to be executed at the end of the pipeline. The types of actions include:

•	 Required actions that must be supported by every implementation
−	 Output: Forwards the packet to a port, which may be a physical port, a switch-

defined logical port (used to represent, e.g., link aggregation groups, tunnels, 
or loopback interfaces), or a reserved port (used to represent, e.g., sending to 
the controller, flooding, etc.).

−	 Drop: Drops the packet (this is actually represented by a lack of actions to 
execute).

−	 Group: Sends the packet to the specified group for processing.

•	 Optional actions
−	 Set-queue: Sets the queue identifier that determines which of the queues asso-

ciated with a port is used for scheduling and forwarding the packet.
−	 Set-field: Rewrites a header field in the packet.
−	 Push-tag/Pop-tag: Push or pop tags such as VLAN headers, etc.
−	 Change-TTL: Changes the time-to-live or hop limit of the packet.

When the group action is used, it directs packets to a group in the switch’s group 
table. Groups are used to implement operations such as multicast and broadcast 
forwarding, load sharing, IP forwarding to a common next hop, etc.

Switch designers are free to implement the internals of an OpenFlow switch in 
any way as long as the correct match and instruction semantics are realized. Also, 
some OpenFlow switches may support hybrid operation and implement both an 
OpenFlow pipeline and a traditional packet forwarding mechanism.

9.3.2.2 � OpenFlow Protocol

The controller communicates with the OpenFlow switch over a connection that is 
typically secured with transport layer security (TLS). The OpenFlow protocol used 
for this communication supports the three types of messages shown below along 
with the main messages of each type:

•	 Controller-to-switch
−	 Features: Find out the identity and basic capabilities of a switch.
−	 Configuration: Set and query configuration parameters in the switch.
−	 Modify-state: Add, update and delete flow/group table entries, and set switch 

port properties.
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−	 Read-state: Obtain information from the switch including current 
configuration, statistics and capabilities.

−	 Packet-out: Used by the controller to send packets out of a specific port of the 
switch, or to forward a packet received via a Packet-in message earlier on.

•	 Asynchronous (switch-to-controller, unsolicited)
−	 Packet-in: Transfer the control of a packet to the controller.
−	 Flow-removed: Inform the controller of the removal of a flow table entry.
−	 Port-status: Inform the controller of a change on a port, e.g., up/down.

•	 Symmetric (controller-to-switch or switch-to-controller, unsolicited)
−	 Hello: Exchanged at connection start-up time.
−	 Echo: Used to ascertain liveness of the connection.
−	 Error: Inform the other side of an error condition.

A number of messages can be packaged together into a bundle so that they are treated 
as a single operation, i.e., either all of the changes are applied or none are applied.

9.3.3 � SDN Controllers

Having looked at OpenFlow as a concrete example of protocols between SDN 
controllers and switches, we are now in a position to examine what a controller 
does in more detail. 

An SDN controller is typically comprised of the following components:

•	 A database or other repository of information needed to facilitate management 
and distribution of network state. The contents of the database includes informa-
tion obtained from network devices as well as information associated with SDN 
applications.

•	 A high-level data model that captures the relationships between managed 
resources, policies and other services provided by the controller.

•	 A northbound API that exposes the controller services to applications. Some 
controllers also allow expansion of core capabilities and publishing of APIs for 
new plugin modules.

•	 A secure control session between the controller and the associated agents on the 
network devices within the controller’s scope.

•	 One or more protocols for provisioning application-driven network state on 
devices.

•	 A device, topology, and service discovery mechanism.
•	 A path computation mechanism.
•	 Other network services that may be needed.

The SDN controller is the main area where vendors compete to differentiate 
their SDN capabilities, and therefore there are many products and open-source 
implementations available. As one example, the Floodlight open-source controller 
[11] is structured as shown in Fig. 9.5.
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Floodlight is written in Java and organized into modules. The core modules are 
as follows:

•	 OpenFlow services provide an API over OpenFlow. Incoming messages are 
turned into Floodlight events that other modules can obtain by subscription.

•	 The device manager monitors packets referred to the controller via OpenFlow to 
discover what devices are connected to the network. It tracks each device’s MAC 
address, IP address, and attachment points (i.e., switch and port).

•	 Link discovery uses link layer discovery protocol (LLDP) and broadcast domain 
discovery protocol (BDDP) packets to infer the connectivity between switches.

•	 The topology manager extracts islands of OpenFlow switches from link discovery 
data. The routing function uses Dijkstra’s algorithm to compute the shortest path 
between two devices.

•	 The packet streamer is used to examine the conversation between the controller 
and a switch.
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Floodlight modules may provide a Java API, a representational state transfer (REST) 
API, or both. The northbound API is therefore the union of all the individual module 
APIs. Applications that need access to events have to use the Java API, and run as 
additional modules alongside the controller.

A pair of applications is involved when Floodlight is used to provide network 
virtualization to OpenStack. The virtual network filter is a module that exports a 
REST API for creating virtual networks. The Neutron Floodlight plugin consists of 
Python code that calls this API. 

The Floodlight APIs include functions for:

•	 Creating and deleting a virtual network
•	 Attaching and removing a host to/from a virtual network
•	 Obtaining topology information such as listings of networks, switches, switch 

clusters, devices, links, etc.
•	 Proactively adding and deleting a flow in a switch
•	 Retrieving different types of switch statistics such as port, queue, flow, aggregate, 

etc.
•	 Listing global and per-switch traffic counters
•	 Adding and deleting a rule in Floodlight’s firewall module

9.4 � The Software-Defined Data Center

We now consider, by way of examples, how SDN techniques are used in IaaS cloud 
data centers.

9.4.1 � Network Virtualization

Cloud workloads frequently consist of multiple communicating VMs, e.g., a 
business application might consist of separate web, application, and database 
tiers, making virtual networks an essential part of a cloud service offering. Enter-
prise software that populates these tiers often uses broadcasting or multicasting to 
implement clustering. Implementing a layer 2 abstraction enables these schemes to 
continue working in the virtual network. 

A multi-tenant cloud brings additional requirements including:

•	 Isolation: Different tenants should not be able to see each other’s traffic.
•	 Independent addressing: The cloud may be an extension of a tenant’s existing 

data center, and VMs would have to follow the data center’s addressing scheme.
•	 Automatic provisioning: Virtual networks need to be brought up and down 

within minutes. Manual procedures are too slow and error-prone.

802.1Q VLAN is one way to implement virtual networks that satisfies the first 
two requirements. One problem is that the 12-bit VLAN ID limits the number of 
networks possible to at most 4096. A more serious concern is that the entire physical 
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network that underpins the cloud has to be layer 2. This has some undesirable 
consequences, e.g.:

•	 Lack of address summarization: The number of VMs is potentially large, and 
they come and go all the time.

•	 Inefficiencies in spanning tree protocol: Instead of utilizing all available links 
between switches, many links have to be disabled in order to avoid loops in the 
topology.

Layer 3 tunnels such as VXLAN are therefore favored for implementing virtual 
networks. They support a larger number of networks; e.g., VXLAN has a 24-bit 
network ID. They can take advantage of the spine-leaf network topology used for 
east-west traffic between VMs; tunnels can be distributed to different links using 
equal-cost multipath routing.

This is the context for VMware’s NSX network virtualization offering. NSX is a 
merger of VMware’s vCloud Network and Security (vCNS) with Nicira’s Network 
Virtualization Platform (NVP), which is an SDN controller. As such, it can operate 
in either a pure vSphere environment (VMware ESXi hypervisor only) or a mixed 
environment (Xen, KVM, and ESXi).

Figure 9.6 shows the generic architecture of NSX. There are three types of virtual 
switch: vSphere distributed switch (for ESXi in a vSphere environment), Open 
vSwitch (for Xen and KVM), and NSX vSwitch (for ESXi in a mixed environment).

Virtual layer 2 networks are realized using layer 3 tunnels between machines 
hosting participating VMs. When a network is created, either at the behest of NSX 
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manager or OpenStack, the NSX controller’s northbound API is invoked to create 
a mesh of tunnels. In the case of Open vSwitch, for example, the controller uses 
open vSwitch database management protocol (OVSDB) to define the tunnels at 
each switch and OpenFlow to set up the mapping from IP address to tunnel ID. This 
means that multicasting is not needed to set up VXLAN.

NSX routes north-south traffic in a centralized manner using the edge services 
router (ESR), which is a software router in a VM. The ESR is designed with external 
traffic in mind, and also performs network address translation and load balancing. 
East-west traffic, on the other hand, is handled in pure vSphere environments using 
the distributed logical router (DLR). The DLR’s data plane runs inside the hyper-
visor on every host, while its control plane runs in a single VM. The data plane 
forwards packets in the most direct way. If the destination VM happens to be on 
the same host as the source, the packet never leaves the machine; otherwise it is 
sent down the tunnel to the destination VM’s host. The control VM peers with other 
routers as usual with open shortest path first (OSPF) or border gateway protocol 
(BGP), but uses the NSX controller to distribute route updates to the data planes.

In a similar manner, north-south firewalling is provided by the ESR. East-west 
firewalling is handled by a distributed firewall module in each hypervisor.

9.4.2 � Network Functions Virtualization

In addition to interconnected VMs, most cloud applications need to access the In-
ternet or some other external network, filter network traffic, and distribute requests 
among VMs. In other words, virtual machines also need virtual routers, firewalls, 
and load balancers. These may be realized by using multitenant functionality in 
physical devices or by introducing service VMs into tenant networks. On the other 
hand, the flow level primitives from which these functions can be built are available 
in Open vSwitch and are being added to OpenFlow over time. A third implementa-
tion is thus to distribute the work amongst hypervisor-based virtual switches.

Midokura’s MidoNet is an example of this approach. It provides virtual layer 
2 and layer 3 networks, as well as virtual load balancers and firewalls. Every ma-
chine hosting VMs runs an Open vSwitch controlled by a MidoNet agent. Gateway 
machines are used to interface to external layer 2 and layer 3 networks; they also 
contain an Open vSwitch plus a MidoNet agent. Finally, network state is maintained 
in a distributed database.

Logically, a packet may traverse several nodes and be transformed in the process 
as it heads towards its destination. For example, when a packet is sent from a VM to 
a client on the Internet, it would go from a virtual tenant router to a gateway router. 
It might also undergo source network address translation (NAT). Physically, the first 
packet of a flow would be sent up to a MidoNet agent, which would look up the 
virtual network topology from the database, and add flow table entries to modify the 
source IP address, decrement time-to-live (TTL), and forward along a GRE tunnel 
to the gateway machine.

Similarly, when a packet comes in from the Internet for a VM, it would go 
through a virtual tenant firewall, destination NAT, and a virtual tenant router before 
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arriving at the VM. For the first packet of a flow, the MidoNet agent on a gateway 
would check if the packet is allowed under the rules configured for the tenant in 
the database, and if so, add flow table entries to modify the destination IP address, 
decrement TTL, and forward along a GRE tunnel to the machine hosting the VM.

MidoNet uses a distributed synchronization service and a distributed database to 
propagate state to all agents.

Network topology is kept in Apache Zookeeper. Zookeeper’s data model is that 
of a tree to which nodes bearing data can be added or deleted. Clients watch nodes 
for changes and are notified when they occur; this allows topology changes to take 
effect immediately. Physically, the tree is replicated over a set of servers, one of 
which is elected as leader. Any server may handle read requests, but writes must go 
through the leader and require quorum.

Session state, e.g., the IP address translation for a flow, is kept in Apache Cas-
sandra. Cassandra is essentially a persistent distributed hash table; a row key calls 
up a set of key-value pairs. The data associated with a row key is replicated to a con-
figurable number of servers chosen from a pool of servers. Any server may handle 
requests. The number of servers that must respond positively in order for a read or 
write request to be considered successful can be varied on a per-request basis in 
order to tradeoff between consistency and latency.

9.4.3 � Traffic Engineering

Integrating information about application intent with global network state can lead 
to better choices in packet forwarding. VM relocation is one such case. When a VM 
is moved from one compute node to another, its entire memory image has to be 
transferred within seconds to avoid an outage at the application level.

Cloud data centers typically have a spine-leaf network topology. Compute nodes 
attach to leaf routers, and every leaf router is in turn linked to every spine router. If 
all such links have the same bandwidth, there are as many equivalent paths between 
two compute nodes as there are spine routers.

Equal cost multipath (ECMP) routing is usually used to distribute traffic across 
the paths by hashing on packet headers; this ensures that all packets belonging to 
a TCP connection take the same route. This works reasonably well when there are 
many small flows; however, there is no guarantee that several large flows from VM 
relocation will not end up on one path at the same time.

With an SDN, one can query the link utilization along all paths leading from the 
source to the destination compute node, and set up a flow to use the least loaded 
path. When no path of sufficient capacity is available, the memory transfer can be 
split up into several parallel transfers.

Taking this one step further, bandwidth availability (based on actual measure-
ment) can be factored into the decision to make a particular VM move. If there is 
insufficient bandwidth leading from the source compute node, any move has to 
be postponed. On the other hand, insufficient bandwidth heading to a candidate 
destination compute node might be worked around by picking another candidate.
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9.5 � SDN Implementation Challenges

The usage of SDN is still in its early days, and a number of implementation 
challenges have been identified [12, 13], including:

How to build a high-performance programmable switch?

•	 When it comes to hardware implementations of switches, there is a trade-
off between programmability/flexibility and performance. General purpose 
processors are the most flexible but offer lower performance and dissipate more 
power, while application-specific integrated circuits are the least flexible but 
provide the highest performance, power and cost benefits. There are technologies 
in between these two extremes, such as network flow processors, programmable 
logic devices, and application-specific standard products.

•	 It appears that given the programmability/performance trade-off, a hybrid 
approach where SDN functions are decomposed into sub-functions, each 
implemented using higher-performance or higher-flexibility technologies as best 
suited to its purpose, would be more effective.

How to build a scalable SDN controller that provides a global network view?

•	 SDN controller scalability is challenging due to factors such as the latency 
introduced in exchanging network information between multiple network 
devices and the controller, interactions between multiple (physical) controllers, 
and the size of the controller backend database.

•	 Some of the approaches for increasing controller scalability include consistent 
state sharing mechanisms for multiple controllers such as HyperFlow [14] and 
resolving some queries locally on the network device in order to reduce the 
amount of information exchanged with the controller and keep its database to a 
more manageable size.

How to ensure the security of a software-defined network?

•	 Given its privileged position in the network, the SDN controller makes for a very 
attractive target for malicious activity such as unauthorized modification of flow 
rules and denial of service attacks.

•	 Common security measures including mutual authentication, role-based autho-
rization, transport layer security and intrusion detection are certainly applicable, 
but the SDN controller’s programmability and open interfaces increase the 
“attack surface.” On the positive side, one of the original usages of OF/SDN 
when the concept first appeared on the scene was to implement security policies 
in the network, and the advancements in this area that have taken place since 
then can be leveraged.

How to integrate SDN solutions into existing networks?

•	 In practice, SDN solutions are almost always deployed into an environment 
that already has a lot of existing network equipment and infrastructure. Even in 
greenfield situations, SDN solutions would likely need to work with switches 
and other equipment that are not SDN-enabled.



9  Software-Defined Networking (SDN) for Cloud Applications 227

•	 Further development of backward-compatible interfaces, protocols and mecha-
nisms is required to achieve interoperability between the SDN and non-SDN 
portions of a network in more than an ad-hoc manner.

How to make SDN solutions serve the needs of applications better?

•	 Although the main goal of the SDN architecture is to provide open program-
mability of the network to applications, current implementations of, e.g., SDN 
controller APIs, still have very low-level semantics that reflects the entities and 
relationships at the network level but not so much the ways in which applications 
formulate their requirements. Also, SDN efforts have so far been focused mostly 
on layer 3 (network layer) and below, and there has not been as much work on 
application traffic flows and configuration of applications in this context.

•	 SDN technology can actually be extended to manage application traffic above 
layer 3. For an example of a research project pursuing this direction, refer to 
[15]. There is also starting to be some work towards providing programming 
interfaces that better match the level of semantics needed by applications. 
Indeed, application- and policy-driven networking are the current thrust of 
several vendors in the telecommunications industry such as Avaya, Cisco and 
others.

9.6 � SDN for UC Applications

As mentioned in the previous section, one of the key directions in which SDN is 
evolving is towards application-driven networking (ADN). In our view, studying 
the interactions between specific types of applications on the one hand and SDN 
on the other is a fruitful way to bring in more experience to inform the research 
that furthers this evolutionary trend. To this end, we will look at two use cases in 
this section to illustrate some ways in which a particular type of application—uni-
fied communications—can make use of SDN, and describe a high-level interaction 
model between UC and SDN.

Others in the industry are interested in the topic of SDN for UC applications 
as well. For example, the UC Interoperability Forum (UCIF) has signed an agree-
ment with ONF in November 2013 to define a framework and API that capture the 
interaction of UC with various SDN functions, which will likely build upon related 
work from ONF.

9.6.1 � UC Applications

UC applications integrate real-time communications such as telephony, audio/video 
conferencing, presence and instant messaging with non-real-time functionality 
such as web browsing, email, voice mail and directories to provide a unified 
user experience across multiple media and device types. These applications are 
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increasingly being hosted in the cloud. For example, public cloud service providers 
may offer IP telephony, instant messaging, web access to email/voice mail and other 
UC functionality to consumers and small/medium enterprise users, while private 
cloud data centers may provide larger enterprises with cost-effective ways to work 
across sites via audio/video conferencing, multimedia collaboration, etc.

Why are we discussing UC applications in the context of this chapter? In our 
view, UC is a particularly interesting application category because it represents the 
integration of voice and data networking.

With a lot of voice communication taking place over IP these days, the distinction 
between voice and data networking may have blurred to some extent, but voice and 
other forms of real-time communication such as video continue to place stringent 
requirements on the underlying data network. Fulfilment of these requirements is 
fundamental to providing a high-quality end user experience for UC.

In addition, a single UC application often involves coordination between 
multiple services each responsible for a different aspect of its functionality, and 
these services can have correlated networking requirements. For example, a user of 
a collaboration application may have a voice call, a text chat session and a shared 
whiteboard running simultaneously.

In any UC deployment, there can be many network elements, such as switches, 
routers, reverse proxies, firewalls, session border controllers, etc., that all need to 
be configured correctly for optimal media flow. Instead of having to configure all 
of these elements discretely, SDN can provide a single policy-based method of 
operation driven by the UC application.

9.6.2 � Some Use Cases

Here, we present two use cases that aim to show a few of the ways in which UC 
applications can leverage SDN capabilities.

9.6.2.1 � Automating Quality of Service Configuration

One of the key tasks in ensuring a high-quality end user experience for UC 
applications is the proper configuration of quality of service (QoS) in the underlying 
network. As part of its work on defining a UC SDN framework and API, the UCIF 
is publishing a number of use cases of which the first involves automating QoS 
configuration [16].

In this use case, a UC infrastructure component (acting on behalf of an endpoint 
or application) interacts with an automated QoS network service application 
(referred to as “QoS service” below), which in turn interacts with an SDN controller 
through its northbound interface. The QoS service maps QoS treatments requested 
by the UC infrastructure into actual QoS capabilities of the underlying network, 
e.g., by translating class of service specifications into differentiated services code 
point (DSCP) or wireless multimedia extensions (WMM) markings.
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The use case’s interactions can be divided into two parts which relate to signalling 
and media traffic respectively:

Signaling Traffic

1.	 When the UC infrastructure starts up, it authenticates with the QoS service.
2.	 The UC infrastructure then interacts with the QoS service to request that UC 

signaling traffic, e.g., session initiation protocol (SIP) traffic on TCP port 5061, 
be processed with the appropriate class of service. The QoS service configures 
the corresponding QoS policy on the network elements involved, e.g., re-mark 
TCP port 5061 traffic going from/to the IP address(es) of the UC infrastructure 
to DSCP class selector 3.

3.	 When a user starts a UC user agent (e.g., a physical or soft phone, conferencing 
client, etc.), the user agent exchanges signaling messages with the UC 
infrastructure to register itself.

4.	 When the user initiates a UC session (e.g., an audio or video call, conference, 
collaboration session, etc.), the user agent exchanges signaling messages with the 
UC infrastructure to request that a session be started. In response, the UC infra-
structure exchanges signaling messages with the destination endpoint specified 
by the session initiator.

5.	 Once a session has been established, the UC endpoints involved in the session 
may exchange additional signaling messages to manage or terminate the session.

The signaling messages in steps 3, 4 and 5 are all re-marked to the appropriate 
priority based on the QoS policy configured on the network elements in step 2.

Media Traffic

6.	 The UC user agents in the session exchange signaling messages through the 
UC infrastructure to negotiate media flows. Typically there will be at least one 
flow in each direction. In addition, a session may include more than one media 
type (e.g., audio and video) and some media types may involve more than one 
media stream (e.g., live camera video and presentation video). Often media 
traffic is sent directly between the user agents without going through the UC 
infrastructure.

7.	 Each media flow can be uniquely identified by a 5-tuple consisting of its source 
IP address and port, destination IP address and port, plus network protocol. The 
UC infrastructure extracts this 5-tuple for each of the media flows involved in 
the session by looking at the signaling messages exchanged, and makes a request 
to the QoS service to set up the QoS policies needed to provide each flow with 
the appropriate treatment.

8.	 The QoS service determines the ingress and egress network elements involved 
in each media flow, and configure the corresponding QoS policies on these net-
work elements. This causes the media flows to be re-marked to the appropriate 
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priority, including any flows that have already started before the QoS policies 
were set and were previously processed on a best effort basis.

9.	 Once the session completes, the UC infrastructure sends a request to the QoS 
service to remove the associated QoS policies from the network elements.

The description above applies to scenarios where the interacting endpoints and all 
of the intermediate network elements are in the same SDN administrative domain, 
i.e., within the scope of the same (logical) SDN controller. In the more general 
case where multiple SDN domains are involved, federation between the domains is 
needed to configure QoS end-to-end.

The main value of the automated QoS service application is in ensuring that only 
authentic UC media flows can be given higher-priority treatment as indicated by 
the policies that the QoS service configured on the network elements, rather than 
relying on markings provided by various endpoints which may or may not comply 
with overall network usage guidelines.

9.6.2.2 � Providing Diagnostics to Facilitate Prioritization of Real-Time  
Wi-Fi Traffic

Microsoft Lync is a UC system that provides a single interface for the user to com-
municate via voice and video calls, conferences, presence, instant messaging, 
and persistent chat. In Lync server deployments, the end user experience can be 
adversely impacted by poor network performance that results in dropped calls, 
jittery audio or choppy video.

Microsoft has made a Lync SDN API available to facilitate real-time media 
traffic monitoring and QoS optimization. (It should be pointed out that this API is 
better described as an API to inform SDNs, rather than an SDN API in the sense 
of a controller API). The Lync SDN API has been applied by Aruba Networks to a 
use case involving its Wi-Fi solution. Building a Wi-Fi network to handle-real time 
voice and video traffic requires the ability to distinguish real-time from non-real-
time traffic in order to prioritize and protect the former from disruption. Also needed 
is the ability to report quality problems with real-time traffic and identify possible 
causes. One constraint, however, is that since Wi-Fi traffic is often encrypted, it is 
not directly visible to observation.

In this use case, the Aruba Mobility Controller receives Lync network diagnostic 
information about voice, video, desktop sharing and file transfer through the SDN 
API. The Lync server sends information to the mobility controller when a call is 
initiated, which is used to identify clients in the call and prioritize their real-time 
traffic streams. When the call completes, the Lync server sends information (based 
on data from its quality-of-experience database containing reports sent in by Lync 
clients) to the mobility controller to provide visibility into call quality, which is 
correlated with the health of wireless devices and access points.
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9.6.3 � UC-SDN Interaction Model

The model shown in Table  9.1 identifies areas in which UC applications may 
interact with SDN, including some examples of usage scenarios in each area:

When defining a higher-level northbound API that matches the level of semantic 
abstraction needed by UC applications, rather than the lower level of detail that 
current SDN controller APIs offer, it would be useful to examine the areas in an 
interaction model such as this one, and include functions for each of the areas. 
Below we make some general observations related to this model:

•	 UC communication flows are generally not limited to the data center, but can 
“reach out” from the cloud to end user devices and “reach in” from the reverse 
direction. Although one could say that the same is true of web applications being 
accessed by web browsers, the difference in the UC case is that control of real-
time communication flows goes right down to the end user device level.

•	 UC communication flows often involve explicit call setup, which provides a 
natural opportunity for configuring network-level flows.

•	 If network level flows and QoS settings are proactively configured as part of 
call setup, the configuration settings need to follow the end user device or UC 
application as it moves.

•	 IP-based voice networking can actually been seen as a parallel layer to data 
networking, and SIP telephony servers as well as other voice networking 
equipment such as media gateways, etc. can be viewed as the equivalent of data 
networking switches in the voice network.

•	 One could visualize a picture in which an application delivery controller is con-
trolling flows at the application layer, while an SDN controller is controlling 

Table 9.1   A UC–SDN interaction model
Interaction area Sample usage scenario(s)
Device discovery and inventory Automatically discovering an IP phone when it is 

plugged into the network (in a private cloud envi-
ronment), and making its network attachment point/
device capabilities known

Network topology configuration Setting up an IP telephony trunk
Network flow configuration Proactively setting up network flows as part of 

voice/video call setup
Quality of service Prioritizing real-time traffic generated by a UC 

application
Traffic engineering Adjusting network flows based on “big picture” 

knowledge of application activity such as multiple 
ongoing video conferences

Performance monitoring and diagnostics Measuring latency, loss and jitter; identifying/
localizing causes of quality issues

Security and access Opening a port on the firewall that is required for 
specific UC application flows; assigning a class of 
service based on user role, access location, access 
method, etc.
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flows at the networking layer and below, with the two controllers interworking 
with each other. The application layer flows have dependencies on the networking 
layer flows, which could be in the sense that the latter need to be set up once 
before the former can take place, or in the sense that the two are tied together 
dynamically and the presence of one or more application layer flows induces the 
corresponding networking layer flows.

9.7 � Conclusions

In this chapter, we have suggested that software-defined networking brings open 
programmability, a more global network view and logically centralized control to 
satisfy the dynamic networking requirements of applications in a cloud computing 
environment. Of the challenges that need to be overcome in order to further the 
adoption of this technology, one of the most important is how SDN may be able to 
evolve from its current relatively low-level “bits-and-pipes” orientation to become 
more application-oriented, i.e., easier for applications to use its capabilities and for 
it to work directly with higher-level application flows. The end goal of this evolu-
tion can be termed application-defined networking.

We are of the opinion that studying the interactions between specific types of 
applications on the one hand and SDN on the other can bring in more experience 
to inform the research needed to make the SDN-to-ADN transition happen, and are 
working specifically with unified communications applications, which represent 
the integration of voice and data networking.

Two use cases—automating quality of service configuration, and providing 
diagnostics to facilitate prioritization of real-time Wi-Fi traffic—were considered 
in this chapter to illustrate some of the ways in which UC applications can leverage 
SDN capabilities. A high-level interaction model between UC and SDN was then 
sketched out. It was observed that SDN can provide a single policy-based method 
to configure multiple network elements involved in a UC deployment. Further, 
if one were to consider IP-based voice networking as a parallel layer to data net-
working, one could construct a model where an application delivery controller 
controls UC flows at the application layer while an SDN controller controls flows 
from the networking layer downwards, with the two controllers interworking with 
each other.

Given the interest in the telecom and computer industries in providing cloud-
based UC applications such as voice/video calling, business collaboration, distance 
education, etc., we believe that there is potential for new fruitful work in this area 
that would make a substantial new contribution to ADN research.
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Abstract  The Cloud computing paradigm allows for fast provisioning and depro-
visioning of a large variety of, in most cases, preconfigured services. This would 
not have been possible without certain supporting technologies enabling rapid 
deployment and release of services. Virtualization technologies have been the solu-
tion to the service management requirements. In particular, hardware virtualization 
technology has speeded up the deployment of possibly a large number of virtual 
machines (VM) on multiple hosts. These achievements enable a far more efficient 
usage of physical resources which can be shared among multiple tenants in order to 
benefit from cost savings and ease of management. Multitenancy is a fundamental 
feature of Cloud computing. However, multitenancy and in general resource shar-
ing increases the exposure to security threats. In particular, timing attacks can infer 
information from sibling VMs running on the same physical host. Furthermore, 
security and privacy issues are due to the present architecture of virtualization-
based services in the Cloud. In particular, platform-as-a-service (PaaS) and infra-
structure-as-a-service (IaaS) on both Public and Hybrid Clouds potentially allow 
the Cloud host administrators to get access to service provider (SP) and service 
consumer data. This way, service execution time and outcome reliability can be 
affected. Enterprises are mostly aware of the risks involved with multitenancy. As 
such, they often opt for a Private or Hybrid Cloud approach that is more costly and 
usually less scalable than a Public Cloud. In this context, novel Cloud approaches 
are required to enhance monitoring and security auditing of VMs and services. At 
the same time, a better privacy for both the SP and the service user (SU) should be 
guaranteed. The objective of this chapter is to shed light on virtualization technolo-
gies that empower the Cloud and that will be increasingly relevant for the evolution 
of Cloud services, together with the associated frameworks and principles. It also 
reviews present and possible future approaches to security for Cloud resources.

Keywords  Virtualization · Security · Isolation · Introspection · Monitoring ·  
Execution · Modeling
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10.1 � Introduction

Cloud computing would not have been possible without the virtualization technol-
ogy advances of the past decade which have opened up the possibility of dynami-
cally sharing the increasing number of processing cores among different tenants. In 
particular, the infrastructure-as-a-service (IaaS) layer adopts and exposes advanced 
virtualization technologies. These advances have induced relevant cost savings, but 
they have also created new security concerns within the Cloud. Some issues stem 
from the adoption of immature virtualization approaches as the basis for scalability 
and isolation. The underlying technologies adopted by different Clouds (such as 
Amazon, Microsoft, IBM, Rackspace, and SalesForce) hide potential security is-
sues. At present, Cloud service integrity, confidentiality, and availability concerns 
are still open problems that call for effective and efficient solutions. Cloud nodes 
are inherently more vulnerable to cyber-attacks than traditional physical server so-
lutions, as their underlying complexity brings an unprecedented exposure of ser-
vices and interfaces to third parties. As a consequence, guaranteeing an adequate 
protection level to Cloud nodes is a challenging task, for which it is crucial to recog-
nize the possible threats and to establish security processes to protect services and 
hosting platforms (HPs) from attacks.

Cloud computing aims at massive scalability. It offers clear benefits as regards 
efficiency, availability, and high utilization which, in turn, result in reduced 
capital expenditure and operational costs, further promising agility, innovation, 
flexibility, and simplicity. Most of these benefits are due to virtualization. The 
offerings from Cloud service vendors, in terms of software (SaaS), platform (PaaS), 
and infrastructure (IaaS) services are continuing to mature and the cost savings 
are becoming particularly attractive in the current competitive economic climate. 
Another broader aim of Cloud technology is to make supercomputing available to 
the general public and, in particular, to enterprises and to the scientific community.

Cloud deployment approaches adopt specific types of virtualization. The way 
the Cloud delivers services (i.e., software, platform, and infrastructure as services) 
is depended onto the implemented virtualization approach. The virtualization 
environment generally consists of three core components, namely: hypervisor, 
management tools, and VMs. Here are some examples of how Cloud services may 
be tied to virtualization approaches:

•	 Multi-tenant virtualization—software-as-a-service (SaaS)
•	 Container-based virtualization—platform-as-a-service (PaaS)
•	 Hardware virtualization—infrastructure-as-a-service(IaaS)
•	 Storage virtualization—data storage-as-a-service (dSaaS)

In this chapter, we provide a survey of various aspects of Cloud service security, 
availability, isolation, loss of physical control, and secure virtualization. In particular, 
Sect. 10.2 will provide some technology background where existing virtualization 
technologies for x86 architectures (e.g., Xen, KVM, VMWare, and VirtualBox) will 
be discussed, with an attempt to highlight advantages and disadvantages of each 
of them. This section will also present potential security flaws of virtualization ap-
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proaches when deployed in a Cloud environment. In Sect. 10.3, the main security is-
sues of Cloud computing are discussed, especially with respect to isolation, denial of 
service and information leakage. Moreover, confidentiality issues will be discussed 
showing that it is possible to infer information from a target VM on the same physi-
cal host machine. Relevant research on virtualization and Cloud security will be in-
troduced in Sect. 10.4. In Sect. 10.5, future Cloud trends, of interest to practitioners, 
will be detailed and discussed. Latest advances in service modeling, monitoring, and 
control will be described in Sect. 10.6. Future research trends and directions will be 
discussed in Sect. 10.7. Finally, conclusions will be presented in Sect. 10.8.

10.2 � Technology Background

A large variety of heterogeneous virtualization technologies are currently deployed 
in the Cloud for mainstream x86_64 architectures (e.g., Xen, KVM, VMWare, 
VirtualBox, and HyperV). They have proven vulnerable in the past to different 
exploits that could potentially be used in a Cloud. In addition, a vast number of 
Cloud management platforms have been deployed, both open source and proprietary. 
Vulnerabilities have been discovered through the years for these platforms as well. 
In the following, we offer a perspective on the main players of both the virtualization 
and the Cloud management systems.

10.2.1 � Cloud Frameworks

Many Cloud middleware platforms have been introduced during the first pioneering 
years. Few are still actively maintained. Most relevant Cloud platforms are depicted 
in Table 10.1.

Some features that are common to the above systems are as follows:

•	 On-demand deployment of virtual resources both under web request load and 
when required by the Cloud service client. Management/billing interface exposed 
to the Cloud service client, allowing easy monitoring, controlling, and reporting.

•	 Multitenancy and resource pooling that allows combining heterogeneous 
computing resources (e.g., hardware, software, servers, and network) to serve 
multiple customers.

•	 Rapid elasticity and scalability that allows resources to be elastically and 
automatically scaled out or in, following the demand.

It is worth noting that these surviving Cloud management platforms are backed and 
supported by companies (e.g., Microsoft), scientific agencies (e.g., NASA) or large 
hardware/software resource providers (e.g., Red Hat, Amazon). The reason why is 
that maintaining and evolving such complex software systems has inherently high 
costs. Nonetheless, complex hardware/software architectures also induce larger ex-
posure to vulnerabilities, as shown in the last columns of Tables 10.1 and 10.2.
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10.2.2 � Virtualization Frameworks

The essential characteristics of most widespread virtualization environments are 
summarized in Table 10.2. It is worth noting that most hypervisors support full vir-
tualization, as it offers relevant isolation benefits. In fact, full virtualization allows 
the CPU to intercept possibly malicious or unauthorized access to data in memory. 
The specific configuration and behavior of the virtualization framework is however 
different and it can be tuned according to the requirements of the Cloud platform. 
However, no existing virtualization framework is immune to software bugs that po-
tentially expose the virtualization platform itself (and, as a consequence, the Cloud) 
to the referenced exploits. In the following section, we discuss some of these vul-
nerabilities by introducing a general model for Cloud services.

10.3 � Cloud Security

A generic Cloud security scenario and model can be described as follows [29]: a 
service provider (SP) runs one or more service instances (SI) on the Cloud, which 
can be remotely accessed by a group of final service users (SU). For this purpose, 
the SP hires HP resources from the Cloud provider (CP). It is worth noting that 

Table 10.1   Most relevant Cloud platforms (Cloud middleware)
Cloud Open source VM format type Vuln./exploit Vuln. Ref.
OpenStack Yes VHD, VMDK, VDI, QCOW2, 

RAW, OVF, OVA, AMI
KVM, Xen [18]

CloudStack Yes QCOW2, RAW, OVA KVM, Xen [19]
OpenNebula Yes QCOW2, RAW, OVA KVM, Xen [10]
VMWare vSphere No VHD, VMDK, VDI Proprietary 

VMware
[15, 40]

MS Azure No VHD Proprietary 
Hyper-v

[11]

Amazon No AMI Xen [13]

Table 10.2   Virtualization frameworks and tools
Virt. frameworks Full/para Virt Open source Main features Vuln. Ref.
Xen Both Yes Small codebase, pure hypervisor, 

mature
[12, 17]

KVM Full yes Integrated in Linux kernel [16]
MS Hyper-v Unknown No Proprietary, supports Windows 

and Linux guests
[2]

Virtualbox Para Partly Supports Linux and Windows 
both as guest and host

[20]

VMware vSphere Full No Mature costly solution. Scalabil-
ity and performance

[15]

Parallels/Virtuozzo Mostly para No Supports Mac OS [9]
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the SU and the SP do not have any physical control over Cloud physical server 
machine, whose status cannot be observed. The SU and the CP enter into a service 
level agreement that describes how the Cloud is going to run service instance SI 
(See Fig. 10.1).

A taxonomy of possible attacks against Cloud systems follows:

1.	 Resource attacks against CPs
2.	 Resource attacks against SPs
3.	 Data attacks against CPs
4.	 Data attacks against SPs
5.	 Data attacks against SUs

Resource attacks 1 and 2 target resources, such as stealing virtual resources to 
mount a large-scale attack (e.g., botnet). Data attacks 3 and 4 steal or modify service 
or node configuration data (that can be used later to perform a different attack). Data 
attacks against SU (Attack 5) usually lead to leakage of sensitive data. Classes 1 and 
3 involve an attack to Cloud infrastructure components. Virtualization technologies 
underlying Cloud computing infrastructure are of themselves liable to security vul-
nerabilities. In addition, the Cloud computing middleware potentially allows some 
novel attacks that have not been addressed yet.

In the typical Cloud scenario described above, we can observe the following 
major security issues:

•	 Privileged user access control: access to sensitive data in the Cloud has to be re-
stricted to a subset of trusted users (to mitigate the risk of abuse of high privilege 
roles)

•	 Data isolation: one instance of customer data has to be fully isolated from data 
belonging to other customers

•	 Privacy: exposure of sensitive information stored on a Cloud implies its legal 
liability and loss of reputation

•	 Bug Exploitation: an attacker can exploit a software bug to steal data or to gain 
access to resources that allow for further attacks

•	 Reliability/Availability: the CP has to setup an effective replication and recovery 
mechanism to restore services, should an outage/disaster occur

•	 Accountability: even though Cloud services are difficult to trace for accountabil-
ity purposes, in some cases this is a mandatory application requirement

In particular, service accountability can increase security and reduce potential risks 
for both the SU and the SP [23].

A trade-off exists between privacy and accountability, since the latter produces 
a record of events/actions that can be analyzed by a third party in case something 
goes wrong. Nevertheless, such investigation might expose faulty components or 
internal Cloud configuration details. This way, any Cloud customer might be able 
to learn information about the internal configuration of the Cloud that could be 
used later to perform an attack. A possible solution lies with the use of obfuscation 
and anonymization/detail-preserving techniques to limit the information the VM 
exposes to the Cloud. However, encryption cannot fully protect the user from mali-
cious or curious CP, as the computing resources (central processing unit (CPU) and 
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graphics processing units (GPU) cores) are fully controlled by them and therefore, 
keys are exposed to the privileged hypervisor administrator. In fact, current CPU 
technology cannot prevent a virtual machine monitor (VMM) from accessing guest 
raw memory. This limitation produces confidentiality issues with respect to the SP 
(or with respect to an attacker that manages to compromise the host platform).

One of the key aspects of Cloud computing is loss of control. As a prime exam-
ple, the SU does not usually know for sure where its data are stored and processed 
in the Cloud. Moreover, it is unclear what happens to data and information held on 
a Cloud resource when the company that manages the Cloud goes out of business. 
How (and if) this data will be retrieved and returned to the owner organization is not 
clear. On a Cloud, computation and data are remote and potentially mobile. As such, 
they can be migrated to systems the SU cannot directly control. Over the internet, 
data are free to cross borders and reach countries where privacy enforcement is not 
considered relevant, which in turn can expose to further security threats. A second 
example of loss of control is that the CP gets paid for running a service it does not 
know the details of. This is one of the most relevant risks of the “Infrastructure as a 
Service” model, but also of other “as a Service” approaches. To date, even though 
misuse problems tend to be regulated by a service contract, such an agreement has 
to be enforced and controlled by monitoring tools.

Fig. 10.1   A typical Cloud 
scenario
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10.3.1 � Requirements for Cloud Monitoring

A core set of requirements that a security monitoring system for the Cloud [29] 
should meet can be summarized as follows:

•	 Effectiveness: the system should be able to detect attacks and integrity violations.
•	 Accuracy: the system should be able to (ideally) avoid false-positives, i.e, 

mistakenly detecting malware attacks where authorized activities are taking 
place.

•	 Transparency: the system should minimize detectability from VMs, i.e., SP, SU, 
and potential intruders should not be able to detect the presence of the monitor-
ing system.

•	 Robustness: the host system, Cloud infrastructure and the sibling VMs should be 
protected from attacks proceeding from a compromised guest and it should not 
be possible to disable or alter the monitoring system itself.

•	 Deployability: the system should be deployable on the vast majority of available 
Cloud middleware and hardware/software configurations.

•	 Dynamic Reaction: the system should detect an intrusion attempt over a Cloud 
component and, if required by the security policy, it should take action against 
the attempt and against the compromised guest and/or notify remote middleware 
security-management components.

•	 Accountability: the system should not interfere with Cloud and Cloud applica-
tion actions, but collect data and snapshots to enforce accountability policies.

However, it is not possible to satisfy all these requirements at the same time. As 
an example, there is a trade-off between transparency and dynamic reaction. This 
problem can be addressed by:

•	 Hiding reaction: reacting using regular guest maintenance actions, e.g., halting 
the guest, restarting it from a fresh image, and migrating the VM instance.

•	 Delaying reaction: snapshot the current status and delay reaction: this way the 
adversary may be able to perform further activity before being stopped. How-
ever, once traced, the effect of these activities can be reverted.

The above actions are, from the point of view of the SU or SP, virtually indistin-
guishable from regular load-balance based VM operations.

A possible approach to achieve integrity protection is to actively monitor key com-
ponents that would most probably be targeted by attacks. This would allow to better 
protect the VMs and the Cloud infrastructure. By either actively or passively monitor-
ing key kernel or middleware components, it is in fact possible to detect any possible 
modification to kernel data and code, thus guaranteeing that kernel and middleware 
integrity have not been compromised. Furthermore, Cloud entry points (application 
and network interfaces), behavior and integrity can be controlled via logging and pe-
riodic checksum verification of executable files and libraries. A further requirement, 
especially when the guest image is not trusted by the CP, is ensuring that an attacker-
run application cannot detect that an external intrusion detection system is in place. 
Note that, as it happens with introspection techniques, they can potentially be detected 
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by the target VM. In fact, the presence of a monitoring system can be probed by mea-
suring the execution time of specific function calls. In order to address this issue, an 
asynchronous monitoring system can be a viable solution [27]. A monitoring system 
can also be useful when managing the reliability and replication of Cloud services, 
which suffer from specific problems as detailed in the following.

10.3.2 � Replication and Cloud Reliability

The availability and reliability of Cloud services is enabled by the possibility to de-
ploy a large number of identical (cloned) services. However, such replication does 
not by itself guarantee reliability as there are some issues that have to be addressed:

•	 Vendor shut-down: the Cloud service should be able to (ideally) resist a server 
shut down or large scale failure. In order to do so not all resources and services 
have to be deployed on a single provider. A Cloud of Clouds can help achieve 
this result.

•	 Vendor lock-in: The possibility of deploying the same service over different pro-
viders is tied to the support of standards that allow interoperability and migra-
tion of workload across different CPs. Unfortunately large providers (Amazon, 
Microsoft Azure) tend to offer specialized application programming interfaces 
(APIs) that trade-off additional functionality with increased vendor lock-in.

•	 Denial of Service (DoS): As often experienced in the past [42], having a single 
host and guest architecture replicated over large arrays renders them massively 
exposed to even a single vulnerability and/or service disruption. In this case also, 
a smart monitoring tool over a federated Cloud of Clouds would be of help.

The following section further surveys the state-of-the-art approaches that aim at se-
curing virtual resources and as a consequence, aim at improving the Cloud security.

10.4 � Related Work

Secure virtualization approaches have been proposed during the past few years, 
taking into account that the most relevant deployment scenario is Cloud comput-
ing. This section compares these approaches and describes on how proposed tech-
niques are used in existing Clouds. Further, it defines the basis of the components 
that can be actively used to increase security, privacy, and robustness of Cloud 
services.

In the past, privacy issues in Clouds have been the objective of much work [32]. 
Some interesting security issues are discussed in [3], while an almost complete sur-
vey of security in the context of Cloud storage services is provided by Cachin [5]. 
An exhaustive Cloud security survey has been presented in [23, 37].

A fundamental reference for Cloud security is the work on colocation by Ristenpart 
[34]. This work shows that it is possible to instantiate an increasing number of guest 
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VMs until one is placed coresident with the target VM. Once successfully achieved 
coresidence, attacks can extract information from a target VM on the same machine 
using timing measurements [14]. An attacker might also actively trigger new victim 
instances exploiting Cloud auto-scaling systems. Ristenpart shows that it practical 
to hire additional VMs whose launch can produce a high chance of coresidence with 
the target VM. He also shows that determining coresidence is quite simple.

Most integrity monitoring and intrusion detection solutions can be successfully ap-
plied to Cloud computing. File system integrity tools and intrusion detection systems 
such as Tripwire [25] and AIDE [1] can also be deployed in VMs, but are exposed to 
attacks possibly coming from a malicious guest machine user. Furthermore, when an 
attacker detects that the target machine is in a virtual environment, it may attempt to 
break out of the virtual environment through vulnerabilities in the VMM. Most pres-
ent approaches leverage VMM isolation properties to secure VMs by using various 
levels of virtual introspection. Virtual introspection is a process that allows to observe 
the state of a VM from the VMM. Syringe [7] makes use of virtualization to observe 
and monitor guest kernel code integrity from a privileged VM or from the VMM. 
However, a number of solutions are available for the guest code to realize it is running 
in a honeypot VM by Pek [33] and Kapravelos [24]. BVMD [30] aims at detecting 
kernel rootkits by monitoring the integrity of kernel code. However, BVMD does 
not protect against kernel data attacks. Most proposals have limitations that prevent 
them from being used in distributed computing scenarios (e.g., supports for only one 
guest per each host) or just do not consider the special requirements or peculiarities 
of distributed systems. In an effort to make nodes resilient against long-lasting at-
tacks, self-cleansing intrusion tolerance (SCIT) [4] treats all servers as potentially 
compromised (since undetected attacks are extremely dangerous over time). SCIT 
restores servers from secure images on a regular basis. The drawback of such a system 
is that it does not support long-lasting sessions required by most Cloud applications. 
Similarly, PipeCloud [43] creates redundant server copies which can periodically be 
refreshed to increase the resilience of the server. This approach combines proactive 
recovery with services that allow correct replicas to react and be recovered when there 
is a sufficient probability that they have been compromised. Along with the many 
advantages brought by virtualization, there are additional technological challenges 
that virtualization presents, which include an increase in the complexity of digital 
forensics investigations and questions regarding the forensics boundaries of a system.

Transparent Cloud protection system (TCPS) [28] introduces fundamental re-
quirements for a VM monitoring system [31]. In particular, the monitoring sys-
tem is protected inside the hypervisor in order to be as transparent as possible to 
guests. ACPS [29] extends TCPS and enjoys unique features, such as a synchronous 
warning asynchronous delayed response (SWADR) approach, where the increased 
decoupling of action and reaction, the increased immunity and integrity of the plat-
form, and the support for accountability help achieving effectiveness and efficiency 
of active monitoring of Cloud resources.

Most of the solutions described in this section is general enough to be applied 
the present and future Cloud scenarios. In the light of the state-of-the-art solutions 
presented here, in the following section we briefly introduce and discuss relevant 
new trends that will be increasingly common in the future.
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10.5 � Visionary Thoughts for Practitioners

This section introduces concepts that will be increasingly common in the years to 
come; together with novel security issues (see Table 10.3). One relevant topic is 
mobile virtualization for small devices such as smartphones, smart watches, and 
tablets, that are carried everywhere by its owner. As such, they are often referred 
to as bring your own device (BYOD) since their owner usually carries them even 
inside a company’s secure perimeter or in general at work. Present section also 
shows the practitioner how to make use of VMs for controlling applications’ behav-
ior. Further, this section highlights the usage of Cloud virtualization honeypots for 
malware collection and for forensics purposes. In fact, malware can be analyzed and 
dissected based on the interaction with the emulated virtual environment.

Reports from different market analysts predict that PCs will no longer be the 
primary digital device for most users in the next few years [39]. This implies that 
most users will make use of thin lightweight devices to access digital information 
stored and computed in the Cloud. Some more pervasive broader device perspec-
tives that include smartphones and tablets and many other consumer devices that 
render the Cloud a fundamental resource. Emerging Cloud services will become the 
glue that connects heterogeneous devices that users choose to access during the dif-
ferent aspects of their daily life. The trends that Gartner foresees for the Cloud also 
induce novel security issues, as indicated below:

This new approach in computing will have a relevant impact on the client 
computing, both as regards users’ personal digital life and business activity.

10.5.1 � BYOD and Virtualization

The mobile devices that are pervasively present in the personal life of everybody 
also enter the company/enterprise boundaries. As such they can hide malware or 
eavesdrop sensitive data to the outside world. Unfortunately, the enterprises have 
little or no control over their personnel’s mobile device data and application content 
and integrity. One possible approach is to ban such devices altogether from within 
enterprise boundaries. Another, less drastic novel approach is to remotely attest in-
tegrity and compliance of the employee’s mobile device via novel secure virtualiza-
tion mechanisms.

While software integrity attestation is quite advanced in the x86 PC technology, 
the ARM architecture that is the most widespread on mobile devices still offers 
fewer guarantees as regards software integrity and compliance. However, the per-
spective is good as ARM is increasingly supporting smart virtualization extensions 
that enable the implementation of reliable VM hypervisors that can run trusted VMs 
even on mobile/handheld devices [36].

Lightweight virtualization systems will be able to control the execution mode 
of the mobile device by imposing the exclusive execution of a specific VM when 
the device is inside the enterprise boundaries. The same VM will not be able to 
operate outside such boundaries. This way relevant sensitive information would 
transparently be kept under control.
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10.5.2 � Virtual Mobile Honeypots and Forensics

More and more often, smartphones are relevant targets of civil and criminal 
investigations. Currently, there are several tools available to acquire forensic 
evidence from smartphones. Most of these tools require a destructive physical ac-
cess or physical connection to the device. However, secure virtualization can be 
used to access live data without interfering with regular phone activity and thus al-
lowing live mobile forensics. LiveSD Forensics [6] is an example of ondevice live 
data acquisition of the RAM and the EEPROM of Windows mobile devices. LiveSD 
Forensics uses a standard SD-card equipped with tailored code to perform the data 
acquisition. Unfortunately, LiveSD generates a memory alteration, albeit small.

Virtualization allows to study and classify malware in a controlled way by 
means of mobile honeypots. In fact, similarly to mobile forensics, mobile virtual-
ization will be used extensively to attract malware and study its behavior [41] at 
the same time protecting the device integrity through isolation features. As future 
mobile hardware will be powerful enough to allow the concurrent execution of 
multiple VMs, different levels of security can be associated to different VMs as to 
block malware spreading.

10.5.3 � ARM CPUs for the Cloud

The virtualization extensions of ARM CPUs provide the basis for addressing the 
needs of both client and server devices for the partitioning and management of 
complex software environments into VMs. ARM CPUs have been wildly success-
ful in embedded applications, cell phones and in tablet devices, but now the recent 
ARM server market is flourishing. Cloud computing and other data or content ori-
ented solutions increase the demand on the physical memory system from each 

Table 10.3   Cloud trends and induced security issues
Trend Security issues
Virtualization. Virtualization allows users to 
make use of heterogeneous devices to access the 
same or novel services at a reduced cost

The isolation level allowed by virtualization 
is far from perfect and potentially induces 
integrity and DoS issues

BYOD-ification. Handheld or wearable devices 
are carried everywhere by (un?)aware users

Untrusted devices with a wide range 
of sensors can pervasively eavesdrop 
information

Personal Cloud. Personal, self-service Clouds 
allow users to create tailored virtual workspaces, 
pervasively available on multiple devices [38]

The ease of creation of self service Clouds 
exposes to security issues in case resources 
are shared and are not properly and constantly 
managed

Mobility. Improved mobile devices allow per-
forming traditionally PC-based tasks pervasively 
on different devices

Mobile devices are more exposed to vulner-
abilities that traditional PCs as protection 
mechanisms are less advanced

Remotization. Apps can be used to allow legacy 
applications work on a larger range of devices 
and platforms

Migrating legacy applications to the Cloud 
moves the data away from the user to the 
Cloud. As such it is exposed to eavesdropping
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VM. This is the main reason why ARM has extended the 32-bit Architecture to sup-
port 40-bit physical addressing and now by introducing a 64-bit ARM architecture. 
This happens with the introduction of the new AArch64 execution state in version 
8 of the ARM architecture. AArch64 is a new architecture state complete with a 
new A64 instruction set. The price-performance and power-per-watt convenience 
of novel 64-bit ARM CPUs suggests that many future Cloud servers will be built 
upon such technology, thus shifting the focus away from traditional x86 architec-
tures. This will have an impact on Cloud services as virtualization software will 
have to adapt to the new instruction set architectures (ISA), possibly introducing 
new bugs and security issues. Further, the ARM CPUs will feature a much higher 
number of cores that present x86 CPUs, thus rendering multithreading issues vital 
for both security and performance Cloud services.

10.5.4 � A Way Forward

Because of the huge savings and computing agility that novel Cloud environments 
offer, large enterprises are starting to experiment with heterogeneous multicore 
Cloud computing into their existing IT systems and resources. For the newcomers 
aiming to consider leveraging future Cloud trends, the following best practices can 
be seen as a way forward. As regards, the perspective and the guidelines that can be 
followed in order to better exploit and manage future Cloud trends, the following 
best practices can be suggested:

•	 Evaluate technology internally—start deploying on premise as much as possible 
in order to gain experience and evaluate solutions without bias.

•	 Learn from others’ mistakes—adopting the practices that have been successful 
elsewhere but also keeping an eye on latest research results.

•	 Avoid vendor lock-in—aim towards open standards as they eventually lead to 
reduced migration costs as the technology evolves.

•	 Ensure security of data and information—This on of the major concerns on any 
nonprivate Cloud.

When deciding whether to deploy existing resources on a traditional Cloud or on 
novel approaches and technologies such as those introduced above, the following 
suggestions hold:

•	 Consider the enterprise applications, other systems and IT resources and explore 
new technology incrementally but pervasively.

•	 Leverage Public Cloud, together with Private Cloud technology in order to limit 
information exposure and guarantee reliability and scalability with an hybrid 
approach.

•	 Pay particular attention on how sensitive data is managed. Especially as regards 
novel technologies and approaches, the CP can be held responsible for any 
security incident might happen on untrusted platforms.
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10.6 � Semantic Introspection and Modeling VM Behavior

Monitoring key Cloud components that would be targeted or affected by attacks 
is vital in order to protect the VMs and the Cloud infrastructure [26]. By either 
actively or passively monitoring key VM components any possible modification to 
VM data and code can be traced and recorded.

The approach depicted in Fig. 10.2 is an example of advanced transparent pas-
sive tracing and recording of VM events from the hypervisor [29]. Any relevant 
event or status change is recorded by an event interceptor (IWR) and it is then stored 
in a pool of recorder warnings (WP) where the collected information is asynchro-
nously evaluated (evaluator) and, if needed, a reaction is triggered (act) according to 
a chosen policy (it can be merely passive and transparent or blocking and more vis-
ible). This approach enables a deeper evaluation of the relationship among events 
to better detect the cause of anomalies. Further it can be extended by making use of 
additional computing resources.

Providing an adequate level of resilience to Cloud services is a challenging 
problem due to the complexity of the environment and the need for efficient solu-
tions that could preserve Cloud benefits over other solutions. A novel interesting 
approach is to make use of virtualization to effectively build a live model of the 
VM and of its applications. CloRExPa [21] provides a customizable resilience 
service solution for Cloud guests, using an execution path analysis approach. In 
particular, CloRExPa can trace, analyze and control live VM activity, and inter-
vened code and data modifications, possibly due to either malicious attacks or 
software faults. Execution path analysis allows the VMM to trace the VM state 
and to prevent such a guest from reaching faulty states. CloRExPa makes use of 
scenario graphs.

Figure 10.3 shows a small scenario graph that has been automatically inferred 
node by node using a monitoring tool to infer state changes and activity from a 
real VM. Later such high level information can be used to foresee if a pattern or 
execution path leads to a fault. In this case a wide range of countermeasures can 
be adopted, according to the relevance of the protected VM and to the status of the 
system/monitoring tool.

This trend towards semantic introspection of VM activity is a very active field 
also as regards mobile devices in the Cloud [7]. This is the way to go for enabling 
control over possibly untrusted mobile Cloud nodes/applications. In fact, as dis-
cussed above also for BYOD untrusted devices, either they have to be banned alto-
gether from the enterprise or enhanced semantics-aware introspection has to be put 
in place to prevent them from leaking sensitive information. Outside of the enter-
prise, semantic introspection allows legitimate users to regain control over their de-
vice internals. This approach will help detect and react to malware and to backdoors 
that are put in place even by trusted software or apps [36].
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Fig. 10.2   SWADR approach to VM and service monitoring [29]

 

Fig. 10.3   Modeling resource activity and status through scenario graphs
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10.7 � Future Research Directions

This section highlights the future trend of virtualization approaches in the Cloud. In 
particular, it introduces the novel technological opportunity of virtualization support 
for the ARM CPU platforms that is gaining momentum in the server and Cloud 
market. In addition, a perspective over novel multicore technologies in the Cloud is 
depicted. An overlook is given on at the emerging GPU-Cloud trend to summarize 
its potential security issues. This allows to suggest solutions to the security issues of 
such new platforms, especially as regards hardware virtualization support. Finally, 
this section also introduces the issues related to effective randomness in the Cloud 
that are due to the reuse of VM images.

10.7.1 � Manycore Computing for the Cloud

Apart from ARM multicore CPUs a rich set of massively multicore (also known 
as manycore) computing devices will be increasingly present in the future Clouds. 
GPU feature hundreds of processing cores that allow speeding up parallel tasks. 
GPUs usually support their own ISA. Another relevant architecture, proposed by 
Intel, is the Intel many integrated core architecture (MIC) featuring hundreds of 
simplified x86 cores. This choice should ease portability and compatibility with 
legacy Cloud applications.

Some of the most relevant opportunities that the practitioner will be able to 
leverage in the future heterogeneous multicore Cloud are:

•	 Efficiently Exploiting Virtualization: securely and efficiently sharing of new 
Cloud resources is not easy. However, efficiently virtualizing distributed 
heterogeneous computing in the Cloud is an opportunity to improve Cloud 
security and reliability.

•	 Easing Access to Resources: allowing seamless access to novel technologies is 
vital for their success. Novel technological contributions are still to come that 
will ease distributed computing inside the Cloud.

•	 Monitoring Shared Resources: in order to allow efficient and secure usage of 
multicores, such resources have to be constantly monitored for usage patterns 
and abuse/misconfiguration, since sharing resources also induces security and 
privacy issues.

•	 Exploting Redundancy: the availability of a much larger quantity of computing 
resources allows using them for a number of novel applications, such as compu-
tation replication for reliability and availability or proactive computing [22] for 
most different possible scenarios.
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10.7.2 � Effective Randomness for the Cloud

Cloud SaaS and PaaS providers, but also IaaS usually deploy identical clones of 
the same VM. The lifecycle of VMs involves freezing and reviving the very same 
images for the same or different tenants. As a consequence, the internal random pool 
for clone VMs is most probably the same for different VMs [35]. This issue can be 
exploited by an adversary to guess the value of generated keys for cryptographic 
protocols. In order to address such issue, the CP or SP should try to increase the 
number of events fed to the entropy pool of VM operating systems as soon as they 
are deployed, so as to provide an adequate level of security.

10.7.3 � Novel Cloud Application Scenarios

Personal Cloud approaches where resources are contributed to the Cloud pervasively 
from distributed remote locations [38] such as Clouds@Home [8] provide means 
for the creation of open, interoperable Clouds for supporting scientific pur-
poses and other general purpose Clouds. Volunteer computing benefits can be 
experienced in public administration and open communities (e.g., social networks, 
peer-to-peer). Enterprises would also partly benefit from Clouds@Home: comput-
ing infrastructures would be available on demand especially in small and medium 
enterprises. It would be possible to implement a datacenter with local, existing, 
and off the shelf, resources. This would help reduce and optimize business costs 
according to quality of service (QoS)—service level agreement (SLA) policies, 
improving performances and reliability. For example, this paradigm will allow to 
deal with request peaks: Clouds@Home data centers could be sized for the regular 
workload, whereas worst cases (peaks) could be managed by renting computing 
resources from large CPs.

10.8 � Conclusion

Cloud computing was born out of the evolution of virtualization technology. As such, 
it offers similar benefits and suffers from similar issues, mostly regarding security, 
privacy, and isolation. Advantages are many but there are also challenges and 
issues, related to service management, process monitoring, infrastructure reliability, 
information security, data integrity, and business continuity. The way forward for 
CPs is to integrate transparent auditing and monitoring of Cloud resources. This ad-
dition requires devising and deploying further enhanced virtualization approaches 
as well as making use of additional computing resources such as novel multicore 
CPUs and GPUs. These ones will possibly ease the management of integrity and se-
curity of Cloud resources. Once this is achieved, enterprises will be more confident 
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about migrating to Cloud environments and they will be able to fully leverage the 
benefits of such technology in the next few years.

The way forward for the enterprise is to plan a strategy for integrating novel 
resources into Cloud offerings, to have appropriate internal knowledge of Cloud 
mechanisms, to correctly align the IT resources with applications, to follow 
best practices and, strategically to think in terms of moving towards distributed 
heterogeneous computing. Once, these steps are taken, the enterprise will be well 
on its way to achieve benefits that the Cloud paradigm offers and enjoy the new 
opportunities that novel Cloud technologies offer.
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Abstract  Cloud Computing presents an efficient, on-demand and scalable way to 
integrate computational resources. However, existing Cloud paradigm is increas-
ingly transforming the information technology landscape, and organizations and 
businesses are exhibiting strong interest in software-as-a-service (SaaS) delivery 
model. This enables application service providers to lease data centre capabilities 
for deploying applications depending on quality of service (QoS) requirements. 
However, it still remains a challenging task to provide QoS assured services to 
serve customers with best quality, while also guaranteeing the maximization of the 
business objectives to service provider and infrastructure provider within certain 
constraints. To address these issues, this chapter proposes building a data warehouse 
of QoS to achieve better service matching and enhance dynamic service composi-
tion. The proposed QoS data warehouse (QoSDW) model supports the following: 
ensures a deep analysis of the service’s interior structure and properties through 
online database analysis; facilitates reasoning about complex service weakness 
points; supports visual representation of analysis results; and introduces a new QoS 
factor for study.

Keywords  Cloud service · Data warehouse · QoS · Quality of service · Analysis · 
Composition · Service selection
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11.1 � Introduction

Cloud computing is a model for allowing expedient, on-demand network access to a 
shared collection of configurable computing resources (e.g. networks, servers, stor-
age, applications and services) that can be rapidly released with minimal manage-
ment effort or service provider interaction. Cloud computing promotes availability 
and is composed of three service models. These services in industry are referred 
to as infrastructure-as-a-service (IaaS), platform-as-a-service (PaaS) and software-
as-a-service (SaaS), respectively. Cloud environments aim to power the next gen-
eration data centres by exposing them as a network of virtual services (hardware, 
database, user-interface and application logic) so that users are able to access and 
deploy applications from anywhere in the world on demand at competitive costs 
depending on users’ QoS requirements [1].

Cloud computing presents an efficient managerial, on-demand and scalable way 
to integrate computational resources. However, existing Cloud architecture lacks 
the layer of middle-ware to enable dynamic service composition. Service composi-
tion provides a current technology for developing complex applications from exist-
ing service components. Prediction of the QoS of composite services makes it pos-
sible to determine whether the composition meets the non-functional requirements 
[2]. Previous researches have focused on service composition and integration in 
terms of services, orchestration and choreography.

As SaaS gains greater acceptance, user cloud expectations start moving from 
best-effort service to guaranteed service. Hence, it is foreseen the development of 
QoS as a dominant consideration for cloud service adaptation. QoS has many facets 
which depend on the aspect that is crucial for the user. Application specific perfor-
mance includes, e.g. response time or throughput, application security varying from 
data integration and consistency to privacy and service availability, which are some 
of the QoS considerations that clouds need to address. Such qualities are of inter-
est to service providers and service consumers alike. They are of interest to service 
providers when implementing multiple service levels and priority-based admission 
mechanisms. The agreement between the customer and the service provider is re-
ferred to as the Service Level Agreement (SLA). An SLA describes agreed service 
functionality, cost and qualities [3]. This work proposes building a data warehouse 
of QoS to manage the matching between customer and service provider. The ob-
tained data warehouse gives a better analysis level, reasoning and decision-taking 
before selecting a cloud service.

This chapter is organized as follows. Section  11.2 describes some previous 
methods of service selection. Section 11.3 discusses the service selection structure. 
In Sect. 11.4, quality of service data warehouse (QoSDW) model components are 
introduced, and Sect.  11.5 highlights the benefits that this model promises. The 
model simulation and the results are shown in Sect.  11.6. In the last section on 
conclusions, the main ideas of this chapter are summarized and the future perspec-
tives considered.
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11.2 � Background

QoS has received much interest in cloud service research because of the rapid in-
crease of the number of services and the approximate equal qualities of the dis-
covered services. Several research activities focused on how to benefit from the 
QoS in the service selection process. Some of these studies sought to extend the 
Universal Description, Discovery and Integration (UDDI) Registry to support ser-
vice consumers by comprehensible QoS information. Firstly, it is relevant to men-
tion the service selection algorithms used by the QoS broker for sequential com-
posite flow models with only one QoS constraint (i.e. Throughput). There are two 
main approaches we can use to select the optimal services for each component of a 
business process. The first is the combinatorial approach [4], modelling the prob-
lem as a Multiple Choice Knapsack Problem (MCKP). To solve the MCKP, three 
methods are proposed: exhaustive search, dynamic programming and a minimal 
algorithm for MCKP and performance study method. The second approach is the 
graph approach, modelling the problem as the constrained shortest path problem in 
the graph theory. The proposed methods to solve the shortest path algorithm are: 
Constrained Bellman-Ford (CBF), constrained shortest path (CSP) and breadth-
first-search (BFS).

There are also a number of other research studies that dealt with the service 
selection problem. Keskes et  al. [5] proposed a model of automatic selection of 
the best service provider, which is based on mixing context and QoS ontology 
for a given set of parameters of QoS. In 2010, Raj and Saipraba proposed a ser-
vice selection model that selects the best service based on QoS constraints [6]. 
Squicciarini et al. (2011), furthermore, studied the privacy implication caused by 
the exchange of a large amount of sensitive data required by optimised strate-
gies for service selection [7]. Garg et al. proposed the SMICloud framework for 
comparing and ranking cloud services by defining a set of attributes for the com-
parison of mainly IaaS cloud offerings [8], while Hussain et al. proposed a multi-
criteria decision-making methodology for the selection of cloud services [9]. To 
rank services, they matched the user requirements against each service offering 
for each criterion. Wang et  al. proposed a cloud model for the selection of Web 
services [10]. This model relies on computing what the authors called QoS un-
certainty and identifies the most appropriate Web services using mixed integer 
programming. In 2012, Anita Mohebi proposed a vector-based ranking model to 
enhance the discovery process of services [11]. Rehman et  al. proposed a cloud 
service selection framework that relies on QoS history [12]. A heuristic service 
selection method, called ‘Bee Algorithm’, was proposed by Karry et al., which 
helped to optimize the discovery and selection of a service that meets customer 
requirements [13].

In this chapter, we adopt the Service Oriented Architecture to build a data ware-
house of quality of services. It enables application of an advanced level of analysis 
and optimization in discovering cloud services.
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11.3 � Cloud Service Selection Structure

Cloud computing can be defined as a model for enabling convenient, on-demand 
network access to a shared pool of resources that can be rapidly provisioned and 
released with minimal management effort or service provider interaction. A cloud 
environment is characterized by system level, Cloud Broker level and user middle-
ware level (as shown in Fig. 11.1).

The user Middle-ware level includes the software frameworks such as Web 2.0 
Interfaces and provides the programming environments and composition tools that 
ease the creation, deployment and execution of applications in Clouds. The system 
level is composed of thousands of servers, each with its own service terms man-
agement systems, operating platforms and security levels. These servers are trans-
parently managed by the higher level virtualization [14] services and toolkits that 
allow sharing their capacity among virtual instances of servers. The Cloud Broker 
level implements the platform level services that provide runtime environment en-
abling Cloud computing capabilities to build cloud services. The Cloud Service 
Broker performs several management operations to deliver personalized services 
to consumers. These operations are: security and policy management, access and 
identity management, SLA management, provision and integration management. 
The security and policy manager is responsible for managing different kinds of 
policies such as authorization policies and QoS-aware selection policies of service 
providers. The access and identity manager is responsible for the accessing servic-
es and respect the identity rules of services. The SLA manager directs the conces-
sion process between a consumer and a selected SaaS provider in order to reach 
an agreement as to the service terms and conditions. The provision and integra-
tion manager is responsible for implementing different policies for the selection 
of suitable SaaS providers, based on the consumer’s QoS requirements and the 
SaaS providers’ QoS offerings. The back-end database stores sustain information 
about service policies, consumer profiles, SLAs, Registry and dynamic QoS infor-
mation. Cloud broker layer works to identify the most appropriate cloud resource 
and maps the requirements of application to customer profile. Its job can also be 
dynamic by automatically routing data, applications and infrastructure needs based 
on some QoS criteria like availability, reliability, latency, price, etc. On the Broker 
side, service properties are stored as a combination of functional and non-func-
tional properties. The functional properties relate to the external behaviour of a 
service such as: service inputs and outputs, service type and the information re-
quired for connecting to the service. However, the non-functional properties are 
summarized by the QoS.

By dynamically provisioning resources, Cloud broker enables cloud comput-
ing infrastructure to meet arbitrary varying resource and service requirements of 
cloud customer applications. However, there are still imperfections regarding ser-
vice matching based on available services and customer profile requirements. The 
services selection problem is identified by an inaccurate QoS dependency and the 
utility of the imprecise domain of results suggested by QoS broker. As in [19], 
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services are ranked in many levels, such as Poor, Good and Excellent. It is based on 
Web Service Relevancy Function (WsRF), which is measured based on the weight-
ed mean value of the QoS parameters. Services are classified according to user’s 
invocations as follows:

•	 Excellent: Users accept to pay lower cost regarding better service qualities such 
as: response time, availability … etc.

•	 Good: Users pay normal cost for normal service qualities.
•	 Poor: Users accept worse cost with lower service qualities.

The QoS broker orchestrates resources at the end-points, coordinating resource 
management across layer boundaries. Based on the available technology, Service 
consumer is still incapable of a real analysis of the QoS based on the internal struc-
ture of complex service. Today’s service selection solutions do not focus on QoS 
support from the service requester view point, but they depend on service provider 
interpretation. Indeed, the current form of service selection is provider driven [15]. 
A consumer may interact with a composite service without knowing much about the 
qualities of the services that underlie it [16].

To improve the selection of a complex service, we propose to analyze the QoS 
of every sub-service, which shares in the composition of that service, using a 
QoSDW.

Fig. 11.1   Main layers of cloud service infrastructure
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11.4 � QoSDW Model

Nowadays, the cloud is full of a large number of cloud services. Some of these 
services are similar in goal and quality. Therefore, it is difficult to select best ser-
vice depending on the traditional QoS methods. To improve the service selection 
process, we propose a QoSDW model. The QoSDW model (described in Fig. 11.2) 
supports a better analysis of services before taking a selection decision. The QoS-
DW model extracts details about services stored in the service provider, and gives 
the service’s consumer the ability to discover the hidden facts about the properties 
of these services.

11.4.1 � Main Components

This section describes a model for the selection of a cloud service that can fulfill 
the service consumer request. In addition to the main cloud framework elements 
discussed in the previous section, the proposed QoSDW model adds a group of 
other components such as: QoSDW parser, schema manager, graph manager, QoS-
DW analyzer, QoSDW cube, analysis interface, service tree manager and report 
manager. These additional components are now briefly explained in the following 
paragraphs.

QoSDW Parser  QoSDW parser is simply a service business process parser. Based 
on the parsers outputs and the QoS at service provider, QoSDW schema and QoSDW 
graph are extracted and transported into the cloud broker to be stored in a specific 
database. Regarding the database tables, each row entry collects details about ser-
vice activities. It provides information about the current state name, current state 
properties (as My Role, Partner Role), PartnerLink, name of the operation being 
invoked, condition of a looping structural activity, current state number and next 
possible state numbers.

Schema Manager  This component is responsible for managing the QoSDW sche-
mas. The QoSDW schema is a star schema which is composed of a set of organized 
tables, and which has a main fact table and set dimensional tables. QoSDW schema 
consists of 22 dimensional tables as follows: Quality, Availability, ResponseTime, 
Documentation, BestPractice, Throughput, Latency, Successability, Reliability, 
Compliance, property, ServiceType, ServiceName, ExpiryDate, CreationDate, Ser-
viceFlow, Loop, Sequence, AndSplit, XorSplit, AndJoin and XorJoin table.

Graph Manager  Graph manager ensures transforming the output of parsing the 
service business into a directed acyclic graph. Also, it converts the obtained graph 
into a service tree. For example, Fig. 11.3 shows how SteamBoat service process 
diagram is transformed into a service tree. The service tree inserts a semantic layer 
into the service selection process.

QoSDW Cube  This is a data warehouse of quality and structure of both a service 
and its sub-services. It is accessed as a cloud service and supports users by details 
about the quality and flow of service through a special analyzer. It maps the idea of 
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the multidimensional data model to service selection model, through which it gives 
the service’s user the ability to apply a multidimensional query on the discovered 
set of services.

QoSDW Analyzer  QosDW analyzer works like an analysis tool. It monitors QoS 
changes and prepares analytical reports about QoS information stored in the 
QoSDW Cube. It gives the service consumer the right to query the QoSDW Cube 
through its interface.

Analysis Interface  It is a user interface application utilized to select cloud services 
(SaaS). It consists of a statistical form which allows a user to deal easily with large 

Fig. 11.2   QoSDW model components
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statistical data, through slice, dice, Drill Down/Up and Roll-up the statistical results. 
It communicates with the QoSDW analyzer and allows users to connect to the QoS 
data warehouse, at the cloud broker, and apply queries. When a service is selected, 
the selection interface connects the user to the required service via the SOAP/HTTP 
protocol.

Service Tree Manager  It supports a visual representation of the service’s tree. It 
communicates with the graph manager indirectly through the QoSDW analyzer. 
Based on the service graph, the analyzer supplies the user by the service tree.

Report Manager  Sometimes the service’s consumer needs ready reports that sup-
port their analysis. Report manager allows requesting two types of reports: the pri-
mary report gives analysis results about the quality of first level sub-services, and 
the advanced report supports a deep service tree analysis to detect a weak qual-
ity subservice (or fatal sub-service). Both reports are requested from the QoSDW 
analyzer.

11.4.2 � Formal Definitions

QoSDW is the base for a successful QoS analysis system. The concept of QOSDW 
starts by creating central locations for QoS storages followed by a permanent storage  
QoS that feed from various cloud providers. It ends by different levels of analysis, 
reporting and other Business Intelligence functions.

Fig. 11.3   Transforming SteamBoat service business process into a tree of sub-services

 



11  Quality-of-Service Data Warehouse for the Selection of Cloud Services 265

The main objective of a QoSDW model is to provide efficient analytical report-
ing on the quality of service. To qualify a service, the QoSDW depends on analyz-
ing the quality of its sub-services. QoSDW depends on the service business process 
to specify the structure of subservices. The key work in QoSDW model is to estab-
lish relations among business processes and qualities of cloud services.

Definition 1  A service business process is a tuple K = ( A, E, C, L) where:

A is a set of activities,
E is a set of events,
C is a set of conditions and L is a set of control links.

Let f: A → B be a function that assigns activities to types, where activities are ex-
tracted from the set of activity A = {sequence, flow, pick, switch, while, scope, in-
voke, receive, reply, wait, assign, empty, throw, compensate, exit}. Let I be a set of 
service information, where I = {service name, service type, service creation date, 
service expiry date).

Let g: P → I be a function which assigns service information to properties.

QoSDW utilizes an on-line analytical processing (OLAP) approach and performs 
analysis in conjunction with the operational database on a constant basis. The basic 
concept of OLAP model is to map the initial database schema to a multidimensional 
model. The QoSDW schema is structured as star (or snowflake) schemas.

Definition 2  A QoSDW schema is a tuple S = ( Q, P, B) where:

Q is a set of QoS, such that Q = {Response time, Availability, Throughput, Success-
ability, Reliability, Compliance, Best Practice, Latency, Documentation}. Here:

•	 P is a set of service properties, such that P = {ServiceType, ServiceName, Expiry-
Date, CreationDate}.

•	 B is a set of activity type, where B = {Loop, Sequence, AndSplit, XorSplit, And-
Join, XorJoin}.

•	 Let h be a function which assigns the values of QoS to elements of set Q.

The QoSDW graph adds a type of semantic knowledge when analyzing the quality 
of sub-services and covers indirectly the hidden service business process vague.

Definition 3  A QoSDW graph is a tuple G = ( Ni, Nf, N, F), where:

Ni is the node of the input, Nf is the node of output, N is the set of names of sub-
services and F is the set of service integration models. F = {Sequence, ANDSplit, 
XORSplit, loop, ANDJoin, XORJoin}.

Let m:B → F be a function that maps service activities to integration models.

The operations which are applied in the analysis phase of the QoSDW model are 
summarised by: Composition, Pairing, Projection and Restriction.

Composition takes as input two functions f and g, such that range ( f) C def( g), and returns 
a function g°f: def( f) → range ( g), defined by: ( g°f) ( x) = g( f( x)) for all x in def( f).

Pairing takes as input two functions f and g, such that def( f) = def( g), and returns a 
function f g def f range g∧ →: ( ) ( ), defined by:
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( )( ) ( ), ( ))f g x f x g x∧ =< > , for all x in def (  f ).

Projection is the usual projection function over a Cartesian product. Take function f: 
X → Y and g: X → Z with common domain X, and let π y and π z denote the projection 
functions over Y × Z:

Restriction takes as argument a functionand a set f: X → Y and a set D, such that DC 
X, and returns a function f/D: D → Y defined by: ( f/D)( x) = f( x), for all x in D.

11.4.3 � QoSDW Schema

The base of QoSDW schema is a finite labelled diagram whose nodes and connec-
tions satisfy the following conditions: there is only one root, at least one path from 
the root to every other node and all arrow labels are distinct. Our goal from the 
obtained QoSDW schema is to have an organized store of service qualities, proper-
ties and structure in which multidimensional queries can be applied. The proposed 
QoSDW schema consists of the following tables:

	 Fact table: Fact (service_id*, URI_type);
	 Table of dimension Quality: Quality (Quality_id*, Quality_value, foreign_ ser-

vice_id);
	 Tables of dimension Quality attributes:
	 Availability: Availability (avail_id*, avail_value, foreign_Quality_id);
	 Response time: ResponseTime (response _id*, response_time_value, foreign_

Quality_id);
	 Documentation: Documentation (Doc _id*, Documentation _value, foreign_

Quality_id);
	 BestPractice: BestPractice (practice_id*, practice _value, foreign_Quality_id);
	 Throughput: Throughput (throughput_id*, throughput_value, foreign_Quality_

id);
	 Latency: Latency (Latency_id*, Latency _value, foreign_Quality_id);
	 Successability: Successability (Successability_id*, Successability _value, for-

eign_Quality_id);
	 Reliability: Reliability (Reliability_id*, Reliability_value, foreign_Quality_id);
	 Compliance: Compliance (Compliance_id*, Compliance_value, foreign_Qual-

ity_id);
	 Table of dimension property: property (property_id*, property_value, foreign_ 

service_id);
	 Tables of dimension property attribute:
	 Type: ServiceType (ser_type_id*, type_value, foreign_property_id)/value: ser-

vice or sub-service
	 Name: ServiceName (ser_name_id*, ser_value, foreign_property_id);
	 ExpiryDate: ExpiryDate (ExpiryDate_id*, ExpiryDate _value, foreign_prop-

erty_id);

( ) ( ).f y f g and g z f gπ π° ∧ ° ∧= =
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	 CreationDate: CreationDate (CreationDate_id*, CreationDate_value, foreign_
property_id);

	 Table of dimension flow: ServiceFlow (flow_id*, service_flow_value, foreign_ 
service_id);

	 Tables of dimensional flow attribute:
	 Loop: Loop (loop_id*, input_service, output_service, service_stage, foreign_ 

flow_id)/ stages: start node, normal node or end node.
	 Sequence: Sequence (sequence_id*, input_service, output_service, service_

stage, foreign_ flow_id);
	 AndSplit: AndSplit (AndSplit_id*, input_service, output_service, service_stage, 

foreign_ flow_id);
	 XorSplit: XorSplit (XorSplit_id*, input_service, output_service, service_stage, 

foreign_ flow_id);
	 AndJoin: AndJoin (AndJoin_id*, input_service, output_service, service_stage, 

foreign_ flow_id);
	 XorJoin: XorJoin (XorJoin_id*, input_service, output_service, service_stage, 

foreign_ flow_id);

The proposed QoSDW schema, in Fig. 11.4, is a logical description of the entire 
multi-dimensional database. This schema is designed as a practical part of the pro-
posed QoSDW model. It includes the name and description of some QoS and basic 
integration types (such as: sequence, loop, … etc).

11.4.4 � Service Selection Based on QoSDW

Based on the QoSDW schema, the QoS data warehouse is built. Similar to the tra-
ditional discovery method, the service consumer requests a service and the service 
registry replies by a set of related service. If the QoS is not helpful to select the best 
service, the service consumer requests an OLAP analysis report about the quality 
of the discovered set of services. The QoSDW model consists of a special QoSDW 
analyzer which supports two types of reports about QoS. The first type is a prelimi-
nary report which provides information about the quality of first level sub-services. 
Figure 11.5 shows a visual representation given by the QoSDW analyzer about QoS 
of sub-services.

Sometimes the results of the initial report are not beneficial in designing a new 
composite service of better quality. Thus, the advanced QoS report is demanded by 
the service designer. As regards building the required report, the QoSDW analyzer 
applies some queries on data warehouse, which results in a service’s tree (refer to 
Fig. 11.3). Then, the analyzer utilizes a tree search algorithm to detect fatal sub-
services (as shown in Algorithm 1).
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Fig. 11.5   Visual representation of the initial report

 

Fig. 11.4   QoSDW schema
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The fatal service is a weak quality sub-service (its QoS is below the critical 
values), which causes weakness in the quality of the parent service. The existence 
of fatal sub service is sufficient for the service consumers not to select the parent 
service, because they pay their money for utilizing an infected service. Thus, the 
QoSDW models added a new quality attribute in the selection process—the num-
ber of fatal sub-services. Indeed, if there is a group of discovered services of equal 
QoS level, the service which has the least number of infected sub-services must be 
selected. In terms of infected services detection, the service designer is capable of 
rebuilding improved versions of these services, free of fatal sub-services.

Also, if the QoSDW analyzer reports are not helpful in selecting the best service, 
service consumers can apply their own queries on the data warehouse as described 
in the next section.

11.5 � QoSDW Benefits

Services with similar functionality may be accessible at different QoS levels. Thus, 
to build a service process, decisions must be made based on more specific compo-
nent at appropriate QoS levels. Consequently, QoSDW model benefits from the 
quality of every sub-service to qualify a complex cloud service. In the previous ap-
proaches, the discovered services are only qualified with no information about their 
internal flow of sub services. Conversely, the QoSDW model allows studying and 
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analyzing the weak sub-services which lead to bad qualities of parent service before 
making a selection decision. Compared with the traditional selection process, QoS-
DW is more advanced and both of service consumers and service providers may 
benefit from its facilities. On one side, service consumers are capable of applying 
a deep analysis concerning the service component before selection, using QoSDW 
analyzer reports and OLAP queries. On the other side, the QoSDW is also beneficial 
for cloud service providers; because service designers are capable of analyzing and 
detecting fatal sub-services that cause weakness in cloud processes.

To show the advantages of the QoSDW model from the queries’ prospective, 
we present an OLAP example, which is simulated as graph and algebraic queries. 
Consider a schema S, an OLAP query over S is a triple Q = ( x, y, z), satisfying the 
following conditions:

x and y are path expressions such that the source ( x) = source ( y) = root object.
z is an operation over the target of y.

The expression x will be referred to as the classifier of Q and the expression v as 
the measure of Q.

Figure 11.6 shows the QoSDW schema as an acyclic graph, such that the root is 
the object of an application, while the remaining nodes model the attributes of the 
object. Through queries, some functions (such as av, rt and dc) are used when in-
voking object. Concerning the online QoS analysis through QoSDW, OLAP queries 
are prepared using paths starting at the root object (Fact).

Fig. 11.6   The proposed QoSDW schema
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Through OLAP, service consumers can apply an advanced query such as:

•	 Q1: Ask for sub-services which utilise XORjoin integration when invoking other 
services and their Response Time greater than 80 ( ms) sorted by name of service.

	 Let us divide the query Q1:
−	 Ask for sub-services: pr o st.value = = ‘sub-service’
−	 Which utilizes XORjoin integration when invoking other services: qu o xj
−	 Their Response Time greater than 80 (ms): qu o rt. value > 80
−	 Sub-services are sorted by name of service: (pr o sn)^ (pr o st.value = =  

‘service’)
•	 Q1 = < ( pr o sn)^ ( pr o st.value = = ‘service’), (( pr o st.value = = ‘sub-service’) ^ 

( qu o xj) ^ ( qu o rt. value > 80)), sum > 

Considering the SteamBoat service (Sect.  11.3), the answer of the query Q1 is: 
Ticket_Process. For more details about the algebraic base of OLAP refer to [17].

11.6 � Simulation and Results

To facilitate understanding of the model, we discuss in this part an example of ser-
vice selection and simulation of selecting service based on the fatal service property.

11.6.1 � Service Selection Example Based on QoS

QoS consists of a group of properties, but for the purpose of simplicity, the example, 
in this section, examines just two of these properties (the service cost and service 
response time). For complex services, six basic integration models (Fig. 11.7) are 
considered and they are compatible with the business process of a service.

Fig. 11.8   Example of interior 
composition of the steamboat
 

Fig. 11.7   Basic integration models for complex cloud services
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Suppose a client is looking for a service to make a steamboat travel reservation 
(Fig. 11.8). Firstly, she or he needs to make a steamboat and hotel reservation and 
then apply for a visa ticket. If the visa is approved, he can buy the steamboat ticket 
and confirm the hotel reservation, otherwise, he will have to cancel both reserva-
tions. Also, if the visa is approved, he needs to make a car reservation. To com-
plete its job, this complex service ( steamboat service) invokes other services such 
as: steamboat-reserve, hotel-reserve, ticket-process, travel-confirm, hotel-confirm, 
car-reserve, travel-cancel and hotel-cancel.

A cloud service designer wants to compose a service that serves all types of 
online travel reservation. One of the used services in this composition is Steam-
Boat service, which serves an online boat reservation. However, several cloud 
providers support such type of boat service (Table 11.1). In this case, the service 
consumer depends on the QoS (or QoSBroker) to select the best service. While, 
services are divided into three classes: Excellent; users accept to pay lower cost 
( 0.001 $ < Cost < 0.009 $) for better service qualities, Good; users pay the regular 
cost ( 0.01 $ < Cost < 0.09 $) for normal service qualities, and Poor; users accept 
worse costs ( 0.1 $ < Cost < 0.9 $) with lower service qualities.

Based on the service properties mentioned in Table 11.1, the service consumer 
will choose the steamboat service because it is evaluated as best service (Class: 
Good) by QoSBroker. But how was the QoS calculated?

The QoS calculations are based on Cardoso’s QoS formulas [18]. This provides 
insights into computational details about the estimation of some QoS in the service 
selection process such as, Response Time and Cost where:

•	 Response Time ( T): refers to the time taken by a request to be processed by a 
task. For sequential tasks, two tasks ti and tj, which are in sequence, may be 
reduced to a single task tnew, so that: T(tnew) = T(ti) + T(tj). In a parallel system, 
multiple tasks (ti, tj,…, tn) are reduced to their maximum according to the for-
mula: T(tnew) = Maxiε(0,1,…,n){T(ti)}.

•	 Cost ( C): is considered as a cost incurred by the service provider when a task is 
executed. For sequential tasks ti and tj, the new task is calculated according to 
the following formula:C(tnew) = C(ti) + C(tj). While in parallel tasks ti and tj, the 
cost is obtained using this formula: C(tnew) = ∑1≤ i ≤ n C(ti).

The evaluation of a service depends on its entire structure and the quality of the 
other sub-services invoked to compose such service. In our example, the proper-
ties of the steamboat service are based on the properties of its sub-services such as 
Steamboat-Reserve and others (as shown in Table 11.2).

Service name Cost ($) Response time (ms) Class
Steamboat 0.088 106 Good
Travel via steamboat 0.012 130 Good
Manage steamboat 0.18 183 Poor

Table 11.1   QoS (cost and 
response time) of three 
services
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11.6.2 � QoSDW Simulation

This section explains the results of the QoS data warehouse simulation based on 
the proposed QoSDW model. To implement this simulation, we use SQL server 
2012, Eclipse indigo, Apache Tomcat Server (v.7), Microsoft visual studio 2012 and 
windows Azure.

This simulation discusses selection of a SteamBoat service, which was described 
in Sect. 11.5.1 above, based on the fatal service property that resulted from the ap-
plication of QoSDW model.

The service consumer requests a steamboat service and the cloud broker reply 
by a list of three discovered services: SteamBoat, TravelViaSteamboat and Mana-
geSteamboat (see Table  11.1 in Sect.  11.5.1). In the traditional service selection 
process, the QoSBroker calculates the QoS of the discovered set service, based on 
the service provider measures. Figure 11.9 shows the variation of QoS (Response-
Time, Availability, Throughput, Successability, Reliability, Compliance, BestPrac-
tice, Latency, Documentation) of a three services ( SteamBoat, TravelViaSteamboat 
and ManageSteamboat) given by the QoSBroker.

As a result, the QoSBroker marks services SteamBoat and TravelViaSteamboat 
as Good services. However, it marks ManageSteamboat as a Poor service. Based 
on the QoS primary results, the weak service is excluded, while the QoS of the 
two other good services is studied, in order to select the best of them. Indeed, the 
traditional selection method shows that the QoS of the two good services is approxi-
mately equal. Thus, it is difficult to decide which service is better.

Based on the QoSDW model, the service consumer is capable of requesting more 
analysis details about the discovered services. Indeed, the QoSDW analyzer sup-
ports the consumer by a preliminary report, which analyses the QoS of first sub-
service level of the discovered set of services.

Figures 11.10 and 11.11 show, respectively, the variation of quality of sub-ser-
vices of both SteamBoat and TravelViaSteamboat services.

Sometimes, the first report is not beneficial in selecting the best service, so a 
more advanced report is requested from the QoSDW analyzer. In our example, the 
QoSDW analyzer, in its second report, detects a fatal sub-service in the tree of 
TravelViaSteamboat service (as shown in Fig. 11.11, the SteamBoatTravel service 
suffers from weak qualities in which: Response Time = 65  ms, Throughput = 17  

Service name Cost ($) Response time (ms) Class
Steamboat-reserve 0.21 190 Poor
Hotel-reserve 0.019 112 Good
Ticket-process 0.015 125 Good
Travel-confirm 0.009 122 Excellent
Hotel-confirm 0.007 99 Good
Car-reserve 0.012 84 Good
Travel-cancel 0.003 114 Excellent
Hotel-cancel 0.002 119 Excellent

Table 11.2   QoS (cost and 
response time) of steamboat 
sub-services
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invokes per second, Latency = 34  ms, Availability = 53 %, Reliability = 40 % and 
Best Practice = 43 %). The final report concludes that the SteamBoat service is the 
best service to be selected. However, if sometimes results are not convincing, a 
service consumer can query the QoSDW analyzer, using OLAP queries, and build a 
much advanced cloud service analysis (as discussed in Sect. 11.4).

Fig. 11.10   QoS of the sub-services of SteamBoat service

 

Fig. 11.9   Difference in QoS values among three cloud services ( SteamBoat, TravelViaSteamboat 
and ManageSteamboat)
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11.7 � Conclusion

Clouds aim to control the next generation data centres by exposing them as a net-
work of virtual services. Cloud users are able to access and deploy applications 
from anywhere in the world on demand at competitive costs depending on user 
requirements. With the volatile growth of the number of cloud services published 
over the web, it is difficult to select a suitable service among the candidate cloud 
services which offer similar functionalities. QoS is considered as the main non-
functional criterion for service selection. However, there are still some limitations 
face QoS-based cloud service selection process. Indeed, improving these limita-
tions need much time and research efforts to modify the cloud processing infrastruc-
ture. Smartly, this chapter introduces a QoSDW model that improves the service 
selection process without altering Cloud standards. A QoSDW is a centralized stor-
age that combines QoS information from various Cloud sources. Mainly, it helps 
solve the Cloud service selection problem through processing of large numbers of 
historical QoS of complex Cloud services in a highly-efficient manner. QoSDW 
provides an environment that supports Cloud infrastructure since it is completely 
designed for QoS analytical-reporting and decision-support. As a summary of the 
flow QoSDW model, the service business processes are mapped into star relational 
database schemas at the Cloud provider side. At the Cloud broker, an OLAP Cube is 
implemented using the stored QoSDW schemas. Based on advanced analysis levels 
of Cube content, the QoSDW analyzer monitors Cloud services and returns up-to-
date reports about any modification occurs in their qualities. As a future work, our 
goal is to achieve a logic layer of cloud services, which support service autonomy 
in case of selection and composition procedures.

Acknowledgement  This work is supported by the Department of Computer Science at the Uni-
versity of Quebec at Chicoutimi, the Ecole Doctorale des Sciences et des Technologies at the 
Lebanese University and the AZM association.

Fig. 11.11   QoS of the sub-services of TraveVialSteamboat service
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Abstract  Cloud Computing offers on-demand access to computational, infra-
structure and data resources operated from a remote source. This novel technology 
has opened new ways of flexible resource provisions for businesses to manage IT 
applications and data responding to new demands from customers. In this chapter, 
we provide a general insight to the formation and interoperability issues of Cloud 
Federations that envisage a distributed, heterogeneous environment consisting of 
various cloud infrastructures by aggregating different Infrastructure-as-a-Service 
(IaaS) provider capabilities coming from both the commercial and academic area. 
These multi-cloud infrastructures are also used to avoid provider lock-in issues for 
users that frequently utilize different clouds. We characterize and classify recent 
solutions that arose from both research projects and individual research groups, and 
show how they attempt to hide the diversity of multiple clouds and form a unified 
federation on top of them. As they still need to cope with several open issues con-
cerning interoperability; we also provide guidelines to address related topics such 
as service monitoring, data protection and privacy, data management and energy 
efficiency.

Keywords  Cloud computing · Cloud Federation · InterCloud · Interoperability · 
Data protection · Energy efficiency · IaaS

12.1 � Introduction

Cloud computing is a diverse research area that encompasses many aspects of shar-
ing software and hardware solutions, including computing and storage resources, 
application runtimes or complex application functionalities. The concept of Cloud 
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computing has been pioneered by successful commercial companies with the 
promise to allow elastic construction of virtual infrastructures, which attracted users 
early on. Its technical motivation has been introduced in [1, 2]. Cloud solutions 
enable businesses with the option to outsource the operation and management of IT 
infrastructure and services, allowing the business and its employees to concentrate 
on their core competencies. As new products and technologies are offered in the 
near future, Gartner estimates that $112 billion will be spent by the year 2015 by 
businesses and individuals on Cloud Computing offerings from service providers 
such as Amazon, IBM and Microsoft [3].

In this chapter, we first gather relevant architectural views of Clouds to give an 
insight where interoperation could be enabled to form federations, and then focus 
on and characterize existing solutions of Cloud Federations that envisage a dis-
tributed, heterogeneous environment consisting of various cloud infrastructures 
by aggregating different Infrastructure-as-a-Service (IaaS) provider capabilities 
coming from both the commercial and academic area. Nowadays, cloud provid-
ers operate geographically diverse data centers as user demands like disaster re-
covery and multisite backups became widespread. These techniques are also used 
to avoid provider lock-in issues for users that frequently utilize multiple clouds. 
By this work we aim at revealing the important properties and capabilities of re-
cent cloud reports and solutions dealing with federations. These approaches try to 
hide the diversity of multiple clouds and form a unified federation on top of them. 
Today’s large systems need new, interoperable approaches to allow their efficient 
operation in terms of cost, energy consumption and balanced resource utilization, 
which have also been emphasized by the European Commission [4]. Therefore, we 
also highlight the open issues concerning the interoperability of the participants of 
these federative approaches, such as service monitoring, data protection and priva-
cy, data management and energy efficiency. Finally, we provide hints where future 
research should be driven to achieve the final goal of interoperable Cloud Federa-
tions.

The remainder of this chapter is organized as follows: Section 12.2 introduces 
and analyzes the architectural views of standardization bodies and relevant projects, 
while Sect.  12.3 summarizes and classifies state-of-the-art approaches aiming at 
Cloud federations. Section 12.4 introduces four relevant interoperability research 
issues of federations with possible solutions towards practical realizations. Finally, 
Sect. 12.5 summarizes and concludes the chapter.

12.2 � Architectural and Deployment Models of Clouds

In this section, we gather the relevant views on the architectural and deployment 
models of Cloud environments defined and published by standardization bodies 
from all around the world and by corresponding European research projects.
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12.2.1 � Definitions of Standardization Bodies

The View of the European Commission  An expert group set up by the European 
Commission published their view on Cloud Computing in [4, 5]. These reports 
categorize Cloud architectures into five groups as follows and as shown in Fig. 12.1:

•	 Private Clouds (i): these consist of resources managed by an infrastructure 
provider (IP) that are typically owned or leased by an enterprise from a service 
provider (SP). Usually, services with “Cloud-enhanced” features are offered, 
therefore this group includes Software as a Service (SaaS) solutions like eBay 
[6].

•	 Public Clouds (ii): these offer their services to users outside of the company and 
may use Cloud functionality from other providers. In this solution enterprises 
can outsource their services to such Cloud providers mainly for cost reduction. 
Examples of these providers are Amazon [7] or Google Apps [8].

•	 Hybrid Clouds (iii): these consist of both private and public Cloud infrastructures 
to achieve a higher level of cost reduction through outsourcing by maintaining 
the desired degree of control (e.g., sensitive data may be handled in private 
Clouds). The report states that hybrid Clouds are rarely used at the moment.

•	 Community Clouds (iv): these different entities contribute with their (usually 
small) infrastructure to build up an aggregated private or public Cloud. Smaller 
enterprises may benefit from such infrastructures, and a solution is provided by 
Zimory [9].

•	 Special Purpose Clouds (v): This variety provides more specialized functionalities 
with additional, domain specific methods, such as the distributed document man-
agement by Google’s App Engine. This group is an extension or a specialization 
of the previous Cloud categories.

Fig. 12.1   Cloud Architec-
tures derived from the Cloud 
Computing Expert Working 
Group report

 



A. Kertesz280

The View of ENISA  The European Network and Information Security Agency 
(ENISA) differentiates between four architectures [10], as shown in Fig.  12.2, 
viz: (1) A Public Cloud—that is a publicly-available infrastructure to which any 
organization may subscribe and use (also called service consumers (SC)), (2) Private 
Clouds—that offer services built on Cloud Computing principles, but accessible 
only within a private network, (3) Partner Clouds—that are operated by a provider 
to a limited and well-defined number of parties, and (4) Cloud Federation—that 
may be built up by aggregating two or more other varieties of Clouds.

Cloud Architectures Defined by NIST  The National Institute of Standards and 
Technology (NIST) defines four deployment models [11, 12] as depicted in Fig. 12.3. 
According to their definition, (i) A Private Cloud is an infrastructure operated solely 
for an organization that may be managed by either the organization or a third-party 
and located locally or remotely; (ii) A Community Cloud is a distributed computing 
environment shared by several organizations and individuals, and supports a 
specific community that has similar concerns (e.g., mission, security requirements, 
policy, and compliance considerations). It may be managed by organizations or 
third parties, and may exist on premises or off premises; (iii) A Public Cloud infra-
structure is made available to the general public or a large industry group, and is 
owned by an organization selling Cloud services; and finally, (iv) A Hybrid Cloud 
is a composition of two or more Clouds (private, community, or public) that remain 
unique entities but are bound together by standardized or proprietary technology 
that enables data and application portability (e.g., Cloud bursting for load balancing 
between Clouds).

The Cloud Computing Use Case Discussion Group [13] adopts the NIST mod-
els. They extend the view on Hybrid Clouds by stating that “multiple Clouds work 
together, coordinated by a Cloud broker that federates data, applications, user 
identity, security and other details.” Though a brokering mechanism is needed for 
federating Clouds, no specific guidelines are given how to achieve this.

The View of DMTF  The Distributed Management Task Force (DMTF) Open Cloud 
Standards Incubator view [14] has also adopted the NIST models and defined 
different scenarios showing how Clouds may interoperate (depicted in Fig. 12.4). 

Fig. 12.2   Cloud 
Architectures derived from 
ENISA reports
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These scenarios explain how data centers interact with Cloud providers and 
differentiate three cases:

•	 If a datacenter, run by Service Provider 1 (SP1) and hosted by Infrastructure 
Provider 1 (IP1), exceeds the available capacity limits then IP2 provides extra 
computing capacity for IP1 and SP1 is unaware of this provisioning.

•	 In a multiple Cloud scenario, SP1 may operate services in both IP1 and IP3 Clouds, 
therefore a datacenter may request services from both providers since they may 
support different services or Service-level Agreement (SLA) parameters.

•	 A provider may act as a Cloud broker to federate resources from other providers 
(e.g., IP1 and IP2) to make them available to its consumers transparently without 
using any of its own resources.

12.2.2 � Cloud Models in European Research Projects

The View of OPTIMIS  The OPTIMIS project [15] identified that commercial 
solutions in the field of Cloud Computing have mainly focused on providing 

Fig. 12.3   Cloud deployment models of NIST

 

Fig. 12.4   Cloud architectures 
by DMTF
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functionalities at levels close to the infrastructure, and higher-level solutions, like 
Platform as a Service (PaaS) environments are limited to a single infrastructure 
provider. Their goal is to build an improved cloud service ecosystem that supports 
higher-level concerns and non-functional aspects to achieve a wider adoption of 
Cloud Computing. The project follows a holistic approach for multiple coexisting 
cloud architectures and they target cloud service life-cycle optimization including 
cost, trust, risk, and economic goals. They also plan to enable market-oriented multi-
cloud architectures with clarified legislative background. The architectural views 
of the OPTIMIS project [16] are shown in Fig. 12.5. The project has three basic 
architectural scenarios. In (i) a Federated Cloud Architecture, a Service Provider 
(SP) assesses an Infrastructure Provider (IP). IPs can share resources among each 
other. In (ii) a Multi-Cloud Architecture, different infrastructure providers are used 
separately by a service provider. Finally in (iii) a Hybrid Cloud Architecture, a 
Private Cloud (PC) is used by the SP, which can utilize resources of different IPs.

The View of Reservoir  The Reservoir project [17] claims that small and medium 
Cloud providers cannot enter the Cloud-provisioning market due to the lack of 
interoperability between Clouds. Their approach is exemplified by the electric grid 
approach: “for one facility to dynamically acquire electricity from a neighboring 
facility to meet a spike in demand.” Disparate datacenters should be federated to 
provide a “seemingly infinite service computing utility.” Regarding the architec-
tural view, a Reservoir Cloud consists of different Reservoir Sites (RS) operated 
by different IPs. Each RS has resources that are partitioned into isolated Virtual 
Execution Environments (VEE). Service applications may use VEE hosts from 
different RSs simultaneously. Each application is deployed with a service manifest 
that formally defines its SLA contract. Virtual Execution Environment Managers 
(VEEM) interact with VEEs, Service Managers and other VEEMs to enable 
federations to be formed. A VEEM gathers interacting VEEs into a VEE group 
that serves a service application. This implies that a Reservoir service stack has 
to be present on the resources/sites of IPs. Their specialized Cloud architecture is 
depicted in Fig. 12.6.

Fig. 12.5   The OPTIMIS 
cloud architectures
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The View of Contrail  The Contrail project [18] proposes an SLA-centered fed-
erated approach for Clouds. Its goal is to minimize the burden on the user with 
eliminating provider lock-in by exploiting resources belonging to different cloud 
providers regardless the kind of technology they use, and to increase the efficiency 
of using Cloud platforms by performing both a vertical and a horizontal integration. 
It follows an open-source approach toward technology and standards, and sup-
ports user authentication and applications deployment by providing extended SLA 
management functionalities. Its federation architecture, shown in Fig. 12.7, acts as 
a bridge among the users and the cloud providers, and has three layers. The top, 
interface layer provides ways to interact with the federation. It gathers requests 
from users and other Contrail components that rely on the federation functionalities. 
The bottom, Adapters layer contains drivers for external Cloud services, while the 
middle, Core layer contains modules that fulfill the functional and nonfunctional 
requirements of the federation. The federation runtime manager operates in this 
layer, which uses a set of heuristics that consider different aspects to govern the fed-
eration, such as to minimize economical cost and to maximize performance levels.

The View of BonFIRE  The BonFIRE project [19] aims at exploring the interactions 
between novel service and network infrastructures. The project was focused on the 
extension of current cloud offerings towards a federated facility with heterogeneous 
virtualized resources and best-effort Internet interconnectivity. They have devel-
oped a set of procedures to interconnect a multi-cloud environment with advanced 
facilities for controlled networking. These procedures enable the provisioning of 
customized network functions and services in support of experiments running 
in a multi-cloud test-bed. Their aim is to federate three advanced networking 
facilities within the BonFIRE multi-cloud environment: the interconnections with 
FEDERICA and GÉANT are already active, and OFELIA planned to be connected 
soon. The BonFIRE facility (shown in Fig. 12.8) is composed of six geographically 
distributed cloud test-beds, located at EPCC, INRIA, HLRS, iMinds, HP, and PSNC.

Fig. 12.7   Contrail 
architecture
 

Fig. 12.6   The Reservoir 
cloud architecture
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The View of mOSAIC  The mOSAIC project [20] offers the specification of service 
requirements in terms of a cloud ontology via an innovative API. The implementa-
tion of this approach will offer a higher degree of portability and vendor indepen-
dence. It also provides application programming interfaces for building applications 
using services from multiple cloud providers and plans to realize a self-adaptive 
distributed scheduling platform composed of multiple agents implemented as intel-
ligent feedback control loops to support policy-based scheduling and expose self-
healing capabilities. They plan to foster competition between cloud providers by 
enabling the selection of best-fitting cloud services to actual user needs and effi-
ciently outsource computations. In its hybrid cloud scenario, they envision multiple 
clouds working together coordinated by a cloud broker that federates data, applica-
tions, user identity, and security, as shown in Fig. 12.9.

The View of EGI Federated Cloud  The European Grid Infrastructure (EGI) is a 
federation of national and domain specific resource infrastructure providers, who 
use virtualised management environments to improve the local delivery of ser-
vices. Many of EGI’s current and new user communities would also like to access 
the flexibility provided by virtualisation across the infrastructure resulting in a 
cloud-like environment. Federating these individual virtualised resources has been 
a major priority for EGI, therefore it has set up the Federated Clouds Task Force 
[21]. Its main objectives were to provide guidelines for its resource providers to 
securely federate and share their virtualised environments as part of the EGI pro-
duction infrastructure, and to create a testbed to evaluate the integration of virtu-
alised resources within the existing EGI production infrastructure for monitoring, 

Fig. 12.9   mOSAIC hybrid 
cloud architecture through 
APIs

 

Fig. 12.8   The BonFIRE 
facility
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accounting and information services. Their guidelines do not define what hypervi-
sor the participating resource providers should use, and the federation adopts a set 
of well-defined functionalities and interfaces that every provider is free to imple-
ment independently. Currently there are 16 providers participating in the EGI Fed-
erated Cloud (FedCloud) testbed using OpenNebula, OpenStack and StratusLab. 
Their federated architecture is depicted in Fig. 12.10. Currently, the clouds of the 
participating infrastructure providers can be reached in a centralized way, and uti-
lized separately.

12.2.3 � Classification of Research Projects

To compare the previously introduced approaches, we have created a classification 
of these views concerning their abilities to form federations. We propose four cat-
egories in this classification:

•	 Hierarchical type of federations: In this vision there is a usually centralized, 
higher level management service that is responsible for federation forming and 
the coordination. This type is also called as a “Multi-Cloud” approach in the 
literature [22].

•	 Horizontal type of federations: In this vision bi- or multi-lateral resource renting 
is the main goal of the participating providers, mainly for optimizing resource 
utilization and reducing operation costs. This type is generally named as “Fed-
eration” in the literature [22].

•	 Heterogeneity of participating providers: With this category we represent the va-
riety of IaaS software stacks available in the federation (where “No” means that 
the same software stack need to be used in order to participate in a federation).

•	 Specialty of federation forming: Here we named one of the unique capabilities of 
the appropriate solution.

The actual categorization is shown in Table 12.1. The introduced categories reveal 
the most important properties of the surveyed solutions.

Fig. 12.10   EGI Federated 
Cloud
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12.3 � InterCloud and Cloud Federation Approaches

Cloud federation refers to a mesh of cloud providers that are interconnected based on 
open standards to provide a universal decentralized computing environment where 
everything is driven by constraints and agreements in a ubiquitous, multi-provider 
infrastructure. Until now, the cloud ecosystem has been characterized by the steady 
rising of hundreds of independent and heterogeneous cloud providers, managed 
by private subjects, which offer various services to their clients. In this subsection 
next to the already overviewed research projects, we gather relevant federative 
approaches found in the literature. Cloud providers offering PaaS solutions may form 
“sub-federations” simultaneously to these approaches. Specific service applications 
may be more suitable for these provisions, and projects like Reservoir [17] and 
4CaaSt [23] are working towards such a solution. Our considered federative works 
targets IaaS-type providers, e.g. RackSpace, the infrastructure services of Amazon 
EC2, and providers using Cloud middleware such as OpenNebula and Eucaliptus.

InterCloud Vision  Buyya et al. [1] envision that one day Cloud Computing will be 
the fifth utility by satisfying the computing needs of everyday life. Their pioneering 
paper discusses the current trends in Cloud computing and presents candidates 
for future enhancements. They emphasize the market-oriented side of Clouds, 
and introduce a market-oriented cloud architecture, discussing how global cloud 
exchanges could take place in the future. They further extended this vision [24] by 
suggesting a federation oriented, just in time, opportunistic and scalable application 
services provisioning environment called InterCloud. They envision utility oriented 
federated IaaS systems that are able to predict application service behavior for 
intelligent down and up-scaling infrastructures. They list the research issues of 
flexible service to resource mapping, user and resource centric QoS optimization, 
integration with in-house systems of enterprises, scalable monitoring of system 
components. They present a market-oriented approach to offer InterClouds including 
cloud exchanges and brokers that bring together producers and consumers. Produc-
ers are offering domain specific enterprise Clouds that are connected and managed 
within the federation with their Cloud Coordinator component.

Cross-Cloud Federation Approach  Celesti et  al. [25] proposed an approach for 
the federation establishment considering generic cloud architectures according to 
a three-phase model, representing an architectural solution for federation by means 

Table 12.1   Classification of federative approaches of research projects
Hierarchical Horizontal Heterogeneity Specialty

OPTIMIS [15] X – Yes Legislation awareness
Reservoir [17] – X No Reservoir service stack
Contrail [18] X – Yes SLA contracts
BonFIRE [19] – X Yes Controlled networking
mOSAIC [20] – X Yes Cloud ontology, API
EGI FedCloud [21] – X Yes Virtualised EGI 

environments
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of a Cross-Cloud Federation Manager (CCFM), a software component in charge of 
executing the three main functionalities required for a federation. In particular, the 
component explicitly manages: (i) the discovery phase in which information about 
other clouds are received and sent, (ii) the match-making phase performing the best 
choice of the provider according to some utility measure, and (iii) the authentica-
tion phase creating a secure channel between the federated clouds. These concepts 
can be extended taking into account green policies applied in federated scenarios.

Multi-Cloud Approach  Bernstein et  al. [26] define two use case scenarios that 
exemplify the problems of multi-cloud systems: (i) VM mobility where they 
identify the networking, the specific cloud VM management interfaces and the lack 
of mobility interfaces as the three major obstacles, and (ii) storage interoperability 
and federation scenario in which storage provider replication policies are subject to 
change when a cloud provider initiates subcontracting. They offer interoperability 
solutions only for low-level functionality of the clouds that are not focused on 
recent user demands but on solutions for IaaS system operators.

FCM Approach  In the Federated Cloud Management solution [27], interoperability 
is achieved by high-level brokering instead of bilateral resource renting, as shown 
in Fig. 12.11. Although, this does not mean that different IaaS providers may not 
share or rent resources, but if they do so then it is transparent to their higher level 
management. Such a federation can be enabled without applying additional software 
stack for providing low-level management interfaces. The logic of federated 
management is moved to higher levels, and there is no need for adapting interoper-
ability standards by the participating infrastructure providers, which is usually a 
restriction that some industrial providers are reluctant to undertake.

Classification of Research Approaches  To classify the relevant research directions 
addressing federations reported in the literature, we use the same categorization 
as in Table 12.2. In this case, we can also observe that both hierarchical and hori-
zontal federation types are represented, and heterogeneity within the participating 
providers is only present in hierarchical solutions. While most of the projects 
considered in Section  12.2.2 applied the horizontal approach, smaller research 
groups are in favor of the hierarchical way. The motivation behind this observation 
is that research projects lasting for 3–4 years had the manpower to develop own 
interfaces to enable interoperation among the participating Cloud providers, and 
also had the ambitious aim to come up with a solution that could be standardized 

Fig. 12.11   Federated Cloud 
Management Architecture
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and used in industry later on. On the other hand, smaller research groups focused on 
approaches that utilize already existing standards to avoid provider lock-in, and to 
enable easier collaboration with industrial solutions.

12.4 � Interoperability Issues of Cloud Federations

Not only the interchangeability of user applications in different clouds participating 
in a federation represents and open issue, but other related interoperability prob-
lems concerning the management of such a large distributed ecosystem need to be 
addressed as well.

As mentioned before, the European Commission has assigned an expert group 
to publish reports on future research challenges of Clouds [4, 5]. In these reports 
they also performed a gap analysis of already existing commercial and academic 
solutions and highlighted the following topics that need further research:

•	 Manageability: Even though most Cloud solutions handle elasticity, intelligent 
methodologies are needed to reach optimal resource utilization.

•	 Data management: Most data flowing to or created in the Cloud need to be 
supported by meta-data information and new standards are needed to guarantee 
long-term storing and interoperable sharing among multiple providers.

•	 Privacy and security: Legislative issues of data distribution should be better 
addressed, and security holes during resource sharing among multiple tenants 
should be eliminated.

•	 Federation and interoperability: Proprietary data structures should be replaced 
by de facto standards, and new approaches are needed to ensure convergence 
towards real interoperability eliminating vendor lock-in.

•	 Virtualization and adaptability: Optimized resource scheduling solutions are 
needed considering cross-platform executions and migrations taking into account 
rapidly changing workloads.

•	 Programming models: Better control on data distribution should be achieved, and 
new means are needed to enable better application development and deployment.

•	 Economy: New scheduling policies are needed to enable green resource 
utilization, more efficient resource utilization with reduced power consumption.

By addressing many of these concerns, we summarize four important research 
fields that are necessary to be taken into account in building and operating Cloud 
Federations. These topics represent different facets of interoperability: (i) enhanced 
monitoring solutions are needed to enable optimized management of participating 

Table 12.2   Classification of federative approaches of research papers
Hierarchical Horizontal Heterogeneity Specialty

InterCloud [1] X – Yes Market-oriented
Cross-Cloud [25] – X Yes/No Authentication
Multi-Cloud [26] X – Yes VM mobility
FCM [27] X – Yes Meta-brokering
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providers; (ii) legislative regulations need to be considered during multi-tenant 
data processing; (iii) sustainable and user-friendly data management solutions are 
needed through standard interfaces; and (iv) energy efficient resource management 
have to be enabled for future ecosystems.

12.4.1 � Monitoring in Cloud Federations

Infrastructure-as-a-service (IaaS) cloud systems provide access to a remote 
computing infrastructure by allowing their users to instantiate virtual appliances 
on their virtualized resources as virtual machines. Nowadays, several IaaS systems 
co-exist, and they are independently offered by several public service providers 
or by smaller scale privately managed infrastructures. As we have seen before, to 
enable interoperability of multiple clouds, federations need to handle the differences 
of various cloud providers and have to negotiate user requirements with multiple 
parties. Federated clouds aim at supporting these users by providing a single 
interface on which they can transparently handle different cloud providers, as they 
would do with a single cloud system. Therefore it is essential to construct federated 
cloud systems in a way that they not only offer a single interface for their users, but 
also automatically manage virtual machines (VM) independently from the availably 
cloud systems.

An efficient cloud selection in a federated environment requires a cloud 
monitoring subsystem that determines the actual status of available IaaS systems. 
Since there is only limited monitoring information available for the users or higher-
level managers in these clouds, there is a need for a sophisticated service monitoring 
approach to evaluate basic cloud reliability status, and to perform seamless service 
provisioning over multiple cloud providers in an interoperable way. We exemplify 
such an extension to a federation with our Federated Cloud Management solution, 
where we applied a web service monitoring approach to gather additional and more 
detailed service quality information from the participating cloud [28]. The FCM 
approach uses the Generic Meta-Broker Service as the entry point for the users 
of the cloud federation. This service selects the most suitable cloud provider to 
perform the service requests of the user by investigating the current state of the 
participating clouds according to the information stored in a generic service registry 
and the reliability metrics collected by the integrated SALMon service monitoring 
framework [29]. The participating clouds are managed by Cloud-Brokers that are 
capable of handling service requests and managing virtual machines within single 
IaaS cloud systems.

To enable the meta-brokering service to differentiate between cloud providers, 
we proposed to use a basic service that is used to cost effectively determine the 
important characteristics of the available VMs in the federation. As a result, the 
system is capable to evaluate and choose between both public and private clouds 
based on the same kind of metrics. We refer to this basic service as the Minimal 
Metric Monitoring Service (M3S), which is capable of measuring infrastructure 
reliability together with the integrated SALMon framework in public and private 
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clouds. The M3S service is prepared to run in a virtual machine and it offers three 
methods to evaluate the basic capabilities of its hosting VM. SALMon uses the 
response times of these methods to express the reliability of the particular cloud that 
runs the M3S VM. It has: (i) a generalized ping test to check the availability of the 
service; (ii) a CPU analyzer method that performs several mathematical calculations 
in a large loop over a predefined set of variables, consisting on integer and float-
ing point numbers to determine the computational capability of a given VM; and 
finally (iii) bandwidth analyzer methods, which are used to compute the download 
and upload transfer speed of the system to determine its inbound and outbound data 
transfer capabilities.

Our investigations showed that both service reliability and responsiveness do 
vary over time and load conditions, and these measures can be used by our federated 
cloud management solution to select better execution environments for achieving a 
higher level of user satisfaction.

12.4.2 � Data Protection in Cloud Federations

Cloud Computing allows the outsourcing of computational power, data storage and 
other capabilities to a remote third-party. In the supply of any goods and services, 
the law gives certain rights that protect the consumer and provider, which also 
applies for Cloud Computing: it is subject to legal requirements and constraints 
to ensure Cloud services are accurately described and provided to customers with 
guarantees on quality and fitness-for-purpose.

To exemplify issues arising from data management in Cloud Federations, we 
have also evaluated the formerly introduced cloud architectures against legal 
requirements in [30], where we have chosen to perform an evaluation using require-
ments from data protection law. Data protection legislation is fundamental to Cloud 
Computing as the consumer looses a degree of control over personal artifacts, when 
they are submitted to the provider for storage and possible processing. To protect 
the consumer against the provider misusing their data, data processing legislation 
has been developed to ensure that the fundamental right to privacy is maintained. 
However, the distributed nature of Cloud Computing (where cloud services are 
available from anywhere in the world) makes is difficult to analyze every country’s 
data protection laws for common Cloud architecture evaluation criteria. Therefore, 
we have chosen a common directive that applies as widely as possible and used the 
European Data Protection Directive (DPD) [31] as a basis for our investigations. 
Although it is a European Union (EU) directive, countries that want to collaborate 
in data transactions with EU Member States are required to provide an adequate 
level of protection.

The requirements of the DPD are expressed as two technology-neutral actors that 
have certain responsibilities that must be carried out in order to fulfill the directive. 
These roles are the data controller and data processor, where a data controller is the 
natural or legal person which determines the means of the processing of personal 
data, whilst a data processor is a natural or legal person which processes data on 
behalf of the controller. However, following these definitions, a special case arises: 
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if the processing entity plays a role in determining the purposes or the means of 
processing, it is a controller rather than a processor.

We have also explored Cloud Federations through a series of use cases to dem-
onstrate where legal issues can arise. In these use cases, the relevant actors and their 
roles were identified and the necessary actions have been stated that should be taken 
to prevent violations of the directive. We identified that there are complications 
when personal data is transferred to multiple jurisdictions. For example, considering 
a service provider (SP) located in the European Union offers services provisioned 
in a Cloud Federation, which utilizes different infrastructure providers (IPs, usually 
operating private clouds), and one of which (IP2) is located in a non-Member State, 
we arrived to the following conclusion: since SP is the data controller and the par-
ticipating IPs are processors, the law of the SP’s Member State has to be applied, 
and IP2 has to provide at least the same level of protection as the national law of SP. 
Otherwise, if IP2 cannot ensure an adequate level of protection, the decision making 
process should rule out IP2 from provider selection during data management.

As a result of our investigation, we can state that service providers are mainly 
responsible for complying with the data protection regulation, and when personal 
data is transferred to multiple jurisdictions, it is crucial to properly identify the 
controller since this role may change dynamically in specific actions.

12.4.3 � Cloud Storage Services in Cloud Federations

One of the most important open issues of Cloud Federations is the interoperable 
management of data among the participating systems. Retrieving and sharing user 
data and virtual images among different IaaS clouds is an unsolved issue. Besides 
concerning data privacy issues, it is also not an easy task to move a user application 
from one cloud infrastructure to another. Virtualization techniques and virtual image 
formats different providers support to run on their virtual machines are usually 
incompatible. Retrieving a user’s Virtual Appliance (VA, which is a specialized 
image hosting the user application) from an IaaS cloud is impossible in most cases, 
not only in case of commercial providers, but also in academic solutions. Therefore, 
finding an interoperable way for managing user data among multiple tenants is an 
important issue.

A popular family of cloud services is called cloud storage services. With the help 
of such solutions, user data can be stored in a remote location, independent from the 
infrastructure of cloud providers participating in a federation. Therefore, to exem-
plify the interoperable utilization of storage and infrastructure clouds, we proposed 
an approach to retrieve and share user application data among different providers 
with the help of these online storage services. In this way, VAs running at different 
cloud infrastructures can manage the same data at the same time, and the users can 
access these data from their own local devices without the need for accessing any 
IaaS clouds. Mobile devices can also benefit from Cloud services: the enormous 
data users produce with these devices are continuously posted to online services, 
which may require the modification of these data. Nowadays more mobile devices 
are sold compared to traditional PCs, and Android devices are more and more 
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popular. We have also investigated how user data could be managed in an interoper-
able way among different IaaS systems participating in a federation. Our aim was 
to develop a solution that uses cloud storage services together with infrastructure 
services of cloud federations, which we further used to enhance the capabilities of 
mobile devices [32]. Though the computing capacity of mobile devices has rapidly 
increased recently, there are still numerous applications that cannot be solved with 
them in reasonable time. Our approach is to utilize cloud infrastructure services to 
execute such applications on mobile data stored in cloud storages.

The basic concept of our solution is the following. Services for data management 
are running in one or more IaaS systems that keep tracking the cloud storage of a 
user, and execute data manipulation processes when new files appear in the storage. 
The services running in the cloud can download the user data files from the cloud 
storage, execute the necessary application on these files, and upload the modified 
data to the storage service. Such files can be, for example, photo or video files made 
by the user with their mobile phone to be processed by an application unsuitable 
for mobile devices. We have developed an image generator application that 
interconnects mobile devices, IaaS services and cloud storage services, and evalu-
ated the prototype application using mobile devices and a private IaaS cloud. The 
evaluation of this application showed that it is worth both in terms of computation 
time and energy efficiency to move computation-intensive tasks to clouds from 
mobile devices.

12.4.4 � Energy Efficient Management of Cloud Federations

The Cloud Computing technology has created the illusion of infinite resources for 
use by consumers, however, this vision raises severe issues with energy consumption 
e.g. the higher levels of quality and availability require irrational energy expendi-
tures. The consumed energy of resources spent for idling represent a considerable 
amount, therefore the current trends are claimed to be clearly unsustainable with 
respect to resource utilization, CO2 footprint and overall energy efficiency. It is 
anticipated that further growth is objected by energy consumption furthermore, 
competitiveness of companies will be strongly tied to these issues.

Energy awareness is a highlighted research topic, and there are efforts and 
solutions for processor level, component level and datacenter level energy effi-
ciency. For instance, new energy efficient approaches were proposed to automate 
the operation of datacenters behind clouds, so that they help with rearranging the 
virtualized load from various users. Thus, smaller sized physical infrastructure is 
sufficient for the actual demand and momentarily unused capacities can be switched 
off. Nevertheless, these approaches are applicable to single data centers only. On 
one hand, today’s large systems are composed of multiple service providers per se 
that need new approaches to ensure their overall energy-aware operation. On the 
other hand, there is an unexplored potential for energy-aware operation in federated 
and interoperable clouds. Our research in [33] was targeted at examining what new 
aspects of energy awareness can be exploited in federative schemes.
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As small cloud providers and cloud startups are becoming more popular, they 
soon face user demands that cannot be satisfied with their current infrastructures. 
Therefore, these providers need to increase the size of their infrastructure by intro-
ducing multiple data centers on various locations or join a federation capable of 
offering unprecedented amount of resources.

Energy consumption is a major component of operating costs. Despite its 
significance, current IaaS clouds barely provide energy-aware solutions. Providers 
are restricted to reduce their consumption at the hardware level, independently from 
the IaaS. These reductions range from the use of more energy efficient computer 
components to the upgrade of their heating, ventilation and air conditioning systems 
to increase their power usage efficiency. Although these improvements are crucial, 
the energy consumption could also be significantly reduced by software means 
in over-provisioned IaaS systems where more physical resources are available 
at the provider side than actually requested by users. Over-provisioning is a key 
behavior at smaller sized providers that offer services for users with occasional 
peaks in resource demands. To reduce their energy costs, these providers should 
minimize their over-provisioning while they maintain a fluid experience towards 
their customers without violating the previously agreed service level. Energy 
consumption could be reduced with software techniques focusing on intra- and 
inter-datacenter issues.

To exemplify how energy consumption and CO2 emissions could be addressed 
in Cloud Federations, we introduce enhancements in our proposed Federated Cloud 
Management solution [27]. At the meta-brokering layer, relying on an enhanced 
monitoring system within the federation, service executions can be directed to data 
centers of providers consuming less energy, having higher CO2 emission quotas, 
or have produced less amount of CO2 that expected within some timeframe. At the 
cloud brokering layer, if the energy consumption parameters of a cloud suddenly 
change, there should be strategies to limit or move around calls and even (if nec-
essary) VMs federation-wise. The changes here may mean the introduction of 
new hardware, or just switching on/off some parts of the datacenters, or changing 
the number of VMs. Realigning calls may not have immediate effects, however 
migration of VMs across the federation is also an energy consuming operation, that 
needs to be measured and considered when decisions are made, thus this operation 
should not happen only in case of really drastic changes. An interoperable federa-
tion management system should prefer datacenters, where the difference between 
the highest load and the average load is small because a VM has the smallest impact 
on those resources.

12.5 � Conclusion

In this chapter, we provided a general insight into the formation and interoperability 
issues of Cloud Federations that envisage a distributed, heterogeneous environment 
consisting of various cloud infrastructures by aggregating different IaaS provider 
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capabilities coming from both the commercial and academic area. These multi-cloud 
infrastructures are used to avoid provider lock-in issues for users that frequently 
utilize different clouds. We have surveyed and characterized recent solutions that 
attempt to hide the diversity of multiple clouds and form a unified federation on top 
of them, but they still need to cope with several open issues.

We have shown that these federative approaches, arose from both research 
projects and individual research groups, can be categorized into hierarchical 
and horizontal architecture types. The hierarchical ones are more favorable by 
smaller research groups, and have the advantage of supporting more heterogeneous 
infrastructure providers to avoid vendor lock-in. We have also highlighted open 
interoperability issues of federation forming and management such as service 
monitoring, data protection and privacy, data management and energy efficiency.

We believe that these research directions can serve as guidelines for researchers 
in this field, and contribute to fostering further research works on Cloud Federations. 
By following the guidelines defined by the European Commission, and putting 
together the pieces of already existing, promising solutions of federation approaches 
of various research works, we will arrive to such federations that will be able to 
operate efficient ecosystems attracting thousands of users.

Acknowledgments  The research leading to these results has received funding from the CloudSME 
FP7 project under grant agreement 608886, and it was supported by the European Union and the 
State of Hungary, co-financed by the European Social Fund in the framework of TAMOP 4.2.4. 
A/2-11-1-2012-0001 “National Excellence Program.”

References

  1.	 Buyya B, Yeo CS, Venugopal S, Broberg J, Brandic I (June 2009) Cloud computing and 
emerging it platforms: vision, hype, and reality for delivering computing as the 5th utility. 
Future Gener Comput Syst 25(6):599–616

  2.	 Vaquero LM, Rodero-Merino L, Caceres J, Lindner M (2008) A break in the clouds: towards 
a cloud definition. SIGCOMM Comput Commun Rev 39(1):50–55

  3.	 Pring B et al (June 2010) Forecast: public cloud services, worldwide and regions, industry sectors, 
2009–2014. Gartner report. http://www.gartner.com/Display-Document?ref=clientFriendly-
Url&id=1378513. Accessed 12 Jan 2013

  4.	 Schubert L, Jeffery K, Neidecker-Lutz B (2010) The future of cloud computing—report from the 
first cloud computing expert working group meeting. Cordis (Online), BE: European Commission. 
http://cordis.europa.eu/fp7/ict/ssai/docs/Cloud-report-final.pdf. Accessed 15 Jan 2013

  5.	 Schubert L Jeffery K (2012) Advances in clouds—research in future cloud computing, report 
from the cloud computing expert working group meeting. Cordis (Online), BE: European 
Commission, 2012. http://cordis.europa.eu/fp7/ict/ssai/docs/future-cc-2may-finalreport-ex-
perts.pdf. Accessed 12 Jan 2013

  6.	 eBay Inc (2013) Online Shopping Solution, http://www.ebay.com/. Accessed 6 Sept 2013
  7.	 Amazon (2013) Amazon Web Services, http://aws.amazon.com/. Accessed 5 Nov 2013
  8.	 Google (2013) Google Apps for Business, http://www.google.com/apps/. Accessed 12 Jan 2013
  9.	 Zimory GmbH (2013) Cloud infrastructure management. http://www.zimory.com/, Accessed 

10 Sept 2013
10.	 Catteddu D, Hogben G (2009) Cloud computing risk assessment: benefits, risks and recom-

mendations for information security, ENISA report. http://www.enisa.europa.eu/act/rm/files/
deliverables/cloud-computing-risk-assessment/at_download/fullReport. Accessed 12 Jan 2013

http://www.gartner.com/Display-Document?ref=clientFriendly-Url&id=1378513
http://www.gartner.com/Display-Document?ref=clientFriendly-Url&id=1378513
http://cordis.europa.eu/fp7/ict/ssai/docs/Cloud-report-final.pdf
http://cordis.europa.eu/fp7/ict/ssai/docs/future-cc-2may-finalreport-experts.pdf
http://cordis.europa.eu/fp7/ict/ssai/docs/future-cc-2may-finalreport-experts.pdf
http://www.ebay.com/
http://aws.amazon.com/
http://www.google.com/apps/
http://www.zimory.com/
http://www.enisa.europa.eu/act/rm/files/deliverables/cloud-computing-risk-assessment/at_download/fullReport
http://www.enisa.europa.eu/act/rm/files/deliverables/cloud-computing-risk-assessment/at_download/fullReport


12  Characterizing Cloud Federation Approaches 295

11.	 Mell P Grance T (Sept 2011) The NIST definition of cloud computing, NIST special publication 
800-145. http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf. Accessed 12 Dec 
2012

12.	 Liu F, Tong J, Mao J, Bohn RB, Messina JV, Badger ML, Leaf DM (Sept 2011) NIST cloud 
computing reference architecture, NIST special publication 500–292. Online: http://www.
nist.gov/customcf/get_pdf.cfm?pub_id=909505. Accessed 12 Jan 2013

13.	 Ahronovitz M et al (2010) Cloud computing use cases, a white paper produced by the cloud 
computing use case discussion group, version 4.0, http://opencloudmanifesto.org/Cloud_
Computing_Use_Cases_Whitepaper-4_0.pdf. Accessed 12 Jan 2013

14.	 DMTF (2009) Interoperable clouds, a white paper from the open cloud standards incubator 
1.0, DMTF white paper no. DSP-IS0101. http://www.dmtf.org/sites/default/files/standards/
documents/DSP-IS0101_1.0.0.pdf. Accessed 12 Dec 2012

15.	 OPTIMIS (2010) Cloud legal guidelines, OPTIMIS FP7 project deliverable no. D7.2.1.1. http://
www.optimis-project.eu/sites/default/files/D7.2.1.1~OPTIMIS~Clo-ud~Legal~Guidelines.
pdf. Accessed 12 Jan 2013

16.	 Ferrer AJ et al (2012) OPTIMIS: a holistic approach to cloud service provisioning. Future 
Gener Comput Syst 28:66–77

17.	 Rochwerger B et al (Apr 2009) The reservoir model and architecture for open federated cloud 
computing. IBM J Res Development

18.	 Carlini E, Coppola M, Dazzi P, Ricci L, Righetti G (2012) Cloud federations in contrail, 
Euro-Par 2011 Workshops, LNCS 7155, pp 159–168

19.	 Jofre J et al (2013) Federation of the BonFIRE multi-cloud infrastructure with networking 
facilities, Comput Netw, http://dx.doi.org/10.1016/j.bjp.2013.11.012. Accessed 13 Nov 2013

20.	 Petcu D et al (2013) Experiences in building a mOSAIC of clouds. J Cloud Comput Adv Syst 
Appl 2:12.

21.	 EGI (2013) Federated clouds task force, https://wiki.egi.eu/wiki/Fedcloud-tf:FederatedClou
dsTaskForce. Accessed 20 Oct 2013

22.	 Grozev N Buyya R (2012) Inter-cloud architectures and application brokering: taxonomy and 
survey. Softw: Pract Exper. doi:10.1002/spe.2168

23.	 4CaaSt EU FP7 project (2013) PaaS cloud Platform, http://4caast.morfeo-project.org, 
Accessed 2 Oct 2013

24.	 Buyya B, Ranjan R, Calheiros RN (2010) InterCloud: utility-oriented federation of cloud 
computing environments for scaling of application services, lecture notes in computer 
science: algorithms and architectures for parallel processing, vol. 6081, 20 pages

25.	 Celesti A, Tusa F, Villari M, Puliafito A (2010) How to enhance cloud architectures to 
enable cross-federation. Proceedings of the 3rd international conference on cloud computing 
(CLOUD 2010), IEEE: Miami, Florida, US, 2010, pp 337–345

26.	 Bernstein D, Ludvigson E, Sankar K, Diamond S, Morrow M (2009) Blueprint for the 
Intercloud—protocols and formats for cloud computing interoperability. In Proceedings of the 
fourth international conference on internet and web applications and services, pp 328–336

27.	 Marosi AC, Kecskemeti G, Kertesz A Kacsuk P (2011) FCM: an architecture for integrating 
IaaS cloud systems. In Proceedings of the second international conference on cloud 
computing, GRIDs, and virtualization (Cloud Computing 2011), IARIA, pp  7–12, Rome, 
Italy

28.	 Kertesz A, Kecskemeti G, Oriol M, Kotcauer P, Acs S, Rodriguez M, Merce O, Marosi ACs, 
Marco J, Franch X (2013) Enhancing federated cloud management with an integrated service 
monitoring approach. J Grid Comput 11(4):699–720

29.	 Oriol M, Franch X, Marco J, Ameller D (2008) Monitoring adaptable soa-systems using 
salmon. In Workshop on service monitoring, adaptation and beyond (Mona+), pp 19–28

30.	 Varadi Sz, Kertesz A, Parkin M (2012) The necessity of legally compliant data manage-
ment in European cloud architectures. Computer Law and Security Review 28(5):577–586 
(Elsevier)

31.	 European Commission (Nov 1995) Directive 95/46/EC of the European Parliament and of 
the Council of 24 October 1995 on the protection of individuals with regard to the processing 
of personal data and on the free movement of such data, Off J L 281:31–50

http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf
http://www.nist.gov/customcf/get_pdf.cfm?pub_id=909505
http://www.nist.gov/customcf/get_pdf.cfm?pub_id=909505
http://opencloudmanifesto.org/Cloud_Computing_Use_Cases_Whitepaper-4_0.pdf
http://opencloudmanifesto.org/Cloud_Computing_Use_Cases_Whitepaper-4_0.pdf
http://www.dmtf.org/sites/default/files/standards/documents/DSP-IS0101_1.0.0.pdf
http://www.dmtf.org/sites/default/files/standards/documents/DSP-IS0101_1.0.0.pdf
http://www.optimis-project.eu/sites/default/files/D7.2.1.1~OPTIMIS~Clo-ud~Legal~Guidelines.pdf
http://www.optimis-project.eu/sites/default/files/D7.2.1.1~OPTIMIS~Clo-ud~Legal~Guidelines.pdf
http://www.optimis-project.eu/sites/default/files/D7.2.1.1~OPTIMIS~Clo-ud~Legal~Guidelines.pdf
http://dx.doi.org/10.1016/j.bjp.2013.11.012
https://wiki.egi.eu/wiki/Fedcloud-tf:FederatedCloudsTaskForce
https://wiki.egi.eu/wiki/Fedcloud-tf:FederatedCloudsTaskForce
http://4caast.morfeo-project.org


A. Kertesz296

32.	 Planzner T, Kertesz A (Aug 2013) Towards data interoperability of cloud infrastructures using 
cloud storage services, 1st workshop on dependability and interoperability in heterogeneous 
clouds in conjunction with EuroPar’13, Aachen, Germany

33.	 Kecskemeti G, Kertesz A, Marosi ACs, Nemeth Zs (2013) Strategies for increased energy 
awareness in cloud federations, in book: high-performance computing on complex 
environments, Wiley series on parallel and distributed computing, Accepted in 2013.



Chapter 13
Security Aspects of Database-as-a-Service 
(DBaaS) in Cloud Computing

Faria Mehak, Rahat Masood, Yumna Ghazi, Muhammad Awais Shibli  
and Sharifullah Khan

R. Masood () · F. Mehak · Y. Ghazi · M. A. Shibli · S. Khan
School of Electrical Engineering and Computer Science, National University of Sciences  
and Technology, Sector H-12, Islamabad 44000, Pakistan
e-mail: rahat.masood@seecs.edu.pk

F. Mehak
e-mail: 12mscsfmehak@seecs.edu.pk

Y. Ghazi
e-mail: 09bicseyghazi@seecs.edu.pk

M. A. Shibli
e-mail: awais.shibli@seecs.edu.pk

S. Khan
e-mail: sharifullah.khan@seecs.edu.pk

Abstract  Database-as-a-Service (DBaaS) provides a wide range of benefits such 
as data outsourcing, multi-tenancy and resource sharing. It has garnered a lot of 
hype, but while it is promising, it is also a mine-field of concerns and issues. Secu-
rity is one of the most critical challenges in this domain, which has only begun to 
earn the academic attention that it needs. There is a serious lack of research in this 
area that collectively covers the security of DBaaS, from its various problems to 
the possible solutions. To this end, this chapter provides a holistic survey on the 
security aspects of the Cloud DBaaS, including key features, advantages and differ-
ent compatible architectures for managing data in the Cloud DBaaS. Furthermore, 
we identify challenges and classify the security limitations in DBaaS paradigm. 
Security requirements that are being fulfilled by state-of-the-art mechanisms along 
with their in-depth description are also presented. Additionally, we provide insight 
to the future security perspective. Our work acts as a comprehensive guidance for 
the developers and researchers to help them understand the inherent security issues 
and the existent countermeasures in the DBaaS domain.

Keywords  Cloud databases · Database-as-a-Service · NoSQL · Big data · Database 
security · Confidentiality · Integrity · Availability · Privacy
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13.1  Introduction

One of the most attractive features of the cloud computing paradigm refers to its 
service-oriented architecture, wherein applications and resources are outsourced as 
services over the internet [68] as Software as a Service [27], Platform as a Service 
[22] and Infrastructure as a Service [97]. Likewise, data outsourcing, also called 
Database-as-a-Service ( DBaaS), is a new service model, which was proposed by 
Hacigumus et al. [51]. Based on Software-as-a-Service (SaaS), DBaaS moves da-
tabase management system (DBMS) from a traditional client-server architecture, 
where the data owner is responsible for managing DBMS and responding to user’s 
queries—to a third party architecture, where data management is not handled by 
the data owner. Data owners outsource their data to data service providers such as 
Google [84], Amazon [23], and Microsoft [76] etc., who have the facilities to man-
age large data sets [42]. DBaaS market is growing considerably and the trend of its 
adoption is not limited to large scale businesses such as IBM [57] and Microsoft 
[76], but also extends to small enterprises such as ZeusDB [108] and LongJump [65].

However, despite the various benefits offered by DBaaS over traditional data 
management systems, there are certain issues that hinder its wide adoption, of 
which security is one of the most critical concerns. According to International Data 
Corporation (IDC) Survey conducted in August 2008 [62], security of user data was 
identified as a major challenge in the IT industry. Moreover, the Cloud Security Al-
liance (CSA) [34] evaluated “Top Twelve” threats in the Cloud environment [33] 
which are shown in Fig. 13.1. It has been studied that from 2009 to 2011 the number 
of vulnerability incidents in Cloud has doubled most likely due to the phenomenal 
growth in the Cloud services [19]. Moreover, due to insecure interfaces/APIs, data 
loss and leakage have been reported to make up 29% and 25% of overall threats, 
respectively [33].

Data security, in particular, is rather crucial in the Cloud DBaaS paradigm be-
cause both the customer data and the code lie in the service provider’s domain. One 
of the major factors behind data security issues is the lack of trust between service 
providers and consumers. Data outsourced to the third party is perceived as ‘loss of 

Fig. 13.1   Number of cloud security vulnerability incidents categorized by threats [33]
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control’ by the data owner; therefore, consumers demand strong guarantees on the 
privacy and security of outsourced data [42]. Unauthorized access to data resources, 
misuse of data stored on third party platform, data confidentiality, integrity and 
availability are some of the major security challenges that ail this nascent Cloud 
service model.

Our research reveals that no extensive literature survey has been conducted so 
far which holistically covers security aspects of DBaaS. Moreover, there is a lack 
of research work which collectively enumerates the security requirements and the 
corresponding defense mechanisms devised till date for DBaaS. Therefore, we have 
conducted a holistic survey on DBaaS, in order to demystify the challenges and 
vulnerabilities—particularly those that are unique to the DBaaS environment—and 
categorized them, according to generic security requirements. We have studied dif-
ferent solutions addressing the security concerns and have clearly stated the security 
requirements satisfied by a particular technique. Furthermore, we have identified 
open issues and potential research directions in the area of DBaaS that need to be 
addressed by the Cloud community.

The rest of the chapter is organized as follows: Section 13.2 acts as a roadmap 
for the rest of the chapter and highlights the core features, main characteristics and 
advantages provided by DBaaS as well as the existing Cloud storage architectures 
suitable for the Cloud DBaaS environments. Section 13.3 discusses potential issues 
which are primary obstacles to the spacious adoption of DBaaS, with the major 
focus on the security challenges faced by DBaaS in Sect. 13.4. Section 13.5 reviews 
state-of-the-art in view of the identified security challenges. Section 13.6 throws 
light upon some future directions in order to make DBaaS more secure and help as 
a guideline to protect underlying data and finally Sect. 13.7 concludes the chapter.

13.2  Background of DBaaS

Since its genesis, the internet has undergone evolution at an unprecedented pace, 
and one of the significant byproducts of its advancement is the accumulation of 
exponential amounts of data referred to as Big Data [5, 89]. This growth in the 
volume of data shifted the trend from enterprise centric workloads to data centric 
workload [81], where organizations no longer have to manage their database locally 
and don’t have to perform manual operations [81]. On-hand resources such as hard-
ware and manual effort incur additional expense for organizations and thus, was the 
primary argument supporting the concept of third party data management applica-
tions. Thus, after 40 years of Relational DBMS rule in the industry, the concept of 
databases in the Cloud emerged [18, 40] in order to share and manage resources, 
software and information between devices over the internet [103].

Based on the data model, databases residing in the Cloud are divided into two 
major categories [24], i.e., NoSQL databases [78] such as Amazon [12], SimpleDB 
[13], Yahoo PNUT [37], CouchDB [16] and SQL databases such as Oracle [82] 
and MySQL [75]. SQL databases provide a way to store and communicate with 
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relational databases. While in contrast, NoSQL (Not only SQL) databases have a 
flexible data model and are meant to provide elastic scaling for managing big data. 
Both types of Cloud databases, either SQL or NoSQL can be deployed in two ways. 
One method is to use a Virtual Machine (VM) instance, which users can purchase 
for a limited time period with a database installed in it [1, 56, 71]. Alternatively, the 
Cloud databases are outsourced to third parties, where data owners can manage data 
resources in a distributed environment [1]—more popularly known as Database-as-
a-Service (DBaaS) [25, 85, 103].

DBaaS eliminates the need for installing, maintaining and storing data on the lo-
cal database servers (hard drives or disks). Data is fully managed on the Cloud serv-
ers making the service independent of hardware [40]. Moreover, DBaaS supports 
structured, unstructured or semi-structured data, as opposed to conventional DBMS 
systems which deal only with structured data along with the metadata residing in 
the database [103]. It also takes advantage of the Cloud’s elastic and scalable nature 
to cater to the problem of exponential data growth. It offers reduced cost and effort 
on the user’s end via virtualization [90]. The subsequent section describes various 
major features and advantages of DBaaS.

13.2.1  Discerning Features and Advantages of DBaaS

DBaaS offers numerous features that make it a better alternative in the dynamic 
environment of Cloud. First of all, DBaaS provides DBMS as an on-demand in-
dependent service for managing data [40]. Consumers can access this ubiquitous 
service instantly via various devices such as desktop computers, laptops, mobiles, 
notebooks, tablets, etc. [103] with the sole requirement of internet connectivity. 
Consumers can perform desired operations on the abstract resources anytime, with-
out any major configuration or deployment requirements [54, 100]. Thus, consum-
ers do not need to be aware of the internal implementation and characteristics for 
framing up the environment [54]. Resource pooling is performed by the DBaaS 
providers to pool location-independent computing and data resources to a common 
repository [40, 103]. These shared resources and redundant infrastructures are man-
aged across many data centers.

Another major feature of DBaaS is that service providers adapt to the workload 
changes, hence making the model scalable. They have the power to deal with load 
variations by allocating fewer resources to the tenants or by increasing them during 
peak hours without any service disruption [6]. The fact that DBaaS allows dynamic 
scaling up or down of resources as per consumer requirements makes the service 
elastic, as well [6, 58]. DBaaS follows the “Pay Only for What You Use” model of 
pricing [40], since data resources are tracked using meter [30], and consumers only 
pay for the exact amount of data resources/storage space they consume, acquire, 
and provision. The Cloud DBaaS applications are also agile in nature, they adapt 
seamlessly to any upgrades according to business or technology advancements. 
DBaaS allows rapid provisioning of database resources to provide new computing 
resources and storage facilities in minimum possible time [48, 55].
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All the highlighted features in Table 13.1 make the DBaaS model, arguably, a 
far better alternative for managing databases than traditional DBMSs [104]. DBaaS 
also provides some additional advantages to its consumers and service providers, 
such as fast, transparent, and automated failure recovery to make applications re-
silient against failures [18]. DBaaS ensures maximum availability of data resources 
[79]. Many strategies are used to prevent data loss. For example, Elastic Book Store 
(EBS) [14] used by EC2 or Windows Azure Drives, Blob and Table Storage [36] 
used by Windows Azure [72], are real-life examples of storage in the Cloud, which 
follow redundant disk strategy. There is no single point of failure in this architecture 
because it is based on self-detective and self-aware mechanism to handle changes 
and to recognize extreme events before it is too late [44].

DBaaS also provides GUI-based configuration for managing backups, restor-
ing databases, and automated scheduling in DBaaS [20, 55]. Operational burden 
of provisioning, performance tuning, configuration, privacy, backup, scaling, and 
access control to DBaaS services is alleviated, which means that organizations do 
not require a dedicated team of professionals to deal with the databases [93, 100]. 
Therefore, minimal service provider interaction is required, lowering the overall 
cost effectively [9, 106]. DBaaS is economically feasible for consumers as well 
because it liberates consumers from local hardware. A glimpse of numerous advan-
tages of DBaaS is represented in Table 13.2 for quick overview and understanding.

13.2.2  Cloud Storage Architectures

DBaaS is based on the architectural and operational approach [80]. In this subsec-
tion, we discuss some of the well-known architectures for Cloud based storage en-
vironment that can be adopted by DBaaS vendors according to their requirements:

Table 13.1   Primary features of DBaaS
Sr. No Features Description
1 Self-Service Instant and automatic service provisioning without major deploy-

ment or configuration
Users can perform different tasks without cost and performance 
overhead

2 Broad Ubiquitous 
Network Access

Service accessible using different devices (Desktop Computers, 
Mobile, Tablet)

3 Abstract Resources Device and location-independent abstract database resources
Focus on user’s needs instead of hardware utilization

4 Resource Pooling Location-independent, remotely-hosted database resources pooled 
at distributed servers

5 Elasticity and 
Scalability

Automated and dynamic scaling
Databases adapt to workload changes without service disruption

6 Pay As You Go 
Model

Tracking of data resources using meter
Payment management according to data resources used

7 Agility Adaptive to business changes
Rapid provisioning of database resources
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13.2.2.1  Layered Architecture for the Outsourced Cloud DBMS

The growing interest in outsourcing database management tasks to third parties 
provides the benefit of a significantly reduced operational cost, as discussed in 
Sect. 13.1. To manage such outsourced databases, there was a need for a newly de-
signed DBMS, architected specifically for the Cloud computing platforms. There-
fore, a layered architecture was proposed by Gelogo et al. [47] in 2012, specially 
designed for the Cloud based outsourced DBMS. There are three basic layers in 
the overall architecture as shown in Fig.  13.2, i.e., Application Layer, Database 
Layer, and Storage Layer [47] with an additional User Interface Layer to access the 
service via internet. The Application layer is used to access software services and 
storage space on the Cloud. The Database layer provides efficient and reliable ser-
vice of managing database by reusing query statements residing in the storage, thus 

Table 13.2   Major advantages of DBaaS
Sr. No Advantages Description
1 Effective failure recovery Fast, transparent, and automated recovery

Data replication at multiple locations
Regular backups

2 Non-stop availability 24/7/365
No single point of failure
Self-detective and self-aware mechanism

3 Simplified query interface 
and faster management 
approval

GUI-based configuration
Management of data backups, data restores, and automated 
scheduling using user-friendly interfaces
No shipping and framing up environment required

4 Economical choice No hardware (storage devices) utilization by consumers
Lesser number of professionals required to handle the 
databases
No requirement of hardware or experts lowers the overall 
cost of maintaining databases

Fig. 13.2   Layered Archi-
tecture of the Cloud based 
DBMS [47]
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saving time for querying and loading data. Data is encrypted when stored or backed 
up at Data storage layer, without any need for programming to encrypt and decrypt. 
Backup management and disk monitoring is also provided at this layer. The layered 
architecture helps to add more functionality at each layer; maintenance becomes 
easier and security threats are not compacted at one place, but are distributed at 
each layer. Therefore, addressing potential threats is easier using layered approach.

13.2.2.2  Shared-Disk vs Shared-Nothing Cloud Database Architecture

Shared-Nothing and Shared-Disk architectures [61] are also frequently employed for 
Cloud databases. Shared-Nothing architecture is based on the construct that every 
system contains its own private memory in one or more than one local disks. Da-
tabase partitioning is performed wherein each database server processes and main-
tains its own data. The clustered processors running at each server communicate  
via messages over the network [18]. All the requests are automatically routed to the 
system and only one cluster at a time can own and consume resources. Thus, data 
consistency issue is avoided. As nothing is shared between the processors, interde-
pendency of processors is prevented. There is fixed load balancing rather than dy-
namic load balancing, which means that each server has to handle peak load for its 
data. Scalability of processors is the core advantage provided by this architecture. 
Figure 13.3 shows the architecture of Shared-Nothing approach.

Fig. 13.3   Shared Nothing architecture [61]
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Shared-Disk architecture, as depicted by Fig. 13.4, not only uses its own private 
memory, but also allows connecting to other systems/disk memories [18]. Different 
database processes have access to all the system resources including data; therefore, 
any server (process) can become active at request and provide required database 
service. This provides fluidity to smoothly accommodate temporal and evolutionary 
changes. Overall performance is better with high availability and data does not need 
to be partitioned. But there may be interferences of one processor to another due to 
the shared disk [55].

13.3  Challenges Faced by DBaaS

Aside from the potential benefits DBaaS has to offer, there are tradeoffs attached 
with the paradigm, similar to every other Cloud service model. DBaaS model sup-
ports multi-tenancy [26, 92] which leads to interesting challenges at the administra-
tor’s end, such as assigning logical resources to physical resources, configuring 
physical systems (parameters, database design) and load balancing across physical 
resources [7, 20, 21, 68, 79, 98]. It demands that each tenant’s network should be 
isolated from others and the tenants often need to have their own private address 
space. Therefore, multi-tenancy is difficult to manage in the dynamic environment 
of the Cloud where the number of tenants frequently varies.

Fig. 13.4   Shared Disk architecture [61]
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The location of the data stored in Cloud is not known to organizations or data 
owners, which significantly minimizes their control over their data [87]. Consumers 
do not know the details pertaining to where actual physical machines, networking 
and storage devices are residing. In case of security breaches, it becomes difficult 
for them to identify the resource which has been compromised. In addition, con-
sumers do not have fine-grained control over remote execution environment and the 
Cloud services; therefore, consumers cannot inspect the execution traces in order to 
detect occurrence of illegal operation [20, 21]. Unavailability of database services 
can also be faced from time to time affecting performance and any other linked ser-
vice. Amazon has clearly mentioned in its licensing agreement that service unavail-
ability may occur sometimes [11]. Furthermore, scalability promised by DBaaS is 
also difficult to manage by the service providers [35], particularly when scaling out 
causes escalation in storage nodes [92].

DBaaS consumers want to freely shift from one provider to another, in order to 
reuse their critical and redundant data across portable applications, such that com-
ponents written for one DBaaS provider should run at the infrastructure of another 
DBaaS provider. In this respect, vendor lock-in is also a challenge in the DBaaS 
environment [18]. Another issue of concern is the lack of interoperability between 
DBaaS vendors [63]. DBaaS providers should be able to communicate with each 
other through API’s and there must be a common front-end that would appear as a 
single homogenous entity with semantic calls [38]. Thus, there is a need to translate 
and transform standards with the objective to have native database driven interoper-
ability standards [62].

The number of potential users simultaneously querying the database residing in 
Cloud is a variable in query workload; therefore, estimating the time required for 
query workloads is a challenge. This unpredictable behavior creates management 
problems and workload analysis at a particular time becomes difficult [7]. One of 
the barriers to the Cloud DBaaS performance is the speed with which data can be 
transferred between the database service providers and the consumers. However, 
internet transfer speed is not as high, compared with the speed required for transfer-
ring data, introducing performance overhead [7]. High speed internet connection 
and cables (modems) are used to achieve the desired speed, which in turn incur very 
high cost, diminishing the economic advantage of DBaaS.

Furthermore, the data in DBaaS can be confidential and any type of Data loss and 
leakages can cause financial and customer loss to the organization. Major causes 
for data loss in the Cloud are insufficient authorization, authentication, and account-
ing mechanisms, inconsistent use of encryption keys and techniques, alteration, or 
deletion of records without maintaining backup and operational failures [20]. There 
are many other technical and business risks, apart from the highlighted challenges 
which prevent customers from committing to the Cloud DBaaS. Table 13.3 shows 
the key challenges associated with DBaaS model that need to be addressed, along 
with their consequences and causes.
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13.4  Security Challenges Faced by DBaaS

The crux of the DBaaS security is to secure the data in transit, at rest, and in use. The 
security issues mainly include, risk from malicious outsiders and insiders, secure 
data management, confidentiality, integrity, and availability of personal and business 
critical information. Data owners delegate control of data over to the DBaaS provid-
ers, which may lead to compromised integrity, confidentiality, and availability of data 
[7, 43]. Moreover, if the DBaaS providers fail to deliver the relevant requirements/
evidence of their compliance such as Data Security Standard (DSS) or Payment Card 
Industry (PCI), then the resilience and continuity of business might be compromised. 
Thus, a road-map towards certification on key industry standards [86] is necessary to 
follow. Some data integrity and privacy issues arise due to the absence of authentica-
tion, authorization, and accounting controls, poor key management for encryption 
and decryption [20]. In this respect, the focus of this section is to look into different 
security concerns, categorized according to the CIA principles, i.e., Confidentiality, 
Integrity, and Availability [96], as well as some major privacy concerns.

Table 13.3   Challenges faced by DBaaS
No. Challenge Consequences and causes
1 Resource allocation 

for multiple tenants: 
multi-tenancy

Problem faced in assigning logical resources to physical resources 
for multiple users accessing common data repository
Configuration of physical systems becomes difficult
Load balancing across physical resources becomes composite 
process

2 Loss of control Lose control over location-independent data
No fine-grained control for remote execution
Difficult to determine source in case of failure

3 Service 
unavailability

Unavailability of services can affect performance
Fault tolerant services are required

4 Escalation of data 
resources

Automatic scaling of data cause confidentiality issues

5 Vendor lock-in Data shifting among vendors is not considered
Data reusability across portable applications is not guaranteed

6 Lack of 
interoperability

Communication between multiple heterogeneous databases is 
required
Need of mature standard notions of translation and transformations

7 Query and transac-
tional workloads

Lack of management because number of users querying database is 
not known
Time estimation is not possible in query workload

8 Internet speed Data transfer requires high internet speed which will incur high cost
Performance overhead

9 Data loss during 
migration

Alteration or deletion of records without a backup
Insufficient authorization, authentication, and accounting control 
mechanisms
Inconsistent use of encryption technique
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13.4.1  Confidentiality

Confidentiality, in the context of data outsourcing, refers to secure execution of que-
ries generated by trusted clients. It signifies that only authorized users should get 
access to the data. In DBaaS, data residing in an unencrypted form may be vulnera-
ble to bugs, errors, and attacks from external entities, confronting data confidential-
ity issues. Frequent concerns related to confidentiality of data are described below:

Insider Threats  Super users usually have the privilege to access all resources, due 
to maintenance purposes. However, if this privilege is misused, it poses a consider-
able threat to data in DBaaS [69]. Administrating the administrators is again an end-
less cycle. This key challenge might be addressed by enforcing strict supply chain 
management and by conducting a comprehensive supplier assessment. It will enable 
the Cloud DBaaS providers to hire people (contractors or vendors) who get through 
pre-defined characteristics, requirements testing or interviewing. In order to avoid 
espionage and intentional mal-behavior, resources can be tied to legal actions by 
specifying human resource requirements as part of the legal contracts [31].

Outside Malicious Attacks  One of the problems in trusting DBaaS providers with 
confidential data is the potential of outside malicious attacks [20]. Malicious attacks 
such as fraud, phishing, scamming, and exploitation of the software vulnerabilities 
are also possible in the Cloud DBaaS. Malicious users can also execute spoofing, 
sniffing, man-in-the-middle attacks, side channeling [39] and illegal transactions 
to launch a Denial of Service (DoS) attack [20]. Data intrusion is another prob-
lem faced by DBaaS, where an intruder can get access to all of the instances and 
resources by illegally accessing login credentials. This way, any hacker can erase 
the information residing inside the data repositories and use it unethically for dis-
abling/harm the services [9].

Access Control Issues  In traditional data storage environment, organizations per-
form manual checks on locally-placed data, as well as on the super users by means 
of, e.g., security personnel or cameras [67]. However, organizations are not able 
to carry out the same level of monitoring and access control once the data is trans-
ferred to the Cloud DBaaS. This is because data is now outsourced to third parties 
and is not under possession of the owner. Big data, that is difficult to manage, is 
usually segregated into restrictive categories in order to ensure secure access to the 
data resources [35, 42, 54]. Moreover, access control policies are usually defined 
by the DBaaS providers and not by data owners; therefore, they cannot customize 
access policies if required.

Illegal Recovery of Data from Storage Devices  DBaaS providers perform data 
sanitization to delete or remove data from their storage devices [88]. However, there 
are several techniques that can recover data that has not been properly discarded 
from the hard drives, which might introduce physical and logical security risks. 
Moreover, regular backups are maintained on multiple physical storage devices in 
order to physically colocate data from multiple customers and mitigate data losses 
[9]. Threats on this replicated data, stored on multiple locations are also possible. 
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Hence, data sanitization needs to be performed with a certain amount of caution. 
Physical security risks can be prevented by carefully destructing or overwriting 
critical data, such that information is not disclosed via unauthorized sources [88]. 
Requirements-specific regulations about performing sanitization should be formed 
in accordance with DBaaS.

Network Breaches  In DBaaS model, all the data sent by users or enterprises is 
transferred through or by means of network. Communicating data over the network 
makes it prone to certain threats such as data modification and eavesdropping. Any 
weakness at the network level will give an opportunity to malicious users such that 
they can exploit data. Network packet sniffing is one of the exploitation techniques 
adopted by the malicious users for analyzing communications and gain information 
to crash or corrupt the network [15]. Eavesdropping, IP address spoofing, man in 
the middle attack, denial of service attack, SQL injection, cross side scripting, etc., 
are some other substantial network attacks. Therefore, it is necessary to secure the 
network in order to avoid the leakage of sensitive information in transit.

Data Provenance  Data provenance refers to the tracing and recording process in 
order to find out the origin of data and its movement between databases [29]. DBaaS 
requires history of its digital data, such as details about its creator because this 
information is sometimes used to determine the data accuracy. Fast algorithms are 
needed to handle this metadata provenance which can be cumbersome [35]. More-
over, analysis of large graphs generated from provenance metadata is computation-
ally expensive [32] and their security assessments are also time-sensitive in nature.

Supply Chain Failure  DBaaS providers sometimes outsource certain specialized 
database tasks or all of their supply chain management functions to third parties. 
Therefore, their level of security in such situations may depend upon the security 
of these third party links. Lack of transparency in the contract can be the root cause 
of problems [99].

13.4.2  Integrity

Ensuring data integrity refers to protecting data from unauthorized modification, 
deletion, or fabrication. Therefore, accuracy and consistency of data should be guar-
anteed so that it remains intact and untouched from malicious activities at every 
location. Integrity of data can be breached when unauthorized parties, e.g., insiders 
such as disgruntled employees or outsiders such as hackers, intentionally modify 
data. Data tampering can happen at any level of storage in the Cloud DBaaS. If there 
is a security breach that affects the data of a consumer, the consequence could be 
damaging, not only for the consumer, but also for the service provider.

Moreover, the Cloud databases provide numerous configuration files assigned to 
consumers. These files represent specifications and access privileges. Modification 
of such files will result in improper functioning of the entire Cloud DBaaS. Fraud 
is the oldest form of attack on data integrity [46]. Phishing, trojan horses, denial of 
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service attacks, or other unauthorized means can also impact data integrity through 
data modification. Attacks on the network also compromise data integrity by expos-
ing the content to non-legitimate individuals [54, 64, 74, 110].

13.4.3  Availability

Availability is the extent to which a system’s resources—mainly data resources in 
case of DBaaS—are accessible to its users [41]. It is considered to be a major se-
curity requirement which needs utmost attention from the Cloud DBaaS providers. 
Availability can be affected temporarily as well as permanently or it may be lost 
completely or partially, as a result of service failures [98, 107, 110]. Major threats to 
availability are DOS attacks, natural disasters, and equipment failures at the service 
provider’s end [88]. Unavailability of a database for a long period would inevita-
bly cause consumer applications to suffer. Long bouts of unavailability have been 
known to occur; for example, in February 2008, a major outage of 3 h was faced 
by Amazon S3 and that service breakdown in turn affected its consumers, mainly 
Twitter [105], and some other companies relying on their services [73]. Some of the 
relevant factors are listed below:

Resource Exhaustion  It is simply a denial of service condition which usually 
prevents successful completion of DBaaS related activity because the required 
resources are completely consumed [83]. Due to resource exhaustion, imprecise 
interpretation of the customer service requests may lead to service unavailability, 
economic/reputation losses, and unauthorized access. As data resources are allo-
cated according to statistical projections to each customer, a calculated risk is 
required in order to assign the resources to each of the consumer [99].

Consistency Management  It is practically impossible for distributed computer 
systems to simultaneously provide consistency, availability, and partition toler-
ance, as per the CAP Theorem. DBaaS providers balance these properties by relax-
ing consistency and alleviating distributed replication issue. However, DBaaS 
consumers demand that they see a consistent view of the data, including visible 
changes made by every user who has access to this data [49]. A widely used strategy 
‘data replication’ is used to achieve performance, availability and scalability goals. 
Synchronization of replicated data poses certain challenges because synchronizing 
big data results in a longer response time [85]. Moreover, DBaaS vendors need to 
maintain timely backups of all sensitive and confidential data in order to facilitate 
quick recovery in case of disasters [2]. Therefore, synchronizing the data backups 
is also equally problematic.

Internet Downtime  Network issues affect the availability of DBaaS, since the ser-
vice is dependent upon internet; therefore, data latency, and even application failure 
can be faced [54]. Network misconfiguration, lack of resource isolations, poor or 
untested business continuity, disaster recovery plan, system vulnerabilities, and net-
work traffic modification are some other reasons for network failures engendering 
unavailability [102].
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Data Lock-In  APIs used by DBaaS are proprietary and are not subjected to active 
standardization; as a result, the issues of data lock-in arise. If customers want to 
shift the data from one DBaaS provider to another, they are responsible to extract 
the data they want to shift. Therefore, lack of data extraction is a restriction for orga-
nizations who are adopting any other Cloud database service provider. For example, 
“Linkup”, an online storage service, shut down on August 8, 2008, causing loss of 
data access of 45 % of its customers [17]. “Linkup” had trusted “Nirvanix” [92] for 
storing customer data and was told to switch to another site for storage services. 
This switching raised an issue between two organizations as there was no standard-
ization between the storage devices [17]. One possible way to solve this problem is 
a standardized API which DBaaS developers can use to deploy data services across 
multiple database vendors. Using this mechanism, failure of services provided by 
one vendor would not cause the failure of complete repository of customer data.

Natural Disasters  Natural disasters such as lightning, earthquakes, storms are 
also regarded as risks. They affect the performance, security, and reputation of the 
DBaaS service. Such disasters can cause serious consequences if the database appli-
cation is inadequately tested or if there is no disaster recovery plan. They also pose 
great threat to the availability of DBaaS and thus, demand precautions to avoid 
failures in extreme circumstances [99].

Lack of Auditing and Monitoring Mechanism  Not all DBaaS providers offer 
their consumers the feature of auditing and monitoring, which is important to estab-
lish trust between the consumer and the provider [98]. Monitoring ensures high 
availability and helps avoid failures, backup maintenance, and configuring auto 
fail-over mechanisms. In the dynamic environment of the Cloud DBaaS, security 
risks related to auditing and monitoring of databases arise when conventional pro-
tecting and monitoring methods demand clear knowledge on network infrastructure 
and physical devices such as hardware-assisted SSL. Traditional approaches fail in 
such situations due to continuously changing configuration requirements.

Granular audit information is required when an attack takes place. It is also some-
times required to find the reason behind a missed attack with real-time security 
monitoring. For example, financial firms are obligated to provide granular auditing 
records [32, 91]. Auditing also ensures compliance, apart from providing forensic 
proof. Therefore, DBaaS providers must offer an auditing technique/tool that should 
be able to render full visibility into database activities, irrespective of the location.

13.4.4  Privacy Challenges

Privacy is the need of a person to control the disclosure of his personal information 
to another person or organization [103]. DBaaS has a number of privacy-related 
issues, which increase the risk of data breaches. Some of the crucial privacy chal-
lenges are discussed below:

Data Locality Raising Obligation Issues  In DBaaS, consumers do not know 
where the data is actually stored [54, 87]. This can be the root cause of many 
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problems. Compliance and data security/privacy laws are being followed in various 
countries giving data locality a high regulatory importance. For instance, there is a 
rule in many South American and European countries to prohibit certain types of 
sensitive data from being moved outside the country. Data locality issue also arises 
when no one takes responsibility of the misusage and disruption of data. It raises 
questions of whose jurisdiction the data falls under.

Varying Jurisdiction  Some countries face high risks when they do not strictly fol-
low legal frameworks and international agreements. Outsourced data in the Cloud 
DBaaS are stored at various location and thus, high risk and restrictions are faced 
when customer data is subjected to multiple jurisdictions. In such cases, customer 
data can be accessible by various parties irrespective of legal privacy policies and 
without customer’s consent. Furthermore, certain countries have strict privacy poli-
cies/laws which demand customer’s data to not be stored anywhere without their 
approval, where it can be tracked [99].

Table 13.4 highlights the security challenges along with their consequences and 
causes, which make DBaaS infrastructure vulnerable to threats.

13.5 � Mechanisms to Overcome Security Challenges  
in DBaaS

So far, we have enlisted the major concerns and issues in DBaaS with emphasis 
on security challenges. It has been observed that despite quality research on secure 
data outsourcing and data services, security measures for protecting data have not 
evolved much. De-facto approaches on database encryption, authentication, digital 
signatures [70], contractual agreements, etc., have not gained much success in oper-
ations. Due to this, intelligence agencies, commercial entities and other private/pub-
lic organizations are reluctant to adopt DBaaS. Thus, aside from the need for new 
security mechanisms, the existing counter measures also need to be modified and 
enhanced to cater to the requirements of DBaaS. This section focuses on compre-
hensive analysis of different approaches aiming to secure DBaaS. The literature we 
reviewed is discussed below according to the assorted categories of CIA principles.

13.5.1  Confidentiality and Privacy

Quite often, in research as well as industry, confidentiality and privacy are catered 
to in a single solution or system; therefore, we have dedicated this section to these 
significant security challenges. Recent solutions on the security of outsourced data 
mostly focus on confidentiality with respect to publishers only. Of those solutions, 
majority are based on traditional cryptographic techniques [95]. NetDB2 [50] was 
proposed to address the issue of data privacy by using encryption technique. User 
connects to NetDB2 service via Internet and performs queries through the API pro-
vided. The service is portable and users can benefit from any location with the help 



312 F. Mehak et al.

Category Security challenge Consequences and causes
Confidentiality Insider threats Employees can tap into sensitive and confidential data

Strict supply chain management and assessment is 
required

Outside malicious 
attackers

Malicious attacks by hackers
Absence of authentication, authorization and accounting 
controls can result in such attacks

Access control issues Data owners cannot define or alter policies as per 
requirement
Increased development and analysis cost is incurred 
when user management and granular access control is 
implemented

Illegal recovery of 
data from storage 
devices

Perform degaussing, destruction and overwriting of data 
to avoid data leakages
Recovery of data by malicious sources if not properly 
discarded

Network breaches Data flowing over the network (internet) is prone to haz-
ardous circumstances and network performance issues.
Possible network failure reasons are: misconfiguration, 
lack of resource isolations, poor or untested business 
continuity, disaster recovery plan, network traffic 
modification

Data provenance Complexity and time sensitiveness in provenance 
metadata
Intensive computations involved in getting required 
history
Fast algorithms, auto logs are needed

Supply chain failure Security is dependent on third parties when data is 
outsourced to them

Integrity Integrity check Modification of configuration, access and data files is a 
threat to data integrity
Require accuracy and integrity of data

Availability Resource exhaustion Imprecise modeling of customer’s requirements cause 
resource exhaustion

Consistency 
management

Replications between multiple servers cause manage-
ment as well as consistency issues

Internet downtime Network issues (internet) affect performance
Data lock-in Customers are unable to shift data from one site to 

another
Failure of services provided by one vendor would result 
in complete loss of data
Need of standard API to run under every provider’s 
platform

Natural disasters Lack of disaster recovery plan
Inadequately tested application can be a threat to avail-
ability of service.

Lack of auditing and 
monitoring

Auditing is necessary for avoiding failures, backup 
maintenance, configuration of auto fail-over  
mechanisms for ensuring security of data
Configuration requirements change continuously
Require network and physical device, expertise and 
relevant resources

Table 13.4   Security challenges faced by DBaaS
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of a web browser. Data privacy is ensured using Transport Layer Security (TSL) 
and Secure Socket Layer (SSL). Ge et al. [45] used homomorphic encryption in 
order to secure aggregate outsourcing of data. The proposed scheme operates on 
larger block size than single numeric data values. The basic underlying idea is to 
densely pack data values in an encryption block, and perform computation directly 
on the cipher-text using a secure homomorphic encryption scheme. Security is en-
sured as the database server performs the bulk of the computation without having 
access to the secret key or the sensitive data.

Similarly, Sion [94] proposed an approach which introduced the concept of que-
ry execution assurance in outsourced databases, such that database server guaran-
tees that query requested by client is successfully executed on the database. Before 
the data is outsourced, an identity-hash is computed for each data segment. This 
identity-hash provides authentication for queries. For requested query, the data 
owner then picks a secret number and a one-time nonce to compute query token 
(to avoid replay attacks). The token is used by the service provider to prove actual 
query execution when the data owner submits a batch of queries. Verification of 
correct query is performed by the data owner when the service provider returns both 
the query execution proof and query results. Likewise, Hadavi et al. [53] proposed 
a scheme for preserving data confidentiality and correctness verifiability of query 
results for ensuring security in DBaaS. The distribution algorithm and redundant 
shares in the proposed Secret Sharing Algorithm are the basis for this approach. This 
algorithm works by splitting each attribute value between several different servers, 
located at distributed locations. The distribution of attribute values is based on cus-
tomized threshold secret sharing mechanism. There are two main servers involved 
in the overall mechanism. Data Server: It has the same schema as the original rela-
tion in addition to a “TupleID” assigned to each data row with an incremental value 
to uniquely identify the row (tuple). Indexes of encrypted searchable attributes are 
maintained at Index Server which uses B+ trees for preserving the order of en-
crypted values of searchable attributes. Confidentiality is achieved by using secret 
sharing algorithm. Moreover, attribute values in the index tree and TupleIDs in the 
buckets are all in encrypted form.

Alzain et  al. [8] proposed a new methodology called “NetDB2-multi shares 
model” which is appropriate for NetDB2 architecture. The model is based on se-
cret sharing algorithm and multi-service providers. There are three main layers in 
the architecture, i.e., Presentation Layer for HTTP server and end user’s browser, 

Category Security challenge Consequences and causes
Privacy Data locality raising 

obligation issues
Compliance and data-security privacy laws prohibit 
movement of sensitive data among countries
Issues faced when no one takes responsibility of data in 
location independent data storage

Varying jurisdictions Risks and restrictions faced when customer’s data is 
subjected to multiple country’s legal jurisdictions
Data in this situation is accessible by multiple parties

Table 13.4  (continued)
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Management Layer which consists of DBMS and database service provider and, 
lastly, the Application Layer where the actual application resides and runs. Private 
high speed network serves the purpose of secure communication between differ-
ent components. Overall working involves the distribution of data divided into “n” 
shares, each stored on a different database server. Query is sent to all database 
servers to retrieve results without revealing any type of sensitive information (se-
cret value) to the database service provider. Cryptonite is a solution proposed by 
Kumbhare et al. [60] for secure data storage. It also claims to address availability 
requirements. Cryptonite runs within Microsoft Azure and provides service APIs 
compatible with the existing Cloud storage services. Moreover, it provides pipe-
lined and data parallel optimizations to reduce security overhead caused by encryp-
tion and key management. Basic tenets include file owner and repository where 
“File Owner” performs encryption and signs the data at the client side before stor-
ing in the Cloud. Client uploads plaintext data file on behalf of the owner, and the 
data file is encrypted. A random cryptographic public/private key pair is generated 
afterwards to sign the encrypted file. Repository offers scalability and user-friendly 
model for managing keys in an efficient and secure manner. This process ensures 
secure data file at client side and using the owner information stored in metadata; 
coarse grained access control is enforced. The technique claims to provide easy 
migration to the Cloud data storage clients by incorporating well-established cryp-
tographic techniques and security standards.

It was later researched and investigated that performing data encryption itself is 
computationally expensive [3] and increases the response time of a query. Keeping 
this in mind, D. Agrawal et al. [4] proposed a scalable and privacy preserving algo-
rithm for data outsourcing other than using encryption. In this simple but impracti-
cal solution, database service providers are primarily used to store data on servers. 
Data distribution is supported on multiple data provider sites where data divided 
into “n” shares is stored on different service providers. When a query is generated, 
relevant shares are retrieved from service providers and query result answer is re-
constructed at a data source. Data store is considered as a client that wants to access 
the data. Service providers are not able to infer anything about the data content 
and data store (client) is still able to query the database by incurring reasonable 
computation and communication cost, quite similar to the overhead involved in the 
encryption approach. In the extended and improved information retrieval method 
based on this approach, only required tuples are retrieved from the service providers 
instead of whole superset.

Querying the encrypted data is also a challenge and various mechanisms have 
been proposed till now [79] in order to deal with this issue. It is believed that these 
mechanisms are able to secure DBaaS solutions. Therefore, in the successful adop-
tion of homomorphic encryption, performing algebraic query processing is a chal-
lenge. In this regard, full homomorphic encryption proposed by Murali et al. [66] 
is a breakthrough, which supports operating on and querying encrypted data. Fully 
homomorphic encryption involves Evaluate Algorithm besides key generation, en-
cryption and decryption techniques. This algorithm is capable of evaluating com-
plete query along with the query literals sent by client, and as a result, produces 
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correct and compact cipher texts which are returned to the client. There are two 
sub-parts involved in its working: a Data Model, which represents original tables, 
relational tables and intermediate results during query processing; and a Computa-
tional Model, which database service provider will use to perform query processing.

There are some other secure mechanisms which are based on Third Party Au-
ditors. Auditors access the database on behalf of clients and perform auditing on 
the data. Ferretti et al [44] advised against using any intermediary component for 
accessing the database on behalf of the clients, since it becomes a single point of 
failure. Moreover, security of DBaaS is restricted by this trusted intermediary proxy 
server. In their proposed idea is to move the metadata to the Cloud database, while 
the encryption engine is executed by each client. Client machines execute a client 
software component that allows a user to connect and issue queries directly to the 
Cloud DBaaS. This component retrieves the necessary metadata from the untrust-
ed database through SQL statements and makes them available to the encryption 
engine. Multiple clients can access the untrusted Cloud database independently, 
with the guarantee of the same level of availability, scalability and elasticity of the 
Cloud-based services. The solution depends on metadata as well; therefore, secur-
ing metadata is as critical as securing customer data.

13.5.2  Integrity

Protection of data integrity in a dynamic environment of the Cloud is a formidable task 
because users no longer have physical possession of the outsourced data. Data integ-
rity demands consistency, accuracy, and validity of data. In this respect, Nithiavathy 
[77] proposed integrity auditing mechanism that utilizes distributed erasure-coded 
data (for employing redundancy) and homomorphic token. This technique allows 
third party auditors (TPA) and users to audit the logs and events at the Cloud storage 
using light weight communication protocol at low computation cost. The auditing re-
sult ensures storage correctness and it also helps to achieve fast data error localization. 
The scheme also supports efficient dynamic operations on secure outsourced data. 
TPAs do not know the secret key, so there is no way for them to breach the data. Wang 
et al. [101] proposed a similar approach which puts forth an idea of using TPAs and 
is suitable for preserving data integrity when data is outsourced to the DBaaS provid-
ers. This approach is different since it supports batch auditing by performing multiple 
auditing tasks simultaneously. Moreover, it utilizes the technique of public key-based 
homomorphic linear authenticator, which enables TPA to perform the auditing with-
out demanding the local copy of data and thus, drastically reduces the communica-
tion and computation overhead as compared to the straightforward data auditing ap-
proaches. TPAs do not have any knowledge of data content and they perform audits 
for multiple users concurrently. Generally, a public auditing scheme consists of four 
algorithms. KeyGen is a key generation algorithm and is run by the user to setup the 
scheme. SigGen is used by the user to generate verification metadata and may consist 
of digital signatures. GenProof is run by the Cloud server to generate a proof of data 
storage correctness, while VerifyProof is run by the TPA to audit the proof.
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Q Zheng et al. [109] also investigated the issue of query integrity and a solution 
was proposed which allows TPA/querier/data owner to verify executed queries in 
the Cloud database server. The proposed solution also provides additional support 
of flexible join and aggregate queries. The basic building block in this method is 
Authenticated Outsourced Ordered, which is based on different algorithms. KeyGen 
is the algorithm which takes the primary security parameter as input and outputs a 
pair of private and public keys. SetUp algorithm is executed by a data owner be-
fore outsourcing the database to the server. By taking as input the private key and 
the database, this algorithm outputs some cryptographic auxiliary information and 
state information. Both database and auxiliary information will be outsourced to 
the server and state information will be made public (so as to allow third parties to 
verify the query answers). QueryVrfy is the query protocol between a querier which 
issues a query, and the server which answers the query with the result and a proof. 
The querier verifies the result afterwards. Brzeźniak et al. [28] proposed a mecha-
nism ‘National Data Storage’ which covers data key management, data encryption 
and data integrity and ensure high data security and access efficiency. They used 
on-the-fly client side encryption and cryptographic file systems for protecting the 
data in a transparent way. When a file is written into the directory, its symmetric 
key is encrypted using the directory’s public key and stored in the system. Private 
Key of the file opened by the user is used to decode the private key of the directory. 
After that, the private key of the directory is used to decode the symmetric key of 
the file, which is in turn used to decode the file. AES-256 is used for encrypting the 
data files and SHA-512 algorithm is used for data integrity control. Symmetric and 
asymmetric cryptography is combined for managing complex key hierarchy.

Authors in [10] devised an approach for DBaaS in which they proposed search-
able encryption scheme for ensuring authenticity (cipher text integrity) and privacy 
of data. Integrity is achieved without any additional communication and computa-
tional cost through the use of standard cryptographic primitives, such as block ci-
phers, symmetric encryption schemes, and message authentication codes. They also 
formulated an additional property of cipher text-integrity, and thus, the encryption 
algorithm should contain some redundancy at the end so that the ciphertext is verifi-
able. For catering the issue of consistency management, an approach was proposed 
in [52] based on the structure of tree. It basically helps to reduce interdependency 
between replica servers by ensuring maximum reliable path which is ensured from 
primary sever to all replica servers. Throughput and performance is increased as a 
result of reduced probability of transaction failure.

13.5.3  Availability

Availability in DBaaS is generally referred to as “Completeness” [42]. Complete-
ness ensures that the user is provided with all the requested data if he has access 
privileges. Arjun Kumar et al. [59] proposed an approach which handles big data 
in the Cloud. The approach plays a vital role in dealing with availability of DBaaS 
because it supports three backup servers located at remote locations. In case of 
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path failure, alternate paths are available for processing/querying data; therefore, 
data can be recovered in time. Data is stored in encrypted and compressed form in 
multi-server. This encryption is performed during backup operation by using secret 
key, before it is taken to multi-server and decrypted during recovery operation. Us-
ers send their data to the main servers after which backup of data is maintained at 
multiple servers. The main server is also contacted by users to retrieve the data. Lei 
Xu et  al. [106] studied the overhead involved in encrypting, retrieving, decrypt-
ing and then performing operations on whole database. As a solution to overcome 
this overhead, authors proposed an approach called “Hub” which divides data into 
buckets in the form of tuples according to some attribute (column) values of the 
database. Original attribute values remain hidden by corresponding bucket indexes. 
For each attribute, a hard data copy will be stored, which is physically “bucketized” 
following the range of this attribute value. For query execution, each copy still 
carried bucket index of other attributes. Therefore, when query is executed, only 
required buckets are retrieved instead of whole database. This approach introduces 
privacy, backup efficiency and access performance as well. For replicas of data, 
a fine-grained private inter-backup between the heterogeneous copies is also de-
signed using privacy preserving inter-backup protocol.

Table  13.5 summarizes possible defense mechanisms against some important 
security issues in DBaaS. Every technique primarily focuses on any one of the  
CIA aspect.

13.5.4  Future Directions

DBaaS is steadily gaining attraction in the market but despite the increasingly ma-
ture solutions, there are many critical challenges which require thorough research. 
It is necessary to devise strong security and privacy control mechanisms, in order 
to gain wide-scale acceptance of DBaaS in the Cloud paradigm. Various techniques 
have been proposed for securing relational data model so far. However, these tech-
niques need improvement in order to make them more efficient and effective.

Majority of the existing techniques focus on security with respect to the service 
providers only. Therefore, approaches are required which focus on consumers too. 
Moreover, a majority of the available solutions are based on the traditional crypto-
graphic techniques, where the general idea is that the owners can outsource the en-
crypted data. Publishers do not manage and encrypt the data and do not receive keys 
to decrypt it; therefore, it is recommended to devise such techniques which allow 
publishers to perform queries on the encrypted data. Furthermore, few techniques 
have also been proposed where data is encrypted by publishers using different keys 
and where user receives only the corresponding keys of data portions. Such tech-
niques need improvement from the management perspective, as using large number 
of different keys creates difficulty in management. Important consideration is re-
quired for comparing different encryption algorithms in order to evaluate most ap-
propriate one for the DBaaS environment. Until now, most of the simulations for the 
evaluation of the Cloud database security solutions are performed on test beds. This 
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Problem 
addressed

Defense mechanism Description

Confidentiality 
and privacy

Net DB2 architecture 
[50]

Based on cryptography (Considered both RSA and 
Blowfish)
TSL and SSL are used for privacy
Information is not revealed to service providers

Homomorphic 
encryption [45]

Operates on larger block size
Computation applies directly on cipher-text
Database server cannot see/access keys/data

Query execution 
assurance [94]

Data owner ensures secure execution of query
Based on hashing mechanism

Secret sharing algo-
rithm [53]

Secret sharing mechanism is used
Data is divided into “n” shares and distributed into 
multiple servers
hole database is retrieved for data reconstructions, 
processing overhead is involved
B + Trees used for preserving order

NetDB2 multi-shares 
model [8]

Supports NetDB2 architecture.
Based on secret-sharing algorithm
Secure network communication
Data divided into ‘n’ shares as like previous 
approaches

Cryptonite-secure 
data repository solu-
tion [60]

Addresses availability requirements
File owner has permission to encrypt and audit the data
StrongBox enables scalable key management and 
secures files

Privacy preserving 
algorithm [4]

Encryption was not used
Attribute values split to multiple distributed servers 
based on secret sharing mechanisms
Service providers cannot infer data content
Extension of this method retrieves only required tuples 
instead of whole database

Full homo-morphic 
algorithm [66]

Querying encrypted data is possible
Evaluate Algorithm is used besides key generation, 
encryption and decryption

Proxy-less architec-
ture [44]

Alleviate the need of using intermediate component
Metadata is moved to database
Encryption engine is executed by each client
Scalability, security and consistency of data are 
provided

Integrity Storage integrity 
auditing mechanism 
[77]

Distributed erasure-coded data is used for employing 
redundancy.
Homomorphic token is used for dynamically storing 
data.
TPA can audit logs and events but they do not know  
the encryption keys.

Privacy-preserving 
public auditing for 
secure cloud storage 
[101]

Third party auditors are used for communication with 
users to check data integrity
Batch auditing is used to perform delegated auditing 
tasks from different users
Public key based homomorphic encryption linear 
authenticator is used

Table 13.5   State-of-the-art mechanisms for securing DBaaS
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lack of testing in the actual environment should be mitigated by replacing test beds 
with real users/data and simulations with real database service providers in Cloud. 
Additionally, some solutions involve additional Third Party Auditors (TPA’s) in 
which security of the whole architecture is dependent on the integrity of these TPAs 
and any security breach from TPAs will affect the whole storage mechanism. There 
is a need for more reliable and dependable auditor-less solutions. Additionally, per-
formance issues are faced by most of the counter mechanisms when they have to 
process with big data, for which the techniques are not engineered. Secure APIs, au-
diting mechanisms and tools, data migration between DBaaS service providers and 
standards for permanent data deletion are some of the areas that are still unattended 
in DBaaS security. The practical and widely-adopted mechanisms which are meant 
to provide security for relational databases can also be adopted for the Cloud DBaaS 
model (database outsourcing) after transforming and customizing them accordingly.

Thus, after conducting a thorough study on DBaaS, it can be inferred that it is 
extremely important to holistically investigate the various DBaaS security related 
parameters such as threats, risks, challenges, vulnerabilities, and attacks. Moreover, 
majority of the extant mechanisms for mitigating security challenges have room 
for further improvement because none of them provide holistic solutions to ca-
ter every aspect of security concerns but address a particular preventive concern.  

Problem 
addressed

Defense mechanism Description

Query integrity veri-
fier [109]

TPA/Users/querier can verify executed queries
Support for JOIN and AGGREGATE queries are a plus

National data storage 
[28]

On the fly client side encryption is used
SHA −512 algorithm for integrity control
AES −256 is used for encryption
Users no longer have to manage keys manually

Searchable encryption 
scheme [10]

Standard cryptographic techniques such as block 
ciphers, symmetric encryption schemes, and message 
authentication codes are used
Ensures authenticity (cipher text integrity) and privacy 
of data

Consistency manage-
ment [52]

Based on the data structure of trees
Interdependency between replica servers is reduced
There is maximum reliable path between primary sever 
to all replica servers

Availability Backup approach Three backup servers are maintained located at remote 
locations
Traditional encryption and decryption method is used 
with two-step authentication
Encryption is performed during backup operation

Hub [106] Data is divided into buckets such that only required 
tuples are retrieved from the hub
Saves time to achieve performance
Backups are easier to maintain
Privacy preserving backup protocol between heteroge-
neous copies is designed

Table 13.5  (continued)
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Secure mechanisms should be developed and evaluated according to a benchmark 
in order to make them more comprehensive, mature, practical and reliable. These 
security measures should be dynamic to adapt the changing requirements of the 
Cloud DBaaS.

13.6  Conclusion

Database-as-a-Service (DBaaS) is an increasingly popular Cloud service model, 
with attractive features like scalability, pay-as-you-go model and cost reduction; 
they make it suitable for most organizations with constantly changing requirements. 
There have been many data security breaches in the Cloud over the past few years, 
as mentioned in Sect. 13.1. Security is an active area of research but requires fur-
ther investigation, especially in the domain of Cloud databases. No extensive re-
search work has been done which meticulously covers security aspects of DBaaS. 
This chapter surveyed and presented in-depth survey of challenges faced by DBaaS 
including background knowledge of its evolution history, its major advantages, 
features, and characteristics, followed by different Cloud-compatible data storage 
architectures. Moreover, different inherent security issues faced by DBaaS are also 
enumerated. State-of-the-art techniques to secure DBaaS are also exemplified in 
this chapter. Some future directions are also given which will help researchers in 
exploring further research horizons and for devising solutions for the security of 
this model.

We have established that data storage security in the Cloud is a domain which 
is full of challenges and is of paramount importance as customers do not want to 
lose their data at any cost. It is also a major hurdle in the way of adopting the Cloud 
platform for storage services. Unfortunately, DBaaS is vulnerable to different at-
tacks; thus, many research problems in this domain are yet to be investigated. There 
is a need for effective mechanisms and methodologies to mitigate security problems 
by having practices in the form of secure architectures so as to make DBaaS plat-
form more secure, and ultimately, widely-adopted.
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Abstract  To accommodate the ever-increasing demand for Utility Computing (UC) 
resources while taking into account both energy and economical issues, the cur-
rent trend consists in building even larger data centers in a few strategic locations. 
Although, such an approach enables to cope with the actual demand while continuing 
to operate UC resources through centralized software system, it is far from delivering 
sustainable and efficient UC infrastructures. In this scenario, we claim that a disrup-
tive change in UC infrastructures is required in the sense that UC resources should be 
managed differently, considering locality as a primary concern. To this aim, we pro-
pose to leverage any facilities available through the Internet in order to deliver widely 
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distributed UC platforms that can better match the geographical dispersal of users as 
well as the unending resource demand. Critical to the emergence of such locality-
based UC (LUC) platforms is the availability of appropriate operating mechanisms. 
We advocate the implementation of a unified system driving the use of resources at an 
unprecedented scale by turning a complex and diverse infrastructure into a collection 
of abstracted computing facilities that is both easy to operate and reliable. By deploy-
ing and using such a LUC Operating System on backbones, our ultimate vision is to 
make possible to host/operate a large part of the Internet by its internal structure itself: 
a scalable and nearly infinite set of resources delivered by any computing facilities 
forming the Internet, starting from the larger hubs operated by ISPs, governments, and 
academic institutions to any idle resources that may be provided by end users.

Keywords  Utility Computing · UC · Locality-based UC · Distributed Cloud 
Computing · IaaS · Efficiency · Sustainability

14.1 � Introduction

The success of Cloud Computing has driven the advent of Utility Computing (UC). 
However, Cloud Computing is a victim of its own success. In order to answer the 
escalating demand for computing resources, Cloud Computing providers must build 
data centers (DCs) of ever-increasing size. As a consequence, besides facing the 
well-known issues of large-scale platform management, large-scale DCs have now 
to deal with energy considerations that limit the number of physical resources that 
one location can host.

Instead of investigating alternative solutions that could tackle the aforemen-
tioned concerns, the current trend consists in deploying larger and larger DCs in 
few strategic locations presenting energy advantages. For example, Western North 
Carolina, USA, an attractive area due to its abundant capacity of coal and nuclear 
power, brought about the departure of the textile and furniture industry [21]. More 
recently, several proposals suggested building next generation DCs close to the po-
lar circle in order to leverage free cooling techniques, considering that cooling ac-
counts for a big part of the electricity consumption [24].

14.1.1 � Inherent Limitations of Large-scale Data Centers

Although, building large-scale DCs enables to cope with the actual demand, it is far 
from delivering sustainable and efficient UC infrastructures. In addition to requiring 
the construction and the deployment of a complete network infrastructure to reach 
each DC, it exacerbates the inherent limitations of the Cloud Computing model:

•	 The externalization of private applications/data often faces legal issues that re-
strain companies from outsourcing them on external infrastructures, especially 
when located in other countries.
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•	 The overhead implied by the unavoidable use of the Internet to reach distant 
platforms is wasteful and costly in several situations: Deploying a broadcasting 
service of local events or an online service to order pizzas at the edge of the polar 
circle, for instance, leads to important overheads since most of the users are a 
priori located in the neighborhood of the event/the pizzeria.

•	 The connectivity to the application/data cannot be ensured by centralized dedi-
cated centers, especially if they are located in a similar geographical zone. The 
only way to ensure disaster recovery is to leverage distinct sites [23].

The two first points could be partially tackled by hybrid or federated Cloud solu-
tions [4], that aim at extending the resources available on one Cloud with those of 
another one; however, the third one requires a disruptive change in the way UC 
resources are managed.

Another issue is that, according to some projections of a recent IEEE report [25], 
the network traffic has been doubling roughly every year. Consequently, bringing 
IT services closer to the end users is becoming crucial to limit the energy impact of 
these exchanges and to save the bandwidth of some links. Similarly, this notion of 
locality is critical for the adoption of the UC model by applications that need to deal 
with a large amount of data as getting them in and out using actual UC infrastruc-
tures may significantly impact the global performance [18].

The concept of micro/nano DCs at the edge of the backbone [24] may be seen 
as a complementary solution to hybrid platforms in order to reduce the overhead of 
network exchanges. However, operating multiple small DCs breaks somehow the 
idea of mutualization in terms of physical resources and administration simplicity, 
making this approach questionable.

14.1.2 � Ubiquitous and Oversized Network Backbones

One way to partially solve the mutualization concern enlightened by the defend-
ers of large-scale DCs is to directly deploy the concept of micro/nano DCs upon 
the Internet backbone. People are (and will be) more and more surrounded by 
computing resources, especially those in charge of interconnecting the IT equip-
ment. Even though these small- and medium-sized facilities include resources 
that are barely used [3, 8], they can hardly be removed (e.g., routers). Consider-
ing this important aspect, we claim that a new generation of UC platforms can be 
delivered by leveraging existing network centers, starting from the core nodes of 
the backbone to the different network access points in charge of interconnecting 
public and private institutions. By such a mean, network and UC providers would 
be able to mutualize resources that are mandatory to operate network/data centers 
while delivering widely distributed UC platforms able to better match the geo-
graphical dispersal of users. Figure 14.1 allows to better capture the advantages of 
such a proposal. It shows a snapshot of the network weather map of RENATER, 
the backbone dedicated to universities and research institutes in France. It reveals 
several important points:
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•	 As mentioned before, most of the resources are underutilized (only two links are 
used between 45 and 55 %, a few between 25 and 40 %, and the majority below 
the threshold of 25 %).

•	 The backbone was deployed and is renewed to match the demand: The density of 
points of presence (PoPs, i.e., small- or medium-sized network centers), as well 
as the bandwidth of each link, are more important on the edge of large cities such 
as Paris, Lyon, or Marseille.

•	 The backbone was designed to avoid disconnections, since 95 % of the PoPs can 
be reached by at least two distinct routes.

Fig. 14.1   The RENATER Weather Map on May 2013, the 27th, around 4 p.m. Each red square 
corresponds to a particular point of presence (PoP) of the network. The map is available in real-
time at: http://www.renater.fr/raccourci

 

http://www.renater.fr/raccourci
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14.1.3 � Locality-Based Utility Computing

This chapter aims at introducing locality-based UC (LUC) infrastructures, a new 
generation of UC platforms that solve inherent limitations of the Cloud Computing 
paradigm relying on large-scale DCs. Although, it involves radical changes in the 
way physical and virtual resources are managed, leveraging network centers is a 
promising way to deliver highly efficient and sustainable UC services.

From the physical point of view, network backbones provide appropriate infra-
structures, i.e., reliable and efficient enough to operate UC resources spread across 
the different PoPs. Ideally, UC resources would be able to directly take advantage 
of computation cycles available on network active devices, i.e., those in charge of 
routing packets. However, leveraging network resources to make external computa-
tions may lead to important security concerns. Hence, we propose to extend each 
PoP with a number of servers dedicated to hosting virtual machines (VMs). As it is 
natural to assume that the network traffic and UC demands are proportional, larger 
network centers will be completed with more UC resources than the smaller ones. 
Moreover, by deploying UC services on relevant PoPs, a LUC infrastructure will be 
able to natively confine network exchanges to a minimal scope, minimizing alto-
gether the energy footprint of the network, the impact on latency and the congestion 
phenomena that may occur on critical paths (for instance Paris and Marseille on 
RENATER).

From the software point of view, the main challenge is to design a comprehen-
sive distributed system in charge of turning a complex and diverse network of re-
sources into a collection of abstracted computing facilities that are both reliable and 
easy to operate.

The design of the LUC Operating System (OS), an advanced system being able 
to unify many UC resources distributed on distinct sites, would enable Internet 
service providers (ISPs) and other institutions in charge of operating a network 
backbone to build an extreme scale LUC infrastructure with a limited additional 
cost. Instead of redeploying a complete installation, they will be able to leverage IT 
resources and specific devices such as computer room air conditioning units, invert-
ers, or redundant power supplies already present in each center of their backbone.

In addition to considering locality as a primary concern, the novelty of the LUC 
OS proposal is to consider the VM as the basic object it manipulates. Unlike ex-
isting research on distributed operating systems designed around the process con-
cept, a LUC OS will manipulate VMs throughout a federation of widely distributed 
physical machines. Virtualization technologies abstract out hardware heterogeneity, 
and allow transparent deployment, preemption, and migration of virtual environ-
ments (VEs), i.e., a set of interconnected VMs. By dramatically increasing the flex-
ibility of resource management, virtualization allows to leverage state-of-the-art 
results from other distributed systems areas such as autonomous and decentralized 
systems. Our goal is to build a system that allows end users to launch VEs over a 
distributed infrastructure as simply as they launch processes on a local machine, 
i.e., without the burden of dealing with resources availability or location.
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14.1.4 � Chapter Outline

Section 14.2 describes the key objectives of a LUC OS and the associated chal-
lenges. Section 14.3 explains why our vision differs from current and previous UC 
solutions. In Section 14.4, we present how such a unified system may be designed 
by delivering the premises of the DISCOVERY (DIStributed and COoperative 
framework to manage Virtual EnviRonments autonomouslY) system, an agent-
based system enabling the distributed and cooperative management of virtual envi-
ronments over a large-scale distributed infrastructure. Future work and opportunities 
are addressed in Sect. 14.5. Finally, Sect. 14.6 concludes this chapter.

14.2 � Overall Vision and Major Challenges

Similar to traditional operating systems (OSes), a LUC OS is composed of many 
mechanisms. Trying to identify all of them and establishing how they interact is an 
on-going work (see Sect. 14.4). However, we have pointed out the following key 
objectives to be considered when designing a LUC OS:

•	 Scalability: A LUC OS must be able to manage hundreds of thousands of virtual 
machines (VMs) running on thousands of geographically distributed computing 
resources. These resources are small- or medium-sized computing facilities and 
may become highly volatile according to the network disconnections.

•	 Reactivity: To deal with the dynamicity of the infrastructure, a LUC OS should 
swiftly handle events that require to perform particular operations, either 
on virtual or on physical resources. This has to be done with the objective of 
maximizing the system utilization while meeting the Quality of Service (QoS) 
expectations of VEs. Some examples of operations that should be performed as 
fast as possible include: (i) the reconfiguration of VEs over distributed resources, 
sometimes spread across wide area networks (WANs), or (ii) the migration of 
VMs, while preserving their active connections.

•	 Resiliency: In addition to the inherent dynamicity of the infrastructure, failures, 
and faults should be considered as the norm rather than the exception at such a 
scale. The goal is therefore to transparently leverage the underlying infrastruc-
ture redundancy to: (i) allow the LUC OS to keep working despite node failures 
and network disconnections (LUC OS robustness), and to (ii) provide snapshot-
ting as well as high availability mechanisms for VEs (VM robustness).

•	 Sustainability: Although the LUC approach would reduce the energy footprint of 
UC services by minimizing the cost of the network, it is important to go one step 
further by considering energy aspects at each level of a LUC OS and propose 
advanced mechanisms in charge of making an optimal usage of each source of 
energy. To achieve such an objective, the LUC OS should take account of data 
related to the energy consumption of the VEs and the computing resources, as 
well as the environmental conditions (computer room air conditioning unit, loca-
tion of the site, etc.).
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•	 Security and Privacy: Similar to resiliency, the security and privacy issues affect 
the LUC OS itself and the VEs running on it. Regarding the LUC OS, the goals 
are: (i) to create trust relationships between different locations, (ii) to secure the 
peer-to-peer layers, (iii) to include security and privacy decisions and enforce-
ment points in the LUC OS, and (iv) to make them collaborate through the se-
cured peer-to-peer layers to provide end-to-end security and privacy. Regarding 
the VEs, users should be able to express their requirements in terms of security 
and privacy; the LUC OS would then enforce these requirements.

In addition to the aforementioned objectives, working on a virtual infrastructure re-
quires to deal with the management of VM images. Managing VM images in a dis-
tributed way across a wide area network (WAN) is a real challenge that will require 
adapting state-of-the-art techniques related to replication and deduplication. Also, 
the LUC OS must take into account VM images location, for instance: (i) to allocate 
the right resources to a VE, or (ii) to prefetch VM images, to improve deployment 
performance or VM relocations.

Finally, one last scientific and technical challenge is the lack of a global view 
of the infrastructure. Maintaining a global view would indeed limit the scalability 
of the LUC OS, which is inconsistent with our objective to manage large-scale 
geographically distributed systems. Therefore, we claim that the LUC OS should 
rely on decentralized and autonomous mechanisms, which can match and adapt to 
the volatile topology of the infrastructure. Several decentralized mechanisms are 
already used in production on large-scale systems; for instance, Amazon relies on 
the Dynamo service [15] to create distributed indexes and recover from data in-con-
sistencies and Facebook uses Cassandra [29], a massive scale structured store that 
leverages peer-to-peer techniques. In a LUC OS, decentralized and self-organizing 
overlays will enable to maintain the information about the current state of both vir-
tual and physical resources, their characteristics, and availabilities. Such informa-
tion is mandatory to build higher level mechanisms ensuring the correct execution 
of VEs throughout the whole infrastructure.

14.3 � Background

Several generations of UC infrastructures have been proposed and still coexist 
[19]. However, neither Desktop, Grid, nor Cloud Computing platforms provide a 
satisfying UC model. Contrary to the current trend that promotes large offshore-
centralized DCs as the UC platform of choice, we claim that the only way to achieve 
sustainable and highly efficient UC services is to target a new infrastructure that 
better matches the Internet structure. As it aims at gathering an unprecedented 
amount of widely distributed computing resources into a single platform providing 
UC services close to the end users, a LUC infrastructure is fundamentally different 
from existing ones. Keeping in mind the aforementioned objectives, recycling UC 
resource management solutions developed in the past is doomed to failure.
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As previously mentioned, our vision significantly differs from hybrid Cloud 
Computing solutions. Although these research activities address important concerns 
related to the use of federated Cloud platforms, such as interface standardization 
for supporting cooperation and resource sharing, their propositions are incremental 
improvements of existing UC models. Recent investigations on hybrid Clouds and 
Cloud federation are comparable in some ways to previous works done on Grids, 
since the purpose of a Grid middleware is to interact with each resource manage-
ment system composing the Grid [11, 49, 55].

By taking into account the network issues, in addition to traditional computing and 
storage concerns in Cloud Computing systems, the European SAIL project [50] is 
probably the one which targets the biggest advances with regard to previous works on 
Grid systems. More concretely, this project investigates new network technologies to 
provide end users of hybrid/federated Clouds with the possibility to configure and vir-
tually operate the network backbone interconnecting the different sites they use [37].

More recently, the Fog Computing concept has been proposed as a promising 
solution to applications and services that cannot be put into the Cloud due to local-
ity issues (mainly the latency and mobility concerns) [10]. Although it might look 
similar to our vision as they propose to extend the Cloud Computing paradigm to the 
edge of the network, Fog Computing does not target a unified system but rather pro-
poses to add a third party layer (i.e., the Fog) between Cloud vendors and end users.

In our vision, UC resources (i.e., Cloud Computing ones) should be repacked in 
the different points of presence of backbones and operated through a unified system, 
the LUC OS. As far as we know, the only system that investigated whether a widely 
distributed infrastructure can be operated by a single system was the XtreemOS 
Project [36]. Although this project shared some of the goals of the LUC OS, it did 
not investigate how the geographical distribution of resources can be leveraged to 
deliver more efficient and sustainable UC infrastructures.

To sum up, we argue for the design and the implementation of a kind of dis-
tributed OS, manipulating VEs instead of processes, and considering locality as 
a primary concern. Referred to as a LUC OS, such a system will include most 
of the mechanisms that are common to current UC management systems [17, 32, 
35, 39–41]. However, each of them will have to be rethought in order to leverage 
peer-to-peer algorithms. While largely unexplored for building operating systems, 
peer-to-peer/decentralized mechanisms have the potential to achieve the scalability 
required to manage LUC infrastructures. Using this technology for establishing the 
base mechanisms of a massive-scale LUC OS will be a major breakthrough from 
current static, centralized, or hierarchical management solutions.

14.4 � Premise of a LUC OS: The DISCOVERY Proposal

In this section, we propose to go one step further by discussing preliminary in-
vestigations around the design and implementation of a first LUC OS proposal: 
the DISCOVERY system. We draw the premises of the DISCOVERY system by 
emphasizing some of the challenges as well as some research directions to solve 
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them. Finally, we give some details regarding the prototype that is under develop-
ment and how we are going to evaluate it.

14.4.1 � Overview

The DISCOVERY system relies on a multi-agent peer-to-peer system deployed on 
each physical resource composing the LUC infrastructure. Agents are autonomous 
entities that collaborate with one another to efficiently use the LUC resources. In 
our context, efficiency means that a good trade-off is found between users’ expecta-
tions, reliability, reactivity, and availability, while limiting the energy consumption 
of the system and providing scalability.

In DISCOVERY, each agent has two purposes: (i) maintaining a knowledge base 
on the composition of the LUC platform, and (ii) ensuring the correct execution of 
VEs. This includes the configuration, deployment, and monitoring of VEs as well 
as the dynamic allocation or relocation of VMs to adapt to changes in VEs require-
ments and physical resources availability. To this end, agents will rely on dedicated 
mechanisms related to:

•	 The localization and monitoring of physical resources
•	 The management of VEs
•	 The management of VM images
•	 Reliability
•	 Security and privacy

14.4.2 � Resource Localization and Monitoring Mechanisms

Keeping in mind that DISCOVERY should be designed in a fully decentralized fash-
ion, its mechanisms should be built on top of an overlay network able to abstract out 
changes that occur at the physical level. The specific requirements of this platform 
will lead to the development of a novel kind of overlay networks based on locality 
and a minimalistic design. More concretely, the first step is to design, at the lowest 
level, an overlay layer intended to hide the details of the physical routes and com-
puting utilities, while satisfying some basic requirements such as locality and avail-
ability. This overlay needs to enable the communications between any two nodes in 
the platform. While overlay computing has been extensively studied over the last de-
cade, we emphasize here on minimalism, especially on one key feature to implement 
a LUC OS: retrieving nodes that are geographically close to a given departure node.

14.4.2.1 � Giving Nodes a Position

The initial configuration of the physical network can take an arbitrary shape. 
We choose to rely on the Vivaldi protocol [14]. Vivaldi is a distributed algorithm 
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as-signing coordinates in the plane to nodes of a distributed system. Each node is 
equipped with a view of the network, i.e., a set of nodes it knows. This view is ini-
tially assumed as random. Coordinates obtained by a node reflect its position in the 
network, i.e., close nodes in the network are given close coordinates in the plane. To 
achieve this, each node periodically checks the round trip time between itself and 
another node (randomly chosen among nodes in its view) and adapts its distance (by 
changing its coordinates) with this node in the plane accordingly. Refer to Figs. 14.2 
and 14.3 for an illustration of four nodes (A, B, C, and D) moving according to the 
Vivaldi protocol. A globally accurate positioning of nodes can be obtained if nodes 
have a few long-distance nodes in their view [14]. These long-distance links can be 
easily maintained by means of a simple gossip protocol.

14.4.2.2 � Searching for Close Nodes

Once the map is achieved (each node knows its coordinates), we are able to decide 
whether two nodes are close by calculating their distance. However, the view of 
each node does not a priori contain its closest nodes. Therefore, we need additional 
mechanisms to locate a set of nodes that are close to a given initial node—Vivaldi 
gives a location to each node, but not to the neighborhood. To achieve this, we use 
a modified distributed version of the classic Dijkstra’s algorithm used to find the 
shortest path between two nodes in a graph. The goal is to build a spiral intercon-
necting the nodes in the plane that are the closest ones to a given initial node. Note 
that the term spiral is here a misuse of language, since the graph actually drawn in 
the plane might contain crossing edges. The only guarantee is that when following 
the path constructed, the nodes are always further from the initial node.

Let us consider that our initial point is a node called I. The first step is to find 
a node to build a two-node spiral with I. Such a node is sought in the view of I by 

Fig. 14.3   Vivaldi plot after 
updating positions. The 
computed positions of other 
nodes have been updated

 

Fig. 14.2   Vivaldi plot before 
updating positions. Each 
node pings other nodes. Each 
node maintains a map of 
distance
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selecting the node, say S, having the smallest distance with I. I then sends its view 
to S, I stores S as its successor in the spiral, and S adds I as its predecessor in the 
spiral. Then I forwards its view to S. S creates a new view by keeping the n nodes 
which are the closest to I in the views of I and S . This last view is then referred to 
as the spiral view and is intended to contain a set of nodes among which to find the 
next step of the spiral. Then S restarts the same process: Among the spiral view, it 
chooses the node with the smallest distance to I, say S′, and adds it in the spiral—S 
becomes the predecessor of S′ and S′ becomes the successor of S. Then, the spiral 
view is sent to S′ which updates it with the nodes it has in its own view. The process 
is repeated until we consider that enough nodes have been gathered (a parameter 
sent by the application).

Note that one risk is to be blocked by having a spiral view containing only nodes 
that are already in the spiral, leading to the impossibility to build the spiral further. 
However, this problem can be easily addressed by forcing the presence of a few 
long-distance nodes whenever it is updated.

14.4.2.3 � Learning

Applying the protocol described above, the quality of the spiral is questionable in 
the sense that the nodes that are actually close to the starting node s may not be in-
cluded. The only property ensured is that one step forward on the built path always 
takes us further from the initial node.

To improve the quality of the spiral, i.e., reduce the average distance between the 
nodes it comprises and the initial node, we add a learning mechanism coming with 
no extra communication cost: when a node is contacted to become the next node 
in one spiral, and receives the associated spiral view, it can also keep the nodes 
that are the closest to itself, thus potentially increasing the quality of a future spiral 
construction.

14.4.2.4 � Routing

In the context of a LUC infrastructure, one crucial feature is to be able to locate an 
existing VM. Having the same strategy consisting in improving the performance of 
the overlay based on the activity of the application, we envision a routing mecha-
nism which will be improved by past routing requests. By means of the spiral mech-
anism, a node is able to contact its neighboring nodes to start routing a message.

This initial routing mechanism can be very expensive as the number of hops 
can be linear in the size of the network. However, from previous communications, 
a node is able to memorize long links to different locations of the network. Conse-
quently, from each routing request, the source of the request and each node on the 
path to the destination are able to learn long links, which will significantly reduce 
the number of hops of future requests. We are currently studying the amount of 
requests needed to get close to a logarithmic routing complexity. More generally, 
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we are working on the estimation if the activity of the application is required to: (i) 
guarantee the constant efficiency of the overlay, and (ii) converge, starting from a 
random configuration, to a fully efficient overlay network.

14.4.3 � VEs Management Mechanisms

In the DISCOVERY system, we define a VE as a set of VMs that may have specific 
requirements in terms of hardware, software, and also in terms of placement: For in-
stance, some VMs must be on the same node/site to cope with performance objectives 
while others should not be collocated to ensure high-availability criteria [26]. As op-
erations on a VE may occur in any place from any location, each agent should provide 
the capability to configure and start a VE, to suspend/resume/stop it, to relocate some 
of its VMs if the need arises, or simply to retrieve the location of a particular VE. Most 
of these mechanisms are provided by current UC platforms. However, as mentioned 
before, they should be revisited to leverage peer-to-peer mechanisms to correctly run 
on the infrastructure we target (i.e., in terms of scalability, resiliency, and reliability).

As a first example, placing the VMs of a VE requires the ability to find the avail-
able nodes that fulfill the VM’s needs (in terms of resource requirements as well as 
placement constraints). Such a placement can start locally, close to the client appli-
cation requesting it, i.e., in its local group. If no such node is found, a simple navi-
gation ensures that the request will encounter a bridge, leading to the exploration 
of further nodes. This navigation goes on until an adequate node is found. A similar 
process is performed by the mechanism in charge of dynamically controlling and 
adapting the placement of VEs during their lifetime. For instance, to ensure the 
particular needs of a VM, it can be necessary to relocate other VMs. According to 
the predefined constraints of VEs, some VMs might be relocated on far nodes while 
others would prefer to be suspended. Such a mechanism has been deeply studied in 
the DVMS framework [16, 46]. DVMS (Distributed Virtual Machine Scheduler) is 
able to dynamically schedule a significant number of VMs throughout a large-scale 
distributed infrastructure while guaranteeing VM resource expectations.

A second example regards the networking configuration of VEs. Although it might 
look simple, assigning the right IP to each VM as well as maintaining the intracon-
nectivity of a VE becomes a bit more complex than in the case of a single network 
domain, i.e., a single site deployment. Keeping in mind that a LUC infrastructure 
is, by definition, spread WANwide, a VE can be hosted between distinct network 
domains during its lifetime. No solution has been chosen yet. Our first investiga-
tions led us to leverage techniques such as the IP over P2P project [20]. However, 
software-defined networking becomes more and more important; investigating pro-
posals such as the Open vSwitch project [44] looks promising to solve such an issue.

14.4.4 � VM Images Management

In a LUC infrastructure, VM images could be deployed in any place from any other 
location. However, being in a decentralized, large-scale, heterogeneous, and widely 
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spread environment makes the management of VM images more difficult than with 
conventional centralized repositories. At coarse grain: (i) the management of the 
VM images should be consistent with regard to the location of each VM in the 
DISCOVERY infrastructure, and (ii) each VM image should remain reachable or at 
least recoverable in case of failures. The envisioned mechanisms to manage VM im-
ages have been classified into two categories. First, some mechanisms are required 
to efficiently upload VM images and replicate them across many nodes, to ensure 
efficiency as well as reliability. Second, other mechanisms are needed to schedule 
VM image transfers. Advanced policies are important to improve the efficiency of 
each transfer that may occur either during the first deployment of a VM or during 
its relocations.

Regarding the storage and replication mechanisms, an analysis of an IBM Cloud 
concludes that a fully distributed approach using peer-to-peer technology is not the best 
choice to manage VM images, since the number of instances of the same VM image is 
rather small [42]. However, central or hierarchical solutions are not suited for the in-
frastructure we target. Consequently, an improved peer-to-peer solution working with 
replicas and deduplication has to be investigated to provide more reliability, speed, and 
scalability to the system. For example, analyzing different VM images shows that at 
least 30 % of the image is shared between different VMs [28]. This 30 % can become a 
30 % reduction in space, or a 30 % increase in reliability, or in transfer speed. Depend-
ing on the situation, we should decide to go from one scenario to another.

Regarding the scheduling mechanisms, a study showed that VM boot time could 
be increased from 10 to 240 s when multiple VMs running I/O intensive tasks use 
the same storage system [53]. Some actions can provide a performance boost and 
limit the overhead that is still observed in commercial Clouds [33], like providing 
the image chunks needed to boot first [54], defining a new image format, and paus-
ing the rest of the I/O operations.

More generally, the amount of data linked with VM images is significant. Ac-
tions involving data should be aware of consequences on metrics like (but not 
limited to): energy efficiency, reliability, proximity, bandwidth, and hardware us-
age. The scheduler could also anticipate actions, for instance, moving images when 
the load is low or the energy is cheap.

14.4.5 � Reliability Mechanisms

Although, we can expect that the frequency of failures on LUC resources should be 
similar to that in current UC platforms, it is noteworthy to mention that the expected 
mean time to repair failed equipment might be much higher since resources will be 
highly distributed. For these reasons, specific mechanisms should be designed to 
manage failures transparently with a minimum downtime.

Ensuring the high availability of the DISCOVERY system requires the ability to 
autonomously relocate and restart any service on a healthy node in case of failure. 
Moreover, a Cassandra-like framework [29] is required to avoid losing or corrupt-
ing information belonging to stateful services, since it provides a reliable and highly 
available back-end.
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Regarding the VEs reliability, leveraging periodical VM snapshotting capabil-
ities can provide a first level of fault tolerance. In case of failure, a VE can be 
restarted from its latest snapshot. Performing VM snapshotting in a large-scale, 
heterogeneous, and widely spread environment, is a challenging task. However, we 
believe that adapting ideas that were recently proposed in this field [38] would al-
low us to provide such a feature.

Snapshotting is not enough for services that should be made highly available, but 
a promising solution is to use VM replication [43]. To implement VM replication in 
a WAN, solutions to optimize synchronizations between replicas [22, 47] should be 
investigated. Also, we think that a LUC infrastructure has a major advantage over 
other UC platforms, since it is tightly coupled with the network infrastructure. As 
such, we can expect low latencies between nodes which would enable us to provide 
a strong consistency between replicas while achieving acceptable response time for 
the replicated services.

Reliability techniques will of course make use of the overlays for resource lo-
calization and monitoring. Replicated VMs should be hosted on nodes that have a 
low probability to fail simultaneously. Following the previously defined overlay 
structure, this can be done through a navigation scheme where at least one bridge 
is encountered. A replica can then be monitored by a watcher, which is in the same 
local group as the replica.

14.4.6 � Security and Privacy Mechanisms

To be successful, DISCOVERY needs to provide mechanisms and methods to con-
struct trust relationships between resource providers. Trust relationships are known 
to be complex to build [34]. Providing strong authentication, assurance, and certifi-
cation mechanisms to providers and users is required, but is definitely not enough. 
Trust covers socioeconomic aspects that must be addressed but are out of the scope 
of this chapter. The challenge is to provide a trusted DISCOVERY base.

As overlays are fundamentals to all DISCOVERY mechanisms, another chal-
lenge is to ensure that they are not compromised. Recent advances [12] might en-
able to tackle such concerns.

The third challenge will consist in: (i) providing end users with a way to define 
their own security and privacy policies, and (ii) ensuring that these policies are 
enforced. The expression of these policies itself is a complex task, as it requires 
to improve the current trade-off between security (and privacy) and usability. To 
ease the expression of these policies, we are currently designing a domain-specific 
language to define high-level security and privacy requirements [9, 30]. These poli-
cies will be enforced in a decentralized manner, by distributed security and privacy 
decision and enforcement points (SPDEPs) during the lifetime of the VEs. Imple-
menting such SPDEP mechanisms in a distributed fashion will require conducting 
specific research, as currently there are only prospective proposals for classic UC 
infrastructures [5, 51]. Therefore, we need to investigate whether such proposals 
can be adapted to the LUC infrastructure by leveraging appropriate overlays.
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14.4.7 � Towards a First Proof of Concept

The first prototype is under heavy development. It aims at delivering a simple 
mock-up for integration/collaboration purposes. Following the coarse-grained ar-
chitecture described in the previous sections, we have started to identify all the 
components participating in the system, their relationships, as well as the resulting 
interfaces. Conducting such a work now is mandatory to move towards a more 
complete as well as more complex system.

To ensure a scalable and reliable design, we chose to rely on the use of high-level 
programming abstractions. More precisely, we are using distributed complex event 
programming [27] in association with the actor model [1]. This enables us to easily 
switch between a push- and a pull-oriented approach depending on our needs.

Our preliminary studies showed that a common building block is mandatory 
to handle resiliency concerns in all components. Concretely, it corresponds to a 
mechanism in charge of throwing notifications that are triggered by the low level 
network overlay each time a node joins or leaves it. Such a mechanism makes the 
design and the development of higher building blocks easier as they do not have to 
provide specific portions of code to monitor infrastructure changes.

This building block has been designed around the Peer Actor concept (see 
Figs. 14.4 and 14.5). The Peer Actor serves as an interface between higher services 
and the communication layer. It provides methods that enable to define the behav-
iors of a service when a resource joins or leaves a particular peer-to-peer overlay 
as well as when neighbors change. Considering that several overlays may coexist 
in the DISCOVERY system, the association between a Peer Actor and its Overlay 
Actor is done at runtime and can be changed on the fly if need be. However, it is 
noteworthy that each Peer Actor takes part to one and only one overlay at the same 
time. In addition to the Overlay Actor, a Peer Actor is composed of a Notification 
Actor that processes events and notifies registered actors. As illustrated in Fig. 14.5, 
a service can use more than one Peer Actor (and reciprocally). Mutualizing a Peer 
Actor enables for instance to reduce the network overhead implied by the main-
tenance of the overlays. In the example, the first service relies on a Peer Actor 

Fig. 14.4   The Peer Actor 
Model. The Supervisor Actor 
monitors all the actors it 
encapsulates while the Peer 
Actor acts as an interface 
between the services and the 
overlay
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implementing a Chord overlay [52], while the second service uses an additional 
Peer Actor implementing a CAN structure [48].

By such a mean, higher-level services can take the advantage of the advanced 
communication layers without dealing with the burden of managing the different 
overlays. As an example, when a node disappears, all services that have been reg-
istered as dependent on such an event are notified. Service actors can thus react 
accordingly to the behavior that has been specified.

Regarding the design and the implementation of the DISCOVERY system, each 
service is executed inside its own actor and communicates by exchanging messages 
with the other ones. This ensures that each service is isolated from the others: When 
a service crashes and needs to be restarted, the execution of other services is not af-
fected. As previously mentioned, we consider that at the LUC infrastructure scale, 
failures are the norm rather than the exception; hence, we decided that a Supervisor 
Actor would monitor each actor (see Fig. 14.4). DISCOVERY services are under 
the supervision of the DISCOVERY agent: This design allows to precisely define 
a strategy that will be executed in case of service failures. This will be the way to 
introduce self-healing and self-organizing properties to the DISCOVERY system.

This building block has been fully implemented by leveraging the Akka/Scala 
framework [2], and is available online at https://github.com/BeyondTheClouds.

As a proof of concept (POC), we are implementing a first high-level service in 
charge of dynamically scheduling VMs across a LUC infrastructure by leveraging 
the DVMS [46] proposal (see Sect. 14.4.3). The low-level overlay that is being cur-
rently implemented is a robust ring based on the Chord algorithm combined with 
the Vivaldi positioning system: It enables services to select nodes that have low 
latency, so that collaboration will be more efficient.

To validate the behavior, the performance as well as the reliability of our proof of 
concept, we are performing several experiments on the Grid’5000 test bed [6] that 
comprises hundreds of nodes distributed on 10 computing sites that are geographi-
cally spread across France. To make experiments with DISCOVERY easier, we 
developed a set of scripts that can deploy thousands of VMs throughout the whole 

Fig. 14.5   A Peer Actor 
instantiation. The first ser-
vice relies on a Peer Actor 
implementing a Chord 
overlay while the second 
service uses an additional 
Peer Actor implementing a 
CAN structure
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infrastructure in a one-click fashion [7]. By deploying our POC on each node and by 
leveraging the VM deployment scripts, we can evaluate real scenario by injecting 
specific workloads in the different VMs. The validation of this first POC is almost 
completed. The resulting system will be the first to provide reactive, reliable, and 
scalable reconfiguration mechanisms of virtual machines in a fully distributed and 
autonomous way. This new result will pave the way for a complete proposal of the 
DISCOVERY system.

14.5 � Future Work/Opportunities

14.5.1 � Geo-diversification as a Key Element

The Cloud Computing paradigm is changing the way applications are designed. In 
order to benefit from elasticity capabilities of Cloud systems, applications integrate 
or leverage mechanisms to provision resources, i.e., starting or stopping VMs, ac-
cording to their fluctuating needs. The ConPaaS system [45] is one of the promising 
systems for elastic Cloud applications. At the same time, a few projects have started 
investigating distributed/collaborative ways of hosting famous applications such as 
Wikipedia or Facebook-like systems by leveraging volunteer computing techniques. 
However, considering that resources provided by end users were not reliable enough, 
only few contributions have been done yet. By providing a system that will enable to 
operate widely spread but more reliable resources closer to the end users, the LUC 
OS proposal may strongly benefit to this research area. Investigating the benefit of 
locality provisioning (i.e., combining elasticity and distributed/collaborative host-
ing) is a promising direction for all Web services that are embarrassingly distributed 
[13]. Image sharing systems, such as Google Picasa or Flickr, are examples of ap-
plications where leveraging locality will enable to limit network exchanges: Users 
could upload their images on a peer that is close to them, and images would be trans-
ferred to other locations only when required (pulling versus pushing model).

LUC infrastructures will allow envisioning a wider range of services that may 
answer specific SMEs requests such as data archiving or backup solutions, while sig-
nificantly reducing the network overhead as well as legal concerns. Moreover, it will 
make the deployment of UC services easier by relieving developers of the burden of 
dealing with multi-Cloud vendors. Of course, this will require software engineering 
and middleware advances to easily take advantage of locality. But proposing LUC OS 
solutions, such as the DISCOVERY project, is the mandatory step before investigat-
ing new APIs enabling applications to directly interact with the LUC OS internals.

14.5.2 � Energy, a Primary Concern for Modern Societies

The energy footprint of current UC infrastructures, and more generally of the 
Internet, is a major concern for the society. Although we need to conduct deeper 



A. Lebre et al.342

investigations, we clearly expect that by its design and the way to operate it, a 
LUC infrastructure will have a smaller impact with a better integration in the whole 
Internet ecosystem.

Moreover, the LUC proposal is an interesting way to deploy the data furnaces pro-
posal [31]. Concretely, following the Smart City recommendations (i.e., delivering 
efficient and sustainable ICT services), the construction of new districts in metrop-
olises may take advantage of each LUC/Network PoP in order to heat buildings 
while operating UC resources remotely by means of a LUC OS. Finally, taking into 
account recent results about passive data centers, such as solar-powered micro-data 
centers, might extend this idea. The idea behind passive computing facilities is to 
limit as much as possible the energy footprint of major hubs and DSLAMS by 
taking advantage of renewable energies to power them, and by using the heat they 
produce as a source of energy. Combining such ideas with the LUC approach would 
allow reaching an unprecedented level of energy efficiency for UC platforms.

14.6 � Conclusion

Cloud Computing has entered into our daily life with a great speed. From classic 
high performance computing simulations to the management of huge amounts of 
data coming from mobile devices and sensors, its impact can no longer be dis-
regarded. While a lot of progress has already been made in Cloud technologies, 
there are several concerns that limit the complete adoption of the Cloud Computing 
paradigm.

In this chapter, we have outlined that, in addition to these concerns, intrinsic 
issues limit the current model of UC. Instead of following the current trend by try-
ing to cope with existing platforms and network interfaces, we proposed to take a 
different direction by promoting the design of a system that will be efficient and 
sustainable at the same time, putting knowledge and intelligence directly into the 
network backbone itself.

The innovative approach, we introduced, will definitely tackle and go beyond 
Cloud Computing limitations. Our objective is to pave the way for a new genera-
tion of Utility Computing infrastructures that better match the Internet structure by 
means of advanced operating mechanisms. By offering the possibility to tightly 
couple UC servers and network backbones throughout distinct sites and operate 
them remotely, the LUC OS technology may lead to major changes in the design 
of UC infrastructures as well as in their environmental impact. The internal mecha-
nisms of the LUC OS should be topology-dependent and resources-efficient. The 
natural distribution of the nodes through the different points of presence should 
be an advantage, which allows to process a request according to its scale: Local 
requests should be computed locally, while large computations should benefit from 
a large number of nodes.

Finally, we believe that LUC investigations may contribute to fill the gap between 
the distributed computing community and the networked ones. This connection 
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between these two communities has already started with the different activities 
around Software-Defined Networking and Network as a Service. In the long term, 
this may result in a new community dealing with UC challenges where network and 
computational concerns are fully integrated. Such a new community may leverage 
the background of both areas to propose new systems that are more suitable to ac-
commodate the needs of our modern societies.

We are well aware that the design of a complete LUC OS and its adoption by 
companies and network providers require several big changes in the way UC infra-
structures are managed and WANs are operated. However, we are convinced that 
such an approach will pave the way towards highly efficient and sustainable UC 
infrastructures, coping with heterogeneity, scale, and faults.
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