

Computer Communications and Networks

Series Editor
Anthony Sammes
Swindon, United Kingdom

Titles in this series now included in the Thomson Reuters Book Citation Index
The Computer Communications and Networks series is a range of textbooks,

monographs and handbooks. It sets out to provide students, researchers, and
non-specialists alike with a sure grounding in current knowledge, together with
comprehensible access to the latest developments in computer communications and
networking.

Emphasis is placed on clear and explanatory styles that support a tutorial
approach, so that even the most complex of topics is presented in a lucid and
intelligible manner.

Springer is seeking to publish quality books in areas including, but not limited to:
Computer Networks (general) - Data Communications - Distributed Computing -

Parallel and Systolic Computing - Network and Information Security - Network
Architecture - Wireless Ad Hoc and Sensor Networks - Mobile Computing - Virtual
Private Networks - Advanced Network Protocol Design and Analysis - Protocol
Verification and Validation - Network Testing - Network Management - Reliability
and Fault Tolerance - Performance Modelling - Quality of Service - Routing and
Traffic Engineering - Web Computing - Network Programming - Grid Computing

More information about this series at http://www.springer.com/series/4198

Zaigham Mahmood
Editor

Cloud Computing

Challenges, Limitations and R&D Solutions

2123

ISSN 1617-7975
ISBN 978-3-319-10529-1     ISBN 978-3-319-10530-7 (eBook)
DOI 10.1007/978-3-319-10530-7
Springer Cham Heidelberg New York Dordrecht London

Library of Congress Control Number: 2014937396

© Springer International Publishing Switzerland 2014
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or
information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts
in connection with reviews or scholarly analysis or material supplied specifically for the purpose of
being entered and executed on a computer system, for exclusive use by the purchaser of the work.
Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright
Law of the Publisher’s location, in its current version, and permission for use must always be obtained
from Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance
Center. Violations are liable to prosecution under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for
any errors or omissions that may be made. The publisher makes no warranty, express or implied, with
respect to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Editor
Zaigham Mahmood
University of Derby
United Kingdom

North West University
S Africa

Dedication

This tenth publication is dedicated to my
parents Ghazi Ghulam Hussain Bahadur and
Mukhtar Begum who spent the prime of their
lives in fighting for the freedom and indepen-
dence of their country. At a very young age,
my father joined a paramilitary movement
with the mission to engage in peaceful strug-
gle to free the country from foreign occupa-
tion. Although the struggle for independence
started many decades before, his organiza-
tion together with similar movements and
political parties, decided to stage a much
more decisive countrywide peaceful protest
on 19 March 1940. The government, fear-
ing the shutdown of the country, had already
banned the gatherings but people were out
in such huge numbers that the army patrol-
ling the streets received orders to shoot to
kill. Live bullets were fired; many thousands
were killed or injured and many more taken
as political prisoners. That day, my father
was leading a group of 313 men—totally
unarmed. Several dozen of them were mar-
tyred or injured; many were captured and
tried. There were 13 who were sentenced to
political imprisonment for life—my father
was one of the 13. His organization honored
him with the titles of Ghazi (survivor in the

fight between right and wrong) and Baha-
dur (valiant). Four days later, an all-party
confederation passed a unanimous resolution
demanding the formation of an independent
state. Soon after, a declaration was signed
to transfer power to the leading political
party. Eventually, after another 7 years, the
country achieved independence on 14 August
1947. On this day, all freedom fighters were
released; my father also returned home ghazi
and victorious. My mother, a young girl
at the time, was no less courageous in her
struggles: she fully supported her husband’s
mission and raised a young girl indepen-
dently, single handedly, while my father was
away. Now that the mission was achieved,
my father devoted his time to engage in the
study of Oriental languages and theology,
bringing up his family and serving the com-
munity. Achieve excellence … make a dif-
ference: my parents would constantly remind
us. They most certainly were excellent in
what they did and made a huge difference.
They are my heroes and my inspiration
in life.

Zaigham Mahmood
19 March 2014

vii

Preface

Overview

Cloud Computing is an attractive paradigm that allows consumers to self-provision
cloud based software systems, application services, development platforms and vir-
tualized infrastructures. Large enterprises can migrate their applications and data to
cloud environments to achieve the benefits of scalability, availability and reduction
in capital expenditure; small organisations and start-up ventures can realize benefits
by leasing ready-made development environments and computing infrastructure on
a pay-as-you-go basis; and general public can enjoy the use of cloud based applica-
tion such as email systems and storage space, which are often freely available.

The benefits that the cloud paradigm promises are numerous and already proven.
However, like any other emerging technology, the limitations, issues and barriers
are also many. There are issues of security due to virtualisation and multi-tenant
nature of cloud environments; concerns with respect to the loss of governance and
control; legal and jurisdiction implications of entrusting private and confidential
data to cloud providers; and concerns due to evolving cloud related standards. The
lack of knowledge on the part of the cloud consumers is also resulting in vendor
lock-ins and inappropriate service level agreements.

Notwithstanding the above, cloud consumers are becoming more knowledgeable
and beginning to dictate what they require. Cloud providers are also learning from
experience and beginning to provide what consumers actually need. Robust new
technologies are appearing and standards organisations, in the process of develop-
ing the necessary controls, are keen to enforce the standards for the benefit of all.
Other cloud related industries are also appearing to provide specialist services to
support cloud providers as well as the cloud consumers. Alongside this, research-
ers, practitioners and R&D departments within the organisations are coming up
with strategies and solutions to resolve the existing issues and remove the barriers.
New areas being investigated include: cloud security, interoperability, service level
agreements, identity and access management, cloud governance, big data analytics
and broker services. New frameworks and methodologies are also being developed
for construction, deployment and delivery of cloud services to benefit all.

viii Preface

This book, Cloud Computing: Challenges, Limitations and R&D Solutions, aims
to present discussions on issues and limitations relating to the cloud computing
paradigm and suggest latest research methodologies, emerging developments and
R&D solutions to benefit the computing community. In this volume, 39 research-
ers and practitioners of international repute have presented latest research devel-
opments, current trends, state of the art reports, case studies and suggestions for
further development of the cloud computing paradigm.

Objectives

The aim of this text is to present the current research and R&D solutions to the
limitations, barriers and issues that currently exist in the cloud computing paradigm.
The key objectives include:

•	 Capturing the state-of-the-art research and practice relating to cloud computing
issues

•	 Exploring limitations and barriers with respect to cloud provision and cloud en-
vironments

•	 Analyzing the implications of the new cloud paradigms for the benefit of con-
sumers

•	 Discussing R&D solutions and strategies with respect to concerns relating to the
cloud paradigm

•	 In general, advancing the understanding of the emerging new methodologies
relevant to the cloud paradigm

Organization

There are 14 chapters in Cloud Computing: Challenges, Limitations and R&D Solu-
tions. These are organized in three parts, as follows:

•	 Part I: Limitations and Challenges of Cloud Environments. This section has a
focus on issues and limitations of the cloud computing paradigm. There are three
chapters in this section. The first chapter looks into the security issues of public
clouds. The second contribution focuses on architectural choices for DBM Sys-
tems for cloud environment and the third chapter discusses the challenges and
issues with respect to QoS and SLAs.

•	 Part II: Current Developments and R&D Solutions. This second part comprises
six chapters. The first contribution discusses a methodology for cloud security
management, while the second chapter suggests a framework for secure data
storage and identity management in the cloud. The third contribution presents a
simulation tool for energy aware cloud environments and the chapter, that fol-
lows, presents an efficient congestion control system for data center networks.

ixPreface
�

The fifth chapter is devoted to looking into energy aware VM consolidation in
the IaaS provision. The last contribution in this section focuses on software de-
fined networking for cloud related applications.

•	 Part III: Advances in Cloud Technologies and Future Trends: There are five
chapters in this part. The first chapter discusses future developments with re-
spect to virtualization and cloud security and the second contribution discusses
recent trends in QoS data warehouses in relation to the selection of cloud based
services. The next chapter focuses on cloud federation approaches. The forth
contribution discusses the security aspects of database-as-a-service provision
and the final chapter looks into the future to see how the next generation utility
computing infrastructures will be designed.

Target Audiences

The current volume is a reference text aimed to support a number of potential audi-
ences, including the following:

•	 Enterprise architects, business analysts and software developers who are keen to
adopt the newer approaches to developing and deploying cloud-based services,
taking into account the current research.

•	 IT infrastructure managers and business leaders who need to have a clear under-
standing and knowledge of the limitations and issues that currently exist in the
emerging cloud computing paradigm.

•	 Students and lecturers of cloud computing who have an interest in further en-
hancing the knowledge of the current developments and R&D solutions to the
barriers, limitations and issues that currently exist.

•	 Researchers in this field who wish to have the up to date knowledge of the cur-
rent practice, mechanisms and research developments relevant to the cloud para-
digm to further develop the same.

� Zaigham Mahmood
� University of Derby UK & North West University S Africa

xi

Acknowledgements

The editor acknowledges the help and support of the following colleagues during
the review and editing phases of this text:

Rodrigo N. Calheiros, University of Melbourne, Australia
Prof. T. Chandrakumar, Thiagarajar College of Engineering, Tamil Nadu, India
Ganesh Chandra Deka, Ministry of Labour & Employment, Delhi, India
Fortis Florin, Research Institute e-Austria Timisoara, Timisoara, Romania
Kahina Hamadache, SingularLogic S.A., Νea Ionia, Attica, Greece
Dr. Attila Kertesz, University of Szeged and MTA SZTAKI, Hungary
Ping Lin, Avaya Canada Corp, Belleville, Ontario, Canada
Flavio Lombardi, Roma Tre University of Rome, Italy
Abhishek Majumder, Tripura University, Tripura West, India
Prof. Hamid Mcheick, Université du Québec à Chicoutimi, Québec, Canada
Joarder Mohammad Mustafa Kamal, Monash University, Victoria, Australia
Prof Saswati Mukerjee, Anna University, Chennai, India
Kashif Munir, King Fahd University of Petroleum & Minerals, S Arabia
Dr. S Parthasarthi, Thiagarajar College of Engineering, Madurai, India
Dr. Pethuru Raj, IBM Cloud Center of Excellence, Bangalore, India
Dr. Muthu Ramachandran, Leeds Metropolitan University, Leeds, UK
Yasir Saleem, Sunway University, Selangor, Malaysia
Dr. Mahmood Shah, University of Central Lancashire, UK
Sukhpal Singh, Thapar University, Patiala, India
Dr. Fareeha Zafar, GC University, Lahore, Pakistan

I would also like to thank the contributors to this book: 39 authors and co-au-
thors, from academia as well as industry from around the world, who collectively
submitted 14 chapters. Without their efforts in developing quality contributions,
conforming to the guidelines and meeting often the strict deadlines, this text would
not have been possible.

xii   Acknowledgements

Grateful thanks are also due to the members of my family—Rehana, Zoya, Im-
ran, Hanya and Ozair—for their continued support and encouragement. Best wishes
also to Eyaad Imran.

17 July 2014 � Zaigham Mahmood
School of Computing and Mathematics,

University of Derby, UK
& Business Management and Informatics Unit,

North West University, Potchefstroom, South Africa

xiii

Other Springer Books by Zaigham Mahmood

Continued Rise of the Cloud: Advances and Trends in Cloud Computing

This reference text presents the latest research and trends in cloud technologies,
infrastructure, and architecture. Contributed by expert researchers and practitio-
ners in the field, this book presents discussions on current advances and practical
approaches including guidance and case studies on the provision of cloud-based
services and frameworks. ISBN: 978-1-4471-6451-7.

Cloud Computing: Methods and Practical Approaches

The benefits associated with cloud computing are enormous; yet the dynamic, virtu-
alized and multi-tenant nature of the cloud environment presents many challenges.
To help tackle these, this volume provides illuminating viewpoints and case studies
to present current research and best practices on approaches and technologies for
the emerging cloud paradigm. ISBN: 978-1-4471-5106-7.

Software Engineering Frameworks for the Cloud Computing Paradigm

This is an authoritative reference that presents the latest research on software devel-
opment approaches suitable for distributed computing environments. Contributed
by researchers and practitioners of international repute, the book offers practical
guidance on enterprise-wide software deployment in the cloud environment. Case
studies are also presented. ISBN: 978-1-4471-5030-5.

Cloud Computing for Enterprise Architectures

This reference text, aimed at system architects and business managers, examines the
cloud paradigm from the perspective of enterprise architectures. It introduces fun-
damental concepts, discusses principles, and explores frameworks for the adoption
of cloud computing. The book explores the inherent challenges and presents future
directions for further research. ISBN: 978-1-4471-2235-7.

xv

Contents

Part I  Limitations and Challenges of Cloud Environments

1 � Attacks in Public Clouds: Can They Hinder the Rise of the Cloud?�����    3
Saeed Shafieian, Mohammad Zulkernine and Anwar Haque

2 � Distributed Database Management Systems: Architectural
Design Choices for the Cloud���    23
Joarder Mohammad Mustafa Kamal and Manzur Murshed

3 � Quality of Service and Service Level Agreements for Cloud
Environments: Issues and Challenges���    51
Inderveer Chana and Sukhpal Singh

Part II  Current Developments and R&D Solution

4 � A Methodology for Cloud Security Risks Management������������������������    75
Mariam Kiran

5 � SecDSIM: A Framework for Secure Data Storage and
Identity Management in the Cloud���   105
Shaga Praveen and G. R. Gangadharan

6 � CloudReports: An Extensible Simulation Tool for
Energy-Aware Cloud Computing Environments�����������������������������������   127
Thiago Teixeira Sá, Rodrigo N. Calheiros and Danielo G. Gomes

7 � Cloud Computing: Efficient Congestion Control in Data
Center Networks���   143
Chi Harold Liu, Jian Shi and Jun Fan

xvi Contents

8 � Energy-Aware Virtual Machine Consolidation in IaaS Cloud
Computing���   179
Md Hasanul Ferdaus and Manzur Murshed

9 � Software-Defined Networking (SDN) for Cloud Applications��������������   209
Lin Lin and Ping Lin

Part III  Advances in Cloud Technologies and Future Trends������������������   235

10 � Virtualization and Cloud Security: Benefits, Caveats, and
Future Developments��   237
Flavio Lombardi and Roberto Di Pietro

11 � Quality-of-Service Data Warehouse for the Selection of
Cloud Services: A Recent Trend��   257
Ahmad Karawash, Hamid Mcheick and Mohamed Dbouk

12 � Characterizing Cloud Federation Approaches��������������������������������������   277
Attila Kertesz

13 � Security Aspects of Database-as-a-Service (DBaaS)
in Cloud Computing���   297
Faria Mehak, Rahat Masood, Yumna Ghazi,
Muhammad Awais Shibli and Sharifullah Khan

14 � Beyond the Clouds: How Should Next Generation Utility
Computing Infrastructures Be Designed?��   325
Marin Bertier, Frédéric Desprez, Gilles Fedak, Adrien Lebre,
Anne-Cécile Orgerie, Jonathan Pastor, Flavien Quesnel,
Jonathan Rouzaud-Cornabas and Cédric Tedeschi

Index���   347

xvii

About the Editor

Professor Zaigham Mahmood  is a published author of 11 books, 5 of which are
dedicated to Electronic Government and Human Factors; and the other 6 focus on
the subject of Cloud Computing including: Cloud Computing: Concepts, Technolo-
gy & Architecture; Cloud Computing: Methods and Practical Approaches; Software
Engineering Frameworks for the Cloud Computing Paradigm; Cloud Computing
for Enterprise Architectures; Continued Rise of the Cloud: Advances and Trends
in Cloud Computing; and Cloud Computing: Challenges, Limitations and R&D
Solutions. Additionally, he is developing two new books to appear in 2015. He has
also published more than 100 articles and book chapters and organized numerous
conference tracks and workshops.

Professor Mahmood is the Editor-in-Chief of Journal of E-Government Studies
and Best Practices as well as the Series Editor-in-Chief of the IGI book series on
E-Government and Digital Divide. He is a Senior Technology Consultant at Debe-
sis Education UK and Associate Lecturer (Research) at the University of Derby
UK. He further holds positions as Foreign Professor at NUST and IIU universities
in Islamabad Pakistan and Professor Extraordinaire at the North West University
Potchefstroom South Africa. Professor Mahmood is also a certified cloud comput-
ing instructor and a regular speaker at international conferences devoted to Cloud
Computing and E-Government. His specialized areas of research include distrib-
uted computing, project management, and e-government.1,2

1  �School of Computing and Mathematics, University of Derby, Derby, UK
e-mail: z.mahmood@debesis.co.uk

2  Business Management and Informatics Unit, North West University, Potchefstroom, South Africa

xix

Contributors

Marin Bertier  Inria, Campus universitaire de Beaulieu, Rennes, France

Rodrigo N. Calheiros  Department of Computing and Information Systems, The
University of Melbourne, Parkville, VIC, Australia

Inderveer Chana  Computer Science and Engineering Department, Thapar
University, Patiala, Punjab, India

Mohamed Dbouk  Ecole Doctorale des Sciences et de Technologie, Lebanese
University, Hadath-Beirut, Lebanon

Frédéric Desprez  Inria, Campus universitaire de Beaulieu, Rennes, France

Roberto Di Pietro  SPRINGeR Research Group, Maths and Physics Department,
Roma Tre University, Rome, Italy

Jun Fan  School of Software, Beijing Institute of Technology, Beijing, P.R. China

Gilles Fedak  Inria, Campus universitaire de Beaulieu, Rennes, France

Md Hasanul Ferdaus  Faculty of Information Technology, Monash University,
Churchill, VIC, Australia

G.R. Gangadharan  Institute for Development and Research in Banking
Technology, Hyderabad, India

Yumna Ghazi  School of Electrical Engineering and Computer Science, National
University of Sciences and Technology, Islamabad, Pakistan

Danielo G. Gomes  Group of Computer Networks, Software Engineering and
Systems (GREat), Universidade Federal do Ceará, Fortaleza—CE, Brazil

Anwar Haque  Bell Canada, Hamilton, ON, Canada

Joarder Mohammad Mustafa Kamal  Gippsland School of Faculty of
Information Technology, Monash University, Clayton, VIC, Australia

xx Contributors

Ahmad Karawash  Department of Computer Science, University of Quebec at
Chicoutimi (UQAC), Chicoutimi, Canada

Ecole Doctorale des Sciences et de Technologie, Lebanese University, Hadath-
Beirut, Lebanon

Attila Kertesz  MTA SZTAKI, Budapest, Hungary

Software Engineering Department, University of Szeged, Szeged, Hungary

Sharifullah Khan  School of Electrical Engineering and Computer Science,
National University of Sciences and Technology, Islamabad, Pakistan

Adrien Lebre  Inria, Campus universitaire de Beaulieu, Rennes, France

Lin Lin  Avaya Canada, Belleville, ON, Canada

Ping Lin  Avaya Canada, Belleville, ON, Canada

Chi Harold Liu  School of Software, Beijing Institute of Technology, Beijing,
P.R. China

Flavio Lombardi  SPRINGeR Research Group, Maths and Physics Department,
Roma Tre University, Rome, Italy

Mariam Kiran  Department of Computer Science, University of Sheffield,
Bradford, Bradford, UK

Rahat Masood  School of Electrical Engineering and Computer Science, National
University of Sciences and Technology, Islamabad, Pakistan

Hamid Mcheick  Department of Computer Science, University of Quebec at
Chicoutimi (UQAC), Chicoutimi, Canada

Faria Mehak  School of Electrical Engineering and Computer Science, National
University of Sciences and Technology, Islamabad, Pakistan

Manzur Murshed  Faculty of Science and Technology, Federation University,
Churchill, VIC, Australia
School of Information Technology, Faculty of Science, Federation University
Australia, Churchill, VIC, Australia

Anne-Cécile Orgerie  Inria, Campus universitaire de Beaulieu, Rennes, France

Jonathan Pastor  Inria, Campus universitaire de Beaulieu, Rennes, France

Shaga Praveen  Institute for Development and Research in Banking Technology,
Hyderabad, India

Flavien Quesnel  Inria, Campus universitaire de Beaulieu, Rennes, France

Jonathan Rouzaud-Cornabas  Inria, Campus universitaire de Beaulieu, Rennes,
France

xxiContributors�

Saeed Shafieian  School of Computing, Queen’s University, Kingston, ON,
Canada

Jian Shi  School of Software, Beijing Institute of Technology, Beijing, P.R. China

Muhammad Awais Shibli  School of Electrical Engineering and Computer
Science, National University of Sciences and Technology, Islamabad, Pakistan

Sukhpal Singh  Computer Science and Engineering Department, Thapar
University, Patiala, Punjab, India

Cédric Tedeschi  Inria, Campus universitaire de Beaulieu, Rennes, France

Thiago Teixeira Sá  Group of Computer Networks, Software Engineering and
Systems (GREat), Universidade Federal do Ceará, Fortaleza—CE, Brazil

Mohammad Zulkernine  School of Computing, Queen’s University, Kingston,
ON, Canada

Part I
Limitations and Challenges of Cloud

Environments

3

Chapter 1
Attacks in Public Clouds: Can They Hinder
the Rise of the Cloud?

Saeed Shafieian, Mohammad Zulkernine and Anwar Haque

© Springer International Publishing Switzerland 2014
Z. Mahmood (ed.), Cloud Computing, Computer Communications and Networks,
DOI 10.1007/978-3-319-10530-7_1

S. Shafieian () · M. Zulkernine
School of Computing, Queen’s University, Kingston, ON K7L 2N8, Canada
e-mail: saeed@cs.queensu.ca

M. Zulkernine
e-mail: mzulker@cs.queensu.ca

A. Haque
Bell Canada, Hamilton, ON L8P 1P8, Canada
e-mail: anwar.haque@bell.ca

Abstract  Since the advent of Cloud Computing, security has been one of the main
barriers to the adoption of the Cloud paradigm, especially by large organizations
dealing with customers’ sensitive information. The rapid growth of the Cloud has
made it a desirable attack target for both external attackers and malicious insiders.
Many of the security attacks that occur in non-Cloud environments can occur in the
Cloud as well, but some of those may be exacerbated, and some may remain unaf-
fected in the new Cloud paradigm. There are also new threats that have arisen, and
Cloud users now face Cloud-specific attacks that did not exist or rarely occurred in
traditional environments. In this chapter, we discuss attacks that are exacerbated by
exploitation of the multi-tenancy attribute in public Clouds that occur because of
the virtualization technology or are due to the pay-as-you-go model in the Cloud.
We discuss some of the most common threats and attacks with respect to the Cloud
attribute exploitations which are capable of exacerbating attacks by causing more
potential consequences, or making detection and prevention mechanisms more
challenging. We also assess the attacks to find out how they may affect confiden-
tiality, integrity, and availability of data and services for Cloud users. Being aware
of the threats to the Cloud may help organizations and individuals have a more
informed switch to the Cloud from their non-Cloud environments. This will also
keep up the rise of the Cloud.

Keywords  Cloud · Security · Denial of Service · Security attack · Virtualization ·
Multi-tenancy

S. Shafieian et al.4

1.1 � Introduction

Cloud Computing is rapidly becoming the de facto standard for hosting and running
medium- to large-scale software applications and services on the Internet [1]. Many
companies, individuals and even government sectors are switching to the Cloud
environment due to several advantages that this new paradigm offers, including the
reduction of operational and training costs, the reduction of upfront capitalizations,
rapid scalability, ease of development, unlimited storage, and ubiquitous accessi-
bility. By using the Cloud paradigm, Cloud consumers may be able to concentrate
more on the core application functionality instead. Cloud Computing is not a new
technology but a combination of existing technologies such as the Web and virtu-
alization. Therefore, any vulnerability in one of these underlying technologies may
be exploited as a security attack in the Cloud.

There are, however, disadvantages in utilizing the Cloud infrastructure, most no-
tably issues related to security, privacy, and trust. According to independent surveys
[2, 3], the most daunting obstacle in switching to the Cloud from a traditional archi-
tecture is security concerns. All of these surveys and studies show the significance
of security in the Cloud from the perspective of both providers and consumers. If
security issues are well addressed and potential consumers are aware of them, it
may help a more confident transition to the new Cloud environment and will conse-
quently help the continued rise of the Cloud.

1.1.1 � Cloud Computing

The most commonly referenced definition of the Cloud is the one proposed by the
U.S. National Institute of Standards and Technology (NIST) [4]. Based on this defi-
nition, the Cloud model is composed of five essential characteristics, three service
models, and four deployment models. The five characteristics of the Cloud are on-
demand self-service, broad network access, resource pooling, rapid elasticity, and
measured service.

The three service models of the Cloud include Software as a Service (SaaS),
Platform as a Service (PaaS), and Infrastructure as a Service (IaaS). Each of these
service models can be deployed as any of the four deployment models: private,
community, hybrid, and public.

Regarding the three service models and the four deployment models, there can
be six different combinations of service and deployment models for any Cloud.
However, some of these may only exist in theory and not offered by any Cloud Ser-
vice Provider (CSP), the entity which offers the Cloud services. In this chapter, we
only focus on one of these combinations, i.e., the public IaaS Cloud, which is one
of the most frequently used combinations and is offered by most prominent CSPs.

In the IaaS model, all the Cloud infrastructure resources are provisioned for the
consumer. In this model, the consumer is normally able to deploy and run any op-
erating systems or software applications in the Cloud. Famous examples of IaaS

1  Attacks in Public Clouds: Can They Hinder the Rise of the Cloud? 5

include Amazon EC2, Rackspace Cloud, Google Compute Engine, IBM Smart-
Cloud, and Microsoft Azure. In the public deployment model, the Cloud infrastruc-
ture is provisioned to be openly used by the general public. Unlike the other deploy-
ment models, in the public model the infrastructure only exists on the premises of
the Cloud provider.

One of the most important attributes in a public IaaS Cloud is multi-tenancy.
Multi-tenancy enables different consumers to have virtual machines (VMs) on the
same physical machine. This attribute is not considered as one of the five essential
Cloud characteristics mentioned earlier, but it normally exists in public Clouds and
is the main justifying factor for the lower costs in the Cloud as compared to non-
Cloud environments. All the VMs running on top of the same physical machine
are controlled by a hypervisor. A hypervisor, also called a virtual machine monitor
(VMM), controls all the guest operating systems running on top of a host operating
system.

1.1.2 � Cloud Attributes Affecting Security

We identify attributes which may be exploited to exacerbate the attacks in the Cloud
compared to non-Cloud environments. By exploiting these attributes, attackers may
be able to launch attacks that have more consequences or are harder to detect or pre-
vent in a public Cloud. By “having more consequence,” we refer to either affecting
more users or causing more asset losses. These attributes are as follows:

•	 Ubiquitous Network Access: Cloud consumers can access and provision all the
services and resources provided by the CSP using public networks especially the
Internet and via conventional devices.

•	 Measured Service: The CSP measures the provided service to its consumers
based on appropriate units. Consumers can monitor and track their resource us-
age online through the transparent measured service.

•	 Multi-tenancy: In a public IaaS Cloud, different consumers may have their VMs
coresident with other consumers’ VMs on the same physical server. This allows
for lower resource usage costs compared to the single-tenant model in traditional
environments or private Clouds.

•	 Off-premise Infrastructure: In a public Cloud, the infrastructure is owned and
operated by a third party and is off premises of the consumer’s organization. As
a result, the consumer loses physical control over their resources, and needs to
rely on the CSP’s physical security measures.

The ubiquitous network access and measured service are essential Cloud character-
istics, and are therefore required to be provided by any CSP regardless of the service
or the deployment model. Multi-tenancy does not exist in the private Cloud as there
is only one consumer utilizing the Cloud resources. Nevertheless, multi-tenancy is
a vital attribute in all public Clouds. Finally, off-premise infrastructure is an intrin-
sic attribute in any public Cloud which contributes as one of the major concerns

S. Shafieian et al.6

for any Cloud consumer. Each of the aforementioned attributes might be exploited
in order to exacerbate the attacks. If an attack is exacerbated in the Cloud through
exploitation of one of the Cloud attributes, it means that the attribute contributes in
increasing attack motivation, attack consequence, or making detection, prevention,
and response mechanisms for that specific attack more challenging compared to
those in non-Cloud environments.

1.1.3 � Chapter Overview

We consider security as the preservation of confidentiality, integrity, and availabil-
ity. Here, we are concerned mostly with the IaaS security. For the two other service
models, most of the countermeasures and mitigation techniques are to be taken by
the CSPs. For example, Amazon is responsible for maintaining security from the
physical level of the data centers up to the hypervisor level. On the other hand,
consumers are kept responsible for all the rest such as operating system (OS) se-
curity, application security, etc. [5]. As a result, the Cloud consumers are not free
to implement their desired security solutions and need to rely on the provided level
of security by the CSP. For the IaaS model, a consumer has the highest degree of
control over infrastructure compared to other models. On the other hand, a CSP has
the lowest responsibilities for maintaining security in the IaaS. Regarding maintain-
ing confidentiality, integrity, and availability as the three pillars of security, a CSP is
generally responsible for only preserving availability in the IaaS and the remaining
two attributes should be of the consumer’s concern [6].

In this chapter, we discuss and assess attacks in public IaaS Clouds. We are main-
ly focused on two groups of attacks: attacks that are common between the Cloud
and non-Cloud environments but are exacerbated in the Cloud by exploiting multi-
tenancy, and attacks that occur because of the virtualization technology or the utility
pricing model used in the Cloud. We provide Cloud scenarios as to how each of the
attacks occurs in the Cloud and discuss current solutions for them. We compare the
first group of attacks with those in non-Cloud environments based on the proposed
Cloud attributes that affect security. Furthermore, we assess how any of these at-
tacks could compromise confidentiality, integrity, or availability in the Cloud.

1.1.4 � Chapter Organization

The rest of the chapter is organized as follows: Section 1.2 provides the related
work and discusses the motivation for a new survey. Section 1.3 discusses attacks
in the public Cloud and provides assessment in terms of the Cloud attributes which
may be exploited in order to exacerbate the attacks. Moreover, it shows how at-
tacks compromise confidentiality, integrity, and availability in the Cloud. Finally,
Sect. 1.4 concludes the chapter and discusses some open issues.

1  Attacks in Public Clouds: Can They Hinder the Rise of the Cloud? 7

1.2 � Related Literature

There exist a number of surveys in the literature that discuss general Cloud security
issues and provide overviews of the challenges [7–25]. In this section, we discuss
the works that propose classifications with respect to the attacks in the Cloud.

Gruschka et al. [26] suggest a classification of the attacks in the Cloud based on
the notion of attack surfaces. They identify three major participants in a Cloud en-
vironment: users, services, and the Cloud provider. They suggest six combinations
of possible interactions between any two of these entities proposing that an attack
in the Cloud exploits one or a combination of these surfaces.

Srinivasan et al. [27] also propose a classification of the security challenges in
the Cloud. They categorize the security challenges as being either based on archi-
tectural and technological aspects, or process and regulatory-related aspects. They
suggest different subcategories within each of those two categories. In another
work, Chow et al. [28] identify the security concerns in the Cloud as traditional
security, availability and third-party security. They suggest different subcategories
within each of the mentioned categories.

Grobauer et al. [29] categorize vulnerabilities in the Cloud as core technology or
Cloud-specific vulnerabilities. They suggest that Cloud Computing is built on three
core technologies i.e., Web applications and services, virtualization, and cryptogra-
phy. A vulnerability is Cloud-specific if it is inherent in a core Cloud technology, is
caused mainly due to one of the NIST’s essential Cloud characteristics, is because
of inefficiency of the conventional security controls in the Cloud, or is common in
prominent Cloud offerings.

You et al. [9] propose a classification of Cloud security issues into three differ-
ent categories: data security, virtualization-related security, and application-related
security. They describe each category in terms of security issues and threats related
to each category.

Sen [30] proposes a classification of security issues in the Cloud consisting of
traditional security concerns, availability issues, and third-party data control-related
issues. The author claims that the traditional security concerns will be aggravated
by moving to the Cloud. By pointing out real availability incidents for well-known
CSPs such as Amazon and Google, the author identifies availability issues as one
of the biggest concerns for critical applications hosted in the Cloud. Legal, contrac-
tual, and auditability issues are also identified as concerns raised by third-party data
control.

Molnar et al. [31] classify threats that arise from moving from self-hosting to
Cloud-hosting into two sets: threats that may be caused by having leased resources
instead of owned ones, and threats which may be caused by having shared instead
of dedicated resources. For the first group, they identify threats to infrastructure as-
sembly, contractual threats, and legal and jurisdictional threats. The second group
consists of threats from other tenants, legal and jurisdictional threats, threats to
availability and service costs, and restricted audit, detection, and response capabili-
ties. They also discuss countermeasures to each group of threats.

S. Shafieian et al.8

1.3 � Attacks in the Cloud

In this chapter, we investigate attacks in the Cloud from the perspective of consum-
ers and clients who do not operate the Cloud infrastructure themselves. We are in-
terested in the IaaS service model because in the other service models there is little
freedom for a consumer in terms of countermeasures they can put in place to miti-
gate the security vulnerabilities. We consider public deployment model of the Cloud
since it is the most-widely used model. Public model has not been customized for
specific high-security demand entities like financial institutions or government sec-
tors. As a result, it may be the most vulnerable model to the attacks.

Many of the attacks that can occur in a Cloud environment are preexisting at-
tacks that have occurred in non-Cloud environments before. Due to the nature of
the Cloud, which is a combination of existing technologies such as the Web and
virtualization, any security vulnerability that can occur in the presence of these
technologies has the potential of occurring in the Cloud as well. However, there
are attacks that may only occur in the Cloud environment because of the specific
Cloud paradigm and architecture. In this section, we provide an overview of some
of the attacks that are common between the Cloud and non-Cloud environments but
may be exacerbated in the Cloud through exploiting multi-tenancy. Furthermore,
we discuss and assess attacks that occur due to the virtualization technology used in
the Cloud. In this chapter, we do not discuss well-known Web-based attacks such as
cross site scripting (XSS), cross site request forgery (CSRF), SQL injection (SQLI),
and phishing. These attacks can all occur in the Cloud because of the similar un-
derlying technologies used as non-Cloud systems. However, these have been well
studied, and we refer the interested reader to the related references on these attacks
[e.g., 32].

1.3.1 � Common Attacks

There are attacks that are common between the Cloud and non-Cloud environments.
These attacks, however, may be exacerbated in the public Cloud via exploitation
of the inherent multi-tenancy attribute in the public Clouds. Here, we discuss three
attacks that may be aggravated in the Cloud because of the coresident consumers
sharing the same physical hardware.

1.3.1.1 � Distributed Denial of Service Attacks

Distributed Denial of Service (DDoS) attacks are one of the dominant attacks in
the Cloud [2]. In a DDoS attack, the adversary exploits a number of compromised
machines called bots to compose a botnet in order to consume critical resources at
the victim’s machine(s). The goal of the attacker is to force a computer or network
to become incapable of providing normal services by blocking access to or degrad-

1  Attacks in Public Clouds: Can They Hinder the Rise of the Cloud? 9

ing services. DDoS attacks can target different layers of a computer system stack
including network device level, operating system level, and application level [33].
Using internet protocol (IP) spoofing techniques, the attacker may be able to send
attack packets from spoofed IP addresses. This might make the fraudulent traffic
difficult to filter and the source of attack undistinguishable.

The Cloud is a combination of preexisting technologies such as Web and net-
works, so DDoS attacks can be targeted to Cloud machines. However, there are
differences between a DDoS attack on the Cloud and non-Cloud environments. In
the context of the Cloud, the attack can also be launched from within the Cloud by
exploiting a number of VMs as internal bots in order to flood malicious requests
towards the victim’s VM(s) [7]. This may make detecting such an attack very dif-
ficult, if intrusion detection and prevention systems operate only at the perimeter of
the Cloud. In this case, they may be unable to detect DDoS attacks launched from
within the Cloud. This can increase the chance of having successful DDoS attacks
on the Cloud. Another difference between the Cloud and non-Cloud environments
which exacerbates DDoS attacks in the Cloud is that unlike non-Cloud environ-
ments, a DDoS attack in the Cloud can have impact on multiple consumers as sev-
eral consumers may be using the compromised physical machine.

The conventional countermeasures to mitigate DDoS attacks include Intrusion
Detections Systems (IDSs) and Intrusion Prevention Systems (IPSs). These systems
can be both software-based and hardware-based and deploy various techniques such
as resource multiplication, traffic pattern detection, and traffic anomaly detection
to prevent and detect DDoS attacks [34–36]. Yu et al. [37] propose using idle re-
sources to form multiple parallel IPSs in the Cloud in order to help the attacked ma-
chine to defeat a DDoS attack. This may save the victim from having its resources
blocked or degraded, but it may incur a considerable amount of charges for many
idle resources that might have been used.

1.3.1.2 � Keystroke Timing Attacks

Keystroke timing attacks occur when the attacker tries to steal the victim’s confi-
dential information, especially login passwords, via eavesdropping on their key-
strokes. Song et al. [38] show that the timing information of keystrokes may leak
information about the keys’ sequence types. They show that by applying advanced
statistical techniques on timing information collected from the network, an attacker
can learn substantial information about the characters the victim has typed in a se-
cure shell (SSH) session.

In a Cloud environment, the attacker’s goal is to measure the time between key-
strokes while the victim is typing a password. If the inter-stroke times are measured
with sufficient resolution, they can be used to perform password recovery. Having
coresidency, the attack can be launched in real time via measuring cache-based
loads while the victim is typing sensitive information. However, a successful attack
requires the two VMs to share the same CPU core at the time of the attack which

S. Shafieian et al.10

decreases the chance of having a successful attack [39]. We are not aware of any
countermeasures for keystroke timing attacks other than avoiding coresidency in
the Cloud. A mitigation technique used in Amazon EC2 is to frequently change the
processor cores among VMs such that the chance of a successful attack decreases.

1.3.1.3 � Side-Channel Attacks

Due to the multi-tenancy attribute in the public Clouds which enables multiple VMs
to run on the same physical machine, a consumer’s VM could be running on the
same server as their adversary. This may allow the adversary to infiltrate the iso-
lation between the VMs and compromise the consumer’s confidentiality. A side-
channel attack consists of two main steps: placement and extraction. In the place-
ment phase, the attacker tries to place his/her malicious VM on the same physical
machine as that of the target consumer. Ristenpart et al. [39] show that by using
careful empirical mappings on Amazon EC2 public IaaS Cloud, they can increase
the chance of placing the malicious VM on the right physical machine. In fact, they
suggest that two VM instances in EC2 are likely to be coresident if they have match-
ing Xen Dom0 IP addresses, small packet round-trip times, or numerically close
EC2 internal IP addresses. After the intruder manages to place a VM coresident
with the target, the next step involves extracting the confidential information via a
cross-VM attack. One of the ways to do this is through side-channels, i.e., cross-
VM information leakage due to the sharing of the physical resources, for instance a
CPU’s data cache. By using a technique called Cloud cartography, the EC2 service
can be mapped in order to make an educated guess as to where the potential target
VMs are located. This can be achieved by using network probing tools. The cache-
based side-channel attacks have been shown to be able to extract Rivest Shamir
Adleman (RSA) and advanced encryption standard (AES) secret keys [17, 18]. In a
recent work, Zhang et al. [42] were also able to extract the ElGamal decryption key
from a victim VM managed by the modern Xen hypervisor.

Zhang et al. [43] propose a technique called HomeAlone to allow a tenant to
verify their exclusive residency of the physical machine on which their VMs are
running. This happens when a tenant has purchased isolated resources from a CSP,
but they still need to verify physical isolation of their VMs. The proposed technique
employs an L2 memory cache side-channel not as an attack but as a defensive de-
tection tool. The technique helps the tenant ascertain whether there is a rival VM
coresident with their VMs on the same physical machine. To achieve this, all the
friendly VMs silence their activity in a selected cache region for a specific period of
time. The tenant then measures the cache usage during this period and checks to see
if there is any unexpected activity. Any activity during this period would indicate
the presence of a rival VM.

One of the proposed solutions to mitigate side-channel attacks includes obscur-
ing the internal structure of the services as well as the VM placement policy. These
should be done by CSPs in order to complicate the placement procedure for an at-
tacker. The other approach is to minimize the information that can be leaked once

1  Attacks in Public Clouds: Can They Hinder the Rise of the Cloud? 11

the attack occurs [39]. Godfrey et al. [44] propose a server-side approach to mitigate
cache-based side-channel attacks. They modify the Xen hypervisor so that a cache
flush occurs only when a context switch changes to a VM that has the ability to es-
tablish a side-channel with the first. However, none of these countermeasures stops
an adversary, launching side-channel attacks, and the best solution would be for the
consumer to utilize physical machine resources exclusively. Although more costs
would be incurred by the underutilization of the resources, the consumer makes sure
no such attacks can occur.

1.3.1.4 � Discussion

DDoS, keystroke timing and side-channel attacks may all be exacerbated in the
Cloud compared to non-Cloud environments. Table 1.1 shows the consequences
of Cloud attribute exploitations by attacks. As shown in Table 1.1, all these attacks
may be exacerbated in the Cloud through exploitation of the multi-tenancy attri-
bute. A DDoS attack may be exacerbated via exploitation of other attributes too.
In a Cloud environment, not only do there exist DDoS attacks initiated outside of
the Cloud but also there can be DDoS attacks launched from inside the Cloud by
exploiting VMs to form an internal botnet. Here, exploitation of ubiquitous network
access and multi-tenancy attributes may exacerbate the DDoS attack, making it
more difficult for firewalls and intrusion detection systems to detect, as attacks are
coming from an internal as well as an external source. Moreover, as the consumer is
charged according to measured services, this attribute can also incur more charges
to the victim due to the unwanted inbound and outbound traffic and resource usage.
Having off-premise infrastructure may also delay an immediate response to the at-
tack. There is another opportunity for an attacker to perform DDoS attacks in the
Cloud: usually with public CSPs, one can register for an IaaS service by just enter-
ing credit card information or even benefit from trial periods without entering any
valid data. Due to this type of loose registration, attackers can exploit VMs while
hiding their identities [45]. In this way, an adversary can launch attacks against
victims that reside both inside and outside the Cloud, by exploiting the Cloud re-
sources. For those DDoS attacks launched from inside the Cloud against victims
that are inside as well, firewalls and intrusion detection and prevention systems
might not be able to block the attacks.

Table 1.1   Consequences of Cloud attribute exploitations
Attack Ubiquitous

network
Measured
service

Multi-tenancy Off-premise
infrastructure

DDoS  +   +   +   + 
Keystroke timing 0 0  +  0
Side-channel 0 0  +  0

+: exacerbated, 0: not affected

S. Shafieian et al.12

In our assessment of the attacks in the Cloud, we also consider keystroke tim-
ing attacks as having more consequence in a Cloud rather than a non-Cloud envi-
ronment due to multi-tenancy attribute exploitation. The keystroke timing attacks
require coresidency with the victim’s VM. This can happen when there are multi-
tenant consumers in an IaaS Cloud. Multi-tenancy attribute of the Cloud may be
exploited to exacerbate the keystroke timing attack by increasing the chance of
having a successful attack. However, this attack may be very difficult to succeed
in practice if the CSP migrates VMs between different cores of a physical machine
processor as implemented in Amazon EC2. If the attacker VM and the victim’s VMs
are using one of the cores on a four-core processor, the chance of having a success-
ful keystroke timing attack would be less than 25 % [39].

Side-channel attacks can also occur in Cloud as well as non-Cloud environ-
ments. However, even in a non-Cloud environment which uses virtualization tech-
nology such as Virtual Private Server (VPS) hosting, the attacker has no way of
placing their malicious VM on a target server. Therefore, the placement step which
is the first required step in performing a successful side-channel attack cannot be
performed, leaving little chance of success for the attacker. Nonetheless, in a public
Cloud scenario, an adversary may be able to place their malicious VMs coresident
with the victim’s VMs by exploiting the multi-tenancy attribute, and launching a
successful side-channel attack as described earlier. As a result, multi-tenancy ex-
ploitation may exacerbate side-channel attacks by bringing more motivation to the
attacker, compared to traditional environments.

1.3.2 � Cloud-Specific Attacks

Cloud-specific attacks are those attacks that occur via exploiting vulnerabilities in
the virtualization or utility pricing. These attacks may also occur in any non-Cloud
environment which uses virtualization technology. Nevertheless, multi-tenancy and
pay-as-you-go features offered by the public Clouds, make the Cloud an ideal attack
target for adversaries targeting to exploit such vulnerabilities. In this section, we
discuss this class of attacks in the Cloud.

1.3.2.1 � VM Denial of Service Attacks

A Virtual Machine Denial of Service (VM DoS) attack occurs when the adversary
who is the owner of a VM in the Cloud exploits a vulnerability in the hypervisor in
order to consume all or most of the available resources of the physical machine the
VM is running on [11]. This will lead to other tenants being deprived of the required
resources and encountering malfunctions with their services.

The VM DoS attack can occur in any environment that uses the virtualization
technology and offers coresidency to the consumers. Most current hypervisors are
capable of detecting excessive resource consumption by the VMs running on top

1  Attacks in Public Clouds: Can They Hinder the Rise of the Cloud? 13

of them. After detecting a malicious VM, one of the techniques to prevent denial of
service for other VMs residing on the same physical server is to restart the malicious
VM. This costs less than restarting the entire physical machine.

1.3.2.2 � Hypervisor Attacks

A Cloud administrator who has privileged access to the hypervisor is able to pen-
etrate into guest VMs through the hypervisor even without having any direct privi-
leges on the target VMs. For example, if Xen is used as the hypervisor, the XenAc-
cess library allows a privileged VM to view the contents of another VM’s memory
at runtime. This technique is called virtual machine introspection [46]. In another
type of hypervisor attack, a malicious administrator installs a malicious hypervisor
into a Cloud server to eavesdrop on a consumer’s activities and steal their sensitive
information. Moreover, considering the root-level access of system administrators,
it may be difficult for a guest OS to detect the fraudulent activity using conventional
detection mechanisms [47].

Santos et al. [48] propose a Trusted Cloud Computing Platform (TCCP) for en-
suring the confidentiality and integrity of computations that are outsourced to IaaS
services. They suggest that the approach enables a closed box execution environ-
ment preventing a user with full privileges on the host VM to gain access to the
guest VMs.

Another type of attack targets vulnerabilities in a hypervisor scheduler. Zou et al.
[49] show that an attacker can exploit a VM so that it uses more processor time
than its fair share and escapes the periodic sampling performed by the hypervisor.
In this attack, the adversary makes the processor idle just before the scheduler tick
occurs and resumes the run after the tick finishes. This enables the attacker VM to
consume most of the processor cycles without incurring any charges and deprives
the cotenant VMs from consuming their required cycles. They have implemented
sample hypervisor scheduling attacks on Amazon EC2 to demonstrate the practical-
ity of these types of attacks. The proposed solutions to this attack include using a
high-precision clock or a random scheduler to prevent scheduler escaping.

1.3.2.3 � Cloud Malware Injection Attacks

In a Cloud malware injection attack, the adversary tries to inject a malicious VM
into the Cloud with different purposes including eavesdropping, functionality al-
tering, or blockings [10]. The attacker needs to create their own malicious VM
instance into an IaaS Cloud. In order for this attack to be successful, the malicious
instance should be designed in such a way that the Cloud treats it as a valid instance.

In Amazon EC2 public IaaS Cloud, a consumer can simply create an image of
their VM, called Amazon Machine Image (AMI). Once the image is created, it can
be easily made public by editing AMI permissions and changing the visibility from
private to public. As a result, if a malicious image is created in this way, it will be

S. Shafieian et al.14

visible to all other EC2 consumers, and they can launch VM instances based on this
image. All the VMs created based on the malicious image may be vulnerable to at-
tacks such as stealing of sensitive data.

One of the countermeasures to be taken by CSPs in order to resolve these types
of attacks is not to allow an image to go public unless it has been fully scanned to
ensure that it is free from any potential malware. However, new malware may not
be detected by malware detection tools, thus, consumers should always undertake
the risk of using public images, and do not solely rely on the service provider’s
security measures.

1.3.2.4 � VM Image Attacks

Typically, in a Cloud environment such as Amazon EC2, VM images are shared
among Cloud consumers. These include both CSP-provided and user-provided im-
ages. CSP-provided images help consumers instantiate their required VMs rapidly
by providing them with the standard OSs and applications. On the other hand, a
user is able to make an image of their VM and make it publicly available to all other
users of the Cloud. VM images can be easily saved, copied, encrypted, moved, and
restored.

There are three types of risks associated with VM images: publisher’s risk, re-
triever’s risk, and Cloud administrator’s risk [50]. The publisher risks disclosing
their sensitive information, such as saved passwords, browsing history, cookies,
etc., by sharing a VM image for the public. On the other hand, there is a high risk
for the consumer who runs vulnerable or malicious images. When a malicious VM
is run by a victim consumer, the attacker is in fact bypassing security measures
such as intrusion detection and prevention systems and firewalls around the Cloud
network. The Cloud administrator also risks distributing the images with malicious
content over the Cloud network. The infected machines appear shortly, infect other
machines, and disappear before they can be detected. As a result, the infections
would persist indefinitely and the system may never reach a steady state [51].

Inadequate data deletion can be the root for another type of VM image attack
[52]. Cloud consumers normally delete their VMs after they are finished using them
in order not to incur the cost of having idle VMs. Nevertheless, if the data is not
properly deleted, there is the risk of being recovered by a malicious CSP insider or
even by another Cloud consumer who has been allocated the same disk area on that
specific server. This can occur due to the fact that in many OSs when data is deleted,
its space is marked as free by the system, but the contents will remain on the disk.
In a recent work, Balduzzi et al. [53] show that 98 % of Windows images and 58 %
of Linux images in Amazon EC2 contain software with critical vulnerabilities based
on analyzing a total of 5303 Amazon machine images.

These types of attacks are similar to malware injection attacks when a mali-
cious VM becomes publicly available in the Cloud. However, when a consumer
publishes an image publicly, they need to make sure that any sensitive data has been

1  Attacks in Public Clouds: Can They Hinder the Rise of the Cloud? 15

thoroughly erased in such a way that it will not be recoverable by subsequent users
of the image or even CSP administrators.

1.3.2.5 � VM Relocation Attacks

VM mobility is one of the advantageous features of using VMs, as opposed to physi-
cal machines, and is essential for load balancing and system maintenance. However,
it imposes security risks for the owner as VMs can be stolen by malicious insiders
even without the owner’s awareness. In an offline attack, the adversary can simply
copy the entire victim’s VM to a remote machine or even a portable storage device
[51]. Moreover, there exist attacks that can occur in a live VM migration scenario.
A live VM migration is normally done by copying memory pages of a VM from
the source hypervisor to the destination hypervisor over the network. The attacks
have been empirically demonstrated on Xen and VMware, the two most deployed
hypervisors [54]. One of these attacks includes initiating unauthorized migration
of a victim VM to the attacker’s physical machine. The adversary can then gain
full control over the victim’s VM or launch attacks that exploit coresidency such
as side-channel. Another type of attack is to initiate an unauthorized migration of a
large number of VMs to a victim machine in order to cause denial of service for the
victim. Mutual authentication of the source and the destination hypervisors is a sug-
gested solution in order to achieve a secure migration and prevent potential attacks.

1.3.2.6 � Resource-Freeing Attacks

Resource-freeing attacks (RFAs) are a new type of attack in the Cloud that exploit
the coresidency and resource sharing among VMs in order to modify the workload
of a victim VM to release resources for an attacker VM [55]. Any hypervisor such
as Xen tries to provide performance isolation by allocating required resources to
each VM. However, if two VMs require heavy use of the shared memory or the
processor at the same time, the performances of both VMs degrade, since the hyper-
visor is not able to allocate the required resources to both VMs. The competition to
acquire resources may lead to a malicious consumer crashing the rival VM in order
to free resources for their own use.

A hypervisor scheduler may provide a fair-share allocation of the processor by
distributing idle processor time to running VMs (work-conserving), or by putting a
limit on the maximum amount allowed for each VM (non-work-conserving). The
former increases performance, but reduces isolation, whereas the latter increases the
isolation with the cost of decreasing the performance. A resource-freeing attack can
occur only when a work-conserving scheduler is used. The first step to launch an
RFA attack is to increase the resource usage of the victim so that it reaches a bottle-
neck. This step is performed by using a helper process that can be run either on the
same or another machine. Then, the next step would involve shifting the victim’s

S. Shafieian et al.16

resource usage to the bottleneck resource. This would free up other resources to be
used by the attacker.

An RFA has been shown to be able to increase the performance of a VM by up
to 60 % on a local test bed, and up to 13 % when launched on Amazon EC2 [56].
The low rate on Amazon EC2 is in part due to the fact that non-work-conserving
scheduler is used by Xen to schedule processor timing in EC2. One of the ways to
prevent RFAs is to use dedicated instances. This costly approach is supported by
Amazon EC2 and allows a consumer to request dedicated resources for their VMs
on a physical machine. The other approach to prevent an RFA is to use schedulers
that do not distribute idle resources, such as non-work-conserving schedulers. How-
ever, as previously mentioned, this places a boundary on the maximum resource
share to be used by each VM, and may reduce the performance.

1.3.2.7 � Fraudulent Resource Consumption Attacks

One of the few unique attacks in the Cloud is Fraudulent Resource Consumption
(FRC) [56]. In this Cloud-specific attack, the adversary aims to exploit the utility
pricing model of the Cloud by launching an attack similar to a DDoS attack. The
utility pricing in the Cloud is similar to the pricing model of utilities such as elec-
tricity and gas for which a consumer pays only for the amount they have used.

By fraudulently using the consumer’s Cloud resources, the adversary’s intension
is to divest the victim of their long-term economic benefits. There are two major
differences between FRC and DDoS attacks. First, FRC attacks aim to make Cloud
resources economically unsustainable for the victim, whereas a DDoS attack aims
to degrade or block Cloud services. Second, FRC attacks tend to be more subtle and
are carried out over a longer period of time compared to DDoS attacks. In order to
fraudulently consume resources, the attacker exploits a botnet to send malicious
requests to the Cloud to gradually increase the cost of resource usage for the victim
consumer. The idea of FRC attacks is originated from the notion of Economic De-
nial of Sustainability (EDoS) [57] where an attacker targets the long-term sustain-
ability of the victim.

Detecting an FRC attack could be very difficult because the way an attacker
requests Web resources is like that of any legitimate client, and the only differentiat-
ing attribute is their intention. An FRC attack occurs just above the normal activity
threshold and below the DDoS attack threshold. Therefore, it may be unlikely to be
detected by traditional intrusion detection systems. FRC attacks are new and unique
to the Cloud because they exploit the utility pricing model of the Cloud, which is
not applicable to non-Cloud environments.

In a normal traffic activity to a website, the frequency of visiting a Web page is
proportional to the popularity of that page. For example, the Home page is usually
the most visited page in normal traffic and the About Us page may be visited less
frequently. Now if for a given website, the incoming page requests from a client
hit the About Us page much more than the home page, most probably the traffic
is being automatically generated from a botnet and therefore should be detected as

1  Attacks in Public Clouds: Can They Hinder the Rise of the Cloud? 17

fraudulent. Another approach to mitigate EDoS attacks is to try to verify benign and
malicious requests by creating a white list and a blacklist of IP addresses based on
the first packet received from a requesting source [58]. As a result, if the first re-
quest is from a benign user, all the subsequent requests from the user will be passed
to the Cloud server, but if the first packet is detected to be from a malicious user, all
the subsequent requests will be denied for that user. The downside of this technique
is that it may not be possible to distinguish between malicious and benign users by
only examining the first packet received from them.

1.3.2.8 � Discussion

Cloud-specific attacks are those attacks that can occur in the Cloud due to the spe-
cific Cloud paradigm and technologies. Most of these attacks exploit vulnerabilities
in the virtualization. These attacks are able to make Cloud services unavailable or
significantly degraded for the tenants. Attackers can also penetrate into other VMs
coresident with them in order to steal private information, alter data, etc. Moreover,
a malicious VM can escape the fair processor sharing and not incur any charges
for the processor cycles that have been used. The other type of attack is to inject
a malicious VM in the Cloud. There are also threats associated with sharing VM
images and relocating VMs in public Clouds. Fraudulent resource consumption or
economic denial of sustainability attacks target the long-term sustainability of the
Cloud resources for consumers. These types of attacks are unique to the Cloud and
may be among the most difficult attacks to detect.

1.3.3 � Security Attributes in the Cloud

The three fundamental attributes of security, i.e., confidentiality, integrity, and avail-
ability, can be affected by the attacks in the Cloud. Nonetheless, not every attack
compromises every attribute of the triad. Table 1.2 shows how these three attributes

Style3Attack Confidentiality Integrity Availability
DDoS N N Y
Keystroke timing Y N N
Side-Channel Y N N
VM DoS N N Y
Hypervisor Y Y Y
Malware injection Y Y Y
VM image Y Y Y
VM relocation Y N N
RFA N N Y
FRC N N N
Y compromises, N does not compromise

Table 1.2   Security attri-
butes affected by the attacks

S. Shafieian et al.18

of security are affected by different attacks in the Cloud. As Table 1.2 shows, some
of the attacks affect all, whereas some others only affect one or two of the attributes.
The only exception is the FRC attack. This attack does not compromise any of the
three security attributes; however, fraudulent resource consumption is considered
an attack which exploits utility pricing model of the Cloud.

Once a DDoS attack occurs, data may not be available to the authorized users,
thus violating the availability attribute. Nonetheless, confidentiality and integrity
may not be compromised by a DDoS attack. A successful keystroke timing attack
may lead to the leakage of sensitive data thus compromising the confidentiality
attribute. This attack normally cannot put the other security attributes at risk. Side-
channel attacks are able to compromise the victim’s confidentiality by extracting
confidential information through side-channels.

A VM DoS attack may deprive a victim tenant of the shared resources. As a
result, it compromises the availability attribute. If a hypervisor attack is success-
ful, based on the level of privileges the attacker may acquire, any of the three se-
curity attributes can be at risk. This is also true for a malware injection attack.
By eavesdropping, functionality changing, and blocking services for other VMs,
the confidentiality, integrity, and availability of the victims can be compromised.
A consumer who publishes their VM to the public, risks compromising the confi-
dentiality of their private data in case of not being thoroughly deleted. Moreover, a
consumer who runs a shared VM may put all the three security attributes at risk by
inviting potential malware into their VM instance. If a VM is stolen during the pro-
cess of its relocation, the confidentiality of the victim may be compromised since
the adversary gains access to the victim’s entire data located on the VM. Finally, an
RFA compromises the availability of the victim VM via shifting its resource usage
towards a bottlenecked resource.

There are also risks associated with image backups in the Cloud. Image backups
should always be stored encrypted, but if an unencrypted backup is accessed by
an adversary, the confidentiality of the owner may be at risk. Furthermore, if the
attacker alters the contents of the backup, the integrity may also be compromised
once the backup image is restored.

1.4 � Conclusions and Open Issues

Security concerns are among the biggest barriers that may hinder the rising adop-
tion of the Cloud. In this chapter, we described the attacks that can occur in the pub-
lic Clouds. We discussed and compared the attacks that are common between the
Cloud and traditional systems, but are exacerbated in the Cloud due to exploitation
of multi-tenancy. These included distributed denial of service, keystroke timing,
and side-channel attacks. Furthermore, we discussed attacks that are specific to the
Cloud paradigm. These attacks exploit vulnerabilities in hypervisors and are able
to carry out malicious actions such as blocking the Cloud resources for consumers,
eavesdropping on consumers’ activities, and escaping fair share scheduling. EDoS

1  Attacks in Public Clouds: Can They Hinder the Rise of the Cloud? 19

or fraudulent resource consumption is another type of Cloud-specific attack that
exploits the utility pricing model of the Cloud. We also discussed how each of the
three security attributes may be compromised by each attack. We believe that when
consumer applications run in the Cloud, they generally face more potential attacks,
and the evolving nature of the Cloud may also suggest newer threats in future.

This study may help organizations and individuals who are considering the
Cloud as the future infrastructure for hosting and running their business applica-
tions. These consumers can decide more wisely by identifying the potential attacks
on their specific assets and by comparing the consequence of those attacks between
the two environments before they move to the Cloud.

In this chapter, we did not investigate attacks in the SaaS and PaaS models of the
Cloud. For those two service models, most of the countermeasures are to be taken
by CSPs. We discussed attacks in the public IaaS Cloud as it is the most popular
Cloud model.

The Cloud should be monitored for new attacks. As the Cloud is yet a new and
evolving environment, new Cloud-specific attacks may always be discovered by
carefully investigating the underlying interactions between different components
in the architecture. There are attacks in the Cloud that require new solutions and
countermeasures, or improvements to the current countermeasures. This is espe-
cially true for EDoS attacks which are the Cloud-specific variant of DDoS attacks.
These attacks are capable of making the Cloud services unsustainable for the victim
consumer. Consequently, designing appropriate detection and prevention mecha-
nisms may help the potential victims to become more resilient against these attacks.
This is particularly due to the fact that most solutions and countermeasures have
only been experimented in controlled lab environments, or have been only proposed
without undergoing any experimental validation as a proof of concept.

References

1.	 Amazon Web Services (AWS) (n.d.) Case studies. https://aws.amazon.com/solutions/case-
studies. Accessed 2 Sept 2014

2.	 Cloud Security Alliance (Feb 2013) The notorious nine—cloud computing top threats in 2013.
https://downloads.cloudsecurityalliance.org/initiatives/top_threats/The_Notorious_Nine_
Cloud_Computing_Top_Threats_in_2013.pdf. Accessed 2 Sept 2014

3.	 Internet Data Corporation (IDC) (15 Dec 2009) New IDC IT cloud services survey: top ben-
efits and challenges. http://blogs.idc.com/ie/?p=730. Accessed 2 Sept 2014

4.	 Mell P, Grance T (Sept 2011) The NIST definition of cloud computing. National Institute
of Standards and Technology (NIST), Gaithersburg. http://csrc.nist.gov/publications/nist-
pubs/800-145/SP800-145.pdf. Accessed 2 Sept 2014

5.	 Grosse EH, Howie J, Ransome J, Reavis J, Schmidt S (2010) Cloud computing roundtable.
IEEE Secur Priv 8(6):17–23

6.	 Hwang K, Kulkareni S, Hu Y (2009) Cloud security with virtualized defense and reputation-
based trust management. In: Yang B, Zhu W, Dai Y, Yang LT, Ma J (eds) Proceedings of the 8th
IEEE international symposium on dependable, autonomic and secure computing (DASC ’09),
Chengdu, 12–14 Dec 2009. IEEE Computer Society, Los Alamitos, pp 717–722

https://aws.amazon.com/solutions/case-studies
https://aws.amazon.com/solutions/case-studies
https://downloads.cloudsecurityalliance.org/initiatives/top_threats/The_Notorious_Nine_Cloud_Computing_Top_Threats_in_2013.pdf
https://downloads.cloudsecurityalliance.org/initiatives/top_threats/The_Notorious_Nine_Cloud_Computing_Top_Threats_in_2013.pdf
http://blogs.idc.com/ie/?p=730
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf

S. Shafieian et al.20

  7.	 Ma X (2012) Security concerns in cloud computing. Proceedings of the 2012 fourth inter-
national conference on computational and information sciences (ICCIS 2012), Chongqing,
17–19 Aug 2012, pp 1069–1072

  8.	 Subashini S Kavitha V (2011) A survey on security issues in service delivery models of cloud
computing. J Netw Comput Appl 34(1):1–11. (Elsevier, January 2011)

  9.	 You P, Peng Y, Liu W, Xue S (2012) Security issues and solutions in cloud computing. Pro-
ceedings of the 32nd international conference on distributed computing systems workshops
(ICDCSW), Macau, 18–21 June 2012, pp 573–577

10.	 Jensen M, Schwenk J, Gruschka N, Iacono LL (2009) On technical security issues in cloud
computing. Proceedings of the 2009 IEEE international conference on cloud computing
(CLOUD ’09), Bangalore, 21–25 Sept 2009, pp 109–116

11.	 Dawoud W, Takouna I, Meinel C (2010) Infrastructure as a service security: challenges and
solutions. Proceedings of the 7th international conference on informatics and systems (IN-
FOS), Giza, 28–30 March 2010, pp 1–8

12.	 Ren K, Wang C, Wang Q (2012) Security challenges for the public cloud. IEEE Internet
Comput 16(1):69–73

13.	 Sabahi F (2011) Cloud computing security threats and responses. Proceedings of the IEEE
3rd international conference on communication software and networks (ICCSN), Xi’an, 27–
29 May 2011, pp 245–249

14.	 Zhou M, Zhang R, Xie W, Qian W, Zhou A (2010) Security and privacy in cloud computing:
a survey. Proceedings of the 6th international conference on semantics knowledge and grid
(SKG), Ningbo, 1–3 Nov, pp 105–112

15.	 Zissis D, Lekkas D (2012) Addressing cloud computing security issues. Future Gener Comp
Sy 28(3):583–592

16.	 Shue CA, Lagesse B (2011) Embracing the cloud for better cyber security. Proceedings of the
8th IEEE international workshop on middleware and system support for pervasive comput-
ing, Seattle, 21–25 March, pp 245–250

17.	 Chaves S, Westphall C, Westphall C, Geronimo G (2011) Customer security concerns in
cloud computing. Proceedings of the tenth international conference on networks (ICN 2011),
St. Maarten, 23–28 Jan, pp 7–11

18.	 Takabi H, Joshi JB, Ahn GJ (2010) Security and privacy challenges in cloud computing en-
vironments. IEEE Secur Priv 8(6)24–31

19.	 Behl A (2011) Emerging security challenges in cloud computing: an insight to cloud security
challenges and their mitigation. Proceedings of the 2011 world congress on information and
communication technologies (WICT), Mumbai, 11–14 Dec, pp 217–222

20.	 Behl A, Behl K (2012) Security paradigms for cloud computing. Proceedings of the fourth in-
ternational conference on computational intelligence, communication systems and networks
(CICSyN), Phuket, 24–26 July, pp 200–205

21.	 Pearson S, Benameur A (2010) Privacy, security and trust issues arising from cloud comput-
ing. Proceedings of the 2nd IEEE international conference on cloud computing technology
and science (CloudCom), Indianapolis, 30 Nov–3 Dec, pp 693–702

22.	 Tripathi A, Mishra A (2011) Cloud computing security considerations. Proceedings of the
IEEE International conference on signal processing, communications and computing (IC-
SPCC), Xi’an, 14–16 Sept, pp 1–5

23.	 Sengupta S, Kaulgud V, Sharma VS (2011) Cloud computing security—trends and research
directions. Proceedings of the IEEE world congress on services (SERVICES), Washington
DC, 4–9 July, pp 524–531

24.	 Tianfield H (2012) Security issues in cloud computing. Proceedings of the IEEE international
conference on systems, man, and cybernetics (SMC), Seoul, 14–17 Oct, pp 1082–1089

25.	 Bouayad A, Blilat A, Mejhed NEH, Ghazi ME (2012) Cloud computing: security challenges.
Proceedings of the colloquium on information science and technology (CIST), Fez, 22–24
Oct, pp 26–31

26.	 Gruschka N Jensen M (2010) Attack surfaces: a taxonomy for attacks on cloud services.
Proceedings of the 3rd IEEE international conference on cloud computing (CLOUD’10),
Heidelberg, 5–10 July, pp 276–279

1  Attacks in Public Clouds: Can They Hinder the Rise of the Cloud? 21

27.	 Srinivasan MK, Sarukesi K, Rodrigues P, Manoj MS, Revathy P (2012) State-of-the-art cloud
computing security taxonomies: a classification of security challenges in the present cloud
computing environment. Proceedings of the international conference on advances in comput-
ing, communications and informatics (ICACCI ’12), Chennai, 3–5 Aug, pp 470–476

28.	 Chow R, Golle P, Jakobsson M, Shi E, Staddon J, Masuoka R, Molina J (2009) Controlling
data in the cloud: outsourcing computation without outsourcing control. Proceedings of the
2009 ACM workshop on cloud computing security (CCSW’09), Chicago, 13 Nov, pp 85–90

29.	 Grobauer B, Walloschek T, Stocker E (2011) Understanding cloud computing vulnerabilities.
IEEE Secur Priv 9(2):50–57.

30.	 Sen J (2013) Security and privacy issues in cloud computing. arXiv:1303.4814 [cs.CR]
31.	 Molnar D, Schechter S (2010) Self hosting vs. cloud hosting: accounting for the security

impact of hosting in the cloud. Proceedings of the ninth workshop on the economics of infor-
mation security (WEIS 2010), Harvard University, 7–8 June

32.	 Shahriar H (Nov 2011) Mitigation of web-based program security vulnerability exploitations.
PhD thesis, Queen’s University, Canada

33.	 Douligeris C, Mitrokotsa A (2004) DDoS attacks and defense mechanisms: classification and
state-of-the-art. Comput Netw 44(5):643–666

34.	 Roschke S, Cheng F, Meinel C (2009) Intrusion detection in the cloud. In: Yang B, Zhu W,
Dai Y, Yang LT, Ma J (eds) Proceedings of the 8th IEEE international symposium on de-
pendable, autonomic and secure computing (DASC ’09), Chengdu, 12–14 Dec 2009. IEEE
Computer Society, Los Alamitos, pp 729–734

35.	 Mirkovic J, Reiher P (2004) A taxonomy of DDoS attack and DDoS defense mechanisms.
Comp Comm R 34(2):39–53.

36.	 Bakshi A, Yogesh B (2010) Securing cloud from DDOS attacks using intrusion detection
system in virtual machine. Proceedings of the second international conference on communi-
cation software and networks (ICCSN’10), Singapore, 26–28 Feb, pp 260–264

37.	 Yu S, Tian Y, Guo S, Wu DO (2014) Can we beat DDOS attacks in clouds? IEEE T Parall
Distr 25(9):2245–2254

38.	 Song DX, Wagner D, Tian X, (2001) Timing analysis of keystrokes and timing attacks on
SSH. Proceedings of the 10th USENIX security symposium, Washington DC, 13–17 Aug

39.	 Ristenpart T, Tromer E, Shacham H, Savage S (2009) Hey, you, get off of my cloud: explor-
ing information leakage in third-party compute clouds. Proceedings of the 16th ACM confer-
ence on computer and communications security (CCS’09), Chicago, 9–13 Nov, pp 199–212

40.	 Osvik DA, Shamir A, Tromer E (2006) Cache attacks and countermeasures: the case of AES.
In: Pointcheval D (ed) Proceedings of the RSA conference cryptographers track (CT-RSA
2006), 13–17 Feb. Lecture notes in computer science, vol 3860. Springer, Berlin, pp 1–20

41.	 Percival C (2005) Cache missing for fun and profit. Proceedings of BSDCan 2005, Ottawa,
13–14 May

42.	 Zhang Y, Juels A, Reiter MK, Ristenpart T (2012) Cross-VM side channels and their use to
extract private keys. Proceedings of the 2012 ACM conference on computer and communica-
tions security (CCS’12), Raleigh, 16–18 Oct, pp 305–316

43.	 Zhang Y, Juels A, Oprea A, Reiter MK, (2011) HomeAlone: co-residency detection in the
cloud via side-channel analysis. Proceedings of the 2011 IEEE symposium on security and
privacy (SP), Oakland, 22–25 May, pp 313–328

44.	 Godfrey M, Zulkernine M (2013) A server-side solution to cache-based side-channel attacks
in the cloud. Proceedings of the IEEE 6th international conference on cloud computing, Santa
Clara, 28 June–3 July, pp 163–170

45.	 Cloud Security Alliance (2010) Top threats to cloud computing V1.0. Cloud Security Alli-
ance, Singapore

46.	 XenAccess (n.d.) XenAccess library. https://code.google.com/p/xenaccess. Accessed 2 Sept
2014

47.	 Duncan A, Creese S, Goldsmith M (2012) Insider attacks in cloud computing. Proceedings
of the IEEE 11th international conference on trust, security and privacy in computing and
communications (TrustCom), Liverpool, 25–27 June, pp 857–862

48.	 Santos N, Gummadi KP, Rodrigues R (2009) Towards trusted cloud computing. Proceedings
of HotCloud’09, San Diego, 15 June, article no 3

S. Shafieian et al.22

49.	 Zhou F, Goel M, Desnoyers P, Sundaram R (2011) Scheduler vulnerabilities and coordinated
attacks in cloud computing. Proceeding of the 10th IEEE international symposium on net-
work computing and applications (NCA), Cambridge, 25–27 Aug, pp 123–130

50.	 Wei J, Zhang X, Ammons G, Bala V, NingRaleigh P (2009) Managing security of virtual
machine images in a cloud environment. Proceeding of the 2009 ACM workshop on cloud
computing security (CCSW’09), Chicago, 13 Nov, pp 91–96

51.	 Garfinkel T Rosenblum M (2005) When virtual is harder than real: security challenges in vir-
tual machine based computing environments. Proceeding of the 10th workshop on hot topics
in operating systems (HotOS’5), Santa Fe, June

52.	 Pearson S (2012) Privacy, security and trust in cloud computing. In: Pearson S, Yee G (eds)
Privacy and security for cloud computing. Springer, London, pp 3–42

53.	 Balduzzi M, Zaddach J, Balzarotti D, Kirda E, Loureiro S (2012) A security analysis of
amazon’s elastic compute cloud service. Proceedings of the 27th annual ACM symposium on
applied computing (SAC ’12), Riva del Garda, 26–30 March, pp 1427–1434

54.	 Oberheide J, Cooke E, Jahanian F (2008) Empirical exploitation of live virtual machine mi-
gration. Proceedings of the Black Hat DC Briefings, Washington DC, 18–21 Feb

55.	 Varadarajan V, Kooburat T, Farley B, Ristenpart T, Swift MM (2012) Resource-freeing at-
tacks: improve your cloud performance (at your neighbor’s expense). Proceeding of the 2012
ACM conference on computer and communications security (CCS’12), Raleigh, 16–18 Oct,
pp 281–292

56.	 Idziorek J, Tannian M, Jacobson D (2011) Detecting fraudulent use of cloud resources. Pro-
ceedings of the 3rd ACM workshop on cloud computing security workshop (CCSW’11),
Chicago, 17–21 Oct, pp 61–72

57.	 Hoff C (2008) Cloud computing security: from DDoS (distributed denial of service) to
EDoS (economic denial of sustainability). http://www.rationalsurvivability.com/blog/?p=66.
Accessed 2 Sept 2014

58.	 Sqalli MH, Al-Haidari F, Salah K (2011) EDoS-Shield—a two-steps mitigation technique
against edos attacks in cloud computing. Proceedings of the fourth IEEE international confer-
ence on utility and cloud computing (UCC), Victoria, 5–8 Dec, pp 49–56

Chapter 2
Distributed Database Management Systems:
Architectural Design Choices for the Cloud

Joarder Mohammad Mustafa Kamal and Manzur Murshed

J. M. M. Kamal ()
Gippsland School of Faculty of Information Technology, Monash University, Clayton, VIC, Australia
e-mail: Joarder.Kamal@monash.edu

M. Murshed
Faculty of Science and Technology, Federation University, Churchill, VIC, Australia
e-mail: Manzur.Murshed@federation.edu.au

Abstract  Cloud computing has changed the way we used to exploit software and
systems. The two decades’ practice of architecting solutions and services over the
Internet has just revolved within the past few years. End users are now relying
more on paying for what they use instead of purchasing a full-phase license. System
owners are also in rapid hunt for business profits by deploying their services in the
Cloud and thus maximising global outreach and minimising overall management
costs. However, deploying and scaling Cloud applications regionally and globally
are highly challenging. In this context, distributed data management systems in the
Cloud promise rapid elasticity and horizontal scalability so that Cloud applications
can sustain enormous growth in data volume, velocity, and value. Besides, distrib-
uted data replication and rapid partitioning are the two fundamental hammers to nail
down these challenges. While replication ensures database read scalability and geo-
reachability, data partitioning favours database write scalability and system-level
load balance. System architects and administrators often face difficulties in man-
aging a multi-tenant distributed database system in Cloud scale as the underlying
workload characteristics change frequently. In this chapter, the inherent challenges
of such phenomena are discussed in detail alongside their historical backgrounds.
Finally, potential way outs to overcome such architectural barriers are presented
under the light of recent research and development in this area.

Keywords  Cloud computing · Distributed database · ACID · CAP · Replication ·
Partitioning · BASE · Consistency · Trade-offs

23© Springer International Publishing Switzerland 2014
Z. Mahmood (ed.), Cloud Computing, Computer Communications and Networks,
DOI 10.1007/978-3-319-10530-7_2

24 J. M. M. Kamal and M. Murshed

2.1 � Introduction

In recent years, with the widespread use of Cloud computing based platform and
virtual infrastructure services, each and every user-facing Web application is thrust-
ing to achieve both ‘high availability’ and ‘high scalability’ at the same time. Data
replication techniques are long being used as a key way forward to achieve fault-
tolerance (i.e., high availability) and improving performance (i.e., maintaining
system throughput and response time for an increasing number of users) in both
distributed systems and database implementations [29]. The primary challenges for
replication strategies include: (1) replica control mechanisms—‘where’ and ‘when’
to update replicated copies, (2) replication architecture—‘where’ replication logic
should be implemented and finally (3) ‘how’ to ensure both the ‘consistency’ and
the ‘reliability’ requirements for the target application. These challenges fundamen-
tally depend on the typical workload patterns that the target application will be
going to handle as well as the particular business goals it will try to meet.

Even in the absence of failure, some degree of replication is needed to guarantee
both ‘high availability’ and ’high scalability’ simultaneously. And, to achieve the
highest level of these two properties, data should be replicated over wide area
networks. Thus, the replicated system inherently imposes design trade-offs be-
tween consistency, availability, responsiveness and scalability. And, this is true for
deployments either within a single data centre over local area network (LAN) or in
multiple data centres over wide area network (WAN).

A high-level Cloud system block diagram is portrayed in Fig. 2.1, where a typi-
cal layout of a multi-tier Cloud application has been shown in a layered approach.

According to Fig. 2.1, end-users’ requests originate from the typical client-side
applications such as browsers and desktop/mobile apps through HTTP (which is a
request/reply based protocol) interactions. Database name server (DNS), Web and
content delivery network (CDN) servers are the typical first-tier Cloud services
(typically stateless) to accept and handle these client requests. If it is a read-only
request, then clients can be served immediately using cached data, otherwise update
(i.e., insert, update, delete) requests need to be forwarded to the second-tier services.

Application servers, on the other hand, process these forwarded requests based
on the coded logic and process the operation using in-memory data objects (if avail-
able) or fetch the required data from the underlying database-tier. Model view con-
troller (MVC) pattern-based logic implementation can be considered as an example.
In an MVC application, user requests (typically URLs) are mapped into ‘controller’
actions which then fetch data from appropriate ‘model’ representation and finally
set variables and eventually render the ‘view’. If in-memory representation of the
model data is not available then the model component needs to initiate a transac-
tional operation (like using ActiveRecord or DataMapper patterns) in the inner-tier
database services. Otherwise, in-memory update can take place and updated infor-
mation can be later pushed into the database.

Note that, application servers are typically ‘stateful’ and may need to store state
values (e.g., login information) as session objects into another highly scalable
key-value store. While in the inner-tier, database can be partitioned (i.e., Shards)

252  Distributed Database Management Systems

as well as replicated based on application functionality and requirements. Based
on the replica control and placement policies, data can be fetched (if read-only) or
updated accordingly and ultimately reply back to the model component in the MVC
implementation at the upper-tier.

Our curiosity is to investigate how this end-to-end request–reply procedure
access and utilise these durable and consistent data objects into different tiers of a
typical Cloud system. And, gradually this will also clarify the system–design trade-
offs for different components in a large-scale distributed systems. Read-only user
requests for static information (and some form of dynamic information) can be
directly served by first-tier Cloud servers based on the data staleness bound. As du-
rability is not guaranteed in this stateless tier, stored information can be lost due to
failures. Again, high availability (by means of rapid responsiveness) and high scal-
ability are needed to handle client requests with a typically converging consistency
requirement, which also depend on cache expiration and freshness policies.

For read requests which cannot be served due to expiry now can be fetched
from the in-memory data objects that reside in the application tier. Update and
scan requests typically routed to the second-tier services and mapped according-
ly as explained earlier. In this tier, application logics are typically executed using
the in-memory data representations which offer scalable consistency with semi-
durability. Based on the implementation mechanism of this second-tier services,

First-Tier Cloud Services
Presenta�on Tier (Stateless)

(DNS, Cache, CDN, Web Servers)

Inner-Tier Cloud Services
Database/Persistence Tier

(Index Files, Rela�onal/Semi-Rela�onal DDMS)

Back-End Cloud Services
Analy�cs Tier

(Hadoop, Map-Reduce Batch Processing)

User Request/Reply

App. Data Request/Reply

High
BASE

Sc
al

ab
ili

ty

ACID

Weak form of
Convergent Consistency

(Non-Durable Data)

Model

View

3-Tier Web App.
 with MVC Pa�ern Controller

Client App
End-User Tier

(Browser, Desktop/Mobile App)
Co

ns
is

te
nc

y

Low

1

2

3

4

5

6

7

ACID – Atomicity, Consistency, Isola�on, Durability
BASE – Basically Available So�-state Eventual consistency

Hard State Services with
Sequen�al Consistency

(Durable Data)

Second-Tier Cloud Services
Applica�on/Logic Tier (Stateful)

(Memcached, Session and Key-Value Stores, App Servers)

So� State Services with
Scalable Consistency
(Semi-Durable Data)

Fig. 2.1   Different service tiers of a typical 3-tier Web application and their interactions within
the Cloud computing model. DNS database name server, CDN content delivery network, DDMS
distributed database management systems

26 J. M. M. Kamal and M. Murshed

consistency guarantees reside in the development of soft-state services with recon-
structible data pieces. If the required data are not available, then the application
logic initiates transactional operations into the inner-tier databases. And they usu-
ally offer strong consistency (via atomicity, consistency, isolation and durability
(ACID) properties) and durable data (via replication services). However, scalability
is hard to achieve in this tier as stronger form of consistency comes with the price
of responsiveness.

2.1.1 � Why ACID Properties Are Hard to Scale

It is well known that scale-out and utilisation are far more cost-effective using thou-
sands of commodity hardware than through high-end server machines [3]. However,
deploying user facing Web applications with typical transactional workload in such
shared nothing architecture [41] is not trivial. Again, the underlying database sys-
tem itself needs to be replicated and/or partitioned to provide required read/write
scalability for the end users. The problem resides in the fact that if a transaction
needs to access data which span over multiple machines, it is pretty complex to
guarantee ACID properties. At the same time, managing distributed transaction and
executing them in parallel into a number of replicas to ensure atomic success or
abort is also challenging.

Atomicity property (in ACID) requires a distributed commit protocol such as
‘2-phase commit’ (2PC) to run across multiple machines involved in a particu-
lar transaction. In the meanwhile, the isolation property insists that the transac-
tions should acquire all of its necessary locks for the total duration of the run of
a 2PC. Thus, each transaction (whether it is a simple or complex one) requires a
considerable amount of time to complete a 2PC round while performing several
round trips in a typical failure-free case. While in case of failure of 2PC coordinator,
the total system blocks and a near-success transaction can be aborted due to a single
suddenly failed replica.

Again, having data replication schemes in action, to achieve strong system-wise
consistency (e.g., possibly via synchronous update) requires to make trade-off with
the system response-time (as well as transactional throughput). Finally, in a shared-
nothing system with failing hardware ensuring durable transactional operation in
the face of strong consistency is far away from reality and practice. As mentioned
earlier, real system designers have to make diverse set of trade-offs to ensure differ-
ent levels of consistency, availability and latency requirements in face of scalable
ACID semantics.

2.1.2 � CAP Confusion

Current Cloud solutions support a very restricted level of consistency guarantees
for systems which require high assurance and security. The issue develops from the

27

misunderstanding of the design space and principle like consistency, availability and
partition (CAP) devised by Eric Brewer [10], and later proved by Gilbert and Nancy
[16]. According to the CAP principle, the system designer must choose between con-
sistency and availability in the face of network partition. And, this trade-off comes
from the fact that to ensure ‘high availability’ in case of failure (i.e., crash-recovery,
partition, Byzantine, etc.) data should be replicated across physical machines.

In recent years, due to the need for higher system throughput in the face of in-
creased workload and high scalability, distributed database systems (DDBS) have
drawn the utmost attention in the computing industry. However, building DDBSs
are difficult and complex. Thus, understanding of the design space alongside with
the application requirement is always helpful for the system designers. Indeed, the
CAP theorem has been widely in use to understand the trade-offs between the im-
portant system properties—the CAP tolerance.

Unfortunately, today’s development trend indicates that many system designers
have misapplied CAP to build somewhat restrictive models of DDBSs. The narrower
set of definitions presented in the proof of CAP theorem [16] may be one of the
reasons. In their proof, Gilbert and Nancy considered ‘atomic/linear consistency’
which is more difficult to achieve in a DDBS while being at fault and partition tol-
erant. However, Brewer actually considered a more relaxed definition of the ‘Con-
sistency’ property referring to the case considered in the first-tier of a typical Cloud
application as shown in Fig. 2.1.

In reality, the probability of partition in today’s highly reliable data centre is rare
although short-lived partitions are common in WANs. So, according to CAP theo-
rem, DDBSs should provide both ‘availability’ and ‘consistency’, while there are
no ‘partitions’. Still, due to extreme workload or sudden failure, it might be the case
that the responsiveness of inner-tier services is lagging behind comparing to the
requirements for the first-tier and second-tiers services. In such a situation, it would
be better to value quick responses to the end users using cached data to be remaining
act as available. The goal is to have a scalable Cloud system that remains available
and responsive to the users even at the cost of tolerable inconsistency, which can be
deliberately engineered in the application logic to hide the effects.

In his recent article [11], Eric Brewer has revisited the CAP trade-offs and men-
tioned the unavoidable relationship between latency, availability and partition. He
argued that a partition is just time bounded on communication. It means that fail-
ing to achieve consistency in a time-bound frame, i.e. facing P, leads to a choice
between C and A. Thus, to achieve strong ACID consistency in cases either there
is a partition or not, a system should both compensate responsiveness (by means of
latency) and availability. On the other hand, a system can achieve rapid responsive-
ness and high availability within the same conditions while tolerating acceptable
inconsistency.

To this end, it is fair enough to suggest that design decisions should be made
based on specific business requirements and application goals. If an application
strives for consistent and durable data, all time scalability will be limited, and high
availability will not be visible (due to low responsiveness). Otherwise, if the target
is to achieve scalability and high availability, the application should be able to live
with acceptable level of inconsistency.

2  Distributed Database Management Systems

28 J. M. M. Kamal and M. Murshed

In Sect. 2.2, important components and concepts of distributed databases, i.e.,
transactional properties, are discussed. Strategies to update replicated data and dif-
ferent replication architectures, partitioning schemes and architectures along with
classifications based on update processing overhead and in context of multi-tier
Web application have been elaborated in Sect. 2.3. In Sect. 2.4, the evolution of
modern distributed database systems has been explored in parallel with the archi-
tectural design choices and innovative management of replicated and partitioned
databases in details. Finally, Sect. 2.5 concludes with the remarks on the important
characteristics (i.e., data replication and partitioning) of modern distributed data-
base systems which have been shaped the Cloud paradigm over the past years and
thus provided the opportunity to build Internet-scale applications and services with
high availability and scalability guarantees.

2.2 � Background of Distributed Database Concepts

In the following sub-subsections, the building blocks of a modern distributed da-
tabase management system is discussed, which will eventually help the reader to
understand the ACID properties and their implications in great extent.

2.2.1 � Transaction and ACID Properties

A transaction Ti is a sequence of read operation ri( x) and write operation wi( x) on
data items within a database. Since, a database system usually provides ACID prop-
erties within the lifetime of a transaction, these properties can be defined as shown
below:

•	 Atomicity—guarantees that a transaction executes entirely and commits, or
aborts and does not leave any effects in the database.

•	 Consistency—assuming the database is in a consistent state before a transaction
starts, it guarantees that the database will again be in a consistent state when the
transaction ends.

•	 Isolation—guarantees that concurrent transactions will be isolated from each
other to maintain the consistency.

•	 Durability—guarantees that committed transactions are not lost even in the case
of failures or partitions.

In contrast to a stand-alone database system, a replicated database is a distributed
database in which multiple copies of same data items are stored at multiple sites.
And, replicated database systems should be acted as a ‘1-copy equivalence’ of a
non-replicated system providing ACID guarantees. Thus, within a replicated envi-
ronment the ACID properties can be redefined as below:

29

•	 1-copy atomicity—guarantees that a transaction should have the same decision
of either all (commit) or nothing (abort) at every replicas which it performs the
operation. Thus, some form of ‘agreement protocol’ is necessary to run among
the replicas which should force this guarantee.

•	 1-copy consistency—guarantees that a consistent database state should be main-
tained across all replicas in such a way that the restrictions imposed by the ‘in-
tegrity constraints’ (e.g., primary/foreign key) while executing a transaction, are
not violated after it ends.

•	 1-copy isolation—guarantees that concurrent executions of a set of transactions
across multiple replicas to be equivalent to a serial execution (i.e., order) of this
set (as if the set of transactions are running serially in a non-replicated system).
Also defined as the ‘1-copy-serialisability’ (1SR) property.

•	 1-copy durability—guarantees that when a replica fails then later recovers, it
does not only require to redo the transactions that had been committed locally
but also make itself up-to-date with the changes that committed globally during
the downtime.

2.2.2 � Distributed Transactions and Atomic Commit

When a transaction attempts to update data on two or more replicas, 1-copy-atomi-
city property needs to be ensured which also influences consistency and durability
properties of the data item. To guarantee this, 2PC protocol [17] is typically used.
As shown in Fig. 2.2, initially 2PC is originated from the local replica and the
scheme includes all the other remote replicas that hold a copy of the data items that
are accessed by the executing transaction.

At phase-1, the local replica sends a ‘prepare-to-commit’ message to all partici-
pants. Upon receiving this message, the remote replica, if it is willing to commit
replies with a ‘prepared’ message, otherwise sends back an ‘abort’ message. The
remote replicas also write a copy of the result in its persistent log which can be
used to perform the ‘commit’ in case of failure recovery. While the coordinating
local replica receive ‘prepared’ messages from all of the participants (means all
remote replicas have persistently written the result into log), only then it enters into
phase-2.

Replica-A Replica-B

Replica-A
(Transac�on Coordinator)

Phase-1 (Prepare)

Replica-A Replica-B

Replica-A
(Transac�on Coordinator)

Phase-2 (Commit)

Fig. 2.2   The 2-phase commit
protocol

2  Distributed Database Management Systems

30 J. M. M. Kamal and M. Murshed

The second round message from the coordinator tells the replicas to actually
‘commit’ the transaction. 2PC aims to handle every possible failure and recovery
scenarios (like in case of the coordinator fails); thus, transactions are often ‘blocked’
for an unbounded amount of time. ‘3-phase commit’ [40] protocol was proposed
lately which is non-blocking. However, it requires more costly implementation in
real system as well as only assumes fail-stop-failure model. Thus, in face of net-
work partition, the protocol simply fails to progress. A more elaborate description
of distributed transaction processing can be found in [8].

Note that, both 2PC and 3PC protocols are within the solution family of Con-
sensus [50] problems. More recently, Paxos [27, 51], which is another family of
protocols (more resilient to failures) to solve the consensus problems, has received
much attention in both academia and industry.

2.2.3 � Distributed Concurrency Control

Concurrency control mechanism [8] in a database system maintains an impression
that concurrent transactions are executing in isolation. There are two families of
concurrency control protocols that exist: ‘pessimistic’ and ‘optimistic’. Pessimistic
approach is typically implemented using ‘locking’. A ‘shared lock’ is acquired by a
transaction to get read-access in the database record (typically the whole ‘row’ in a
database ‘table’) and an ‘exclusive lock’ is acquired to have write-access. If a lock
cannot be granted by the concurrency control manager, then the involving transac-
tion is blocked in waiting until conflicting locks are released. A shared lock can be
granted if there are at most other shared locks currently held on to a record.

On the other hand, an exclusive-lock can only be granted if there are no other
locks currently on hold. Thus, read operations are permitted to execute concurrently
while write operations must go through serially. Also note that read-only operations
may also ‘block’ during a period of exclusive-lock holds by another transaction. Al-
ternatively, a write operation may also ‘block’ during a period of shared-lock holds
by another transaction. In order to ensure strict serialisability, all acquired locks are
typically released only after the transaction commit or abort. This total mechanism
can be implemented through either using ‘2-phase locking (2PL)’ or ‘strong strict
2-phase locking (SS2PL)’ protocol. In phase-1, all required locks are requested and
acquired step-by-step from the beginning of a transaction towards its execution. In
phase-2, all locks are released in one step based upon commit/abort decision.

As shown in Fig. 2.3, deadlocks can be created by due concurrent transactions
racing to acquire locks. In such situations, the concurrency control manager should
be able to detect such deadlocks. 2PL/SS2PL can still be used to guarantee 1-copy
serialisability; however, it pays the costly penalty in system throughput and latency,
i.e., responsiveness. One of the conflicting transactions has to be aborted in all rep-
licas to release its locks, which allow the other transaction to proceed and complete
its operations. Sometimes, locking may create unwanted delays through blocking,
while the transactional operations could be serialisable.

31

Alternatively, simple ‘atomic commitment protocol’ could be used where all the
transactional executions are done within an atomic operation in the participating
replicas. Optimistic approach on the other hand, allows concurrent transactions to
proceed in parallel. A transaction can create its local copy and perform all the nec-
essary update operations in it. At the end of transaction, a validation phase takes
place and checks whether the read-sets of the considered transaction overlaps with
the write-set of any transaction that has already successfully validated. If true, it has
to be aborted, otherwise it can be committed successfully via writing its changes
persistently back to the database.

In DDBS with replication mechanism enabled, a distributed lock manager is
required which will try to detect and resolve distributed deadlocks among conflict-
ing replicas in a pessimistic approach. Atomic commit protocols like 2PC/3PC
could still be used along with 2PL/SS2PL. One such approach is to achieve global
serialisation order instead of distributed locking by using 2PC atomic commit glob-
ally while locally applying 2PL/SS2PL. However, achieving global serialisation
order is costly and pays the price with restricted system performance. On the other
hand, an optimistic approach would try to perform distributed or centralised conflict
detection and resolution procedure to rescue. Whichever the case is, the bottom line
is implementing distributed concurrency control through locking always creates
‘race condition’ locally which may lead to deadlocks or alternatively require costly
conflict and serialisation order management schemes globally.

Cursor stability (CS) is another kind of concurrency control mechanism which
uses short ‘read’ locks. A read lock on a data item x is acquired and released directly
after the read operation is executed. In situations when a data item is accessed
by a read-only operation simultaneously and a write operation is blocked for an
unbounded amount of time CS can be used in rescue. Short ‘read’ locks gradu-
ally upgraded to exclusive write locks to prioritise the blocked write operations to
complete. However, inconsistencies may occur due to ‘lost update’ from another
transaction in progress.

S1(x)
R1(x)

X1(y)
W1(y)
C1
U1(x, y)

X2(x)

W2(x)
X2(y)
W2(y)
C2
U2(x, y)

T1 T2

S1(x)
R1(x)

X1(y)

X2(y)
W2(y)

X2(x)

T1 T2

Deadlock

Locking without Deadlock Locking with Deadlock

Fig. 2.3   Deadlocks with pes-
simistic concurrency control
using 2PL

2  Distributed Database Management Systems

32 J. M. M. Kamal and M. Murshed

2.2.4 � Multi-Version Concurrency Control and Snapshot Isolation

In multi-version concurrency control (MCC or MVCC) approach, a database sys-
tem always performs update operation by creating a new version of the old data
item instead of overwriting it. MVCC typically utilises timestamps or transaction
IDs in increasing order to implement and identify new data version copies. The ben-
efit of using MVCC is reads will be never blocked by write operations. Read-only
access in the database will always retrieve a committed version of the data item.
Obviously, the cost incurs in the storing of multiple versions of the same data items.
Database that supports MVCC implementation typically adopts snapshot isolation
(SI) [8] which performs better with low overhead working with such multiple data
versions. However, SI is less restrictive in nature than serialisability thus may allow
non-serialisable operations leading to anomalies. In practice, commercial systems
also provide lower level of isolation as it is always hard to scale with increasing
number of concurrent transactions with serialisability.

SI assumes whenever a transaction writes a data item x, it creates a new version
of x; and when the transaction commits, the version is installed. Formally, if trans-
action Ti and Tj both write data item x, then Ti commits before Tj and if no other
transaction commits in between Ti and Tj and writes x, then Ti’s version is directly
ordered before Tj’s version of x. SI adopts two important properties:

•	 Snapshot reads—provides each transaction a snapshot of the database as of the
time it starts, i.e., last installed version. It guarantees high transaction concur-
rency for read-only operations and reads never interfere with writes.

•	 Snapshot writes—writes that occur after the transaction are not visible. It disal-
lows two concurrent transactions (neither commits before the other starts) to
update the same data item. It avoids well-known anomalies that can occur in the
use of lower-level isolation guarantee.

2.2.5 � Isolation Anomalies

Based on the above discussion on different concurrency control mechanism and
isolation levels, it would be better to introduce few isolation anomalies which are
typically used to appear in the system [21, 8]:

•	 Dirty read—reading an uncommitted version of a data item. For example, a
transaction Tj reads an uncommitted version a data tuple x which has been up-
dated by another transaction Ti. However, if Ti later aborts due to any reason, this
will also force Tj to abort as well. This is called ‘cascading aborts effect’.

•	 Lost update—overwriting updates by concurrent transactions. For example, Tj
writes (i.e., overwrites) x based upon its own read without considering the new
version of x created by Ti. Ti’s update will be lost.

•	 Non-repeatable read—reading two different versions of a data item during a
transaction execution period.

33

•	 Read skew—if MVCC is allowed, then it might be possible that by reading dif-
ferent versions of multiple data items which are casually dependent on any ap-
plied constraint, is violated.

•	 Write skew—similar to read skew, constraints between casually dependent data
items may be violated due to two concurrent writes.

2.3 � Replication and Partitioning Mechanisms

2.3.1 � Replica Control Strategies

Replica control strategies can be categorised based on two primary dimensions:
where updates will be taken place and when these updates will be propagated to
remote replicas. Considering these criteria, the classification based on [14] is shown
in Table 2.1. Considering the ‘when’ dimension, there can be two classes of replica
control mechanisms. One is the ‘eager’ replication that is a proactive approach,
where tentative conflicts between concurrent transactions are detected before they
commit while synchronously propagate updates among replicas. Thus, data consis-
tency can be preserved while in the cost of high communication overhead which
increases the latency. It is also called the active replication. The second is the lazy
replication which is a reactive approach which allows concurrent transactions to
execute in parallel and make changes in their individual local copies. Therefore,
inconsistency between replicas may arise as update propagations are delayed by
performing asynchronously after the local transaction commits. It is also called as
passive replication.

Again, based on the ‘where’ dimension, both ‘eager’ and ‘lazy’ replication
scheme can be further divided into two categories. One is the primary copy update
which restricts data items to be updated in a centralised fashion. All transactions
have to perform its operations in the primary copy first which then can be prop-
agated either synchronously or asynchronously to other replicas. This scheme is
benefited from a simplified concurrency control approach and reduces the number
of concurrent updates in different replicas. However, the single primary copy itself
may be a single point of failure and potentially create bottleneck in the system. On

Table 2.1   Typical classification of replica control strategies [18]
Propagation vs.
ownership

Eager Lazy Remark

Primary copy 1 transaction
1 owner

N transactions
1 owner

Single owner (can be
potential bottleneck)

Update anywhere 1 transaction
N owners

N transactions
N owners

Multiple owner (harder
to achieve consistency)

Synchronous update
(converging consistency)

Asynchronous update
(diverging consistency)

2  Distributed Database Management Systems

34 J. M. M. Kamal and M. Murshed

the other hand, the second category of update anywhere approach allows transac-
tional operations to be executed at any replicas in a distributed fashion. Coordina-
tion between different replicas is required which may lead to high communication
cost while using eager update propagation. While using lazy propagation poten-
tially leads to potential inconsistencies which require expansive conflict detection
and reconciliation procedure to resolve.

A trade-off is typically considered where high performance can be achieved by
sacrificing consistency via using ‘lazy’ replication schemes. Alternatively, one can
get consistency in the price of performance and scalability via using ‘eager’ replica-
tion scheme. Further classification of replica control mechanisms can be deduced
in this regard. One of the popular replication technique is to implement read-one-
write-all (ROWA) solution where read operations acquire local locks while write
operations need distributed locks among replicas.

The correctness of the scheme can be satisfied with ‘1SR’. 2PC and SS2PL are
also required to ensure atomic transactional commits. An improved version of this
approach is read-one-write-all-available (ROWAA) which improves the concurren-
cy control performance in the face of failure. Quorum-based replication solutions are
also an alternative choice which typically reduces the replication overhead through
only allowing a subset of replicas to be updated in each transaction. However, quo-
rum systems also do not scale well in situations where update rates are high. An
excellent analytical comparison can be found at [21] regarding this analogy.

In [18], Jim Gray was the first to explore the inherent dangers of replication in
these schemes when scalability matters. Gray pointed out that as the number of rep-
licas increase, it also exponentially increases the number of conflicting operations,
response time and deadlock probabilities.

For ‘eager’ schemes, the probability of deadlocks increased by the power of three
of the number of replicas in the system. Again, disconnected and failed nodes also
cannot use this approach. In the ‘lazy’ scheme, the reconciliation rates (in update
anywhere) and the number of deadlocks (in primary copy) sharply rise with the
increase of the number of replicas.

Alternatively, Gray [18] proposed the convergence property instead of strict seri-
alisability provided by the ACID semantics. It considers that if there are no updates
within a sufficient amount of time, then all participating replicas will gradually
converge to a consistent state after exchanging ongoing update results. He coined
the examples of Lotus Notes, Microsoft Access and Oracle 7 which were typically
proving such kind of convergence property at that time.

Commercial implementation of replica control schemes also followed the ‘lazy’
approaches and offered different options for appropriate reconciliation procedure
for a long time. Research efforts were also engaged in solving and optimising the
inconsistencies that arise from ‘lazy’ approaches like weak consistency models, epi-
demic strategies, restrictive node placement, using ‘lazy’ primary approach and dif-
ferent kinds of hybrid solutions. However, maintaining consistency over the impacts
of inconsistency is much simpler to implement, but hard to optimise for scalability.

To meet this challenge, Postgres-R [22] was developed which provides replication
through an ‘eager’ approach using group communication primitives, thus totally

35

avoids the cost of distributed locking and deadlocks. The Postgres-R approach uses
a ‘shadow copy’ of the local data item to perform updates, check integrity con-
straints, identify read-write conflicts and fire triggers. The changes that are made
into a shadow copy propagate to the remote replicas at commit time, thus vastly
decreases the message/synchronisation overhead in the system. Read operations are
always performed locally as following a ROWA/ROWAA approach.

Thus, there are no overheads for read operations in the system. Update (i.e., write)
operations of a transaction are bundled together into a write-set message and multi-
cast in total order to all replicas (including itself) to determine the serialisation orders
of the running transactions. Each replica uses this order to acquire all locks required
by that transaction in a single atomic step. The total order is used to serialise the read/
write conflicts at all replicas at the same time. Thus, by acquiring locks in the order
in which the transactions arrive, all replicas are performing the conflicting operations
in the same order. As a plus point, there will be no chance for deadlocks. In case of
read/write conflicts, reads are typically aborted as a straightforward solution while
different optimisations can also be possible. After completion/abortion of the write
operations in the local replica, the decision is propagated to the remote replicas.

Performance results from [22] indicate that Postgres-R can scale well with
increasing workloads and at the same time boost system throughput by reducing
communication overheads and by eliminating the possibility of deadlocks. A more
detail of this work can be found at [23]. However, replica control, i.e., coordination
is still a challenging task in practical systems and two essential properties always
need to ensure: (1) Agreement—every non-faulty replicas receive every intended
request and (2) order—every non-faulty replica processes the request it receives in
the same order. Interested readers can find an elaborate discussion in [51] on how
we can maintain these properties, thus understand how state machine replication
works using consensus protocol like Paxos [27] and what determinism in database
replication really means.

2.3.2 � Replication Architectures

One of the most crucial choices is ‘where’ to implement the replication logic. It
might be implemented tightly with the database in its kernel. Alternative approach
might be using a middleware to separate the replication logic from the concurrency
control logic implemented in the database. Based on these choices, replication logic
can be implemented in the following ways (see Fig. 2.4):

•	 Kernel-based—replication logic is implemented in the database kernel and
therefore has the full access to database internals. The benefit is that clients can
directly communicate with the database. On the other hand, any change in the
database internals (e.g., concurrency control module) will directly impact the
functionalities of replica control module. Again, refactoring database source
code is cumbersome and the implementation is always vendor specific. Also
called as ‘white-box replication’.

2  Distributed Database Management Systems

36 J. M. M. Kamal and M. Murshed

•	 Centralised middleware-based—replication logic can be separately implement-
ed into a middleware layer. It provides much flexibility and independence to
integrate with any database. However, the functionalities of concurrency control
module have to be re-implemented. It is also called as ‘black-box replication’.
A modified version of this scheme can be called ‘gray-box replication’ where the
database itself should expose the required concurrency control functionalities
through specific interface for the middleware to utilise in replica control scheme.

•	 Replicated centralised middleware-based—to avoid single point of failure and
bottlenecks, backup middleware can be introduced. However, failover mecha-
nisms are hard to implement to support hot-swap for running transactions and
coordinating with the application layer modules.

•	 Distributed middleware-based—every database replica is coupled with a mid-
dleware instance and act as a single unit of replication. In case of failover, the
total unit can be swapped. Again, the approach is more suitable in WANs reduc-
ing the overhead of clients to communicate with the centralised middleware each
time it wants to initiate transactional operations.

2.3.3 � Partitioning Architecture

It is obvious that replicating data to an extent will increase the read capacity of the
system. However, after a certain replication factor, it might be difficult to main-
tain consistency even if ‘eager’ replication and synchronous update processing are
used. On the other hand, write capacity can be scaled through partial replication
where only subsets of nodes are holding a particular portion of the database. Thus,

Backup

DB Replica DB Replica DB Replica

Kernel-based Replica�on

Clients

DB Replica DB Replica DB Replica

Clients

Middleware-based Replica�on

DB Replica DB Replica DB Replica

Clients

Replicated Middleware-based Replica�on

DB Replica DB Replica DB Replica

Clients

MW

Distributed Middleware-based Replica�on

MW MW Middleware

Middleware

Fig. 2.4   Different replication architectures

37

write operations can be localised and the overheads of concurrent update processing
can be reduced. Sharding is a technique to split data into multiple partitions (i.e.,
Shards). There are two basic ways of partitioning data as shown in Fig. 2.5:

•	 Vertical partitioning—by splitting the table attributes (i.e., columns) and thus
creating tables with small number of attributes. It only offers limited scalability
in spite of the ease of deployment. The main idea is to map different functional
areas of an application into different partitions. Both the datasets and workload
scalability are driven by different functional aspects of an application. Thus, it
is necessary to pick up the right tables and column(s) to create the correct parti-
tion, because the ‘join’ operations in a relational database will now need to be
performed within the application code. Hence, the underlying database will no
longer support relational schema, and apparently the application scalability is
restricts to its hosting node’s resource capacity.

Col1 Col2 Col3

Col1 Col3 Col2

Col1 Col2 Col3

Row1

Row2

Row3

Col1 Col2 Col3

Row4

Row5

Row6

Node ‘A’ Node ‘B’

Node ‘A’

Node ‘B’

Ver�cal
Par��oning

Horizontal
Par��oning

Fig. 2.5   Database partitioning techniques—vertically and horizontally

2  Distributed Database Management Systems

38 J. M. M. Kamal and M. Murshed

•	 Horizontal partitioning—by splitting the tuples (i.e., rows) across different
tables. It allows scaling into any number of partitions. The tuples are partitioned
based on a key which can be hash based, range based or directory based. Join
operations are similarly discouraged to avoid cross-partition queries. The per-
formance of write operations mostly depends on the appropriate choice of shard
key. If sharding is done properly, then the application controller can route the
write operations towards the right server.

The bottom line is that sharding a database results in partitioned datasets spread
over single-to-multiple data centres, thus forcing the beauty of relational model to
reduce. In recent years, NoSQL communities have picked up the trend to abandon
relational properties and SQL in favour of high-scalability by only supporting key-
value type accesses in their data stores. However, many researchers have already
pointed out that abandoning SQL and its feature has nothing to do scalability.
Alternatively, many have also indicated ways where careful system and applica-
tion design can lead to the desired level of scalability [39]. There has been a debate
going on in the recent years between these two communities and interested readers
may head towards [42, 44, 28] to get a glimpse of it.

2.3.4 � Classification Based on Update Processing Overheads

Replication architecture also depends on ‘how’ data is actually replicated. Depending
on the overheads incurred by the update processing operations, data items can be
replicated into all nodes participating in the system or into a subset of nodes. The
former one is called full replication while the later one is called partial replication.
It is to be noted here that the primary overhead in replication resides in the update
processing operations for the local and remote submissions.

There are two basic choices: symmetric update processing and asymmetric
update processing. The former choice requires a substantial amount of resources
(i.e., CPU, I/O in the remote replicas); it may also initiate divergence consistency
for non-deterministic database operations (like updating a value with current time).
Alternatively, in the asymmetric update processing, the operations are first per-
formed locally and only the changes (along with corresponding primary identifiers
and after-image values) are bundled together in the write sets, then forwarded to the
remote replicas in a single message. This approach of processing still holds even if
the system is using ‘eager’/‘active’ replication scheme.

Depending on the update processing approaches, we can consider the trade-offs
between using the full replication and partial replication schemes. Full replication
technique requires an exact snapshot of the local database into every other remote
replicas, which may face high-system overheads in the face of increased update
workloads. Both symmetric and asymmetric update processing introduce a level of
overhead as data needs to be updated into every replicas. However, by using partial
replication scheme, one can reduce this overhead and localise the update processing
based on their origination.

39

Surprisingly, partial replication also comes with its own challenges. There are
several variants of the partial replication, e.g., (1) pure partial replication—where
each node has only copies of a subset of the data items, but no node contains a full
copy of the total database and (2) hybrid partial replication—where a set of nodes
contain a full set of the data items, while another set of nodes are partial replicas
containing only a fraction of the data sets.

Now, depending on the transaction, it might want to access data items on dif-
ferent replicas in a pure partial replication scheme. It is non-trivial to know which
operation will access which data items in the partial replicas. Thus, flexibility is
somehow reduced by typical SQL transactions which often need to perform ‘join’
operations between two tables. However, if the database schema can be partitioned
accordingly and workload pattern is not changing frequently, then the benefits of
localising of update processing can be revealed.

Considering the case of hybrid partial replication, update operations need to be
applied fully in the replicas which contain the full set of database. With the increase
in the number of transactions, these nodes might create hotspots and bottlenecks.
The beauty of the hybrid approach is that while read operations can be centralised
to provide more consistent snapshots of data items, the write operations can be
distributed among partial replicas to reduce writing overheads. The bottom line is
that it has been always challenging to know the transactional properties (like which
data items need to access) and apply partial replication accordingly. However, if the
application requirements are understood properly and workload patterns are more
or less static, then partial replication can exploit the scalability goals.

2.3.5 � Classification Based on Multi-Tier Web Architecture

Recalling the example drawn in Fig. 2.1, real-life Web applications are typically
deployed in multi-tier Cloud platforms. Each tier is responsible to perform spe-
cific functionalities and coordination between these tiers and is necessary to pro-
vide the expected services to the end users. Hence, replicating a single tier always
restricts scalability and availability limits. Again, apart from being read-only or
update operations, workloads can be compute intensive (require more resource and
scalability at the application/logic tier) or data intensive (require more ability in the
inner database tier).

Again, considering failure conditions, replication logic should work in such
ways that the interdependencies between multiple tiers should not lead to multiple
workload execution both in the database and application servers [24]. For exam-
ple, despite failure, ‘exactly-one’ update transaction should be taken place in the
corresponding database tier and its entire replica for a single transactional request
forwarded from the application tier. Based on this analogy, there can be two archi-
tectural patterns for replicating multi-tier platforms [20] as listed below:

•	 Vertical replication pattern—this pairs one application and one database server
to create a unit of replication. Such units can be then replicated vertically to

2  Distributed Database Management Systems

40 J. M. M. Kamal and M. Murshed

increase the scalability of the system. The benefit of this approach is that replica-
tion logic is transparent to both application and database servers; thus, they can
work seamlessly. However, challenges reside in the fact that particular applica-
tion functionalities and corresponding data need to be partitioned appropriately
across the whole system to get the target scalability. Much engineering cost and
effort are needed for such kind of implementation; thus, in reality, these systems
can be still seen very few in numbers.

•	 Horizontal replication pattern—here, each tier implements replication indepen-
dently and requires some ‘replication awareness’ mechanism to run in between
to make necessary coordination. In contrast to the vertical replication pattern, the
beauty here is that one can scale flexibly based on the necessity across individual
tier. However, without any awareness support to know whether the cooperating
tier is replicated or not, it is not able to provide the utmost performance the sys-
tem could achieve. In reality, this type of systems can be seen almost everywhere
in the computing industry; however, they are still in lack of appropriate replica-
tion awareness mechanism which is still left as an open challenge.

To support these two categories, other architectural patterns also need to be consid-
ered like replica discovery and replication proxy, session maintenance, multi-tier
coordination, etc. Several examples of real implementations based on these patterns
can be found at [20, 33, 34, 35]. However, replication control via multi-tier coordi-
nation is still an open research problem both in academia and industry.

2.4 � Distributed Database Systems in the Cloud

2.4.1 � BASE and Eventual Consistency

The BASE (Basically Available, Soft state, Eventually consistent) acronym
[36] captures the CAP reasoning. It devises that if a system can be partitioned
functionally (by grouping data by functions and spreading functionality groups
across multiple databases, i.e., shards), then one can break down sequence of opera-
tions individually and pipeline them for asynchronous update on each replicas while
responding to the end user without waiting for their completion. Managing database
transactions in a way that avoids locking, highly pipelined, and mostly depends on
caching raise all kinds of consistency worries into surface.

While ACID can be seen as a more pessimistic approach, BASE, in contrast,
envisions for a more optimistic approach. Availability in BASE systems is ensured
through accepting partial partitions. Let us consider a ‘user’ table in a database
which is sharded across three different physical machines by utilising user’s ‘last_
name’ as a shard key which partitions the total datasets into the following shards
A-H, I-P and Q-Z. Now, if one of the shards is suddenly unavailable due to failure or
partition, then only 33.33 % users will be affected and the rest of the system is still

41

operational. But, ensuring consistency in such kind of system is not trivial and not
readily available like ACID systems. Thus, the consideration of relaxed consistency
guarantees arises. One can consider achieving consistency individually across func-
tional groups by decoupling the dependencies between them. As proposed in [36],
a persistent pipelined system can tackle the situations where relative ordering and
casual relationship is necessary to maintain or one consider de-normalised database
schema design.

The ‘E’ in BASE which stands for ‘eventual consistency’ [45, 46] guarantees that
in the face of inconsistency the underlying system should work in the background to
catch up. The assumption is that in many cases it is hard to distinguish these incon-
sistent states from the end-user perspective which is usually bounded by different
staleness criteria (i.e., time-bounded, value-bounded or update-based staleness).
Later, Eric Brewer [11] had also argued against locking and actually favoured the
use of cached data but only for ‘soft’ state service developments, while DDBSs
should continue to provide strong consistency and durability guarantees. However,
this implication of inconsistency requires a higher level of reconfigurability and
self-repair capability of a system that tends to expansive engineering effort.

In [45], Werner Vogels from Amazon described several variations of eventual
consistency which can also be combined together to provide a stronger notion while
ensuring client-side consistency as follows:

•	 Casual consistency—guarantees that if there is any casual dependencies between
two processes, then a committed update by one process will be seen by another
process and can be superseded by another update.

•	 Read-your-writes consistency—guarantees that after an update of a data item,
consecutive reads always get that updated value.

•	 Session consistency—guarantees that as long as the session exist, read-your-
write consistency can be provided.

•	 Monotonic read consistency—guarantees if a process reads a particular value
of an object, then any subsequent reads will not see any previously committed
value.

•	 Monotonic write consistency—guarantees to serialise writes by the same process.

At the server-side consistency, Vogels [45] argues that one should look at the flow
of update propagation. One can consider a quorum-based replicated DDBS [35]
with N nodes where W nodes replicas are responsible to accept a write and R repli-
cas are contacted while performing a read. Then, if W + R > N, then read and write
sets are always overlapped, and the system provides stronger form of consistency.
Again, if W < ( N + 1)/2, then there is a definite possibility of conflicting writes as the
write sets do not overlap. On the other hand, if the read and writes do not overlap as
W + R < = N, then a weaker form of eventual consistency is provided by the system
where stale data can be read. In case of network partitions, quorum systems can still
handle read and write requests separately as long as these sets can communicate
with a group of clients independently. And, later reconciliation procedures can run
to manage conflicting updates within replicas.

2  Distributed Database Management Systems

42 J. M. M. Kamal and M. Murshed

In [9], Ken Birman has effectively shown ideas that it is possible to develop scal-
able and consistent soft-state services for the first tier of the Cloud system if one is
ready to give up durability guarantee. He argues that the ‘C’ from the CAP theorem
actually relates to both ‘C’ and ‘D’ in ACID semantics. Therefore, by sacrificing
durability, one can scale through first to inner-tier Cloud services while at the same
time can guarantee strong consistency.

In reality, systems that utilises group communication semantics (e.g., mem-
bership management, message ordering, failure coordination, recovery, etc.) can
achieve consistent replication schemes to support both high availability and high
scalability. Google’s Spanner [14] is one of the most prominent examples of this
kind. Although these systems can exploit the requirements for first-to-inner service
tiers, the consistency guarantee usually comes with a high engineering cost and
lacks generalised patterns/solutions.

Lastly, based on the current usage of Cloud systems, inconsistencies can some-
what be tolerated for improving read/write performances under increasing work-
loads and handling partition cases. However, the level of scalability that Cloud
systems can achieve is a long cherished dream for system which prefers high
assurance (i.e., both availability and consistency), reliability and security.

2.4.2 � Revisiting Architectural Design Space

To overcome the confusion that arises from the CAP theorem, it is necessary to
revisit the design space in the light of distributed replication and data partitioning
techniques. This insight will also enable to clarify the relationship between the re-
lated challenges with ACID and BASE as discussed above. In [1], Daniel Abadi was
the first to pinpoint the exact confusion that arises from CAP and clarifies the rela-
tionship between consistency and latency. He proposed a new acronym PACELC
which he believed to be the actual representation of reality.

PACELC in a single formulation: if there is a partition (P), how does the system
trade-off exist between availability and consistency (A and C); else (E) when the
system is running as normal in the absence of partitions, how does the system trade-
off exist between latency (L) and consistency (C)?

The PACELC formulation is shown in Fig. 2.6 under several considerations like
based on replication factor, consistency level, system responsiveness and partition-
tolerance level. We will explain this phenomenon with respect to PACELC classi-
fication for distributed system design. As Abadi explained in [2], there can be four
possible system types as follows:

•	 A-L systems—always give up consistency in favour of availability in case of
partition otherwise prefer latency during normal operating periods. Example–
Apache Cassandra [4], Amazon’s DynamoDB [3] and Riak [38] (in their default
settings).

•	 A-C systems—provide consistent reads/writes in the typical failure-free scenar-
ios; however, in failure cases, consistency sacrifices (for limited period until

43

the failure recovers) would remain available. Example: MongoDB [31] and
CouchDB [5].

•	 C-L systems—provide baseline consistency (as defined by the system, e.g., time-
line consistency) for latency during normal operations, while in case of partitions
it prioritises consistency over availability (or, being slow responsiveness which
imposes high latency). Example: Yahoo! PNUTS [13].

•	 C-C systems—disallow to give up consistency either in the case of partition or
not and thus incur availability (i.e., responsiveness), and latency costs as the
trade-off. Example: BigTable [12]/HBase [6] and H-Store [19]/VoltDB [46].

This is to be noted here that, completely giving up availability is not possible at all;
otherwise it will be a useless system. Availability actually spans over two dimen-
sions: (1) resilient to failures, and (2) responsiveness in both failure and failure-free
cases. Interested readers are also encouraged to read Dan Weinreb’s blog entry [49]
which further clarifies how availability and latency relate to each other. Similarly,
completely inconsistent systems are also useless; thus, the level of consistency var-
ies in between its weaker and stronger forms. Let us now discuss these system
design choices in more detail under the light of the above mentioned considerations.

2.4.2.1 � Consistency Factor

Stronger consistency models which are tightly coupled with a DBMS always ease
the life of the application developer. Depending on the application requirement, giv-
ing up ACID properties in favour of BASE is also inadequate in many situations.
However, stronger consistency levels can also be viable to achieve by decoupling
logic from the underlying DBMS and implementing along with the replica control
scheme.

Quorum-based systems are one of the possible choices in this regard where one
can control the level of consistency by restricting read/write quorum requirements.
Alternatively, consistency can be ensured in a much fine-granularity [37]. Ensuring
entity-level or object-level consistency within a single database can also provide a
notion of ACID semantics. Furthermore, entity groups can be considered as a unit
of consistency and even multiple groups might act as a unit.

A

L

C

C

If Par��on:

Else:

ACID BASE

Replica�on Factor
Low High

Consistency Factor

Fig. 2.6   Design space for
large-scale distributed system
development. BASE basi-
cally available, soft state,
eventually consistent; ACID
atomicity, consistency, isola-
tion and durability

2  Distributed Database Management Systems

44 J. M. M. Kamal and M. Murshed

A-L systems which can be viewed as the BASE equivalent tend to provide dif-
ferent variations of eventual consistency all the time. Similar adaption is also true
while the system design space gradually shifts towards C-L systems in failure cases.
On the other hand, A-C and C-C systems by default tend to achieve stronger form
of consistency either in the case of failure or not. However, as indicated earlier
providing ACID level consistency (i.e., serialisability) is challenging and costly in
DDBSs. Therefore, providing soft level of consistency guarantees like snapshot
isolation or even timeline consistency (as provided in Yahoo’s PNUTS [13]) seems
to be more adaptable in such scenarios.

2.4.2.2 � Responsiveness Factor

Responsiveness is the perceived ‘delay’ between when an end-user or internal sys-
tem component takes an action such as clicking on a link or forwarding a request,
and when the user/component perceives a response. It wraps up two other technical
pieces, namely: (1) latency—initial delay to start receiving replies for a correspond-
ing request, and (2) throughput—total time taken for all the contents of a reply to be
received completely. These factors are imposed by the service level objective (SLO)
goals while considering the design spaces.

One can consider the ‘8 second rule’ [30] which still fits well to measure the
responsiveness of modern Cloud applications. It states that ‘if a computer system
responds to a user action within 100 ms, it’s perceived as ‘instantaneous’; within
1 s, the user will still perceive a cause-and-effect connection between their action
and the response, but will perceive the system as ‘sluggish’; and after about 8 s, the
user’s attention drifts away from the task while waiting for a response’.

Based upon this observation, A-L systems should be chosen where strict and
rapid responsiveness is the requirement. Both the A-C and C-L systems will be
better on ensuring flexible responsiveness requirements in the face of failure and
failure-free cases, respectively. C-C systems pay the costs to keep the system up-
to-date and consistent, therefore, slow responsive will be incurred while they are
overloaded.

2.4.2.3 � Partition-Tolerance Factor

Partitions are not always created from network/communication outage. Sometimes,
it might be the case that the system is overloaded and may not be able to respond
within the timeout period. Improper network configurations in the intermediate
nodes can also cause similar results. Again, the possibility of partition highly de-
pends on whether the system is deployed in a WAN across multiple data centres
or LAN within a single data centre. An interesting discussion of practical database
errors which can lead to partitioned networks in DDBS can be found in [43].

Primarily based on the deployment strategies, one can consider choosing A-L
or C-L system to deploy across multiple data centre distributed over WAN due to

45

their latency awareness during normal operation periods. On the other hand, A-C
and C-C systems will be more preferred in deploying within single data centre over
the LAN.

2.4.2.4 � Replication Factor

The scalability of today’s Cloud systems and DDBS primarily depends on how they
are replicated to provide high read/write throughput, although increasing the num-
ber of replicas blindly will not make the success. It may create potential bottlenecks
and unresponsiveness in the system. As discussed in [2], three types of replication
strategies are popularly seen in today’s deployment, viz.: (1) Data updates sent to
all replicas at the same time (synchronous), (2) data updates sent to an agreed-upon
location first (synchronous/asynchronous/hybrid), and (3) data updates sent to an
arbitrary location first (synchronous/asynchronous).

Considering the above analogies, option-1 provides stronger consistency level in
the costs of increased latency and communication overhead. Thus, it might primari-
ly be suitable for C-C systems. Option-2 with synchronous-update propagation also
ensures consistency but only limited to while deployed in LAN/single data centre.
With asynchronous propagation, option-2 provides several options for distributing
read and write operations. If a primary/master node is responsible for providing
read replies and accepting writes, then inconsistencies can be avoided. However,
it may be the source of potential bottleneck in case of failures. On the other hand,
if reads are served from any node, while the primary node is only responsible for
accepting writes, then read results probably reflect inconsistencies.

A combination of synchronous and asynchronous is also possible considering a
quorum-based replication strategy. If R + W > N, then the system will provide consis-
tent results while gradually divergent in the condition where R + W < = N. Both A-L
and C-L systems are well suited for the approaches mentioned above under option-2
as they are flexible and dynamic with latency-consistency trade-offs. Option-3,
which is similar to option-2 apart from preferring any node to accept reads and
writes, can also be used either in a synchronous or asynchronous fashion. While
synchronous setting can incur increased latency, potential inconsistencies will arise
using asynchronous setting. A-C and some of the C-L systems might be suitable to
fit in this category.

To this end, it seems worthwhile to revisit the design choices as it broadens
our mind to think beyond what the CAP theorem actually meant. It also helps to
visualise how we can fit the multi-tier Cloud application within the architectural
model. Although a more analytical approach to explain these trade-offs will be defi-
nitely profound. Modern software-as-a-service (SaaS) applications deployed over
very large-scale distributed systems strive for the following performance goals:
(1) Availability or uptime—what percentage of time the system is up and prop-
erly accessible, (2) responsiveness—measure of latency and throughput, and (3)
scalability—as the number of users, i.e., workloads increase how to maintain the
target responsiveness without increasing cost/user.

2  Distributed Database Management Systems

46 J. M. M. Kamal and M. Murshed

2.4.3 � Data Partitioning and Replication Management

Typical distributed database systems (e.g., HBase [6], Cloud SQL, MongoDB [31]
and MySQL Cluster [32]) which usually provide automatic partitioning and load-
balancing features only support pre-configured partitioning rules. The system splits
and merges the partitions based on the number of nodes (e.g., MySQL Cluster [32]),
predefined data volume size (e.g., in HBase [6]), predefined key (e.g., MongoDB
[31]) or even based on partitioned schema (Cloud SQL). All of these approaches
are unable to adopt to dynamic workload patterns and current resource utilisation
profile of the system. Again, sudden increase in workload volume, occurrences
of data spikes and hotspots can also influence the change in normal workload
characteristics.

However, dynamic partitioning decision making is not possible and often re-
quires human intervention. Hence, these systems normally suffer from sudden
workload spikes in any particular partition, hot-spotted partition or database table,
partitioning storm and load-balancing problems. These are the potential reasons of
restricted system behaviour, unresponsiveness, failures and bottlenecks. In a WAN
setting, this leads to replication nightmare and inconsistency problems on top of
added latency.

As Cloud systems are growing bigger and bigger day by day with the explosion
of big data, automated management of these large-scale distributed systems are
often desirable to maintain high scalability and elasticity. Automatic replication/
partitioning management schemes are believed to stand as the solution towards
these worries and opportunities. These systems can exploit the self-managerial
properties (i.e., healing, optimisation, and provisioning) of a typical Cloud platform
and ensure more reliability to achieve the target SLO.

Automatic management of partitioning and replication are also necessary
in cases where the database is spanned in multiple data centres over WAN in a
geographically distributed fashion. It can be also recognised as a classical match for
the case of partial replication where individual partitions of the distributed database
management systems can be distributed over WAN. The primary challenge here
is to maintain rapid consistency among the replicas with an acceptable latency
requirement. The trade-offs between replication and partitioning considering parti-
tioning size as an impacting factor can be also explored in this context.

The particular emphasis is on how to find an optimal partition size for load distri-
bution (arise from hot-spotted partitions due to workload pattern) in geo-distributed
data centres. Determining an optimal partition size is essential for effective rep-
lication and data transfer between physical machines over WAN. In overall, the
choice of availability, consistency, and latency play an important role in developing
a scheme over WAN where network partitions occur very often and usually are not
avoidable.

To understand the significance, one can be motivated by the scenarios of mas-
sively multi-player online role playing games (MMOG) and virtual worlds. Scal-
ability in such environment is really challenging and not trivial in contrast to other

47

Cloud applications. Game and virtual world users are geographically distributed
and can personalise the game environment as well as make interactions with other
online users. Two kinds of partitioning strategies are generally seen: one is to de-
compose the game or virtual world based on the application design and functional-
ity, while another possibility is to partition the system, based on the current work-
load pattern.

Distributing the workloads evenly among the physical servers is really tedious
for both of the cases as they may spread in a WAN over several geographical loca-
tions. Again, users residing in one system partition are naturally forbidden to access
or interact with other users in different partitions. Even if they wish to do so, costly
replication process needs to be taken out. Games and virtual worlds like World of
Warcraft, Farmville, SimCity, and Second Life are a few of the examples which
have such evolving architectures and geographically distributed workload patterns
over the WAN; thus, face these challenges. Jim Waldo has mentioned these chal-
lenges from a real-world point in [48] while others like the authors in [52, 25, 26]
have also discussed related challenges and the significance of reliable scalability
issues in MMOG.

Recent development of the Google’s Big Data platform Spanner [14] also focused
on a geographically distributed consistent data service platform which spans over
multiple data centres in the WAN. The argument of whether existing NoSQL solu-
tions are adequate to handle such scalability challenges effectively is still an active
topic of discussion among the community [15], and it is believed that the above
mentioned approach can direct an appropriate pathway towards the right vision.

2.5 � Conclusion

Cloud computing backed up by modern scalable distributed databases provides sig-
nificant opportunities for the start-up and established businesses as well as presents
potential challenges for the system administrators. The development of distributed
databases has been continuing over the past four decades, and is still emerging to
adopt the Cloud paradigm. However, system designers and administrators should be
well aware of the past trials and potential pitfalls. The design space should be well
adopted and possible user cases need to be well studied beforehand. This is required
to fit target application scenarios into the architectural design space. Although, re-
cent developments have shown notable promises over the past years, most of the
approaches are static in nature and not adaptable with dynamic workload behav-
iours. SaaS applications deployed within Cloud platforms also span over multiple
geographical regions and thus require special attentions to adopt with distributed
workload characteristics.

Designing a scalable Cloud system requires a high level understanding of the
life-cycle management of a modern multi-tier Web application and characterisa-
tion of system workloads. These interpretations lead us straight to the exploration
of available architectural design choices and off-the-shelf distributed databases to

2  Distributed Database Management Systems

48 J. M. M. Kamal and M. Murshed

support underlying high scalability and availability requirements. However, the
misunderstanding of CAP theorem over the past decade, and consequent develop-
ments of hundreds of NoSQL systems providing relaxed consistency guarantees did
not hold us back. In reality, all these efforts have helped the system architects to
understand the actual design space for Cloud applications and thus have provided
the necessary momentum to modernise the development of distributed database sys-
tems in a whole. Again, the core building blocks of a distributed database system
have also helped in shaping the general ideas behind effective data replication and
partitioning strategies. Eventually these apprehensions have influenced the devel-
opment of high available, high scalable and partition tolerance Internet-scale Cloud
applications. Nowadays, without having a clear picture of the architectural design
choices in front, it is tedious to design a scalable Cloud platform. The PACELC
acronym clearly identifies this challenge and helped us grasp the relationship be-
tween ACID and BASE properties. Still, automatic management of data replica-
tion and partitioning in line with workload characteristics and issues arise from
multi-tenant environments that are potential challenges to deal with. With the rapid
advancement in database and system research and development, it can be hoped that
innovative solutions will be soon in place to rescue us from back-breaking labours
of system administrations and disaster response situations.

In this chapter, a trail of modern distributed database systems has been
drawn alongside the challenges which require urgent attention from the research
community. The relationship between how to adopt the past to overcome the chal-
lenges at present has been also discussed in a great extent. Different data replica-
tion and partitioning techniques have been discussed in details which are essential
to achieve massive scalability and elasticity for the Cloud applications. Finally,
several approaches have been shown as potential way out to achieve Cloud scale
modernisation of distributed database management systems in a dynamic environ-
ment for the years to come.

References

1.	 Abadi DJ (April 2010) Problems with CAP, and Yahoo’s little known NoSQL system. http://
dbmsmusings.blogspot.com.au/2010/04/problems-with-cap-and-yahoos-little.html. Accessed
31 Jan 2014

2.	 Abadi DJ (2012) Consistency tradeoffs in modern distributed database system design: CAP is
only part of the story. Comput IEEE 45(2):37–42

3.	 Amazon DynamoDB—NoSQL Cloud Database Service (2014) http://aws.amazon.com/dy-
namodb. Accessed 31 Jan 2014

4.	 Apache Cassandra Project. http://cassandra.apache.org. Accessed 31 Jan 2014
5.	 Apache CouchDB. http://couchdb.apache.org. Accessed 31 Jan 2014
6.	 Apache HBase—Apache HBase Home. http://hbase.apache.org. Accessed 31 Jan 2014
7.	 Armbrust M, Fox A, Griffith R, Joseph AD, Katz RH, Konwinski A, Lee G, Paterson DA,

Rabkin A, Stoica I, Zaharia M (2009) Above the clouds: a Berkeley view of cloud computing.
Technical Report UCB/EECS-2009-28, EECS Department, University of California, Berkeley

8.	 Bernstein PA, Newcomer E (2009) Principles of transaction processing, 2nd edn. Morgan
Kaufmann, San Francisco

http://dbmsmusings.blogspot.com.au/2010/04/problems-with-cap-and-yahoos-little.html
http://dbmsmusings.blogspot.com.au/2010/04/problems-with-cap-and-yahoos-little.html
http://aws.amazon.com/dynamodb
http://aws.amazon.com/dynamodb
http://cassandra.apache.org
http://couchdb.apache.org
http://hbase.apache.org

49

  9.	 Birman K, Freedman D, Huang Q, Dowell P (2012) Overcoming CAP with consistent soft-
state replication. Comput IEEE 45(2):50–58

10.	 Brewer EA (2000) Towards robust distributed systems (abstract). In: Proceedings of the nine-
teenth annual ACM symposium on principles of distributed computing (New York, NY, USA,
2000), PODC’00, ACM, p. 7

11.	 Brewer E (2012) CAP twelve years later: how the “rules” have changed. Comput IEEE
45(2):23–29

12.	 Chang F, Dean J, Ghemawat S, Hsieh WC, Wallach DA, Burrows M, Chandra T, Fikes A,
Gruber RE (2008) BigTable: a distributed storage system for structured data. ACM Trans
Comput Syst 26(2), 4(1–4):26

13.	 Cooper BF, Ramakrishnan R, Srivastava U, Silberstein A, Bohannon P, Jacobsen H.-A, Puz
N, Weaver D, Yerneni R (2008) PNUTS: Yahoo!’s hosted data serving platform. Proc VLDB
Endow 1(2):1277–1288

14.	 Corbett JC, Dean J, Epstein M, Fikes A, Frost C, Furman JJ, Ghemawat S, Gubarev A, Heiser
C, Hochschild P, Hsieh W, Kanthak S, Kogan E, Li H, Lloyd A, Melnik S, Mwaura D, Nagle
D, Quinlan S, Rao R, Rolig L, Saito Y, Szymaniak M, Taylor C, Wang R, Woodford D (2012)
Spanner: google’s globally distributed database. In: Proceedings of the 10th USENIX con-
ference on operating systems design and implementation (Berkeley, CA, USA) OSDI’12,
USENIX Association, pp 251–264

15.	 Floratou A, Teletia N, Dewitt DJ, Patel JM, Zhang D (2012) Can the elephants handle the
NoSQL onslaught? Proc VLDB Endow 5(12):1712–1723

16.	 Gilbert S, Lynch N (June 2002) Brewer’s conjecture and the feasibility of consistent, avail-
able, partition-tolerant web services. SIGACT News 33(2):51–59

17.	 Gray J (1978) Notes on database operating systems. In: Gray J (ed) Operating systems, an
advanced course. Springer-Verlag, London, pp 393–481

18.	 Gray J, Helland P, O’Neil P, Shasha D (1996) The dangers of replication and a solution. SIG-
MOD Rec 25(2):173–182

19.	 H-Store: Next Generation OLTP Database Research (2014) http://hstore.cs.brown.edu.
Accessed 31 Jan 2014

20.	 Jimenez-Peris R, Patino Martinez M, Kemme B, Perez-Sorrosal F, Serrano D (2009) A system
of architectural patterns for scalable, consistent and highly available multi-tier service-orient-
ed infrastructures. Architecting dependable systems VI. Springer-Verlag, Berlin, pp 1–23.

21.	 Kemme B (2000) Database replication for clusters of workstations. PhD thesis, Swiss Federal
Institute of Technology, Zurich

22.	 Kemme B, Alonso G (2000) Don’t be lazy, be consistent: Postgres-R, a new way to im-
plement database replication. In: Proceedings of the 26th international conference on very
large data bases (San Francisco, CA, USA), VLDB ’00, Morgan Kaufmann Publishers Inc.,
pp 134–143

23.	 Kemme B, Alonso G (2000) A new approach to developing and implementing eager database
replication protocols. ACM Trans Database Syst 25(3):333–379

24.	 Kemme B, Jimenez-Peris R, Pantino Martinez M, Salas J (2000) Exactly once interaction in
a multi-tier architecture. In: VLDB workshop on design, implementation, and deployment of
database replication

25.	 Kohana M, Okamoto S, Kamada M, Yonekura T (2010) Dynamic data allocation scheme for
multi-server web-based MORPG system. In: Proceedings of the 2010 IEEE 24th international
conference on advanced information networking and applications workshops (Washington,
DC, USA), WAINA ’10, IEEE Computer Society pp 449–454

26.	 Kohana M, Okamoto S, Kamada M, Yonekura T (2012) Dynamic reallocation rules on multi-
server web-based MORPG system. Int J Grid Utility Comput 3(2/3):136–144

27.	 Lamport L (1998) The part-time parliament. ACM Trans Comput Syst 16(2):133–169
28.	 Lerner RM (2010) At the forge: NoSQL? I’d prefer some SQL. Linux J. 2010:192. (http://

www.linuxjournal.com/article/10720. Accessed 31 Jan 2014)
29.	 Lindsay BG, Selinger PG, Galtieri CA, Gray JN, Lorie R A, Price TG, Putzulo F, Traiger

IL, Wade BW (July 1979) Notes on distributed databases. Research Report, IBM Research
Laboratory (San Jose, California, USA) 247–284

2  Distributed Database Management Systems

http://hstore.cs.brown.edu
http://www.linuxjournal.com/article/10720
http://www.linuxjournal.com/article/10720

50 J. M. M. Kamal and M. Murshed

30.	 Miller RB (1968) Response time in man-computer conversational transactions. In: Proceed-
ings of the December 9–11, 1968, fall joint computer conference, part I (New York, NY,
USA), AFIPS ’68 (Fall, part I), ACM pp 267–277

31.	 MongoDB http://www.mongodb.org. Accessed 31 Jan 2014
32.	 MySQL MySQL Cluster CGE. http://www.mysql.com/products/cluster. Accessed 31 Jan 2014
33.	 Perez-Sorrosal F, Patino Martinez M, Jimenez-Peris R, Kemme B (2007) Consistent and

scalable cache replication for multi-tier J2EE applications. In: Proceedings of the ACM/
IFIP/USENIX 2007 international conference on Middleware (New York, NY, USA),
Middleware ’07, Springer-Verlag New York, Inc., pp 328–347

34.	 Perez-Sorrosal F, Patino Martinez M, Jimenez-Pereis R, Kemme B (2007) Consistent and
scalable cache replication for multi-tier J2EE applications. In: Proceedings of the 8th ACM/
IFIP/USENIX international conference on Middleware (Berlin, Heidelberg), Middleware
2007 Springer-Verlag pp 328–347

35.	 Perez-Sorrosal F, Patino Martinez M, Jimenez-Peris R, Kemme B (2011) Elastic SI-Cache:
consistent and scalable caching in multi-tier architectures. VLDB J 20(6):841–865

36.	 Prichett D (May 2008) BASE: an ACID alternative. Queue ACM 6(3):48–55
37.	 Ramakrishnan R (2012) CAP and Cloud data management. Computer IEEE 45(2): 43–49
38.	 Riak | Basho Technologies (2014) http://basho.com/riak. Accessed 31 Jan 2014
39.	 Schram A, Anderson KM (2012) MySQL to NoSQL: data modeling challenges in support-

ing scalability. In: Proceedings of the 3rd annual conference on systems, programming, and
applications: software for humanity (New York, NY, USA), SPLASH ’12, ACM, pp 191–202

40.	 Skeen D, Stonebraker M (1983) A formal model of crash recovery in a distributed system.
Software engineering. IEEE Trans SE 9(3): 219–228

41.	 Stonebraker M (1986) The case for shared nothing. IEEE Database Eng Bull 9(1):4–9
42.	 Stonebraker M (4 Nov 2009) The “NoSQL” discussion has nothing to do with SQL. http://

cacm.acm.org/blogs/blog-cacm/50678-the-nosql-discussion-has-nothing-to-do-with-sql/
fulltext. Accessed 31 Jan 2014

43.	 Stonebraker M (5 April 2010) Errors in database systems, eventual consistency, and the cap
theorem. Blog, Communications of the ACM

44.	 Stonebraker M (2010) SQL databases v. NoSQL databases. Commun ACM 53(4):10–11
45.	 Vogels W (Oct 2008) Eventually consistent. Queue ACM 6(6):14–19
46.	 Vogels W (2009) Eventually consistent. Communications of the ACM 52(1):40–44
47.	 VoltDB http://voltdb.com. Accessed 31 Jan 2014
48.	 Waldo J (2008) Scaling in games and virtual worlds. Commun ACM 51(8):38–44
49.	 Weinreb D Improving the PACELC taxonomy. http://danweinreb.org/blog/improving-the-

pacelc-taxonomy. Accessed 27 Feb 2013
50.	 Wikipedia. Consensus (computer science). http://en.wikipedia.org/wiki/Consensus_(computer_

science). Accessed 31 Jan 2014
51.	 Wikipedia. Paxos (computer science). http://en.wikipedia.org/wiki/Paxos_(computer_science).

Accessed 31 Jan 2014
52.	 Zhang K, Kemme B, Denault A (2008) Persistence in massively multiplayer online games.

In: Proceedings of the 7th ACM SIGCOMM workshop on network and system support for
games (New York, NY, USA), NetGames’ 08, ACM, pp 53–58

http://www.mongodb.org
http://www.mysql.com/products/cluster
http://basho.com/riak
http://cacm.acm.org/blogs/blog-cacm/50678-the-nosql-discussion-has-nothing-to-do-with-sql/fulltext
http://cacm.acm.org/blogs/blog-cacm/50678-the-nosql-discussion-has-nothing-to-do-with-sql/fulltext
http://cacm.acm.org/blogs/blog-cacm/50678-the-nosql-discussion-has-nothing-to-do-with-sql/fulltext
http://voltdb.com
http://danweinreb.org/blog/improving-the-pacelc-taxonomy
http://danweinreb.org/blog/improving-the-pacelc-taxonomy
http://en.wikipedia.org/wiki/Consensus_(computer_science)
http://en.wikipedia.org/wiki/Consensus_(computer_science)
http://en.wikipedia.org/wiki/Paxos_(computer_science)

Chapter 3
Quality of Service and Service Level Agreements
for Cloud Environments: Issues and Challenges

Inderveer Chana and Sukhpal Singh

S. Singh () · I. Chana
Computer Science and Engineering Department, Thapar University,
Patiala, Punjab 147004, India
e-mail: ssgill@thapar.edu

I. Chana
e-mail: inderveer@thapar.edu

Abstract  The increasing use of Cloud computing makes the development of high-
quality Cloud-based applications a vital research area. Cloud computing, which
provides inexpensive computing resources on the pay-as-you-go basis, is promptly
gaining momentum as a substitute for traditional information technology (IT)-based
organizations. As more and more users migrate their applications to Cloud envi-
ronments, service level agreements (SLAs) between clients and Cloud providers
become a key element to consider. Due to the dynamic nature of the Cloud, endless
supervision of quality of service (QoS) attributes is necessary to honor the SLAs.
Thus, Cloud computing faces the challenge of QoS, especially in relation to how a
service provider can ensure appropriate QoS for its Cloud services. QoS is an inher-
ent element, part of service-oriented architecture (SOA), to direct nonfunctional
quality attributes of a service, such as the response time, price, or the supported
security rules. Consequently, there is a requirement to grow architectures in order
to respond correctly to the QoS requirements. The architecture should be able to
change dynamically the amount of resources made available to the applications it
hosts. Optimal resource utilization should be attained by providing (and maintain-
ing at run time) each hosted application with the number of resources which is
adequate to guarantee that the application SLA will not be violated. This chapter
reflects the essential perceptions behind the QoS provision in the Cloud, identi-
fies current and innovative quality attributes based on customers’ desires associated
with SLA and identifies metrics to measure the deviation of QoS from predictables,
with possible resolution in the outline of architecture for spontaneous supervision of
QoS without violation of SLA. The existing intent of Cloud SLAs is inspected with
a focus on QoS and customer requirements. Further, foremost research problems
and scientific challenges in Cloud SLAs have been considered with possible rea-
sons. Autonomic management architecture for dynamic provisioning of resources

51© Springer International Publishing Switzerland 2014
Z. Mahmood (ed.), Cloud Computing, Computer Communications and Networks,
DOI 10.1007/978-3-319-10530-7_3

52 I. Chana and S. Singh

based on users QoS requirements to maximize efficiency and automatic fulfillment
of SLA has also been proposed.

Keywords  Cloud computing · Service level agreement (SLA) · Service-oriented
architecture · SOA · Quality of service · QoS · Autonomic Cloud computing · SLA
challenges

3.1 � Introduction

Cloud computing is a computing model for permitting omnipresent, suitable and
on-demand service access to a common group of configurable computing resources
(e.g., networks, servers, storage, and applications) that can be quickly provided and
released with minimum management struggle [21]. Public Cloud platforms are usu-
ally superior at providing IT services over the open Internet than the on-premise
enterprise IT resources. Therefore, the public Cloud can well serve as a workforce
that is expected to work at the local region because processing, storage, and enter-
prise applications to a middle tier between the company and the Cloud consumer
can be done easily [31]. The services provided by a Cloud are shown in Fig. 3.1.
As a Cloud offers three types of services such as infrastructure as a service (IaaS),
or platform as a service (PaaS), or software as a service (SaaS), it requires quality
of service (QoS) to efficiently monitor and measure the delivered services and thus
needs to follow service level agreements (SLAs) [1, 11]. The complex nature of the
Cloud environment requires a cultured means of handling of SLAs as the demands
of the service users vary considerably. The QoS attributes that are frequently part
of an SLA (response time, throughput, etc.) vary repeatedly and to implement the
contract, these parameters need to be carefully controlled [1, 5].

An SLA is part of a service contract where a service is defined based on the agree-
ment between a provider and a customer [19]. In other words, the term SLA denotes
the contracted service and its performance. An SLA is a document that specifies the
description of the service level parameter, service level objective, agreed service,

Fig. 3.1   Cloud computing
services. IaaS infrastructure
as a service, PaaS platform
as a service, SaaS software as
a service

533  Quality of Service and Service Level Agreements for Cloud Environments

warranties, and action in case of violation. An SLA is a conveyed bargain that has
been documented between two parties which are customer and service provider [2].
The SLA is very significant to define the availability, reliability, and scalability of
services. In the literature, the following definitions of SLA are prevalent:

•	 “SLA is an officially exchanged document that describes (or tries to express) in
measurable (and maybe qualitative) terms the service being presented to a cus-
tomer. Any metrics involved in a SLA should be capable of being controlled on
a systematic basis and the SLA should record by whom” [4].

•	 “A contract is an officially binding bargain between two or more parties. Con-
tracts are subject to particular authorized explanations” [9].

Although, Cloud consumers do not have full supervisory control over the funda-
mental computing resources, they do require ensuring attributes such as quality,
accessibility, trustworthiness, and performance of these resources when users have
transferred their fundamental business functions onto their honored Cloud. In other
words, it is vital for users to acquire assurances from suppliers on service provisions
[18]. Usually, these are delivered through SLAs discussed between the providers
and customers [30]. The very first problem is the description of SLA terms in such a
way that has a suitable level of granularity, namely the compromises between accu-
racy and complexity, so that they can ensure most of the user hopes and is compara-
tively simple to be prejudiced, certified, calculated, and imposed by the resource
provisioning mechanism on the Cloud [3, 25]. In addition, different Cloud service
models (IaaS, PaaS, and SaaS) will need to express different SLA meta disclaimers
[13]. This also increases a number of implementation issues for the Cloud provid-
ers. Moreover, innovative SLA mechanisms require to continuously integrate con-
sumer response and customization features into the SLA assessment framework [8].

As the Cloud service models develop and become omnipresent, there is an in-
crease in the probability of clarifying the way the services are provisioned and
managed. It, therefore, permits the providers to address the different requirements
of their customers. In this perspective, SLAs appear as a significant characteristic
which subsequently serve as the establishment for the predictable quality level of
the services made available to customers by the providers [38]. Nonetheless, the
collection of the recommended SLAs by providers (with marginal overlaps), has
directed to manifold different definitions of Cloud SLAs [6]. Moreover, confusions
exist on what is (if there is) the difference between SLAs and agreement, what is the
marginal quality, what are the terms involved in each one of these documents, and
if and how are these associated.

SLAs are a corporate way to officially specify the particular circumstances (both
functional and non-functional) under which services are or should be provided.
Customers and providers can use top-level SLAs to monitor whether their actual
service delivery conforms to the contracted SLA terms [34]. In the case of SLA
violations, top-level SLAs permit for penalties or compensations to be paid [16]. In
a service-oriented world, services presented are generally self-possessed of or built
on a complete set of other services [24]. These services may reside in the domain
of the provider itself, or be hosted by external providers. Such services contain

54 I. Chana and S. Singh

business services, software services, and infrastructure services. The quality of a
presented service depends comprehensively on the quality of the services it uses
[39]. Service quality also depends on the components used and the structure of the
basic IT system appreciating the service. Presently, service providers cannot design
their service landscapes using the SLAs of dependent services [4, 28]. They have no
means by which to control, why a certain SLA violation might have happened, or
how to express an associated penalty. SLA guarantee terms are not unambiguously
associated to quantifiable metrics, nor are their relation to lower-level services well
defined. As a consequence, service providers cannot define the mandatory super-
vision required in confirming top-level SLAs. This missing relationship between
top-level SLAs and (lower-level) metrics is a main obstacle to effective service
planning and expectation or improvement processes in service stacks [15, 36].

Further, Cloud computing allows for organizations to move applications and data
to remote servers. Due to virtual computing, Cloud computing can deliver better
approach to consumption of available resources. Hosted solutions and on-demand
server resources are two cases where the use of external vendors may provide for
a lower overall price of computing. As the data is moved to remote resources, the
control or governance of the data becomes difficult [29].

In this chapter, we first present the concept of SLA in the context of Cloud com-
puting. The remainder of this chapter is then organized as follows: Sect. 3.2 de-
scribes interweaving of QoS and SLA with respect to the Cloud; Sect. 3.3 presents
the SLA challenges and benefits with respect to Cloud environments; Sect. 3.4 in-
troduces the Cloud SLA (CSLA) architecture; and Sect. 3.5 presents the discussion
of work done. Section 3.6 describes our conclusions and future research directions.

3.2 � QoS and SLA: Intertwined in the Cloud

This section presents the background of QoS and SLA, SLA Management, SLA
of Cloud provider, SLA levels, Metrics in SLA, and SLA deviation in the area of
Cloud computing.

3.2.1 � QoS and SLA

QoS is increasingly significant when composing services because a degrading QoS
in one of the services can dangerously disturb the QoS of the complete composition.
Cloud service providers want to confirm that sufficient amount of resources are
provisioned to ensure that QoS requirements of Cloud service consumers such as
deadline, response time, and budget constraints are met [36]. Consequently, Cloud
service providers want to confirm that these violations are avoided or reduced by
dynamically provisioning the exact amount of resources in a timely fashion. The
success of next-generation Cloud computing infrastructures will depend on how
capably these infrastructures will discover and dynamically tolerate computing

553  Quality of Service and Service Level Agreements for Cloud Environments

platforms, which meet randomly varying resource and service requirements of
Cloud costumer applications [29]. Logically, based on QoS requirements such as
scalability, high availability, trust, and security, these applications will be character-
ized, identified in the so called SLAs. The current Cloud technology is not com-
pletely personalized to honor probable SLAs, though industrial and the academic,
both the research groups are presenting increasing interest on problems of QoS as-
surance within the context of Cloud computing. Broadly, an SLA needs a precise as-
sessment of the characteristics of the required resources [19]. Application services
introduced in Clouds (e.g., Web applications, Web services) are frequently charac-
terized by great load inconsistency; therefore, the amount of resources required to
honor their SLAs may vary particularly over time [8]. An important challenge for
Cloud providers is to automate the management of virtual servers while keeping
into account both high-level QoS requirements of hosted applications and resource
supervision expenses. Cloud market mechanisms are consistently static and cannot
react on dynamic variation of consumer desires [26]. To respond to these issues,
there is a requirement of an adaptive methodology for autonomically springing SLA
patterns based on consumer requirements. The present research in Cloud SLA lim-
its the capability of matching conformation metrics to acceptable benchmarks [1].
These metrics comprise statistical measures such as standard deviation that want
to be computed from the expected and actual outcomes of services delivered to
customer. Semantic Web technologies can be used to improve the descriptions and
therefore increase the quality of these matches.

3.2.2 � Cloud and SLA

Resource reservation is one of the main characteristics in parallel and distributed
environment like the Cloud. While preserving the services in the Cloud, we require
initiating SLAs through settlement. The settlement between consumers and Cloud
service providers fundamentally comprise of parameters like price, time, and other
QoS parameters. There are presently numerous methods which resolve the issue of
expense and time slot settlement mechanism without taking into account the sig-
nificant characteristics of QoS [23]. Knowingly handling and assigning resources
among numerous consumers in a commercial manner is significant for service pro-
viders [41]. Thus, SLA shows a chief role in resource provisioning. In practice, the
term SLA is occasionally used to mention the limited delivery time (of the service)
or performance.

The Cloud is a parallel and distributed system containing a huge collection of
interrelated and virtualized resources that are dynamically self-provisioned and of-
fered as one or more merged computing resources based on SLAs [19]. During
negotiation/agreement, there are parameters considered like price, time, and other
QoS. Since there is an opposing relationship between price and time-slot feasibili-
ties (e.g., a customer desires to pay a higher price to use a service at a more expected
time slot—attaining a higher time-slot utility), expense and time slot have to be
exchanged suddenly [25].

56 I. Chana and S. Singh

Another parameter taken into account is about expanding the QoS through su-
pervising the Cloud services by the use of SLA-based Cloud architecture [13, 36].
Cloud supervising environment comprises of measuring the properties of the net-
work to guarantee that the system functions with required parameters. The manage-
ment station inquires the state of the network in order to respond to alarm circum-
stances that may develop in the network system parameter, which is defined as a
conjunctive predicate on the local properties of different network elements. In such
cases, after identifying local variations, each network element has to successively
originate alarms in order to ensure that global parameters are not violated. Even
though data may be hosted remotely, it is still an organization’s accountability to
offer for its security. The problem for the organization is to ponder on what mecha-
nisms it has to provide for the safety of data which it may no longer directly control.

3.2.3 � SLA Management

SLA management is the element that retains track of SLAs of consumers with
Cloud providers and their satisfaction history. Based on SLA terms, the security
mechanism preserves the real usage of resources by needs so that the absolute price
can be calculated and charged from the consumers [8]. In addition, the preserved
past-usage statistics can be utilized by the service request assessor and admission
governor mechanism to expand resource distribution assessments.

An SLA is a document that describes the relationship between two parties: the
provider and the consumer. This is obviously a very significant item of documen-
tation for both parties. If used appropriately it should: recognize and describe the
consumer’s requirements, make all the difficult concerns simpler, decrease areas
of clash, inspire dialog in the event of disagreements, and eliminate impossible
viewpoints [3, 34]. It should resolve an extensive collection of disputes clearly
and unambiguously. Amongst these, the following are some of the most frequent
services to provide performance, tracking and reporting problem management, le-
gitimate agreement and resolution of disagreements, consumer responsibilities and
accountabilities, reservation and trustworthy information termination. Typical SLA
substances [3, 4, 15, 16, 19, 24, 25] to be considered are:

1.	 Description of services: This is the most serious section of the contract as it
designates the services and the way in which those services are to be provided.
Standard services are frequently separated from adapted services but this dis-
agreement is not of serious concern. The information on the services must be
correct and comprised through requirements of what is being delivered.

2.	 Performance supervision: An important part of a SLA deals with supervising
and evaluating service level performance. Fundamentally, every service must be
capable of being measured and the outcomes inspected and informed. The stan-
dards, objectives, and metrics to utilize must be quantified in the contract. The
two parties must examine the service performance level consistently.

573  Quality of Service and Service Level Agreements for Cloud Environments

3.	 Problem administration: The determination of problem administration is to
reduce the violent influence of occurrences and difficulties. This regularly speci-
fies that there must be a suitable process to control and solve unexpected occur-
rences and that there must also be preemptive action to reduce happening of
unexpected happenings.

4.	 Consumer responsibilities and accountabilities: It is significant for the consumer
to understand that it also has accountabilities to sustain the service delivery pro-
cess. The SLA describes the association, which of course is a two-way unit. Typ-
ically, the consumer must organize for entrance, accommodations, and resources
for the provider’s workforces who require working on-site.

5.	 Licenses and cures: This section of the SLA stereotypically covers the follow-
ing vital issues: service quality protections, third party claims, and cures for
loopholes.

6.	 Reservation: Reservation is mainly a serious feature of any SLA. The consumer
must deliver well-ordered physical and logical entrance to its principles and
information. Correspondingly, the contractor must respect and obey with the
consumer’s reservation rules and techniques.

7.	 Catastrophe recovery and commercial strength: It can be of dangerous status.
This factor should be conveyed within the SLA. The topic is catastrophe recov-
ery frequently incorporated within the reservation section; though, it is also regu-
larly involved within the problem administration area. At the highest level, both
these areas typically state that there must be acceptable provision for catastrophe
recovery and commercial strength forecasting to protect the continuity of the
services being distributed.

8.	 Service termination: The SLA agreement naturally covers the following funda-
mental areas: services are finished at completion of preliminary term, finish for
suitability, finish for reason, and expenditures on closure.

3.2.4 � SLA of a Cloud Provider

Quality attributes play a significant role in SOA environments [23]. An SLA for-
mally describes the level of service. Organizations seek to develop SLAs for numer-
ous causes. From a simple viewpoint, an SLA is developed between two parties to
spell out who are responsible for what, what each party will do, and occasionally
more clearly what each party will not do [38]. Also an SLA describes the interac-
tion between a service provider and a service consumer. An SLA contains several
elements of details [6, 18, 30], viz.:

1.	 The set of services the provider will offer.
2.	 A comprehensive, full definition of each service.
3.	 The responsibilities of the provider and the consumer.
4.	 A set of metrics to define whether the provider is providing the service as

guaranteed.
5.	 The inspecting mechanism to supervise the service.

58 I. Chana and S. Singh

6.	 The courses of action available to the consumer and provider if the terms of the
SLA are not fulfilled.

7.	 How will the SLA vary with respect to time?

A typical SLA of a Cloud provider has the following components [8, 12–14, 17, 20,
28, 29, 32, 35, 36]:

1.	 Service assurance: It specifies the metrics which a provider struggles to meet
over a service agreement time period. Failure to attain those metrics will out-
come in service recognition to the consumer. Availability (e.g., 99.9 %), response
time (e.g., less than 50 ms), catastrophe recovery, and fault perseverance time
(e.g., within one hour of discovery) are examples of service assurances. Some
service assurances can be on a per action basis, such as zeroing out a VM disk
when it is deprovisioned.

2.	 Service Assurance Time Period: It describes the duration over which a service
guarantee should be happened. The time period can be a billing month or time
occurred since the previous advantage was filed. The time period can also be
insignificant, e.g., one hour. The smaller the time period, the more difficult is the
service assurance.

3.	 Service assurance granularity: It defines the resource scale on which a provider
specifies a service guarantee. For example, the granularity can be as per service,
per data center, per instance, or per transaction basis. Related to time period,
the service assurance can be inflexible if the granularity of service assurance is
fine-grained. Service assurance granularity can also be designed as a cumulative
of the deliberated resources, such as contacts. For example, aggregate uptime of
all running instances must be greater than 99.95 %. Though, such an assurance
denotes that some instances in the collective SLA computation can hypotheti-
cally have a lesser percentage uptime than 99.95 % while still meeting the collec-
tive SLA. As significant, collective SLA computation leaves provider the room
to better accomplish its presented services.

4.	 Service guarantee: Omissions are the instances that are excluded from ser-
vice guarantee metric calculations. These omissions typically include misuse
of the system by a customer, or any downtime associated with the scheduled
maintenance.

5.	 Service recognition: It is the amount credited to the consumer or applied towards
upcoming expenditures if the service assurance is not met. The amount can be a
comprehensive or restricted recognition of the consumer compensation for the
miscalculated service.

6.	 Service Violation Measurement and Reporting: It describes how and who mea-
sures and reports the violation of service assurance, respectively.

3.2.5 � SLA Levels

Cloud SLAs may provide safety at different stages through infrastructure operating
systems (OSs) and applications [8, 38]. Some of the significant attention levels that
could be included in a Cloud SLA are described in Table 3.1.

593  Quality of Service and Service Level Agreements for Cloud Environments

3.2.6 � Metrics in SLA

Realization of Cloud computing requires that both consumers and suppliers can
be confident that contracted SLA are supporting their corresponding business ac-
complishments to their best degree [19]. Current SLAs usually fail in providing
such confidence, exclusively when Cloud providers outsource resources to other
Cloud providers. These Cloud providers typically provision very modest metrics, or
metrics that hinder an efficient misuse of their Cloud resources [2]. We have identi-
fied some of the service-level metrics for specifying fine-grain guarantees of QoS.
These metrics sanction resource providers to assign dynamically their resources
among the executing Cloud services depending on their request. This is accom-
plished by including the consumer’s service usage in the metric description, but
avoiding false SLA violations when the consumer’s application does not use all its
assigned resources [13, 20, 25].

Through metrics, the defects can be easily identified. Assigning a severity type to
defects helps prioritize the development of Cloud services [17, 25]. Table 3.2 dem-
onstrates each type of defect associated with it, as well as SLA that describes the
time within which Cloud provider promises to fix the defect measured by metrics.

Normally, a Cloud provider approves the QoS with its consumers through a
SLA, which is a two-sided agreement between the consumer and the supplier that
states not only the circumstances of a Cloud service, but also describes the con-
tracted QoS between them using a set of metrics. Cloud service providers certainly
offer service-level metrics (service accomplishment deadline) to their consumers

Table 3.1   Cloud SLA levels
SLA levels Description
Facilities level SLA Here, the Cloud provider will normally deliver an SLA including

the data center services necessary to maintain the customer-owned
infrastructure. These comprise items such as electric power, on-site
generators, cooling, etc

Platform level SLA The next level of safety in a Cloud usually covers physical servers,
virtualization platforms and hardware related to network retained by
the provider and used by the Cloud consumer. Usually, the physical
server and virtualization software are hidden by a platform SLA

OS level SLA OS is the subsequent possible area of coverage for a Cloud SLA.
Providers proposing an OS level SLA normally deliver some amount
of managed services to a client. This extra service permits the
provider to guarantee that the OS is suitably sustained so that it is
dependably accessible and normally has some warnings

Application level SLA This category of SLA delivers safety against application level
catastrophes up to and comprising the custom application executing
on the infrastructure provided by SLA. Under this model, the Cloud
provider is ensuring the availability and performance of their Cloud
customer software, which is a hard guarantee to encounter

Availability level SLA The Cloud network (network among Cloud servers) may be covered
by a distinct availability level SLA

60 I. Chana and S. Singh

for specifying the QoS. The Cloud providers must offer service level metrics that
can be used to deliver fine-grain QoS assurances. First, the QoS contract can be
obviously expressed using general metrics (e.g., number of processors, frequency of
processors, etc.), meanwhile underdone resources are the functioned good. Second,
having fine-grain metrics, which assures a given resource distribution during a time
period, is particularly significant for service providers that outsource resources to
Cloud providers, as we have specified before.

3.2.7 � SLA Deviation

Customers desire that composed data should be put into expressive perspective.
This situation produces the restriction for a procedure which gathers data from dif-
ferent sources and implements appropriate algorithms for controlling expressive
consequences. Such metrics comprise statistical measures such as average or stan-
dard deviation that want to be computed from the expected and actual outcomes of
services delivered to customer [16]. With the rise of the number of Virtual Machines
(VMs), the standard deviation of the customer load falls. Due to this unpredictabil-
ity, the standard deviations of resource utilization and performance are difficult to
measure.

At the application’s SLA Level, along with the benchmarks, QoS metrics to esti-
mate the performance and SLA deviation are also required [12, 17, 25, 35]. This is
appreciated through a distributed supervising framework that is able to combine su-
pervising information coming from several sources and at different stages. For this
trend, the assessment method of the platform is capable to evaluate on the cause of
the application’s performance deviation, i.e., whether it establishes a breach of the
application usage terms and if so, whether the application SLA specifies activities to
be executed, whether it is an adequate deviation that can be accurately controlled or
a real breach of the SLAs. In the previous situation, more evaluation is required in
order to accomplish on the particular nature of the SLA breach to recognize the real
object or objects that failed to deliver the granted QoS level [36]. An SLA is typical-
ly a two-way written contract which outlines the service and principles the provid-
ers deliver to their consumers whether these are scholars, supervisor in universities,
and/or other central management teams. It also describes what the providers require

Table 3.2   Defect types and SLAs
Defect type Metric description SLA
Type 1 Business critical features absent or do not

function; program may crash
Fix within 4–24 h

Type 2 Business critical features function most of the
time. No work around exists

Fix within 1 week

Type 3 Noncritical features absent or do not function;
work around exists

Fix within 2 weeks

Type 4 Inconsequential function may not work as
expected, typos in documents, etc

Fix for next software release

613  Quality of Service and Service Level Agreements for Cloud Environments

from their consumers/service customers in order to provide the service specified. It
needs assurance and support from both parties to provision and follow the contract
in order for the SLA to work efficiently [6]. In SLA, both the parties (Cloud pro-
vider and Cloud consumer) should have specified the possible deviations to achieve
appropriate quality attributes. If taking availability as a quality attribute and if it
should be 95 %, then it means that the system should be available for 22.8 h per day
with maximum deviation of 1.2 h per day (5 %). In the case of system performance,
if the desired deadline is 9 ms with deviation (10 %) of 1 ms, then maximum re-
sponse time should be 10 ms for a particular task without violation of agreement.
The Cloud provider’s SLA will give an indication of how much actual availability
of service the provider views as adequate, and to what amount it is agreeable to re-
quire its own financial resources to compensate for unexpected outages. Usually, no
Cloud provider considers compensation because 85 % resource providers do not ac-
tually provide penalty enforcement for SLA violation presently [10]. There should
be penalty delay cost or consumers’ compensation if the Cloud provider misses the
deadline. Moreover, it provides a risk transfer for IaaS providers, when the terms
are violated by the Cloud provider. Penalty delay cost is equivalent to how much the
service provider has to give concession to users for SLA violation. It is dependent
on the penalty rate and penalty delay time period. The effect of inaccuracy could
be reduced by two approaches: first, considering the penalty compensation clause
in SLAs with IaaS provider and impose SLA violation; second, adding some slack
time during scheduling for avoiding risk [27].

3.2.8 � Existing SLA Architectures in the Cloud

Not much has been written in the area of Cloud SLA. We have surveyed only three
related architectures in this context. Casalicchio et al. [7] presented an architectural
model for the autonomic service provisioning system that investigated the problem
from the outlook of an application service provider that uses a Cloud infrastructure
to attain scalable provisioning of its Cloud services in the respect of QoS restric-
tions for autonomic resource management of Cloud-based systems. This architec-
ture describes the functional desires of an autonomic service provisioning system
and recognized features and services presented by many IaaS providers that might
be used to implement such desires [7].

Happe et al. [33] have proposed a reference architecture for multi-level SLA
management that provisions the inclusive supervision of possibly difficult service
stacks and discussed how SLAs are used for handling the nonfunctional features of
the complete Cloud service life cycle. The presented architecture is based on capa-
bilities extended from an SLA framework constructed around a particular reference
application. Emeakaroha et al. [14] have presented DeSVi—an architecture for ob-
serving and identifying SLA destructions in Cloud computing infrastructures. This
architecture is accountable for the provision of resources and for mapping of tasks,
accountable for the implementation of consumer applications, and visualizes the
execution of the applications and converts low-level metrics into high-level SLAs.

62 I. Chana and S. Singh

It is used to recognize the intervals for applications with stable resource consump-
tion only.

However, all these architectures do not take into account the dependency of
SLA on QoS requirements? Therefore a new architecture is required that considers
SLA deviation status, heterogeneous Cloud workloads and their resource consump-
tion dynamically, assigns priority to Cloud workloads and different states of Cloud
workloads and also assures the relation between QoS and SLA.

3.3 � SLA Challenges and Benefits in Cloud

This section describes the SLA key challenges along with the reasons of their occur-
rences as well as benefits and potential barriers/issues of SLA in Cloud computing
[11, 18, 21, 31].

3.3.1 � SLA Challenges

1.	 SLAs are hard to express in the Cloud in part because areas of the infrastructure
(in specific the network) are outside of the scope of either consumer or provider.
This hints to the challenge of offering a predetermined contract for something
which is only comparatively in the provider’s control [36]. Additionally, as the
infrastructure is shared (multi-tenanted) SLA’s are more challenging to deliver
since they rest on capacity which must be shared [22].

2.	 The consumer accessing services in the Cloud also face a challenge. New Cloud
SaaS providers, who are growing their business and attracting more consumers
to their multi-tenanted data center, are unlikely to offer serviceably defined SLA
for their services as compared to a data-center provider who can bargain where it
supervises all fundamentals of the supplied infrastructure [1]. As their business
is increasing and an SLA is a massive threat (since it is a multi-tenanted break of
one SLA and is possibly a break of lots), the expenditure might look insignificant
and unfortunate to the consumer but is great for a SaaS provider). Additionally
with each new consumer, the difficulties on the data center, and therefore danger,
increase [12].

Every new consumer brings the advantage of growing stress testing of the SaaS
platform and improving growth of abilities within the SaaS provider. While the
SLA may remain to be neglected, the risk of dissatisfaction of the data center may
well reduce as the SaaS transmits [35]. The objective of an SLA is accordingly not
just to deliver a predetermined contract but rather to set out the level of service on
which the cooperation between customer and supplier is constructed. In this way, an
SLA is about the predictable quality demanded of the supplier and with the above
model the expected quality may well improve with more consumers—not reduction
as is frequently predicted for a Cloud [17]. SLA’s for Cloud providers may well be

633  Quality of Service and Service Level Agreements for Cloud Environments

insignificant and neglected, but the universal risk of using Clouds is not as simple
as is often competed. Whereas it is probable that Cloud providers’ compromise run-
down SLA’s, it does not mean that the QoS is, or will stay, underprivileged.

The integration of QoS aware aspects in each Cloud component in order to con-
trol and inform the system about its current behavior is required. Further, the opti-
mization of energy consumption in the Cloud computing environment according to
user-specified budget constraint is necessary. Thus, maximizing energy efficiency,
cost effectiveness, and utilization for applications while ensuring performance and
other QoS guarantees, requires controlling important and extremely challenging
tradeoffs. These challenges and issues occur due to the following important factors
related to the Cloud:

•	 SLA deviation occurs due to shared nature of the Cloud, and it leads to SLA
violations.

•	 Service quality fluctuations occur due to fluctuations in QoS requirements of
different Cloud users.

•	 Problems in invoices occur due to the various modes of payments along with
their own constraints.

•	 Risk of SLA violations due to urgent execution of Cloud workloads (while as-
signing priorities to the most urgent workloads), whether the Cloud providers
provide the compensation to the user in case of SLA violations or not.

•	 Difficulty in maintaining the security, due to the multi-tenanted data center, ac-
cess to the database and type of encryption and decryption.

•	 Efficient storage is required as memory is wasted due to multiple copies of same
data by different or same Cloud users.

•	 VM migration demands high bandwidth which further leads to complexity.
•	 Lack of standard QoS-oriented SLA architecture in the Cloud due to heteroge-

neous nature of Cloud workloads.

The required architecture will focus on developing a resource provisioning and
scheduling technique that will automatically manage QoS requirement of Cloud
users and would be based on energy efficient usage of the Cloud infrastructure. So,
what the customer should deliberate in considering the SLA, in terms of service
quality [22, 36, 37], are:

•	 How does the Cloud SaaS provider determine its progress? The progress of
a SaaS service means larger demand on the supplier’s data center. Therefore,
greater risk that the SLA’s will be broken for their multi-tenanted data center.

•	 How vulnerable is the Cloud SaaS provider in permitting analysis of its services
by fresh consumers?

•	 How well the Cloud SaaS provider engages in planned motivation for service
quality alignment with your requirements for service quality?

To address these challenges, SLA can respond to the following issues and questions
[2, 3, 6, 8, 9, 13, 16, 19, 25, 38]:

•	 What are the resources delivered to the consumer? How resources will support
the consumer? Are there any limitations to the number of resources?

64 I. Chana and S. Singh

•	 How the invoices are created? What are the payment methods? How the services
are affected if the customer postpones in compensating invoices? This should
comprise refinement period and how the consumer can acquire the services back
after the payment when the services are blocked?

•	 What happens if the SLA is not met? How data is controlled when the service
agreement finishes, the sort of data compensated to the company?

•	 What happens if the service contract is withdrawn? How data is handled and
returned to the company?

•	 How does the service use event logs and who actually has access to the data on
the backend?

•	 Who will check the security of Cloud providers?
•	 Which of the SaaS employees has root and database access, and will anything

prevent them from getting access to your corporate data? What controls are in
place?

•	 Is the held data separated between clients or is it all stored on one huge database
out there? How is this data separated? How will the legal question of e-discovery
be addressed should it arise as a business concern?

•	 In terms of service availability, can you get your vendor to sign a service level
agreement?

•	 What security arrangements do you have in place with Cloud service providers
that you rely on to deliver your service? What are you doing to build “trust in
depth” in the Cloud?

Many significant issues in Cloud computing occur at the boundary between the
provider’s infrastructure and the Cloud environment [4, 15, 24, 34], e.g.:

•	 How do you move resources from one side to the other? Is the Cloud application
dependent on storage that exists on your side of the boundary?

•	 What influence will that have on the bandwidth desires? And, how do you per-
fectly move VMs between the Cloud and your data center as demand raises and
failures occur?

These are all legal and motivating problems. But an even larger question forthcom-
ing like a dark Cloud on the perspective is that of the right and authorized grade [8];
i.e., is the matter in the Cloud on the same legitimate footing as the matter in the
data center? For example:

•	 How will the switch occur to a public Cloud when the private Cloud infrastruc-
ture gets mixed out? Or would you be using the public Cloud for just executing
your services?

•	 How much confident can be placed on the encryption patterns?
•	 How safe is the data from natural disasters?
•	 Is it probable for all of the data to be fully encoded?
•	 What algorithms are used? Who holds, maintains, and issues the keys?
•	 And so on.

Thus, it can be construed that SLAs are elements of a quality methodology to help
the support teams in classifying and agreeing on what ‘good quality’ looks like and

653  Quality of Service and Service Level Agreements for Cloud Environments

deliver a framework for quantifying and supervising the realization of service qual-
ity [9, 17].

3.3.2 � Prospective Benefits

QoS and appropriate SLA collectively offer huge benefits to Cloud computing para-
digm. A few of such benefits are listed below:

•	 Enables strong understanding of the service and accountabilities of all parties
•	 Helps you to achieve your service consumers viewpoints
•	 Encourages clearness, responsibility, and reliability
•	 Notifies team performance, capabilities, and staffing judgments
•	 Provisions supportive and collective functioning
•	 Emphases teams on uninterrupted enhancement

3.3.3 � Potential Barriers/Issues of SLAs

Following are some of the potential barriers that hinder the implementation of QoS
through SLAs:

•	 Adequate resources not being available at the desired time.
•	 Lack of assurance from management to implement the solutions within granted

schedule.
•	 Unavailability of desired staff and momentum, in case of urgency.
•	 SLA’s excessive optimization may become difficult and even may lead to rejec-

tion.
•	 The development of SLAs should be team’s strength, and if recommendations

made within the team are not appreciated, then it may be difficult to preserve
staff commitment in the process.

These barriers can be overcome by deliberating the SLAs as follows: Adjust the
work roles and responsibilities to reproduce the necessities of the new structure.
Note that stronger work roles and responsibilities can help on specific basis but not
in terms of the general service nor will this methodology enable endless improve-
ment, added value, and simplicity of service delivery [3, 18]. Observations and
prospects of central services will unavoidably adjust as consumers will search for
reasonable service delivery and proof of price/profit/worth of services they use [20].

3.4 � The Proposed Cloud SLA Architecture

This section proposes Cloud SLA (CSLA) architecture that can ensure better SLAs
for both Cloud provider and consumers, as shown in Fig. 3.2. The objective of
the proposed CSLA architecture is to reduce the standard deviation of resource

66 I. Chana and S. Singh

Fig. 3.2   Cloud SLA (CSLA) architecture. SLA service level agreement, QoS quality of service

673  Quality of Service and Service Level Agreements for Cloud Environments

utilization and performance to attain a well-proportioned load scattering in the
Cloud environments, where the load is characterized as the VM utilization. Further-
more, we define the standard deviation of resource utilization and performance so
as, to prevent any hurdle in evaluating the degree of inconsistency. Consequently,
the CSLA architecture also targets to reduce the degree of inconsistency. The con-
sideration of standard deviation would aid to avoid the unstable workload of cus-
tomers during the VMs distribution. The main components of the proposed archi-
tecture are as follows:

1.	 Authentication: The user should have valid username and password.
2.	 Submit workload: After authentication, the user will submit their Cloud work-

load that will be executed in this CSLA architecture.
3.	 Workload description: All the workload should have their key QoS requirements,

based on that the workload is executed with some user defined constraints.
4.	 Workload queue: All the submitted Cloud workloads will be put into a workload

queue for execution.
5.	 QoS manager: Based on the key QoS requirements of a particular workload, the

QoS manager puts the workload into critical and non-critical queues through
QoS assessment.

6.	 Autonomic SLA manager: Based on SLA information, SLA document will be
prepared and accordingly urgent Cloud workloads would be placed in priority
queue for earlier execution. Deviation status is used to measure the deviation of
QoS from predictable with their possible resolution. If the deviation is more than
the allowed, then it will allocate the reserve resources to the particular job or
workload. Flowchart of autonomic SLA manager in CSLA architecture is shown
in Fig. 3.3.

7.	 Resource manager: It contains the information about the available resources
and reserved resource along with resource description (resource name, resource
type, configuration, availability information, usage information, and price of
resource).

Fig. 3.3   Autonomic service level agreement (SLA) manager in Cloud SLA (CSLA) architecture.
CT completion time, DD desired deadline

68 I. Chana and S. Singh

8.	 Service manager: Based on SLA information, workload information and
resource information, the service manger map the workloads to the appropriate
resource by taking care of both SLA and QoS. Dynamic scheduler will schedule
the workload for execution and billing for that execution will be generated. After
payment, the workload executer will execute the workloads.

As shown in Fig. 3.3, the SLA Manager will calculate the execution time of work-
load and find the approximate workload turnaround time or completion time (CT).
If the CT is lesser than the desired deadline (DD), then it will execute immedi-
ately with the available resources and release the resource back to resource man-
ager for another execution, otherwise calculate extra number of resources required
and provide from the reserved stock for current execution after recreating the SLA
document with new user constraints. There are 11 states through which a submitted
workload can move as shown in Fig. 3.4.

The first state for every workload is ‘workload submission’. Based on key QoS
requirements of workload, the next state will be decided either as non-QoS or QoS
(quality oriented workloads). After non-QoS state, if there is no other workload
pending, then it will execute directly other workload that is waiting into non-critical
queue. After successful execution of workload, the workload is completed. On the
other hand, all the QoS-oriented workloads are put into critical queue and sorted
based on their priority decided by QoS manager and then scheduled for execu-
tion. If there is no obstacle (urgency, more resource requirement, etc.), then execute
directly with available resources, otherwise put it into under-scheduling state to
fulfill the user requirements. If all the conditions meet the given budget, resource,
and time constraints, then it will execute, otherwise it will not be executed. CSLA
architecture is the key mechanism that ensures that Cloud providers can serve large
amount of requests without violating SLA terms. It dynamically manages the re-
sources by using efficient resource scheduling techniques. For instance, when a
workload requires low amount of resources, it will assign resources with lower
capability, so that new requests can be served.

Fig. 3.4   States in Cloud SLA (CSLA) architecture. SLA service level agreement, QoS quality of
service

693  Quality of Service and Service Level Agreements for Cloud Environments

3.5 � Discussion

As designated in the suggested architecture, we observe a very sincere require-
ment of CSLA architecture to administrate SLAs in the perspective of the Cloud
environment. The proposed CSLA architecture recommends a very flexible design
for handling SLAs between Cloud providers and Cloud users. We perceive this as
one of the strong facets of CSLA architecture where, realistic to the prototype of
SOA, each functionality is delivered as a Cloud service that could not essentially
come from the similar Cloud provider. One vital remark we make in the framework
of Clouds is the absence of standardization. This is especially essential when we
try to relate through manifold Clouds. Even though it is possible to provide service
for diverse Cloud interfaces through a middleware, there is no general collection
of metrics that can be supervised through Cloud providers. There are challenges
to organize the Clouds and we highlight the importance of such determinations in
the light of observing abilities. As a part of these standardization determinations,
we also recommend four types of straightforward metrics for measurements to be
recognized. Clouds would not be capable of scaling indefinitely when a resource
restriction is faced. A service provider may choose to assign the Cloud workloads
or applications or tasks to another provider to avoid important SLA violation penal-
ties. Such a situation generates research prospects in SLA supervision. We proceed
to analyze SLA characteristics like accounting, monitoring of QoS restrictions, and
condition damage in related situations as upcoming research.

3.6 � Conclusions and Future Research Directions

This chapter discussed significant factors that could be considered when developing
Cloud SLAs. Four types of metrics have been recognized for specifying fine-grain
guarantees of QoS. The defects in the Cloud service can be easily identified and
SLA deviation can be measured through these metrics. This work mainly focuses
on enhancing the QoS provided by CSLA architecture. The concept and challenges
of SLA-based provisioning and QoS for applications and workloads implementa-
tion in the Cloud environment have been presented. We have also proposed and
presented a CSLA architecture that enables adaptive and dynamic provisioning
of the resources based on workload-defined policies for satisfying their own SLA
performance requirements, avoiding the price of any SLA violation and govern-
ing the budgetary cost of the distributed computing resources. Future research in
this area can be recognized in many ways. One such opportunity is based on QoS
requirements, which is considered as a vital characteristic of Cloud computing. The
work presented here can be extended along several lines. From the research method
viewpoint, our investigative method should evolve into theory building and a sup-
position testing as more experimental data about Cloud computing adoption be-
comes available. From the research output perception, the work regarding different
service and deployment models, the comparative importance of SLA components as

70 I. Chana and S. Singh

associated to industry-specific features, and new characteristics and perceptions in
the innovativeness modeling of the Cloud computing subcontracting judgment can
be initiated. Some more QoS parameters can be analyzed and incorporated to find
the critical success factors of the CSLA architecture and offer a model that will fur-
ther help in accomplishing SLA in the Cloud environment using an automated tool.

References

  1.	 Ayadi I, Simoni N, Diaz G (2013) QoS-aware component for Cloud computing. In: ICAS
2013, the ninth international conference on autonomic and autonomous systems (pp 14–20)

  2.	 Bonvin N, Papaioannou TG, Aberer K (2011) Autonomic sla-driven provisioning for Cloud
applications. In: Cluster, Cloud and Grid computing (CCGrid), 2011 11th IEEE/ACM inter-
national symposium on IEEE, pp 434–443

  3.	 Breskovic I, Maurer M, Emeakaroha VC, Brandic I, Dustdar S (Dec 2011) Cost-efficient uti-
lization of public sla templates in autonomic Cloud markets. In: Utility and Cloud computing
(UCC), 2011 fourth IEEE international conference on IEEE, pp 229–236

  4.	 Buyya R, Garg SK, Calheiros RN (2011) SLA-oriented resource provisioning for Cloud com-
puting: challenges, architecture, and solutions. In: Cloud and Service computing (CSC), 2011
international conference on IEEE, pp 1–10

  5.	 Buyya R, Calheiros RN, Li X (2012) Autonomic Cloud computing: open challenges and
architectural elements. In: Emerging applications of information technology (EAIT), 2012
third international conference on IEEE, pp 3–10

  6.	 Cardellini V, Casalicchio E, Lo Presti F, Silvestri L (2011) Sla-aware resource management
for application service providers in the Cloud. In: Network Cloud computing and applica-
tions (NCCA), 2011 first international symposium on IEEE, pp 20–27

  7.	 Casalicchio E, Silvestri L (2011) Architectures for autonomic service management in Cloud-
based systems. In: Computers and communications (ISCC), 2011 IEEE symposium on IEEE,
pp 161–166

  8.	 Casalicchio E, Silvestri L (2013) Mechanisms for SLA provisioning in Cloud-based service
providers. Computer Networks. 57(3):795–810

  9.	 Chazalet A, Dang Tran F, Deslaugiers M, Exertier F, Legrand J (2010) Self-scaling the Cloud
to meet service level agreements. In: Cloud computing 2010, the first international confer-
ence on Cloud computing, GRIDs, and virtualization, pp 116–121

10.	 CIO http://www.cio.com.au. Accessed 26 Nov 2013
11.	 Dillon T, Wu C, Chang E (2010) Cloud computing: issues and challenges. In: Advanced

information networking and applications (AINA), 2010 24th IEEE international conference
on IEEE, pp 27–33

12.	 Duong TNB, Li X, Goh RSM, Tang X, Cai W (2012) QoS-aware revenue-cost optimization
for latency-sensitive services in IaaS Clouds. In: Distributed simulation and real time appli-
cations (DS-RT), 2012 IEEE/ACM 16th international symposium on IEEE, pp 11–18

13.	 Emeakaroha VC, Brandic I, Maurer M, Dustdar S (2010) Low level metrics to high level
SLAs-LoM2HiS framework: bridging the gap between monitored metrics and SLA param-
eters in Cloud environments. In: High performance computing and simulation (HPCS), 2010
international conference on IEEE, pp 48–54

14.	 Emeakaroha VC, Calheiros RN, Netto MA, Brandic I, De Rose CA (2010) DeSVi: an archi-
tecture for detecting SLA violations in Cloud computing infrastructures. In: Proceedings of
the 2nd international ICST conference on Cloud computing (CloudComp’10)

15.	 Emeakaroha VC, Netto MA, Calheiros RN, Brandic I, Buyya R, De Rose, CA (2012) To-
wards autonomic detection of sla violations in Cloud infrastructures. Future Gener Comp
Syst 28(7):1017–1029

713  Quality of Service and Service Level Agreements for Cloud Environments

16.	 Garg SK, Gopalaiyengar SK, Buyya R (2011) SLA-based resource provisioning for hetero-
geneous workloads in a virtualized Cloud datacenter. In: Algorithms and architectures for
parallel processing. Springer, Berlin, pp 371–384

17.	 Goiri Í, Julià F, Fitó JO, Macías M, Guitart J (2010) Resource-level QoS metric for CPU-
based guarantees in Cloud providers. In: Economics of Grids, Clouds, Systems, and Services,
Springer, Berlin, pp 34–47

18.	 Huebscher MC, McCann JA (2008) A survey of autonomic computing—degrees, models,
and applications. ACM Comput Surveys (CSUR) 40(3):1–31

19.	 Kertesz A, Kecskemeti G, Brandic I (2011) Autonomic sla-aware service virtualization for
distributed systems. In: Parallel, distributed and network-based processing (PDP), 2011 19th
euromicro international conference on IEEE, pp 503–510

20.	 Kounev S, Nou R, Torres J (2007). Autonomic qos-aware resource management in grid com-
puting using online performance models. In: Proceedings of the 2nd international conference
on performance evaluation methodologies and tools. ICST (Institute for Computer Sciences,
Social-Informatics and Telecommunications Engineering), pp 1–10

21.	 Kumar S, Goudar RH (2012) Cloud computing—research issues, challenges, architecture,
platforms and applications: a survey. Int J Future Comput Commun 1(4):356–360

22.	 Li J, Chinneck J, Woodside M., Litoiu M, Iszlai, G (2009) Performance model driven QoS
guarantees and optimization in Clouds. In: Software engineering challenges of Cloud com-
puting, 2009. CLOUD’09. ICSE workshop on IEEE, pp 15–22

23.	 Liu X, Zhu L (2009) Design of SOA based web service systems using QFD for satisfaction
of quality of service requirements. In: Web services, 2009. ICWS 2009. IEEE international
conference on IEEE, pp 567–574

24.	 Lodi G, Panzieri F, Rossi D, Turrini E (2007) SLA-driven clustering of QoS-aware applica-
tion servers. IEEE Trans Software Eng 33(3):186–197

25.	 Maurer M, Brandic I, Sakellariou R (2011) Enacting SLAs in Clouds using rules. In: Euro-
Par 2011 parallel processing, Springer, Berlin, pp 455–466

26.	 Nathuji R, Kansal A, Ghaffarkhah A (2010) Q-Clouds: managing performance interference
effects for qos-aware Clouds. In: Proceedings of the 5th European conference on computer
systems, ACM, pp 237–250

27.	 Ostermann S, Iosup A, Yigitbasi MN, Prodan R, Fahringer T, Epema D (2009) An early per-
formance analysis of Cloud computing services for scientific computing. In: Proceedings of
the 1st international conference on Cloud computing (CloudCom 2009), Beijing, pp 1–22

28.	 Rezaee A, Rahmani AM, Parsa S, Adabi, S (2008) A multi-agent architecture for qos support
in grid environment. J Comput Sci 4(3):225–231

29.	 Rosenberg F, Celikovic P, Michlmayr A, Leitner P, Dustdar S (2009) An end-to-end approach
for qos-aware service composition. In: Enterprise distributed object computing conference,
2009. EDOC’09. IEEE international, IEEE, pp 151–160

30.	 Salehie M, Tahvildari L. (2005) Autonomic computing: emerging trends and open problems.
ACM SIGSOFT Software Eng Notes 30(4):1–7 (ACM)

31.	 Singh S, Chana I (2012) Cloud based development issues: a methodical analysis. Int J Cloud
Comput Services Sci (IJ-CLOSER) 2(1):73–84

32.	 Singh S, Chana I (2013) Advance billing and metering architecture for infrastructure as a
service. Int J Cloud Comput Services Sci (IJ-CLOSER) 2(2):123–133

33.	 Theilmann W, Happe J, Kotsokalis C, Edmonds A, Kearney K, Lambea J (2010) A reference
architecture for multi-level sla management. J Internet Eng 4(1):289–298

34.	 Van HN, Tran, FD, Menaud JM (2009) SLA-aware virtual resource management for Cloud
infrastructures. In: Computer and information technology, 2009. CIT’09. Ninth IEEE inter-
national conference on Vol. 1, IEEE, pp 357–362

35.	 Xiao J, Boutaba R (2005) QoS-aware service composition and adaptation in autonomic com-
munication. IEEE J Selected Areas Commun 23(12):2344–2360

36.	 Xu M, Cui L, Wang H, Bi Y (2009) A multiple QoS constrained scheduling strategy of mul-
tiple workflows for Cloud computing. In: Parallel and distributed processing with applica-
tions, 2009 IEEE international symposium on IEEE, pp 629–634

72 I. Chana and S. Singh

37.	 Yang F, Su S, Li Z (2008) Hybrid QoS-aware semantic web service composition strategies.
Sci China Series F: Inform Sci, 51(11):1822–1840

38.	 Yoo S, Kim S (2013) SLA-aware adaptive provisioning method for hybrid workload applica-
tion on Cloud computing platform. In: Proceedings of the international multi conference of
engineers and computer scientists (Vol 1).

39.	 Zhang P, Yan Z (2011) A QoS-aware system for mobile Cloud computing. In: Cloud computing
and intelligence systems (CCIS), 2011 IEEE international conference on IEEE, pp 518–522

40.	 Zhang Q, Cheng L, Boutaba R (2010) Cloud computing: state-of-the-art and research chal-
lenges. J Internet Services Appl 1(1):7–18

41.	 Zheng Z, Zhang Y, Lyu MR (2010) CloudRank: a QoS-driven component ranking framework
for Cloud computing. In: Reliable distributed systems, 2010 29th IEEE symposium on IEEE,
pp 184–193

Part II
Current Developments and R&D Solution

Chapter 4
A Methodology for Cloud Security Risks
Management

Mariam Kiran

M. Kiran ()
Department of Computer Science, University of Sheffield, Bradford, Richmond Road,
Bradford BD7 4DP, UK
e-mail: m.kiran@bradford.ac.uk

Abstract  Cloud computing is an extremely attractive model for both the users and
the providers of Cloud-based infrastructure, who have their own business angle
for using and providing these services. However, as with many business ventures,
as the use of Cloud environments grow, the risks and the threats associated with
a successful use of the model also increase. Although, the Cloud paradigm is an
evolution of grid systems, Clouds have particular threats specific to virtualized
and multi-tenant environments, which need to be managed with proper method-
ologies to ensure that the entire ecosystem is secure. Security consists of three
main aspects—availability, integrity and confidentiality—and each of these needs
to be considered to make sure that the complete ecosystem is secure. This chapter
presents a comprehensive discussion of the concerns associated with the Cloud
security depicting the best practices currently used in the industry. This chapter
presents an in-depth analysis of these issues with an innovative holistic approach
on how to manage and assess security risks for different kinds of Cloud ecosystems
which allows documentation as well as design tools which can be in place to moni-
tor security at both deployment and operation phases. The proposed risk methodol-
ogy approach allows better management and mitigation of security threats when
they occur during the service lifecycle of any kind of Cloud ecosystem and Cloud
services provision.

Keywords  Cloud computing · Risk modelling · Security · Threats · Service lifecycle

4.1  Introduction

Cloud computing is a market, which was worth US$ 42 billion in 2012, but is tech-
nologically still being developed [1]. Being attractive to the IT industry, where the
leasing model can allow powerful software tools to be developed on top of the infra-
structures, which are not always available, the Cloud brings a number of advantages
which include remote accessibilities to resources, elasticity, scalability based on

75© Springer International Publishing Switzerland 2014
Z. Mahmood (ed.), Cloud Computing, Computer Communications and Networks,
DOI 10.1007/978-3-319-10530-7_4

76 M. Kiran

user demands, pay-per-use models to save energy and costs, to name but a few [2].
However, Clouds still have a long way to go to build the trust of the average Cloud
users on issues of risks, data securities, the kind of services being processed and the
governance characteristics in general [3].

Forrester Research [4] describes the market potential of Cloud computing through
the hype curve, divided into 12 segments, based upon level of sharing and business
value (see Fig. 4.1). Figure 4.2 shows that Cloud computing is a field, which covers
a wide range of abilities being offered, estimated worth around $ 18 billion.

Security is a priority concern for many Cloud computing customers where it can
affect the reputation of the providers in terms of confidentiality, resilience and in-
tegrity of the company. Kiran et al. [6] have described some of these examples such
as data leakage that has been investigated with access control measures like discre-
tionary access control [7] or mandatory access control [8] to control access to an
object. Both of these approaches can be used to control access to virtual machines
(VMs) via the hypervisor or VM monitor. However, traditional access control mod-
els focus on the assumption that the data controller and data owner is in the same
trust domain, an assumption which does not hold for Cloud computing. Another
example is network access control software like Symantec data-loss prevention [9],
which cannot control data leakage within an organisation, as only the end points or
network points are scanned for violation of enterprise security policy. Hypervisor
attacks are the most serious security threats to the Cloud environment [10] where if
infected, such attacks can be used to gain control over a VM (Bluepill) [11]. Even
the smart meters cannot monitor false data injections; cyber-attacks having serious
implications on the infrastructures [12].

Fig. 4.1   Hype cycle for Cloud computing 2011 [5]

4  A Methodology for Cloud Security Risks Management 77

This chapter discusses the research challenges in security and the best practices
employed by the industry with the various policies and measures adopted. Based on
these approaches, a uniform risk methodology is presented discussing a step-by-step
procedure for handling security risks on Cloud ecosystems. This involves the poli-
cies, documentations, governance checks as well as designs tools, which can be im-
plemented based on local infrastructures to implement security checks at the deploy-
ment and operations phases of the service lifecycle. The chapter has been organised
to present a comprehensive detail on security concerns and findings in the Cloud.
Section 4.2 starts with the security concerns and some general characteristics found
in industry with a distribution of money spent on the different sectors to improve its
issues. Sections 4.3 and 4.4 present different Cloud ecosystems and the service life-
cycle as a background on which the methodology applies relevant to security risk as-
sessment. Section 4.5 presents the actual risk assessment methodology introducing
the documentation methods, which include reviewer documentation, provider poli-
cies, legal implications and risk assessment data sheets that can be filled in advance
as a risk report for monitoring security concerns of the Cloud ecosystems. Based on
this analysis, the next section identifies six Cloud threat categories which encom-
pass all kinds of threats on Clouds. This identification is extended in Sects. 4.7–4.9,
where the risk methodology for the Cloud is presented with accompanying algo-
rithm and simulation results. Section 4.10 discusses the issues with Cloud security
testing and the potential future within this domain. This chapter concludes with a
case study applying the methodology to a video scalability problem using Clouds
and concludes with further future work to be carried out in this domain.

4.2  Security Concerns in Clouds

The UK government is investing in the G-Cloud programme initiative in order to
improve the economic sustainability by delivering information and communication
technologies (ICT) systems that are flexible, on-demand and in compliance with

Fig. 4.2   Cloud computing business value [5]. IaaS infrastructure as a service, PaaS platform as
a service, SaaS software as a service, BPaaS business process as a service, BPO business process
outsourcing

78 M. Kiran

the government policies in order to support emerging small business suppliers [13].
However, to target the issues relating to security, they released a statement saying
that they will ease these issues by promoting the use of open source software [14].
Open sourcing the software’s will not be a solution to securing the already be-
ing used initiatives of the G-Cloud. For securing data transfer and hosting, various
considerations need to be taken for data management on multi-tenancy in Clouds
[15]. But these still lack detailed analysis in terms of what needs to be done to target
these issues [16]. Comparatively, the National Institute of Standards and Technol-
ogy (NIST) have come up with a list of security risk and mitigation mechanisms
with reference to a strategy for performing risk assessment [17]. Whistle et al. [18]
discuss the certification and accreditation for threats in accordance with the govern-
ment laws analysed per stage accompanied with a detailed analysis.

Security can make or break deals, either convincing organisations to use the
Cloud or deferring on security concerns. Best performances in a survey conducted
by Ried et al. [4] show the following characteristics on security issues and how they
are influenced by various factors, grouping them into three areas:

•	 Policies and control: security control objectives prioritised as functions of re-
quirements for risk, audits and compliance(69 %), policies for protection (85 %),
acceptable use (81 %) and regular monitoring, analysis and reporting (70 %) on
information assets, baseline security requirements for all applications, databases
and network infrastructures (74 %)

•	 Organisation: responsible team with ownership for security (67 %), formal end-
user awareness and training programs (70 %), non-disclosure agreements in place
and reviewed at intervals (74 %), defined steps for employee termination (67 %)

•	 Knowledge and performance management: audit plans agreed in advisory boards
(70 %), compliance with SLAs demonstrated at various intervals (69 %), formal
risk ass at regular intervals (52 %)

Risk models in security can be used to define and document some of the security
concerns. Pullman [19] conducts an in-depth threat analysis for concerns making
sure every part is covered. Microsoft has described a similar threat modelling tech-
nique to keep security concerns intact. Figure 4.3 shows a preliminary investigation
in threat analysis for data loss in the Cloud and how it can be worked through to
assets and mitigation strategies.

Figure 4.3 shows a threat analysis tree of the threat of data loss. The process
involves working out each possibility which may have lead to this threat. It then
links up with which assets need to be protected for this. As a result of this analysis,
various mitigation actions can be identified such as security audits, hardware wipe
policy whenever data moved, encrypting data and keeping the protected keys safe.
Therefore the risks categories help identify each risk separately and the different
models to analyse them separately.

4.2.1  General Security Characteristics

Security is a major concern for organisations and for businesses who are interested
in Cloud investments [20–22]. The Aberdeen group [22] conducted a survey of

4  A Methodology for Cloud Security Risks Management 79

security practices relating to risks and the leading pressure for areas of investments
in the Cloud initiatives. Their findings are presented in Fig. 4.4.

Table 4.1 summarises their findings in terms of the best practices adopted across
the different dimensions of security mechanisms on Cloud infrastructures.

Fig. 4.3   Security threat analysis carried out by Microsoft [19]

Fig. 4.4   Leading pressures driving the current investments in security for Cloud initiatives.
(Adapted from [22])

80 M. Kiran

Best practices across following
domains

Best in class (%) Industry average (%) Laggards (%)

Data security
Policies and controls to ensure data
security (e.g. access controls, data
loss prevention, encryption)

85 60 55

Encryption of sensitive data in storage
(e.g. file servers, databases, end-user
endpoints)

50 46 45

Encryption of sensitive data during
transmission (e.g. over public net-
works, electronic messaging)

70 62 65

Effective key management to support
encryption of data in storage and in
transmission

56 53 45

An audit function is involved if the
integrity of enterprise data has poten-
tially been compromised (e.g. data
loss or exposure, unauthorised access)

59 56 55

Identity and access management
Consistent minimum standards
for user authentication and access
controls

96 81 70

Minimum authentication require-
ments for secure remote access

96 86 75

All requirements for access to data
are identified and in place prior to
access being granted

74 69 50

Timely suspension/revocation/de-
provisioning of end-user access upon
termination or change in role

85 71 65

Periodic validation that end users
have appropriate access rights
(attestation)

74 56 55

Enforcement for separate of duties 74 56 50
Data governance
All data (and objects containing data)
have been identified and classified

54 46 32

All data has a designated owner/
steward

58 38 37

Policies and processes are in place for
data labelling and data handling

54 51 42

Production data is not replicated or
used in non-production environments

64 56 37

Data backup and recovery mecha-
nisms, tested at regular and planned
intervals

74 72 63

Table 4.1   Best practices across various domains [22]. Numbers represent percentage of respon-
dents with N = 104

4  A Methodology for Cloud Security Risks Management 81

Best practices across following
domains

Best in class (%) Industry average (%) Laggards (%)

Policies for secure disposal and
complete removal of data from all
storage media

70 57 47

Security mechanisms to prevent data
leakage

58 56 39

Network access, mobility and application security
Network infrastructure is designed
and configured to restrict connec-
tions between trusted and un-trusted
segments

81 73 70

Policies ad controls to protect wire-
less network environments

78 76 65

Policies and controls to limit access
to sensitive data from mobile devices
(e.g. laptops, smart-phones, tablets)

74 49 40

Policies and controls with respect to
code for mobile devices

52 37 35

All functions and application pro-
gramming interfaces (APIs) that will
be used in conjunction with software
development are analysed for security
risk

52 38 30

Monitoring, auditing, forensics and incident response
Security-related logs, information
and events are retained and regularly
reviewed

69 68 58

Monitoring and tracking of security-
related incidents and events (e.g.
types, volumes, time and cost to
remediate)

78 70 56

Communications channels and escala-
tion procedures for security-related
incidents and events

59 52 50

Forensic procedures (e.g. chain of
custody) for collection, retention and
presentation of evidence in support of
potential legal action

52 48 35

Segmentation and access controls to
prevent compromise and misuses of
log data

65 59 55

Access to diagnostic and configura-
tion ports is restricted to authorised
individuals and applications

77 68 55

Table 4.1  (continued)

82 M. Kiran

4.3  Cloud Ecosystems

To make them more attractive for users, Cloud providers attempt to hide a lot of the
processes in the background to promote the easy usability for users. Having auto-
mated security policies and access control measures are examples of these, but there
are still a lack of standards to be followed during these activities. These have been
on the active research agenda of bodies like NIST [23] and Gartner [5].

NIST describes the Cloud as a convenient model using efficient computing re-
sources stressing on four deployment models [24]:

•	 Private Cloud: operated for an organisation by either itself or a third party
•	 Public Cloud: for general public use and is owned by an organisation selling

Cloud services
•	 Community Cloud: an infrastructure that is shared by several organisations, also

called federation of Clouds
•	 Hybrid Cloud: a composition of two, more Clouds or multi-Clouds (community,

private, public)

Each of these models or Cloud ecosystems brings different issues in terms of data
hosting, security, risks and business models. This chapter discusses Cloud ecosystems
in relation to the roles of the actors—namely service provider, infrastructure provider
and brokers—involved in the ecosystem, which do not have a direct mapping from
the NIST documentations. This is done to ease discussion in the later sections.

Figure 4.5 describes the different Cloud ecosystems and shows the roles of the ac-
tors who play in them. A private Cloud involves only a service and an infrastructure
provider who communicate directly to each other and possibly in the same geograph-
ical location. A Cloud-bursting environment is when one infrastructure provider is
close to running out of resources and thus bursts to another. Figure 4.5c describes
a federation of infrastructure providers working together as a team to complete the

Fig. 4.5   a–e Various Cloud scenarios or ecosystems

4  A Methodology for Cloud Security Risks Management 83

service execution. Figure 4.5d shows a similar situation, but this time the infrastruc-
tures are working independently of each other and only guided by the service provid-
er. Lastly, Fig. 4.5e describes a situation which involves a broker to mediate between
the two parties. The broker can take responsibilities to monitor, test and make sure
the service is completed and delivered at the right time to the service provider.

In addition to the Cloud ecosystems, Clouds can be recognised by the form of
functionality they offer. These are as follows:

•	 Software as a service (SaaS): Uses the Web to deliver third-party applications to
Clients. Example: Gmail

•	 Platform as a service (PaaS): Provides framework to build applications on top
as well. This provides the client highly scalable infrastructure and hardware for
computing. Examples: GoogleAppEngine [25], Heroku [26]

•	 Infrastructure as a service (IaaS): Third party allows you to install a virtual server
on their IT infrastructure

This chapter focuses on Cloud security in terms of the different ecosystems and the
security threats that need to be monitored. Functionality models of Clouds form part
of these ecosystems, depicting how the services will be offered. Based on the func-
tionality and ecosystems, various threats can be highlighted which would otherwise
not need to be monitored in a different scenario. Section 4.7 provides a case study
for a video scalability application to demonstrate this use of identifying threats for
the particular scenarios.

4.4  Cloud Service Lifecycle

Before we discuss the different kind of threats across the ecosystems, we have to rec-
ognise the different phases in which the services can exist. This also highlights that
only particular threats will be active during, either the service engineering phase,
onboarding or operation phase. The services lifecycle is represented in Fig. 4.6,
where the first phase of service engineering is when the service is constructed, the
second phase is when the service is actually deployed on to the Cloud and the third
phase is when the service is in operation and executing on the Cloud.

4.5  Risk Assessment of Security threats on Clouds

Security can essentially be broken into three main aspects, which, if guaranteed,
becomes fully optimal (Fig. 4.7). These are:

Fig. 4.6   Service lifecycle covering construction, deployment and operation of the service on the
Cloud

84 M. Kiran

•	 Availability: The data is available when needed.
•	 Integrity: The data is not modified without being detected.
•	 Confidentiality: The data remains undisclosed to unauthorised parties.

Comparing to grid infrastructures, due to their nature, Clouds have additional
threats that need to be considered for security reasons. For instance, data access in
Clouds is a huge threat because geographically the data can be hosted anywhere as a
service. This would not be a threat on Grid infrastructure which are usually business
owned and located internally. Therefore there is a need to consider the geographical
location and the access rights to the Cloud for safety of the data. Another example is
when migrating the VMs securely across the different infrastructures on the Cloud.
Depending on the situation, the data manager on the Cloud should consider if the
VM’s new location still complies with the legal agreements made between the end
user and the Cloud for where the data is allowed to be hosted. Various authentica-
tion models can be introduced to make it more secure as a mechanism to overcome
this threat.

There is a need to identify the different kinds of security issues in Cloud com-
puting. For example, Fig. 4.8 describes how data being hosted in isolation, can be
compromised.

Figure 4.8 describes a tree structure which can be used to perform a fault-tree
analysis style to find, where human errors, faults and the business being affected
helps to determine how to mitigate similar situations if this happens in real life.

4.5.1  Documenting a Security Risk Assessment

Different Cloud ecosystems and the services executing on them, are prone to dif-
ferent number of threats, particularly the public or hybrid Cloud scenarios. In
public Clouds, the data is hosted externally on a Cloud, being used by multiple
users of the public. Hybrid Clouds can include different Clouds joining to form a
federation or multiple Clouds working together to fulfil a service. Threats, such
as unauthorised data access, are a problem on public Clouds rather than a private
Cloud, where everything is maintained internally. Not having formal procedures
in place is a major problem because of these different natures. When using mul-
tiple Clouds a few common rules should be maintained to allow uniform proto-
cols that are followed by all Cloud providers in case certain security threats are
realised. Cloud networks can be set up with various sensors to gather the informa-

Fig. 4.7   Security triangle

4  A Methodology for Cloud Security Risks Management 85

tion, on how the service is performing on the Cloud within the applications. The
introduction of formal methods can make Clouds secure by applying them to the
Cloud industry as a whole [6]:

•	 Reviewing various documentations: These include using sniffers to filter output
logs produced by the monitoring software installed on the infrastructures. These
can include system logs (for details of service start-up, downtimes, file and ac-
count access and changes to file privileges), firewall logs (authorisation attempts
from various locations and identify the users, if possible), antivirus logs (for
detecting malicious code accessing the system), and intrusion detection system
logs (detecting the changes to the hypervisor code), and legal implications of
security threats have to be set to measure the impact of certain threats.

•	 Provider interaction policies: Policies have to be set for the providers, which in-
clude action management policies for necessary legal steps to be taken, if threats
happen and how to mitigate them. These should include an incident response
plan, which may include communication protocols (how information will be
displaced to within the team or outside such as the attacking internet protocol
(IP) addresses to block those organisations) [6], software vendors providing the
software, (if the actual software being installed is corrupted), internal team man-
agement procedures, vulnerability assessment with certain auditing procedures
and using these for future incident planning. An important issue is revealing the
performance information to Cloud customers. Should the end users be told of
threats occurring at the time their services were hosted on the Cloud and when?

Fig. 4.8   Tree analysis for threat of data leakage. (Adapted from [1])

86 M. Kiran

In cases of multiple locations hosting data, this can be an attractive requirement
from the users to ensure their data is secure.

•	 Legal implications on the security aspects: Data protection and security can be
specified in a legal contract, being drawn with the end users and the providers.
This may include analysing all privacy concerns specific to the Cloud usage. This
may start with analysing the data flow in the Cloud use cases and understand-
ing the legal issues with the multiple vendor situations and how these should be
handled. Information security-related standard (ISO/IEC 27001:2005) has rec-
ognised protection of personal data including protection against alteration, unau-
thorised modifications and against unauthorised access as a standard [3]. Further
recommendations concerning information security are mainly based on control
and industry best practices relevant to Cloud providers (security framework).
However, this needs to be defined, clarifying questions concerning intellectual
properties and ownership rights in information and services placed in the Cloud.
This also involves clarifying ownership rights among all potential stakeholders
and includes them within the service level agreements (SLAs) drawn.

4.5.2  Security Risk Assessment Data Sheet

An example of a data sheet used to perform a security risk assessment has been de-
scribed below: This can be filled out by the providers or the end user as part of the
SLA, when they try to ask for certain security measures to be taken.

1.	 Details:
Service name: ________
Department: Service provider/infrastructure provider
Date of this assessment: ________
Risk reference no: ________

2.	 Hazards overview:
−	 Example unencrypted data
−	 Example lost keys

3.	 Control measures:
(Option to complete this section for any risk which is rated as four or more, or
for which the likelihood is three).
For each hazard name responsible person and action
Note: The choice of controls should be implemented according to the follow-
ing hierarchy:

1.	 Eliminate the hazard
2.	 Substitute
3.	 Reduce

4  A Methodology for Cloud Security Risks Management 87

4.	 Isolate (enclose the hazard)
5.	� Regulate (e.g. numbers at risk, engineering controls or safe system of work)
6.	 Protection
7.	 Discipline

Copies: (a) The original of this form is to be retained by the originating
department and a copy is to be supplied to the safety department. (b) Rel-
evant information on risks and preventive/protective measures are required
by law to be provided to employees so that they can ensure their own health
and safety and not put others at risk.

4.	Evaluation of risk:

Hazard details Services at risk Fre-
quency/
(duration)

Controls
in place

Residual
risk
evaluation

Risk
rating

Hazard Nature of
hazard/
adverse
effects
(how is
the hazard
likely to put
services at
risk?)

Insert
code
and
(num-
ber of
people)

Insert
code
letter
and
(dura-
tion)

Insert
code
numbers

Severity
of harm
score
1–3

Likeli-
hood of
occur-
rence
score 1–3

Multiply
sever-
ity × like-
lihood

Unen-
crypted
data

Third party
acquires
data

A, B, D
(5)

D/(4) 1, 3, 5 3 3 9

Lost
keys

Third party
has data

A, B, D
(10)

D/(4) 2, 4, 5 2 3 6

Key: services at risk:
(a) Operator (skilled), (b) operator (inexperienced), (c) end users, (d) office
staff

Key controls:
(1) Data encryption algorithms, (2) refreshing keys, (3) segregating data, (4)
assessment of personnel, (5) monitoring login logs

Severity of harm:
(1) Slight, e.g. minor data leaks, less important data, (2) serious, e.g. personal
data compromised, (3) major, e.g. business lost, reputation jeopardised

Likelihood of occurrence:
(1) Low (harm will seldom occur), (2) medium (harm will often occur), (3)
high (certain or near certain)

88

4.6  Identifying Cloud Threat Categories

Khan et al. [6, 24] describe how the various security threats can be bunched together
in six specific categories, represented by Table 4.2. The main differences from grids
to Clouds have added a few unique threats, such as data leakage (an unauthorised
transmission of data from within an organisation to outside or the unauthorised
access to the system, which compromises the confidentiality of the data), usage
control (access control to cover conditions independent of environmental factors),
hypervisor level attacks (enable an adversary to exploit vulnerability at the virtuali-
sation layer that is running underneath the VMs). Most threats have a domino effect
on the other components, where one affects multiple components. For instance, if
the hypervisor gets corrupted, all the corresponding VMs, their locations and data
can be compromised. Inappropriate use of any technical or data available on the
Cloud affects the trust customers place on the Cloud, having implications on the
business objectives of the Cloud providers.

4.7  Need for Risk Management

Risk management addresses the possibility that future events may cause adverse ef-
fects and is defined as “the process whereby organisations methodically address the
risks attaching to their activities with the goal of achieving sustained benefit within
each activity and across the portfolio of all activities” [2]. Figure 4.13 describes the
stages in a risk management cycle. The most important concepts in risk manage-
ment are as follows:

•	 An asset: to which has a value and hence for which the party requires protection.
•	 An unwanted incident: an event that harms or reduces the value of an asset.

M. Kiran

Table 4.2   Security threats and their categories ( C confidentiality, I integrity, A availability) [6]
Threat category Description (specific to Clouds) Factor Example
External attacks These include all the threats in

scenarios involving use of public
infrastructures

C, I, A Carrying out of denial
of service (DoS) attack

Theft Cloud computing supports multi-
tenant architecture with multiple
users using same resources. This
can lead to the theft of data by
an adversary

C, I, A Gaining unauthorised
access to systems or
networks

System malfunction Some software used extensively
on Clouds has bugs

A, I Malfunction of
software

Service interruption Unavailability of service/data
due to DoS attacks

C, I, A Natural disaster

Human error No control on how users use the
system

C User error

System specific System specific threats and
abuse

C, I, A Usage control

4  A Methodology for Cloud Security Risks Management 89

•	 A threat is a potential cause of an unwanted incident whereas vulnerability is a
weakness that opens for, or may be exploited by, a threat to cause harm or reduce
the value of an asset.

•	 Risk is the likelihood of an unwanted incident and its consequence for a specific
asset, and risk level is the level or value of a risk derived from its likelihood
and consequence. For example, a server is an asset; a threat may be a computer
virus and the vulnerability a virus protection not up to date, which leads to an
unwanted incident.

A risk management process consists of a risk identification stage, where it is identi-
fied, assessed for likelihood and impact, managed through planning and resolved
with a plan on what to do if it occurs. Risk monitoring phase allows it to be continu-
ally monitored in case it becomes active in the future (Fig. 4.9).

4.7.1  Cloud Threats Identified

The security risk methodology uses the threat modelling as an approach for iden-
tifying the threats and vulnerabilities of the system. Two sources of information
were used to collect the threats, unique to Clouds. The sources of information are
as follows:

For collection purposes:

•	 The information security forum [1, 3] for providing data on attacks on IT sys-
tems and the frequency of attacks

•	 The public data on attacks on the Cloud platforms such as Amazon EC2 and
Google Apps Engine [8, 9]

For evaluation purposes:

•	 Defense Advanced Research Projects Agency (DARPA) intrusion detection
evaluation data sets [3]

Based on the data collected, a risk catalogue can be created to document the threats,
the affected assets and their vulnerabilities. An entry into the risk catalogue can be
stated and shown in the example in Table 4.3.

The data from the threat analysis tool [28] helps to identify the form the threats
in the form of ids, assets, and the values for priority and likelihood. The ecosystems
relate to Cloud scenarios being private, bursting, federation and multi-Clouds. The
lifecycle stage shows which phase of the service lifecycle, during execution, is the
threat active—during deployment or operation. A risk methodology is then generated

Fig. 4.9   Risk management process

90 M. Kiran

which will use this risk catalogue as a reference database when making decisions on
the security risks in the Cloud.

4.8  Risk Methodology Stages

This section describes the various stages involved when performing a risk assessment
for Cloud computing environments. The methodology follows a 5-stage procedure
from a high level analysis of the system to the asset identification, threat assessment
and then the final evaluation of risk from the matrix to calculate as the assessment of
the risks that need to be managed in order of high probability and impacts.

Stage 1: High-Level Analysis of the System  An initial high-level analysis of the
Cloud ecosystem or scenarios, to help identify the actions and assets involved. This
will help isolate the assets involved and how they change over time to identify the
vulnerabilities of the Cloud environment.

Generally security needs to be assessed before deployment of the service to
check for security concerns of other provider or if the SLAs demand certain security
aspects. During the operation, as security concerns are monitored while the service
is executing, certain live data have to be assessed continuously.

Stage 2: Identifying the Assets Involved  There are various assets involved either at
the deployment or operation stage such as the SLA or customer data. These can be
monitored in relation to the specific threats in the environment.

Stage 3: Identify the Threats in Each Cloud Deployment Scenario  This is where
a threat analysis tool can be used to perform a detailed analysis of each threat.
Figures 4.10 and 4.11 describe the threat distribution across the six threat categories
identified earlier [28].

The threat analysis, accompanied by an expert opinion, sets the threat and vul-
nerability ratings for each threat from a scale of 1–5 (very low, low, medium, high
and very high). The tool also allows mapping the threat with respect to business
impact produced as an information risk profile. These results have been shown in
Table 4.4.

Stage 4: High-Level Analysis of Each Threat  Each of the threats can be further ana-
lysed in terms of who/what causes them and the incidents leading up to them, which

Threat id 27
Name of threat Theft of business information
Cloud ecosystem at which
active

All (private, bursting, federa-
tion, multi, brokerage)

Service lifecycle stage Operation
Asset affected Customer data
Priority assigned 4
Likelihood assigned 2

Table 4.3   Example of
the threat entry in the risk
inventory

4  A Methodology for Cloud Security Risks Management 91

Fig. 4.10   Business impact, threat and vulnerability rating for the six threat caetgories. (Adapted
from [28])

Fig. 4.11   Overall threat rating in terms of business impact. (Adapted from [28])

92 M. Kiran

Th
re

at
 c

at
eg

or
y

Th
re

at
s (

th
re

at
 id

) {
th

re
at

 c
la

ss
ifi

ca
-

tio
n:

 a
va

ila
bi

lit
y

(A
) c

on
fid

en
tia

lit
y

(C
)

in
te

gr
ity

 (I
)}

St
ag

e
of

 se
rv

ic
e

lif
ec

yc
le

 (d
ep

lo
ym

en
t/

op
er

at
io

n)

A
ss

et
s i

nv
ol

ve
d

C
lo

ud
 e

co
sy

st
em

s
Pr

io
rit

y
(1

—
lo

w
,

5—
hi

gh
)

Li
ke

lih
oo

d
(1

—
lo

w
,

5—
hi

gh
)

Ex
te

rn
al

 a
tta

ck
s

C
ar

ry
in

g
ou

t o
f d

en
ia

l o
f s

er
vi

ce
 (D

oS
)

at
ta

ck
 (T

1)
 {

A
}

O
pe

ra
tio

n
C

us
to

m
er

 d
at

a,

in
fr

as
tru

ct
ur

e
of

 th
e

pr
ov

id
er

A
ll

4
3

H
ac

ki
ng

 (T
2)

 {
I,

C
}

O
pe

ra
tio

n
C

us
to

m
er

 d
at

a
or

se

rv
ic

e
A

ll
3

1

U
nd

er
ta

ki
ng

 m
al

ic
io

us
 p

ro
be

s o
r s

ca
ns

(T

3)
 {

I,
C

}
O

pe
ra

tio
n

H
yp

er
vi

so
r c

od
e

A
ll

4
2

C
ra

ck
in

g
pa

ss
w

or
d

(T
4)

 {
A

, I
, C

}
O

pe
ra

tio
n

C
us

to
m

er
 d

at
a

or

se
rv

ic
e

A
ll

3
1

C
ra

ck
in

g
ke

ys
 (T

5)
 {

A
, I

,C
}

O
pe

ra
tio

n
C

us
to

m
er

 d
at

a
or

se

rv
ic

e
A

ll
3

1

Sp
oo

fin
g

us
er

 id
en

tit
ie

s (
T8

) (
A

, C
) {

A
,

C
}

O
pe

ra
tio

n
C

us
to

m
er

 d
at

a
or

se

rv
ic

e,
 a

ll
se

rv
ic

es
A

ll
3

1

M
od

ify
in

g
ne

tw
or

k
tra

ffi
c

(T
9)

 {
I}

O
pe

ra
tio

n
So

ftw
ar

e,
 c

on
-

ne
ct

io
ns

, s
er

vi
ce

(r

un
tim

e)

A
ll

2
2

Ea
ve

sd
ro

pp
in

g
(T

10
) {

I,
C

}
O

pe
ra

tio
n

So
ftw

ar
e,

 c
on

-
ne

ct
io

ns
, s

er
vi

ce

(r
un

tim
e)

A
ll

2
1

D
is

tri
bu

tin
g

co
m

pu
te

r v
iru

se
s (

T1
1)

 {
I}

O
pe

ra
tio

n
So

ftw
ar

e,
 c

on
ne

c-
tio

ns
, s

er
vi

ce
A

ll
3

1

In
tro

du
ci

ng
 T

ro
ja

n
ho

rs
es

 (T
12

) {
I}

O
pe

ra
tio

n
So

ftw
ar

e,
 c

on
ne

c-
tio

ns
, s

er
vi

ce
A

ll
3

1

In
tro

du
ci

ng
 m

al
ic

io
us

 c
od

e
(T

13
) {

C
}

D
ep

lo
ym

en
t a

nd

op
er

at
io

n
So

ftw
ar

e,
 c

on
ne

c-
tio

ns
, s

er
vi

ce
A

ll
3

3

D
is

tri
bu

tin
g

Sp
am

 (T
15

) {
A

}
D

ep
lo

ym
en

t a
nd

op

er
at

io
n

M
ai

lin
g

lis
ts

A
ll

1
4

Ta

bl
e

4.
4  

Th
re

at
s i

de
nt

ifi
ed

 in
 th

e
va

rio
us

 u
se

 c
as

es
 a

nd
 th

ei
r d

et
ai

ls
. (

A
da

pt
ed

 fr
om

 [2
4]

)

4  A Methodology for Cloud Security Risks Management 93

Th
re

at
 c

at
eg

or
y

Th
re

at
s (

th
re

at
 id

) {
th

re
at

 c
la

ss
ifi

ca
-

tio
n:

 a
va

ila
bi

lit
y

(A
) c

on
fid

en
tia

lit
y

(C
)

in
te

gr
ity

 (I
)}

St
ag

e
of

 se
rv

ic
e

lif
ec

yc
le

 (d
ep

lo
ym

en
t/

op
er

at
io

n)

A
ss

et
s i

nv
ol

ve
d

C
lo

ud
 e

co
sy

st
em

s
Pr

io
rit

y
(1

—
lo

w
,

5—
hi

gh
)

Li
ke

lih
oo

d
(1

—
lo

w
,

5—
hi

gh
)

Th
ef

t
G

ai
ni

ng
 u

na
ut

ho
ris

ed
 a

cc
es

s t
o

sy
st

em
s

or
 n

et
w

or
ks

 (T
16

) {
A

, I
, C

}
O

pe
ra

tio
n

C
us

to
m

er
 d

at
a

or

se
rv

ic
e

A
ll

5
4

Th
ef

t o
f b

us
in

es
s i

nf
or

m
at

io
n

(T
27

) {
A

,
C

}
O

pe
ra

tio
n

C
us

to
m

er
 d

at
a

A
ll

4
2

Th
ef

t o
f c

om
pu

te
r e

qu
ip

m
en

t (
T2

9)
 {

A
,

C
}

O
pe

ra
tio

n
C

us
to

m
er

 d
at

a
A

ll
1

2

Sy
st

em

m
al

fu
nc

tio
n

M
al

fu
nc

tio
n

of
 so

ftw
ar

e
(T

34
) {

I}
O

pe
ra

tio
n

To
ol

ki
t,

al
l s

er
vi

ce
s

A
ll

1
4

M
al

fu
nc

tio
n

of
 c

om
pu

te
r n

et
w

or
k

eq
ui

p-
m

en
t (

T3
5)

 {
I}

O
pe

ra
tio

n
To

ol
ki

t,
al

l s
er

vi
ce

s
A

ll
1

5

Se
rv

ic
e

in
te

rr
up

tio
n

N
at

ur
al

 d
is

as
te

r (
T4

0)
 {

I}
D

ep
lo

ym
en

t/O
pe

ra
tio

n
C

us
to

m
er

 d
at

a
A

ll
1

3
Sy

st
em

 o
ve

rlo
ad

 (T
41

) {
A

, C
}

O
pe

ra
tio

n
C

us
to

m
er

 d
at

a,
A

ll
4

3
H

um
an

 e
rr

or
U

se
r e

rr
or

 (T
42

) {
C

}
D

ep
lo

ym
en

t/o
pe

ra
tio

n
D

at
a

A
ll

5
3

Sy
st

em
 sp

ec
ifi

c
th

re
at

s a
nd

 a
bu

se
D

at
a

Le
ak

ag
e

(T
50

) {
I,

C
}

O
pe

ra
tio

n
D

at
a

A
ll

5
3

U
sa

ge
 c

on
tro

l (
T5

1)
O

pe
ra

tio
n

A
ll

H
yp

er
vi

so
r l

ev
el

 a
tta

ck
s(

T5
2)

 {
A

}
O

pe
ra

tio
n

D
at

a
A

ll
3

2
D

at
a

ow
ne

rs
hi

p
(T

53
) {

I}
D

ep
lo

ym
en

t
D

at
a

A
ll

2
D

at
a

ex
it

rig
ht

s (
T5

4)
 {

I,
C

}
D

ep
lo

ym
en

t
D

at
a,

 S
LA

A
ll

4
3

Is
ol

at
io

n
of

 te
na

nt
 a

pp
lic

at
io

n
(T

55
) {

I,
C

}
D

ep
lo

ym
en

t a
nd

O

pe
ra

tio
n

D
at

a
A

ll
5

2

D
at

a
en

cr
yp

tio
ns

 (T
56

) {
A

, I
,C

}
O

pe
ra

tio
n

D
at

a
A

ll
5

3
D

at
a

se
gr

eg
at

io
n

(T
57

) {
A

, I
}

O
pe

ra
tio

n
D

at
a,

 p
ro

gr
am

s
A

ll
4

2
Tr

ac
ki

ng
 a

nd
 re

po
rti

ng
 se

rv
ic

e
ef

fe
ct

iv
e-

ne
ss

 (T
58

) {
A

, I
}

O
pe

ra
tio

n
D

at
a,

 H
os

te
d

V
M

s
A

ll
5

3

C
om

pl
ia

nc
e

w
ith

 la
w

s a
nd

 re
gu

la
tio

ns

(T
59

) {
A

, I
}

D
ep

lo
ym

en
t a

nd

op
er

at
io

n
D

at
a

A
ll

3
2

U
se

 o
f v

al
id

at
ed

 p
ro

du
ct

s m
ee

tin
g

st
an

-
da

rd
s (

T6
0)

 {
A

, I
}

O
pe

ra
tio

n
D

at
a

A
ll

3
3

G
ue

st
 v

irt
ua

l m
ac

hi
ne

s (
T6

1)
 {

A
, I

}
O

pe
ra

tio
n

D
at

a
A

ll
1

3

Ta
bl

e
4.

4  
(c

on
tin

ue
d)

94 M. Kiran

can then be prioritised depending on this information. This also helps to measure the
impact of the security risk on the service and the providers. Figure 4.12 depicts an
example of the hacking threat and its related asset and vulnerabilities.

Stage 5: Risk Evaluation  Depending on the priority of the assets and likelihoods
of the threats occurring, the threat items can be plotted into an evaluation matrix to
document their occurrences. Table 4.5 depicts this in relation to the threats identi-
fied in Table 4.4.

The likelihood and impact rating is set using the data collected and the threat
analysis. The impact values also denote the affect the threat will have on the busi-
ness such as loss of confidentiality or availability eventually leading to loss of mon-
ey. The loss in trust has the highest impact (Table 4.6).

Once the inventory has been created for security risks, the level of risk can be
calculated by the following algorithms. These are different both for deployment and
operation phases.

Table 4.5   Risk evaluation matrix. (Adapted from [24])
Consequence
Insignificant Minor Moderate Major Catastrophic

Likeli-
hood

Rare T40 T10 T2, T4, T5, T8,
T11, T12

Unlikely T29 T9 T3, T27
Possible T41 T13 T1, T50 T51, T52
Likely T15,T34 T16
Certain T35

Table 4.6   Range of threats for confidentiality, availability and integrity. (Adapted from [24])

Fig. 4.12   Analysing the threat hacking, drawn using the CORAS (A Framework for Risk Analysis
of Security Critical Systems) risk modeling tool [27]

4  A Methodology for Cloud Security Risks Management 95

4.9  Algorithms for Security Risk Assessment

The algorithms used to measure security risks can be unique depending on the de-
ployment and operation phases. These are described below:

4.9.1  Algorithm: Deployment Phase

Security_risk_at_deployment (Cloud_ecosystem)

1.	� Calculate number of threats recorded, at deployment stage and the involved
ecosystem.

2.	 For each threat, calculate:
a.	� probability of likelihood given the asset is affected ((|))p B A = likelihood / .5 0
b.	 probability of asset priority (()) / .p A = priority 5 0
c.	� probability of likelihood regardless of asset (()) (|)p B p B A=

* () () p A p A+ ′
d.	 probability of threat occurring ((|)) (((|)* ())) / ()p A B p B A p A p B=

3.	 Security risk = sum all probabilities of threats occurring/threats found

The maximum value of the asset priority and the likelihood of it being affected are
set in the range 1–5. Based on the list of threats that need to be monitored, these
can be assessed based on each asset and the likelihood that each asset actually fails
as a result of the threat. Bayes rule can be used to calculate the underlying prob-
ability:

Let A = “Something is wrong with asset with its priority”
Let B = Asset has failed as a result
In steps 2c and 2d, the aim is to calculate P A B(|) , the probability that the asset

has indicated a risky event as a result of the threat.

P B A(|), indicates that likelihood that the asset has been affected when something
is wrong but not related to the kind of threat. P( A) gives the asset affected with its
priority. P( B) is then defined by calculating the total probability:

Note: A and A′ are mutually exclusive where ( A′) means any kind of fault in the
system without this asset being involved.

P A B P B A P A P B(|) (|)* () / ()=

P B P B A P A P B A P A() (|) () (|) ()= × + ′ × ′

P A P A() ()′ = −1

96 M. Kiran

Assuming P B A(|)′ = 1, because this means that P( B) (probability that the asset has
failed) given the asset is not present P( A′). Thus this determines that if the asset is
not present, the system has failed already.

Therefore:

Once calculated, using substitution to find P( A|B) probability that the asset has
failed due to this threat is given by:

The algorithm above shows how the security risk probability is calculated at de-
ployment stage. Considering the recorded risks in the risk inventory (Table 4.4) for
each particular use case and using the values of priority and likelihood as described
in the algorithm, the probability of that particular threat can be calculated. The se-
curity risk values are depicted in Fig. 4.13 which show the probabilities returned for
each of the use cases, private, bursting, federation and multi-Cloud during deploy-
ment and operation (Fig. 4.14).

P B P B A P A P A() (|) () ()= + × ′1

P A B P B A P A P B(|) (|) () / ()= ×

Fig. 4.13   Security risk probability as calculated from the risk catalogue from value 0–1 and the
different use cases. (categories are private (private at deployment and operation), bursting (burst-
ing at deployment and operation), federation (federation at deployment and operation), multi
(multi-Cloud at deployment and operation))

4  A Methodology for Cloud Security Risks Management 97

4.9.2  Algorithm: Operation Phase

Security_risk_at_operation (Cloud_ecosystem)

1.	� Make a list of threats to be monitored at operation stage for the particular eco-
system.

2.	 Make a list of the affected threats to be monitored.
3.	 For each asset make observations Oi for every 10 min.
4.	� Return the sample to the risk assessor, which records the probability of the

event occurring.
5.	 Calculate total_event_rate = events_found/total monitored time.
6.	 Relative risk (RR) = total_event_rate/risk (risk from catalogue).
7.	 If RR = 1 do nothing, RR < 1 accept risk, if RR > 1 apply mitigation strategy.

A collection of monitoring logs can be parsed to calculate the event rate for the risk
assessor to calculate the relative risk. Figure 4.15 shows the states of a particular
asset changing with time, 1 h 40 min (collecting 10 min samples). The probability
collected is returned to the risk assessor, which calculates the relative risk as shown
in the algorithm at operation stage.

Various monitoring logs will be assessing its state during operation. Initially the
asset starts with state “good”, but because it is to be monitored, it moves into the
“attacked” state where the various logs are counting the number of events occur-
ring. This is the event rate returned to the risk assessor.

During this time, if the risk assessor receives an event rate, which is too high,
this causes the relative risk to go above 1, the asset moves into a “compromised”
state.

When the risk assessor witnesses the assets in a compromised state, if then fires
relative mitigation strategies to allow the asset to be repaired and go back to a
“good” state. Then once in the “good” state, it will then again move to an “attacked”
state so that it can be continuously monitored for attacks and return event rates to
the risk assessor.

Fig. 4.14   State changes
for each asset from good,
attacked or compromised. Pl1
probability likelihood 1 can
be calculated using the risk
inventory, Pl2 probability
2 is calculated at operation
depending on the monitored
logs, PlT the relative prob-
ability threshold is measured
using the relative probability
between Pl1 and Pl2

98 M. Kiran

4.10  Testing Security

A kind of testing, particularly “penetration testing”, seeks to get past security proto-
cols. Security as a whole involves static design issues, as well as run-time verifica-
tion of security. In this sense, security is a measure of reliability, to test if the data is
secure assessing in terms of vulnerability, availability and integrity.

Non-functional requirements specify how a system should perform, in terms
of its efficiency and reliability in the SLAs. Some of these aspects can also be
defined as specific variables, such as response time, scalability, reliability, avail-
ability, security or maintainability. Various kinds of testing included here are per-
formance testing, security testing or dependability testing for satisfying customer
needs.

Fig. 4.15   Example of rates counted for asset data. The asset data being monitored for 10 samples
and the corresponding state changes (good, attacked, compromised) with event rate ( top graph) is
shown in relation to the relative risk ( bottom graph)

4  A Methodology for Cloud Security Risks Management 99

4.11 � Application: Case Study for Video Scalability in
Cloud Environment

Khan et al. [29] describe an implementation of threat methodology to assess the
video scalability when being distributed as an IaaS on the Cloud. Scalable video is
a means of distributing media content to many users using Clouds, as this allows
heterogeneous networks to be connected to devices. This is a highly distributed
environment with an IaaS focus, but centralized with many users connecting to it.

Security measures have to be taken to make sure copyright laws are intact, pay-
per-view models for business value and economic return and it caters to the differ-
ent levels of bandwidth used by the users. Usually, past models have distributed
encrypted video files when broadcasted, such as satellite television, investing in
set-top box to subscribe to encrypted channels. Shared encryption keys are used
with each subscriber, which changed periodically.

Figure 4.16 describes the unique service lifecycle, which would exist in this
particular scenario. To prevent past users accessing the data, when unsubscribed,
there will be a continuous pre-deployment stage, where new keys will be generated,
deployed and used periodically.

When identifying the threats, some of these do not apply to video broadcasting,
from the general Cloud scenarios such as the following [29]:

•	 Isolation of tenant application: Affects integrity, confidentiality and does not
apply to video broadcasting.

•	 Data encryptions: Applies to all three availability, confidentiality and integrity
and is already covered in the key authentication process during the pre-deploy-
ment process.

•	 Data segregation: Affects the availability and integrity also does not affect
broadcasting issues.

•	 Tracking and reporting service effectiveness can be given by customer review
and end-user experience affecting the credibility of the server.

•	 Compliance with laws and regulations of copyright issues and contract breach.
Affects the confidentiality and integrity of the business during the pre-deploy-
ment stage.

Based on Table 4.4, the threats which apply in this scenario are identified in
Table 4.7, with corresponding risk evaluation in Table 4.8 and priority concerns for
business in scalable video in Table 4.9.

Fig. 4.16   Service lifecycle
for scalable video. (Adapted
from [29])

100 M. Kiran

Th
re

at
 c

at
eg

or
y

Th
re

at
s (

vi
de

o
th

re
at

 id
) {

Th
re

at
 c

la
ss

ifi
ca

tio
n:

av

ai
la

bi
lit

y
(A

) c
on

fid
en

tia
lit

y
(C

) i
nt

eg
rit

y
(I

)}
St

ag
e

of
 C

lo
ud

(P

re
/d

ep
lo

ym
en

t/
op

er
at

io
n)

A
ss

et
s i

nv
ol

ve
d

Pr
io

rit
y

(1
—

lo
w

,
5—

hi
gh

)

Li
ke

lih
oo

d
(1

—
lo

w
,

5—
hi

gh
)

Ex
te

rn
al

 a
tta

ck
s

(T
1.

) C
ar

ry
in

g
ou

t o
f d

en
ia

l o
f s

er
vi

ce
 (D

oS
)

at
ta

ck
 {

A
}

O
pe

ra
tio

n
B

ro
ad

ca
st

in
g

se
rv

er
5

4

(T
2.

) h
ac

ki
ng

 {
I,

C
}

O
pe

ra
tio

n
C

us
to

m
er

 d
at

a,
 c

om
pr

is
in

g
se

rv
ic

e,

co
m

pa
ny

 re
pu

ta
tio

n
3

1

(T
3.

) U
nd

er
ta

ki
ng

 m
al

ic
io

us
 p

ro
be

s o
r s

ca
ns

{I

, C
}

O
pe

ra
tio

n
H

yp
er

vi
so

r c
od

e,
 v

irt
ua

l m
ac

hi
ne

,
vi

de
o

se
rv

er
4

4

(T
4.

) C
ra

ck
in

g
pa

ss
w

or
d

{A
, I

, C
}

O
pe

ra
tio

n
C

us
to

m
er

 d
at

a
or

 se
rv

ic
e

3
1

(T
5)

 C
ra

ck
in

g
ke

ys
 {

A
, I

, C
}

Pr
e-

de
pl

oy
m

en
t,

op
er

at
io

n
C

us
to

m
er

 d
at

a
or

 se
rv

ic
e

2
1

(T
8)

 S
po

of
in

g
us

er
 id

en
tit

ie
s {

A
, C

}
Pr

e-
de

pl
oy

m
en

t,
op

er
at

io
n

C
us

to
m

er
 d

at
a

or
 se

rv
ic

e
da

ta
, a

ll
se

rv
ic

es
3

1

(T
9.

) M
od

ify
in

g
ne

tw
or

k
tra

ffi
c

{I
}

O
pe

ra
tio

n
So

ftw
ar

e,
 c

on
ne

ct
io

ns
, s

er
vi

ce
,

vi
de

o
st

re
am

in
g

(r
un

tim
e)

2
2

(T
10

) E
av

es
dr

op
pi

ng
 {

I,
C

}
O

pe
ra

tio
n

So
ftw

ar
e,

 c
on

ne
ct

io
ns

, s
er

vi
ce

 (r
un

-
tim

e)
, v

id
eo

 st
re

am
in

g
4

3

(T
11

) D
is

tri
bu

tin
g

co
m

pu
te

r v
iru

se
s {

I}
O

pe
ra

tio
n

So
ftw

ar
e,

 c
on

ne
ct

io
ns

, s
er

vi
ce

,
br

oa
dc

as
t i

s u
su

al
ly

 p
at

ch
ed

 w
ith

se

cu
rit

y
m

od
es

2
1

(T
12

) I
nt

ro
du

ci
ng

 T
ro

ja
n

ho
rs

es
 {

I}
O

pe
ra

tio
n

So
ftw

ar
e,

 c
on

ne
ct

io
ns

, s
er

vi
ce

3
1

(T
13

) I
nt

ro
du

ci
ng

 m
al

ic
io

us
 c

od
e

{C
}

D
ep

lo
ym

en
t a

nd

op
er

at
io

n
So

ftw
ar

e,
 c

on
ne

ct
io

ns
, s

er
vi

ce
, n

ot

th
ro

ug
h

vi
de

o
ea

sy
 to

, b
ro

ad
ca

st
 is

co

nt
ro

lle
d

2
1

(T
15

) D
is

tri
bu

tin
g

sp
am

 {
A

}
D

ep
lo

ym
en

t,
op

er
at

io
n

M
ai

lin
g

lis
ts

, s
er

ve
r l

is
ts

2
1

Ta

bl
e

4.
7  

Th
re

at
s r

ef
er

rin
g

to
 T

ab
le

 4
.4

 w
hi

ch
 a

pp
ly

 to
 sc

al
ab

le
 v

id
eo

 o
n

th
e

C
lo

ud

4  A Methodology for Cloud Security Risks Management 101

Th
re

at
 c

at
eg

or
y

Th
re

at
s (

vi
de

o
th

re
at

 id
) {

Th
re

at
 c

la
ss

ifi
ca

tio
n:

av

ai
la

bi
lit

y
(A

) c
on

fid
en

tia
lit

y
(C

) i
nt

eg
rit

y
(I

)}
St

ag
e

of
 C

lo
ud

(P

re
/d

ep
lo

ym
en

t/
op

er
at

io
n)

A
ss

et
s i

nv
ol

ve
d

Pr
io

rit
y

(1
—

lo
w

,
5—

hi
gh

)

Li
ke

lih
oo

d
(1

—
lo

w
,

5—
hi

gh
)

Th
ef

t
(T

16
) G

ai
ni

ng
 u

na
ut

ho
ris

ed
 a

cc
es

s t
o

sy
st

em
s

or
 n

et
w

or
ks

 {
A

, I
,C

}
O

pe
ra

tio
n

C
us

to
m

er
 d

at
a

or
 se

rv
ic

e,
 e

xt
ra

ct

da
ta

 fr
om

 th
e

vi
de

o
4

3

(T
27

) T
he

ft
of

 b
us

in
es

s i
nf

or
m

at
io

n
{A

, C
}

O
pe

ra
tio

n
C

us
to

m
er

 d
at

a
4

2
(T

29
) T

he
ft

of
 c

om
pu

te
r e

qu
ip

m
en

t {
A

, C
}

Pr
e-

de
pl

oy
m

en
t,

O
pe

ra
tio

n
C

us
to

m
er

 d
at

a
1

2

Sy
st

em

m
al

fu
nc

tio
n

(T
34

) M
al

fu
nc

tio
n

of
 so

ftw
ar

e
{I

}
Pr

e-
de

pl
oy

m
en

t,
op

er
at

io
n

To
ol

ki
t,

al
l s

er
vi

ce
s v

id
eo

 se
rv

er
, e

nd

us
er

, b
ec

au
se

 o
f t

he
 k

ey
 g

en
er

at
io

n
1

4

(T
35

) M
al

fu
nc

tio
n

of
 c

om
pu

te
r n

et
w

or
k

eq
ui

p-
m

en
t {

I}
Pr

e-
de

pl
oy

m
en

t,
de

pl
oy

m
en

t,
op

er
at

io
n

To
ol

ki
t,

al
l s

er
vi

ce
s,

vi
de

o
se

rv
er

,
m

al
fu

nc
tio

n
du

rin
g

th
e

ke
y

ge
ne

ra
-

tio
n

w
ill

 a
ffe

ct
 th

e
br

oa
dc

as
tin

g
of

th

e
vi

de
o

an
d

th
e

se
rv

er

1
3

Se
rv

ic
e

in
te

rr
up

tio
n

(T
40

) N
at

ur
al

 d
is

as
te

r {
I}

Pr
e-

de
pl

oy
m

en
t,

de
pl

oy
m

en
t,

op
er

at
io

n

C
us

to
m

er
 d

at
a,

 v
id

eo
 se

rv
er

4
1

(T
41

) S
ys

te
m

 o
ve

rlo
ad

 {
A

, C
}

O
pe

ra
tio

n
C

us
to

m
er

 d
at

a,
 v

id
eo

 se
rv

er
1

2
H

um
an

 e
rr

or
(T

42
) U

se
r e

rr
or

 {
C

}
Pr

e-
de

pl
oy

m
en

t,
de

pl
oy

m
en

t,
op

er
at

io
n

D
at

a
3

3

Sy
st

em
 sp

ec
ifi

c
th

re
at

s a
nd

 a
bu

se
(T

50
) D

at
a

le
ak

ag
e

{I
, C

}
O

pe
ra

tio
n

D
at

a,
 v

id
eo

 d
at

a
4

2

(T
53

) D
at

a
ow

ne
rs

hi
p

{I
}

Pr
e-

de
pl

oy
m

en
t,

de
pl

oy
m

en
t

D
at

a
re

la
te

s t
o

vi
de

o
rig

ht
s

4
2

(T
54

) D
at

a
ex

it
rig

ht
s {

I,
C

}
Pr

e-
de

pl
oy

m
en

t,
de

pl
oy

m
en

t
D

at
a,

 S
LA

 re
la

tin
g

to
 c

op
yr

ig
ht

s
4

3

Ta
bl

e
4.

7  
(c

on
tin

ue
d)

102

Based on the above analysis, availability is the highest concern, so we can imple-
ment changes that target these threats like implementing fast authentication key
mechanisms and secure access to data throughput.

The above threat analysis can help determine the important threats to watch for,
concentrating staff efforts and costs to make sure they do not occur. This helps
manage the critical parts of the systems and also manage the costs.

4.12  Conclusions

Cloud computing refers to on-demand access to a shared pool of computing
resources, providing reduced costs, reduced management responsibilities and in-
crease in business agility. For these reasons, it is a popular paradigm to be used by
end users from different professions. Security is, however, a major player in this
equation as it can make or break deals for Cloud users and infrastructure providers
alike.

The way forward is to come up with standards on how security can be assessed to
minimize the risks in the systems as well as manage the costs as efficiently as possi-
ble. This chapter discussed a security risk methodology approach to assess the items
which can jeopardise the security of the Cloud ecosystems and the actors involved in
the Cloud. By performing a detailed documentation assessment and assigning a like-

M. Kiran

Table 4.8   Risk evaluation Matrix for scalable video
Consequence
Insignificant Minor Moderate Major Catastrophic

Likelihood Rare T5, T11,
T14, T15

T2, T4, T12,
T8

T40

Unlikely T29, T41 T9 T27, T50, T53,
Possible T35 T42 T3, T10, T16,

T54
Likely T34 T1
Certain

Table 4.9   Range of threats for confidentiality, availability and integrity for scalable video

4  A Methodology for Cloud Security Risks Management 103

lihood and priority to each of these threats, the items can be listed in order of priority
to see which particular measure need to be taken first to reduce that kind of security
risk. This allows work to be categorized in terms of the most important first when
assessing complex ecosystems such as Cloud environments which have too many
components that can go wrong during the service deployment or operation phases.

There is a further need for proper documentation and legal agreements to be
drawn up to restore the trust of consumers in Clouds and effectively making busi-
ness more aware of a detail approach to take when securing their systems.

Acknowledgments  This work has been partially supported by the EU within the seventh frame-
work programme under contract ICT-257115—Optimized Infrastructure Services (OPTIMIS).

References

  1.	 Wills G (2009) Technical review of using Cloud for research, University of Southampton,
Final Report 2009

  2.	 Foster I, Zhao Y, Raicu I, Lu S (2008) Cloud computing and grid computing 360-degree
compared. In GCE ’08: Grid Computing Environments Workshop, pp 1–10. IEEE, Nov 2008

  3.	 Catteddu D, Hogben G (2009) Cloud computing: benefits, risks and recommendations for
information security, Technical Report, European Network and Information Security Agency
(ENISA) 2009

  4.	 Ried S, Kisker H, Matzke P (2010) The evolution of Cloud computing markets. Forrester
Research 2010

  5.	 Stamford C (10 Aug 2011) Press Releases, Gartner’s 2011 Hype Cycle special report evalu-
ates the maturity of 1,900 Technologies, 2011

  6.	 Kiran M, Khan AU, Jiang M, Djemame K, Oriol M, Corrales M (2012) Managing security
threats in Clouds, Digital Research 2012

  7.	 Buyya R, Yeo CS, Venugopal S, Broberg J, Brandic I (2008) Cloud computing and emerg-
ing IT platforms: vision, hype, and reality for delivering computing as the 5th utility. Future
Gener Comput Syst 25:599–616

  8.	 Information Security Forum (ISF), Information risk analysis methodology (IRAM). https://
www.securityforum.org/iram#iramtva. Accessed April 2014

  9.	 Symantec Ltd., Symantec Data Loss prevention. http://www.symantec.com/en/uk/busi-
ness/solutions/solutiondetail.jsp?solid=sol_info_risk_comp&solfid=sol_data_loss_
prevention&om_sem_cid=biz_sem_emea_uk_Google_DLP. Accessed Nov 2010

10.	 Carpenter M, Liston T, Skoudis E (2007) Hiding virtualization from attackers and malware.
IEEE Secur Priv 5(3):62–65

11.	 Naraine R (2011) Blue pill prototype creates 100 % undetectable malware. http://www.
eweek.com/c/a/Windows/Blue-Pill-Prototype-Creates-100-Undetectable-Malware, 2011.
Accessed Dec 2013

12.	 Grid Security (2012) Industry insiders: insufficient security controls for smart meters, Pub-
lished Online: 10 April 2012. http://www.homelandsecuritynewswire.com/dr20120410-in-
dustry-insiders-insufficient-security-controls-for-smart-meters, 2012. Accessed Dec 2013

13.	 HMGovernment (2010) HMGovernment G-Cloud, Crown copyright, 2010. http://gcloud.
civilservice.gov.uk/. Accessed Dec 2013

14.	 Huddle Inc. Government storage. http://www.huddle.com/campaign/government-storage/.
Accessed Oct 2012

15	 UK Government (2012) G-Cloud brochures. http://www.fcoservices.gov.uk/eng/files/Gov-
ernment_Cloud_Solutions_Brochure.pdf. Accessed Oct 2012

16.	 Millman R (2012) SCC launches secure multi-tenancy Cloud on G-Cloud. Published On-
line: April 30, 2012. http://www.cloudpro.co.uk/cloud-essentials/3493/scc-launches-secure-
multi-tenancy-cloud-g-cloud, 2012. Accessed Dec 2013

http://www.symantec.com/en/uk/business/solutions/solutiondetail.jsp?solid=sol_info_risk_comp&solfid=sol_data_loss_prevention&om_sem_cid=biz_sem_emea_uk_Google_DLP
http://www.symantec.com/en/uk/business/solutions/solutiondetail.jsp?solid=sol_info_risk_comp&solfid=sol_data_loss_prevention&om_sem_cid=biz_sem_emea_uk_Google_DLP
http://www.symantec.com/en/uk/business/solutions/solutiondetail.jsp?solid=sol_info_risk_comp&solfid=sol_data_loss_prevention&om_sem_cid=biz_sem_emea_uk_Google_DLP
http://www.eweek.com/c/a/Windows/Blue-Pill-Prototype-Creates-100-Undetectable-Malware
http://www.eweek.com/c/a/Windows/Blue-Pill-Prototype-Creates-100-Undetectable-Malware
http://gcloud.civilservice.gov.uk/
http://gcloud.civilservice.gov.uk/
http://www.fcoservices.gov.uk/eng/files/Government_Cloud_Solutions_Brochure.pdf
http://www.fcoservices.gov.uk/eng/files/Government_Cloud_Solutions_Brochure.pdf
http://www.cloudpro.co.uk/cloud-essentials/3493/scc-launches-secure-multi-tenancy-cloud-g-cloud
http://www.cloudpro.co.uk/cloud-essentials/3493/scc-launches-secure-multi-tenancy-cloud-g-cloud

104 M. Kiran

17.	 Scarfone K, Souppaya M, Cody A, Orebaugh A (2008) Information security testing and as-
sessment, National Institute of Standards and Technology (NIST), Special Publication 800-
115. http://csrc.nist.gov/publications/nistpubs/800-115/SP800-115.pdf. Accessed Sept 2008

18.	 Whiteside F, Badger L, Iorga M, Shilong Chu JM (2012) Challenging security requirements
for US government Cloud computing adoption (draft), Special publication 500-296, NIST,
May, 2012

19.	 Pallman D (2010) Azure Blog, Threat modelling the Cloud, August 2010. http://davidpall-
mann.blogspot.com/2010/08/threat-modeling-cloud.html#fbid=8qxQ6O6UvEq. Accessed
Dec 2010

20.	 Brink DE (2010) Security and the software development lifecycle: secure at the source. Ab-
erdeen Group December 2010, research brief, 2010

21.	 Jansen W, Grance T (2011) Draft NIST special publication guidelines on security and privacy
in public Cloud computing, Computer Security, Jan 2011

22.	 Brink D (2011) Security and cloud best practices July 2011, Aberdeen Group, 2011
23.	 Mell P, Grance T (2009) The NIST definition of Cloud computing, National Institute of Stan-

dards and Technology, Oct 2009
24.	 Khan AU, Kiran M, Oriol M, Jiang M, Djemame K (2012) Security risks and their manage-

ment in Cloud computing. CloudCom, pp 121–128, 2012
25.	 Google Inc (2013) GoogleAppEngine platform as a service, Google developers. https://de-

velopers.google.com/appengine/. Accessed Dec 2013
26.	 Heroku Inc (2013) Heroku platform. https://www.heroku.com/. Accessed Dec 2013
27.	 den Braber F, Braendeland F, Dahl HEI, Engan I, Hogganvik I, Lund MS, Solhaug B, Stolen

K, Vraalsen F (2006) The CORAS Model-based method for security risk analysis, SINTEF,
Oslo, September, 2006. http://www.uio.no/studier/emner/matnat/ifi/INF5150/h06/undervis-
ningsmateriale/060930.CORAS-handbook-v1.0.pdf. Accessed Dec 2013

28.	 Khan AU (2013) Data confidentiality and risk management in Cloud Computing, PhD thesis,
Department of Computer Science, University of York, 2013

29.	 Khan AU, Kiran M, Oriol M (2013) Threat methodology for securing scalable video in the
Cloud, 8th international conference for internet technology and secured transactions (IC-
ITST-2013), Dec 9–12, 2013, London, UK

http://csrc.nist.gov/publications/nistpubs/800-115/SP800-115.pdf
http://davidpallmann.blogspot.com/2010/08/threat-modeling-cloud.html#fbid=8qxQ6O6UvEq
http://davidpallmann.blogspot.com/2010/08/threat-modeling-cloud.html#fbid=8qxQ6O6UvEq
https://developers.google.com/appengine/
https://developers.google.com/appengine/

Chapter 5
SecDSIM: A Framework for Secure Data
Storage and Identity Management in the Cloud

Shaga Praveen and G. R. Gangadharan

G. R. Gangadharan () · S. Praveen
Institute for Development and Research in Banking Technology,
Castle Hills, Road No.1, Masab Tank, Hyderabad 500057, India
e-mail: e-mail: geeyaar@gmail.com

S. Praveen
shagapraveen@gmail.com

Abstract  Cloud storage is a model of networked online storage where data are
stored in virtualized pools of storage devices. Cloud storage requires users to host
their data on the servers of cloud service providers. This raises issues of confiden-
tiality, integrity, and availability of the data stored in the cloud environment. In this
chapter, we propose a framework for secure data storage and identity management
(SecDSIM) that can store data securely in the servers of cloud service providers
using multi-user searchable encryption technique. The framework supports the pro-
cess of verifying proof of storage correctness of the data by retrieving data identi-
fiers any time around the cloud. The framework also supports dynamic updates for
the encrypted data and indexes stored in the servers of cloud service providers.

Keywords  Multi-user searchable symmetric encryption · Grade-based access
control · Cloud data storage · Identity management · Aided keyword search ·
Precise keyword search

5.1 � Introduction

Cloud computing is a way of delivering IT-enabled capabilities to users in the
form of “services” with elasticity and scalability, where users can make use of
resources, platform, or software without having to possess and manage the underly-
ing complexity of the technology. Cloud computing becomes popular because of
its characteristics including scalability, elasticity, and cost effectiveness. However,
from the perspective of a cloud consumer, security of the data in the cloud is one of
the main obstacles for adopting cloud computing services [1–5].

Cloud storage is a specific sub-offering within infrastructure as a service (IaaS)
of Cloud computing and promises high data availability and reduced infrastructure

105© Springer International Publishing Switzerland 2014
Z. Mahmood (ed.), Cloud Computing, Computer Communications and Networks,
DOI 10.1007/978-3-319-10530-7_5

S. Praveen and G. R. Gangadharan106

costs by storing data of users with remote third-party providers [6]. In recent years,
cryptography has become a critical tool in theoretical analysis of security model and
architecture for cloud storage and emerged as an important technique in designing
secure identity management for cloud storage systems [6–8].

Our goal in this chapter is to propose a multi-user searchable symmetric encryp-
tion scheme that provides an efficient isolation and a secure storage mechanism for
users’ data and to provide an identity management using grade-based access control
when users share their data with other trusted users.

5.2 � Cryptographic Cloud Storage and Identity
Management Schemes

Users are required to store their data on the servers of cloud service providers
(CSPs), which discard the control over their data. A CSP physically stores users’
data in one location that could lead to several data security and privacy issues such
as unauthorized access by internal employees of CSP and by outsiders. As a result,
CSPs could not provide confidentiality, integrity, and availability of data. In such
cases, a CSP must provide an efficient isolation and secure storage mechanism for
users’ data.

Mostly, data are accessed through a search operation performed on a cloud stor-
age server. Generally data are stored in encrypted form in a cloud storage server.
Traditionally, we download the whole encrypted data on the local machine, de-
crypt all its contents, and then perform the search on the plain text. Note that this
searching scheme is inefficient and impractical.

We now present some of the common cryptography-based cloud storage schemes.

5.2.1 � Broadcast Encryption

Broadcast Encryption (BE), introduced by Fiat and Naor [9], distributes encrypted
data along with a decryption key to a group of users with whom the broadcaster
wishes to share the data via a secure channel. While encrypting the data, the broad-
caster can choose a set of users to allow decrypting the data. However, in the real
world, there could be a large number of owners who may want to store their data in
the cloud as well as a large number of users who may want to access the stored data.
Later, several other BE schemes [10–14], are proposed. However, these schemes re-
quire public parameters for every user and the public parameters need to be updated
every time a user wants to join or leave the system.

5.2.2 � Identity-Based Encryption

Identity-based encryption (IBE), introduced by Shamir [15], encrypts the data
using a public key encryption scheme in which the public key can be an arbitrary

1075  SecDSIM: A Framework for Secure Data Storage and Identity Management …

string (called as identity). Boneh et al. [16] presented a secure IBE scheme in
which the sender uses the identity of the receiver as the public key to encrypt
the data. Canetti et al. [17] proposed the construction of IBE that was provably
secure outside the random oracle model. Later Boneh and Boyen [18] gave two
schemes with improved efficiency and prove security in the selective-ID model
without random oracles. IBE schemes lack management and secure communica-
tion models.

5.2.3 � Attribute-Based Encryption

In an attribute-based encryption (ABE) scheme, proposed by Sahai and Waters [19],
ciphertexts are labeled with sets of attributes and private keys are associated with
access structures. Nail et al. [20] proposed a threshold attribute-based encryption
which can prevent the collusion attacks. Based on access policy, ABE schemes are
classified into two types: Key policy attribute-based encryption (KP-ABE) and ci-
pher text policy attribute-based encryption (CP-ABE). In the KP-ABE scheme, pro-
posed by Goyal et al. [21], the access policy is derived from the user’s private key
and a set of attributes are used to decrypt the data. In CP-ABE scheme, introduced
by Bethencourt et al. [22], the user keys are associated with sets of attributes and the
ciphertexts are associated with the access policies.

Several other variations of the CP-ABE-based and KP-ABE-based schemes have
been proposed in [23–25]. However these schemes have disadvantages in practice
such as the ability to achieve revocation of users’ key.

5.2.4 � Searchable Encryption

The problem of searching on outsourced encrypted database was solved by Gold-
rich and Ostrovsky [26] over oblivious random access memory (RAM). However,
this approach is unrealistic because it suffers from poly-logarithmic computation
and communication overheads. Song et al. [27] proposed the first construction of
searchable symmetric encryption scheme in which each word in the document is
encrypted independently under a special two-layered encryption scheme called
Song, Wagner, and Perrig (SWP). As an extended version to [27], Boneh et al. [28]
presented a public-key based searchable encryption scheme. Goh [29] described a
secure index (SI) to build a symmetric searchable encryption scheme. However,
SWP and SI schemes are slow in retrieving documents.

Curtmola et al. [30] proposed a searchable symmetric encryption that includes
a constant computational complexity to perform the search operation on the
ciphertext. However, it does not support efficient updates to the database. Later,
Kamara et al. [31] proposed cryptography-based public cloud storage scenarios
where the service provider is not completely trusted by the user. Here, when a
user wants to store data in the cloud storage, the data processor indexes data and
encrypts using advanced encryption standard (AES). Then, the data processor en-
crypts the index using a searchable encryption scheme and the unique key using an

S. Praveen and G. R. Gangadharan108

ABE scheme. Further, Kamara et al. [32] used searchable symmetric encryption,
search authenticator, and proof of storage to achieve confidentiality, integrity, and
verifiability in the cloud. However, these papers compromise on confidentiality
by revealing the files that contain a common keyword to a cloud provider while
retrieving the encrypted data. Moreover, [31] and [32] are inefficient in handling
dynamic updates on indexes. To address the problem of dynamic updates, Kamara
et al. [33] presented a dynamic searchable symmetric encryption scheme which
provides an efficient dynamic updates to the encrypted data that are stored on third
party servers.

Searchable encryption techniques leak information about the search patterns
(i.e., the number of keywords of the document collection or metadata that it con-
tains). Furthermore, most of the searchable encryption schemes are inefficient in
updating the ciphertext [27–36].

5.2.5 � Role-Based Encryption

Zhu et al. [37] proposed a new hierarchical role-based access control model
to encrypt the data. Zhou et al. [38, 39] proposed a hybrid scheme called role-
based encryption (RBE) that combines access control with cryptography and key
distribution to address security requirements for data storage in the cloud. However,
these schemes lack the ability of user revocation.

5.2.6 � Identity Management

Cryptographic cloud storage techniques provide identity management using several
access control mechanisms such as attribute based, identity based, and role based.
Torres et al. [40] presented a survey on various identity management techniques or
methods for future network. Celesti et al. [41] proposed a reference architecture
based on identity management and service provider (IdM/SP) model to address the
identity management problem in InterCloud context where identity is managed by
the third party. Several access control models that are used for identity and access
privilege management are presented in [42].

5.3 � Searching on Encrypted Data

Searchable encryption is a technique that provides functionalities to search en-
crypted data without requiring the decryption key [43]. In this chapter, we follow a
keyword-based access scheme, where all the keywords related to the encrypted data
are stored in an index. There are two approaches to implement a keyword-based
access scheme:

1095  SecDSIM: A Framework for Secure Data Storage and Identity Management …

•	 The first approach is to store an index of the data locally, and for each search op-
eration, query the index and use the results to retrieve the appropriate encrypted
data from the cloud storage server.

•	 The second approach avoids using local storage for indexes; instead, the index
is stored in the cloud storage server in an encrypted form. Then, for each search,
the index is retrieved and queried locally before the encrypted data are fetched.

Consider the following multi-user scenario. Imagine that Alice wishes to store her
medical records on a personal health record (PHR) server, such that the data are
available to her anywhere and anytime. She also wants to share some of her medi-
cal records to a “physician” for treatment. Bob is a physician who uses the PHR
server to treat the patients. If Alice’s records are in plaintext, then Bob can simply
check the designation of each medical record of her and proceed for treatment.
However, Alice wishes to use an encryption scheme to maintain the confidential-
ity of her medical records. In this setting, if Bob wants to access Alice’s medical
records designated with “physician”, either Alice has to reveal her decryption key
to Bob, or Alice has to decrypt her medical records by herself and send only the
medical records which are designated with “physician” to Bob. The first solution
compromises the confidentiality of all medical records, and the second solution is
not efficient.

The above scenario requires a cryptographic technique that is used to store the
data securely in cloud storage servers with efficient multi-user retrieval support.

Searchable encryption is a technique that provides functionalities to search en-
crypted data without requiring the decryption key. Each message of data is associ-
ated with a set of keywords. Searchable encryption transforms both the message and
the associated keywords into an encrypted form, in such a way that the encrypted
keywords can be queried later using a trapdoor. This allows a client to retrieve or
decrypt only the messages of the data that contain a particular keyword without
decrypting the data.

Let D = ( M1, M2,…, Mn) be data consisting of n messages M1, M2,…, Mn. Each
message Mi ( i = 1,…,n) is associated with a metadata item Wi = { Wi,1, Wi,2,…}
which is actually a set of keywords chosen from a finite set W. Searchable encryp-
tion stores the data D on a server such that:

•	 A message Mi is retrieved from the server, only in case a particular keyword oc-
curs in its associated metadata Wi, while leaking as little information as possible.

•	 The confidentiality of the data is preserved as much as possible.

The searchable symmetric encryption is used to retrieve encrypted data from a third
party storage server, when the metadata associated with the message contains a
particular keyword. Searchable symmetric encryption allows only to the user who
stores the data on third party server can search the encrypted data. Initially each
message Mi is encrypted, using a standard symmetric key encryption scheme, and
stored on a third party server. To store the metadata items on the third party server
that can be queried later, searchable symmetric encryption schemes with the follow-
ing algorithms are used:

S. Praveen and G. R. Gangadharan110

•	 Keygens(p): Given the security parameter p, outputs a master secret key msk.
•	 Encs(W, msk): Given the metadata W, and the master secret key msk, outputs a

searchable ciphertext SW.
•	 Trapdoors(W, msk): Given the keyword W, and the master secret key msk, out-

puts a trapdoor Tw.
•	 Search(Tw, SW): Given the trapdoor Tw, and the searchable ciphertext SW, outputs

1 if W є W.

The Keygen, Enc, and Trapdoor algorithms are invoked by the client, and the search
algorithm is invoked by the server. If search = 1, the server sends back the encrypted
message whose associated metadata is W.

5.4 � Grade-Based Access Control

The goal of identity and access control management is to ensure that accesses to
data stored in cloud storage servers are given only to authorized users. Access con-
trol mechanisms are used to mitigate the risks of unauthorized access to the data,
resources, and systems. Figure 5.1 shows a general access control model which
includes principal, auction, guard, and protected system. Principal can be a user, a
program, etc.; auction can be a query; guard can be a security manager or a server;
and a protected system can be repository or a file, etc. Guard verifies the identity of
the entity (usually the principal) called authentication. Then the guard checks the
access control policies that consist of rules that describe what is allowed and what
not to access the protection system.

We introduce grade-based access control (GAC), a new mechanism to provide
identity and access control management based on the grades of users. Access to a
resource is determined based on the level of the relationship, typically the grades

Fig. 5.1   General access control model

1115  SecDSIM: A Framework for Secure Data Storage and Identity Management …

of the user in an organization. In other words, the permissions are associated with
grades, and users are assigned to appropriate grades.

Figure 5.2 shows the basic structure of GAC model. Consider that Alice and
Bob are two employees of an organization A holding assistant manager as their
roles. Assume that an organization A has implemented the role-based access control
mechanism for identity management. Assume that Alice has joined in the organiza-
tion prior to Bob. Therefore, Alice holds grade II position and Bob holds grade I
(assuming grade II is superior to grade I).

Consider that there is a payment approval application that can be accessed by
the employees of the organization A who hold their role as senior manager having
a minimum of grade II level. In this scenario, if the organization A had not imple-
mented role-based access control mechanism, then Alice could access payment ap-
proval application. However, in our case, the organization A has implemented role
based access control mechanism for identity management.

In this case, if the organization A wants to give access permission to Alice for
payment approval application, then there are two solutions:

•	 The organization A has to create another account to Alice which holds a role as
senior manager and provide access permission.

•	 The organization A has to promote Alice to senior manager.

None of the above two solutions are practically implementable as organizations
may have many employees like Alice. From the above scenario, it is clear that the
role-based access control having its own disadvantage, i.e., classifying and provid-
ing access permissions to people based on roles makes it more difficult to define
granular access controls for each person.

Grades of a user can be of two types as shown in Fig. 5.3. For a role, say R1,
there may be different grades, say G1 and G2 as shown in Fig. 5.3a. For different
roles, say R1 and R2, there may be same grade, say G1 as shown in Fig. 5.3b. This
makes GAC mechanism more flexible than role-based access control.

GAC can provide the functionalities provided by the role based access control.
GAC is not replaceable for role-based access control. If we use GAC with role-
based access control as a hybrid access control model, it may serve as a better
granular and flexible access control mechanism.

Fig. 5.3   Grades versus roles

Fig. 5.2   Grade-based access
control

S. Praveen and G. R. Gangadharan112

5.5 � Multi-User Searchable Symmetric Encryption

We extend the concept of multi-user searchable symmetric encryption (mSSE) de-
fined in [30] and apply to our framework for data storage and identity management
in the cloud. Table 5.1 specifies the notations used in the rest of the chapter.

We illustrate the modified mSSE scheme as follows.

Our mSSE is composed of the following six algorithms:
Did ‹← GDid(Uid, Date, N): It takes Uid, date (in DDMMMYYYY format),

and a 5-digit unique random number as input and generates a unique Did for new-
ly created/generated data by the user (see Fig. 5.4). Here we used 5-digit random
number because even if a user continuously creates new data or file per second, he
can create a maximum of 86400 files per day.

(EnData, EnKws) ‹← Enc(w, D): It takes keywords and data as input and gener-
ates EnData and EnKws.

AData ‹← GAC (Uid, pswd, grade): It takes Uid, pswd, and grade as input to
verify the authorization based on GAC and provides access to the data.

T ‹← Trpdr(Uskw): Trapdoor is an encrypted search keyword provided by the
user to access the data.

mSSE GDid Enc GAC Trpdr Search Dec = (), , , , , .

1 1 M C M B 3 1 0 0 0 3 J A N 2 0 1 3 7 4 9 1 2

USER ID DATE OF DATA CREATED 5 DIGIT RANDOM

NUMBER

Fig. 5.4   Data identifier (Did) format

Notation Description
mSSE Multi-user searchable symmetric encryption
GDid Generating data identifier
Did Data identifier
Uid User identity
N 5 digit unique random number
EnData Encrypted data
EnKws Encrypted keywords
W Keywords collection
D User generated data
Pswd Password
GAC Grade based access control
AData Access permission to the data.
Uskw User search keyword
T Encrypted user search keyword (Trapdoor)
Enc Encryption
Dec Decryption
Ver Number of times the data accessed
CSP Cloud service provider

Table 5.1   Notations

1135  SecDSIM: A Framework for Secure Data Storage and Identity Management …

Did ‹← Search(T) and EnData‹← Search(Did): It takes initially Trpdr as input
and searches it on “local index” based on aided keyword search which contains
EnKWs, Did and Ver. It generates output as a set of Dids. Then it takes Did as input
and searches it on the “cloud index” based on precise keyword search and generates
EnData as output.

Data ‹← Dec(EnData): It takes EnData and decrypts.

5.6 � SecDSIM Framework

In this section, we discuss our proposed framework, SecDSIM. It is a secure cryp-
tographic cloud storage based on mSSE which provides identity management using
GAC. SecDSIM is composed of the following four components (see Fig. 5.5):

•	 User: User can be an employee of an organization or a trusted employee of a
partner company.

•	 Dedicated local server (DLS): DLS resides in the own premises of an organiza-
tion which manages outgoing data and incoming data. DLS encrypts the data and
generates the Did for each data received at the first time (as shown in Fig. 5.5)
and decrypts the encrypted data received from the CSP.

•	 Data Verifier Server (DVS): DVS checks the proof of storage-correctness of the
data around the clock by checking the version value of the data.

•	 Credential Generator (CG): CG creates credentials for users.

The following are the steps involved in SecDSIM:

Step 1: Credential generation
Initially CG creates user credentials.

Step 2: Data creation by user
A user creates data and keywords and sends to DLS by using his credentials to
encrypt the data.

Step 3: Preparing encrypted data and passing to CSP communication server
DLS verifies user credentials. If the user credentials are valid, then DLS encrypts
data and keyword using master key and generates Did. The method of generating
Did is given in algorithm 1. Also, DLS sets a version value ver to EnData and the
associated Did (initially this version value is set to zero, i.e., ver = 0) and sends
EnData, Did, and ver to the communication server of CSP. EnKw, Did, and ver
are stored in the local index along with some metadata (e.g., data last accessed)
for further use.

Fig. 5.5   SecDSIM
framework

S. Praveen and G. R. Gangadharan114

Step 4: Accessing the data by the user
	 Whenever a user wants to access data, the user sends keywords to DLS as a

request.
	 DLS verifies his credentials for accessing the data. If his credentials are valid,

then DLS fetches the Enkw from the local index (referred as aided keyword
search, AKS), where a user performs a keyword search.

	 If the EnKw is found in local index, then the corresponding grade in the local
index is verified by the user-provided grade for authorization is based on
GAC (access privileges are implemented using GAC).

	 If the user grade satisfies the accessible grade, then the corresponding Did
from the local index is retrieved and sent to the user.

	 The user selects the Did from the retrieved Did list for the user keyword, then
DLS sends Did as a request to the communication server of CSP for accessing
the encrypted data.

	 The communication server of CSP fetches Did from the cloud index what
we refer to as precise keyword search (PKS), where communication server
performs exact keyword search operation on the cloud index.

	 If Did is found in the cloud index, then the communication server of CSP
sends the corresponding EnData to DLS and updates the ver value of the
retrieved EnData in the cloud index.

	 After receiving the EnData from the communication server of CSP, DLS decrypts
the data and sends it back to the user. DLS updates the ver value of the received
data in local index. The method of search operation is given in algorithm 2.

Step 5: Process of verifying proof of storage correctness
Whenever data verifier wants to check the correctness of the data, DVS sends
Did to the communication server of CSP to get ver. Then DVS compares the
ver value with locally stored ver value of that data to check the correctness of
the data stored in the cloud. DVS updates the ver value in the local index. The
method of proof of storage-correctness is given in algorithm 3.

In our framework, we are generating Did as a keyword for accessing the
encrypted data stored in the cloud. Did is unique and the cloud provider cannot learn
anything from it. The generation of Did is shown in algorithm 1, which ensures
confidentiality and integrity.

1155  SecDSIM: A Framework for Secure Data Storage and Identity Management …

The search operation is shown in algorithm 2. This is composed of three critical op-
erations, i.e., authentication, authorization, and search. Whenever the user wants to
update (modify, append, insert), he provides the Did to get the data from the cloud
and updates it dynamically. Note that the update operation can be performed only
by the owner of the data.

S. Praveen and G. R. Gangadharan116

The proof of storage correctness is shown in algorithm 3. DVS verifies the cor-
rectness of the data by checking ver value stored locally and in the cloud. If any
unauthorized views happen to user data, the ver value automatically increases in the
cloud index but not in the local index. In such cases, DVS informs the user and the
cloud provider. Thus, it achieves the integrity of the user data stored in the cloud
storage server.

5.7 � Experimental Evaluation and Discussions

We implemented SecDSIM in Java over the Java cryptography architecture (JAC)
API [44]. The standard 128-bit and 192-bit AES [45] algorithms are used to imple-
ment the searchable encryption techniques under the Cipher-Block-Chaining mode.
Data created by users are encrypted and stored in a text file. All these text files are
stored in a repository located in the cloud server.

1175  SecDSIM: A Framework for Secure Data Storage and Identity Management …

5.7.1 � Results Analysis

To analyse the data storage in the cloud, we created a set of text files that are less
than or equal to 1 Mb and another set of text files that are greater than 1 Mb. For
example, different sizes of text files including 25, 57, 72, 95, 115, 130, 162, 192,
and 225 kb in set I and 1.24, 2.52, 4.2, and 6.03 Mb in set II.

Figure 5.6 shows encryption and storage timings in milliseconds for different
data sizes starting from 25 kb to 225 kb by using AES 128-bit key and 192-bit key
algorithms in SecDSIM framework.

Figure 5.7 shows encryption and storage timings in milliseconds for large data
sizes ranging from 1.2 to 6.03 Mb by using AES 128-bit key and 192-bit key al-
gorithms in SecDSIM framework. By observing Figs. 5.6 and 5.7, we can notice
that the encryption and storage timings for different sizes of data sets in SecDSIM
framework are linear in nature.

Figure 5.8 presents the difference in data sizes before encryption and after
encryption for data set I by using AES 128-bit key and 192-bit key algorithms.
Figure 5.9 shows the different data sizes for data set II by using AES 128-bit key
and 192-bit key.

Table 5.2 compares encryption timings and data file sizes after encryption using
AES 128-bit key algorithm and AES 192-bit key algorithm in set I. Table 5.3 com-
pares encryption timings and data file sizes after encryption using AES 128-bit key
algorithm and AES 192-bit key algorithm in set II.

Table 5.4 compares the decryption timings of Set I data files using AES 128-bit
key algorithm and AES 192-bit key algorithm. Table 5.5 compares the decryption
timings of Set II data files using AES 128-bit key algorithm and AES 192-bit key
algorithm.

16 16

19

2426 25
27

31
32

16
17

19.7

25
27.4

27

31

32 33

0

5

10

15

20

25

30

35

0 100 200 300

128- Bit Key

192-Bit Key

T
im

e
in

 m
s

Data Size in KB

Fig. 5.6   Set I data encryption timings

S. Praveen and G. R. Gangadharan118

By observing Tables 5.2 and 5.3, we can identify that the encrypted data sizes in
SecDSIM framework are in linear in nature. We also observe that there is a small
difference in AES 128-bit key algorithm and AES 192-bit key algorithm for data
encryption, storing and decryption timings as well as for encrypted data sizes.

5.7.2 � Comparison of Cloud Storages

Table 5.6 compares the encryption results of the SecDSIM framework with broker
cloud communication paradigm (BCCP) model [46]. Figure 5.10 shows the data

16

24

32

43.2 44.3 45.9
48.9

16

25

33

44.6 47.1
49.3

54.7

0

10

20

30

40

50

60

0 2000 4000 6000 8000

128 bit key

192 bit keyT
im

e
in

 m
s

Data Size in KB

Fig. 5.7   Set II data encryp-
tion timings

35.3

70

110
131

159
178

219

262

308

38

75

113
136

172
183

231

274

323

0

50

100

150

200

250

300

350

0 50 100 150 200 250

128-Bit Key

192-Bit Key

A
ft

er
 E

nc
ry

pt
io

n
D

at
a

Si
ze

 in
 K

B

Before Encryption Data Size in KB

Fig. 5.8   Set I data size after encryption

1195  SecDSIM: A Framework for Secure Data Storage and Identity Management …

encryption timings (in seconds) for different data sizes starting from 25 to 225 kb
by using AES 128-bit key algorithm in SecDSIM framework and in BCCP model.
Figure 5.11 shows the encrypted data sizes (in kb) for different data sizes using AES
128-bit key algorithm in SecDSIM framework and in BCCP model. In BCCP, we
observe that cloud data exchange between a user and cloud storage requires more
communications, thereby increasing the encryption and storage timings.

Table 5.7 shows different cryptographic techniques used in different cloud stor-
age schemes and their role in achieving security properties. Our proposed SecD-
SIM framework achieves many security properties compared to other cloud storage
schemes proposed by other reserchers.

Table 5.2   Summary of set 1
S. No. Set I data/file

size before
encryption
(in KB)

No. of words AES(I92) AES(128)

Time (In
milliseconds)

Data/file size
after encryp-
tion (in KB)

Time (in
milliseconds)

Data/file size
after encryp-
tion (in KB)

1 25 4623 16 38 16 35.3
2 57 9824 17 75 16 70
3 72 14,447 19.7 113 19 110
4 95 17,213 25 136 24 131
5 115 20,927 27.4 172 26 159
6 130 23,392 27 183 25 178
7 162 25,857 31 231 27 219
8 192 34,334 32 274 31 262
9 225 40,444 33 323 32 308

AES advanced encryption standard

35.3
159

308
1720.3

3092.48

5079.04

8294.4

38
172
323

2052.4

3434

5401.21

8674.43

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0 2000 4000 6000 8000

128-Bit key

192-Bit key

A
ft

er
 E

nc
ry

pt
io

n
D

at
a

Si
ze

 in
 K

B

Before Encryption Data Size in KB

Fig. 5.9   Set II data size after encryption

S. Praveen and G. R. Gangadharan120

Table 5.4   Comparison of set I description timings
S. No. Set 1 Data/File Size after

Decryption (in KB)
AES (192) AES (128)
Time (in milliseconds) Time (in milliseconds)

1 25 13.1 13
2 57 13.7 13
3 72 14.2 13.4
4 95 15 13.9
5 115 15.7 15
6 130 16.4 15.3
7 162 17.1 16
8 192 17.9 16.8
9 225 18.4 17.6

AES advanced encryption standard

Table 5.5   Comparison of set II description timings
S.No. Set II data/file size after

decryption (in KB)
AES (192) AES (128)
Time (in milliseconds) Time (in milliseconds)

1 25 13 13
2 115 15.6 15
3 225 18.4 17.6
4 1224 31.01 27.7
5 2581 35.23 32.5
6 4301 46 42.7
7 6175 51.9 46.3

AES advanced encryption standard

Table 5.3   Summary of set II
S. no. Set II data/

file size
before
encryption
(in KB)

No. of words AES(192) AES(128)

Time (in
milliseconds)

Data/file size
after encryp-
tion (in KB}

Time (in
milliseconds)

Data/file size
after encryp-
tion (in KB)

1 25 4623 16 38 16 35.3
2 115 20,927 25 172 24 159
3 225 40,444 33 323 32 308
4 1224 219,433 44.6 2052.4 43.2 1720.3
5 2581 462,258 47.1 3434 44.3 3092.48
6 4301 771,206 49.3 5401.21 45.9 5079.04
7 6175 107,384 54.7 8674.43 48.9 8294.4

AES advanced encryption standard

1215  SecDSIM: A Framework for Secure Data Storage and Identity Management …

Table 5.6   SecDSIM versus BCCP
S.No. Data/file size

before encryp-
tion (in KB)

AES (128) AES (128)
Time (in
seconds)

Data/file size
after encryption
(in KB)

Time (in
seconds)

Data/file size
after encryption
(in KB)

1 25 0.5 129.04 0.016 35.3
2 57 0.7 129.04 0.016 70.01
3 72 0.9 221.65 0.019 110
4 95 0.9 222.65 0.027 131
5 115 0.9 376.18 0.022 159
6 130 1.0 406.25 0.025 178
7 162 1.2 471.47 0.027 219
8 192 1.5 477.0 0.031 262
9 225 1.9 477.15 0.032 308

0

100

200

300

400

500

600

0 50 100 150 200 250

BCCP

Proposed Method

D
at

a
Si

ze
 (

A
ft

er
 E

nc
ry

pt
io

n)
 in

 K
B

Data Size (Before Encryption) in KB

Fig. 5.11   Comparison of encrypted data sizes with broker cloud communication paradigm (BCCP)

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

0 50 100 150 200 250

BCCP Time

Proposed Time

T
im

e
in

 S
ec

on
ds

Data Size in KB

Fig. 5.10   Comparison of encryption timings with broker cloud communication paradigm (BCCP)

S. Praveen and G. R. Gangadharan122

5.8 � Concluding Remarks

In this chapter, we addressed the problem of storing data in the cloud and retrieving
data securely and efficiently using the mSSE scheme, which provides an efficient
isolation and secure storage mechanism for users’ data and an identity management
scheme using GAC. The research question that this chapter addresses is as follows:
Can we develop a provably secure searchable encryption scheme with efficient se-
cure cloud storage which is supportable for multi-user applications? For this, we
constructed a secure data storage scheme in the cloud that comprises two steps:

•	 Create a secure index also called a local index for user data and create a unique
data identifier for the user data.

•	 Encrypt and encode the user data and data identifier and store encrypted user
data in the cloud as well as a data identifier in the cloud index for further access.

We implemented identity management using GAC when a user performs a search
on own/other’s data.

In our future work, we will attempt to further enhance our SecDSIM model for
multimedia data and to address searchable symmetric encryption with wild card sup-
port and proximity-based keyword search on a local index to improve the efficiency.

References

1.	 Brodkin J (2 July 2008) Gartner: seven cloud-computing security risks. http://h3compuvision.
com/yahoo_site_admin/assets/docs/Cloud_Computing_Security_Risk.276113314.pdf. Accessed
July 2013

Table 5.7   Role of cryptography in the cloud storage schemes
Cloud storage scheme Cryptographic technique Security properties and techniques

achieved
Kamara et al. [31] Searchable encryption,

attribute-based encryption
Confidentiality

Kamara et al. [32] Searchable encryption, search
authenticator

Confidentiality, global integrity, verifi-
ability, and searchability

Barua et al. [23] Attribute-based encryption,
identity-based encryption

Access control, confidentiality

Zarandioon et al. [25] Attribute-based encryption and
signature

Access control

Chow et al. [47] Group signature, identity-based
broadcast encryption

Access control, confidentiality

Seiger et al. [48] Symmetric encryption with
IDAs and CMAC

Confidentiality, integrity, and
availability

SecDSIM Multi-user searchable sym-
metric encryption, grade-based
access control

Confidentiality, integrity, effi-
cient retrieval, data sharing, and
verifiability

IDAs Information Dispersal Algorithms; CMAC Cipher based Message Authentication Code

http://h3compuvision.com/yahoo_site_admin/assets/docs/Cloud_Computing_Security_Risk.276113314.pdf
http://h3compuvision.com/yahoo_site_admin/assets/docs/Cloud_Computing_Security_Risk.276113314.pdf

1235  SecDSIM: A Framework for Secure Data Storage and Identity Management …

  2.	 Chandramouli R, Mell P (March 2010) State of security readiness. Crossroads Plugging
Cloud 16(3):23–25

  3.	 Subashini S, Kavitha V (Jan 2001) A survey on security issues in service delivery models of
cloud computing. J Netw Comput Appl 34(1):1–11

  4.	 Zissis D, Lekkas D (March 2012) Addressing cloud computing security issues. Future Gener
Comp Sy 28(3):583–592. doi:10.1016/j.future.2010.12.006

  5.	 Khatibi V, Khatibi E (2012) Issues on cloud computing: a systematic review. International
conference on computational techniques and mobile computing (ICCTMC’2012), Singapore,
14–15 Dec

  6.	 Cloud Security Alliance (2011) Security guideline for critical areas of focus in cloud comput-
ing v3.0. Cloud Security Alliance, Singapore

  7.	 Mell P, Grance T (Sept 2011) The NIST definition of cloud computing. NIST special publica-
tion 800-145. National Institute of Standards and Technology (NIST), Gaithersburg

  8.	 Jansen W, Grance T (2011) Guidelines on security and privacy in public cloud computing.
National Institute of Standards and Technology (NIST), Gaithersburg

  9.	 Fiat A, Naor M (1994) Broadcast encryption. In: Stinson DR (ed) Advances in cryptology—
CRYPTO ’93. Lecture notes in computer science, vol 773. Springer, Berlin, pp 480–491

10.	 Garay JA, Staddon J, Wool A (2000) Long-lived broadcast encryption. In: Bellare M (ed)
Advances in cryptology—CRYPTO 2000. Lecture notes in computer science, vol 1880.
Springer, Berlin, pp 333–352

11.	 Halevy D, Shamir A (2002) The LSD broadcast encryption scheme. In: Yung M (ed) Advanc-
es in cryptology—CRYPTO 2002. Lecture notes in computer science, vol 2442. Springer,
Berlin, pp 47–60

12.	 Boneh D, Gentry C, Waters B (2005) Collusion resistant broadcast encryption with short ci-
phertexts and private keys. Advances in cryptology—CRYPTO 2005. Lecture notes in com-
puter science, vol 3621. Springer, Berlin, pp 258–275

13.	 Kumbhare A, Simmhan Y, Prasanna V (2012) Cryptonite: a secure and performant data re-
pository on public clouds. Proceedings of the IEEE 5th international conference on cloud
computing, Honolulu, 24–29 June, pp 510–517

14.	 Popa RA, Lorch JR, Molnar D, Wang HJ, Zhuang L (2010) Enabling security in cloud storage
SLAs with CloudProof. Microsoft Tech Rep 46:1–12

15.	 Shamir A (1985) Identity-based cryptosystems and signature schemes. In: Blakley GR,
Chaum D (eds) Advances in cryptology—proceedings of CRYPTO’84. Lecture notes in
computer science, vol 196. Springer, New York, pp 47–53

16.	 Boneh D, Franklin M (2001) Identity-based encryption from the Weil pairing. In: Kilian J
(ed) Advances in cryptology—CRYPTO 2001. Lecture notes in computer science, vol 2139.
Springer, New York, pp 213–229

17.	 Canetti R, Halevi S, Katz J (2003) A forward-secure public-key encryption scheme. In: Bi-
ham E (ed) Advances in cryptology—EUROCRYPT 2003. Lecture notes in computer sci-
ence, vol 2656. Springer, Berlin, pp 255–271

18.	 Boneh D, Boyen X (2004) Efficient selective-id secure identity based encryption without
random oracles. In: Cachin C, Camenisch JL (eds) Advances in cryptology—EUROCRYPT
2004. Lecture notes in computer science, vol 3027. Springer, Berlin, pp 223–238

19.	 Sahai A, Waters B (2005) Fuzzy identity based encryption. In: Cramer R (ed) Advances in
Cryptology—EUROCRYPT 2005. Lecture notes in computer science, vol 3494. Springer,
Berlin, pp 457–473

20.	 Nali D, Adams C, Miri A (2005) Using threshold attribute-based encryption for practical
biometric-based access control. Int J Netw Secur 1(3):173–182

21.	 Goyal V, Pandey O, Sahai A, Waters B (2006) Attribute-based encryption for fine-grained
access control of encrypted data. Proceedings of the 13th ACM conference on computer and
communications security, Alexandria, 30 Oct–3 Nov, pp 89–98

22.	 Bethencourt J, Sahai A, Waters B (2007) Cipher text-policy attribute-based encryption. Pro-
ceedings of the IEEE symposium on security and privacy, Berkeley, 20–23 May. IEEE com-
puter society, Los Alamitos, pp 321–334

S. Praveen and G. R. Gangadharan124

23.	 Barua M, Liang X, Lu R, Shen X. (2011) ESPAC: enabling security and patient-centric ac-
cess control for eHealth in cloud computing. Int J Secur Netw 6(2/3):67–76. doi:10.1504/
IJSN.2011.043666

24.	 Waters B (2011) Cipher text-policy attribute-based encryption: an expressive, efficient, and
provably se-cure realization. Public key cryptography—PKC 2011. Lecture notes in com-
puter science, vol 6571. Springer, Berlin, pp 53–70

25.	 Zarandioon S, Yao D, Ganapathy V (2012) K2C: cryptography cloud storage with lazy re-
vocation and anonymous access. Security and privacy in communication networks. Lecture
notes of the institute for computer sciences, vol 96. Springer, Berlin, pp 59–76

26.	 Goldreich O, Ostrovsky R (1996) Software protection and simulation on oblivious RAMs. J
ACM 43(3):431–473

27.	 Song D, Wagner D, Perrig A (2000) Practical techniques for searching on encrypted data.
Proceedings of the IEEE symposium on research in security and privacy, Berkeley, 14–17
May, pp 44–45

28.	 Boneh D, Crescenzo GD, Ostrovsky R, Persiano G. Public key encryption with keyword
search. In: Cachin C, Camenisch JL (eds) Advances in cryptology—EUROCRYPT 2004.
Lecture notes in computer science, vol 3027. Springer, Berlin, pp 506–522

29.	 Goh E-J (2003) Secure indexes. Tech Rep 216. IACR ePrint Cryptography Archive
30.	 Curtmola R, Garay J, Kamara S, Ostrovsky R (2006) Searchable symmetric encryption: im-

proved definitions and efficient constructions. Proceedings of the 13th ACM conference on
computer and communications security, Alexandria, 30 Oct–3 Nov, pp 79–88

31.	 Kamara S, Lauter K (2010) Cryptographic cloud storage. In Sion R, Curtmola R, Dietrich S,
Kiayias A, Miret JM, Sako K, Sebé F (eds) Proceedings of the 14th international conference
on financial cryptography and data security. Lecture notes in computer science, vol 6054.
Springer, Berlin, pp 136–149

32.	 Kamara S, Papamanthou C, Reader T (2011) CS2: a searchable cryptographic cloud storage
system. Microsoft Res Tech Rep MSR-TR-2011-58

33.	 Kamara S, Papamanthou C, Roeder T (2012) Dynamic searchable symmetric encryption.
Proceedings of the 2012 ACM conference on computer and communications security (CCS
’12), pp 965–976. doi:10.1145/2382196.2382298

34.	 Li M, Yu S, Cao N, Lou W (2011) Authorized private keyword search over encrypted data
in cloud computing. Proceedings of the 31st IEEE international conference on distributed
computing systems (ICDCS), pp 383–392. doi:10.1109/ICDCS.2011.55

35.	 Liu C, Zhu L, Wang M, Tan Y (2013) Search pattern leakage in searchable encryption: attacks
and new constructions. Cryptology ePrint Archive, report 2013/163

36.	 Islam MS, Kuzu M, Kantarcioglu M (2012) Access pattern disclosure on searchable encryp-
tion: ramification, attack and mitigation. ePrint Archive. https://www.internetsociety.org/
sites/default/files/06_1.pdf

37.	 Zhu Y, Ahn GJ, Hu H, Wang H (2010) Cryptographic role-based security mechanisms based
on role-key hierarchy. Proceedings of the 5th ACM symposium on information, computer
and communications security (ASIACCS ’10), pp 314–319

38.	 Zhou L, Varadharajan V, Hitchens M (2011) Enforcing role-based access control for secure
data storage in the cloud. Comp J 54(10):1675–1687. doi:10.1093/comjnl/bxr080

39.	 Zhou L, Varadharajan V (June 2011)Crypto-based access control schemes. INSS Technical
Report, INSS-TechReport-2011.06. http://www.comp.mq.edu.au/research/inss/publications/.
Accessed July 2013

40.	 Torres J, Nogueira M, Pujolle G (2013) A survey on identity management for the future net-
work. Comm Surv Tutor IEEE 15(2):787–802. doi: 10.1109/SURV.2012.072412.00129

41.	 Celesti A, Tusa F, Villari M, Puliafito A (2010) Security and cloud computing: intercloud
identity management infrastructure. Proceedings of the 19th IEEE international workshops on
enabling technologies: infrastructures for collaborative enterprises (WETICE), pp 263–265

42.	 NIST (26 Aug 2009) A survey of access control models, working draft. http://csrc.nist.
gov/news_events/privilege-management-workshop/PvM-Model-Survey-Aug26-2009.pdf.
Accessed July 2013

https://www.internetsociety.org/sites/default/files/06_1.pdf
https://www.internetsociety.org/sites/default/files/06_1.pdf
http://csrc.nist.gov/news_events/privilege-management-workshop/PvM-Model-Survey-Aug26-2009.pdf
http://csrc.nist.gov/news_events/privilege-management-workshop/PvM-Model-Survey-Aug26-2009.pdf

1255  SecDSIM: A Framework for Secure Data Storage and Identity Management …

43.	 Tygar JD (Dec 2002) Security with privacy. Briefing from the Information Science and Tech-
nology Study Group on Security and Privacy. http://www.cs.berkeley.edu/~tygar/papers/
ISAT-final-briefing.pdf. Accessed Feb. 2013

44.	 Java Cryptography Architecture (JAC) (n.d.) API specification and reference. http://docs.
oracle.com/javase/1.4.2/docs/guide/security/CryptoSpec.html. Accessed Feb 2013

45.	 National Institute of Standards and Technology (NIST) (2001) FIPS 197, Advanced Encryp-
tion Standard (AES)

46.	 Singh N, Raj G (July 2012) Security on BCCP through AES encryption technique. Int J Eng
Sci Adv Technol 2(4):813–819

47.	 Chow SSM, Chu CK, Huang X, Zhou Y, Deng RH. Dynamic secure cloud storage with prov-
enance. Cryptography and security: from theory to applications. Lecture notes in computer
science, vol 6805. Springer, Berlin, pp 442–464

48.	 Seiger R, Stephan G, Schill A (Sept 2011) SecCSIE: a secure cloud storage integrator for
enterprises. Proceedings of the 13th IEEE conference on commerce and enterprise computing
(CEC), pp 252–255

http://www.cs.berkeley.edu/~tygar/papers/ISAT-final-briefing.pdf
http://www.cs.berkeley.edu/~tygar/papers/ISAT-final-briefing.pdf
http://docs.oracle.com/javase/1.4.2/docs/guide/security/CryptoSpec.html
http://docs.oracle.com/javase/1.4.2/docs/guide/security/CryptoSpec.html

Chapter 6
CloudReports: An Extensible Simulation
Tool for Energy-Aware Cloud Computing
Environments

Thiago Teixeira Sá, Rodrigo N. Calheiros and Danielo G. Gomes

Abstract  The cloud computing paradigm integrates several technological models
to provide services to a large number of clients distributed around the world. It
involves the management of large data centers that represent very complex sce-
narios and demand sophisticated techniques for optimization of resource utiliza-
tion and power consumption. Since the utilization of real testbeds to validate such
optimization techniques requires large investments, simulation tools often represent
the most viable way to conduct experimentation in this field. This chapter pres-
ents CloudReports, an extensible simulation tool for energy-aware cloud computing
environments to enable researchers to model multiple complex simulation scenarios
through an easy-to-use graphical user interface. It provides report generation fea-
tures and a simple API (Application Programming Interface) that makes possible the
development of extensions that are added to the system as plugins. CloudReports
is an open-source project composed of five mandatory modules and an optional
extensions module. This chapter describes all these modules, their integration with
the CloudSim toolkit, and a case study that demonstrates an evaluation of power
consumption of data centers with a power model that is created as a CloudReports
extension.

Keywords  Cloud computing · Simulation tools · Energy-aware distributed systems ·
Energy-aware cloud computing · Infrastructure virtualization · Data center ·
Infrastructure management

D. G. Gomes () · T. Teixeira Sá
Group of Computer Networks, Software Engineering and Systems (GREat),
Universidade Federal do Ceará, Av. Mister Hull, s/n, Campus do Pici,
bloco 942-A, Fortaleza—CE 60455–760, Brazil
e-mail: danielo@ufc.br

T. Teixeira Sá
e-mail: thiagosa@great.ufc.br

R. N. Calheiros
Department of Computing and Information Systems, The University of Melbourne,
Parkville, VIC 3010, Australia
e-mail: rnc@unimelb.edu.au

127© Springer International Publishing Switzerland 2014
Z. Mahmood (ed.), Cloud Computing, Computer Communications and Networks,
DOI 10.1007/978-3-319-10530-7_6

128 T. Teixeira Sá et al.

6.1 � Introduction

The cloud computing paradigm proposes the integration of different technological
models to provide hardware infrastructure, development platforms, and applica-
tions as services available worldwide. It involves complex scenarios composed of
multiple large data centers that provide services to clients located around the world
and with different sets of requirements. The management of such complex environ-
ments demand new system architectures, protocols, and policies in order to enable
optimization of resources utilization and power consumption. Since the utilization
of real testbeds to validate experiments on this field requires large investments and
makes replication and control of experiments harder, simulation alternatives have
been broadly used. However, simulation tools either generate a large amount of
data as output or force researchers to develop their own techniques to collect data,
which demands an extra effort to organize and extract useful results. Thus, a tool
that combines the flexibility and extensibility of simulation frameworks with func-
tionalities that facilitate modeling and data collection would represent a significant
contribution to the cloud computing research field.

Aiming to provide this contribution, CloudReports has been developed as an ex-
tensible simulation tool for energy-aware cloud computing environments. CloudRe-
ports uses the CloudSim toolkit [1] as its simulation engine and enables researchers
to model multiple complex simulation environments through an easy-to-use graphi-
cal user interface. CloudReports also provides report generation features which au-
tomatically organizes simulation results and presents them with a high level of de-
tails. Additionally, it provides an API that enables the creation of extensions that are
loaded as plugins using the Java Reflection API. CloudReports is an open-source
project designed with multiple modules. This chapter describes all these modules
and how they are integrated with CloudSim. Moreover, it presents a case study that
demonstrates an evaluation of power consumption of two data centers with different
power models, one of which is created as a CloudReports extension.

The rest of the chapter is organized as follows. Section 6.2 reports the state-of-
the-art simulation tools aimed at distributed systems and energy-aware cloud com-
puting environments. Sections 6.3 and 6.4 provide an overview of the CloudSim
toolkit; describe the proposed CloudReports thoroughly and suggest how simulation
environments are modeled to depict the software architecture with all its modules.
Section 6.5 presents a case study that uses reports generation and data exporting
features and demonstrates its application on the evaluation of power consumption
aspects of cloud data centers. Finally, Section 6.6 presents conclusions and future
work opportunities.

6.2 � Related Works

A fair amount of simulation tools aimed at distributed systems and grid computing
can be found, but alternatives for simulating energy-aware cloud computing envi-
ronments are still very scarce. For example, the SimGrid framework [2] provides

1296  CloudReports: An Extensible Simulation Tool for Energy-Aware Cloud …

means to simulate parallel and distributed large-scale systems, and the GridSim
toolkit [3] offers a flexible way to model distributed environments, applications,
resources, and scheduling algorithms. However, these tools lack the key cloud com-
puting concept of resource virtualization, thus creating the need of extensions or
entirely new simulators. A toolkit that exemplifies such extensions is presented by
Sulistio et al. [4], notwithstanding it is not specifically focused on cloud computing
environments.

Regarding cloud computing simulation tools, the iCanCloud platform [5] is an
open-source project written in C++ that aims to model and simulate cloud comput-
ing systems. It is based on the OMNET network simulation framework and offers a
POSIX-based API for modeling applications. However, it does not provide means
to model or simulate any aspect related to power consumption.

The GreenCloud simulator [6] is an extension to the network simulator ns2 with
additional features to analyze cloud computing environments. It offers power con-
sumption modeling for servers and network elements such as switches and links.
However, it does not support virtual machines representation and application-level
aspects such as job scheduling policies.

The CloudSim framework [1], which is described in the next section, is a simu-
lation engine that supports virtual machines representation, creation of schedul-
ing algorithms, and power consumption modeling. CloudReports is a tool that uses
CloudSim as its simulation engine and manages all the data created during experi-
ments. Furthermore, it provides a graphical user interface for modeling and manag-
ing environments to be simulated.

Aksanli et al. [7] performed a comparative study where they analyzed data center
simulation tools in order to evaluate green computing performance. The study high-
lights the features of eight simulators according to the types of resources that are
simulated, how workloads are modeled, the queuing model that is used, the ability
to simulate power models, the support to virtual machines simulation, the licensing
applied to the project, and the type of information that each simulator generates as
output. It also introduces a new simulator (GENSim) and evaluates its use to ana-
lyze different green energy integration methods in a data center in order to find the
most energy-efficient solution. Additionally, Kocaoglu et al. [8] explore some of the
key aspects of green computing and communications as it stresses the importance of
simulation tools for evaluating new system architectures and protocols. Finally, op-
portunities and challenges that arise with the advent of energy-aware cloud comput-
ing environments simulators are discussed by Buyya et al. [9], and results obtained
from the use of these tools are presented in the derived works [1, 10, 11].

6.3 � CloudSim Toolkit

CloudSim is a toolkit for modeling and simulation of cloud computing environments.
It offers abstractions representing physical hosts, data centers, virtual machines, and
costumers of cloud services. Latest versions of the tool also support modeling of in-
ternal data center networks and energy consumption of different physical elements.

130 T. Teixeira Sá et al.

Abstractions provided by the toolkit support mainly simulation of IaaS-related (In-
frastructure as a Service) components, but they can be extended by users to support
simulation of PaaS (Platform as a Service), and SaaS (Software as a Service).

A simulation is constituted by the interaction between cloud providers (repre-
sented as data centers) and cloud users (modeled in the form of brokers, that may
represent one or more users generating requests for the cloud providers). Users can
query data center about its capabilities, request creation of virtual machines, and
submit requests for execution of applications (named Cloudlets in CloudSim). The
decision about how the requested virtual machines are mapped to the data center’s
hosts is defined by a provisioning policy. Similarly, decisions on how the host re-
sources are divided among VMs (Virtual Machines) running on the host, and how
resources assigned to a VM are divided among applications running on it are de-
fined by VM scheduling and Cloudlet scheduling policies, respectively. A few de-
fault policies are part of CloudSim, and users can develop and evaluate their own
policies for these purposes.

The modeling of application execution is achieved with a field length in the
Cloudlet object that represents the amount of computing instructions required to
complete the execution of the Cloudlet. CPU cores, which are other characteristic
of hosts, have a processing capacity expressed in instructions per second. Notice
that both the properties are generic in the sense that no specific unit for measuring
the processing capacity and processing requirement is specified. Therefore, cores
can either be modeled based on well known CPU benchmarks, such as the SPEC
CPU, or can assume a user-defined arbitrary value to represent relative computing
capacity among different processors and relative execution time among Cloudlets.
When a Cloudlet is scheduled to a specific VM, an estimation of the required execu-
tion time is computed based on the amount of resources allocated to the VM, the
specific scheduling policy in place, and the number of other Cloudlets executing on
the same machine. Once the estimation is calculated, an internal event is generated
in the data center entity and scheduled for the estimated finish time. When such an
event is triggered, executions of Cloudlets are updated, and the number of instruc-
tions already computed is updated. When all the instructions of a Cloudlet are com-
puted, the Cloudlet is considered completed. At each update round, the expected
completion time of Cloudlets is also recalculated and update events are generated
accordingly because the number of Cloudlets in a VM may have changed, and thus
more resources might have become available for other Cloudlets, that might have
reduced the expected time for completion.

Besides abstractions to model cloud-related entities, CloudSim contains a dis-
crete-event simulation core that coordinates interactions between cloud providers
and cloud users. The core receives messages from the entities, controls clock ad-
vance, and delivers messages to the destination entities respecting event delivery
time stamps. In the earlier versions of CloudSim, the SimJava [12] library provided
the simulation core. However, the utilization of such a library imposes restrictions
on the scalability and performance of CloudSim. This is because the SimJava en-
gine is based on threads, and in fact, three threads were generated for each entity:
one for the input channel (to receive messages from other entities), the second for

131

the output channel (to send messages to other entities) and the third for the entity
itself (to control the entity operation). As threads are scarce resources that are man-
aged by operating systems, there is a limit on the maximum number of threads that
can run in the operating system at any moment. This indirectly limits the scalability
of the simulation, as the number of users and data centers are bounded by such a
limit. Furthermore, utilization of threads generates inefficiencies at the operating
system scheduling process because, eventually threads that have no operation to
perform will receive CPU time.

To counter the above factors limiting the scalability of the simulator, CloudSim,
since its version 2.0, contains a single-threaded simulation core that replaced the
SimJava library. In order to keep backward compatibility with simulations written
with earlier versions of CloudSim, the new core implements the same APIs than
SimJava and contains equivalent objects that are accessible by user-generated code.
Therefore, data centers and users still extend a SimEntity class whose message pas-
sage is controlled by the simulation core; and messages are SimEvents that contain
a destination, tag, send time, and a generic payload, which is unpacked and inter-
preted by each entity. The new core also adds new features to the simulation engine
such as the possibility of defining predicates that enable filtering events based on
their characteristics, such as source, destination, and type. Filtered events can be
handled in a different way by the system, if required for meeting particular demands
of CloudSim users.

At the end of a simulation, information about execution time of Cloudlets, cost
related to resource usage, and other user-defined information are available in ob-
jects generated during the execution. CloudSim users are responsible for writing the
code for extracting such information from objects and presenting them. Neverthe-
less, the only type of output offered by CloudSim toolkit is printing in a command
line terminal. Similarly, the only native way offered to CloudSim users to write a
simulation is writing the corresponding Java code. Therefore, if richer visualization
or more intuitive methods for expression of simulations are required, they have to
be written by users. This motivated the design and development of CloudReports,
which is detailed in the next section.

6.4 � CloudReports Simulation Tool

CloudReports is a highly extensible simulation tool for energy-aware Cloud Com-
puting environments. The tool uses the CloudSim toolkit as its simulation engine
and provides features such as a graphic user interface, reports generation, simula-
tion data exportation, and an API that enables researchers to develop their own
policies by creating extensions. CloudReports simplifies the creation and configura-
tion of simulation environments which can be manipulated and saved for later use.
Researchers can create multiple data centers with different amount of resources
and configure each of their hosts individually. Moreover, client behavior can be
customized by setting the amount of virtual machines to be deployed and specifying

6  CloudReports: An Extensible Simulation Tool for Energy-Aware Cloud …

132 T. Teixeira Sá et al.

the applications (Cloudlets) that will run on them. The resources required by each
virtual machine is also entirely customizable.

CloudReports allows simulations to be executed in batches, which means that re-
searchers can determine how many realizations must be executed and the amount of
time that will be simulated. After completion of all simulations, the tool generates a
full report composed of a log of operations and several charts with detailed informa-
tion related to resources usage, virtual machine allocations, Cloudlet execution, and
data center energy consumption. Furthermore, additional files are created to enable
output data to be exported to third-party applications such as MATLAB and Octave.

As previously mentioned, CloudSim uses scheduling policies and provisioning
policies to make decisions during the simulation process. CloudReports provides
an API that enables researchers to develop new policies which are loaded during
execution time using the Java Reflection API. In order to develop an extension,
researchers do not need to make any modifications to the CloudReports source code
whatsoever. Notwithstanding, due to the modular characteristics of CloudReports
architecture, new scheduling and provisioning algorithms can be created separately
without loss of generality while making use of all CloudSim features. The following
subsections address CloudReports simulation environments, its core entities, the
extensions functionalities, how simulations are managed, the persistence layer, the
reports manager, and the graphical user interface.

6.4.1 � Simulation Environments

CloudReports manages one or more simulation environments simultaneously.
These environments reproduce the interaction between IaaS providers and cloud
users. As depicted in Fig. 6.1, the provider owns a cloud with an arbitrary number
of data centers, which are modeled according to their operating systems, proces-
sors architecture, hypervisors, available network bandwidth, utilization costs, and
virtual machines allocation policies. Moreover, each data center is composed of a
customizable number of hosts that are configured according to their available RAM,
network bandwidth, storage capacity, processing power, virtual machine schedul-
ers, and energy consumption models.

Clients are modeled through a resource utilization profile and settings regarding
their virtual machines that will be deployed on hosts located at the provider’s infra-
structure. The resource utilization profile describes the clients’ applications and a
high-level policy that selects data centers to deploy virtual machines. This policy is
represented by a simulation entity called broker that also defines how Cloudlets will
be managed, and in which virtual machine they will be executed.

Cloudlets are modeled using characteristics such as necessary amount of proces-
sor cores, size in million instructions per second (MIPS), length of input and output
files that are transferred between clients and providers, and utilization models for
CPU, bandwidth, and memory. A virtual machine configuration includes its im-
age size, number of processors, processing capacity in MIPS, amount of RAM and
bandwidth, type of hypervisor, and Cloudlet scheduling policy.

133

6.4.2 � Software Architecture

The CloudReports software architecture follows a modular design as depicted in
Fig. 6.2. It currently contains five mandatory modules and an optional extensions
module. The next sections describe in detail the functionalities of each of these ele-
ments and how they interact with each other.

6.4.2.1 � CloudReports Core Entities

The core entities define the basic structure supporting CloudReports operation. They
consist of classes that represent entities such as customers, data centers, physical

Fig. 6.1   CloudReports’ simulation environment

Fig. 6.2   Modular software
architecture of CloudReports

6  CloudReports: An Extensible Simulation Tool for Energy-Aware Cloud …

134 T. Teixeira Sá et al.

machines, virtual machines, networks, and storage area networks. Although being
a part of CloudReports, these classes work in tandem with the Simulation Manager
module to translate environments created through the graphical user interface into
CloudSim entities, which are the only entities that are used during simulation time.
Therefore, CloudReports works as an abstraction layer that helps users to manipu-
late simulation data easily, whereas CloudSim remains as the simulation engine.

Additionally, some of CloudReports core entities help in the management aspect
of simulation events and settings of the software itself. These include virtual ma-
chine migrations, true random number generation, reports data, and settings such as
number of simulations to perform and e-mail notifications.

In order to enable researchers to create new policies, CloudReports provides
a simple API that consists of a set of enumerations, interfaces, and an extensions
loader. The enumerations classify all kinds of extensions that CloudReports sup-
port, whilst the extensions loader is responsible for loading all extensions during the
execution time using the Java Reflection API.

Table 6.1 lists all types of enumerations and shows which classes must be in-
herited as well as which interfaces must be implemented in order to develop an
extension.

The AllocationPolicy extension extends VmAllocationPolicy and implements
VmAllocationPolicyExtensible. It determines how data centers allocate virtual ma-
chines among servers. The BrokerPolicy extends the Broker class and describes
a set of rules that clients make use to define how virtual machines are sent to al-
location and how Cloudlets are sent to execution considering all the available data
centers. The BwProvisioner, RamProvisioner, and PeProvisioner extensions inherit
from CloudSim’s namesake classes and define how servers provide bandwidth,
RAM, and processing elements to the virtual machines they allocate. Moreover,
the VmScheduler extension inherits from CloudSim’s VmScheduler and describes
how servers schedule the execution of these virtual machines. The CloudSched-
uler inherits from CloudSim’s CloudletScheduler that determines how virtual
machines schedule the Cloudlets they run. The UtilizationModel extension imple-
ments CloudSim’s UtilizationModel interface and enables defining how Cloudlets

Table 6.1   List of enumerations, classes, and interfaces used to develop CloudReports extensions
CloudReports enumeration Extensions

Must inherit from Must implement
AllocationPolicy VmAllocationPolicy VmAllocationPolicy—Exten-

sible
BrokerPolicy Broker –
BwProvisioner BwProvisioner –
RamProvisioner RamProvisioner –
PeProvisioner PeProvisioner –
VmScheduler VmScheduler –
CloudletScheduler CloudletScheduler –
UtilizationModel – UtilizationModel
PowerModel – PowerModel

135

make use of the resources provided to them. Finally, the PowerModel extension
implements CloudSim’s PowerModel interface and makes it possible to create new
CloudSim power models.

6.4.2.2 � Extensions

The extensions module is entirely composed of user-implemented code. Although
its existence is not mandatory, it represents one of the main features of CloudRe-
ports, as it enables researchers to simulate their own algorithms without modifying
CloudSim or CloudReports source code. By following a small set of rules, research-
ers can add new virtual machine allocation policies, data center brokers, Cloudlet
schedulers, resource utilization models, virtual machine schedulers, processing ele-
ments, RAM, and bandwidth provisioners. Moreover, this module also enables the
development of new power consumption models. CloudSim 3.0 already offers over
a dozen types of power consumption models including options with specific hard-
ware specifications. Researches can either extend these models or create entirely
new ones as long as they follow the rules set by the extensions API provided by
CloudReports.

In order to create a new extension, the researcher first needs to identify which of
the aforementioned extension categories better models the algorithm that needs to
be simulated. For instance, if the researcher needs to simulate a new broker policy,
Table 6.1 states that it is necessary to implement a new class that inherits from
CloudReport’s Broker class. This new class will only contain code that is related
to the new broker policy. Therefore, the researcher will be able to focus entirely
on creating the new algorithm instead of having to deal with code that is related
to simulator configuration. After creating this new class, a JAR (Java Archive) file
needs to be created with the implementation of the new broker policy including all
possible code dependencies it may have. Finally, a descriptive XML (Extensible
Markup Language) file is created with all information that is necessary for Clou-
dReports to load the new extension. Technically detailed information regarding
development of extensions can be found in CloudReports project’s official reposi-
tory on GitHub.

6.4.2.3 � Simulation Manager

The simulation manager module consists of two basic elements, namely an enti-
ty factory and a simulations handler. The entity factory is responsible for turning
CloudReports environments into a set of CloudSim entities, which will then be
used during simulation time. The simulations handler retrieves all settings related to
simulation execution and starts the simulation process. After the execution of each
simulation instance, it triggers the generation of the respective report and then starts
the next realization. The module is also responsible for sending e-mail notifications
and handling simulation time errors.

6  CloudReports: An Extensible Simulation Tool for Energy-Aware Cloud …

136 T. Teixeira Sá et al.

6.4.2.4 � Persistence Layer

The persistence layer stores all application and simulation data in a single SQLite
database file per environment. This approach facilitates the management of mul-
tiple environments as each file can be used independently and handled without ex-
ecution of the application for means of backup. Moreover, since each environment
makes use of a different database, it prevents tables from getting too large and keeps
data access time reasonably low. However, since SQLite databases are not suitable
for applications that need to process very large amounts of data, it is recommended
that researchers replace the persistence layer module with more robust database so-
lutions if they wish to perform highly scalable data-intensive simulations and keep
data access time at low levels.

6.4.2.5 � Reports Manager

The reports manager collects, organizes, and processes simulation data from da-
tabase files and generates simulation reports. The reports are composed of HTML
(HyperText Markup Language) and raw data files. The HTML files contain general
information about data centers and customers, which include overall and per host
power consumption. The report manager uses all simulation data to generate charts
automatically and include them in the HTML report files. Raw data files consist
of a compilation of simulation data in a single text file that is ready to be imported
by third-party applications such as MATLAB and Octave. This module acts every
time the simulation manager triggers a report generation. After completing a re-
port, it notifies the simulation manager so the next simulation realization can take
place.

6.4.2.6 � Graphical User Interface

As the topmost module, the graphical user interface provides a simple way for re-
searchers to manage environments and keep track of simulation progress. The GUI
(Graphical User Interface) allows creation and manipulation of data centers, hosts,
storage area networks, customers, virtual machines, and network links. Further-
more, researchers can set data centers’ costs of operation, modify application set-
tings, select scheduling and provisioning policies, and resource utilization models,
and also determine which environments should be used during the next simulations
batch. This module is written using the Swing Java GUI widget toolkit, thus, it is
also platform-independent and highly customizable. Figure 6.3 shows a screenshot
of CloudReports GUI.

137

6.5 � Case Study

The simulation environments created using CloudReports are composed of an IaaS
provider and an arbitrary amount of cloud users. The IaaS provider may have one
or more data centers, each of which are modeled independently with characteristics
such as virtual machines allocation policies, operational costs and resource utiliza-
tion thresholds. Moreover, it is possible to configure every data center’s host indi-
vidually. The cloud users are modeled as a set of virtual machines to be allocated
by the infrastructure managed by the IaaS provider and a utilization profile. Each
virtual machine can be configured using characteristics such as CPU and memory
demand, type of hypervisor, and a Cloudlet scheduler. The utilization profile deter-
mines how Cloudlets are going to behave regarding resource utilization once they
are executed. Furthermore, it provides a brokering policy through which it is pos-
sible to determine which data center is going to deploy a specific virtual machine.

As workload modeling plays a decisive role on the results of simulation experi-
ments, it is necessary to use a model that is as similar as possible to real data center
environments. Therefore, the experiments presented in this case study made use of
data collected from the Google Cluster Data project which makes publicly available
a set of resource utilization traces from a real cluster with approximately 12,000
machines managed by Google.

The workload applied to the simulated environments is modeled in CloudSim as
tasks which are represented by the Cloudlet class, to be run on virtual machines that

Fig. 6.3   A screenshot of CloudReports graphical user interface

6  CloudReports: An Extensible Simulation Tool for Energy-Aware Cloud …

138 T. Teixeira Sá et al.

are allocated in hosts. On the other hand, the traces extracted from Google Cluster
Data have information regarding the use of resources (e.g., CPU, memory, and disk)
and are presented as jobs run on real machines from the monitored cluster. In order
to use these traces on the simulation experiments, information from the jobs was
represented as Cloudlets. Thus, it was possible to simulate environments with up
to 10,000 hosts with a workload that was similar to the usage of a real data center.

Based on related works, the experiments made use of power consumption traces
collected from a benchmark of real machines that is made available by the Standard
Performance Evaluation Corporation. In order to use the benchmark information
in the experiments, it was necessary to develop a new class that implements the
CloudSim’s PowerModel interface to represent a Dell PowerEdge R820 machine.
Therefore, all data centers represented in the experiments of this case study are
composed of a set of machines of the same model. As the benchmark data provides
power consumption information in Watts based on discrete levels of load applied to
a machine, creating this new power consumption model on CloudSim was straight-
forward as the framework already deals with power consumption based on load
levels applied to the simulated hosts.

Four different virtual machine allocation policies were used in the experiments.
These policies determine how the controller node should distribute virtual machines
among all the available hosts. Therefore, such policies play a decisive role on the
overall power consumption of the data center. The simulated policies are listed be-
low:

•	 Single Static Threshold (SST): this policy has a single utilization threshold that
determines if a host is overloaded.

•	 Double Static Threshold (DST): this policy has two utilization thresholds. The
first determines if a host is overloaded and the second is used to identify under-
used hosts.

•	 Median Absolute Deviation-Minimum Migration Time: this policy has dynamic
utilization thresholds and was extracted from a related work [13].

•	 Local Regression-Minimum Migration Time: this policy also has dynamic utili-
zation thresholds and, such as the previous policy, was extracted from a related
work [13].

Regarding the virtual machines configuration, the experiments used four types of
profiles based on services from a real IaaS provider. Table 6.2 shows detailed in-
formation about computing capacity and available memory for each of the four
profiles. All experiments made use of equal amounts of virtual machines for each
of the profiles.

Table 6.2   Instance types of simulated virtual machines
Instance type CPU RAM
Extra-small Single 1 GHz shared core 768 MB
Small Single 1.6 GHz core 1.75 GB
Medium Two 1.6 GHz cores 3.5 GB
Large Four 1.6 GHz cores 7 GB

139

Figure 6.4 shows the power consumption of a data center with 10,000 hosts dur-
ing a 48 h period of operation with the Single Static Threshold allocation policy.
Each line represents a different rate of virtual machines allocated per host. The
shaded areas around the lines represent a 90 % level confidence interval. The chart
shows that power consumption increases proportionally with the amount of virtual
machines allocated per host. Such behavior was expected, since, the higher the load
applied to the system, the higher will be the level of resource usage, which increases
the overall power consumption of the data center.

Figure 6.5 shows simulation results for an environment similar to the aforemen-
tioned but using the Double Static Threshold allocation policy. In this case, it is
possible to identify a nearly linear relation between the amount of virtual machines
allocated per host and the Consumption Stabilization Interval (CSI), which is de-
fined as the period of time from the beginning of the simulation setup interval until
the moment when the power consumption of the data center reaches a stable level.
For the specific rate of 30 virtual machines per host, the DST policy performance
is very similar to the SST policy. This happens because this rate of virtual machine
allocation always keeps the data center with overloaded hosts, which undermines
the DST capacity to identify underused hosts and reallocate virtual machines ap-
propriately. This type of reallocations define what is commonly called consolidation
techniques. For all other rates of virtual machines allocated per host, it is noticeable
that immediately after the simulation setup time, virtual machines start to be con-
solidated which decreases the power consumption levels significantly.

Fig. 6.4   Power consumption of a 10,000 nodes data center with a Single Static Threshold alloca-
tion policy

6  CloudReports: An Extensible Simulation Tool for Energy-Aware Cloud …

140 T. Teixeira Sá et al.

The boxplot in Fig. 6.6 shows the number of virtual machine migrations per-
formed for each of the allocation policies. The lowest levels are shown for the SST

Fig. 6.5   Power consumption of a 10,000 nodes data center with a Double Static Threshold alloca-
tion policy

Fig. 6.6   Number of virtual machine migrations performed on a 10,000 nodes data center

141

policy due to the lack of consolidation techniques as this policy cannot identify
underused hosts. Hence, despite the low amount of migrations for the SST policy,
the previous charts showed that the lack of consolidation techniques has a negative
impact on the power consumption of the data center. On the other hand, all the other
allocation policies present higher amounts of migrations, which result in lower lev-
els of power consumption. It is important to notice that virtual machine migrations
have a significant impact on the Quality of Service (QoS) provided to the end user.
Therefore, there is a trade-off relationship between power consumption and QoS
that must be considered while deciding which allocation policy should be applied in
order to manage virtual machine migrations in a data center.

6.6 � Conclusion

This chapter presented CloudReports as a tool aimed at facilitating the modeling
of energy-aware cloud computing environments and data collection of simulation
results from the CloudSim simulation toolkit. Related works were discussed in order
to provide an overview of existing options for simulating energy-aware cloud com-
puting environments. Moreover, some of CloudSim’s key functionalities were ad-
dressed. As CloudSim represents the core simulation engine used by CloudReports,
a description of how its components work and their evolution to the current version
of the project was provided. Then, the architecture of CloudReports was fully de-
scribed. In order to provide a clear and complete understanding of how the simulator
works, the core entities were discussed, followed by descriptions on how to cre-
ate new extensions and how CloudReports’ modules work together. Moreover, the
chapter presented a case study that used CloudReports and a power model extension
to evaluate the power consumption of a data center with 10,000 machines. The case
study applied different virtual machine allocation policies and showed that there is a
trade-off between the QoS offered to the end user and the total power consumption
of the data center. Furthermore, it also became clear that the virtual machine alloca-
tion policy applied in the data center has a great influence is this trade-off.

As the future work, we intend to add statistical analysis to the reports and inte-
grate new CloudSim features to the graphic user interface such as intra-data center
networks and the utilization of real workloads. As CloudReports is an open-source
project, its source code is available online on GitHub, what enables researchers to
create feature branches that can later be integrated to CloudReports’ main project.

References

1.	 Calheiros RN, Ranjan R, Beloglazov A, De Rose CAF, Buyya R (2011) Cloudsim: a toolkit
for modeling and simulation of cloud computing environments and evaluation of resource
provisioning algorithms. Softw Pract Exp 41:23–50

2.	 Casanova H, Legrand A, Quinson M (2008) SimGrid: a generic framework for large-scale
distributed experiments. Proceedings of the tenth international conference on computer mod-
eling and simulation, UKSIM’08. IEEE Computer Society, Washington, DC, pp 126–131

6  CloudReports: An Extensible Simulation Tool for Energy-Aware Cloud …

142 T. Teixeira Sá et al.

  3.	 Buyya R, Murshed M (2002) Gridsim: a toolkit for the modeling and simulation of distrib-
uted resource management and scheduling for grid computing. Concurr Comput Pract Exp
14:1175–1220

  4.	 Sulistio A, Cibej U, Venugopal S, Robic B, Buyya R (2008) A toolkit for modelling and
simulating data grids: an extension to gridsim. Concurr Comput Pract Exp 20:1591–1609

  5.	 Nez A, Vzquez-Poletti A, Caminero A, Casta G, Carretero J, Llorente I (2012) iCanCloud: a
flexible and scalable cloud infrastructure simulator. J Grid Comput 10:185–209. doi:10.1007/
s10723-012-9208-5

  6.	 Kliazovich D, Bouvry P, Audzevich Y, Khan S (2010) Greencloud: a packet-level simulator
of energy-aware cloud computing data centers. In: Global Telecommunications Conference
(GLOBECOM 2010), IEEE, pp 1–5

  7.	 Aksanli B, Venkatesh J, Rosing T (2012) Using datacenter simulation to evaluate green en-
ergy integration. Computer 45:56–64

  8.	 Kocaoglu M, Malak D, Akan O (2012) Fundamentals of green communications and comput-
ing: modeling and simulation. Computer 45:40–46

  9.	 Buyya R, Ranjan R, Calheiros RN (2009) Modeling and simulation of scalable cloud com-
puting environments and the cloudsim toolkit: challenges and opportunities. Proceedings of
the international conference on high performance computing & simulation (HPC & S’09),
IEEE Computer Society, Leipzig, pp 1–11

10.	 Beloglazov A, Buyya R (2010) Energy efficient allocation of virtual machines in cloud data
centers, 2010. In: 10th IEEE/ACM international conference on cluster, cloud and grid com-
puting (CCGrid), Melbourne, pp 577–578

11.	 Kim KH, Beloglazov A, Buyya R (2009) Power-aware provisioning of cloud resources for
real-time services. Proceedings of the 7th international workshop on middleware for grids,
clouds and e-science, MGC’09, ACM, New York, 1:1–1:6

12.	 Howell F, Mcnab R (1998) SimJava: a discrete event simulation library for java. Proceedings
of the first international conference on web-based modeling and simulation, SCS, San Diego,
pp 51–56

13.	 Beloglazov A, Buyya R (2012) Optimal online deterministic algorithms and adaptive heuris-
tics for energy and performance efficient dynamic consolidation of virtual machines in cloud
data centers. Concurr Comput Pract Exp 24:1397–1420

Chapter 7
Cloud Computing: Efficient Congestion Control
in Data Center Networks

Chi Harold Liu, Jian Shi and Jun Fan

C. H. Liu () · J. Shi · J. Fan
School of Software, Beijing Institute of Technology, 100081 Beijing, P.R. China
e-mail: chiliu@bit.edu.cn

J. Shi
e-mail: mirroer@gmail.com

J. Fan
e-mail: jfan@bit.edu.cn

Abstract  Today’s data center networks (DCNs) are expected to support large number
of different bandwidth-hungry applications with increased amounts of data for pur-
poses such as real-time search and data analysis. As a result, significant challenges
are imposed to identify the cause of link congestion between any pair of switch
ports that may severely damage the overall network performance. Generally, it is
expected that the granularity of the flow monitoring to diagnose network congestion
in DCNs needs to be down to the flow level on a physical port of a switch in real
time with high estimation accuracy, low computational complexity, and good scal-
ability. In this chapter, motivated by a comprehensive study of a real DCN trace, we
propose two sketch-based algorithms, namely “α-CU” and “P( d)-CU,” which are
based on the existing conservative update (CU) approach. The α-CU algorithm adds
no extra implementation cost to the traditional CU, and also successfully trades off
the achieved error with time complexity. The P( d)-CU algorithm fully considers the
amount of skew for different types of network services to aggregate traffic statistics
of each type of network traffic at an individual and horizontally partitioned sketch.
We also introduce a way to produce the real-time moving average of the reported
results. By theoretical analysis and sufficient experimental results on a real DCN
trace, we extensively evaluate the proposed and existing algorithms on their error
performance, recall, space cost, and time complexity.

Keywords  Data center networks · Flow monitoring · Flow analysis · Sketching
techniques · Streaming algorithms · Trace study · sFlow

143© Springer International Publishing Switzerland 2014
Z. Mahmood (ed.), Cloud Computing, Computer Communications and Networks,
DOI 10.1007/978-3-319-10530-7_7

144 C. H. Liu et al.

7.1 � Introduction

Recent years have been witnessing the evolving trend of data center networks
(DCNs) [2] from relatively a small-scale to lining up tens of thousands of servers
and harnessing petaflops of computation power with petabytes of storage in a cost-
efficient manner [8]. The analysis of massive data sets is a major driver for today’s
data centers. For example, the web-based information retrieval highly relies on the
continuous collection and mining countless web pages and click-stream data to build
fresh indexes and improve search quality. To support a variety of distinct applica-
tions and manage the exploding data, adequate bandwidth ultimately becomes the
most critical part for the smooth running of many distributed infrastructures, e.g.,
GFS, BigTable [19, 23], Yahoo’s Hadoop, PIG [13, 33], and Microsoft’s Cosmos
Scope [4]. Furthermore, these bandwidth-hungry applications in a DCN are (most-
ly) running distributed algorithms, such as MapReduce [12], which shuffles the data
with growing size from one virtual machine to the other sitting across potentially
different server rack. DCNs are typically constructed as a tree-based hierarchical
topology, as shown in Fig. 7.1, where top-of-rack (ToR) switches, switches in the
aggregation layer, and routers in core layers form a multiroot tree. As the number of
core layer routers is far smaller than that of the servers at the bottom, the root nodes
can easily become the bottleneck of the entire network performance. The flows,
generated by applications, usually come and go very quickly and dynamically, and
thus the unexpected sudden traffic increase may cause some links between a pair of
switch port in a DCN to be highly congested and cause bandwidth overuse.

Although, various redundant topologies and routing algorithms [2] have been
proposed to optimize the DCN architecture so that the potential congestion can be
alleviated, they all rely on the accurate and efficient flow monitoring and analysis
method to identify the cause of congestion on a physical port of a switch. It is then
expected to infer a taxonomy of network traffic and classify flows as “elephant” and
“mice” [24], where the elephant’s bursty behavior may cause network congestion.
To facilitate the flow monitoring and analysis in an efficient manner, protocols such
as NetFlow [25] and IFPIX [10] are proposed to collect IP traffic information from
switches, and later sFlow [31] is instrumented to sample packets (typically, 1 in
1000) from the switch hardware so that only a subset of packet headers from overall
huge volume of data are transferred to the flow analyzer. Even so, the aggregated
amount of records in a short period of time is still overwhelming and growing over
time. Thus, it is impractical to store all of them in a persistent database and further
identify elephants via database querying. Then, application-oriented [30] and per-
flow based approaches [27] are proposed, but the former type of methods needs
specific application support, and the latter suffers from the scalability issues.

Towards this end, streaming algorithms [32] are used as runtime solutions. The
input items to the algorithm are the key–value pairs as a stream, where the key
can represent the distinct pair of source–destination IP addresses, and the value is
the amount of carried workload in that flow. Therefore, the same key may appear
randomly and repetitively many times when time passes by; and the goal of the
algorithm is to identify a set of IP pairs carrying most of the workload within a time

1457  Cloud Computing: Efficient Congestion Control in Data Center Networks

period, as elephants. The algorithms can be implemented in different kinds of data
structures. The first category of methods are the counter-based algorithms, which
use a one-dimensional array of counters to track a small portion of inputs. Some
examples are Lossy Counting (LC) [11] and Space Saving (SS) [14]. For limited
storage space, they decide whether to store the newly arrived item or not, but un-
fortunately fail to provide estimations for any particular flow from the entire inputs
with satisfactory accuracy. The second category is the sketch-based algorithms [5],
which uses a fixed two-dimensional array of counters to track/summarize a large
number of statistics over time (while none of the inputs are lost track of). Some
examples are Count-Min (CM) and Conservative Update (CU) [3, 6]. Although,
streaming algorithms are easy to implement and show good scalability, current pro-
posals have not sufficiently considered the trade-off between error performance,
memory cost, and time complexity. Especially, SS and LC suffer from the scale of
inputs, CM achieves good time complexity but with inevitable estimation error, and
CU improves the error performance with the sacrifice of running time.

Motivated by these facts, we reexamined the performance of existing streaming
techniques to profile the DCN performance and explicitly made the following five
contributions in this chapter:

We also provide a comprehensive analysis of a real DCN traffic data set on the
carried workload and traffic classifications which provides insights to enhance the
existing sketch-based streaming algorithms.

•	 We propose “α-CU” to trade-off the estimation accuracy and time complexity
between CM and CU algorithms with zero implementation cost to existing ap-
proaches.

•	 We propose “P( d)-CU” to partition CU along the vertical dimension of the
sketch, while fully considering the amount of skew for different network services
to achieve both high accuracy and low computational complexity.

Internet

Server Rack
Layer-2
switch

Access

Layer-2/3 switch
Aggregation

Layer-3 router

Core

ToR

Fig. 7.1   An illustrative
example of the commod-
ity hierarchical DCN
architecture

146 C. H. Liu et al.

•	 We propose a way to perform real-time moving average on the reported results
for sketch-based algorithms with high accuracy.

•	 We show extensive experimental results on a real DCN trace against the space
cost, update, recall, average relative error (ARE), and compute time, compared
with existing approaches.

The rest of the chapter is organized as follows. Section 7.2 highlights the related
research activities. Section 7.3 presents the insights to DCN traffic by a real trace.
Section 7.4 presents the existing sketching algorithms. Enhanced CU algorithms
and detailed theoretical analysis are given in Sects. 7.5 and 7.6. Section 7.7 pro-
vides the end-to-end system architecture of the proposed analysis algorithms, and
Sect. 7.8 shows the extensive experimental results. Finally, conclusions are drawn
in Sect. 7.9.

This chapter significantly extends the approch discussed in [1], by providing a
more specific and detailed survey on the related research activities in Sect. 7.2, giv-
ing a comprehensive analysis of a real DCN traffic data set to introduce the motiva-
tion of our proposed algorithms and system in Sect. 7.3, presenting entire system
architecture for DCN traffic monitoring and analysis (in Sect. 7.7), and demonstrat-
ing more extensive performance evaluation results and corresponding analysis in
Sect. 7.8.

7.2 � Related Works

Much research efforts have been expanded to identify the elephant flows [16–18]
consisting of three categories: application-oriented approaches [9, 30], per-flow
based traffic monitoring [15, 27], and streaming algorithms [3, 6, 11, 14, 20–22,
32].

In the application-oriented approaches, the research reported in [30] focuses on
giving higher priority to latency and throughput-sensitive flows like voice and vid-
eo applications, which is impractical for traffic management in data centers because
it needs the modification of each application. Another approach is to classify traffic
by the source applications which initiates them using stochastic machine learning
techniques [9]. Nevertheless, it suffers from the difficulty in obtaining flow traces
to train the classification algorithms.

The per-flow based approaches, e.g., Hedera [27] and Helios [15], monitor each
flow at the ingress switch. Then, the controller will pull the statistical data from
switches at regular intervals to further classify the elephant flows. However, this ap-
proach does not scale to large networks due to its significant consumption of switch
resources. Moreover, the limited bandwidth between switches and the controller
also becomes the bottleneck for network traffic management.

The streaming algorithms [32] can generally be classified into two categories.
The first category consists of the counter-based algorithms, which track a subset
of items from the inputs and monitor counts associated with these items. Demaine
et al. [21] proposed the Frequent algorithm to solve the Hot Items problem that

1477  Cloud Computing: Efficient Congestion Control in Data Center Networks

keeps counters to monitor elements. If a monitored element is observed, its counter
is incremented, else all counters are decremented. In case any counter reaches 0, it
is assigned the next observed element. Manku and Motwani [11] proposed the LC,
which splits an input stream of elements into fixed-size windows and processes
each window sequentially. For each element in a window, it inserts an entry into a
table, or, if the element is already in the table, it updates its frequency. At the end of
each window, the algorithm removes elements of small frequency from the table.
In [14], the authors proposed SS, where (item, count) pairs are stored, initialized by
the first distinct items and their exact counts. When the next item in the sequence
corresponds to a monitored item, its count is incremented. But, when the next item
does not match a monitored item, the (item, count) pair with the smallest count has
its item value replaced with the new item and the count incremented. Unfortunately,
LC and SS are only applicable when tracking a very small amount of items from the
input stream but fail to provide aggregated statistics for any particular flow.

The second category consists of the sketch-based algorithms. Sketch-based tech-
niques do not monitor a subset of elements but rather provide frequency estima-
tion for all elements by using bit-maps of counters with less-stringent guarantees.
Usually, each element is hashed into the space of counters using a family of hash
functions, and the hashed-to counters are updated for every hit of this element. Cor-
mode and Muthukrishnan [20] proposed the GroupTest algorithm that maintains a
small space data structure that monitors the transactions on the relation, and when
required, quickly outputs all hot items without rescanning the relation in the data-
base. Estan and Varghese [22] proposed the Multistage filters approach by hashing
every element to a number of counters which are updated every time the element is
observed in the stream. Other well-known approaches are CM [6] and CU [3], as
detailed in Sect. 7.4. They aim to use a fixed two-dimensional array of counters to
summarize a large number of statistics over time. Nevertheless, CM always overes-
timates the exact value, and although CU improves it by conservatively updating a
counter, it comes with a huge time complexity to perform the point query for each
update.

Finally, Cormode et al. [5] reported that the workload distribution of different
network services (DNS, HTTP, etc.) can exhibit significant and different amount
of skew defined as a measure of the asymmetry to the probability distribution of
the carried workload. This amount can be well modeled by the Zipfian parameter.
However, none of these algorithms successfully capture this property during the
analysis phase.

7.3 � Motivation from a Real DCN Trace

We performed a trace study on a real DCN hosting a trial-running commercial air-
line travel booking service in 2008. It is composed of four BLADE Network Tech-
nologies (BNT) virtual fabric 10 G switches that periodically export sFlow packets
to a commercial server. From the packet header of sFlow packets, we extract useful
information including the source and destination IP addresses, workload of that

148 C. H. Liu et al.

flow, destination port number, and time. For every extracted information from a
packet header, we save it in a CSV format record line. In this way, we received
29,614,720 record lines that represent the traffic flow of the DCN during the moni-
toring phase. The results are computed offline by database queries.

First, we analyze the distribution of workload exchanged between all source–
destination IP pairs and plot the probability distribution function (PDF) and cumula-
tive distribution function (CDF), for both the entire DCN and on each switch. Then,
we show the evolving trend of the workload over time and analyze its composition
by different types of network services. As shown in the following, the results de-
mostrate that the amount of traffic moving between different IP pairs are unevenly
distributed and most of the traffic is highly concentrated on only a small fraction of
the IP pairs. Furthermore, bursty traffic is observed that may incur significant tem-
poral link congestion to a DCN. Therefore, we need to design an efficient conges-
tion identifcation algorithm. As our study also confirms the existence of Zipf’s law
for different types of network services, as presented originally by [5], the accuracy
of CM algorithm is not only related to the space of the sketch but also the param-
eters indicate that different network services may use different space of the sketch
to achieve the same error performance; it inspires a new way to enhance the exist-
ing sketch-based approaches. We aim to provide a new way to enhance the existing
sketch-based approaches, reducing the computational complexity and estimation
error at the same time.

7.3.1 � Overall Workload Analysis

To investigate the traffic conditions between the communicating parties via the
DCN, we extract all source–destination IP pairs with their workload from the ob-
tained trace data. Figure 7.2 shows the logarithmic amount of workload exchanged
between all source–destination IP pairs during the day. For illustration purposes,
we anonymize their actual IP addresses and arbitrarily set a unique number ranging
from 0 to 6481, i.e., in total we have 6481 IP addresses (or users in the network).
It is observed that the amount of traffic moving between different IP pairs are un-
evenly distributed, and most traffic are highly concentrated on a small fraction of
the IP pairs. This implies different user behaviors that some users may generate
larger amount of traffic as “elephants” while most of the users behave as “mice.”

Figure 7.3 shows the workload for both the entire DCN (in Fig. 7.3a, b), and on
each switch (in Fig. 7.3c, d). Observing the PDF and CDF of the reported workload
flowing through the entire DCN, we see that a flow of less than 10 KB eventually
occupies more than 80 % of the entire traffic, since the considered network provides
travel booking services where HTTP and DNS flows dominate. Additionally, we
see that the workload on two switches are quite similar to the overall DCN traffic
behavior, which implies that this is a relatively load-balanced network from the
switch’s perspective.

To visualize the evolving trend of traffic over time, we show both its magnitude
and normalized difference which is defined as| () () | / | (),M t M t M tτ+ − where

1497  Cloud Computing: Efficient Congestion Control in Data Center Networks

Fig. 7.3   DCN workload distribution. a PDF of entire DCN workload. b CDF of entire DCN
workload. c PDF of per-switch workload. d CDF of per-switch workload

0 1000 2000 3000 4000 5000 6000 7000
0

1000

2000

3000

4000

5000

6000

7000

0

5

10

15

20

25

Fig. 7.2   Workload exchanged between all source–destination IP pairs during the day

150 C. H. Liu et al.

M t() is the workload magnitude at time t and τ is the step size for both the entire
DCN (see Fig. 7.4a, b) and on each switch (see Fig. 7.4c, d). It is expected to observe
that results comply well with the users’ daily routine. That is, traffic is quite low
early in the morning between 12:00 and 6:00 am (most people are asleep); it starts
to increase after 12:00 pm and reaches the top after 6 pm. Besides, we observe four
spikes that are mainly caused by the switch 10.75.22.11 (see Fig. 4c, d), distributing
at 2:10−2:30 am, 3:00−3:30 am, 5:00−5:50 am and 10:00−10:40 am local time,
respectively, which may cause significant network congestion and bandwidth
overuse. We shall further analyze the cause of these spikes in the next section.

7.3.2 � Workload Composition Analysis

Figure 7.5 analyzes the composition of the carried workload in terms of the type of
network services. Figure 7.5a shows the percentage of appearance frequency where
HTTP occupies the most portion of 48 %, followed by DNS and HTTPs, consistent
with the offered travel booking service by web browsing. Figure 7.5b shows the per-
centage of the carried workload, where HTTP also occupies the most by more than
50 %, followed by Secure Computing Sidewinder Remote Administration (SCSRA,
a protocol for secure connections) and HTTPs. Specially, we can conclude that the
magnitude of each SCSRA flow is relatively large compared with HTTP, DNS, and
HTTPs, as SCSRA occupies a considerable amount of total workload but it appears
less frequently than the rest. This is due to the nature of SCSRA that helps users set
up the secure connection only when an actual transaction is placed.

Zipf’s law [28] is an empirical law formulated using mathematical statistics that
refers to the fact that many types of data in the physical and social sciences can be
approximated with a Zipfian distribution. Our analysis on this data set also confirms
the finding in [5] that the workload of each type of network service exhibits strong
Zipfian distribution. As shown in Fig. 7.6, we plot the data on a logarithm-logarithm
plot. The horizontal axis denotes the rank of the carried workload by each type of
network service, ranking by the packet size. The vertical axis is the logarithmic
amount of the corresponding frequency. It is observed that the logarithm-logarithm
plot is approximately linear. The fitted Z parameters are zHTTP = 1 53. , zDNS = 1 93. ,
zothers = 1 02. (coefficient 0.95), respectively.

Our study on workload composition analysis shows that the main source of the
observed four workload spikes comes from only a small category of network servic-
es, which are empirically confirmed to follow the Zipfian distribution. Moreover,
in [5], it proves that the accuracy of CM algorithm is not only related to the space
of the sketch but also the parameters, indicating that different network services may
use different space of the sketch to achieve the same error performance. This angle
provides a new way to enhance the existing sketch-based approaches, reducing the
computational complexity and estimation error at the same time.

Spike Analysis  In each CSV format record line, we can get the time, workload,
and the port numbers of that traffic record. Distinguishing flows via TCP destina-
tion port numbers, we analyze the cause of spikes in terms of their associated type

1517  Cloud Computing: Efficient Congestion Control in Data Center Networks

of network service. As shown in Fig. 7.7, for four spikes, 44, 37, 18, and 30 % of
total workload comes from HTTP and HTTPs protocol, respectively, and 40, 47, 72,
and 53 % of total workload comes from the SCSRA protocol to establish the secure
connection (for real booking transactions).

Fig. 7.4   Workload changing curve over time for 24 h. a, b Entire DCN workload and its normal-
ized difference. c, d Per-switch workload and its normalized difference

Fig. 7.5   Workload composition analysis for entire traffic, where ( left) appearance frequency of a
type of network service, and ( right) workload of a type of network service

152 C. H. Liu et al.

100 101 102 103 104 105 106
10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

Rank

Fr
eq

ue
nc

y

Total
HTTP
DNS
HTTPS
SCSRA
Others

Fig. 7.6   Zipf distribution for different types of network services in the considered data set

41%

40%

3%
2%

15%

HTTP
SCSRA
HTTPS
Shell
OTHERS

a b

c d

47%

35%

2%
2%

14%

SCSRA
HTTP
HTTPS
Shell
OTHERS

72%

18%

2%
1%7%

SCSRA
HTTP
SSH
SMTP
OTHERS

53%

27%

5%
3%

12%

SCSRA
HTTP
VQP
HTTPS
OTHERS

Fig. 7.7   Spike analysis in terms of the associated type of network service. a 2:10−2:30 am.
b 3:00−3:30 am. c 5:00−5:50 am. d 10:00−10:40 am

1537  Cloud Computing: Efficient Congestion Control in Data Center Networks

To summarize, in a DCN, there exists a few workload spikes over time which
may cause bandwidth overuse and degrade the network performance, and the traffic
between any pair of source–destination IP addresses are also unevenly distributed.
Therefore, it is necessary and also possible to extract the high-traffic sources by
carefully designing the flow monitoring/analysis techniques to ultimately avoid the
network congestion. One interesting application is to retrieve the top K records
from all packets received on a list of physical ports of a specific switch in the past T
seconds, grouped by specified fingerprint information which can uniquely identify
a flow. The fingerprint information can be the source/destination IP addresses,
source/destination port numbers, etc. The output top-K records can be ranked by the
sum of flow workload, or counting the number of appearances (i.e., heavy hitters).

7.4 � Existing Sketching Algorithms

To illustrate the existing sketching algorithms, we consider the following congestion
management application (which can provide key results for many commercial flow
analysis software like IBM Security QRadar QFlow Collector [29]): providing
estimations when retrieving the top-K (e.g., default 100) source–destination IP
pairs sorted by their carried sum of workload, on a specific physical port of a
switch in the lastT (e.g., default 5000) seconds. Without loss of generality, we de-
note the distinct input items as a vectora with dimension m, presented in an implicit,
incremental fashion, where for each element a i mi ≥ ∀ = …0 1 2, , , , . Its current state
at time t is denoted by []1() (), , (), , () .i ma t a t a t a t= … … In the above example, a ti ()
represents a distinct IP pair, and the value denotes the aggregated amount of the
carried workload within a time period T . For convenience, we shall usually drop t
and refer only to the current “state” of the vector, and when time evolves it behaves
identically in the same process. Initially, a is the zero vector. Updates to individual
entries of the vector are presented as a stream of pairs, as (item, update) or (,).a ci i
In practice, update c can be the newly carried workload on an IP pair, or c = 1 if the
application aims to count the number of appearances of that IP pair, or heavy hitters.
We next describe the existing sketching algorithms to produce the vector estimate
a of dimension m.

7.4.1 � CM Sketch

CM sketch [6] is named after the two basic operations used to handle the updates to
individual entries, i.e., counting first and computing the minimum next. Initially, a is
a zero vector. Updates to individual entries of the vector are presented as a stream of
pairs (,)i c , e.g., the ith IP pair’s total workload is increased by amount c. As shown
in Fig. 7.8a, the data structure of a CM sketch is represented by a two-dimensional
array of counters with width w and depth d: [] []1,1 , .cell cell d w… Each counter is
initially zero. Additionally, we choose d hash functions h h m wd1 1 1… … → …:{ } { }

154 C. H. Liu et al.

uniformly at random from a pairwise-independent family, hashing the ith element
d times to d different cells [, ()]jj h i , ∀ ≤ ≤1 j d of each row in the data structure.
When the new updates arrive, all hashed cells are increased with the according
amount c. The ideal case is that each cell only stores a unique input element,
however as in practice m w� , each cell may store the aggregated values of multiple
items which will inevitably cause collisions. Fortunately, this collision rarely
repeats in all rows simultaneously due to the different hash functions chosen. Then,
the estimation ˆia from the structure is given by 1ˆ min [, ()],i j d ja cell j h i≤ ≤= i.e., the
minimum of d hashed cells. Note that the size of sketch is related to the estimation
accuracy, where  /w e ε= and  lnd δ= − can produce ε estimation accuracy with
probability of at least 1 :δ−

� (7.1)

where � �a a
i

n
i1 1

=
=∑ . An example is illustrated in Fig. 7.8a, b, where the new arrival

update item (,)i 5 gets mapped by four hash functions, and finally updates the counts
from (2,9,4,8) to (7,14,9,13). For the query operation, the estimation for ai is given
by 7 as the minimum over (7,14,9,13).

Obviously, given a data type in each cell, the space cost of CM sketch is O wd().
The update process only takes O()1 by hashing to one cell, thus for a data stream of
n records, its update complexity is t O ndCM = ().

7.4.2 � CU Sketch

As discussed earlier, since m is sufficiently larger than w, one hash function may
hash multiple items to the same cell, and this collision would cause erroneous
aggregation of streaming updates from different items. Therefore, CM always

{ }1ˆ > ,i iPr a a aε δ− ≤ 

Fig. 7.8   An illustrative example of CM sketch and CU algorithms, where: a sketch before update,
b sketch after the CM update, and c sketch after the CU update

1557  Cloud Computing: Efficient Congestion Control in Data Center Networks

overestimates the exact value of the vector. Estan and Varghese introduced the idea
of conservative update [3] in the context of networking, and later extended in [7]
to further improve the estimation accuracy. In CU, counters are conservatively up-
dated according to:

This means that we will update a counter only if it is necessary as indicated by
the above equation. This heuristic approach avoids the unnecessary updates of
counter values and thus reduces the estimation error. An example is also illustrated
in Fig. 7.8a, c, where the counts (2,9,4,8) are updated to (7,9,9,8) by performing
conservative update.

Since, CU needs to perform the point query (of complexity O d() among d
independent cells) whenever there is a new update arrival, and thus, its time
complexity is t O ndCU = ()2 for n input records. To this end, we have identified the
trade-off between time complexity and error performance between CM and CU, and
in the following, we aim to enhance CU’s performance.

7.5 � Enhanced CU Algorithms

In this section, first we introduce two enhanced CU algorithms, namely: α-CU and
partitioned CU. The α-CU maintains all basic features of CU, but only performs CU
process probabilistically for an arrival update. Partitioned CU algorithms maintain
a new data structure compared with CU that performs sketch partition along the
horizontal or vertical dimension.

7.5.1  �α-CU

As the CM algorithm sacrifices its error performance with time complexity, one
immediate improvement is to “probabilistically” perform CU for an arrival update.
Without loss of generality, we use parameter](0,1α ∈ to denote this switching
probability between CM and CU processes. That is, at any time when a new update
arrives at the sketch, e.g., a particular IP pair’s carried workload is incremented,
we probabilistically decide whether to adopt the CU with probability .α We call
this improvement method as “α-CU”. Note that the realization of this switching
probability can be different, but none of them eventually adds any extra imple-
mentation cost to existing CU and CM. For simplicity reasons, we assume that this
switching probability is a uniformly distributed random variable. It is clear that when

1,α = α-CU approach is identical to the CU approach. The smaller the α , higher is
the probability of CM used. To this end, it is expected that the error performance and
time complexity is trading off by ,α as (2 (1)) ((1)).CUt O nd nd O ndα α α α− = + − = +

ˆ ˆ(), ()
, .

i iupdateby a c ifcellvalue a c
remainthesamecellvalue otherwise

+ < +



156 C. H. Liu et al.

7.5.2 � Partitioned CU

Although, α-CU can reduce the time complexity (compared with the classic CU
approach), it proportionally sacrifices the error performance when CM is adopted
more frequently. Furthermore, it does not explicitly consider the amount of skew
for different types of network services, e.g., HTTP, DNS, etc. According to the
observations that different types of network services in the network conform to
different Zipf’s law, and more importantly, in [5], it proves that to answer point
queries (or estimations) by CM with ε accuracy with probability at least 1 δ− needs
space min{1,1/ }(ln1/),zO ε δ− and thus different types of network services may use
distinct space cost of the sketch to achieve the same error performance. Therefore,
we aim to propose an enhanced algorithm to reduce the computational complexity
and estimation error from this angle.

We reduce the computational complexity of CU by requesting different sketch
sizes for each type of network services, while satisfactorily guaranteeing the er-
ror performance of each individual sketch. It is obvious that the partition can be
performed either along the horizontal or vertical dimension of the sketch, denot-
ed as “P( d)-CU” and “P(w)-CU” algorithms, respectively, while preserving the
other dimension as constant. For the sake of comparison fairness, we guarantee
equal space cost of the sketch before (i.e., the original one) and after the partition
(as the sum of the sizes for individual sketch). Let w and d denote the width and
depth of the original sketch before partition, respectively. Then, after the partition

along either dimension, d d dk k

K
k()=

=∑ 1
 denotes the depth of the kth partition, and

w w wk kk

K
()=

=∑ 1
 denotes the width of the kth partition. Finally, let n n nk kk

K
()=

=∑ 1

denote the size of the input stream to the kth sketch, while K is the number of parti-
tions in total. The updates of each type of network services are performed at the cor-
responding individual sketch, respectively, and for one type of network service, its
associated updates will not be sent and processed in two sketches. To better explain
the process, Fig. 7.9 shows an illustrative example. Note that the similar process can
be applied for P(w)-CU, where the only difference is to partition the sketch along
the horizontal dimension.

The processing steps of P( d)-CU are illustrated in Fig. 7.9a, b as an example.
The entire sketch of w d= =7 6, is horizontally divided into K = 3 sketches, each of
which has 2 1 3, , rows to process flows from HTTP, DNS, and other types of network
services, respectively. As shown in Fig. 7.9a, assume items a a a1 2 3, , (representing
different source/destination IP pairs exchanging different types of network services)
from three categories are monitored, they are hashed into cells of different sub-
sketches, and the stored counts before update were (2,9), 4, and (2,3,9), respec-
tively. Then, to return the estimation of a a a1 2 3, , , we perform the point query on
three sketches and the results are 1 2 3ˆ ˆ ˆmin{2,9} 2, 4, min{2,3,9} 2,a a a= = = = =
i.e., the minimum of all counts in the hashed cells. Now suppose new updates arrive
c c c1 2 35 9 6= = =, , . In this particular case, the update rule increases the cell value,
only if its stored value is less than sum of estimation result and new update, i.e.,

1 1ˆ 7,a c+ = 2 2ˆ 13,a c+ = 3 3ˆ 8.a c+ = As a result, Fig 7.9b shows the cell values after
the update which become (7,9), 13, and (8,8,9), respectively.

1577  Cloud Computing: Efficient Congestion Control in Data Center Networks

7.5.3 � Performance Analysis

The implementation of these K sketches can either be parallel or serial, and we next
show its superiority even if serialized approach is adopted.

Compute/Update Time  When considering the time complexity, we refer to the time,
when performing all n updates in a sketch, of P(w)-CU is the same as CU since the

width w does not control the update time: t O n d O ndP w CU k

K
k() ().− =

= () =∑2 2
1

 The

proposed P( d)-CU exhibits the time complexity as the sum of K CU algorithms, or

O n d
k

K
k k2

1=∑(). Through simple derivations, we show that it is far lower than that
of CU approach:

� (7.2)

Theorem 5.1  A CU sketch with width w and depth d is able to achieve the minimum
computational complexity O nd K(/)2 if partitioned into K sketches, irrespective
of how the partition is performed as long as the input data stream (with size n) is
equally fed into K sketches.

Proof  We form the following optimization problem, i.e., to minimize the update
time of P( d)-CU given the constraint of the sum of partitioned sketch depths equals
the original sketch:

�
(7.3)

1 1 1

2 2 2 () 2 .
K K K

k k k k k k
k k k

nd n d n d d n d
= = =

= + −∑ ∑ ∑�

1 1

{ } arg min . . ,
k

K K

k k k kd
k k

d n d s t d d
= =

= =∑ ∑

Fig. 7.9   An illustrative example of P( d)-CU algorithm, where: a sketch before update, b Sketch
after update

158 C. H. Liu et al.

where
1

.
K

kk
n n

=
= ∑ It is a classic constrained optimization problem which could

be solved by using the Lagrangian multiplier .λ We take the gradient ∂ ∂ =L dk/ ,0
where

1 1
() (),

K K
k k kk k

L n d d dλ λ
= =

= − −∑ ∑ and we have ,kn kλ = ∀ (since

,kk k
n nλ= =∑ ∑ n n K kk = ∀/ ,). Therefore, it is clear that irrespective of how

the partition is performed, the lowest computational complexity is always achieved
if the input data stream is equally fed into each of the K sketches. Replace n n Kk = /
into the objective function, we complete the proof. As the width w does not control
the update time, we conclude that P(w)-CU is the same as CU on time complexity.

Finally, We have () () .CM P d CU CU p w CUt t t t− −≤ =�

Error Performance  The error performance of all sketching algorithms depends both
on the width and depth of a sketch. This is because the width decides the collision
probability when a hash function maps different items into the same cell. The smaller
the width, higher the probability that any of the two items will collide. As a result,
a cell will store the wrongly aggregated values of different items. Furthermore,
when the output is generated from the sketch, the point query returns the minimum
value of d hashed cells, and thus larger depth will spread out the collisions and as
a result to decrease the estimation error. Therefore, the estimation error is inversely
proportional to width and depth. Meanwhile, width has a higher impact on the
derived error than depth, since it directly controls the collision probability, and thus
P()w -CU would not yield any better performance, and can be even worse than CM
due to its significantly less allocated width (more erroneous aggregated results).
α-CU’s error performance depends on the value of switching probability α P( d)-CU
achieves better error performance than the traditional CU, since the reduction of the
input data size has larger impact than the reduced data structure. This is because we
feed different types of network services to different sketches, and thus potentially
each small sketch will produce less collision when hashing and this is confirmed at
a later section of this chapter.

7.6 � Real-Time Moving Averages

In this section, we propose an approach to produce the real-time moving average of
workload using only one sketch without any implementation cost.

In all previous analysis, we drop the time notation and focus on estimating
item counts periodically from the sketch. However, reports may be generated by
a “sliding window” whose length is T and moving speed is l (l T�). A typical
example in a DCN is to report results every 10 s while always considering the sum-
marized statistics in the past 300 s. Unfortunately, none of the existing streaming
algorithms is applicable for this domain.

The problem can be solved by using T l/  sketches of the same size. That
is, each sketch stores the aggregated statistics within a period of l. When time
evolves, the sketch storing the most outdated statistics beyond the time window T
is reset to zero, and starts to collect newly arrived ones in the current time frame.

1597  Cloud Computing: Efficient Congestion Control in Data Center Networks

Meanwhile, all other T l/  −1 sketches remain the same. When reporting the re-
sult, each sketch exports the summarized statistics individually, and then combined
together. Although, this approach is straightforward and accurate by nature, it re-
quires significant space cost (from one single sketch to T l/  separate sketches of
the same size), and imposes implementation complexities like sketch coordination,
result merge, and sort.

We propose a “real-time exponential moving average” approach that maintains
only one sketch without any implementation cost to P( d)-CU. Every l when a up-
date arrives, we first exponentially discount the stored value of all cells by a factor
of ,γ which is defined as the ratio between the speed of sliding window movement
l and the looking-back interval T , i.e., 1 / (0,1).l Tγ = − ∈ Then, we add the new up-
date value to the discounted cells. The intuition is that smaller step size l results in
the slow historical forgetting effect (bigger γ), and the smaller observation window
size T results in faster forgetting effect (smaller γ).

The main advantage of this approach is to save the space cost. Also, it exhibits
exponential behaviors in the long-run, given that each cell stores all arrived data
(i.e., none of them is discarded) but they are added up together after exponentially
discounted in a scale proportional to its lifetime in the data structure. For example,
most recent update is only discounted once in contrast with the first update, so that
the effect of the historical measurements is mitigated from time being, and abrupt
changes like spikes can be tracked.

7.7 � System Architecture

To facilitate the above designs as a part of the software in real DCN management,
in this section, we present the entire system design. For the sake of simplicity, we
take the sFlow datagram as an illustrative example to implement the end-to-end
system. However, it is worth noting that the proposed sketching techniques are not
constrained in the sFlow standard, but have wide applicability to any data stream
inputs exported from the switches in a data center. The principle is this [31]: sFlow
packets contains the IP packet length information of that sampled packet and the
sampling rate enforced in the hardware, so that one is able to compute the total
amount of workload before sampling. If further grouped by different soruce/desti-
nation IP pairs, and/or switch port, we can estimate the aggregated traffic load after
the sketch processing.

Figure 7.10 shows the system flow for both implementing a single sketch (i.e.,
SS, CM, CU, and α-CU, as shown in Fig. 7.10a) and partitioned sketch (i.e., P( d)-
CU and P(w)-CU, as shown in Fig. 7.10b). The considered inputs to the analyzer
can be either the real-time streaming packets like sFlow datagram generated by
any compatible switch, or the historical flow records stored in a persistent database
(and here we consider the .csv format). Having both real-time and historical data as
inputs can satisfy the requirements of different applications, and they both serve as
the inputs to a First-In-First-Out (FIFO) queue. The queue successfully caches the
input data to decouple from the actual sketch computations. Take real-time inputs

160 C. H. Liu et al.

sFlow datagram as an example, packets dequeued from the cache are used for head-
er analysis, where all needed information are included, e.g., the source/destination
IP/MAC addresses, source/destination port numbers, flow workload, the port of the
exported switch, connection type, etc. Then, according to the user-specified ranking
criterion in the output, a key generator module is employed to hash those ranking
information (potentially of multiple fields) to a single unique identifier, which is
used to update the sketch. For example, if one is interested in identifying which
particular pairs of source/destination IP addresses exchanging packets become the
cause of link congestion on a switch, we hash their IP addresses (i.e., in this case
we have two fields) together into one single unique key, and later all arrival packets
belonging to that IP pair are updated in the sketch accordingly. Finally, the sketch
module is the core of the entire system, which may vary from different employed
techniques. In general, it is a two-dimensional array with width w and depth d , and
its output are the sorted list of records satisfying different application requirements.

As for the partitioned sketching algorithms, the only two differences are the
dispatcher module before the FIFO queue, distinguishing their associated type of
network service, and the aggregator module after the results are produced by each
individual sketch to generate an entire list of records, irrespective of their associated
type of network service. The implementation of these two modules at both ends can
be in many classic ways.

Finally, it is worth noting that the reduced processing supported by the two
sketch-based algorithms means that they could be implemented in NetFPGA [26] or
other programmable switches, which would (potentially) be a good way to offload

Fig. 7.10   System architecture of the flow monitoring and analysis. a Single sketch. b Partitioned
sketch

1617  Cloud Computing: Efficient Congestion Control in Data Center Networks

that work from the end hosts, and just give input to the load balancers, flow schedul-
ers (or Explicit Congestion Notification (ECN) to Multipath TCP weights if being
used).

7.8 � Performance Evaluation

In this section, we first conducted a comprehensive study of the performance pro-
duced by existing three streaming techniques, namely: SS, CM, and CU. Then, we
compared our proposed α-CU and Partitioned CU approach in terms of compute
time and estimation error. Finally, we showed the effects of performing real-time
moving average on P( d)-CU under different settings.

To assess the performance of different algorithms, we use the same data trace as
in Sect. 7.3, because it provides a good diversity of m = 6482 distinct source–des-
tination IP pairs, which is satisfactory to testify the sketch-based algorithms since
the larger m would potentially cause more collisions in the data structure. Therefore,
the algorithms’ estimation accuracy can be verified. The considered application is to
retrieve the estimated workload of all IP pairs. We received n = 29 614 720, , records.
All results are computed on an ordinary laptop Thinkpad x220i with hardware
configurations of Intel(R) Core(TM) i3–2310M, CPU@2.10 GHz and 4 GB RAM.
Specially, we aim to study the performance of the existing/new proposed algorithms
in term of the following:

•	 Space cost: the size of memory needed to perform the streaming algorithm
(measured in bytes).

•	 Update : the processed number of updates per second.
•	 Recall: measured in the total number of true workload/heavy hitters reported

over the number of true workload/heavy hitters given by an exact approach
(e.g., database query).

•	 Compute time: the period of time generating the estimations of the reported
workload/heavy hitters.

•	 Average relative error (ARE) of the reported workload/heavy hitters, as:

1

ˆ| |1 ,
m i i
i

i

a a
m a=

−∑ where m is the dimension of a.

7.8.1 � Existing Approaches: SS, CM, and CU

Workload Ranking  Figures. 7.11 and 7.12 show the experimental results for space
cost, update, recall, and ARE of SS, CM, and CU algorithms, when ranking the
exchanged workload between any source/destination IP pair. We vary the param-
eters of width w, depth d , and the number of output records K , respectively.

Specifically, Fig. 7.11a shows the space cost of these three algorithms. To track
the inputs and perform stream estimations, both CM and CU need a two-dimension-
al array of counters of size wd , while SS uses a one-dimensional array of counters

162 C. H. Liu et al.

of size w. Figure 7.11b illustrates that, unlike storing data in a database with grow-
ing size, all three algorithms consume a fixed size of memory although different
amount of output records are produced, showing good scalability with the increase
of the amount of top-K outputs. Figure 7.11c shows the change of update versus
the size of array. For SS, it is clear that the update decreases when increasing the
array size (also confirmed in Fig. 7.11d by three red lines). This is because, in SS,
if a new arrival item does not match any monitored items in the array, the item with
smallest count will be replaced; hence, a larger size of array needs more time to find
the smallest count and consequently increases the time of item replacement. For
CM and CU, they behave consistently with our analyzed update time complexity,
i.e., t O ndCM = (), t O ndCU = (),2 in Sect. 7.4. Figure 7.11c shows that the update for
CM and CU is inversely proportional to depth d while it remains unchanged when
varying w (which is also confirmed in Fig. 7.11d, as three blues/green lines repre-
senting CM and CU with different w overlap), and CM performs always faster than
CU. Figure 7.11c also indicates that SS is much slower than CM and CU in terms of
running time, especially when the utilized memory size is relatively large. Finally,
from Fig. 7.1d we see that increasing the desired number of output records has no
impact on the update, since time complexity is only related to the size of array and
the size of input data stream.

For the recall performance, as shown in Fig. 7.12a, increasing the array size can
promote the obtained recall for all three algorithms, since a larger allocated memory
decreases the probability of item replacement for SS and lowers the collision prob-
ability of CM/CU while performing the item hashing. It is worth noting that with a
small piece of memory (,)w d= =1000 6 the algorithms has already achieved more
than 95 % recall when handling a huge amount of input data stream. Figure 7.12b
shows that the recall performance suffers from the increasing of desired number of
output records, especially for SS. However, CU always achieves the highest recall
by conservatively updating the counters to avoid overestimations.

For ARE, as shown in Fig. 7.12c, SS slightly outperforms CM around 3 % less
ARE, but CU achieves the least error always lower than 0.2 % and only 1/10th
of the SS and CM algorithms, when d = 14. This gain becomes weak when the w
increases and after w = 2500, all three algorithms succeed in achieving almost 0 %
ARE. Furthermore, when increasing the sketch depth, CM performs better, e.g.,
when w = 512 with doubled depth, its ARE can be halved. Therefore, among exist-
ing streaming algorithms, CU’s error performance is the best. This is also confirmed
in Fig. 7.12d. Although ARE decreases when the number of top-K records increase,
CU still achieves the least estimation error using the same size of memory.

7.8.2  �α-CU and Partitioned CU

We next demonstrate both the ARE and compute time of the proposed α-CU and
Partitioned CU algorithms, while varying different ,α w, and d values. In Fig. 7.13a,
for the fixed sketch depth, when α increases from 0.1–1.0, i.e., with higher

1637  Cloud Computing: Efficient Congestion Control in Data Center Networks

500 1000 1500 2000 2500
0

1

2

3

4

5

x 10
5

Width

S
iz

e
(B

yt
es

) CM
CU
SS
d=6
d=10
d=14

200 300 400 500 600 700 800 900 1000
0

1

2

3

4

5

6

x 10
5

TopK

S
iz

e
(B

yt
es

)

CM
CU
SS
w=1024
w=2048
w=3072

a

b

Fig. 7.11   Experimental results for space cost of SS, CM and CU algorithms, when ranking the
workload. a Space versus width and depth. b Space versus top-K and width

164 C. H. Liu et al.

500 1000
c

d

1500 2000 2500
0

0.5

1

1.5

2

2.5

3

3.5
x 106

Width

U
pd

at
es

CM
CU
SS
d=6
d=10
d=14

200 300 400 500 600 700 800 900 1000
0

2

4

6

8

10

12

14

x 105

TopK

U
pd

at
es

CM
CU
SS
w=1024
w=2048
w=3072

Fig. 7.11  Experimental results for space cost of SS, CM and CU algorithms, when ranking the
workload. c Updates versus width and depth. d Updates versus top-K and width.

1657  Cloud Computing: Efficient Congestion Control in Data Center Networks

500 1000 1500 2000 2500
0

20

40

60

80

100

Widtha

R
ec

al
l (

%
)

CM

CU

SS

d=6

d=10

d=14

b
200 300 400 500 600 700 800 900 1000

0

20

40

60

80

100

TopK

R
ec

al
l (

%
)

CM

CU

SS

w=1024

w=2048

w=3072

Fig. 7.12   Experimental results for recall of SS, CM and CU algorithms, when ranking the
workload. a Recall versus width and depth. b Recall versus top-K and width

166 C. H. Liu et al.

500
c

1000 1500 2000 2500
0

0.5

1

1.5

2

2.5

3

3.5

4

Width

A
ve

ra
ge

 R
el

at
iv

e
E

rr
or

 (
%

)
CM
CU
SS
d=6
d=10
d=14

d
200 300 400 500 600 700 800 900 1000

10-2

10-1

100

101

102

103

TopK

A
ve

ra
ge

 R
el

at
iv

e
E

rr
or

 (
%

)

CM

CU

SS

w=1024

w=2048

w=3072

Fig. 7.12   Experimental results for recall of SS, CM and CU algorithms, when ranking the
workload. c ARE versus width and depth. d ARE versus top-K and width

1677  Cloud Computing: Efficient Congestion Control in Data Center Networks

probability to perform CU, the achieved ARE decreases gradually. Meanwhile,
with the increase of the depth, the error also decreases, and after d = 33, its value
can reach as low as 1.5 %. As for the time complexity shown in Fig. 7.13b, when α
increases by 30 %, the amount of time required for processing all updates increases
by around 16 %, which clearly confirms the trade-off between time and error perfor-
mance of CM and CU algorithms. Figure 7.13c, d shows the results when varying
the sketch width, and it clearly confirms that w has no relationship with compute
time, and ARE decreases with the growing size of the data structure to reduce the
collision probability when processing the input items.

To facilitate the sketch partition, we use the TCP destination port number to
distinguish the HTTP and DNS flows. Then, based on the inverse ratio of the fitted
Z parameters (for Zipfian distribution) from the trace (where we have zHTTP = 1 53. ,
zDNS = 1 93. , zothers = 1 02. with fitting coefficient 0.95), we partition the sketch into
three small sketches, whose depth ratio is 3:2:4 between HTTP, DNS, and all other
service types.

Figures 7.14a and 7.12b show both the ARE and compute time versus the depth
of the sketch d , while setting w = 8192 as a constant. It can be seen that P( d)-CU
successfully reduces the estimation error by at least 50 % when compared to CU
when d = 12, and this effect continuously holds when d increases as the lowest to
0 %. The curve of P(w)-CU further confirms that partitioning the horizontal dimen-
sion of the sketch would not yield extra benefits of lower ARE since width strictly
controls the amount of collisions. As for time complexity, P( d)-CU shows its su-
periority over CU approach and very close to CM algorithm. This gain becomes
clearer when d increases and the complexity reduction can reach up to 18 % when
d = 36. As an overall trend, the time complexities of four algorithms conform to
the strict linearity showing good scalability with the space cost of the sketch. The
effect of changing the width of sketch is depicted in Fig. 7.14c, d. Bigger w will
decrease the ARE for all four approaches and P( d)-CU always achieves the best
error performance and good time complexity compared with CM. We also perform
an evaluation while processing 70 and 35 % of total data by P( d)-CU, and found
that when w = 2560 it only requires 52 and 17 % of compute time showing that the
algorithm itself contributes 18 % less time consumption apart from the help in the
reduction of data size.

7.8.3 � Real-Time Moving Averages

Finally, we arbitrarily pick up some specific IP pairs and show the effects of per-
forming real-time moving average on P( d)-CU, while setting the looking-back in-
terval at T = 300 s and moving speed at l = { , }10 100 s and comparing with the exact
value from database querying. We show the results obtained from three different IP
pairs whose moving average curve of the workload exhibit different shapes over
time. Case 1 has a curve with an early peak happened before 8:30 am in the morn-
ing as shown in Fig. 7.15a, b. Figure 7.15c, d of Case 2 both have a late peak that

168 C. H. Liu et al.

appears after 8:30 am. For the last case in Fig. 7.16a, b, there are two peaks of
workload

Figures 7.15b, d and 7.16b show the result when l = 100s or 0.67,γ = where
the estimated value successfully tracks the exact value when the workload slowly
changes. Meanwhile, when abrupt changes like spikes occur we observe certain
amount of latency in tracing the change. This is primarily because that the his-
torical data out of 300 s still have certain impacts on the aggregated statistics, al-
though they have been exponentially discounted. Figures 7.15a, c and 7.16a show
the result when l = 10s, or 0.97,γ = which is expected to be more fine-grained (i.e.,
the window move slower) and the effect of historical observations are more obvi-
ous. From the three cases, we confirm that the proposed moving average approach
successfully tracks the abrupt changes with satisfactory response time. It is also
worth noting that the performance of our proposed approach behaves stably under
different scenarios when the peak of workload appears arbitrarily.

15

a

b

20 25 30 35
0

5

10

15

20

Depth

A
R

E
 (

%
)

α=0.1
α=0.4
α=0.7
α=1.0

15 20 25 30 35
2

3

4

5

6

7

8

Depth

C
om

pu
te

 T
im

e
(s

ec
on

d)

α=0.1
α=0.4
α=0.7
α=1.0

Fig. 7.13  Experimental results for ARE versus depth (a). b Compute time versus depth of α-CU
algorithm.

1697  Cloud Computing: Efficient Congestion Control in Data Center Networks

Finally, Fig. 16c, d shows the compute time for all IP pairs during the simula-
tion period from 8:00 to 9:00 am, plotting under different l values. We can see that
the curve of Fig. 7.16c is much more fine-grained than Fig. 7.16d. This is because
a small moving speed indicates more calculating counts and avoids the possible
severe jitter of compute time, forming a more smooth curve accordingly.

7.9 � Conclusion

Emerging bandwidth-hungry applications in DCNs impose significant challenges to
identify the cause of congestion and bandwidth overuse. In this chapter, at first, we
provide a comprehensive study of a real DCN traffic data set and analyze its opera-
tional characteristics. Then, motivated by the analysis results, we reexamine various
streaming techniques to approximate the DCN traffic characteristics in real-time,
and propose two enhanced algorithms, α-CU and P( d)-CU, based on existing CU

Fig. 7.13   Experimental results for ARE versus depth. c ARE versus width. d Compute time versus
width of α-CU algorithm

1 1.2 1.4 1.6 1.8 2

x 104

0

5

10

15

Widthc

d

A
R

E
 (

%
)

α=0.1
α=0.4
α=0.7
α=1.0

1 1.2 1.4 1.6 1.8 2
2

2.5

3

3.5

4

4.5

Width

C
om

pu
te

 T
im

e
(s

ec
on

d)

α=0.1 α=0.4 α=0.7 α=1.0

x 104

C. H. Liu et al.170

algorithm, together with the end-to-end system architecture. α-CU targets to serve
as a zero-cost alternative to the existing flow analyzers that already run CM and CU,
providing a configurable trade-off between the error performance and time com-
plexity. P( d)-CU, which successfully improves both accuracy and time complexity,
is a significant enhancement to any existing sketching techniques that requires the
known Zipfian parameter for different network services at the configuration phase.
Further, we propose a way to produce real-time moving average of the reported
results. Finally, sufficient experiments by a real DCN trace verify the effectiveness
of the proposed algorithms on error performance, space cost, and time complexity.

10

a
15 20 25 30 35 40

0

20

40

60

80

100

120

140

160

Depth

A
ve

ra
ge

 R
el

at
iv

e
E

rr
or

 (
%

)

CM
CU
P(d)-CU
P(w)-CU

b
10 15 20 25 30 35 40

1

2

3

4

5

6

7

8

9

Depth

C
om

pu
te

 T
im

e
(s

ec
on

d)

CM

CU
P(d)-CU

P(w)-CU

Fig. 7.14  Experimental results for ARE versus depth (a). b Compute time versus depth of
P( d)/P(w)-CU algorithms

7  Cloud Computing: Efficient Congestion Control in Data Center Networks 171

Fig. 7.14   Experimental results for ARE versus depth c ARE versus width. d Compute time versus
width of P( d)/P(w)-CU algorithms

0.8 1 1.2 1.4 1.6 1.8 2 2.2
x 104

0

5

10

15

20

25

30

35

40

Widthc

A
ve

ra
ge

 R
el

at
iv

e
E

rr
or

 (
%

)

CM
CU
P(d)-CU
P(w)-CU

d
0.8 1 1.2 1.4 1.6 1.8 2 2.2

x 104

1.5

2

2.5

3

3.5

4

4.5

Width

C
om

pu
te

 T
im

e
(s

ec
on

d) CM
CU
P(d)-CU
P(w)-CU

C. H. Liu et al.172

08:00
a

08:15 08:30 08:45 09:00
0

1

2

3

4

5

6

7

8

9
x 109

Time

W
or

kl
oa

d
(B

yt
es

)

Real

Moving Average

b
08:00 08:15 08:30 08:45 09:00
0

1

2

3

4

5

6

7

8

9
x 109

Time

W
or

kl
oa

d
(B

yt
es

)

Real

Moving Average

Fig. 7.15   Experimental results for real-time moving average of P( d)-CU algorithm (Case 1).
a 10 s interval. b 100 s interval. Experimental results for real-time moving average of P( d)-CU
algorithm (Case 2)

7  Cloud Computing: Efficient Congestion Control in Data Center Networks 173

Fig. 7.15   Experimental results for real-time moving average of P( d)-CU algorithm (Case 1).
c 10 s interval. d 100 s interval

08:00

c
08:15 08:30 08:45 09:00

0

1

2

3

4

5

6
x 109

Time

W
or

kl
oa

d
(B

yt
es

)

Real
Moving Average

d
08:00 08:15 08:30 08:45 09:00
0

1

2

3

4

5

6
x 109

Time

W
or

kl
oa

d
(B

yt
es

)

Real
Moving Average

C. H. Liu et al.174

08:00

a
08:15 08:30 08:45 09:00

0

0.5

1

1.5

2

2.5

3

3.5
x 109

Time

W
or

kl
oa

d
(B

yt
es

)
Real
Moving Average

b
08:00 08:15 08:30 08:45 09:00
0

0.5

1

1.5

2

2.5

3
x 109

Time

W
or

kl
oa

d
(B

yt
es

)

Real
Moving Average

Fig. 7.16   Experimental results for real-time moving average of P( d)-CU algorithm (Case 3).
a 10 s interval. b 100 s interval. Experimental results for compute time of real-time moving
average of P( d)-CU algorithm (Compute time)

7  Cloud Computing: Efficient Congestion Control in Data Center Networks 175

Fig. 7.16   Experimental results for real-time moving average of P( d)-CU algorithm (Case 3).
c 10 s interval. d 100 s interval

08:00

c
08:15 08:30 08:45 09:00

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Time

T
im

e
U

se
d

(S
ec

on
d)

Real
Moving Average

d
08:00 08:15 08:30 08:45 09:00

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Time

T
im

e
U

se
d

(S
ec

on
d)

Real

Moving Average

C. H. Liu et al.176

References

  1.	 Al-Fares M et al (2008) A scalable, commodity data center network architecture. In: ACM
SIGCOMM’08, pp 63–74

  2.	 Al-Fares M et al (2010) Hedera: dynamic flow scheduling for data center networks. In:
NSDI, 2010, pp 19–19

  3.	 Babcock B et al (2002) Models and issues in data stream systems. In: ACM Principal Data-
base System, 2002, pp 1–16

  4.	 Babcock B, Olston C (2003) Distributed top-k monitoring. In: ACM SIGMOD’03, 2003,
pp 28–39

  5.	 Barakat C et al (2005) Ranking flows from sampled traffic. In: ACM CoNEXT’05, 2005,
pp 188–199

  6.	 Braden R et al (1994) Integrated services in the internet architecture: an overview. IETF IETF
RFC1633, http://tools.ietf.org/html/rfc1633, June 1994

  7.	 Chaiken R et al (2008) SCOPE: easy and efficient parallel processing of massive data sets.
VLDB Endow 1(2):1265–1276

  8.	 Chang F, Dean J, Ghemawat S, Hsieh WC, Wallach DA, Burrows M, Chandra T, Fikes A,
Gruber RE (2008) Bigtable: a distributed storage system for structured data. ACM Trans
Comput Sys 26(2):4:1–4:26

  9.	 Cormode G, Muthukrishnan S (2005) An improved data stream summary: the count-min
sketch and its applications. J Algorithm 55(1):58–75

10.	 Cormode G, Muthukrishnan S (2005) Summarizing and mining skewed data streams. In:
SIAM Conference on Data Mining, pp 44–55

11.	 Cormode G, Muthukrishnan S (2005) What’s hot and what’s not: tracking most frequent
items dynamically. ACM Trans Database Syst (TODS) 30(1):249–278

12.	 Curtis AR et al (2011) Mahout: low-overhead datacenter traffic management using end-host-
based elephant detection. In: IEEE Infocom, 2011, pp 1629–1637

13.	 Dean J, Ghemawat S (2008) Mapreduce: simplified data processing on large clusters. Com-
mun ACM 51(1):107–113

14.	 Demaine ED et al (2002) Frequency estimation of internet packet streams with limited space.
In: 10th Annual European Symposium on Algorithm, 2002, pp 348–360

15.	 Estan C, Varghese G (2002) New directions in traffic measurement and accounting. ACM
SIGCOMM Comp Com Rev 32(4):323–336

16.	 Estan C, Varghese G (2003) New directions in traffic measurement and accounting: focusing
on the elephants, ignoring the mice. ACM Trans Comp Syst (TOCS) 21(3):270–313

17.	 Farrington N et al (2011) A hybrid electrical/optical switch architecture for modular data
centers. ACM SIGCOMM Comput Commun Rev 41(4):339–350

18.	 Ghemawat S et al (2003) The Google file system. ACM SIGOPS Oper Sys Rev 37(5):29–43
19.	 Goyal A et al (2010) Sketching techniques for large scale NLP. In: The NAACL HLT Sixth

Web as Corpus Workshop, pp 17–25
20.	 Hoelzle U, Barroso LA (2009) The datacenter as a computer: an introduction to the design of

warehouse-scale machines, 1st edn. Morgan and Claypool, San Rafael
21.	 IBM Security QRadar QFlow Collector (2014). http://www–03.ibm.com/software/products/

us/en/qradar-qflow-collector/. Accessed 22 Feb 2014
22.	 Liu CH et al (2013) Sketching the data center network traffic. IEEE Netw 27(4):33–39
23.	 Manku GS, Motwani R (2002) Approximate frequency counts over data streams. In: VLDB

Conference, 2002, pp 346–357
24.	 Metwally A et al (2005) Efficient computation of frequent and top-k elements in data streams.

In: International Conference on Database Theory, 2005, pp 398–412
25.	 Muthukrishnan S (2005) Data streams: algorithms and applications. Found Trends Theor

Comp Sci 1(2):2005, pp 1–136
26.	 NetFPGA. http://netfpga.org/. Accessed 2010
27.	 Network Working Group (2014) Cisco systems netflow services export version 9. http://

www.ietf.org/rfc/rfc3954.txt. Accessed 22 Feb 2014

http://tools.ietf.org/html/rfc1633
http://www�03.ibm.com/software/products/us/en/qradar-qflow-collector/
http://www�03.ibm.com/software/products/us/en/qradar-qflow-collector/

7  Cloud Computing: Efficient Congestion Control in Data Center Networks 177

28.	 Network Working Group (2014) Evaluation of candidate protocols for IP flow information
export (IPFIX). http://www.ietf.org/rfc/rfc3955.txt. Accessed 22 Feb 2014

29.	 Olston C et al (2008) Pig latin: a not-so-foreign language for data processing. In: ACM SIG-
MOD’08, 2008, pp 1099–1110

30.	 Pietronero L et al (2001) Explaining the uneven distribution of numbers in nature: the laws of
Benford and Zipf. Physica A 293(1):297–304

31.	 Roughan M et al (2004) Class-of-service mapping for QOS: a statistical signature-based ap-
proach to IP traffic classification. In: ACM IMC, pp 135–148

32.	 sFlow. http://www.sflow.org/. Accessed 2010
33.	 Shvachko K et al (2010) The Hadoop distributed file system. In: IEEE Symposium on Mass

Storage System Technology (MSST), 2010, pp 1–10

Chapter 8
Energy-Aware Virtual Machine Consolidation
in IaaS Cloud Computing

Md Hasanul Ferdaus and Manzur Murshed

M. H. Ferdaus ()
Faculty of Information Technology, Monash University, Churchill, VIC 3842, Australia
e-mail: md.ferdaus@monash.edu

M. Murshed
School of Information Technology, Faculty of Science, Federation University Australia,
Churchill, VIC 3842, Australia
e-mail: manzur.murshed@federation.edu.au

Abstract  With immense success and rapid growth within the past few years, cloud
computing has been established as the dominant paradigm of IT industry. To meet
the increasing demand of computing and storage resources, infrastructure cloud
providers are deploying planet-scale data centers across the world, consisting of
hundreds of thousands, even millions of servers. These data centers incur very high
investment and operating costs for the compute and network devices as well as for
the energy consumption. Moreover, because of the huge energy usage, such data
centers leave large carbon footprints and thus have adverse effects on the environ-
ment. As a result, efficient computing resource utilization and energy consumption
reduction are becoming crucial issues to make cloud computing successful. Intel-
ligent workload placement and relocation is one of the primary means to address
these issues. This chapter presents an overview of the infrastructure resource man-
agement systems and technologies and detailed description of the proposed solu-
tion approaches for efficient cloud resource utilization and minimization of power
consumption and resource wastages. Different types of server consolidation mecha-
nisms are presented along with the solution approaches proposed by the researchers
of both academia and industry. Various aspects of workload reconfiguration mecha-
nisms and existing works on workload relocation techniques are described.

Keywords  Cloud computing · Energy-awareness · Virtualization · Server
consolidation · Reconfiguration · Virtual machine migration · Combinatorial
optimization

179© Springer International Publishing Switzerland 2014
Z. Mahmood (ed.), Cloud Computing, Computer Communications and Networks,
DOI 10.1007/978-3-319-10530-7_8

180 M. H. Ferdaus and M. Murshed

8.1 � Introduction

With the rapid development of computing and storage technologies and the extreme
success of the Internet, computing resources have become more powerful, cheaper,
and ubiquitously available than ever before. This technological shift has enabled
the realization of a new computing paradigm called Cloud Computing. Technically
speaking, clouds are large pool of easily accessible and readily usable virtualized
resources, such as hardware (e.g., CPU, memory, storage), development platforms
(e.g., Java,.NET, Go), and services (e.g., Email, CRM, HR) that can be dynamically
reconfigured to adjust to a variable load in terms of scalability, elasticity, and load
balancing, and thus allow opportunities for optimal resource utilization. This pool
of resources is typically provisioned as a pay-per-use business model in which very
high availability and guarantee (e.g., 99.99 % for Amazon S3) are offered by the
cloud infrastructure provider by means of service level agreements (SLAs) [49].
Consumers of cloud can access resources and services based on their requirements
without any regard of the location of the consumed resource and service. A similar
concept of delivering computing resources has been termed Utility Computing in
the arena of information technology for a few decades. Recent advancement in tech-
nologies like high-speed internet, virtualization, and web 2.0, and high availability
of commodity computing equipment have paved the way of cloud computing to a
quick success.

According to the National Institute of Standards and Technology (NIST) defini-
tion [32], the five essential elements of cloud computing are:

•	 On-demand computing service
•	 Broad network access
•	 Resource pooling
•	 Rapid elasticity, and
•	 Measured service

In addition to these five essential characteristics, the cloud community has exten-
sively used the following service models to categorize the cloud services [49]:

•	 Infrastructure as a service (IaaS): Cloud provides provision for computing re-
sources (e.g., processing, network, storage) to cloud customers in the form of
virtual machines (VM), for example Amazon EC2 and Google compute engine.

•	 Platform as a service (PaaS): PaaS providers offer a development platform (pro-
gramming environment, tools, etc.) that allows cloud consumers to develop
cloud services and applications as well as a deployment platform that hosts those
services and applications, thus supports full software lifecycle. Examples in-
clude Google App Engine and Windows Azure.

•	 Software as a service (SaaS): Cloud consumers release their applications on a
hosting environment fully managed and controlled by SaaS cloud providers and
the applications can be accessed through internet from various clients (e.g., web
browser and smartphones). Examples are Google Apps and Salesforce.com.

1818  Energy-Aware Virtual Machine Consolidation in IaaS Cloud Computing

To respond to the rapid growth of customer demands for processing power and
storage, cloud providers like Amazon, Microsoft, and Google are deploying large
number of planet-scale power-hungry data centers across the world. Cloud giants
like Microsoft and Google individually have more than 1 million servers in their
data center infrastructures, as recent report shows [35]. As a consequence, a huge
amount of energy is required to run the servers and keep the cooling systems operat-
ing for these gigantic data centers. As per the Data Center Knowledge report [42],
power is one of the critical total cost of ownership (TCO) variables in managing
data centers, and servers and data equipment are responsible for 55 % of energy
used by the data center followed by 30 % for the cooling equipment.

Large data centers are not only expensive to maintain, but also have enormous
effects on environment. According to McKinsey report [25], world data centers
consume 0.5 % of world’s electricity and drive in more carbon emission than both
Argentina and the Netherlands. The reason behind this extremely high energy con-
sumption is not just the amount of computing resources used and the power inef-
ficiency of the hardware, but also lies in inefficient use of these resources. Data
collected from more than 5000 production servers over 6-month period showed that
on average servers operate only at 10–15 % of their full capacity most of the time,
leading to expenses on overprovisioning of resources [4]. Narrow dynamic power
range of server further aggrandizes the problem: even completely idle servers con-
sume about 70 % of their peak power usage [17]. As cloud promises unlimited re-
sources through elastic provisioning, absolute reliability and availability, as well
as customer demands show high dynamics, overprovisioning of resources in cloud
data centers is a common phenomenon.

Among all the service models, the key for the success of cloud computing is
the IaaS substrate that enables cloud service providers to provision the computing
infrastructure needed to deliver the services simply by renting resources as long as
needed without even buying a single component. Cloud infrastructures depend on
one or more data centers, either centralized or distributed and on the use of various
cutting-edge resource virtualization technologies, which enable the same physical
resource (computing, network, or storage) to be shared among multiple application
environments. Virtualization technologies allow data centers to address resource
and energy inefficiency by creating multiple VMs in a single physical machine, each
of which representing a runtime environment completely isolated from one another
and by live migrating VMs [11] from one server to another, and thus improving re-
source utilization. Reduction of energy consumption can be achieved by switching
idle physical servers to lower power states (suspended or turned off) while still pre-
serving customers performance requirements. Thus, monitoring server utilization,
making appropriate workload relocation decision, and by this process, improving
data center resource utilization and energy consumption, technically termed VM
Consolidation (or Server Consolidation or Workload Consolidation) is an essential
part of resource management of virtualized data centers [54], including cloud data
centers.

Higher resource utilization and energy efficiency in cloud data centers through
server consolidation come with the associated overhead or cost of reconfiguration

182 M. H. Ferdaus and M. Murshed

of the workloads. Relocation of VM from one machine to another using VM live mi-
gration consumes nonnegligible amount of computing and network resources [11].
Also, VM live migration may lead to significant performance issues for the hosted
applications depending on the current resource utilization conditions in the physical
servers, network traffic, types of applications, and other colocated workloads [1,
24, 55]. The most obvious effect of VM live migration that hosted applications per-
ceive is the VM downtime when the applications will be unavailable to the clients.
The domain of applications that leverages the cloud platforms is broad, including
high performance computing (HPC), video processing, scientific simulation, and
web applications. With the wide adaptation of Web 2.0 technologies, modern web
applications such as social networking and e-commerce websites exhibit highly dy-
namic and interactive characteristics and thus, resulting in particular client/server
communication patterns, write patterns, and server load compared with traditional
static web applications. Proper estimation of the total cost or overhead of reconfigu-
ration through VM live migration techniques in a cloud setting is essential to guide
server consolidation, VM multiplexing and scheduling schemes so that trade-off
between VM packing efficiency that gives measure of server resource utilization
and reconfiguration overhead that impacts customer SLA can be performed. As a
response, research community has contributed to the appropriate design, model-
ing, and validation techniques to estimate realistic reconfiguration costs considering
both system parameters and application characteristics.

The rest of the chapter is organized as follows: Sect. 8.2 presents a brief over-
view of the architectural components and underlying technologies of IaaS cloud
infrastructure. Resource management issues and challenges of IaaS clouds includ-
ing server resource utilization and energy management along with the solution ap-
proaches in existing works are described in Sect. 8.3. Finally, Sect. 8.4 summarizes
the content of the chapter.

8.2 � IaaS Cloud Management Systems

While the number and scale of cloud computing services and systems are continuing
to grow rapidly, significant amount of research is being conducted both in academia
and industry to determine the directions to the goal of making the future cloud com-
puting platforms and services successful. As most of the major cloud computing of-
ferings and platforms are proprietary or depend on software that is not accessible or
amenable to experimentation or instrumentation, researchers interested in pursuing
cloud computing infrastructure questions as well as future cloud service providers
have very few tools to work with [41]. Moreover, data security and privacy issues
have created concerns for enterprises and individuals to adopt public cloud services
[2]. As a result, several attempts and ventures of building open-source cloud com-
puting solutions came out of both academia and industry collaborations including

1838  Energy-Aware Virtual Machine Consolidation in IaaS Cloud Computing

Eucalyptus [41], OpenStack, OpenNebula [44], and Nimbus1. These cloud solutions
provide various aspects of cloud infrastructure management such as:

•	 Management services for VM life cycle, compute resources, networking, and
scalability.

•	 Distributed and consistent data storage with built-in redundancy, failsafe mecha-
nisms, and scalability.

•	 Discovery, registration, and delivery services for virtual disk images with sup-
port of different image formats (VDI, VHD, qcow2, VMDK).

•	 User authentication and authorization services for all components of cloud man-
agement.

•	 Web and console-based user interface for managing instances, images, crypto-
graphic keys, volume attachment/detachment to instances, and similar functions.

From the architectural perspective, the cloud computing environment is divided in
to four layers as presented in Fig. 8.1, as follows:

•	 Hardware layer: This layer is responsible for managing the physical resources
of the cloud, including physical servers, routers, switches, power, and cooling
systems.

•	 Infrastructure layer: This layer (also known as Virtualization layer) creates a
pool of computing and storage resources by partitioning the physical resources
using virtualization technologies such as Xen [3] and VMware.

•	 Platform layer: Built on top of the infrastructure layer, this consists of operating
systems and application frameworks and minimizes the burden of deploying ap-
plications directly on the VM containers.

1  Nimbus Project. http://www.nimbusproject.org/.

Hardware

CPU, Memory, Disk, Network Bandwidth

Infrastructure

Computation (VM), Storage

Platform

Software Framework (Java/.Net),
Storage (DB/File)

Application

Web Services, Multimedia, Business
Applications

Data Centers

Amazon EC2, GCE,
Rackspace

Google Apps, FB,
SalesForce.com

Examples
End Users

PaaS

IaaS

Azure, GAE,
Amazon SimpleDB

SaaS

Fig. 8.1   Cloud computing architecture

184 M. H. Ferdaus and M. Murshed

•	 Application layer: This layer consists of the actual cloud applications, which are
different from traditional applications and can leverage the automatic-scaling
feature of cloud to achieve better performance, availability, and lower operating
cost.

8.2.1 � Virtualization Technologies

One of the main enabling technologies that paved the way of cloud computing to-
ward its extreme success is virtualization. Cloud leverages various virtualization
technologies (machine, network, storage) to provide users an abstraction layer that
provides a uniform and seamless computing platform by hiding its hardware het-
erogeneity, geographic boundaries, and internal management complexities [59]. It
is a promising technique by which resources of physical servers can be abstracted
and shared through partial or full machine simulation by time-sharing and hardware
and software partitioning into multiple execution environments each of which runs
as complete and isolated system. It allows dynamic sharing and reconfiguration of
physical resources in cloud computing infrastructure that makes it possible to run
multiple applications in separate VMs having different performance metrics. It is
virtualization that makes it possible for the cloud providers to improve utilization
of physical servers through VM multiplexing [33] and multitenancy (i.e., simulta-
neous sharing of physical resources of same server by multiple cloud customers).
It also enables on-demand resource pooling through which computing resources,
like CPU and memory, and storage resources are provisioned to customers only
when needed [27]. This feature helps avoid static resource allocation based on peak
resource demand characteristics. In short, virtualization enables higher resource
utilization, dynamic resource sharing, and better energy management, as well as
improves scalability, availability, and reliability of cloud resources and services [9].

Virtualization in modern computing has been implemented using different ap-
proaches. Two significant techniques that have been heavily deployed in cloud
computing infrastructures are full virtualization and paravirtualization:

•	 Full virtualization [3] provides a complete VM enabling unmodified guest oper-
ating systems (guest OS) to run in isolation. It provides flexibility to run different
versions of different operating systems and the guest OS does not know that it is
being virtualized. However, full virtualization requires Hardware Virtualization
support (e.g., Intel-VT, AMD-V) from underlying host server.

•	 Paravirtualization [14] provides a complete but specialized VM to each guest
OS allowing modified guests to run in isolation. It provides a lightweight and
near native speed, and allows the guest OS to cooperate with hypervisor to im-
prove performance. However, this technology is only limited to open source
guest OS.

Hypervisor, also termed Virtual Machine Monitor (VMM), is the piece of software
that multiplexes hardware among the VMs that it provides, the way traditional op-
erating systems multiplexes hardware among the various processes [43]. Among

1858  Energy-Aware Virtual Machine Consolidation in IaaS Cloud Computing

the various virtualization systems, VMware, Xen, and KVM (Kernel-based Virtual
Machine) [26], as listed below, have proved to be the most successful by combing
features that make them uniquely well suited for many important applications:

•	 VMware Inc. is the first company to offer commercial virtualization technology.
It offers a hypervisor called ESXi2 server that supports full virtualization. Para-
virtualization can also be supported by using VMI [31].

•	 Xen [15] is one of a few Linux hypervisors that support both full virtualiza-
tion and paravirtualization. Each guest OS (termed domain in Xen terminology)
uses a preconfigured share of the physical server. A privileged domain called
Domain0 is a bare-bone OS that actually controls physical hardware and create,
configure, migrate, or terminate other VMs.

•	 KVM [26] also supports full virtualization. It is a modification to the Linux
kernel that actually makes Linux into a hypervisor on inserting a KVM kernel
module. One of the most interesting KVM features is that each guest OS running
on it is actually executed in user space of the host system. This approach makes
each guest OS look like a normal process to the underlying host kernel.

8.2.2 � VM Migration Techniques

One of the most prominent features of the virtualization systems is the VM Live Mi-
gration [11], which allows for the transfer of a running VM from one physical ma-
chine to another, with little downtime of the services hosted by the VM. It transfers
the current working state and memory of a VM across the network while they are
running. This has been already a built-in feature for both Xen and KVM. VMware
also added live migration feature called VMotion [39]. Other architectures includ-
ing Microsoft Hyper-V, Oracle VirtualBox, and OpenVZ also support this feature.

Another approach for VM migration is Cold or Static Migration [47] in which
the VM to be migrated is shut down and a configuration file is sent from the source
machine to the destination machine. The same VM can be started on the target ma-
chine by using the configuration file. This is a much faster and convenient way to
migrate a VM with negligible increase in network traffic, but static VM migration
incurs high downtime.

8.3 � Energy-Aware VM Consolidation and
Reconfiguration in IaaS Cloud Data Centers

Resource allocation in cloud has been challenging because of the unique service
features that cloud claims to provide; on-demand resource provisioning and pay-
as-you-go pricing policy not only create flexible and attractive business models,
but also intricate the resource management functions and operations. To support

2  vSphere ESX and ESXi, VMware Inc. http://www.vmware.com/au/products/esxi-and-esx/.

186 M. H. Ferdaus and M. Murshed

such service models, cloud providers need to deploy dynamic resource manage-
ment systems that would maximize resource utilization while minimizing energy
consumption and operating costs. Cloud provides elasticity and high scalability of
resources that require autonomous and self-configured management systems [59].
To ensure constant high resource utilization, clouds allow multitenancy and shared
resource pooling where workloads and VMs from different users and possibly of
different application environments can colocate on the same physical servers [8].
Clouds leverage virtualization technologies [14] that allow integration of flexible
and efficient resource management strategies into cloud infrastructure. Resource
management policies and algorithms in the arena of public clouds are not disclosed
due to business reason. Moreover, the current open-source cloud management sys-
tems like OpenStack and Eucalyptus take simplistic views on resource management
and provide very basic algorithms such as random, round-robin, or uniform with
primary focus on load balancing.

8.3.1 � Energy-Efficient VM Consolidation

While cloud computing provides many advanced features, it still has some short-
comings such as the relatively high operating costs for both public and private
clouds. The area of Green Computing is also becoming increasingly important in
a world with limited energy resources and an ever-rising demand for more com-
putational power. As pointed out before, energy costs are among the primary fac-
tors that contribute to the TCO and its influence will grow rapidly due to the ever
increasing demands of resources and continuously increasing electricity costs [21].
As a consequence, optimization of energy consumption through efficient resource
utilization and management is equivalent to operating cost reduction in data center
management. To optimize the energy consumption of the physical devices, different
techniques have been proposed and used, including server consolidation, energy-
aware resource management frameworks and design strategies, and energy-efficient
hardware devices.

Resource management and optimization is getting more challenging day-by-
day for large-scale data centers like cloud data centers due to their rapid growth,
high dynamics of hosted services, resource elasticity, and guaranteed availability
and reliability. Static resource allocation techniques used in traditional data cen-
ters are simply inadequate to address these newly immerged challenges [23]. With
the advent of virtualization technologies, server resources are now better managed
and utilized through server consolidation by placing multiple VMs hosting several
applications and services in a single physical server, and thus ensuring efficient
resource utilization. Energy-efficiency is achieved by consolidating the running
VMs in minimum number of servers and transitioning idle servers into lower power
states (i.e., sleep or shut down mode).

VM consolidation techniques provide VM placement decisions that indicates
the mapping of each running VM to appropriate server. Depending on the initial

1878  Energy-Aware Virtual Machine Consolidation in IaaS Cloud Computing

condition of data centers that VM consolidation techniques start with, it is catego-
rized into two variants: Static and Dynamic VM Consolidation.

8.3.1.1 � Static VM Consolidation

The static VM consolidation techniques start with a set of fully empty physical
servers, either homogenous or heterogeneous with specific resource capacity and
a set of workloads in the form of VMs with specific resource requirements. Thus,
such consolidation mechanisms require prior knowledge about all the workloads
and their associated resource demands. Such techniques are useful in situations like
initial VM placement phase or migration of a set of workload from one data center
to another. Static consolidation does not consider the current VM-to-server assign-
ments and thus unaware of the associated VM migration overheads on both the
underlying network traffic and hosted application performance [19]. Considering
the predominant energy-costs of running large data centers and low utilization of
servers resulted by traditional resource management technologies, and through the
blessings of virtualization techniques, VM placement strategies like server consoli-
dation have become a hot area of research [18, 20, 22, 40, 48, 50].

8.3.1.2 � Dynamic VM Consolidation

Consolidation mechanisms that consider the current VM-to-server assignments for
the consolidation decision fall in the category of dynamic consolidation. Contrary
to static consolidations where the current allocations are disregarded and whole new
solution of VM placement is constructed without considering the cost of realloca-
tion of resources, dynamic consolidation techniques include the cost or overhead of
relocation of existing workloads into the modeling of consolidation and try to mini-
mize relocation overhead and maximize consolidation. Such server consolidation
mechanisms employ VM live or cold migration techniques [11, 39] to move around
workloads from servers with low utilization and consolidate them into minimum
number of servers, thus improving overall resource utilization of the data center and
minimizing power consumption.

As clouds offer an on-demand pay-as-you-go business model, customers can
demand any number of VMs and can terminate their VMs when needed. As a re-
sult, VMs are created and terminated in the cloud data centers dynamically. This
causes resource fragmentation in the servers, and thus leads to degradation in server
resource utilization. However, efficient resource management in clouds is not a
trivial task, as modern service applications exhibit highly variable workloads caus-
ing dynamic resource usage patterns. As a result, aggressive consolidation of VMs
can lead to degradation of performance when hosted applications experience an
increasing customer demand resulting in a rise in resource usage. As cloud provid-
ers ensure reliable quality of service (QoS) defined by SLAs, resource management
systems in cloud data centers need to deal with the energy-performance trade-off.

188 M. H. Ferdaus and M. Murshed

To estimate the cost of relocation of workloads by the dynamic VM consolidation
techniques, several system and network level metrics and parameters are used as
modeling elements, such as the number of VM live migrations required to achieve
the new VM-to-server placement [19], VM active memory size, speed of network
links used for the migration [1, 23, 51], page dirty rate [52], and application-specific
performance model [24].

8.3.1.3 � VM Consolidation Modeling Techniques

Cloud data centers consist of hundreds or thousands, or even millions of high-end
servers, for example rack-mount servers and blade servers with virtualization en-
abled to allow on-demand creation and termination of VMs on them. Popular cloud
providers (e.g., Google, Amazon, and Rackspace) offer their customers different
categories of VM instances to run with specification for each type of resource like
the number of CPU cores, amount of memory, network bandwidth, and storage ca-
pacity. According to modern data center architectures3, data storage is implemented
as storage area network (SAN) or network attached storage (NAS) and is architec-
turally separate from compute servers. This type of architectural separation pro-
vides IaaS cloud providers the flexibility to offer on-demand storage blocks (e.g.,
Amazon EBS) to their customers. As a consequence, most of the recent works on
VM placement considers compute (CPU and memory) and network resource (net-
work I/O) that are relevant to the physical servers and the VMs running on them.

Moreover, VM instances offered by public cloud providers differ in their indi-
vidual resource capacities: some instances are larger than others (e.g., AWS EC2
instances: small, large, extra-large, etc.) whereas some instances have relatively
higher capacity for one type of resource compared with their other resources (e.g.,
Google instances: High CPU, High Memory, etc.). Such diverse range of VM in-
stances are offered to match the workload characteristics of the hosted cloud appli-
cations that range from web and enterprise business applications to HPC, scientific,
and complex workload applications.

As cloud VM in stances host various types of applications, the active VMs in
cloud data centers exhibit dynamic resource demands during run-time. This dynam-
ic nature of VMs can be captured and intelligently used to perform workload predic-
tion and estimation mechanisms [57]. Because of the various types of VM instances
offered by the providers with emphasis on size and types of resources and dynamic
change in workload demands, it is very common that they will have random and
nonuniform resource demands in difference resource dimensions of CPU, memory,
and network I/O. To appropriately capture the various types of resource capaci-
ties of physical servers and the different types of resource requirements of hosted
VMs, the VM consolidation problem is usually modeled as a variant of multi-di-
mensional vector packing problem (mDVPP) [20, 36] and multi-dimensional bin

3  Cloud-ready Data Center Reference Architecture. Juniper Networks, Inc. http://www.juniper.net/
us/en/local/pdf/reference-architectures/8030001-en.pdf.

http://www.juniper.net/us/en/local/pdf/reference-architectures/8030001-en.pdf
http://www.juniper.net/us/en/local/pdf/reference-architectures/8030001-en.pdf

1898  Energy-Aware Virtual Machine Consolidation in IaaS Cloud Computing

packing problem (mDBPP) [18, 19, 23], and sometimes as multiple knapsack prob-
lem (MKP) [40, 48]. In [36], the authors argued that VM consolidation is in fact
an instance of mDVPP rather than mDBPP and some analysis is presented in their
work. All of the aforementioned problems fall in the broad category of Discrete
Combinatorial Optimization and from computational complexity perspective, these
problems are NP-hard in nature and the best known algorithms that guarantee to
identify an optimal solution have exponential time worst case complexity [13].

Most of the research works on VM consolidation consider the cloud data center
environment consisting of homogeneous physical servers (or PMs) having same
types of resources (e.g., CPU, memory, and network I/O) with different capacity
represented as 2-tuple (CPU, MEM)or 3-tuple (CPU, MEM, IO). Resource de-
mands of active VMs are also represented in a similar fashion. It is assumed that
individual VM resource demand does not exceed individual PM resource capacity;
otherwise the VM request is rejected. Given the set of servers with their respective
resource capacities and the VM with their respective resource demands, the VM
consolidation algorithms try to find VM-to-server placement mappings with some
defined objective function that they try to minimize or maximize while maintaining
the physical servers’ resource capacity constraints. In the case of static VM consoli-
dation, the objective function is very often modeled as a minimization function that
tries to minimize the number of active servers that are used for VMs assignments
[18, 23, 40, 48]. On the other hand, in the case of dynamic VM consolidation, the
objective function is often formulated as a combination of maximization of the
number of released servers (i.e. servers that are made empty and turned to power
saving states) and resource utilization of active servers, as well as minimization of
the number of VM migrations required for the new VM placement [19].

Depending on the modeling technique, static VM consolidation is often regarded
as a single-objective problem where dynamic VM consolidation is considered as a
multiobjective problem [19]. However in [20], the authors modeled the static VM
consolidation problem as a multi-objective combinatorial optimization problem
with the goal of simultaneously optimizing the total resource wastage and power
consumption.

Server Resource Utilization and Wastage Modeling  Depending on the VM
placement decisions, the remaining resources available to use in physical servers
may vary greatly. As different VMs have different resource demands along multiple
resource dimensions, server resource utilization and wastage models need to cap-
ture the level of imbalance in utilization for particular VM-to-server assignments.
A simple approach of capturing the utilization of multidimensional resources of a
server as presented in [18] that uses L1 norm based mean estimator, is:

CPU MEM IO ,U U U U= + +

where U CPU, U MEM, and U IO represent the normalized CPU, memory, and network
I/O utilization (i.e. the ratio of used resource to total resource) after the VM assign-
ments.

190 M. H. Ferdaus and M. Murshed

As the goal of static VM consolidation is to minimize the number of active serv-
ers by placing as many VMs as possible in those servers, minimization of resource
wastage along every possible resource dimension is essential to improve the VM
packing efficiency of the consolidation algorithm. Focusing on this goal, authors in
[20] presented server resource wastage model by the following formulation (consid-
ering CPU and memory resources only):

CPU MEM

CPU MEM ,
L L

W
U U

ε− +
=

+

where UCPU and UMEM represent the normalized CPU and memory resource usage,
and LCPU and LMEM denote the normalized remaining CPU and memory resource,
and ε is a very small positive real number that is set to be 0.0001. The key point
of the above resource wastage modeling is to make effective use of the server re-
sources along each dimension and balance the left out resources across different
dimensions.

Power Consumption Modeling  It has been shown experimentally that power con-
sumption of physical servers is dominated by their CPU utilization and increases
linearly [17]. As a result, the electricity energy drawn by a server is usually repre-
sented as a linear function of its current normalized CPU utilization UCPU:

E
E E U E if U

=
−() × + >








max ,
,

,idle
CPU

idle
CPU

otherwise
0

0

where Emax and Eidle are the average electrical power drawn when the server is fully
utilized and idle, respectively.

Finally, the estimate of the total energy consumed by a VM placement decision
is computed as the sum of the individual energy consumption of the active servers
[18, 20]. Due to the nonproportional power usage (i.e. high idle power) of com-
modity servers, the idle servers (i.e., servers that do not host any running VM) are
turned off or put in suspended or sleep mode after the new VM placement and are
not considered in the total energy consumption model. If a data center consists of
n servers, the overall energy consumption of a VM placement decision x is formu-
lated as follows:

E x E p
p

n

() ().=
=

∑
1

8.3.1.4 � Taxonomy and Survey of VM Consolidation Mechanisms

With the increasing adoption of virtualization technologies and rapid success of
hosting services, and very recently of cloud computing, VM consolidation tech-
niques have been very attractive to reduce energy costs and increase data center
resource utilization. As resource management mechanisms of public clouds (such

1918  Energy-Aware Virtual Machine Consolidation in IaaS Cloud Computing

as Amazon AWS) are not known in the public domain due to business policies,
several open-source cloud projects (such as Eucalyptus [41], OpenStack, and Open-
Nebula [44]) have emerged as a means of alternative solutions to the proprietary
cloud infrastructures. However, one of the major limitations of these current cloud
frameworks is the absence of efficient energy-aware workload consolidation mech-
anisms. As a result, a good amount of research works have been conducted and
published within the past few years with focus on different aspects of consolidation
ranging from energy saving and resource usage optimization to minimization of
VM migration overhead and SLA violations.

To analyze, assess, and compare among the various research works, taxonomy
and characterization have been established as proven methodologies in any research
area. The proposed research works on VM consolidation have incorporated state-of-
the-art technologies in data center management, including virtualization, autonomic
data center management platforms, cloud management systems, and various types
of simulated and real-world workloads and benchmarking tools. A brief description
of the identified aspects of the research works used in the course of taxonomy is
given below:

1.	 System assumption: Server resources in data center or IT infrastructure are pri-
marily modeled as either homogeneous or heterogeneous. Homogeneous cluster
of servers normally represent servers with same capacity for certain fixed types
of resources (e.g., CPU, memory, and storage), whereas heterogeneous cluster of
servers can represent either mean servers having different capacities of resources
or different types of resources (e.g., virtualized servers powered by Xen or
VMWare hypervisor, and servers with graphics processing units (GPUs)).

2.	 Server resource: Generally, optimization across different ranges of resources
(i.e. CPU, memory, network I/O, storage, etc.) is harder than single resource
optimization. Often various mean estimators (such as L1 norm, vector algebra,
etc.) are used to compute equivalent scalar estimation while trying to optimize
across multiple types of server resources. This aspect has direct influence on the
modeling techniques applied in the research works and also on the consolidation
performance.

3.	 Modeling technique: As for any research problem, the solution approach varies
depending on the modeling (mathematical, analytical, or algorithmic) applied for
the addressed problem. The characteristics of VM consolidation problem make
it most resemble to the general mDBPP/mDVPP. Furthermore, depending on
the objectives/goals set in the research projects, modeling can vary across other
theoretical problems such as multiple multidimensional knapsack problem, con-
straint satisfaction problem (CSP), and multiobjective optimization problems.

4.	 Objective: Most of the works set objective as to minimize the overall power
consumption of the data center and maximization of server resource utilization
by increasing the VM/workload packing efficiency using minimum number
of active/running servers. With the consolidation process comes the tradeoff
between application performance (and hence, SLA) and power consumption.
With given importance on SLA violations, some of the works consider the cost

192 M. H. Ferdaus and M. Murshed

of reconfiguration primarily due to VM live migrations, and thus incorporate this
cost in the objective function modeling. Moreover, some the works further focus
on automated and co-ordinated management frameworks with the VM consoli-
dation as an integral component of the proposed frameworks.

5.	 Solution approach/Algorithm: Considering the fact that the VM consolidation
is a strictly NP-hard problem, algorithmic approaches in the research works
vary from simple greedy approaches to metaheuristic strategies and local search
methods. Greedy approaches such as First Fit Decreasing (FFD) and Best Fit
Decreasing (BFD) are very fast in producing results but are not guaranteed to
produce optimal solutions. Metaheuristics such as Ant Colony Optimization
(ACO), Genetic Algorithms (GA), and Simulated Annealing (SA) work on ini-
tial or existing solutions and refine them to improve on objective function value.
Exhaustive search methods (e.g., Constraint Programming (CP)) normally fix
the domain of possible values for the model variables to compute the optimal
solution within a reasonable amount of time; however, in this process these
methods effectively limit the size of the data center (in terms of the number of
servers) or the volume of the workload (in terms of the number of VMs).

6.	 Evaluation/Experimental platform: Evaluation methodologies have direct impact
on the performance and practicality of the research works, most importantly in
the competency analysis. Proposals that primarily have theoretical contributions
mostly apply simulation based evaluation to focus highly on the algorithmic and
complexity aspects, whereas works involving various workload patterns and
application characteristics conduct their performance evaluation on real test beds
or experimental data centers, or even on emulated platforms.

7.	 Workload: Depending on the experimental environment, the workload data used
as input for the evaluation of various consolidation techniques varies from syn-
thetic data to real-time application/VM workloads. Simulation-based evaluation
primarily relies on synthetic workload data generated using various statisti-
cal models such as random, Gaussian, or Poisson distribution, or on workload
dataset collected from real data centers. Evaluations based on experimental test
beds mostly use real time workload data generated from the applications that
are deployed and run in the test bed servers. Such test beds though capture real-
istic behaviors of applications and systems suffer from scalability issues in the
domain of VM consolidation.

Analysis of VM Consolidation Solution Approaches  Table 8.1 illustrates the
most significant aspects of the notable recent research works in the area of energy-
aware VM consolidation based on the contents and description found in the pub-
lished materials. Depending on the analytical modeling techniques used in the
existing works, various algorithmic and problem solving techniques are applied
to solve server consolidation and related energy management problems [20], e.g.:

•	 Greedy algorithms: mDVPP and mDBPP as well as various knapsack problems
have been well studied over the past few decades, and as a result a good amount
of greedy heuristics have been proposed for both bin packing and knapsack prob-
lems in the fields of computer science and operations research. First-fit (FF),

1938  Energy-Aware Virtual Machine Consolidation in IaaS Cloud Computing

R
es

ea
rc

h
pr

oj
ec

t
Sy

st
em

as

su
m

pt
io

n
Se

rv
er

 re
so

ur
ce

s
M

od
el

in
g

te
ch

ni
qu

e
O

bj
ec

tiv
es

So
lu

tio
n

ap
pr

oa
ch

/
al

go
rit

hm

Ev
al

ua
tio

n/
ex

pe
ri-

m
en

ta
l p

la
tfo

rm
W

or
kl

oa
d

A
da

pt
iv

e
th

re
sh

ol
d-

ba
se

d
ap

pr
oa

ch
 fo

r
en

er
gy

-e
ffi

ci
en

t
co

ns
ol

id
at

io
n

of
 v

irt
ua

l
m

ac
hi

ne
s i

n
cl

ou
d

da
ta

ce

nt
er

s

H
et

er
og

en
eo

us
C

PU
, m

em
or

y,

IO
, a

nd
 st

or
ag

e
B

in
 P

ac
ki

ng

pr
ob

le
m

Th
re

sh
ol

d-
ba

se
d

dy
na

m
ic

 V
M

co

ns
ol

id
at

io
n,

m

in
im

iz
at

io
n

of
 e

ne
rg

y
co

n-
su

m
pt

io
n,

 S
LA

,
an

d
nu

m
be

r o
f

V
M

 m
ig

ra
tio

n

G
re

ed
y

A
pp

ro
ac

h,

M
od

ifi
ed

 B
es

t
Fi

t D
ec

re
as

in
g

al
go

rit
hm

C
lo

ud
Si

m
-b

as
ed

si

m
ul

at
io

n
C

PU
 u

til
iz

at
io

n
da

ta
 fr

om
 C

oM
on

m

on
ito

rin
g

pr
oj

ec
t

fo
r P

la
ne

tL
ab

En
aC

lo
ud

: a
n

en
er

gy
-

sa
vi

ng
 a

pp
lic

at
io

n
liv

e
pl

ac
em

en
t a

pp
ro

ac
h

fo
r c

lo
ud

 c
om

pu
tin

g
en

vi
ro

nm
en

ts

H
om

og
en

eo
us

C
PU

 a
nd

 m
em

or
y

B
in

 P
ac

ki
ng

pr

ob
le

m
En

er
gy

-a
w

ar
e

ap
pl

ic
at

io
n

sc
he

du
lin

g
an

d
pl

ac
em

en
t

G
re

ed
y

he
ur

is
tic

 b
as

ed

on
 F

irs
t F

it
an

d
B

es
t F

it
al

go
rit

hm
s

En
aC

lo
ud

 fr
am

ew
or

k
im

pl
em

en
te

d
in

 iV
IC

vi

rtu
al

 c
om

pu
tin

g
en

vi
ro

nm
en

t a
nd

 ru
n-

ni
ng

 o
n

cl
ou

d
se

rv
er

po

ol
 p

ow
er

ed
 b

y
X

en

R
an

do
m

ly
 g

en
er

-
at

ed
 w

or
kl

oa
ds

W

eb
 a

nd
 d

at
ab

as
e

se
rv

er
s,

co
m

pu
te

-
in

te
ns

iv
e

ap
pl

ic
a-

tio
ns

, a
nd

 c
om

m
on

ap

pl
ic

at
io

ns
pM

ap
pe

r:
po

w
er

 a
nd

m

ig
ra

tio
n

co
st

 a
w

ar
e

ap
pl

ic
at

io
n

pl
ac

em
en

t i
n

vi
rtu

al
iz

ed
 sy

st
em

s

H
et

er
og

en
eo

us
C

PU
B

in
 P

ac
ki

ng

pr
ob

le
m

Po
w

er
 c

on
su

m
p-

tio
n

m
in

im
i-

za
tio

n
un

de
r

pe
rf

or
m

an
ce

co

ns
tra

in
ts

G
re

ed
y

A
pp

ro
ac

h,

M
od

ifi
ed

 F
irs

t
Fi

t D
ec

re
as

in
g

Si
m

ul
at

io
n

ba
se

d
on

pM

ap
pe

r f
ra

m
ew

or
k

ru
nn

in
g

on
 V

M
W

ar
e

ES
X

-b
as

ed
 te

st
be

d

Se
rv

er
 u

til
iz

at
io

n
tra

ce
 d

at
a

fr
om

se

rv
er

 fa
rm

A
 m

at
he

m
at

ic
al

pr

og
ra

m
m

-in
g

ap
pr

oa
ch

fo

r s
er

ve
r c

on
so

lid
at

io
n

pr
ob

le
m

s i
n

vi
rtu

al
iz

ed

da
ta

 c
en

te
rs

H
om

og
en

eo
us

C
PU

, m
em

or
y,

an

d
ba

nd
w

id
th

M
ul

ti-
di

m
en

-
si

on
al

 B
in

Pa

ck
in

g
pr

ob
-

le
m

, L
in

ea
r

Pr
og

ra
m

m
in

g
R

el
ax

at
io

n

Se
rv

er
 c

on
so

li-
da

tio
n

th
ro

ug
h

w
or

kl
oa

d
da

ta
 p

re
-

pr
oc

es
si

ng
 a

nd

re
so

ur
ce

 u
sa

ge

op
tim

iz
at

io
n

G
re

ed
y

he
u-

ris
tic

 b
as

ed
 o

n
B

ra
nc

h
an

d
B

ou
nd

, F
irs

t
Fi

t,
an

d
Fi

rs
t

Fi
t D

ec
re

as
in

g,

LP
-r

el
ax

at
io

n-
ba

se
d

he
ur

is
tic

O
pe

n
so

ur
ce

 so
lv

er

lp
_s

ol
ve

 5
.5

.0
.9

 a
nd

C

O
IN

-O
R

 C
B

C

br
an

ch
-a

nd
-c

ut
 IP

so

lv
er

, a
s w

el
l a

s a
d

ho
c

si
m

ul
at

or
 fo

r
Fi

rs
t F

it
an

d
Fi

rs
t F

it
D

ec
re

as
in

g
he

ur
is

tic
s

W
or

kl
oa

d
tra

ce
s

fr
om

 W
eb

, a
pp

lic
a-

tio
n,

 a
nd

 d
at

ab
as

e
se

rv
er

s,
as

 w
el

l
as

 E
R

P
ap

pl
ic

a-
tio

ns
 fr

om
 in

du
st

ry

pa
rtn

er

Ta
bl

e
8.

1  
A

sp
ec

ts
 o

f n
ot

ab
le

 re
ce

nt
 re

se
ar

ch
 w

or
ks

 o
n

w
or

kl
oa

d
an

d
se

rv
er

 c
on

so
lid

at
io

n

194 M. H. Ferdaus and M. Murshed

R
es

ea
rc

h
pr

oj
ec

t
Sy

st
em

as

su
m

pt
io

n
Se

rv
er

 re
so

ur
ce

s
M

od
el

in
g

te
ch

ni
qu

e
O

bj
ec

tiv
es

So
lu

tio
n

ap
pr

oa
ch

/
al

go
rit

hm

Ev
al

ua
tio

n/
ex

pe
ri-

m
en

ta
l p

la
tfo

rm
W

or
kl

oa
d

En
tro

py
: a

 c
on

so
lid

at
io

n
m

an
ag

er
 fo

r c
lu

st
er

s
H

et
er

og
en

eo
us

C
PU

 a
nd

 m
em

or
y

In
st

an
ce

s o
f

2-
di

m
en

si
on

al

B
in

 P
ac

ki
ng

an

d
K

na
ps

a-
ck

 P
ro

bl
em

.
M

od
el

ed
 a

s
C

on
st

ra
in

t
Sa

tis
fa

ct
io

n
Pr

ob
le

m

D
yn

am
ic

 V
M

co

ns
ol

id
at

io
n,

M

in
im

iz
at

io
n

of
 th

e
nu

m
be

r
of

 a
ct

iv
e

se
rv

-
er

s a
nd

 V
M

m

ig
ra

tio
ns

Ex
ha

us
tiv

e
se

ar
ch

 (d
ep

th

fir
st

) b
as

ed

on
 C

on
st

ra
in

t
Pr

og
ra

m
m

in
g

Si
m

ul
at

io
n

an
d

X
en

-
po

w
er

ed
 G

rid
’5

00
0

ex
pe

rim
en

ta
l t

es
tb

ed

R
an

do
m

ly
 g

en
er

-
at

ed
 sy

nt
he

tic
 d

at
a

an
d

N
A

SG
rid

be

nc
hm

ar
k

da
ta

A
ut

on
om

ic
 v

irt
ua

l
re

so
ur

ce
 m

an
ag

em
en

t
fo

r s
er

vi
ce

 h
os

tin
g

pl
at

fo
rm

s

H
et

er
og

en
eo

us
C

PU
 a

nd
 m

em
or

y
In

st
an

ce
 o

f
K

na
ps

ac
k

Pr
ob

le
m

.
M

od
el

ed
 a

s
C

on
st

ra
in

t
Sa

tis
fa

ct
io

n
Pr

ob
le

m

O
pt

im
iz

at
io

n
of

 g
lo

ba
l u

til
ity

fu

nc
tio

n
th

ro
ug

h
m

ax
im

iz
at

io
n

of

SL
A

 fu
lfi

lm
en

t
an

d
m

in
im

iz
a-

tio
n

of
 o

pe
ra

tin
g

co
st

s (
nu

m
be

r o
f

se
rv

er
s)

Ti
m

e-
bo

un
d

ex
ha

us
tiv

e
se

ar
ch

 u
si

ng

C
on

st
ra

in
t

Pr
og

ra
m

m
in

g

Si
m

ul
at

io
n

ba
se

d
on

 C
ho

co
 c

on
st

ra
in

t
so

lv
er

Sy
nt

he
tic

 W
eb

w

or
kl

oa
d

di
st

rib
-

ut
ed

 in
 a

 ro
un

d-
ro

bi
n

fa
sh

io
n

Pe
rf

or
m

an
ce

 a
nd

 p
ow

er

m
an

ag
em

en
t f

or
 c

lo
ud

in

fr
as

tru
ct

ur
es

H
om

og
en

eo
us

C
PU

 a
nd

 m
em

or
y

In
st

an
ce

 o
f

M
ul

tip
le

K

na
ps

ac
k

Pr
ob

le
m

.
M

od
el

ed
 a

s
C

on
st

ra
in

t
Sa

tis
fa

ct
io

n
Pr

ob
le

m

U
til

ity
 m

ax
i-

m
iz

at
io

n
an

d
en

er
gy

 c
os

t
m

in
im

iz
at

io
n

C
ho

co

co
ns

tra
in

t
pr

og
ra

m
m

in
g

so
l-v

er
 b

as
ed

br

ut
e-

fo
rc

e
se

ar
ch

X
en

-p
ow

er
ed

 te
st

be
d

ru
nn

in
g

cl
us

te
r o

f
A

pa
ch

e
se

rv
er

s a
nd

fa

rm
 o

f r
en

de
rin

g
ap

pl
ic

at
io

ns
 c

on
-

tro
lle

d
by

 C
on

do
r

G
rid

 sc
he

du
le

r

W
eb

 w
or

kl
oa

d
ge

ne
ra

te
d

by
 C

LI
F

lo
ad

 in
je

ct
or

 a
nd

ba

tc
h

w
or

kl
oa

d
us

in
g

co
ns

ta
nt

st

re
am

 o
f j

ob
s

Ta
bl

e
8.

1 
(c

on
tin

ue
d)

1958  Energy-Aware Virtual Machine Consolidation in IaaS Cloud Computing

R
es

ea
rc

h
pr

oj
ec

t
Sy

st
em

as

su
m

pt
io

n
Se

rv
er

 re
so

ur
ce

s
M

od
el

in
g

te
ch

ni
qu

e
O

bj
ec

tiv
es

So
lu

tio
n

ap
pr

oa
ch

/
al

go
rit

hm

Ev
al

ua
tio

n/
ex

pe
ri-

m
en

ta
l p

la
tfo

rm
W

or
kl

oa
d

SL
A

-a
w

ar
e

vi
rtu

al

re
so

ur
ce

 m
an

ag
em

en
t

fo
r c

lo
ud

 in
fr

as
tru

ct
ur

es

H
om

og
en

eo
us

C
PU

 a
nd

 m
em

or
y

In
st

an
ce

 o
f

M
ul

tip
le

K

na
ps

ac
k

Pr
ob

le
m

.
M

od
el

ed
 a

s
C

on
st

ra
in

t
Sa

tis
fa

ct
io

n
Pr

ob
le

m

A
ut

on
om

ic

dy
na

m
ic

 V
M

pr

ov
is

io
ni

ng

an
d

pl
ac

em
en

t
w

ith
 u

til
ity

m

ax
im

iz
at

io
n,

ac

tiv
e

se
rv

er

m
in

im
iz

at
io

n,

an
d

re
du

ct
io

n
of

re

co
nf

ig
ur

at
io

n
co

st
 d

ue
 to

 V
M

liv

e
m

ig
ra

tio
ns

Se
lf-

op
tim

iz
a-

tio
n

th
ro

ug
h

th
e

co
m

bi
na

-
tio

n
of

 u
til

ity

fu
nc

tio
ns

 a
nd

co

ns
tra

in
t

pr
og

ra
m

m
in

g

Si
m

ul
at

io
n

en
vi

ro
n-

m
en

t b
as

ed
 o

n
4

se
rv

-
er

s r
un

ni
ng

 c
lu

st
er

of

 w
eb

 se
rv

er
s a

nd

m
ul

tip
la

ye
r o

nl
in

e
ga

m
e.

 T
he

 si
m

ul
at

io
n

re
lie

s o
n

th
e

C
ho

co

co
ns

tra
in

t s
ol

ve
r

Sy
nt

he
tic

 w
or

kl
oa

d
di

st
rib

ut
ed

 in

a
ro

un
d-

ro
bi

n
al

go
rit

hm

En
er

gy
-a

w
ar

e
an

t
co

lo
ny

 b
as

ed
 w

or
kl

oa
d

pl
ac

em
en

t i
n

cl
ou

ds

H
om

og
en

eo
us

C
PU

, m
em

or
y,

IO

, a
nd

 st
or

ag
e

M
ul

tid
i-

m
en

si
on

al

B
in

 P
ac

ki
ng

Pr

ob
le

m

En
er

gy

co
ns

um
pt

io
n

m
in

im
iz

a-
tio

n
th

ro
ug

h
op

tim
iz

at
io

n
of

se

rv
er

 re
so

ur
ce

ut

ili
za

tio
n

an
d

m
in

im
iz

at
io

n
of

th

e
nu

m
be

r o
f

ac
tiv

e
se

rv
er

s

A
nt

 C
ol

on
y

O
pt

im
iz

a-
tio

n-
ba

se
d

al
go

rit
hm

A
d

ho
c

si
m

ul
at

io
n

to
ol

ki
t

R
an

do
m

ly
 g

en
er

-
at

ed
 V

M
 re

so
ur

ce

de
m

an
ds

Ta
bl

e
8.

1 
(c

on
tin

ue
d)

196 M. H. Ferdaus and M. Murshed

R
es

ea
rc

h
pr

oj
ec

t
Sy

st
em

as

su
m

pt
io

n
Se

rv
er

 re
so

ur
ce

s
M

od
el

in
g

te
ch

ni
qu

e
O

bj
ec

tiv
es

So
lu

tio
n

ap
pr

oa
ch

/
al

go
rit

hm

Ev
al

ua
tio

n/
ex

pe
ri-

m
en

ta
l p

la
tfo

rm
W

or
kl

oa
d

A
 c

as
e

fo
r f

ul
ly

 d
ec

en
-

tra
liz

ed
 d

yn
am

ic
 V

M

co
ns

ol
id

at
io

n
in

 c
lo

ud
s

H
et

er
og

en
eo

us
C

PU
, m

em
or

y,

an
d

IO
D

ec
en

tra
liz

ed

sy
st

em
 b

as
ed

on

 u
ns

tru
c-

tu
re

d
P2

P
ne

tw
or

k
of

se

rv
er

s

M
ax

im
iz

at
io

n
of

 V
M

 P
ac

ki
ng

ef

fic
ie

nc
y

an
d

sc
al

ab
ili

ty
,

as
 w

el
l a

s
m

in
im

iz
at

io
n

of

th
e

nu
m

be
r o

f
as

so
ci

at
ed

 V
M

liv

e
m

ig
ra

tio
ns

D
ec

en
tra

liz
ed

dy

na
m

ic
 V

M

co
ns

ol
id

at
io

n
sc

he
m

a
ba

se
d

on
 C

yc
lo

n
m

em
be

rs
hi

p
pr

ot
oc

ol
 a

nd

A
nt

 C
ol

on
y

O
pt

im
iz

a-
tio

n-
ba

se
d

al
go

rit
hm

Py
th

on
-b

as
ed

 C
yc

lo
n

P2
P

sy
st

em
 e

m
ul

at
or

ru

nn
in

g
on

 G
rid

’5
00

0
ex

pe
rim

en
ta

l t
es

tb
ed

R
an

do
m

ly
 g

en
er

-
at

ed
 V

M
 re

so
ur

ce

de
m

an
ds

A
 m

ul
tio

bj
ec

tiv
e

an
t

co
lo

ny
 sy

st
em

 a
lg

or
ith

m

fo
r v

irt
ua

l m
ac

hi
ne

pl

ac
em

en
t i

n
cl

ou
d

co
m

pu
tin

g

H
et

er
og

en
eo

us
C

PU
 a

nd
 m

em
or

y
M

ul
ti-

ob
je

ct
iv

e
op

tim
iz

at
io

n
an

d
M

ul
ti-

di
m

en
si

on
al

Ve

ct
or

 P
ac

k-
in

g
Pr

ob
le

m

M
in

im
iz

at
io

n
of

po

w
er

 c
on

-
su

m
pt

io
n

an
d

se
rv

er
 re

so
ur

ce

w
as

ta
ge

A
nt

 C
ol

on
y

O
pt

im
iz

a-
tio

n-
ba

se
d

al
go

rit
hm

A
d

ho
c

si
m

ul
at

io
n

to
ol

ki
t

R
an

do
m

ly
 g

en
er

-
at

ed
 V

M
 re

so
ur

ce

de
m

an
ds

Ta
bl

e
8.

1 
(c

on
tin

ue
d)

1978  Energy-Aware Virtual Machine Consolidation in IaaS Cloud Computing

best-fit (BF), next-fit (NF), FFD, BFD, choose pack (CP), and permutation pack
(PP) are among the widely used greedy approaches [18]. A survey on the exist-
ing greedy solutions on single-dimensional bin packing problem can be found in
[12]. In [5], the authors have presented a modified version of the BFD algorithm
for the workload placement problem and have reported substantial energy sav-
ing based on simulation-driven results. Similarly in [29], a framework called
EnaCloud is presented where a modified version of the BF algorithm is used. In
[51], Verma et al. proposed pMapper, a VM placement scheme that models the
workload placement as an instance of single-dimensional bin-packing problem
and applies a modified version of the FFD heuristic to perform server consoli-
dation. Further works on greedy algorithm based energy-aware VM placement
approaches can be found in [30] and [46].

•	 Linear programming: This is a popular and traditional analytical approach to
solve combinatorial optimization problems. Such linear programming formula-
tions for server consolidation problems are presented in [6] and [45]. The authors
also described constraints for limiting the number of VMs to be assigned to a sin-
gle server and the total number of VM migrations, ensuring that some VMs are
placed in different servers and placement of VMs to specific set of servers that
has some unique properties. To minimize the cost of solving the linear program-
ming problem, the authors further developed an LP-relaxation-based heuristic.
Based on linear and quadratic programming model, Chaisiri et al. [10] presented
an algorithm for finding optimal solutions to VM placement with the objective
of minimizing the number of active servers.

•	 CP: VM placement and packing problem is also modeled as CSP, which is de-
fined as a set of variables, a set of domains that represent the set of possible
values for each variable and a set of constraints that denote the required relations
between the values of the variables [48]. A solution of the CSP is a variable
assignment that tries to maximize or minimize the value of a particular vari-
able while maintain all the defined constraints. Based on CP, Hermenier et al.
[23] proposed Entropy, a dynamic server consolidation manager for clusters that
finds solutions for VM placement with the goal of active server minimization
and tries to find any reconfiguration plan of the proposed VM placement so-
lution with objective to minimize the necessary VM migration costs. Both the
problems are solved using CP solver CHOCO [37]. The authors have provided
detailed analysis and experimental results of the impacts of VM activity and VM
memory size on the necessary VM migration duration and VM performance.
Furthermore, several optimizations for the constraint solver are also suggested.
Authors in [40] and [50] proposed an autonomic virtual resource management
framework that separates the VM provisioning and VM packing phases. The VM
provisioning phase takes resource level utility function [56] for each applica-
tion environment as input and determines the necessary VMs from a list of pre-
defined VM classes while maximizing a global utility function. The VM packing
phase determines the best possible placement for all the VMs in the servers with
the goal of minimizing the number of active servers. Both the phases resort to
CHOCO CP solver [37]. Later in [48], the authors proposed extensions to their

198 M. H. Ferdaus and M. Murshed

framework with multiple components for modeling performance of applications,
costs of provisioned VMs, and scheduling the VM provisioning and placement
(with packing) phases. However, the proposed analysis does not allow scaling-
up of VMs in terms of resources and does not consider multiplexing of VMs in
a time-sharing manner, which is very often used as an efficient way to improve
resource utilization in virtualized environments, especially in clouds.

•	 Evolutionary algorithms: Evolutionary algorithms like GA have already been
proven as efficient techniques for solving optimization problem including com-
binatorial problems. Jing et al. [58] formulated the VM placement problem as a
multiobjective optimization problem with objective of minimizing power con-
sumption, total resource wastage, and thermal dissipation costs. As a solution,
the authors proposed a modified GA with fuzzy multiobjective evaluation to
search the large solution space efficiently and combining possibly conflicting
objectives. In [34], the authors proposed GABA, a GA based adaptive and self-
reconfiguration mechanism for VMs in cloud data centers that consist of hetero-
geneous servers. Based on time-varying requirements and dynamic environmen-
tal conditions, GABA can efficiently decide the optimal VM placements.

•	 Swarm intelligence: Swarm Intelligence is a relatively new approach to problem
solving that takes inspiration from the social behaviors of insects and animals.
Within the past two decades, ants have inspired a number of methods and tech-
niques among which the most studied and the most successful is the general
purpose optimization technique known as ACO [16]. In ACO, multiple artificial
agents work independently within its local search space in a random, decentral-
ized fashion with indirect form of interaction, and after multiple interactions
the produced solutions converge to near optimality. ACO metaheuristics have
been proven to be efficient in different problem domains and so far it has been
tested on more than 100 different NP-hard problems, including discrete optimi-
zation problems. First work on solving single-dimensional bin-packing problem
based on ACO metaheuristics was proposed in [28]. The authors argued that the
complementary nature of ACO metaheuristics and local search can benefit from
each other and presented experimental results and showed that their proposed
algorithm can compete with the contemporary best known solutions. In [7], the
authors have proposed AntPacking, an improvement over the previous algorithm
shown to perform as good as the best known GA. In [18], Feller et al. first pro-
posed a single-objective static VM consolidation algorithm based on a variant
of ACO, namely Max-Min Ant System and presented improved performance
over FFD greedy algorithm. Later in [19], the authors presented a multiobjective
dynamic VM consolidation schema using appropriate adaptation of ACO me-
taheuristics. They proposed decentralized approach to solve the problem based
on an unstructured peer-to-peer network of servers to address the issues of scal-
ability and improved packing efficiency. Another ACO based multi-objective
static VM consolidation algorithm is presented in [20] where the authors have
developed models for server resource wastage and power consumption with fo-
cus on balanced resource utilization across multiple resource dimensions. The
algorithm simultaneously tries to minimize the power consumption and total re-
source wastage of the servers that host running VMs.

1998  Energy-Aware Virtual Machine Consolidation in IaaS Cloud Computing

8.3.1.5 � Advantages and Disadvantages of VM Consolidation

Virtualization technologies have revolutionized the IT management works and
opened up a new horizon of opportunities and possibilities. It has enabled appli-
cation environments to be compartmentalized and encapsulated within VMs. By
the use of VM and VM live migration techniques, virtualized data centers have
emerged as highly dynamic environments where VMs hosting various applications
are created, migrated, resized, and terminated instantaneously as required. Utilizing
virtualization, IT infrastructure management has widely adapted VM consolidation
techniques to reduce operating costs and increase data center resource utilization.
The most notable advantages of adopting VM consolidation techniques are men-
tioned below:

1.	 Reduction in physical resources: By the help of efficient dynamic VM consolida-
tion, multiple VMs can be hosted in single physical server without compromis-
ing hosted application performance. As a result, compared with static resource
allocations where computing resources such as CPU cycles and memory fre-
quently lay idle, through dynamic VM consolidation fewer numbers of physical
machines can provide the same QoS and maintain SLAs, and thus effectively cut
the TCO. Reduction in the number of servers also implies reduction in the cool-
ing equipment necessary for the cooling operations in data centers.

2.	 Energy consumption minimization: Unlike other approaches of energy efficiency
(e.g., implementing efficient hardware and operating systems), VM consolida-
tion is a mechanism under the disposal of data center management team. If same
level of service can be provided by fewer servers through VM consolidation, it
implies minimization of energy costs both for the running servers and the operat-
ing cool systems. As energy costs continue to escalate, this implies a significant
saving that will continue during the course of the data center operation.

3.	 Environmental benefits: World data centers contribute a significant portion of
CO2 emission and thus have enormous effects of environment. With recent trend
toward Green Data Centers, VM consolidation is a major business drive in IT
industry to contribute to the Green Computing.

4.	 Minimization of physical space: Reduction in the number of hardware implies
reduction in the space needed to accommodate the servers, storage, network, and
cooling equipment. Again, this contributes to the reduction of the TCO, as well
as the operating costs.

5.	 Decreased labor cost: A major portion of the TCO of data centers is derived from
administrative, support, and outsourced services, and thus VM consolidation can
help trim down these costs significantly by reducing the maintenance effort.

6.	 Automate maintenance: By incorporating autonomic and self-organizing VM
consolidation and VM migration techniques, much of the administrative and
support tasks can be reduced and automated; and therefore, it can further reduce
the maintenance overhead and costs.

With all the above mentioned benefits, if not managed and applied appropriately,
VM consolidation can be detrimental to the services provided by the data center in
at least the following ways:

200 M. H. Ferdaus and M. Murshed

1.	 System failure and disaster recovery: VM Consolidation puts multiple VMs
hosting multiple service applications in a single physical server, and therefore
can create single-point-of-failure (SPOF) for all the hosted applications. More-
over, upgrade and maintenance of a single server can cause multiple applications
to be unavailable to users. Proper replication and disaster recovery plans can
effectively remedy such situations. Since VMs can be saved in storage devices as
disk files, virtualization technologies provide tools for taking snapshots of run-
ning VMs and resuming from saved checkpoints. Thus, with the help of shared
storages such as NAS or SAN, virtualization can be used as convenient disaster
recovery tool.

2.	 Effects on application performance: Consolidation can have adverse effects on
hosted application performances due to resource contention, as they would share
the same physical resources. Delay sensitive applications such as voice-over-IP
(VoIP) and online audio-visual conferencing services as well as database man-
agement systems that require heavy disk activity need to be given special consid-
eration during resource allocation phase of VM consolidation. Such applications
can be given dedicated resources whereas delay-tolerant and less resource hun-
gry applications can be scheduled with proper workload prediction and VM mul-
tiplexing schemes.

3.	 VM migration and reconfiguration overhead: Performing VM consolidation
dynamically requires VM live migrations that have overheads on network links
of the data center as well as on the CPU cycles of servers executing the migration
operations. As a consequence, VM migrations and postmigration reconfigura-
tions can have non-negligible impact on application performance. Experimental
results [53] show that applications that are being migrated as well as colocated
applications can suffer from performance degradation due to VM live migra-
tions. As a consequence, VM consolidation mechanisms need to minimize the
number of VM live migrations and its effects on applications.

Despite all the drawbacks of VM consolidation, due to its benefits in continuous
reduction in energy and operating costs and increasing resource utilizations data
center owners are increasing adopting VM consolidation mechanisms, especially
for large data centers. As VM consolidation can have adverse effects on applica-
tion performance, various characteristics and features of data center resources and
hosted applications need to be taken into account during the design and implemen-
tation of VM consolidation schemes, such as heterogeneity of servers and storage
devices, system software and tools, middleware and deployment platforms, physi-
cal and virtual network parameters, as well as application types, workload patterns,
and load forecasting.

8.3.2 � VM Migration and Reconfiguration

Dynamic reconfiguration of workloads in virtualized data centers is achieved
through VM resizing and VM live migration techniques [11, 39]. While VM resizing

2018  Energy-Aware Virtual Machine Consolidation in IaaS Cloud Computing

overhead in modern hypervisors is negligible, anecdotal evidence and experimental
findings [24, 55] identified the VM live migration as reconfiguration mechanism
with significant performance impact both on application and system resources.
Thus, achievement of high packing efficiency with large number of VM migrations
can effectively null and void the benefit of workload consolidation with the risk of
possible high number of SLA violations of hosted applications and high resource
wastage due to handling the migrations. However, the number of VM migrations
alone does not represent the true overhead of the reconfiguration, as the total migra-
tion time and total VM downtime primarily depend on the Active Memory size of
VM and speed of the network links used for the migration [1].

Moreover, both the source server and destination server experience extra CPU
overhead during live migration, mostly due to the successive precopying phases
[11, 39], which is an essential part of the state-of-the-art live migration subsys-
tems in modern hypervisors like Xen [3], KVM [26], and VMWare ESXi. As
multitenancy in cloud infrastructures is a common characteristic in today’s clouds
where VMs (and also applications) from different cloud customers can colocate in
a single physical server, VM live migration overhead can have adverse effects on
other customers’ applications. Current cloud-hosted application domain is domi-
nated by web applications, especially multitier web applications, and it is shown
experimentally in [24] that the different J2EE-based tiers of RUBiS4, a widely used
multitier benchmark, experience 40 % to more than 200 % change in their end-to-
end mean response time due to live VM migrations. Furthermore, an extra amount
of network bandwidth is consumed due to live migration, potentially affecting the
responsiveness of hosted internet applications. Last but not the least, a slowdown
of VM performance is also expected due to the cache warm-up at the destination
server after the migration [38].

8.3.2.1 � Reconfiguration Cost Modelling Principles

To design an efficient and pragmatic workload consolidation mechanism, it is im-
portant to properly estimate the associated overall cost of the reconfiguration plans,
which is mostly dominated by cost of VM migrations. Several existing approaches
for dynamic consolidation consider migration cost to be a function of single system
parameter, like VM active memory size [23, 51], page dirty rate [52], or use an ap-
plication-specific model [24], and thus being oblivious to server resource utilization
levels, other colocated workloads, and resource usage characteristics as well as the
demands of the hosted applications. The importance of considering such aspects in
migration overhead estimation is evident from the report [51], which shows that the
duration of a live migration for an application running identical workloads can vary
by 50 % or more depending on server utilization and other colocated VMs. There-
fore, a usable model for live migration not only needs to be aware of application

4  RUBiS Benchmark, OW2 Consortium. http://rubis.ow2.org/.

202 M. H. Ferdaus and M. Murshed

and system parameters like active memory and write rate, but also take into account
other colocated VMs, physical server utilization, as well as network parameters. A
practical and accurate model of live migration is needed to complement dynamic
consolidation schemes and provide an estimate of the cost of reconfiguration in
cloud data centers.

Technically, live migration at the level of an entire VM refers to the process of
transferring the active memory and execution state from the source server to the
destination server. As in a typical cloud data center, the secondary memory or stor-
age is implemented by SAN/NAS connected to compute servers through Internet
small computer system interface (iSCSI), network file system (NFS), or server mes-
sage block (SMB) protocols, VM disks are not transferred during migration. The
most important aspect in terms of the performance impact of a live migration activ-
ity is the copying of in-memory state, as pre- and postmigration overheads (e.g.,
reattaching device drivers, advertising moved IP addresses) are pretty static [1, 11].
Among the several techniques for live migration in modern hypervisors, Pre-copy
Migration is proven to be the most effective in terms of VM. Precopy migration
involves two phases:

1.	 Push phase when Active Memory pages of running VM are copied from source
to the target server in multiple rounds until some stop condition is fulfilled (e.g.,
the number of dirty pages during the last pre-copy iteration is less than some
constant, like 50 for Xen) and

2.	 Stop-and-copy phase when the stop condition is met and the VM is stopped (and
also its application) and all the remaining dirty pages are copied to the target
server.

Two obvious temporal parameters are defined to measure the performance of a live
migration, viz:

1.	 Total migration time: The total time required to move the VM between physical
servers and

2.	 Total downtime: The portion of total migration time when the VM is not running.

Generally, the stop-and-copy phase is comparatively small for typical applications,
usually between 1 to 3 s [55] and the push phase is much longer and increases
with the size of memory being copied, page write patterns of applications, server
resource utilization levels, and network link speed. As VM live migration requires
significant amount of spare CPU, current resource utilization and the resource de-
mands from colocated workloads, it can have significant effects on the total migra-
tion time and hosted application performance.

8.3.2.2 � Related Works

Though the designers of the VM live migration technology do provide empirical
evidence that suggests that the performance impact of live migration is manageable

2038  Energy-Aware Virtual Machine Consolidation in IaaS Cloud Computing

[11, 39], recent experiments on live migrating VMs hosting different applications
indicates that live migration can have significant impact on application performance
and system resources [24, 55].

In [1], Akoush et al. addressed reconfiguration overhead solely in terms of the
migration times and provided analytical derivation to define the upper and lower
bounds of migration times, with particular emphasis on the Xen virtualization plat-
form [3] and its live migration subsystem [11]. They have identified that link speed
and page dirty rates are the major factors impacting migration behavior (in terms
of migration times) and have a nonlinear effect on migration performance largely
because of the hard stop conditions of Xen live migration algorithm that forces the
migration to its final stop-and-copy phase. They also provided two migration simu-
lation models based on average memory page dirty rate and historical data on page
modification to predict migration times. The authors have also presented the effects
of the following system and network parameters:

•	 Network link bandwidth: It is perhaps the most influential parameter on migra-
tion performance. Total migration time and VM downtime are inversely propor-
tional to the migration link capacity.

•	 Page dirty rate: It is the rate at which memory pages of each VM are modified
that directly affects the number of pages transferred in each push phase of the
precopy migration. Higher page dirty rate causes more data to be sent per itera-
tion leading to longer total migration time. Moreover, higher page dirty rates re-
sults in longer VM downtime, as more pages need to be sent in the final transfer
round.

•	 VM memory size: In the precopy migration, the first iteration tries to copy across
the entire VM allocated memory to the destination. As a result, on average the
total migration time increases linearly with VM memory size.

•	 Pre- and postmigration overhead: It refers to operations that are not part of the
actual transfer process. These are operations related to initializing a container on
the destination host, mirroring block devices, maintaining free resources, etc.

In [38], an autonomic and transparent mechanism for proactive fault tolerance for
arbitrary message passing interface (MPI) application has been studied and imple-
mented using Xen live migration technology. In their research, the authors have
given a general overview on the total migration time and possible parameters that
affects it, but emphasis was given primarily on the amount of memory allocated to
guest VMs.

In [24], Jung et al. have shown that runtime reconfiguration actions such as VM
replication and migration can impose significant performance costs in multitier ap-
plications running in virtualized data center environments and proposed a middle-
ware for generating cost-sensitive adaptation actions using a combination of predic-
tive models and graph search techniques.

Voorsluys et al. in [55] showed experimental results of VM live migration on
Internet applications using Web 2.0 benchmarking tool. They have shown that the
average response times of typical multitier web application increases rapidly dur-

204 M. H. Ferdaus and M. Murshed

ing the live migration period, especially due to the postmigration overhead. Their
results also demonstrate that in an instance of a nearly oversubscribed system,
live migration causes a significant downtime (up to 3 s), a larger value than ex-
pected. The work presents valuable and realistic insights on the effects of VM live
migration on SLA violations of today’s web applications. However, the work lacks
proper characterization and modelling of the factors and parameters that contribute
to the migration cost.

In [52], Verma et al. presents a study on the cost of reconfiguration of cloud-based
IT infrastructure with response to workload variations. Their study suggests that VM
live migration requires a significant amount of spare CPU capacity on the source
server. The study also suggests that if space CPU cycles are not available, it impacts
both the duration of migration and the performance of the hosted application. Later,
in [53], the authors designed CosMig model that predicts (1) the total VM migration
time, (2) performance impact of migration on the migrating VM, and (3) perfor-
mance impact of migration on other colocated VMs. This model is based on CPU
utilization and active memory size as these two parameters are normally monitored
in large data centers. The authors also showed that by the use of selected microben-
chmarks and representative applications, CosMig model has been able to accurately
estimate the impact of live migration in a cloud environment. The following param-
eters were used in CosMig to determine the performance impact of migrating VM Vi:

•	 Duration: Time duration for the full migration completion.
•	 VM self-impact: Ratio between the drop in throughput of the hosted application

of Vi during the migration period and the throughput without migration.
•	 VM coimpact: Ratio between the drop in throughput of any other application

in colocated VM Vj during the migration period of Vi and the throughput of the
same without migration of Vi.

8.4 � Conclusions and Future Research Directions

Cloud computing is quite a new computing paradigm and from the very beginning
it has been growing rapidly in terms of scale, reliability, and availability. Because
of its flexible pay-as-you-go business model, virtually infinite pool of on-demand
resources, guaranteed QoS, and almost perfect reliability, consumer base of cloud
computing is increasing day-by-day. As a result, cloud providers are deploying
large data centers across the globe. Such gigantic data centers not only incur huge
energy costs, but also have environmental effects. Power consumption of such
data centers can be improved by employing efficient resource allocation and man-
agement strategies through better server resource utilization. This chapter has
discussed various virtual resource management technologies used in virtualized
data centers including cloud data centers, as well as algorithms and mechanisms
for achieving higher resource utilization and optimization of energy consumption
through VM consolidation and data center reconfiguration. An in depth analysis

2058  Energy-Aware Virtual Machine Consolidation in IaaS Cloud Computing

on the different approaches proposed by the recent research works has also been
presented.

Virtual resource allocation and VM placement strategies play significant roles
in resource management and optimization decisions in data centers. Modern cloud
applications are composed of multiple compute and storage components, and such
components exhibit communication correlations among themselves. Incorporation
of the communication correlations during VM placement decisions is a very im-
portant area of research that is not yet explored enough. A typical objective for
network-aware VM placement and relocation would be keeping the heavily com-
municating VMs in the same server so that inter-VM communication would take
place through memory or in near proximity under the same edge switch, and thus
keeping the overall network overhead minimum on the physical network infrastruc-
ture. Development of realistic power consumption models for network devices and
VM placement and reallocation policies with power management capabilities are
areas of potential optimization in data center management.

VM consolidation and resource reallocation through VM migrations with focus
on both energy-awareness and network overhead is yet another area of research
that requires much attention. VM placement decisions focusing primarily on server
resource utilization and energy consumption reduction can produce data center con-
figurations that are not traffic-aware or network optimized, and thus can lead to
higher SLA violations. As a consequence, VM placement strategies utilizing both
VM resource requirements information and interVM traffic load can come up with
placement decisions that are more realistic and efficient.

Cloud environments allow their consumers to deploy any kind of applications in
an on-demand fashion, ranging from compute intensive applications such as HPC
and scientific applications, to network and disk I/O intensive applications like video
streaming and file sharing applications. Colocating similar kinds of applications in
the same physical server can lead to resource contentions for some types of resourc-
es while leaving other types under-utilized. Moreover, such resource contention will
have adverse effects on application performance, thus leading to SLA violations
and profit minimization. Therefore, it is important to understand the behavior and
resource usage patterns of the hosted applications to efficiently place VMs and al-
locate resources to the applications. Utilization of historical workload data and ap-
plication of appropriate load prediction mechanisms need to be integrated with VM
consolidation techniques to minimize resource contentions among applications and
increase resource utilization and energy efficiency of data centers.

Centralized VM consolidation and placement mechanisms can suffer from the
problems of scalability and SPOF, especially for cloud data centers. One possible
solution approach would be replication of VM consolidation managers; however,
such decentralized approach is nontrivial, as VMs in the date centers are created and
terminated dynamically through on-demand requests of cloud consumers, and as a
consequence consolidation managers need to have updated information about the
data center. As initial solution, servers can be clustered and assigned to the respec-
tive consolidation managers and appropriate communication and synchronization
among the managers need to be ensured to avoid possible race conditions.

206 M. H. Ferdaus and M. Murshed

References

  1.	 Akoush S, Sohan R, Rice A, Moore A, Hopper A (2010), Predicting the performance of
virtual machine migration, in Modeling, Analysis & Simulation of Computer and Telecom-
munication Systems (MASCOTS), 2010 IEEE International Symposium on, pp 37–46

  2.	 Armbrust M, Fox A, Griffith R, Joseph A, Katz R, Konwinski A, Lee G, Patterson D, Rabkin
A, Stoica I et al (2010) A view of cloud computing. Communications of the ACM 53(4):50–58

  3.	 Barham P, Dragovic B, Fraser K, Hand S, Harris T, Ho A, Neugebauer R, Pratt I, Warfield A
(2003) Xen and the art of virtualization, in ACM SIGOPS operating systems review, pp 164–177

  4.	 Barroso L, Holzle U (2007) The case for energy-proportional computing. Computer
40(12):33–37

  5.	 Beloglazov A, Buyya R (2010) Adaptive threshold-based approach for energy-efficient con-
solidation of virtual machines in cloud data centers, in proceedings of the 8th international
workshop on middleware for grids, clouds and e-science, p 4

  6.	 Bichler M, Setzer T, Speitkamp B (2006) Capacity planning for virtualized servers, in work-
shop on information technologies and systems (WITS), Milwaukee, Wisconsin, USA

  7.	 Brugger B, Doerner K, Hartl R, Reimann M (2004) AntPacking-an ant colony optimization
approach for the one-dimensional Bin Packing problem, evolutionary computation in combi-
natorial optimization, pp 41–50

  8.	 Buyya R, Yeo CS, Venugopal S, Broberg J, Brandic I (2009) Cloud computing and emerg-
ing IT platforms: vision, hype, and reality for delivering computing as the 5th utility. Future
Generat Comput Syst 25(6):599–616

  9.	 Buyya R, Broberg J, Goscinski, AM (2011) Cloud computing: principles and paradigms.
Wiley Online Library

10.	 Chaisiri S, Lee B-S, Niyato D (2009) Optimal virtual machine placement across multiple
cloud providers, in services computing conference, 2009. APSCC 2009. IEEE Asia-Pacific,
pp 103–110

11.	 Clark C, Fraser K, Hand S, Hansen J, Jul E, Limpach C, Pratt I, Warfield A (2005) Live
migration of virtual machines, in proceedings of the 2nd conference on symposium on net-
worked systems design & implementation, vol 2, pp 273–286

12.	 Coffman EG Jr, Garey MR, Johnson DS (1996) Approximation algorithms for Bin Packing:
a survey, in approximation algorithms for NP-hard problems, pp 46–93

13.	 Cormen T, Leiserson C, Rivest R, Stein C (2001) Introduction to algorithms. MIT press,
Cambridge

14.	 Crosby S, Brown D (2006) The virtualization reality. Queue 4(10):34–41
15.	 David C (2008) The definitive guide to the Xen Hypervisor. Prentice Hall, Upper Saddle

River
16.	 Dorigo M, Stutzle T (2004) Ant colony optimization. Mit Press, Cambridge
17.	 Fan X, Weber W, Barroso L (2007) Power provisioning for a warehouse-sized computer.

ACM SIGARCH Comput Archit News 35(2):13–23
18.	 Feller E, Rilling L, Morin C (2011), Energy-aware ant colony based workload placement in

clouds, in proceedings of the 2011 IEEE/ACM 12th international conference on grid comput-
ing, pp 26–33

19.	 Feller E, Morin C, Esnault A (2012) A case for fully decentralized dynamic VM consolidation
in clouds, in cloud computing technology and science (CloudCom), 2012 IEEE 4th interna-
tional conference on, pp 26–33.

20.	 Gao Y, Guan H, Qi Z, Hou Y, Liu L (2013) A multi-objective ant colony system algorithm for
virtual machine placement in cloud computing. J Comput Syst Sci 79(8):1230–1242

21.	 Guazzone M, Anglano C, Canonico M (2011) Energy-efficient resource management for
cloud computing infrastructures, in cloud computing technology and science (CloudCom),
2011 IEEE third international conference on, pp 424–431

22.	 He S, Guo L, Guo Y (2011) Real time elastic cloud management for limited resources, in
cloud computing (CLOUD), 2011 IEEE international conference on, pp 622–629

2078  Energy-Aware Virtual Machine Consolidation in IaaS Cloud Computing

23.	 Hermenier F, Lorca X, Menaud J-M, Muller G, Lawall J (2009) Entropy: a consolidation
manager for clusters, in proceedings of the 2009 ACM SIGPLAN/SIGOPS international con-
ference on virtual execution environments, ACM, New York, NY, USA, pp 41–50

24.	 Industry Perspectives (2013) Using a total cost of ownership (TCO) model for your data
center.   http://www.datacenterknowledge.com/archives/2013/10/01/using-a-total-cost-of-
ownership-tco-model-for-your-data-center/. Accessed 2 Jan 2014

25.	 Jung G, Joshi K, Hiltunen M, Schlichting R, Pu C (2009) A cost-sensitive adaptation engine
for server consolidation of multitier applications, Middleware 2009, pp 163–183

26.	 Jussien N, Rochart G, Lorca X (2008) The CHOCO constraint programming solver, in
CPAIOR’08 workshop on open-source software for integer and constraint programming (OS-
SICP’08)

27.	 Kaplan J, M Forrest W, Kindler N (2008) Revolutionizing data center efficiency. McKinsey
& Company

28.	 Kivity A, Kamay Y, Laor D, Lublin U, Liguori A (2007) Kvm: the Linux virtual machine
monitor, in proceedings of the Linux Symposium, pp 225–230

29.	 Kusic D, Kephart JO, Hanson JE, Kandasamy N, Jiang G (2009) Power and performance
management of virtualized computing environments via lookahead control. Clust Comput
12(1):1–15

30.	 Levine J, Ducatelle F (2004) Ant colony optimization and local search for Bin Packing and
cutting stock problems. J Oper Res Soc 55(7):705–716

31.	 Li B, Li J, Huai J, Wo T, Li Q, Zhong L (2009) EnaCloud: an energy-saving application
live placement approach for cloud computing environments, in cloud computing, 2009.
CLOUD’09. IEEE international conference on, pp 17–24

32.	 Lim MY, Rawson F, Bletsch T, Freeh VW, (2009), Padd: power aware domain distribution,
in distributed computing systems, 2009. ICDCS’09. 29th IEEE international conference on,
pp 239–247

33.	 Lo J (2005) VMware and CPU virtualization technology. World Wide Web electronic publi-
cation

34.	 Mell P, Grance T (2011) The NIST definition of cloud computing (draft). NIST special pub-
lication vol 800, pp 145

35.	 Meng X, Isci C, Kephart J, Zhang L, Bouillet E, Pendarakis D (2010) Efficient resource
provisioning in compute clouds via VM multiplexing, in proceedings of the 7th international
conference on autonomic computing, pp 11–20

36.	 Mi H, Wang H, Yin G, Zhou Y, Shi D, Yuan L (2010) Online self-reconfiguration with per-
formance guarantee for energy-efficient large-scale cloud computing data centers, in services
computing (SCC), 2010 IEEE international conference on, pp 514–521

37.	 Miller R (2013) Ballmer: Microsoft has 1 million servers. http://www.datacenterknowledge.
com/archives/2013/07/15/ballmer-microsoft-has-1-million-servers/. Accessed 2 Jan 2014

38.	 Mishra M, Sahoo A (2011) On theory of VM placement: anomalies in existing methodolo-
gies and their mitigation using a novel vector based approach, in cloud computing (CLOUD),
2011 IEEE international conference on, pp 275–282

39.	 Nagarajan A, Mueller F, Engelmann C, Scott S (2007) Proactive fault tolerance for HPC with
Xen virtualization, in proceedings of the 21st annual international conference on supercom-
puting, pp 23–32

40.	 Nelson M, Lim B, Hutchins G et al (2005) Fast transparent migration for virtual machines, in
proceedings of the annual conference on USENIX annual technical conference, pp 25–25

41.	 Nguyen Van H, Dang Tran F, Menaud J-M (2009) Autonomic virtual resource management
for service hosting platforms, in proceedings of the 2009 ICSE workshop on software en-
gineering challenges of cloud computing, IEEE Computer Society, Washington, DC, USA,
pp 1–8

42.	 Nurmi D, Wolski R, Grzegorczyk C, Obertelli G, Soman S, Youseff L, Zagorodnov D (2009)
The eucalyptus open-source cloud-computing system, in cluster computing and the grid,
2009. CCGRID’09. 9th IEEE/ACM International Symposium on, pp 124–131

43.	 Smith J, Nair R (2005) Virtual machines: versatile platforms for systems and processes. Mor-
gan Kaufmann, Burlington

http://www.datacenterknowledge.com/archives/2013/07/15/ballmer-microsoft-has-1-million-servers/
http://www.datacenterknowledge.com/archives/2013/07/15/ballmer-microsoft-has-1-million-servers/

208 M. H. Ferdaus and M. Murshed

44.	 Sotomayor B, Montero R, Llorente I, Foster I (2009) Virtual infrastructure management in
private and hybrid clouds. Internet Comput IEEE 13(5):14–22

45.	 Speitkamp B, Bichler M (2010) A mathematical programming approach for server consolida-
tion problems in virtualized data centers. IEEE Trans Serv Comput 3(4):266–278

46.	 Srikantaiah S, Kansal A, Zhao F (2008) Energy aware consolidation for cloud computing, in
proceedings of the 2008 conference on power aware computing and systems

47.	 Takemura C, Crawford L (2009) The book of Xen: a practical guide for the system adminis-
trator. No Starch, San Francisco

48.	 Van Hein N, Tran F, Menaud J-M (2009) SLA-aware virtual resource management for cloud
infrastructures, in computer and information technology, 2009. CIT ’09. Ninth IEEE interna-
tional conference on, pp 357–362.

49.	 Van Hein N, Tran F, Menaud J-M, (2010), Performance and power management for cloud
infrastructures, in cloud computing (CLOUD), 2010 IEEE 3rd international conference on,
pp 329–336.

50.	 Vaquero L, Rodero-Merino L, Caceres J, Lindner M (2008) A break in the clouds: towards a
cloud definition. ACM SIGCOMM Comput Commun Rev 39(1):50–55

51.	 Verma A, Ahuja P, Neogi A (2008) pMapper: power and migration cost aware application
placement in virtualized systems, in proceedings of the 9th ACM/IFIP/USENIX interna-
tional conference on middleware, Springer-Verlag New York, Inc., New York, NY, USA,
pp 243–264

52.	 Verma A, Kumar G, Koller R (2010) The cost of reconfiguration in a cloud, in proceedings
of the 11th international middleware conference industrial track, pp 11–16

53.	 Verma A, Kumar G, Koller R, Sen A, (2011), Cosmig: modeling the impact of reconfigu-
ration in a cloud, in modeling, analysis & simulation of computer and telecommunication
systems (MASCOTS), 2011 IEEE 19th international symposium on, pp 3–11

54.	 Vogels W (2008) Beyond server consolidation. Queue 6(1):20–26
55.	 Voorsluys W, Broberg J, Venugopal S, Buyya R (2009) Cost of virtual machine live migration

in clouds: a performance evaluation, Cloud Computing, pp 254–265
56.	 Walsh W, Tesauro G, Kephart J, Das R, (2004), Utility functions in autonomic systems, in

autonomic computing, 2004. Proceedings international conference on, pp 70–77
57.	 Wood T, Shenoy P, Venkataramani A, Yousif M (2009) Sandpiper: Black-box and gray-box

resource management for virtual machines. Comput Netw 53(17):2923–2938
58.	 Xu J, Fortes JA (2010) Multi-objective virtual machine placement in virtualized data center

environments, in Green Computing and Communications (GreenCom), 2010 IEEE/ACM
Int’l conference on & int’l Conference on Cyber, Physical and Social Computing (CPSCom),
pp 179–188

59.	 Zhang Q, Cheng L, Boutaba R (2010) Cloud computing: state-of-the-art and research chal-
lenges. J Internet Serv Appl 1(1):7–18

209

Chapter 9
Software-Defined Networking (SDN)
for Cloud Applications

Lin Lin and Ping Lin

P. Lin () · L. Lin
Avaya Canada, 250 Sidney Street, Belleville, ON, K8P 3Z3, Canada
e-mail: linping@avaya.com

L. Lin
e-mail: linlin@avaya.com

Abstract  One of the key requirements of cloud computing is the dynamic provision-
ing and configuration of communications networks that interconnect dynamically
provisioned and configured computing and storage elements. Traditional
networking approaches are often not optimal for this type of usage since these tend
to build and tune the network infrastructure based on information available at the
lower networking layers only, without tying into the time-varying communication
needs of the mix of applications that are currently running. These, then, lack the
programmability needed to directly control the network based on higher-layer infor-
mation or a more global view of network resource utilization. Software-defined
networking (SDN), which separates the control plane of a network from its data
plane and enables programmability of network behavior, is a new architecture that
aims to support flexible application-driven networking. This chapter introduces the
architecture of SDN, and gives a brief overview of its development including the
key previous works, the current state of the art, and implementation challenges. The
chapter also illustrates what SDN can do for infrastructure-as-a-service (IaaS) cloud
computing through a number of open-source technology examples including Open-
Stack, OpenFlow, and Floodlight. After examining some cloud datacenter usage
scenarios in the areas of network virtualization, network functions virtualization,
and traffic engineering, we conclude by looking at how SDN techniques may be
applied to unified communications cloud applications which depend on the integra-
tion of voice and data networking.

Keywords  Software-defined networking · SDN · OpenFlow · OpenStack · SDN
controller · Software-defined data center · SDDC · Cloud computing · Infrastructure-
as-a-service · IaaS · Unified communications · UC

© Springer International Publishing Switzerland 2014
Z. Mahmood (ed.), Cloud Computing, Computer Communications and Networks,
DOI 10.1007/978-3-319-10530-7_9

L. Lin and P. Lin210

9.1 � Introduction

Cloud computing requires dynamic provisioning, configuration, and reconfiguration
of not only computing elements but also the communications networks that
interconnect these elements. For example, a virtual machine that runs an application
which needs to communicate with end-user devices or other applications needs to
“bring its networking configuration along” when it is first set up or when it is relocated.
As another example, an application that provides audio/video conferencing with
shared whiteboarding may require varying amounts of bandwidth for the different
media flows involved at different times depending on the number of users served,
their locations, and the types of media that they choose to use.

In many cases, building and tuning the network infrastructure based on information
available at the network level only—without tying into the time-varying communica-
tions requirements of the mix of applications that are currently running—will result
in high overhead in coordinating applications with the networking configurations
that they need, as well as nonoptimal usage of network resources. Since the quantity
and nature of computing tasks in a cloud environment change constantly, what is
often needed to achieve greater efficiency is a way of programmatically setting up/
tearing down networks and controlling network flows based on information from
above the network layer or a more global view of network resource utilization, rather
than “simply letting distributed networking algorithms converge.”

Software-defined networking (SDN), a technology that separates the control
plane of a network from its data plane and enables programmability of network
behavior, can potentially provide useful solutions to the problems described above.

This chapter aims to explore how SDN techniques can be used in cloud computing
and applications. It is divided into the following sections:

•	 SDN architecture. This section gives an overview of the concept of SDN,
common architectural approaches to SDN, and the architecture of OpenFlow/
SDN which is currently the more prevalent approach in the industry.

•	 The IaaS cloud—SDN software stack. The OpenStack platform is described as
an example of an IaaS cloud framework, and the OpenFlow protocol and SDN
controllers are introduced in this context.

•	 The software-defined data center. This section discusses some of the ways in which
SDN techniques can be used to build a flexible software-defined cloud data center
in which networking is provisioned, configured, and reconfigured programmati-
cally from a logically centralized point that has a global view of the network and
can leverage information about the data center’s current application workload.

•	 SDN implementation challenges. This section discusses some of the key issues
that current SDN implementations face and what is being/could potentially be
done about these issues.

•	 SDN for unified communications applications. Two use cases are examined
in this section to illustrate some ways in which a specific type of application,
unified communications (UC), can make use of SDN. A high-level interaction
model between UC and SDN is also presented.

9  Software-Defined Networking (SDN) for Cloud Applications 211

9.2 � SDN Architecture

SDN is a new networking paradigm that offers: (1) Decoupling of the control plane
of a network from its data plane; (2) Direct programmability of network control; as
well as (3) Standardized application programming interfaces (APIs).

The control plane of a network consists of functions that control the behavior
of the network, such as network paths or forwarding patterns, while the data plane
consists of functions that are responsible for the actual forwarding (or not forwarding)
of traffic, which are usually instantiated as flow tables in network switches, routers,
and middleboxes (e.g., firewalls, network address translators, etc.).

By decoupling the control plane from the data plane, an SDN enables
administrators to dynamically adjust network-wide traffic flow to meet changing
requirements. It is also this decoupling that makes direct programmability of network
control possible, so that applications can interact programmatically with the SDN
control plane and control the operation of the network through standardized APIs.

9.2.1 � SDN Architectural Approaches

The Internet Research Task Force’s SDN Research Group identified three common
architectural approaches to SDN [1], based on distinctions including centralized vs.
distributed control, different degrees of separation of control and data planes, and
different programmability points. These approaches are:

•	 OpenFlow/SDN (OF/SDN), which is characterized by complete separation of
control and data planes, open programmable interfaces to the data plane, and
logically centralized control.

•	 Control Plane/SDN (CP/SDN), which aims to make existing distributed control
planes programmable.

•	 Overlay/SDN (OL/SDN), which overlays a new programmable control plane (or
in some cases a new programmable data plane) on top of existing control and
data planes.

Instead of being cut-and-dried, these three approaches are actually points in
a continuous architectural feature space, and it is possible to mix and match the
features that the three approaches represent.

Currently in the industry (at the time of writing in 2014), OF/SDN and OL/SDN
are the more prevalent approaches and the two are often used together, with OF/SDN
occupying the primary position and leveraging OL/SDN through its centralized
control capability. The SDN discussed in the rest of this chapter will be this blend
of OF/SDN and OL/SDN.

L. Lin and P. Lin212

9.2.2 � OF/SDN Architecture

In the OF/SDN architecture, applications and cloud operating environments interact
programmatically with the SDN controller, which (logically) centralizes network
intelligence and maintains a global view of the network, and appears to the applica-
tions as a single, logical switch. The controller presents a northbound interface to the
application layer, and a southbound interface to the network devices that it controls.

Network administrators can configure, manage, secure, and optimize network
resources dynamically using programs which they can write themselves to interact
with the controller. Some of these tasks can also be delegated to business logic
residing in the applications or embedded in cloud operating environments when
it is desirable to do so for efficiency reasons (i.e., when “the application knows its
requirements best” and can achieve efficient utilization of network resources more
readily and rapidly by directly controlling the network).

When implemented through open standards, SDN simplifies network design and
operation by presenting a single controller interface to the application layer instead
of multiple vendor-specific device-level interfaces. This effectively abstracts the
network infrastructure for ease of utilization by applications and services.

Figure 9.1 presents a high-level view of OF/SDN architecture.

Network
Service

Network
Service

Network
Service

Applica�on

Applica�ons

Cloud Pla�orm

Control Plane

Data Plane

Applica�on

Cloud Service Cloud Service

Northbound
API

Northbound API

Southbound API

Fig. 9.1   Software-defined networking architecture

9  Software-Defined Networking (SDN) for Cloud Applications 213

9.2.3 � A Brief Overview of SDN Developments

Although the field of SDN is relatively new, the basic ideas of network program-
mability and control plane decoupling have actually been discussed at length in
the industry since at least the mid−1990s. For example, the Open Signalling Work-
group [2] held workshops as early as 1995 with the goal of “making ATM, Internet
and mobile networks more open, extensible, and programmable.” Research in the
area of active networking [3] around the same timeframe also led to mechanisms
for sending remote code capsules and performing local programming on switches,
although they were not adopted in practice due to the lack of compelling use cases
at the time.

The concept of OF/SDN started around 2004 from the SANE [4] and Ethane
[5] projects which defined an architecture that employs a centralized controller to
manage security policies in a network. In this architecture, the controller, which is
responsible for deciding if a packet should be forwarded or not, instructs the simple
Ethernet switches to modify their flow tables, thereby directly implementing the
security policy.

SANE and Ethane were the immediate predecessors of OpenFlow [6],
which is currently (as of 2014) the most widely adopted mechanism for SDN
programmability. The first version of the OpenFlow protocol specification was
published in 2009. In 2011, the Open Networking Foundation (ONF) was formed
by a group of service providers to commercialize, standardize, and promote the use
of OpenFlow in production networks. A number of vendors, including Brocade, HP,
Juniper, IBM, NEC, and others, have implemented support for OpenFlow in their
physical switches. In addition, there are several software-based virtual switches
available, such as Open vSwitch and VMware’s virtual switch.

Quite a few SDN controllers have been developed, including both open-source
and commercial implementations. Some examples include NOX and POX by
Nicira, Floodlight by Big Switch, and OpenDaylight by multiple contributors.
Further information on various available controllers can be found in [7]; while [8]
describes the operation of the NOX controller in some detail.

Although, OpenFlow is a standardized protocol for the southbound SDN
controller interface, it should be recognized that SDN controllers can use a variety
of other open or proprietary interfaces to communicate with switches, and it is
necessary to do so from a practical point of view so that SDN can work with existing
switches without requiring a complete upgrade.

As for the northbound SDN controller interface, there is currently no standard-
ization, although standards are likely to be formulated as usage of SDN increases.

L. Lin and P. Lin214

9.3 � The IaaS Cloud—SDN Software Stack

9.3.1 � OpenStack

We start by examining an IaaS cloud to identify what an SDN would be called upon
to implement. To be specific, we will look at OpenStack [9]. Its feature set is very
similar to that of the commonly-used Amazon Elastic Compute Cloud (EC2) and
Simple Storage Service (S3), but being open-source, one can readily see how SDNs
fit in.

OpenStack originated from compute code from NASA and storage code from
Rackspace. It is now managed by the nonprofit OpenStack Foundation and released
on a 6-month cycle. The discussion that follows is based on the Havana release that
is current at the time of writing.

As shown in Fig. 9.2, OpenStack consists of a set of interacting services:

•	 Nova: Virtual machines (VMs)
•	 Neutron: Virtual networks
•	 Cinder: Block storage
•	 Swift: Object storage
•	 Glance: VM images
•	 Keystone: Identity management
•	 Ceilometer: Usage metering
•	 Horizon: Web-based dashboard
•	 Heat: Orchestration

Many of the services use external components to do the actual work, and only
provide the APIs themselves and offer choice in component selection through the
use of plugins and drivers. In this sense, OpenStack is really cloud middleware. The
relevant services are now briefly described below:

Server Virtualization  Nova provides virtual machines. It manages a set of
physical compute nodes; in particular, it picks the server on which to instantiate a
VM. It uses an actual hypervisor such as Kernel-based Virtual Machine (KVM) or
Xen to implement VMs. VMs come in different flavors that differ by the amount of
processor, memory, disk space, and network bandwidth.

A VM can be migrated from one physical server to another. This can be used, for
example, to dynamically consolidate active VMs onto fewer servers, thus allowing
a data center to save on electricity and cooling.

Glance provides disk images containing the guest operating system and applica-
tion for a VM. It is a catalogue; the actual images are stored in file systems or object
stores.

Storage Virtualization  Three types of storage are available to a VM, viz:

•	 Ephemeral storage: that behaves like a disk, except that its contents are lost when
the VM is deleted. Typical uses include hosting the root file system that holds a
copy of the VM image and providing temporary directories.

9  Software-Defined Networking (SDN) for Cloud Applications 215

•	 Block storage: that also behaves like a disk, but its lifetime is independent of
VMs. It comes in the form of volumes that may be attached and detached from
VMs. Cinder provides volumes by calling on an actual volume manager such as
the Linux Logical Volume Manager (LVM). A VM accesses a volume using the
Internet small computer system interface (iSCSI). A typical use of block storage
is to hold a database.

•	 Object storage: that provides highly scalable and reliable storage for files. It is
not a traditional file system; files are uploaded and downloaded in their entirety
over HTTP. It is typically slower than ephemeral or block storage. Swift imple-
ments object storage by distributing replicas of a file over a set of storage nodes.

Network Virtualization  VMs are connected to virtual networks. Every tenant of an
OpenStack cloud can define its very own set of virtual networks. Networks belonging

Horizon
Dashboard

Keystone
Iden�ty

management

Ceilometer
Usage

metering

Heat
Orchestra�on

Image
storage

VM

Nova
Compute

Neutron
Networking

Glance
VM images

Cinder
Block storage

Swift
Object storage

Backup
storage

Virtual CPU

VM image
Virtual

network

Virtual disk

Fig. 9.2   OpenStack services

L. Lin and P. Lin216

to different tenants are logically independent; they can have overlapping addresses
and do not see each other’s traffic.

An OpenStack installation has four physical networks:

•	 Data network: Hosts the virtual networks populated by VMs.
•	 Management network: Communication between OpenStack components.
•	 External network: Provides connection to the Internet.
•	 API network: Provides access to OpenStack web services from the Internet.

Neutron is OpenStack’s networking component. Its base API has three abstractions
as given below:

•	 A network is a layer 2 broadcast domain.
•	 A network can have one or more subnets, which are blocks of IPv4 or IPv6

addresses. A subnet may further be configured with Internet protocol (IP)
addresses for the default gateway and domain name servers.

•	 VMs connect to networks via ports, which have media access control (MAC)
addresses.

When one calls the Neutron API to create a network, for example, one is talking
to a network controller. The latter, in turn, uses a plugin to direct agents on each
compute node to make the necessary changes. Before the Havana release, plugins
and matching agents encapsulated different implementations of virtual networks,
e.g., Linux bridge or Open vSwitch. Havana introduced the Modular Layer 2 (ML2)
plugin. ML2 uses type drivers for each class of implementation. The types are:

•	 Local: VMs within the same compute node.
•	 Flat: Single virtual network per physical network.
•	 VLAN: Virtual local area network—Multiple virtual networks per physical

network using 802.1Q VLAN tags.
•	 GRE: Generic routing encapsulation (RFC 2784), a layer 2 over IP tunnel.
•	 VXLAN: Virtual extensible local area network, a layer 2 over user datagram

protocol (UDP) tunnel.

ML2 mechanism drivers are specific to each implementation and communicate with
the agents.

The Neutron API has a growing number of extensions. Provider networks are
virtual networks that map to a specific physical network. They are used to provide
connectivity to the Internet or to parts of a tenant’s private network outside of the
cloud.

Virtual routers are used to connect virtual networks. They can also perform
network address translation. A floating IP address can be assigned to a port in a
network. When the router (as the network’s default gateway) receives a packet from
the port’s fixed address, it rewrites the source address to the floating address before
forwarding. The destination is similarly rewritten in the opposite direction.

Network Functions Virtualization  Neutron’s security groups extension controls
what network traffic is allowed into and out of a VM. A group contains rules which
specify filtering by protocol, port, and source address. A VM can be a member of
one or more groups. Firewall functionality is distributed across compute nodes.

9  Software-Defined Networking (SDN) for Cloud Applications 217

Havana introduced an experimental firewall as a service extension. A virtual
firewall attaches to one or more networks, either at layer 2 or 3. A firewall carries
out a policy, which is a set of filtering rules. In this sense, a firewall policy is similar
to a security group.

Load balancing as a service is another extension. The reference implementation
wraps the HAProxy load balancer.

9.3.2 � OpenFlow

OpenFlow is a widely-implemented protocol between the controller and the network
devices in an SDN for the purposes of enabling network programmability from a
centralized viewpoint.

The OpenFlow switch specification [10] covers the components and basic
functions of an (abstract) OpenFlow switch, and the protocol for an external
controller to control the switch’s operation by adding, updating, and deleting rules in
the switch for forwarding and packet modification.

Support for OpenFlow switches can be plugged in to OpenStack Neutron as
mechanism drivers for the ML2 plugin (preferred) or as their own plugins. The
mechanism driver for Open vSwitch, a software switch that implements OpenFlow,
is included with the Neutron distribution.

9.3.2.1 � OpenFlow Switch

Figure 9.3 presents a model of an OpenFlow switch, which consists of the following:

Group ta

Switch

ble Flow table Meter table

Controller

OpenFlow

Match fields Priority Counters Instruc�ons Timeouts Cookie

Group ID Group type Counters Ac�on buckets Meter ID Meter bands Counters

Fig. 9.3   OpenFlow switch

L. Lin and P. Lin218

•	 One or more flow tables: Each flow table contains a set of flow entries; each
flow entry consists of match fields, counters, and a set of instructions to apply to
matching packets.

•	 A group table that contains group entries; each group entry contains a list of
action buckets. The actions in one or more action buckets are applied to packets
sent to the group.

•	 A meter table that contains meter entries; each meter entry defines a per-flow
meter used to measure packet rate and enable rate limiting or other similar
operations.

•	 An OpenFlow channel to an external controller.

The controller uses the OpenFlow protocol to add, update, and delete entries in the
flow and group tables, both proactively and reactively (in response to packets).

The tables in the OpenFlow switch form a pipeline for processing incoming
packets, as shown in Fig. 9.4.

When a packet arrives at a switch, the header fields are matched against the
entries in the first flow table. Flow entries match packets in priority order, and the
first matching entry in the table is used. If a matching entry is found, the counters
indicated in that entry are updated and the instructions specified are executed. If
no match is found in a flow table, the instructions specified by the table-miss flow
entry are executed. A variety of actions may be taken such as forwarding the packet
to the controller over the OpenFlow channel, dropping the packet, or continuing on
to the next flow table.

Each flow entry has an associated timeout so that the entry is either removed
after a fixed amount of time, or after it has been idle (i.e., not used to process any
packets) for a given duration.

The match fields that all OpenFlow switches are required to implement include:

•	 Ingress port
•	 Ethernet source and destination addresses (arbitrary bit masks)
•	 Ethernet type of the packet payload
•	 IP v4/v6 protocol number
•	 IP v4/v6 source and destination addresses (subnet masks or arbitrary bit masks)
•	 Transmission control protocol (TCP) source and destination ports
•	 UDP source and destination ports

Table

Switch

0 Table 1 Table nPacket in Packet out...

1. Find highest-priority
 matching flow entry

2. Apply instruc�ons
3. Go to next table

Ac�on set = {} Execute ac�on set

Fig. 9.4   OpenFlow pipeline processing

9  Software-Defined Networking (SDN) for Cloud Applications 219

It can be seen that OpenFlow matching enables forwarding and packet modifica-
tion actions to be based on more fields compared to traditional destination-based
forwarding.

Counters are intended to provide readings (e.g., on a per-flow or per-port basis)
that enable the controller to measure and optimize network traffic.

Instructions associated with each flow entry either contain actions or modify
pipeline processing by directing the packet to a higher-numbered flow table. The
actions may be executed immediately if so specified, or accumulated in the packet’s
action set to be executed at the end of the pipeline. The types of actions include:

•	 Required actions that must be supported by every implementation
−	 Output: Forwards the packet to a port, which may be a physical port, a switch-

defined logical port (used to represent, e.g., link aggregation groups, tunnels,
or loopback interfaces), or a reserved port (used to represent, e.g., sending to
the controller, flooding, etc.).

−	 Drop: Drops the packet (this is actually represented by a lack of actions to
execute).

−	 Group: Sends the packet to the specified group for processing.

•	 Optional actions
−	 Set-queue: Sets the queue identifier that determines which of the queues asso-

ciated with a port is used for scheduling and forwarding the packet.
−	 Set-field: Rewrites a header field in the packet.
−	 Push-tag/Pop-tag: Push or pop tags such as VLAN headers, etc.
−	 Change-TTL: Changes the time-to-live or hop limit of the packet.

When the group action is used, it directs packets to a group in the switch’s group
table. Groups are used to implement operations such as multicast and broadcast
forwarding, load sharing, IP forwarding to a common next hop, etc.

Switch designers are free to implement the internals of an OpenFlow switch in
any way as long as the correct match and instruction semantics are realized. Also,
some OpenFlow switches may support hybrid operation and implement both an
OpenFlow pipeline and a traditional packet forwarding mechanism.

9.3.2.2 � OpenFlow Protocol

The controller communicates with the OpenFlow switch over a connection that is
typically secured with transport layer security (TLS). The OpenFlow protocol used
for this communication supports the three types of messages shown below along
with the main messages of each type:

•	 Controller-to-switch
−	 Features: Find out the identity and basic capabilities of a switch.
−	 Configuration: Set and query configuration parameters in the switch.
−	 Modify-state: Add, update and delete flow/group table entries, and set switch

port properties.

L. Lin and P. Lin220

−	 Read-state: Obtain information from the switch including current
configuration, statistics and capabilities.

−	 Packet-out: Used by the controller to send packets out of a specific port of the
switch, or to forward a packet received via a Packet-in message earlier on.

•	 Asynchronous (switch-to-controller, unsolicited)
−	 Packet-in: Transfer the control of a packet to the controller.
−	 Flow-removed: Inform the controller of the removal of a flow table entry.
−	 Port-status: Inform the controller of a change on a port, e.g., up/down.

•	 Symmetric (controller-to-switch or switch-to-controller, unsolicited)
−	 Hello: Exchanged at connection start-up time.
−	 Echo: Used to ascertain liveness of the connection.
−	 Error: Inform the other side of an error condition.

A number of messages can be packaged together into a bundle so that they are treated
as a single operation, i.e., either all of the changes are applied or none are applied.

9.3.3 � SDN Controllers

Having looked at OpenFlow as a concrete example of protocols between SDN
controllers and switches, we are now in a position to examine what a controller
does in more detail.

An SDN controller is typically comprised of the following components:

•	 A database or other repository of information needed to facilitate management
and distribution of network state. The contents of the database includes informa-
tion obtained from network devices as well as information associated with SDN
applications.

•	 A high-level data model that captures the relationships between managed
resources, policies and other services provided by the controller.

•	 A northbound API that exposes the controller services to applications. Some
controllers also allow expansion of core capabilities and publishing of APIs for
new plugin modules.

•	 A secure control session between the controller and the associated agents on the
network devices within the controller’s scope.

•	 One or more protocols for provisioning application-driven network state on
devices.

•	 A device, topology, and service discovery mechanism.
•	 A path computation mechanism.
•	 Other network services that may be needed.

The SDN controller is the main area where vendors compete to differentiate
their SDN capabilities, and therefore there are many products and open-source
implementations available. As one example, the Floodlight open-source controller
[11] is structured as shown in Fig. 9.5.

9  Software-Defined Networking (SDN) for Cloud Applications 221

Floodlight is written in Java and organized into modules. The core modules are
as follows:

•	 OpenFlow services provide an API over OpenFlow. Incoming messages are
turned into Floodlight events that other modules can obtain by subscription.

•	 The device manager monitors packets referred to the controller via OpenFlow to
discover what devices are connected to the network. It tracks each device’s MAC
address, IP address, and attachment points (i.e., switch and port).

•	 Link discovery uses link layer discovery protocol (LLDP) and broadcast domain
discovery protocol (BDDP) packets to infer the connectivity between switches.

•	 The topology manager extracts islands of OpenFlow switches from link discovery
data. The routing function uses Dijkstra’s algorithm to compute the shortest path
between two devices.

•	 The packet streamer is used to examine the conversation between the controller
and a switch.

OpenFlow Services

Device

Floodlight Controller

Manager
Link

Discovery

Topology
Manager/
Rou�ng

Packet
Streamer

Virtual
Network

Filter

Neutron
Floodlight

Plugin

REST API

Java API

OpenFlow

Storag

Data Plane

e REST

Fig. 9.5   Floodlight controller

L. Lin and P. Lin222

Floodlight modules may provide a Java API, a representational state transfer (REST)
API, or both. The northbound API is therefore the union of all the individual module
APIs. Applications that need access to events have to use the Java API, and run as
additional modules alongside the controller.

A pair of applications is involved when Floodlight is used to provide network
virtualization to OpenStack. The virtual network filter is a module that exports a
REST API for creating virtual networks. The Neutron Floodlight plugin consists of
Python code that calls this API.

The Floodlight APIs include functions for:

•	 Creating and deleting a virtual network
•	 Attaching and removing a host to/from a virtual network
•	 Obtaining topology information such as listings of networks, switches, switch

clusters, devices, links, etc.
•	 Proactively adding and deleting a flow in a switch
•	 Retrieving different types of switch statistics such as port, queue, flow, aggregate,

etc.
•	 Listing global and per-switch traffic counters
•	 Adding and deleting a rule in Floodlight’s firewall module

9.4 � The Software-Defined Data Center

We now consider, by way of examples, how SDN techniques are used in IaaS cloud
data centers.

9.4.1 � Network Virtualization

Cloud workloads frequently consist of multiple communicating VMs, e.g., a
business application might consist of separate web, application, and database
tiers, making virtual networks an essential part of a cloud service offering. Enter-
prise software that populates these tiers often uses broadcasting or multicasting to
implement clustering. Implementing a layer 2 abstraction enables these schemes to
continue working in the virtual network.

A multi-tenant cloud brings additional requirements including:

•	 Isolation: Different tenants should not be able to see each other’s traffic.
•	 Independent addressing: The cloud may be an extension of a tenant’s existing

data center, and VMs would have to follow the data center’s addressing scheme.
•	 Automatic provisioning: Virtual networks need to be brought up and down

within minutes. Manual procedures are too slow and error-prone.

802.1Q VLAN is one way to implement virtual networks that satisfies the first
two requirements. One problem is that the 12-bit VLAN ID limits the number of
networks possible to at most 4096. A more serious concern is that the entire physical

9  Software-Defined Networking (SDN) for Cloud Applications 223

network that underpins the cloud has to be layer 2. This has some undesirable
consequences, e.g.:

•	 Lack of address summarization: The number of VMs is potentially large, and
they come and go all the time.

•	 Inefficiencies in spanning tree protocol: Instead of utilizing all available links
between switches, many links have to be disabled in order to avoid loops in the
topology.

Layer 3 tunnels such as VXLAN are therefore favored for implementing virtual
networks. They support a larger number of networks; e.g., VXLAN has a 24-bit
network ID. They can take advantage of the spine-leaf network topology used for
east-west traffic between VMs; tunnels can be distributed to different links using
equal-cost multipath routing.

This is the context for VMware’s NSX network virtualization offering. NSX is a
merger of VMware’s vCloud Network and Security (vCNS) with Nicira’s Network
Virtualization Platform (NVP), which is an SDN controller. As such, it can operate
in either a pure vSphere environment (VMware ESXi hypervisor only) or a mixed
environment (Xen, KVM, and ESXi).

Figure 9.6 shows the generic architecture of NSX. There are three types of virtual
switch: vSphere distributed switch (for ESXi in a vSphere environment), Open
vSwitch (for Xen and KVM), and NSX vSwitch (for ESXi in a mixed environment).

Virtual layer 2 networks are realized using layer 3 tunnels between machines
hosting participating VMs. When a network is created, either at the behest of NSX

VM

Hypervisor Hypervisor Hypervisor Hypervisor

VM
Edge

Services
Router

NSX
Controller

NSX
Manager

vSwitch

VM VM

vSwitch

OpenStack
Neutron

Tunnel Tunnel

Outside Network

VM

vSwitch

VM

vSwitch

Fig. 9.6   VMware NSX

L. Lin and P. Lin224

manager or OpenStack, the NSX controller’s northbound API is invoked to create
a mesh of tunnels. In the case of Open vSwitch, for example, the controller uses
open vSwitch database management protocol (OVSDB) to define the tunnels at
each switch and OpenFlow to set up the mapping from IP address to tunnel ID. This
means that multicasting is not needed to set up VXLAN.

NSX routes north-south traffic in a centralized manner using the edge services
router (ESR), which is a software router in a VM. The ESR is designed with external
traffic in mind, and also performs network address translation and load balancing.
East-west traffic, on the other hand, is handled in pure vSphere environments using
the distributed logical router (DLR). The DLR’s data plane runs inside the hyper-
visor on every host, while its control plane runs in a single VM. The data plane
forwards packets in the most direct way. If the destination VM happens to be on
the same host as the source, the packet never leaves the machine; otherwise it is
sent down the tunnel to the destination VM’s host. The control VM peers with other
routers as usual with open shortest path first (OSPF) or border gateway protocol
(BGP), but uses the NSX controller to distribute route updates to the data planes.

In a similar manner, north-south firewalling is provided by the ESR. East-west
firewalling is handled by a distributed firewall module in each hypervisor.

9.4.2 � Network Functions Virtualization

In addition to interconnected VMs, most cloud applications need to access the In-
ternet or some other external network, filter network traffic, and distribute requests
among VMs. In other words, virtual machines also need virtual routers, firewalls,
and load balancers. These may be realized by using multitenant functionality in
physical devices or by introducing service VMs into tenant networks. On the other
hand, the flow level primitives from which these functions can be built are available
in Open vSwitch and are being added to OpenFlow over time. A third implementa-
tion is thus to distribute the work amongst hypervisor-based virtual switches.

Midokura’s MidoNet is an example of this approach. It provides virtual layer
2 and layer 3 networks, as well as virtual load balancers and firewalls. Every ma-
chine hosting VMs runs an Open vSwitch controlled by a MidoNet agent. Gateway
machines are used to interface to external layer 2 and layer 3 networks; they also
contain an Open vSwitch plus a MidoNet agent. Finally, network state is maintained
in a distributed database.

Logically, a packet may traverse several nodes and be transformed in the process
as it heads towards its destination. For example, when a packet is sent from a VM to
a client on the Internet, it would go from a virtual tenant router to a gateway router.
It might also undergo source network address translation (NAT). Physically, the first
packet of a flow would be sent up to a MidoNet agent, which would look up the
virtual network topology from the database, and add flow table entries to modify the
source IP address, decrement time-to-live (TTL), and forward along a GRE tunnel
to the gateway machine.

Similarly, when a packet comes in from the Internet for a VM, it would go
through a virtual tenant firewall, destination NAT, and a virtual tenant router before

9  Software-Defined Networking (SDN) for Cloud Applications 225

arriving at the VM. For the first packet of a flow, the MidoNet agent on a gateway
would check if the packet is allowed under the rules configured for the tenant in
the database, and if so, add flow table entries to modify the destination IP address,
decrement TTL, and forward along a GRE tunnel to the machine hosting the VM.

MidoNet uses a distributed synchronization service and a distributed database to
propagate state to all agents.

Network topology is kept in Apache Zookeeper. Zookeeper’s data model is that
of a tree to which nodes bearing data can be added or deleted. Clients watch nodes
for changes and are notified when they occur; this allows topology changes to take
effect immediately. Physically, the tree is replicated over a set of servers, one of
which is elected as leader. Any server may handle read requests, but writes must go
through the leader and require quorum.

Session state, e.g., the IP address translation for a flow, is kept in Apache Cas-
sandra. Cassandra is essentially a persistent distributed hash table; a row key calls
up a set of key-value pairs. The data associated with a row key is replicated to a con-
figurable number of servers chosen from a pool of servers. Any server may handle
requests. The number of servers that must respond positively in order for a read or
write request to be considered successful can be varied on a per-request basis in
order to tradeoff between consistency and latency.

9.4.3 � Traffic Engineering

Integrating information about application intent with global network state can lead
to better choices in packet forwarding. VM relocation is one such case. When a VM
is moved from one compute node to another, its entire memory image has to be
transferred within seconds to avoid an outage at the application level.

Cloud data centers typically have a spine-leaf network topology. Compute nodes
attach to leaf routers, and every leaf router is in turn linked to every spine router. If
all such links have the same bandwidth, there are as many equivalent paths between
two compute nodes as there are spine routers.

Equal cost multipath (ECMP) routing is usually used to distribute traffic across
the paths by hashing on packet headers; this ensures that all packets belonging to
a TCP connection take the same route. This works reasonably well when there are
many small flows; however, there is no guarantee that several large flows from VM
relocation will not end up on one path at the same time.

With an SDN, one can query the link utilization along all paths leading from the
source to the destination compute node, and set up a flow to use the least loaded
path. When no path of sufficient capacity is available, the memory transfer can be
split up into several parallel transfers.

Taking this one step further, bandwidth availability (based on actual measure-
ment) can be factored into the decision to make a particular VM move. If there is
insufficient bandwidth leading from the source compute node, any move has to
be postponed. On the other hand, insufficient bandwidth heading to a candidate
destination compute node might be worked around by picking another candidate.

L. Lin and P. Lin226

9.5 � SDN Implementation Challenges

The usage of SDN is still in its early days, and a number of implementation
challenges have been identified [12, 13], including:

How to build a high-performance programmable switch?

•	 When it comes to hardware implementations of switches, there is a trade-
off between programmability/flexibility and performance. General purpose
processors are the most flexible but offer lower performance and dissipate more
power, while application-specific integrated circuits are the least flexible but
provide the highest performance, power and cost benefits. There are technologies
in between these two extremes, such as network flow processors, programmable
logic devices, and application-specific standard products.

•	 It appears that given the programmability/performance trade-off, a hybrid
approach where SDN functions are decomposed into sub-functions, each
implemented using higher-performance or higher-flexibility technologies as best
suited to its purpose, would be more effective.

How to build a scalable SDN controller that provides a global network view?

•	 SDN controller scalability is challenging due to factors such as the latency
introduced in exchanging network information between multiple network
devices and the controller, interactions between multiple (physical) controllers,
and the size of the controller backend database.

•	 Some of the approaches for increasing controller scalability include consistent
state sharing mechanisms for multiple controllers such as HyperFlow [14] and
resolving some queries locally on the network device in order to reduce the
amount of information exchanged with the controller and keep its database to a
more manageable size.

How to ensure the security of a software-defined network?

•	 Given its privileged position in the network, the SDN controller makes for a very
attractive target for malicious activity such as unauthorized modification of flow
rules and denial of service attacks.

•	 Common security measures including mutual authentication, role-based autho-
rization, transport layer security and intrusion detection are certainly applicable,
but the SDN controller’s programmability and open interfaces increase the
“attack surface.” On the positive side, one of the original usages of OF/SDN
when the concept first appeared on the scene was to implement security policies
in the network, and the advancements in this area that have taken place since
then can be leveraged.

How to integrate SDN solutions into existing networks?

•	 In practice, SDN solutions are almost always deployed into an environment
that already has a lot of existing network equipment and infrastructure. Even in
greenfield situations, SDN solutions would likely need to work with switches
and other equipment that are not SDN-enabled.

9  Software-Defined Networking (SDN) for Cloud Applications 227

•	 Further development of backward-compatible interfaces, protocols and mecha-
nisms is required to achieve interoperability between the SDN and non-SDN
portions of a network in more than an ad-hoc manner.

How to make SDN solutions serve the needs of applications better?

•	 Although the main goal of the SDN architecture is to provide open program-
mability of the network to applications, current implementations of, e.g., SDN
controller APIs, still have very low-level semantics that reflects the entities and
relationships at the network level but not so much the ways in which applications
formulate their requirements. Also, SDN efforts have so far been focused mostly
on layer 3 (network layer) and below, and there has not been as much work on
application traffic flows and configuration of applications in this context.

•	 SDN technology can actually be extended to manage application traffic above
layer 3. For an example of a research project pursuing this direction, refer to
[15]. There is also starting to be some work towards providing programming
interfaces that better match the level of semantics needed by applications.
Indeed, application- and policy-driven networking are the current thrust of
several vendors in the telecommunications industry such as Avaya, Cisco and
others.

9.6 � SDN for UC Applications

As mentioned in the previous section, one of the key directions in which SDN is
evolving is towards application-driven networking (ADN). In our view, studying
the interactions between specific types of applications on the one hand and SDN
on the other is a fruitful way to bring in more experience to inform the research
that furthers this evolutionary trend. To this end, we will look at two use cases in
this section to illustrate some ways in which a particular type of application—uni-
fied communications—can make use of SDN, and describe a high-level interaction
model between UC and SDN.

Others in the industry are interested in the topic of SDN for UC applications
as well. For example, the UC Interoperability Forum (UCIF) has signed an agree-
ment with ONF in November 2013 to define a framework and API that capture the
interaction of UC with various SDN functions, which will likely build upon related
work from ONF.

9.6.1 � UC Applications

UC applications integrate real-time communications such as telephony, audio/video
conferencing, presence and instant messaging with non-real-time functionality
such as web browsing, email, voice mail and directories to provide a unified
user experience across multiple media and device types. These applications are

L. Lin and P. Lin228

increasingly being hosted in the cloud. For example, public cloud service providers
may offer IP telephony, instant messaging, web access to email/voice mail and other
UC functionality to consumers and small/medium enterprise users, while private
cloud data centers may provide larger enterprises with cost-effective ways to work
across sites via audio/video conferencing, multimedia collaboration, etc.

Why are we discussing UC applications in the context of this chapter? In our
view, UC is a particularly interesting application category because it represents the
integration of voice and data networking.

With a lot of voice communication taking place over IP these days, the distinction
between voice and data networking may have blurred to some extent, but voice and
other forms of real-time communication such as video continue to place stringent
requirements on the underlying data network. Fulfilment of these requirements is
fundamental to providing a high-quality end user experience for UC.

In addition, a single UC application often involves coordination between
multiple services each responsible for a different aspect of its functionality, and
these services can have correlated networking requirements. For example, a user of
a collaboration application may have a voice call, a text chat session and a shared
whiteboard running simultaneously.

In any UC deployment, there can be many network elements, such as switches,
routers, reverse proxies, firewalls, session border controllers, etc., that all need to
be configured correctly for optimal media flow. Instead of having to configure all
of these elements discretely, SDN can provide a single policy-based method of
operation driven by the UC application.

9.6.2 � Some Use Cases

Here, we present two use cases that aim to show a few of the ways in which UC
applications can leverage SDN capabilities.

9.6.2.1 � Automating Quality of Service Configuration

One of the key tasks in ensuring a high-quality end user experience for UC
applications is the proper configuration of quality of service (QoS) in the underlying
network. As part of its work on defining a UC SDN framework and API, the UCIF
is publishing a number of use cases of which the first involves automating QoS
configuration [16].

In this use case, a UC infrastructure component (acting on behalf of an endpoint
or application) interacts with an automated QoS network service application
(referred to as “QoS service” below), which in turn interacts with an SDN controller
through its northbound interface. The QoS service maps QoS treatments requested
by the UC infrastructure into actual QoS capabilities of the underlying network,
e.g., by translating class of service specifications into differentiated services code
point (DSCP) or wireless multimedia extensions (WMM) markings.

9  Software-Defined Networking (SDN) for Cloud Applications 229

The use case’s interactions can be divided into two parts which relate to signalling
and media traffic respectively:

Signaling Traffic

1.	 When the UC infrastructure starts up, it authenticates with the QoS service.
2.	 The UC infrastructure then interacts with the QoS service to request that UC

signaling traffic, e.g., session initiation protocol (SIP) traffic on TCP port 5061,
be processed with the appropriate class of service. The QoS service configures
the corresponding QoS policy on the network elements involved, e.g., re-mark
TCP port 5061 traffic going from/to the IP address(es) of the UC infrastructure
to DSCP class selector 3.

3.	 When a user starts a UC user agent (e.g., a physical or soft phone, conferencing
client, etc.), the user agent exchanges signaling messages with the UC
infrastructure to register itself.

4.	 When the user initiates a UC session (e.g., an audio or video call, conference,
collaboration session, etc.), the user agent exchanges signaling messages with the
UC infrastructure to request that a session be started. In response, the UC infra-
structure exchanges signaling messages with the destination endpoint specified
by the session initiator.

5.	 Once a session has been established, the UC endpoints involved in the session
may exchange additional signaling messages to manage or terminate the session.

The signaling messages in steps 3, 4 and 5 are all re-marked to the appropriate
priority based on the QoS policy configured on the network elements in step 2.

Media Traffic

6.	 The UC user agents in the session exchange signaling messages through the
UC infrastructure to negotiate media flows. Typically there will be at least one
flow in each direction. In addition, a session may include more than one media
type (e.g., audio and video) and some media types may involve more than one
media stream (e.g., live camera video and presentation video). Often media
traffic is sent directly between the user agents without going through the UC
infrastructure.

7.	 Each media flow can be uniquely identified by a 5-tuple consisting of its source
IP address and port, destination IP address and port, plus network protocol. The
UC infrastructure extracts this 5-tuple for each of the media flows involved in
the session by looking at the signaling messages exchanged, and makes a request
to the QoS service to set up the QoS policies needed to provide each flow with
the appropriate treatment.

8.	 The QoS service determines the ingress and egress network elements involved
in each media flow, and configure the corresponding QoS policies on these net-
work elements. This causes the media flows to be re-marked to the appropriate

L. Lin and P. Lin230

priority, including any flows that have already started before the QoS policies
were set and were previously processed on a best effort basis.

9.	 Once the session completes, the UC infrastructure sends a request to the QoS
service to remove the associated QoS policies from the network elements.

The description above applies to scenarios where the interacting endpoints and all
of the intermediate network elements are in the same SDN administrative domain,
i.e., within the scope of the same (logical) SDN controller. In the more general
case where multiple SDN domains are involved, federation between the domains is
needed to configure QoS end-to-end.

The main value of the automated QoS service application is in ensuring that only
authentic UC media flows can be given higher-priority treatment as indicated by
the policies that the QoS service configured on the network elements, rather than
relying on markings provided by various endpoints which may or may not comply
with overall network usage guidelines.

9.6.2.2 � Providing Diagnostics to Facilitate Prioritization of Real-Time
Wi-Fi Traffic

Microsoft Lync is a UC system that provides a single interface for the user to com-
municate via voice and video calls, conferences, presence, instant messaging,
and persistent chat. In Lync server deployments, the end user experience can be
adversely impacted by poor network performance that results in dropped calls,
jittery audio or choppy video.

Microsoft has made a Lync SDN API available to facilitate real-time media
traffic monitoring and QoS optimization. (It should be pointed out that this API is
better described as an API to inform SDNs, rather than an SDN API in the sense
of a controller API). The Lync SDN API has been applied by Aruba Networks to a
use case involving its Wi-Fi solution. Building a Wi-Fi network to handle-real time
voice and video traffic requires the ability to distinguish real-time from non-real-
time traffic in order to prioritize and protect the former from disruption. Also needed
is the ability to report quality problems with real-time traffic and identify possible
causes. One constraint, however, is that since Wi-Fi traffic is often encrypted, it is
not directly visible to observation.

In this use case, the Aruba Mobility Controller receives Lync network diagnostic
information about voice, video, desktop sharing and file transfer through the SDN
API. The Lync server sends information to the mobility controller when a call is
initiated, which is used to identify clients in the call and prioritize their real-time
traffic streams. When the call completes, the Lync server sends information (based
on data from its quality-of-experience database containing reports sent in by Lync
clients) to the mobility controller to provide visibility into call quality, which is
correlated with the health of wireless devices and access points.

9  Software-Defined Networking (SDN) for Cloud Applications 231

9.6.3 � UC-SDN Interaction Model

The model shown in Table 9.1 identifies areas in which UC applications may
interact with SDN, including some examples of usage scenarios in each area:

When defining a higher-level northbound API that matches the level of semantic
abstraction needed by UC applications, rather than the lower level of detail that
current SDN controller APIs offer, it would be useful to examine the areas in an
interaction model such as this one, and include functions for each of the areas.
Below we make some general observations related to this model:

•	 UC communication flows are generally not limited to the data center, but can
“reach out” from the cloud to end user devices and “reach in” from the reverse
direction. Although one could say that the same is true of web applications being
accessed by web browsers, the difference in the UC case is that control of real-
time communication flows goes right down to the end user device level.

•	 UC communication flows often involve explicit call setup, which provides a
natural opportunity for configuring network-level flows.

•	 If network level flows and QoS settings are proactively configured as part of
call setup, the configuration settings need to follow the end user device or UC
application as it moves.

•	 IP-based voice networking can actually been seen as a parallel layer to data
networking, and SIP telephony servers as well as other voice networking
equipment such as media gateways, etc. can be viewed as the equivalent of data
networking switches in the voice network.

•	 One could visualize a picture in which an application delivery controller is con-
trolling flows at the application layer, while an SDN controller is controlling

Table 9.1   A UC–SDN interaction model
Interaction area Sample usage scenario(s)
Device discovery and inventory Automatically discovering an IP phone when it is

plugged into the network (in a private cloud envi-
ronment), and making its network attachment point/
device capabilities known

Network topology configuration Setting up an IP telephony trunk
Network flow configuration Proactively setting up network flows as part of

voice/video call setup
Quality of service Prioritizing real-time traffic generated by a UC

application
Traffic engineering Adjusting network flows based on “big picture”

knowledge of application activity such as multiple
ongoing video conferences

Performance monitoring and diagnostics Measuring latency, loss and jitter; identifying/
localizing causes of quality issues

Security and access Opening a port on the firewall that is required for
specific UC application flows; assigning a class of
service based on user role, access location, access
method, etc.

L. Lin and P. Lin232

flows at the networking layer and below, with the two controllers interworking
with each other. The application layer flows have dependencies on the networking
layer flows, which could be in the sense that the latter need to be set up once
before the former can take place, or in the sense that the two are tied together
dynamically and the presence of one or more application layer flows induces the
corresponding networking layer flows.

9.7 � Conclusions

In this chapter, we have suggested that software-defined networking brings open
programmability, a more global network view and logically centralized control to
satisfy the dynamic networking requirements of applications in a cloud computing
environment. Of the challenges that need to be overcome in order to further the
adoption of this technology, one of the most important is how SDN may be able to
evolve from its current relatively low-level “bits-and-pipes” orientation to become
more application-oriented, i.e., easier for applications to use its capabilities and for
it to work directly with higher-level application flows. The end goal of this evolu-
tion can be termed application-defined networking.

We are of the opinion that studying the interactions between specific types of
applications on the one hand and SDN on the other can bring in more experience
to inform the research needed to make the SDN-to-ADN transition happen, and are
working specifically with unified communications applications, which represent
the integration of voice and data networking.

Two use cases—automating quality of service configuration, and providing
diagnostics to facilitate prioritization of real-time Wi-Fi traffic—were considered
in this chapter to illustrate some of the ways in which UC applications can leverage
SDN capabilities. A high-level interaction model between UC and SDN was then
sketched out. It was observed that SDN can provide a single policy-based method
to configure multiple network elements involved in a UC deployment. Further,
if one were to consider IP-based voice networking as a parallel layer to data net-
working, one could construct a model where an application delivery controller
controls UC flows at the application layer while an SDN controller controls flows
from the networking layer downwards, with the two controllers interworking with
each other.

Given the interest in the telecom and computer industries in providing cloud-
based UC applications such as voice/video calling, business collaboration, distance
education, etc., we believe that there is potential for new fruitful work in this area
that would make a substantial new contribution to ADN research.

Acknowledgements  The authors are grateful to Prof. Alberto Leon-Garcia of the Dept. of
Electrical and Computer Engineering, University of Toronto, and Mr. Ravi Palaparthi, Senior
Director, Avaya Networking for reviewing this chapter, as well as to the anonymous referees for
their helpful comments to improve the manuscript.

9  Software-Defined Networking (SDN) for Cloud Applications 233

References

  1.	 Meyer D (2013) The software-defined-networking research group. IEEE Internet Comput
17(6):84–87

  2.	 Campbell A et al (1999) Open signaling for ATM, Internet and mobile networks (OpenSIG
’98). ACM SIGCOMM Comput Commun Rev 29(1):97–108

  3.	 Tennenhouse DL et al (1997) A survey of active network research. IEEE Commun Mag
35(1):80–86

  4.	 Casado M et al (2006) SANE: a protection architecture for enterprise networks. USENIX
security symp, August 2006

  5.	 Casado M et al (2007) Ethane: taking control of the enterprise. ACM SIGCOMM Comput
Commun Rev 37(4):1–12

  6.	 McKeown N et al (2008) OpenFlow: enabling innovation in campus networks. ACM
SIGCOMM Comput Commun Rev 38(2):69–74

  7.	 Mendonca M et al (2014) A survey of software-defined networking: past, present, and future
of programmable networks. IEEE Commun Surv Tutor PP(99):1–18

  8.	 Gude N et al (2008) NOX: towards an operating system for networks. ACM SIGCOMM
Comput Commun Rev 38(3):105–110

  9.	 OpenStack cloud administrator guide—Havana, OpenStack Foundation, 2013
10.	 OpenFlow switch specification, version 1.4.0, Open Networking Foundation, 2013
11.	 Project Floodlight [web site], http://www.projectfloodlight.org
12.	 Sezer S et al (2013) Are we ready for SDN? Implementation challenges for software-defined

networks. IEEE Commun Mag 51(7):36–43
13.	 Kuklinski S, Chemouil P (2014) Network management challenges in software-defined

networks. IEICE Trans Commun E97-B(1):2–9
14.	 Tootoonchian A, Ganjali Y (2010) HyperFlow: a distributed control plane for OpenFlow.

Proc. 2010 Internet network management conference on research on enterprise networking
15.	 Paul S, Jain R (2012) OpenADN: mobile apps on global clouds using OpenFlow and

software-defined networking. International workshop on management and security
technologies for cloud computing, Dec 2012

16.	 Automating QoS, UC SDN use case, version 1.2, Unified Communications Interoperability
Forum, Feb 2014

http://www.projectfloodlight.org

Part III
Advances in Cloud Technologies

and Future Trends

Chapter 10
Virtualization and Cloud Security: Benefits,
Caveats, and Future Developments

Flavio Lombardi and Roberto Di Pietro

F. Lombardi () · R. Di Pietro
SPRINGeR Research Group, Maths and Physics Department, Roma Tre University,
Rome, Italy
e-mail: lombardi@mat.uniroma3.it

R. Di Pietro
e-mail: dipietro@mat.uniroma3.it

Abstract  The Cloud computing paradigm allows for fast provisioning and depro-
visioning of a large variety of, in most cases, preconfigured services. This would
not have been possible without certain supporting technologies enabling rapid
deployment and release of services. Virtualization technologies have been the solu-
tion to the service management requirements. In particular, hardware virtualization
technology has speeded up the deployment of possibly a large number of virtual
machines (VM) on multiple hosts. These achievements enable a far more efficient
usage of physical resources which can be shared among multiple tenants in order to
benefit from cost savings and ease of management. Multitenancy is a fundamental
feature of Cloud computing. However, multitenancy and in general resource shar-
ing increases the exposure to security threats. In particular, timing attacks can infer
information from sibling VMs running on the same physical host. Furthermore,
security and privacy issues are due to the present architecture of virtualization-
based services in the Cloud. In particular, platform-as-a-service (PaaS) and infra-
structure-as-a-service (IaaS) on both Public and Hybrid Clouds potentially allow
the Cloud host administrators to get access to service provider (SP) and service
consumer data. This way, service execution time and outcome reliability can be
affected. Enterprises are mostly aware of the risks involved with multitenancy. As
such, they often opt for a Private or Hybrid Cloud approach that is more costly and
usually less scalable than a Public Cloud. In this context, novel Cloud approaches
are required to enhance monitoring and security auditing of VMs and services. At
the same time, a better privacy for both the SP and the service user (SU) should be
guaranteed. The objective of this chapter is to shed light on virtualization technolo-
gies that empower the Cloud and that will be increasingly relevant for the evolution
of Cloud services, together with the associated frameworks and principles. It also
reviews present and possible future approaches to security for Cloud resources.

Keywords  Virtualization · Security · Isolation · Introspection · Monitoring ·
Execution · Modeling

237© Springer International Publishing Switzerland 2014
Z. Mahmood (ed.), Cloud Computing, Computer Communications and Networks,
DOI 10.1007/978-3-319-10530-7_10

238 F. Lombardi and R. Di Pietro

10.1 � Introduction

Cloud computing would not have been possible without the virtualization technol-
ogy advances of the past decade which have opened up the possibility of dynami-
cally sharing the increasing number of processing cores among different tenants. In
particular, the infrastructure-as-a-service (IaaS) layer adopts and exposes advanced
virtualization technologies. These advances have induced relevant cost savings, but
they have also created new security concerns within the Cloud. Some issues stem
from the adoption of immature virtualization approaches as the basis for scalability
and isolation. The underlying technologies adopted by different Clouds (such as
Amazon, Microsoft, IBM, Rackspace, and SalesForce) hide potential security is-
sues. At present, Cloud service integrity, confidentiality, and availability concerns
are still open problems that call for effective and efficient solutions. Cloud nodes
are inherently more vulnerable to cyber-attacks than traditional physical server so-
lutions, as their underlying complexity brings an unprecedented exposure of ser-
vices and interfaces to third parties. As a consequence, guaranteeing an adequate
protection level to Cloud nodes is a challenging task, for which it is crucial to recog-
nize the possible threats and to establish security processes to protect services and
hosting platforms (HPs) from attacks.

Cloud computing aims at massive scalability. It offers clear benefits as regards
efficiency, availability, and high utilization which, in turn, result in reduced
capital expenditure and operational costs, further promising agility, innovation,
flexibility, and simplicity. Most of these benefits are due to virtualization. The
offerings from Cloud service vendors, in terms of software (SaaS), platform (PaaS),
and infrastructure (IaaS) services are continuing to mature and the cost savings
are becoming particularly attractive in the current competitive economic climate.
Another broader aim of Cloud technology is to make supercomputing available to
the general public and, in particular, to enterprises and to the scientific community.

Cloud deployment approaches adopt specific types of virtualization. The way
the Cloud delivers services (i.e., software, platform, and infrastructure as services)
is depended onto the implemented virtualization approach. The virtualization
environment generally consists of three core components, namely: hypervisor,
management tools, and VMs. Here are some examples of how Cloud services may
be tied to virtualization approaches:

•	 Multi-tenant virtualization—software-as-a-service (SaaS)
•	 Container-based virtualization—platform-as-a-service (PaaS)
•	 Hardware virtualization—infrastructure-as-a-service(IaaS)
•	 Storage virtualization—data storage-as-a-service (dSaaS)

In this chapter, we provide a survey of various aspects of Cloud service security,
availability, isolation, loss of physical control, and secure virtualization. In particular,
Sect. 10.2 will provide some technology background where existing virtualization
technologies for x86 architectures (e.g., Xen, KVM, VMWare, and VirtualBox) will
be discussed, with an attempt to highlight advantages and disadvantages of each
of them. This section will also present potential security flaws of virtualization ap-

23910  Virtualization and Cloud Security: Benefits, Caveats, and Future Developments

proaches when deployed in a Cloud environment. In Sect. 10.3, the main security is-
sues of Cloud computing are discussed, especially with respect to isolation, denial of
service and information leakage. Moreover, confidentiality issues will be discussed
showing that it is possible to infer information from a target VM on the same physi-
cal host machine. Relevant research on virtualization and Cloud security will be in-
troduced in Sect. 10.4. In Sect. 10.5, future Cloud trends, of interest to practitioners,
will be detailed and discussed. Latest advances in service modeling, monitoring, and
control will be described in Sect. 10.6. Future research trends and directions will be
discussed in Sect. 10.7. Finally, conclusions will be presented in Sect. 10.8.

10.2 � Technology Background

A large variety of heterogeneous virtualization technologies are currently deployed
in the Cloud for mainstream x86_64 architectures (e.g., Xen, KVM, VMWare,
VirtualBox, and HyperV). They have proven vulnerable in the past to different
exploits that could potentially be used in a Cloud. In addition, a vast number of
Cloud management platforms have been deployed, both open source and proprietary.
Vulnerabilities have been discovered through the years for these platforms as well.
In the following, we offer a perspective on the main players of both the virtualization
and the Cloud management systems.

10.2.1 � Cloud Frameworks

Many Cloud middleware platforms have been introduced during the first pioneering
years. Few are still actively maintained. Most relevant Cloud platforms are depicted
in Table 10.1.

Some features that are common to the above systems are as follows:

•	 On-demand deployment of virtual resources both under web request load and
when required by the Cloud service client. Management/billing interface exposed
to the Cloud service client, allowing easy monitoring, controlling, and reporting.

•	 Multitenancy and resource pooling that allows combining heterogeneous
computing resources (e.g., hardware, software, servers, and network) to serve
multiple customers.

•	 Rapid elasticity and scalability that allows resources to be elastically and
automatically scaled out or in, following the demand.

It is worth noting that these surviving Cloud management platforms are backed and
supported by companies (e.g., Microsoft), scientific agencies (e.g., NASA) or large
hardware/software resource providers (e.g., Red Hat, Amazon). The reason why is
that maintaining and evolving such complex software systems has inherently high
costs. Nonetheless, complex hardware/software architectures also induce larger ex-
posure to vulnerabilities, as shown in the last columns of Tables 10.1 and 10.2.

240 F. Lombardi and R. Di Pietro

10.2.2 � Virtualization Frameworks

The essential characteristics of most widespread virtualization environments are
summarized in Table 10.2. It is worth noting that most hypervisors support full vir-
tualization, as it offers relevant isolation benefits. In fact, full virtualization allows
the CPU to intercept possibly malicious or unauthorized access to data in memory.
The specific configuration and behavior of the virtualization framework is however
different and it can be tuned according to the requirements of the Cloud platform.
However, no existing virtualization framework is immune to software bugs that po-
tentially expose the virtualization platform itself (and, as a consequence, the Cloud)
to the referenced exploits. In the following section, we discuss some of these vul-
nerabilities by introducing a general model for Cloud services.

10.3 � Cloud Security

A generic Cloud security scenario and model can be described as follows [29]: a
service provider (SP) runs one or more service instances (SI) on the Cloud, which
can be remotely accessed by a group of final service users (SU). For this purpose,
the SP hires HP resources from the Cloud provider (CP). It is worth noting that

Table 10.1   Most relevant Cloud platforms (Cloud middleware)
Cloud Open source VM format type Vuln./exploit Vuln. Ref.
OpenStack Yes VHD, VMDK, VDI, QCOW2,

RAW, OVF, OVA, AMI
KVM, Xen [18]

CloudStack Yes QCOW2, RAW, OVA KVM, Xen [19]
OpenNebula Yes QCOW2, RAW, OVA KVM, Xen [10]
VMWare vSphere No VHD, VMDK, VDI Proprietary

VMware
[15, 40]

MS Azure No VHD Proprietary
Hyper-v

[11]

Amazon No AMI Xen [13]

Table 10.2   Virtualization frameworks and tools
Virt. frameworks Full/para Virt Open source Main features Vuln. Ref.
Xen Both Yes Small codebase, pure hypervisor,

mature
[12, 17]

KVM Full yes Integrated in Linux kernel [16]
MS Hyper-v Unknown No Proprietary, supports Windows

and Linux guests
[2]

Virtualbox Para Partly Supports Linux and Windows
both as guest and host

[20]

VMware vSphere Full No Mature costly solution. Scalabil-
ity and performance

[15]

Parallels/Virtuozzo Mostly para No Supports Mac OS [9]

24110  Virtualization and Cloud Security: Benefits, Caveats, and Future Developments

the SU and the SP do not have any physical control over Cloud physical server
machine, whose status cannot be observed. The SU and the CP enter into a service
level agreement that describes how the Cloud is going to run service instance SI
(See Fig. 10.1).

A taxonomy of possible attacks against Cloud systems follows:

1.	 Resource attacks against CPs
2.	 Resource attacks against SPs
3.	 Data attacks against CPs
4.	 Data attacks against SPs
5.	 Data attacks against SUs

Resource attacks 1 and 2 target resources, such as stealing virtual resources to
mount a large-scale attack (e.g., botnet). Data attacks 3 and 4 steal or modify service
or node configuration data (that can be used later to perform a different attack). Data
attacks against SU (Attack 5) usually lead to leakage of sensitive data. Classes 1 and
3 involve an attack to Cloud infrastructure components. Virtualization technologies
underlying Cloud computing infrastructure are of themselves liable to security vul-
nerabilities. In addition, the Cloud computing middleware potentially allows some
novel attacks that have not been addressed yet.

In the typical Cloud scenario described above, we can observe the following
major security issues:

•	 Privileged user access control: access to sensitive data in the Cloud has to be re-
stricted to a subset of trusted users (to mitigate the risk of abuse of high privilege
roles)

•	 Data isolation: one instance of customer data has to be fully isolated from data
belonging to other customers

•	 Privacy: exposure of sensitive information stored on a Cloud implies its legal
liability and loss of reputation

•	 Bug Exploitation: an attacker can exploit a software bug to steal data or to gain
access to resources that allow for further attacks

•	 Reliability/Availability: the CP has to setup an effective replication and recovery
mechanism to restore services, should an outage/disaster occur

•	 Accountability: even though Cloud services are difficult to trace for accountabil-
ity purposes, in some cases this is a mandatory application requirement

In particular, service accountability can increase security and reduce potential risks
for both the SU and the SP [23].

A trade-off exists between privacy and accountability, since the latter produces
a record of events/actions that can be analyzed by a third party in case something
goes wrong. Nevertheless, such investigation might expose faulty components or
internal Cloud configuration details. This way, any Cloud customer might be able
to learn information about the internal configuration of the Cloud that could be
used later to perform an attack. A possible solution lies with the use of obfuscation
and anonymization/detail-preserving techniques to limit the information the VM
exposes to the Cloud. However, encryption cannot fully protect the user from mali-
cious or curious CP, as the computing resources (central processing unit (CPU) and

242 F. Lombardi and R. Di Pietro

graphics processing units (GPU) cores) are fully controlled by them and therefore,
keys are exposed to the privileged hypervisor administrator. In fact, current CPU
technology cannot prevent a virtual machine monitor (VMM) from accessing guest
raw memory. This limitation produces confidentiality issues with respect to the SP
(or with respect to an attacker that manages to compromise the host platform).

One of the key aspects of Cloud computing is loss of control. As a prime exam-
ple, the SU does not usually know for sure where its data are stored and processed
in the Cloud. Moreover, it is unclear what happens to data and information held on
a Cloud resource when the company that manages the Cloud goes out of business.
How (and if) this data will be retrieved and returned to the owner organization is not
clear. On a Cloud, computation and data are remote and potentially mobile. As such,
they can be migrated to systems the SU cannot directly control. Over the internet,
data are free to cross borders and reach countries where privacy enforcement is not
considered relevant, which in turn can expose to further security threats. A second
example of loss of control is that the CP gets paid for running a service it does not
know the details of. This is one of the most relevant risks of the “Infrastructure as a
Service” model, but also of other “as a Service” approaches. To date, even though
misuse problems tend to be regulated by a service contract, such an agreement has
to be enforced and controlled by monitoring tools.

Fig. 10.1   A typical Cloud
scenario

24310  Virtualization and Cloud Security: Benefits, Caveats, and Future Developments

10.3.1 � Requirements for Cloud Monitoring

A core set of requirements that a security monitoring system for the Cloud [29]
should meet can be summarized as follows:

•	 Effectiveness: the system should be able to detect attacks and integrity violations.
•	 Accuracy: the system should be able to (ideally) avoid false-positives, i.e,

mistakenly detecting malware attacks where authorized activities are taking
place.

•	 Transparency: the system should minimize detectability from VMs, i.e., SP, SU,
and potential intruders should not be able to detect the presence of the monitor-
ing system.

•	 Robustness: the host system, Cloud infrastructure and the sibling VMs should be
protected from attacks proceeding from a compromised guest and it should not
be possible to disable or alter the monitoring system itself.

•	 Deployability: the system should be deployable on the vast majority of available
Cloud middleware and hardware/software configurations.

•	 Dynamic Reaction: the system should detect an intrusion attempt over a Cloud
component and, if required by the security policy, it should take action against
the attempt and against the compromised guest and/or notify remote middleware
security-management components.

•	 Accountability: the system should not interfere with Cloud and Cloud applica-
tion actions, but collect data and snapshots to enforce accountability policies.

However, it is not possible to satisfy all these requirements at the same time. As
an example, there is a trade-off between transparency and dynamic reaction. This
problem can be addressed by:

•	 Hiding reaction: reacting using regular guest maintenance actions, e.g., halting
the guest, restarting it from a fresh image, and migrating the VM instance.

•	 Delaying reaction: snapshot the current status and delay reaction: this way the
adversary may be able to perform further activity before being stopped. How-
ever, once traced, the effect of these activities can be reverted.

The above actions are, from the point of view of the SU or SP, virtually indistin-
guishable from regular load-balance based VM operations.

A possible approach to achieve integrity protection is to actively monitor key com-
ponents that would most probably be targeted by attacks. This would allow to better
protect the VMs and the Cloud infrastructure. By either actively or passively monitor-
ing key kernel or middleware components, it is in fact possible to detect any possible
modification to kernel data and code, thus guaranteeing that kernel and middleware
integrity have not been compromised. Furthermore, Cloud entry points (application
and network interfaces), behavior and integrity can be controlled via logging and pe-
riodic checksum verification of executable files and libraries. A further requirement,
especially when the guest image is not trusted by the CP, is ensuring that an attacker-
run application cannot detect that an external intrusion detection system is in place.
Note that, as it happens with introspection techniques, they can potentially be detected

244 F. Lombardi and R. Di Pietro

by the target VM. In fact, the presence of a monitoring system can be probed by mea-
suring the execution time of specific function calls. In order to address this issue, an
asynchronous monitoring system can be a viable solution [27]. A monitoring system
can also be useful when managing the reliability and replication of Cloud services,
which suffer from specific problems as detailed in the following.

10.3.2 � Replication and Cloud Reliability

The availability and reliability of Cloud services is enabled by the possibility to de-
ploy a large number of identical (cloned) services. However, such replication does
not by itself guarantee reliability as there are some issues that have to be addressed:

•	 Vendor shut-down: the Cloud service should be able to (ideally) resist a server
shut down or large scale failure. In order to do so not all resources and services
have to be deployed on a single provider. A Cloud of Clouds can help achieve
this result.

•	 Vendor lock-in: The possibility of deploying the same service over different pro-
viders is tied to the support of standards that allow interoperability and migra-
tion of workload across different CPs. Unfortunately large providers (Amazon,
Microsoft Azure) tend to offer specialized application programming interfaces
(APIs) that trade-off additional functionality with increased vendor lock-in.

•	 Denial of Service (DoS): As often experienced in the past [42], having a single
host and guest architecture replicated over large arrays renders them massively
exposed to even a single vulnerability and/or service disruption. In this case also,
a smart monitoring tool over a federated Cloud of Clouds would be of help.

The following section further surveys the state-of-the-art approaches that aim at se-
curing virtual resources and as a consequence, aim at improving the Cloud security.

10.4 � Related Work

Secure virtualization approaches have been proposed during the past few years,
taking into account that the most relevant deployment scenario is Cloud comput-
ing. This section compares these approaches and describes on how proposed tech-
niques are used in existing Clouds. Further, it defines the basis of the components
that can be actively used to increase security, privacy, and robustness of Cloud
services.

In the past, privacy issues in Clouds have been the objective of much work [32].
Some interesting security issues are discussed in [3], while an almost complete sur-
vey of security in the context of Cloud storage services is provided by Cachin [5].
An exhaustive Cloud security survey has been presented in [23, 37].

A fundamental reference for Cloud security is the work on colocation by Ristenpart
[34]. This work shows that it is possible to instantiate an increasing number of guest

24510  Virtualization and Cloud Security: Benefits, Caveats, and Future Developments

VMs until one is placed coresident with the target VM. Once successfully achieved
coresidence, attacks can extract information from a target VM on the same machine
using timing measurements [14]. An attacker might also actively trigger new victim
instances exploiting Cloud auto-scaling systems. Ristenpart shows that it practical
to hire additional VMs whose launch can produce a high chance of coresidence with
the target VM. He also shows that determining coresidence is quite simple.

Most integrity monitoring and intrusion detection solutions can be successfully ap-
plied to Cloud computing. File system integrity tools and intrusion detection systems
such as Tripwire [25] and AIDE [1] can also be deployed in VMs, but are exposed to
attacks possibly coming from a malicious guest machine user. Furthermore, when an
attacker detects that the target machine is in a virtual environment, it may attempt to
break out of the virtual environment through vulnerabilities in the VMM. Most pres-
ent approaches leverage VMM isolation properties to secure VMs by using various
levels of virtual introspection. Virtual introspection is a process that allows to observe
the state of a VM from the VMM. Syringe [7] makes use of virtualization to observe
and monitor guest kernel code integrity from a privileged VM or from the VMM.
However, a number of solutions are available for the guest code to realize it is running
in a honeypot VM by Pek [33] and Kapravelos [24]. BVMD [30] aims at detecting
kernel rootkits by monitoring the integrity of kernel code. However, BVMD does
not protect against kernel data attacks. Most proposals have limitations that prevent
them from being used in distributed computing scenarios (e.g., supports for only one
guest per each host) or just do not consider the special requirements or peculiarities
of distributed systems. In an effort to make nodes resilient against long-lasting at-
tacks, self-cleansing intrusion tolerance (SCIT) [4] treats all servers as potentially
compromised (since undetected attacks are extremely dangerous over time). SCIT
restores servers from secure images on a regular basis. The drawback of such a system
is that it does not support long-lasting sessions required by most Cloud applications.
Similarly, PipeCloud [43] creates redundant server copies which can periodically be
refreshed to increase the resilience of the server. This approach combines proactive
recovery with services that allow correct replicas to react and be recovered when there
is a sufficient probability that they have been compromised. Along with the many
advantages brought by virtualization, there are additional technological challenges
that virtualization presents, which include an increase in the complexity of digital
forensics investigations and questions regarding the forensics boundaries of a system.

Transparent Cloud protection system (TCPS) [28] introduces fundamental re-
quirements for a VM monitoring system [31]. In particular, the monitoring sys-
tem is protected inside the hypervisor in order to be as transparent as possible to
guests. ACPS [29] extends TCPS and enjoys unique features, such as a synchronous
warning asynchronous delayed response (SWADR) approach, where the increased
decoupling of action and reaction, the increased immunity and integrity of the plat-
form, and the support for accountability help achieving effectiveness and efficiency
of active monitoring of Cloud resources.

Most of the solutions described in this section is general enough to be applied
the present and future Cloud scenarios. In the light of the state-of-the-art solutions
presented here, in the following section we briefly introduce and discuss relevant
new trends that will be increasingly common in the future.

246 F. Lombardi and R. Di Pietro

10.5 � Visionary Thoughts for Practitioners

This section introduces concepts that will be increasingly common in the years to
come; together with novel security issues (see Table 10.3). One relevant topic is
mobile virtualization for small devices such as smartphones, smart watches, and
tablets, that are carried everywhere by its owner. As such, they are often referred
to as bring your own device (BYOD) since their owner usually carries them even
inside a company’s secure perimeter or in general at work. Present section also
shows the practitioner how to make use of VMs for controlling applications’ behav-
ior. Further, this section highlights the usage of Cloud virtualization honeypots for
malware collection and for forensics purposes. In fact, malware can be analyzed and
dissected based on the interaction with the emulated virtual environment.

Reports from different market analysts predict that PCs will no longer be the
primary digital device for most users in the next few years [39]. This implies that
most users will make use of thin lightweight devices to access digital information
stored and computed in the Cloud. Some more pervasive broader device perspec-
tives that include smartphones and tablets and many other consumer devices that
render the Cloud a fundamental resource. Emerging Cloud services will become the
glue that connects heterogeneous devices that users choose to access during the dif-
ferent aspects of their daily life. The trends that Gartner foresees for the Cloud also
induce novel security issues, as indicated below:

This new approach in computing will have a relevant impact on the client
computing, both as regards users’ personal digital life and business activity.

10.5.1 � BYOD and Virtualization

The mobile devices that are pervasively present in the personal life of everybody
also enter the company/enterprise boundaries. As such they can hide malware or
eavesdrop sensitive data to the outside world. Unfortunately, the enterprises have
little or no control over their personnel’s mobile device data and application content
and integrity. One possible approach is to ban such devices altogether from within
enterprise boundaries. Another, less drastic novel approach is to remotely attest in-
tegrity and compliance of the employee’s mobile device via novel secure virtualiza-
tion mechanisms.

While software integrity attestation is quite advanced in the x86 PC technology,
the ARM architecture that is the most widespread on mobile devices still offers
fewer guarantees as regards software integrity and compliance. However, the per-
spective is good as ARM is increasingly supporting smart virtualization extensions
that enable the implementation of reliable VM hypervisors that can run trusted VMs
even on mobile/handheld devices [36].

Lightweight virtualization systems will be able to control the execution mode
of the mobile device by imposing the exclusive execution of a specific VM when
the device is inside the enterprise boundaries. The same VM will not be able to
operate outside such boundaries. This way relevant sensitive information would
transparently be kept under control.

24710  Virtualization and Cloud Security: Benefits, Caveats, and Future Developments

10.5.2 � Virtual Mobile Honeypots and Forensics

More and more often, smartphones are relevant targets of civil and criminal
investigations. Currently, there are several tools available to acquire forensic
evidence from smartphones. Most of these tools require a destructive physical ac-
cess or physical connection to the device. However, secure virtualization can be
used to access live data without interfering with regular phone activity and thus al-
lowing live mobile forensics. LiveSD Forensics [6] is an example of ondevice live
data acquisition of the RAM and the EEPROM of Windows mobile devices. LiveSD
Forensics uses a standard SD-card equipped with tailored code to perform the data
acquisition. Unfortunately, LiveSD generates a memory alteration, albeit small.

Virtualization allows to study and classify malware in a controlled way by
means of mobile honeypots. In fact, similarly to mobile forensics, mobile virtual-
ization will be used extensively to attract malware and study its behavior [41] at
the same time protecting the device integrity through isolation features. As future
mobile hardware will be powerful enough to allow the concurrent execution of
multiple VMs, different levels of security can be associated to different VMs as to
block malware spreading.

10.5.3 � ARM CPUs for the Cloud

The virtualization extensions of ARM CPUs provide the basis for addressing the
needs of both client and server devices for the partitioning and management of
complex software environments into VMs. ARM CPUs have been wildly success-
ful in embedded applications, cell phones and in tablet devices, but now the recent
ARM server market is flourishing. Cloud computing and other data or content ori-
ented solutions increase the demand on the physical memory system from each

Table 10.3   Cloud trends and induced security issues
Trend Security issues
Virtualization. Virtualization allows users to
make use of heterogeneous devices to access the
same or novel services at a reduced cost

The isolation level allowed by virtualization
is far from perfect and potentially induces
integrity and DoS issues

BYOD-ification. Handheld or wearable devices
are carried everywhere by (un?)aware users

Untrusted devices with a wide range
of sensors can pervasively eavesdrop
information

Personal Cloud. Personal, self-service Clouds
allow users to create tailored virtual workspaces,
pervasively available on multiple devices [38]

The ease of creation of self service Clouds
exposes to security issues in case resources
are shared and are not properly and constantly
managed

Mobility. Improved mobile devices allow per-
forming traditionally PC-based tasks pervasively
on different devices

Mobile devices are more exposed to vulner-
abilities that traditional PCs as protection
mechanisms are less advanced

Remotization. Apps can be used to allow legacy
applications work on a larger range of devices
and platforms

Migrating legacy applications to the Cloud
moves the data away from the user to the
Cloud. As such it is exposed to eavesdropping

248 F. Lombardi and R. Di Pietro

VM. This is the main reason why ARM has extended the 32-bit Architecture to sup-
port 40-bit physical addressing and now by introducing a 64-bit ARM architecture.
This happens with the introduction of the new AArch64 execution state in version
8 of the ARM architecture. AArch64 is a new architecture state complete with a
new A64 instruction set. The price-performance and power-per-watt convenience
of novel 64-bit ARM CPUs suggests that many future Cloud servers will be built
upon such technology, thus shifting the focus away from traditional x86 architec-
tures. This will have an impact on Cloud services as virtualization software will
have to adapt to the new instruction set architectures (ISA), possibly introducing
new bugs and security issues. Further, the ARM CPUs will feature a much higher
number of cores that present x86 CPUs, thus rendering multithreading issues vital
for both security and performance Cloud services.

10.5.4 � A Way Forward

Because of the huge savings and computing agility that novel Cloud environments
offer, large enterprises are starting to experiment with heterogeneous multicore
Cloud computing into their existing IT systems and resources. For the newcomers
aiming to consider leveraging future Cloud trends, the following best practices can
be seen as a way forward. As regards, the perspective and the guidelines that can be
followed in order to better exploit and manage future Cloud trends, the following
best practices can be suggested:

•	 Evaluate technology internally—start deploying on premise as much as possible
in order to gain experience and evaluate solutions without bias.

•	 Learn from others’ mistakes—adopting the practices that have been successful
elsewhere but also keeping an eye on latest research results.

•	 Avoid vendor lock-in—aim towards open standards as they eventually lead to
reduced migration costs as the technology evolves.

•	 Ensure security of data and information—This on of the major concerns on any
nonprivate Cloud.

When deciding whether to deploy existing resources on a traditional Cloud or on
novel approaches and technologies such as those introduced above, the following
suggestions hold:

•	 Consider the enterprise applications, other systems and IT resources and explore
new technology incrementally but pervasively.

•	 Leverage Public Cloud, together with Private Cloud technology in order to limit
information exposure and guarantee reliability and scalability with an hybrid
approach.

•	 Pay particular attention on how sensitive data is managed. Especially as regards
novel technologies and approaches, the CP can be held responsible for any
security incident might happen on untrusted platforms.

24910  Virtualization and Cloud Security: Benefits, Caveats, and Future Developments

10.6 � Semantic Introspection and Modeling VM Behavior

Monitoring key Cloud components that would be targeted or affected by attacks
is vital in order to protect the VMs and the Cloud infrastructure [26]. By either
actively or passively monitoring key VM components any possible modification to
VM data and code can be traced and recorded.

The approach depicted in Fig. 10.2 is an example of advanced transparent pas-
sive tracing and recording of VM events from the hypervisor [29]. Any relevant
event or status change is recorded by an event interceptor (IWR) and it is then stored
in a pool of recorder warnings (WP) where the collected information is asynchro-
nously evaluated (evaluator) and, if needed, a reaction is triggered (act) according to
a chosen policy (it can be merely passive and transparent or blocking and more vis-
ible). This approach enables a deeper evaluation of the relationship among events
to better detect the cause of anomalies. Further it can be extended by making use of
additional computing resources.

Providing an adequate level of resilience to Cloud services is a challenging
problem due to the complexity of the environment and the need for efficient solu-
tions that could preserve Cloud benefits over other solutions. A novel interesting
approach is to make use of virtualization to effectively build a live model of the
VM and of its applications. CloRExPa [21] provides a customizable resilience
service solution for Cloud guests, using an execution path analysis approach. In
particular, CloRExPa can trace, analyze and control live VM activity, and inter-
vened code and data modifications, possibly due to either malicious attacks or
software faults. Execution path analysis allows the VMM to trace the VM state
and to prevent such a guest from reaching faulty states. CloRExPa makes use of
scenario graphs.

Figure 10.3 shows a small scenario graph that has been automatically inferred
node by node using a monitoring tool to infer state changes and activity from a
real VM. Later such high level information can be used to foresee if a pattern or
execution path leads to a fault. In this case a wide range of countermeasures can
be adopted, according to the relevance of the protected VM and to the status of the
system/monitoring tool.

This trend towards semantic introspection of VM activity is a very active field
also as regards mobile devices in the Cloud [7]. This is the way to go for enabling
control over possibly untrusted mobile Cloud nodes/applications. In fact, as dis-
cussed above also for BYOD untrusted devices, either they have to be banned alto-
gether from the enterprise or enhanced semantics-aware introspection has to be put
in place to prevent them from leaking sensitive information. Outside of the enter-
prise, semantic introspection allows legitimate users to regain control over their de-
vice internals. This approach will help detect and react to malware and to backdoors
that are put in place even by trusted software or apps [36].

250 F. Lombardi and R. Di Pietro

Fig. 10.2   SWADR approach to VM and service monitoring [29]

Fig. 10.3   Modeling resource activity and status through scenario graphs

25110  Virtualization and Cloud Security: Benefits, Caveats, and Future Developments

10.7 � Future Research Directions

This section highlights the future trend of virtualization approaches in the Cloud. In
particular, it introduces the novel technological opportunity of virtualization support
for the ARM CPU platforms that is gaining momentum in the server and Cloud
market. In addition, a perspective over novel multicore technologies in the Cloud is
depicted. An overlook is given on at the emerging GPU-Cloud trend to summarize
its potential security issues. This allows to suggest solutions to the security issues of
such new platforms, especially as regards hardware virtualization support. Finally,
this section also introduces the issues related to effective randomness in the Cloud
that are due to the reuse of VM images.

10.7.1 � Manycore Computing for the Cloud

Apart from ARM multicore CPUs a rich set of massively multicore (also known
as manycore) computing devices will be increasingly present in the future Clouds.
GPU feature hundreds of processing cores that allow speeding up parallel tasks.
GPUs usually support their own ISA. Another relevant architecture, proposed by
Intel, is the Intel many integrated core architecture (MIC) featuring hundreds of
simplified x86 cores. This choice should ease portability and compatibility with
legacy Cloud applications.

Some of the most relevant opportunities that the practitioner will be able to
leverage in the future heterogeneous multicore Cloud are:

•	 Efficiently Exploiting Virtualization: securely and efficiently sharing of new
Cloud resources is not easy. However, efficiently virtualizing distributed
heterogeneous computing in the Cloud is an opportunity to improve Cloud
security and reliability.

•	 Easing Access to Resources: allowing seamless access to novel technologies is
vital for their success. Novel technological contributions are still to come that
will ease distributed computing inside the Cloud.

•	 Monitoring Shared Resources: in order to allow efficient and secure usage of
multicores, such resources have to be constantly monitored for usage patterns
and abuse/misconfiguration, since sharing resources also induces security and
privacy issues.

•	 Exploting Redundancy: the availability of a much larger quantity of computing
resources allows using them for a number of novel applications, such as compu-
tation replication for reliability and availability or proactive computing [22] for
most different possible scenarios.

252 F. Lombardi and R. Di Pietro

10.7.2 � Effective Randomness for the Cloud

Cloud SaaS and PaaS providers, but also IaaS usually deploy identical clones of
the same VM. The lifecycle of VMs involves freezing and reviving the very same
images for the same or different tenants. As a consequence, the internal random pool
for clone VMs is most probably the same for different VMs [35]. This issue can be
exploited by an adversary to guess the value of generated keys for cryptographic
protocols. In order to address such issue, the CP or SP should try to increase the
number of events fed to the entropy pool of VM operating systems as soon as they
are deployed, so as to provide an adequate level of security.

10.7.3 � Novel Cloud Application Scenarios

Personal Cloud approaches where resources are contributed to the Cloud pervasively
from distributed remote locations [38] such as Clouds@Home [8] provide means
for the creation of open, interoperable Clouds for supporting scientific pur-
poses and other general purpose Clouds. Volunteer computing benefits can be
experienced in public administration and open communities (e.g., social networks,
peer-to-peer). Enterprises would also partly benefit from Clouds@Home: comput-
ing infrastructures would be available on demand especially in small and medium
enterprises. It would be possible to implement a datacenter with local, existing,
and off the shelf, resources. This would help reduce and optimize business costs
according to quality of service (QoS)—service level agreement (SLA) policies,
improving performances and reliability. For example, this paradigm will allow to
deal with request peaks: Clouds@Home data centers could be sized for the regular
workload, whereas worst cases (peaks) could be managed by renting computing
resources from large CPs.

10.8 � Conclusion

Cloud computing was born out of the evolution of virtualization technology. As such,
it offers similar benefits and suffers from similar issues, mostly regarding security,
privacy, and isolation. Advantages are many but there are also challenges and
issues, related to service management, process monitoring, infrastructure reliability,
information security, data integrity, and business continuity. The way forward for
CPs is to integrate transparent auditing and monitoring of Cloud resources. This ad-
dition requires devising and deploying further enhanced virtualization approaches
as well as making use of additional computing resources such as novel multicore
CPUs and GPUs. These ones will possibly ease the management of integrity and se-
curity of Cloud resources. Once this is achieved, enterprises will be more confident

25310  Virtualization and Cloud Security: Benefits, Caveats, and Future Developments

about migrating to Cloud environments and they will be able to fully leverage the
benefits of such technology in the next few years.

The way forward for the enterprise is to plan a strategy for integrating novel
resources into Cloud offerings, to have appropriate internal knowledge of Cloud
mechanisms, to correctly align the IT resources with applications, to follow
best practices and, strategically to think in terms of moving towards distributed
heterogeneous computing. Once, these steps are taken, the enterprise will be well
on its way to achieve benefits that the Cloud paradigm offers and enjoy the new
opportunities that novel Cloud technologies offer.

References

  1.	 AIDEteam (2005) Advanced intrusion detection environment. Advanced intrusion detection
environment

  2.	 Anonymous (2012) Vulnerability in Hyper-V could allow denial of service. http://technet.
microsoft.com/en-us/security/bulletin/ms11-047. Accessed 1 Sept 2014

  3.	 Balduzzi M et al (2012) A security analysis of Amazon’s elastic compute Cloud service.
ACM, New York, NY, USA, 2012 SAC 12

  4.	 Bangalore AK, Sood AK (2009) Securing web servers using self cleansing intrusion toler-
ance (SCIT). DEPEND

  5.	 Cachin C, Keidar I, Shraer A (2009) Trusting the Cloud. ACM, 2009. SIGACT News 40:81–86
  6.	 Canlar ES, Conti M, Crispo B, Di Pietro R (2013) Windows mobile LiveSD forensics. J Netw

Comput Appl 36(2):677–684
  7.	 Carbone M, Conover M, Montague B, Lee W (2012). Secure and robust monitoring of virtual

machines through guest-assisted introspection. RAID’12
  8.	 Clouds@home http://clouds.gforge.inria.fr/pmwiki.php. Accessed 1 Sept 2014
  9.	 CVE-2008-6478 (2008) Cross-site request forgery (CSRF) vulnerability in the file manager

in the VZPP web interface for Parallels Virtuozzo. http://www.cvedetails.com/cve/CVE-
2008-6478/. Accessed 1 Sept 2014

10.	 CVE-2009-1877 (2009) OpenNebula XSS vuln. http://cve.mitre.org/cgi-bin/cvename.
cgi?name=CVE-2013-4492. Accessed 1 Sept 2014

11.	 CVE-2011-1068 (2011) Microsoft Windows Azure SDK vulnerability. http://www.cvedetails.
com/cve/CVE-2011-1068/. Accessed 1 Sept 2014

12.	 CVE-2012-0217 (2012) Vulnerability of the x86-64 kernel system-call functionality in Xen
4.1.2 and earlier. http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-0217.
Accessed 1 Sept 2014

13.	 CVE-2012-5781 (2012) Amazon EC2 man-in-the-middle attack vulnerability to spoof SSL.
http://www.cvedetails.com/cve/CVE-2012-5781/. Accessed 1 Sept 2014

14.	 CVE-2013-0169 (2013) “Lucky Thirteen” vulnerability. http://web.nvd.nist.gov/view/vuln/
detail?vulnId=CVE-2013-0169. Accessed 1 Sept 2014

15.	 CVE-2013-1405 (2013) vSphere authentication vulnerability. http://cve.mitre.org/cgi-bin/
cvename.cgi?name=CVE-2013-1405. Accessed 1 Sept 2014

16.	 CVE-2013-1796 (2013) Buffer overflow vulnerability. http://www.securityfocus.com/
bid/58607. Accessed 1 Sept 2014

17.	 CVE-2013-1964 (2013) Local guest administrators to cause a denial of service. http://www.
cvedetails.com/cve/CVE-2013-1964/. Accessed 1 Sept 2014

18.	 CVE-2013-2096 (2013) OpenStack Compute Nova does not verify the virtual size of a
QCOW2 image. http://www.cvedetails.com/cve/CVE-2013-2096/. Accessed 1 Sept 2014

19.	 CVE-2013-2136 (2013) Apache CloudStack Cross-site scripting (XSS) vulnerabiliity. http://
cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-2136. Accessed 1 Sept 2014

http://technet.microsoft.com/en-us/security/bulletin/ms11-047
http://technet.microsoft.com/en-us/security/bulletin/ms11-047
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-4492
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-4492
http://www.cvedetails.com/cve/CVE-2011-1068/
http://www.cvedetails.com/cve/CVE-2011-1068/
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2013-0169
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2013-0169
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-1405
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-1405
http://www.securityfocus.com/bid/58607
http://www.securityfocus.com/bid/58607
http://www.cvedetails.com/cve/CVE-2013-1964/
http://www.cvedetails.com/cve/CVE-2013-1964/

254 F. Lombardi and R. Di Pietro

20.	 CVE-2013-3792 (2013) Unspecified vulnerability in the Oracle VM VirtualBox component in
Oracle Virtualization. http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-3792.
Accessed 1 Sept 2014

21.	 Di Pietro R, Lombardi F, Signorini M (2012) CloRExPa: Cloud resilience via execution path
analysis. Future Generation Computer Systems

22.	 Engel Y, Etzion O (2011) Towards proactive event-driven computing. In: Proceedings of the
5th ACM international conference on distributed event-based system (DEBS ’11). ACM,
New York, NY, USA, pp 125–136

23.	 Enisa (2009) Cloud computing risk assessment
24.	 Kapravelos A, Cova M, Kruegel C, Vigna G (2011) Escape from monkey island: evading

high-interaction honeyclients. DIMVA’11
25.	 Kim GH, Spafford EH (1994) The design and implementation of tripwire: a file system

integrity checker. CCS ’94: proceedings of the 2nd ACM conference on computer and
communications security, p 18–29

26.	 Li Q et al (2008) VM-based architecture for network monitoring and analysis. ICYCS ’08:
proceedings of the 2008 the 9th international conference for young computer scientists,
p 1395–1400

27.	 Lombardi F, Di Pietro R (2009) KvmSec: a security extension for Linux kernel virtual
machines. SAC ’09: proceedings of the 2009 ACM symposium on applied computing,
p 2029–2034

28.	 Lombardi F, Di Pietro R (2010) A security management architecture for the protection of
Kernel virtual machines. IEEE Computer Society, Washington, DC, USA 2010 TSP 10

29.	 Lombardi F, Di Pietro R (2011) Secure virtualization for Cloud computing. J Netw Comput
Appl 34(4):1113–1122

30.	 Oyama Y, Giang TTD, Chubachi Y, Shinagawa T (2012). Detecting malware signatures in a
thin hypervisor. SAC ’12

31.	 Payne BD et al (2008) Lares: an architecture for secure active monitoring using virtualization.
SP ’08: proceedings of the 2008 IEEE symposium on security and privacy (sp 2008),
p 233–247

32.	 Pearson S (2009) Taking account of privacy when designing Cloud computing services.
CLOUD ’09: proceedings of the 2009 ICSE workshop on software engineering challenges of
Cloud computing, p 44–52

33.	 Pek G, Bencsath B, Buttyan L (2011) nEther: in-guest detection of out-of-the-guest malware
analyzers. EUROSEC ’11

34.	 Ristenpart T et al (2009) Hey, you, get off of my Cloud: exploring information leakage
in third-party compute Clouds. New York, NY, USA, ACM, 2009. CCS ’09: proceedings
of the 14th ACM conference on computer and communications security, p 103–115.
ISBN:978-1-60558-352-5

35.	 Ristenpart T, Yilek S (2010) When good randomness goes bad: virtual machine reset
vulnerabilities and hedging deployed cryptography. Network and distributed systems
security—NDSS 2010

36.	 Russello G, Conti M, Crispo B, Fernandes E (2012) MOSES: supporting operation modes
on smartphones. In: Proceedings of the 17th ACM symposium on access control models and
technologies (SACMAT ’12). ACM, New York, NY, USA

37.	 Somorovsky J, Heiderich M, Jensen M, Schwenk J, Gruschka N, Lo Iacono L (2011) All
your Clouds are belong to us: security analysis of Cloud management interfaces. (CCSW).
s.l., ACM

38.	 Srivastava A, Butt S, Ganapathy V, Lagar-Cavilla A (2012) Self-service Cloud computing.
ACM, CCS 2012

39.	 Vasudevan A, Owusu E, Zhou Z, Newsome J, McCune JM (2012) Trustworthy execution on
mobile devices: what security properties can my mobile platform give me?. In: Proceedings of
the 5th international conference on trust and trustworthy computing (TRUST’12), Springer-
Verlag, Berlin, Heidelberg

25510  Virtualization and Cloud Security: Benefits, Caveats, and Future Developments

40.	 VMSA-2013-0002 (2013) VMware privilege escalation vulnerability. http://www.vmware.
com/security/advisories/VMSA-2013-0002.html. Accessed 1 Sept 2014

41.	 Wählisch M, Trapp S, Keil C, Schönfelder J, schmidt TC, Schiller J (2012) First insights
from a mobile honeypot. SIGCOMM Comput Commun Rev 42(4):305–306

42.	 Whitney L (2013) Gmail, Google Docs hit by service disruption. http://news.cnet.com/8301-
1023_3-57604178-93/gmail-google-docs-hit-by-service-disruption/. Accessed 1 Sept 2014

43.	 Wood T, Lagar-Cavilla HA, Ramakrishnan KK, Shenoy P (2011) PipeCloud: using cau-
sality to overcome speed-of-light delays in Cloud-based disaster recovery. SOCC, 2011,
pp 17:1–17:13

http://www.vmware.com/security/advisories/VMSA-2013-0002.html
http://www.vmware.com/security/advisories/VMSA-2013-0002.html

Chapter 11
Quality-of-Service Data Warehouse for the
Selection of Cloud Services: A Recent Trend

Ahmad Karawash, Hamid Mcheick and Mohamed Dbouk

A. Karawash () · H. Mcheick
Department of Computer Science, University of Quebec at Chicoutimi (UQAC),
555 Boulevard de l’Université, Chicoutimi G7H 2B1, Canada
e-mail: ahmad.karawash1@uqac.ca

A. Karawash · M. Dbouk
Ecole Doctorale des Sciences et de Technologie, Lebanese University,
Rafic-Hariri Campus, Hadath-Beirut, Lebanon

H. Mcheick
e-mail: hamid_mcheick@uqac.ca

M. Dbouk
e-mail: mdbouk@ul.edu.lb

Abstract  Cloud Computing presents an efficient, on-demand and scalable way to
integrate computational resources. However, existing Cloud paradigm is increas-
ingly transforming the information technology landscape, and organizations and
businesses are exhibiting strong interest in software-as-a-service (SaaS) delivery
model. This enables application service providers to lease data centre capabilities
for deploying applications depending on quality of service (QoS) requirements.
However, it still remains a challenging task to provide QoS assured services to
serve customers with best quality, while also guaranteeing the maximization of the
business objectives to service provider and infrastructure provider within certain
constraints. To address these issues, this chapter proposes building a data warehouse
of QoS to achieve better service matching and enhance dynamic service composi-
tion. The proposed QoS data warehouse (QoSDW) model supports the following:
ensures a deep analysis of the service’s interior structure and properties through
online database analysis; facilitates reasoning about complex service weakness
points; supports visual representation of analysis results; and introduces a new QoS
factor for study.

Keywords  Cloud service · Data warehouse · QoS · Quality of service · Analysis ·
Composition · Service selection

257© Springer International Publishing Switzerland 2014
Z. Mahmood (ed.), Cloud Computing, Computer Communications and Networks,
DOI 10.1007/978-3-319-10530-7_11

A. Karawash et al.258

11.1 � Introduction

Cloud computing is a model for allowing expedient, on-demand network access to a
shared collection of configurable computing resources (e.g. networks, servers, stor-
age, applications and services) that can be rapidly released with minimal manage-
ment effort or service provider interaction. Cloud computing promotes availability
and is composed of three service models. These services in industry are referred
to as infrastructure-as-a-service (IaaS), platform-as-a-service (PaaS) and software-
as-a-service (SaaS), respectively. Cloud environments aim to power the next gen-
eration data centres by exposing them as a network of virtual services (hardware,
database, user-interface and application logic) so that users are able to access and
deploy applications from anywhere in the world on demand at competitive costs
depending on users’ QoS requirements [1].

Cloud computing presents an efficient managerial, on-demand and scalable way
to integrate computational resources. However, existing Cloud architecture lacks
the layer of middle-ware to enable dynamic service composition. Service composi-
tion provides a current technology for developing complex applications from exist-
ing service components. Prediction of the QoS of composite services makes it pos-
sible to determine whether the composition meets the non-functional requirements
[2]. Previous researches have focused on service composition and integration in
terms of services, orchestration and choreography.

As SaaS gains greater acceptance, user cloud expectations start moving from
best-effort service to guaranteed service. Hence, it is foreseen the development of
QoS as a dominant consideration for cloud service adaptation. QoS has many facets
which depend on the aspect that is crucial for the user. Application specific perfor-
mance includes, e.g. response time or throughput, application security varying from
data integration and consistency to privacy and service availability, which are some
of the QoS considerations that clouds need to address. Such qualities are of inter-
est to service providers and service consumers alike. They are of interest to service
providers when implementing multiple service levels and priority-based admission
mechanisms. The agreement between the customer and the service provider is re-
ferred to as the Service Level Agreement (SLA). An SLA describes agreed service
functionality, cost and qualities [3]. This work proposes building a data warehouse
of QoS to manage the matching between customer and service provider. The ob-
tained data warehouse gives a better analysis level, reasoning and decision-taking
before selecting a cloud service.

This chapter is organized as follows. Section 11.2 describes some previous
methods of service selection. Section 11.3 discusses the service selection structure.
In Sect. 11.4, quality of service data warehouse (QoSDW) model components are
introduced, and Sect. 11.5 highlights the benefits that this model promises. The
model simulation and the results are shown in Sect. 11.6. In the last section on
conclusions, the main ideas of this chapter are summarized and the future perspec-
tives considered.

11  Quality-of-Service Data Warehouse for the Selection of Cloud Services 259

11.2 � Background

QoS has received much interest in cloud service research because of the rapid in-
crease of the number of services and the approximate equal qualities of the dis-
covered services. Several research activities focused on how to benefit from the
QoS in the service selection process. Some of these studies sought to extend the
Universal Description, Discovery and Integration (UDDI) Registry to support ser-
vice consumers by comprehensible QoS information. Firstly, it is relevant to men-
tion the service selection algorithms used by the QoS broker for sequential com-
posite flow models with only one QoS constraint (i.e. Throughput). There are two
main approaches we can use to select the optimal services for each component of a
business process. The first is the combinatorial approach [4], modelling the prob-
lem as a Multiple Choice Knapsack Problem (MCKP). To solve the MCKP, three
methods are proposed: exhaustive search, dynamic programming and a minimal
algorithm for MCKP and performance study method. The second approach is the
graph approach, modelling the problem as the constrained shortest path problem in
the graph theory. The proposed methods to solve the shortest path algorithm are:
Constrained Bellman-Ford (CBF), constrained shortest path (CSP) and breadth-
first-search (BFS).

There are also a number of other research studies that dealt with the service
selection problem. Keskes et al. [5] proposed a model of automatic selection of
the best service provider, which is based on mixing context and QoS ontology
for a given set of parameters of QoS. In 2010, Raj and Saipraba proposed a ser-
vice selection model that selects the best service based on QoS constraints [6].
Squicciarini et al. (2011), furthermore, studied the privacy implication caused by
the exchange of a large amount of sensitive data required by optimised strate-
gies for service selection [7]. Garg et al. proposed the SMICloud framework for
comparing and ranking cloud services by defining a set of attributes for the com-
parison of mainly IaaS cloud offerings [8], while Hussain et al. proposed a multi-
criteria decision-making methodology for the selection of cloud services [9]. To
rank services, they matched the user requirements against each service offering
for each criterion. Wang et al. proposed a cloud model for the selection of Web
services [10]. This model relies on computing what the authors called QoS un-
certainty and identifies the most appropriate Web services using mixed integer
programming. In 2012, Anita Mohebi proposed a vector-based ranking model to
enhance the discovery process of services [11]. Rehman et al. proposed a cloud
service selection framework that relies on QoS history [12]. A heuristic service
selection method, called ‘Bee Algorithm’, was proposed by Karry et al., which
helped to optimize the discovery and selection of a service that meets customer
requirements [13].

In this chapter, we adopt the Service Oriented Architecture to build a data ware-
house of quality of services. It enables application of an advanced level of analysis
and optimization in discovering cloud services.

A. Karawash et al.260

11.3 � Cloud Service Selection Structure

Cloud computing can be defined as a model for enabling convenient, on-demand
network access to a shared pool of resources that can be rapidly provisioned and
released with minimal management effort or service provider interaction. A cloud
environment is characterized by system level, Cloud Broker level and user middle-
ware level (as shown in Fig. 11.1).

The user Middle-ware level includes the software frameworks such as Web 2.0
Interfaces and provides the programming environments and composition tools that
ease the creation, deployment and execution of applications in Clouds. The system
level is composed of thousands of servers, each with its own service terms man-
agement systems, operating platforms and security levels. These servers are trans-
parently managed by the higher level virtualization [14] services and toolkits that
allow sharing their capacity among virtual instances of servers. The Cloud Broker
level implements the platform level services that provide runtime environment en-
abling Cloud computing capabilities to build cloud services. The Cloud Service
Broker performs several management operations to deliver personalized services
to consumers. These operations are: security and policy management, access and
identity management, SLA management, provision and integration management.
The security and policy manager is responsible for managing different kinds of
policies such as authorization policies and QoS-aware selection policies of service
providers. The access and identity manager is responsible for the accessing servic-
es and respect the identity rules of services. The SLA manager directs the conces-
sion process between a consumer and a selected SaaS provider in order to reach
an agreement as to the service terms and conditions. The provision and integra-
tion manager is responsible for implementing different policies for the selection
of suitable SaaS providers, based on the consumer’s QoS requirements and the
SaaS providers’ QoS offerings. The back-end database stores sustain information
about service policies, consumer profiles, SLAs, Registry and dynamic QoS infor-
mation. Cloud broker layer works to identify the most appropriate cloud resource
and maps the requirements of application to customer profile. Its job can also be
dynamic by automatically routing data, applications and infrastructure needs based
on some QoS criteria like availability, reliability, latency, price, etc. On the Broker
side, service properties are stored as a combination of functional and non-func-
tional properties. The functional properties relate to the external behaviour of a
service such as: service inputs and outputs, service type and the information re-
quired for connecting to the service. However, the non-functional properties are
summarized by the QoS.

By dynamically provisioning resources, Cloud broker enables cloud comput-
ing infrastructure to meet arbitrary varying resource and service requirements of
cloud customer applications. However, there are still imperfections regarding ser-
vice matching based on available services and customer profile requirements. The
services selection problem is identified by an inaccurate QoS dependency and the
utility of the imprecise domain of results suggested by QoS broker. As in [19],

11  Quality-of-Service Data Warehouse for the Selection of Cloud Services 261

services are ranked in many levels, such as Poor, Good and Excellent. It is based on
Web Service Relevancy Function (WsRF), which is measured based on the weight-
ed mean value of the QoS parameters. Services are classified according to user’s
invocations as follows:

•	 Excellent: Users accept to pay lower cost regarding better service qualities such
as: response time, availability … etc.

•	 Good: Users pay normal cost for normal service qualities.
•	 Poor: Users accept worse cost with lower service qualities.

The QoS broker orchestrates resources at the end-points, coordinating resource
management across layer boundaries. Based on the available technology, Service
consumer is still incapable of a real analysis of the QoS based on the internal struc-
ture of complex service. Today’s service selection solutions do not focus on QoS
support from the service requester view point, but they depend on service provider
interpretation. Indeed, the current form of service selection is provider driven [15].
A consumer may interact with a composite service without knowing much about the
qualities of the services that underlie it [16].

To improve the selection of a complex service, we propose to analyze the QoS
of every sub-service, which shares in the composition of that service, using a
QoSDW.

Fig. 11.1   Main layers of cloud service infrastructure

A. Karawash et al.262

11.4 � QoSDW Model

Nowadays, the cloud is full of a large number of cloud services. Some of these
services are similar in goal and quality. Therefore, it is difficult to select best ser-
vice depending on the traditional QoS methods. To improve the service selection
process, we propose a QoSDW model. The QoSDW model (described in Fig. 11.2)
supports a better analysis of services before taking a selection decision. The QoS-
DW model extracts details about services stored in the service provider, and gives
the service’s consumer the ability to discover the hidden facts about the properties
of these services.

11.4.1 � Main Components

This section describes a model for the selection of a cloud service that can fulfill
the service consumer request. In addition to the main cloud framework elements
discussed in the previous section, the proposed QoSDW model adds a group of
other components such as: QoSDW parser, schema manager, graph manager, QoS-
DW analyzer, QoSDW cube, analysis interface, service tree manager and report
manager. These additional components are now briefly explained in the following
paragraphs.

QoSDW Parser  QoSDW parser is simply a service business process parser. Based
on the parsers outputs and the QoS at service provider, QoSDW schema and QoSDW
graph are extracted and transported into the cloud broker to be stored in a specific
database. Regarding the database tables, each row entry collects details about ser-
vice activities. It provides information about the current state name, current state
properties (as My Role, Partner Role), PartnerLink, name of the operation being
invoked, condition of a looping structural activity, current state number and next
possible state numbers.

Schema Manager  This component is responsible for managing the QoSDW sche-
mas. The QoSDW schema is a star schema which is composed of a set of organized
tables, and which has a main fact table and set dimensional tables. QoSDW schema
consists of 22 dimensional tables as follows: Quality, Availability, ResponseTime,
Documentation, BestPractice, Throughput, Latency, Successability, Reliability,
Compliance, property, ServiceType, ServiceName, ExpiryDate, CreationDate, Ser-
viceFlow, Loop, Sequence, AndSplit, XorSplit, AndJoin and XorJoin table.

Graph Manager  Graph manager ensures transforming the output of parsing the
service business into a directed acyclic graph. Also, it converts the obtained graph
into a service tree. For example, Fig. 11.3 shows how SteamBoat service process
diagram is transformed into a service tree. The service tree inserts a semantic layer
into the service selection process.

QoSDW Cube  This is a data warehouse of quality and structure of both a service
and its sub-services. It is accessed as a cloud service and supports users by details
about the quality and flow of service through a special analyzer. It maps the idea of

11  Quality-of-Service Data Warehouse for the Selection of Cloud Services 263

the multidimensional data model to service selection model, through which it gives
the service’s user the ability to apply a multidimensional query on the discovered
set of services.

QoSDW Analyzer  QosDW analyzer works like an analysis tool. It monitors QoS
changes and prepares analytical reports about QoS information stored in the
QoSDW Cube. It gives the service consumer the right to query the QoSDW Cube
through its interface.

Analysis Interface  It is a user interface application utilized to select cloud services
(SaaS). It consists of a statistical form which allows a user to deal easily with large

Fig. 11.2   QoSDW model components

A. Karawash et al.264

statistical data, through slice, dice, Drill Down/Up and Roll-up the statistical results.
It communicates with the QoSDW analyzer and allows users to connect to the QoS
data warehouse, at the cloud broker, and apply queries. When a service is selected,
the selection interface connects the user to the required service via the SOAP/HTTP
protocol.

Service Tree Manager  It supports a visual representation of the service’s tree. It
communicates with the graph manager indirectly through the QoSDW analyzer.
Based on the service graph, the analyzer supplies the user by the service tree.

Report Manager  Sometimes the service’s consumer needs ready reports that sup-
port their analysis. Report manager allows requesting two types of reports: the pri-
mary report gives analysis results about the quality of first level sub-services, and
the advanced report supports a deep service tree analysis to detect a weak qual-
ity subservice (or fatal sub-service). Both reports are requested from the QoSDW
analyzer.

11.4.2 � Formal Definitions

QoSDW is the base for a successful QoS analysis system. The concept of QOSDW
starts by creating central locations for QoS storages followed by a permanent storage
QoS that feed from various cloud providers. It ends by different levels of analysis,
reporting and other Business Intelligence functions.

Fig. 11.3   Transforming SteamBoat service business process into a tree of sub-services

11  Quality-of-Service Data Warehouse for the Selection of Cloud Services 265

The main objective of a QoSDW model is to provide efficient analytical report-
ing on the quality of service. To qualify a service, the QoSDW depends on analyz-
ing the quality of its sub-services. QoSDW depends on the service business process
to specify the structure of subservices. The key work in QoSDW model is to estab-
lish relations among business processes and qualities of cloud services.

Definition 1  A service business process is a tuple K = ( A, E, C, L) where:

A is a set of activities,
E is a set of events,
C is a set of conditions and L is a set of control links.

Let f: A → B be a function that assigns activities to types, where activities are ex-
tracted from the set of activity A = {sequence, flow, pick, switch, while, scope, in-
voke, receive, reply, wait, assign, empty, throw, compensate, exit}. Let I be a set of
service information, where I = {service name, service type, service creation date,
service expiry date).

Let g: P → I be a function which assigns service information to properties.

QoSDW utilizes an on-line analytical processing (OLAP) approach and performs
analysis in conjunction with the operational database on a constant basis. The basic
concept of OLAP model is to map the initial database schema to a multidimensional
model. The QoSDW schema is structured as star (or snowflake) schemas.

Definition 2  A QoSDW schema is a tuple S = ( Q, P, B) where:

Q is a set of QoS, such that Q = {Response time, Availability, Throughput, Success-
ability, Reliability, Compliance, Best Practice, Latency, Documentation}. Here:

•	 P is a set of service properties, such that P = {ServiceType, ServiceName, Expiry-
Date, CreationDate}.

•	 B is a set of activity type, where B = {Loop, Sequence, AndSplit, XorSplit, And-
Join, XorJoin}.

•	 Let h be a function which assigns the values of QoS to elements of set Q.

The QoSDW graph adds a type of semantic knowledge when analyzing the quality
of sub-services and covers indirectly the hidden service business process vague.

Definition 3  A QoSDW graph is a tuple G = ( Ni, Nf, N, F), where:

Ni is the node of the input, Nf is the node of output, N is the set of names of sub-
services and F is the set of service integration models. F = {Sequence, ANDSplit,
XORSplit, loop, ANDJoin, XORJoin}.

Let m:B → F be a function that maps service activities to integration models.

The operations which are applied in the analysis phase of the QoSDW model are
summarised by: Composition, Pairing, Projection and Restriction.

Composition takes as input two functions f and g, such that range ( f) C def( g), and returns
a function g°f: def( f) → range ( g), defined by: ( g°f) ( x) = g( f( x)) for all x in def( f).

Pairing takes as input two functions f and g, such that def( f) = def( g), and returns a
function f g def f range g∧ →: () (), defined by:

A. Karawash et al.266

()() (), ())f g x f x g x∧ =< > , for all x in def ( f).

Projection is the usual projection function over a Cartesian product. Take function f:
X → Y and g: X → Z with common domain X, and let π y and π z denote the projection
functions over Y × Z:

Restriction takes as argument a functionand a set f: X → Y and a set D, such that DC
X, and returns a function f/D: D → Y defined by: ( f/D)( x) = f( x), for all x in D.

11.4.3 � QoSDW Schema

The base of QoSDW schema is a finite labelled diagram whose nodes and connec-
tions satisfy the following conditions: there is only one root, at least one path from
the root to every other node and all arrow labels are distinct. Our goal from the
obtained QoSDW schema is to have an organized store of service qualities, proper-
ties and structure in which multidimensional queries can be applied. The proposed
QoSDW schema consists of the following tables:

	 Fact table: Fact (service_id*, URI_type);
	 Table of dimension Quality: Quality (Quality_id*, Quality_value, foreign_ ser-

vice_id);
	 Tables of dimension Quality attributes:
	 Availability: Availability (avail_id*, avail_value, foreign_Quality_id);
	 Response time: ResponseTime (response _id*, response_time_value, foreign_

Quality_id);
	 Documentation: Documentation (Doc _id*, Documentation _value, foreign_

Quality_id);
	 BestPractice: BestPractice (practice_id*, practice _value, foreign_Quality_id);
	 Throughput: Throughput (throughput_id*, throughput_value, foreign_Quality_

id);
	 Latency: Latency (Latency_id*, Latency _value, foreign_Quality_id);
	 Successability: Successability (Successability_id*, Successability _value, for-

eign_Quality_id);
	 Reliability: Reliability (Reliability_id*, Reliability_value, foreign_Quality_id);
	 Compliance: Compliance (Compliance_id*, Compliance_value, foreign_Qual-

ity_id);
	 Table of dimension property: property (property_id*, property_value, foreign_

service_id);
	 Tables of dimension property attribute:
	 Type: ServiceType (ser_type_id*, type_value, foreign_property_id)/value: ser-

vice or sub-service
	 Name: ServiceName (ser_name_id*, ser_value, foreign_property_id);
	 ExpiryDate: ExpiryDate (ExpiryDate_id*, ExpiryDate _value, foreign_prop-

erty_id);

() ().f y f g and g z f gπ π° ∧ ° ∧= =

11  Quality-of-Service Data Warehouse for the Selection of Cloud Services 267

	 CreationDate: CreationDate (CreationDate_id*, CreationDate_value, foreign_
property_id);

	 Table of dimension flow: ServiceFlow (flow_id*, service_flow_value, foreign_
service_id);

	 Tables of dimensional flow attribute:
	 Loop: Loop (loop_id*, input_service, output_service, service_stage, foreign_

flow_id)/ stages: start node, normal node or end node.
	 Sequence: Sequence (sequence_id*, input_service, output_service, service_

stage, foreign_ flow_id);
	 AndSplit: AndSplit (AndSplit_id*, input_service, output_service, service_stage,

foreign_ flow_id);
	 XorSplit: XorSplit (XorSplit_id*, input_service, output_service, service_stage,

foreign_ flow_id);
	 AndJoin: AndJoin (AndJoin_id*, input_service, output_service, service_stage,

foreign_ flow_id);
	 XorJoin: XorJoin (XorJoin_id*, input_service, output_service, service_stage,

foreign_ flow_id);

The proposed QoSDW schema, in Fig. 11.4, is a logical description of the entire
multi-dimensional database. This schema is designed as a practical part of the pro-
posed QoSDW model. It includes the name and description of some QoS and basic
integration types (such as: sequence, loop, … etc).

11.4.4 � Service Selection Based on QoSDW

Based on the QoSDW schema, the QoS data warehouse is built. Similar to the tra-
ditional discovery method, the service consumer requests a service and the service
registry replies by a set of related service. If the QoS is not helpful to select the best
service, the service consumer requests an OLAP analysis report about the quality
of the discovered set of services. The QoSDW model consists of a special QoSDW
analyzer which supports two types of reports about QoS. The first type is a prelimi-
nary report which provides information about the quality of first level sub-services.
Figure 11.5 shows a visual representation given by the QoSDW analyzer about QoS
of sub-services.

Sometimes the results of the initial report are not beneficial in designing a new
composite service of better quality. Thus, the advanced QoS report is demanded by
the service designer. As regards building the required report, the QoSDW analyzer
applies some queries on data warehouse, which results in a service’s tree (refer to
Fig. 11.3). Then, the analyzer utilizes a tree search algorithm to detect fatal sub-
services (as shown in Algorithm 1).

A. Karawash et al.268

Fig. 11.5   Visual representation of the initial report

Fig. 11.4   QoSDW schema

11  Quality-of-Service Data Warehouse for the Selection of Cloud Services 269

The fatal service is a weak quality sub-service (its QoS is below the critical
values), which causes weakness in the quality of the parent service. The existence
of fatal sub service is sufficient for the service consumers not to select the parent
service, because they pay their money for utilizing an infected service. Thus, the
QoSDW models added a new quality attribute in the selection process—the num-
ber of fatal sub-services. Indeed, if there is a group of discovered services of equal
QoS level, the service which has the least number of infected sub-services must be
selected. In terms of infected services detection, the service designer is capable of
rebuilding improved versions of these services, free of fatal sub-services.

Also, if the QoSDW analyzer reports are not helpful in selecting the best service,
service consumers can apply their own queries on the data warehouse as described
in the next section.

11.5 � QoSDW Benefits

Services with similar functionality may be accessible at different QoS levels. Thus,
to build a service process, decisions must be made based on more specific compo-
nent at appropriate QoS levels. Consequently, QoSDW model benefits from the
quality of every sub-service to qualify a complex cloud service. In the previous ap-
proaches, the discovered services are only qualified with no information about their
internal flow of sub services. Conversely, the QoSDW model allows studying and

A. Karawash et al.270

analyzing the weak sub-services which lead to bad qualities of parent service before
making a selection decision. Compared with the traditional selection process, QoS-
DW is more advanced and both of service consumers and service providers may
benefit from its facilities. On one side, service consumers are capable of applying
a deep analysis concerning the service component before selection, using QoSDW
analyzer reports and OLAP queries. On the other side, the QoSDW is also beneficial
for cloud service providers; because service designers are capable of analyzing and
detecting fatal sub-services that cause weakness in cloud processes.

To show the advantages of the QoSDW model from the queries’ prospective,
we present an OLAP example, which is simulated as graph and algebraic queries.
Consider a schema S, an OLAP query over S is a triple Q = ( x, y, z), satisfying the
following conditions:

x and y are path expressions such that the source ( x) = source ( y) = root object.
z is an operation over the target of y.

The expression x will be referred to as the classifier of Q and the expression v as
the measure of Q.

Figure 11.6 shows the QoSDW schema as an acyclic graph, such that the root is
the object of an application, while the remaining nodes model the attributes of the
object. Through queries, some functions (such as av, rt and dc) are used when in-
voking object. Concerning the online QoS analysis through QoSDW, OLAP queries
are prepared using paths starting at the root object (Fact).

Fig. 11.6   The proposed QoSDW schema

11  Quality-of-Service Data Warehouse for the Selection of Cloud Services 271

Through OLAP, service consumers can apply an advanced query such as:

•	 Q1: Ask for sub-services which utilise XORjoin integration when invoking other
services and their Response Time greater than 80 ( ms) sorted by name of service.

	 Let us divide the query Q1:
−	 Ask for sub-services: pr o st.value = = ‘sub-service’
−	 Which utilizes XORjoin integration when invoking other services: qu o xj
−	 Their Response Time greater than 80 (ms): qu o rt. value > 80
−	 Sub-services are sorted by name of service: (pr o sn)^ (pr o st.value = = 

‘service’)
•	 Q1 = < ( pr o sn)^ ( pr o st.value = = ‘service’), (( pr o st.value = = ‘sub-service’) ^

( qu o xj) ^ ( qu o rt. value > 80)), sum > 

Considering the SteamBoat service (Sect. 11.3), the answer of the query Q1 is:
Ticket_Process. For more details about the algebraic base of OLAP refer to [17].

11.6 � Simulation and Results

To facilitate understanding of the model, we discuss in this part an example of ser-
vice selection and simulation of selecting service based on the fatal service property.

11.6.1 � Service Selection Example Based on QoS

QoS consists of a group of properties, but for the purpose of simplicity, the example,
in this section, examines just two of these properties (the service cost and service
response time). For complex services, six basic integration models (Fig. 11.7) are
considered and they are compatible with the business process of a service.

Fig. 11.8   Example of interior
composition of the steamboat

Fig. 11.7   Basic integration models for complex cloud services

A. Karawash et al.272

Suppose a client is looking for a service to make a steamboat travel reservation
(Fig. 11.8). Firstly, she or he needs to make a steamboat and hotel reservation and
then apply for a visa ticket. If the visa is approved, he can buy the steamboat ticket
and confirm the hotel reservation, otherwise, he will have to cancel both reserva-
tions. Also, if the visa is approved, he needs to make a car reservation. To com-
plete its job, this complex service ( steamboat service) invokes other services such
as: steamboat-reserve, hotel-reserve, ticket-process, travel-confirm, hotel-confirm,
car-reserve, travel-cancel and hotel-cancel.

A cloud service designer wants to compose a service that serves all types of
online travel reservation. One of the used services in this composition is Steam-
Boat service, which serves an online boat reservation. However, several cloud
providers support such type of boat service (Table 11.1). In this case, the service
consumer depends on the QoS (or QoSBroker) to select the best service. While,
services are divided into three classes: Excellent; users accept to pay lower cost
( 0.001 $ < Cost < 0.009 $) for better service qualities, Good; users pay the regular
cost ( 0.01 $ < Cost < 0.09 $) for normal service qualities, and Poor; users accept
worse costs ( 0.1 $ < Cost < 0.9 $) with lower service qualities.

Based on the service properties mentioned in Table 11.1, the service consumer
will choose the steamboat service because it is evaluated as best service (Class:
Good) by QoSBroker. But how was the QoS calculated?

The QoS calculations are based on Cardoso’s QoS formulas [18]. This provides
insights into computational details about the estimation of some QoS in the service
selection process such as, Response Time and Cost where:

•	 Response Time ( T): refers to the time taken by a request to be processed by a
task. For sequential tasks, two tasks ti and tj, which are in sequence, may be
reduced to a single task tnew, so that: T(tnew) = T(ti) + T(tj). In a parallel system,
multiple tasks (ti, tj,…, tn) are reduced to their maximum according to the for-
mula: T(tnew) = Maxiε(0,1,…,n){T(ti)}.

•	 Cost ( C): is considered as a cost incurred by the service provider when a task is
executed. For sequential tasks ti and tj, the new task is calculated according to
the following formula:C(tnew) = C(ti) + C(tj). While in parallel tasks ti and tj, the
cost is obtained using this formula: C(tnew) = ∑1≤ i ≤ n C(ti).

The evaluation of a service depends on its entire structure and the quality of the
other sub-services invoked to compose such service. In our example, the proper-
ties of the steamboat service are based on the properties of its sub-services such as
Steamboat-Reserve and others (as shown in Table 11.2).

Service name Cost ($) Response time (ms) Class
Steamboat 0.088 106 Good
Travel via steamboat 0.012 130 Good
Manage steamboat 0.18 183 Poor

Table 11.1   QoS (cost and
response time) of three
services

11  Quality-of-Service Data Warehouse for the Selection of Cloud Services 273

11.6.2 � QoSDW Simulation

This section explains the results of the QoS data warehouse simulation based on
the proposed QoSDW model. To implement this simulation, we use SQL server
2012, Eclipse indigo, Apache Tomcat Server (v.7), Microsoft visual studio 2012 and
windows Azure.

This simulation discusses selection of a SteamBoat service, which was described
in Sect. 11.5.1 above, based on the fatal service property that resulted from the ap-
plication of QoSDW model.

The service consumer requests a steamboat service and the cloud broker reply
by a list of three discovered services: SteamBoat, TravelViaSteamboat and Mana-
geSteamboat (see Table 11.1 in Sect. 11.5.1). In the traditional service selection
process, the QoSBroker calculates the QoS of the discovered set service, based on
the service provider measures. Figure 11.9 shows the variation of QoS (Response-
Time, Availability, Throughput, Successability, Reliability, Compliance, BestPrac-
tice, Latency, Documentation) of a three services ( SteamBoat, TravelViaSteamboat
and ManageSteamboat) given by the QoSBroker.

As a result, the QoSBroker marks services SteamBoat and TravelViaSteamboat
as Good services. However, it marks ManageSteamboat as a Poor service. Based
on the QoS primary results, the weak service is excluded, while the QoS of the
two other good services is studied, in order to select the best of them. Indeed, the
traditional selection method shows that the QoS of the two good services is approxi-
mately equal. Thus, it is difficult to decide which service is better.

Based on the QoSDW model, the service consumer is capable of requesting more
analysis details about the discovered services. Indeed, the QoSDW analyzer sup-
ports the consumer by a preliminary report, which analyses the QoS of first sub-
service level of the discovered set of services.

Figures 11.10 and 11.11 show, respectively, the variation of quality of sub-ser-
vices of both SteamBoat and TravelViaSteamboat services.

Sometimes, the first report is not beneficial in selecting the best service, so a
more advanced report is requested from the QoSDW analyzer. In our example, the
QoSDW analyzer, in its second report, detects a fatal sub-service in the tree of
TravelViaSteamboat service (as shown in Fig. 11.11, the SteamBoatTravel service
suffers from weak qualities in which: Response Time = 65 ms, Throughput = 17

Service name Cost ($) Response time (ms) Class
Steamboat-reserve 0.21 190 Poor
Hotel-reserve 0.019 112 Good
Ticket-process 0.015 125 Good
Travel-confirm 0.009 122 Excellent
Hotel-confirm 0.007 99 Good
Car-reserve 0.012 84 Good
Travel-cancel 0.003 114 Excellent
Hotel-cancel 0.002 119 Excellent

Table 11.2   QoS (cost and
response time) of steamboat
sub-services

A. Karawash et al.274

invokes per second, Latency = 34 ms, Availability = 53 %, Reliability = 40 % and
Best Practice = 43 %). The final report concludes that the SteamBoat service is the
best service to be selected. However, if sometimes results are not convincing, a
service consumer can query the QoSDW analyzer, using OLAP queries, and build a
much advanced cloud service analysis (as discussed in Sect. 11.4).

Fig. 11.10   QoS of the sub-services of SteamBoat service

Fig. 11.9   Difference in QoS values among three cloud services ( SteamBoat, TravelViaSteamboat
and ManageSteamboat)

11  Quality-of-Service Data Warehouse for the Selection of Cloud Services 275

11.7 � Conclusion

Clouds aim to control the next generation data centres by exposing them as a net-
work of virtual services. Cloud users are able to access and deploy applications
from anywhere in the world on demand at competitive costs depending on user
requirements. With the volatile growth of the number of cloud services published
over the web, it is difficult to select a suitable service among the candidate cloud
services which offer similar functionalities. QoS is considered as the main non-
functional criterion for service selection. However, there are still some limitations
face QoS-based cloud service selection process. Indeed, improving these limita-
tions need much time and research efforts to modify the cloud processing infrastruc-
ture. Smartly, this chapter introduces a QoSDW model that improves the service
selection process without altering Cloud standards. A QoSDW is a centralized stor-
age that combines QoS information from various Cloud sources. Mainly, it helps
solve the Cloud service selection problem through processing of large numbers of
historical QoS of complex Cloud services in a highly-efficient manner. QoSDW
provides an environment that supports Cloud infrastructure since it is completely
designed for QoS analytical-reporting and decision-support. As a summary of the
flow QoSDW model, the service business processes are mapped into star relational
database schemas at the Cloud provider side. At the Cloud broker, an OLAP Cube is
implemented using the stored QoSDW schemas. Based on advanced analysis levels
of Cube content, the QoSDW analyzer monitors Cloud services and returns up-to-
date reports about any modification occurs in their qualities. As a future work, our
goal is to achieve a logic layer of cloud services, which support service autonomy
in case of selection and composition procedures.

Acknowledgement  This work is supported by the Department of Computer Science at the Uni-
versity of Quebec at Chicoutimi, the Ecole Doctorale des Sciences et des Technologies at the
Lebanese University and the AZM association.

Fig. 11.11   QoS of the sub-services of TraveVialSteamboat service

A. Karawash et al.276

References

  1.	 Buyya R, Yeo C, Venugopal S (2008) Market-oriented cloud computing: vision, hype,
and reality for delivering IT services as computing utilities. 2008 10th IEEE international
conference high performance computer communication

  2.	 Wu J, Yang F (2007) QoS prediction for composite web services with transactions, LNCS,
vol. 4652. Springer, Berlin, pp 86–94

  3.	 Dan A, Davis D, Kearney R, Keller A, King A, Kuebler D, Ludwig H, Polan M, Spreitzer
M, Youssef A (2004) Web services on demand: WSLA-driven automated management. IBM
Syst J 43(1):136–158

  4.	 Yu T, Lin K (2004) Service selection algorithms for Web services with end-to-end QoS
constraints. In: Proceedings of IEEE international conference on e-commerce technology
CEC 2004

  5.	 Keskes N, Lehireche A, Rahmoun A (2010) Web services selection based on context ontology
and quality of services. Int Arab J e-Technol 1(3):98–105

  6.	 Raj RJ, Sasipraba T (2010) Web service selection based on QoS Constraints. In Trendz in
Information Sciences & Computing (TISC), IEEE

  7.	 Squicciarini A, Carminati B, Karumanchi S (2011) A privacy-preserving approach for web
service selection and provisioning. 2011 IEEE international conference on web service,
pp 33–40

  8.	 Garg S, Versteeg S, Buyya R (2011) SMICloud: a framework for comparing and ranking
cloud services. 2011 fourth IEEE international conference on utility cloud computing,
pp 210–218

  9.	 Rehman Z, Hussain O, Hussain F (2012) Iaas cloud selection using MCDM methods. 2012
IEEE Ninth international conference on e-business engineering, pp 246–251

10.	 Wang H, Lee C, Ho T (2007) Combining subjective and objective QoS factors for personal-
ized web service selection. Expert Syst Appl 32:571–584

11.	 Anita M (2012) An efficient QoS-based ranking model for web service selection with consid-
eration of user’s requirement. Thesis and dissertations, Ryerson University, Canada

12.	 Nallur V, Bahsoon R (2012) A decentralized self-adaptation mechanism for service-based
applications in the cloud. IEEE Trans Softw Eng. doi:10.1109/TSE.2012.53

13.	 Karray A, Teyeb R, Ben Jemaa M (2013) A heuristic approach for web-service discovery and
selection. Int J Comput Sci Inf Technol (IJCSIT) 5(2). doi:10.5121/ijcsit.2013.5210

14.	 Smith J, Nair R (2005) Virtual machines: versatile platforms for systems and processes, book.
Morgan Kaufmann, Boston

15.	 Liu W (2005) Trustworthy service selection and composition—reducing the entropy of
service-oriented Web. INDIN ’05. 2005 3rd IEEE international conference on industrial in-
formatics

16.	 Yu Q, Bouguettaya A (2010) Guest editorial: special section on query models and efficient
selection of web services. IEEE Trans Serv Comput 3(3):161–162. doi:10.1109/TSC.2010.43

17.	 Spyratos N (2006) A functional model for data analysis, lecture notes in computer science,
vol 4027. Springer, Berlin, pp 51–64

18.	 Cardoso J (2002) Quality of service and semantic composition of workflows. Ph.D thesis,
University of Georgia, Athens, GA

19.	 Al-Masri E, Mahmoud QH (2007) Discovering the best web service. Proceedings of
the 16th international conference on World Wide Web, pp 1257–1258. http://dx.doi.
org/10.1145/1242572.1242795

http://dx.doi.org/10.1145/1242572.1242795
http://dx.doi.org/10.1145/1242572.1242795

Chapter 12
Characterizing Cloud Federation Approaches

Attila Kertesz

A. Kertesz ()
MTA SZTAKI, Budapest, Hungary
e-mail: keratt@inf.u-szeged.hu

Software Engineering Department, University of Szeged, Szeged, Hungary

Abstract  Cloud Computing offers on-demand access to computational, infra-
structure and data resources operated from a remote source. This novel technology
has opened new ways of flexible resource provisions for businesses to manage IT
applications and data responding to new demands from customers. In this chapter,
we provide a general insight to the formation and interoperability issues of Cloud
Federations that envisage a distributed, heterogeneous environment consisting of
various cloud infrastructures by aggregating different Infrastructure-as-a-Service
(IaaS) provider capabilities coming from both the commercial and academic area.
These multi-cloud infrastructures are also used to avoid provider lock-in issues for
users that frequently utilize different clouds. We characterize and classify recent
solutions that arose from both research projects and individual research groups, and
show how they attempt to hide the diversity of multiple clouds and form a unified
federation on top of them. As they still need to cope with several open issues con-
cerning interoperability; we also provide guidelines to address related topics such
as service monitoring, data protection and privacy, data management and energy
efficiency.

Keywords  Cloud computing · Cloud Federation · InterCloud · Interoperability ·
Data protection · Energy efficiency · IaaS

12.1 � Introduction

Cloud computing is a diverse research area that encompasses many aspects of shar-
ing software and hardware solutions, including computing and storage resources,
application runtimes or complex application functionalities. The concept of Cloud

277© Springer International Publishing Switzerland 2014
Z. Mahmood (ed.), Cloud Computing, Computer Communications and Networks,
DOI 10.1007/978-3-319-10530-7_12

A. Kertesz278

computing has been pioneered by successful commercial companies with the
promise to allow elastic construction of virtual infrastructures, which attracted users
early on. Its technical motivation has been introduced in [1, 2]. Cloud solutions
enable businesses with the option to outsource the operation and management of IT
infrastructure and services, allowing the business and its employees to concentrate
on their core competencies. As new products and technologies are offered in the
near future, Gartner estimates that $112 billion will be spent by the year 2015 by
businesses and individuals on Cloud Computing offerings from service providers
such as Amazon, IBM and Microsoft [3].

In this chapter, we first gather relevant architectural views of Clouds to give an
insight where interoperation could be enabled to form federations, and then focus
on and characterize existing solutions of Cloud Federations that envisage a dis-
tributed, heterogeneous environment consisting of various cloud infrastructures
by aggregating different Infrastructure-as-a-Service (IaaS) provider capabilities
coming from both the commercial and academic area. Nowadays, cloud provid-
ers operate geographically diverse data centers as user demands like disaster re-
covery and multisite backups became widespread. These techniques are also used
to avoid provider lock-in issues for users that frequently utilize multiple clouds.
By this work we aim at revealing the important properties and capabilities of re-
cent cloud reports and solutions dealing with federations. These approaches try to
hide the diversity of multiple clouds and form a unified federation on top of them.
Today’s large systems need new, interoperable approaches to allow their efficient
operation in terms of cost, energy consumption and balanced resource utilization,
which have also been emphasized by the European Commission [4]. Therefore, we
also highlight the open issues concerning the interoperability of the participants of
these federative approaches, such as service monitoring, data protection and priva-
cy, data management and energy efficiency. Finally, we provide hints where future
research should be driven to achieve the final goal of interoperable Cloud Federa-
tions.

The remainder of this chapter is organized as follows: Section 12.2 introduces
and analyzes the architectural views of standardization bodies and relevant projects,
while Sect. 12.3 summarizes and classifies state-of-the-art approaches aiming at
Cloud federations. Section 12.4 introduces four relevant interoperability research
issues of federations with possible solutions towards practical realizations. Finally,
Sect. 12.5 summarizes and concludes the chapter.

12.2 � Architectural and Deployment Models of Clouds

In this section, we gather the relevant views on the architectural and deployment
models of Cloud environments defined and published by standardization bodies
from all around the world and by corresponding European research projects.

12  Characterizing Cloud Federation Approaches 279

12.2.1 � Definitions of Standardization Bodies

The View of the European Commission  An expert group set up by the European
Commission published their view on Cloud Computing in [4, 5]. These reports
categorize Cloud architectures into five groups as follows and as shown in Fig. 12.1:

•	 Private Clouds (i): these consist of resources managed by an infrastructure
provider (IP) that are typically owned or leased by an enterprise from a service
provider (SP). Usually, services with “Cloud-enhanced” features are offered,
therefore this group includes Software as a Service (SaaS) solutions like eBay
[6].

•	 Public Clouds (ii): these offer their services to users outside of the company and
may use Cloud functionality from other providers. In this solution enterprises
can outsource their services to such Cloud providers mainly for cost reduction.
Examples of these providers are Amazon [7] or Google Apps [8].

•	 Hybrid Clouds (iii): these consist of both private and public Cloud infrastructures
to achieve a higher level of cost reduction through outsourcing by maintaining
the desired degree of control (e.g., sensitive data may be handled in private
Clouds). The report states that hybrid Clouds are rarely used at the moment.

•	 Community Clouds (iv): these different entities contribute with their (usually
small) infrastructure to build up an aggregated private or public Cloud. Smaller
enterprises may benefit from such infrastructures, and a solution is provided by
Zimory [9].

•	 Special Purpose Clouds (v): This variety provides more specialized functionalities
with additional, domain specific methods, such as the distributed document man-
agement by Google’s App Engine. This group is an extension or a specialization
of the previous Cloud categories.

Fig. 12.1   Cloud Architec-
tures derived from the Cloud
Computing Expert Working
Group report

A. Kertesz280

The View of ENISA  The European Network and Information Security Agency
(ENISA) differentiates between four architectures [10], as shown in Fig. 12.2,
viz: (1) A Public Cloud—that is a publicly-available infrastructure to which any
organization may subscribe and use (also called service consumers (SC)), (2) Private
Clouds—that offer services built on Cloud Computing principles, but accessible
only within a private network, (3) Partner Clouds—that are operated by a provider
to a limited and well-defined number of parties, and (4) Cloud Federation—that
may be built up by aggregating two or more other varieties of Clouds.

Cloud Architectures Defined by NIST  The National Institute of Standards and
Technology (NIST) defines four deployment models [11, 12] as depicted in Fig. 12.3.
According to their definition, (i) A Private Cloud is an infrastructure operated solely
for an organization that may be managed by either the organization or a third-party
and located locally or remotely; (ii) A Community Cloud is a distributed computing
environment shared by several organizations and individuals, and supports a
specific community that has similar concerns (e.g., mission, security requirements,
policy, and compliance considerations). It may be managed by organizations or
third parties, and may exist on premises or off premises; (iii) A Public Cloud infra-
structure is made available to the general public or a large industry group, and is
owned by an organization selling Cloud services; and finally, (iv) A Hybrid Cloud
is a composition of two or more Clouds (private, community, or public) that remain
unique entities but are bound together by standardized or proprietary technology
that enables data and application portability (e.g., Cloud bursting for load balancing
between Clouds).

The Cloud Computing Use Case Discussion Group [13] adopts the NIST mod-
els. They extend the view on Hybrid Clouds by stating that “multiple Clouds work
together, coordinated by a Cloud broker that federates data, applications, user
identity, security and other details.” Though a brokering mechanism is needed for
federating Clouds, no specific guidelines are given how to achieve this.

The View of DMTF  The Distributed Management Task Force (DMTF) Open Cloud
Standards Incubator view [14] has also adopted the NIST models and defined
different scenarios showing how Clouds may interoperate (depicted in Fig. 12.4).

Fig. 12.2   Cloud
Architectures derived from
ENISA reports

12  Characterizing Cloud Federation Approaches 281

These scenarios explain how data centers interact with Cloud providers and
differentiate three cases:

•	 If a datacenter, run by Service Provider 1 (SP1) and hosted by Infrastructure
Provider 1 (IP1), exceeds the available capacity limits then IP2 provides extra
computing capacity for IP1 and SP1 is unaware of this provisioning.

•	 In a multiple Cloud scenario, SP1 may operate services in both IP1 and IP3 Clouds,
therefore a datacenter may request services from both providers since they may
support different services or Service-level Agreement (SLA) parameters.

•	 A provider may act as a Cloud broker to federate resources from other providers
(e.g., IP1 and IP2) to make them available to its consumers transparently without
using any of its own resources.

12.2.2 � Cloud Models in European Research Projects

The View of OPTIMIS  The OPTIMIS project [15] identified that commercial
solutions in the field of Cloud Computing have mainly focused on providing

Fig. 12.3   Cloud deployment models of NIST

Fig. 12.4   Cloud architectures
by DMTF

A. Kertesz282

functionalities at levels close to the infrastructure, and higher-level solutions, like
Platform as a Service (PaaS) environments are limited to a single infrastructure
provider. Their goal is to build an improved cloud service ecosystem that supports
higher-level concerns and non-functional aspects to achieve a wider adoption of
Cloud Computing. The project follows a holistic approach for multiple coexisting
cloud architectures and they target cloud service life-cycle optimization including
cost, trust, risk, and economic goals. They also plan to enable market-oriented multi-
cloud architectures with clarified legislative background. The architectural views
of the OPTIMIS project [16] are shown in Fig. 12.5. The project has three basic
architectural scenarios. In (i) a Federated Cloud Architecture, a Service Provider
(SP) assesses an Infrastructure Provider (IP). IPs can share resources among each
other. In (ii) a Multi-Cloud Architecture, different infrastructure providers are used
separately by a service provider. Finally in (iii) a Hybrid Cloud Architecture, a
Private Cloud (PC) is used by the SP, which can utilize resources of different IPs.

The View of Reservoir  The Reservoir project [17] claims that small and medium
Cloud providers cannot enter the Cloud-provisioning market due to the lack of
interoperability between Clouds. Their approach is exemplified by the electric grid
approach: “for one facility to dynamically acquire electricity from a neighboring
facility to meet a spike in demand.” Disparate datacenters should be federated to
provide a “seemingly infinite service computing utility.” Regarding the architec-
tural view, a Reservoir Cloud consists of different Reservoir Sites (RS) operated
by different IPs. Each RS has resources that are partitioned into isolated Virtual
Execution Environments (VEE). Service applications may use VEE hosts from
different RSs simultaneously. Each application is deployed with a service manifest
that formally defines its SLA contract. Virtual Execution Environment Managers
(VEEM) interact with VEEs, Service Managers and other VEEMs to enable
federations to be formed. A VEEM gathers interacting VEEs into a VEE group
that serves a service application. This implies that a Reservoir service stack has
to be present on the resources/sites of IPs. Their specialized Cloud architecture is
depicted in Fig. 12.6.

Fig. 12.5   The OPTIMIS
cloud architectures

12  Characterizing Cloud Federation Approaches 283

The View of Contrail  The Contrail project [18] proposes an SLA-centered fed-
erated approach for Clouds. Its goal is to minimize the burden on the user with
eliminating provider lock-in by exploiting resources belonging to different cloud
providers regardless the kind of technology they use, and to increase the efficiency
of using Cloud platforms by performing both a vertical and a horizontal integration.
It follows an open-source approach toward technology and standards, and sup-
ports user authentication and applications deployment by providing extended SLA
management functionalities. Its federation architecture, shown in Fig. 12.7, acts as
a bridge among the users and the cloud providers, and has three layers. The top,
interface layer provides ways to interact with the federation. It gathers requests
from users and other Contrail components that rely on the federation functionalities.
The bottom, Adapters layer contains drivers for external Cloud services, while the
middle, Core layer contains modules that fulfill the functional and nonfunctional
requirements of the federation. The federation runtime manager operates in this
layer, which uses a set of heuristics that consider different aspects to govern the fed-
eration, such as to minimize economical cost and to maximize performance levels.

The View of BonFIRE  The BonFIRE project [19] aims at exploring the interactions
between novel service and network infrastructures. The project was focused on the
extension of current cloud offerings towards a federated facility with heterogeneous
virtualized resources and best-effort Internet interconnectivity. They have devel-
oped a set of procedures to interconnect a multi-cloud environment with advanced
facilities for controlled networking. These procedures enable the provisioning of
customized network functions and services in support of experiments running
in a multi-cloud test-bed. Their aim is to federate three advanced networking
facilities within the BonFIRE multi-cloud environment: the interconnections with
FEDERICA and GÉANT are already active, and OFELIA planned to be connected
soon. The BonFIRE facility (shown in Fig. 12.8) is composed of six geographically
distributed cloud test-beds, located at EPCC, INRIA, HLRS, iMinds, HP, and PSNC.

Fig. 12.7   Contrail
architecture

Fig. 12.6   The Reservoir
cloud architecture

A. Kertesz284

The View of mOSAIC  The mOSAIC project [20] offers the specification of service
requirements in terms of a cloud ontology via an innovative API. The implementa-
tion of this approach will offer a higher degree of portability and vendor indepen-
dence. It also provides application programming interfaces for building applications
using services from multiple cloud providers and plans to realize a self-adaptive
distributed scheduling platform composed of multiple agents implemented as intel-
ligent feedback control loops to support policy-based scheduling and expose self-
healing capabilities. They plan to foster competition between cloud providers by
enabling the selection of best-fitting cloud services to actual user needs and effi-
ciently outsource computations. In its hybrid cloud scenario, they envision multiple
clouds working together coordinated by a cloud broker that federates data, applica-
tions, user identity, and security, as shown in Fig. 12.9.

The View of EGI Federated Cloud  The European Grid Infrastructure (EGI) is a
federation of national and domain specific resource infrastructure providers, who
use virtualised management environments to improve the local delivery of ser-
vices. Many of EGI’s current and new user communities would also like to access
the flexibility provided by virtualisation across the infrastructure resulting in a
cloud-like environment. Federating these individual virtualised resources has been
a major priority for EGI, therefore it has set up the Federated Clouds Task Force
[21]. Its main objectives were to provide guidelines for its resource providers to
securely federate and share their virtualised environments as part of the EGI pro-
duction infrastructure, and to create a testbed to evaluate the integration of virtu-
alised resources within the existing EGI production infrastructure for monitoring,

Fig. 12.9   mOSAIC hybrid
cloud architecture through
APIs

Fig. 12.8   The BonFIRE
facility

12  Characterizing Cloud Federation Approaches 285

accounting and information services. Their guidelines do not define what hypervi-
sor the participating resource providers should use, and the federation adopts a set
of well-defined functionalities and interfaces that every provider is free to imple-
ment independently. Currently there are 16 providers participating in the EGI Fed-
erated Cloud (FedCloud) testbed using OpenNebula, OpenStack and StratusLab.
Their federated architecture is depicted in Fig. 12.10. Currently, the clouds of the
participating infrastructure providers can be reached in a centralized way, and uti-
lized separately.

12.2.3 � Classification of Research Projects

To compare the previously introduced approaches, we have created a classification
of these views concerning their abilities to form federations. We propose four cat-
egories in this classification:

•	 Hierarchical type of federations: In this vision there is a usually centralized,
higher level management service that is responsible for federation forming and
the coordination. This type is also called as a “Multi-Cloud” approach in the
literature [22].

•	 Horizontal type of federations: In this vision bi- or multi-lateral resource renting
is the main goal of the participating providers, mainly for optimizing resource
utilization and reducing operation costs. This type is generally named as “Fed-
eration” in the literature [22].

•	 Heterogeneity of participating providers: With this category we represent the va-
riety of IaaS software stacks available in the federation (where “No” means that
the same software stack need to be used in order to participate in a federation).

•	 Specialty of federation forming: Here we named one of the unique capabilities of
the appropriate solution.

The actual categorization is shown in Table 12.1. The introduced categories reveal
the most important properties of the surveyed solutions.

Fig. 12.10   EGI Federated
Cloud

A. Kertesz286

12.3 � InterCloud and Cloud Federation Approaches

Cloud federation refers to a mesh of cloud providers that are interconnected based on
open standards to provide a universal decentralized computing environment where
everything is driven by constraints and agreements in a ubiquitous, multi-provider
infrastructure. Until now, the cloud ecosystem has been characterized by the steady
rising of hundreds of independent and heterogeneous cloud providers, managed
by private subjects, which offer various services to their clients. In this subsection
next to the already overviewed research projects, we gather relevant federative
approaches found in the literature. Cloud providers offering PaaS solutions may form
“sub-federations” simultaneously to these approaches. Specific service applications
may be more suitable for these provisions, and projects like Reservoir [17] and
4CaaSt [23] are working towards such a solution. Our considered federative works
targets IaaS-type providers, e.g. RackSpace, the infrastructure services of Amazon
EC2, and providers using Cloud middleware such as OpenNebula and Eucaliptus.

InterCloud Vision  Buyya et al. [1] envision that one day Cloud Computing will be
the fifth utility by satisfying the computing needs of everyday life. Their pioneering
paper discusses the current trends in Cloud computing and presents candidates
for future enhancements. They emphasize the market-oriented side of Clouds,
and introduce a market-oriented cloud architecture, discussing how global cloud
exchanges could take place in the future. They further extended this vision [24] by
suggesting a federation oriented, just in time, opportunistic and scalable application
services provisioning environment called InterCloud. They envision utility oriented
federated IaaS systems that are able to predict application service behavior for
intelligent down and up-scaling infrastructures. They list the research issues of
flexible service to resource mapping, user and resource centric QoS optimization,
integration with in-house systems of enterprises, scalable monitoring of system
components. They present a market-oriented approach to offer InterClouds including
cloud exchanges and brokers that bring together producers and consumers. Produc-
ers are offering domain specific enterprise Clouds that are connected and managed
within the federation with their Cloud Coordinator component.

Cross-Cloud Federation Approach  Celesti et al. [25] proposed an approach for
the federation establishment considering generic cloud architectures according to
a three-phase model, representing an architectural solution for federation by means

Table 12.1   Classification of federative approaches of research projects
Hierarchical Horizontal Heterogeneity Specialty

OPTIMIS [15] X – Yes Legislation awareness
Reservoir [17] – X No Reservoir service stack
Contrail [18] X – Yes SLA contracts
BonFIRE [19] – X Yes Controlled networking
mOSAIC [20] – X Yes Cloud ontology, API
EGI FedCloud [21] – X Yes Virtualised EGI

environments

12  Characterizing Cloud Federation Approaches 287

of a Cross-Cloud Federation Manager (CCFM), a software component in charge of
executing the three main functionalities required for a federation. In particular, the
component explicitly manages: (i) the discovery phase in which information about
other clouds are received and sent, (ii) the match-making phase performing the best
choice of the provider according to some utility measure, and (iii) the authentica-
tion phase creating a secure channel between the federated clouds. These concepts
can be extended taking into account green policies applied in federated scenarios.

Multi-Cloud Approach  Bernstein et al. [26] define two use case scenarios that
exemplify the problems of multi-cloud systems: (i) VM mobility where they
identify the networking, the specific cloud VM management interfaces and the lack
of mobility interfaces as the three major obstacles, and (ii) storage interoperability
and federation scenario in which storage provider replication policies are subject to
change when a cloud provider initiates subcontracting. They offer interoperability
solutions only for low-level functionality of the clouds that are not focused on
recent user demands but on solutions for IaaS system operators.

FCM Approach  In the Federated Cloud Management solution [27], interoperability
is achieved by high-level brokering instead of bilateral resource renting, as shown
in Fig. 12.11. Although, this does not mean that different IaaS providers may not
share or rent resources, but if they do so then it is transparent to their higher level
management. Such a federation can be enabled without applying additional software
stack for providing low-level management interfaces. The logic of federated
management is moved to higher levels, and there is no need for adapting interoper-
ability standards by the participating infrastructure providers, which is usually a
restriction that some industrial providers are reluctant to undertake.

Classification of Research Approaches  To classify the relevant research directions
addressing federations reported in the literature, we use the same categorization
as in Table 12.2. In this case, we can also observe that both hierarchical and hori-
zontal federation types are represented, and heterogeneity within the participating
providers is only present in hierarchical solutions. While most of the projects
considered in Section 12.2.2 applied the horizontal approach, smaller research
groups are in favor of the hierarchical way. The motivation behind this observation
is that research projects lasting for 3–4 years had the manpower to develop own
interfaces to enable interoperation among the participating Cloud providers, and
also had the ambitious aim to come up with a solution that could be standardized

Fig. 12.11   Federated Cloud
Management Architecture

A. Kertesz288

and used in industry later on. On the other hand, smaller research groups focused on
approaches that utilize already existing standards to avoid provider lock-in, and to
enable easier collaboration with industrial solutions.

12.4 � Interoperability Issues of Cloud Federations

Not only the interchangeability of user applications in different clouds participating
in a federation represents and open issue, but other related interoperability prob-
lems concerning the management of such a large distributed ecosystem need to be
addressed as well.

As mentioned before, the European Commission has assigned an expert group
to publish reports on future research challenges of Clouds [4, 5]. In these reports
they also performed a gap analysis of already existing commercial and academic
solutions and highlighted the following topics that need further research:

•	 Manageability: Even though most Cloud solutions handle elasticity, intelligent
methodologies are needed to reach optimal resource utilization.

•	 Data management: Most data flowing to or created in the Cloud need to be
supported by meta-data information and new standards are needed to guarantee
long-term storing and interoperable sharing among multiple providers.

•	 Privacy and security: Legislative issues of data distribution should be better
addressed, and security holes during resource sharing among multiple tenants
should be eliminated.

•	 Federation and interoperability: Proprietary data structures should be replaced
by de facto standards, and new approaches are needed to ensure convergence
towards real interoperability eliminating vendor lock-in.

•	 Virtualization and adaptability: Optimized resource scheduling solutions are
needed considering cross-platform executions and migrations taking into account
rapidly changing workloads.

•	 Programming models: Better control on data distribution should be achieved, and
new means are needed to enable better application development and deployment.

•	 Economy: New scheduling policies are needed to enable green resource
utilization, more efficient resource utilization with reduced power consumption.

By addressing many of these concerns, we summarize four important research
fields that are necessary to be taken into account in building and operating Cloud
Federations. These topics represent different facets of interoperability: (i) enhanced
monitoring solutions are needed to enable optimized management of participating

Table 12.2   Classification of federative approaches of research papers
Hierarchical Horizontal Heterogeneity Specialty

InterCloud [1] X – Yes Market-oriented
Cross-Cloud [25] – X Yes/No Authentication
Multi-Cloud [26] X – Yes VM mobility
FCM [27] X – Yes Meta-brokering

12  Characterizing Cloud Federation Approaches 289

providers; (ii) legislative regulations need to be considered during multi-tenant
data processing; (iii) sustainable and user-friendly data management solutions are
needed through standard interfaces; and (iv) energy efficient resource management
have to be enabled for future ecosystems.

12.4.1 � Monitoring in Cloud Federations

Infrastructure-as-a-service (IaaS) cloud systems provide access to a remote
computing infrastructure by allowing their users to instantiate virtual appliances
on their virtualized resources as virtual machines. Nowadays, several IaaS systems
co-exist, and they are independently offered by several public service providers
or by smaller scale privately managed infrastructures. As we have seen before, to
enable interoperability of multiple clouds, federations need to handle the differences
of various cloud providers and have to negotiate user requirements with multiple
parties. Federated clouds aim at supporting these users by providing a single
interface on which they can transparently handle different cloud providers, as they
would do with a single cloud system. Therefore it is essential to construct federated
cloud systems in a way that they not only offer a single interface for their users, but
also automatically manage virtual machines (VM) independently from the availably
cloud systems.

An efficient cloud selection in a federated environment requires a cloud
monitoring subsystem that determines the actual status of available IaaS systems.
Since there is only limited monitoring information available for the users or higher-
level managers in these clouds, there is a need for a sophisticated service monitoring
approach to evaluate basic cloud reliability status, and to perform seamless service
provisioning over multiple cloud providers in an interoperable way. We exemplify
such an extension to a federation with our Federated Cloud Management solution,
where we applied a web service monitoring approach to gather additional and more
detailed service quality information from the participating cloud [28]. The FCM
approach uses the Generic Meta-Broker Service as the entry point for the users
of the cloud federation. This service selects the most suitable cloud provider to
perform the service requests of the user by investigating the current state of the
participating clouds according to the information stored in a generic service registry
and the reliability metrics collected by the integrated SALMon service monitoring
framework [29]. The participating clouds are managed by Cloud-Brokers that are
capable of handling service requests and managing virtual machines within single
IaaS cloud systems.

To enable the meta-brokering service to differentiate between cloud providers,
we proposed to use a basic service that is used to cost effectively determine the
important characteristics of the available VMs in the federation. As a result, the
system is capable to evaluate and choose between both public and private clouds
based on the same kind of metrics. We refer to this basic service as the Minimal
Metric Monitoring Service (M3S), which is capable of measuring infrastructure
reliability together with the integrated SALMon framework in public and private

A. Kertesz290

clouds. The M3S service is prepared to run in a virtual machine and it offers three
methods to evaluate the basic capabilities of its hosting VM. SALMon uses the
response times of these methods to express the reliability of the particular cloud that
runs the M3S VM. It has: (i) a generalized ping test to check the availability of the
service; (ii) a CPU analyzer method that performs several mathematical calculations
in a large loop over a predefined set of variables, consisting on integer and float-
ing point numbers to determine the computational capability of a given VM; and
finally (iii) bandwidth analyzer methods, which are used to compute the download
and upload transfer speed of the system to determine its inbound and outbound data
transfer capabilities.

Our investigations showed that both service reliability and responsiveness do
vary over time and load conditions, and these measures can be used by our federated
cloud management solution to select better execution environments for achieving a
higher level of user satisfaction.

12.4.2 � Data Protection in Cloud Federations

Cloud Computing allows the outsourcing of computational power, data storage and
other capabilities to a remote third-party. In the supply of any goods and services,
the law gives certain rights that protect the consumer and provider, which also
applies for Cloud Computing: it is subject to legal requirements and constraints
to ensure Cloud services are accurately described and provided to customers with
guarantees on quality and fitness-for-purpose.

To exemplify issues arising from data management in Cloud Federations, we
have also evaluated the formerly introduced cloud architectures against legal
requirements in [30], where we have chosen to perform an evaluation using require-
ments from data protection law. Data protection legislation is fundamental to Cloud
Computing as the consumer looses a degree of control over personal artifacts, when
they are submitted to the provider for storage and possible processing. To protect
the consumer against the provider misusing their data, data processing legislation
has been developed to ensure that the fundamental right to privacy is maintained.
However, the distributed nature of Cloud Computing (where cloud services are
available from anywhere in the world) makes is difficult to analyze every country’s
data protection laws for common Cloud architecture evaluation criteria. Therefore,
we have chosen a common directive that applies as widely as possible and used the
European Data Protection Directive (DPD) [31] as a basis for our investigations.
Although it is a European Union (EU) directive, countries that want to collaborate
in data transactions with EU Member States are required to provide an adequate
level of protection.

The requirements of the DPD are expressed as two technology-neutral actors that
have certain responsibilities that must be carried out in order to fulfill the directive.
These roles are the data controller and data processor, where a data controller is the
natural or legal person which determines the means of the processing of personal
data, whilst a data processor is a natural or legal person which processes data on
behalf of the controller. However, following these definitions, a special case arises:

12  Characterizing Cloud Federation Approaches 291

if the processing entity plays a role in determining the purposes or the means of
processing, it is a controller rather than a processor.

We have also explored Cloud Federations through a series of use cases to dem-
onstrate where legal issues can arise. In these use cases, the relevant actors and their
roles were identified and the necessary actions have been stated that should be taken
to prevent violations of the directive. We identified that there are complications
when personal data is transferred to multiple jurisdictions. For example, considering
a service provider (SP) located in the European Union offers services provisioned
in a Cloud Federation, which utilizes different infrastructure providers (IPs, usually
operating private clouds), and one of which (IP2) is located in a non-Member State,
we arrived to the following conclusion: since SP is the data controller and the par-
ticipating IPs are processors, the law of the SP’s Member State has to be applied,
and IP2 has to provide at least the same level of protection as the national law of SP.
Otherwise, if IP2 cannot ensure an adequate level of protection, the decision making
process should rule out IP2 from provider selection during data management.

As a result of our investigation, we can state that service providers are mainly
responsible for complying with the data protection regulation, and when personal
data is transferred to multiple jurisdictions, it is crucial to properly identify the
controller since this role may change dynamically in specific actions.

12.4.3 � Cloud Storage Services in Cloud Federations

One of the most important open issues of Cloud Federations is the interoperable
management of data among the participating systems. Retrieving and sharing user
data and virtual images among different IaaS clouds is an unsolved issue. Besides
concerning data privacy issues, it is also not an easy task to move a user application
from one cloud infrastructure to another. Virtualization techniques and virtual image
formats different providers support to run on their virtual machines are usually
incompatible. Retrieving a user’s Virtual Appliance (VA, which is a specialized
image hosting the user application) from an IaaS cloud is impossible in most cases,
not only in case of commercial providers, but also in academic solutions. Therefore,
finding an interoperable way for managing user data among multiple tenants is an
important issue.

A popular family of cloud services is called cloud storage services. With the help
of such solutions, user data can be stored in a remote location, independent from the
infrastructure of cloud providers participating in a federation. Therefore, to exem-
plify the interoperable utilization of storage and infrastructure clouds, we proposed
an approach to retrieve and share user application data among different providers
with the help of these online storage services. In this way, VAs running at different
cloud infrastructures can manage the same data at the same time, and the users can
access these data from their own local devices without the need for accessing any
IaaS clouds. Mobile devices can also benefit from Cloud services: the enormous
data users produce with these devices are continuously posted to online services,
which may require the modification of these data. Nowadays more mobile devices
are sold compared to traditional PCs, and Android devices are more and more

A. Kertesz292

popular. We have also investigated how user data could be managed in an interoper-
able way among different IaaS systems participating in a federation. Our aim was
to develop a solution that uses cloud storage services together with infrastructure
services of cloud federations, which we further used to enhance the capabilities of
mobile devices [32]. Though the computing capacity of mobile devices has rapidly
increased recently, there are still numerous applications that cannot be solved with
them in reasonable time. Our approach is to utilize cloud infrastructure services to
execute such applications on mobile data stored in cloud storages.

The basic concept of our solution is the following. Services for data management
are running in one or more IaaS systems that keep tracking the cloud storage of a
user, and execute data manipulation processes when new files appear in the storage.
The services running in the cloud can download the user data files from the cloud
storage, execute the necessary application on these files, and upload the modified
data to the storage service. Such files can be, for example, photo or video files made
by the user with their mobile phone to be processed by an application unsuitable
for mobile devices. We have developed an image generator application that
interconnects mobile devices, IaaS services and cloud storage services, and evalu-
ated the prototype application using mobile devices and a private IaaS cloud. The
evaluation of this application showed that it is worth both in terms of computation
time and energy efficiency to move computation-intensive tasks to clouds from
mobile devices.

12.4.4 � Energy Efficient Management of Cloud Federations

The Cloud Computing technology has created the illusion of infinite resources for
use by consumers, however, this vision raises severe issues with energy consumption
e.g. the higher levels of quality and availability require irrational energy expendi-
tures. The consumed energy of resources spent for idling represent a considerable
amount, therefore the current trends are claimed to be clearly unsustainable with
respect to resource utilization, CO2 footprint and overall energy efficiency. It is
anticipated that further growth is objected by energy consumption furthermore,
competitiveness of companies will be strongly tied to these issues.

Energy awareness is a highlighted research topic, and there are efforts and
solutions for processor level, component level and datacenter level energy effi-
ciency. For instance, new energy efficient approaches were proposed to automate
the operation of datacenters behind clouds, so that they help with rearranging the
virtualized load from various users. Thus, smaller sized physical infrastructure is
sufficient for the actual demand and momentarily unused capacities can be switched
off. Nevertheless, these approaches are applicable to single data centers only. On
one hand, today’s large systems are composed of multiple service providers per se
that need new approaches to ensure their overall energy-aware operation. On the
other hand, there is an unexplored potential for energy-aware operation in federated
and interoperable clouds. Our research in [33] was targeted at examining what new
aspects of energy awareness can be exploited in federative schemes.

12  Characterizing Cloud Federation Approaches 293

As small cloud providers and cloud startups are becoming more popular, they
soon face user demands that cannot be satisfied with their current infrastructures.
Therefore, these providers need to increase the size of their infrastructure by intro-
ducing multiple data centers on various locations or join a federation capable of
offering unprecedented amount of resources.

Energy consumption is a major component of operating costs. Despite its
significance, current IaaS clouds barely provide energy-aware solutions. Providers
are restricted to reduce their consumption at the hardware level, independently from
the IaaS. These reductions range from the use of more energy efficient computer
components to the upgrade of their heating, ventilation and air conditioning systems
to increase their power usage efficiency. Although these improvements are crucial,
the energy consumption could also be significantly reduced by software means
in over-provisioned IaaS systems where more physical resources are available
at the provider side than actually requested by users. Over-provisioning is a key
behavior at smaller sized providers that offer services for users with occasional
peaks in resource demands. To reduce their energy costs, these providers should
minimize their over-provisioning while they maintain a fluid experience towards
their customers without violating the previously agreed service level. Energy
consumption could be reduced with software techniques focusing on intra- and
inter-datacenter issues.

To exemplify how energy consumption and CO2 emissions could be addressed
in Cloud Federations, we introduce enhancements in our proposed Federated Cloud
Management solution [27]. At the meta-brokering layer, relying on an enhanced
monitoring system within the federation, service executions can be directed to data
centers of providers consuming less energy, having higher CO2 emission quotas,
or have produced less amount of CO2 that expected within some timeframe. At the
cloud brokering layer, if the energy consumption parameters of a cloud suddenly
change, there should be strategies to limit or move around calls and even (if nec-
essary) VMs federation-wise. The changes here may mean the introduction of
new hardware, or just switching on/off some parts of the datacenters, or changing
the number of VMs. Realigning calls may not have immediate effects, however
migration of VMs across the federation is also an energy consuming operation, that
needs to be measured and considered when decisions are made, thus this operation
should not happen only in case of really drastic changes. An interoperable federa-
tion management system should prefer datacenters, where the difference between
the highest load and the average load is small because a VM has the smallest impact
on those resources.

12.5 � Conclusion

In this chapter, we provided a general insight into the formation and interoperability
issues of Cloud Federations that envisage a distributed, heterogeneous environment
consisting of various cloud infrastructures by aggregating different IaaS provider

A. Kertesz294

capabilities coming from both the commercial and academic area. These multi-cloud
infrastructures are used to avoid provider lock-in issues for users that frequently
utilize different clouds. We have surveyed and characterized recent solutions that
attempt to hide the diversity of multiple clouds and form a unified federation on top
of them, but they still need to cope with several open issues.

We have shown that these federative approaches, arose from both research
projects and individual research groups, can be categorized into hierarchical
and horizontal architecture types. The hierarchical ones are more favorable by
smaller research groups, and have the advantage of supporting more heterogeneous
infrastructure providers to avoid vendor lock-in. We have also highlighted open
interoperability issues of federation forming and management such as service
monitoring, data protection and privacy, data management and energy efficiency.

We believe that these research directions can serve as guidelines for researchers
in this field, and contribute to fostering further research works on Cloud Federations.
By following the guidelines defined by the European Commission, and putting
together the pieces of already existing, promising solutions of federation approaches
of various research works, we will arrive to such federations that will be able to
operate efficient ecosystems attracting thousands of users.

Acknowledgments  The research leading to these results has received funding from the CloudSME
FP7 project under grant agreement 608886, and it was supported by the European Union and the
State of Hungary, co-financed by the European Social Fund in the framework of TAMOP 4.2.4.
A/2-11-1-2012-0001 “National Excellence Program.”

References

  1.	 Buyya B, Yeo CS, Venugopal S, Broberg J, Brandic I (June 2009) Cloud computing and
emerging it platforms: vision, hype, and reality for delivering computing as the 5th utility.
Future Gener Comput Syst 25(6):599–616

  2.	 Vaquero LM, Rodero-Merino L, Caceres J, Lindner M (2008) A break in the clouds: towards
a cloud definition. SIGCOMM Comput Commun Rev 39(1):50–55

  3.	 Pring B et al (June 2010) Forecast: public cloud services, worldwide and regions, industry sectors,
2009–2014. Gartner report. http://www.gartner.com/Display-Document?ref=clientFriendly-
Url&id=1378513. Accessed 12 Jan 2013

  4.	 Schubert L, Jeffery K, Neidecker-Lutz B (2010) The future of cloud computing—report from the
first cloud computing expert working group meeting. Cordis (Online), BE: European Commission.
http://cordis.europa.eu/fp7/ict/ssai/docs/Cloud-report-final.pdf. Accessed 15 Jan 2013

  5.	 Schubert L Jeffery K (2012) Advances in clouds—research in future cloud computing, report
from the cloud computing expert working group meeting. Cordis (Online), BE: European
Commission, 2012. http://cordis.europa.eu/fp7/ict/ssai/docs/future-cc-2may-finalreport-ex-
perts.pdf. Accessed 12 Jan 2013

  6.	 eBay Inc (2013) Online Shopping Solution, http://www.ebay.com/. Accessed 6 Sept 2013
  7.	 Amazon (2013) Amazon Web Services, http://aws.amazon.com/. Accessed 5 Nov 2013
  8.	 Google (2013) Google Apps for Business, http://www.google.com/apps/. Accessed 12 Jan 2013
  9.	 Zimory GmbH (2013) Cloud infrastructure management. http://www.zimory.com/, Accessed

10 Sept 2013
10.	 Catteddu D, Hogben G (2009) Cloud computing risk assessment: benefits, risks and recom-

mendations for information security, ENISA report. http://www.enisa.europa.eu/act/rm/files/
deliverables/cloud-computing-risk-assessment/at_download/fullReport. Accessed 12 Jan 2013

http://www.gartner.com/Display-Document?ref=clientFriendly-Url&id=1378513
http://www.gartner.com/Display-Document?ref=clientFriendly-Url&id=1378513
http://cordis.europa.eu/fp7/ict/ssai/docs/Cloud-report-final.pdf
http://cordis.europa.eu/fp7/ict/ssai/docs/future-cc-2may-finalreport-experts.pdf
http://cordis.europa.eu/fp7/ict/ssai/docs/future-cc-2may-finalreport-experts.pdf
http://www.ebay.com/
http://aws.amazon.com/
http://www.google.com/apps/
http://www.zimory.com/
http://www.enisa.europa.eu/act/rm/files/deliverables/cloud-computing-risk-assessment/at_download/fullReport
http://www.enisa.europa.eu/act/rm/files/deliverables/cloud-computing-risk-assessment/at_download/fullReport

12  Characterizing Cloud Federation Approaches 295

11.	 Mell P Grance T (Sept 2011) The NIST definition of cloud computing, NIST special publication
800-145. http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf. Accessed 12 Dec
2012

12.	 Liu F, Tong J, Mao J, Bohn RB, Messina JV, Badger ML, Leaf DM (Sept 2011) NIST cloud
computing reference architecture, NIST special publication 500–292. Online: http://www.
nist.gov/customcf/get_pdf.cfm?pub_id=909505. Accessed 12 Jan 2013

13.	 Ahronovitz M et al (2010) Cloud computing use cases, a white paper produced by the cloud
computing use case discussion group, version 4.0, http://opencloudmanifesto.org/Cloud_
Computing_Use_Cases_Whitepaper-4_0.pdf. Accessed 12 Jan 2013

14.	 DMTF (2009) Interoperable clouds, a white paper from the open cloud standards incubator
1.0, DMTF white paper no. DSP-IS0101. http://www.dmtf.org/sites/default/files/standards/
documents/DSP-IS0101_1.0.0.pdf. Accessed 12 Dec 2012

15.	 OPTIMIS (2010) Cloud legal guidelines, OPTIMIS FP7 project deliverable no. D7.2.1.1. http://
www.optimis-project.eu/sites/default/files/D7.2.1.1~OPTIMIS~Clo-ud~Legal~Guidelines.
pdf. Accessed 12 Jan 2013

16.	 Ferrer AJ et al (2012) OPTIMIS: a holistic approach to cloud service provisioning. Future
Gener Comput Syst 28:66–77

17.	 Rochwerger B et al (Apr 2009) The reservoir model and architecture for open federated cloud
computing. IBM J Res Development

18.	 Carlini E, Coppola M, Dazzi P, Ricci L, Righetti G (2012) Cloud federations in contrail,
Euro-Par 2011 Workshops, LNCS 7155, pp 159–168

19.	 Jofre J et al (2013) Federation of the BonFIRE multi-cloud infrastructure with networking
facilities, Comput Netw, http://dx.doi.org/10.1016/j.bjp.2013.11.012. Accessed 13 Nov 2013

20.	 Petcu D et al (2013) Experiences in building a mOSAIC of clouds. J Cloud Comput Adv Syst
Appl 2:12.

21.	 EGI (2013) Federated clouds task force, https://wiki.egi.eu/wiki/Fedcloud-tf:FederatedClou
dsTaskForce. Accessed 20 Oct 2013

22.	 Grozev N Buyya R (2012) Inter-cloud architectures and application brokering: taxonomy and
survey. Softw: Pract Exper. doi:10.1002/spe.2168

23.	 4CaaSt EU FP7 project (2013) PaaS cloud Platform, http://4caast.morfeo-project.org,
Accessed 2 Oct 2013

24.	 Buyya B, Ranjan R, Calheiros RN (2010) InterCloud: utility-oriented federation of cloud
computing environments for scaling of application services, lecture notes in computer
science: algorithms and architectures for parallel processing, vol. 6081, 20 pages

25.	 Celesti A, Tusa F, Villari M, Puliafito A (2010) How to enhance cloud architectures to
enable cross-federation. Proceedings of the 3rd international conference on cloud computing
(CLOUD 2010), IEEE: Miami, Florida, US, 2010, pp 337–345

26.	 Bernstein D, Ludvigson E, Sankar K, Diamond S, Morrow M (2009) Blueprint for the
Intercloud—protocols and formats for cloud computing interoperability. In Proceedings of the
fourth international conference on internet and web applications and services, pp 328–336

27.	 Marosi AC, Kecskemeti G, Kertesz A Kacsuk P (2011) FCM: an architecture for integrating
IaaS cloud systems. In Proceedings of the second international conference on cloud
computing, GRIDs, and virtualization (Cloud Computing 2011), IARIA, pp 7–12, Rome,
Italy

28.	 Kertesz A, Kecskemeti G, Oriol M, Kotcauer P, Acs S, Rodriguez M, Merce O, Marosi ACs,
Marco J, Franch X (2013) Enhancing federated cloud management with an integrated service
monitoring approach. J Grid Comput 11(4):699–720

29.	 Oriol M, Franch X, Marco J, Ameller D (2008) Monitoring adaptable soa-systems using
salmon. In Workshop on service monitoring, adaptation and beyond (Mona+), pp 19–28

30.	 Varadi Sz, Kertesz A, Parkin M (2012) The necessity of legally compliant data manage-
ment in European cloud architectures. Computer Law and Security Review 28(5):577–586
(Elsevier)

31.	 European Commission (Nov 1995) Directive 95/46/EC of the European Parliament and of
the Council of 24 October 1995 on the protection of individuals with regard to the processing
of personal data and on the free movement of such data, Off J L 281:31–50

http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf
http://www.nist.gov/customcf/get_pdf.cfm?pub_id=909505
http://www.nist.gov/customcf/get_pdf.cfm?pub_id=909505
http://opencloudmanifesto.org/Cloud_Computing_Use_Cases_Whitepaper-4_0.pdf
http://opencloudmanifesto.org/Cloud_Computing_Use_Cases_Whitepaper-4_0.pdf
http://www.dmtf.org/sites/default/files/standards/documents/DSP-IS0101_1.0.0.pdf
http://www.dmtf.org/sites/default/files/standards/documents/DSP-IS0101_1.0.0.pdf
http://www.optimis-project.eu/sites/default/files/D7.2.1.1~OPTIMIS~Clo-ud~Legal~Guidelines.pdf
http://www.optimis-project.eu/sites/default/files/D7.2.1.1~OPTIMIS~Clo-ud~Legal~Guidelines.pdf
http://www.optimis-project.eu/sites/default/files/D7.2.1.1~OPTIMIS~Clo-ud~Legal~Guidelines.pdf
http://dx.doi.org/10.1016/j.bjp.2013.11.012
https://wiki.egi.eu/wiki/Fedcloud-tf:FederatedCloudsTaskForce
https://wiki.egi.eu/wiki/Fedcloud-tf:FederatedCloudsTaskForce
http://4caast.morfeo-project.org

A. Kertesz296

32.	 Planzner T, Kertesz A (Aug 2013) Towards data interoperability of cloud infrastructures using
cloud storage services, 1st workshop on dependability and interoperability in heterogeneous
clouds in conjunction with EuroPar’13, Aachen, Germany

33.	 Kecskemeti G, Kertesz A, Marosi ACs, Nemeth Zs (2013) Strategies for increased energy
awareness in cloud federations, in book: high-performance computing on complex
environments, Wiley series on parallel and distributed computing, Accepted in 2013.

Chapter 13
Security Aspects of Database-as-a-Service
(DBaaS) in Cloud Computing

Faria Mehak, Rahat Masood, Yumna Ghazi, Muhammad Awais Shibli
and Sharifullah Khan

R. Masood () · F. Mehak · Y. Ghazi · M. A. Shibli · S. Khan
School of Electrical Engineering and Computer Science, National University of Sciences
and Technology, Sector H-12, Islamabad 44000, Pakistan
e-mail: rahat.masood@seecs.edu.pk

F. Mehak
e-mail: 12mscsfmehak@seecs.edu.pk

Y. Ghazi
e-mail: 09bicseyghazi@seecs.edu.pk

M. A. Shibli
e-mail: awais.shibli@seecs.edu.pk

S. Khan
e-mail: sharifullah.khan@seecs.edu.pk

Abstract  Database-as-a-Service (DBaaS) provides a wide range of benefits such
as data outsourcing, multi-tenancy and resource sharing. It has garnered a lot of
hype, but while it is promising, it is also a mine-field of concerns and issues. Secu-
rity is one of the most critical challenges in this domain, which has only begun to
earn the academic attention that it needs. There is a serious lack of research in this
area that collectively covers the security of DBaaS, from its various problems to
the possible solutions. To this end, this chapter provides a holistic survey on the
security aspects of the Cloud DBaaS, including key features, advantages and differ-
ent compatible architectures for managing data in the Cloud DBaaS. Furthermore,
we identify challenges and classify the security limitations in DBaaS paradigm.
Security requirements that are being fulfilled by state-of-the-art mechanisms along
with their in-depth description are also presented. Additionally, we provide insight
to the future security perspective. Our work acts as a comprehensive guidance for
the developers and researchers to help them understand the inherent security issues
and the existent countermeasures in the DBaaS domain.

Keywords  Cloud databases · Database-as-a-Service · NoSQL · Big data · Database
security · Confidentiality · Integrity · Availability · Privacy

297© Springer International Publishing Switzerland 2014
Z. Mahmood (ed.), Cloud Computing, Computer Communications and Networks,
DOI 10.1007/978-3-319-10530-7_13

298 F. Mehak et al.

13.1  Introduction

One of the most attractive features of the cloud computing paradigm refers to its
service-oriented architecture, wherein applications and resources are outsourced as
services over the internet [68] as Software as a Service [27], Platform as a Service
[22] and Infrastructure as a Service [97]. Likewise, data outsourcing, also called
Database-as-a-Service ( DBaaS), is a new service model, which was proposed by
Hacigumus et al. [51]. Based on Software-as-a-Service (SaaS), DBaaS moves da-
tabase management system (DBMS) from a traditional client-server architecture,
where the data owner is responsible for managing DBMS and responding to user’s
queries—to a third party architecture, where data management is not handled by
the data owner. Data owners outsource their data to data service providers such as
Google [84], Amazon [23], and Microsoft [76] etc., who have the facilities to man-
age large data sets [42]. DBaaS market is growing considerably and the trend of its
adoption is not limited to large scale businesses such as IBM [57] and Microsoft
[76], but also extends to small enterprises such as ZeusDB [108] and LongJump [65].

However, despite the various benefits offered by DBaaS over traditional data
management systems, there are certain issues that hinder its wide adoption, of
which security is one of the most critical concerns. According to International Data
Corporation (IDC) Survey conducted in August 2008 [62], security of user data was
identified as a major challenge in the IT industry. Moreover, the Cloud Security Al-
liance (CSA) [34] evaluated “Top Twelve” threats in the Cloud environment [33]
which are shown in Fig. 13.1. It has been studied that from 2009 to 2011 the number
of vulnerability incidents in Cloud has doubled most likely due to the phenomenal
growth in the Cloud services [19]. Moreover, due to insecure interfaces/APIs, data
loss and leakage have been reported to make up 29% and 25% of overall threats,
respectively [33].

Data security, in particular, is rather crucial in the Cloud DBaaS paradigm be-
cause both the customer data and the code lie in the service provider’s domain. One
of the major factors behind data security issues is the lack of trust between service
providers and consumers. Data outsourced to the third party is perceived as ‘loss of

Fig. 13.1   Number of cloud security vulnerability incidents categorized by threats [33]

29913  Security Aspects of Database-as-a-Service (DBaaS) in Cloud Computing

control’ by the data owner; therefore, consumers demand strong guarantees on the
privacy and security of outsourced data [42]. Unauthorized access to data resources,
misuse of data stored on third party platform, data confidentiality, integrity and
availability are some of the major security challenges that ail this nascent Cloud
service model.

Our research reveals that no extensive literature survey has been conducted so
far which holistically covers security aspects of DBaaS. Moreover, there is a lack
of research work which collectively enumerates the security requirements and the
corresponding defense mechanisms devised till date for DBaaS. Therefore, we have
conducted a holistic survey on DBaaS, in order to demystify the challenges and
vulnerabilities—particularly those that are unique to the DBaaS environment—and
categorized them, according to generic security requirements. We have studied dif-
ferent solutions addressing the security concerns and have clearly stated the security
requirements satisfied by a particular technique. Furthermore, we have identified
open issues and potential research directions in the area of DBaaS that need to be
addressed by the Cloud community.

The rest of the chapter is organized as follows: Section 13.2 acts as a roadmap
for the rest of the chapter and highlights the core features, main characteristics and
advantages provided by DBaaS as well as the existing Cloud storage architectures
suitable for the Cloud DBaaS environments. Section 13.3 discusses potential issues
which are primary obstacles to the spacious adoption of DBaaS, with the major
focus on the security challenges faced by DBaaS in Sect. 13.4. Section 13.5 reviews
state-of-the-art in view of the identified security challenges. Section 13.6 throws
light upon some future directions in order to make DBaaS more secure and help as
a guideline to protect underlying data and finally Sect. 13.7 concludes the chapter.

13.2  Background of DBaaS

Since its genesis, the internet has undergone evolution at an unprecedented pace,
and one of the significant byproducts of its advancement is the accumulation of
exponential amounts of data referred to as Big Data [5, 89]. This growth in the
volume of data shifted the trend from enterprise centric workloads to data centric
workload [81], where organizations no longer have to manage their database locally
and don’t have to perform manual operations [81]. On-hand resources such as hard-
ware and manual effort incur additional expense for organizations and thus, was the
primary argument supporting the concept of third party data management applica-
tions. Thus, after 40 years of Relational DBMS rule in the industry, the concept of
databases in the Cloud emerged [18, 40] in order to share and manage resources,
software and information between devices over the internet [103].

Based on the data model, databases residing in the Cloud are divided into two
major categories [24], i.e., NoSQL databases [78] such as Amazon [12], SimpleDB
[13], Yahoo PNUT [37], CouchDB [16] and SQL databases such as Oracle [82]
and MySQL [75]. SQL databases provide a way to store and communicate with

300 F. Mehak et al.

relational databases. While in contrast, NoSQL (Not only SQL) databases have a
flexible data model and are meant to provide elastic scaling for managing big data.
Both types of Cloud databases, either SQL or NoSQL can be deployed in two ways.
One method is to use a Virtual Machine (VM) instance, which users can purchase
for a limited time period with a database installed in it [1, 56, 71]. Alternatively, the
Cloud databases are outsourced to third parties, where data owners can manage data
resources in a distributed environment [1]—more popularly known as Database-as-
a-Service (DBaaS) [25, 85, 103].

DBaaS eliminates the need for installing, maintaining and storing data on the lo-
cal database servers (hard drives or disks). Data is fully managed on the Cloud serv-
ers making the service independent of hardware [40]. Moreover, DBaaS supports
structured, unstructured or semi-structured data, as opposed to conventional DBMS
systems which deal only with structured data along with the metadata residing in
the database [103]. It also takes advantage of the Cloud’s elastic and scalable nature
to cater to the problem of exponential data growth. It offers reduced cost and effort
on the user’s end via virtualization [90]. The subsequent section describes various
major features and advantages of DBaaS.

13.2.1  Discerning Features and Advantages of DBaaS

DBaaS offers numerous features that make it a better alternative in the dynamic
environment of Cloud. First of all, DBaaS provides DBMS as an on-demand in-
dependent service for managing data [40]. Consumers can access this ubiquitous
service instantly via various devices such as desktop computers, laptops, mobiles,
notebooks, tablets, etc. [103] with the sole requirement of internet connectivity.
Consumers can perform desired operations on the abstract resources anytime, with-
out any major configuration or deployment requirements [54, 100]. Thus, consum-
ers do not need to be aware of the internal implementation and characteristics for
framing up the environment [54]. Resource pooling is performed by the DBaaS
providers to pool location-independent computing and data resources to a common
repository [40, 103]. These shared resources and redundant infrastructures are man-
aged across many data centers.

Another major feature of DBaaS is that service providers adapt to the workload
changes, hence making the model scalable. They have the power to deal with load
variations by allocating fewer resources to the tenants or by increasing them during
peak hours without any service disruption [6]. The fact that DBaaS allows dynamic
scaling up or down of resources as per consumer requirements makes the service
elastic, as well [6, 58]. DBaaS follows the “Pay Only for What You Use” model of
pricing [40], since data resources are tracked using meter [30], and consumers only
pay for the exact amount of data resources/storage space they consume, acquire,
and provision. The Cloud DBaaS applications are also agile in nature, they adapt
seamlessly to any upgrades according to business or technology advancements.
DBaaS allows rapid provisioning of database resources to provide new computing
resources and storage facilities in minimum possible time [48, 55].

30113  Security Aspects of Database-as-a-Service (DBaaS) in Cloud Computing

All the highlighted features in Table 13.1 make the DBaaS model, arguably, a
far better alternative for managing databases than traditional DBMSs [104]. DBaaS
also provides some additional advantages to its consumers and service providers,
such as fast, transparent, and automated failure recovery to make applications re-
silient against failures [18]. DBaaS ensures maximum availability of data resources
[79]. Many strategies are used to prevent data loss. For example, Elastic Book Store
(EBS) [14] used by EC2 or Windows Azure Drives, Blob and Table Storage [36]
used by Windows Azure [72], are real-life examples of storage in the Cloud, which
follow redundant disk strategy. There is no single point of failure in this architecture
because it is based on self-detective and self-aware mechanism to handle changes
and to recognize extreme events before it is too late [44].

DBaaS also provides GUI-based configuration for managing backups, restor-
ing databases, and automated scheduling in DBaaS [20, 55]. Operational burden
of provisioning, performance tuning, configuration, privacy, backup, scaling, and
access control to DBaaS services is alleviated, which means that organizations do
not require a dedicated team of professionals to deal with the databases [93, 100].
Therefore, minimal service provider interaction is required, lowering the overall
cost effectively [9, 106]. DBaaS is economically feasible for consumers as well
because it liberates consumers from local hardware. A glimpse of numerous advan-
tages of DBaaS is represented in Table 13.2 for quick overview and understanding.

13.2.2  Cloud Storage Architectures

DBaaS is based on the architectural and operational approach [80]. In this subsec-
tion, we discuss some of the well-known architectures for Cloud based storage en-
vironment that can be adopted by DBaaS vendors according to their requirements:

Table 13.1   Primary features of DBaaS
Sr. No Features Description
1 Self-Service Instant and automatic service provisioning without major deploy-

ment or configuration
Users can perform different tasks without cost and performance
overhead

2 Broad Ubiquitous
Network Access

Service accessible using different devices (Desktop Computers,
Mobile, Tablet)

3 Abstract Resources Device and location-independent abstract database resources
Focus on user’s needs instead of hardware utilization

4 Resource Pooling Location-independent, remotely-hosted database resources pooled
at distributed servers

5 Elasticity and
Scalability

Automated and dynamic scaling
Databases adapt to workload changes without service disruption

6 Pay As You Go
Model

Tracking of data resources using meter
Payment management according to data resources used

7 Agility Adaptive to business changes
Rapid provisioning of database resources

302 F. Mehak et al.

13.2.2.1  Layered Architecture for the Outsourced Cloud DBMS

The growing interest in outsourcing database management tasks to third parties
provides the benefit of a significantly reduced operational cost, as discussed in
Sect. 13.1. To manage such outsourced databases, there was a need for a newly de-
signed DBMS, architected specifically for the Cloud computing platforms. There-
fore, a layered architecture was proposed by Gelogo et al. [47] in 2012, specially
designed for the Cloud based outsourced DBMS. There are three basic layers in
the overall architecture as shown in Fig. 13.2, i.e., Application Layer, Database
Layer, and Storage Layer [47] with an additional User Interface Layer to access the
service via internet. The Application layer is used to access software services and
storage space on the Cloud. The Database layer provides efficient and reliable ser-
vice of managing database by reusing query statements residing in the storage, thus

Table 13.2   Major advantages of DBaaS
Sr. No Advantages Description
1 Effective failure recovery Fast, transparent, and automated recovery

Data replication at multiple locations
Regular backups

2 Non-stop availability 24/7/365
No single point of failure
Self-detective and self-aware mechanism

3 Simplified query interface
and faster management
approval

GUI-based configuration
Management of data backups, data restores, and automated
scheduling using user-friendly interfaces
No shipping and framing up environment required

4 Economical choice No hardware (storage devices) utilization by consumers
Lesser number of professionals required to handle the
databases
No requirement of hardware or experts lowers the overall
cost of maintaining databases

Fig. 13.2   Layered Archi-
tecture of the Cloud based
DBMS [47]

30313  Security Aspects of Database-as-a-Service (DBaaS) in Cloud Computing

saving time for querying and loading data. Data is encrypted when stored or backed
up at Data storage layer, without any need for programming to encrypt and decrypt.
Backup management and disk monitoring is also provided at this layer. The layered
architecture helps to add more functionality at each layer; maintenance becomes
easier and security threats are not compacted at one place, but are distributed at
each layer. Therefore, addressing potential threats is easier using layered approach.

13.2.2.2  Shared-Disk vs Shared-Nothing Cloud Database Architecture

Shared-Nothing and Shared-Disk architectures [61] are also frequently employed for
Cloud databases. Shared-Nothing architecture is based on the construct that every
system contains its own private memory in one or more than one local disks. Da-
tabase partitioning is performed wherein each database server processes and main-
tains its own data. The clustered processors running at each server communicate
via messages over the network [18]. All the requests are automatically routed to the
system and only one cluster at a time can own and consume resources. Thus, data
consistency issue is avoided. As nothing is shared between the processors, interde-
pendency of processors is prevented. There is fixed load balancing rather than dy-
namic load balancing, which means that each server has to handle peak load for its
data. Scalability of processors is the core advantage provided by this architecture.
Figure 13.3 shows the architecture of Shared-Nothing approach.

Fig. 13.3   Shared Nothing architecture [61]

304 F. Mehak et al.

Shared-Disk architecture, as depicted by Fig. 13.4, not only uses its own private
memory, but also allows connecting to other systems/disk memories [18]. Different
database processes have access to all the system resources including data; therefore,
any server (process) can become active at request and provide required database
service. This provides fluidity to smoothly accommodate temporal and evolutionary
changes. Overall performance is better with high availability and data does not need
to be partitioned. But there may be interferences of one processor to another due to
the shared disk [55].

13.3  Challenges Faced by DBaaS

Aside from the potential benefits DBaaS has to offer, there are tradeoffs attached
with the paradigm, similar to every other Cloud service model. DBaaS model sup-
ports multi-tenancy [26, 92] which leads to interesting challenges at the administra-
tor’s end, such as assigning logical resources to physical resources, configuring
physical systems (parameters, database design) and load balancing across physical
resources [7, 20, 21, 68, 79, 98]. It demands that each tenant’s network should be
isolated from others and the tenants often need to have their own private address
space. Therefore, multi-tenancy is difficult to manage in the dynamic environment
of the Cloud where the number of tenants frequently varies.

Fig. 13.4   Shared Disk architecture [61]

30513  Security Aspects of Database-as-a-Service (DBaaS) in Cloud Computing

The location of the data stored in Cloud is not known to organizations or data
owners, which significantly minimizes their control over their data [87]. Consumers
do not know the details pertaining to where actual physical machines, networking
and storage devices are residing. In case of security breaches, it becomes difficult
for them to identify the resource which has been compromised. In addition, con-
sumers do not have fine-grained control over remote execution environment and the
Cloud services; therefore, consumers cannot inspect the execution traces in order to
detect occurrence of illegal operation [20, 21]. Unavailability of database services
can also be faced from time to time affecting performance and any other linked ser-
vice. Amazon has clearly mentioned in its licensing agreement that service unavail-
ability may occur sometimes [11]. Furthermore, scalability promised by DBaaS is
also difficult to manage by the service providers [35], particularly when scaling out
causes escalation in storage nodes [92].

DBaaS consumers want to freely shift from one provider to another, in order to
reuse their critical and redundant data across portable applications, such that com-
ponents written for one DBaaS provider should run at the infrastructure of another
DBaaS provider. In this respect, vendor lock-in is also a challenge in the DBaaS
environment [18]. Another issue of concern is the lack of interoperability between
DBaaS vendors [63]. DBaaS providers should be able to communicate with each
other through API’s and there must be a common front-end that would appear as a
single homogenous entity with semantic calls [38]. Thus, there is a need to translate
and transform standards with the objective to have native database driven interoper-
ability standards [62].

The number of potential users simultaneously querying the database residing in
Cloud is a variable in query workload; therefore, estimating the time required for
query workloads is a challenge. This unpredictable behavior creates management
problems and workload analysis at a particular time becomes difficult [7]. One of
the barriers to the Cloud DBaaS performance is the speed with which data can be
transferred between the database service providers and the consumers. However,
internet transfer speed is not as high, compared with the speed required for transfer-
ring data, introducing performance overhead [7]. High speed internet connection
and cables (modems) are used to achieve the desired speed, which in turn incur very
high cost, diminishing the economic advantage of DBaaS.

Furthermore, the data in DBaaS can be confidential and any type of Data loss and
leakages can cause financial and customer loss to the organization. Major causes
for data loss in the Cloud are insufficient authorization, authentication, and account-
ing mechanisms, inconsistent use of encryption keys and techniques, alteration, or
deletion of records without maintaining backup and operational failures [20]. There
are many other technical and business risks, apart from the highlighted challenges
which prevent customers from committing to the Cloud DBaaS. Table 13.3 shows
the key challenges associated with DBaaS model that need to be addressed, along
with their consequences and causes.

306 F. Mehak et al.

13.4  Security Challenges Faced by DBaaS

The crux of the DBaaS security is to secure the data in transit, at rest, and in use. The
security issues mainly include, risk from malicious outsiders and insiders, secure
data management, confidentiality, integrity, and availability of personal and business
critical information. Data owners delegate control of data over to the DBaaS provid-
ers, which may lead to compromised integrity, confidentiality, and availability of data
[7, 43]. Moreover, if the DBaaS providers fail to deliver the relevant requirements/
evidence of their compliance such as Data Security Standard (DSS) or Payment Card
Industry (PCI), then the resilience and continuity of business might be compromised.
Thus, a road-map towards certification on key industry standards [86] is necessary to
follow. Some data integrity and privacy issues arise due to the absence of authentica-
tion, authorization, and accounting controls, poor key management for encryption
and decryption [20]. In this respect, the focus of this section is to look into different
security concerns, categorized according to the CIA principles, i.e., Confidentiality,
Integrity, and Availability [96], as well as some major privacy concerns.

Table 13.3   Challenges faced by DBaaS
No. Challenge Consequences and causes
1 Resource allocation

for multiple tenants:
multi-tenancy

Problem faced in assigning logical resources to physical resources
for multiple users accessing common data repository
Configuration of physical systems becomes difficult
Load balancing across physical resources becomes composite
process

2 Loss of control Lose control over location-independent data
No fine-grained control for remote execution
Difficult to determine source in case of failure

3 Service
unavailability

Unavailability of services can affect performance
Fault tolerant services are required

4 Escalation of data
resources

Automatic scaling of data cause confidentiality issues

5 Vendor lock-in Data shifting among vendors is not considered
Data reusability across portable applications is not guaranteed

6 Lack of
interoperability

Communication between multiple heterogeneous databases is
required
Need of mature standard notions of translation and transformations

7 Query and transac-
tional workloads

Lack of management because number of users querying database is
not known
Time estimation is not possible in query workload

8 Internet speed Data transfer requires high internet speed which will incur high cost
Performance overhead

9 Data loss during
migration

Alteration or deletion of records without a backup
Insufficient authorization, authentication, and accounting control
mechanisms
Inconsistent use of encryption technique

30713  Security Aspects of Database-as-a-Service (DBaaS) in Cloud Computing

13.4.1  Confidentiality

Confidentiality, in the context of data outsourcing, refers to secure execution of que-
ries generated by trusted clients. It signifies that only authorized users should get
access to the data. In DBaaS, data residing in an unencrypted form may be vulnera-
ble to bugs, errors, and attacks from external entities, confronting data confidential-
ity issues. Frequent concerns related to confidentiality of data are described below:

Insider Threats  Super users usually have the privilege to access all resources, due
to maintenance purposes. However, if this privilege is misused, it poses a consider-
able threat to data in DBaaS [69]. Administrating the administrators is again an end-
less cycle. This key challenge might be addressed by enforcing strict supply chain
management and by conducting a comprehensive supplier assessment. It will enable
the Cloud DBaaS providers to hire people (contractors or vendors) who get through
pre-defined characteristics, requirements testing or interviewing. In order to avoid
espionage and intentional mal-behavior, resources can be tied to legal actions by
specifying human resource requirements as part of the legal contracts [31].

Outside Malicious Attacks  One of the problems in trusting DBaaS providers with
confidential data is the potential of outside malicious attacks [20]. Malicious attacks
such as fraud, phishing, scamming, and exploitation of the software vulnerabilities
are also possible in the Cloud DBaaS. Malicious users can also execute spoofing,
sniffing, man-in-the-middle attacks, side channeling [39] and illegal transactions
to launch a Denial of Service (DoS) attack [20]. Data intrusion is another prob-
lem faced by DBaaS, where an intruder can get access to all of the instances and
resources by illegally accessing login credentials. This way, any hacker can erase
the information residing inside the data repositories and use it unethically for dis-
abling/harm the services [9].

Access Control Issues  In traditional data storage environment, organizations per-
form manual checks on locally-placed data, as well as on the super users by means
of, e.g., security personnel or cameras [67]. However, organizations are not able
to carry out the same level of monitoring and access control once the data is trans-
ferred to the Cloud DBaaS. This is because data is now outsourced to third parties
and is not under possession of the owner. Big data, that is difficult to manage, is
usually segregated into restrictive categories in order to ensure secure access to the
data resources [35, 42, 54]. Moreover, access control policies are usually defined
by the DBaaS providers and not by data owners; therefore, they cannot customize
access policies if required.

Illegal Recovery of Data from Storage Devices  DBaaS providers perform data
sanitization to delete or remove data from their storage devices [88]. However, there
are several techniques that can recover data that has not been properly discarded
from the hard drives, which might introduce physical and logical security risks.
Moreover, regular backups are maintained on multiple physical storage devices in
order to physically colocate data from multiple customers and mitigate data losses
[9]. Threats on this replicated data, stored on multiple locations are also possible.

308 F. Mehak et al.

Hence, data sanitization needs to be performed with a certain amount of caution.
Physical security risks can be prevented by carefully destructing or overwriting
critical data, such that information is not disclosed via unauthorized sources [88].
Requirements-specific regulations about performing sanitization should be formed
in accordance with DBaaS.

Network Breaches  In DBaaS model, all the data sent by users or enterprises is
transferred through or by means of network. Communicating data over the network
makes it prone to certain threats such as data modification and eavesdropping. Any
weakness at the network level will give an opportunity to malicious users such that
they can exploit data. Network packet sniffing is one of the exploitation techniques
adopted by the malicious users for analyzing communications and gain information
to crash or corrupt the network [15]. Eavesdropping, IP address spoofing, man in
the middle attack, denial of service attack, SQL injection, cross side scripting, etc.,
are some other substantial network attacks. Therefore, it is necessary to secure the
network in order to avoid the leakage of sensitive information in transit.

Data Provenance  Data provenance refers to the tracing and recording process in
order to find out the origin of data and its movement between databases [29]. DBaaS
requires history of its digital data, such as details about its creator because this
information is sometimes used to determine the data accuracy. Fast algorithms are
needed to handle this metadata provenance which can be cumbersome [35]. More-
over, analysis of large graphs generated from provenance metadata is computation-
ally expensive [32] and their security assessments are also time-sensitive in nature.

Supply Chain Failure  DBaaS providers sometimes outsource certain specialized
database tasks or all of their supply chain management functions to third parties.
Therefore, their level of security in such situations may depend upon the security
of these third party links. Lack of transparency in the contract can be the root cause
of problems [99].

13.4.2  Integrity

Ensuring data integrity refers to protecting data from unauthorized modification,
deletion, or fabrication. Therefore, accuracy and consistency of data should be guar-
anteed so that it remains intact and untouched from malicious activities at every
location. Integrity of data can be breached when unauthorized parties, e.g., insiders
such as disgruntled employees or outsiders such as hackers, intentionally modify
data. Data tampering can happen at any level of storage in the Cloud DBaaS. If there
is a security breach that affects the data of a consumer, the consequence could be
damaging, not only for the consumer, but also for the service provider.

Moreover, the Cloud databases provide numerous configuration files assigned to
consumers. These files represent specifications and access privileges. Modification
of such files will result in improper functioning of the entire Cloud DBaaS. Fraud
is the oldest form of attack on data integrity [46]. Phishing, trojan horses, denial of

30913  Security Aspects of Database-as-a-Service (DBaaS) in Cloud Computing

service attacks, or other unauthorized means can also impact data integrity through
data modification. Attacks on the network also compromise data integrity by expos-
ing the content to non-legitimate individuals [54, 64, 74, 110].

13.4.3  Availability

Availability is the extent to which a system’s resources—mainly data resources in
case of DBaaS—are accessible to its users [41]. It is considered to be a major se-
curity requirement which needs utmost attention from the Cloud DBaaS providers.
Availability can be affected temporarily as well as permanently or it may be lost
completely or partially, as a result of service failures [98, 107, 110]. Major threats to
availability are DOS attacks, natural disasters, and equipment failures at the service
provider’s end [88]. Unavailability of a database for a long period would inevita-
bly cause consumer applications to suffer. Long bouts of unavailability have been
known to occur; for example, in February 2008, a major outage of 3 h was faced
by Amazon S3 and that service breakdown in turn affected its consumers, mainly
Twitter [105], and some other companies relying on their services [73]. Some of the
relevant factors are listed below:

Resource Exhaustion  It is simply a denial of service condition which usually
prevents successful completion of DBaaS related activity because the required
resources are completely consumed [83]. Due to resource exhaustion, imprecise
interpretation of the customer service requests may lead to service unavailability,
economic/reputation losses, and unauthorized access. As data resources are allo-
cated according to statistical projections to each customer, a calculated risk is
required in order to assign the resources to each of the consumer [99].

Consistency Management  It is practically impossible for distributed computer
systems to simultaneously provide consistency, availability, and partition toler-
ance, as per the CAP Theorem. DBaaS providers balance these properties by relax-
ing consistency and alleviating distributed replication issue. However, DBaaS
consumers demand that they see a consistent view of the data, including visible
changes made by every user who has access to this data [49]. A widely used strategy
‘data replication’ is used to achieve performance, availability and scalability goals.
Synchronization of replicated data poses certain challenges because synchronizing
big data results in a longer response time [85]. Moreover, DBaaS vendors need to
maintain timely backups of all sensitive and confidential data in order to facilitate
quick recovery in case of disasters [2]. Therefore, synchronizing the data backups
is also equally problematic.

Internet Downtime  Network issues affect the availability of DBaaS, since the ser-
vice is dependent upon internet; therefore, data latency, and even application failure
can be faced [54]. Network misconfiguration, lack of resource isolations, poor or
untested business continuity, disaster recovery plan, system vulnerabilities, and net-
work traffic modification are some other reasons for network failures engendering
unavailability [102].

310 F. Mehak et al.

Data Lock-In  APIs used by DBaaS are proprietary and are not subjected to active
standardization; as a result, the issues of data lock-in arise. If customers want to
shift the data from one DBaaS provider to another, they are responsible to extract
the data they want to shift. Therefore, lack of data extraction is a restriction for orga-
nizations who are adopting any other Cloud database service provider. For example,
“Linkup”, an online storage service, shut down on August 8, 2008, causing loss of
data access of 45 % of its customers [17]. “Linkup” had trusted “Nirvanix” [92] for
storing customer data and was told to switch to another site for storage services.
This switching raised an issue between two organizations as there was no standard-
ization between the storage devices [17]. One possible way to solve this problem is
a standardized API which DBaaS developers can use to deploy data services across
multiple database vendors. Using this mechanism, failure of services provided by
one vendor would not cause the failure of complete repository of customer data.

Natural Disasters  Natural disasters such as lightning, earthquakes, storms are
also regarded as risks. They affect the performance, security, and reputation of the
DBaaS service. Such disasters can cause serious consequences if the database appli-
cation is inadequately tested or if there is no disaster recovery plan. They also pose
great threat to the availability of DBaaS and thus, demand precautions to avoid
failures in extreme circumstances [99].

Lack of Auditing and Monitoring Mechanism  Not all DBaaS providers offer
their consumers the feature of auditing and monitoring, which is important to estab-
lish trust between the consumer and the provider [98]. Monitoring ensures high
availability and helps avoid failures, backup maintenance, and configuring auto
fail-over mechanisms. In the dynamic environment of the Cloud DBaaS, security
risks related to auditing and monitoring of databases arise when conventional pro-
tecting and monitoring methods demand clear knowledge on network infrastructure
and physical devices such as hardware-assisted SSL. Traditional approaches fail in
such situations due to continuously changing configuration requirements.

Granular audit information is required when an attack takes place. It is also some-
times required to find the reason behind a missed attack with real-time security
monitoring. For example, financial firms are obligated to provide granular auditing
records [32, 91]. Auditing also ensures compliance, apart from providing forensic
proof. Therefore, DBaaS providers must offer an auditing technique/tool that should
be able to render full visibility into database activities, irrespective of the location.

13.4.4  Privacy Challenges

Privacy is the need of a person to control the disclosure of his personal information
to another person or organization [103]. DBaaS has a number of privacy-related
issues, which increase the risk of data breaches. Some of the crucial privacy chal-
lenges are discussed below:

Data Locality Raising Obligation Issues  In DBaaS, consumers do not know
where the data is actually stored [54, 87]. This can be the root cause of many

31113  Security Aspects of Database-as-a-Service (DBaaS) in Cloud Computing

problems. Compliance and data security/privacy laws are being followed in various
countries giving data locality a high regulatory importance. For instance, there is a
rule in many South American and European countries to prohibit certain types of
sensitive data from being moved outside the country. Data locality issue also arises
when no one takes responsibility of the misusage and disruption of data. It raises
questions of whose jurisdiction the data falls under.

Varying Jurisdiction  Some countries face high risks when they do not strictly fol-
low legal frameworks and international agreements. Outsourced data in the Cloud
DBaaS are stored at various location and thus, high risk and restrictions are faced
when customer data is subjected to multiple jurisdictions. In such cases, customer
data can be accessible by various parties irrespective of legal privacy policies and
without customer’s consent. Furthermore, certain countries have strict privacy poli-
cies/laws which demand customer’s data to not be stored anywhere without their
approval, where it can be tracked [99].

Table 13.4 highlights the security challenges along with their consequences and
causes, which make DBaaS infrastructure vulnerable to threats.

13.5 � Mechanisms to Overcome Security Challenges
in DBaaS

So far, we have enlisted the major concerns and issues in DBaaS with emphasis
on security challenges. It has been observed that despite quality research on secure
data outsourcing and data services, security measures for protecting data have not
evolved much. De-facto approaches on database encryption, authentication, digital
signatures [70], contractual agreements, etc., have not gained much success in oper-
ations. Due to this, intelligence agencies, commercial entities and other private/pub-
lic organizations are reluctant to adopt DBaaS. Thus, aside from the need for new
security mechanisms, the existing counter measures also need to be modified and
enhanced to cater to the requirements of DBaaS. This section focuses on compre-
hensive analysis of different approaches aiming to secure DBaaS. The literature we
reviewed is discussed below according to the assorted categories of CIA principles.

13.5.1  Confidentiality and Privacy

Quite often, in research as well as industry, confidentiality and privacy are catered
to in a single solution or system; therefore, we have dedicated this section to these
significant security challenges. Recent solutions on the security of outsourced data
mostly focus on confidentiality with respect to publishers only. Of those solutions,
majority are based on traditional cryptographic techniques [95]. NetDB2 [50] was
proposed to address the issue of data privacy by using encryption technique. User
connects to NetDB2 service via Internet and performs queries through the API pro-
vided. The service is portable and users can benefit from any location with the help

312 F. Mehak et al.

Category Security challenge Consequences and causes
Confidentiality Insider threats Employees can tap into sensitive and confidential data

Strict supply chain management and assessment is
required

Outside malicious
attackers

Malicious attacks by hackers
Absence of authentication, authorization and accounting
controls can result in such attacks

Access control issues Data owners cannot define or alter policies as per
requirement
Increased development and analysis cost is incurred
when user management and granular access control is
implemented

Illegal recovery of
data from storage
devices

Perform degaussing, destruction and overwriting of data
to avoid data leakages
Recovery of data by malicious sources if not properly
discarded

Network breaches Data flowing over the network (internet) is prone to haz-
ardous circumstances and network performance issues.
Possible network failure reasons are: misconfiguration,
lack of resource isolations, poor or untested business
continuity, disaster recovery plan, network traffic
modification

Data provenance Complexity and time sensitiveness in provenance
metadata
Intensive computations involved in getting required
history
Fast algorithms, auto logs are needed

Supply chain failure Security is dependent on third parties when data is
outsourced to them

Integrity Integrity check Modification of configuration, access and data files is a
threat to data integrity
Require accuracy and integrity of data

Availability Resource exhaustion Imprecise modeling of customer’s requirements cause
resource exhaustion

Consistency
management

Replications between multiple servers cause manage-
ment as well as consistency issues

Internet downtime Network issues (internet) affect performance
Data lock-in Customers are unable to shift data from one site to

another
Failure of services provided by one vendor would result
in complete loss of data
Need of standard API to run under every provider’s
platform

Natural disasters Lack of disaster recovery plan
Inadequately tested application can be a threat to avail-
ability of service.

Lack of auditing and
monitoring

Auditing is necessary for avoiding failures, backup
maintenance, configuration of auto fail-over
mechanisms for ensuring security of data
Configuration requirements change continuously
Require network and physical device, expertise and
relevant resources

Table 13.4   Security challenges faced by DBaaS

31313  Security Aspects of Database-as-a-Service (DBaaS) in Cloud Computing

of a web browser. Data privacy is ensured using Transport Layer Security (TSL)
and Secure Socket Layer (SSL). Ge et al. [45] used homomorphic encryption in
order to secure aggregate outsourcing of data. The proposed scheme operates on
larger block size than single numeric data values. The basic underlying idea is to
densely pack data values in an encryption block, and perform computation directly
on the cipher-text using a secure homomorphic encryption scheme. Security is en-
sured as the database server performs the bulk of the computation without having
access to the secret key or the sensitive data.

Similarly, Sion [94] proposed an approach which introduced the concept of que-
ry execution assurance in outsourced databases, such that database server guaran-
tees that query requested by client is successfully executed on the database. Before
the data is outsourced, an identity-hash is computed for each data segment. This
identity-hash provides authentication for queries. For requested query, the data
owner then picks a secret number and a one-time nonce to compute query token
(to avoid replay attacks). The token is used by the service provider to prove actual
query execution when the data owner submits a batch of queries. Verification of
correct query is performed by the data owner when the service provider returns both
the query execution proof and query results. Likewise, Hadavi et al. [53] proposed
a scheme for preserving data confidentiality and correctness verifiability of query
results for ensuring security in DBaaS. The distribution algorithm and redundant
shares in the proposed Secret Sharing Algorithm are the basis for this approach. This
algorithm works by splitting each attribute value between several different servers,
located at distributed locations. The distribution of attribute values is based on cus-
tomized threshold secret sharing mechanism. There are two main servers involved
in the overall mechanism. Data Server: It has the same schema as the original rela-
tion in addition to a “TupleID” assigned to each data row with an incremental value
to uniquely identify the row (tuple). Indexes of encrypted searchable attributes are
maintained at Index Server which uses B+ trees for preserving the order of en-
crypted values of searchable attributes. Confidentiality is achieved by using secret
sharing algorithm. Moreover, attribute values in the index tree and TupleIDs in the
buckets are all in encrypted form.

Alzain et al. [8] proposed a new methodology called “NetDB2-multi shares
model” which is appropriate for NetDB2 architecture. The model is based on se-
cret sharing algorithm and multi-service providers. There are three main layers in
the architecture, i.e., Presentation Layer for HTTP server and end user’s browser,

Category Security challenge Consequences and causes
Privacy Data locality raising

obligation issues
Compliance and data-security privacy laws prohibit
movement of sensitive data among countries
Issues faced when no one takes responsibility of data in
location independent data storage

Varying jurisdictions Risks and restrictions faced when customer’s data is
subjected to multiple country’s legal jurisdictions
Data in this situation is accessible by multiple parties

Table 13.4  (continued)

314 F. Mehak et al.

Management Layer which consists of DBMS and database service provider and,
lastly, the Application Layer where the actual application resides and runs. Private
high speed network serves the purpose of secure communication between differ-
ent components. Overall working involves the distribution of data divided into “n”
shares, each stored on a different database server. Query is sent to all database
servers to retrieve results without revealing any type of sensitive information (se-
cret value) to the database service provider. Cryptonite is a solution proposed by
Kumbhare et al. [60] for secure data storage. It also claims to address availability
requirements. Cryptonite runs within Microsoft Azure and provides service APIs
compatible with the existing Cloud storage services. Moreover, it provides pipe-
lined and data parallel optimizations to reduce security overhead caused by encryp-
tion and key management. Basic tenets include file owner and repository where
“File Owner” performs encryption and signs the data at the client side before stor-
ing in the Cloud. Client uploads plaintext data file on behalf of the owner, and the
data file is encrypted. A random cryptographic public/private key pair is generated
afterwards to sign the encrypted file. Repository offers scalability and user-friendly
model for managing keys in an efficient and secure manner. This process ensures
secure data file at client side and using the owner information stored in metadata;
coarse grained access control is enforced. The technique claims to provide easy
migration to the Cloud data storage clients by incorporating well-established cryp-
tographic techniques and security standards.

It was later researched and investigated that performing data encryption itself is
computationally expensive [3] and increases the response time of a query. Keeping
this in mind, D. Agrawal et al. [4] proposed a scalable and privacy preserving algo-
rithm for data outsourcing other than using encryption. In this simple but impracti-
cal solution, database service providers are primarily used to store data on servers.
Data distribution is supported on multiple data provider sites where data divided
into “n” shares is stored on different service providers. When a query is generated,
relevant shares are retrieved from service providers and query result answer is re-
constructed at a data source. Data store is considered as a client that wants to access
the data. Service providers are not able to infer anything about the data content
and data store (client) is still able to query the database by incurring reasonable
computation and communication cost, quite similar to the overhead involved in the
encryption approach. In the extended and improved information retrieval method
based on this approach, only required tuples are retrieved from the service providers
instead of whole superset.

Querying the encrypted data is also a challenge and various mechanisms have
been proposed till now [79] in order to deal with this issue. It is believed that these
mechanisms are able to secure DBaaS solutions. Therefore, in the successful adop-
tion of homomorphic encryption, performing algebraic query processing is a chal-
lenge. In this regard, full homomorphic encryption proposed by Murali et al. [66]
is a breakthrough, which supports operating on and querying encrypted data. Fully
homomorphic encryption involves Evaluate Algorithm besides key generation, en-
cryption and decryption techniques. This algorithm is capable of evaluating com-
plete query along with the query literals sent by client, and as a result, produces

31513  Security Aspects of Database-as-a-Service (DBaaS) in Cloud Computing

correct and compact cipher texts which are returned to the client. There are two
sub-parts involved in its working: a Data Model, which represents original tables,
relational tables and intermediate results during query processing; and a Computa-
tional Model, which database service provider will use to perform query processing.

There are some other secure mechanisms which are based on Third Party Au-
ditors. Auditors access the database on behalf of clients and perform auditing on
the data. Ferretti et al [44] advised against using any intermediary component for
accessing the database on behalf of the clients, since it becomes a single point of
failure. Moreover, security of DBaaS is restricted by this trusted intermediary proxy
server. In their proposed idea is to move the metadata to the Cloud database, while
the encryption engine is executed by each client. Client machines execute a client
software component that allows a user to connect and issue queries directly to the
Cloud DBaaS. This component retrieves the necessary metadata from the untrust-
ed database through SQL statements and makes them available to the encryption
engine. Multiple clients can access the untrusted Cloud database independently,
with the guarantee of the same level of availability, scalability and elasticity of the
Cloud-based services. The solution depends on metadata as well; therefore, secur-
ing metadata is as critical as securing customer data.

13.5.2  Integrity

Protection of data integrity in a dynamic environment of the Cloud is a formidable task
because users no longer have physical possession of the outsourced data. Data integ-
rity demands consistency, accuracy, and validity of data. In this respect, Nithiavathy
[77] proposed integrity auditing mechanism that utilizes distributed erasure-coded
data (for employing redundancy) and homomorphic token. This technique allows
third party auditors (TPA) and users to audit the logs and events at the Cloud storage
using light weight communication protocol at low computation cost. The auditing re-
sult ensures storage correctness and it also helps to achieve fast data error localization.
The scheme also supports efficient dynamic operations on secure outsourced data.
TPAs do not know the secret key, so there is no way for them to breach the data. Wang
et al. [101] proposed a similar approach which puts forth an idea of using TPAs and
is suitable for preserving data integrity when data is outsourced to the DBaaS provid-
ers. This approach is different since it supports batch auditing by performing multiple
auditing tasks simultaneously. Moreover, it utilizes the technique of public key-based
homomorphic linear authenticator, which enables TPA to perform the auditing with-
out demanding the local copy of data and thus, drastically reduces the communica-
tion and computation overhead as compared to the straightforward data auditing ap-
proaches. TPAs do not have any knowledge of data content and they perform audits
for multiple users concurrently. Generally, a public auditing scheme consists of four
algorithms. KeyGen is a key generation algorithm and is run by the user to setup the
scheme. SigGen is used by the user to generate verification metadata and may consist
of digital signatures. GenProof is run by the Cloud server to generate a proof of data
storage correctness, while VerifyProof is run by the TPA to audit the proof.

316 F. Mehak et al.

Q Zheng et al. [109] also investigated the issue of query integrity and a solution
was proposed which allows TPA/querier/data owner to verify executed queries in
the Cloud database server. The proposed solution also provides additional support
of flexible join and aggregate queries. The basic building block in this method is
Authenticated Outsourced Ordered, which is based on different algorithms. KeyGen
is the algorithm which takes the primary security parameter as input and outputs a
pair of private and public keys. SetUp algorithm is executed by a data owner be-
fore outsourcing the database to the server. By taking as input the private key and
the database, this algorithm outputs some cryptographic auxiliary information and
state information. Both database and auxiliary information will be outsourced to
the server and state information will be made public (so as to allow third parties to
verify the query answers). QueryVrfy is the query protocol between a querier which
issues a query, and the server which answers the query with the result and a proof.
The querier verifies the result afterwards. Brzeźniak et al. [28] proposed a mecha-
nism ‘National Data Storage’ which covers data key management, data encryption
and data integrity and ensure high data security and access efficiency. They used
on-the-fly client side encryption and cryptographic file systems for protecting the
data in a transparent way. When a file is written into the directory, its symmetric
key is encrypted using the directory’s public key and stored in the system. Private
Key of the file opened by the user is used to decode the private key of the directory.
After that, the private key of the directory is used to decode the symmetric key of
the file, which is in turn used to decode the file. AES-256 is used for encrypting the
data files and SHA-512 algorithm is used for data integrity control. Symmetric and
asymmetric cryptography is combined for managing complex key hierarchy.

Authors in [10] devised an approach for DBaaS in which they proposed search-
able encryption scheme for ensuring authenticity (cipher text integrity) and privacy
of data. Integrity is achieved without any additional communication and computa-
tional cost through the use of standard cryptographic primitives, such as block ci-
phers, symmetric encryption schemes, and message authentication codes. They also
formulated an additional property of cipher text-integrity, and thus, the encryption
algorithm should contain some redundancy at the end so that the ciphertext is verifi-
able. For catering the issue of consistency management, an approach was proposed
in [52] based on the structure of tree. It basically helps to reduce interdependency
between replica servers by ensuring maximum reliable path which is ensured from
primary sever to all replica servers. Throughput and performance is increased as a
result of reduced probability of transaction failure.

13.5.3  Availability

Availability in DBaaS is generally referred to as “Completeness” [42]. Complete-
ness ensures that the user is provided with all the requested data if he has access
privileges. Arjun Kumar et al. [59] proposed an approach which handles big data
in the Cloud. The approach plays a vital role in dealing with availability of DBaaS
because it supports three backup servers located at remote locations. In case of

31713  Security Aspects of Database-as-a-Service (DBaaS) in Cloud Computing

path failure, alternate paths are available for processing/querying data; therefore,
data can be recovered in time. Data is stored in encrypted and compressed form in
multi-server. This encryption is performed during backup operation by using secret
key, before it is taken to multi-server and decrypted during recovery operation. Us-
ers send their data to the main servers after which backup of data is maintained at
multiple servers. The main server is also contacted by users to retrieve the data. Lei
Xu et al. [106] studied the overhead involved in encrypting, retrieving, decrypt-
ing and then performing operations on whole database. As a solution to overcome
this overhead, authors proposed an approach called “Hub” which divides data into
buckets in the form of tuples according to some attribute (column) values of the
database. Original attribute values remain hidden by corresponding bucket indexes.
For each attribute, a hard data copy will be stored, which is physically “bucketized”
following the range of this attribute value. For query execution, each copy still
carried bucket index of other attributes. Therefore, when query is executed, only
required buckets are retrieved instead of whole database. This approach introduces
privacy, backup efficiency and access performance as well. For replicas of data,
a fine-grained private inter-backup between the heterogeneous copies is also de-
signed using privacy preserving inter-backup protocol.

Table 13.5 summarizes possible defense mechanisms against some important
security issues in DBaaS. Every technique primarily focuses on any one of the
CIA aspect.

13.5.4  Future Directions

DBaaS is steadily gaining attraction in the market but despite the increasingly ma-
ture solutions, there are many critical challenges which require thorough research.
It is necessary to devise strong security and privacy control mechanisms, in order
to gain wide-scale acceptance of DBaaS in the Cloud paradigm. Various techniques
have been proposed for securing relational data model so far. However, these tech-
niques need improvement in order to make them more efficient and effective.

Majority of the existing techniques focus on security with respect to the service
providers only. Therefore, approaches are required which focus on consumers too.
Moreover, a majority of the available solutions are based on the traditional crypto-
graphic techniques, where the general idea is that the owners can outsource the en-
crypted data. Publishers do not manage and encrypt the data and do not receive keys
to decrypt it; therefore, it is recommended to devise such techniques which allow
publishers to perform queries on the encrypted data. Furthermore, few techniques
have also been proposed where data is encrypted by publishers using different keys
and where user receives only the corresponding keys of data portions. Such tech-
niques need improvement from the management perspective, as using large number
of different keys creates difficulty in management. Important consideration is re-
quired for comparing different encryption algorithms in order to evaluate most ap-
propriate one for the DBaaS environment. Until now, most of the simulations for the
evaluation of the Cloud database security solutions are performed on test beds. This

318 F. Mehak et al.

Problem
addressed

Defense mechanism Description

Confidentiality
and privacy

Net DB2 architecture
[50]

Based on cryptography (Considered both RSA and
Blowfish)
TSL and SSL are used for privacy
Information is not revealed to service providers

Homomorphic
encryption [45]

Operates on larger block size
Computation applies directly on cipher-text
Database server cannot see/access keys/data

Query execution
assurance [94]

Data owner ensures secure execution of query
Based on hashing mechanism

Secret sharing algo-
rithm [53]

Secret sharing mechanism is used
Data is divided into “n” shares and distributed into
multiple servers
hole database is retrieved for data reconstructions,
processing overhead is involved
B + Trees used for preserving order

NetDB2 multi-shares
model [8]

Supports NetDB2 architecture.
Based on secret-sharing algorithm
Secure network communication
Data divided into ‘n’ shares as like previous
approaches

Cryptonite-secure
data repository solu-
tion [60]

Addresses availability requirements
File owner has permission to encrypt and audit the data
StrongBox enables scalable key management and
secures files

Privacy preserving
algorithm [4]

Encryption was not used
Attribute values split to multiple distributed servers
based on secret sharing mechanisms
Service providers cannot infer data content
Extension of this method retrieves only required tuples
instead of whole database

Full homo-morphic
algorithm [66]

Querying encrypted data is possible
Evaluate Algorithm is used besides key generation,
encryption and decryption

Proxy-less architec-
ture [44]

Alleviate the need of using intermediate component
Metadata is moved to database
Encryption engine is executed by each client
Scalability, security and consistency of data are
provided

Integrity Storage integrity
auditing mechanism
[77]

Distributed erasure-coded data is used for employing
redundancy.
Homomorphic token is used for dynamically storing
data.
TPA can audit logs and events but they do not know
the encryption keys.

Privacy-preserving
public auditing for
secure cloud storage
[101]

Third party auditors are used for communication with
users to check data integrity
Batch auditing is used to perform delegated auditing
tasks from different users
Public key based homomorphic encryption linear
authenticator is used

Table 13.5   State-of-the-art mechanisms for securing DBaaS

31913  Security Aspects of Database-as-a-Service (DBaaS) in Cloud Computing

lack of testing in the actual environment should be mitigated by replacing test beds
with real users/data and simulations with real database service providers in Cloud.
Additionally, some solutions involve additional Third Party Auditors (TPA’s) in
which security of the whole architecture is dependent on the integrity of these TPAs
and any security breach from TPAs will affect the whole storage mechanism. There
is a need for more reliable and dependable auditor-less solutions. Additionally, per-
formance issues are faced by most of the counter mechanisms when they have to
process with big data, for which the techniques are not engineered. Secure APIs, au-
diting mechanisms and tools, data migration between DBaaS service providers and
standards for permanent data deletion are some of the areas that are still unattended
in DBaaS security. The practical and widely-adopted mechanisms which are meant
to provide security for relational databases can also be adopted for the Cloud DBaaS
model (database outsourcing) after transforming and customizing them accordingly.

Thus, after conducting a thorough study on DBaaS, it can be inferred that it is
extremely important to holistically investigate the various DBaaS security related
parameters such as threats, risks, challenges, vulnerabilities, and attacks. Moreover,
majority of the extant mechanisms for mitigating security challenges have room
for further improvement because none of them provide holistic solutions to ca-
ter every aspect of security concerns but address a particular preventive concern.

Problem
addressed

Defense mechanism Description

Query integrity veri-
fier [109]

TPA/Users/querier can verify executed queries
Support for JOIN and AGGREGATE queries are a plus

National data storage
[28]

On the fly client side encryption is used
SHA −512 algorithm for integrity control
AES −256 is used for encryption
Users no longer have to manage keys manually

Searchable encryption
scheme [10]

Standard cryptographic techniques such as block
ciphers, symmetric encryption schemes, and message
authentication codes are used
Ensures authenticity (cipher text integrity) and privacy
of data

Consistency manage-
ment [52]

Based on the data structure of trees
Interdependency between replica servers is reduced
There is maximum reliable path between primary sever
to all replica servers

Availability Backup approach Three backup servers are maintained located at remote
locations
Traditional encryption and decryption method is used
with two-step authentication
Encryption is performed during backup operation

Hub [106] Data is divided into buckets such that only required
tuples are retrieved from the hub
Saves time to achieve performance
Backups are easier to maintain
Privacy preserving backup protocol between heteroge-
neous copies is designed

Table 13.5  (continued)

320 F. Mehak et al.

Secure mechanisms should be developed and evaluated according to a benchmark
in order to make them more comprehensive, mature, practical and reliable. These
security measures should be dynamic to adapt the changing requirements of the
Cloud DBaaS.

13.6  Conclusion

Database-as-a-Service (DBaaS) is an increasingly popular Cloud service model,
with attractive features like scalability, pay-as-you-go model and cost reduction;
they make it suitable for most organizations with constantly changing requirements.
There have been many data security breaches in the Cloud over the past few years,
as mentioned in Sect. 13.1. Security is an active area of research but requires fur-
ther investigation, especially in the domain of Cloud databases. No extensive re-
search work has been done which meticulously covers security aspects of DBaaS.
This chapter surveyed and presented in-depth survey of challenges faced by DBaaS
including background knowledge of its evolution history, its major advantages,
features, and characteristics, followed by different Cloud-compatible data storage
architectures. Moreover, different inherent security issues faced by DBaaS are also
enumerated. State-of-the-art techniques to secure DBaaS are also exemplified in
this chapter. Some future directions are also given which will help researchers in
exploring further research horizons and for devising solutions for the security of
this model.

We have established that data storage security in the Cloud is a domain which
is full of challenges and is of paramount importance as customers do not want to
lose their data at any cost. It is also a major hurdle in the way of adopting the Cloud
platform for storage services. Unfortunately, DBaaS is vulnerable to different at-
tacks; thus, many research problems in this domain are yet to be investigated. There
is a need for effective mechanisms and methodologies to mitigate security problems
by having practices in the form of secure architectures so as to make DBaaS plat-
form more secure, and ultimately, widely-adopted.

References

1.	 万文典 (2011) Future trend of database: cloud database, http://toyhouse.cc/profiles/blogs/
future-trend-of-database-Cloud-database. Accessed Aug 2013

2.	 Abadi DJ (2009) Data management in the cloud: limitations and opportunities. IEEE Data Eng
32(1):2009

3.	 Agrawal R, Evfimievski A, Srikant R (2003) Information sharing across private databases. In:
Proceedings of the ACM SIGMOD conference, pp 86–97, 2003

4.	 Agrawal D, Abbadi AEl, Emekci F, Metwally A (2009) Database management as a service:
challenges and opportunities, data engineering, ICDE’09. IEEE 25th international conference
on IEEE, pp 1709–1716, 2009

http://toyhouse.cc/profiles/blogs/future-trend-of-database-Cloud-database
http://toyhouse.cc/profiles/blogs/future-trend-of-database-Cloud-database

32113  Security Aspects of Database-as-a-Service (DBaaS) in Cloud Computing

  5.	 Agrawal D, Das S, Abbadi AEl (2011) Big data and cloud computing: current state and future
opportunities. Proceedings of the 14th international conference on extending database tech-
nology, ACM, pp 530–533, 2011

  6.	 Agrawal D, Abbadi AEl, Das S, Elmore AJ (2011) Database scalability, elasticity, and au-
tonomy in the cloud, database systems for advanced applications. Springer, Berlin, pp 1–14

  7.	 Al Shehri W (2013) Cloud database Database-as-a-Service. Int J Database Manage Syst
(IJDMS) 5(2):1–12

  8.	 Alzain MA, Pardede E (2011) Using multi shares for ensuring privacy in Database-as-a-
Service. Proceedings of 44th Hawaii international conference on system sciences, pp 1–9,
2011

  9.	 AlZain MA, Pardede E, Soh B, Thom JA (2012) Cloud computing security: from single to
multi-clouds. 45th Hawaii international conference on system sciences, pp 5490–5499, 2012

10.	 Amanatidis G, Boldyreva A, O’Neill A (2007) New security models and provably-secure
schemes for basic query support in outsourced databases, 2007

11.	 Amazon (2006) Amazon web services. Web services licensing agreement, 2006
12.	 Amazon, Amazon Elastic Compute Cloud (Amazon EC2), http://aws.amazon.com/ec2/. Ac-

cessed Aug 2013
13.	 Amazon, Amazon SimpleDB, http://aws.amazon.com/simpledb/. Accessed Aug 2013
14.	 Amazon web services (2013) Amazon Elastic Block Store (EBS), 2013. http://aws.amazon.

com/ebs/. Accessed Oct 2013
15.	 Ansari S, Rajeev SG, Chandrashekar HS (2002) Packet sniffing: a brief introduction. Poten-

tial IEEE 21(5):17–19
16.	 Apache, CouchDB. http://couchdb.apache.org/. Accessed Dec 2013
17.	 Armbrust M, Fox A, Griffith R, Joseph AD, Katz R, Konwinski A, Lee G, Patterson D, Rab-

kin A, Stoica I, Zaharia M (2010) A view of cloud computing. Commun ACM 53(4):50–58
18.	 Arora I, Gupta A (2012) Cloud databases: a paradigm shift in databases. Int J Comput Sci

Issues 9(4):77–83
19.	 Babcock C (2012) Cloud implementation to double by 2012. http://www.informationweek.

com/news/services/saas/214502033?queryText=cloud. Accessed Jan 2014
20.	 Behl A (2011) Emerging security challenges in cloud computing-an insight to cloud secu-

rity challenges and their mitigation. Information and Communication Technologies (WICT),
World Congress on IEEE, pp 217–222, 2011

21.	 Behl A, Behl K (2012) An analysis of cloud computing security issues. Information and
Communication Technologies (WICT), World Congress on IEEE, pp 109–114, 2012

22.	 Beimborn D, Miletzki T, Wenzel S (2011) Platform as a service (PaaS). Bus Inf Syst Eng
3(6):381–384

23.	 Bezos J (1994) Amazon. http://www.amazon.com/. Accessed Nov 2013
24.	 Biswas A (2012) Cloud Database: Advantages and Disadvantages, 2012. http://www.itsab-

hik.com/Cloud-database-advangates-and-disadvantages/. Accessed Oct 2013
25.	 Bobrowski S (2008) Database-as-a-Service, 2008. http://dbaas.wordpress.com/2008/05/14/

what-exactly-is-database-as-a-service/. Accessed Aug 2013
26.	 Bonnette R (2011) Top benefits of database cloud computing, 2011. http://blog.caspio.com/

commentary/top-benefits-of-database-Cloud-computing/. Accessed Aug 2013
27.	 Brown WC, Nyarko K (2012) Software as a service (SaaS), cloud computing service and

deployment models: layers and management, 2012
28.	 Brzeźniak M, Jankowski G, Jankowski M, Jankowski S, Jankowski T, Meyer N, Mikołajczak

R, Zawada A, Zdanowski S (2013) National data storage 2: secure storage cloud with effi-
cient and easy data access, 2013

29.	 Buneman P, Khanna S, Tan W-C (2000) Data provenance: some basic issues, FST TCS 2000:
foundations of software technology and theoretical computer science. Springer, Berlin

30.	 Carrenza (2012) Database-as-a-Service, http://carrenza.com/services/use-cases/database-as-
a-service/. Accessed Oct 2013

31.	 Cloudtweaks (2010) Top 10 cloud computing most promising adoption factors, 2010. http://
www.Cloudtweaks.com/2010/08/top-10-Cloud-computing-most-promising-adoption-fac-
tors/. Accessed Sept 2013

http://aws.amazon.com/ebs/
http://aws.amazon.com/ebs/
http://www.informationweek.com/news/services/saas/214502033?queryText=cloud
http://www.informationweek.com/news/services/saas/214502033?queryText=cloud
http://dbaas.wordpress.com/2008/05/14/what-exactly-is-database-as-a-service/
http://dbaas.wordpress.com/2008/05/14/what-exactly-is-database-as-a-service/
http://blog.caspio.com/commentary/top-benefits-of-database-Cloud-computing/
http://blog.caspio.com/commentary/top-benefits-of-database-Cloud-computing/
http://www.Cloudtweaks.com/2010/08/top-10-Cloud-computing-most-promising-adoption-factors/
http://www.Cloudtweaks.com/2010/08/top-10-Cloud-computing-most-promising-adoption-factors/
http://www.Cloudtweaks.com/2010/08/top-10-Cloud-computing-most-promising-adoption-factors/

322 F. Mehak et al.

32.	 Cloud Security Alliance (2012) Top ten big data security and privacy challenges, 2012. Ac-
cessed Oct 2013

33.	 Cloud Security Alliance, Cloud Vulnerabilities Working Group (2013) Cloud computing:
vulnerability incidents: a statistical overview, 2013

34.	 Cloud Security Alliance, https://cloudsecurityalliance.org/, Accessed Feb 2013
35.	 Cloud Tweaks (2012) A hitchhikers guide to the cloud-database challenges to consider, 2012.

http://www.cloudtweaks.com/2012/09/a-hitchhikers-guide-to-the-cloud-database-challenges
-to-consider/. Accessed Oct 2013

36.	 Coleman C (2013) Why use a DBaaS instead of do-it-yourself MySQL in the cloud? https://
www.cleardb.com/blog/entry?id=pro-series/segment-101/why-use-a-database-as-a-service-
instead-of-do-it-yourself-mysql-in-the-Cloud. Accessed Nov 2013

37.	 Cooper BF, Ramakrishnan R, Srivastava U, Silberstein A, Bohannon P, Jacobsen HA, Puz N,
Weaver D, Yerneni R (2008) PNUTS: Yahoo!’s hosted data serving platform, 2008

38.	 David Linthicum-InfoWorld (2013) Interoperable database, 2013. http://dictionary.reference.
com/browse/interoperable+database. Accessed Sept 2013

39.	 Dillon T, Wu C, Chang E (2012) Cloud computing: issues and challenges. 24th IEEE interna-
tional conference on advanced information networking and applications, pp 27–33, 2012

40.	 Dimovski D (2013) Database management as a cloud based service for small and medium
organizations, Dissertation/master thesis, Masaryk University Brno, 2013

41.	 Essner J (2011) Security in the Cloud. New Jersey Digital Government Summit, 2011
42.	 Ferrari E (2009) Database-as-a-Service: challenges and solutions for privacy and security, ser-

vices computing conference, 2009. APSCC 2009. IEEE Asia-Pacific. IEEE, pp 46–51, 2009
43.	 Ferrari E (2010) Access control in data management systems. Morgan & Claypool, San Rafael
44.	 Ferretti L, Colajanni M, Marchetti M (2012) Supporting security and consistency for cloud

database. Cyberspace Safe Secur Lect Notes Comput Sci 7672:179–193
45.	 Ge T, Zdonik SB (2007) Answering aggregation queries in a secure system model. In Pro-

ceedings of VLDB Conference, pp 519–530, 2007
46.	 Gelbstein E (2011) Data integrity-information security’s poor relation. ISACA J 6:2011
47.	 Gelogo YE, Lee S (2012) Database management system as a cloud service. Int J Future

Gener Commun Netw 5(2):71–76
48.	 Golden B (2010) Cloud computing: two kinds of agility, 2010. http://www.cio.com/arti-

cle/599626/Cloud_Computing_Two_Kinds_of_Agility. Accessed Sept 2013
49.	 Gupta GKr, Sharma AK, Swaroop V (2010) Consistency and security in mobile real time dis-

tributed database (MRTDDB): a combinational giant challenge. AIP conference proceedings,
vol 1324, 2010

50.	 Hacigumus H, Iyer B, Li C, Mehrotra S (2002) Executing SQL over encrypted data in the
database service provider model. In: Proceedings of the ACM SIGMOD’200 conference,
Madison, Wisconsin, pp 216–227, 2002

51.	 Hacigumus H, Iyer B, Mehrorta S (2002) Providing Database-as-a-Service, ICDE, pp 29–38,
2002

52.	 Hacigumus H, Iyer B, Mehrotra S (2002) Providing Database-as-a-Service. Proceedings of
the 18th international conference on data engineering (ICDE.02), 2002

53.	 Hadavi MA, Noferesti M, Jalili R, Damiani E (2012) Database-as-a-Service: towards a uni-
fied solution for security requirements. IEEE 36th international conference on computer soft-
ware and applications workshops, pp 415–420, 2012

54.	 Haughwout J (2011) Cloud computing: it’s not just about access from anywhere, 2011. http://
technorati.com/technology/article/Cloud-computing-its-not-just-about/page-1/. Accessed
Oct 2013

55.	 Hogan M (2008) Cloud computing & databases-how databases can meet the demands of
Cloud computing, ScaleDB Inc, 2008

56.	 Holden EP, Kang JW, Bills DP, Ilyassov M (2009) Databases in the Cloud: a work in prog-
ress. Proceedings of the 10th ACM conference on SIG-information technology education,
ACM, pp 138–143, 2009

57.	 IBM (1991) http://www.ibm.com/us/en/. Accessed Feb 2013

http://www.cloudtweaks.com/2012/09/a-hitchhikers-guide-to-the-cloud-database-challenges -to-consider/
http://www.cloudtweaks.com/2012/09/a-hitchhikers-guide-to-the-cloud-database-challenges -to-consider/
http://dictionary.reference.com/browse/interoperable+database
http://dictionary.reference.com/browse/interoperable+database

32313  Security Aspects of Database-as-a-Service (DBaaS) in Cloud Computing

58.	 Kapa KK, Lopez R (2012) Database-as-a-Service (DBaaS) using enterprise manager 12c,
Oracle Open World, 2012

59.	 Kumar A, Lee HJ, Singh RP (2012) Efficient and secure cloud storage for handling big data,
information science and service science and data mining (ISSDM). 6th international confer-
ence on new trends in, pp 162–166, 2012

60.	 Kumbhare A, Simmhan Y, Prasanna V (2012) Cryptonite: a secure and performant data re-
pository on public clouds, cloud computing (CLOUD), 2012 IEEE 5th international confer-
ence on IEEE, pp 510–517, 2012

61.	 Lee S (2011) Shared-nothing vs. shared-disk cloud database architecture. Int J Energy Inf
Commun 2(4):211–216

62.	 Linthicum D (2010) The data interoperability challenge for Cloud computing, 2010. http://
www.infoworld.com/d/Cloud-computing/data-interoperability-challenge-Cloud-comput-
ing-259. Accessed Oct 2013

63.	 Linthicum D (2010) The data interoperability challenge for cloud computing, http://www.
infoworld.com/d/cloud-computing/data-interoperability-challenge-cloud-computing-259,
2010. Accessed Nov 2013

64.	 Liu W (2012) Research on cloud computing security problem and strategy, consumer elec-
tronics, communications and networks (CECNet), 2nd international conference on IEEE,
pp 1216–1219, 2012

65.	 Longjump, http://www.softwareag.com/special/longjump/index.html. Accessed Feb 2013
66.	 Mani M, Shah K, Gunda M (2013) Enabling secure Database-as-a-Service using fully ho-

momorphic encryption: challenges and opportunities, DanaC ’13. Proceedings of the second
workshop on data analytics in the cloud, pp 1–12, 2013

67.	 Markovich S (2011) Three clouds-computing data security risks that can’t be overlooked,
2011. http://www.mcafee.com/us/products/databasesecurity/articles/20110321-01.aspx. Ac-
cessed Oct 2013

68.	 Mateljan V, Cisic D, Ogrizovid D (2010) Cloud Database-as-a-Service (DaaS)-ROI, MIPRO,
Opatija, Croatia, pp 1185–1188, 2010

69.	 McAfee (2012) Data loss by the numbers. White paper, 2012.
70.	 Merkle RC (1989) A certified digital signature, advances in cryptology-CRYPTO ’89. 9th

annual international cryptology conference, Santa Barbara, California, USA, Proceedings
vol 435, pp 218–238, 1989

71.	 Michel D (2010) Databases in the cloud, Doktorarbeit, HSR University of Applied Science
Rapperswil, 2010

72.	 Microsoft, Windows Azure. http://www.windowsazure.com/en-us/. Accessed Nov 2013
73.	 Miller R (2008) Major outage for Amazon S3 and EC2, http://www.datacenterknowledge.

com/archives/2008/02/15/major-outage-for-amazon-s3-and-ec2/,200. Accessed Oct 2013
74.	 Mitropoulos D (2013) Data security in the cloud environment vol 19, no 3, 2013
75.	 MySQL. http://www.mysql.com/products/enterprise/database/. Accessed Dec 2013
76.	 Nadella S (1975) Microsoft. http://www.microsoft.com/en-pk/default.aspx. Accessed Nov

2013
77.	 Nithiavathy R (2013) Data integrity and data dynamics with secure storage service in cloud.

Proceedings of the 2013 international conference on pattern recognition, informatics and
mobile engineering, IEEE, pp 125–130, 2013

78.	 NoSQL. http://nosql-database.org/. Accessed Nov 2013
79.	 Nuo DB (2013) 12 rules for a cloud data management system (CDMS), Cambridge Massa-

chusetts (PRWEB), 2013
80.	 Oracle Corporation (2011) Database-as-a-Service: reference architecture-an overview, 2011
81.	 Oracle ® Database Security Guide 10 g Release 2 (10.2) (2013) 7 Security Policies, 2013.

http://docs.oracle.com/cd/B19306_01/network.102/b14266/policies.htm. Accessed Aug 2013
82.	 Oracle, Oracle database, http://www.oracle.com/us/products/database/overview/index.html.

Accessed Dec 2013
83.	 OWASP (2009) Resource exhaustion, https://www.owasp.org/index.php/Resource_exhaus-

tion, 2009. Accessed Aug 2013

http://www.datacenterknowledge.com/archives/2008/02/15/major-outage-for-amazon-s3-and-ec2/,200
http://www.datacenterknowledge.com/archives/2008/02/15/major-outage-for-amazon-s3-and-ec2/,200
https://www.owasp.org/index.php/Resource_exhaustion
https://www.owasp.org/index.php/Resource_exhaustion

F. Mehak et al.324

  84.	 Page L, Brin S (1998) Google. https://www.google.com.pk/. Accessed Oct 2013
  85.	 Pizette L, Cabot T (2012) Database-as-a-Service: a marketplace assessment, pp 1–4, 2012
  86.	 Posey M (2012) Database-as-a-Service: rightsizing database solutions, research vice presi-

dent, hosting & managed network services, 2012
  87.	 Reddy Kandukuri B, Ramakrishna PV, Rakshit A (2009) Cloud security issues, IEEE,

pp 517–520, 2009
  88.	 Sakhi I (2012) Databases security in cloud. Dissertation KTH, 2012
  89.	 Saravanan C, Sandya M (2011) Databases in the era of cloud computing and big data,

features, open gurus, overview, technology, 2011. http://www.linuxforu.com/2011/05/data-
bases-in-era-of-Cloud-computing-and-big-data. Accessed Aug 2013

  90.	 ScaleDB (2012) Database-as-a-Service (DBaaS), http://www.scaledb.com/DBaaS-Data-
base-as-a-Service.php. Accessed Dec 2013

  91.	 Sengupta S, Kaulgud V, Sharma VS (2011) Cloud computing security-trends and research
directions, services (SERVICES), IEEE World Congress on IEEE, pp 524–531, 2011

  92.	 Sharir R (2013) Nine cloudy challenges for databases, 2013. http://www.itbusinessedge.
com/slideshows/show.aspx?c=96438. Accessed Nov 2013

  93.	 Sheldon R (2012) DBaaS pros and cons for solution providers, 2012. http://searchitchannel.
techtarget.com/tip/DBaaS-pros-and-cons-for-solution-providers. Accessed Aug 2013

  94.	 Sion R (2005) Query execution assurance for outsourced database. In: Proceedings of
VLDB conference, 2005

  95.	 Sion R (2007) Secure data outsourcing. In: Proceedings of the CLDB conference, pp 1431–
1432, 2007

  96.	 Summers A, Tickner C (2004) What is security analysis? http://www.doc.ic.ac.uk/~ajs300/
security/CIA.htm. Accessed Dec 2013

  97.	 Sushil B, Jain L, Jain S (2010) Cloud computing: a study of infrastructure as a service
(IAAS). International journal of engineering and information technology 2.1, pp 60–63,
2010

  98.	 Tianfield H (2012) Security issues in cloud computing. IEEE international conference on
systems, man, and cybernetics, pp 1082–1089, 2012

  99.	 Vacca JR (2012) Computer and information security handbook, second edition, Newnes,
2012

100.	 vFabric Team (2012) Why DBaaS? 5 trends pushing Database-as-a-Service, 2012. http://
blogs.vmware.com/vfabric/2012/08/why-dbaas-6-trends-pushing-database-as-a-service.
html. Accessed Sept 2013

101.	 Wang C, Chow SSM, Wang Q, Kui R, Wenjing L (2013) Privacy preserving public auditing
for secure cloud storage. IEEE Trans Comput 62(2):362–375

102.	 Weis J, Alves-Foss J (2011) Securing Database-as-a-Service: issues and compromises,
security & privacy, IEEE 9.6, pp 49–55, 2011

103.	 Wikia (2013) Cloud database, 2013. http://databasemanagement.wikia.com/wiki/Cloud_
Database. Accessed Aug 2013

104.	 Wikipedia (2012) Cloud database, 2012. http://en.wikipedia.org/wiki/Cloud_database.
Accessed Sept 2013

105.	 Williams E, Glass N, Dorsey J, Stone B (2006) Twitter. www.twitter.com. Accessed Nov
2013

106.	 Xu L, Wu X (2013) Hub: heterogeneous bucketization for database outsourcing, cloud
computing’13, Hangzhou, China, pp 47–54, 2013

107.	 Yasin R (2013) 5 years down the road: the cloud of clouds, 2013. http://gcn.com/arti-
cles/2013/05/31/Cloud-of-Clouds-5-years-in-future.aspx. Accessed Oct 2013

108.	 ZeusDB. http://www.zeusdb.com. Accessed Feb, 2013
109.	 Zheng Q, Xu S, Ateniese G (2012) Efficient query integrity for outsourced dynamic

databases, CCSW’12, Raleigh, North Carolina, USA, 2012
110.	 Zissis D, Lekkas D (2012) Addressing cloud computing security issues, future generation

computer systems 3, pp 583–592, 2012

http://www.itbusinessedge.com/slideshows/show.aspx?c=96438
http://www.itbusinessedge.com/slideshows/show.aspx?c=96438
http://searchitchannel.techtarget.com/tip/DBaaS-pros-and-cons-for-solution-providers
http://searchitchannel.techtarget.com/tip/DBaaS-pros-and-cons-for-solution-providers
http://www.doc.ic.ac.uk/~ajs300/security/CIA.htm
http://www.doc.ic.ac.uk/~ajs300/security/CIA.htm
http://blogs.vmware.com/vfabric/2012/08/why-dbaas-6-trends-pushing-database-as-a-service.html
http://blogs.vmware.com/vfabric/2012/08/why-dbaas-6-trends-pushing-database-as-a-service.html
http://blogs.vmware.com/vfabric/2012/08/why-dbaas-6-trends-pushing-database-as-a-service.html
http://databasemanagement.wikia.com/wiki/Cloud_Database
http://databasemanagement.wikia.com/wiki/Cloud_Database

325

Chapter 14
Beyond the Clouds: How Should Next
Generation Utility Computing Infrastructures
Be Designed?

Marin Bertier, Frédéric Desprez, Gilles Fedak, Adrien Lebre,
Anne-Cécile Orgerie, Jonathan Pastor, Flavien Quesnel,
Jonathan Rouzaud-Cornabas and Cédric Tedeschi

© Springer International Publishing Switzerland 2014
Z. Mahmood, (ed.), Cloud Computing, Computer Communications and Networks,
DOI 10.1007/978-3-319-10530-7_14

A. Lebre () · M. Bertier · F. Desprez · G. Fedak · A.-C. Orgerie · J. Pastor · F. Quesnel ·
J. Rouzaud-Cornabas · C. Tedeschi
Inria, Campus universitaire de Beaulieu, 35042 Rennes, France
e-mail: Adrien.Lebre@inria.fr

M. Bertier
e-mail: Marin.Bertier@inria.fr

F. Desprez
e-mail: Frederic.Desprez@inria.fr

G. Fedak
e-mail: Gilles.Fedak@inria.fr

A.-C. Orgerie
e-mail: Anne-Cecile.Orgerie@inria.fr

J. Pastor
e-mail: Jonathan.Pastor@inria.fr

F. Quesnel
e-mail: Flavien.Quesnel@inria.fr

J. Rouzaud-Cornabas
e-mail: Jonathan.Rouzaud-Cornabas@inria.fr

C. Tedeschi
e-mail: Cedric.Tedeschi@inria.fr

Abstract  To accommodate the ever-increasing demand for Utility Computing (UC)
resources while taking into account both energy and economical issues, the cur-
rent trend consists in building even larger data centers in a few strategic locations.
Although, such an approach enables to cope with the actual demand while continuing
to operate UC resources through centralized software system, it is far from delivering
sustainable and efficient UC infrastructures. In this scenario, we claim that a disrup-
tive change in UC infrastructures is required in the sense that UC resources should be
managed differently, considering locality as a primary concern. To this aim, we pro-
pose to leverage any facilities available through the Internet in order to deliver widely

A. Lebre et al.326

distributed UC platforms that can better match the geographical dispersal of users as
well as the unending resource demand. Critical to the emergence of such locality-
based UC (LUC) platforms is the availability of appropriate operating mechanisms.
We advocate the implementation of a unified system driving the use of resources at an
unprecedented scale by turning a complex and diverse infrastructure into a collection
of abstracted computing facilities that is both easy to operate and reliable. By deploy-
ing and using such a LUC Operating System on backbones, our ultimate vision is to
make possible to host/operate a large part of the Internet by its internal structure itself:
a scalable and nearly infinite set of resources delivered by any computing facilities
forming the Internet, starting from the larger hubs operated by ISPs, governments, and
academic institutions to any idle resources that may be provided by end users.

Keywords  Utility Computing · UC · Locality-based UC · Distributed Cloud
Computing · IaaS · Efficiency · Sustainability

14.1 � Introduction

The success of Cloud Computing has driven the advent of Utility Computing (UC).
However, Cloud Computing is a victim of its own success. In order to answer the
escalating demand for computing resources, Cloud Computing providers must build
data centers (DCs) of ever-increasing size. As a consequence, besides facing the
well-known issues of large-scale platform management, large-scale DCs have now
to deal with energy considerations that limit the number of physical resources that
one location can host.

Instead of investigating alternative solutions that could tackle the aforemen-
tioned concerns, the current trend consists in deploying larger and larger DCs in
few strategic locations presenting energy advantages. For example, Western North
Carolina, USA, an attractive area due to its abundant capacity of coal and nuclear
power, brought about the departure of the textile and furniture industry [21]. More
recently, several proposals suggested building next generation DCs close to the po-
lar circle in order to leverage free cooling techniques, considering that cooling ac-
counts for a big part of the electricity consumption [24].

14.1.1 � Inherent Limitations of Large-scale Data Centers

Although, building large-scale DCs enables to cope with the actual demand, it is far
from delivering sustainable and efficient UC infrastructures. In addition to requiring
the construction and the deployment of a complete network infrastructure to reach
each DC, it exacerbates the inherent limitations of the Cloud Computing model:

•	 The externalization of private applications/data often faces legal issues that re-
strain companies from outsourcing them on external infrastructures, especially
when located in other countries.

14  Beyond the Clouds: How Should Next Generation Utility … 327

•	 The overhead implied by the unavoidable use of the Internet to reach distant
platforms is wasteful and costly in several situations: Deploying a broadcasting
service of local events or an online service to order pizzas at the edge of the polar
circle, for instance, leads to important overheads since most of the users are a
priori located in the neighborhood of the event/the pizzeria.

•	 The connectivity to the application/data cannot be ensured by centralized dedi-
cated centers, especially if they are located in a similar geographical zone. The
only way to ensure disaster recovery is to leverage distinct sites [23].

The two first points could be partially tackled by hybrid or federated Cloud solu-
tions [4], that aim at extending the resources available on one Cloud with those of
another one; however, the third one requires a disruptive change in the way UC
resources are managed.

Another issue is that, according to some projections of a recent IEEE report [25],
the network traffic has been doubling roughly every year. Consequently, bringing
IT services closer to the end users is becoming crucial to limit the energy impact of
these exchanges and to save the bandwidth of some links. Similarly, this notion of
locality is critical for the adoption of the UC model by applications that need to deal
with a large amount of data as getting them in and out using actual UC infrastruc-
tures may significantly impact the global performance [18].

The concept of micro/nano DCs at the edge of the backbone [24] may be seen
as a complementary solution to hybrid platforms in order to reduce the overhead of
network exchanges. However, operating multiple small DCs breaks somehow the
idea of mutualization in terms of physical resources and administration simplicity,
making this approach questionable.

14.1.2 � Ubiquitous and Oversized Network Backbones

One way to partially solve the mutualization concern enlightened by the defend-
ers of large-scale DCs is to directly deploy the concept of micro/nano DCs upon
the Internet backbone. People are (and will be) more and more surrounded by
computing resources, especially those in charge of interconnecting the IT equip-
ment. Even though these small- and medium-sized facilities include resources
that are barely used [3, 8], they can hardly be removed (e.g., routers). Consider-
ing this important aspect, we claim that a new generation of UC platforms can be
delivered by leveraging existing network centers, starting from the core nodes of
the backbone to the different network access points in charge of interconnecting
public and private institutions. By such a mean, network and UC providers would
be able to mutualize resources that are mandatory to operate network/data centers
while delivering widely distributed UC platforms able to better match the geo-
graphical dispersal of users. Figure 14.1 allows to better capture the advantages of
such a proposal. It shows a snapshot of the network weather map of RENATER,
the backbone dedicated to universities and research institutes in France. It reveals
several important points:

A. Lebre et al.328

•	 As mentioned before, most of the resources are underutilized (only two links are
used between 45 and 55 %, a few between 25 and 40 %, and the majority below
the threshold of 25 %).

•	 The backbone was deployed and is renewed to match the demand: The density of
points of presence (PoPs, i.e., small- or medium-sized network centers), as well
as the bandwidth of each link, are more important on the edge of large cities such
as Paris, Lyon, or Marseille.

•	 The backbone was designed to avoid disconnections, since 95 % of the PoPs can
be reached by at least two distinct routes.

Fig. 14.1   The RENATER Weather Map on May 2013, the 27th, around 4 p.m. Each red square
corresponds to a particular point of presence (PoP) of the network. The map is available in real-
time at: http://www.renater.fr/raccourci

http://www.renater.fr/raccourci

14  Beyond the Clouds: How Should Next Generation Utility … 329

14.1.3 � Locality-Based Utility Computing

This chapter aims at introducing locality-based UC (LUC) infrastructures, a new
generation of UC platforms that solve inherent limitations of the Cloud Computing
paradigm relying on large-scale DCs. Although, it involves radical changes in the
way physical and virtual resources are managed, leveraging network centers is a
promising way to deliver highly efficient and sustainable UC services.

From the physical point of view, network backbones provide appropriate infra-
structures, i.e., reliable and efficient enough to operate UC resources spread across
the different PoPs. Ideally, UC resources would be able to directly take advantage
of computation cycles available on network active devices, i.e., those in charge of
routing packets. However, leveraging network resources to make external computa-
tions may lead to important security concerns. Hence, we propose to extend each
PoP with a number of servers dedicated to hosting virtual machines (VMs). As it is
natural to assume that the network traffic and UC demands are proportional, larger
network centers will be completed with more UC resources than the smaller ones.
Moreover, by deploying UC services on relevant PoPs, a LUC infrastructure will be
able to natively confine network exchanges to a minimal scope, minimizing alto-
gether the energy footprint of the network, the impact on latency and the congestion
phenomena that may occur on critical paths (for instance Paris and Marseille on
RENATER).

From the software point of view, the main challenge is to design a comprehen-
sive distributed system in charge of turning a complex and diverse network of re-
sources into a collection of abstracted computing facilities that are both reliable and
easy to operate.

The design of the LUC Operating System (OS), an advanced system being able
to unify many UC resources distributed on distinct sites, would enable Internet
service providers (ISPs) and other institutions in charge of operating a network
backbone to build an extreme scale LUC infrastructure with a limited additional
cost. Instead of redeploying a complete installation, they will be able to leverage IT
resources and specific devices such as computer room air conditioning units, invert-
ers, or redundant power supplies already present in each center of their backbone.

In addition to considering locality as a primary concern, the novelty of the LUC
OS proposal is to consider the VM as the basic object it manipulates. Unlike ex-
isting research on distributed operating systems designed around the process con-
cept, a LUC OS will manipulate VMs throughout a federation of widely distributed
physical machines. Virtualization technologies abstract out hardware heterogeneity,
and allow transparent deployment, preemption, and migration of virtual environ-
ments (VEs), i.e., a set of interconnected VMs. By dramatically increasing the flex-
ibility of resource management, virtualization allows to leverage state-of-the-art
results from other distributed systems areas such as autonomous and decentralized
systems. Our goal is to build a system that allows end users to launch VEs over a
distributed infrastructure as simply as they launch processes on a local machine,
i.e., without the burden of dealing with resources availability or location.

A. Lebre et al.330

14.1.4 � Chapter Outline

Section 14.2 describes the key objectives of a LUC OS and the associated chal-
lenges. Section 14.3 explains why our vision differs from current and previous UC
solutions. In Section 14.4, we present how such a unified system may be designed
by delivering the premises of the DISCOVERY (DIStributed and COoperative
framework to manage Virtual EnviRonments autonomouslY) system, an agent-
based system enabling the distributed and cooperative management of virtual envi-
ronments over a large-scale distributed infrastructure. Future work and opportunities
are addressed in Sect. 14.5. Finally, Sect. 14.6 concludes this chapter.

14.2 � Overall Vision and Major Challenges

Similar to traditional operating systems (OSes), a LUC OS is composed of many
mechanisms. Trying to identify all of them and establishing how they interact is an
on-going work (see Sect. 14.4). However, we have pointed out the following key
objectives to be considered when designing a LUC OS:

•	 Scalability: A LUC OS must be able to manage hundreds of thousands of virtual
machines (VMs) running on thousands of geographically distributed computing
resources. These resources are small- or medium-sized computing facilities and
may become highly volatile according to the network disconnections.

•	 Reactivity: To deal with the dynamicity of the infrastructure, a LUC OS should
swiftly handle events that require to perform particular operations, either
on virtual or on physical resources. This has to be done with the objective of
maximizing the system utilization while meeting the Quality of Service (QoS)
expectations of VEs. Some examples of operations that should be performed as
fast as possible include: (i) the reconfiguration of VEs over distributed resources,
sometimes spread across wide area networks (WANs), or (ii) the migration of
VMs, while preserving their active connections.

•	 Resiliency: In addition to the inherent dynamicity of the infrastructure, failures,
and faults should be considered as the norm rather than the exception at such a
scale. The goal is therefore to transparently leverage the underlying infrastruc-
ture redundancy to: (i) allow the LUC OS to keep working despite node failures
and network disconnections (LUC OS robustness), and to (ii) provide snapshot-
ting as well as high availability mechanisms for VEs (VM robustness).

•	 Sustainability: Although the LUC approach would reduce the energy footprint of
UC services by minimizing the cost of the network, it is important to go one step
further by considering energy aspects at each level of a LUC OS and propose
advanced mechanisms in charge of making an optimal usage of each source of
energy. To achieve such an objective, the LUC OS should take account of data
related to the energy consumption of the VEs and the computing resources, as
well as the environmental conditions (computer room air conditioning unit, loca-
tion of the site, etc.).

14  Beyond the Clouds: How Should Next Generation Utility … 331

•	 Security and Privacy: Similar to resiliency, the security and privacy issues affect
the LUC OS itself and the VEs running on it. Regarding the LUC OS, the goals
are: (i) to create trust relationships between different locations, (ii) to secure the
peer-to-peer layers, (iii) to include security and privacy decisions and enforce-
ment points in the LUC OS, and (iv) to make them collaborate through the se-
cured peer-to-peer layers to provide end-to-end security and privacy. Regarding
the VEs, users should be able to express their requirements in terms of security
and privacy; the LUC OS would then enforce these requirements.

In addition to the aforementioned objectives, working on a virtual infrastructure re-
quires to deal with the management of VM images. Managing VM images in a dis-
tributed way across a wide area network (WAN) is a real challenge that will require
adapting state-of-the-art techniques related to replication and deduplication. Also,
the LUC OS must take into account VM images location, for instance: (i) to allocate
the right resources to a VE, or (ii) to prefetch VM images, to improve deployment
performance or VM relocations.

Finally, one last scientific and technical challenge is the lack of a global view
of the infrastructure. Maintaining a global view would indeed limit the scalability
of the LUC OS, which is inconsistent with our objective to manage large-scale
geographically distributed systems. Therefore, we claim that the LUC OS should
rely on decentralized and autonomous mechanisms, which can match and adapt to
the volatile topology of the infrastructure. Several decentralized mechanisms are
already used in production on large-scale systems; for instance, Amazon relies on
the Dynamo service [15] to create distributed indexes and recover from data in-con-
sistencies and Facebook uses Cassandra [29], a massive scale structured store that
leverages peer-to-peer techniques. In a LUC OS, decentralized and self-organizing
overlays will enable to maintain the information about the current state of both vir-
tual and physical resources, their characteristics, and availabilities. Such informa-
tion is mandatory to build higher level mechanisms ensuring the correct execution
of VEs throughout the whole infrastructure.

14.3 � Background

Several generations of UC infrastructures have been proposed and still coexist
[19]. However, neither Desktop, Grid, nor Cloud Computing platforms provide a
satisfying UC model. Contrary to the current trend that promotes large offshore-
centralized DCs as the UC platform of choice, we claim that the only way to achieve
sustainable and highly efficient UC services is to target a new infrastructure that
better matches the Internet structure. As it aims at gathering an unprecedented
amount of widely distributed computing resources into a single platform providing
UC services close to the end users, a LUC infrastructure is fundamentally different
from existing ones. Keeping in mind the aforementioned objectives, recycling UC
resource management solutions developed in the past is doomed to failure.

A. Lebre et al.332

As previously mentioned, our vision significantly differs from hybrid Cloud
Computing solutions. Although these research activities address important concerns
related to the use of federated Cloud platforms, such as interface standardization
for supporting cooperation and resource sharing, their propositions are incremental
improvements of existing UC models. Recent investigations on hybrid Clouds and
Cloud federation are comparable in some ways to previous works done on Grids,
since the purpose of a Grid middleware is to interact with each resource manage-
ment system composing the Grid [11, 49, 55].

By taking into account the network issues, in addition to traditional computing and
storage concerns in Cloud Computing systems, the European SAIL project [50] is
probably the one which targets the biggest advances with regard to previous works on
Grid systems. More concretely, this project investigates new network technologies to
provide end users of hybrid/federated Clouds with the possibility to configure and vir-
tually operate the network backbone interconnecting the different sites they use [37].

More recently, the Fog Computing concept has been proposed as a promising
solution to applications and services that cannot be put into the Cloud due to local-
ity issues (mainly the latency and mobility concerns) [10]. Although it might look
similar to our vision as they propose to extend the Cloud Computing paradigm to the
edge of the network, Fog Computing does not target a unified system but rather pro-
poses to add a third party layer (i.e., the Fog) between Cloud vendors and end users.

In our vision, UC resources (i.e., Cloud Computing ones) should be repacked in
the different points of presence of backbones and operated through a unified system,
the LUC OS. As far as we know, the only system that investigated whether a widely
distributed infrastructure can be operated by a single system was the XtreemOS
Project [36]. Although this project shared some of the goals of the LUC OS, it did
not investigate how the geographical distribution of resources can be leveraged to
deliver more efficient and sustainable UC infrastructures.

To sum up, we argue for the design and the implementation of a kind of dis-
tributed OS, manipulating VEs instead of processes, and considering locality as
a primary concern. Referred to as a LUC OS, such a system will include most
of the mechanisms that are common to current UC management systems [17, 32,
35, 39–41]. However, each of them will have to be rethought in order to leverage
peer-to-peer algorithms. While largely unexplored for building operating systems,
peer-to-peer/decentralized mechanisms have the potential to achieve the scalability
required to manage LUC infrastructures. Using this technology for establishing the
base mechanisms of a massive-scale LUC OS will be a major breakthrough from
current static, centralized, or hierarchical management solutions.

14.4 � Premise of a LUC OS: The DISCOVERY Proposal

In this section, we propose to go one step further by discussing preliminary in-
vestigations around the design and implementation of a first LUC OS proposal:
the DISCOVERY system. We draw the premises of the DISCOVERY system by
emphasizing some of the challenges as well as some research directions to solve

14  Beyond the Clouds: How Should Next Generation Utility … 333

them. Finally, we give some details regarding the prototype that is under develop-
ment and how we are going to evaluate it.

14.4.1 � Overview

The DISCOVERY system relies on a multi-agent peer-to-peer system deployed on
each physical resource composing the LUC infrastructure. Agents are autonomous
entities that collaborate with one another to efficiently use the LUC resources. In
our context, efficiency means that a good trade-off is found between users’ expecta-
tions, reliability, reactivity, and availability, while limiting the energy consumption
of the system and providing scalability.

In DISCOVERY, each agent has two purposes: (i) maintaining a knowledge base
on the composition of the LUC platform, and (ii) ensuring the correct execution of
VEs. This includes the configuration, deployment, and monitoring of VEs as well
as the dynamic allocation or relocation of VMs to adapt to changes in VEs require-
ments and physical resources availability. To this end, agents will rely on dedicated
mechanisms related to:

•	 The localization and monitoring of physical resources
•	 The management of VEs
•	 The management of VM images
•	 Reliability
•	 Security and privacy

14.4.2 � Resource Localization and Monitoring Mechanisms

Keeping in mind that DISCOVERY should be designed in a fully decentralized fash-
ion, its mechanisms should be built on top of an overlay network able to abstract out
changes that occur at the physical level. The specific requirements of this platform
will lead to the development of a novel kind of overlay networks based on locality
and a minimalistic design. More concretely, the first step is to design, at the lowest
level, an overlay layer intended to hide the details of the physical routes and com-
puting utilities, while satisfying some basic requirements such as locality and avail-
ability. This overlay needs to enable the communications between any two nodes in
the platform. While overlay computing has been extensively studied over the last de-
cade, we emphasize here on minimalism, especially on one key feature to implement
a LUC OS: retrieving nodes that are geographically close to a given departure node.

14.4.2.1 � Giving Nodes a Position

The initial configuration of the physical network can take an arbitrary shape.
We choose to rely on the Vivaldi protocol [14]. Vivaldi is a distributed algorithm

A. Lebre et al.334

as-signing coordinates in the plane to nodes of a distributed system. Each node is
equipped with a view of the network, i.e., a set of nodes it knows. This view is ini-
tially assumed as random. Coordinates obtained by a node reflect its position in the
network, i.e., close nodes in the network are given close coordinates in the plane. To
achieve this, each node periodically checks the round trip time between itself and
another node (randomly chosen among nodes in its view) and adapts its distance (by
changing its coordinates) with this node in the plane accordingly. Refer to Figs. 14.2
and 14.3 for an illustration of four nodes (A, B, C, and D) moving according to the
Vivaldi protocol. A globally accurate positioning of nodes can be obtained if nodes
have a few long-distance nodes in their view [14]. These long-distance links can be
easily maintained by means of a simple gossip protocol.

14.4.2.2 � Searching for Close Nodes

Once the map is achieved (each node knows its coordinates), we are able to decide
whether two nodes are close by calculating their distance. However, the view of
each node does not a priori contain its closest nodes. Therefore, we need additional
mechanisms to locate a set of nodes that are close to a given initial node—Vivaldi
gives a location to each node, but not to the neighborhood. To achieve this, we use
a modified distributed version of the classic Dijkstra’s algorithm used to find the
shortest path between two nodes in a graph. The goal is to build a spiral intercon-
necting the nodes in the plane that are the closest ones to a given initial node. Note
that the term spiral is here a misuse of language, since the graph actually drawn in
the plane might contain crossing edges. The only guarantee is that when following
the path constructed, the nodes are always further from the initial node.

Let us consider that our initial point is a node called I. The first step is to find
a node to build a two-node spiral with I. Such a node is sought in the view of I by

Fig. 14.3   Vivaldi plot after
updating positions. The
computed positions of other
nodes have been updated

Fig. 14.2   Vivaldi plot before
updating positions. Each
node pings other nodes. Each
node maintains a map of
distance

14  Beyond the Clouds: How Should Next Generation Utility … 335

selecting the node, say S, having the smallest distance with I. I then sends its view
to S, I stores S as its successor in the spiral, and S adds I as its predecessor in the
spiral. Then I forwards its view to S. S creates a new view by keeping the n nodes
which are the closest to I in the views of I and S . This last view is then referred to
as the spiral view and is intended to contain a set of nodes among which to find the
next step of the spiral. Then S restarts the same process: Among the spiral view, it
chooses the node with the smallest distance to I, say S′, and adds it in the spiral—S
becomes the predecessor of S′ and S′ becomes the successor of S. Then, the spiral
view is sent to S′ which updates it with the nodes it has in its own view. The process
is repeated until we consider that enough nodes have been gathered (a parameter
sent by the application).

Note that one risk is to be blocked by having a spiral view containing only nodes
that are already in the spiral, leading to the impossibility to build the spiral further.
However, this problem can be easily addressed by forcing the presence of a few
long-distance nodes whenever it is updated.

14.4.2.3 � Learning

Applying the protocol described above, the quality of the spiral is questionable in
the sense that the nodes that are actually close to the starting node s may not be in-
cluded. The only property ensured is that one step forward on the built path always
takes us further from the initial node.

To improve the quality of the spiral, i.e., reduce the average distance between the
nodes it comprises and the initial node, we add a learning mechanism coming with
no extra communication cost: when a node is contacted to become the next node
in one spiral, and receives the associated spiral view, it can also keep the nodes
that are the closest to itself, thus potentially increasing the quality of a future spiral
construction.

14.4.2.4 � Routing

In the context of a LUC infrastructure, one crucial feature is to be able to locate an
existing VM. Having the same strategy consisting in improving the performance of
the overlay based on the activity of the application, we envision a routing mecha-
nism which will be improved by past routing requests. By means of the spiral mech-
anism, a node is able to contact its neighboring nodes to start routing a message.

This initial routing mechanism can be very expensive as the number of hops
can be linear in the size of the network. However, from previous communications,
a node is able to memorize long links to different locations of the network. Conse-
quently, from each routing request, the source of the request and each node on the
path to the destination are able to learn long links, which will significantly reduce
the number of hops of future requests. We are currently studying the amount of
requests needed to get close to a logarithmic routing complexity. More generally,

A. Lebre et al.336

we are working on the estimation if the activity of the application is required to: (i)
guarantee the constant efficiency of the overlay, and (ii) converge, starting from a
random configuration, to a fully efficient overlay network.

14.4.3 � VEs Management Mechanisms

In the DISCOVERY system, we define a VE as a set of VMs that may have specific
requirements in terms of hardware, software, and also in terms of placement: For in-
stance, some VMs must be on the same node/site to cope with performance objectives
while others should not be collocated to ensure high-availability criteria [26]. As op-
erations on a VE may occur in any place from any location, each agent should provide
the capability to configure and start a VE, to suspend/resume/stop it, to relocate some
of its VMs if the need arises, or simply to retrieve the location of a particular VE. Most
of these mechanisms are provided by current UC platforms. However, as mentioned
before, they should be revisited to leverage peer-to-peer mechanisms to correctly run
on the infrastructure we target (i.e., in terms of scalability, resiliency, and reliability).

As a first example, placing the VMs of a VE requires the ability to find the avail-
able nodes that fulfill the VM’s needs (in terms of resource requirements as well as
placement constraints). Such a placement can start locally, close to the client appli-
cation requesting it, i.e., in its local group. If no such node is found, a simple navi-
gation ensures that the request will encounter a bridge, leading to the exploration
of further nodes. This navigation goes on until an adequate node is found. A similar
process is performed by the mechanism in charge of dynamically controlling and
adapting the placement of VEs during their lifetime. For instance, to ensure the
particular needs of a VM, it can be necessary to relocate other VMs. According to
the predefined constraints of VEs, some VMs might be relocated on far nodes while
others would prefer to be suspended. Such a mechanism has been deeply studied in
the DVMS framework [16, 46]. DVMS (Distributed Virtual Machine Scheduler) is
able to dynamically schedule a significant number of VMs throughout a large-scale
distributed infrastructure while guaranteeing VM resource expectations.

A second example regards the networking configuration of VEs. Although it might
look simple, assigning the right IP to each VM as well as maintaining the intracon-
nectivity of a VE becomes a bit more complex than in the case of a single network
domain, i.e., a single site deployment. Keeping in mind that a LUC infrastructure
is, by definition, spread WANwide, a VE can be hosted between distinct network
domains during its lifetime. No solution has been chosen yet. Our first investiga-
tions led us to leverage techniques such as the IP over P2P project [20]. However,
software-defined networking becomes more and more important; investigating pro-
posals such as the Open vSwitch project [44] looks promising to solve such an issue.

14.4.4 � VM Images Management

In a LUC infrastructure, VM images could be deployed in any place from any other
location. However, being in a decentralized, large-scale, heterogeneous, and widely

14  Beyond the Clouds: How Should Next Generation Utility … 337

spread environment makes the management of VM images more difficult than with
conventional centralized repositories. At coarse grain: (i) the management of the
VM images should be consistent with regard to the location of each VM in the
DISCOVERY infrastructure, and (ii) each VM image should remain reachable or at
least recoverable in case of failures. The envisioned mechanisms to manage VM im-
ages have been classified into two categories. First, some mechanisms are required
to efficiently upload VM images and replicate them across many nodes, to ensure
efficiency as well as reliability. Second, other mechanisms are needed to schedule
VM image transfers. Advanced policies are important to improve the efficiency of
each transfer that may occur either during the first deployment of a VM or during
its relocations.

Regarding the storage and replication mechanisms, an analysis of an IBM Cloud
concludes that a fully distributed approach using peer-to-peer technology is not the best
choice to manage VM images, since the number of instances of the same VM image is
rather small [42]. However, central or hierarchical solutions are not suited for the in-
frastructure we target. Consequently, an improved peer-to-peer solution working with
replicas and deduplication has to be investigated to provide more reliability, speed, and
scalability to the system. For example, analyzing different VM images shows that at
least 30 % of the image is shared between different VMs [28]. This 30 % can become a
30 % reduction in space, or a 30 % increase in reliability, or in transfer speed. Depend-
ing on the situation, we should decide to go from one scenario to another.

Regarding the scheduling mechanisms, a study showed that VM boot time could
be increased from 10 to 240 s when multiple VMs running I/O intensive tasks use
the same storage system [53]. Some actions can provide a performance boost and
limit the overhead that is still observed in commercial Clouds [33], like providing
the image chunks needed to boot first [54], defining a new image format, and paus-
ing the rest of the I/O operations.

More generally, the amount of data linked with VM images is significant. Ac-
tions involving data should be aware of consequences on metrics like (but not
limited to): energy efficiency, reliability, proximity, bandwidth, and hardware us-
age. The scheduler could also anticipate actions, for instance, moving images when
the load is low or the energy is cheap.

14.4.5 � Reliability Mechanisms

Although, we can expect that the frequency of failures on LUC resources should be
similar to that in current UC platforms, it is noteworthy to mention that the expected
mean time to repair failed equipment might be much higher since resources will be
highly distributed. For these reasons, specific mechanisms should be designed to
manage failures transparently with a minimum downtime.

Ensuring the high availability of the DISCOVERY system requires the ability to
autonomously relocate and restart any service on a healthy node in case of failure.
Moreover, a Cassandra-like framework [29] is required to avoid losing or corrupt-
ing information belonging to stateful services, since it provides a reliable and highly
available back-end.

A. Lebre et al.338

Regarding the VEs reliability, leveraging periodical VM snapshotting capabil-
ities can provide a first level of fault tolerance. In case of failure, a VE can be
restarted from its latest snapshot. Performing VM snapshotting in a large-scale,
heterogeneous, and widely spread environment, is a challenging task. However, we
believe that adapting ideas that were recently proposed in this field [38] would al-
low us to provide such a feature.

Snapshotting is not enough for services that should be made highly available, but
a promising solution is to use VM replication [43]. To implement VM replication in
a WAN, solutions to optimize synchronizations between replicas [22, 47] should be
investigated. Also, we think that a LUC infrastructure has a major advantage over
other UC platforms, since it is tightly coupled with the network infrastructure. As
such, we can expect low latencies between nodes which would enable us to provide
a strong consistency between replicas while achieving acceptable response time for
the replicated services.

Reliability techniques will of course make use of the overlays for resource lo-
calization and monitoring. Replicated VMs should be hosted on nodes that have a
low probability to fail simultaneously. Following the previously defined overlay
structure, this can be done through a navigation scheme where at least one bridge
is encountered. A replica can then be monitored by a watcher, which is in the same
local group as the replica.

14.4.6 � Security and Privacy Mechanisms

To be successful, DISCOVERY needs to provide mechanisms and methods to con-
struct trust relationships between resource providers. Trust relationships are known
to be complex to build [34]. Providing strong authentication, assurance, and certifi-
cation mechanisms to providers and users is required, but is definitely not enough.
Trust covers socioeconomic aspects that must be addressed but are out of the scope
of this chapter. The challenge is to provide a trusted DISCOVERY base.

As overlays are fundamentals to all DISCOVERY mechanisms, another chal-
lenge is to ensure that they are not compromised. Recent advances [12] might en-
able to tackle such concerns.

The third challenge will consist in: (i) providing end users with a way to define
their own security and privacy policies, and (ii) ensuring that these policies are
enforced. The expression of these policies itself is a complex task, as it requires
to improve the current trade-off between security (and privacy) and usability. To
ease the expression of these policies, we are currently designing a domain-specific
language to define high-level security and privacy requirements [9, 30]. These poli-
cies will be enforced in a decentralized manner, by distributed security and privacy
decision and enforcement points (SPDEPs) during the lifetime of the VEs. Imple-
menting such SPDEP mechanisms in a distributed fashion will require conducting
specific research, as currently there are only prospective proposals for classic UC
infrastructures [5, 51]. Therefore, we need to investigate whether such proposals
can be adapted to the LUC infrastructure by leveraging appropriate overlays.

14  Beyond the Clouds: How Should Next Generation Utility … 339

14.4.7 � Towards a First Proof of Concept

The first prototype is under heavy development. It aims at delivering a simple
mock-up for integration/collaboration purposes. Following the coarse-grained ar-
chitecture described in the previous sections, we have started to identify all the
components participating in the system, their relationships, as well as the resulting
interfaces. Conducting such a work now is mandatory to move towards a more
complete as well as more complex system.

To ensure a scalable and reliable design, we chose to rely on the use of high-level
programming abstractions. More precisely, we are using distributed complex event
programming [27] in association with the actor model [1]. This enables us to easily
switch between a push- and a pull-oriented approach depending on our needs.

Our preliminary studies showed that a common building block is mandatory
to handle resiliency concerns in all components. Concretely, it corresponds to a
mechanism in charge of throwing notifications that are triggered by the low level
network overlay each time a node joins or leaves it. Such a mechanism makes the
design and the development of higher building blocks easier as they do not have to
provide specific portions of code to monitor infrastructure changes.

This building block has been designed around the Peer Actor concept (see
Figs. 14.4 and 14.5). The Peer Actor serves as an interface between higher services
and the communication layer. It provides methods that enable to define the behav-
iors of a service when a resource joins or leaves a particular peer-to-peer overlay
as well as when neighbors change. Considering that several overlays may coexist
in the DISCOVERY system, the association between a Peer Actor and its Overlay
Actor is done at runtime and can be changed on the fly if need be. However, it is
noteworthy that each Peer Actor takes part to one and only one overlay at the same
time. In addition to the Overlay Actor, a Peer Actor is composed of a Notification
Actor that processes events and notifies registered actors. As illustrated in Fig. 14.5,
a service can use more than one Peer Actor (and reciprocally). Mutualizing a Peer
Actor enables for instance to reduce the network overhead implied by the main-
tenance of the overlays. In the example, the first service relies on a Peer Actor

Fig. 14.4   The Peer Actor
Model. The Supervisor Actor
monitors all the actors it
encapsulates while the Peer
Actor acts as an interface
between the services and the
overlay

A. Lebre et al.340

implementing a Chord overlay [52], while the second service uses an additional
Peer Actor implementing a CAN structure [48].

By such a mean, higher-level services can take the advantage of the advanced
communication layers without dealing with the burden of managing the different
overlays. As an example, when a node disappears, all services that have been reg-
istered as dependent on such an event are notified. Service actors can thus react
accordingly to the behavior that has been specified.

Regarding the design and the implementation of the DISCOVERY system, each
service is executed inside its own actor and communicates by exchanging messages
with the other ones. This ensures that each service is isolated from the others: When
a service crashes and needs to be restarted, the execution of other services is not af-
fected. As previously mentioned, we consider that at the LUC infrastructure scale,
failures are the norm rather than the exception; hence, we decided that a Supervisor
Actor would monitor each actor (see Fig. 14.4). DISCOVERY services are under
the supervision of the DISCOVERY agent: This design allows to precisely define
a strategy that will be executed in case of service failures. This will be the way to
introduce self-healing and self-organizing properties to the DISCOVERY system.

This building block has been fully implemented by leveraging the Akka/Scala
framework [2], and is available online at https://github.com/BeyondTheClouds.

As a proof of concept (POC), we are implementing a first high-level service in
charge of dynamically scheduling VMs across a LUC infrastructure by leveraging
the DVMS [46] proposal (see Sect. 14.4.3). The low-level overlay that is being cur-
rently implemented is a robust ring based on the Chord algorithm combined with
the Vivaldi positioning system: It enables services to select nodes that have low
latency, so that collaboration will be more efficient.

To validate the behavior, the performance as well as the reliability of our proof of
concept, we are performing several experiments on the Grid’5000 test bed [6] that
comprises hundreds of nodes distributed on 10 computing sites that are geographi-
cally spread across France. To make experiments with DISCOVERY easier, we
developed a set of scripts that can deploy thousands of VMs throughout the whole

Fig. 14.5   A Peer Actor
instantiation. The first ser-
vice relies on a Peer Actor
implementing a Chord
overlay while the second
service uses an additional
Peer Actor implementing a
CAN structure

https://github.com/BeyondTheClouds

14  Beyond the Clouds: How Should Next Generation Utility … 341

infrastructure in a one-click fashion [7]. By deploying our POC on each node and by
leveraging the VM deployment scripts, we can evaluate real scenario by injecting
specific workloads in the different VMs. The validation of this first POC is almost
completed. The resulting system will be the first to provide reactive, reliable, and
scalable reconfiguration mechanisms of virtual machines in a fully distributed and
autonomous way. This new result will pave the way for a complete proposal of the
DISCOVERY system.

14.5 � Future Work/Opportunities

14.5.1 � Geo-diversification as a Key Element

The Cloud Computing paradigm is changing the way applications are designed. In
order to benefit from elasticity capabilities of Cloud systems, applications integrate
or leverage mechanisms to provision resources, i.e., starting or stopping VMs, ac-
cording to their fluctuating needs. The ConPaaS system [45] is one of the promising
systems for elastic Cloud applications. At the same time, a few projects have started
investigating distributed/collaborative ways of hosting famous applications such as
Wikipedia or Facebook-like systems by leveraging volunteer computing techniques.
However, considering that resources provided by end users were not reliable enough,
only few contributions have been done yet. By providing a system that will enable to
operate widely spread but more reliable resources closer to the end users, the LUC
OS proposal may strongly benefit to this research area. Investigating the benefit of
locality provisioning (i.e., combining elasticity and distributed/collaborative host-
ing) is a promising direction for all Web services that are embarrassingly distributed
[13]. Image sharing systems, such as Google Picasa or Flickr, are examples of ap-
plications where leveraging locality will enable to limit network exchanges: Users
could upload their images on a peer that is close to them, and images would be trans-
ferred to other locations only when required (pulling versus pushing model).

LUC infrastructures will allow envisioning a wider range of services that may
answer specific SMEs requests such as data archiving or backup solutions, while sig-
nificantly reducing the network overhead as well as legal concerns. Moreover, it will
make the deployment of UC services easier by relieving developers of the burden of
dealing with multi-Cloud vendors. Of course, this will require software engineering
and middleware advances to easily take advantage of locality. But proposing LUC OS
solutions, such as the DISCOVERY project, is the mandatory step before investigat-
ing new APIs enabling applications to directly interact with the LUC OS internals.

14.5.2 � Energy, a Primary Concern for Modern Societies

The energy footprint of current UC infrastructures, and more generally of the
Internet, is a major concern for the society. Although we need to conduct deeper

A. Lebre et al.342

investigations, we clearly expect that by its design and the way to operate it, a
LUC infrastructure will have a smaller impact with a better integration in the whole
Internet ecosystem.

Moreover, the LUC proposal is an interesting way to deploy the data furnaces pro-
posal [31]. Concretely, following the Smart City recommendations (i.e., delivering
efficient and sustainable ICT services), the construction of new districts in metrop-
olises may take advantage of each LUC/Network PoP in order to heat buildings
while operating UC resources remotely by means of a LUC OS. Finally, taking into
account recent results about passive data centers, such as solar-powered micro-data
centers, might extend this idea. The idea behind passive computing facilities is to
limit as much as possible the energy footprint of major hubs and DSLAMS by
taking advantage of renewable energies to power them, and by using the heat they
produce as a source of energy. Combining such ideas with the LUC approach would
allow reaching an unprecedented level of energy efficiency for UC platforms.

14.6 � Conclusion

Cloud Computing has entered into our daily life with a great speed. From classic
high performance computing simulations to the management of huge amounts of
data coming from mobile devices and sensors, its impact can no longer be dis-
regarded. While a lot of progress has already been made in Cloud technologies,
there are several concerns that limit the complete adoption of the Cloud Computing
paradigm.

In this chapter, we have outlined that, in addition to these concerns, intrinsic
issues limit the current model of UC. Instead of following the current trend by try-
ing to cope with existing platforms and network interfaces, we proposed to take a
different direction by promoting the design of a system that will be efficient and
sustainable at the same time, putting knowledge and intelligence directly into the
network backbone itself.

The innovative approach, we introduced, will definitely tackle and go beyond
Cloud Computing limitations. Our objective is to pave the way for a new genera-
tion of Utility Computing infrastructures that better match the Internet structure by
means of advanced operating mechanisms. By offering the possibility to tightly
couple UC servers and network backbones throughout distinct sites and operate
them remotely, the LUC OS technology may lead to major changes in the design
of UC infrastructures as well as in their environmental impact. The internal mecha-
nisms of the LUC OS should be topology-dependent and resources-efficient. The
natural distribution of the nodes through the different points of presence should
be an advantage, which allows to process a request according to its scale: Local
requests should be computed locally, while large computations should benefit from
a large number of nodes.

Finally, we believe that LUC investigations may contribute to fill the gap between
the distributed computing community and the networked ones. This connection

14  Beyond the Clouds: How Should Next Generation Utility … 343

between these two communities has already started with the different activities
around Software-Defined Networking and Network as a Service. In the long term,
this may result in a new community dealing with UC challenges where network and
computational concerns are fully integrated. Such a new community may leverage
the background of both areas to propose new systems that are more suitable to ac-
commodate the needs of our modern societies.

We are well aware that the design of a complete LUC OS and its adoption by
companies and network providers require several big changes in the way UC infra-
structures are managed and WANs are operated. However, we are convinced that
such an approach will pave the way towards highly efficient and sustainable UC
infrastructures, coping with heterogeneity, scale, and faults.

References

  1.	 Agha G (1986) Actors: a model of concurrent computation in distributed systems. MIT Press,
Cambridge

  2.	 Akka (2013) Build powerful concurrent & distributed applications more easily. http://www.
akka.io. Accessed: March 2013

  3.	 Andrew O (2003) Data networks are lightly utilized, and will stay that way. review of net-
work economics. Rev Netw Econ 2(3):210–237

  4.	 Armbrust M, Fox A, Griffith R, Joseph AD, Katz R, Konwinski A, Lee G, Patterson D, Rabkin
A, Stoica I, Zaharia M (2010) A view of cloud computing. Commun ACM 53(4):50–58

  5.	 Bacon J, Evans D, Eyers DM, Migliavacca M, Pietzuch P, Shand B (2010) Enforcing end-
to-end application security in the cloud (big ideas paper). In: Proceedings of the ACM/IFIP/
USENIX 11th International Conference on Middleware, Springer-Verlag, Berlin, Middle-
ware’10, pp 293–312

  6.	 Balouek D, Carpen Amarie A, Charrier G, Desprez F, Jeannot E, Jeanvoine E, Lèbre A,
Margery D, Niclausse N, Nussbaum L et al (2013) Adding virtualization capabilities to the
Grid’5000 testbed. In: Ivanov I, Sinderen M, Leymann F, Shan T (eds) Cloud computing and
services science, Springer, Berlin

  7.	 Balouek D, Lebre A, Quesnel F (2013) Flauncher and DVMS: deploying and scheduling
thousands of virtual machines on hundreds of nodes distributed geographically. In: The sixth
IEEE international scalable computing challenge (collocated with CCGRID), Delft, The
Netherlands

  8.	 Benson T, Akella A, Maltz DA (2010) Network traffic characteristics of data centers in the
wild. In: Proceedings of the 10th ACM SIGCOMM Conference on Internet Measurement,
ACM, New York, IMC’10, pp 267–280

  9.	 Blanc M, Briffaut J, Clevy L, Gros D, Rouzaud-Cornabas J, Toinard C, Venelle B (2013)
Mandatory protection within clouds. In: Nepal S, Pathan M (eds) Security, privacy and trust
in cloud systems, Springer, Berlin

10.	 Bonomi F, Milito R, Zhu J, Addepalli S (2012) Fog computing and its role in the internet of
things. In: Proceedings of the first edition of the MCC workshop on mobile cloud computing,
ACM, New York, USA, MCC’12, pp 13–16

11.	 Buyya R, Ranjan R, Calheiros RN (2010) InterCloud: utility-oriented federation of cloud
computing environments for scaling of application services. In: Proceedings of the 10th inter-
national conference on algorithms and architectures for parallel processing, Springer-Verlag,
Berlin, ICA3PP’10, pp 13–31

12.	 Castro M, Druschel P, Ganesh A, Rowstron A, Wallach DS (2002) Secure routing for struc-
tured peer-to-peer overlay networks. SIGOPS Oper Syst Rev 36(SI):299–314

http://www.akka.io
http://www.akka.io

A. Lebre et al.344

13.	 Church K, Greenberg A, Hamilton J (2008) On delivering embarrassingly distributed cloud
services. In: HotNets

14.	 Dabek F, Cox R, Kaashoek MF, Morris R (2004) Vivaldi: a decentralized network coordinate
system. In: Proceedings of the 2004 conference on applications, technologies, architectures,
and protocols for computer communications, SIGCOMM’04, pp 15–26

15.	 DeCandia G, Hastorun D, Jampani M, Kakulapati G, Lakshman A, Pilchin A, Sivasubramanian
S, Vosshall P, Vogels W (2007) Dynamo: Amazon’s highly available key-value store. In: Pro-
ceedings of twenty-first ACM SIGOPS symposium on operating systems principles, ACM,
SOSP’07, pp 205–220

16.	 Discovery (2013) Distributed VM scheduler. http://beyondtheclouds.github.io/DVMS/.
Accessed: March 2013

17.	 CloudStack (2013) CloudStack, open source cloud computing. http://cloudstack.apache.org.
Accessed: March 2013

18.	 Foster I (2011) Globus online: accelerating and democratizing science through cloud-based
services. IEEE Internet Comput 15(3):70–73

19.	 Foster I, Kesselman C (2011) The history of the grid. In: Foster I, Gentzsch W, Grandinetti L,
Joubert GR (eds) Advances in parallel computing—volume 20: HPC: from grids and clouds
to exascale. IOS Press, Amsterdam

20.	 Ganguly A, Agrawal A, Boykin PO, Figueiredo R (2006) IP over P2P: enabling self-configur-
ing virtual IP networks for grid computing. In: Proceedings of the 20th international confer-
ence on Parallel and distributed processing, IEEE Computer Society, Washington, DC, USA,
IPDPS’06

21.	 Gary Cook JVH (2013) How dirty is your data? Greenpeace International report
22.	 Gerofi B, Ishikawa Y (2012) Enhancing TCP throughput of highly available virtual machines

via speculative communication. In: Proceedings of the 8th ACM SIGPLAN/SIGOPS confer-
ence on Virtual Execution Environments, NY, USA, VEE’12

23.	 Gigaom Consortium (2012) Amazon outages—lessons learned. http://gigaom.com/cloud/
amazon-outages-lessons-learned/. Accessed: 23 Feb. 2014

24.	 Greenberg A, Hamilton J, Maltz DA, Patel P (2008) The cost of a cloud: research problems
in data center networks. SIGCOMM Comput Commun Rev 39(1):68–73

25.	 Group IEW (2012) IEEE 802.3TM industry connections ethernet bandwidth assessment
26.	 Hermenier F, Lawall J, Muller G (2013) BtrPlace: a flexible consolidation manager for highly

available applications. IEEE Transactions on Dependable and Secure Computing
27.	 Janiesch C, Matzner M, Muller O (2011) A blueprint for event-driven business activity man-

agement. In: Proceedings of the 9th international conference on business process manage-
ment, Springer-Verlag, BPM’11, pp 17–28

28.	 Jin K, Miller EL (2009) The effectiveness of deduplication on virtual machine disk images.
In: Proceedings of SYSTOR 2009: the Israeli Experimental Systems Conference, ACM, New
York, USA, SYSTOR’09, pp 7:1–7:12

29.	 Lakshman A, Malik P (2010) Cassandra: a decentralized structured storage system. SIGOPS
Oper Syst Rev 44(2):35–40

30.	 Lefray A, Caron E, Rouzaud-Cornabas J, Zhang HY, Bousquet A, Briffaut J, Toinard C
(2013) Security-aware models for clouds. In: Poster Session of IEEE Symposium on High
Performance Distributed Computing (HPDC)

31.	 Liu J, Goraczko M, James S, Belady C, Lu J, Whitehouse K (2011) The data furnace: heating
up with cloud computing. In: Proceedings of the 3rd USENIX conference on hot topics in
cloud computing, HotCloud’11

32.	 Lowe S (2011) Mastering VMware vSphere. Wiley: Indianapolis
33.	 Mao M, Humphrey M (2012) A performance study on the VM startup time in the cloud. In:

Proceedings of the 2012 IEEE Fifth International Conference on Cloud Computing, IEEE
Computer Society, CLOUD’12, pp 423–430

34.	 Miller KW, Voas J, Laplante P (2010) In trust we trust. Computer 43:85–87
35.	 Moreno-Vozmediano R, Montero R, Llorente I (2012) IaaS cloud architecture: from virtual-

ized datacenters to federated cloud infrastructures. Computer 45(12):65–72

http://beyondtheclouds.github.io/DVMS/
http://cloudstack.apache.org
http://gigaom.com/cloud/amazon-outages-lessons-learned/
http://gigaom.com/cloud/amazon-outages-lessons-learned/

14  Beyond the Clouds: How Should Next Generation Utility … 345

36.	 Morin C (2007) XtreemOS: a grid operating system making your computer ready for partici-
pating in virtual organizations. In: Proceedings of the 10th IEEE International Symposium
on Object and Component-Oriented Real-Time Distributed Computing, IEEE Computer So-
ciety, ISORC’07, pp 393–402

37.	 Murray P, Sefidcon A, Steinert R, Fusenig V, Carapinha J (2012) Cloud networking: an infra-
structure service architecture for the wide area. HP Labs Tech Report-HPL-2012–111R1

38.	 Nicolae B, Bresnahan J, Keahey K, Antoniu G (2011) Going back and forth: efficient mul-
tideployment and multisnapshotting on clouds. In: Proceedings of the 20th international
symposium on High performance distributed computing, ACM, New York, USA, HPDC’11,
pp 147–158

39.	 Nimbus (2013) Nimbus is cloud computing for science. http://www.nimbusproject.org.
Accessed: March 2013

40.	 OpenNebula (2013) Open source data center virtualization. http://www.opennebula.org.
Accessed: March 2013

41.	 OpenStack (2013) The open source, open standards cloud. http://www.openstack.org. Accessed:
March 2013

42.	 Peng C, Kim M, Zhang Z, Lei H (2012) VDN: virtual machine image distribution network
for cloud data centers. In: INFOCOM, 2012, pp 181–189

43.	 Petrovic D, Schiper A (2012) Implementing virtual machine replication: a case study using
Xen and Kvm. In: Proceedings of the 2012 IEEE 26th International Conference on Advanced
Information Networking and Applications, pp 73–80

44.	 Pfaff B, Pettit J, Koponen T, Amidon K, Casado M, Shenker S (2009) Extending networking
into the virtualization layer. In: ACM HotNets

45.	 Pierre G, Stratan C (2012) ConPaaS: a platform for hosting elastic cloud applications. IEEE
Internet Comput 16(5):88–92

46.	 Quesnel F, Lebre A, Sudholt M (2012) Cooperative and reactive scheduling in large-scale
virtualized platforms with DVMS. Concurr Comput Pract Exp 25(12):1643–1655

47.	 Rajagopalan S, Cully B, O’Connor R, Warfield A (2012) SecondSite: disaster tolerance as a
service. In: Proceedings of the 8th ACM SIGPLAN/SIGOPS conference on Virtual Execu-
tion Environments, ACM, VEE’12, pp 97–108

48.	 Ratnasamy S, Francis P, Handley M, Karp R, Shenker S (2001) A scalable content-address-
able network. In: SIGCOMM’01: Proceedings of the conference on applications, technolo-
gies, architectures, and protocols for computer communications, ACM, New York, USA,
SIGCOMM’01, pp 161–172

49.	 Rochwerger B, Breitgand D, Levy E, Galis A, Nagin K, Llorente IM, Montero R, Wolfsthal
Y, Elmroth E, Caceres J, Ben-Yehuda M, Emmerich W, Galan F (2009) The reservoir model
and architecture for open federated cloud computing. IBM J Res Dev 53(4):4:1–4:11

50.	 Sail Consortium (2012) Scalable and adaptive internet solutions—European Project FP7 pro-
gram. http://www.sail-project.eu. Accessed: March 2014

51.	 Sandhu R, Boppana R, Krishnan R, Reich J, Wolff T, Zachry J (2010) Towards a discipline
of mission-aware cloud computing. In: Proceedings of the 2010 ACM workshop on cloud
computing security workshop, pp 13–18

52.	 Stoica I, Morris R, Karger D, Kaashoek MF, Balakrishnan H (2001) Chord: a scalable peer-
to-peer lookup service for internet applications. In: Proceedings of the 2001 conference
on Applications, technologies, architectures, and protocols for computer communications,
ACM, New York, USA, SIGCOMM’01, pp 149–160

53.	 Tan T, Simmonds R, Arlt B, Arlitt M, Walker B (2008) Image management in a virtualized
data center. SIGMETRICS Perform Eval Rev 36(2):4–9

54.	 Tang C (2011) FVD: a high-performance virtual machine image format for cloud. In:
Proceedings of the 2011 USENIX conference on USENIX annual technical conference,
USENIX Association, USENIXATC’11

55.	 Zhao H, Yu Z, Tiwari S, Mao X, Lee K, Wolinsky D, Li X, Figueiredo R (2012) CloudBay:
enabling an online resource market place for open clouds. In: Proceedings of the 2012 IEEE/
ACM Fifth International Conference on Utility and Cloud Computing, UCC’12

http://www.nimbusproject.org
http://www.opennebula.org
http://www.openstack.org
http://www.sail-project.eu

347

Index

1-Copy Equivalence,  28
2-Phase Commit (2PC),  26, 29
2-Phase Locking (2PL),  30
3-Phase Commit,  30

A
A-C systems,  42
Access control,  106, 108

grade-based,  110, 114, 122
issues,  307, 312
role-based,  111

ACID,  26, 28, 40
semantics,  42, 43

Active, 
networking,  213
replication,  33

A-L systems,  42, 44
Amazon EC2,  14, 16

hypervisor scheduler,  13
IaaS model,  5
mitigation technique in,  10
virtual machine,  12

Amazon Elastic Compute,  214
Analysis,  261, 262
AndJoin,  262
AndSplit,  262
Apache Cassandra,  225
Apache Zookeeper,  225
API network,  216
Application,  258

driven networking,  227, 232
ARM, 

architecture,  247, 248
CPUs,  251

Aruba networks,  230
Asymmetric update processing,  38
Asynchronous,  220
Atomicity,  28

Atomicity, Consistency, Isolation and
Durability See ACID,  26

Attack,  10, 17
Cloud malware injection,  13
Cloud-specific,  12, 16
DDoS,  8, 9, 11, 18
FRC,  16
hypervisor,  13
in Cloud,  4, 7
keystroke timing,  12
offline,  15
resource-freeing attacks (RFAs),  15
side-channel,  10, 12
VM DoS,  12, 18
VM image,  14

Automatic provisioning,  222
Availability,  6, 17, 266, 299, 304

address,  314, 318
data,  306
in the Cloud,  6
issues,  7
of DBaaS,  310
role in VM DoS attack,  18
security, third-party security and,  7
threats to,  309
use of ‘data replication’ strategy in,  309
violation,  18

Average relative error,  161

B
Bandwidth-hungry applications,  144, 169
BASE,  40–42, 44, 48
Basically Available, Soft state, Eventually

consistent See BASE,  40
BestPractice,  266
Black-Box replication,  36
BLADE network technologies,  147
Border gateway protocol,  224

© Springer International Publishing Switzerland 2014
Z. Mahmood (ed.), Cloud Computing, Computer Communications and Networks,
DOI 10.1007/978-3-319-10530-7

Index348

Bring Your Own Device See BYOD,  246
Broker,  260
Broker cloud communication

paradigm,  118, 121
Business,  262
BYOD,  246, 247, 249

C
CAP,  27

principle,  27
reasoning,  40
theorem,  27, 42, 45, 48

Casual consistency,  41
C-C systems,  43–45
CDF,  148
Cipher text policy attribute based

encryption,  107
Ciphertext,  107, 108, 110
C-L systems,  43–45
Cloud, 

broker,  280, 281
computing,  52, 54, 59, 61, 63, 69, 75, 258,

326, 329, 331, 332, 341, 342
databases,  299, 308
DBaaS security challenges,  306, 311
federations,  278, 288–294
provider,  287, 289

Cloud SLA See CSLA,  65
CloudReports simulation tool,  131
Clouds@Home,  252
CloudSim framework,  129
CloudSim toolkit,  129
Compliance,  266
Composition,  261
Compute time,  161
Confidentiality,  6, 10, 18, 299, 306, 307

and privacy,  311
in VMs,  18
security fundamental,  17
using Trusted Cloud Computing Platform

(TCCP) for,  13
Congestion,  144, 150, 153, 160, 169
Conservative update,  145, 147, 154
Consistency,  28
Consistency, Availability and Partition See

CAP,  27
Content Delivery Network See CDN,  24
Co-residency,  9, 10, 12, 15
Count-Min,  145, 147, 153
CP-ABE See Cipher text policy attribute based

encryption,  107
CPU,  242, 247, 251
Cryptographic technique,  109
CSLA,  65, 69

CSV format,  148, 150
Cube,  262
Cumulative distribution function See CDF,  148
Cursor Stability (CS),  31
Customer,  260

D
Data, 

identifier,  112, 113
network,  216
protection,  278, 290, 291, 294

Data Center (DC),  326, 327, 329, 331
Data Center Network See DCN,  144
Database,  215, 220, 222, 224–226, 230, 258
Datacenter,  281, 292, 293
DBaaS,  300, 301, 317

advantages of,  300, 304
applications,  300
authenticity in,  316
availability in,  316
concept of,  301, 320
consumers,  305
data provenance,  308
future prospects of,  317
model,  304, 305, 308
providers,  300, 306–310, 315
security aspects of,  299, 306, 311,

313–315
services,  310
studies on,  319

DCN,  144, 146, 148, 150, 153, 158
architecture,  144
bandwidth-hungry applications in,  169
hosting,  147, 148
management of,  159
performance,  145
traffic data set,  145, 146
workload,  148, 150

DDoS,  8, 9, 11, 16–19
Decryption key,  106, 108, 109
Deployment models,  5, 8, 278, 280
Dirty Read,  32
DISCOVERY,  338

infrastructure,  337
mechanism of,  338
monitoring mechanisms,  333
project,  341
proposal,  332
purpose of,  333
resource localization,  333
system,  330, 332, 333, 336, 337, 339, 340

Distributed, 
algorithms,  144
Logical Router,  224

Index� 349

Documentation,  266
DoS,  244, 247
Durability,  28
Dynamic,  258, 259

E
EC2,  214
Ecosystem,  282, 286, 294
EDoS,  16, 17, 19
Encryption,  106, 107, 112, 117, 119, 122,

306, 314, 315, 319
database,  311
keys and techniques,  305, 306
of data,  316, 317
timings,  117

Energy,  341
consumption,  278, 292, 293
efficiency,  278, 292, 294

Enterprise, 
architectures,  108
software,  222

Environment,  260
Equal Cost MultiPath,  225
Error performance,  145, 155, 156, 158, 162,

167, 170
Eventual Consistency,  41

F
Floodlight,  213, 221, 222
Floodlight SDN controller,  220
Forensics,  245–247
Full replication,  38
Functional,  260

G
GPU,  251, 252
Graph,  262, 264
Graphical user interface,  136
Gray-Box replication,  36
GreenCloud simulator,  129
GridSim toolkit,  129

H
HAProxy load balancer,  217
Hash functions,  147, 153, 154
Hedera,  146
Helios,  146
High, 

availability,  24
scalability,  24

Honeypot,  246, 247
Horizontal partitioning,  38
Hot-spotted partition,  46

HTTP,  147, 148, 150, 151, 156, 167, 215
Hybrid,  248

partial replication,  39
Hypervisor,  5, 6, 10–13, 15, 18, 238, 245

I
IaaS,  4, 5, 12, 107, 210, 214, 238, 252, 258,

278, 285–287, 291–293
advantages of,  105
attacks in,  6
examples of,  10, 13
models of,  19
providers,  287, 293
security in,  6
service model,  8
services,  11, 13
systems,  289

iCanCloud platform,  129
Identity management,  106, 108, 111–113,

122, 214
IFPIX,  144
Information,  260
Infrastructure,  260

provider,  180, 281, 282, 284, 291, 294
Inputs,  260
Integrity,  6, 13, 17, 18, 299, 306, 312, 315,

316, 318, 319
InterCloud,  108
Interoperability,  288
Introspection,  243, 245, 249
IP-based voice networking,  231, 232
IPv4,  216
IPv6,  216
Isolation,  28

K
Key Policy attribute based encryption,  107
Keystroke timing,  10, 12, 18
Knowledge,  265

L
Latency,  266
Layer,  261
Lazy replication,  33, 34
Leakage,  241
Level,  260
Link discovery,  221
Link layer discovery protocol,  221
Locality-based UC (LUC),  329–333,

335–338, 340–343
Loop,  262
Lossy counting,  145, 147
Lost update,  32

Index350

M
MapReduce,  144
Massively Multi-player Online Role Playing

Games See MMOG,  46
Media access control,  216
Midokura’s MidoNet,  224
MMOG,  46
Mobile,  246, 247
Model,  258, 259
Monotonic, 

read consistency,  41
write consistency,  41

mSSE,  112, 113
Multi-cloud,  282, 283, 287, 294
Multidimensional,  266
Multi-tenancy,  5, 6, 8, 10–12, 18, 239
Multi-version Concurrency Control,  32

N
NetFlow,  144
Network, 

backbone,  327
functions virtualization,  224
performance,  144, 153
Point of Presence (PoP),  328, 329, 342
virtualization,  222

Neutron (OpenStack),  216
Neutron Floodlight plugin,  222
NIST,  4, 7
Non-repeatable read,  32
Northbound API (SDN controller),  220
NoSQL,  299
NOX,  213

O
OF/SDN architecture,  212
OL/SDN,  211
OLAP,  265
Open Networking Foundation (ONF),  213
OpenFlow,  210, 213, 217–221, 224

protocol,  213, 219
OpenFlow switch,  217
OpenStack,  210, 214–217, 222, 224
Operations,  260
Optimal,  259
Optimistic concurrency control,  30
Orchestration,  214
Outputs,  260

P
PaaS,  238, 252, 258
PACELC,  42
Parser,  262

Partial replication,  38
Paxos,  30, 35
Pay-as-you-go,  12
PDF,  148
Performance,  259
Pessimistic concurrency control,  30
Platform,  260
Policy-driven networking,  227
Primary copy update,  33
Privacy,  106, 311, 318, 331, 338
Private,  248

cloud,  280, 282
Probability distribution function See PDF,  148
Process,  259, 262
Profile,  260
Properties,  260
Provider lock-in,  278, 283, 288, 294
Public,  248
Public cloud,  280
Pure partial replication,  39
Python,  222

Q
QoS,  228–231, 258, 259
QoSDW,  262, 263, 265
Quality,  262
Quality of Service,  52, 228, 231, 330

R
Race Condition,  31
Rackspace,  214
Randomness,  251, 252
Reactivity,  330
Read skew,  33
Read-your-writes consistency,  41
Real-time, 

moving average,  158, 167
Wi-Fi,  230

Recall,  161
Registry,  259
Reliability,  266
Report,  262
Resiliency,  330
ResponseTime,  266
REST,  222
Risk, 

evaluation,  94
modelling,  94

Role-based, 
access,  111
encryption,  108

ROWA/ROWAA,  35

Index� 351

S
S3,  214
SaaS,  45, 238, 252, 258
Scalability,  330
Schema,  262
SCSRA,  150, 151
SDN,  210, 213, 214, 217, 222, 223, 225, 227,

228, 230, 232
controller,  212, 213, 220
implementation challenges,  210, 226
UC applications in,  231, 232

Searchable encryption,  107, 108, 116, 122
SecDSIM,  113, 116–118, 122

framework,  117, 119
Security,  76, 78, 83, 84, 88, 90, 102, 260, 298,

307–311, 313, 314, 318, 331, 338
and data protection,  86
control mechanisms,  317
data,  316
for relational databases,  319
issues in DBaaS,  320
risk assessment,  84, 86
solutions,  317
testing,  98

Selection,  259, 262
Semantic,  262, 265
Sequence,  262
Server virtualization,  214
Service,  258, 259

lifecycle,  77, 83, 89, 99
model,  5, 8
monitoring,  278, 289, 294
providers,  281, 282, 305, 314, 317–319

Service Level Objective See SLO,  44
ServiceFlow,  262
Service-level agreement,  281
Session consistency,  41
sFlow,  144, 147, 159

datagram,  159
Shards,  24, 37
Shared-lock,  30
Side-channel,  12, 15

attack,  10
SimGrid framework,  128
Simple storage service,  214
Sketch-based algorithms,  145–147, 161
Sketching algorithms,  146, 153, 158, 160
SLA,  52, 54, 55, 258

and cloud,  55
based cloud architecture,  56
challenges,  62
concept of,  52
deviation,  60
levels,  58

management,  56
manager,  68
mechanisms,  53
metrics in,  59
of cloud provider,  57
potential barriers/issues of,  65

SLO,  44, 46
Snapshot, 

reads,  32
writes,  32

Software-defined, 
data centre,  210, 222
networking,  210

Space, 
cost,  161
saving,  147

State,  262
Storage virtualization,  214
Streaming algorithms,  144–146, 158, 162
Sub-service,  261
Successability,  266
Supercomputing,  238
Sustainability,  330
Symmetric,  220

encryption,  106, 107, 109, 122
update processing,  38

T
Throughput,  266
Time complexity,  145, 147, 155–157, 162,

167, 170
Top-K,  153, 162
ToR,  144
Traffic engineering,  225
Tree,  262

U
Ubiquitous network,  5, 11
UC, 

application,  228, 231
Interoperability Forum (UCIF),  227
SDN interaction model,  231

Unified Communications,  210, 227, 232
Update anywhere,  33

approach,  34
Update throughput,  161
User, 

identity,  112
Utility, 

computing,  180, 326, 327, 329–332,
336–338, 341–343

challenges,  343
infrastructures,  326, 331, 338,

341–343

Index352

locality-based,  329
management systems,  332
models,  327, 332, 342
operation of,  329
platforms,  327, 336–338
resources,  327, 329, 332, 342
services,  330, 341
solutions,  330

Utility pricing,  6, 12, 16, 18, 19

V
Values,  265
Vertical, 

partitioning,  37
replication pattern,  39

Virtual Environment (VE),  329–333, 336, 338
Virtual eXtensible Local Area Network,  216
Virtual Local Area Network,  216
Virtual Machine (VM),  214, 290, 329–331,

333, 335–338, 340, 341
Virtualization,  4, 6–8, 12, 238–240, 245,

246, 284
Vivaldi,  333, 334, 340

VLAN,  216, 219, 222
VM images,  214
VMM,  5
VXLAN,  216, 223, 224

W
Web,  259
Write skew,  33

X
Xen,  10, 11, 13, 15, 16
XorJoin,  262
XorSplit,  262

Z
Zipfian, 

distribution,  150, 167
parameter,  147, 170

	Dedication
	Preface
	Acknowledgements
	Other Springer Books by Zaigham Mahmood
	Contents
	About the Editor
	Contributors
	Part I
	Limitations and Challenges of Cloud Environments
	Chapter 1

	Attacks in Public Clouds: Can They Hinder the Rise of the Cloud?
	1.1 Introduction
	1.1.1 Cloud Computing
	1.1.2 Cloud Attributes Affecting Security
	1.1.3 Chapter Overview
	1.1.4 Chapter Organization

	1.2 Related Literature
	1.3 Attacks in the Cloud
	1.3.1 Common Attacks
	1.3.1.1 Distributed Denial of Service Attacks
	1.3.1.2 Keystroke Timing Attacks
	1.3.1.3 Side-Channel Attacks
	1.3.1.4 Discussion

	1.3.2 Cloud-Specific Attacks
	1.3.2.1 VM Denial of Service Attacks
	1.3.2.2 Hypervisor Attacks
	1.3.2.3 Cloud Malware Injection Attacks
	1.3.2.4 VM Image Attacks
	1.3.2.5 VM Relocation Attacks
	1.3.2.6 Resource-Freeing Attacks
	1.3.2.7 Fraudulent Resource Consumption Attacks
	1.3.2.8 Discussion

	1.3.3 Security Attributes in the Cloud

	1.4 Conclusions and Open Issues
	References

	Chapter 2
	Distributed Database Management Systems: Architectural Design Choices for the Cloud
	2.1 Introduction
	2.1.1 Why ACID Properties Are Hard to Scale
	2.1.2 CAP Confusion

	2.2 Background of Distributed Database Concepts
	2.2.1 Transaction and ACID Properties
	2.2.2 Distributed Transactions and Atomic Commit
	2.2.3 Distributed Concurrency Control
	2.2.4 Multi-Version Concurrency Control and Snapshot Isolation
	2.2.5 Isolation Anomalies

	2.3 Replication and Partitioning Mechanisms
	2.3.1 Replica Control Strategies
	2.3.2 Replication Architectures
	2.3.3 Partitioning Architecture
	2.3.4 Classification Based on Update Processing Overheads
	2.3.5 Classification Based on Multi-Tier Web Architecture

	2.4 Distributed Database Systems in the Cloud
	2.4.1 BASE and Eventual Consistency
	2.4.2 Revisiting Architectural Design Space
	2.4.2.1 Consistency Factor
	2.4.2.2 Responsiveness Factor
	2.4.2.3 Partition-Tolerance Factor
	2.4.2.4 Replication Factor

	2.4.3 Data Partitioning and Replication Management

	2.5 Conclusion
	References

	Chapter 3

	Quality of Service and Service Level Agreements for Cloud Environments: Issues and Challenges
	3.1 Introduction
	3.2 QoS and SLA: Intertwined in the Cloud
	3.2.1 QoS and SLA
	3.2.2 Cloud and SLA
	3.2.3 SLA Management
	3.2.4 SLA of a Cloud Provider
	3.2.5 SLA Levels
	3.2.6 Metrics in SLA
	3.2.7 SLA Deviation
	3.2.8 Existing SLA Architectures in the Cloud

	3.3 SLA Challenges and Benefits in Cloud
	3.3.1 SLA Challenges
	3.3.2 Prospective Benefits
	3.3.3 Potential Barriers/Issues of SLAs

	3.4 The Proposed Cloud SLA Architecture
	3.5 Discussion
	3.6 Conclusions and Future Research Directions
	References

	Part II
	Current Developments and R&D Solution
	Chapter 4

	A Methodology for Cloud Security Risks Management
	4.1 Introduction
	4.2 Security Concerns in Clouds
	4.2.1 General Security Characteristics

	4.3 Cloud Ecosystems
	4.4 Cloud Service Lifecycle
	4.5 Risk Assessment of Security threats on Clouds
	4.5.1 Documenting a Security Risk Assessment
	4.5.2 Security Risk Assessment Data Sheet

	4.6 Identifying Cloud Threat Categories
	4.7 Need for Risk Management
	4.7.1 Cloud Threats Identified

	4.8 Risk Methodology Stages
	4.9 Algorithms for Security Risk Assessment
	4.9.1 Algorithm: Deployment Phase
	4.9.2 Algorithm: Operation Phase

	4.10 Testing Security
	4.11 Application: Case Study for Video Scalability in
Cloud Environment
	4.12 Conclusions
	References

	Chapter 5

	SecDSIM: A Framework for Secure Data Storage and Identity Management in the Cloud
	5.1 Introduction
	5.2 Cryptographic Cloud Storage and Identity Management Schemes
	5.2.1 Broadcast Encryption
	5.2.2 Identity-Based Encryption
	5.2.3 Attribute-Based Encryption
	5.2.4 Searchable Encryption
	5.2.5 Role-Based Encryption
	5.2.6 Identity Management

	5.3 Searching on Encrypted Data
	5.4 Grade-Based Access Control
	5.5 Multi-User Searchable Symmetric Encryption
	5.6 SecDSIM Framework
	5.7 Experimental Evaluation and Discussions
	5.7.1 Results Analysis
	5.7.2 Comparison of Cloud Storages

	5.8 Concluding Remarks
	References

	Chapter 6
	CloudReports: An Extensible Simulation Tool for Energy-Aware Cloud Computing Environments
	6.1 Introduction
	6.2 Related Works
	6.3 CloudSim Toolkit
	6.4 CloudReports Simulation Tool
	6.4.1 Simulation Environments
	6.4.2 Software Architecture
	6.4.2.1 CloudReports Core Entities
	6.4.2.2 Extensions
	6.4.2.3 Simulation Manager
	6.4.2.4 Persistence Layer
	6.4.2.5 Reports Manager
	6.4.2.6 Graphical User Interface

	6.5 Case Study
	6.6 Conclusion
	References

	Chapter 7

	Cloud Computing: Efficient Congestion Control in Data Center Networks
	7.1 Introduction
	7.2 Related Works
	7.3 Motivation from a Real DCN Trace
	7.3.1 Overall Workload Analysis
	7.3.2 Workload Composition Analysis

	7.4 Existing Sketching Algorithms
	7.4.1 CM Sketch
	7.4.2 CU Sketch

	7.5 Enhanced CU Algorithms
	7.5.1 α-CU
	7.5.2 Partitioned CU
	7.5.3 Performance Analysis

	7.6 Real-Time Moving Averages
	7.7 System Architecture
	7.8 Performance Evaluation
	7.8.1 Existing Approaches: SS, CM, and CU
	7.8.2 α-CU and Partitioned CU
	7.8.3 Real-Time Moving Averages

	7.9 Conclusion
	References

	Chapter 8

	Energy-Aware Virtual Machine Consolidation in IaaS Cloud Computing
	8.1 Introduction
	8.2 IaaS Cloud Management Systems
	8.2.1 Virtualization Technologies
	8.2.2 VM Migration Techniques

	8.3 Energy-Aware VM Consolidation and Reconfiguration in IaaS Cloud Data Centers
	8.3.1 Energy-Efficient VM Consolidation
	8.3.1.1 Static VM Consolidation
	8.3.1.2 Dynamic VM Consolidation
	8.3.1.3 VM Consolidation Modeling Techniques
	8.3.1.4 Taxonomy and Survey of VM Consolidation Mechanisms
	8.3.1.5 Advantages and Disadvantages of VM Consolidation

	8.3.2 VM Migration and Reconfiguration
	8.3.2.1 Reconfiguration Cost Modelling Principles
	8.3.2.2 Related Works

	8.4 Conclusions and Future Research Directions
	References

	Chapter 9

	Software-Defined Networking (SDN) for Cloud Applications
	9.1 Introduction
	9.2 SDN Architecture
	9.2.1 SDN Architectural Approaches
	9.2.2 OF/SDN Architecture
	9.2.3 A Brief Overview of SDN Developments

	9.3 The IaaS Cloud—SDN Software Stack
	9.3.1 OpenStack
	9.3.2 OpenFlow
	9.3.2.1 OpenFlow Switch
	9.3.2.2 OpenFlow Protocol

	9.3.3 SDN Controllers

	9.4 The Software-Defined Data Center
	9.4.1 Network Virtualization
	9.4.2 Network Functions Virtualization
	9.4.3 Traffic Engineering

	9.5 SDN Implementation Challenges
	9.6 SDN for UC Applications
	9.6.1 UC Applications
	9.6.2 Some Use Cases
	9.6.2.1 Automating Quality of Service Configuration
	9.6.2.2 Providing Diagnostics to Facilitate Prioritization of Real-Time Wi-Fi Traffic

	9.6.3 UC-SDN Interaction Model

	9.7 Conclusions
	References

	Part III
	Advances in Cloud Technologies and Future Trends
	Chapter 10

	Virtualization and Cloud Security: Benefits, Caveats, and Future Developments
	10.1 Introduction
	10.2 Technology Background
	10.2.1 Cloud Frameworks
	10.2.2 Virtualization Frameworks

	10.3 Cloud Security
	10.3.1 Requirements for Cloud Monitoring
	10.3.2 Replication and Cloud Reliability

	10.4 Related Work
	10.5 Visionary Thoughts for Practitioners
	10.5.1 BYOD and Virtualization
	10.5.2 Virtual Mobile Honeypots and Forensics
	10.5.3 ARM CPUs for the Cloud
	10.5.4 A Way Forward

	10.6 Semantic Introspection and Modeling VM Behavior
	10.7 Future Research Directions
	10.7.1 Manycore Computing for the Cloud
	10.7.2 Effective Randomness for the Cloud
	10.7.3 Novel Cloud Application Scenarios

	10.8 Conclusion
	References

	Chapter 11

	Quality-of-Service Data Warehouse for the Selection of Cloud Services: A Recent Trend
	11.1 Introduction
	11.2 Background
	11.3 Cloud Service Selection Structure
	11.4 QoSDW Model
	11.4.1 Main Components
	11.4.2 Formal Definitions
	11.4.3 QoSDW Schema
	11.4.4 Service Selection Based on QoSDW

	11.5 QoSDW Benefits
	11.6 Simulation and Results
	11.6.1 Service Selection Example Based on QoS
	11.6.2 QoSDW Simulation

	11.7 Conclusion
	References

	Chapter 12
	Characterizing Cloud Federation Approaches
	12.1 Introduction
	12.2 Architectural and Deployment Models of Clouds
	12.2.1 Definitions of Standardization Bodies
	12.2.2 Cloud Models in European Research Projects
	12.2.3 Classification of Research Projects

	12.3 InterCloud and Cloud Federation Approaches
	12.4 Interoperability Issues of Cloud Federations
	12.4.1 Monitoring in Cloud Federations
	12.4.2 Data Protection in Cloud Federations
	12.4.3 Cloud Storage Services in Cloud Federations
	12.4.4 Energy Efficient Management of Cloud Federations

	12.5 Conclusion
	References

	Chapter 13
	Security Aspects of Database-as-a-Service (DBaaS) in Cloud Computing
	13.1 Introduction
	13.2 Background of DBaaS
	13.2.1 Discerning Features and Advantages of DBaaS
	13.2.2 Cloud Storage Architectures
	13.2.2.1 Layered Architecture for the Outsourced Cloud DBMS
	13.2.2.2 Shared-Disk vs Shared-Nothing Cloud Database Architecture

	13.3 Challenges Faced by DBaaS
	13.4 Security Challenges Faced by DBaaS
	13.4.1 Confidentiality
	13.4.2 Integrity
	13.4.3 Availability
	13.4.4 Privacy Challenges

	13.5 Mechanisms to Overcome Security Challenges in DBaaS
	13.5.1 Confidentiality and Privacy
	13.5.2 Integrity
	13.5.3 Availability
	13.5.4 Future Directions

	13.6 Conclusion
	References

	Chapter-14
	Beyond the Clouds: How Should Next Generation Utility Computing Infrastructures Be Designed?
	14.1 Introduction
	14.1.1 Inherent Limitations of Large-scale Data Centers
	14.1.2 Ubiquitous and Oversized Network Backbones
	14.1.3 Locality-Based Utility Computing
	14.1.4 Chapter Outline

	14.2 Overall Vision and Major Challenges
	14.3 Background
	14.4 Premise of a LUC OS: The DISCOVERY Proposal
	14.4.1 Overview
	14.4.2 Resource Localization and Monitoring Mechanisms
	14.4.2.1 Giving Nodes a Position
	14.4.2.2 Searching for Close Nodes
	14.4.2.3 Learning
	14.4.2.4 Routing

	14.4.3 VEs Management Mechanisms
	14.4.4 VM Images Management
	14.4.5 Reliability Mechanisms
	14.4.6 Security and Privacy Mechanisms
	14.4.7 Towards a First Proof of Concept

	14.5 Future Work/Opportunities
	14.5.1 Geo-diversification as a Key Element
	14.5.2 Energy, a Primary Concern for Modern Societies

	14.6 Conclusion
	References

	Index

