Chapter 6

Effects of Antimalarials on the
Pharmacokinetics of Co-Administered
Antimalarials

This chapter provides details of studies that describe drug interactions in which
antimalarial drugs affect the pharmacokinetics of various co-administered antima-
larial drugs. These antimalarials include amodiaquine, artemether, artemisinin,
artesunate, atovaquone, chloroquine, dapsone, mefloquine, primaquine, proguanil,
pyrimethamine, quinidine, quinine, sulfadoxine/pyrimethamine, and tafenoquine.

6.1 Effects of Amodiaquine on the Pharmacokinetics
of Antimalarials

Omoruyi et al. (2007) studied the effects of amodiaquine on the pharmacokinetics
of halofantrine in 10 healthy Nigerian males, using a cross over design with an
8-week washout. Subjects received a single oral dose of 500 mg halofantrine with
or without pre-administered amodiaquine, given as a single 600 mg oral dose 1 day
prior. The major findings were a lack of any observable or statistical change in the
Tmax (6 vs. 7 h), Cmax (144 £ 53 vs. 164 458 pg/L, mean + SEM), t1/2 (142 £ 23
vs. 139£28), or AUC,, (14,932+£4,932 vs. 17,3294+5,988 png h/L) for
halofantrine vs. combined therapy, respectively. Little differences were observed
for desbutylhalofantrine, the major metabolite, with respect to Tmax, Cmax, mean
residence time, and AUC, when subjects were given halofantrine or in combination
with amodiaquine. It has been shown, in vitro, that human CYP3A4 and CYP3AS
are major isoenzymes responsible for the N-debutylation of halofantrine (Baune
et al. 1999) and amodiaquine is a weak inhibitor of these enzymes (Bapiro
et al. 2001; Baune et al. 1999), supporting the lack of pharmacokinetic interaction
observed in this study. However, there was significant variability, which in con-
junction with the relatively small and sample size, could have yielded false negative
findings. As well, only single doses of halofantrine and amodiaquine were used,
which may not reflect the true clinical, steady-state, situation where subjects would
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be given multiple doses of either agent. Despite the lack of pharmacokinetic
interaction, however, the authors did note a prolongation of QT interval in the
combination group compared to subjects on halofantrine alone, indicating a phar-
macodynamic effect that appears to be unrelated to any pharmacokinetics interac-
tion. These observations, however, need to be confirmed in the actual patient
population (Table 6.1).

Orrell et al. (2008) examined the pharmacokinetic interaction between
artesunate and amodiaquine in healthy volunteers of African descent. Using a
randomized, prospective, and crossover design, subjects received either artesunate
(4 mg/kg), amodiaquine (10 mg/kg), or the combination, as single oral doses. The
study also determined the concentrations of the major metabolite for artesunate,
dihydroartemisinin. The primary findings from these experiments were: signifi-
cantly reduced dihydroartemisinin AUC (2044.4 +564.2 vs. 1410.5 +543.6 ng h/
mL, mean £+ SEM), Cmax (844.5 +309.4 vs. 446.2 £ 239.5 ng/mL), and increased
t1/2 (1.46 £0.48 vs. 2.20£0.85 h) and Vd/F (4.89 +1.67 vs. 9.68 £4.16 L) for
subjects given artesunate alone versus in combination with amodiaquine, respec-
tively. Although there were trends toward a decrease in Cmax, the effect was not
significant. Likewise, only trends toward a decrease in the AUC and Cmax of the
parent artesunate in the presence of amodiaquine were observed. These interactions
are not supported by the known metabolic properties from in vitro studies.
Artesunate is converted primarily by CYP2A6 to dihydroartemisinin
(Li et al. 2003), which is further conjugated primarily by UGT1A9 and UGT2B7
(Ilett et al. 2002), and amodiaquine has not been shown to affect these enzyme
pathways. Other explanations for the altered pharmacokinetics have not been
provided by the authors and should be further investigated. One has to be cautious
in applying the results of this study given the large variability and small sample
size. More importantly, it is not known whether the altered pharmacokinetic
characteristics of dihydroartemisinin (considered more potent than the parent
artesunate) is translated to a reduced clinical effect (not determined in this study),
although the combination therapy has generally been accepted by clinicians to be
more effective in the treatment of P. falciparum than amodiaquine alone. As well,
the effects of amodiaquine on artesunate pharmacokinetics and the relationship
(or lack of) between pharmacokinetics-pharmacodynamics should ideally be deter-
mined in the target population under clinical (i.e. steady-state) dosing conditions.

6.2 Effects of Artemether on the Pharmacokinetics
of Antimalarials

Na-Bangchang et al. (2000) studied the pharmacokinetic interactions between
single oral doses of primaquine (45 mg), mefloquine (750 mg), quinine (600 mg),
and artemether (300 mg) in healthy male Thai volunteers (n = 8), using a prospec-
tive, open label, cross over design. Artemether did not affect the pharmacokinetics
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of mefloquine, quinine, or primaquine as evident by comparable Cmax (1,420
[929-1,870] vs. 1,375 [980-1,789]; 3,140 [1,960—4,500] vs. 3,270 [2,050-4,610];
and 197 [165-250] vs. 186 [152-225] ng/mL, median [95 % CI]), AUC (426 [250-
638] vs. 452 [262-550]; 58,850 [31,500-100,000] vs. 70,850 [26,700-10,900];
1,505 [1,173-1,943] vs. 1,488 [1,217-1,908] ng h/mL), Tmax (4 [3-12] vs. 6 [2—
24]; 2.8 [1.3-4] vs. 2.8 [2-4]; 2.5 [2-2.5] vs. 0.2 [0.1-0.7] h), t1/2 (1.8 [1.2-3.1]
vs. 2.2 [1.11-3.3]; 0.7 [0.4-6.3] vs. 0.8 [0.3-1.9]; 1.8 [1.2-6.5] vs. 4.0 [1.0-6.9] h),
Vd/F (16.5 [14.4-22.8] vs.15.3 [12.8-22.6]; 3.2 [2.0-5.0] vs. 3.1 [2.44.7]; 26.1
[14.8-32.8] vs. 25.3 [18.0-32.9] L/kg), and CL/F (0.4 [0.4-1.0] vs. 0.5 [0.4-0.9];
3.1 [1.8-5.8] vs. 2.8 [1.7-6.8]; and 62.8 [45.1-76.1] vs. 65.2 [47.0-73.4] mL/min/
kg) in combination with artemether compared to each antimalarial alone, respec-
tively. These findings are supported by the lack of known inhibitory effects by
artemether toward the metabolism of these antimalarials; however, the negative
findings should be interpreted in the context of the small sample size and single-
dose design.

Lefevre et al. (2002) studied the pharmacokinetic interaction between
artemether/lumefantrine (given as consecutive oral doses 80 mg/480 mg over
60 h) and quinine (10 mg/kg iv single dose) in healthy male volunteers, using a
prospective, randomized, double-blinded, parallel group design (n= 14/group).
Artemether/lumefantrine did not significantly affect the AUC (52.6£13.2
vs. 55.7£13.0 ng h/mL), Cmax (4,060 +62.0 vs. 4,090 =452 ng/mL), Tmax
(2.0 [2.0-2.0] vs. 2.0 [2.0-2.0] h, median [range]), and t1/2 (10.4+1.7
vs. 9.2 + 1.5 h) of quinine when given in combination compared to quinine alone.
These findings are consistent with those reported by Na-Bangchang et al. (2000)
which also demonstrated a general lack of drug interaction between quinine and
artemether/lumefantrine despite these agents sharing common metabolic
(i.e. CYP3A4) pathways.

Na-Bangchang et al. (1995) examined the effect of artemether (single oral dose
of 300 mg) on the disposition of mefloquine (single oral dose of 750 mg) in patients
of Thai ethnicity diagnosed with uncomplicated falciparum malaria (n=10
vs. 17 control), using a prospective, open label, parallel group design. Artemether,
administered 24 h prior, significantly decreased the Cmax (1,290 [827-2,619]
vs. 1,820 [1,283-2,531] ng/mL, median [range]) and AUC., (11.11 [6-20.96]
vs. 15.29 [9.3-36.71] pg day/mL), increased the Tmax (14 [5—24] vs. 6 [4-16] h),
but had no effect on the t1/2 (11.1 [6.8—14.3] vs. 13.4 [10.5-19.1] h) of mefloquine
compared to the mefloquine only control group, respectively. No other pharmaco-
kinetic parameters were reported by the authors. The decreased exposure of mef-
loquine in the presence of artemether suggests the possibilities of a drug interaction
through altered absorption or clearance. Because absorption characteristics were
not reported, it is difficult to ascribe the interaction to this pharmacokinetic process.
On the other hand, artemether, a substrate and an autoinducer of CYP3A4 (German
and Aweeka 2008; van Agtmael et al. 1999), may have increased the intrinsic
clearance of mefloquine, which is known to be metabolized by the same isoenzyme.
More experiments are needed to confirm this hypothesis since the t1/2 remained
unchanged and clearance parameters were not reported. Despite reduced
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mefloquine exposure, however, there was a significant enhancement of parasite
clearance in the combination group compared to controls taking mefloquine alone,
suggesting a disconnect between pharmacokinetics and pharmacodynamics effects.
No significant increases in adverse drug events were reported in the combinations
group, but these observations should be reproduced under steady-state conditions.

The pharmacokinetic interaction between mefloquine (1,000 mg orally divided
in 3 doses over 12 h) and artemether/lumefantrine (80 mg/480 mg orally every 12 h
for 6 doses) was examined by Lefevre et al. (2000) in healthy volunteers, using an
open label, prospective, parallel group design (n = 14 in each group). Steady-state
artemether/lumefantrine did not have a significant effect on the Cmax (973 £ 315
vs. 1,000 & 266 ng/mL, mean £ SD), Tmax (18 [14-32] vs. 23 [10-38] h), AUC,
(412+142 vs. 375+ 125 pg h/mL), and t1/2 (385 £ 141 vs. 427+ 198 h) of
mefloquine when administered in combination compared to mefloquine alone,
respectively. The lack of apparent pharmacokinetics interaction between
artemether/lumefantrine and mefloquine in this study is inconsistent with that
reported by Na-Bangchang et al. (1995), but there are design differences between
these two studies (i.e. healthy volunteers vs. patients; single dose vs. steady-state)
that may have resulted in these discrepancies. Mefloquine, artemether, and
lumefantrine are all metabolized primarily by CYP3A4 (German and Aweeka
2008; Fontaine et al. 2000) and artemether is also an autoinducer of CYP3A4
(van Agtmael et al. 1999); these characteristics impart some degree of complexity
to the molecular basis of the pharmacokinetic interaction between these drugs.
Opposing inductive and inhibitory effects toward the same isoenzyme may be
hypothesized to explain the lack of pharmacokinetic interaction, but one should
also take into account the very large variability and the relatively small
sample used.

Tan-ariya et al. (1998) studied the pharmacokinetic interaction between pyri-
methamine (single oral dose of 100 mg) and artemether (single oral dose of 300 mg)
in healthy male volunteers of Thai origin (n = 8), using an open label, prospective,
cross over design. Artemether significantly increased Cmax (1,180 [631-1,500]
vs. 818 [676-1,190] ng/mL, median [range]) and decreased Vd/F (2.56 [1.88—4.16]
vs. 3 [1.83—4.02] L/kg), but had little effect on Tmax (1.25 [0.5-1.5] vs. 1.5 [1-4]
h), AUC (75.7 [49.1-79] vs. 63.8 [43.9-86.8] pg h/mL), t1/2 (77 [49.7-90.5]
vs. 67.1 [58.6-106] h), and CL/F (22.8 [21.2-34.2] vs. 28.5 [16.7-31.1] mL/min/
kg), when used in combination compared to pyrimethamine alone, respectively.
The magnitude of the changes (in Cmax and Vd/F) is considered small and difficult
to explain by the known metabolic properties of pyrimethamine: it is not exten-
sively metabolized nor is it a substrate of any major CYP450 enzymes
(Li et al. 2003). The authors hypothesize that protein binding displacement by
artemether may explain the increased Cmax, but this would contradict the reduced
volume of distribution also observed in this study. One should interpret these data in
the context of the small sample size and large variability. It is also not known if
these observations can be observed under steady-state (i.e. clinical) dosing
conditions.
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6.3 Effects of Artemisinin on the Pharmacokinetics
of Antimalarials

Zhang et al. (2001) examined the pharmacokinetic interaction between single oral
doses of artesunate (100 mg) and artemisinin (500 mg) in healthy Vietnamese male
volunteers (n=10) using an open label, prospective, randomized design.
Artemisinin significantly increased the AUC,, (8,121 [5,534-11,917] vs. 2,765
[1,637—4,670] nmol h/L, mean [95 % CI]), Cmax (2,821 [1,968—4,043] vs. 1,664
[999-2,772] nmol/L), t1/2 (1.63 [1.34-1.99] vs. 0.55 [0.44—0.70] h), but decreased
the CI/F (32 [22-47] vs. 94 [56—159] L/h) of the major metabolite of artesunate,
dihydroartemisinin, in combination treatment compared to artesunate alone, respec-
tively. Although dihydroartemisinin pharmacokinetic parameters were also deter-
mined after 5 days of continuous artesunate administration, there lacked a control
for comparison. Artesunate is converted primarily by CYP2A6 to dihydroar-
temisinin (Li et al. 2003), which is further conjugated by UGT1A9 and UGT2B7
(Ilett et al. 2002). These findings may suggest that artemisinin had an inhibitory
effect toward the glucuronidation of dihydroartemisinin, although the molecular
basis for this interaction needs to be verified (i.e. by using an established in vitro
system to test the inhibition UGT1A9 and UGT2B7 probe substrates). Unfortu-
nately, the pharmacokinetics of artesunate was not studied which may have pro-
vided further mechanistic insights into the interaction.

6.4 Effects of Artesunate on the Pharmacokinetics
of Antimalarials

Orrell et al. (2008) examined the pharmacokinetic interaction between artesunate
and amodiaquine in healthy volunteers of African descent. Using a randomized,
prospective, and crossover design, subjects received either artesunate (4 mg/kg),
amodiaquine (10 mg/kg), or the combination, as single oral doses. The study also
determined the concentrations of the major metabolite for amodiaquine (desethyla-
modiaquine). The major findings from these experiments were significantly
reduced desethylamodiaquine AUC (12,041 43,480 vs. 8,437 4,009 ng h/mL,
mean + SEM) and Tmax (3.68 +1.85 vs. 2.18 £1.03 h), and increased CI/F
(768 £252 vs. 1,330+ 735 L/min) for subjects given amodiaquine alone or in
combination with artesunate, respectively. Although there were trends toward a
decrease in day 7 desethylamodiaquine concentrations, the effect was not signifi-
cant. Likewise, only trends toward decreases in the AUC, Cmax, Tmax and t1/2 of
the parent artesunate in the presence of amodiaquine were observed. Based on
in vitro experiments, CYP2C8 is known to be the primary isoenzyme responsible
for the metabolism of amodiaquine (Li et al. 2002, 2003) but it remains to be
determined if artesunate or its major metabolite, dihydroartemisinin, has inhibitory
effects toward CYP2CS8. The metabolism of desethylamodiaquine could also be
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affected by artesunate, but the metabolic pathways for this major metabolite needs
to be investigated further. More importantly, it is not known whether the altered
pharmacokinetic characteristics of desethylamodiaquine, which has pharmacolog-
ical activity, is translated to a reduced clinical effect (which was not determined in
this study). As discussed above, the combination of artesunate and amodiaquine has
generally been documented to be more efficacious in malaria treatment than
amodiaquine or artesunate alone. Similar limitations of large variability and small
sample size is described for this study, and these pharmacokinetic perturbations
should ideally be confirmed in the target population under clinical (i.e. steady-state)
dosing conditions.

Using a prospective, randomized, cross over design, van Vugt et al. (1999)
studied the effect of artesunate (250 mg orally x 3 doses) on the pharmacokinetics
of atovaquone and proguanil (given in a fixed combination of 1,000 mg/400 mg
orally x 3 doses) in 12 healthy adult Karen volunteers. Artesunate did not affect the
pharmacokinetics of atovaquone as evident by comparable Cmax (13.27 £6.14
vs. 13.02 £ 8.28 pg/mL, mean & SEM), Cmin (7.66 +4.49 vs. 6.75 4 3.44 pg/mL),
Tmax (5.5+4.4 vs. 57+£4.0 h), t1/2 (38.5+15.6 vs. 42.24+22.0 h), AUC
(293 +163 vs. 2654+ 120 pg h/mL), CI/F (93+£61 vs. 90 £47 mL/h/kg), and
Vd/F (4.7 £ 3.3 vs. 4.9 £ 3.0 L/kg) in subjects receiving the combination compared
to atovaquone with proguanil alone. There was very large variability; thus these
negative findings should be interpreted with caution given the relatively small
sample size. Because atovaquone is not extensively metabolized, the lack of
interaction with artesunate may be reasonable from a mechanistic point of view.

Artesunate did not affect the pharmacokinetics of proguanil as evident by
comparable Cmax (751 £242 vs. 7424220 ng/mL, mean=+ SEM), Cmin
(193 59 vs. 240+ 63 ng/mL), Tmax (5.24+1.9 vs. 44+1.2 h), t1/2 (143 £2.6
vs. 144427 h), AUC,, (9,428 2,811 vs. 10,425+£3,290 ng h/mL), CI/F
(764 £ 203 vs. 710 250 mL/h/kg), and Vd/F (15.8 £5.5 vs. 14.5+4.8 L/kg) in
subjects receiving the combination compared to atovaquone with proguanil alone.
Similar findings of no pharmacokinetic interactions were observed for the metab-
olite cycloguanil as evident by comparable Cmax (67 +=72 vs. 60 +76 ng/mL,
mean = SEM), Cmin (16 £9 vs. 21 £25 ng/mL), Tmax (6.4 £3.1 vs. 6.4 £2.3 h),
t1/2  (15.6+39 vs. 17729 h), and AUC, (1,810%1,308
vs. 1,748 £ 1,639 ng h/mL) in subjects receiving the combination compared to
atovaquone with proguanil alone, respectively. These observations are supported by
the fact that proguanil is metabolized by CYP3A (Birkett et al. 1994), CYP2C19
(Coller et al. 1999), and CYP1A2 (Coller et al. 1999), none of which were inhibited
by artesunate as shown by Bapiro et al. (2001) in vitro. Again, one should interpret
these negative findings in light of the large variability and the relatively small
sample size.

The effects of artesunate (200 mg orally x 1) on the pharmacokinetics of mef-
loquine (750 mg orally x 1 followed by 500 mg orally 6 h later) were studied by
Karbwang et al. (1994) in patients diagnosed with acute, uncomplicated falciparum
malaria (n =20 total), using a prospective, open label, randomized, parallel group
design. Artesunate increased the CI/F (2.9+6.6 vs. 1.1 +0.50 mL/min/kg,
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mean &+ SD) and Vd/F (31.8 + 5.1 vs. 25.0 + 6.0 L/kg) but did not change the Cmax
(1,623 +388 vs. 2,212+ 513 ng/mL), Tmax (15.0+3.0 vs. 20.3+5.2 h), AUC
(12.8 (SD not determined) vs. 17.2+6.4 pg d/mL), and t1/2 (11.0£7.0
vs. 11.9£2.7 days) of mefloquine when administered in combination compared
to mefloquine alone, respectively. The lack of change in mefloquine exposure in the
presence of artesunate is consistent with the known metabolic properties of the two
agents: that mefloquine is primarily metabolized by CYP3A4 (Fontaine et al. 2000)
and that artesunate has little inhibitory effects toward this isoenzyme (Bapiro
et al. 2001). On the other hand, increased volume of distribution and clearance
were attributed by the authors to protein binding displacement by artesunate which
hypothetically increased the free fraction and rate of clearance of mefloquine.
Despite the lack of a significant pharmacokinetic interaction, the combination of
artesunate and mefloquine resulted in a significant shortened fever and parasite
clearance times, and little difference in adverse effects.

Zhang et al. (2001) examined the pharmacokinetic interaction between single
oral doses of artesunate (100 mg) and artemisinin (500 mg) in healthy Vietnamese
male volunteers (n=10) using an open label, prospective, randomized design.
Significantly decreased AUC., (5,763 [4,813-6,901] vs. 8,555 [6,212—-11,781]
nmol h/L, mean [95 % CI]), Cmax (1,803 [1,413-2,299] vs. 2,408 [1,824-3,179]
nmol/L) but increased CI/F (308 [257-368] vs. 207 [151-285] L/h) of artemisinin
were observed when subjects were given the combination of artemisinin and
artesunate. These findings were attributed by the authors to the autoinduction
effects of artemisinin itself, rather than any effects by artesunate which is not
known to induce the CYP450 enzymes responsible for the metabolism of
artemisinin. The experimental design of the study, however, did not allow the
verification of autoinduction which remains to be further tested.

6.5 Effects of Atovaquone on the Pharmacokinetics
of Antimalarials

Edstein et al. (1996) examined the effect of atovaquone (500 mg orally twice daily
for 3 days) on the pharmacokinetics of proguanil (200 mg orally twice daily for
3 days) in patients of Thai ethnicity infected with acute falciparum malarial
infection (n=12 in combination vs. n=4 control patients on proguanil alone).
Atovaquone did not affect the CI/F (0.95 [0.73-1.32] vs. 1.25 [0.99-1.45] L/h/kg,
median [range]), t1/2 (13.6 [9.1-17.6] vs. 14.2 [9.3-16.8] h), and AUC,, (27.1
vs. 16.8 pg h/mL, no range provided) of proguanil, when given in combination
compared to proguanil alone, respectively. The lack of pharmacokinetic interaction
between atovaquone and proguanil may be explained by the fact that proguanil is
predominately bioactivated by CYP2C19 (Funck-Brentano et al. 1997) and
atovaquone has very little inhibitory effects toward this isoenzyme (Bapiro
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et al. 2001) in humans. However, the results of this study should be interpreted in
the context of small sample size, unbalanced groups, and large variability.

The effects of atovaquone (1,000 mg orally daily for 3 days) on the pharmaco-
kinetics of steady-state proguanil (given as 400 mg orally x 3 days), the typical
dosing regimen recommended for malaria treatment, was studied by Gillotin
et al. (1999) in healthy volunteers (n=18) using an open label, prospective,
randomized cross over design. Similar to the lack of effect by proguanil on the
pharmacokinetics of atovaquone, neither the pharmacokinetics of proguanil nor its
active metabolite, cycloguanil, was affected by atovaquone. For proguanil, only the
Cmax was slightly decreased (509.4 [351.3-819.9] vs. 547.6 [382.7-911.7] ng/mL,
mean [range]) and no differences were observed for Tmax (3 [2-6] vs. 3 [2-4] h),
AUC (5,998 [3,551-8,361] vs. 6,437 [2,959-12,084] ng h/mL), t1/2 (14.5 [10.3—
20.4] vs. 13.7 [8.6-18.3] h), CI/F (1,146 [797-1,878] vs. 1,082 [552-2,253]
mL/min), and Vd/F (1,399 [822-2,337] vs. 1,226 [790-1,763] L), for subjects
taking the combination compared to proguanil alone, respectively. A lack of effect
of atovaquone on cycloguanil (metabolite) pharmacokinetics was evident by sim-
ilar Cmax (79.2 [5.3-194.9] vs. 82.1 [5.5-208.4] ng/mL), Tmax (6 [4—8] vs. 6 [4-8]
h), AUC, (1,203 [413-2,197] vs. 1,355 [428-3,172] ng h/mL), and t1/2 (11.8 [4.9-
27.0] vs. 11.1 [4.3-21.3] h), for combination treatment compared to proguanil
alone, respectively. The ratio of cycloguanil and proguanil also remained the
same in combination (0.21) or single (0.22) treatment, suggesting an absence of a
metabolic interaction at the enzymatic level. These observations are supported by
the fact that proguanil is primarily metabolized by CYP3A (Birkett et al. 1994),
CYP2C19 (Coller et al. 1999), and CYP1A2 (Coller et al. 1999), none of which
were inhibited by atovaquone as shown by Bapiro et al. (2001) in vitro. However,
one should consider the large variabilities in all the pharmacokinetic parameters
and the relatively small sample size when interpreting these negative findings.

6.6 Effects of Chloroquine on the Pharmacokinetics
of Antimalarials

The effects of chloroquine on the pharmacokinetics of dapsone have been described
above (Adedoyin et al. 1998). Miller et al. (2013) examined the pharmacokinetic
interaction between tafenoquine (900 mg orally daily x 2), a new agent being
developed for the treatment and eradication of hepatic P. vivax, and chloroquine
(600 mg orally daily x 2, then 300 mg X 1) in healthy volunteers (n = 20), using a
prospective, randomized, double blind design. Chloroquine did not affect the
pharmacokinetics of tafenoquine, as evident by the similar AUC,, (0.98 [0.84—
1.14] ng h/mL, geometric mean ratio [90 % CI] between combination to
tafenoquine alone), Cmax (1.13 [0.96-1.34] ng/mL), and t1/2 (1.06 [0.94—1.20]
h). No other pharmacokinetic parameters were reported. Although there was a trend
toward a transient increase in the geometric mean ratio of tafenoquine Cmax at day
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2, the effect was diminished at end of the dosing regimen (day 3). The lack of
pharmacokinetic interaction was translated into a lack of pharmacodynamic inter-
action between these agents, including a negligible effect on QT prolongation. This
is a well powered study and the negative findings support, in theory, the lack of
metabolism-based interaction between tafenoquine (not extensively metabolized
and unlikely subjected to CYP450-mediated interaction) and chloroquine (a weak
inhibitor of CYP2D6).

6.7 Effects of Dapsone on the Pharmacokinetics
of Antimalarials

Ahmad and Rogers (1980) examined the pharmacokinetic interaction between
dapsone (single oral 100 mg dose) and pyrimethamine (single oral 25 mg dose) in
healthy volunteers (n=7), using a prospective, open label, cross over design.
Dapsone did not affect the absorption constant (0.72+0.25 vs. 1.01£0.38 h™ ',
mean £ SD), t1/2 (83.2+303 wvs. 825£13.6 h), CI/F (258+7.1
vs. 24.8+3.8 mL h/kg), Vd/F (3.02£0.72 vs. 2.93+0.52 L/kg), and Cmax
(235£ 15 vs. 234+21 ng/mL) of pyrimethamine when given in combination
treatment compared to pyrimethamine alone, respectively. Because pyrimethamine
is not extensively metabolized, nor is it a substrate of any major CYP450 enzymes
(Li et al. 2003), the lack of drug interaction observed in this in vivo study may be
explained by its inert metabolic properties. However, it is unclear if these observa-
tions are reproducible in the patient population under clinical (i.e. steady-state)
dosing conditions.

6.8 Effects of Mefloquine on the Pharmacokinetics
of Antimalarials

Edwards et al. (1993) studied the effects of mefloquine (single 10 mg/kg oral dose)
or quinine (10 mg/kg single oral dose) on the pharmacokinetics of primaquine
(single 45 mg oral dose) in healthy male volunteers (n =9) or patients infected with
falciparum malaria in convalescence (n=7), respectively, using an open label,
prospective, cross over design. Mefloquine did not change the Cmax (229 [114-
503] vs. 167 [113-532] pg/L, median [range]), Tmax (3 [2—4] vs. 2 [1-4] h), CI/F
(34.0 [21.7-49.0] vs. 33.1 [17.6-49.3] L/h), or t1/2 (3.9 [1.7-13.5] vs. 6.1 [1.7-
16.1] h) of primaquine, when used in combination compared to primaquine alone,
respectively. Likewise, little effect from mefloquine co-administration on the
pharmacokinetics of carboxyprimaquine, a major metabolite of primaquine, was
observed, as evident by similar Cmax (1,035 [174-3,015] vs. 890 [553-3,634] pg/
L, median [range]), Tmax (8 [2-24] vs. 6 [3—16] h), and AUC,,, (13,471 [2,132—
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17,863] vs. 12,737 [6,837-27,388] pg h/L) when comparing combination treatment
to primaquine alone, respectively. In patients in convalescence from malaria infec-
tion, quinine did not change the Cmax (295 [64-308] vs. 271 [147-431] pg/L,
median [range]), Tmax (2 [1.5-4] vs. 3 [1.5-4] h), CI/F (21.3 [15.9-73.0] vs. 24.8
[12.6-48.4] L/h), or t1/2 (5.1 [1.4-11.6] vs. 3.5 [2.7-7.9] h) of primaquine, when
used in combination compared to primaquine alone, respectively. On the other
hand, quinine significantly decreased Cmax (343 [185-875] vs. 600 [380-1,055]
pg/L, median [range]) and AUC,, (3,831 [2,144-15,882] vs. 7,533 [4,876-18,545]
pg h/L) but had little effect on Tmax (4 [1.5-24] vs. 8 [3—24] h) of primaquine. The
lack of an in vivo pharmacokinetic interaction between mefloquine and primaquine
observed in this study may be explained, other than the small sample size and large
variability, by the fact that mefloquine has not been known to affect the CYP450
isoenzymes responsible for the metabolism of primaquine in humans (CYP1A2 and
CYP2D6 (Li et al. 2003). On the other hand, quinine is a potent inhibitor of
CYP2D6 (Bapiro et al. 2001) in vitro, which may explain the significant reduction
in the formation of carboxyprimaquine and a trend toward an increase in Cmax of
primaquine, when quinine was co-administered to test subjects. However, other
pharmacokinetic parameters (e.g. AUC of primaquine in plasma or the metabolic
ratio) needed to have been determined to confirm this hypothesis.

Na-Bangchang et al. (2000) studied the pharmacokinetic interactions between
single oral doses of primaquine (45 mg), mefloquine (750 mg), quinine (600 mg),
and artemether (300 mg) in healthy male Thai volunteers (n = 8), using a prospec-
tive, open label, cross over design. Mefloquine, quinine, primaquine did not affect
the Cmax (421 [314-498], 369 [265-560], 389 [290-490] vs. 411 [280-555]
ng/mL, median [95 % CI]), AUC (1,947 [913-2,992], 1,832 [944-3,456], 1,617
[1,013-2,528] vs. 1,862 [1,032-2,696] ng h/mL), Tmax (2 [1.5-2.0], 2 [2-2],
2 [1.5-2.0] vs. 2 [1.5-2] h), t1/2 (1.3 [1-1.5], 1.1 [0.8-1.5], 1.1 [0.8-1.5] vs. 1.3
[0.9-1.4]h), Vd/F (10.6 [9.1-14.2], 12.2 [10.4-15.2], 10.5 [7.6-13.7] vs. 11.2 [8.9—
13.9] L/kg), or CL/F (56.9 [30-109.4], 52.8 [25.9-106], 58.8 [35.4-98.6] vs. 51.7
[33.4-96.8] mL/min/kg) of artemether when given in combination compared to
artemether alone, respectively. Similar findings were observed for the CYP3A4-
catalyzed metabolite, dihydroartemisinin, where none of the co-administered anti-
malarials had a significant effect on any reported pharmacokinetic parameters.
These findings reinforce the lack of inhibitory effects by these co-administered
antimalarials toward CYP3A4, the primary enzyme responsible for the metabolism
of artemether as supported by in vitro data (Bapiro et al. 2001), despite quinine and
mefloquine both being substrates for the same isoenzyme (Fontaine et al. 2000; Li
et al. 2003). These negative findings, however, should be interpreted in the context
of the small sample size and single-dose design.

Na-Bangchang et al. (1999) studied the pharmacokinetic interaction between
quinine (600 mg orally x 1) and mefloquine (750 mg orally x 1) in healthy male
Thai volunteers (n=7), using a prospective, open label, cross over design. Meflo-
quine had little effect on the pharmacokinetics of quinine, as evident by comparable
Cmax (3,270 [2,660—4,740] vs. 3,320 ng/mL [2,870-6,600], median [range]), Tmax
(2 [1.5-3] vs. 1 [1-2.5] h), AUC (55 [range not specified] vs. 53.2 [40.1-98.2] ng h/
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mL), CL/F (7.65 [6.52-3.48] vs. 7.82 [3.75-10.4]), t1/2 (15.4 [8.2-19.7] vs. 12.5
[7.9-18.3] h), and Vd/F (7.8 [5.7-10.4] vs. 7.1 [4.9-11.4] L/kg) when given in
combination compared to quinine alone, respectively. Because both quinine and
mefloquine are metabolized primarily by CYP3A4 (Fontaine et al. 2000; Li
et al. 2003), there is a metabolic basis for drug-drug interaction that was not
observed in this study. These negative findings, however, should be weighted in
the context of small sample size and large variability. On the other hand, the
combination of quinine and mefloquine resulted in a significant increase in QT¢
interval, indicating the presence of a pharmacodynamic interaction. The pharma-
cokinetics/pharmacodynamic interaction between quinine and mefloquine should
be tested at steady state in the actual patient population.

The effects of mefloquine (250 mg orally 3 times daily for 3 doses) on the
disposition of artemisinin (3 g in control vs. 2 g in combination group, in divided
doses) were reported by Alin et al. (1996) in patients symptomatic with falciparum
malaria (n = 18 vs. n =20 in control), using a prospective, randomized, open label,
parallel group design. Mefloquine significantly increased the AUC,
(2,786 £ 1,608 vs. 2,014 + 1,359 ng h/mL, mean 4 SD) of artemisinin in combina-
tion treatment compared to artemisinin alone, respectively, despite a lower
artemisinin dose in the combination group. There were also significant changes in
the clearance and volume of distribution of artemisinin in the combination group
but these effects are not directly comparable due to a different dose of artemisinin
given in the control. No other pharmacokinetic parameters were reported by the
authors. The apparent increase in the exposure of artemisinin (despite a lower dose)
in the presence of mefloquine may be explained by the fact that both agents are
known substrates of CYP3A4 (Fontaine et al. 2000; Li et al. 2003) and thus may
compete with each other for enzyme binding sites. Because of unbalanced dosing
regimens in the two comparable groups, however, definitive conclusions about this
proposed interaction cannot be drawn from the data obtained in this study.

The pharmacokinetic interaction between mefloquine (1,000 mg orally divided
in 3 doses over 12 h) and artemether/lumefantrine (80 mg/480 mg orally every 12 h
for 6 doses) was examined by Lefevre et al. (2000) in healthy volunteers, using an
open label, prospective, parallel group design (n= 14 in each group). Mefloquine
did not have a significant effect on the Cmax (98.8 +=43.1 vs. 72.2 +33.2 ng/mL,
mean = SD), Tmax (1.0 [0.5-3] vs. 2.0 [0.5-3] h), AUC,, (223+112
vs. 204 £ 107 ng h/mL), and t1/2 (1.7+1.0 vs. 1.4+£0.4 h) of single-dose
artemether when administered in combination compared to artemether/
lumefantrine alone, respectively. Likewise, mefloquine had little effect on the
Cmax (28.6 £15.2 vs. 27.4 +30.9 ng/mL, mean £+ SD), Tmax (2.0 [1-3] vs. 1.5
[14] h), and AUC,, (58.6 £48.6 vs. 63.6 £72.5 ng h/mL) of steady-state
artemether when given as a combination compared to the control group. Similar
patterns (i.e. lack of pharmacokinetic interaction) of dihydroartemisinin, the major
active metabolite of artemether, from the co-administration of mefloquine were also
observed after single or multiple doses of artemther/lumefantrine. The exposure of
artemether was decreased and that of dihydroartemisinin increased when compar-
ing the values from the 6™ to the first dose, indicative of the known autoinductive
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effects of artemether on its own biotransformation. On the other hand, mefloquine
significantly decreased the Cmax (20.0 8.3 vs. 28.3 £ 13.6 pg/mL) and AUC,
(1,530 £ 777 vs. 2,730 £ 1,710 pg h/mL), but had little effect on the Tmax and t1/2
of lumefantrine when given in combination compared to the control. Mefloquine,
artemether, and lumefantrine are all metabolized primarily by CYP3A4 (German
and Aweeka 2008; Fontaine et al. 2000), and artemether is also an autoinducer of
CYP3A4 (van Agtmael et al. 1999); these characteristics impart some degree of
complexity to the molecular basis of the pharmacokinetic interaction between these
drugs. The reduced exposure of lumefantrine in the presence of mefloquine has
been suggested by the authors to be a decrease in bile production, but this hypoth-
esis remains to be investigated. Because other CYP450 and UGT enzymes are
known to catalyze artemether and dihydroartemisinin, it also may be possible that
mefloquine could have inductive or inhibitory effects toward these other metabolic
pathways. The clinical significance of reduced lumefantrine exposure remains to be
determined in patients but may be insignificant given the small magnitude of the
pharmacokinetic interaction and the synergistic effects from artemether
co-treatment.

The pharmacokinetic interaction between dihydroartemisinin (300 mg orally for
1 dose) and mefloquine (750 mg orally for 1 dose) was studied by Na-Bangchang
et al. (1999) in healthy male Thai volunteers (n= 10), using an open label, pro-
spective, randomized, cross over design. Mefloquine did not affect the disposition
of dihydroartemisinin, as evident by comparable Cmax (624 [394-969]
vs. 653 [443-854] ng/mL, median [range]), Tmax (1.1 [1.2-2.4] vs. 1.4 [1.2-1.8]
h), t1/2 (0.2 [0.11-0.22] vs. 0.2 [0.1-0.38] h), AUC (2,110 [1,122-4,770] vs. 2,120
[1,210-4,380] ng h/mL), CL/F (43.8 [20.2-79.8] vs. 43.7 [23.8-75] mL/min/kg),
and Vd/F (3.25 [2.58-8.0] vs. 3.46 [2.82-5.93] L/kg) of dihydroartemisinin when
given in combination compared to dihydroartemisinin alone, respectively. The lack
of interaction may be explained by the known metabolic properties of these agents:
that dihydroartemisinin is primarily conjugated by UGT1A9 and UGT2B7 (Ilett
et al. 2002) and that mefloquine has little known effects on these phase II enzymes.

The effects of mefloquine (250 mg orally daily x 3) on the disposition of
artesunate (200 mg orally daily x 3) was examined by Davis et al. (2007) in healthy
male volunteers (n=20), using a prospective, open label, cross over design.
Mefloquine did not alter Cmax (91 [44-189] vs. 135 [58-316] pg/L, mean
[range]) and Tmax (0.5 [0.3-0.7] vs. 0.6 [0.4-0.9] h) of artesunate after a single
dose, or Cmax (109 [39-104] vs. 113 [44-290 pg/L], mean [range]) and Tmax (0.5
[0.3-0.7] vs. 0.6 [0.4-0.9] h) of artesunate after 3 doses, when given in combination
compared to artesunate alone, respectively. Likewise, the pharmacokinetics of the
major metabolite, dihydroartemisinin, was not significantly changed in the presence
of mefloquine, as evident by comparable Cmax (508 [345-748] vs. 67 5 [522-873]
pg/L), Tmax (1.3 [0.7-2.3] vs. 1.0 [0.6-1.8] h), AUC,, (1,217 [850-1,742]
vs. 1,443 [1,082-1,924] pg h/L), t1/2 (1.02 [0.90-1.94] vs. 1.14 [0.98-1.31] h),
Vd/F (201 [160-243] vs. 174 [143-205] L), and CL/F (128 [116-146] vs. 106 [94—
119] L/h) when given in combination compared to the first dose of artesunate alone,
respectively. Similar finding of lack of pharmacokinetic interaction was observed
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for dihydroartemisinin when mefloquine and artesunate were co-administered for
3 days. The lack of pharmacokinetic interaction between artesunate and mefloquine
may be explained by the known metabolic properties of these agents: that
artemether is primarily metabolized by CYP2A6 (Li et al. 2003), dihydroar-
temisinin is primarily conjugated by UGT1A9 and UGT2B7 (Ilett et al. 2002),
and mefloquine has little known effects toward these enzymes.

6.9 Effects of Primaquine on the Pharmacokinetics
of Antimalarials

The effects of primaquine on the pharmacokinetics of artemether have been
described in the aforementioned study conducted by Na-Bangchang et al. (2000).
Karbwang et al. (1990) followed up their initial study in healthy volunteers with
patients infected with acute falciparum malaria (n=14-16) and examined the
effects of co-administered primaquine (45 mg orally x 1), sulfadoxine/pyrimeth-
amine (1,500 mg/25 mg orally x 1), or sulfadoxine/pyrimethamine/primaquine
(1,500 mg/25 mg/45 mg orally x 1) on the pharmacokinetics of a single oral dose
of mefloquine (75 mg), using a prospective, open label, parallel control design.
Despite relatively small sample sizes, the groups were relatively balanced.
Primaquine did not significantly affect the pharmacokinetics of mefloquine as
evident by similar Tmax (14.1£8.1 vs. 16.9+13.2 h, mean+£ SD), Cmax
(2,303 854 vs. 2,690 £572 ng/mL), t1/2 (11.4 £1.3 vs. 11.7£2.0 days), AUC
(249+£9.9 vs. 27.0£8.2 pg d/mL), Vd/F (587 £265 vs. 500+ 135 L), and CI/F
(349+£13.7 vs. 30.6£10.0 L/day) when given in combination compared to
primaquine alone, respectively. Sulfadoxine/pyrimethamine also did not change
the disposition of primaquine, as demonstrated by comparable Tmax (19.0 £ 13.3
vs. 16.9 £13.2 h, mean 4+ SD), Cmax (2,559 4+ 1,107 vs. 2,690 &+ 572 ng/mL), t1/2
(10.4£1.9 vs. 11.7£2.0 days), AUC (25.6 £8.7 vs. 27.0£8.2 pg d/mL), Vd/F
(667 322 vs. 500+ 135 L), and CI/F (35.7 &= 14.1 vs. 30.6 £10.0 L/day) for the
combination compared to mefloquine alone, respectively. Likewise, the combina-
tion of sulfadoxine/pyrimethamine/primaquine had little effect on the pharmacoki-
netics of mefloquine. These findings of no pharmacokinetic interaction may be
supported by the lack of molecular basis for a metabolic interaction between these
agents. Mefloquine is primarily metabolized by CYP3A isoenzymes (Fontaine
et al. 2000) which is not known to be affected by the co-administered drugs
examined in this study. However, the negative results should be considered in the
context of the large variability and small sample sizes. Whether these observations
are reproducible at steady state also remain to be determined.

The effects of a single oral dose of primaquine (45 mg) on the disposition of
mefloquine (750 mg orally x 1) was further examined by Karbwang et al. (1992) in
healthy mail Thai volunteers (n = 8), using an open label, prospective, randomized
cross over design. Like the findings from Karbwang et al. (1990) in patients with
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acute falciparum malaria, primaquine did not affect the Cmax (1,179 4 153
vs. 1,161 + 120 ng/mL, mean 4 SD), Tmax (6.4+3.6 vs. 5.6+2.8 h), AUC
(20.2+4.8 vs. 20.0£3.8 pg h/mL), t1/2 (17.0£2.6 vs. 19.7+3.2 h), CI/F
(0.51+0.11 vs. 0.48 £0.07 mL/min/kg), and Vd/F (19.2+4.7 vs. 19.6 £4.0 L/
kg) of mefloquine when given in combination compared to mefloquine alone,
respectively, in healthy subjects. The lack of drug interaction may be explained
by the fact that mefloquine is primarily metabolized by CYP3A (Fontaine
et al. 2000) and that primaquine is not known to have an inhibitory effect toward
the isoenzyme.

6.10 Effects of Proguanil on the Pharmacokinetics
of Antimalarials

The effects of steady-state proguanil (given as 400 mg orally x 3 days) on the
pharmacokinetics of atovaquone (1,000 mg orally daily for 3 days), the typical
dosing regimen recommended for malaria treatment, was studied by Gillotin
et al. (1999) in healthy volunteers (n=18) using an open label, prospective,
randomized cross over design. Other than a slight, but significant increase in
Cmax (11.54 [7.86-16.16] vs. 10.52 [5.99-16.43] pg/mL, mean [range]), little
effect on the pharmacokinetics of atovaquone was observed, as evident by compa-
rable Tmax (3 [2-4] vs. 3 [2-4] h), AUC, (510 [247-919] vs. 549 [267-980] pg h/
mL), and t1/2 (59.0 [41.1-93.4] vs. 57.1 [35.2-115.7] h) in subjects taking the
combination compared to atovaquone alone, respectively. Because the t1/2 of
atovaquone was approximately 59 h, the 3-day dosing regimen used here was not
reflective of steady-state conditions. Given the large variability of the data observed
and the small sample, it is not clear if the elevation in Cmax is reproducible and/or
has clinical relevance, as the primary focus of the study was not on pharmacody-
namic effects. One can argue that the small magnitude of the increase in Cmax will
unlikely have any clinically significant impact, but these observations should be
reproduced and characterized in the target, malaria-infected population. The results
from this study are supported by the lack of vitro interaction data between this
drug pair.

6.11 Effects of Pyrimethamine on the Pharmacokinetics
of Antimalarials

Ahmad and Rogers (1980) examined the pharmacokinetic interaction between
dapsone (single oral 100 mg dose) and pyrimethamine (single oral 25 mg dose) in
healthy volunteers (n=7), using a prospective, open label, cross over design.
Pyrimethamine did not affect the absorption constant (0.48+£0.18
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vs. 0.61+042 h™!, mean+ SD), distribution rate constant (0.026 4 0.004
vs. 0.026+0.003 h™'), t1/2 (27.2+3.9 vs. 27.54+3.3 h), or CI/F (47.0+7.4
vs. 384+£109 mL/h/kg) but significantly increased Vd/F (1.9340.34
vs. 1.53+0.52 L/kg) and decreased Cmax (1,550 £ 110 vs. 1,875 £ 188 ng/mL)
of dapsone in combination treatment compared to dapsone alone, respectively.
Based on in vitro experiments, the fact that dapsone is primarily catalyzed by
CYP2C9 and CYP3A4 (Li et al. 2003) and that pyrimethamine is known to have
weak or no inhibition effects on these isoenzymes (Bapiro et al. 2001) makes an
interaction at the enzymatic level unlikely. The authors proposed that protein
binding displacement may have been the mechanism explaining the increased
Vd/F and decreased Cmax, since there was also evidence of increased salivary
dapsone concentration (an indirect measure of free plasma drug concentration),
suggesting that more free dapsone was available in the presence of pyrimethamine.

Tan-ariya et al. (1998) studied the pharmacokinetic interaction between pyri-
methamine (single oral dose of 100 mg) and artemether (single oral dose of 300 mg)
in healthy male volunteers of Thai origin (n = 8) using an open label, prospective,
cross over design. Pyrimethamine did not alter the pharmacokinetics of artemether,
as evident by comparable Cmax (511 [301-700] vs. 499 [287—648] ng/mL, median
[range]), Tmax (1.8 [1.5-2.5] vs. 2 [1.5-2.5] h), AUC (1.74 [0.97-3.64] vs. 2.16
[0.98-3.67] pg h/mL), t1/2 (2.2 [1.7-3.7] vs. 2.7 [1.8-3.8] h), CL/F (48.5 [24.8—
56.6] vs. 37.7 [27.9-75.2] mL/min/kg), and Vd/F (9.1 [6.6-9.4] vs. 9.6 [6.6-11.4]
L/kg), when used in combination compared to artemether alone, respectively.
Likewise, pyrimethamine had little effect on the pharmacokinetics of the major
metabolite of artemether, dihydroartemisinin, as demonstrated by similar Cmax
(872 [644-1,570] vs. 885 [654-1,250] ng/mL), Tmax (3.5 [2-5] vs. 2.8 [1.5-4] h),
AUC (7.68] 2.4-17.1] vs. 6.5 [2.2-19.2] pg h/mL), and t1/2 (4.9 [2.2-8.2] vs. 5.5
[3.6-8.4] h), when artemether was given concurrently with pyrimethamine com-
pared to artemether alone, respectively. The lack of pharmacokinetic interaction
between these two drugs may be supported by the fact that artemether is primarily
catalyzed by CYP3A4 (German and Aweeka 2008) in the formation of dihydroar-
temisinin, but pyrimethamine has no inhibitory effect on this isoenzyme (Bapiro
et al. 2001) as shown in in vitro experiments. However, these negative findings
should be interpreted in the context of the very small sample size and large
variability in all of the pharmacokinetic parameters collected in a setting
(i.e. single-dose) not typically applicable to the clinic.

6.12 Effects of Quinidine on the Pharmacokinetics
of Antimalarials

The effects of quinidine on the pharmacokinetics of artemether have been described
above in the study by van Agtmael et al. (1998).
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6.13 Effects of Quinine on the Pharmacokinetics
of Antimalarials

The effects of quinine on the pharmacokinetics of primaquine have been described
above in the study by Edwards et al. (1993). The effects of quinine on the
pharmacokinetics of artemether have been described above in the study by
Na-Bangchang et al. (2000). Na-Bangchang et al. (1999) studied the pharmacoki-
netic interaction between quinine (600 mg orally x 1) and mefloquine (750 mg
orally x 1) in healthy male Thai volunteers (n = 7), using a prospective, open label,
cross over design. Quinine did not significantly affect the disposition of mefloquine,
as evident by comparable Cmax (1,072 [750-1,885] vs. 1,090 [753-1,361] ng/mL,
median [range]), Tmax (4 [4—6] vs. 4 [4-6] h), AUC (571 [235-689] vs. 467 [285—
583] ng h/mL), CL/F (0.56 [0.36-0.69] vs. 0.47 [0.4-0.89]), t1/2 (17.3 [14.3-33.6]
vs. 16.2 [13.6-21.9] h), or Vd/F (17.3 [14.8-23.8] vs. 21.0 [11.8-28.8] L/kg) when
given in combination compared to mefloquine, respectively. Because both quinine
and mefloquine are metabolized primarily by CYP3A4 (Fontaine et al. 2000; Li
et al. 2003), there is a metabolic basis for a potential drug-drug interaction that was
not observed in this in vivo study. These negative findings, however, should be
weighted in the context of the small sample size and large variability. On the other
hand, the combination of quinine and mefloquine resulted in a significant increase
in QT interval, indicating the presence of a pharmacodynamic interaction.
Lefevre et al. (2002) studied the pharmacokinetic interaction between
artemether/lumefantrine (given as consecutive oral doses 80 mg/480 mg over
60 h) and quinine (10 mg/kg iv single dose) in healthy male volunteers, using a
prospective, randomized, double-blinded, parallel group design (n= 14/group).
Quinine significantly decreased the AUC (35.1 £22.2 vs. 63.4+£87.5 ng h/mL,
mean £ SD), but had little effect on Cmax (23.3 +10.0 vs. 30.8 +25.4 ng/mL),
Tmax (1.92 [1.92-2.3] vs. 1.92 [1.92-3.0], median [range]), and t1/2 (1.6 0.8
vs. 2.3 £ 1.2 h) of artemether when given in combination compared to artemether/
lumefantrine given alone, respectively. Likewise, quinine significantly decreased
AUC (120 £47 vs. 178 =71 ng h/mL but had little effect on Cmax (72.3 +29.0
vs. 84.5+26.5 ng/mL), Tmax (1.92 [1.92-3.0] vs. 1.92 [1.92-5.0], median
[range]), and t1/2 (1.1 £0.4 vs. 1.2 0.4 h) of dihydroartemisinin when given in
combination compared to artemether/lumefantrine alone, respectively. On the other
hand, quinine did not significantly affect the AUC (404 & 184 vs. 383 4 304), Cmax
(11.4+4.8 vs. 10.0+8.5 ng/mL), Tmax (62 [50-68] vs. 64 [38-66), and t1/2
(164 £ 38 vs. 144 £ 31 h) of lumefantrine in combination compared to the control.
The decrease in artemether and dihydroartemisinin exposures in the presence of
quinine is difficult to explain in the context of the known metabolic properties of
these agents, and may be attributed (as has been noted by the authors) to the large
variabilities observed (i.e. chance events) in these data. Overall, these findings are
consistent with those reported by Na-Bangchang et al. (2000) which also demon-
strated a general lack of drug interaction between quinine and artemether/
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lumefantrine despite these agents sharing common metabolic (i.e. CYP3A4)
pathways.

6.14 Effects of Sulfadoxine/Pyrimethamine
on the Pharmacokinetics of Antimalarials

The effects of sulfadoxine/pyrimethamine on the pharmacokinetics of mefloquine
has been described above in the study by Karbwang et al. (1990). Furthermore,
Karbwang et al. (1987) studied the effects of combination sulfadoxine/pyrimeth-
amine (single oral dose of 1.5 g/75 mg) on the pharmacokinetics of mefloquine
(single oral dose of 750 mg) in healthy female (n=12) and male (n=12) Thai
volunteers using a prospective, open label, cross over design. In female volunteers,
sulfadoxine/pyrimethamine decreased the Tmax (8.7£39 vs. 18+6.6 h,
mean £ SD) of mefloquine, but had little effect on other pharmacokinetic parame-
ters as evident by comparable Cmax (1,141 420 vs. 1,453 £519 ng/mL), t1/2
(22.3+4.1 vs. 17.2+ 1.9 days), AUC (26.0 9.4 vs. 21.6 6.2 pg day/mL), and
Vd/F (19.7+4.1 vs. 17.9£8.2 L/kg) when given in combination compared to
mefloquine alone, respectively. In male volunteers, sulfadoxine/pyrimethamine
did not affect any pharmacokinetic parameter of mefloquine, as evident by similar
Tmax (19 £7.0 vs. 23 £ 14 h), Cmax (1,057 £ 145 vs. 1,442 £774 ng/mL), t1/2
(19.1 £4.4 vs. 15.4+0.9 days), AUC (18.8 £4.1 vs. 17.3 £ 6.4 pg day/mL), and
Vd/F (20.74+7.3 vs. 19.5+6.1 L/kg) when given in combination compared to
mefloquine alone, respectively. When the authors pooled data from all subjects
together (i.e. n =24), only a slightly longer t1/2 (20.7 4.3 vs. 16.3 + 1.7 days) was
observed in the combination group compared to mefloquine alone. These data
suggesting minimal effects of sulfadoxine/pyrimethamine on the disposition of
mefloquine can be supported by the lack of a known metabolic basis for interactions
between these drugs. However, the small sample size accompanied by large
variability means the negative finding should be viewed with caution. The phar-
macokinetic interaction also remains to be determined in the patient population
under steady-state dosing conditions.

Obua et al. (2006) examined the pharmacokinetic interaction between chloro-
quine (as a single 600 mg oral dose) and sulfadoxine/pyrimethamine (as a single
1,500/75 mg oral dose) in healthy volunteers via an open label, prospective,
randomized, parallel group design (n=38). Sulfadoxine/pyrimethamine did not
change the pharmacokinetics of chloroquine in plasma, as evident by comparable
Cmax (731 [449-1,194] vs. 760 [466—1,186] mol/L, median [range]), AUC .
(43 [26-70] vs. 34 [19-54] mmol h/L), Tmax (3 [1-3] vs. 2 [1-4] h), t1/2
(162 [102-395] vs. 155 [85-232] h), VA/F (105 [79-203] vs. 113 [55-257] L/kg),
CI/F (0.44 [0.28-0.72] vs. 0.50 [0.39-0.77] mL/h/kg), and bioavailability (1.26
[1.03—-1.36] vs. 1), for the combination compared to chloroquine alone, respec-
tively. The small sample size and the very large variability should be taken into
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context of these negative findings, although the lack of significant pharmacokinetic
interaction is supported by the known metabolic properties of these agents that do
not support an interaction at the CYP450 enzymatic level.

6.15 Effects of Tafenoquine on the Pharmacokinetics
of Antimalarials

Miller et al. (2013) examined the pharmacokinetic interaction between tafenoquine
(900 mg orally daily x 2) and chloroquine (600 mg orally daily x 2, then
300 mg x 1) in healthy volunteers (n=20), using a prospective, randomized,
double blind design. Tafenoquine did not affect the pharmacokinetics of chloro-
quine, as evident by the similar geometric mean ratios of AUC,, (1.00 [0.84-1.18],
mean [90 % CI]), Cmax (1.04 [0.86—1.25]), and t1/2 (0.94 [0.78-1.12]). Likewise,
tafenoquine did not change the pharmacokinetics of the major metabolite of
chloroquine, desethylchloroquine, as demonstrated by comparable geometric
mean ratios of AUC,, (1.19 [0.79-1.79], mean [90 % CI]), Cmax (0.92 [0.72—
1.17]), and t1/2 (1.20 [0.79-1.82]). No other pharmacokinetic parameters were
reported. The lack of pharmacokinetic interaction translated into a lack of pharma-
codynamic interaction between these agents, including a negligible effect on QT
prolongation. Because chloroquine is primarily metabolized by CYP2D6,
CYP3A4, and CYPC9 (Kim et al. 2003; Projean et al. 2003) and tafenoquine is
not known to inhibit these isoenzymes, these negative findings support the lack of
metabolism-based interaction between these two agents in a well-powered study.
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