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Abstract. We propose a method called QSQN-TRE for evaluating
queries to Horn knowledge bases by integrating Query-Subquery Nets
with a form of tail-recursion elimination. The aim is to improve the
QSQN method by avoiding materialization of intermediate results dur-
ing the processing. We illustrate the efficiency of our method by empirical
results, especially for tail-recursive cases.

1 Introduction

Query optimization has received much attention from researchers in the database
community. Several optimization methods and techniques have been developed
to improve performance of query evaluation. One of them is to reduce the num-
ber of materialized intermediate results during the processing by using the tail-
recursion elimination. The general form of recursion requires the compiler to
allocate storage on the stack at run-time. Such a memory consumption may be
very costly. A call is tail-recursive if no work remains to be done after the call
returns. Tail recursion is a special case of recursion that is semantically equiv-
alent to the iteration construct, so a tail-recursive program can be compiled as
efficiently as iterative programs.

This work studies optimizing query evaluation for Horn knowledge bases.

1.1 Related Work

Horn knowledge bases are a generalization of Datalog deductive databases
as they allow function symbols and do not require the range-restrictedness
condition. Researchers have developed a number of evaluation methods for
Datalog deductive databases such as the top-down methods QSQ [15,1],
QSQR [15,1,9], QoSaQ [16], QSQN [10] and the bottom-up method Magic-
Set [1,2]. By Magic-Set we mean the evaluation method that combines the
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magic-set transformation with the improved semi-naive evaluation method.
In [9], Madalińska-Bugaj and Nguyen generalized the QSQR method for Horn
knowledge bases. Some authors also extended the magic-set technique together
with the breadth-first approach for Horn knowledge bases [12,8]. One can also
try to adapt computational procedures of logic programming that use tabled
SLD-resolution [14,16,17] for evaluating queries to Horn knowledge bases.

In [10], we formulated the Query-Subquery Nets (QSQN) framework for eval-
uating queries to Horn knowledge bases. The aim was to increase efficiency of
query processing by eliminating redundant computation, increasing flexibility
and reducing the number of accesses to the secondary storage. The preliminary
comparison between QSQN, QSQR and Magic-Set reported in [3] justifies the
usefulness of QSQN.

In [13], Ross proposed an optimization technique that integrates Magic-Set
with a form of tail-recursion elimination. It improves the performance by not
representing intermediate results, as can be seen in the following example.

Example 1. This example shows the inefficiency of a logic program without
a tail-recursive evaluation. It is a modified version of Example 1.1 from [13].
Consider the following positive logic program P :

p(x, y)← e(x, z), p(z, y)
p(n, x)← t(x).

where p is an intensional predicate, e and t are extensional predicates, n is
a natural number (constant) and x, y, z are variables. Let p(1, x) be the query,
m a natural number, and let the extensional instance I for e and t be as follows:

I(t) = {(1), (2), . . . , (m− 1), (m)},
I(e) = {(1, 2), (2, 3), . . . , (n− 1, n), (n, 1)}.

In order to answer the query, a method such as QSQR, QSQN, Magic-Set
would evaluate every tuple of the form p(i, j), where 1 ≤ i ≤ n and 1 ≤ j ≤ m.
Thus, it stores a set of n×m tuples, but many of them are not closely related
to the query in question. As we shall see, for answering the query p(1, x), we do
not need to evaluate p(i, j) for i > 1 if we apply a tail-recursive evaluation. We
only need to evaluate p(1, j) for 1 ≤ j ≤ m and additional tuples for some newly
introduced relations. Thus, the total number of evaluated tuples is smaller than
that of the standard approach. �

1.2 Our Contributions

In this paper, we propose a method called QSQN-TRE for evaluating queries to
Horn knowledge bases. The method integrates the QSQN method from [10] with
a form of tail-recursion elimination.

Our method has many advantages: it reduces the number of evaluated inter-
mediate tuples/subqueries during processing, increases flexibility and eliminates
redundant computation. Furthermore, since unnecessary intermediate results are
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not stored, it usually performs better than the QSQN method for the case as
in Example 1. To deal with function symbols, we use a term-depth bound for
atoms and substitutions occurring in the computation and propose to use iter-
ative deepening search which iteratively increases the term-depth bound. Sim-
ilarly to the QSQN method, our new method allows various control strategies
such as Depth-First Search (DFS), Improved Depth-First Search (IDFS) and
Disk Access Reduction (DAR), which have been proposed in [10,3,5].

2 Preliminaries

We assume that the reader is familiar with the notions of term, atom, predicate,
substitution, unification, mgu (most general unifier) and related ones. We refer
the reader to [1,11] for further reading.

We classify each predicate either as intensional or as extensional. A generalized
tuple is a tuple of terms, which may contain function symbols and variables.
A generalized relation is a set of generalized tuples of the same arity.

A program clause is a formula of the form (A ∨ ¬B1 ∨ . . .∨ ¬Bn) with n ≥ 0,
written as A← B1, . . . , Bn, where A,B1, . . . , Bn are atoms. A is called the head,
and B1, . . . , Bn the body of the program clause. If p is the predicate of A then
the program clause is called a program clause defining p.

A positive (or definite) logic program is a finite set of program clauses. From
now on, by a “program” we will mean a positive logic program.

A goal is a formula of the form (¬B1 ∨ . . . ∨ ¬Bn), written as ← B1, . . . , Bn,
where B1, . . . , Bn are atoms and n ≥ 0. If n = 1 then the goal is called a unary
goal. If n = 0 then the goal is referred to as the empty goal.

Given substitutions θ and δ, the composition of θ and δ is denoted by θδ, the
domain of θ is denoted by dom(θ), the range of θ is denoted by range(θ), and
the restriction of θ to a set X of variables is denoted by θ|X . The term-depth
of an expression (resp. a substitution) is the maximal nesting depth of function
symbols occurring in that expression (resp. substitution). Given a list/tuple α
of terms or atoms, by Vars(α) we denote the set of variables occurring in α.

A Horn knowledge base is defined as a pair that consists of a positive logic pro-
gram P (which may contain function symbols and not be “range-restricted”) for
defining intensional predicates and a generalized extensional instance I, which
is a function mapping each extensional n-ary predicate to an n-ary generalized
relation.

A query to a Horn knowledge base (P, I) is a formula q(x), where q is an
n-ary intensional predicate and x is a tuple of n pairwise different variables.
An answer to the query is an n-ary tuple t of terms such that P ∪ I |= q(t),
treating I as the corresponding set of atoms of the extensional predicates.

Definition 1 (Tail-recursion). A program clause ϕi = (Ai ← Bi,1, . . . , Bi,ni),
for ni > 0, is said to be recursive whenever some Bi,j (1 ≤ j ≤ ni) has the same
predicate as Ai. If Bi,ni has the same predicate as Ai then the clause is tail-
recursive. �
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p(x, y)← q(x, y)
p(x, y)← q(x, z), p(z, y).
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Fig. 1. The QSQ topological structure and the QSQN-TRE topological structure of
the program given in Example 2

3 QSQ-Nets with Tail-Recursion Elimination

In this section we specify the notion QSQN-TRE (QSQ-net with tail-recursion
elimination) and describe our QSQN-TRE evaluation method for Horn knowl-
edge bases. QSQN-TRE is an extension of QSQN introduced in [11,10] and can be
viewed as a flow control network for determining which set of tuples/subqueries
should be processed next.

Example 2. This example is taken from [10]. The upper part of Figure 1 illus-
trates a logic program and its QSQ topological structure, where p is an inten-
sional predicate, q is an extensional predicate and x, y, z are variables. �

In what follows, P is a positive logic program and all ϕ1, . . . , ϕm are the pro-
gram clauses of P , with ϕi = (Ai ← Bi,1, . . . , Bi,ni), for 1 ≤ i ≤ m and ni ≥ 0.
The following definition shows how to make a QSQN-TRE structure from the
given positive logic program P .

Definition 2 (QSQN-TRE structure). A query-subquery net structure with
tail-recursion elimination (QSQN-TRE structure for short) of P is a tuple
(V,E, T ) such that:

– T is a pair (Tedb, Tidb), called the type of the net structure.
– Tidb is a function that maps each intensional predicate to true or false. (If

Tidb(p) = true then the intensional relation p will be computed using tail-
recursion elimination).

– V is a set of nodes that includes:
• input p and ans p, for each intensional predicate p of P ,
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• pre filter i, filter i,1, . . . , filter i,ni
, for each 1 ≤ i ≤ m,

• post filter i if either ϕi is not tail-recursive or Tidb(p) = false, for each
1 ≤ i ≤ m, where p is the predicate of Ai.

– E is a set of edges that includes:
• (input p, pre filter i), for each 1 ≤ i ≤ m, where p is the predicate of Ai,
• (pre filter i, filter i,1), for each 1 ≤ i ≤ m such that ni ≥ 1,
• (filter i,1, filter i,2), . . . , (filter i,ni−1, filter i,ni

), for each 1 ≤ i ≤ m,
• (filter i,ni

, post filter i), for each 1 ≤ i ≤ m such that ni ≥ 1 and either ϕi

is not tail-recursive or Tidb(p) = false, where p is the predicate of Ai,
• (pre filter i, post filter i), for each 1 ≤ i ≤ m such that ni = 0,
• (post filter i, ans p), for each 1 ≤ i ≤ m such that either ϕi is not tail-
recursive or Tidb(p) = false, where p is the predicate of Ai,
• (filter i,j , input p), for all 1 ≤ i ≤ m and 1 ≤ j ≤ ni such that the
predicate p of Bi,j is an intensional predicate,
• (ans p, filter i,j), for each intensional predicate p and for all 1 ≤ i ≤ m
and 1 ≤ j ≤ ni such that Bi,j is an atom of p and either ϕi is not
tail-recursive or Tidb(p) = false.

– Tedb is a function that maps each filter i,j ∈ V such that the predicate of
Bi,j is extensional to true or false. (If Tedb(filter i,j) = false then subqueries
for filter i,j are always processed immediately without being accumulated at
filter i,j). �

From now on, T (v) denotes Tedb(v) if v is a node filter i,j such that Bi,j is an
extensional predicate, and T (p) denotes Tidb(p) for an intensional predicate p.
Thus, T can be called a memorizing type for extensional nodes (as in QSQ-net
structures), and a tail-recursion-elimination type for intensional predicates.

We call the pair (V,E) the QSQN-TRE topological structure of P w.r.t. Tidb.
The lower part of Figure 1 illustrates the QSQN-TRE topological structure of
the positive logic program given in Example 2 w.r.t. the Tidb with Tidb(p) = true.

We now specify the notion QSQN-TRE and the related ones. We also show
how the data is transferred through the edges in QSQN-TRE.

Definition 3 (QSQN-TRE). A query-subquery net with tail-recursion elim-
ination (QSQN-TRE for short) of P is a tuple N = (V,E, T, C) such that
(V,E, T ) is a QSQN-TRE structure of P , C is a mapping that associates each
node v ∈ V with a structure called the contents of v, and the following conditions
are satisfied:

– If either (v = input p and T (p) = false) or v = ans p then C(v) consists of:
• tuples(v) : a set of generalized tuples of the same arity as p,
• unprocessed(v, w) for (v, w) ∈ E: a subset of tuples(v).

– If v = input p and T (p) = true then C(v) consists of:
• tuple pairs(v): a set of pairs of generalized tuples of the same arity as p,
• unprocessed(v, w) for (v, w) ∈ E: a subset of tuple pairs(v).

– If v = pre filter i then C(v) consists of:
• atom(v) = Ai and post vars(v) = Vars((Bi,1, . . . , Bi,ni)).

– If v = post filter i then C(v) is empty, but we assume pre vars(v) = ∅.
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– If v = filter i,j and p is the predicate of Bi,j then C(v) consists of:

• kind(v) = extensional if p is extensional, and
kind(v) = intensional otherwise,
• pred(v) = p (called the predicate of v) and atom(v) = Bi,j ,
• pre vars(v) = Vars((Bi,j , . . . , Bi,ni)) and
post vars(v) = Vars((Bi,j+1, . . . , Bi,ni)),
• subqueries(v): a set of pairs of the form (t, δ), where t is a generalized
tuple of the same arity as the predicate of Ai and δ is an idempotent
substitution such that dom(δ) ⊆ pre vars(v) and dom(δ) ∩ Vars(t) = ∅,
• unprocessed subqueries(v) ⊆ subqueries(v),
• in the case p is intensional :

unprocessed subqueries2 (v) ⊆ subqueries(v),
unprocessed tuples(v): a set of generalized tuples of the same arity as p;

• if v = filter i,ni
, kind(v) = intensional, pred(v) = p and T (p) = true then

unprocessed subqueries(v) and unprocessed tuples(v) are empty (and can
thus be ignored).

– If v = filter i,j , kind(v) = extensional and T (v) = false then subqueries(v)
and unprocessed subqueries(v) are empty (and can thus be ignored).

A QSQN-TRE of P is empty if all the sets of the form tuple pairs(v),
tuples(v), unprocessed(v, w), subqueries(v), unprocessed subqueries(v),
unprocessed subqueries2 (v) or unprocessed tuples(v) are empty. �

If (v, w) ∈ E then w is referred to as a successor of v. Observe that:

– if v ∈ {pre filter i, post filter i} or v = filter i,j and kind(v) = extensional then
v has exactly one successor, which we denote by succ(v);

– if v is filter i,ni
with kind(v) = intensional, pred(v) = p and T (p) = true then

v has exactly one successor, which we denote by succ2(v) = input p;
– if v is filter i,j with kind(v) = intensional, pred(v) = p and either j < ni

or T (p) = false then v has exactly two successors: succ(v) = filter i,j+1 if
ni > j; succ(v) = post filter i otherwise; and succ2(v) = input p.

By a subquery we mean a pair of the form (t, δ), where t is a general-
ized tuple and δ is an idempotent substitution such that dom(δ) ∩Vars(t) = ∅.
The set unprocessed subqueries2 (v) (resp. unprocessed subqueries(v)) contains
the subqueries that were not transferred through the edge (v, succ2(v)) (resp.
(v, succ(v)) – when it exists).

For an intensional predicate p with T (p) = true, the intuition behind a pair

(t, t
′
) ∈ tuple pairs(input p) is that:

– t is a usual input tuple for p, but the intended goal at a higher level is← p(t
′
),

– any correct answer for P ∪ I ∪ {← p(t)} is also a correct answer for

P ∪ I ∪ {← p(t
′
)},

– if a substitution θ is a computed answer of P ∪ I ∪ {← p(t)} then we will

store in ans p the tuple t
′
θ instead of tθ.
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We say that a tuple pair (t, t
′
) is more general than (t2, t

′
2), and (t2, t

′
2) is an

instance of (t, t
′
), if there exists a substitution θ such that (t, t

′
)θ = (t2, t

′
2).

For v = filter i,j and p being the predicate of Ai, the meaning of a sub-
query (t, δ) ∈ subqueries(v) is as follows: if T (p) = false (resp. T (p) = true)
then there exists s ∈ tuples(input p) (resp. (s, s′) ∈ tuple pairs(input p)) such
that for processing the goal ← p(s) using the program clause ϕi = (Ai ←
Bi,1, . . . , Bi,ni), unification of p(s) and Ai as well as processing of the sub-
goals Bi,1, . . . , Bi,j−1 were done, amongst others, by using a sequence of mgu’s
γ0, . . . , γj−1 with the property that t = sγ0 . . . γj−1 (resp. t = s′γ0 . . . γj−1)
and δ = (γ0 . . . γj−1)|Vars((Bi,j ,...,Bi,ni

)). Informally, a subquery (t, δ) transferred
through an edge to v is processed as follows:

– if v = filter i,j , kind(v) = extensional and pred(v) = p then, for each t
′ ∈ I(p),

if atom(v)δ = Bi,jδ is unifiable with a fresh variant of p(t
′
) by an mgu γ

then transfer the subquery (tγ, (δγ)|post vars(v)) through (v, succ(v)).
– if v = filter i,j , kind(v) = intensional, pred(v) = p and either T (p) = false or

(T (p) = true and (either j < ni or p is not the predicate of Ai)) then

• if T (p) = false then transfer the input tuple t
′
such that p(t

′
) =

atom(v)δ = Bi,jδ through (v, input p) to add a fresh variant of it to
tuples(input p),
• if T (p) = true and either j < ni or p is not the predicate of Ai then

transfer the input tuple pair (t
′
, t

′
) such that p(t

′
) = atom(v)δ = Bi,jδ

through (v, input p) to add a fresh variant of it to tuple pairs(input p),

• for each currently existing t
′ ∈ tuples(ans p), if atom(v)δ = Bi,jδ is

unifiable with a fresh variant of p(t
′
) by an mgu γ then transfer the

subquery (tγ, (δγ)|post vars(v)) through (v, succ(v)),

• store the subquery (t, δ) in subqueries(v), and later, for each new t
′
added

to tuples(ans p), if atom(v)δ = Bi,jδ is unifiable with a fresh variant

of p(t
′
) by an mgu γ then transfer the subquery (tγ, (δγ)|post vars(v))

through (v, succ(v)).
– if v = filter i,ni

, kind(v) = intensional, pred(v) = p, T (p) = true and p

is the predicate of Ai then transfer the input tuple pair (t
′
, t) such that

p(t
′
) = atom(v)δ = Bi,niδ through (v, input p) to add a fresh variant of it to

tuple pairs(input p).
– if v = post filter i and p is the predicate of Ai then transfer the answer tuple t

through (post filter i, ans p) to add it to tuples(ans p).

Formally, the processing of a subquery, an input/answer tuple or an input
tuple pair in a QSQN-TRE is designed so that:

– every subquery or input/answer tuple or input tuple pair that is subsumed
by another one or has a term-depth greater than a fixed bound l is ignored;

– the processing is divided into smaller steps which can be delayed at each
node to maximize flexibility and allow various control strategies;

– the processing is done set-at-a-time (e.g., for all the unprocessed subqueries
accumulated in a given node).
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The procedure transfer2(D, u, v) given in [11] specifies the effects of transfer-
ring data D through an edge (u, v) of a QSQN-TRE. If v is of the form pre filter i
or post filter i or (v = filter i,j and kind(v) = extensional and T (v) = false) then
the input D for v is processed immediately and an appropriate data Γ is pro-
duced and transferred through (v, succ(v)). Otherwise, the input D for v is not
processed immediately, but accumulated into the structure of v in an appropriate
way. The function active-edge(u, v) given in [11] returns true for an edge (u, v)
if the data accumulated in u can be processed to produce some data to transfer
through (u, v), and returns false otherwise. If active-edge(u, v) is true, the pro-
cedure fire2(u, v) given in [11]1 processes the data accumulated in u that has
not been processed before to transfer appropriate data through the edge (u, v).
Both the procedures fire2(u, v) and transfer2(D, u, v) use a parameter l as a
term-depth bound for tuples and substitutions.

Algorithm 2 of [11] presents our QSQN-TRE evaluation method for Horn
knowledge bases. It repeatedly selects an active edge and fires the operation
for the edge. Such a selection is decided by the adopted control strategy, which
can be arbitrary. If there is no tail-recursion to eliminate or T (p) = false for
every intensional predicate p, the QSQN-TRE method reduces to the QSQN
evaluation method. See [11] for properties on soundness, completeness and data
complexity of the QSQN-TRE method.

4 Preliminary Experiments

This section presents our experimental results and a discussion about the per-
formance of the QSQN-TRE evaluation method in comparison with the QSQN
method using the IDFS control strategy [5]. All the experiments have been per-
formed using our Java codes [4] and extensional relations stored in a MySQL
database. The package [4] also contains all the experimental results reported
below. In the following tests, we use typical examples that appear in many well-
known articles related to deductive databases, including tail/non-tail recursive
logic programs as well as logic programs with or without function symbols. Our
implementation allows queries of the form q(t), where t is a tuple of terms.

4.1 The Settings

The experiments are divided into two stages. All the experimental results re-
ported below are for the first stage.

1. In the first stage, we assume that the computer memory is large enough to load
all the involved extensional relations and keep all the intermediate relations.
During execution of the program, for each operation of reading from a relation
(resp. writing a set of tuples to a relation), we increase the counter of read
(resp. write) operations on this relation by one. For counting the maximum
number of kept tuples/subqueries in the memory, we increase (resp. decrease)

1 The step 3 in the macro compute-gamma for the procedure fire2 in [11] should be
replaced by “else if j < ni or p is not the predicate of Ai then”.
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Table 1. A comparison between the QSQN and QSQN-TRE methods w.r.t. the num-
ber of read/write operations. The “Reading inp /ans /sup /edb” column means the
number of read operations from input/answer/supplement/extensional relations, re-
spectively. Similarly, the “Writing inp /ans /sup ” column means the number of write
operations to input/answer/supplement relations, respectively. The last column shows
the maximum number of kept tuples in the memory for each test.

Tests Methods
Reading (times) Writing (times) Max No. of
inp /ans /sup /edb inp /ans /sup kept tuples

Test 1 QSQN 156 (40+38+57+21) 58 (20+19+19) 248
(a) QSQN-TRE 100 (40+1+38+21) 40 (20+1+19) 97

Test 1 QSQN 64 (3+38+21+2) 21 (1+19+1) 229
(b) QSQN-TRE 100 (40+1+38+21) 40 (20+1+19) 781

Test 2 QSQN 190 (41+59+69+21) 69 (20+29+20) 992
(a) QSQN-TRE 101 (40+1+39+21) 40 (20+1+19) 151

Test 2 QSQN 95 (3+59+31+2) 31 (1+29+1) 963
(b) QSQN-TRE 151 (60+1+59+31) 60 (30+1+29) 3573

Test 3
QSQN 43 (5+21+16+1) 13 (1+9+3) 101
QSQN-TRE 58 (19+15+19+5) 19 (5+5+9) 237

Test 4
QSQN 56 (15+14+20+7) 20 (7+6+7) 136
QSQN-TRE 39 (14+4+14+7) 15 (7+2+6) 93

Test 5
QSQN 403 (101+101+150+51) 150 (50+50+50) 10,350
QSQN-TRE 253 (101+1+100+51) 101 (50+1+50) 600

Test 6
QSQN 184 (48+46+66+24) 67 (23+22+22) 930
QSQN-TRE 126 (48+8+46+24) 49 (23+4+22) 566

Test 7
QSQN

91 (7+39+25+20) 25 (3+19+3) 195
QSQN-TRE

the counter of kept tuples by two if a tuple pair is added to (resp. removed
from) tuple pairs(input p), otherwise we increase (resp. decrease) it by one.
The returned value is the maximum value of this counter.

2. The second stage follows the first one. We will limit the space available in
computer memory for storing the tuples/subqueries on each test. This will
require load and unload operations on disk when the computer memory is
not enough to hold all the relations. The aim of this stage is to estimate the
number of disk accesses. This stage is still in progress.

4.2 Experimental Results

We compare the QSQN-TRE and QSQN methods with respect to the number
of accesses to the intermediate relations and extensional relations as well as the
number of kept tuples/subqueries in the memory for the following tests.

Test 1. Reconsider the logic program from Example 2, where p is an intensional
predicate, q is an extensional predicate, and x, y, z are variables. Let the exten-
sional instance I for q be as follows: I(q) = {(ai, ai+1) | 1 ≤ i < n}, where ai
are constant symbols and n is a natural number.

p(x, y)← q(x, y)
p(x, y)← q(x, z), p(z, y).

We perform this test using the following queries: (a) p(a1, x), (b) p(x, y).
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Similar to the discussion in Example 1, in order to answer a query as in the
part (a) or (b), QSQN has to evaluate all tuples of the form (ai, aj), where
1 ≤ i < j ≤ n. However, for the query p(a1, x) as in the part (a), by applying
tail-recursion elimination, QSQN-TRE only needs to evaluate a set of tuples of
the form (a1, aj) with 1 < j ≤ n. Thus, in this case, the number of evaluated
tuples for QSQN-TRE is much smaller than QSQN. In contrast, for queries
without any bound parameter such as p(x, y) as in the part (b), QSQN-TRE
has to evaluate also all the related tuples and may be worse than QSQN. The
reason is that, after the processing at node v = filter i,ni

with p = pred(v), if
T (p) = true, QSQN-TRE produces a set of tuple pairs and accumulates them
in tuple pairs(input p), which are not instances of each other. Meanwhile, QSQN
adds the answers to tuples(ans p) for later processing, and also transfers data
through (v, input p) without adding any new tuple to tuples(input p) because
it already contains a fresh variant of (x, y) that is more general than all the
other tuples. As the result, in this case, QSQN-TRE may keep more tuples than
QSQN. We use n = 20 for this test.

Test 2. This test uses the logic program P and the queries as in Test 1, but the
extensional instance I for q is extended to contain cycles as follows, where ai
and bi are constant symbols:

I(q) = {(ai, ai+1) | (1 ≤ i < 20)} ∪ {(a20, a1)} ∪
{(a1, b1)} ∪ {(bi, bi+1) | 1 ≤ i < 10} ∪ {(b10, a1)}.

Test 3. This test involves the transitive closure of a binary relation [2,3]. Con-
sider the following logic program P , where path is an intensional predicate, arc
is an extensional predicate, and x, y, z are variables. The query is path(x, y) and
the extensional instance I is specified by I(arc) = {(1, 2), (2, 3), . . ., (9, 10)}.

path(x, y)← arc(x, y)
path(x, y)← path(x, z), path(z, y).

Test 4. This test is taken from [9]. Consider the following program P , where p, s
are intensional predicates, q is an extensional predicate, and x, y, z are variables.
The query is s(x) and the extensional instance I for q consists of the following
pairs, where a− o are constant symbols: I(q) = {(a, b), (b, c), (c, d), (d, e), (e, f),
(f, g), (a, h), (h, i), (i, j),(i, d), (j, k), (k, f), (a, l), (l,m), (l, i), (m,n), (n, o),
(n, k), (o, g)}.

p(x, y)← q(x, y)
p(x, y)← q(x, z), p(z, y)

s(x)← p(a, x).

Test 5. This test is taken from Example 1 using m = 200, n = 50. As shown in
Table 1, the maximum number of kept tuples for the QSQN evaluation method
is much larger than for the QSQN-TRE evaluation method.

Test 6. This test is taken from [3]. Consider the following program P and the
following extensional instance I, where p, q1, q2 are intensional predicates, r1, r2
are extensional predicates, x, y, z are variables, and ai, bi,j are constant symbols.
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– the positive logic program P :

p(x, y)← q1(x, y)
p(x, y)← q2(x, y)

q1(x, y)← r1(x, y)
q1(x, y)← r1(x, z), q1(z, y)

q2(x, y)← r2(x, y)
q2(x, y)← r2(x, z), q2(z, y).

– the extensional instance I:

I(r1) = {(ai, ai+1) | 0 ≤ i < 10}
I(r2) = {(a0, b1,j) | 1 ≤ j ≤ 9} ∪

{(bi,j, bi+1,j) | 1 ≤ i < 9
and 1 ≤ j ≤ 9} ∪

{(b9,j, a10) | 1 ≤ j ≤ 9}.

– the query: p(a0, x).

Test 7. This test is taken from Test 2 of [5] to show a case with function sym-
bols. It is a non-tail-recursive program. In this case, the QSQN-TRE evaluation
method reduces to the QSQN method, and they have the same results. See [5]
for details of the logic program and its extensional instance.

4.3 Discussion

Table 1 shows the comparison between the QSQN and QSQN-TRE evaluation
methods. As can be seen in this table, if we use a tail-recursive program with
at least a bound parameter either in the query as in Tests [1(a), 2(a), 5, 6] or
in the body of a rule that is related to a tail-recursive predicate as in Test 4,
by not representing intermediate results during the computation, the QSQN-
TRE method usually outperforms the QSQN method. In these cases, as shown
in Table 1, the QSQN-TRE method reduces not only the number of accesses to
the mentioned relations but also the number of kept tuples/subqueries in the
memory in comparison with the QSQN method.

In contrast, for queries without any bound parameter as in Tests [1(b), 2(b)]
and for cases with a tail-recursive clause with more than one intensional predi-
cate p in the body such that T (p) = true as in Test 3, QSQN-TRE may be worse
than QSQN. The explanation is similar to that of Test 1.

5 Conclusions

We have proposed the QSQN-TRE method for evaluating queries to Horn knowl-
edge bases. It extends the QSQN method with tail-recursion elimination that al-
lows to avoid materializing intermediate results during the processing. Similarly
to QSQN, our new method also allows various control strategies such as DFS,
IDFS and DAR [10,3,5].

The experimental results in Table 1 show that QSQN-TRE is better than
QSQN for tail-recursive cases with at least a bound parameter in the query,
especially for the positive logic program and the query given in Example 1 (as
shown for Test 5 in Table 1). The preliminary comparison between QSQN, QSQR
and Magic-Set reported in [3] justifies the usefulness of QSQN and hence also
the usefulness of QSQN-TRE. As a future work, we will compare the methods
in more detail, especially w.r.t. the number of accesses to the secondary storage
when the computer memory is limited, as well as apply our method to Datalog-
like rule languages for the Semantic Web [6,7].
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