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Abstract. Driven by novel application domains and hardware trends
database research and development set off to many novel and specialized
architectures. Particularly in the area of physical data layout, specialized
solutions have shown exceptional performance for specific applications.
This trend is great for research and development and for those in need of
top-level performance first and foremost. For those with moderate per-
formance needs, however, a universal but flexible database system has
the benefit of lower TCO. Regarding physical data layout, the more gen-
eral systems are fairly inflexible compared to the variety of physical data
layouts available in specialized systems. Particularly, the macroscopic
characteristics, i.e., how the data is grouped and clustered, are generally
hard-coded and cannot be changed by configuration. We present Flexs,
a declarative storage description language for the macroscopic charac-
teristics of physical data layouts. Flexs allows describing physical data
layouts ranging from the row and column store layouts to data layouts
for irregular data such as vertical schema. Using Flexs, a storage engine
can be configured to use a specific physical data layout. Flexs contributes
to make specialized physical data layouts available to the broad majority
of universal database systems.

1 Introduction

The drastic expansion of the database ecosystem to novel application domains as
well as new hardware trends sparked a new exciting age of database technology.
Widely challenging the traditional database system architecture in new fields [28],
the database community created the wide and diverse range of database sys-
tems available today. Specialized systems provide exceptional performance and
features for specific applications that have not been seen before.

Among other techniques, these systems typically build on a physical data
layout different from the traditional row-orientation. Column-oriented data lay-
outs [15,9,27] showed to be advantageous for most analytic applications. In multi-
tenancy databases, clustering data along versions and schema extensions is a
preferable strategy [4]. Efficient processing of geo-spatial data often benefits from
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a grid representation [11]. Other layouts such as interpreted record [7] or vertical
schema [2,12,1] are favored for applications with flexible schemas or sparse tables
such as product catalogs or clinical information systems.

Specialization is great for bringing database technology to new frontiers and
boosting its performance. However, it is not always affordable to every extent and
for every customer. No matter if they run 10 database systems or 10 000 systems,
companies require standardization, unification, and consolidation to keep total
cost of ownership (TCO) under control [26]. Any additional system increases the
overall complexity of an IT landscape. It requires additional maintenance and
additional attention by staff trained on the details of that system. Any additional
system adds additional interactions with other systems and by that it implies
further need for supervision and further potential cause for failures. With all
that additional complexity and cost, specialized systems are only worthwhile
where absolute top performance is needed. In most cases, a single system with a
configurable physical data layout comes at a much lower TCO, but would still
be able to serve a diverse range of workloads well enough. Configurability also
simplifies the adaption of a system to evolving workloads and requirements.

Physical data layouts differ in (1) microscopic characteristics, such as, used
data structures, applied compression techniques, etc., and in (2) macroscopic
characteristics, i.e. how the data is grouped and clustered. To some extent, most
systems allow influencing the microscopic characteristics of their physical data
layout. For instance, compression can be tuned or different data structures can
be configured. Macroscopic characteristics, however, are generally hard-coded
and cannot be changed by configuration.

In this paper, we present Flexs. Flexs is a declarative storage description lan-
guage for the macroscopic characteristics of the physical data layout. It provides
a generic way to configure the grouping and clustering of data. In contrast to
other modeling approaches such as list comprehension, Flexs explicitly includes
the schema elements entity types and attributes into the layout description. Flexs
supports a wide range of layouts, such as row-oriented, column-oriented, inter-
preted record, or vertical schema. We introduce the Flexs notation with the help
of three examples and present the grammar that specifies the Flexs language.

The remainder of the paper is structured as follows. Section 2 introduces the
Flexs notation. Section 3 details an adaptive materilization strategy necessary to
implement a storage engine that is configurable with Flexs. Finally, we discuss
related work in Section 4 and conclude the paper in Section 5.

2 Flexs Notation

Flexs is a modeling language that allows describing various physical data lay-
outs for structured data, specifically the macroscopic aspects of the physical data
layouts. Commonly, structured data models organize values with the user-given
specifiers entity types, entities, and attributes. The physical data layout deter-
mines how a database management system organizes the elements of structured
data (entity types, entities, attributes, and values) on the physical storage to
preserve their logical structure.
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Fig. 1. Vertical schema layout
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Fig. 2. BATs layout

The first and most simple way to preserve logical structure is to store logically
related elements physically next to each other. For instance, the vertical schema
as illustrated in Figure 1 stores an entity type, an entity, an attribute, and the
value that belongs to the specific combination in one coherent physical block.
In Figure 1, the first block lists Smith as the value of the attribute customer
for the entity o1 with type Order . In Flexs, we describe such a block by listing
the domains of its elements. T denotes the domain of entity types, E denotes
the domain of entities, A denotes the domain of attributes, and V denotes the
domain of values Consequently, T,E,A →V describes a physical block in the
vertical schema layout. The arrow → indicates that T,E,A uniquely identify a
block and functionally determine V in this mental model. To represent more than
a single value, the database system uses a whole set of similar blocks to represent
a complete data set. In Flexs, we denote such a block set as 〈T,E,A →V 〉.
Chevrons 〈X〉 indicate the repetition of the embedded block structure X . The
order of the blocks in a block set is insignificant. The commas in the Flexs
notation do not have a particular meaning but serve better visual separation of
the domain symbols.

A second way to preserve logical structure is nesting. For nesting, let’s have a
look at the binary association tables (BATs) [9] layout. Figure 2 shows the same
data represented in BATs. A single BAT consists of an entity type, an attribute,
and a set of entity–value pairs. Hence, we can denote the header of a BAT in
Flexs as T,A and the body of a BAT – set of entity–value pairs – can be denoted
as the block set 〈E →V 〉. In all, a BAT forms a block T,A 〈E →V 〉. This block
nests block set of entity–value pairs to represent the fact these entity–value pairs
are logically related to the entity type–attribute pair in BAT’s header. Again,
the complete physical data layout consists of multiple blocks like these and is
denoted as 〈T,A 〈E →V 〉〉.

A third way to preserve logical structure is the physical order. Normally, the
physical order of blocks within a block set is insignificant. Netherless, some
layouts utilize the physical order, e.g. the traditional row store store layout, as
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shown in Figure 3. For each entity type, the row store maintains an ordered set of
attributes. In Flexs, we denote such an ordered set with brackets: [A]. All values
of an entity are also stored in order, namely in the order of the attributes of the
corresponding entity type. Hence, the row store layout 〈T [A] 〈E [V ]〉〉 represents
the logical relations between attributes and values exclusively by their order.

Next to three discussed layouts, Flexs can also describe various other layouts
as shown in Table 1. The table shows each layout with its respective Flexs ex-
pression and an example of the resulting block set. Note that Flexs explicitly
considers the role of the schema elements entity types and attributes within
the physical data layout. The inclusion of schema elements allows Flexs to sup-
port physical data layout for irregular data, e.g., interpreted record and verti-
cal schema. Further it allows Flexs to support also layouts that have not been
widely considered so far. For instance, the tagging layout shown in Table 1 allows
to physically represent multifaceted entities as they exist in the Freebase data
model [8]. This clearly distinguishes Flexs from other modeling approaches such
as list comprehension.

Flexs is formally defined by a grammar as shown in Figure 5. To be valid, a
Flexs expression has to follow the grammar. The central element is the block set
definition (<blockset>). A block set can be defined as ordered (<ordered>) or
as a block set without particular order (<unordered>). Ordered block sets are
defined on single domains. Further, ordered block sets are only allowed in pairs
in Flexs expressions, where one of the two ordered block sets has to be defined on
the domain of values V . Normal block set definitions consist of header domains
(<header>), included domains (<include>), and nested block sets (<nesting>).
There must be at least one header domain; included domains and nested block
sets are optional. Among the four domains, we distinguish between the specifier
domains – entity types T , entities E, and attributes A – and the values domain
V . We are not considering values to have an identity of their own; value identity
derives from the entity type, the entity, and the attribute a value belongs to.
Consequently, V is only allowed in ordered block sets or as included domain in
unordered block sets.
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<blockset> ::= <ordered> | <unordered>
<ordered> ::= ‘[’ <domain> ‘]’

<unordered> ::= ‘〈’ <header> <include>? <nesting>? ‘〉’
<header> ::= <domain>+
<include> ::= ‘→’ <domain>+
<nesting> ::= <blockset>+
<domain> ::= <specifiers> | <values>

<specifiers> ::= ‘T ’ | ‘E’ | ‘A’
<values> ::= ‘V ’

Fig. 5. Flexs grammar

When parsed, a Flexs expression results in an abstract syntax tree of block
set definitions as shown in the upper half of Figure 4. These block set defini-
tions provide the necessary information to physically arrange and retrieve data
on storage. Like the block set definitions, the physical layout described by the
expression is hierarchical. On each hierarchy level the block set definition is in-
stantiated with one or more block sets, so that each block set is typed by a
particular block set definition from the abstract syntax tree. The topmost block
set definition is only instantiated once, while lower-level block set definitions are
likely to be instantiated multiple times, depending on the data.

Block sets, the instances of block set definitions, contain one or multiple blocks.
The blocks contain data elements and may nest lower-level block sets. The defi-
nition of a block set defines the structure of its blocks. For instance, in a block
set of the definition 〈E [V ]〉, all blocks take the form (e,X ), where e is an entity
and X is a block set of the definition [V ]. All blocks in a block set are uniquely
identified by their headers, i.e. their elements from the header domains in the
definition. In our example, all blocks are uniquely identified by the data element
e. A block’s data elements from the included domains in the block set definition
form the block include.

As an example, Figure 4 illustrates the block sets resulting from the row
store layout 〈T [A] 〈E [V ]〉〉 given our example data. In the figure, the rounded
rectangles mark block sets, while the vertical lines separate blocks within block
sets. The top most block set T is an instance of 〈T [A] 〈E [V ]〉〉 as indicated by
the arrow pointing from the block set to its block set definition. Consequently, it
contains blocks consisting of an entity type as header and two nested block sets of
the form [A] and 〈E [V ]〉. T contains two of such blocks: (Order ,AOrder , EOrder )
and (City ,ACity , ECity). The order of these two blocks as given in the figure is
insignificant. Further down in the hierarchy, for instance, the block set EOrder

is of the form 〈E [V ]〉 and contains the blocks (o1,Vo1) and (o2,Vo2). Vo1 and
Vo2 are both ordered block sets of the form [V ], each containing a pair of blocks,
(Smith), (12/04/12) and (Meyer), (12/05/12), respectively. Here, the order of the
blocks is essential since it allows connecting the values to their attributes stored
in the ordered block set AOrder .
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Fig. 6. Block set materialization for 〈T [A] 〈E [V ]〉〉

3 Block Set Materialization

With Flexs a storage engine can be configured to a specific physical data layout.
The storage engine then has to arrange the data accordingly in storage. There-
fore the storage engine simply can materialize the blocks of the topmost block
set consecutively in storage. The materialization of a block embeds the material-
ization of all nested block set. For the majority of layouts, however, this simple
materialization strategy results in very large physical blocks. These large physi-
cal blocks and particularly the nested block sets are hard to maintain and cannot
be efficiently queried. Selective queries would have to read a lot of unnecessary
data.

Efficient retrieval and maintenance of blocks require indirection steps in the
materialization. An indirection step separates nested block sets into a dedicated
materialization. In the materialization of the nesting block a reference points to
the dedicated materialization of the nested block set. To have an indirection step
for each nested block set is not ideal either. Too many indirection steps lower
the retrieval performance as well; they reduce locality and increase the number
of references to resolve. The optimal set of indirection steps depends on the data
set and the configured layout.

For instance, the materialization strategy used in Figure 6 is absolutely rea-
sonable for regular relational data, where we have orders of magnitude more
entities than attributes and entities are only a few hundred bytes of size. How-
ever, with a very large number of attributes or large blob values the embedded
block sets AOrder , Vo1 , Vo2 , etc. would be significantly larger. If so, a different
materialization strategy may be more efficient.

We propose an adaptive strategy to avoid the embedding of very large block
sets. When a database is created, the adaptive strategy starts with a single phys-
ical container for the topmost block set. All other block sets are materialized in
an embedded way. With more data being inserted, the block sets grow. For



92 H. Voigt, A. Hanisch, and W. Lehner

every block set where the embedded materialization size exceeds a configured
threshold, e.g., the size of a memory page or a disk block, the adaptive strategy
introduces an indirection step and moves the block set to a dedicate materializa-
tion. Note that this reorganization is applied to relatively small block sets only
(just above the threshold), so that operational overhead is small. Regardless of
the configured layout, the adaptive strategy finds the optimal set of indirection
steps.

4 Related Work

Flexs aims at supporting a wider range of applications in a single system, by of-
fering a configurable specialization of the physical data layout. Most prominently,
OLTP workloads favor a row-oriented data layout while OLAP workloads profit
from a column-oriented layout. Supporting these two workloads in a single sys-
tem has been the aim of multiple works in recent years.

Index-only plans try to emulate column-oriented processing in a row-based
system. Additionally to the base relational, it adds an unclustered B+Tree in-
dex on every column. With the help of index intersection, the database system
can then answer queries without reading the base relation [21,23]. The efficiency
of index-only plans can be increased by exploiting the parallel processing capabil-
ities of modern hardware [13]. Microsoft further exploits this idea by introducing
a dedicated column store index [19]. Trojan Columns [18] follows the same line
but omits the base relation completely. Still, the index-only plans remain an
OLAP-focused add-on to a row-oriented database system. They do not offer the
generality of Flexs.

A very early approach of combining OLTP and OLAP is Fractured Mir-
rors [22]. Fractured Mirrors leverages the fact, that disk-based databases usu-
ally replicate data to multiple disks. If the replicates hold the data in different
physical layouts, queries can access the data in their preferred physical layouts.
As presented, Fractured Mirrors supports exactly the two representations, row
store and column store. Both are implemented as different scan operators in the
database engine. Generally, the idea is orthogonal to Flexs. Both would make
an appealing combination.

HyPer [20] is a main memory database system with OLTP and OLAP support.
It runs OLAP queries concurrently and isolated from the OLTP queries, by uti-
lizing hardware-supported page shadowing. In addition to the strictly sequential
execution of OLTP write operations, this eliminates the need for locking or any
other kind of currency control, resulting in outstanding transaction throughput
and query response times. The physical data layout, though, is not the authors’
main concern. HyPer uses the same physical layout for all data; globally config-
ured to either row-oriented or column-oriented. Other physical data layouts are
not supported.

SAP HANA [14,25] is another hybrid main memory database system for OLTP
and OLAP. In its hybrid relational engine, it combines SAP’s row store database
engine P*Time [10] and SAP’s column store engine TREX. HANA’s academic
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sidekick [24] uses MaxDB as row-store engine. The setup, though, is the same:
Two relational engines wired to the same query processor. During table cre-
ation it is decided which engine manages the table. The well-known open source
database system MySQL also follows the multiple engine concept. Here, an inter-
face separates data storage from the query processor including SQL parser and
query optimizer. Over the years, many storage engines have been developed each
implementing its own physical data layout. Instead of supporting a hard-coded
set of physical data layouts, Flexs aims at a freely configurable physical data
layout implemented in a single engine.

HYRISE [16] is also a hybrid main memory storage engine. It partitions tables
vertically into configurable column groups, where each column group is stored
directory compressed as if it is a single column. Hence, in its heart, HYRISE is a
main memory column store that can be configured to mimic a row store or mixed
layouts. The idea of bundling columns together that are typically accessed was
already used earlier in the Data Morphing approach [17]. It is an extension of
PAX [3]. PAX organizes pages like a column store for better cache performance.
Data Morphing improves that by exploiting column groups. All these approaches
focuses on OLTP and OLAP. Other workloads favoring different physical data
layouts are not considered.

While the aforementioned approaches focus on the combination of OLTP and
OLAP workloads RodentStore [11] takes a broader hold of the topic. Like Flexs,
RodentStore envisions a freely configurable data layout, but with a different fo-
cus than Flexs. RodentStore describes the physical data layout as nested lists of
values. How the lists are nested and which values they contain can be configured
with a storage algebra building on list comprehensions. This allows a wide range
of physical data layouts including row store, column store, and grid layout. With
the focus rather on spatial data, RodentStore includes some representations not
covered by Flexs, such as the utilization of space filling curves. The RodentStore
concept assumes strictly regular relational data, though, and does not consider
the role of specifiers in the data representation. Hence, it lacks support for phys-
ical data layouts most suitable for irregular data. It would be interesting to see
how both concepts, RodentStore and Flexs could be combined.

Another notable approach on increasing physical data independence is
GMAP [29]. GMAP offers a generalized definition language for access paths.
Where traditional access paths are fixed to the logical data model, GMAP de-
fines the data stored in an access path with query-like statements. This provides
great flexibility in the physical design for the DBA. As RodentStore, GMAP
assumes regular data and does not consider the role of specifiers in the data
layout. GMAP’s focus is to allow the consolidation of associated entities from
different domains in a single access path. It also allows the replication of enti-
ties over multiple access paths. GMAP offers a great way to define data subsets
which require different physical data layouts. In that respect, GMAP and Flexs
complement each other perfectly.

Finally, GENESIS [5,6] is a project from the mid-eighties that developed de-
tailed storage models for database systems including aspects of the physical data
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layout. The aim, however, was not to strengthen the physical data independence
of database systems but to speedup their development. Instead of providing an
exhaustive description of a database system’s storage layer, it focuses on captur-
ing its macroscopic characteristics.

5 Conclusion

In this paper, we presented Flexs. Flexs allows describing the macroscopic char-
acteristics of physical data layouts, i.e. how data elements are grouped on the
physical storage. It can express common layouts such as row store, column store
or BATs. Flexs also can serve as a foundation for mixed physical data layouts – a
direction we plan to explore next. In contrast to list comprehensions, Flexs is not
limited to regular data; it supports also layouts for irregularly structured data,
such as interpreted record and vertical schema. A Flexs expression describes
a hierarchical structure of nested block sets, which contain blocks of data ele-
ments and thereby determine how data elements can be selected and scanned.
We also proposed an adaptive materialization strategy that finds the optimial
set of indirection steps to allow for efficient retrieval and maintanence of the
data. Flexs is not meant to provide top-level performance but allow combining
the characteristics of various physical data layouts in a single system.
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24. Schaffner, J., Bog, A., Krüger, J., Zeier, A.: A Hybrid Row-Column OLTP
Database Architecture for Operational Reporting. In: Castellanos, M., Dayal, U.,
Sellis, T. (eds.) BIRTE 2008. LNBIP, vol. 27, pp. 61–74. Springer, Heidelberg
(2009)

25. Sikka, V., Färber, F., Lehner, W., Cha, S.K., Peh, T., Bornhövd, C.: Efficient
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