
© Springer International Publishing Switzerland 2015 41
N. Bassiliades et al. (eds.), New Trends in Database and Information Systems II,
Advances in Intelligent Systems and Computing 312, DOI: 10.1007/978-3-319-10518-5_4

Data Integration Patterns
for Data Warehouse Automation

Kalle Tomingas1, Margus Kliimask2, and Tanel Tammet1

1 Tallinn University of Technology, Ehitajate tee 5, Tallinn 19086 Estonia
2 Eliko Competence Center, Teaduspargi 6/2, Tallinn 12618 Estonia

Abstract. The paper presents a mapping-based and metadata-driven modular
data transformation framework designed to solve extract-transform-load (ETL)
automation, impact analysis, data quality and integration problems in data
warehouse environments. We introduce a declarative mapping formalization
technique, an abstract expression pattern concept and a related template engine
technology for flexible ETL code generation and execution. The feasibility and
efficiency of the approach is demonstrated on the pattern detection and data
lineage analysis case studies using large real life SQL corpuses.

Keywords: data warehouse, etl, data mappings, template based sql generation,
abstract syntax patterns, metadata management.

1 Introduction

The delivery of a successful Data Warehouse (DW) project in a heterogeneous
landscape of various data sources, limited resources, and lack of requirements, an
unstable focus and budgeting constraints is always challenging and risky. Many long-
term DW project failures are related to the requirements and reality mismatch
between available data, defined needs and information requirements for decision
making [5]. Extract, transform and load (ETL) is a database usage process widely
used in the data warehouse field. ETL involves extracting data from outside sources,
transforming it to fit operational needs and loading it into the end target: a database
or a Data Warehouse.

Mappings between source and target data structures or schemas are the basic
specifications of data transformations. Mappings can be viewed as metadata capturing
the relationships between information sources and targets. Mappings document the
decisions for information structuring and modeling [12]. They are used for several
different goals in DW processes: writing a specification for ETL programmers,
generating a transformation query or program that uses the semantics of the mapping
specification (e.g., a SQL query that populates target tables from source tables),
providing metadata about relationships between structures or schemas, providing
metadata about data flows and origin sources [4].

Programming mappings in the ETL environment involves writing special database
loading scripts (e.g. Oracle Sql*Loader, MSSQL Bulkload, Teradata Fastload,

42 K. Tomingas, M. Kliimask, and T. Tammet

Postgresql Copy etc.) and SQL queries (i.e. select, insert, update and delete
statements) which are incremental, iterative, time consuming and routine activities.
The manual programming of the data loadings is test-and-error based and not too
efficient in case there is no support from the environment and no methodology.
Manual scripting and coding of SQL gives high flexibility but backfires in terms of
efficiency, complexity, reusability and maintenance of data loadings [7]. The
execution and optimization of existing loading programs can be a very complex and
challenging task without access to the full dependencies and intelligent machinery to
generate optimized workflows [3], [1].

The processes of creation, integration, management, change, reuse, and discovery
of data integration programs are not especially efficient without the dependencies and
semantics of data structures, mappings and data flows. The creation and management
of human- and machine readable documentation, impact analysis (IA) and data
lineage (DL) capabilities has become critical for maintaining complex sequences of
data transformations. We can control the risks and reduce the costs of dynamic DW
processes by making the data flows and dependencies available to developers,
managers and end-users.

The paper describes a methodology for formalizing data transformations to an
extent that allows us to decouple unique mapping instances from reusable
transformation patterns. We demonstrate handling and storing declarative column
mappings join and filter predicates in a reusable expression pattern form. We use the
Apache Velocity template engine and predefined scenario templates to handle
reusable procedural parts of data transformations. We show how the combination of
those techniques allows us to effectively construct executable SQL queries and
generate utility loading scripts. We also take a look at what has been previously done
in the ETL and DW automation field.

In the third chapter we present our open-source architecture of knowledge and
metadata repository (MMX 1) with the related data transformation language and
runtime environment (XDTL2) which is used as the technology stack for our metadata-
driven Data Warehousing process. In the fourth chapter we describe the decoupling of
procedural and declarative parts of data mappings and the template-based SQL
construction technique. We introduce a case study of Abstract Syntax Pattern (ASP)
discovery from a real life DW environment in the fifth chapter and two data lineage
analysis case studies in the sixth chapter.

2 Related Work

The roles and functions of general programming and ETL tools as well as the
relations between manual scripting and script generation are discussed in [7]. The first
generation ETL tools were similar to procedural programming or scripting tools,
allowing a user to program specific data transformations. The concept of mapping
was used for initial specification purposes only.

1 www.mmxframework.org
2 www.xdtl.org

 Data Integration Patterns for Data Warehouse Automation 43

Modern ETL tools - e.g. Informatica PowerCentre, IBM WebSphere DataStage or
Oracle Data Integrator - exploit the internal mapping structure for transformation
design and script or query generation purposes. In addition to specific ETL
technologies there exist the general purpose schema mapping tools that allow
discovery and support documenting the transformations or generating transformation
scripts (XSLT transformation between XML-schemas, XQuery or SQL DML
statements etc.). The meaning and purpose of mappings and general application areas,
tools and technologies is discussed by Roth et al. with the generic usage scenarios in
different enterprise architecture environments [12]. The declarative mappings
designed for ETL program generation and vice versa are discussed in [4] and [6].

In addition to mappings with program generation instructions and data
transformation semantics, there exist relations and dependencies between mappings
and source or target schema objects. The declarative representation of the
dependencies allows us to generate, optimize and execute data transformations
workflows effectively. We can find different optimization approaches described in
papers [1],[2] and [3]. An extensive study of common models for ETL and ETL job
optimization is published by Simitsis et al. [13], [14] and Patil et al. [9]. The dynamic
changes of data structures, connections between mapping and jobs and a rule-based
ETL graph optimization approach is discussed in [8].

An effective ETL job optimization is related to data mappings, dependencies
between mappings, dynamics and changes of source structures and the data quality
(DQ). All of those aspects can be formalized and taken into account by ETL job
automation where timing, the right order and data volumes are always important
issues. Estimation and evaluation of data structures, quality of data and discovery of
rules can be automated and integrated into ETL processes [11]. By adding rule-based
DQ into ETL process, we can automate the mapping generation and improve the
success rate of data loadings. Rodiç et al. demonstrated that most of the integration
rules can be generated automatically using the source and target schema descriptions
[11].

3 System Architecture

The modern enterprise data transformation systems are built according to the model-
driven architecture principles, including internal metadata about the source and target
models, mappings, transformations and dependencies between models. We introduce
a new architectural concept, based on open source java and xml technologies that can
be used in lightweight scripting configuration, mixed configuration with partial
mapping formalization and full model- and metadata driven knowledge base
implementations. When the first lightweight configuration gives you a quick start,
low-cost and small technology track and metadata-driven approach gives a knowledge
base with different new possibilities (e.g. mapping generation and management,
dynamic dependency management and job automation, impact analysis, data quality
integration etc.), then both exploit the template-based code construction and
automation principles. Our design goals of the new ETL architecture were an open

44 K. Tomingas, M. Kliimask, and T. Tammet

and flexible environment, extensible and reusable programming techniques with
moderate formalization and decoupling of declarative knowledge from procedural
parts of executable code.

Fig. 1. System architecture components

The general system architecture with main building blocks is drawn in Figure 1.
The main system components are ETL Package (A) that can be written in XDTL
language or represented as Tasks and Rules and Dependencies (N) in MMX
repository. The mapping (B) is a formalized representation of source schema objects
(K), target (L), column transformations and patterns, join and filter conditions that can
be again be a part of an XDTL package or stored in MMX repository. The
transformation Template (C) is a reusable and repeating part of SQL query patterns or
some other scripting executable language scenarios that are written in the Apache
Velocity macro language (or any other language of template engine). The template
Engine (D) is a configurable java code that is responsible for runtime code
construction using Mappings (B) and Templates (C). Examples of mappings and
templates are discussed in more detail level in Chapter 4. The tasks in Package (A)
can be created using previously prepared Library Packages (F) or managed
modularly, reused and published as Extension (G) modules. The XDTL Runtime
Engine (H) is a preconfigured environment and java package, able to interpret
packages written in the XDTL language, execute those and deliver actual data
transformations from the source (I) to the target (J).

3.1 Data Transformation Language (XDTL)

The Extensible Data Transformation Language (XDTL) is an XML based descriptive
language designed for specifying data transformations between different data formats,
locations and storage mechanisms. XDTL is created as a Domain Specific Language
(DSL) for the ETL domain and is designed by focusing on the following principles:
modular and extensible, re-usable, decoupled declarative (unique) and procedural

 Data Integration Patterns for Data Warehouse Automation 45

(repeated) patterns. The XDTL syntax is defined in an XML Schema document. The
wildcard elements of an XML Schema enable extending the syntax of core language
with a new functionality implemented in other programming languages or in XDTL
itself. The XDTL scripts are built as reusable components with the clearly defined
interfaces via parameter sets. The components can be serialized and deserilized
between the XML and database representations, thus making XDTL scripts suitable
for storing and managing in a data repository. XDTL provides the functionality to use
data mappings stored independently of the scripts, being efficiently decoupled from
the scripts. Therefore the mappings stored in a repository can exist as objects
independent from the transformation process and be reused by several different
processes. XDTL acts as a container for a process that often has to use facilities not
present in XDTL itself (e.g. SQL, SAS language etc.).

3.2 Knowledge Repository Structure (MMX)

The MMX metadata framework is a general purpose integrative metadata repository
built on the relational database technology for different knowledge management
(KM) and rule-based analytical applications. The MMX repository is designed
according to the OMG Metadata Object Facility (MOF) idea with separate abstraction
and modeling layers (M0-M3). The MMX physical data model (schema) is based on
principles and guidelines of EAV (Entity-Attribute-Value) or EAV/CR (Entity-
Attribute-Value with Classes and Relationships) modeling technique suitable for
modeling highly heterogeneous data with very dynamic nature. The metadata model
and schema definition in EAV is separated from physical storage and therefore it is
easy to modifications to schema on 'data' without changing the DB structures: by just
modifying the corresponding metadata. The approach chosen is suitable for open-
schema implementations (similar to key-value stores) where the model is dynamic
and semantics is applied in query time, as well as model-driven implementations with
a formal, well defined schema, structure and semantics.

The MMX physical schema (Figure 2) provides a storage mechanism for various
knowledge- or meta-models (M2) and corresponding data or metadata (M1). Three
physical tables - object, property and relation - follow the subject-predicate-object or
object-property-value representation schemes, where object_type, property_type and
relation_type tables are like advanced coding or dictionary tables for object, property
and value types. The separate dictionary tables give us an advanced schema
representation functionality using special attributes and relational database foreign
keys (FK) mechanism. The formalized schema description and relations between
different schemas make our metadata understandable and exchangeable between the
other system components or external agents. The URI reference mechanism used and
the resource storage schema makes an MMX repository a semantic data store,
comparable to Resource Description Framework (RDF), serializable in different
semantic formats or notations (e.g. RDF/XML , N3 , N-Triples , XMI etc.) using
XML or RDF APIs.

46 K. Tomingas, M. Kli

F

The MMX physical sch
hierarchical storage mech
communication medium o
different software agents or
etc.). Built in limited reason
captured to data and metad
functions. Semantic represe
calculus or apply other exte
reasoning tasks, like deduct

Repository contains inte
access APIs (e.g. data AP
implemented as relationa
implementations on Postg
database SQL dialects and
Using common and docum
technology (e.g. Hibernate
without touching related ap

An arbitrary number of
Model simultaneously with
constitutes a hierarchy of
relationship, a whole-part
between hierarchy member
repository, e.g.

• terminology (ontol
• relational database
• abstract mappings
• role-based access c

In addition to existing m
specific needs, like busi
transformations, computatio
task); data demographics, st

iimask, and T. Tammet

Fig. 2. MMX physical schema design

hema can be seen as a general-purpose, multi-level
hanism for different knowledge models, but also
or information integration and exchange platform
r applications (e.g. metadata scanners, metadata consum
ning capability based on recursive SQL technique and i
data APIs to implement inheritance and model validat
entation of data allows extend functionality with predic
ernal rule-based reasoners (e.g. Jena) for more complica
tion of new knowledge.
egrated object level security mechanism and different d
PI, metadata API, XML API, RDF API etc.) that
al database procedures or functions. We have l
geSql, Oracle and MsSql platforms and differences

functionality are hidden and captured into API packag
mented API-s or an Object Relational Mapper (OR

e) we can choose and change repository DB technolo
pplications.
f different data models can exist inside MMX Metad
h relationships between them. Each of these data mod
f classes where the hierarchy might denote an insta

relationship or some other form of generic relations
rs. We have several predefined metadata models in MM

logy) and classification (based on ISO/IEC11179 [18]);
e (based on Eclipse SQL Model [19]);
and general ETL models;

control model (based on NIST RBAC [20]).

models we can implement any other type of data mode
iness process management (business rules, mappin
onal methods); data processing events (schedule, batch
tatistics and quality measures, etc.

and
as

for
mers
it is
tion
cate
ated

data
are

live
s in
ges.

RM)
ogy

data
dels
ance
ship
MX

for
ngs,
and

 Data Integration Patterns for Data Warehouse Automation 47

The purpose of MMX repository depends on system configuration and desired
functionality. In current paper we handle MMX repository as persistent storage
mechanism for ETL metadata and we discuss about relational database and abstracted
mapping knowledge models (KM) to store required data and relations. In addition to
repository storage and access technologies MMX Framework has web-based
navigation and administration tools, semantic-wiki like content management
application and different scanner agents written in XDTL (e.g. DB dictionary scanner)
to feel and detect surrounding environment and context. Due to space limitation we
do not discuss all those topics in this paper.

4 Template Based SQL Construction

SQL is and probably remains the main workforce behind any ETL (and especially
ELT flavor of ETL) tool. Automating SQL generation has arguably always been the
biggest obstacle in building an ideal ETL tool (i.e. completely metadata-driven), with
small foot-print, multiple platform support on single code base. While SQL stands for
Structured Query Language, ironically the language itself is not too well 'structured',
and the abundance of vendor dialects and extensions does not help either. Attempts to
build an SQL generator supporting full feature list of SQL language have generally
fallen into one of the two camps: one of them trying to create a graphical click-and-
pick interface that would encompass the syntax of every single SQL construct,
another one designing an even more high-level language or model to describe SQL
itself, a kind of meta-SQL. The first approach would usually be limited to simple SQL
statements, be appropriate mostly for SELECT statements only and struggle with
UPDATEs and INSERTs, and be limited to a single vendor dialect.

4.1 Mappings, Patterns and Templates

Based on our experience we have extracted a set of SQL 'patterns' common to
practical ETL (ELT) tasks. The patterns are converted into templates for processing
by a template engine (e.g. Apache Velocity), each one realizing a separate SQL
fragment, a full SQL statement or a complete sequence of commands implementing a
complex process. Template engine merges patterns and mappings into executable
SQL statements so instead of going as deep as full decomposition we only separate
and extract mappings (structure) and template (process) parts of SQL. This limits us
to only a set of predefined templates, but anyone can add new or customize the
existing ones. Templates are generic and can be used with multiple different
mappings/data structures. The mappings are generic as well and can be used in
multiple different patterns/templates. Template engine instantiates mappings and
templates to create executable SQL code which brings us closer to OO mind-set. The
number of tables joined, the number of columns selected, the number of WHERE
conditions etc. is arbitrary and is affected by and driven by the contents of the

48 K. Tomingas, M. Kliimask, and T. Tammet

mappings only, i.e. well-designed templates are transparent to the level of complexity
of the mappings. The same template would produce quite different SQL statements
driven by minor changes in mappings. We have built a series of template libraries to
capture the syntax of basic SQL constructs that are used to build complex statements.
XDTL Basic SQL Template Library is a set of Apache Velocity templates that
implements ‘atomic’ SQL constructs (INSERT, SELECT, UPDATE, FROM,
WHERE etc.) as a series of Velocity macros. Each macro is built to expand into a
single SQL construct utilizing the mappings in the form of predefined collections
(targets, sources, columns, conditions). On top of Basic SQL library one or more
higher-level layers can be built to realize more specific or more complex concepts,
e.g. loading patterns, scenarios or process flows, as well as specifics of various SQL
dialects.

It appears that, by use of Abstract Syntax Patterns, the same principle of reducing a
disparate and seemingly diffuse set of all possible transformations in SQL statements
to a limited set of patterns applies here as well. Abstract Syntax Pattern (ASP) is a
reappearing code fragment that, similarly to Abstract Syntax Tree, has all the
references to concrete data items removed. Thus, mappings between different data
domains can be reduced to ASPs to be later processed synchronously with the process
template by the same template engine turning them into executable code. Identifying
and building a library of common syntax patterns enables creation of a user interface
to generate a focused (limited) set of SQL statements without coding or even
automatic SQL generation, validation of existing SQL statements [10]. More detailed
ASP discovery case study can be found on chapter 5.

Various ETL metamodels discussed in previous works of [15],[16] and [17], but
we decided to use pragmatic approach with ASP idea instead of complex and
expressive modeling. We had modeling goals like: minimum footprint and
complexity, effective code generation for different languages (e.g. SQL, SAS, R etc.),
efficient storage and serialization, decomposition to the level where interesting parts
would be identified and exposed with clear semantics (i.e. database objects, vendor
specific terms and keywords, generic and reusable expressions etc.). In Figure 3 we
have implemented mappings knowledge model with four basic classes which are
designed as derivation type of rules in MMX repository. Mapping Group (B) is
collection of Mappings (C) which used on multiple mapping cascade definition that
produces single SQL statement with sub-queries or temporary table implementation.
Each Transformation class (D) instance represents one column transformation in SQL
select, insert-select or update statement with required source, target and pattern
attribute definitions. Condition class (E) represents join and filter predicate conditions
that required constructing data set from defined source variables (tables).

Mapping model (Figure 3) implementation in MMX physical schema (Figure 2) is
straightforward transformation where each class implemented as one row in
object_type table, each class attribute implemented as one row in property_type
table, and each association implemented as one row in relation_type table. Instances
of mapping model stored as corresponding rows in object, property and relation
tables.

 Da

Fig. 3. Knowledge m

Described method and m
following criteria:

• construction of all sig
based on a single map

• construction of SQL
SQL dialects;

• construction of SQL
performance consider

• construction of SQL
• minimum footprint an

The next chapter exampl

usage scenarios for SQL co

Mapping Example

Following simple and gene
transformation code for e
staging tables to target table

Example 1. Insert-select SQ

INSERT INTO person t0

SELECT t1.cust_id,
 t1.firstname |

 DECODE(t1.sex,

 ssn_to_age(t2.

FROM customer t1
JOIN document t2 ON t

WHERE t1.cust_id IS N

ata Integration Patterns for Data Warehouse Automation

model (schema) for mappings representation and storage

model for constructing SQL statements complies with

gnificant DML statements (INSERT, UPDATE, DELET
pping;

L statements from a single mapping for several differ

L statements covering different loading scenarios
rations;
statements based on multiple mappings (mapping group
nd complexity of the processing environment.

le gives the basic idea of one mapping implementation
ode generation in ETL process.

eric insert-select SQL statement represents one very ba
everyday data transformation inside DW from multi
e.

QL DML statement:

 (id, name, sex, age)

| ‘ ‘ || t1.lastname,
 ‘M’, 1, ‘N’, 2),
ssn)

2.cust_id = t1.cust_id
NOT NULL;

49

the

TE)

rent

and

ps);

and

asic
iple

50 K. Tomingas, M. Kliimask, and T. Tammet

Same query contains declarative mapping part formalized and represented by
following objects and collections in MMX repository tables:

Table 1. Mapping objects source and target properties

Target isVirtual Source isQuery
t0:person f (false) t1:customer f (false)
 t2:document f (false)

Table 2. Column Transformation object(s) properties and values

Pattern Target Source Function Key Upd
%c1 %c0:t0.id %c1:t1.cust_id null t f
%c1||' '||%c2 %c0:t0.name %c1:t1.firstname; %c2:t1.lastname null f t
decode(%c1,'M',1,'F',2) %c0:t0.sex %c1:t1.sex null f f
%f1(%c1) %c0:t0.age %c1:t2.ssn %f1:ssn_to_age f t

Table 3. Condition objects properties(s) and their values

Pattern Source Function Condition Type Join Type
%a2 = %a1 %a2:t2.cust_id;

%a1:t1.cust_id
null join inner

%a1 IS NOT NULL %a1:t1.cust_id null filter null

Simple insert-select template produces initial SQL statement from given mapping

(Table 4). When using the same mapping with the different template(s) we can
generate update statement or series of different statements.

Table 4. Insert-Select template and result query

Template SQL Statement
#foreach($tgt in $Targets)
#if("$tgtmap" == "0")
#INSERT($tgt $Columns)
#SELECT($Columns)
#FROM($Sources $Conditions)
#WHERE($Conditions)
#GROUPBY($Columns $Conditions)
#HAVING($Conditions)
#end
#end;

INSERT INTO person (id, name, sex, age)
SELECT
 t1.cust_id
, t1.firstname || ' ' || t1.lastname
, DECODE(t1.sex, 'M', 1, 'F', 2)
, ssn_to_age(t2.ssn)
FROM customer t1
INNER JOIN document t2
ON t2.cust_id = t1.cust_id
WHERE t1.cust_id IS NOT NULL;

The described example gives very basic idea and method how to formalize column

mappings with reusable patterns and how to construct source and target data sets
applying join and filter conditions that described again with reusable expression
patterns. Using one single mapping together with limited number of scenario
templates (e.g. full load, initial load, incremental load, insert only, ‘upsert’ (with or
without deletion), versioned insert (history tables), slowly changing dimensions etc.)
we can generate long SQL statement batches, that are adapted for specific dialect
(when needed), validated, robust and working with expected performance. The main
idea here is to formulate and describe as less as possible and reuse and generate as
much as possible.

By using described set of methods we have effectively decomposed SQL statement
into mappings and patterns. The same method can be applied to any SQL data

 Data Integration Patterns for Data Warehouse Automation 51

manipulation statement (e.g. insert, update and delete) of reasonable complexity and
we have used same approach, same mappings and different templates to generate code
for different execution engines (e.g. SAS script). More expressive examples can be
presented when to take transformations with more than 5-10 source tables and targets
with 20-100 columns (common in analytical DW environment) then propositions of
generated, defined and reused code parts change dramatically.

To conclude the mapping example we can say that presented methodical approach
allows us to:

• migrate and translate vendor-specific (SQL) pattern dialects between
different platforms or use same mapping code with different transformation
scenarios or generate code for different execution engines;

• construct data transformation flows from sources to targets with column
level transformation semantics for Impact Analysis and Audit Trail
applications;

• construct system component dependency graphs for better management and
automation of development and operation processes;

• automate change management and deployment of new functionality between
different environments (e.g. development, test, production).

5 Experimental Abstract Syntax Pattern Case Study

Abstract Syntax Pattern (ASP) is the practical idea to narrow down expressiveness of
SQL Data Manipulation Language (DML) to allow formalized descriptions of
reusable patterns, decoupled data structures and functions. Decomposition of patterns
and data structure instances are the central idea of the XDTL environment and the
code construction capability, which gives additional flexibility and ergonomics in data
transformation design and allows impact analysis capability for maintenance of
complex Data Warehouse environment (described in chapter 4). We used existing
SQL statements corpus (used for real life data transformations) containing about 26
thousand SQL statements to find hard evidences for existing patterns and we
narrowed down the used corpus to 12 thousand DML statement to find specific
column, join and where expressions.

We used open source GoldParser3 library and developed our own custom SQL
grammar in EBNF format for SQL text corpus parsing. We developed custom parser
program for ASP pattern extraction from SQL corpus, we imported all parsed patterns
to database and evaluated and analyzed SQL patterns and “life forms” writing new
SQL queries. Implemented parsing program is tuned to recognize column
construction patterns, join, where and having condition predicate patterns from SQL
DML statements, replacing specific database structure identifiers and constants with
%a and functions with %f pattern.

3 www.goldparser.org

52 K. Tomingas, M. Kliimask, and T. Tammet

Example 3. The parsing program detects pattern %f(%a,%a) from the original
column expression COALESCE(Table1.Column1,0) and assigns operator and
operand values to replaced variables: %f = {’COALESCE’} and %a =
{’Table1.Column1’,’0’}

Very general metrics about SQL parsing work can be described with total figures
of 8,380 input SQL DML statements (select, insert, update) and 92,347 parsed
expressions that group to 2,671 abstract patterns. It gives us 97/3 percentage division
between expressions and patterns. Those figures can be improved by hand tuning of
pattern detection technique and SQL grammar that is not currently covering all the
aspects of used SQL dialect.

Table 5. Insert-Select template and result query

Statement Type Patterns
Count

Statements
Count

Expression
Count

Expressions in
Top Pattern

Top Pattern
Coverage %

Insert 1 890 4 965 61 899 37 924 61

Update 836 2 240 25 361 12 997 51

Select 224 1 175 5 087 3 175 62

All 2 950 8 380 92 347 54 096 59

Table 6. Discovered patterns by pattern types

Pattern Type Pattern
Count

Statement
Count

Expression
Count

Expressions in
Top Pattern

Top Patten
Coverage %

 Column 1 897 10 631 78 264 55 921 71

 Join 526 4 172 11 684 2 273 19

 Filter 323 1 505 2 399 359 14

Based on current results we can conclude that top 10 patterns will cover 83% and

top 100 patterns will cover 93% of all expressions that used in SQL DML corpus.
Those metrics does not count the fact that most of the patterns that are not in top list
are constructed from patterns that are in patterns top list.

To conclude this case-study we can say that actual expressiveness of formalized
patterns and mappings will be comparable with expressiveness of real life usage of
SQL DML in data transformations. A small set of meaningful patterns (about 100
different patterns) with defined semantics and experimental impact weights will direct
us to automated and probabilistic impact analysis calculations that are one of the main
applications for SQL formalization technique. We also got the confirmation that SQL
parsing technique can be used for data transformation extraction, mapping
formalization and future analysis.

6 Case Studies for Automating Data Lineage Analysis

The previously described architecture and algorithms form a basis for an integrated
data lineage analysis toolset dLineage (http://dlineage.com). dLineage has been tested

 Data Integration Patterns for Data Warehouse Automation 53

in large real-life projects and environments supporting several popular DW database
platforms (e.g. Oracle, Greenplum, Teradata, Vertica, PostgreSQL, MsSQL, Sybase)
and BI tools (e.g. SAP Business Objects, Microstrategy).

We have conducted two main case studies involving a thorough analysis of large
international companies in the financial and the energy sectors. Both case studies
involved an automated analysis of thousands of database tables and views, tens of
thousands of data loading scripts and BI reports. Those figures are far over the
capacity limits of human analysts not assisted by the special tools and technologies.
The automation tools described in the paper enabled us to set up and conduct the
analysis project in a few days by just two developers.

The following example graph from the case study maps DW tables to views and
user reports: it is generated automatically from about 5 000 nodes (tables, views,
reports) and 20 000 links (data transformations mappings form views and queries).

Fig. 4. Data lineage graph with dependencies between DW tables, views and reports

54 K. Tomingas, M. Kliimask, and T. Tammet

7 Conclusions and Future Work

We have presented a formalized mapping and abstract pattern methodology
supporting template-based program construction. The technique is a development
upon the ETL language runtime environment (XDTL) and metadata repository
(MMX) designed earlier by the authors. We have introduced the technology and
presented working samples motivated by real-life challenges and problems discussed
in the first chapter. The described architecture and mapping concept have been used
to implement an integrated toolset dLineage (http://dlineage.com) to solve data
integration and dataflow visualization problems.

We have used our metadata-based ETL technology in the Department of Statistics
of Estonian state to implement a system for automated, data-driven statistics
production for the whole country. We have also tested our mapping methods and
technology for data flow analysis and visualization in large international companies in
the financial and the energy sectors. Both case studies contained thousands of
database tables and views along with tens of thousands of data loading scripts and BI
reports. The analysis of the large SQL data transformation corpus (see chapter 5) gave
us taxonomy of reusable transformation patterns and demonstrated the two-way
methodology approach from code to mappings and patterns.

The future work involves refining current implementation details, adding semantics
to mappings and patterns, constructing dependency graphs of mappings, data
structures and data flows and developing aggregation algorithms for different
personalized user profiles and their interests (e.g. business user interest in data
structures, flows and availability is different from that of a developer or system
operator) as well as using those techniques for solving problems described in the
first chapter.

Acknowledgments. This research has been supported by European Union through
European Regional Development Fund.

References

[1] Behrend, A., Jörg, T.: Optimized Incremental ETL Jobs for Maintaining Data Warehouses
(2010)

[2] Boehm, M., Habich, D., Lehner, W., Wloka, U.: GCIP: Exploiting the Generation and
Optimization of Integration Processes (2009)

[3] Böhm, M., Habich, D., Lehner, W., Wloka, U.: Model-driven generation and optimization
of complex integration processes. In: ICEIS (2008)

[4] Dessloch, S., Hernández, M.A., Wisnesky, R., Radwan, A., Zhou, J.: Orchid: Integrating
Schema Mapping and ETL. In: IEEE 24th International Conference on Data Engineering
(2008)

[5] Giorgini, P., Rizzi, S., Garzetti, M.: GRAnD: A Goal-Oriented Approach to Requirement
Analysis in Data Warehouses. DSS 45(1), 4–21 (2008)

[6] Haas, L.M., Hernández, M.A., Ho, H., Popa, L., Roth, M.: Clio Grows Up: From
Research Prototype to Industrial Tool. In: SIGMOD, pp. 805–810 (2005)

 Data Integration Patterns for Data Warehouse Automation 55

[7] Jun, T., Kai, C., Yu, F., Gang, T.: The Research & Application of ETL Tool in Business
Intelligence Project, International Forum on Information Technology and Applications.
In: FITA 2009, pp. 620–623 (2009)

[8] Papastefanatos, G., Vassiliadis, P., Simitsis, A., Sellis, T., Vassiliou, Y.: Rule-based
Management of Schema Changes at ETL sources. In: Grundspenkis, J., Kirikova, M.,
Manolopoulos, Y., Novickis, L. (eds.) ADBIS 2009. LNCS, vol. 5968, pp. 55–62.
Springer, Heidelberg (2010)

[9] Patil, P.S., Rao, S., Patil, S.B.: Data Integration Problem of structural and semantic
heterogeneity: Data Warehousing Framework models for the optimization of the ETL
processes (2011)

[10] Reiss, S.P.: Finding Unusual Code. In: 2007 IEEE International Conference on Software
Maintenance, pp. 34–43 (2007)

[11] Rodiç, J., Baranoviç, M.: Generating Data Quality Rules and Integration into ETL Process
(2009)

[12] Roth, M., Hernández, M.A., Coulthard, P., Yan, L., Popa, L., Ho, H.C.T., Salter, C.C.:
XML mapping technology: Making connections in an XML-centric world. IBM Systems
Journal (2006)

[13] Simitsis, A., Vassiliadis, P., Sellis, T.K.: Optimizing ETL Processes in Data Warehouses.
In: ICDE, pp. 564–575 (2005)

[14] Simitsis, A., Wilkinson, K., Dayal, U., Castellanos, M.: Optimizing ETL workflows for
fault-tolerance. In: International Conference on Data Engineering (ICDE), pp. 385–396
(2010)

[15] Song, X., Yan, X., Yang, L.: Design ETL Metamodel Based on UML Profile, Knowledge
Acquisition and Modeling. In: KAM 2009, pp. 69–72 (2009)

[16] Stöhr, T., Müller, R., Rahm, E.: An Integrative and Uniform Model for Metadata
Management in Data Warehousing Environment. In: Workshop on Design and
Management of Data Warehouses (DMDW) (1999)

[17] Vassiliadis, P., Simitsis, A., Georgantas, P., Terrovitis, M.: A Framework for the Design
of ETL Scenarios. In: Eder, J., Missikoff, M. (eds.) CAiSE 2003. LNCS, vol. 2681,
Springer, Heidelberg (2003)

[18] ISO/IEC 11179 Metadata Registry (MDR) standard,
http://www.iso.org/iso/home/store/catalogue_tc/
catalogue_detail.htm?csnumber=35343

[19] Eclipse DB Definition Model,
http://www.eclipse.org/webtools/wst/components/rdb/
WebPublishedDBDefinitionModel/DBDefinition.htm

[20] NIST Role Based Access Control (RBAC) Standard,
http://csrc.nist.gov/groups/SNS/rbac

	Data Integration Patternsfor Data Warehouse Automation
	1 Introduction
	2 Related Work
	3 System Architecture
	3.1 Data Transformation Language (XDTL)
	3.2 Knowledge Repository Structure (MMX)

	4 Template Based SQL Construction
	4.1 Mappings, Patterns and Templates

	5 Experimental Abstract Syntax Pattern Case Study
	6 Case Studies for Automating Data Lineage Analysis
	7 Conclusions and Future Work
	References

