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Abstract. Traversing huge graphs is a crucial part of many real-world problems,
including graph databases. We show how to apply Fixed Length lightweight com-
pression method for traversing graphs stored in the GPU global memory. This
approach allows for a significant saving of memory space, improves data align-
ment, cache utilization and, in many cases, also processing speed. We tested our
solution against the state-of-the-art implementation of BFS for GPU and obtained
very promising results.

Keywords: graph searching, BFS, graph compression, data-intensive computa-
tion, GPU, CUDA, graph databases.

1 Introduction

Graph algorithms are a foundation of many fields of computer science, including graph
databases. Since the graphs appearing in applications tend to be bigger and bigger, both
science and industry conduct research to find some more efficient and powerful methods
allowing to process them.

Recently, implementations of graph algorithms for the Graphic Processing Units
(GPUs) have received considerable attention. A prominent speed-up has been expected
due to a massive parallelism offered by the GPU technology. Although the parallel
threads programming is now much simplified in this programming model, most of the
algorithms (except the ones for embarrassingly parallel problems) need to be redesigned
and rewritten. For this reason, new GPU implementations of already known graph al-
gorithms are extensively studied. An example of such an algorithm is the Breadth-first
search (BFS), being a building block of many more complicated algorithms and data
mining techniques. There have been many studies addressing the implementation of this
algorithm on a GPU, followed by a novel work of Merrill, Garland and Grimshaw [11],
which outperformed all previous achievements. As the GPU cards often have severe
memory limitations, Merril et al. also cover the usage of multiple GPU cards, which
allows to scale the problem, when the size of the data increases.

In this work we propose an extension and improvement to the work by Merrill
et al. [11], by combining BFS with a lightweight compression algorithm. As a result, it
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is possible to decrease an overall communication cost between the CPU and the GPU
and fit significantly larger graphs in a single GPU. Surprisingly, for large graphs it is
also possible to improve the processing time of the algorithm on a single GPU device.

1.1 Preliminaries

In this paper, we consider directed graphs G = (V,E), being a pair of a vertex set V and
a directed edge (arc) set E ⊆V ×V . Neither multiple edges of loops are allowed. We use
a well-known compressed sparse row (CSR) format to represent an adjacency matrix of
our graph. The vertices are indexed with successive non-negative integers. We store a
graph G = (V,E) using two arrays C and R. The array C is a concatenation of adjacency
list of successive vertices. Therefore its length is exactly |E|. The array R has |V |+ 1
elements. The value of R[i] (for i ∈ {0,1, .., |V | − 1}) points to the index in C of the
first element of adjacency list of i. In R[|V |] we keep the total number of edges |E|. See
Figure 1 for an example. Let Cv be a subarray (segment) of C containing nodes pointed
by edges of vertex v, i.e. an adjacency list of v. Clearly Cv =C[R[v]], . . . ,C[R[v+1]−1].
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2 {2,5} {1,1,3,4}
3 {1,3,4} {4,8}
4 {8} {3,6,7}
5 {6,7} {1,8}
6 /0

Fig. 1. A graph, its CSR representation and vertex- and edge-frontiers in iterations of BFS started
with node 0

BFS (Breadth-first search), one of the best known graph algorithms, starts from a
given vertex v and traverses the set of all vertices in a breadth-first manner. Every vertex
is labelled with its distance from v (measured in the number of edges). Sometimes we
also store the immediate predecessor of each vertex on the shortest path from v. This
allows us to re-create all such paths. The complexity of a sequential BFS is O(|V |+ |E|).

Although BFS is simple and not very interesting on itself, it is a crucial part of many
more complicated and useful graph algorithms, e.g. detecting (strongly) connected com-
ponents, detecting cycles, checking for bipartiteness or finding a maximum flow. We
refer the reader to a classical book by Cormen et al. [3] for more information about
possible uses of BFS.

Parallel versions of BFS have also been investigated. In this approach, we also start
with some initial vertex, forming a one-element set V1, called a vertex-frontier. Then,
in every iteration i, the current vertex frontier Vi is expanded, forming a multiset V ′

i+1
of neighbours of vertices from vertex frontier. This multiset is called an edge-frontier.
To obtain the next vertex frontier Vi+1, we need to remove from V ′

i+1 all duplicates and
all vertices that have already been visited. If so obtained vertex frontier is empty, the
algorithms stops. For an example, consult Figure 1.
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1.2 Short History of BFS Implementations for the GPU

In 2006 NVIDIA published the first version of the CUDA platform which enabled
programmers to write arbitrary programs executed by vectorised parallel threads with
simplified random memory access. Simplified programming paradigm and spectacular
benefits in many applications have led CUDA to become a de-facto standard in the gen-
eral purpose graphic processor unit programming (GPGPU). In this paper, we assume
that a reader is familiar with general purpose GPU computing problems and NVIDIA
CUDA architecture. Due to the strong page limit we shall not describe notions like
SIMD computing, threads, warps, blocks and various memory hierarchy levels. We
kindly suggest reading the documentations provided by NVIDIA [12,13], if necessary.

Breadth-first search, being a building block of many graph algorithms and data min-
ing techniques, appeared to be an important task for GPU devices. In 2007 Harish and
Narayanan [7] presented the first CUDA implementation. Their approach processes a
graph in levels, starting from a given source vertex. In each iteration all vertices which
have to be visited in the next step are marked by parallel threads. No global queue of
vertices is created due to possible conflicts in memory access by parallel threads and
necessity of duplicates removal. This becomes a problem for graphs of high average de-
gree, where the same vertex may be pointed to by many edges. Parallel post-processing
and removal of duplicates in the vertex frontier may become a complex and expensive
task itself. An obvious strategy is then not to create the vertex queue at all and visit
all vertices in each iteration, checking if each vertex has to be visited or not. Unfortu-
nately this solution leads to quadratic processing time (compared to O(|V |+ |E|) for
the sequential algorithm).

Deng et al. [5] achieved the same quadratic complexity for sparse graphs represented
by adjacency matrices. In each iteration a frontier propagation is computed by multi-
plication of a matrix and a vertex vector. Since the entire graph traversal will require
O(|V |) multiplications in the worst case and each multiplication has a complexity of
O(|E|), we again get at least quadratic processing time.

The only way to achieve an efficiency comparable to a sequential algorithm is to
organize a set of vertices to be visited in the next step optimally, without duplicates.
Luo, Wong and Hwu [9] were the first who presented such a solution for the GPU.
Their hierarchical queue structure produces a vertex frontier array processing incoming
vertices. It is first initiated in the shared memory, using the warp-level threads cooper-
ation. Then, on the block-level, the next step of a queue processing is performed. The
final shape of the array is formed in the global memory by a proper copying of block
level frontiers. It is worth to mention that an efficient implementation is guaranteed by
memory coalesced writes and reads.

In 2011 Hong et al. [8] noticed that performance may be significantly improved,
if the edge frontier array can be processed by warps instead of single threads. They
described a warp-based task allocation model and extended it further to virtual warps
(smaller than normal 32-thread warps), which allowed for better utilization of threads
in multiprocessors. In this approach each thread in a virtual warp processes the same
vertex and then it processes a single edge coming out of this vertex. Although authors
were successful in general description of a better task allocation method, their BFS
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implementation is based on the Harish and Narayanan solution and achieves only
quadratic performance.

In 2011 Merrill, Garland and Grimshaw [11] presented a new implementation of
the BFS, which significantly outperformed all previous works. Since this solution is a
starting point for our research, a more detailed description follows in the next section.

1.3 Highly Optimized BFS Implementation

The most important part of various BFS implementations is the generation of a vertex
frontier for iteration i from a vertex-frontier in iteration i− 1 (and possibly some other
data). Merrill et al. [11] described and evaluated a few possible strategies listed below.

Expand-contract. In this approach a single kernel takes care of the current vertex-
frontier, expands it into an edge-frontier and then contracts it into the next vertex-
frontier. First, threads try to detect duplicates within the warp using some heuristic
methods. Then the majority of duplicates and already visited vertices is discarded on
the block level. Finally, the whole block is assigned to gather the neighbours from un-
expanded adjacency lists of the vertices from the vertex-frontier. This assignment is
fine-grained and uses a prefix-sum operation.

Contract-expand. This approach is very similar to the previous one. A single kernel
first contracts a given edge-frontier by deleting already visited vertices and identifying
most of the duplicates. Then it expands this vertex frontier to an edge frontier, again
using prefix-sum operation.

Two-phase. This approach provides separate kernels for the expansion and contraction
steps. The expansion kernel uses a clever synchronization strategy, using block-level
and warp-level synchronization. Then the duplicates and previously visited vertices are
deleted by the contraction kernel, thus producing the next vertex frontier.

The authors finally decide to use the hybrid strategy. They perform the two-phase
approach for large iterations and the contract-expand approach in small iterations (i.e.
when the edge frontier is small).

It is important to mention that using refined strategies for transforming a vertex-
frontier to an edge-frontier and then again to a next vertex-frontier, requires a random
access to arrays in which we store the graph. This was not the case in previous, less
complicated implementations.

Merrill et al. [11] test their solution against the previous solutions for the GPU by
Hong et al. [8] and Luo et al. [9] and also some CPU implementations (both serial
and parallel). They were able to obtain a significant improvement in all test cases. The
performance they achieve reaches 3.3 ·109 traversed edges per second.

1.4 Motivation

Graphs that need to be processed in real-life applications tend to be really huge. For
example, Facebook has about 1.23 · 109 monthly active users (1.26 · 109 total). The
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number of friendships (i.e. edges in the social graph) is 125 ·109. The average degrees
may vary depending on the region. For example there are 128 · 106 Facebook users in
the US and an average number of Facebook friends for them is 350. For a detailed
analysis of the Facebook social graph, we refer the reader to Ugander et al. [19].

Above mentioned examples shows that the time needed to process an input graph
is not the only constraint – we also need to be able to store it in the memory (in our
case, memory of the GPU device) somehow. A common solution here is to distribute
the algorithm to multiple GPUs, each of which keeps a part of the graph.

In this paper we show how to compress the graph, so that we can store more data in a
memory of a single GPU device. This, combined with the distribution of work to mul-
tiple GPUs, would allow us to process some extremely large graphs. Our compression
proposal has the following properties:

– a smooth integration with existing algorithms,
– a minimal instruction overhead,
– a decreased overall memory footprint (so that bigger graphs can be stored on single
GPU device),
– a localized warp-centric and thread-centric decompression, minimizing the number
of instructions necessary for the decompression.

Our experience from other applications of a compression shows that in many data-
intensive algorithms, the decompression procedure may increase instruction through-
put, since threads often have to wait for memory reads to complete. We expect that our
approach will improve graph processing algorithms in graph databases.

1.5 Lightweight Compression Methods

The GPU compression topic was raised in several studies. A considerable has been paid
to the so-called lightweight compression algorithms, which are primarily intended for
real-time applications and favor compression/decompression speed over the compres-
sion ratio. Their main purpose is to increase a data throughput by a reduction of a data
volume. A detailed description of presented compression algorithms may be found in
[6,22,4,15].

Interesting results on the GPU compression were presented by Andrzejewski et al. [1],
where Word Aligned Hybrid compression algorithm for the GPU was presented. Wu et al.
[20] discussed an implementation of Lempel-Ziv 77 (LZ77) algorithm on CUDA frame-
work and showed that the performance of this algorithm was poor on the GPU processor
when compared to the classical CPU implementation, due to many branches and threads
divergence problem. Interesting results in the area of lossless compression on the GPU
were presented by Fang et al. [6]. Using a compression planner it was possible to achieve
a significant improvement in overall query processing on the GPU by reducing a data
transfer time from RAM to the global device’s memory space.

In our previous work we studied possibilities of composing several lightweight com-
pression methods to improve the compression ratio. We have shown that finding the
optimal compression plan by a dynamic data analysis may significantly improve results
without sacrificing the decompression speed [16].
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The Fixed Length (FL) compression method works by removing leading zeros at
the most significant bits and thus truncating each value to a fixed length, which is the
same for all input elements. The main advantage of the FL algorithm (and its variants) is
the fact that both compression and decompression are highly effective on the GPU, be-
cause these routines contain minimal number of branching-conditions, which decrease
parallelism of SIMD operations. For the best efficiency, dedicated compression and de-
compression routines are prepared for every bit encoding length with unrolled loops
and using only shift and mask operations. In our case this method may be used for
both arrays R and C. Additionally for C, the number of bits may be different for Cv for
each vertex v. This may lead to a better compression ratio, but also a more complicated
decompression.

Another method, which may be used, is the Frame Of Reference (FOR). It works
in a similar way to FL, but before a compression it transforms each value into an offset
from the reference value (for example the smallest value in the set) in a compression
block. The reference value is then stored in the compression header. In this situation,
we need exactly �log2(max−min)�+ 1 bits to encode each value in the frame and
�log2 min�+ 1 to store the reference value. The best efficiency can be reached if the
ordering of vertices reflects the structure of a graph in such a way that the vertices that
are close to each other (in the graph) have relatively close indexes. This can be achieved
for example by clustering the graph and ordering the vertices of each cluster separately.

Let us now analyse the applicability of FOR compression of C and R arrays (hav-
ing in mind that we require a random access to its elements). As explained above, this
method divides data into segments named frames. All values in one frame are com-
pressed together but it is possible to decompress any of them by reading a header (the
reference value) and a compressed value itself. Reading two values (instead of one) in
each read operation is a waste of bandwidth and processing time.

The Differential Representation approach stores only the differences between suc-
cessive data points. Since we need a random access to all elements, a decompression
of a value would require to scan the whole array, which takes a linear time. Also the
Dictionary method (in all variants including the Tunstall encoding) is not suitable for
CSR graph representation, since there are too many different values to encode. Creating
a dictionary of them would make no sense. The Run length encoding stores an array
of repeating values as an array of pairs: value and run length (the number of successive
appearances of an element). This method is not suitable for us, since we do not expect
values to repeat often on consecutive positions in the arrays R (they would correspond
to subsequent vertices with no out-edges) or C (they would correspond to subsequent
vertices of out-degree 1, having a common neighbour).

All integer encoding methods of variable length based on prefix-codes (e.g. Elias,
Shannon-Fano, Huffman, Golomb – consult a comprehensive book by Salomon [18]
for more information) do not support a random access and thus are not applicable in
case of graph algorithms.

The main drawback of many lightweight compression schemes is that they are
prone to outliers in the data frame. For example, consider the following data frame
{1,2,3,5,7,128} and the FL compression scheme. One could use a 3-bit fixed-length
compression to encode almost all values in the frame, but due to the outlier (the value
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128) we have to use 7-bit fixed-length compression. A solution of this problem is to use
the so-called Patched Lightweight Compression. An example of this approach has
been proposed by Zukowski et al. [22] as a modification of three lightweight compres-
sion algorithms. Their main idea is to store outliers as exceptions in an additional array.
However, variable number of exceptions lead to many branches in code and decrease
efficiency of parallel threads. Various solutions have been proposed to cope with this
problem, such as reducing the frame size [22], avoiding too many exceptions [4,21] or
separating decoding and patching processes [14,17].

2 Compression of the CSR Graph Representation

To choose a compression method which is suitable for graph processing using a GPU
device, we need to analyse the behavior of the BFS algorithm in the aspect of memory
access and the graph representation in memory.

To our best knowledge, in parallel implementations of BFS there are two possibilities
of parallel threads behavior, when reading the edges to be visited in the next algorithm
iteration:

- A single thread reads a vertex to be visited and then performs a series of sequential
read operations in the array Cv, looking for the corresponding edges.
- A group of threads (a warp or a block) reads the same vertex to be visited and then,
in parallel, reads all its edges from the array Cv. If the number of edges is bigger than
the number of threads, then this process iterates until all edges are visited. Similarly, if
number of edges is smaller, then some threads may be idle.

In both options, both arrays C and R are accessed randomly, but in the second solution
bigger fragments of array C can be read together.

In the case of our example in Figure 1, the first approach would lead to one thread
reading vertex number 0 and then its neighbours {2,5} followed by two threads pro-
cessing two vertices 2 and 5 in parallel and producing two edge frontiers {1,3,4} and
{1}, respectively. The number of read operations is three in the case of the the first
thread and only one for the second thread.

The second approach would use a group of threads (most effectively a warp) for
reading vertex 0 from the vertex frontier. Next two threads would concurrently read
two edges from the C0 array and then produce one edge frontier containing {2,5}. In
the second iteration two groups (warps) would access two distant places in array C read-
ing corresponding edge frontiers. Each thread in a group would read its corresponding
value: 1,3 and 4 in the first group and 1 in the second group. Two resulting frontiers
will be created simultaneously in one step. If a coalesced memory access is possible,
then the process would end in two memory read operations. This fact of a better thread
utilization in the case of a warp-level edge-frontier access was already noted by other
authors [9,11] and is related to the parallel processing model of the GPU device.

Considering the memory space needed to store the graph, we observe that the array
R is sorted and stores indices of the much bigger array of edges C. Each segment Cv

can also be sorted. Both arrays contain only non-negative integers. We also need to note
that R contains much bigger values (its last element is the sum of degrees of all vertices,
which is equal to the total number of edges).
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The threads behaviour and memory representation leads to important conclusions:
1. the array R after compression must allow for a random access to any of its elements;
2. the same holds for the array C, but this array may be divided into blocks Cv;
3. a group of threads may cooperate in decompression of edge frontiers read from C.

Note that BFS is a data intensive algorithm. It performs very few computations and
can significantly slow down if a decompression method is too expensive or creates some
unwanted threads divergence by branching.

The above statements focus our attention on lightweight compression methods, which
are local, do not use patching mechanisms and allow a value to be decompressed solely
upon information from the data read in a constant time. According to the analysis from
Section 1.5, the FL compression method seems to be the most flexible and promising.
Therefore we chose to use it in our approach.

2.1 Fixed-Length Compression of Large In-Memory Arrays

In this section we discuss in detail the consequences of choosing the FL compression
scheme for a large array, which require a random access.

Memory Organization Consequences of the FL Compression Method. Consider an
array compressed with the FL algorithm, with each value written on � bits. We store
them in an array of k-element memory cells (in most cases we shall use k = 32, as it
is best supported by current GPU devices). Observe that some values will be stored in
two consecutive memory cells. In those cases, to retrieve the value, we need to read two
cells, which significantly increases the cost of the read operation. Therefore we want
to keep the number of such values as small as possible. In a perfect situation, when �
divides k, there are no values spanning over multiple cells.

Consider a block A of our array, whose length is equal to lcm(k, �), being the least
common multiple of k and � (as the whole array consists of such blocks and some
remainder, which has constant length and therefore can be omitted in our analysis). Let
x and y be integers such that lcm(k, �) = x · � = y · k. The number of values spanning
over two consecutive cells is exactly y− 1 = �

gcd(k,�) − 1 (�).
From this we can see that there are two ways to minimize the number of read opera-

tions – by making � small or by making gcd(k, �) large.

Expected Cost of Random Array Access. The above statements lead to an important
conclusion that the additional cost of memory operations (when compared to an array
without any compression) depends on the values of � and k. Suppose we have an array
of X values, consisting of blocks of size k

gcd(k,�) (as mentioned before, we do not care
about some remainder, as its length is constant). Therefore, from (�), the total number

of values which occupy two consecutive cells is X
x ·

(
�

gcd(k,�) − 1
)
= X · �−gcd(k,�)

k . Let

α := �−gcd(k,�)
k . Now αX is the number of values spanning over two consecutive cells. If

we choose a random value (with a uniform probability), we get a value in two cells with
probability αX

X = α and a value in just one cell with probability 1−αX
X = 1−α . Suppose

we want to read m random values, chosen with uniform probability. The expected value
of read operations is:
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EX(number of read operations when reading m values) =

m ·EX(number of read operations when reading one value) =

= m · (1 · (1−α)+ 2 ·α)= m · (1+α) = m · (1+ �− gcd(k, �)
k

).

This is compared with m read operations needed to retrieve m values from a non-
compressed array. Obviously if � divides k then additional cost is 0.

Moreover, observe that so far we only considered the simplest case when each value
was immediately followed by the next one and we had no unused bits. However, this
may not be an optimal approach. Consider for example cells of size k = 32 bits and
�= 5. We may consider storing 6 values in a single cell and leaving two remaining bits
unused (so the next value starts in the next cell). With this approach we increase the
size of the data (and thus reduce the compression ratio), but we never have to read more
than one cell to retrieve a single value, which improves the efficiency of processing (we
need m read operations to read m values).

Actually, in our experiment we use such a modification. Instead of storing each value
on � = max{�log2 z�+ 1: z is a value to be stored} bits, we chose some �′ ≥ �, which
allows us to reduce the number of values spanning over two cells. Table 1 shows the
optimal values � and chosen values �′ for benchmark graph. If �′ = 21, then we just
stored three values in two 32-bit memory cells and left one last bit unused. For the
graphs with � = �′ = 16, we just stored two values in a single 32-bit memory cell.
Observe that a small loss in the compression ratio is justified by fewer read operations.

3 Benchmark Graphs and Results of Experiments

In order to confirm the effectiveness of our approach we test it against the fastest known
BFS implementation, which was already discussed in Section 1.3. Unfortunately most
of the data sets mentioned by Merrill et al. were not available when we performed
the tests. We only managed to download several Citeseer and DBLP graphs. However,
we were able to use the same graph generator: R-MAT (see Chakrabarti et al. [2] for
details). Such graphs reflect specific properties of large graphs appearing in real-world
applications.

We run the experiments on graphs having from 65.5 ·103 to 2 ·106 vertices and up to
300 ·106 edges. Table 1 lists the parameters of benchmark graphs.

The code of the solution by Merrill et al. [11] is available for public as a part of the
back40computing (b40c) project [10]. Therefore we were able to apply our improve-
ments directly into their fine-tuned implementation. Although the changes were not
straight-forward, eventually we modified the original code in two aspects (altogether
highly touching many places in the code):

– creating graph representation in the memory (by adding the FL compression),
– the function call controlling an access to the elements of C (decoding vertices).

The graph compression depends on the selected method’s parameters �, k and was
explained in Section 2.1.
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The internal architecture of the b40c implementation is using almost all available
on-chip shared memory. We were not able to utilize it in the decompression process.
Therefore the vertex decoding had to be done in a very simple way just using threads’
private registers and without any additional intercommunication between threads. This
solution required more memory operations and processing when compared to the ideal
one. The differences between the thread behavior in the original approach and our ap-
proach is presented in Figure 2.

Fig. 2. A simple strategy of parallel values decoding. A) no compression. A single memory cell
stores a single value, which is read by a single thread. B) The FL compression. One memory cell
stores 1.5 values. Some threads need to read two cells with 100% cache hits. Overall cache usage
is decreased. No threads intercommunication.

An example of a decompression function is shown in Figure 3. It was prepared for
�′ = 21 bits. Choosing another length would require slight changes in the function. The
key point in this code are modulo operations which are done by bit operations only.
They are necessary to find beginnings of compressed values. In some cases, if the value
is split across two memory cells, a thread needs to perform another read operation (see
line 13). This is necessary if we assume no communication between threads.

We believe that this approach will be successful also in other applications since it
allows for a random array access and imposes no additional restrictions.

1 e f i n e NBITSTOMASK( n ) ((1 < <( n ) ) − 1)
2 e f i n e GETNBITS( a , n ) ( ( a ) & NBITSTOMASK( n ) ) / / r e t u r n s a0a1..an−1
3 e f i n e GETNPBITS( a , n , p ) GETNBITS ( ( a>>p ) , ( n ) ) / / r e t u r n s apap+1..ap+n−1

4

5 d e v i c e _ _ _ _ f o r c e i n l i n e _ _ s t a t i c
6 i d Ld_21_64 ( T &va l , T * p t r , l ong n ) {
7 unsigned i n t a = ( unsigned ) n ;
8 a = (0 x55555555 *a +( a >>1)−( a > >3)) > >30;
9 unsigned i n t pos = ( ( unsigned ) n−a )*0xAAAAAAAB;

10 pos = pos * 2 + ( a > >1);
11 v a l = GETNPBITS( p t r [ pos ] ,21 −10*( a & 1 ) , ( ( a * 2 1 ) & 3 1 ) ) ;
12 i f ( a&1)
13 v a l = v a l | GETNPBITS ( p t r [ pos +( a &1)] , 10*( a &1) ,0) < <11;

Fig. 3. An example of a data retrieving function. Ld_21_32 function with FL decompression for
�′ = 21 and k = 32 (three values are encoded in two subsequent integers) n – an index of an
element to be decoded.
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Table 1. Experimental data sets. The first group of columns shows the number of vertices, edges
and an average degree of each graph. The second group shows an optimal (�) and a chosen by us
(�′) length of an encoding of a single value and k, being the size of a single memory cell. Third
group shows the size of C before compression, after compression with each value encoded on �
or �′ bits and corresponding compression ratios.

vert. edges avg. � �′ k C FL�(C) compr. FL�′ (C) compr.

Graph ·103 ·106 degree bits bits bits [MB] [MB] ratio (�) [MB] ratio (�′)

citationCiteseer 268 1.15 4.3 20 21 32 4.39 2.74 0.63 2.92 0.67

coAuthorsCiteseer 227 0.81 3.58 20 21 32 3.09 1.93 0.63 2.06 0.67

coAuthorsDBLP 299 0.98 3.26 20 21 32 3.74 2.34 0.63 2.49 0.67

coPapersCiteseer 434 16.03 37.55 20 21 32 61.15 38.22 0.63 40.77 0.67

coPapersDBLP 540 15.24 28 20 21 32 58.14 36.33 0.63 38.76 0.67

RM131Kv19Me 131 19.65 150 17 21 32 74.96 39.82 0.53 49.97 0.67

RM131Kv39Me 131 39.30 300 17 21 32 149.92 79.64 0.53 99.95 0.67

RM131Kv78Me 131 78.60 600 17 21 32 299.84 159.29 0.53 199.89 0.67

RM2Mv150Me 2000 150 150 21 21 32 572.20 375.51 0.66 381.47 0.67

RM2Mv301Me 2000 301 301 21 21 32 1148.22 753.52 0.66 765.48 0.67

RM2Mv350Me 2000 350 350 21 21 32 1335.14 876.19 0.66 890.10 0.67

RM2Mv400Me 2000 400 400 21 21 32 1525.88 1001.36 0.66 1017.25 0.67

RM65.5Kv10Me 65.5 10 152.67 16 16 32 38.15 19.07 0.50 19.07 0.50

RM65.5Kv67Me 65.5 67 1022.90 16 16 32 255.58 127.79 0.50 127.79 0.50

RM65.5Kv104Me 65.5 104 1587.78 16 16 32 396.73 198.36 0.50 198.36 0.50

RM65.5Kv268Me 65.5 268 4091.60 16 16 32 1022.34 511.17 0.50 511.17 0.50

All the experiments were executed on the same model of GPU processor as the exper-
iments by Merrill et al. [11]. Detailed hardware configuration: two six-core processors
Intel® Xeon® E5649 2.53GHz, 8GB RAM and Nvidia® Tesla M2070 card.

3.1 Discussion on Results

The results of our experiments are shown in Table 2 (average value of 10 executions).

Compression. Due to the limitation of the BFS implementation we worked with, we
could only use a very simple FL compression scheme with a random access to the array
of edges (C). Obviously in such a case the compression ratio depends on the number of
bits which are used to store a vertex identifier. In most of the reference sample data sets
only 21 bits were used, which was enough to pack three nodes into two integers (i.e. a
64 bit segment). In such cases, achieved compression ratio varied from 0.53 to 0.62 (of
the original size).

Let us now analyse how big graphs may be stored in a GPU device with 6 GB of
memory (this is the theoretical storage space of Nvidia® Tesla M2070), assuming that
the average degree of a node is 40 and the values are stored as 32-bit integers. Using
the CSR representation, a single vertex v requires 4 bytes for a corresponding cell in R
array and 40 · 4 bytes on average for the Cv array. Therefore, in theory, a professional
GPU device with a memory of 6 442 450 944 bytes lets us to store a graph of up to
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n := 39 283 237 vertices (of course this would require to use all the memory just for the
graph representation, leaving no space for e.g. some additional structures used by the
algorithm, so it is just a theoretical upper bound). To store the indices of these nodes
we need 26 bits. By compressing the array C with FL method and using � = 26 and
k = 32, we could pack 6 values in 5 integers (by wasting 4 bits). A single vertex with its
out-edges needs now 4(1+

⌈
5·40

6

⌉
) = 140 bytes on average. Therefore our graph with

n vertices would occupy only 5 499 653 180 bytes together gives 5.12GB. Memory
we saved in such a way would let us to store 6 734 629 additional vertices and their
compressed edges (note that the vertex indices still can be stored on 26 bits). In this
configuration we managed to increase the practical device capacity by over 17%. Notice
that this can be significantly improved for graphs with larger average degree (as the
number of bits needed to represent a vertex remains low and the size of C grows).

This may be crucial is some cases – e.g. a graph with 2 · 109 vertices and 400 · 109

was too big to fit into the memory of the GPU device without a compression (Table 2).
We also observe that it would need a device with memory storage of 328 GB to use

all 32 bits in an integer encoding the vertex indices. Therefore, in the case of current
GPU devices, savings using the FL compression are always possible.

Another benefit of this compression method is that it can significantly decrease
the memory bandwidth when executing multi-GPU algorithms and whenever memory
transfer of a graph or its parts is used.

BFS Algorithm Time. At the beginning we have to observe that the time of processing
of compressed graphs depends on two factors: a ratio between � (or �′) and k, i.e. the
efficiency of a compression (being the number of values we can pack into a single
memory cell) and an average degree of a vertex.

Moreover, we observe that the additional compression/decompression cost is com-
pensated for medium-sized graphs. For large graphs we are even able to speed up the
computation.

Table 2. The time of BFS processing for benchmark graphs [ms] (smaller is better). The
last column shows the improvement over the original solution (greater is better). The graph
RM2Mv400Me with 400 ·109 edges could not be processed without the compression.

Processing time [ms] Speed up

Graph b40c b40c+FL [%]

citationCiteseer 2.9948 3.4951 -14.31

coAuthorsCiteseer 2.0487 2.6138 -21.62

coAuthorsDBLP 2.4007 2.9336 -18.17

coPapersCiteseer 12.7294 14.2871 -10.90

coPapersDBLP 11.5055 12.5845 -8.57

RM131Kv19.6Me 7.0177 7.0178 0.00

RM131Kv39.3Me 12.6992 12.5758 0.98

RM131Kv78.6Me 23.897 23.5884 1.31

Processing time [ms] Speed up

Graph b40c b40c+FL [%]

RM2Mv150Me 61.3072 59.4512 3.12

RM2Mv301Me 115.656 111.2375 3.97

RM2Mv350Me 132.7916 127.9881 3.75

RM2Mv400Me X 144.6979 X

RM65.5Kv10Me 4.6509 4.3214 7.62

RM65.5Kv67Me 22.9852 20.9861 9.53

RM65.5Kv104Me 35.6296 32.466 9.74

RM65.5Kv268Me 97.943 86.212 13.61
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Fig. 4. Rate (edges per millisecond, greater is better) of the BFS algorihtm for graphs with
65.5 ·103 vertices and different number of edges

4 Conclusions and Future Work

We have presented a method of compressing graphs stored in the CSR format and pro-
cessed in GPU devices. Our solution is characterized by an ultra-fast decompression
time, a simplicity of integration with already existing algorithms and an optimization
of parallel threads computation.

We evaluated our solution against the state-of-the-art in graph algorithms – the
highly-optimized BFS implementation for GPU devices by Merrill et al. [11]. Our re-
sults show that for big graphs the compression not only allows to fit more vertices and
edges into a single GPU, but also speeds up the processing by a better utilization of
memory caches.

We believe that our improvement can also be used in a case of a distributed com-
putation performed on multiple GPU nodes or in clusters. Using a compression should
significantly speed up the most critical operation, which is a data transfer.
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