
Benchmarking Graph Databases on the Problem

of Community Detection

Sotirios Beis, Symeon Papadopoulos, and Yiannis Kompatsiaris

Information Technologies Institute, CERTH, 57001, Thermi, Greece
{sotbeis,papadop,ikom}@iti.gr

Abstract. Thanks to the proliferation of Online Social Networks (OSNs)
and Linked Data, graph data have been constantly increasing, reaching
massive scales and complexity. Thus, tools to store and manage such
data efficiently are absolutely essential. To address this problem, various
technologies have been employed, such as relational, object and graph
databases. In this paper we present a benchmark that evaluates graph
databases with a set of workloads, inspired from OSN mining use case
scenarios. In addition to standard network operations, the paper focuses
on the problem of community detection and we propose the adaptation
of the Louvain method on top of graph databases. The paper reports
a comprehensive comparative evaluation between three popular graph
databases, Titan, OrientDB and Neo4j. Our experimental results show
that in the current development status Neo4j is the most efficient graph
database for most of the employed workloads, while Titan handles better
single insertion operations.

1 Introduction

Over the past few years there has been vivid research interest in the study of
networks (graphs) arising from various social, technological and scientific activi-
ties. Typical examples of social networks are graphs constructed with data from
Online Social Networks (OSNs), one of the most famous and widespread Web
2.0 application categories. The rapid growth of OSNs contributes to the cre-
ation of high-volume and velocity data, which are modeled with the use of graph
structures. The increasing demand for massive graph data management and pro-
cessing systems has been addressed by the researchers proposing new methods
and technologies, such as RDBMS, OODBMS, graph databases, etc. Every so-
lution has its pros and cons so benchmarks to evaluate candidate solutions with
respect to specific applications are considered necessary.

Relational databases have been widely used for the storage of a variety of
data, including social data, and have proven their reliability. On the other hand
RDBMS lack operations to efficiently analyze the relationships among the data
points. This led to the development of new systems, such as object and graph
databases. More specifically, graph databases are designed to store and manage
effectively big graph data and constitute a powerful tool for graph-like queries,
such as “find the friends of a person”.

c© Springer International Publishing Switzerland 2015 3
N. Bassiliades et al. (eds.), New Trends in Database and Information Systems II,
Advances in Intelligent Systems and Computing 312, DOI: 10.1007/978-3-319-10518-5_1



4 S. Beis, S. Papadopoulos, and Y. Kompatsiaris

In this paper we address the problem of comparing graph databases in terms
of performance, focusing on the problem of community detection. We implement
a clustering workload, which consists of a well-known community detection al-
gorithm for modularity optimization, the Louvain method [1]. We employ cache
techniques to take advantage of both graph database capabilities and in-memory
execution speed. The use of the clustering workload is the main contribution
of this paper, because to our knowledge other existing benchmark frameworks
evaluate graph databases in terms of loading time, node creation/deletion or
traversal operations, such as “find the friends of a person” or “find the short-
est path between two persons”. Furthermore, the benchmark comprises three
supplementary workloads that simulate frequently occurring operations in real-
world applications, such as the the creation and traversal of the graph. The
benchmark implementation is available online as an open-source project1.

We use the proposed benchmark to evaluate three popular graph databases,
Titan2, OrientDB3 and Neo4j4. For our experiments we used both synthetic
and real networks and the comparative evaluation is held with respect to the
execution time. Our experimental results show that Neo4j is the most efficient
graph database to apply community detection algorithms, in our case the Lou-
vain method. Concerning the supplementary workloads, Neo4j is also the fastest
alternative, although Titan performs the incremental creation of the graph faster.

The paper is organized as follows. We begin in Section 2 by providing a
survey in the area of benchmarks between database systems oriented to store
and manage big graph data. In Section 3 we describe the workloads that compose
the benchmark. In Section 4 we list some important aspects of the benchmark.
Section 5 presents our experimental study, where we describe the datasets used
for the evaluation and report the obtained experimental results. Finally, Section
6 concludes the paper and delineates our future work ideas.

2 Related Work

Until now many benchmarks have been proposed, comparing the performance
of different databases for graph data. Giatsoglou et al. [2], present a survey of
existing solutions to the problem of storing and managing massive graph data.
Focusing on the Social Tagging System (STS) use case scenario, they report
a comparative study between the Neo4j graph database and two custom stor-
ages (H1 and Lucene). Angles et al. [3], considering the category of an OSN as
an example of Web 2.0 applications, propose and implement a generator that
produces synthetic graphs with OSN characteristics. Using this data and a set
of queries that simulate common activities in a social network application, the
authors compare two graph databases, one RDF and two relational data man-
agement systems. Similarly, in LinkBench [4] a Facebook-like data generator is
employed and the performance of a MySQL database system is evaluated. The

1 https://github.com/socialsensor/graphdb-benchmarks
2 http://thinkaurelius.github.io/titan/
3 http://www.orientechnologies.com/
4 http://www.neo4j.org/

https://github.com/socialsensor/graphdb-benchmarks
http://thinkaurelius.github.io/titan/
http://www.orientechnologies.com/
http://www.neo4j.org/


Benchmarking Graph Databases on the Problem of Community Detection 5

authors claim that under certain circumstances any database system could be
evaluated with LinkBench.

In a recent effort, Grossniklaus et al. [5] define and classify a workload of nine
queries, that together cover a wide variety of graph data use cases. Besides graph
databases they include RDBMS and OODBMS in their evaluation. Vicknair
et al. [6] also present a benchmark that combines different technologies. They
implemented a query workload that simulates typical operations performed in
provenance systems and they evaluate a graph (Neo4j) and a relational (MySQL)
database. Furthermore, the authors describe some objective measures to compare
the database systems, such as security, flexibility, etc.

In contrast with the above works, we argue that the most suitable solution
to the problem of massive graph storage and management are graph databases,
so our research focuses on them. In this direction Bader et al. [7] describe a
benchmark that consists of four kernels (operations): (a) bulk load of the data;
(b) retrieval of a set of edges that verify a condition (e.g. weight > 3); (c) execu-
tion of a k-hops operation; and (d) retrieval of the set of nodes with maximum
betweenness centrality. Dominguez et al. [8] report the implementation of this
benchmark and a comparative evaluation of four graph database systems (Neo4j,
HypergraphDB, Jena and DEX).

Ciglan et al. [9] are based on the ideas proposed in [8] and [10], and extend
the discussion focusing primarily on graph traversal operations. They compare
five graph databases (Neo4j, DEX, OrientDB, NativeSail and SGDB) by exe-
cuting some demanding queries, such as “find the most connected component”.
Jouili et al. [11] propose a set of workloads similar to [7] and evaluate Neo4j,
Titan, OrientDB and DEX. Unlike, previous works they conduct experiments
with multiple concurrent users and emphasize the effects of increasing users.
Dayarathna et al. [12] implement traversal operation-based workloads to com-
pare four graph databases (Allegrograph, Neo4j, OrientDB and Fuseki). The key
difference with other frameworks is that their interest is focused mostly on graph
database server and cloud environments.

3 Workload Description

The proposed benchmark is composed of four workloads, Clustering, Massive In-
sertion, Single Insertion and Query Workload. Every workload has been designed
to simulate common operations in graph database systems. Our main contribu-
tion is the Clustering workload (CW), however supplementary workloads are
employed to achieve a comprehensive comparative evaluation. In this section we
describe in more detail the workloads and emphasize their importance by giving
some real-world examples.

3.1 Clustering Workload

Until now most community detection algorithms used the main memory to store
the graph and perform the required computations. Although, keeping data in
memory leads to fast executions times, these implementations have a major
drawback: they cannot manage big graph data reliably, which nowadays is a



6 S. Beis, S. Papadopoulos, and Y. Kompatsiaris

key requirement for big graph processing applications. This motivated this work
and more specifically the implementation of the Louvain method on top of three
graph databases. We used the Gephi Tookit5 Java implementation of the algo-
rithm as a starting point and applied all necessary modifications to adapt the
algorithm to graph databases.

In a first implementation, all the required values for the computations were
read directly from the database. The fact that the access of any database (in-
cluding graph databases) compared to memory is very slow, soon made us realize
that the use of cache techniques is necessary. For this purpose we employed the
cache implementation of the Guava project6. The Guava Cache is configured to
evict entries automatically, in order to constrain its memory footprint. Guava
provides three basic types of eviction: size-based eviction, time-based eviction,
and reference-based eviction. To precisely control the maximum cache size, we
utilize the first type of eviction, size-based, and the evaluation was held both
between different systems and among different cache sizes. The measurements
concern the required time for the algorithm to be completed.

As the authors of the Louvain method mention7, the algorithm is a greedy
optimization method that attempts to optimize the modularity of a partition of
the network. The optimization is performed in two steps. First, the method looks
for “small” communities by optimizing modularity locally. Second, it aggregates
nodes belonging to the same community and builds a new network whose nodes
are the communities. We call those communities and nodeCommunities respec-
tively. The above steps are repeated in an iterative manner until a maximum of
modularity is attained.

We keep the community and nodeCommunity values stored in the graph
database as a property of each node. The implementation is based on three
functions that retrieve the required information either by accessing the cache or
the database directly. We store this information employing the LoadingCache
structure from the Guava Project, which is similar to a ConcurrentMap8. More
specifically we use the following functions and structures:

• getNodeNeighours : gets the neighbours of a node and stores them to a Load-
ingCache structure, where the key is the node id and the value is the set of
neighbours.

• getNodesFromCommunity: gets the nodes from a specific community and
stores them to a LoadingCache structure, where the key is the community
id and the value is the the set of nodes that the community contains.

• getNodesFromNodeCommunity: gets the nodes from a specific nodeCommu-
nity and stores them to a LoadingCache structure, where the key is the
nodeCommunity id and the value is the the set of nodes that the nodeCom-
munity contains.

5 https://gephi.org/toolkit/
6 https://code.google.com/p/guava-libraries/
7 http://perso.uclouvain.be/vincent.blondel/research/louvain.html
8 http://docs.oracle.com/javase/7/docs/api/java/util/

concurrent/ConcurrentMap.html

https://gephi.org/toolkit/
https://code.google.com/p/guava-libraries/
http://perso.uclouvain.be/vincent.blondel/research/louvain.html
http://docs.oracle.com/javase/7/docs/api/java/util/concurrent/ConcurrentMap.html
http://docs.oracle.com/javase/7/docs/api/java/util/concurrent/ConcurrentMap.html


Benchmarking Graph Databases on the Problem of Community Detection 7

We use the above information to compute values such as, the degree of a node,
the amount of connections a node or a nodeCommunity has with a particular
community, the size of a community or a nodeCommunity.

The Clustering Workload is very important due to its numerous applications
in OSNs [13]. Some of the most representative examples include topic detection
in collaborative tagging systems, such as Flickr or Delicious, tag disambiguation,
user profiling, photo clustering, and event detection.

3.2 Supplementary Workloads

In addition to CW, we recognize that a reliable and comprehensive benchmark
should contain some supplementary workloads. Here, we list and describe the
three additional workloads that constitute the proposed benchmark.

• Massive Insertion Workload (MIW): we create the graph database and con-
figure it for massive loading, then we populate it with a particular dataset.
We measure the time for the creation of the whole graph.

• Single Insertion Workload (SIW): we create the graph database and load it
with a particular dataset. Every object insertion (node or edge) is committed
directly and the graph is constructed incrementally. We measure the insertion
time per block, which consists of one thousand nodes and the edges that
appear during the insertion of these nodes.

• Query Workload (QW): we execute three common queries:
◦ FindNeighbours (FN): finds the neighbours of all nodes.
◦ FindAdjacentNodes (FA): finds the adjacent nodes of all edges.
◦ FindShortestPath (FS): finds the shortest path between the first node
and 100 randomly picked nodes.

Here we measure the execution time of each query.

It is obvious that MIW simulates the case study in which graph data are
available and we want to load them in batch mode. On the other hand, SIW
models a more real-time scenario in which the graph is created progressively.
We could claim that the growth of an OSN follows the steps of SIW, by adding
more users (nodes) and relationships (edges) between them.

The QW is very important as it applies in most of the existing OSNs. For
example with the FN query we can find the friends or followers of a person in
Facebook or Twitter respectively, with the FA query we can find whether two
users joined a particular Facebook group and with the FS query we can find at
which level two users connect with each other in Linkedin. It is critical for every
OSN that these queries can be executed efficiently and in minimal time.

4 Benchmark Description

In this section we discuss some important aspects of the benchmark implementa-
tion. The graph database systems selected for the evaluation are Titan (v0.4.1),
OrientDB (v1.7-RC2) and Neo4j (v2.0.1). The benchmark was implemented in



8 S. Beis, S. Papadopoulos, and Y. Kompatsiaris

Java 1.7 using the Java API of each database. In order to configure each database,
we used the default configuration and the recommendations found in the docu-
mentation of the web sites.

For Titan we implement MIW with the BatchGraph interface that enables
batch loading of a large number of edges and vertices, while for OrientDB and
Neo4j we employ the OrientGraphNoTx and BatchInserter interface respectively,
which drop the support for transactions in favor of insertion speed. For all graph
databases we implement SIW without using any special configuration. The op-
erations for the QW and CW for the OrientDB and Titan were implemented
using the Gremlin API, whereas for the Neo4j we employed its respective API.

To ensure that a benchmark provides meaningful and trustworthy results, it is
necessary to guarantee its fairness and accuracy. There are many aspects that can
influence the measurements, such as the system overhead. It is really important
that the results do not come from time periods with different system status (e.g.
different number of processes in the background), so we execute MIW, SIW and
QW sequentially for each database. In addition to this, we execute them in every
possible combination for each database, in order to minimize the possibility that
the results are affected by the order of execution. We report the mean value of
all measurements.

Regarding the CW, in order to eliminate the cold cache effects we execute it
twice and keep always the second value. Moreover, as we described in the previous
section to get an acceptable execution time, cache techniques are necessary. The
cache size is defined as a percentage of total nodes. For our experiments we
use six different cache sizes (5%, 10%, 15%, 20%, 25%, 30%) and we report the
respective improvements.

5 Experimental Study

In this section we present the experimental study. At first we describe the
datasets used for the evaluation. We include a table with some important statis-
tics of each dataset. Then we report and discuss the results.

5.1 Datasets

The right choice of datasets that will be used for running database benchmarks is
important to obtain representative and meaningful results. It is necessary to test
the databases on a sufficient number of datasets of different sizes and complexity
to get an approximation of the database scaling properties.

For our evaluation we use both synthetic and real data. More specifically, we
execute MIW, SIW and QW with real networks derived from the SNAP dataset
collection9. On the other hand, with the CW we use synthetic data generated
with the LFR-Benchmark generator [1] that produces networks with power-law
degree distribution and implanted communities within the network. The Table
1 presents the summary statistics of the datasets.

9 http://snap.stanford.edu/data/index.html

http://snap.stanford.edu/data/index.html


Benchmarking Graph Databases on the Problem of Community Detection 9

Table 1. Datasets used in the experiments

Dataset Nodes Edges max. κ 〈κ〉 〈cc〉
Graph500 500 1,975 25 7.904 0.267
Graph1000 1,000 7,745 50 15.490 0.296
Graph2000 2,000 29,720 100 29.721 0.291
Graph3000 3,000 65,839 150 43.893 0.303
Graph4000 4,000 120,814 200 60.407 0.301
Graph5000 5,000 184,711 249 73.884 0.313
Graph10000 10,000 748,105 500 149.622 0.291
Enron (EN) 36,692 367,662 1,383 20.041 0.497
Amazon (AM) 334,863 925,872 168 5.530 0.398
Youtube (YT) 1,134,890 2,987,624 28,576 5.265 0.081
Livejournal (LJ) 3,997,962 34,681,189 14,703 17.349 0.045

5.2 Benchmark Results

In this section we report and discuss the performance of Titan, OrientDB and
Neo4j employing the proposed benchmark. Table 2 lists the required time for the
execution of MIW and QW, while Figure 1 illustrates the experimental results
of SIW. Table 3 and Figure 2 depict the measurements of CW. Note that in
every table we mark the best performance with bold. All experiments were run
on a 2×Intel Xeon 6-core at 2.1Ghz with 128GB of main memory and a 2.8 TB
hard disk, the OS being Ubuntu Linux 12.04 (64bit).

Table 2 summarizes the measurements of the MIW and QW for all the bench-
marked graph databases with respect to each real dataset. According to the
benchmark results, we observe that Neo4j handles the massive insertion of the
data more efficiently from its competitors. Titan is also an effective alternative,
while OrientDB could not load the data in a comparable time.

Concerning the QW, Table 2 indicates that Neo4j performs queries more effec-
tively than the other candidates. More specifically, although Neo4j has slightly
smaller execution times comparing to OrientDB in the FN query load, Neo4j is
considerably faster in the FA and FS query loads. It is worth mentioning that the
shortest path search is limited to paths of depth 6, because with larger depth the
FS query workload in Titan and OrientDB cannot be executed in a reasonable
amount of time.

The results for SIW with each real dataset are illustrated in Figure 1. Each
sub-figure includes three diagrams, one for every graph database, that plot the
required time for the insertion of a block. As we described in Section 3, a block
consists of 1,000 nodes and the edges that appear during the insertion of these
nodes. In order to present more readable diagrams for the three technologies
we used a logarithmic scale for the time axis. It appears that Titan is the most
efficient solution for single insertion of data. Moreover, we observe that the per-
formance of OrientDB and Neo4j is comparable, however OrientDB seems to
perform slightly better.



10 S. Beis, S. Papadopoulos, and Y. Kompatsiaris

Table 2. MIW and QW results (sec)

Graph Workload Titan OrientDB Neo4j

EN MIW 7.020 378.192 1.091
AM MIW 28.997 298.560 4.635
YT MIW 80.064 5963.333 16.830
LJ MIW 720.179 2485.529 229.465

EN QW-FN 4.707 0.976 1.144
AM QW-FN 12.243 4.75 3.224
YT QW-FN 37.912 14.804 10.532
LJ QW-FN 352.968 68.176 109.494

EN QW-FA 6.132 3.449 0.478
AM QW-FA 18.143 17.877 1.446
YT QW-FA 58.921 44.013 3.486
LJ QW-FA 504.909 341.306 44.510

EN QW-FS 10.652 16.554 0.483
AM QW-FS 0.149 11.382 0.293
YT QW-FS 6.598 6.927 0.223
LJ QW-FS 31.01 47.183 0.479

5 10 15 20 25 30 35
10

2

10
3

10
4

10
5

Blocks

T
im

e 
(lo

g(
m

s)
)

 

 
OrientDB
Neo4j
Titan

(a) Enron

50 100 150 200 250 300
10

1

10
2

10
3

10
4

10
5

Blocks

T
im

e(
lo

g(
m

s)

 

 
Titan
OrientDB
Neo4j

(b) Amazon

0 200 400 600 800 1000
10

1

10
2

10
3

10
4

10
5

10
6

Blocks

T
im

e 
(lo

g(
m

s)
)

 

 
Titan
OrientDB
Neo4j

(c) Youtube

0 500 1000 1500 2000 2500 3000 3500
10

1

10
2

10
3

10
4

10
5

Blocks

T
im

e 
(lo

g(
m

s)
)

 

 

Titan
OrientDB
Neo4j

(d) Livejournal

Fig. 1. SIW benchmark results



Benchmarking Graph Databases on the Problem of Community Detection 11

Table 3. CW results (sec)

Graph-Cache Titan OrientDB Neo4j

Graph500-5% 123.774 9.525 3.786
Graph500-10% 111.943 9.019 3.15
Graph500-15% 105.425 8.879 3.01
Graph500-20% 98.084 8.126 2.808
Graph500-25% 94.183 6.776 2.408
Graph500-30% 92.021 6.566 2.212

Graph1000-5% 683.572 44.449 8.841
Graph1000-10% 626.777 36.651 8.591
Graph1000-15% 599.873 33.896 7.312
Graph1000-20% 579.948 29.797 6.912
Graph1000-25% 562.162 27.227 6.94
Graph1000-30% 544.43 25.448 6.629

Graph2000-5% 5822.678 254.05 38.29
Graph2000-10% 5283.674 224.65 35.824
Graph2000-15% 5004.3 200.074 32.747
Graph2000-20% 4202.316 182.04 31.111
Graph2000-25% 4041.574 168.995 30.317
Graph2000-30% 3884.714 152.193 29.833

Graph3000-5% 21191.741 870.295 95.355
Graph3000-10% 19364.449 755.737 89.931
Graph3000-15% 17663.532 711.586 86.228
Graph3000-20% 16250.283 649.357 83.474
Graph3000-25% 1137.774 614.796 79.753
Graph3000-30% 1081.654 564.096 77.595

Graph4000-5% 54758.397 1806.228 175.89
Graph4000-10% 47998.816 1533.492 153.151
Graph4000-15% 44158.921 1408.739 146.413
Graph4000-20% 42834.153 1309.597 136.671
Graph4000-25% 38979.079 1237.009 130.942
Graph4000-30% 37809.707 1145.699 120.792

Graph5000-5% - 3308.99 284.463
Graph5000-10% - 2846.417 248.167
Graph5000-15% - 2547.742 244.285
Graph5000-20% - 2327.123 231.639
Graph5000-25% - 2114.561 213.956
Graph5000-30% - 1944.151 199.226

Graph10000-5% - 23351.878 1514.992
Graph10000-10% - 21250.209 1378.643
Graph10000-15% - 16292.998 1106.668
Graph10000-20% - 14866.024 1017.766
Graph10000-25% - 14042.227 927.603
Graph10000-30% - 13183.961 852.232



12 S. Beis, S. Papadopoulos, and Y. Kompatsiaris

The experimental results of CW are reported in Table 3. Both the OrientDB
and the Neo4j are much faster than the Titan graph database. The serious
delay of the Titan did not allow us to complete the experiments with larger
graphs (Graph5000 and Graph10000). Furthermore, Table 3 reveals that while
OrientDB has comparable execution times with Neo4j for the small graphs, it
does not scale as good as Neo4j. Thus, for graphs with >1,000 nodes, Neo4j is
much faster. Given that the Louvain method consists of a set queries, such as
“get the neighbours of a node”, the above results are expected, if we take into
consideration the results of the QW.

Additionally, Table 3 points out the positive impact of increasing the cache
size. We observe that for all graph databases regardless of the graph size, as the
cache size increases the execution time decreases. We wrap up the comparative
evaluation, including Figure 2 which depict the scalability of each database when
the CW is executed. Every sub-figure contains six diagrams, one for each cache
value, that plot the required time for the convergence of the algorithm for the
respective synthetic graph. For better representation we used a logarithmic scale
for the time axis. We can deduce that since the diagrams with the logarithmic
scale increase linearly, the execution time follows an exponential distribution.

In summary, we found that despite the fact that Neo4j falls behind in SIW
compared to Titan and OrientDB, for the MIW, QW and CW, is clearly the
most efficient solution, especially when we deal with big graph data. On the

Graph500 Graph1000 Graph2000 Graph3000 Graph4000

10
2

10
3

10
4

10
5

T
im

e 
(lo

g(
se

c)
)

 

 
Cache 5%
Cache 10%
Cache 15%
Cache 20%
Cache 25%
Cache 30%

(a) Titan

Graph500 Graph1000 Graph2000 Graph3000 Graph4000 Graph5000 Graph10000
10

0

10
1

10
2

10
3

10
4

T
im

e 
(lo

g(
se

c)
)

 

 
Cache 5%
Cache 10%
Cache 15%
Cache 20%
Cache 25%
Cache 30%

(b) Neo4j

Graph500 Graph1000 Graph2000 Graph3000 Graph4000 Graph5000 Graph10000

10
1

10
2

10
3

10
4

10
5

T
im

e 
(lo

g(
se

c)
)

 

 
Cache 5%
Cache 10%
Cache 15%
Cache 20%
Cache 25%
Cache 30%

(c) OrientDB

Fig. 2. CW benchmark results



Benchmarking Graph Databases on the Problem of Community Detection 13

other hand, Titan is the fastest alternative for the incremental creation of a
graph database (SIW). Titan also has competitive performance in MIW, but
does not scale very well compared to its two competitors.

6 Conclusions and Future Work

In this paper we proposed a benchmark framework for the comparative evalua-
tion of database systems oriented to store and manage graph data. The bench-
mark consists of four workloads, Massive Insertion, Single Insertion, Query and
ClusteringWorkload. For the Clustering Workload we implemented a well-known
community detection algorithm, the Louvain method, on top of three graph
databases. Employing the proposed benchmark we evaluated the selected graph
databases, Titan, OrientDB and Neo4j using both synthetic and real networks.

The experimental results demonstrate that in most cases the measurements
are comparable when processing small graphs. But when the size of the datasets
grows significantly, Neo4j appears to be the most efficient solution for storing and
managing graph data. On the other hand, Titan seems to be the best alternative
for single insertion operations.

In the future we hope to investigate the performance gain if we parallelize the
operations of the graph databases. Moreover, it would be interesting to run the
benchmark employing the distributed implementations of Titan and OrientDB
in order to examine their horizontal and vertical scalability properties. Also,
we intend to improve the performance of the implemented community detection
algorithm and test it on graphs of much larger size.

Acknowledgments. This work was supported by the SocialSensor FP7 project,
partially funded by the EC under grant agreement 287975.

References

1. Blondel, V.D., Guillaume, J.L., Lambiotte, R., Lefebvre, E.: Fast unfolding of com-
munities in large networks. Journal of Statistical Mechanics: Theory and Experi-
ment 2008(10), P10008 (2008)

2. Giatsoglou, M., Papadopoulos, S., Vakali, A.: Massive graph management for the
web and web 2.0. In: Vakali, A., Jain, L.C. (eds.) New Directions in Web Data
Management 1. SCI, vol. 331, pp. 19–58. Springer, Heidelberg (2011)

3. Angles, R., Prat-Pérez, A., Dominguez-Sal, D., Larriba-Pey, J.L.: Benchmarking
database systems for social network applications. In: First International Workshop
on Graph Data Management Experiences and Systems, GRADES 2013, pp. 15:1–
15:7. ACM, New York (2013)

4. Armstrong, T.G., Ponnekanti, V., Borthakur, D., Callaghan, M.: Linkbench: a
database benchmark based on the facebook social graph (2013)

5. Grossniklaus, M., Leone, S., Zäschke, T.: Towards a benchmark for graph data
management and processing (2013)



14 S. Beis, S. Papadopoulos, and Y. Kompatsiaris

6. Vicknair, C., Macias, M., Zhao, Z., Nan, X., Chen, Y., Wilkins, D.: A comparison
of a graph database and a relational database: A data provenance perspective. In:
Proceedings of the 48th Annual Southeast Regional Conference, ACM SE 2010,
pp. 42:1–42:6. ACM, New York (2010)

7. Bader, D.A., Feo, J., Gilbert, J., Kepner, J., Koester, D., Loh, E., Madduri, K.,
Mann, B., Meuse, T., Robinson, E.: HPC scalable graph analysis benchmark (2009)

8. Dominguez-Sal, D., Urbón-Bayes, P., Giménez-Vañó, A., Gómez-Villamor, S.,
Mart́ınez-Bazán, N., Larriba-Pey, J.L.: Survey of graph database performance on
the hpc scalable graph analysis benchmark. In: Shen, H.T., et al. (eds.) WAIM
2010. LNCS, vol. 6185, pp. 37–48. Springer, Heidelberg (2010)

9. Ciglan, M., Averbuch, A., Hluchy, L.: Benchmarking traversal operations over
graph databases. In: 2012 IEEE 28th International Conference on Data Engineering
Workshops (ICDEW), pp. 186–189 (April 2012)

10. Dominguez-Sal, D., Martinez-Bazan, N., Muntes-Mulero, V., Baleta, P., Larriba-
Pey, J.: A discussion on the design of graph database benchmarks. In: Nambiar, R.,
Poess, M. (eds.) TPCTC 2010. LNCS, vol. 6417, pp. 25–40. Springer, Heidelberg
(2011)

11. Jouili, S., Vansteenberghe, V.: An empirical comparison of graph databases. In:
2013 International Conference on Social Computing (SocialCom), pp. 708–715
(September 2013)

12. Dayarathna, M., Suzumura, T.: Xgdbench: A benchmarking platform for graph
stores in exascale clouds. In: 2012 IEEE 4th International Conference on Cloud
Computing Technology and Science (CloudCom), pp. 363–370 (December 2012)

13. Papadopoulos, S., Kompatsiaris, Y., Vakali, A., Spyridonos, P.: Community detec-
tion in social media. Data Mining and Knowledge Discovery 24(3), 515–554 (2012)


	Benchmarking Graph Databases on the Problem of Community Detection
	1Introduction
	2Related Work
	3Workload Description
	3.1Clustering Workload
	3.2Supplementary Workloads

	4enchmark Description
	5Experimental Study
	5.1Datasets
	5.2Benchmark Results

	6Conclusions and Future Work




