
Advances in Intelligent Systems and Computing 312

New Trends in Database
and Information
Systems II

Nick Bassiliades · Mirjana Ivanovic
Margita Kon-Popovska · Yannis Manolopoulos
Themis Palpanas · Goce Trajcevski
Athena Vakali Editors

Selected Papers of the 18th East European Conference
on Advances in Databases and Information Systems
and Associated Satellite Events, ADBIS 2014 Ohrid,
Macedonia, September 7–10, 2014, Proceedings II

Advances in Intelligent Systems and Computing

Volume 312

Series editor

Janusz Kacprzyk, Polish Academy of Sciences, Warsaw, Poland
e-mail: kacprzyk@ibspan.waw.pl

About this Series

The series “Advances in Intelligent Systems and Computing” contains publications on theory,
applications, and design methods of Intelligent Systems and Intelligent Computing. Virtually all
disciplines such as engineering, natural sciences, computer and information science, ICT, eco-
nomics, business, e-commerce, environment, healthcare, life science are covered. The list of top-
ics spans all the areas of modern intelligent systems and computing.

The publications within “Advances in Intelligent Systems and Computing” are primarily
textbooks and proceedings of important conferences, symposia and congresses. They cover sig-
nificant recent developments in the field, both of a foundational and applicable character. An
important characteristic feature of the series is the short publication time and world-wide distri-
bution. This permits a rapid and broad dissemination of research results.

Advisory Board

Chairman

Nikhil R. Pal, Indian Statistical Institute, Kolkata, India
e-mail: nikhil@isical.ac.in

Members

Rafael Bello, Universidad Central “Marta Abreu” de Las Villas, Santa Clara, Cuba
e-mail: rbellop@uclv.edu.cu

Emilio S. Corchado, University of Salamanca, Salamanca, Spain
e-mail: escorchado@usal.es

Hani Hagras, University of Essex, Colchester, UK
e-mail: hani@essex.ac.uk

László T. Kóczy, Széchenyi István University, Győr, Hungary
e-mail: koczy@sze.hu

Vladik Kreinovich, University of Texas at El Paso, El Paso, USA
e-mail: vladik@utep.edu

Chin-Teng Lin, National Chiao Tung University, Hsinchu, Taiwan
e-mail: ctlin@mail.nctu.edu.tw

Jie Lu, University of Technology, Sydney, Australia
e-mail: Jie.Lu@uts.edu.au

Patricia Melin, Tijuana Institute of Technology, Tijuana, Mexico
e-mail: epmelin@hafsamx.org

Nadia Nedjah, State University of Rio de Janeiro, Rio de Janeiro, Brazil
e-mail: nadia@eng.uerj.br

Ngoc Thanh Nguyen, Wroclaw University of Technology, Wroclaw, Poland
e-mail: Ngoc-Thanh.Nguyen@pwr.edu.pl

Jun Wang, The Chinese University of Hong Kong, Shatin, Hong Kong
e-mail: jwang@mae.cuhk.edu.hk

More information about this series at http://www.springer.com/series/11156

Nick Bassiliades ·Mirjana Ivanovic
Margita Kon-Popovska · Yannis Manolopoulos
Themis Palpanas · Goce Trajcevski
Athena Vakali
Editors

New Trends in Database
and Information Systems II
Selected Papers of the 18th East European
Conference on Advances in Databases
and Information Systems and Associated
Satellite Events, ADBIS 2014 Ohrid,
Macedonia, September 7-10, 2014
Proceedings II

ABC

Editors
Nick Bassiliades
Aristotle University of Thessaloniki
Thessaloniki
Greece

Mirjana Ivanovic
Department of Mathematics and Informatics
Faculty of Sciences
University of Novi Sad
Novi Sad
Serbia

Margita Kon-Popovska
Faculty of Natural Science and Mathematics
Institute for Informatics
Ss Cyril and Methodious University
Skopje
Macedonia

Yannis Manolopoulos
Department of Informatics
Aristotle Univ of Thessaloniki
University Campus
Thessaloniki
Greece

Themis Palpanas
Paris Descartes University
Paris
France

Goce Trajcevski
EECS Department
Northwestern University
Evanston Illinois
USA

Athena Vakali
Department of Informatics
Aristotle University of Thessalonik
Thessaloniki
Greece

ISSN 2194-5357 ISSN 2194-5365 (electronic)
ISBN 978-3-319-10517-8 ISBN 978-3-319-10518-5 (eBook)
DOI 10.1007/978-3-319-10518-5

Library of Congress Control Number: 2014947874

Springer Cham Heidelberg New York Dordrecht London

c© Springer International Publishing Switzerland 2015
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broad-
casting, reproduction on microfilms or in any other physical way, and transmission or information storage
and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known
or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews
or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a
computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts
thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its cur-
rent version, and permission for use must always be obtained from Springer. Permissions for use may be
obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under
the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material
contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

This volume contains a selection of papers presented at the 18th East-European Con-
ference on Advances in Databases and Information Systems (ADBIS 2014), held on
September 7–10, 2014, in Ohrid, Republic of Macedonia.

Database and information systems technologies have been rapidly evolving in several
directions in the recent years. New types of data, new kinds of emerging applications
and information systems to support them, raise diverse challenges to be addressed. The
so-called big data challenge, streaming data management and processing, social net-
works and other complex data analysis, including semantic reasoning into information
systems supporting for instance trading, negotiations, and bidding mechanisms are but
a few examples of such emerging research areas.

The ADBIS series of conferences aims to provide a forum for the presentation and
dissemination of research on database theory, development of advanced DBMS tech-
nologies, and their advanced applications. ADBIS 2014 continued the ADBIS series
held every year in different countries of Europe, beginning in St. Petersburg (1997),
Poznan (1998), Maribor (1999), Prague (2000), Vilnius (2001), Bratislava (2002),
Dresden (2003), Budapest (2004), Tallinn (2005), Thessaloniki (2006), Varna (2007),
Pori (2008), Riga (2009), Novi Sad (2010), Vienna (2011), Poznan (2012) and Genoa
(2013). The conferences are initiated and supervised by an international Steering Com-
mittee consisting of representatives from Armenia, Austria, Bulgaria, Czech Republic,
Estonia, Finland, Germany, Greece, Hungary, Israel, Italy, Latvia, Lithuania, Poland,
Russia, Serbia, Slovakia, Slovenia and Ukraine.

The Programme of ADBIS 2014 includes keynotes, research papers, a tutorial ses-
sion entitled “Online Social networks Analytics - Communities and Sentiment Detec-
tion" by Athena Vakali, a Doctoral Consortium, and thematic workshops. The general
idea behind each satellite event was to collect specialized sub-domains of the broad re-
search areas of databases and information systems, providing forums that will enable
more focused discussions encapsulating new trends in these two important areas.

This volume contains 26 papers (15 papers as short contributions, 3 papers from
the Doctoral Symposium, and 8 papers from the 3 workshops) selected as contribu-
tions presented at the 18th East-European Conference on Advances in Databases and

VI Preface

Information Systems ADBIS 2014. 15 short papers were selected out of 82 submitted to
the conference from 34 different countries representing all the continents with 210 au-
thors. In a rigorous reviewing process done by the international Programme Committee
consisting of 115 reviewers from 34 countries and 27 additional reviewers supporting
workload, 26 papers were selected as full contributions for inclusion in LNCS proceed-
ing and 16 papers as short contributions of which 15 are included in this volume. All
papers were evaluated by at least three reviewers.

Each of the satellite events complementing the main ADBIS conference had its own
international program committee, whose members served as the reviewers of papers in-
cluded in this volume. The volume is divided into five parts, one devoted to ADBIS 2014
short contributions and each other to a single satellite event. The short papers from this
volume consider a wide variety of data, ranging from classical relational, row and col-
umn store layouts, graph structure, spatio-temporal, unstructured, XML to workflows
and streams of (real time) data, from the points of view of specialized architectures,
physical structure and indexing, cleansing, query processing and benchmarking.

ADBIS 2014 aimed to create conditions for experienced researchers to share their
knowledge and experience with the young researchers participating in the Doctoral
Consortium. The ADBIS Doctoral Consortium is a forum for Ph.D. students to present
their research ideas, confront them with the scientific community, receive feedback from
senior mentors, socialize and tie cooperation bounds. This year 6 papers have been sub-
mitted to the Doctoral Consortium and 3 papers have been selected for presentation
and are included in this volume. They cover three different topics, all quite relevant
for emerging applications in the database and information system field: querying and
managing complex data, generalized relational algebraic operations, data warehouse
schema evolution.

The following 3 workshops associated with the ADBIS conference were organized:

• 3rd Workshop on GPUs in Databases (GID), organized by Witold Andrzejewski
(Poznan University of Technology), Krzysztof Kaczmarski (Warsaw University of
Technology) and Tobias Lauer (Jedox).

• 3rd Workshop on Ontologies Meet Advanced Information Systems (OAIS) or-
ganized by Ladjel Bellatreche (LIAS/ENSMA, Poitiers) and Yamine Aït Ameur
(IRIT/ENSEIHT, Toulouse), and

• 1st Workshop on Technologies for Quality Management in Challenging Applica-
tions (TQMCA) organized by Isabelle Comyn-Wattiau (CNAM, Paris), Ajantha
Dahanayake (Prince Sultan University, Saudi Arabia), and Bernhard Thalheim
(Christian Albrechts University).

Each workshop had its own international Program Committee.
The 3rd International Workshop on GPUs in Databases (GID 2014) is devoted to all

subjects related to utilization of Graphics Processing Units in database environments.
The concept of using GPUs in databases is relatively young and has not yet received
enough attention from the database community. The intention of the GID workshop is
to provide a discussion forum for industry and science, with emphasis on popularizing
the GPUs and providing a forum for discussion with respect to the GID’s research ideas
and their potential to achieve high speedups in many applications domains of databases.

Preface VII

Presentation of practical and theoretical research creates chances for fruitful coopera-
tion between the two communities. Three papers have been selected for presentation at
GID 2014 and are included in this volume.

The 3rd International Workshop on Ontologies Meet Advanced Information Systems
(OAIS 2014) has a twofold objective to present: new and challenging issues in the con-
tribution of ontologies for designing high quality information systems, and new research
and technological developments which use ontologies all over the life cycle of informa-
tion systems. The Workshop addresses scientists, engineers, educators, industry, policy
makers, decision makers, and others to share their insight, vision, and understanding of
the ontologies challenges in Advanced Information Systems. Three papers have been
selected for presentation at OAIS 2014 and are included in this volume.

The 1st International Workshop on Technologies for Quality Management in
Challenging Applications (TQMCA 2014) focuses on quality management and its im-
portance in new fields such as big data, crowd-sourcing, and stream databases. The
Workshop has addressed the need to develop novel approaches and technologies, and to
entirely integrate quality management into information system management. TQMCA
builds on the fact that the technologies for quality management offer a growing re-
search domain specifically within large scale complex applications and their compan-
ion database management system development as well as in the information system
development and in general in system development disciplines. Four papers have been
selected for presentation at TQMCA 2014 and are included in this volume.

Conference is supported by the President of the Republic of Macedonia, H.E. Dr.
Gjorge Ivanov. We would like to express our gratitude to every individual who con-
tributed to the success of ADBIS 2014. Firstly, we thank the authors who submitted
papers to the conference – the geographical statistic indicates that there were authors
from 34 different countries, including submissions from non-European countries (Alge-
ria, Lebanon, Tunisia, Australia, Brazil, US, China, Japan, Singapore, Vietnam). How-
ever, we are also indebted to the members of the community who offered their time
and expertise in performing various roles, ranging from organizational to reviewing
ones – the efforts, energy and degree of professionalism deserve highest commenda-
tions. Special thanks go to the Program Committee members as well as to the external
reviewers for their support in evaluating the papers submitted to ADBIS 2014, ensur-
ing the quality of the scientific program. Thanks also to all the colleagues involved
in the conference organization, as well as the workshop organizers. A special thank
you is due for the members of the Steering Committee and, in particular, its Chair,
Leonid Kalinichenko, for all their help and guidance. Finally, we thank Springer for
publishing the proceedings containing research and satellite events papers in AISC se-
ries. The Program Committee work relied on EasyChair, and we thank its development
team for creating and maintaining it – it offered great support throughout the different
phases of the reviewing process. The conference would not have been possible with-
out our supporters and sponsors: Ministry of Information Society and Administration,

VIII Preface

University Ss Cyril and Methodius in Skopje, Faculty of Computer Sciences and Engi-
neering, ICT-ACT Association, Municipality Ohrid.

Last, but not least, we thank all the participants of ADBIS 2014 for having shar-
ing their works, providing a lively, fruitful and constructive forum, and giving us the
pleasure of knowing that our work was purposeful.

September 2014 Nick Bassiliades
Mirjana Ivanovic

Margita Kon-Popovska
Yannis Manolopoulos

Goce Trajcevski
Themis Palpanas

Athena Vakali (Eds.)

Organization

General Chair

Margita Kon-Popovska Ss Cyril and Methodious University in Skopje

Program Committee Co-chairs

Yannis Manolopoulos Aristotle University of Thessaloniki
Goce Trajcevski Northwestern University, IL

Workshop Co-chairs

Themis Palpanas Paris Descartes University
Athena Vakali Aristotle University of Thessaloniki

PhD Consortium Co-chairs

Nick Bassiliades Aristotle University of Thessaloniki
Mirjana Ivanovic University of Novi Sad

Publicity Chair

Goran Velinov Ss Cyril and Methodious University in Skopje

Website Chair

Vangel Ajanovski Ss Cyril and Methodious University in Skopje

Proceedings Technical Editor

Ioannis Karydis Department of Informatics, Ionian University Corfu

X Organization

Local Organizing Committee Chair

Goran Velinov Ss Cyril and Methodious University in Skopje

Local Organizing Committee

Anastas Mishev Ss Cyril and Methodious University in Skopje
Boro Jakimovski Ss Cyril and Methodious University in Skopje
Ivan Chorbev Ss Cyril and Methodious University in Skopje

Supporters

Ministry of Information Society and Administration
University Ss Cyril and Methodius in Skopje
Faculty of Computer Sciences and Engineering,
ICT-ACT Association
Municipality Ohrid

Steering Committee

Steering Committee Chair

Leonid Kalinichenko Russian Academy of Science, Russia

Members of the Steering Committee

Paolo Atzeni, Italy
Andras Benczur, Hungary
Albertas Caplinskas, Lithuania
Barbara Catania, Italy
Johann Eder, Austria
Theo Haerder, Germany
Marite Kirikova, Latvia
Hele-Mai Haav, Estonia
Mirjana Ivanovic, Serbia
Hannu Jaakkola, Finland
Mikhail Kogalovsky, Russia
Yannis Manolopoulos, Greece
Rainer Manthey, Germany
Manuk Manukyan, Armenia

Joris Mihaeli, Israel
Tadeusz Morzy, Poland
Pavol Navrat, Slovakia
Boris Novikov, Russia
Mykola Nikitchenko, Ukraine
Jaroslav Pokornyv, Czech Republic
Boris Rachev, Bulgaria
Bernhard Thalheim, Germany
Gottfried Vossen, Germany
Tatjana Welzer, Slovenia
Viacheslav Wolfengagen, Russia
Robert Wrembel, Poland
Ester Zumpano, Italy

XII Organization

Program Committee

Marko Bajec University of Ljubljana, Slovenia
Mirta Baranovic University of Zagreb, Croatia
Guntis Barzdins University of Latvia, Latvia
Andreas Behrend University of Bonn, Germany
Ladjel Bellatreche Ecole Nationale Supérieure de Mécanique

et d’Aérotechnique, France
Maria Bielikova Slovak University of Technology in Bratislava,

Slovakia
Iovka Boneva University Lille 1, France
Omar Boucelma LSIS, Aix-Marseille University, France
Stephane Bressan National University of Singapore, Singapore
Davide Buscaldi LIPN, Université Paris 13, France
Albertas Caplinskas Vilnius University, Lithuania
Barbara Catania University of Genoa, Italy
Wojciech Cellary Poznan University of Economics, Poland
Richard Chbeir Université de Pau et des Pays de l’Adour, France
Dickson K.W. Chiu University of Hong Kong, China
Ricardo Ciferri Federal University of São Carlos, Brazil
Alfredo Cuzzocrea University of Calabria, Italy
Danco Davcev University Ss Cyril and Methodius in Skopje,

Macedonia
Vladimir Dimitrov Sofia University, Bulgaria
Eduard Dragut Temple University, USA
Schahram Dustdar Vienna University of Technology, Austria
Todd Eavis Concordia University, Canada
Johann Eder University of Klagenfurt, Austria
Tobias Emrich Ludwig-Maximilians-Universität München,

Germany
Markus Endres University of Augsburg, Germany
Victor Felea University Alexandru Ioan Cusa, Iasi, Romania
Pedro Furtado University of Coimbra, Portugal
Zdravko Galic University of Zagreb, Croatia
Johann Gamper Free University of Bozen-Bolzano, Italy
Minos Garofalakis Technical University of Crete, Greece
Jan Genci Technical University of Kosice, Slovakia
Matteo Golfarelli University of Bologna, Italy
Katarina Grigorova Ruse University, Bulgaria
Giovanna Guerrini University of Genova, Italy
Ralf Hartmut Güting Fernuniversität Hagen, Germany
Theo Härder Tehnical University Kaiserslautern, Germany
Stephen Hegner Umeå University, Sweden
Ali Inan Isik University, Turkey
Mirjana Ivanovic University of Novi Sad, Serbia
Hannu Jaakkola Tampere University of Technology, Finland

Organization XIII

Manfred Jeusfeld Tilburg University, Netherlands
Slobodan Kalajdziski University Ss Cyril and Methodius in Skopje,

Macedonia
Leonid Kalinichenko Russian Academy of Science, Russia
Kalinka Kaloyanova Sofia University St. Kliment Ohridski, Bulgaria
Mehmed Kantardzic University of Louisville, USA
Marite Kirikova Riga Technical University, Latvia
Harald Kosch University of Passau, Germany
Georgia Koutrika HP Labs, USA
Andrea Kulakov University Ss Cyril and Methodius in

Skopje, Macedonia
Lars Kulik The University of Melbourne, Australia
Wolfgang Lehner Technical University Dresden, Germany
Jan Lindström IBM Helsinki, Finland
Yun Lu Florida International University, USA
Ivan Luković University of Novi Sad, Serbia
Federica Mandreoli University of Modena, Italy
Rainer Manthey University of Bonn, Germany
Manuk Manukyan Yerevan State University, Armenia
Giansalvatore Mecca University Basilicata, Italy
Marco Mesiti University of Milano, Italy
Irena Mlynkova Charles University in Prague, Czech Republic
Alexandros Nanopoulos University of Eichstaett-Ingolstadt, Germany
Pavol Navrat Slovak University of Technology, Slovakia
Daniel C. Neagu University of Bradford, UK
Anisoara Nica SAP, Canada
Nikolaj Nikitchenko Kiev State University, Ukraine
Kjetil Nørvåg Norwegian University of Science and

Technology, Norway
Boris Novikov University of St.Petersburg, Russia
Gultekin Ozsoyoglu Case Western Reserve University, USA
Euthimios Panagos Applied Communication Sciences, USA
Gordana Pavlovic-Lazetic University of Belgrade, Serbia
Torben Bach Pedersen Aalborg University, Denmark
Dana Petcu West University of Timisoara, Romania
Evaggelia Pitoura University of Ioannina, Greece
Elisa Quintarelli Politecnico di Milano, Italy
Paolo Rosso Polytechnic University Valencia, Spain
Viera Rozinajova Slovak University of Technology, Slovakia
Ismael Sanz Universitat Jaume I, Spain
Klaus-Dieter Schewe Software Competence Center, Austria
Marc H. Scholl University of Konstanz, Germany
Holger Schwarz Universität Stuttgart, Germany
Timos Sellis National Technical University of Athens, Greece

XIV Organization

Bela Stantic Griffith University, Australia
Predrag Stanisic University of Montenegro, Montenegro
Yannis Stavrakas Institute for the Management of Information

Systems, Greece
Krzysztof Stencel University of Warsaw, Poland
Leonid Stoimenov University of Nis, Serbia
Panagiotis Symeonidis Aristotle University of Thessaloniki, Greece
Amirreza Tahamtan Vienna University of Technology, Austria
Ernest Teniente Unversitat Politècnica de Catalunya, Spain
Manolis Terrovitis Institute for the Management of Information

Systems, Greece
Bernhard Thalheim Christian Albrechts University Kiel, Germany
A Min Tjoa Vienna University of Technology, Austria
Ismail Toroslu Middle East Technical University, Turkey
Juan Trujillo University of Alicante, Spain
Traian Marius Truta Northern Kentucky University, USA
Ozgur Ulusoy Bilkent University, Turkey
Maurice Van Keulen University of Twente, Netherlands
Olegas Vasilecas Vilnius Gediminas Technical University, Lithuania
Panos Vassiliadis University of Ioannina, Greece
Jari Veijalainen University of Jyvaskyla, Finland
Goran Velinov University Ss Cyril and Methodius in Skopje,

Macedonia
Gottfried Vossen Universität Münster, Germany
Boris Vrdoljak University of Zagreb, Croatia
Fan Wang Microsoft, USA
Gerhard Weikum Max Planck Institute for Informatics, Germany
Tatjana Welzer University of Maribor, Slovenia
Marek Wojciechowski Poznan University of Technology, Poland
Robert Wrembel Poznan University of Technology, Poland
Vladimir Zadorozhny University of Pittsburgh, USA
Jaroslav Zendulka Brno University of Technology, Czech Republic
Andreas Zuefle Ludwig-Maximilians-Universität München,

Germany

Additional Reviewers

Selma Bouarar LIAS/ISAE-ENSMA, France
Kamel Boukhalfa LSI/USTHB, Algiers
Ljiljana Brkić University of Zagreb, Croatia
Jacek Chmielewski Poznań University of Economics, Poland
Armin Felbermayr Catholic University of Eichstätt Ingolstadt,

Germany
Flavio Ferrarotti Software Competence Center Hagenberg (SCCH)

Organization XV

Olga Gkountouna National Technical University of Athens, Greece
Tanzima Hashem Bangladesh University of Engineering and

Technology, Bangladesh
Pavlos Kefalas Aristotle University of Thessaloniki, Greece
Mohammadreza Khelghati University of Twente, Netherlands
Michal Kompan Slovak University of Technology in Bratislava,

Slovakia
Christian Koncilia University of Klagenfurt, Austria
Krešimir Križanović University of Zagreb, Croatia
Jens Lechtenbörger University Münster, Germany
Igor Mekterović University of Zagreb, Croatia
Anastasia Mochalova Catholic University of Eichstätt Ingolstadt,

Germany
Christos Perentis Bruno Kessler Foundation, Trento, Italy
Sonja Ristic University of Novi Sad, Serbia
Miloš Savić University of Novi Sad, Serbia
Alexander Semenov University of Jyväskylä, Finland
Alessandro Solimando University of Genoa, Italy
Konstantinos Theocharidis IMS, Research Center Athena, Greece
Savo Tomovic University of Montenegro, Montenegro
Stefano Valtolina Università degli Studi of Milano, Italy
Qing Wang Australian National University, Australia
Lesley Wevers University of Twente, Netherlands
Athanasios Zigomitros IMIS, Research Center "Athena", Greece
Slavko Žitnik University of Ljubljana, Slovenia

Workshop on GPUs In Databases (GID 2014)

Chairs

Witold Andrzejewski Poznan University of Technology, Poland
Krzysztof Kaczmarski Warsaw University of Technology, Poland
Tobias Lauer Jedox AG, Germany

Program Committee

Artur Gramacki University of Zielona Góra, Poland
Bingsheng He Nanyang Technological University, Singapore
Ming Ouyang University of Massachusets, Boston, USA
Gunter Saake University of Magdeburg, Germany
Peter Sestoft IT University of Copenhagen, Denmark
Krzysztof Stencel University of Warsaw, Poland
Jens Teubner Technische Universitat Dortmund, Germany
Paweł Wojciechowski Poznan University of Technology, Poland

Additional Reviewers

Sebastian Breß University of Magdeburg, Germany

Workshop on Ontologies Meet Advanced
Information Systems (OAIS 2014)

Chairs

Ladjel Bellatreche National Engineering School for Mechanics and
Aerotechnics, France

Yamine Aït Ameur Institut de Recherche en Informatique de Toulouse,
France

Program Committee

Yamine Ait-Ameur ENSEEIHT/IRIT, Toulouse, France
Idir Ait-Sadoune Supelec, Paris, France
Mahmoud Barhamgi LIRIS, Lyon, France
Ladjel Bellatreche ISAE-ENSMA, France
Karim Benouaret LIRIS, Lyon, France
Djamal Benslimane LIRIS, Lyon, France
Sadok Benyahia Faculty of Sciences of Tunis, Tunisia
Brice Chardin ISAE-ENSMA, France
Alfredo Cuzzocrea ICAR-CNR/University of Calabria, Italy
Stéphane Jean Poitiers University, France
Selma Khouri ESI, Algeria
Leandro Krug-Wives Federal University of Rio Grande do Sul, Brazil
Sofian Maabout Labri, Bordeaux, France
Farhi Marir College of Technological Innovation, Dubai
Brahim Medjahed Michigan University, USA
Oscar Romero Moral Universitat Politècnica de Catalunya, Spain
Boris Vrdoljak University of Zagreb, Croatia
Robert Wrembel Poznań University of Technology, Poland

Workshop on Technologies for Quality
Management in Challenging Applications

(TQCMA 2014)

Chairs

Isabelle Comyn-Wattiau Conservatoire National des Arts et Métiers, Paris,
France

Ajantha Dahanayake Prince Sultan University, Saudi Arabia
Bernhard Thalheim Christian Albrechts University, Germany

Program Committee

Jacky Akoka Conservatoire National des Arts et Métiers and
TMSP, France

Tiziana Catarci Università di Roma La Sapienza, Italy
Corine Cauvet Université Aix-Marseille 3, France
Virginie Goasdoue-Thion Université Dauphine, Paris, France
Paul Johannesson Stockholm University, Sweden
Zoubida Kedad Université de Versailles, France
Oscar Pastor Valencia University of Technology, Spain
Geert Poels University of Ghent, Belgium
Farida Semmak Université Paris XII, IUT Sénart Fontainebleau
Samira Si-Saïd Conservatoire National des Arts et Métiers, France
Carlo Batini University of Milan, Italy

Organization XIX

Doctoral Consortium – Program Committee

Ladjel Bellatreche LIAS/ENSMA, France
Christos Berberidis International Hellenic University, Greece
Maria Bielikova Slovak University of Technology in Bratislava,

Slovakia
Zoran Bosnić University of Ljubljana, Slovenia
Dražen Brdjanin University of Banja Luka, Republic of Srpska
Zoran Budimac University of Novi Sad, Serbia
Barbara Catania DISI-University of Genoa, Italy
Schahram Dustdar TU Wien, Austria
Georgios Evangelidis University of Macedonia, Greece
Minos Garofalakis Technical University of Crete, Greece
Giovanna Guerrini DISI- University of Genova, Italy
Gordan Ježić University of Zagreb, Croatia
Ioannis Katakis University of Athens, Greece
Marite Kirikova Riga Technical University, Latvia
Federica Mandreoli DII - University of Modena, Italy
Alexandros Nanopoulos University of Eichstaett-Ingolstadt, Germany
Pavol Navrat Slovak University of Technology
Kjetil Nørvåg Norwegian University of Science and Technology,

Norway
Boris Novikov St. Pegersburg University, Russia
George Pallis University of Cyprus
Thimios Panagos Applied Communication Sciences
Apostolos N. Papadopoulos Aristotle University of Thessaloniki, Greece
Miloš Radovanović University of Novi Sad, Serbia
Klaus-Dieter Schewe Software Competence Center Hagenberg, Austria
Bela Stantic Griffith University, Australia
Yannis Stavrakas Athena - Research and Innovation Center in

Information, Communication and Knowledge
Technologies, Greece

Panagiotis Symeonidis Aristotle University of Thessaloniki, Greece
Bernhard Thalheim Christian Albrechts University Kiel, Germany
A Min Tjoa Vienna University of Technology, Austria
Grigorios Tsoumakas Aristotle University of Thessaloniki, Greece
Panos Vassiliadis University of Ioannina, Greece
Robert Wrembel Poznan University of Technology, Poland
Jaroslav Zendulka Brno University of Technology, Czech Republic

Contents

Part I: Data Mining

Benchmarking Graph Databases on the Problem of Community
Detection . 3
Sotirios Beis, Symeon Papadopoulos, Yiannis Kompatsiaris

Efficient Processing of Streams of Frequent Itemset Queries 15
Monika Rokosik, Marek Wojciechowski

Part II: Data Warehouses

A Content-Driven ETL Processes for Open Data . 29
Alain Berro, Imen Megdiche, Olivier Teste

Data Integration Patterns for Data Warehouse Automation 41
Kalle Tomingas, Margus Kliimask, Tanel Tammet

Part III: Issues of Information Systems

Secure Data Storage and Exchange with a Private Wallet 59
Oliver Jäger, Frank Kramer, Bernhard Thalheim

Live Objects - Collaborative Window in the Corporate Documents 71
Riste Stojanov, Marjan Georgiev, Vladimir Zdraveski, Milos Jovanovik,
Dimitar Trajanov

Part IV: Physical Level

Flexs – A Logical Model for Physical Data Layout . 85
Hannes Voigt, Alfred Hanisch, Wolfgang Lehner

Storing Long-Lived Concurrent Schema and Data Versions in Relational
Databases . 97
Bob Wall, Rafal Angryk

XXII Contents

An Empirical Approach to Query-Subquery Nets with Tail-Recursion
Elimination . 109
Son Thanh Cao, Linh Anh Nguyen

Part V: Spatial and Temporal Data

Reasoning over Spatial Orientation Relations Using Rules 123
Sotiris Batsakis, Grigoris Antoniou, Ilias Tachmazidis

An Efficient Approach for Detecting and Repairing Data Inconsistencies
Resulting from Retroactive Updates in Multi-temporal and Multi-version
XML Databases . 135
Hind Hamrouni, Zouhaier Brahmia, Rafik Bouaziz

Integrated Representation of Temporal Intervals and Durations for the
Semantic Web . 147
Sotiris Batsakis, Grigoris Antoniou, Ilias Tachmazidis

Temporal State Management for Supporting the Real-Time Analysis of
Clinical Data . 159
Andreas Behrend, Philip Schmiegelt, Jingquan Xie, Ronny Fehling,
Adel Ghoneimy, Zhen Hua Liu, Eric Chan, Dieter Gawlick

Part VI: Streams

A Concept of Time Windows Length Selection in Stream Databases in the
Context of Sensor Networks Monitoring . 173
Monika Chuchro, Michał Lupa, Anna Piȩta, Adam Piórkowski,
Andrzej Leśniak

Partitioning for Scalable Complex Event Processing on Data Streams 185
Omran Saleh, Heiko Betz, Kai-Uwe Sattler

Part VII: GID 2014 Workshop

Improving High-Performance GPU Graph Traversal with Compression 201
Krzysztof Kaczmarski, Piotr Przymus, Paweł Rzążewski

GPU-Accelerated Method of Query Selectivity Estimation for Non
Equi-Join Conditions Based on Discrete Fourier Transform 215
Dariusz Rafal Augustyn, Lukasz Warchal

GPU-Accelerated Quantification Filters for Analytical Queries in
Multidimensional Databases . 229
Peter Tim Strohm, Steffen Wittmer, Alexander Haberstroh, Tobias Lauer

Contents XXIII

Part VIII: OAIS 2014 Workshop

Linked Open Data for Medical Institutions and Drug Availability Lists in
Macedonia . 245
Milos Jovanovik, Bojan Najdenov, Gjorgji Strezoski, Dimitar Trajanov

Integrating Multi-Viewpoints Paradigm in Ontology Using Ontology
Design Patterns . 257
Soumaya Kasri, Fouzia Benchikha

Part IX: TQMCA 2014 Workshop

Technologies for Databases Change Management . 271
Kai Jannaschk, Hannu Jaakkola, Bernhard Thalheim

Factors That Influence the Quality of Crowdsourcing 287
May Al Sohibani, Najd Al Osaimi, Reem Al Ehaidib, Sarah Al Muhanna,
Ajantha Dahanayake

Framework for Social Media Big Data Quality Analysis 301
Dua’a Al-Hajjar, Nouf Jaafar, Manal Al-Jadaan, Reem Alnutaifi

Part X: Doctoral Consortium

Querying and Managing Complex Data . 317
Luiz Gomes-Jr., André Santanchè

Implementation of Generalized Relational Algebraic Operations with
AsterixDB BDMS . 323
Nickolay Saveliev

Data Warehouse Schema Evolution Perspectives . 333
Danijela Subotić

Author Index . 339

Part I
Data Mining

Benchmarking Graph Databases on the Problem

of Community Detection

Sotirios Beis, Symeon Papadopoulos, and Yiannis Kompatsiaris

Information Technologies Institute, CERTH, 57001, Thermi, Greece
{sotbeis,papadop,ikom}@iti.gr

Abstract. Thanks to the proliferation of Online Social Networks (OSNs)
and Linked Data, graph data have been constantly increasing, reaching
massive scales and complexity. Thus, tools to store and manage such
data efficiently are absolutely essential. To address this problem, various
technologies have been employed, such as relational, object and graph
databases. In this paper we present a benchmark that evaluates graph
databases with a set of workloads, inspired from OSN mining use case
scenarios. In addition to standard network operations, the paper focuses
on the problem of community detection and we propose the adaptation
of the Louvain method on top of graph databases. The paper reports
a comprehensive comparative evaluation between three popular graph
databases, Titan, OrientDB and Neo4j. Our experimental results show
that in the current development status Neo4j is the most efficient graph
database for most of the employed workloads, while Titan handles better
single insertion operations.

1 Introduction

Over the past few years there has been vivid research interest in the study of
networks (graphs) arising from various social, technological and scientific activi-
ties. Typical examples of social networks are graphs constructed with data from
Online Social Networks (OSNs), one of the most famous and widespread Web
2.0 application categories. The rapid growth of OSNs contributes to the cre-
ation of high-volume and velocity data, which are modeled with the use of graph
structures. The increasing demand for massive graph data management and pro-
cessing systems has been addressed by the researchers proposing new methods
and technologies, such as RDBMS, OODBMS, graph databases, etc. Every so-
lution has its pros and cons so benchmarks to evaluate candidate solutions with
respect to specific applications are considered necessary.

Relational databases have been widely used for the storage of a variety of
data, including social data, and have proven their reliability. On the other hand
RDBMS lack operations to efficiently analyze the relationships among the data
points. This led to the development of new systems, such as object and graph
databases. More specifically, graph databases are designed to store and manage
effectively big graph data and constitute a powerful tool for graph-like queries,
such as “find the friends of a person”.

c© Springer International Publishing Switzerland 2015 3
N. Bassiliades et al. (eds.), New Trends in Database and Information Systems II,
Advances in Intelligent Systems and Computing 312, DOI: 10.1007/978-3-319-10518-5_1

4 S. Beis, S. Papadopoulos, and Y. Kompatsiaris

In this paper we address the problem of comparing graph databases in terms
of performance, focusing on the problem of community detection. We implement
a clustering workload, which consists of a well-known community detection al-
gorithm for modularity optimization, the Louvain method [1]. We employ cache
techniques to take advantage of both graph database capabilities and in-memory
execution speed. The use of the clustering workload is the main contribution
of this paper, because to our knowledge other existing benchmark frameworks
evaluate graph databases in terms of loading time, node creation/deletion or
traversal operations, such as “find the friends of a person” or “find the short-
est path between two persons”. Furthermore, the benchmark comprises three
supplementary workloads that simulate frequently occurring operations in real-
world applications, such as the the creation and traversal of the graph. The
benchmark implementation is available online as an open-source project1.

We use the proposed benchmark to evaluate three popular graph databases,
Titan2, OrientDB3 and Neo4j4. For our experiments we used both synthetic
and real networks and the comparative evaluation is held with respect to the
execution time. Our experimental results show that Neo4j is the most efficient
graph database to apply community detection algorithms, in our case the Lou-
vain method. Concerning the supplementary workloads, Neo4j is also the fastest
alternative, although Titan performs the incremental creation of the graph faster.

The paper is organized as follows. We begin in Section 2 by providing a
survey in the area of benchmarks between database systems oriented to store
and manage big graph data. In Section 3 we describe the workloads that compose
the benchmark. In Section 4 we list some important aspects of the benchmark.
Section 5 presents our experimental study, where we describe the datasets used
for the evaluation and report the obtained experimental results. Finally, Section
6 concludes the paper and delineates our future work ideas.

2 Related Work

Until now many benchmarks have been proposed, comparing the performance
of different databases for graph data. Giatsoglou et al. [2], present a survey of
existing solutions to the problem of storing and managing massive graph data.
Focusing on the Social Tagging System (STS) use case scenario, they report
a comparative study between the Neo4j graph database and two custom stor-
ages (H1 and Lucene). Angles et al. [3], considering the category of an OSN as
an example of Web 2.0 applications, propose and implement a generator that
produces synthetic graphs with OSN characteristics. Using this data and a set
of queries that simulate common activities in a social network application, the
authors compare two graph databases, one RDF and two relational data man-
agement systems. Similarly, in LinkBench [4] a Facebook-like data generator is
employed and the performance of a MySQL database system is evaluated. The

1 https://github.com/socialsensor/graphdb-benchmarks
2 http://thinkaurelius.github.io/titan/
3 http://www.orientechnologies.com/
4 http://www.neo4j.org/

https://github.com/socialsensor/graphdb-benchmarks
http://thinkaurelius.github.io/titan/
http://www.orientechnologies.com/
http://www.neo4j.org/

Benchmarking Graph Databases on the Problem of Community Detection 5

authors claim that under certain circumstances any database system could be
evaluated with LinkBench.

In a recent effort, Grossniklaus et al. [5] define and classify a workload of nine
queries, that together cover a wide variety of graph data use cases. Besides graph
databases they include RDBMS and OODBMS in their evaluation. Vicknair
et al. [6] also present a benchmark that combines different technologies. They
implemented a query workload that simulates typical operations performed in
provenance systems and they evaluate a graph (Neo4j) and a relational (MySQL)
database. Furthermore, the authors describe some objective measures to compare
the database systems, such as security, flexibility, etc.

In contrast with the above works, we argue that the most suitable solution
to the problem of massive graph storage and management are graph databases,
so our research focuses on them. In this direction Bader et al. [7] describe a
benchmark that consists of four kernels (operations): (a) bulk load of the data;
(b) retrieval of a set of edges that verify a condition (e.g. weight > 3); (c) execu-
tion of a k-hops operation; and (d) retrieval of the set of nodes with maximum
betweenness centrality. Dominguez et al. [8] report the implementation of this
benchmark and a comparative evaluation of four graph database systems (Neo4j,
HypergraphDB, Jena and DEX).

Ciglan et al. [9] are based on the ideas proposed in [8] and [10], and extend
the discussion focusing primarily on graph traversal operations. They compare
five graph databases (Neo4j, DEX, OrientDB, NativeSail and SGDB) by exe-
cuting some demanding queries, such as “find the most connected component”.
Jouili et al. [11] propose a set of workloads similar to [7] and evaluate Neo4j,
Titan, OrientDB and DEX. Unlike, previous works they conduct experiments
with multiple concurrent users and emphasize the effects of increasing users.
Dayarathna et al. [12] implement traversal operation-based workloads to com-
pare four graph databases (Allegrograph, Neo4j, OrientDB and Fuseki). The key
difference with other frameworks is that their interest is focused mostly on graph
database server and cloud environments.

3 Workload Description

The proposed benchmark is composed of four workloads, Clustering, Massive In-
sertion, Single Insertion and Query Workload. Every workload has been designed
to simulate common operations in graph database systems. Our main contribu-
tion is the Clustering workload (CW), however supplementary workloads are
employed to achieve a comprehensive comparative evaluation. In this section we
describe in more detail the workloads and emphasize their importance by giving
some real-world examples.

3.1 Clustering Workload

Until now most community detection algorithms used the main memory to store
the graph and perform the required computations. Although, keeping data in
memory leads to fast executions times, these implementations have a major
drawback: they cannot manage big graph data reliably, which nowadays is a

6 S. Beis, S. Papadopoulos, and Y. Kompatsiaris

key requirement for big graph processing applications. This motivated this work
and more specifically the implementation of the Louvain method on top of three
graph databases. We used the Gephi Tookit5 Java implementation of the algo-
rithm as a starting point and applied all necessary modifications to adapt the
algorithm to graph databases.

In a first implementation, all the required values for the computations were
read directly from the database. The fact that the access of any database (in-
cluding graph databases) compared to memory is very slow, soon made us realize
that the use of cache techniques is necessary. For this purpose we employed the
cache implementation of the Guava project6. The Guava Cache is configured to
evict entries automatically, in order to constrain its memory footprint. Guava
provides three basic types of eviction: size-based eviction, time-based eviction,
and reference-based eviction. To precisely control the maximum cache size, we
utilize the first type of eviction, size-based, and the evaluation was held both
between different systems and among different cache sizes. The measurements
concern the required time for the algorithm to be completed.

As the authors of the Louvain method mention7, the algorithm is a greedy
optimization method that attempts to optimize the modularity of a partition of
the network. The optimization is performed in two steps. First, the method looks
for “small” communities by optimizing modularity locally. Second, it aggregates
nodes belonging to the same community and builds a new network whose nodes
are the communities. We call those communities and nodeCommunities respec-
tively. The above steps are repeated in an iterative manner until a maximum of
modularity is attained.

We keep the community and nodeCommunity values stored in the graph
database as a property of each node. The implementation is based on three
functions that retrieve the required information either by accessing the cache or
the database directly. We store this information employing the LoadingCache
structure from the Guava Project, which is similar to a ConcurrentMap8. More
specifically we use the following functions and structures:

• getNodeNeighours : gets the neighbours of a node and stores them to a Load-
ingCache structure, where the key is the node id and the value is the set of
neighbours.

• getNodesFromCommunity: gets the nodes from a specific community and
stores them to a LoadingCache structure, where the key is the community
id and the value is the the set of nodes that the community contains.

• getNodesFromNodeCommunity: gets the nodes from a specific nodeCommu-
nity and stores them to a LoadingCache structure, where the key is the
nodeCommunity id and the value is the the set of nodes that the nodeCom-
munity contains.

5 https://gephi.org/toolkit/
6 https://code.google.com/p/guava-libraries/
7 http://perso.uclouvain.be/vincent.blondel/research/louvain.html
8 http://docs.oracle.com/javase/7/docs/api/java/util/

concurrent/ConcurrentMap.html

https://gephi.org/toolkit/
https://code.google.com/p/guava-libraries/
http://perso.uclouvain.be/vincent.blondel/research/louvain.html
http://docs.oracle.com/javase/7/docs/api/java/util/concurrent/ConcurrentMap.html
http://docs.oracle.com/javase/7/docs/api/java/util/concurrent/ConcurrentMap.html

Benchmarking Graph Databases on the Problem of Community Detection 7

We use the above information to compute values such as, the degree of a node,
the amount of connections a node or a nodeCommunity has with a particular
community, the size of a community or a nodeCommunity.

The Clustering Workload is very important due to its numerous applications
in OSNs [13]. Some of the most representative examples include topic detection
in collaborative tagging systems, such as Flickr or Delicious, tag disambiguation,
user profiling, photo clustering, and event detection.

3.2 Supplementary Workloads

In addition to CW, we recognize that a reliable and comprehensive benchmark
should contain some supplementary workloads. Here, we list and describe the
three additional workloads that constitute the proposed benchmark.

• Massive Insertion Workload (MIW): we create the graph database and con-
figure it for massive loading, then we populate it with a particular dataset.
We measure the time for the creation of the whole graph.

• Single Insertion Workload (SIW): we create the graph database and load it
with a particular dataset. Every object insertion (node or edge) is committed
directly and the graph is constructed incrementally. We measure the insertion
time per block, which consists of one thousand nodes and the edges that
appear during the insertion of these nodes.

• Query Workload (QW): we execute three common queries:
◦ FindNeighbours (FN): finds the neighbours of all nodes.
◦ FindAdjacentNodes (FA): finds the adjacent nodes of all edges.
◦ FindShortestPath (FS): finds the shortest path between the first node

and 100 randomly picked nodes.
Here we measure the execution time of each query.

It is obvious that MIW simulates the case study in which graph data are
available and we want to load them in batch mode. On the other hand, SIW
models a more real-time scenario in which the graph is created progressively.
We could claim that the growth of an OSN follows the steps of SIW, by adding
more users (nodes) and relationships (edges) between them.

The QW is very important as it applies in most of the existing OSNs. For
example with the FN query we can find the friends or followers of a person in
Facebook or Twitter respectively, with the FA query we can find whether two
users joined a particular Facebook group and with the FS query we can find at
which level two users connect with each other in Linkedin. It is critical for every
OSN that these queries can be executed efficiently and in minimal time.

4 Benchmark Description

In this section we discuss some important aspects of the benchmark implementa-
tion. The graph database systems selected for the evaluation are Titan (v0.4.1),
OrientDB (v1.7-RC2) and Neo4j (v2.0.1). The benchmark was implemented in

8 S. Beis, S. Papadopoulos, and Y. Kompatsiaris

Java 1.7 using the Java API of each database. In order to configure each database,
we used the default configuration and the recommendations found in the docu-
mentation of the web sites.

For Titan we implement MIW with the BatchGraph interface that enables
batch loading of a large number of edges and vertices, while for OrientDB and
Neo4j we employ the OrientGraphNoTx and BatchInserter interface respectively,
which drop the support for transactions in favor of insertion speed. For all graph
databases we implement SIW without using any special configuration. The op-
erations for the QW and CW for the OrientDB and Titan were implemented
using the Gremlin API, whereas for the Neo4j we employed its respective API.

To ensure that a benchmark provides meaningful and trustworthy results, it is
necessary to guarantee its fairness and accuracy. There are many aspects that can
influence the measurements, such as the system overhead. It is really important
that the results do not come from time periods with different system status (e.g.
different number of processes in the background), so we execute MIW, SIW and
QW sequentially for each database. In addition to this, we execute them in every
possible combination for each database, in order to minimize the possibility that
the results are affected by the order of execution. We report the mean value of
all measurements.

Regarding the CW, in order to eliminate the cold cache effects we execute it
twice and keep always the second value. Moreover, as we described in the previous
section to get an acceptable execution time, cache techniques are necessary. The
cache size is defined as a percentage of total nodes. For our experiments we
use six different cache sizes (5%, 10%, 15%, 20%, 25%, 30%) and we report the
respective improvements.

5 Experimental Study

In this section we present the experimental study. At first we describe the
datasets used for the evaluation. We include a table with some important statis-
tics of each dataset. Then we report and discuss the results.

5.1 Datasets

The right choice of datasets that will be used for running database benchmarks is
important to obtain representative and meaningful results. It is necessary to test
the databases on a sufficient number of datasets of different sizes and complexity
to get an approximation of the database scaling properties.

For our evaluation we use both synthetic and real data. More specifically, we
execute MIW, SIW and QW with real networks derived from the SNAP dataset
collection9. On the other hand, with the CW we use synthetic data generated
with the LFR-Benchmark generator [1] that produces networks with power-law
degree distribution and implanted communities within the network. The Table
1 presents the summary statistics of the datasets.

9 http://snap.stanford.edu/data/index.html

http://snap.stanford.edu/data/index.html

Benchmarking Graph Databases on the Problem of Community Detection 9

Table 1. Datasets used in the experiments

Dataset Nodes Edges max. κ 〈κ〉 〈cc〉
Graph500 500 1,975 25 7.904 0.267
Graph1000 1,000 7,745 50 15.490 0.296
Graph2000 2,000 29,720 100 29.721 0.291
Graph3000 3,000 65,839 150 43.893 0.303
Graph4000 4,000 120,814 200 60.407 0.301
Graph5000 5,000 184,711 249 73.884 0.313
Graph10000 10,000 748,105 500 149.622 0.291
Enron (EN) 36,692 367,662 1,383 20.041 0.497
Amazon (AM) 334,863 925,872 168 5.530 0.398
Youtube (YT) 1,134,890 2,987,624 28,576 5.265 0.081
Livejournal (LJ) 3,997,962 34,681,189 14,703 17.349 0.045

5.2 Benchmark Results

In this section we report and discuss the performance of Titan, OrientDB and
Neo4j employing the proposed benchmark. Table 2 lists the required time for the
execution of MIW and QW, while Figure 1 illustrates the experimental results
of SIW. Table 3 and Figure 2 depict the measurements of CW. Note that in
every table we mark the best performance with bold. All experiments were run
on a 2×Intel Xeon 6-core at 2.1Ghz with 128GB of main memory and a 2.8 TB
hard disk, the OS being Ubuntu Linux 12.04 (64bit).

Table 2 summarizes the measurements of the MIW and QW for all the bench-
marked graph databases with respect to each real dataset. According to the
benchmark results, we observe that Neo4j handles the massive insertion of the
data more efficiently from its competitors. Titan is also an effective alternative,
while OrientDB could not load the data in a comparable time.

Concerning the QW, Table 2 indicates that Neo4j performs queries more effec-
tively than the other candidates. More specifically, although Neo4j has slightly
smaller execution times comparing to OrientDB in the FN query load, Neo4j is
considerably faster in the FA and FS query loads. It is worth mentioning that the
shortest path search is limited to paths of depth 6, because with larger depth the
FS query workload in Titan and OrientDB cannot be executed in a reasonable
amount of time.

The results for SIW with each real dataset are illustrated in Figure 1. Each
sub-figure includes three diagrams, one for every graph database, that plot the
required time for the insertion of a block. As we described in Section 3, a block
consists of 1,000 nodes and the edges that appear during the insertion of these
nodes. In order to present more readable diagrams for the three technologies
we used a logarithmic scale for the time axis. It appears that Titan is the most
efficient solution for single insertion of data. Moreover, we observe that the per-
formance of OrientDB and Neo4j is comparable, however OrientDB seems to
perform slightly better.

10 S. Beis, S. Papadopoulos, and Y. Kompatsiaris

Table 2. MIW and QW results (sec)

Graph Workload Titan OrientDB Neo4j

EN MIW 7.020 378.192 1.091
AM MIW 28.997 298.560 4.635
YT MIW 80.064 5963.333 16.830
LJ MIW 720.179 2485.529 229.465

EN QW-FN 4.707 0.976 1.144
AM QW-FN 12.243 4.75 3.224
YT QW-FN 37.912 14.804 10.532
LJ QW-FN 352.968 68.176 109.494

EN QW-FA 6.132 3.449 0.478
AM QW-FA 18.143 17.877 1.446
YT QW-FA 58.921 44.013 3.486
LJ QW-FA 504.909 341.306 44.510

EN QW-FS 10.652 16.554 0.483
AM QW-FS 0.149 11.382 0.293
YT QW-FS 6.598 6.927 0.223
LJ QW-FS 31.01 47.183 0.479

5 10 15 20 25 30 35
10

2

10
3

10
4

10
5

Blocks

T
im

e
(lo

g(
m

s)
)

OrientDB
Neo4j
Titan

(a) Enron

50 100 150 200 250 300
10

1

10
2

10
3

10
4

10
5

Blocks

T
im

e(
lo

g(
m

s)

Titan
OrientDB
Neo4j

(b) Amazon

0 200 400 600 800 1000
10

1

10
2

10
3

10
4

10
5

10
6

Blocks

T
im

e
(lo

g(
m

s)
)

Titan
OrientDB
Neo4j

(c) Youtube

0 500 1000 1500 2000 2500 3000 3500
10

1

10
2

10
3

10
4

10
5

Blocks

T
im

e
(lo

g(
m

s)
)

Titan
OrientDB
Neo4j

(d) Livejournal

Fig. 1. SIW benchmark results

Benchmarking Graph Databases on the Problem of Community Detection 11

Table 3. CW results (sec)

Graph-Cache Titan OrientDB Neo4j

Graph500-5% 123.774 9.525 3.786
Graph500-10% 111.943 9.019 3.15
Graph500-15% 105.425 8.879 3.01
Graph500-20% 98.084 8.126 2.808
Graph500-25% 94.183 6.776 2.408
Graph500-30% 92.021 6.566 2.212

Graph1000-5% 683.572 44.449 8.841
Graph1000-10% 626.777 36.651 8.591
Graph1000-15% 599.873 33.896 7.312
Graph1000-20% 579.948 29.797 6.912
Graph1000-25% 562.162 27.227 6.94
Graph1000-30% 544.43 25.448 6.629

Graph2000-5% 5822.678 254.05 38.29
Graph2000-10% 5283.674 224.65 35.824
Graph2000-15% 5004.3 200.074 32.747
Graph2000-20% 4202.316 182.04 31.111
Graph2000-25% 4041.574 168.995 30.317
Graph2000-30% 3884.714 152.193 29.833

Graph3000-5% 21191.741 870.295 95.355
Graph3000-10% 19364.449 755.737 89.931
Graph3000-15% 17663.532 711.586 86.228
Graph3000-20% 16250.283 649.357 83.474
Graph3000-25% 1137.774 614.796 79.753
Graph3000-30% 1081.654 564.096 77.595

Graph4000-5% 54758.397 1806.228 175.89
Graph4000-10% 47998.816 1533.492 153.151
Graph4000-15% 44158.921 1408.739 146.413
Graph4000-20% 42834.153 1309.597 136.671
Graph4000-25% 38979.079 1237.009 130.942
Graph4000-30% 37809.707 1145.699 120.792

Graph5000-5% - 3308.99 284.463
Graph5000-10% - 2846.417 248.167
Graph5000-15% - 2547.742 244.285
Graph5000-20% - 2327.123 231.639
Graph5000-25% - 2114.561 213.956
Graph5000-30% - 1944.151 199.226

Graph10000-5% - 23351.878 1514.992
Graph10000-10% - 21250.209 1378.643
Graph10000-15% - 16292.998 1106.668
Graph10000-20% - 14866.024 1017.766
Graph10000-25% - 14042.227 927.603
Graph10000-30% - 13183.961 852.232

12 S. Beis, S. Papadopoulos, and Y. Kompatsiaris

The experimental results of CW are reported in Table 3. Both the OrientDB
and the Neo4j are much faster than the Titan graph database. The serious
delay of the Titan did not allow us to complete the experiments with larger
graphs (Graph5000 and Graph10000). Furthermore, Table 3 reveals that while
OrientDB has comparable execution times with Neo4j for the small graphs, it
does not scale as good as Neo4j. Thus, for graphs with >1,000 nodes, Neo4j is
much faster. Given that the Louvain method consists of a set queries, such as
“get the neighbours of a node”, the above results are expected, if we take into
consideration the results of the QW.

Additionally, Table 3 points out the positive impact of increasing the cache
size. We observe that for all graph databases regardless of the graph size, as the
cache size increases the execution time decreases. We wrap up the comparative
evaluation, including Figure 2 which depict the scalability of each database when
the CW is executed. Every sub-figure contains six diagrams, one for each cache
value, that plot the required time for the convergence of the algorithm for the
respective synthetic graph. For better representation we used a logarithmic scale
for the time axis. We can deduce that since the diagrams with the logarithmic
scale increase linearly, the execution time follows an exponential distribution.

In summary, we found that despite the fact that Neo4j falls behind in SIW
compared to Titan and OrientDB, for the MIW, QW and CW, is clearly the
most efficient solution, especially when we deal with big graph data. On the

Graph500 Graph1000 Graph2000 Graph3000 Graph4000

10
2

10
3

10
4

10
5

T
im

e
(lo

g(
se

c)
)

Cache 5%
Cache 10%
Cache 15%
Cache 20%
Cache 25%
Cache 30%

(a) Titan

Graph500 Graph1000 Graph2000 Graph3000 Graph4000 Graph5000 Graph10000
10

0

10
1

10
2

10
3

10
4

T
im

e
(lo

g(
se

c)
)

Cache 5%
Cache 10%
Cache 15%
Cache 20%
Cache 25%
Cache 30%

(b) Neo4j

Graph500 Graph1000 Graph2000 Graph3000 Graph4000 Graph5000 Graph10000

10
1

10
2

10
3

10
4

10
5

T
im

e
(lo

g(
se

c)
)

Cache 5%
Cache 10%
Cache 15%
Cache 20%
Cache 25%
Cache 30%

(c) OrientDB

Fig. 2. CW benchmark results

Benchmarking Graph Databases on the Problem of Community Detection 13

other hand, Titan is the fastest alternative for the incremental creation of a
graph database (SIW). Titan also has competitive performance in MIW, but
does not scale very well compared to its two competitors.

6 Conclusions and Future Work

In this paper we proposed a benchmark framework for the comparative evalua-
tion of database systems oriented to store and manage graph data. The bench-
mark consists of four workloads, Massive Insertion, Single Insertion, Query and
Clustering Workload. For the Clustering Workload we implemented a well-known
community detection algorithm, the Louvain method, on top of three graph
databases. Employing the proposed benchmark we evaluated the selected graph
databases, Titan, OrientDB and Neo4j using both synthetic and real networks.

The experimental results demonstrate that in most cases the measurements
are comparable when processing small graphs. But when the size of the datasets
grows significantly, Neo4j appears to be the most efficient solution for storing and
managing graph data. On the other hand, Titan seems to be the best alternative
for single insertion operations.

In the future we hope to investigate the performance gain if we parallelize the
operations of the graph databases. Moreover, it would be interesting to run the
benchmark employing the distributed implementations of Titan and OrientDB
in order to examine their horizontal and vertical scalability properties. Also,
we intend to improve the performance of the implemented community detection
algorithm and test it on graphs of much larger size.

Acknowledgments. This work was supported by the SocialSensor FP7 project,
partially funded by the EC under grant agreement 287975.

References

1. Blondel, V.D., Guillaume, J.L., Lambiotte, R., Lefebvre, E.: Fast unfolding of com-
munities in large networks. Journal of Statistical Mechanics: Theory and Experi-
ment 2008(10), P10008 (2008)

2. Giatsoglou, M., Papadopoulos, S., Vakali, A.: Massive graph management for the
web and web 2.0. In: Vakali, A., Jain, L.C. (eds.) New Directions in Web Data
Management 1. SCI, vol. 331, pp. 19–58. Springer, Heidelberg (2011)

3. Angles, R., Prat-Pérez, A., Dominguez-Sal, D., Larriba-Pey, J.L.: Benchmarking
database systems for social network applications. In: First International Workshop
on Graph Data Management Experiences and Systems, GRADES 2013, pp. 15:1–
15:7. ACM, New York (2013)

4. Armstrong, T.G., Ponnekanti, V., Borthakur, D., Callaghan, M.: Linkbench: a
database benchmark based on the facebook social graph (2013)

5. Grossniklaus, M., Leone, S., Zäschke, T.: Towards a benchmark for graph data
management and processing (2013)

14 S. Beis, S. Papadopoulos, and Y. Kompatsiaris

6. Vicknair, C., Macias, M., Zhao, Z., Nan, X., Chen, Y., Wilkins, D.: A comparison
of a graph database and a relational database: A data provenance perspective. In:
Proceedings of the 48th Annual Southeast Regional Conference, ACM SE 2010,
pp. 42:1–42:6. ACM, New York (2010)

7. Bader, D.A., Feo, J., Gilbert, J., Kepner, J., Koester, D., Loh, E., Madduri, K.,
Mann, B., Meuse, T., Robinson, E.: HPC scalable graph analysis benchmark (2009)

8. Dominguez-Sal, D., Urbón-Bayes, P., Giménez-Vañó, A., Gómez-Villamor, S.,
Mart́ınez-Bazán, N., Larriba-Pey, J.L.: Survey of graph database performance on
the hpc scalable graph analysis benchmark. In: Shen, H.T., et al. (eds.) WAIM
2010. LNCS, vol. 6185, pp. 37–48. Springer, Heidelberg (2010)

9. Ciglan, M., Averbuch, A., Hluchy, L.: Benchmarking traversal operations over
graph databases. In: 2012 IEEE 28th International Conference on Data Engineering
Workshops (ICDEW), pp. 186–189 (April 2012)

10. Dominguez-Sal, D., Martinez-Bazan, N., Muntes-Mulero, V., Baleta, P., Larriba-
Pey, J.: A discussion on the design of graph database benchmarks. In: Nambiar, R.,
Poess, M. (eds.) TPCTC 2010. LNCS, vol. 6417, pp. 25–40. Springer, Heidelberg
(2011)

11. Jouili, S., Vansteenberghe, V.: An empirical comparison of graph databases. In:
2013 International Conference on Social Computing (SocialCom), pp. 708–715
(September 2013)

12. Dayarathna, M., Suzumura, T.: Xgdbench: A benchmarking platform for graph
stores in exascale clouds. In: 2012 IEEE 4th International Conference on Cloud
Computing Technology and Science (CloudCom), pp. 363–370 (December 2012)

13. Papadopoulos, S., Kompatsiaris, Y., Vakali, A., Spyridonos, P.: Community detec-
tion in social media. Data Mining and Knowledge Discovery 24(3), 515–554 (2012)

Efficient Processing of

Streams of Frequent Itemset Queries�

Monika Rokosik and Marek Wojciechowski

Institute of Computing Science,
Poznan University of Technology,

Piotrowo 2, 60-965 Poznan, Poland
Marek.Wojciechowski@cs.put.poznan.pl

Abstract. Frequent itemset mining is one of fundamental data mining
problems that shares many similarities with traditional database query-
ing. Hence, several query optimization techniques known from database
systems have been successfully applied to frequent itemset queries, in-
cluding reusing results of previous queries and multi-query optimization.
In this paper, we consider a new problem of processing of streams of in-
coming frequent itemset queries, where like in multi-query optimization
a number of queries are executed together and share some of their op-
erations, but unlike in previously considered scenarios, new queries are
dynamically being added to the currently processed set of queries.

Keywords: data mining, frequent itemsets, data mining queries.

1 Introduction

Frequent itemset mining is one of fundamental data mining problems, where the
goal is to discover subsets frequently occurring in a collection of sets of items. The
problem was introduced in the context of market basket analysis as the initial
step in association rule mining [1] but quickly became the main focus of research
on frequent pattern discovery. While generating association rules from discovered
frequent itemsets is a relatively straightforward task, numerous frequent itemset
mining algorithms have been proposed, of which Apriori [3] is the most widely
implemented in practice. Apriori starts with the discovery of frequent items and
then iteratively finds larger frequent itemsets using a generate-and-test strat-
egy, exploiting the property that all subsets of a frequent itemset must also be
frequent. In order to facilitate efficient counting of potentially frequent itemsets
(called candidates), Apriori maintains a specialized in-memory data structure
called hash tree.

Frequent itemset mining can be regarded as advanced database querying [7],
and hence may benefit from optimization strategies that have previously been
considered and successfully applied in the context of database management sys-
tems. A frequent itemset query contains predicates for selection of source data

� This work was partially supported by the Polish National Science Center (NCN),
Grant No. 2011/01/B/ST6/05169.

c© Springer International Publishing Switzerland 2015 15
N. Bassiliades et al. (eds.), New Trends in Database and Information Systems II,
Advances in Intelligent Systems and Computing 312, DOI: 10.1007/978-3-319-10518-5_2

16 M. Rokosik and M. Wojciechowski

to be mined and a minimum support threshold. Optionally, it may also contain
predicates concerning frequent itemsets to be discovered.

First solutions addressing efficient processing of frequent itemset queries fo-
cused on incorporating pattern constraints into the mining process, rather than
verifying them in the post-processing step, to reduce the query execution time.
Various types of patterns constraints were identified and strategies of handling
them within existing pattern mining methodologies were proposed [13].

The next step in the area of frequent itemset query optimization was reusing
materialized results of previous queries. It was observed that data mining is of-
ten an interactive and iterative process where users adjust constraints of their
queries, and as a result, a sequence of similar data mining queries may be sub-
mitted to the system. Several result reusing schemes were proposed, exploiting
various classes of differences between the queries [6][10][12].

Finally, the problem of efficient processing of sets of frequent itemset queries
was considered, borrowing general ideas of computation sharing from the area of
multi-query optimization in database systems. This time the motivation was to
speed up execution of batches of queries that may occur mainly in data mining
systems working in a batch mode. Several processing schemes were proposed for
concurrent execution of sets of frequent itemset queries, broadly divided into
techniques depending on (e.g. [15]) and independent of (e.g., [16]) a particular
frequent itemset mining algorithm.

In this paper we shift the focus back on interactive data mining systems.
Reusing results of previous queries, which is targeted at such systems, has several
important limitations. Firstly, any given query may benefit from the results of
only these queries which have completed earlier and whose results have been
materialized. Secondly, specific relationships between the source datasets and
pattern constraints of the queries must hold for one query to be able to consume
the results of another query.

On the other hand, techniques of processing of sets of frequent itemset queries
try to exploit any overlapping between the queries’ datasets but their application
to streams of queries is problematic. It was postulated that an interactive system
could group queries from a given time window in order to process them together
but clearly such a strategy, while possibly beneficial from the point of view of
utilizing the system’s resources, may lead to postponing some queries with no
actual benefit.

Motivated by the shortcomings of existing solutions, we propose to handle
streams of frequent itemset queries in a similar manner to sets of such queries,
i.e., trying to benefit from any overlapping among the datasets of the queries
currently available to the data mining system, but allowing new queries to join
the batch currently being executed without waiting for it to complete. Obviously,
within such an approach we are going to look for solutions by adapting existing
techniques for sets of frequent itemset queries to handle “dynamic” batches of
queries. In this paper, we focus on the adaptation of one of the simplest but at the
same time efficient and easy to implement technique called Common Counting
[15], dedicated to Apriori.

Efficient Processing of Streams of Frequent Itemset Queries 17

2 Related Work

Apart from the approaches to optimizing execution of frequent itemset queries
already mentioned in the introduction, the most related to the problem consid-
ered in this paper are works concerning multi-query optimization in data mining
and other research domains.

Multiple-query optimization has been extensively studied in the context of
database systems (see [14] for an overview). The idea was to identify common
subexpressions and construct a global execution plan minimizing the overall
processing time by executing the common subexpressions only once for the set
of queries [4]. In data warehousing, multiple-query optimization has been applied
to speed up maintenance of the set of materialized views by exploiting common
subexpressions between different view maintenance expressions [11].

To the best of our knowledge, apart from the problem considered in this paper,
multiple-query optimization for frequent pattern queries has been considered
only in the context of frequent pattern mining on multiple datasets [9]. The idea
was to reduce the common computations appearing in different complex queries,
each of which compared the support of patterns in several disjoint datasets. This
is fundamentally different from our problem, where each query refers to only one
dataset and the queries’ datasets overlap.

The need for multiple-query optimization has also been postulated in the
somewhat related research area of inductive logic programming, where a tech-
nique based on similar ideas as Common Counting was proposed, consisting in
combining similar queries into query packs [5].

3 Background and Common Counting Technique

3.1 Basic Definitions

Definition 1. Let I be a set of literals called items. An itemset X is a set of
items from I (X ⊆ I). The size of the itemset is the number of items in it. An
itemset of size k is called a k-itemset.

A transaction over I is a couple T = 〈tid,X〉, where tid is a transaction
identifier and X is an itemset. A database D over I is a set of transactions over
I such that each transaction has a unique identifier.

A transaction T = 〈tid,X〉 supports an itemset Y if Y ⊆ X . The support of
an itemset Y in D is the number of transactions in D that support Y . An itemset
is called frequent in D if its support is no less than a user-specified minimum
support threshold.

Given a database D and a minimum support threshold minsup, the problem
of frequent itemset mining consists in discovering all frequent itemsets in D
together with their supports.

Definition 2. A frequent itemset query is a tuple dmq = (R, a, Σ, Φ, minsup),
where R is a database relation, a is a set-valued attribute of R, Σ is a condition
involving the attributes of R called a data selection predicate, Φ is a condition

18 M. Rokosik and M. Wojciechowski

involving discovered itemsets called a pattern constraint, and minsup is the min-
imum support threshold. The result of dmq is a set of itemsets discovered in
πaσΣR, satisfying Φ, and having support ≥ minsup (π and σ denote relational
projection and selection operations respectively).

Definition 3. The set of elementary data selection predicates for a set of fre-
quent itemset queries DMQ = {dmq1, dmq2, ..., dmqn} is the smallest set S =
{s1, s2, ..., sk} of data selection predicates over the relation R such that for each
u, v (u �= v) we have σsuR ∩ σsvR = ∅ and for each dmqi there exist integers
a, b, ...,m such that σΣiR = σsaR ∪ σsbR ∪ .. ∪ σsmR. The set of elementary
data selection predicates represents the partitioning of the database determined
by overlapping of queries’ datasets.

3.2 Common Counting

Common Counting reduces the data retrieval costs for a batch of frequent item-
set queries with respect to sequential processing by concurrent execution of a set
of frequent itemset queries using Apriori and integration of scans of the shared
parts of the database. The method iteratively generates and counts candidates
for all frequent itemset queries. The candidates are generated separately for each
query using the original procedure from the Apriori algorithm and then stored
in separate hash trees. Occurrences of candidates for all the queries are counted
during one integrated database scan so that if a database partition is shared by
several queries, it is read only once during each candidate counting phase. Com-
mon Counting does not incorporate pattern constraints into the actual mining
process, leaving them for post-processing.

Common Counting is a simple technique, optimizing only one aspect of fre-
quent itemset query execution, i.e., data retrieval, but it has several desired
properties important from the point of view of its practical applications. Firstly,
it has a negligible overhead and therefore practically guarantees reduction of the
overall processing time if any overlapping between the queries’ datasets occurs.
Secondly, it can be applied to a large number queries even if their hash trees
do not fit together in memory thanks to the possibility of partitioning the set
of queries and dividing candidate counting into phases [17]. Finally, it has been
shown to work well regardless of the availability of efficient access paths to data
partitions determined by query overlapping [8].

4 Common Counting Stream

The key to adapting Common Counting to streams of frequent itemset queries
is the observation that a Common Counting iteration does not rely on the fact
that all the processed queries are at the same Apriori iteration. Hence, we can
actually add a new query to the currently processed batch even if the queries
previously added to it already performed one or more Apriori iterations. We
formalize this idea as the Common Counting Stream technique that maintains
a dynamic batch of queries and integrates their data retrieval phases. Similarly

Efficient Processing of Streams of Frequent Itemset Queries 19

to Common Counting, Common Counting Stream works in iterations but each
query has to control its own iteration counter because Common Counting Stream
iterations are not aligned with the queries’ Apriori iterations. The pseudo-code
of Common Counting Stream is presented in Fig. 1.

Input: DMQ = {dmq1, dmq2, ..., dmqn},
where dmqi = (R, a,Σi, Φi,minsupi)
(1) while true do
(2) update DMQ
(3) S = set of elementary data selection predicates for DMQ
(4) for (i=1; i ≤ n; i++) do
(5) if ki = 1 then
(6) Cki,i = all possible 1-itemsets
(7) else
(8) Cki,i = apriori gen(Fki−1,i)
(9) end if
(10) if Cki,i = ∅ then Answeri = σΦi

⋃
k Fk,i

(11) end for
(12) for each sj ∈ S do
(13) CC = {Cki,i : σsjR ⊆ σΣiR}
(14) if CC �= ∅ then count(CC, σsjR)
(15) end for
(16) for (i=1; i ≤ n; i++) do
(17) Fki,i = {C ∈ Cki,i : C.counter ≥ minsupi}
(18) end while

Fig. 1. Common Counting Stream

Common Counting Stream works in an infinite loop (line 1). At the beginning of
the loop (line 2) it updates the current batch of queries by adding new queries
and removing the ones that completed in the previous iteration, and then up-
dates the set of elementary data selection predicates (line 3). Next, the algorithm
generates candidates for each query from the batch (lines 4-11) taking into ac-
count that for some queries it may be the first iteration whereas for others a
later one. Generation of candidates of size greater than one (represented in the
pseudo-code by the apriori gen() function) is performed exactly as in the original
Apriori algorithm. Current Apriori iterations are tracked individually for each
query and denoted by ki in the algorithm. Cki,i and Fki,i denote candidates and
frequent itemsets of size ki for the query dmqi. If for a given query no further can-
didates can be generated, the query completes and its final results are collected
(line 10).

The counting of candidates is performed exactly as in Common Counting
(lines 12-17). For each elementary data selection predicate, the transactions
from its corresponding database partition are read one by one. For each transac-
tion the candidates of the queries referring to the database partition being read
are considered, and the counters of candidates contained in the transaction are

20 M. Rokosik and M. Wojciechowski

incremented (lines 12-15). The inclusion test is performed by confronting the
transaction with hash trees of all the queries referring to the database partition
containing the transaction. Candidate counting is represented in the pseudo-code
as the count() function.

Analogously to Common Counting, in our formulation of Common Counting
Stream we assumed that hash trees of all the currently processed queries fit
into main memory. However, a practical implementation of Common Counting
Stream should apply the same strategy of dividing the counting into phases if
the queries’ data structures cannot be accommodated together in memory as
developed for Common Counting.

5 Experimental Results

In order to evaluate efficiency of the proposed new technique of processing
streams of frequent itemset queries we performed a series of experiments on
synthetic data on a PC with Intel Core 2 Duo 2.4GHz processor and 3.5GB
RAM, running Windows 7 32-bit. The compared algorithms were implemented
in Java. The test dataset was prepared using the following procedure. First,
we generated a small dataset using the GEN [2] generator with the following
settings: number of transactions in the database = 100000, average number of
items in a transactions = 8, number of different items = 1000, number of patterns
= 500, average pattern length = 4. Then, we multiplied the resulting dataset
10 times, thus producing a dataset containing 1000000 transactions. formed of
10 partitions having exactly the same data distribution. Thanks to the applied
procedure, when we later considered only queries selecting a number of identi-
cal partitions, we eliminated the possible impact of irregular data distribution
on the obtained results. The total size of the prepared test dataset was 71MB.
The dataset was stored on a hard disk as a flat file accompanied by an index
facilitating selective access to data partitions.

As the goal of the proposed technique was to reduce the overall processing
time of a stream of queries with respect to sequential execution of the queries, the
sequential execution was chosen as a primary reference query execution method.
As a secondary reference method we decided to include execution of the set of
queries using the original Common Counting technique, which can be regarded
as the optimal scenario where all the queries to be processed are submitted to
the system at once.

In all the experiments we measured total execution times but to provide a
better insight into performance gains due to sharing data reading operations be-
tween the queries we also counted the total number of transactions retrieved from
the database. The problem with relying solely on execution times in assessment
of the compared query processing techniques is that the observed differences in
execution times are dependent on the ratio of CPU costs to I/O costs, and the
latter depend on the location of the dataset (local disk or remote database server)
and its size as well as the possibility of caching the data. In our test bed the
whole dataset easily fit into disk cache, while for real-life scenarios that would

Efficient Processing of Streams of Frequent Itemset Queries 21

be unlikely. In fact, we can regard our testing environment as the worst-case
scenario to observe reduction of execution times due to sharing data retrieval
operations.

In the first series of experiments we tested the effect of the overlapping between
the queries’ datasets on efficiency of the three compared techniques: sequential
execution (seq), Common Counting (cc), and Common Counting Stream (cc-s).
We considered the case of two queries, each retrieving half of the dataset. With
the way our input database had been generated, for the tested overlapping levels
we could formulate the queries so that they always operated on datasets identical
in terms of their size and contents, thus eliminating the possible effect of different
data distributions on observed results. The minimum support threshold of both
the queries was set to 2.1% so that they performed five Apriori iterations. The
second query was added after the first one completed its second Apriori iteration.

The results of this first series of experiments are shown in Fig. 2. As ex-
pected, both the number of retrieved transactions and the total execution time
of Common Counting Stream decrease linearly with the increase of overlapping.
However, since the queries were processed by Common Counting Stream to-
gether only for three out of their five Apriori iterations, the performance gains
are smaller than these of the reference Common Counting method, which was
provided with both the queries from the beginning of its operation (this is how
Common Counting was designed to operate, of course).

Fig. 2. Execution times (left) and numbers of transactions read (right) for different
levels of overlapping between two frequent itemset queries with minsup=2.1%

The goal of the second series of experiments was to observe the effect of iteration
offset between the queries (i.e., the number of Apriori iterations performed by the
first query after which the second query was added). In this series of experiments
the queries always shared 60% of their datasets. The experiments were repeated
for two minimum support thresholds: 2.1% and 3%. With the increased support
threshold both the queries required only four iterations to complete, i.e., one
iteration less than for the threshold of 2.1%. The results are presented in Figures
3 and 4.

22 M. Rokosik and M. Wojciechowski

Fig. 3. Execution times for two frequent itemset queries for different iteration offsets
between the two queries with minsup=2.1% (left) and minsup=3% (right)

Fig. 4. Numbers of transactions read for two frequent itemset queries for different
iteration offsets between the two queries with minsup=2.1% (left) and minsup=3%
(right)

Obviously, the iteration offset matters only for Common Counting Stream. In
sequential execution any subsequent query is postponed until the previous one
completes. On the other hand, Common Counting was applied assuming that
both the queries were available from the beginning. The experiments show that
the smaller the iteration offset the better for the efficiency of Common Count-
ing Stream. This is certainly not surprising as the smaller this offset the more
iterations can have their data scanning phases integrated for the two queries.
Since we expressed the iteration offset as the number of Apriori iterations (not
the percentage), its impact was more visible for the higher of considered sup-
port thresholds, for which the total number of iterations, and consequently the
number of iterations where I/O integration took place, was smaller than for the
lower support threshold.

In the last series of experiments we tested the three frequent itemset processing
schemes on streams of two to five queries in order to evaluate scalability with
the number of queries of Common Counting Stream. The streams of queries
were prepared using the following set of rules: 1) Each query had the same

Efficient Processing of Streams of Frequent Itemset Queries 23

minimum support threshold (2.1% or 3%) and equal size and contents of the
source dataset by referring to 5 consecutive partitions of the database. 2) The
first query’s dataset started from the first partition, and each subsequent query
had its dataset shifted by one partition. 3) Each subsequent query (beginning
with the second one) was added after the previous one completed its second
iteration.

Fig. 5. Execution times for streams of two to five frequent itemset queries with min-
sup=2.1% (left) and minsup=3% (right)

Fig. 6. Numbers of transactions read for streams of two to five frequent itemset queries
with minsup=2.1% (left) and minsup=3% (right)

Execution times and numbers of transactions retrieved from the database for
the last series of experiments are shown in Figures 5 and 6, respectively. It can
be seen that all the compared methods scale linearly with the number of queries
(under the assumption that the queries are identical in terms of their support
thresholds and contents of their source datasets, and additionally for Common
Counting Stream the time intervals between subsequent queries are uniform).
For the smaller of the considered support thresholds performance of Common
Counting Stream is relatively closer to that of Common Counting than for the
higher threshold for the same reason as in the second series of experiments.

24 M. Rokosik and M. Wojciechowski

The general conclusion is that Common Counting Stream is an efficient tech-
nique of processing streams of frequent itemset queries. Even in our test environ-
ment where the database resided on a local disk and its size was small enough
to fit into disk cache, Common Counting Stream noticeably outperformed se-
quential execution in all the conducted experiments. Moreover, detailed analysis
of numbers of data transactions processed by Common Counting Stream is an
indication of even more significant benefits in terms of overall processing time in
production data mining systems where the source data is often remote and/or
too big to fit into disk cache.

On the other hand, in all our experiments Common Counting Stream took
longer to complete than Common Counting. Nevertheless, such a behavior was
expected as the execution of a stream of frequent itemset queries cannot be easier
than the execution of a set of the same queries. In fact, we can regard Common
Counting as a specific case of Common Counting Stream where all the queries
are available from the beginning, and hence the chances of sharing data retrieval
operations between the queries are maximized.

Several parameters influence efficiency of Common Counting Stream. Simi-
larly to Common Counting (and other techniques of processing sets of frequent
itemset queries), Common Counting Stream’s performance gains with respect to
sequential processing are proportional to the level of overlapping between the
queries’ dataset. Other important factors contributing to the efficiency of Com-
mon Counting Stream are the minimum support threshold and time intervals
between the queries (which translates to iteration offset for Common Counting
Stream). In general, the lower the support threshold and the smaller the interval
between query submissions, the better Common Counting Stream performs due
to sharing a greater fraction of Apriori iterations between the queries.

6 Conclusions and Future Work

In this paper we addressed interactive data mining systems supporting frequent
itemset discovery by means of frequent itemset queries. We claimed that existing
solutions were not fully adequate for streams of queries occurring in such systems.
As desired features of a processing scheme for streams of frequent itemset queries,
we listed the ability to exploit any overlapping among the queries’ datasets and
the possibility to add new queries to the currently processed batch of queries
when some of the previous queries are still being processed.

We postulated that a natural direction in search for such processing schemes
should be adaptation of existing techniques for sets of frequent itemset queries to
the scenario where new queries are continually added. In this paper we presented
an extension of Common Counting, a method falling into the aforementioned cat-
egory, dedicated to the most popular frequent itemset mining algorithm, Apriori.
The resulting technique, Common Counting Stream, applies the same data re-
trieval optimization method as Common Counting but maintains a dynamic
batch of queries which can be at different Apriori iterations. Our experimen-
tal analysis showed that the new technique noticeably outperforms sequential

Efficient Processing of Streams of Frequent Itemset Queries 25

execution, and may significantly reduce the I/O costs depending on the charac-
teristics of the query stream and of the queries themselves.

A natural direction of future research is adaptation of other techniques of
processing batches of frequent itemset queries to handle a stream of incoming
queries dynamically added to the processed batch.

References

1. Agrawal, R., Imielinski, T., Swami, A.N.: Mining association rules between sets
of items in large databases. In: Buneman, P., Jajodia, S. (eds.) Proceedings of
the 1993 ACM SIGMOD International Conference on Management of Data, pp.
207–216. ACM Press (1993)

2. Agrawal, R., Mehta, M., Shafer, J.C., Srikant, R., Arning, A., Bollinger, T.: The
quest data mining system. In: Simoudis, E., Han, J., Fayyad, U.M. (eds.) Pro-
ceedings of the 2nd International Conference on Knowledge Discovery and Data
Mining, pp. 244–249. AAAI Press (1996)

3. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules in large
databases. In: Bocca, J.B., Jarke, M., Zaniolo, C. (eds.) Proceedings of the 20th
International Conference on Very Large Data Bases, pp. 487–499. Morgan Kauf-
mann (1994)

4. Alsabbagh, J.R., Raghavan, V.V.: Analysis of common subexpression exploitation
models in multiple-query processing. In: Proceedings of the Tenth International
Conference on Data Engineering, pp. 488–497. IEEE Computer Society (1994)

5. Blockeel, H., Dehaspe, L., Demoen, B., Janssens, G., Ramon, J., Vandecasteele, H.:
Improving the efficiency of inductive logic programming through the use of query
packs. Journal of Artificial Intelligence Research 16, 135–166 (2002)

6. Cheung, D.W.L., Han, J., Ng, V.T.Y., Wong, C.Y.: Maintenance of discovered
association rules in large databases: An incremental updating technique. In: Su,
S.Y.W. (ed.) Proceedings of the Twelfth International Conference on Data Engi-
neering, pp. 106–114. IEEE Computer Society (1996)

7. Imielinski, T., Mannila, H.: A database perspective on knowledge discovery. Com-
munications of the ACM 39(11), 58–64 (1996)

8. Jedrzejczak, P., Wojciechowski, M.: Data access paths in processing of sets of fre-
quent itemset queries. In: Kryszkiewicz, M., Rybinski, H., Skowron, A., Raś, Z.W.
(eds.) ISMIS 2011. LNCS, vol. 6804, pp. 376–385. Springer, Heidelberg (2011)

9. Jin, R., Sinha, K., Agrawal, G.: Simultaneous optimization of complex mining tasks
with a knowledgeable cache. In: Grossman, R., Bayardo, R.J., Bennett, K.P. (eds.)
Proceedings of the 11th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pp. 600–605. ACM (2005)

10. Meo, R.: Optimization of a language for data mining. In: Proceedings of the 2003
ACM Symposium on Applied Computing, pp. 437–444. ACM (2003)

11. Mistry, H., Roy, P., Sudarshan, S., Ramamritham, K.: Materialized view selection
and maintenance using multi-query optimization. In: Proceedings of the 2001 ACM
SIGMOD International Conference on Management of Data, pp. 307–318 (2001)

12. Morzy, T., Wojciechowski, M., Zakrzewicz, M.: Materialized data mining views.
In: Zighed, D.A., Komorowski, J., Żytkow, J. (eds.) PKDD 2000. LNCS (LNAI),
vol. 1910, pp. 65–74. Springer, Heidelberg (2000)

13. Pei, J., Han, J.: Can we push more constraints into frequent pattern mining? In:
Proceedings of the Sixth ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pp. 350–354 (2000)

26 M. Rokosik and M. Wojciechowski

14. Sellis, T.K.: Multiple-query optimization. ACM Transactions on Database Sys-
tems 13(1), 23–52 (1988)

15. Wojciechowski, M., Zakrzewicz, M.: Evaluation of common counting method for
concurrent data mining queries. In: Kalinichenko, L.A., Manthey, R., Thalheim,
B., Wloka, U. (eds.) ADBIS 2003. LNCS, vol. 2798, pp. 76–87. Springer, Heidelberg
(2003)

16. Wojciechowski, M., Zakrzewicz, M.: Evaluation of the mine-merge method for data
mining query processing. In: Proceedings of the 8th East European Conference on
Advances in Databases and Information Systems (2004)

17. Wojciechowski, M., Zakrzewicz, M., Boinski, P.: Integration of dataset scans in
processing sets of frequent itemset queries. In: Holmes, D., Jain, L. (eds.) Data
Mining: Foundations and Intelligent Paradigms, vol. 1: Clustering, Association and
Classification, pp. 223–266. Springer (2012)

Part II
Data Warehouses

A Content-Driven ETL Processes for Open Data

Alain Berro1, Imen Megdiche2, and Olivier Teste3

1 Manufacture Tabacs, Université Toulouse I, France
2 IRIT, Université Toulouse III, France

3 IUT Blagnac, Université Toulouse II, France
{Berro,Megdiche,Teste}@irit.fr

Abstract. The emergent statistical Open Data (OD) seems very
promising to generate various analysis scenarios for decision-making
systems. Nevertheless, OD has problematic characteristics such as se-
mantic and structural heterogeneousness, lack of schemas, autonomy
and dispersion. These characteristics shakes the traditional Extract-
Transform-Load (ETL) processes since these latter generally deal with
well structured schemas. We propose in this paper a content-driven ETL
processes which automates ”as far as possible” the extraction phase based
only on the content of flat Open Data sources. Our processes rely on data
annotations and data mining techniques to discover hierarchical relation-
ships. Processed data are then transformed into instance-schema graphs
to facilitate the structural data integration and the definition of the mul-
tidimensional schemas of the data warehouse.

Keywords: Open Data, ETL, Graphs, Self-Service BI, Hierarchical
classification, Data warehouse.

1 Introduction

Open Data (OD) is an emergent trend which consists on freely available data
provided by public organisations. OD are very rich in statistical and informative
data which make them precious to generate interesting data analytic processes
[7]. Whatever, they have several problematic characteristics such as structural
and semantic heterogeneity, scattering across multiple providers, lack of sources’
schemas.

Recently, several works in Linked Open Data (LOD) [5] [2] have sprung up.
These works focus on the semantic web and use OD in RDF’ format. Neverthe-
less, this format requires precise knowledges, some manual efforts to generate
and link data and has not yet been largely adopted by governmental providers.
According to the Open Data benchmark1 which compares the French (FR),
American (US) and British (UK) Open Data, we notice that the percentage of
flat OD sources (such as CSV format) is very high (82% FR, 65% US, and 66%
UK). These sources are poorly-structured regarding to (i) the data structure (i.e
we need advanced techniques and/or human efforts to identify them), (ii) the

1 http://fr.slideshare.net/cvincey/opendata-benchmark-fr-vs-uk-vs-us

c© Springer International Publishing Switzerland 2015 29
N. Bassiliades et al. (eds.), New Trends in Database and Information Systems II,
Advances in Intelligent Systems and Computing 312, DOI: 10.1007/978-3-319-10518-5_3

http://fr.slideshare.net/cvincey/opendata-benchmark-fr-vs-uk-vs-us

30 A. Berro, I. Megdiche, and O. Teste

flattened and implicit relationships between structural data (i.e bi-dimensional
tables can represent more than two indexing structures).

Recently, both scientific [6] [17] and industrial partners [13][19] are interested
by these poorly-structured OD. Even though these proposals tackle interesting
aspects, none of them addresses the problem of integrating poorly-structured
OD in decision systems. These later are based on multidimensional organisation
of data warehouses [12] which collect analytical data. The data collection is
performed by specialized processes known as Extract-Transform-Load (ETL)
processes [20]. Nowadays, these processes are challenged by the mushrooming
and scattered poorely-structured data in the web in particular OD. Urged by
this observation, new approaches such as [18], [3] and [9] address more suitable
ETL solutions to the web of data.

The novelty of our approach is to provide users the possibility to realize au-
tomatically ”as far as possible” a self-service Business Intelligence (BI)[16] [11]
process. Users just need to provide the input resources (flat datasets) without
additional external resources (such as ontologies) and/or specific knowledges on
BI. Our proposal consists on transforming flat OD into instance-schema graphs
which make them exploitable in decision-support systems as well as extensible
for the semantic web. Graphs ensure flexibility to cope with semantic and struc-
tural heterogeneity in the integration step [16] in particular we provide a holistic
optimal integrated graph.

The remainder of this paper is organized as follows. In section 2, we present
our process for self-service BI on OD. In Section 3, we detail the different steps
of the content-driven ETL processes on OD. In section 4, we present the OD
extraction tool (ODET) and some experimentations. Section 5 concludes by
drawing the perspectives of this work.

2 A Process for Self-service BI on Open Data

The process aims at supporting users to design the multidimensional schema in
order to generate a data warehouse. It takes as input poorly-structured flat OD
and generates as output multidimensional schemas [14] and a data warehouse.
The process, as shown in Fig.1, involves three main phases:

� Phase 1: The content-driven ETL phase aims at automatically extracting and
transforming poorly-structured OD to a structured and flexible representa-
tion. The extraction task separates data from structural parts. We proceed
on an automatic annotation of the flat OD with three overlapping types:
inherent, topological and semantic. Users ensure the validity of automatic
annotations. Furthermore, we use data mining techniques, in particular con-
ceptual classification techniques, to identify potential hierarchical relation-
ships in the annotated structural parts. The transformation task transposes
identified parts into a common instance-schema graph.

� Phase 2: The holistic integration takes as input structural parts of several
OD graphs and generates as output an integrated graph and the underlying

A Content-Driven ETL Processes for Open Data 31

Fig. 1. A process for self-service BI on Open Data

matchings. We perform a two steps holistic integration. First, we automati-
cally generate the matchings from semantic and syntactic similarity between
graphs nodes’ labels. Second, we use the graphs’ structures to generate the
integrated graph and to enhance matchings while ensuring strict and cover-
ing hierarchies [8].

� Phase 3: From the integrated graph of OD, we propose to users some mul-
tidimensional components namely dimensions, dimensions’ parameters and
hierarchies [12]. These latter correspond to trees, trees’ levels and trees’ paths
in the graph retrieved based on graphs’ algorithms. Users can incrementally
refine/validate these components and define additional components such as
facts and analysis measures [12]. According to the multidimensional schema,
we feed the data warehouse with corresponding data. At this level, we re-
solve the very recurrent problem of differences between granularity levels in
OD. For this purpose, we will use simulation techniques to generate artificial
data for missing data.

In the remainder of this paper we will detail the first phase of our process.

3 Extracting and Transforming Poorly-Structured Open
Data

In this section, we propose generic algorithms which are able to extract, en-
rich and transform structures from flat OD regardless to the complexity of
sources. Our algorithms can process complex flat files which contain multiple
multi-dimensional matrices disposed randomly in the same source. The input
and output of this phase are as following:

– Input: poorly-structured OD. We refer to the basic table anatomy described
by [21]. A table contains a body (which contains numerical data) indexed

32 A. Berro, I. Megdiche, and O. Teste

by structural data which are StubHead (row headers) and BoxHead (column
headers). Tables have also associated label regions (titles, footnotes,...).

– Output: instance-schema graphs, denoted as G = (V,E), represents relation-
ships between numerical data (in the body) and structural data (in BoxHead
and/or StubHead and/or enrichment data).

3.1 Extracting Poorly-Structured Open Data

The ”Extraction” step in traditional ETL processes is considered as the simplest
task [20]. However, for flat OD, the extraction phase is not really the easiest since
we do not have sources’ schemas. Hence, we adopt a strategy of annotations and
enrichment of sources in the extraction to guide schema discovery using only the
content of input sources. We distinguish three overlapping annotation types as
follow :

– Inherent annotation (IA) describes the low level data cell types namely
Numeric, Label, Formula, Date and Empty.

– Topological annotation (TA) describes name and location of tables’ parts
such as numerical blocks (or Body), Boxhead, Stubhead.

– Semantic annotation (SA) describes the semantic class of data, we focused on
Temporal (Year, Month,..) and Spatial (Region, GPS coordinates,..) classes.

Inherent Annotations. To automatically discover and annotate data, we con-
vert flat OD into a matrix M of size nbLine×nbCol. The matrix represents en-
coding of low level cells’ types namely Numeric, Label, Formula, Date, Empty.
The matrix M is defined as:

M = (ai,j)1≤i≤nbLine,1≤j≤nbCol such as ai,j ∈ {−1, 0, 1, 2, 3}
In order to enhance the formula data detection which was not correctly en-

coded as formula, we apply some algorithms on the numeric cells in the matrix
M . The algorithms check if the numeric content of some cells is the (sum, avg,
min,...) of its adjacent cells by calculating the numeric contents of these cells.

Topological Annotations. We propose different algorithms to identify the
different topological types as follows:

Unit Numerical Block Identification. The numerical blocks contain numerical
data. These blocks are interesting seeing that they probably form the analytical
data which will feed fact’ tables [12] in data warehouses. We denote a numerical
block as UnitNumBlock (1). It is a sub-matrix of M and we landmark it by
four indexes : First Line FL, Last Line LL, First Column FC and Last Column
LC.

UnitNumBlock(k) = (ai,j)FLk≤i≤LLk,FCk≤j≤LCk

such as

ai,j = 1; 1 ≤ FLk ≤ LLk ≤ nbLin; 1 ≤ FCk ≤ LCk ≤ nbCol

(1)

A Content-Driven ETL Processes for Open Data 33

The algorithm 1 searches all the UnitNumBlock contained in the sources. It
performs a first pass in the matrix M to identify an horizontal succession of
lines containing numerical, this correspond to line 3 in algorithm 1. First-
LastBlockLines function returns the index FL and LL of the first identified
numerical block from the line cntLin. The identified block may encompasses
several UnitNumBlock, hence we call the FirstLastBlockColumns function
that proceeds to a vertical search of a succession of numerical columns in M
starting from the column cntCol. Thereby, the FirstLastBlockColumns func-
tion returns the index of the FC and LC of the UnitNumBlock and we add it
to the listUnitNumBlock of identified data.

Algorithm 1. Unit Numerical Block Identification
1: listUnitNumBlock ← ∅
2: while cntLin ≤ nbLin do
3: UnitNumBlock(k)← FirstLastBlockLines(cntLin)
4: cntCol← 0
5: cntLin← UnitNumBlock(k).FLk + 1
6: while cntCol ≤ nbCol do
7: UnitNumBlock(k)← FirstLastBlockColumns(cntCol, UnitNumBlock(k))

8: cntCol← UnitNumBlock(k).FCk + 1
9: listUnitNumBlock ← listUnitNumBlock ∪ {UnitNumBlock(k)}

10: end while
11: k ← k + 1
12: end while

StubHead and BoxHead Identification. StubHead and BoxHead are included un-
der structural parts of the sources. They will play a substantial role in the OD
integration. StubHead and BoxHead index unit numerical blocks. We use the po-
sitions of the different identified UnitNumBlock(s) to identify the landmark of
this latter. We note that the handled sources can have only one head (BoxHead
or StubHead) or both of them.

The BoxHead (2) is a line vector contained in the matrix M situated at the
line denoted by LBH .

BoxHead(k) = (aLBH,j)UnitNumBlock(k).FCk≤j≤UnitNumBlock(k).LCk
(2)

The StubHead (3) is a column vector contained in the matrix M situated at the
column denoted by CSH .

StubHead(k) = (ai,CSH)UnitNumBlock(k).FLk≤i≤UnitNumBlock(k).LLk
(3)

The algorithms we use to identify the BoxHead(k)(respectively StubHead(k))
for each UnitNumBlock(k) consist on a backtracking search of the first line
(respectively column) of labels (i.e encoded by 0) situated above (respec-
tively on the left) of the UnitNumBlock(k) beginning the search from the
UnitNumBlock(k).FLk (respectively UnitNumBlock(k).FCk).

34 A. Berro, I. Megdiche, and O. Teste

Similar Numerical Block Identification. Flat OD, as observed, present complex
views such as several UnitNumBlock from the same source. To cope with this
observation, we gather similar UnitNumBlock. Similar block is a set of disjoint
UnitNumBlock having either the same BoxHead block denoted as SimBlockC
or the same StubHead Block denoted as SimBlockL.

SimBlockC(resp.SimBlockL) = ∪1≤k≤nbSimBlockUnitNumBlock(k)

such as

− FC(resp.FL) = min
k

{UnitNumBlock(k).FCk(resp.FLk),

StubHead.CSH(resp.StubHead.LBH) + 1}
− LC(resp.LL) = max

k
{UnitNumBlock(k).LCk(resp.LLk)}

− StubHead(k) = StubHead(l)(resp.BoxHead(k) = BoxHead(l))

∀k �= l 1 ≤ k, l ≤ nbSimBlock

Semantic Annotations. The semantic annotations that concerns us are spatio-
temporal data. We propose a straightforward solution which consist on defining
two generic graphs for spatial and temporal data (this solution akin to ontol-
ogy mechanisms). The generic temporal data graph is a covered oriented graph.
The vertices represent temporal entities such as (Year...), the edges are directed
from the least detailed granularity level vertex to the most detailed granularity
level vertex. We refer to the generic temporal graph defined by [10] in which we
complete missing edges between levels. The goal is to find paths to link tempo-
ral entities. We use regular expressions to identify instances of each temporal
entity. The generic spatial data graph represent relations betweens spatial enti-
ties such as geographic organisation of a country. The graph must be complete
and directed from the low level granularity to the high level granularity. We use
predefined lists2 to feed up our graphs with related instances.

3.2 Transforming Open Data into Instance-Schema Graphs

To cope with poorly-structured Open Data, we propose to transform them into
simple instance-schema graphs. The choice of graphs is motivated by different
reasons : (1) graph data models [1] and graph databases have found increasing
interest last years in research communities (semantic web ..) and BI platforms
such as SAP HANA, (2) graphs are flexible as they hold objects and relation-
ships which may vary from the most generic and simple to the more specific and
complex. The graph we define is simple in order to facilitate its reuse in different
scenarios. For instance, we can transform our graphs into RDF by specifying hier-
archies as a ”subclassOf” property, structural data may be specified by searching
the corresponding vocabulary in the Linked Open Vocabulary (LOV). Moreover,
the graphs we define can be stored into graph databases (such as Neo4j) or trans-
formed into relational or R-OLAP schemas to enrich enterprises databases. In

2 www.geonames.org

www.geonames.org

A Content-Driven ETL Processes for Open Data 35

this section, we explain how we transform annotated structural parts such as
BoxHead and StubHead into hierarchical trees under some constraints as de-
tailed below. Then, we define two complementary alternatives: (1) algorithms
on the annotated data and (2) data mining techniques to derive hierarchical
trees. Finally, we show the structure of the instance-schema graphs.

Constraints for Hierarchical Concept Classification. Regarding the im-
pact of complex hierarchies [8] in the summarizability issues, we have chosen to
tackle the problem since the advanced stages of our approach and particularly
when we define hierarchical structure of OD. The different types of complex
hierarchies are defined as follow:

– A non-strict hierarchy [8] has parameters that belong to more than one par-
ent. The hierarchy ”Film → CategoryOfFilm” is non-strict if a film belongs
to more than one category, for instance the ”Thor” film belongs to categories
fantastic and action.

– A non-covering hierarchy [8] has some parameters’ instances which skip pa-
rameters in a higher level. For instance, in the hierarchy ”Office-bank →
City → Region → Country”, an office may be directly linked to a country
without being linked to a city.

– A non-ontological or unbalanced hierarchies is a particular case of the non-
covering hierarchies. It has skipped parameters’ instances which occur in
leaf level. For example, in the hierarchy ”Office-bank → City → Region →
Country”, we can find a city which does not have any office-bank.

We define three constraints to prohibit the generation of complex hierarchies in
hierarchical concept classification,we assume that hierarchies are trees :

– C1: We must find a unique path between each leaf node and root node. This
implies that each node (expect root) has only one parent. The satisfaction
of this constraint guarantees strict hierarchies.

– C2: In a tree of height k, missing intermediate nodes must be duplicated by
the value of the parent or generated with a node ”Other”. The satisfaction
of this constraint guarantees covering hierarchies.

– C3: The height of the tree must be the same when we traversal tree from
all leaf nodes to root node. The satisfaction of this constraint guarantees
ontological hierarchies.

Hierarchical Concept Classification Using Annotations. We propose
three strategies of classification using annotations. The inputs are BoxHead or
StubHead and the outputs are hierarchical trees of concepts taking into account
the constraints C1,C2 and C3. The strategies are:

1. Numerical blocks arrangement can determine hierarchical relationships
between StubHead concepts. The main idea is encoded in algorithm 2. It
consists on identifying the hierarchical level of the SimBlockL’ StubHead
concepts based on the disposition of all UnitNumBlock’ StubHead concepts.

36 A. Berro, I. Megdiche, and O. Teste

2. The annotated formula data can be used to identify hierarchical relation-
ships for StubHead or BoxHead concepts. For instance, if we have a Stub-
Head vector composed of (C1, C2, C3, C4). This later indexes a column of
data composed of (numData1, numData2, numData3, numData4) and num-
Data1 is a sum(numData2, numData3, numData4) so we can deduct that
C2, C3 , C4 are sub-categories of C1. Based on this reasoning, we can build
hierarchical trees for the concepts of BoxHead and StubHead

3. Merged Cells located above BoxHead or in the left of StubHead can be used
to deduct a tree representing a generalisation of the concepts in BoxHead or
StubHead. The merged cells become roots of the trees and the cells below
the BoxHead or in the right of StubHead become leaves of the tree.

Algorithm 2. StubHead Conceptual Classification

1: k ← 1
2: crtBlock ← UnitNumBlock(k)
3: while i < SImBlockL.LLandk < nbrBlock do
4: if i = crtBlock.FL then
5: Assign all concepts in StubHead between crtBlock.FL (resp. .LL) to level1
6: k← k + 1
7: crtBlock← UnitNumBlock(k)
8: i← crtBlock.LL + 1
9: end if

10: if i < crtBlock.FL then
11: Count the nbrConcepts between i and crtBlock.FL
12: for jfromitocrtBlock.FL do
13: Assign each concept to levelnbrConcepts+1

14: nbrConcepts← nbrConcepts− 1
15: end for
16: end if
17: end while

Hierarchical Concept Classification Using Data Mining Techniques.
We propose the use of data mining techniques to complement the first category of
techniques for hierarchical concept classifications. For this purpose, we apply two
techniques of conceptual classification and we select the relevant classes resulting
from the cross of the two techniques under the constraints C1, C2 and C3.
The first technique is lattices [4] which does not consider semantic aspects and
generate formal contexts formed by concepts and attributes (the stem of words
composing concepts). The second technique is RELEVANT [3]. It clusters a set
of concepts and provide relevant attributes for each cluster. RELEVANT offers
two clustering techniques: (1) hierarchical clustering technique which produces
disjoint clusters presented by several attribute names, (2) overlapping clustering
technique which produce non-disjoint clusters presented by a single attribute
name. Seeing that we envision strict hierarchies (constraint C1), we have chosen
to apply the hierarchical clustering technique to obtain disjoint clusters. In the

A Content-Driven ETL Processes for Open Data 37

following, we will explain how we combine the underlying techniques to obtain
a relevant hierarchical classification for a set of concepts.

– Step 1: we perform a tokenisation and stemming to the set of input concepts
(StubHead or BoxHead) to generate the list of concepts’ attributes.

– Step 2: we apply in parallel to the set of preprocessed concepts the lattice
technique and the RELEVANT technique;

– Step 3: we cross the mono-attribute formal contexts obtained from the lattice
with the clusters obtained by RELEVANT. We keep the intersection between
them which represent relevant mono-attribute formal contexts. After that,
we transform the lattice into hierarchical trees. Indeed, the relevant mono-
attribute contexts will form the trees roots, then we select from the lattice
all their successors. Thereafter, we resolve the problem of strict-hierarchies
for each context related to more than one parent, we compute the similarity
measure (we use the WUP [22] metric) between the context and its parent
and we connect it to the best parent. In case of equal measure we merge the
parents into a single node.

An Instance-Schema Graph of Open Data. Our instance-schema graphs
akin to a property graph model [15]. The OD graph G = (V,E) is described as
follows :

Vertices, denoted as V , is composed of two types:

– Structural vertices VStruct which are composed of the StubHead, BoxHead
and enrichment data (semantic annotations or concepts of hierarchical trees).
The structural vertices are complex objects described by: (1) id, (2) the dis-
played value,(3) inherent annotation, (4) topological annotation, (5) seman-
tic annotation, (6) position(nbLin,nbCol) or landmarks and (7) identifier of
original source.

– Data vertices VNumData which are composed of the numerical data. Data
vertices are complex objects described by : (1) id, (2) the displayed value,
(3) inherent annotation, (4) topological annotation, (5) semantic annotation,
(6) position(nbLin,nbCol) and (7) identifier of original source.

Edges, denoted as E, describe two types of relationships: (1) the relationships
between two different structural vertices denoted as EStruct,Struct, (2) the rela-
tionships between structural and data vertices denoted as EStruct,NumData.

4 Experimetation

An Open Data Extraction Tool (ODET) has been implemented to validate our
approach. It enables users to perform automatic and/or manual data extraction
on flat OD through different functionalities (StubHead detection, Numerical de-
tection ...). For each functionality, we have attributed a distinct color and we

38 A. Berro, I. Megdiche, and O. Teste

have established an order for the displayed colors in order to keep a closure in
the composed results when users carry out several detections with overlapping
types. The color of semantic detections is greater than the color of typological
annotations which takes the colors of inherent types of cells composing them.

In the left side of Fig. 2, we show the ODET detection results on the dataset3.
This later presents several tables of the infant feeding survey on 2010 in UK. The
example we take shows the distribution of taken samples by mother’s age and
country in UK in 2005 and 2010. In the right side of the Fig. 2, we observe iden-
tified structural parts which has been transformed to hierarchical trees. In the
graph, we can distinguish the different analysis axes which have been flattened
in a bi-dimensional table in the OD source. We mention that all annotations and
graphs structures are saved as graphML files which consists on the input of the
integration step.

Fig. 2. Open Data Extraction Tool

To experiment ODET, we have selected 100 flat OD from the data.gouv.fr
provider. Tested sources falls within nine topics (Agriculture, culture, employ-
ment & economy, research & education, accommodations, international & Eu-
rope, society, transport, health). For each source, we have manually evaluated
the existence or not of each type i (label (StubHead and/or BoxHead), numeri-
cal, spatial, temporal, formula). Then we have computed the number of relevant
sources denoted as mdi that contain the type i. Thereafter, for each source we
execute each automatic function and we observe if the automatic detection re-
turns the same result as the manual annotations. We compute the total number
of automatic relevant results denoted as adi. Hence, the precision value for each
type i, as shown in table 1, is defined as follow : Precision(Typei) = adi

mdi

Table 1 also shows the data proportion of each type (according to the sources’
number) among the experimented sources.

As shown in table 1 numerical, temporal and label detections are very sat-
isfactory with precision rates greater than 90%. However, formula and spatial

3 http:/data.gov.uk/dataset/infant-feeding-survey-2010/resource/

10b56653-3242-40bf-bc81-3adad559eaa7

http:\//data.gov.uk/dataset/infant-feeding-survey-2010/resource/10b56653-3242-40bf-bc81-3adad559eaa7
http:\//data.gov.uk/dataset/infant-feeding-survey-2010/resource/10b56653-3242-40bf-bc81-3adad559eaa7

A Content-Driven ETL Processes for Open Data 39

Table 1. Quality of automatic detection functions

Numeric Label Formula Temporal Spatial
Detection Detection Detection Detection Detection

Precision 98,88% 92,22% 57,89% 95,23% 53,84%

Data proportion 100% 100% 21,11% 46,66% 43,33%

detection ensure only half detections with precision rate around 50%. These lat-
ter deserve to be enhanced especially we have to cope with the spelling error in
spatial data and imperfection in numerical formula data.

5 Conclusion

In this paper we have defined a content-driven ETL processes for poorly-
structured flat Open Data. We have provided automatic algorithms which use
only the content of sources to extract and annotate data using three overlapping
types. Then we discover hierarchical trees using data mining techniques and data
annotations. Thereafter, we transform the processed data into instance-schema
graphs. We have presented the OD Extraction Tool and some results according
to the detection quality. In our future experimentations, we will evaluate the
ODET in other OD providers with a higher number of sources and with differ-
ent users. Our future works will detail the remaining steps in our self-service BI
process.

References

1. Angles, R., Gutierrez, C.: Survey of graph database models. ACM Comput.
Surv. 40(1), 1:1–1:39 (2008)

2. Balakrishnan, S., Chu, V., Hernández, M.A., Ho, H., Krishnamurthy, R., Liu, S.,
Pieper, J., Pierce, J.S., Popa, L., Robson, C., Shi, L., Stanoi, I.R., Ting, E.L.,
Vaithyanathan, S., Yang, H.: Midas: integrating public financial data. In: SIGMOD,
pp. 1187–1190. ACM (2010)

3. Bergamaschi, S., Guerra, F., Orsini, M., Sartori, C., Vincini, M.: A semantic ap-
proach to etl technologies. Data and Knowledge Engineering 70(8), 717–731 (2011)

4. Birkhoff, G.: Lattice Theory, 3rd edn. American Mathematical Society (1967)
5. Böhm, C., Freitag, M., Heise, A., Lehmann, C., Mascher, A., Naumann, F., Erce-

govac, V., Hernandez, M., Haase, P., Schmidt, M.: Govwild: integrating open gov-
ernment data for transparency. In: WWW 2012 Companion, pp. 321–324. ACM
(2012)

6. Coletta, R., Castanier, E., Valduriez, P., Frisch, C., Ngo, D., Bellahsene, Z.: Public
data integration with websmatch. In: WOD, pp. 5–12. ACM (2012)

7. Ghozzi, F., Ravat, F., Teste, O., Zurfluh, G.: Constraints and multidimensional
databases. In: 5th International Conference on Enterprise Information Systems,
ICEIS 2003, Angers (France), Iceis, pp. 104–111 (2003)

8. Malinowski, E., Zimányi, E.: Hierarchies in a multidimensional model: From con-
ceptual modeling to logical representation. Data Knowl. Eng. 59(2), 348–377 (2006)

40 A. Berro, I. Megdiche, and O. Teste

9. Mansmann, S., Rehman, N.U., Weiler, A., Scholl, M.H.: Discovering olap dimen-
sions in semi-structured data. Information Systems (2013)

10. Mansmann, S., Scholl, M.H.: Empowering the olap technology to support complex
dimension hierarchies. IJDWM 3(4), 31–50 (2007)

11. Mazón, J.N., Zubcoff, J.J., Garrigós, I., Espinosa, R., Rodŕıguez, R.: Open business
intelligence: On the importance of data quality awareness in user-friendly data
mining. In: Proceedings of the 2012 Joint EDBT/ICDT Workshops, pp. 144–147
(2012)

12. Ravat, F., Teste, O., Tournier, R., Zurfluh, G.: Algebraic and graphic languages for
OLAP manipulations. International Journal of Data Warehousing and Mining 4(1),
17–46 (2008)

13. Refine, G.: (2014), http://code.google.com/p/google-refine
14. Rizzi, S., Abelló, A., Lechtenbörger, J., Trujillo, J.: Research in data warehouse

modeling and design: Dead or alive? In: DOLAP 2006, pp. 3–10. ACM (2006)
15. Rodriguez, M.A., Neubauer, P.: Constructions from dots and lines. Bulletin of the

American Society for Information Science and Technology 36(6), 35–41 (2010)
16. Schneider, M., Vossen, G., Zimányi, E.: Data warehousing: from occasional olap to

real-time business intelligence (dagstuhl seminar 11361). Dagstuhl Reports 1(9),
1–25 (2011)

17. Seligman, L., Mork, P., Halevy, A.Y., Smith, K., Carey, M.J., Chen, K., Wolf,
C., Madhavan, J., Kannan, A., Burdick, D.: Openii: an open source information
integration toolkit. In: SIGMOD Conference, pp. 1057–1060. ACM (2010)

18. Skoutas, D., Simitsis, A., Sellis, T.: Ontology-driven conceptual design of ETL
processes using graph transformations. In: Spaccapietra, S., Zimányi, E., Song, I.-
Y. (eds.) Journal on Data Semantics XIII. LNCS, vol. 5530, pp. 120–146. Springer,
Heidelberg (2009)

19. Tables, F.: (2014), http://www.google.com/drive/apps.htmlfusiontables
20. Vassiliadis, P.: A survey of extract-transform-load technology. IJDWM 5(3), 1–27

(2009)
21. Wang, X.: Tabular abstraction, editing, and formatting. Technical report, Univer-

sity of Waretloo, Waterloo, Ontaria, Canada (1996)
22. Wu, Z., Palmer, M.: Verb semantics and lexical selection. In: 32nd Annual Meeting

of the Association for Computational Linguistics, pp. 133–138. New Mexico State
University, Las Cruces (1994)

http://code.google.com/p/google-refine
http://www.google.com/drive/apps.htmlfusiontables

© Springer International Publishing Switzerland 2015 41
N. Bassiliades et al. (eds.), New Trends in Database and Information Systems II,
Advances in Intelligent Systems and Computing 312, DOI: 10.1007/978-3-319-10518-5_4

Data Integration Patterns
for Data Warehouse Automation

Kalle Tomingas1, Margus Kliimask2, and Tanel Tammet1

1 Tallinn University of Technology, Ehitajate tee 5, Tallinn 19086 Estonia
2 Eliko Competence Center, Teaduspargi 6/2, Tallinn 12618 Estonia

Abstract. The paper presents a mapping-based and metadata-driven modular
data transformation framework designed to solve extract-transform-load (ETL)
automation, impact analysis, data quality and integration problems in data
warehouse environments. We introduce a declarative mapping formalization
technique, an abstract expression pattern concept and a related template engine
technology for flexible ETL code generation and execution. The feasibility and
efficiency of the approach is demonstrated on the pattern detection and data
lineage analysis case studies using large real life SQL corpuses.

Keywords: data warehouse, etl, data mappings, template based sql generation,
abstract syntax patterns, metadata management.

1 Introduction

The delivery of a successful Data Warehouse (DW) project in a heterogeneous
landscape of various data sources, limited resources, and lack of requirements, an
unstable focus and budgeting constraints is always challenging and risky. Many long-
term DW project failures are related to the requirements and reality mismatch
between available data, defined needs and information requirements for decision
making [5]. Extract, transform and load (ETL) is a database usage process widely
used in the data warehouse field. ETL involves extracting data from outside sources,
transforming it to fit operational needs and loading it into the end target: a database
or a Data Warehouse.

Mappings between source and target data structures or schemas are the basic
specifications of data transformations. Mappings can be viewed as metadata capturing
the relationships between information sources and targets. Mappings document the
decisions for information structuring and modeling [12]. They are used for several
different goals in DW processes: writing a specification for ETL programmers,
generating a transformation query or program that uses the semantics of the mapping
specification (e.g., a SQL query that populates target tables from source tables),
providing metadata about relationships between structures or schemas, providing
metadata about data flows and origin sources [4].

Programming mappings in the ETL environment involves writing special database
loading scripts (e.g. Oracle Sql*Loader, MSSQL Bulkload, Teradata Fastload,

42 K. Tomingas, M. Kliimask, and T. Tammet

Postgresql Copy etc.) and SQL queries (i.e. select, insert, update and delete
statements) which are incremental, iterative, time consuming and routine activities.
The manual programming of the data loadings is test-and-error based and not too
efficient in case there is no support from the environment and no methodology.
Manual scripting and coding of SQL gives high flexibility but backfires in terms of
efficiency, complexity, reusability and maintenance of data loadings [7]. The
execution and optimization of existing loading programs can be a very complex and
challenging task without access to the full dependencies and intelligent machinery to
generate optimized workflows [3], [1].

The processes of creation, integration, management, change, reuse, and discovery
of data integration programs are not especially efficient without the dependencies and
semantics of data structures, mappings and data flows. The creation and management
of human- and machine readable documentation, impact analysis (IA) and data
lineage (DL) capabilities has become critical for maintaining complex sequences of
data transformations. We can control the risks and reduce the costs of dynamic DW
processes by making the data flows and dependencies available to developers,
managers and end-users.

The paper describes a methodology for formalizing data transformations to an
extent that allows us to decouple unique mapping instances from reusable
transformation patterns. We demonstrate handling and storing declarative column
mappings join and filter predicates in a reusable expression pattern form. We use the
Apache Velocity template engine and predefined scenario templates to handle
reusable procedural parts of data transformations. We show how the combination of
those techniques allows us to effectively construct executable SQL queries and
generate utility loading scripts. We also take a look at what has been previously done
in the ETL and DW automation field.

In the third chapter we present our open-source architecture of knowledge and
metadata repository (MMX 1) with the related data transformation language and
runtime environment (XDTL2) which is used as the technology stack for our metadata-
driven Data Warehousing process. In the fourth chapter we describe the decoupling of
procedural and declarative parts of data mappings and the template-based SQL
construction technique. We introduce a case study of Abstract Syntax Pattern (ASP)
discovery from a real life DW environment in the fifth chapter and two data lineage
analysis case studies in the sixth chapter.

2 Related Work

The roles and functions of general programming and ETL tools as well as the
relations between manual scripting and script generation are discussed in [7]. The first
generation ETL tools were similar to procedural programming or scripting tools,
allowing a user to program specific data transformations. The concept of mapping
was used for initial specification purposes only.

1 www.mmxframework.org
2 www.xdtl.org

 Data Integration Patterns for Data Warehouse Automation 43

Modern ETL tools - e.g. Informatica PowerCentre, IBM WebSphere DataStage or
Oracle Data Integrator - exploit the internal mapping structure for transformation
design and script or query generation purposes. In addition to specific ETL
technologies there exist the general purpose schema mapping tools that allow
discovery and support documenting the transformations or generating transformation
scripts (XSLT transformation between XML-schemas, XQuery or SQL DML
statements etc.). The meaning and purpose of mappings and general application areas,
tools and technologies is discussed by Roth et al. with the generic usage scenarios in
different enterprise architecture environments [12]. The declarative mappings
designed for ETL program generation and vice versa are discussed in [4] and [6].

In addition to mappings with program generation instructions and data
transformation semantics, there exist relations and dependencies between mappings
and source or target schema objects. The declarative representation of the
dependencies allows us to generate, optimize and execute data transformations
workflows effectively. We can find different optimization approaches described in
papers [1],[2] and [3]. An extensive study of common models for ETL and ETL job
optimization is published by Simitsis et al. [13], [14] and Patil et al. [9]. The dynamic
changes of data structures, connections between mapping and jobs and a rule-based
ETL graph optimization approach is discussed in [8].

An effective ETL job optimization is related to data mappings, dependencies
between mappings, dynamics and changes of source structures and the data quality
(DQ). All of those aspects can be formalized and taken into account by ETL job
automation where timing, the right order and data volumes are always important
issues. Estimation and evaluation of data structures, quality of data and discovery of
rules can be automated and integrated into ETL processes [11]. By adding rule-based
DQ into ETL process, we can automate the mapping generation and improve the
success rate of data loadings. Rodiç et al. demonstrated that most of the integration
rules can be generated automatically using the source and target schema descriptions
[11].

3 System Architecture

The modern enterprise data transformation systems are built according to the model-
driven architecture principles, including internal metadata about the source and target
models, mappings, transformations and dependencies between models. We introduce
a new architectural concept, based on open source java and xml technologies that can
be used in lightweight scripting configuration, mixed configuration with partial
mapping formalization and full model- and metadata driven knowledge base
implementations. When the first lightweight configuration gives you a quick start,
low-cost and small technology track and metadata-driven approach gives a knowledge
base with different new possibilities (e.g. mapping generation and management,
dynamic dependency management and job automation, impact analysis, data quality
integration etc.), then both exploit the template-based code construction and
automation principles. Our design goals of the new ETL architecture were an open

44 K. Tomingas, M. Kliimask, and T. Tammet

and flexible environment, extensible and reusable programming techniques with
moderate formalization and decoupling of declarative knowledge from procedural
parts of executable code.

Fig. 1. System architecture components

The general system architecture with main building blocks is drawn in Figure 1.
The main system components are ETL Package (A) that can be written in XDTL
language or represented as Tasks and Rules and Dependencies (N) in MMX
repository. The mapping (B) is a formalized representation of source schema objects
(K), target (L), column transformations and patterns, join and filter conditions that can
be again be a part of an XDTL package or stored in MMX repository. The
transformation Template (C) is a reusable and repeating part of SQL query patterns or
some other scripting executable language scenarios that are written in the Apache
Velocity macro language (or any other language of template engine). The template
Engine (D) is a configurable java code that is responsible for runtime code
construction using Mappings (B) and Templates (C). Examples of mappings and
templates are discussed in more detail level in Chapter 4. The tasks in Package (A)
can be created using previously prepared Library Packages (F) or managed
modularly, reused and published as Extension (G) modules. The XDTL Runtime
Engine (H) is a preconfigured environment and java package, able to interpret
packages written in the XDTL language, execute those and deliver actual data
transformations from the source (I) to the target (J).

3.1 Data Transformation Language (XDTL)

The Extensible Data Transformation Language (XDTL) is an XML based descriptive
language designed for specifying data transformations between different data formats,
locations and storage mechanisms. XDTL is created as a Domain Specific Language
(DSL) for the ETL domain and is designed by focusing on the following principles:
modular and extensible, re-usable, decoupled declarative (unique) and procedural

 Data Integration Patterns for Data Warehouse Automation 45

(repeated) patterns. The XDTL syntax is defined in an XML Schema document. The
wildcard elements of an XML Schema enable extending the syntax of core language
with a new functionality implemented in other programming languages or in XDTL
itself. The XDTL scripts are built as reusable components with the clearly defined
interfaces via parameter sets. The components can be serialized and deserilized
between the XML and database representations, thus making XDTL scripts suitable
for storing and managing in a data repository. XDTL provides the functionality to use
data mappings stored independently of the scripts, being efficiently decoupled from
the scripts. Therefore the mappings stored in a repository can exist as objects
independent from the transformation process and be reused by several different
processes. XDTL acts as a container for a process that often has to use facilities not
present in XDTL itself (e.g. SQL, SAS language etc.).

3.2 Knowledge Repository Structure (MMX)

The MMX metadata framework is a general purpose integrative metadata repository
built on the relational database technology for different knowledge management
(KM) and rule-based analytical applications. The MMX repository is designed
according to the OMG Metadata Object Facility (MOF) idea with separate abstraction
and modeling layers (M0-M3). The MMX physical data model (schema) is based on
principles and guidelines of EAV (Entity-Attribute-Value) or EAV/CR (Entity-
Attribute-Value with Classes and Relationships) modeling technique suitable for
modeling highly heterogeneous data with very dynamic nature. The metadata model
and schema definition in EAV is separated from physical storage and therefore it is
easy to modifications to schema on 'data' without changing the DB structures: by just
modifying the corresponding metadata. The approach chosen is suitable for open-
schema implementations (similar to key-value stores) where the model is dynamic
and semantics is applied in query time, as well as model-driven implementations with
a formal, well defined schema, structure and semantics.

The MMX physical schema (Figure 2) provides a storage mechanism for various
knowledge- or meta-models (M2) and corresponding data or metadata (M1). Three
physical tables - object, property and relation - follow the subject-predicate-object or
object-property-value representation schemes, where object_type, property_type and
relation_type tables are like advanced coding or dictionary tables for object, property
and value types. The separate dictionary tables give us an advanced schema
representation functionality using special attributes and relational database foreign
keys (FK) mechanism. The formalized schema description and relations between
different schemas make our metadata understandable and exchangeable between the
other system components or external agents. The URI reference mechanism used and
the resource storage schema makes an MMX repository a semantic data store,
comparable to Resource Description Framework (RDF), serializable in different
semantic formats or notations (e.g. RDF/XML , N3 , N-Triples , XMI etc.) using
XML or RDF APIs.

46 K. Tomingas, M. Kli

F

The MMX physical sch
hierarchical storage mech
communication medium o
different software agents or
etc.). Built in limited reason
captured to data and metad
functions. Semantic represe
calculus or apply other exte
reasoning tasks, like deduct

Repository contains inte
access APIs (e.g. data AP
implemented as relationa
implementations on Postg
database SQL dialects and
Using common and docum
technology (e.g. Hibernate
without touching related ap

An arbitrary number of
Model simultaneously with
constitutes a hierarchy of
relationship, a whole-part
between hierarchy member
repository, e.g.

• terminology (ontol
• relational database
• abstract mappings
• role-based access c

In addition to existing m
specific needs, like busi
transformations, computatio
task); data demographics, st

iimask, and T. Tammet

Fig. 2. MMX physical schema design

hema can be seen as a general-purpose, multi-level
hanism for different knowledge models, but also
or information integration and exchange platform
r applications (e.g. metadata scanners, metadata consum
ning capability based on recursive SQL technique and i
data APIs to implement inheritance and model validat
entation of data allows extend functionality with predic
ernal rule-based reasoners (e.g. Jena) for more complica
tion of new knowledge.
egrated object level security mechanism and different d
PI, metadata API, XML API, RDF API etc.) that
al database procedures or functions. We have l
geSql, Oracle and MsSql platforms and differences

functionality are hidden and captured into API packag
mented API-s or an Object Relational Mapper (OR

e) we can choose and change repository DB technolo
pplications.
f different data models can exist inside MMX Metad
h relationships between them. Each of these data mod
f classes where the hierarchy might denote an insta

relationship or some other form of generic relations
rs. We have several predefined metadata models in MM

logy) and classification (based on ISO/IEC11179 [18]);
e (based on Eclipse SQL Model [19]);
and general ETL models;

control model (based on NIST RBAC [20]).

models we can implement any other type of data mode
iness process management (business rules, mappin
onal methods); data processing events (schedule, batch
tatistics and quality measures, etc.

and
as

for
mers
it is
tion
cate
ated

data
are

live
s in
ges.

RM)
ogy

data
dels
ance
ship
MX

for
ngs,
and

 Data Integration Patterns for Data Warehouse Automation 47

The purpose of MMX repository depends on system configuration and desired
functionality. In current paper we handle MMX repository as persistent storage
mechanism for ETL metadata and we discuss about relational database and abstracted
mapping knowledge models (KM) to store required data and relations. In addition to
repository storage and access technologies MMX Framework has web-based
navigation and administration tools, semantic-wiki like content management
application and different scanner agents written in XDTL (e.g. DB dictionary scanner)
to feel and detect surrounding environment and context. Due to space limitation we
do not discuss all those topics in this paper.

4 Template Based SQL Construction

SQL is and probably remains the main workforce behind any ETL (and especially
ELT flavor of ETL) tool. Automating SQL generation has arguably always been the
biggest obstacle in building an ideal ETL tool (i.e. completely metadata-driven), with
small foot-print, multiple platform support on single code base. While SQL stands for
Structured Query Language, ironically the language itself is not too well 'structured',
and the abundance of vendor dialects and extensions does not help either. Attempts to
build an SQL generator supporting full feature list of SQL language have generally
fallen into one of the two camps: one of them trying to create a graphical click-and-
pick interface that would encompass the syntax of every single SQL construct,
another one designing an even more high-level language or model to describe SQL
itself, a kind of meta-SQL. The first approach would usually be limited to simple SQL
statements, be appropriate mostly for SELECT statements only and struggle with
UPDATEs and INSERTs, and be limited to a single vendor dialect.

4.1 Mappings, Patterns and Templates

Based on our experience we have extracted a set of SQL 'patterns' common to
practical ETL (ELT) tasks. The patterns are converted into templates for processing
by a template engine (e.g. Apache Velocity), each one realizing a separate SQL
fragment, a full SQL statement or a complete sequence of commands implementing a
complex process. Template engine merges patterns and mappings into executable
SQL statements so instead of going as deep as full decomposition we only separate
and extract mappings (structure) and template (process) parts of SQL. This limits us
to only a set of predefined templates, but anyone can add new or customize the
existing ones. Templates are generic and can be used with multiple different
mappings/data structures. The mappings are generic as well and can be used in
multiple different patterns/templates. Template engine instantiates mappings and
templates to create executable SQL code which brings us closer to OO mind-set. The
number of tables joined, the number of columns selected, the number of WHERE
conditions etc. is arbitrary and is affected by and driven by the contents of the

48 K. Tomingas, M. Kliimask, and T. Tammet

mappings only, i.e. well-designed templates are transparent to the level of complexity
of the mappings. The same template would produce quite different SQL statements
driven by minor changes in mappings. We have built a series of template libraries to
capture the syntax of basic SQL constructs that are used to build complex statements.
XDTL Basic SQL Template Library is a set of Apache Velocity templates that
implements ‘atomic’ SQL constructs (INSERT, SELECT, UPDATE, FROM,
WHERE etc.) as a series of Velocity macros. Each macro is built to expand into a
single SQL construct utilizing the mappings in the form of predefined collections
(targets, sources, columns, conditions). On top of Basic SQL library one or more
higher-level layers can be built to realize more specific or more complex concepts,
e.g. loading patterns, scenarios or process flows, as well as specifics of various SQL
dialects.

It appears that, by use of Abstract Syntax Patterns, the same principle of reducing a
disparate and seemingly diffuse set of all possible transformations in SQL statements
to a limited set of patterns applies here as well. Abstract Syntax Pattern (ASP) is a
reappearing code fragment that, similarly to Abstract Syntax Tree, has all the
references to concrete data items removed. Thus, mappings between different data
domains can be reduced to ASPs to be later processed synchronously with the process
template by the same template engine turning them into executable code. Identifying
and building a library of common syntax patterns enables creation of a user interface
to generate a focused (limited) set of SQL statements without coding or even
automatic SQL generation, validation of existing SQL statements [10]. More detailed
ASP discovery case study can be found on chapter 5.

Various ETL metamodels discussed in previous works of [15],[16] and [17], but
we decided to use pragmatic approach with ASP idea instead of complex and
expressive modeling. We had modeling goals like: minimum footprint and
complexity, effective code generation for different languages (e.g. SQL, SAS, R etc.),
efficient storage and serialization, decomposition to the level where interesting parts
would be identified and exposed with clear semantics (i.e. database objects, vendor
specific terms and keywords, generic and reusable expressions etc.). In Figure 3 we
have implemented mappings knowledge model with four basic classes which are
designed as derivation type of rules in MMX repository. Mapping Group (B) is
collection of Mappings (C) which used on multiple mapping cascade definition that
produces single SQL statement with sub-queries or temporary table implementation.
Each Transformation class (D) instance represents one column transformation in SQL
select, insert-select or update statement with required source, target and pattern
attribute definitions. Condition class (E) represents join and filter predicate conditions
that required constructing data set from defined source variables (tables).

Mapping model (Figure 3) implementation in MMX physical schema (Figure 2) is
straightforward transformation where each class implemented as one row in
object_type table, each class attribute implemented as one row in property_type
table, and each association implemented as one row in relation_type table. Instances
of mapping model stored as corresponding rows in object, property and relation
tables.

 Da

Fig. 3. Knowledge m

Described method and m
following criteria:

• construction of all sig
based on a single map

• construction of SQL
SQL dialects;

• construction of SQL
performance consider

• construction of SQL
• minimum footprint an

The next chapter exampl

usage scenarios for SQL co

Mapping Example

Following simple and gene
transformation code for e
staging tables to target table

Example 1. Insert-select SQ

INSERT INTO person t0

SELECT t1.cust_id,
 t1.firstname |

 DECODE(t1.sex,

 ssn_to_age(t2.

FROM customer t1
JOIN document t2 ON t

WHERE t1.cust_id IS N

ata Integration Patterns for Data Warehouse Automation

model (schema) for mappings representation and storage

model for constructing SQL statements complies with

gnificant DML statements (INSERT, UPDATE, DELET
pping;

L statements from a single mapping for several differ

L statements covering different loading scenarios
rations;
statements based on multiple mappings (mapping group
nd complexity of the processing environment.

le gives the basic idea of one mapping implementation
ode generation in ETL process.

eric insert-select SQL statement represents one very ba
everyday data transformation inside DW from multi
e.

QL DML statement:

 (id, name, sex, age)

| ‘ ‘ || t1.lastname,
 ‘M’, 1, ‘N’, 2),
ssn)

2.cust_id = t1.cust_id
NOT NULL;

49

the

TE)

rent

and

ps);

and

asic
iple

50 K. Tomingas, M. Kliimask, and T. Tammet

Same query contains declarative mapping part formalized and represented by
following objects and collections in MMX repository tables:

Table 1. Mapping objects source and target properties

Target isVirtual Source isQuery
t0:person f (false) t1:customer f (false)
 t2:document f (false)

Table 2. Column Transformation object(s) properties and values

Pattern Target Source Function Key Upd
%c1 %c0:t0.id %c1:t1.cust_id null t f
%c1||' '||%c2 %c0:t0.name %c1:t1.firstname; %c2:t1.lastname null f t
decode(%c1,'M',1,'F',2) %c0:t0.sex %c1:t1.sex null f f
%f1(%c1) %c0:t0.age %c1:t2.ssn %f1:ssn_to_age f t

Table 3. Condition objects properties(s) and their values

Pattern Source Function Condition Type Join Type
%a2 = %a1 %a2:t2.cust_id;

%a1:t1.cust_id
null join inner

%a1 IS NOT NULL %a1:t1.cust_id null filter null

Simple insert-select template produces initial SQL statement from given mapping

(Table 4). When using the same mapping with the different template(s) we can
generate update statement or series of different statements.

Table 4. Insert-Select template and result query

Template SQL Statement
#foreach($tgt in $Targets)
#if("$tgtmap" == "0")
#INSERT($tgt $Columns)
#SELECT($Columns)
#FROM($Sources $Conditions)
#WHERE($Conditions)
#GROUPBY($Columns $Conditions)
#HAVING($Conditions)
#end
#end;

INSERT INTO person (id, name, sex, age)
SELECT
 t1.cust_id
, t1.firstname || ' ' || t1.lastname
, DECODE(t1.sex, 'M', 1, 'F', 2)
, ssn_to_age(t2.ssn)
FROM customer t1
INNER JOIN document t2
ON t2.cust_id = t1.cust_id
WHERE t1.cust_id IS NOT NULL;

The described example gives very basic idea and method how to formalize column

mappings with reusable patterns and how to construct source and target data sets
applying join and filter conditions that described again with reusable expression
patterns. Using one single mapping together with limited number of scenario
templates (e.g. full load, initial load, incremental load, insert only, ‘upsert’ (with or
without deletion), versioned insert (history tables), slowly changing dimensions etc.)
we can generate long SQL statement batches, that are adapted for specific dialect
(when needed), validated, robust and working with expected performance. The main
idea here is to formulate and describe as less as possible and reuse and generate as
much as possible.

By using described set of methods we have effectively decomposed SQL statement
into mappings and patterns. The same method can be applied to any SQL data

 Data Integration Patterns for Data Warehouse Automation 51

manipulation statement (e.g. insert, update and delete) of reasonable complexity and
we have used same approach, same mappings and different templates to generate code
for different execution engines (e.g. SAS script). More expressive examples can be
presented when to take transformations with more than 5-10 source tables and targets
with 20-100 columns (common in analytical DW environment) then propositions of
generated, defined and reused code parts change dramatically.

To conclude the mapping example we can say that presented methodical approach
allows us to:

• migrate and translate vendor-specific (SQL) pattern dialects between
different platforms or use same mapping code with different transformation
scenarios or generate code for different execution engines;

• construct data transformation flows from sources to targets with column
level transformation semantics for Impact Analysis and Audit Trail
applications;

• construct system component dependency graphs for better management and
automation of development and operation processes;

• automate change management and deployment of new functionality between
different environments (e.g. development, test, production).

5 Experimental Abstract Syntax Pattern Case Study

Abstract Syntax Pattern (ASP) is the practical idea to narrow down expressiveness of
SQL Data Manipulation Language (DML) to allow formalized descriptions of
reusable patterns, decoupled data structures and functions. Decomposition of patterns
and data structure instances are the central idea of the XDTL environment and the
code construction capability, which gives additional flexibility and ergonomics in data
transformation design and allows impact analysis capability for maintenance of
complex Data Warehouse environment (described in chapter 4). We used existing
SQL statements corpus (used for real life data transformations) containing about 26
thousand SQL statements to find hard evidences for existing patterns and we
narrowed down the used corpus to 12 thousand DML statement to find specific
column, join and where expressions.

We used open source GoldParser3 library and developed our own custom SQL
grammar in EBNF format for SQL text corpus parsing. We developed custom parser
program for ASP pattern extraction from SQL corpus, we imported all parsed patterns
to database and evaluated and analyzed SQL patterns and “life forms” writing new
SQL queries. Implemented parsing program is tuned to recognize column
construction patterns, join, where and having condition predicate patterns from SQL
DML statements, replacing specific database structure identifiers and constants with
%a and functions with %f pattern.

3 www.goldparser.org

52 K. Tomingas, M. Kliimask, and T. Tammet

Example 3. The parsing program detects pattern %f(%a,%a) from the original
column expression COALESCE(Table1.Column1,0) and assigns operator and
operand values to replaced variables: %f = {’COALESCE’} and %a =
{’Table1.Column1’,’0’}

Very general metrics about SQL parsing work can be described with total figures
of 8,380 input SQL DML statements (select, insert, update) and 92,347 parsed
expressions that group to 2,671 abstract patterns. It gives us 97/3 percentage division
between expressions and patterns. Those figures can be improved by hand tuning of
pattern detection technique and SQL grammar that is not currently covering all the
aspects of used SQL dialect.

Table 5. Insert-Select template and result query

Statement Type Patterns
Count

Statements
Count

Expression
Count

Expressions in
Top Pattern

Top Pattern
Coverage %

Insert 1 890 4 965 61 899 37 924 61

Update 836 2 240 25 361 12 997 51

Select 224 1 175 5 087 3 175 62

All 2 950 8 380 92 347 54 096 59

Table 6. Discovered patterns by pattern types

Pattern Type Pattern
Count

Statement
Count

Expression
Count

Expressions in
Top Pattern

Top Patten
Coverage %

 Column 1 897 10 631 78 264 55 921 71

 Join 526 4 172 11 684 2 273 19

 Filter 323 1 505 2 399 359 14

Based on current results we can conclude that top 10 patterns will cover 83% and

top 100 patterns will cover 93% of all expressions that used in SQL DML corpus.
Those metrics does not count the fact that most of the patterns that are not in top list
are constructed from patterns that are in patterns top list.

To conclude this case-study we can say that actual expressiveness of formalized
patterns and mappings will be comparable with expressiveness of real life usage of
SQL DML in data transformations. A small set of meaningful patterns (about 100
different patterns) with defined semantics and experimental impact weights will direct
us to automated and probabilistic impact analysis calculations that are one of the main
applications for SQL formalization technique. We also got the confirmation that SQL
parsing technique can be used for data transformation extraction, mapping
formalization and future analysis.

6 Case Studies for Automating Data Lineage Analysis

The previously described architecture and algorithms form a basis for an integrated
data lineage analysis toolset dLineage (http://dlineage.com). dLineage has been tested

 Data Integration Patterns for Data Warehouse Automation 53

in large real-life projects and environments supporting several popular DW database
platforms (e.g. Oracle, Greenplum, Teradata, Vertica, PostgreSQL, MsSQL, Sybase)
and BI tools (e.g. SAP Business Objects, Microstrategy).

We have conducted two main case studies involving a thorough analysis of large
international companies in the financial and the energy sectors. Both case studies
involved an automated analysis of thousands of database tables and views, tens of
thousands of data loading scripts and BI reports. Those figures are far over the
capacity limits of human analysts not assisted by the special tools and technologies.
The automation tools described in the paper enabled us to set up and conduct the
analysis project in a few days by just two developers.

The following example graph from the case study maps DW tables to views and
user reports: it is generated automatically from about 5 000 nodes (tables, views,
reports) and 20 000 links (data transformations mappings form views and queries).

Fig. 4. Data lineage graph with dependencies between DW tables, views and reports

54 K. Tomingas, M. Kliimask, and T. Tammet

7 Conclusions and Future Work

We have presented a formalized mapping and abstract pattern methodology
supporting template-based program construction. The technique is a development
upon the ETL language runtime environment (XDTL) and metadata repository
(MMX) designed earlier by the authors. We have introduced the technology and
presented working samples motivated by real-life challenges and problems discussed
in the first chapter. The described architecture and mapping concept have been used
to implement an integrated toolset dLineage (http://dlineage.com) to solve data
integration and dataflow visualization problems.

We have used our metadata-based ETL technology in the Department of Statistics
of Estonian state to implement a system for automated, data-driven statistics
production for the whole country. We have also tested our mapping methods and
technology for data flow analysis and visualization in large international companies in
the financial and the energy sectors. Both case studies contained thousands of
database tables and views along with tens of thousands of data loading scripts and BI
reports. The analysis of the large SQL data transformation corpus (see chapter 5) gave
us taxonomy of reusable transformation patterns and demonstrated the two-way
methodology approach from code to mappings and patterns.

The future work involves refining current implementation details, adding semantics
to mappings and patterns, constructing dependency graphs of mappings, data
structures and data flows and developing aggregation algorithms for different
personalized user profiles and their interests (e.g. business user interest in data
structures, flows and availability is different from that of a developer or system
operator) as well as using those techniques for solving problems described in the
first chapter.

Acknowledgments. This research has been supported by European Union through
European Regional Development Fund.

References

[1] Behrend, A., Jörg, T.: Optimized Incremental ETL Jobs for Maintaining Data Warehouses
(2010)

[2] Boehm, M., Habich, D., Lehner, W., Wloka, U.: GCIP: Exploiting the Generation and
Optimization of Integration Processes (2009)

[3] Böhm, M., Habich, D., Lehner, W., Wloka, U.: Model-driven generation and optimization
of complex integration processes. In: ICEIS (2008)

[4] Dessloch, S., Hernández, M.A., Wisnesky, R., Radwan, A., Zhou, J.: Orchid: Integrating
Schema Mapping and ETL. In: IEEE 24th International Conference on Data Engineering
(2008)

[5] Giorgini, P., Rizzi, S., Garzetti, M.: GRAnD: A Goal-Oriented Approach to Requirement
Analysis in Data Warehouses. DSS 45(1), 4–21 (2008)

[6] Haas, L.M., Hernández, M.A., Ho, H., Popa, L., Roth, M.: Clio Grows Up: From
Research Prototype to Industrial Tool. In: SIGMOD, pp. 805–810 (2005)

 Data Integration Patterns for Data Warehouse Automation 55

[7] Jun, T., Kai, C., Yu, F., Gang, T.: The Research & Application of ETL Tool in Business
Intelligence Project, International Forum on Information Technology and Applications.
In: FITA 2009, pp. 620–623 (2009)

[8] Papastefanatos, G., Vassiliadis, P., Simitsis, A., Sellis, T., Vassiliou, Y.: Rule-based
Management of Schema Changes at ETL sources. In: Grundspenkis, J., Kirikova, M.,
Manolopoulos, Y., Novickis, L. (eds.) ADBIS 2009. LNCS, vol. 5968, pp. 55–62.
Springer, Heidelberg (2010)

[9] Patil, P.S., Rao, S., Patil, S.B.: Data Integration Problem of structural and semantic
heterogeneity: Data Warehousing Framework models for the optimization of the ETL
processes (2011)

[10] Reiss, S.P.: Finding Unusual Code. In: 2007 IEEE International Conference on Software
Maintenance, pp. 34–43 (2007)

[11] Rodiç, J., Baranoviç, M.: Generating Data Quality Rules and Integration into ETL Process
(2009)

[12] Roth, M., Hernández, M.A., Coulthard, P., Yan, L., Popa, L., Ho, H.C.T., Salter, C.C.:
XML mapping technology: Making connections in an XML-centric world. IBM Systems
Journal (2006)

[13] Simitsis, A., Vassiliadis, P., Sellis, T.K.: Optimizing ETL Processes in Data Warehouses.
In: ICDE, pp. 564–575 (2005)

[14] Simitsis, A., Wilkinson, K., Dayal, U., Castellanos, M.: Optimizing ETL workflows for
fault-tolerance. In: International Conference on Data Engineering (ICDE), pp. 385–396
(2010)

[15] Song, X., Yan, X., Yang, L.: Design ETL Metamodel Based on UML Profile, Knowledge
Acquisition and Modeling. In: KAM 2009, pp. 69–72 (2009)

[16] Stöhr, T., Müller, R., Rahm, E.: An Integrative and Uniform Model for Metadata
Management in Data Warehousing Environment. In: Workshop on Design and
Management of Data Warehouses (DMDW) (1999)

[17] Vassiliadis, P., Simitsis, A., Georgantas, P., Terrovitis, M.: A Framework for the Design
of ETL Scenarios. In: Eder, J., Missikoff, M. (eds.) CAiSE 2003. LNCS, vol. 2681,
Springer, Heidelberg (2003)

[18] ISO/IEC 11179 Metadata Registry (MDR) standard,
http://www.iso.org/iso/home/store/catalogue_tc/
catalogue_detail.htm?csnumber=35343

[19] Eclipse DB Definition Model,
http://www.eclipse.org/webtools/wst/components/rdb/
WebPublishedDBDefinitionModel/DBDefinition.htm

[20] NIST Role Based Access Control (RBAC) Standard,
http://csrc.nist.gov/groups/SNS/rbac

Part III
Issues of Information Systems

Secure Data Storage and Exchange

with a Private Wallet

Oliver Jäger1, Frank Kramer2, and Bernhard Thalheim2

1 NTT DATA Deutschland GmbH, Hammerbrookstrasse 89,
20097 Hamburg, Germany

2 Christian-Albrechts-University Kiel, Computer Science Institute,
24098 Kiel, Germany

Abstract. Sharing private data between various users is a daily scene.
The owner has both rights at the same time, the right of a self-determined
and the right of a policed usage of his private data by foreign holders. We
develop an approach that allows an owner to store and share his private
data and gain full control about the usage of his private data. Therefore,
we develop and implement a flexible system that uses a peer-to-peer
architecture and modern encryption standards to realize data privacy.
We call this system private wallet.

Keywords: privacy, communication, security, data storage, data man-
agement.

1 Introduction

The self-determination of privacy is a highly-valued asset and must be protected.
The Universal Declaration of Human Rights of the United Nations says in article
12: No one shall be subjected to arbitrary interference with his privacy, family,
home or correspondence, nor to attacks upon his honour and reputation. Ev-
eryone has the right to the protection of the law against such interference or
attacks [1]. Also, other national laws see the self-determination of privacy as a
high priority. For example, the Basic Law for the Federal Republic of Germany,
the German constitution, defines in article 2 that every person has the right to
free development of his personality insofar as he does not violate the rights of
others or offend against the constitutional order or the moral law [2]. Today,
the web makes it possible, to get information about a person very fast. Hence,
the self-determination of personal data must be taken under the consideration of
privacy. For example, the scientific article [3] shows what happens, if we abandon
our data privacy. It describes, how easy it is for somebody to get information
about a person only by scanning an image of this person.

To evolve a system to secure private data, it is important to distinguish be-
tween the owner and the holder of data. A person is owner of data, if he has
created this data. Therefore, an owner can read, change and delete his data
at will. Furthermore, only with his permission other persons can use his data
and the owner is informed about how his data is used and changed from other

c© Springer International Publishing Switzerland 2015 59
N. Bassiliades et al. (eds.), New Trends in Database and Information Systems II,
Advances in Intelligent Systems and Computing 312, DOI: 10.1007/978-3-319-10518-5_5

60 O. Jäger, F. Kramer, and B. Thalheim

persons. A person who uses the data of an owner is a holder of data. He can
only use the data with the permission the owner has given him for the data.
Moreover, the owner must inform the holder, if he has changed something on
his data. Hence, a system is needed that allows an owner permanent control of
his private data against a holder. The control of the private data covers, on the
one hand, the encryption of the data, and on the other hand, the best possible
logging of all usage of the data.

This paper presents an approach to reach such a data control. Therefore, we
develop and implement a concept called private wallet. Every owner gets his
own wallet to store his private data inside. To secure the data in the wallet, all
data is only stored encrypted and solely the owner knows the key. Furthermore,
the private wallets are connected within a network. The owner of the data can
exchange his data with other users within the network. For every exchanged data
the owner defines the permissions a holder can get. Additionally, all usage of the
holder is logged for the owner. Consequently, an owner is informed permanently
which holder uses his data in what way. In our approach, section 2 will first
present the functionality of our private wallet. We will present our six main
processes that are realized in our approach. Section 3 will then describe, how
we realize our privacy wallet. This covers solutions for ground functionality, user
management, encryption and data storage. In section 4, related work will be
presented. We will take a look on other solutions that exist to secure private
data. Finally, a conclusion and a short outlook on future research will be given
in section 5.

2 The Privacy Wallet Functionality

This section presents the functionality of our private wallet approach. There are
six different business use cases for the private wallet. Each business use case
can be regarded as an independent process. All transfers between pares within a
process are asynchronous transfers. We will describe each business use case. All
these use cases can be modelled with a business process modelling language, for
example BPMN 2.0[4]. Due to the limitations of this paper, we present only one
process model as an example. We refer to the Bachelor thesis of [5] that presents
the other process models too.

2.1 Request-a-Key

The first functionality we want to present is Request-a-Key. With Request-a-Key,
the key for decrypting a specific document is requested by a user to the system
of the key owner. Figure 1 presents this use case as BPMN model.

In the owner’s system, a check is carried out in the keystore for whether the
specific document and the specific user, who request the key, exist. If no key
exists in the keystore, the fact that there was an incorrect request from this
user for this document is logged. Reasons could be that the user has been denied
rights to the document or the user received this document without authorization.

Secure Data Storage and Exchange with a Private Wallet 61

user 2 / holder

system requester acceptor

create and send
get-key-request

user 1 / owner

system

docmanagement log

check keystore

transfer
key

log key
does not

exist

log key
does not

exist

request key for
document

save keylogging
transfer

key

logging
transfer

key

does not existexist

log
reception

logging
key

reception

Fig. 1. BPMN request-a-key

If a key exists in the keystore, this key is transferred and the transfer of the key
is logged in the system of the owner. The user’s wallet receives the key and stores
the key to the document. The reception of the key is confirmed. The wallet of
the owner stores the receipt confirmation in a log.

2.2 Request-a-Document

With Request-a-Document, a particular document in the owner’s system is
requested. First, a connection is established to the desired participant. This
connects both private wallets. The requester identifies itself on the basis of au-
thorization features. The private wallet receiving the request now shows the
requesting private wallet all documents to which the requesting private wallet is
permitted to have access. It does not matter whether the requesting private wal-
let has full access or read-only access to the document. The requester can now
select from this document list the documents that are to be transferred into his
own private wallet. These documents are then sent by the owner to the requester.
Each receipt must be confirmed. This receipt confirmation is then stored by the
wallet which sent the documents.

62 O. Jäger, F. Kramer, and B. Thalheim

2.3 Response-a-Document

With Response-a-Document, a particular document is sent to a particular person
from the owner’s system. To do this, the owner chooses the document to be sent
in his own wallet. The document is encrypted for the selected person and sent to
him. The key is also stored in the local keystore of the owner. The document sent
is automatically written to the wallet of the recipient. Once this has happened,
the document is displayed in the document list and a receipt confirmation is
sent to the sender. The sender, that is, the owner of the document, receives this
receipt confirmation and the system stores it automatically.

2.4 Synchronize

With Synchronize, updated data are sent to other users. These data cover new
files, people, person objects, or altered document objects. Therefore, the wallet of
the user that has changed the data starts the synchronization. The other wallets
receive these changes and update the data in the wallet in the background on
a fully automatic basis. Thereby all wallets only synchronize from the wallet
that has started the synchronization. The user himself does not need to take any
action. If a wallet cannot be reached, synchronization is repeated later. Thus,
the synchronizing wallet looks in a periodical time, if the missed wallet is online,
and then sends the changes. This ensures that each participant of the group
receives all updates needed.

2.5 Ask-for-Extended-Rights

With Ask-for-Extended-Rights, a holder of a document requests from the owner
an extension of the rights to this document. In our case, extended rights mean
an extension of existing rights. For example, if a holder has only read rights on a
document, he can ask for edit rights for this document. The owner must actively
decide whether to grant the requested rights or not. If the owner does not grant
the requested rights, the request is logged with the negative decision. If the owner
grants the requested rights, the document is re-encrypted and transferred to the
holder. In addition, the file transfer is logged and the new key is stored in the
keystore. The wallet of the holder automatically receives the file and stores it
in the filestore. In the process, the old file is overwritten and the old key, if it
exists, is erased. After successful receipt of the document, a receipt confirmation
is sent to the owner. The wallet of the owner saves the receipt confirmation in
the form of a log.

2.6 Request-a-Person

If a new user joins a group, it is necessary that all members of the group know
this new user. In the peer-to-peer network, the new user is known in the form of
his email address if he is online, but other information is missing, in particular
the public key. If a new user now participates in the group, his complete data

Secure Data Storage and Exchange with a Private Wallet 63

is automatically distributed by the system to all participants who are online.
To reduce administrative effort, that is, the management of the information
regarding which users have been informed and which have not, the principle
of an obligation to provide information is replaced by an obligation to retrieve
information in this case. If a private wallet sees that an ’unknown’ user is in the
group, that is, in the group online, then this private wallet automatically requests
the data of the ’unknown’ user from the private wallet in the background. This
data is then sent back to the requesting private wallet on a fully automatic basis.

In contrast to the other stories, a check for whether the data actually arrived
is not performed with this process. This is not necessary, because no security
and control mechanisms are disrupted or undermined if the data is not present.
Sending of the documents can only take place if the personal data is locally
available. If problems occur with the transmission of personal data, the wallet
simply tries again. To make sure that there was really a receipt confirmation in
the operations Request-a-Document, Response-a-Document, Request-a-Key and
Ask-for-Extended-Rights, a check is carried out. After an appropriate time, the
system checks whether there has been a receipt confirmation. If this is the case,
then everything is fine. If this is not the case, this document is blocked for the
receiver. This happens when a delete command is sent to the receiver wallet and
at the same time the entry is removed from the keystore. This process is logged.

After presenting the functionality, the next section will describe the concrete
realization of the private wallet.

3 Privacy Wallet Realization

This section describes the realization of the private wallet. The private wallet
serves as an intelligent interface. This interface can be placed over a document
management system (DMS), for example, but it can also work on a standalone
basis. This makes it possible to use it in a very flexible manner. A set of wallets
communicate in a peer-to-peer network. The whole communication is secured
with a hybrid encryption approach and an additional usage of steganographic
functions. Figure 2 shows this general structure of such a private wallet peer-to-
peer network.

The next sections will take a closer look into the construction of such a private
wallet. To see the implementation, we refer again to the Bachelor thesis of [5].

3.1 Modules and Task Areas

The implementation of the private wallet is modular. This allows easy replace-
ment of individual components, such as another encryption or another commu-
nication framework. The following basic functional components are implemented
for the private wallet.

Importing Documents. The private wallet is a closed system. Only within
this closed system can the built-in safety mechanisms be effective. Therefore,

64 O. Jäger, F. Kramer, and B. Thalheim

User 1

private wallet

DMS

User 2

private wallet

DMS

User 3

private wallet

DMS

Fig. 2. Peer-To-Peer private wallet Model

a function must be provided that allows you to import data into this system.
For this purpose, the private wallet makes the Import function available. Data
such as document ID, creation date, and author are generated by the system
and automatically added. Other data must be entered by the user. The file is
encrypted immediately and stored in the filestore. The associated metadata is
stored in the database. From this point on, the document is available in the
private wallet.

Communication. A major component of the private wallet is exchange among
the participants. In this approach, the decision was made in favour of a peer-
to-peer network. In [6] a peer-to-peer system is described as a self-organizing
system that is composed of autonomous units called peers. All peers have equal
rights in the system and all peers use their resources and services completely
decentralized. This short description can be extended by a set of characteristics
of a peer-to-peer network as described in [7]. An ideal system has all these char-
acteristics. But in most cases only a subset of these characteristics can be found
in a peer-to-peer system. Using a peer-to-peer system brings some advantages
over a client-server system. Through the omission of a server, the vulnerability
of the entire system is reduced. Another advantage of a peer-to-peer network is
simple distribution of information. It offers the possibility of sending a message
to individual members of the group or to all members at the same time. Com-
munication is always encrypted. This ensures that even if an outsider infiltrates
the group, the information is secure.

Logging. Any action on or with a document triggers notification of the owner
and author. To ensure this, the information about such an action is kept in a log
object and sent to the private wallet of the owner and author. The owner and

Secure Data Storage and Exchange with a Private Wallet 65

author stores this log object in his overall log. If one of the two participating pri-
vate wallets is offline or unreachable, this log object is stored in the sender wallet
and marked as not sent. As long as the sender wallet is turned on, the system
attempts again and again to transfer non-transferred log objects at appropriate
intervals until a transfer is successful. A log entry contains the document ID in
your own private wallet, timestamps of when an action took place and when this
log entry reached your own private wallet, the type of use of the document, the
status, how many times this action was tried, and the user and his IP address.
But our logging is limited. If a holder copies a document or takes a screenshot,
we have no logging about what he is doing with the document any more. So at
this point, we lose the control over an owners document.

Distributing. The aim of the private wallet is to exchange data securely and
to keep as much control as possible over the exchanged data. This makes it
necessary to distribute data. This data are documents or document data, keys,
and log entries.

3.2 User Management

The private wallet requires its own user management, because only if users are
registered in the private wallet network, they can exchange data. Therefore,
in this user management, it is defined for each user who he is, in what way to
communicate with him, what type of encryption is used, and to which user group
he belongs. Allocation to user groups offers the possibility of easily assigning
keys and rights to documents to several users. In this way you have the option
to automate certain approvals for the use of documents.

3.3 Encryption

As described in [8] there are two different approaches for secure communication,
steganography or cryptography. In our implementation a hybrid of two types
of encryption is selected for cryptography. Symmetrical encryption is chosen for
encryption of the document. In this way, it is possible to benefit from the speed
advantage over asymmetrical encryption. The downside in terms of the effort and
lower security with the key exchange is balanced out by asymmetrical encryption
of the key of the symmetrical document encryption. A 128-bit key with the AES
cryptosystem [9] is used for document encryption. A 192-bit or 256-bit key is
also possible. For the RSA encryption [10], 2048 bit is used. Adequate security is
already provided with a smaller number of bits. Because RSA encryption is only
used to encrypt the AES key, meaning the text to be encrypted is very small,
there are no performance drawbacks, but much more security.

Furthermore, this private wallet offers the possibility of increasing the security
of the encryption through steganography. The encrypted key is hidden in an
image. Hence, an owner can hide the key by using a special function from the
private wallet. A holder can only reveal the key from the image by using the same

66 O. Jäger, F. Kramer, and B. Thalheim

function in his private wallet. Due to the combination of RSA encryption and
steganography, the security is classified as very high. The method used in this
private wallet for steganography is very simple. The method can be exchanged
by every other known steganography algorithm. Here, every image is composed
of colour points or pixels. A pixel has a red value, a green value, and a blue value.
These values are between 0 and 255. To hide a message in the image, in each
pixel each colour channel is changed in the last bit. The decision whether the
last bit is set to 1 or 0 depends on the message to be hidden. For this, the letters
of the message are converted into the associated ASCII values. These ASCII
values are converted into binary form. Take as an example that DB is hidden.
The ASCII value for D is 68, and the value for B is 66. In binary terms, it is the
values 01000100 for decimal 68 and 01000010 for decimal 66. With the binary
values, it is necessary to ensure that the leading zeros (always eight digits) are
taken into account. Taking into account that it is always only the last bit of a
colour channel that is changed and a pixel has three colour channels, eight pixels
are needed to hide two letters and the message end character (ASCII 0). The
number of pixels required is given by the following formula:

�numberofpixels� = (numberofcharacters + 1) ∗ 8/3

The bit sequence of the letter combination DB results in 0100010001000010,
which is 16 bit values. Now the the bit values are entered in sequence into the
most recent bit of a colour channel in each case. If the last bit of a colour channel
is identical to the bit entered, no change takes place. In this example, the last
bit of the first colour channel of the first pixel receives the value 0, the last bit
of the second colour channel receives the value 1, and the last bit of the third
colour channel receives the value 0. Since all three colour channels have now been
used, the next pixel is used. This is repeated until all bits of the bit sequence
and the message end character have been entered. Since only the last bit of a
colour channel is manipulated, the overall colour of a pixel is changed by 1/256.
This is only 0.39 percent. As a result, the colour change for each pixel is from 0
to 0.39 percent. On average the change is about 0.2 percent. This change is not
discernible to the human eye. This means the message has become invisible.

3.4 Data Transfer

There are various possibilities for transferring the data between the private wal-
lets within the network. Using TCP and UDP, data can be transferred from both
computers and mobile devices such as smart phones or tablets. This works both
in a local network and over the Internet. The advantage of this transfer option
is that all systems have this possibility of use.

Transfer via Bluetooth or NFC is suitable only for mobile devices such as
smart phones or tablets. However, this type of transfer offers great advantages
in terms of security. Since NFC1 or Bluetooth2 only work over short to very short

1 range: up to 10 cm.
2 range: class 3 approx. 10 m outdoors, class 2 approx. 20 m outdoors, class 1 approx.
100 m outdoors.

Secure Data Storage and Exchange with a Private Wallet 67

distances, the probability that such a connection will be ’overheard’ is close to
0, since it is immediately apparent if someone is hanging around in the vicinity.

Transfers over a local network or the Internet are suitable due to the high
transfer rates both for the exchange of documents and for the exchange of keys.
Networks have transfer rates up to 1 gigabit/s, and the Internet provides transfer
rates of between 1 and 100 Mbit/s per second for private households.

Bluetooth, on the other hand, only has transfer rates of 57.6 kbit/s to 732.2
kbit/s. Transfer of documents is possible here, but the advantages of Bluetooth
come with smaller data packets, such as a key, because the security is significantly
higher due to the proximity to the exchange partner. The same applies to NFC.
With NFC the data transfer rate is only up to 424 kbit/s.

3.5 Data Management

To store the data, every private wallet gets its own small database. Every
database get the same database schema to store the data. Figure 3 shows this
database schema as Higher-Order Entity-Relationship Model (HERM)[11].

The central element is the document. A document can have one owner and
multiple holders. The owner is the person who owns the document. This is in
most cases the author of the document. The holder is the person who has power
or control over the document. A document can have each number of keys with
the corresponding rights. Behind each key is a holder with the appropriate rights.
For each document, there is metadata. Information is stored for every person who
participates in the private wallet. The log contains any number of log entries. A
log entry provides information about the affected document, the point in time
of the activity, the actual process, the status (the action was successful or not
successful), the number of attempts, and the IP address of the device on which
this action was performed. In the private wallet, users can define the document
types in any way required. This ensures a high degree of flexibility.

Throughout the application, work is carried out only on data objects that are
already stored in the database. What made the decision for such an approach was
the objective of not losing any data. This is particularly important for guaranteed
logging of actions on documents. For some operations, it is necessary to update
existing data in the database. Only the following personal data can be changed:
first name, last name, the marker, whether it is a local user or a group member,
the password for local login to the private wallet, the public and private key,
the document data rights to a document, the document key, and the expiration
date. All other data, for example the email or the salutation, may not be altered
under any circumstances.

Data which is stored in the database is deleted only by setting a marker which
indicates that it is a deleted data record. The only exception is temporary data.
Temporary data in this private wallet consists of log entries that have not yet
been transmitted to the author of the document. They are removed from the
database. Deleting data records only logically offers the advantage that no data
inconsistency can occur. For documents marked as deleted, the physical file is
deleted in the file system.

68 O. Jäger, F. Kramer, and B. Thalheim

document

person

owner holder

logentry

log

ID

timestamp

ip

process

key

status

attempt

right
ID

mail

salutation

firstname

name localUser

publicKeyprivateKey

name

filename

content
type version

date

Fig. 3. HERM-Schema of the private wallet

4 Related Work

There exists a great set of implementations in the area of secure data storage
and exchange. Here, we want to describe some of these implementations that
track concepts similar to our private wallet approach. First, we look at cloud
services like Dropbox[12] or Apple iCloud [13]. There, a user can store data on a
foreign server and can share these data with other users of the cloud. The main
problem is that all data that is saved in these cloud services are stored on an
third party foreign server. At this point an owner has no full control over the
usage of his data by this third party. He must trust in the service that there is no
illegal access to the data by the third party. Furthermore, an owner is dependent
on the security of the cloud service system. In our approach, only holders who
have the owner’s permission can get access to data. If an owner shares data, this
data is transferred from the owner system to the holder system. Thus, no third
party server system for storage and transfer is used. Additionally, in most of
the cloud services our data is not stored encrypted within the cloud. We must
install special programs for encryption before storing the data into the cloud. In
our private wallet approach every document is encrypted automatically when it
is send to a holder. Only if the owner gives the holder the key permission, the
holder can decrypt and use a document.

Next, we take a look at an application that is close to our approach. The
Deutsche Post AG provides a software called DocWallet [14]. This software can
be used for secure personal document management. Therefore, a user can import
documents into the DocWallet system. Within the system, the document is end-
to-end encrypted with AES 256 and synchronized with every system where the
DocWallet software is installed. Hence, a user has access to his documents on all

Secure Data Storage and Exchange with a Private Wallet 69

his systems, including mobile devices like smart phones or tablets. All this is free
of charge for the user. Additionally, one can pay for a premium account. Then
the data within the DocWallet is synchronized with a cloud server in Germany
that backups all imported files in the cloud. Unlike our private wallet, there is no
data exchange between various DocWallet users. The system is only for single
user data management.

Another mobile application for smart phones and tablets that can be used for
a secure exchange of chat massages with attached videos or images between users
is Snapchat [15]. Before a user can exchange a message with another one, he must
define an expiration date for the message he wants to send. The receiver of the
message can look at it on his device until the expiration date is reached. After
this, the message is deleted from the receiver device. This should guarantee the
securtiy of the videos and images that are send via Snapchat. But there are some
problems with Snapchat. On the one hand, the receiver of a Snapchat message
can take a screenshot of the received object. Then he has permanent access to
the object without the control of the owner. On the other hand, user have to
trust Snapchat that they fully delete the message. There are hints that this is
not done by Snapchat [16]. Despite everything Snapchat is a first approach for
a secure data exchange were the user has the control over how long another user
has access to his data.

The last service we want to present is the data exchange service Mega [17].
Mega can be used to exchange data with other users through the internet. There-
fore, a user can import any digital information to the Mega server. The infor-
mation is end-to-end encrypted with AES 128 before it is stored on the server.
Only the user gets the key to decode the data. Hence, no other user or Mega
itself can decode the private data. If a user wants to share the information with
another user, he has to exchange the key with this user, so that the other user
can get access on the data too. How the user exchange the keys is not the task of
Mega. Other than our private wallet the focus of the encryption of information
is not the self-determination about the own data. The encryption of the data is
a legal protection for Mega. Thus, they can assert that they never know what
users send over their filesharing system.

5 Conclusion and Outlook

Exchanging data and protecting the privacy of data for an owner is not a con-
tradiction. The approach outlined in this paper presents a system by which an
owner of data can store and exchange his data with other users without loss
of control. Therefore, we implement a system that is based on a peer-to-peer
network to exchange data between users of this network. All exchanged data is
encrypted with modern algorithms and only the owner of the data can decontrol
the usage for different holders. Furthermore, the usage of steganographic algo-
rithms and the storage of private data within a database increase the security
of the private data once again.

We have only outlined a first approach of our private wallet. In a subsequent
step, we have to finalize our prototype to a stable version for release. After this,

70 O. Jäger, F. Kramer, and B. Thalheim

we can extend our system with additional features. One could be a user manage-
ment that has not only user but also user groups in the system . Furthermore,
we have only a version for personal computers at the moment. Hence, we have
to implement a mobile version to ensure secure data exchange also on mobile
devices such as smart phones and tablets. Finally, we have no recovery strategies
for media break while using the private wallet.

References

1. UN: The Universal Declaration of Human Rigths, http://www.un.org
2. Bundesrepublik, D., Dürig, G.: Grundgesetz. 44. Auflage edn. Dtv (2013)
3. Acquisti, A., Gross, R., Stutzman, F.: Faces of facebook: Privacy in the age of

augmented reality. BlackHat, USA (2011)
4. OMG: Business Process Model and Notation (BPMN) Version 2.0,

http://www.omg.org/spec/BPMN/2.0/PDF

5. Jäger, O.: Technologien für das Privacy Wallet (April 2013)
6. Oram, A.: Peer-to-Peer - Harnessing the power of disruptive technologies. OŔeillt

(2001)
7. Steinmetz, R., Wehrle, K.: Peer-to-peer-networking & -computing. Informatik

Spektrum 27(1), 51–54 (2004)
8. Singh, S.: Geheime Botschaften Die Kunst der Verschlüsselung von der Antike bis

in die Zeiten des Internet. Carl Hanser Verlag München Wien (2000)
9. Daemen, J., Rijmen, V.: The Design of Rijndael: AES - The Advanced Encryption

Standard. Springer (2002)
10. Rivest, R., Shamir, A., Adleman, L.: A Method for Obtaining Digital Signatures

and Public-Key Cryptosystems. Communications of the ACM 21, 120–126 (1978)
11. Thalheim, B.: Entity-Relationship Modeling: Foundations of Database Technology.

Springer (2000)
12. Dropbox, https://www.dropbox.com/
13. iCloude, https://www.icloud.com/
14. Deutsche Post: Docwallet, https://docwallet.de/
15. Snapchat, http://www.snapchat.com/
16. CHIP: Snapchat: Sexting-App löscht Videos nicht,

http://www.chip.de/news/

Snapchat-Sexting-App-loescht-Videos-nicht 63702600.html

17. Schmitz, K.: Mega, https://mega.co.nz/

http://www.un.org
http://www.omg.org/spec/BPMN/2.0/PDF
https://www.dropbox.com/
https://www.icloud.com/
https://docwallet.de/
http://www.snapchat.com/
http://www.chip.de/news/Snapchat-Sexting-App-loescht-Videos-nicht_63702600.html
http://www.chip.de/news/Snapchat-Sexting-App-loescht-Videos-nicht_63702600.html
https://mega.co.nz/

Live Objects - Collaborative Window in the
Corporate Documents

Riste Stojanov, Marjan Georgiev, Vladimir Zdraveski,
Milos Jovanovik, and Dimitar Trajanov

Faculty of Computer Science and Engineering, Ss. Cyril and Methodius in Skopje,
Macedonia

{name.lastname}@finki.ukim.mk

Abstract. In this paper, a document collaboration platform for enter-
prise environments is presented. It incorporates the collaboration, se-
curity, auditing and reuse features into the document editor, as a tool
that has well known interface to the end users. The platform enables
template definition with annotation of the collaboration and protection
units, called live objects. Through the live objects it allows multiple em-
ployees with different privileges to work on the same document, without
having to violate the enterprise policies and processes. This work aims to
increase the employees’ productivity by providing a collaboration win-
dows in corporate documents.

Keywords: enterprise, document, collaboration, security, auditing, reuse.

1 Introduction

In the digitalized and globalized environment of today, the amount and qual-
ity of knowledge makes the difference between the corporations. The enterprise
knowledge is obtained from its employees and stored in various systems and
formats [18]. In the process of knowledge management, teamwork and collabo-
ration is required for task accomplishment[14][25], and the tools need to provide
multiple employees with efficient collaboration, enabling knowledge distribution,
synchronization and conflict management. Employees from different departments
and various privileges can often work together[28], and their knowledge should be
protected from unauthorized access and manipulation. The trust in the knowl-
edge management systems is crucial[13], and the process of auditing is used to
preserve it. Also, there is a need for managed knowledge reuse, with references
of the reused parts for modification synchronization.

Corporate knowledge is represented in various formats, from structured infor-
mation, stored in traditional databases[11], to unstructured information stored
in documents.

The knowledge should be organized according to corporation policies,
processes and standards, that are designed to increase the efficiency of their
employees and to minimize the operation costs. In order to do so, tools that op-
timize the collaboration, security, auditing and reusing of the knowledge should
be provided.

c© Springer International Publishing Switzerland 2015 71
N. Bassiliades et al. (eds.), New Trends in Database and Information Systems II,
Advances in Intelligent Systems and Computing 312, DOI: 10.1007/978-3-319-10518-5_6

72 R. Stojanov et al.

In most enterprises, all these aspects are achieved mainly through customized
applications, leveraging the advantages of the database technologies [11]. These
systems work with structured data and use the table records as fine-grained units
for collaboration, protection, auditing and reuse. However, their main disadvan-
tage is that they impose strict rules for data entry, and the employees may not
be able to transform their knowledge to that format.

Beside the structured knowledge in database systems, the documents contain
the major portion of the organizational information utilized in the corporate
processes and used by different users and applications [20]. The documents are
designed to store unstructured data in the form of natural language text and
drawings, and provide a medium that can accept all available employee knowl-
edge. Knowledge management in documents imposes greater conflict possibility
when multiple employees collaborate on the same document. The document is
the unit of management, which prevents collaboration of employees with differ-
ent roles, makes it difficult to detect the exact change in the auditing process,
and is too coarse for reuse.

In this paper, we present a platform that optimizes the collaboration, security,
auditing and reuse of the document content, with a part of a document as a
knowledge granularity unit.

The paper is organized as follows: in Section 2 the document collaboration ap-
proaches and applications are summarized, after which, in Section 3 the general
overview of the implemented platform is presented. In Section 4, the implemen-
tation of the system is presented, and a comparison with the other solutions and
methodologies is elaborated in Section 5. A conclusion about the presented work
is given in the last section of the paper.

2 Related Work

Corporate knowledge can be managed in various systems and formats, including
the Database Systems (DB)[11], Document Management Systems (DMS)[24],
Content Management Systems (CMS)[22] and Online Document Collaboration
Systems (ODCS)[27]. All these systems enable efficient collaboration, security,
auditing and knowledge reuse on a different granularity units. The database and
the Content Management systems work with records and content units corre-
spondingly, which provide data structuring based on the corporate needs, and
the employees should adopt their knowledge to the system requirements. Accord-
ing to [20], the major amount of the enterprise knowledge is stored in documents.
Even though the DBS and CMS can produce documents, they are not intended
to manage them.

Currently, there are two general document collaboration patterns. The first
pattern is represented by the online document collaboration systems[27], where
the employees edit the document in that system. The second pattern is when the
documents are protected and distributed by one system, and edited by another,
represented by document management systems.

The online document collaboration systems[27], such as Google Drive[1] and
Microsoft Office 365[17], provide real-time collaboration among the employees

Live Objects - Collaborative Window in the Corporate Documents 73

and are deployed in public cloud infrastructures. These systems provide similar
set of features as most of the modern document editors, and there is simple or
no training required for employees to use them[27]. The protection granularity
of these systems is the document, and there is no mechanism to protect part
of content from employees that do not have the rights on it. Additionally, their
infrastructure may violates the security policies of many corporations that do not
allow storing their documents outside their infrastructure. Even if they do allow
this, the corporate accounts should be connected with the platform accounts,
which is not that simple process.

The Please Review[3] is another online document collaboration system that
can be installed in the corporation. The primary goal of this system is collabora-
tive review, but it also offers a co-authoring option. In the process of document
collaboration, the document owner shares the document with the collaborators
and assigns them in a so called editing zone. These zones are locked until the
user is done with his work. The zone should be downloaded, edited and uploaded
back to the system, since it does not provide web editing. Additionally, the user
can see the whole document, and there is no option to protect only a part of the
document with this system.

The DMS, that represent the second pattern are more often used in the
corporations. The collaboration unit of these systems is the document. The
document management systems, such as SharePoint[21], Alfresco[23] and many
other[19][8][15][16], provide collaboration by document distribution and version-
ing. Conflicts are prevented by document locking, which disables concurrent
modification and decreases the efficiency. Such systems provide document level
security and auditing with corporate account integration. These systems does not
manipulate with the content of the document, and are combined with document
editing applications for content manipulation.

Similar approach is utilized in the file synchronization systems such as
Dropbox[9], OneDrive[2] and Ubuntu One[4]. These systems provide document
level security and client applications for document synchronization. However, all
these solutions are cloud based and may be against the corporate rules.

In [6][5][10] document collaboration systems and methods are defined, where
the document is split in workable elements that can be edited by multiple col-
laborators and the changes are synchronized with a database system in real-time
using messaging system. These systems use document level protection using sin-
gle passwords, and perhaps niter of them provide annotation of the workable
elements according to their permissions or meaning in a document template.
Also, they do not provide any tracking of the reused parts and are web based
solutions.

3 Semantic Sky Platform

In corporate environments, the documents frequently contain parts that should
not be accessible to some employees. Since none of the systems reviewed in
Section 2 protect part of a document, they enforce document splitting based

74 R. Stojanov et al.

Fig. 1. Semantic Sky platform architecture

on the user privileges, collaborating on each of them and merging back the
modifications.

The platform presented in this paper, called Semantic Sky, extends our previ-
ous work [26], by providing collaboration, security, auditing and managed reuse
of document parts. The document parts managed by the Semantic Sky platform
are referred to as live objects.

3.1 Semantic Sky Architecture

The Semantic Sky platform is implemented using client server architecture (Fig-
ure 1). The clients are implemented as document editor addins, while the server
is RESTful live object repository. The platform is designed to coexist with the
document management systems[24], and the current implementation of the addin
is integrated with SharePoint[21] DMS, but not bounded to it.

The Semantic Sky addin is used to handle the document templates and live
objects, and currently is implemented for Microsoft Office Word, as one of the
most common document editing applications in the corporate world. Moreover,
almost all corporate employees are trained to use document editors and they can
use the addin with short or no additional training. This way, the employees can
use the tools they know best, and simultaneously modify the document parts
required to accomplish their tasks. The Semantic Sky addin is used to detect
and manipulate the document’s live objects, synchronize their content among
the collaborators, and protect them from unauthorized access and modification.

All Semantic Sky client addins communicate with the central repository to
provide synchronization of the live object content among the users. The content
of the live object is versioned, and multiple versions for each live object are
persisted into the repository. The Semantic Sky addin displays the content from
the last version of the live object in the document. The live object versions
provide a better insight to the editors about the evolution of the document. The
users have an option to preview the versions of a selected live object, and a
possibility to select the content of some previous version as current.

Live Objects - Collaborative Window in the Corporate Documents 75

3.2 Live Objects

The enterprises use documents with standardized structure in a form of docu-
ment templates. The templates define the structure of the document, where each
part has position and meaning. The Semantic Sky platform is designed to coexist
with the templates, where the dynamic and protected parts can be annotated as
live objects.

The live objects wrap parts of a document that represents a logical unit and
allow collaborative editing. The best practice is to wrap self-contained logical
units for collaboration, such as paragraphs, sentences or chapters in live object,
but the platform does not impose any limitation.

The live objects are the main units for collaboration and they represent the
meaning of the element in the template, while their versions store the content, the
modifier and the modification time. The Semantic Sky system uses an adapta-
tion of the centralized version control[7] collaboration model for synchronization
and conflict resolution with the live objects as granularity unit. The system au-
tomatically invokes the update and commit procedures on document open and
save correspondingly.

The live objects are designed to enable managed reuse, where the reusing live
object references to the reused one. This provides another level of document
linking, and gives information about their content sharing. Additionally, when
the reused live object is modified in some document, the documents that have
reused it will obtain a notification for the modification, with option to accept it
or not.

In order to provide collaboration of employees with different privileges in a
same document, the Semantic Sky platform has separate access permissions for
each live object. The system uses the RBAC model[12], where the users and
their roles are obtained from theirs’ computer account. Since the documents can
be opened without the Semantic Sky addin, there are both public and private
protection modes for the live objects. The public live objects are visible to every-
body and their content is embedded into the document, while the content of the
private live objects is synchronized on each document opening. For the private
protection mode, the Semantic Sky system defines the following privileges: no
access, read only, read & write, and manage. The higher privileges include and
extends the rights from the lower one. The user that creates the document has
modify permission, and can manage the protection mode and the privileges of
the other collaborators. Live objects have public protection mode by default,
and every user can read and modify their content.

3.3 Semantic Sky Document Editor Addin

The user interface of MS Word instance with the Semantic Sky addin is shown in
Figure 2. All live objects are accessible through the panel at the left side of the
editor, providing easy navigation to the required parts. There is also an option to
preview the live objects from the other documents and to reuse their content in
the current document (the right tab of the panel). The addin provides managed

76 R. Stojanov et al.

Fig. 2. Document with live objects and their versions

reuse, where the reusing live object stores a link to the reused one. The auditing
and the conflict resolution is done through the popup window from Figure 2. It
displays a list of all live object changes and enables to roll back the modifications
to a previous version. The Semantic Sky platform provides access to the content
even if the addin is absent, so that external collaborators can be included. The
modifications from these collaborators are synchronized on the next document
opening in document editor with installed Semantic Sky addin.

The platform does not provide real-time synchronization because the docu-
ment may be opened in parallel by document editor instances (or other appli-
cations) that do not have the addin. The addin provides on demand live object
synchronization and mechanism for conflict resolution. This way, the platform
ensures the consistency of the live objects content among the different collabo-
rators.

4 Semantic Sky Implementation

The live objects are implemented as MS Word native Rich Text Content Con-
trols1, handled by the semantic sky addin. The addin supports template creation
through annotation of the live objects that are used for content protection and
collaboration. The semantic sky addin uses the Tag property2 of the Rich Text
1 http://msdn.microsoft.com/en-us/library/
microsoft.office.tools.word.richtextcontentcontrol.aspx

2 http://msdn.microsoft.com/en-us/library/
microsoft.office.tools.word.richtextcontentcontrol.tag.aspx

http://msdn.microsoft.com/en-us/library/microsoft.office.tools.word.richtextcontentcontrol.aspx
http://msdn.microsoft.com/en-us/library/microsoft.office.tools.word.richtextcontentcontrol.aspx
http://msdn.microsoft.com/en-us/library/microsoft.office.tools.word.richtextcontentcontrol.tag.aspx
http://msdn.microsoft.com/en-us/library/microsoft.office.tools.word.richtextcontentcontrol.tag.aspx

Live Objects - Collaborative Window in the Corporate Documents 77

Fig. 3. Live Objects Initialization

Content Control to identify the live object controls, and the CustomXMLPart3
to store their meta-data. The CustomXMLPart is defined as part of the Office
Open XML standard4, and it is not visible to the collaborators. The Semantic
Sky addin uses it to decide how to protect and handle the live objects.

4.1 Live Object Initialization

When the document is opened in MS Word with Semantic Sky addin, the live
objects mechanism iterates over all Reach Text Content Controls in the doc-
ument, identifying the one that has Tag property starting with “#ssky|#lo|”.
For each live object control, the addin executes the initialization procedure from
Figure 3 in a separate thread, since there are no correlations between them.
This speeds up the document opening process, and each live object is initialized
independently.

During the initialization process, the addin first obtains the live object’s meta-
data entity from the document’s CustomXMLPart. Since the live objects with
public protection mode can be modified outside of the system, there may be a
3 http://msdn.microsoft.com/en-us/library/bb608618.aspx
4 http://www.ecma-international.org/publications/standards/Ecma-376.htm

http://msdn.microsoft.com/en-us/library/bb608618.aspx
http://www.ecma-international.org/publications/standards/Ecma-376.htm

78 R. Stojanov et al.

conflict in their content, and the addin checks whether they are modified in the
document and in the repository. When there is conflict for the live object, it
is marked as conflicted by setting this flag in its meta-data entry. The public
live objects that are not locally modified, are update their content with the
repository version.

The modification of the private live object is managed by the addin and
there is no need for conflict resolution in their initialization phase. The access
permissions for the user are first obtained for them. When the user does not
have access for the live object, the read only property for its control is set and
its content is not loaded nor displayed. Otherwise, the content is loaded from
the repository only if the repository version is greater than the local version of
the live object.

At the end of the initialization process, the addin registers a handler for the
Exiting Event5 of the live object control, which updates the live object’s meta-
data after each user interaction.

4.2 Live Object Synchronization

The content of the live objects can be synchronized on demand and on document
save operations. In this process, the addin tries to store only the modified (dirty)
live objects and tries to store their content in the repository. The system then
checks for conflicts, and when there is none, a new version of the live object is
created. Then the addin updates the live object’s content and meta-data. In case
the local version is smaller than the repository version, the repository stores the
user live object version as conflicted, and the addin also marks the live object
control as conflicted.

The popup dialog from Figure 2 is used for conflict resolution. On the upper
left side all live objects are displayed, with the conflicted one colored red. In the
lower left text box, the local version of the live object is displayed and the right
text box is the latest repository version from the live object. The user can accept
either the local or the repository version. If a combination from the both versions
is needed, the user should manually change the content of its local version, and
then accept it. The repository content (the right text area) is not editable. This
dialog should be improved in order to display where the two versions differ, and
it is planned to be improved as a part of the future work.

When the document is closed and all live objects are synchronized, the se-
mantic sky addin removes the content from the live object controls with private
protection mode. This way, when the document is opened without the addin,
the protected live objects are not displayed and their information is protected.

5 Evaluation

The main difference of the Semantic Sky system is that it supports
managed content reuse with referencing and protects the document parts from
5 http://msdn.microsoft.com/en-us/library/
microsoft.office.tools.word.contentcontrolbase.exiting.aspx

http://msdn.microsoft.com/en-us/library/microsoft.office.tools.word.contentcontrolbase.exiting.aspx
http://msdn.microsoft.com/en-us/library/microsoft.office.tools.word.contentcontrolbase.exiting.aspx

Live Objects - Collaborative Window in the Corporate Documents 79

unauthorized access. All other systems provide content reuse with copy-paste,
and do not provide tracking of the reused parts. Also, none of these systems
provides protection of document parts based on employee privileges, and these
employees must use workarounds that decrease their productivity in order to
collaborate with these systems.

The on demand synchronization of the Semantic Sky system is not as ef-
ficient as the real-time synchronization, but it allows external collaborators to
contribute in document editing tasks on a same document, without exposing pro-
tected information. All other systems either protect the whole document with
password or do not provide protection at all.

Additionally, the Semantic Sky platform is designed to coexist with the
DMS[24] and to use them for document distribution among the employees. The
collaboration environment is integrated in Microsoft Office Word document edi-
tor, and the employees can use the platform with minimal training, and increases
their efficiency.

Table 1 summarizes the features of the document collaboration systems. The
collaboration feature describes the collaboration unit of each of the systems to-
gether with the synchronization mechanism. The security and auditing columns
display the protection and versioning unit of each of the systems, while the con-
tent reuse column describes how content can be reused in them. The last column
describes whether and how the documents are protected when they are being
open out of the system.

Table 1. Document collaboration systems comparison

Collaboration Security Auditing Content
reuse

Template
support

Out of system
protection

Semantic Sky live object, on
demand

live object live object referencing
(managed)

yes private live
objects

ODCS[27] character,
real-time

document character copy-paste no no

DMS[24] with
editing app.

document,
lock&versions

document document copy-paste editor
templates

document
(password)

[3][5][6][10] document
part, lock or
real-time

document document
part

copy-paste no document
(password)

6 Conclusion

The Semantic Sky platform provides document collaboration for enterprise en-
vironments, handling security with document content protection, even when the
documents leave the controlled environment. The template mechanism enables
structuring of the corporate documents through annotation of the collaborative
and protected elements, called live objects.

80 R. Stojanov et al.

The platform extends the document editors, with the Semantic Sky addin.
The integration with the document editor significantly improves the employees
efficiency because they can focus on their tasks, leaving the addin to handle the
document synchronization and management. The versions of the live objects pro-
vide document evolution auditing, while the managed live object reuse provides
notifications for the documents with reused content when the base live object is
changed.

The use of the live object controls enables collaborators without the semantic
sky addin to be involved in the editing process of the public content, without
violating the corporate policies.

References

1. Google drive, http://drive.google.com/ (accessed April 10, 2014)
2. Onedrive, https://onedrive.live.com/about/en-us/ (accessed April 10, 2014)
3. Please review, http://www.pleasetech.com/pleasereview.aspx/ (accessed April

10, 2014)
4. Ubuntu one, https://one.ubuntu.com/ (accessed April 10, 2014)
5. Bailor, J., Bernstein, E., Knight, M., Antos, C., Simonds, A., Jones, B., Clarke, S.,

Sunderland, E., Robins, D., Bose, M.: Collaborative authoring. US Patent 7,941,399
(May 10, 2011)

6. Chin, R., Lee, J.: Document collaboration system and method. US Patent App.
11/836,087 (March 6, 2008)

7. Collins-Sussman, B., Fitzpatrick, B., Pilato, M.: Version control with subversion.
O’Reilly Media, Inc. (2004)

8. Cullen, J., Peairs, M.: Document management system. US Patent 5,893,908 (April
13, 1999)

9. Drago, I., Mellia, M., Munafo, M.M., Sperotto, A., Sadre, R., Pras, A.: Inside
dropbox: understanding personal cloud storage services. In: Proceedings of the
2012 ACM Conference on Internet Measurement Conference, pp. 481–494. ACM
(2012)

10. Dutta, K.: Document collaboration system. US Patent App. 10/900,807 (Febru-
ary 2, 2006)

11. Elmasri, R.: Fundamentals of database systems. Pearson Education India (2008)
12. Ferraiolo, D., Cugini, J., Kuhn, D.R.: Role-based access control (RBAC): Features

and motivations. In: Proceedings of 11th Annual Computer Security Application
Conference, pp. 241–248 (1995)

13. Ford, D.P.: Trust and knowledge management: the seeds of success. In: Handbook
on Knowledge Management 1, pp. 553–575. Springer (2004)

14. Goh, S.C.: Managing effective knowledge transfer: an integrative framework and
some practice implications. Journal of Knowledge Management 6(1), 23–30 (2002)

15. Hajmiragha, M. Document management system. US Patent 6,289,460 (September
11, 2001)

16. Jeffery, S., O’Gwen, G., Hornsby, B., McBryde, K., Powell, W., Rizk, T.: Document
management system. US Patent 6,957,384 (October 18, 2005)

17. Katzer, M., Crawford, D.: Office 365: Moving to the cloud. In: Office 365, pp. 1–23.
Springer (2013)

18. O’Leary, D.E.: Enterprise knowledge management. Computer 31(3), 54–61 (1998)

http://drive.google.com/
https://onedrive.live.com/about/en-us/
http://www.pleasetech.com/pleasereview.aspx/
https://one.ubuntu.com/

Live Objects - Collaborative Window in the Corporate Documents 81

19. Oliszewski, M.: Document management system. US Patent App. 10/208,062 (July
3, 2003)

20. Päivärinta, T., Tyrväinen, P.: Documents in information management: Diverging
connotations of’a document’in digital era. In: Proceedings of IRMA 1998, pp. 163–
173 (1998)

21. Pattison, T., Connell, A., Hillier, S., Mann, D.: Inside Microsoft SharePoint 2010.
Microsoft Press (2011)

22. Rockley, A., Kostur, P., Manning, S.: Managing enterprise content: A unified con-
tent strategy. New Riders (2003)

23. Shariff, M.: Alfresco enterprise content management implementation. Packt Pub-
lishing Ltd. (2007)

24. Sutton, M.J.D.: Document Management for the Enterprise: Principles, Techniques,
and Applications. John Wiley & Sons, Inc., New York (1996)

25. Syed-Ikhsan, S.O.S., Rowland, F.: Knowledge management in a public organiza-
tion: a study on the relationship between organizational elements and the per-
formance of knowledge transfer. Journal of Knowledge Management 8(2), 95–111
(2004)

26. Trajanov, D., Stojanov, R., Jovanovik, M., Zdraveski, V., Ristoski, P., Georgiev,
M., Filiposka, S.: Semantic sky: a platform for cloud service integration based on
semantic web technologies. In: Proceedings of the 8th International Conference on
Semantic Systems, pp. 109–116. ACM (2012)

27. Vallance, M., Towndrow, P.A., Wiz, C.: Conditions for successful online document
collaboration. TechTrends 54(1), 20–24 (2010)

28. Wong, K.Y., Aspinwall, E.: Development of a knowledge management initiative and
system: A case study. Expert Systems with Applications 30(4), 633–641 (2006)

Part IV
Physical Level

Flexs – A Logical Model for Physical Data

Layout

Hannes Voigt, Alfred Hanisch, and Wolfgang Lehner

Database Technology Group,
Technische Universität Dresden,

01062 Dresden, Germany
{firstname.lastname}@tu-dresden.de
http://wwwdb.inf.tu-dresden.de/

Abstract. Driven by novel application domains and hardware trends
database research and development set off to many novel and specialized
architectures. Particularly in the area of physical data layout, specialized
solutions have shown exceptional performance for specific applications.
This trend is great for research and development and for those in need of
top-level performance first and foremost. For those with moderate per-
formance needs, however, a universal but flexible database system has
the benefit of lower TCO. Regarding physical data layout, the more gen-
eral systems are fairly inflexible compared to the variety of physical data
layouts available in specialized systems. Particularly, the macroscopic
characteristics, i.e., how the data is grouped and clustered, are generally
hard-coded and cannot be changed by configuration. We present Flexs,
a declarative storage description language for the macroscopic charac-
teristics of physical data layouts. Flexs allows describing physical data
layouts ranging from the row and column store layouts to data layouts
for irregular data such as vertical schema. Using Flexs, a storage engine
can be configured to use a specific physical data layout. Flexs contributes
to make specialized physical data layouts available to the broad majority
of universal database systems.

1 Introduction

The drastic expansion of the database ecosystem to novel application domains as
well as new hardware trends sparked a new exciting age of database technology.
Widely challenging the traditional database system architecture in new fields [28],
the database community created the wide and diverse range of database sys-
tems available today. Specialized systems provide exceptional performance and
features for specific applications that have not been seen before.

Among other techniques, these systems typically build on a physical data
layout different from the traditional row-orientation. Column-oriented data lay-
outs [15,9,27] showed to be advantageous for most analytic applications. In multi-
tenancy databases, clustering data along versions and schema extensions is a
preferable strategy [4]. Efficient processing of geo-spatial data often benefits from

c© Springer International Publishing Switzerland 2015 85
N. Bassiliades et al. (eds.), New Trends in Database and Information Systems II,
Advances in Intelligent Systems and Computing 312, DOI: 10.1007/978-3-319-10518-5_7

http://wwwdb.inf.tu-dresden.de/

86 H. Voigt, A. Hanisch, and W. Lehner

a grid representation [11]. Other layouts such as interpreted record [7] or vertical
schema [2,12,1] are favored for applications with flexible schemas or sparse tables
such as product catalogs or clinical information systems.

Specialization is great for bringing database technology to new frontiers and
boosting its performance. However, it is not always affordable to every extent and
for every customer. No matter if they run 10 database systems or 10 000 systems,
companies require standardization, unification, and consolidation to keep total
cost of ownership (TCO) under control [26]. Any additional system increases the
overall complexity of an IT landscape. It requires additional maintenance and
additional attention by staff trained on the details of that system. Any additional
system adds additional interactions with other systems and by that it implies
further need for supervision and further potential cause for failures. With all
that additional complexity and cost, specialized systems are only worthwhile
where absolute top performance is needed. In most cases, a single system with a
configurable physical data layout comes at a much lower TCO, but would still
be able to serve a diverse range of workloads well enough. Configurability also
simplifies the adaption of a system to evolving workloads and requirements.

Physical data layouts differ in (1) microscopic characteristics, such as, used
data structures, applied compression techniques, etc., and in (2) macroscopic
characteristics, i.e. how the data is grouped and clustered. To some extent, most
systems allow influencing the microscopic characteristics of their physical data
layout. For instance, compression can be tuned or different data structures can
be configured. Macroscopic characteristics, however, are generally hard-coded
and cannot be changed by configuration.

In this paper, we present Flexs. Flexs is a declarative storage description lan-
guage for the macroscopic characteristics of the physical data layout. It provides
a generic way to configure the grouping and clustering of data. In contrast to
other modeling approaches such as list comprehension, Flexs explicitly includes
the schema elements entity types and attributes into the layout description. Flexs
supports a wide range of layouts, such as row-oriented, column-oriented, inter-
preted record, or vertical schema. We introduce the Flexs notation with the help
of three examples and present the grammar that specifies the Flexs language.

The remainder of the paper is structured as follows. Section 2 introduces the
Flexs notation. Section 3 details an adaptive materilization strategy necessary to
implement a storage engine that is configurable with Flexs. Finally, we discuss
related work in Section 4 and conclude the paper in Section 5.

2 Flexs Notation

Flexs is a modeling language that allows describing various physical data lay-
outs for structured data, specifically the macroscopic aspects of the physical data
layouts. Commonly, structured data models organize values with the user-given
specifiers entity types, entities, and attributes. The physical data layout deter-
mines how a database management system organizes the elements of structured
data (entity types, entities, attributes, and values) on the physical storage to
preserve their logical structure.

Flexs – A Logical Model for Physical Data Layout 87

(Order o1 customer Smith)

(Order o1 date 12/04/12)

(Order o2 customer Meyer)

(City . . .)

.

.

.

T E A V

T, E,A →V

〈T,E,A →V 〉

Fig. 1. Vertical schema layout

o1 Smith

o2 Meyer
.
.
.

.

.

.

Order .customer

o1 12/04/12

.

.

.
.
.
.

Order .date

.

.

.
.
.
.

City. . .

T, A

E →V

〈E →V 〉

〈T, A 〈E →V 〉〉

Fig. 2. BATs layout

The first and most simple way to preserve logical structure is to store logically
related elements physically next to each other. For instance, the vertical schema
as illustrated in Figure 1 stores an entity type, an entity, an attribute, and the
value that belongs to the specific combination in one coherent physical block.
In Figure 1, the first block lists Smith as the value of the attribute customer
for the entity o1 with type Order . In Flexs, we describe such a block by listing
the domains of its elements. T denotes the domain of entity types, E denotes
the domain of entities, A denotes the domain of attributes, and V denotes the
domain of values Consequently, T,E,A →V describes a physical block in the
vertical schema layout. The arrow → indicates that T,E,A uniquely identify a
block and functionally determine V in this mental model. To represent more than
a single value, the database system uses a whole set of similar blocks to represent
a complete data set. In Flexs, we denote such a block set as 〈T,E,A →V 〉.
Chevrons 〈X〉 indicate the repetition of the embedded block structure X . The
order of the blocks in a block set is insignificant. The commas in the Flexs
notation do not have a particular meaning but serve better visual separation of
the domain symbols.

A second way to preserve logical structure is nesting. For nesting, let’s have a
look at the binary association tables (BATs) [9] layout. Figure 2 shows the same
data represented in BATs. A single BAT consists of an entity type, an attribute,
and a set of entity–value pairs. Hence, we can denote the header of a BAT in
Flexs as T,A and the body of a BAT – set of entity–value pairs – can be denoted
as the block set 〈E →V 〉. In all, a BAT forms a block T,A 〈E →V 〉. This block
nests block set of entity–value pairs to represent the fact these entity–value pairs
are logically related to the entity type–attribute pair in BAT’s header. Again,
the complete physical data layout consists of multiple blocks like these and is
denoted as 〈T,A 〈E →V 〉〉.

A third way to preserve logical structure is the physical order. Normally, the
physical order of blocks within a block set is insignificant. Netherless, some
layouts utilize the physical order, e.g. the traditional row store store layout, as

88 H. Voigt, A. Hanisch, and W. Lehner

customer date

Smith 12/04/12

.

.

.
.
.
.

o1

.

.

.

Order

. . .

.

.

.

CityT

[A]

[V] 〈E [V]〉

〈T [A] 〈E [V]〉〉

Fig. 3. Row store layout

shown in Figure 3. For each entity type, the row store maintains an ordered set of
attributes. In Flexs, we denote such an ordered set with brackets: [A]. All values
of an entity are also stored in order, namely in the order of the attributes of the
corresponding entity type. Hence, the row store layout 〈T [A] 〈E [V]〉〉 represents
the logical relations between attributes and values exclusively by their order.

Next to three discussed layouts, Flexs can also describe various other layouts
as shown in Table 1. The table shows each layout with its respective Flexs ex-
pression and an example of the resulting block set. Note that Flexs explicitly
considers the role of the schema elements entity types and attributes within
the physical data layout. The inclusion of schema elements allows Flexs to sup-
port physical data layout for irregular data, e.g., interpreted record and verti-
cal schema. Further it allows Flexs to support also layouts that have not been
widely considered so far. For instance, the tagging layout shown in Table 1 allows
to physically represent multifaceted entities as they exist in the Freebase data
model [8]. This clearly distinguishes Flexs from other modeling approaches such
as list comprehension.

Flexs is formally defined by a grammar as shown in Figure 5. To be valid, a
Flexs expression has to follow the grammar. The central element is the block set
definition (<blockset>). A block set can be defined as ordered (<ordered>) or
as a block set without particular order (<unordered>). Ordered block sets are
defined on single domains. Further, ordered block sets are only allowed in pairs
in Flexs expressions, where one of the two ordered block sets has to be defined on
the domain of values V . Normal block set definitions consist of header domains
(<header>), included domains (<include>), and nested block sets (<nesting>).
There must be at least one header domain; included domains and nested block
sets are optional. Among the four domains, we distinguish between the specifier
domains – entity types T , entities E, and attributes A – and the values domain
V . We are not considering values to have an identity of their own; value identity
derives from the entity type, the entity, and the attribute a value belongs to.
Consequently, V is only allowed in ordered block sets or as included domain in
unordered block sets.

Flexs – A Logical Model for Physical Data Layout 89

T
a
b
le

1
.

V
a
ri

o
u

s
p

h
y
si

ca
l

d
a
ta

la
y
o
u

ts

V
er

ti
ca

l
sc

h
em

a
〈T

,E
,A
→

V
〉

〈O
rd

e
r
,
o
1
,
c
u
st
o
m
e
r
→

S
m
it
h
|O

rd
e
r
,
o
1
,
d
a
te

→
1
2
/
0
4
/
1
2
|O

rd
e
r
,
o
2
,
c
u
st
o
m
e
r
→

M
ey
er

|
.
.
.〉

R
ow

st
o
re

〈T
[A

]〈E
[V

]〉〉
〈O

rd
e
r
,
[c
u
st
o
m
e
r
|d

a
te

]
〈o

1
,
[S
m
it
h
|1

2
/
0
4
/
1
2
]
|o

2
,
[M

ey
er

|1
2
/
0
5
/
1
2
]〉
〉

C
o
lu

m
n

st
o
re

〈T
[E

]〈A
[V

]〉〉
〈O

rd
e
r
,
[o

1
|o

2
]
〈c

u
st
o
m
e
r
,
[S
m
it
h
|M

ey
er
]
|d

a
te

,
[1
2
/
0
4
/
1
2
|1

2
/
0
5
/
1
2
]〉
〉

B
A

T
s

〈T
,A
〈E
→

V
〉〉

〈O
rd

e
r
,
c
u
st
o
m
e
r
〈o

1
→

S
m
it
h
|o

2
→

M
ey
er
〉
|O

rd
e
r
,
d
a
te

〈o
1
→

1
2
/
0
4
/
1
2
|o

2
→

1
2
/
0
5
/
1
2
〉〉

In
te

rp
re

te
d

re
co

rd
〈T
〈E
〈A
→

V
〉〉〉

〈O
rd

e
r
〈o

1
,
〈c

u
st
o
m
e
r
→

S
m
it
h
|d

a
te

→
1
2
/
0
4
/
1
2
〉
|o

2
,
〈c

u
st
o
m
e
r
→

M
ey
er

|d
a
te

→
1
2
/
0
5
/
1
2
〉〉
〉

B
ig

T
a
b

le
〈T
〈E

,A
→

V
〉〉

〈O
rd

e
r
〈o

1
,
c
u
st
o
m
e
r
→

S
m
it
h
|o

1
,
d
a
te

,
→

1
2
/
0
4
/
1
2
|o

2
,
c
u
st
o
m
e
r
→

M
ey
er

|
.
.
.〉
〉

X
M

L
-l

ik
e

〈E
→

T
〈A
→

V
〉〉

〈o
1
→

O
rd

e
r
〈c

u
st
o
m
e
r
→

S
m
it
h
|d

a
te

→
1
2
/
0
4
/
1
2
〉
|o

2
→

O
rd

e
r
〈c

u
st
o
m
e
r
→

M
ey
er

|
.
.
.〉
〉

T
a
g
g
in

g
〈E
〈T
〉〈
A
→

V
〉〉

〈o
1
〈O

rd
e
r
〉〈

c
u
st
o
m
e
r
→

S
m
it
h
|d

a
te

→
1
2
/
0
4
/
1
2
〉
|o

2
〈O

rd
e
r
〉〈

c
u
st
o
m
e
r
→

M
ey
er

|
.
.
.〉
〉

O
rd

e
r

c
u
st
o
m
e
r

d
a
te

o
1

S
m
it
h

1
2
/
0
4
/
1
2

o
2

M
ey
er

1
2
/
0
5
/
1
2

C
it
y

n
a
m
e

c
1

L
o
n
d
o
n

c
2

B
er
li
n

V
o
1

V
o
2

V
c
1

V
c
2

A
O
rd

e
r

E O
rd

e
r

A
C
it
y

E C
it
y

T

〈T
[A

]
〈E

[V
]〉
〉

[A
]

〈E
[V

]〉

[V
]

Blockset
definitions

Blocksets

F
ig
.
4
.

B
lo

ck
se

t
w

it
h

th
e

ro
w

st
o
re

la
y
o
u

t
〈T

[A
]〈E

[V
]〉〉

90 H. Voigt, A. Hanisch, and W. Lehner

<blockset> ::= <ordered> | <unordered>
<ordered> ::= ‘[’ <domain> ‘]’

<unordered> ::= ‘〈’ <header> <include>? <nesting>? ‘〉’
<header> ::= <domain>+
<include> ::= ‘→’ <domain>+
<nesting> ::= <blockset>+
<domain> ::= <specifiers> | <values>

<specifiers> ::= ‘T ’ | ‘E’ | ‘A’
<values> ::= ‘V ’

Fig. 5. Flexs grammar

When parsed, a Flexs expression results in an abstract syntax tree of block
set definitions as shown in the upper half of Figure 4. These block set defini-
tions provide the necessary information to physically arrange and retrieve data
on storage. Like the block set definitions, the physical layout described by the
expression is hierarchical. On each hierarchy level the block set definition is in-
stantiated with one or more block sets, so that each block set is typed by a
particular block set definition from the abstract syntax tree. The topmost block
set definition is only instantiated once, while lower-level block set definitions are
likely to be instantiated multiple times, depending on the data.

Block sets, the instances of block set definitions, contain one or multiple blocks.
The blocks contain data elements and may nest lower-level block sets. The defi-
nition of a block set defines the structure of its blocks. For instance, in a block
set of the definition 〈E [V]〉, all blocks take the form (e,X), where e is an entity
and X is a block set of the definition [V]. All blocks in a block set are uniquely
identified by their headers, i.e. their elements from the header domains in the
definition. In our example, all blocks are uniquely identified by the data element
e. A block’s data elements from the included domains in the block set definition
form the block include.

As an example, Figure 4 illustrates the block sets resulting from the row
store layout 〈T [A] 〈E [V]〉〉 given our example data. In the figure, the rounded
rectangles mark block sets, while the vertical lines separate blocks within block
sets. The top most block set T is an instance of 〈T [A] 〈E [V]〉〉 as indicated by
the arrow pointing from the block set to its block set definition. Consequently, it
contains blocks consisting of an entity type as header and two nested block sets of
the form [A] and 〈E [V]〉. T contains two of such blocks: (Order ,AOrder , EOrder)
and (City ,ACity , ECity). The order of these two blocks as given in the figure is
insignificant. Further down in the hierarchy, for instance, the block set EOrder

is of the form 〈E [V]〉 and contains the blocks (o1,Vo1) and (o2,Vo2). Vo1 and
Vo2 are both ordered block sets of the form [V], each containing a pair of blocks,
(Smith), (12/04/12) and (Meyer), (12/05/12), respectively. Here, the order of the
blocks is essential since it allows connecting the values to their attributes stored
in the ordered block set AOrder .

Flexs – A Logical Model for Physical Data Layout 91

Order customer date o1 Smith 12/04/12 o2 Meyer 12/05/12 . . .

Vo1 Vo2AOrder

EOrder

T

Order [customer date]

.

.

.

o1 [Smith 12/04/12]

o2 [Meyer 12/05/12]

container c(T) container c(EOrder)

B
lo

ck
se

ts
M

a
te

ri
a
li

za
ti

o
n

Fig. 6. Block set materialization for 〈T [A] 〈E [V]〉〉

3 Block Set Materialization

With Flexs a storage engine can be configured to a specific physical data layout.
The storage engine then has to arrange the data accordingly in storage. There-
fore the storage engine simply can materialize the blocks of the topmost block
set consecutively in storage. The materialization of a block embeds the material-
ization of all nested block set. For the majority of layouts, however, this simple
materialization strategy results in very large physical blocks. These large physi-
cal blocks and particularly the nested block sets are hard to maintain and cannot
be efficiently queried. Selective queries would have to read a lot of unnecessary
data.

Efficient retrieval and maintenance of blocks require indirection steps in the
materialization. An indirection step separates nested block sets into a dedicated
materialization. In the materialization of the nesting block a reference points to
the dedicated materialization of the nested block set. To have an indirection step
for each nested block set is not ideal either. Too many indirection steps lower
the retrieval performance as well; they reduce locality and increase the number
of references to resolve. The optimal set of indirection steps depends on the data
set and the configured layout.

For instance, the materialization strategy used in Figure 6 is absolutely rea-
sonable for regular relational data, where we have orders of magnitude more
entities than attributes and entities are only a few hundred bytes of size. How-
ever, with a very large number of attributes or large blob values the embedded
block sets AOrder , Vo1 , Vo2 , etc. would be significantly larger. If so, a different
materialization strategy may be more efficient.

We propose an adaptive strategy to avoid the embedding of very large block
sets. When a database is created, the adaptive strategy starts with a single phys-
ical container for the topmost block set. All other block sets are materialized in
an embedded way. With more data being inserted, the block sets grow. For

92 H. Voigt, A. Hanisch, and W. Lehner

every block set where the embedded materialization size exceeds a configured
threshold, e.g., the size of a memory page or a disk block, the adaptive strategy
introduces an indirection step and moves the block set to a dedicate materializa-
tion. Note that this reorganization is applied to relatively small block sets only
(just above the threshold), so that operational overhead is small. Regardless of
the configured layout, the adaptive strategy finds the optimal set of indirection
steps.

4 Related Work

Flexs aims at supporting a wider range of applications in a single system, by of-
fering a configurable specialization of the physical data layout. Most prominently,
OLTP workloads favor a row-oriented data layout while OLAP workloads profit
from a column-oriented layout. Supporting these two workloads in a single sys-
tem has been the aim of multiple works in recent years.

Index-only plans try to emulate column-oriented processing in a row-based
system. Additionally to the base relational, it adds an unclustered B+Tree in-
dex on every column. With the help of index intersection, the database system
can then answer queries without reading the base relation [21,23]. The efficiency
of index-only plans can be increased by exploiting the parallel processing capabil-
ities of modern hardware [13]. Microsoft further exploits this idea by introducing
a dedicated column store index [19]. Trojan Columns [18] follows the same line
but omits the base relation completely. Still, the index-only plans remain an
OLAP-focused add-on to a row-oriented database system. They do not offer the
generality of Flexs.

A very early approach of combining OLTP and OLAP is Fractured Mir-
rors [22]. Fractured Mirrors leverages the fact, that disk-based databases usu-
ally replicate data to multiple disks. If the replicates hold the data in different
physical layouts, queries can access the data in their preferred physical layouts.
As presented, Fractured Mirrors supports exactly the two representations, row
store and column store. Both are implemented as different scan operators in the
database engine. Generally, the idea is orthogonal to Flexs. Both would make
an appealing combination.

HyPer [20] is a main memory database system with OLTP and OLAP support.
It runs OLAP queries concurrently and isolated from the OLTP queries, by uti-
lizing hardware-supported page shadowing. In addition to the strictly sequential
execution of OLTP write operations, this eliminates the need for locking or any
other kind of currency control, resulting in outstanding transaction throughput
and query response times. The physical data layout, though, is not the authors’
main concern. HyPer uses the same physical layout for all data; globally config-
ured to either row-oriented or column-oriented. Other physical data layouts are
not supported.

SAP HANA [14,25] is another hybrid main memory database system for OLTP
and OLAP. In its hybrid relational engine, it combines SAP’s row store database
engine P*Time [10] and SAP’s column store engine TREX. HANA’s academic

Flexs – A Logical Model for Physical Data Layout 93

sidekick [24] uses MaxDB as row-store engine. The setup, though, is the same:
Two relational engines wired to the same query processor. During table cre-
ation it is decided which engine manages the table. The well-known open source
database system MySQL also follows the multiple engine concept. Here, an inter-
face separates data storage from the query processor including SQL parser and
query optimizer. Over the years, many storage engines have been developed each
implementing its own physical data layout. Instead of supporting a hard-coded
set of physical data layouts, Flexs aims at a freely configurable physical data
layout implemented in a single engine.

HYRISE [16] is also a hybrid main memory storage engine. It partitions tables
vertically into configurable column groups, where each column group is stored
directory compressed as if it is a single column. Hence, in its heart, HYRISE is a
main memory column store that can be configured to mimic a row store or mixed
layouts. The idea of bundling columns together that are typically accessed was
already used earlier in the Data Morphing approach [17]. It is an extension of
PAX [3]. PAX organizes pages like a column store for better cache performance.
Data Morphing improves that by exploiting column groups. All these approaches
focuses on OLTP and OLAP. Other workloads favoring different physical data
layouts are not considered.

While the aforementioned approaches focus on the combination of OLTP and
OLAP workloads RodentStore [11] takes a broader hold of the topic. Like Flexs,
RodentStore envisions a freely configurable data layout, but with a different fo-
cus than Flexs. RodentStore describes the physical data layout as nested lists of
values. How the lists are nested and which values they contain can be configured
with a storage algebra building on list comprehensions. This allows a wide range
of physical data layouts including row store, column store, and grid layout. With
the focus rather on spatial data, RodentStore includes some representations not
covered by Flexs, such as the utilization of space filling curves. The RodentStore
concept assumes strictly regular relational data, though, and does not consider
the role of specifiers in the data representation. Hence, it lacks support for phys-
ical data layouts most suitable for irregular data. It would be interesting to see
how both concepts, RodentStore and Flexs could be combined.

Another notable approach on increasing physical data independence is
GMAP [29]. GMAP offers a generalized definition language for access paths.
Where traditional access paths are fixed to the logical data model, GMAP de-
fines the data stored in an access path with query-like statements. This provides
great flexibility in the physical design for the DBA. As RodentStore, GMAP
assumes regular data and does not consider the role of specifiers in the data
layout. GMAP’s focus is to allow the consolidation of associated entities from
different domains in a single access path. It also allows the replication of enti-
ties over multiple access paths. GMAP offers a great way to define data subsets
which require different physical data layouts. In that respect, GMAP and Flexs
complement each other perfectly.

Finally, GENESIS [5,6] is a project from the mid-eighties that developed de-
tailed storage models for database systems including aspects of the physical data

94 H. Voigt, A. Hanisch, and W. Lehner

layout. The aim, however, was not to strengthen the physical data independence
of database systems but to speedup their development. Instead of providing an
exhaustive description of a database system’s storage layer, it focuses on captur-
ing its macroscopic characteristics.

5 Conclusion

In this paper, we presented Flexs. Flexs allows describing the macroscopic char-
acteristics of physical data layouts, i.e. how data elements are grouped on the
physical storage. It can express common layouts such as row store, column store
or BATs. Flexs also can serve as a foundation for mixed physical data layouts – a
direction we plan to explore next. In contrast to list comprehensions, Flexs is not
limited to regular data; it supports also layouts for irregularly structured data,
such as interpreted record and vertical schema. A Flexs expression describes
a hierarchical structure of nested block sets, which contain blocks of data ele-
ments and thereby determine how data elements can be selected and scanned.
We also proposed an adaptive materialization strategy that finds the optimial
set of indirection steps to allow for efficient retrieval and maintanence of the
data. Flexs is not meant to provide top-level performance but allow combining
the characteristics of various physical data layouts in a single system.

References

1. Abadi, D.J., Marcus, A., Madden, S., Hollenbach, K.J.: Scalable Semantic Web
Data Management Using Vertical Partitioning. In: VLDB 2007 (2007)

2. Agrawal, R., Somani, A., Xu, Y.: Storage and Querying of E-Commerce Data. In:
VLDB 2001 (2001)

3. Ailamaki, A., DeWitt, D.J., Hill, M.D., Skounakis, M.: Weaving Relations for
Cache Performance. In: VLDB 2001 (2001)

4. Aulbach, S., Seibold, M., Jacobs, D., Kemper, A.: Extensibility and Data Sharing
in evolving multi-tenant databases. In: ICDE 2011 (2011)

5. Batory, D.S.: Modeling the Storage Architectures of Commercial Database Systems.
ACM Transactions on Database Systems 10(4) (1985)

6. Batory, D.S., Barnett, J.R., Garza, J.F., Smith, K.P., Tsukuda, K., Twichell, B.C.,
Wise, T.E.: GENESIS: An Extensible Database Management System. IEEE Trans-
actions on Software Engineering 14(11) (1988)

7. Beckmann, J.L., Halverson, A., Krishnamurthy, R., Naughton, J.F.: Extending
RDBMSs To Support Sparse Datasets Using An Interpreted Attribute Storage
Format. In: ICDE 2006 (2006)

8. Bollacker, K.D., Evans, C., Paritosh, P., Sturge, T., Taylor, J.: Freebase: A Collabo-
ratively Created Graph Database For Structuring Human Knowledge. In: SIGMOD
2008 (2008)

9. Boncz, P.A., Kersten, M.L.: MIL Primitives for Querying a Fragmented World.
The VLDB Journal – The International Journal on Very Large Data Bases 8(2)
(1999)

10. Cha, S.K., Song, C.: P*TIME: Highly Scalable OLTP DBMS for Managing Update-
Intensive Stream Workload. In: VLDB 2004 (2004)

Flexs – A Logical Model for Physical Data Layout 95

11. Cudré-Mauroux, P., Wu, E., Madden, S.: The Case for RodentStore: An Adaptive,
Declarative Storage System. In: CIDR 2009 (2009)

12. Cunningham, C., Graefe, G., Galindo-Legaria, C.A.: PIVOT and UNPIVOT: Op-
timization and Execution Strategies in an RDBMS. In: VLDB 2004 (2004)

13. El-Helw, A., Ross, K.A., Bhattacharjee, B., Lang, C.A., Mihaila, G.A.: Column-
Oriented Query Processing for Row Stores. In: DOLAP 2011 (2011)

14. Färber, F., Cha, S.K., Primsch, J., Bornhövd, C., Sigg, S., Lehner, W.: SAP
HANA Database - Data Management for Modern Business Applications. SIGMOD
Record 40(4) (2011)

15. French, C.D.: “One Size Fits All” Database Architectures Do Not Work for DDS.
In: SIGMOD 1995 (1995)

16. Grund, M., Krüger, J., Plattner, H., Zeier, A., Cudré-Mauroux, P., Madden, S.:
HYRISE - A Main Memory Hybrid Storage Engine. The Proceedings of the VLDB
Endowment 4(2) (2010)

17. Hankins, R.A., Patel, J.M.: Data Morphing: An Adaptive, Cache-Conscious Stor-
age Technique. In: VLDB 2003 (2003)

18. Jindal, A., Schuhknecht, F., Dittrich, J., Khachatryan, K., Bunte, A.: How
Achaeans Would Construct Columns in Troy. In: CIDR 2013 (2013)

19. Larson, P.Å., Clinciu, C., Hanson, E.N., Oks, A., Price, S.L., Rangarajan, S., Surna,
A., Zhou, Q.: SQL Server Column Store Indexes. In: SIGMOD 2011 (2011)

20. Kemper, A., Neumann, T.: HyPer: A hybrid OLTP&OLAP main memory database
system based on virtual memory snapshots. In: ICDE 2011 (2011)

21. Mohan, C., Haderle, D.J., Wang, Y., Cheng, J.M.: Single Table Access Using Mul-
tiple Indexes: Optimization, Execution, and Concurrency Control Techniques. In:
Bancilhon, F., Zhang, J., Thanos, C. (eds.) EDBT 1990. LNCS, vol. 416, pp. 29–43.
Springer, Heidelberg (1990)

22. Ramamurthy, R., DeWitt, D.J., Su, Q.: A Case for Fractured Mirrors. In: VLDB
2002 (2002)

23. Raman, V., Qiao, L., Han, W., Narang, I., Chen, Y.L., Yang, K.H., Ling, F.L.:
Lazy, Adaptive RID-List Intersection, and Its Application to Index Anding. In:
SIGMOD 2007 (2007)

24. Schaffner, J., Bog, A., Krüger, J., Zeier, A.: A Hybrid Row-Column OLTP
Database Architecture for Operational Reporting. In: Castellanos, M., Dayal, U.,
Sellis, T. (eds.) BIRTE 2008. LNBIP, vol. 27, pp. 61–74. Springer, Heidelberg
(2009)

25. Sikka, V., Färber, F., Lehner, W., Cha, S.K., Peh, T., Bornhövd, C.: Efficient
Transaction Processing in SAP HANA Database – The End of a Column Store
Myth. In: SIGMOD 2012 (2012)

26. Stonebraker, M.: Stonebraker on NoSQL and enterprises. Communications of the
ACM 54(8) (2011)

27. Stonebraker, M., Abadi, D.J., Batkin, A., Chen, X., Cherniack, M., Ferreira, M.,
Lau, E., Lin, A., Madden, S., O’Neil, E.J., O’Neil, P.E., Rasin, A., Tran, N., Zdonik,
S.B.: C-Store: A Column-oriented DBMS. In: VLDB 2005 (2005)

28. Stonebraker, M., Çetintemel, U.: ”One Size Fits All”: An Idea Whose Time Has
Come and Gone. In: ICDE 2005 (2005)

29. Tsatalos, O.G., Solomon, M.H., Ioannidis, Y.E.: The GMAP: A Versatile Tool for
Physical Data Independence. The VLDB Journal – The International Journal on
Very Large Data Bases 5(2) (1996)

Storing Long-Lived Concurrent Schema

and Data Versions in Relational Databases

Bob Wall1 and Rafal Angryk2

1 Department of Computer Science – Montana State University
Bozeman, MT 59717-3880, USA

bwall@cs.montana.edu
2 Department of Computer Science – Georgia State University

34 Peachtree Street, Atlanta, GA 30302-3994, USA
angryk@cs.gsu.edu

Abstract. Although there is a strong focus on NoSQL databases for
cloud computing environments, traditional relational data bases are still
an integral part of many computing services in the cloud. Two signifi-
cant issues in managing a relational database in a cloud environment are
handling the inevitable evolution of the database schema and managing
changes to system configuration and other data stored in the database
as the system evolves over time. Techniques for handling these issues in
on-premise databases are much less feasible in cloud computing environ-
ments, which demand efficiency, elasticity, and scalability. We propose
a versioning system that can be used in relational databases to allow
new versions of the database schema and data to be maintained within
the same database as the production data. Past research on versioning
either handles data versioning but not schema changes, or handles both
but is focused on OLAP or XML databases. In this paper, we describe a
mechanism for storing concurrent versions of data in an OLTP database.
We explore two different implementation alternatives for versioned data
storage and evaluate their relative merits given different workloads. We
provide a concrete description of how this can be implemented within
the InnoDB storage engine, which is the default data store for MySQL
databases, and we present a quantitative comparison of the two imple-
mentations in InnoDB.

Keywords: schema evolution, data versioning, Database as a Service.

1 Introduction

The explosive growth of cloud computing has emphasized the need for greater
flexibility in installation, maintenance and management of systems that run in
Software as a Service (SaaS) or Platform as a Service (PaaS) environments.
Although NoSQL databases are very popular in cloud environments, they are
primarily used for data analysis purposes. There is a significant demand for tradi-
tional SQL-based relational database systems, especially among companies with
SaaS offerings. Many SaaS applications are built around relational databases,

c© Springer International Publishing Switzerland 2015 97
N. Bassiliades et al. (eds.), New Trends in Database and Information Systems II,
Advances in Intelligent Systems and Computing 312, DOI: 10.1007/978-3-319-10518-5_8

98 B. Wall and R. Angryk

and there is demand for relational Database as a Service (DBaaS) systems such
as the one described by Curino et al. [1].

On-premise software systems have historically had difficulty handling the in-
evitable evolution of their database schema. A related issue is management of
changes to system configuration and other data stored in the database when
the system is upgraded to a newer version. These problems are multiplied in
a multi-tenant environment. Traditionally, dedicated software systems handle
these issues by creating development and staging copies of the system, where
changes are made and tested. After successful tests, the changes are applied to
the production environment. These techniques impose significant excess com-
pute and storage capacity requirements that are even more detrimental in a
cloud environment, where they decrease the efficiency, elasticity, and scalability
of the environment. There is significant motivation for the service provider to
find ways to improve these aspects of system operation.

Previously, we proposed a system for versioning the schema and data in an
online transaction processing (OLTP) database [2]. This work described exten-
sions to a Relational Database Management System (RDBMS) to allow the data
and schema of a database instance to be versioned, so that the schema and the
configuration data stored in the instance can be changed and the changes can
be tested while the instance is online, without creating a copy of the database.
Once updates and testing are complete and ready to be placed into the produc-
tion environment, the RDBMS should facilitate migration of the changes into
the system without downtime. We are expanding this initial idea to a paradigm
where versions of the production schema and data (which we call branches) are
created. A branch consists of some set of schema and/or data deltas, or differ-
ences, from the parent version. A branch can be committed into the version of
the database from which the branch was created when work on the branch is
complete; this applies the deltas from the branch to the parent version. Branches
can also be used for testing or other purposes and then be abandoned if their
changes are not meant to be applied to the production system.

We refer to the production version as the trunk. A single major version branch,
which we call the head, can be created from the trunk; this branch should be used
to install and test version upgrades of the system. It is also possible to create
minor version branches from the trunk or the head branches. Minor versions
should be used to create and test customizations that are independent of the
system software.

Each branch provides isolation of the deltas contained in that version; that
is, a user that is not connected to a branch will not see any of the changes made
in that branch. The exception is that changes made in any version are visible
in all branches created from that version, unless there are changes made in the
branch that mask the changes from the parent version.

With this versioning system in place, it will be possible to create a branch of a
production database instance and make schema and data changes while queries
are being run against the production instance, a very important factor in real-
time SaaS operations. A key requirement of the system is that it must add little

Storing Long-Lived Concurrent Schema and Data Versions 99

or no overhead to queries against the production instance. Another requirement
is that data that is not changed in a branch should be retrieved from the version
from which the branch was created. A key use case for this method of versioning
is to prepare a system for a new software release. Any schema changes required by
the new software version can be made in the branch, and configuration data can
be updated as appropriate. Regression tests can be run, and then the branch
can be committed into the trunk version at the same time as the software is
updated to the new version.

A similar use case is to allow customizations of a production site. A branch
can be created, schema changes and code changes can be made, and the changes
can be tested without impacting users of the trunk database. Once the tests
have been completed, the branch can be merged into the trunk, so that all
schema and data changes can be applied seamlessly to the production environ-
ment in an atomic operation. Branches can also be used for additional testing
and abandoned when they are no longer needed. This allows potentially destruc-
tive changes to be made to the data in an environment where the application
can commit them to the branch using normal operations, but the changes can be
isolated and discarded easily, without adversely affecting the production envi-
ronment. All of these scenarios allow the branch version to be tested adequately
without requiring that the full production database be copied or that sampling
techniques be used to copy a subset of the data.

Contribution: We are providing a detailed exploration of one aspect of the
versioning system we previously proposed, the concurrent storage of multiple
versions of data in relational tables. We believe that such a versioning system
will be particularly advantageous in cloud computing environments such as SaaS
or DBaaS systems, to improve operational efficiency, scalability, and elasticity
of the system, especially in multi-tenant environments. It will allows changes to
be made and tested in isolation, while still accessing the production data. These
changes do not require a copy of the database to be made; for a multi-tenant
SaaS system, this can be a significant savings of storage, server resources, and
time.

Scope: We explore two different mechanisms for storing the data for the branch
versions of a multi-version database. We also describe how these mechanisms can
be implemented in the InnoDB storage engine. We concentrate on the storage
system for data versions and do not explore other aspects of the versioning sys-
tem, including versioning schema changes. We present the results of experiments
that compare the two storage techniques on a variety of workloads, using the
metric of pages read by queries to evaluate their relative efficiency.

Organization: First, we will provide some background on previous research,
and then briefly describe how table data is stored in InnoDB. We then describe
two different options for storing multiple versions of row data for a table. Next,
we compare the performance of these two different options for some different
workloads to assess which of the options might be a better choice. Finally, we
offer conclusions.

100 B. Wall and R. Angryk

2 Background

Previous research has suggested solutions to similar problems, mostly in the
realm of Computer-Aided Design (CAD) and Geospatial Information Systems
(GIS). One suggested approach was to use long-running transactions to isolate
changes. A paper by Agarwal et al. describes the Oracle Workspace Manager,
which is a framework to support long-running transactions within the database
[3]. The authors adopted similar terminology borrowed from source code version
control systems. The underlying implementation augments tables with version
information and defines views to mask the versions and provide SQL indepen-
dence for system applications, so the applications do not need to be modified to
use the versioning system.

Subsequent work by the same group (Chatterjee et al. [4]) provides more detail
on their approach. When versioning is enabled for a table, the table is renamed,
a version number column is added, and a view is created with the original table
name to hide the new column. The system they describe provides comprehensive
support for data versioning, but it does not allow for changes to the database
schema in versions. Some aspects of the Workspace Manager are similar to the
idea of minimal data sets that we introduced in a previous paper [5], in that a
version can read data from any of the parents in its version hierarchy. However,
the Workspace Manager does not provide support for schema versioning, and
changes to data in parent versions are not automatically available in the child.
Instead, the user of a version must request a refresh of the versions data. Another
significant drawback is that when versioning is enabled for a table, the version
number column must be added. In the InnoDB storage engine, this can be a
fairly disruptive process if the table is large. The new column must also be made
part of the primary key, which will increase the size of every index on the table
(and require rebuilding every index).

There has been significant research on the topic of schema evolution in re-
lational databases. Much of this work focused on object oriented databases
(OODB), including the work by Rundensteiner et al. [6] [7] and the tempo-
ral versioning research by Grandi et al. [8] and Galante et al. [9]. There were a
number of papers by Zaniolo, Moon, Curino, et al. on quantifying and supporting
schema evolution in RDBMSes [10] [11] [12] [13]. Most of this research is based
on temporal evolution of the schema and on mapping queries that use older
versions of the schema into the current data store. This is somewhat different
from the problem we are considering, where multiple versions are simultaneously
active.

Recent research reinforces our assertion that relational databases are in use
in cloud environments, and that the problem we examine is still very relevant.
In addition to the recent work by Curino, et al. [1][12], there is work on ac-
commodating multiple tenants in a RDBMS by Schiller et al. [14][15], and on
scaling and load balancing for multi-tenant databases by Das, et al. [16], Moon,
et al. [17] and Quamar et al. [18]. There was specific work on schema mapping
techniques for multi-tenant SaaS by Aulbach et al. [19].

Storing Long-Lived Concurrent Schema and Data Versions 101

2.1 InnoDB Basics

The InnoDB storage engine provides full transactional support, implementing all
the ACID properties required for reliable transactions (atomicity, consistency,
isolation, and durability). InnoDB provides row-level locking, and it uses a Multi-
Version Concurrency Control (MVCC) mechanism to prevent the writer of a row
from blocking all readers until the writers transaction commits.

Jeremy Cole has developed an excellent description of the InnoDB data struc-
tures and internals, from which much of this summary information was gleaned
[20]. InnoDB uses a standard B+-tree data structure to index data stored in
database tables. The engine stores the actual table data using a clustered index;
this same storage technique is used by Sybase and SQL Server. All of the row
data in an InnoDB table is stored in the leaf entries of the index on the tables
primary key. If no such key is defined on the table, InnoDB generates a unique
six-byte ID for each row and uses this as the primary key.

This organization of data in InnoDB is the basis for the experiments we will
present in the paper. Other databases and other storage engines will likely or-
ganize the data differently, and will handle MVCC and indexing differently. For
our initial problem domain, we were constrained to use the MySQL database
and InnoDB storage engine. In addition, the tools provided by Jeremy Cole [20]
enabled detailed analysis of the impact of various changes to the data and to the
storage engine.

3 Data Version Storage

In our initial examination of this problem, it was tempting to consider just han-
dling the activity in a branch as a single long-lived transaction, as suggested by
Agarwal [3]. However, with this approach interactions with the branch would
not provide the normal transactional semantics, which would be undesirable.
Also, as explained we were initially constrained to MySQL and InnoDB. With
an InnoDB data store, it is not feasible to have activity in a single long-running
transaction, due to InnoDBs implementation of MVCC. A transaction main-
tained over a long period of time causes queries against that transaction to scan
many undo log records. It could also lead to exhaustion of the space available in
the rollback segment, since undo log records must be retained until they are no
longer needed to provide the data at the start of the long-running transaction.
Also, updates to rows in the transaction will lock them until the transaction
commits. Finally, MVCC does not accommodate versioning of schema changes.

To provide a workable versioning system that will support long-lived data
versions, normal transaction semantics within each version, and eventually allow
schema changes within versions, we are implementing a system somewhat similar
to the one described by Chatterjee et al. [4]; rows of the table are augmented with
a version, and we provide a simple version hierarchy where changes in versions
above a branchs in the hierarchy are visible, but changes in versions in other
branches of the hierarchy are not. Changes in a branch are committed into the
parent version. At this time, we are concentrating on storing data changes in

102 B. Wall and R. Angryk

versions and to push the version handling further into the storage engine, so
versioning will have less performance impact and can be better optimized than
the view-based implementation described by Chatterjee et al. [4].

A key aspect of the data storage for our versioning system is the goal of storing
only the modified data in a version. This increases the work required to answer
queries on a branch, but it eliminates the need to copy data from versions higher
in the version hierarchy. This helps to satisfy the requirement that the versioning
system introduce as little impact on the trunk database as possible. To support
this, we introduce the idea of a new unspecified value for a column in a row. If a
column has a value of unspecified, that means that the value must be retrieved
from its parent row in the version hierarchy. This step is applied recursively
until the root (the trunk version) is reached; there are never any unspecified
values in the trunk. Implementing this unspecified value concept in InnoDB is
relatively simple. Each data record in the clustered index is prefixed by a variable
length header which includes a bitmap indicating which of the nullable columns
in the row actually contain NULL values, and it includes a list of lengths for
the variable-length columns in the row. For non-trunk versions, we simply add
a bitmap indicating which of the columns in the row contain unspecified values.

We propose creating a separate copy of the table associated with each version
and providing a separate rollback segment for each version. This is our initial
implementation approach. This provides good separation of activity in a version
from other versions (particularly the trunk). However, fetches from a branch
table typically require subsequent fetches from the parents of the table in the
version hierarchy to retrieve unspecified values and rows that have not been
modified in the branch.

For example, suppose a table is created and populated in the trunk using this
SQL:

CREATE TABLE t

(I INTEGER NOT NULL PRIMARY KEY,

Col1 CHAR(5) NOT NULL, Col2 CHAR(5) NOT NULL,

Col3 CHAR(5) NOT NULL);

INSERT INTO t (I, Col1, Col2, Col3) VALUES

(1, A, B, C), (5, D, E, F), (23, G, H, I);

Then suppose a branch is created, and the following SQL is executed:

UPDATE t SET Col2 = H1 WHERE I = 23;

This would produce the pair of tables shown on the left side of Fig. 1. Because
InnoDB does support a somewhat variable format for data rows, we have also
explored storing the data for all versions of a row in the same table. We add a
field to the row header to encode the version number of the row. Records for the
same key are linked in ascending order of version, with the trunk record first.
The table on the right side of Fig. 1 shows a page containing data for a key A
in the trunk version, a branch of the trunk, the head version, and a branch of
the head.

Storing Long-Lived Concurrent Schema and Data Versions 103

Fig. 1. Separate tables to store versions, and consolidation of multiple data versions

When a key has data in multiple versions, we will attempt to keep the rows
for that key collocated on a single page. If we split a page, we will attempt to
move all records for the same key to the new page. However, if all the records
for that key will not fit on a single page, it will be necessary to split the records
across pages.

Due to InnoDB’s use of clustered indices, this implementation approach re-
quires that we disallow changes to the values of any columns that make up a rows
primary key in any branch, or in the trunk if any branches are present. However,
even with our initial implementation, we need to impose the same restriction, so
that we can retrieve the correct corresponding row from each parent version in
the version hierarchy. Given this restriction, we expect this consolidated imple-
mentation to provide some advantages. Most importantly, it preserves locality
of reference across versions, so that queries that must retrieve data from parents
in the version hierarchy will typically have the required data in the current page
of memory.

4 Comparative Analysis

In this section, we compare the performance of storing version data in separate
tables vs. consolidating versions and embedding them in the same table. To
perform a quantitative evaluation, we performed experiments using the InnoDB
storage engine that is included with the MySQL database, version 5.6.12.

Hypothesis: storing the data for the trunk and the branch version consolidated
into the same table will be more efficient, when measured in terms of the number
of pages required to answer a range scan query on the branch, than storing the
data in separate tables. This is expected because the query on the branch will
still need to retrieve a significant amount of data from the trunk, and having the
data consolidated on the same set of pages should provide a distinct advantage.

104 B. Wall and R. Angryk

4.1 Experimental Data

We considered two different configurations of the initial data in a table:

– Populated in sequential order of the cluster key
– Populated in random order of the cluster key

For these two configurations, we considered that all non-key columns in the
row were updated. Without modifications to the InnoDB storage engine, it re-
quires the same space per row whether data is specified or not, so modifying
only a subset of the non-key columns would not consume less space.

The key values for all rows to be updated in the branch were distributed
uniformly through the table. That is, if 10% of the rows were updated, a row
was updated every 10 rows. The experiments that follow were simulated using a
standard version of MySQL by creating the following table:

CREATE TABLE t

(a INTEGER NOT NULL AUTO_INCREMENT, b INTEGER NOT NULL DEFAULT 0,

c TIMESTAMP NOT NULL, d DATETIME NOT NULL,

e SMALLINT NOT NULL, f TINYINT NOT NULL,

g CHAR(26) CHARACTER SET latin1 NOT NULL, PRIMARY KEY tab(a,b));

The b column is used to simulate the version number that we would add
in the multi-version implementation. This table has a row size of 64 bytes in
InnoDB (four bytes for each INTEGER, four for the TIMESTAMP, five for the
DATETIME, two for the SMALLINT, one for the TINYINT, 26 for the CHAR,
and 18 bytes of overhead per row.)

InnoDB by default has a page size of 16 KB, and there are 128 bytes of
overhead per page, plus a byte for every two rows. This gives a theoretical limit
of ((16384 - 128) / 64.5), or 252 rows per page. InnoDB prefers to limit the page
fill factor (the portion of this space that is actually used for rows) to 15/16, so
we would expect to see 236 rows in each full page of the table.

We configured InnoDB in file per table mode and inserted one million rows
into this table, using sequentially increasing values for the primary key, a, and 0
for b. We used the innodb space utility (described in [20]) to measure the page
usage of the table. This showed that the table occupied 4,238 leaf nodes, five
internal nodes, and the root node.

We also considered the case where one million rows were inserted into the
table in random order of key values. The page size and row size remain the
same, but InnoDB limits the page fill factor more for inserts in random order
of the cluster key. After populating the table, innodb space reported 6,041 leaf
nodes, 8 internal nodes, and the root node.

4.2 Experimental Scenarios

For each combination of the table populated sequentially or randomly, we create
a branch, modify some percentage of the tables rows in that branch, and then

Storing Long-Lived Concurrent Schema and Data Versions 105

measure the average number of pages required to process a range scan of 1% of
the rows in the table (10,000 rows). We compute this number for both storage
cases:

– Storing branch data in a separate table
– Storing trunk and branch data consolidated in the same table

We varied the number of rows modified in the branch between one and ten
percent, and we also modified 15% and 20% of the rows.

For example, evaluating the consolidated storage option and modifying 10%
of the rows can be simulated using a standard version of MySQL by creating the
table and then executing the following SQL:

INSERT INTO t SELECT a, 1, c, d, e, f, g FROM t WHERE a MOD 10 = 0;

As expected, the resulting table contained 1,100,000 rows, 1,000,000 with b=0
and 100,000 with b=1. Due to InnoDBs page splitting algorithm, innodb space
reported 8,474 leaf pages, with an average of 129.8 rows per page. If we considered
just trunk rows (those with b=0), this would be equivalent to 118 rows per page.

For the separate table storage option, we would have a second table containing
at least 424 leaf pages. This is the best case assuming that the rows were modified
in strictly ascending or descending order of the key value, so InnoDB would pack
them into the pages with the same efficiency it exhibited in the trunk table.

We evaluate these storage alternatives by measuring the number of pages that
are required to satisfy a SELECT query on the table. For this work, we consider
only queries that result in range scans of 10% of the rows in the table (10,000
rows).

If one of these queries is submitted in the trunk, it would need to read ap-
proximately the following number of pages:

Consolidated 10,000 rows / 236 rows/page = 43 pages
Separate 10,000 rows / 236 rows/page = 43 pages

The same query in the branch would scan approximately the following number
of pages:

Consolidated 10,000 rows / 236 rows/page = 43 pages
Separate 43 + (100 / 236) = 44 pages

In this case, the differences between the two storage alternatives are negligible.
The number of pages scanned to answer the range query on the trunk and on
the branch is the same, within one page.

4.3 Experimental Results

Table 1 shows the resulting number of leaf pages occupied by the table for
each method of populating the table and various percentages of rows modified.
Looking across the first row, you can see that for the table populated with
sequential index values, InnoDB was able to accommodate changes to up to 6%
of the rows in the table without splitting any pages. However, after this, the
number of pages allocated nearly doubled.

106 B. Wall and R. Angryk

Table 1. Number of leaf pages occupied in consolidated storage

0 1 2 3 4 5 6 7 8 9 10 15 20

Seq 4238 4238 4238 4238 4238 4238 4238 8474 8474 8474 8474 8474 8474
Rand 6041 6100 6161 6225 6268 6326 6386 6460 6520 6571 6621 6891 7174

The behavior when the table was populated in random order of key values
was significantly different. This is due to the much less homogeneous packing
of rows into individual pages and the typically lower page fill factor. Row two
of the table demonstrates very similar trends of monotonically increasing page
allocation as the number of rows modified increases.

Tables 2 and 3 show the number of pages read to answer range scan queries
over 1% of the rows in the table. Note that in the consolidated storage case, the
numbers are the same for queries in the trunk and in the branch, since the rows
are stored in the same pages. In the separate storage case, the number of rows
required to answer the query in the trunk is unchanged regardless of the number
of rows modified in the branch – 43 pages in the sequential insert case, 61 pages
in the random insert case.

Table 2. Number of pages read to answer range scan query for consolidated storage

0 1 2 3 4 5 6 7 8 9 10 15 20

Seq 43 43 43 43 43 43 43 85 85 85 85 85 85
Rand 61 61 62 63 63 64 64 65 66 66 67 69 72

Table 3. Number of pages read to answer branch range scan query for separate storage

0 1 2 3 4 5 6 7 8 9 10 15 20

Seq 43 44 44 45 45 46 46 46 47 47 48 50 52
Rand 61 62 63 63 64 65 65 66 67 67 68 72 76

For the separate storage case, the number of pages required to answer a range
scan of 1% of the rows in a branch is equal to the number of pages required
to answer that question in the trunk, plus a number of pages computed by the
following formula:⌈

%Mod×NumTrunkRows
NumTrunkRows
NumLeafPages

× 0.01

⌉
= �%Mod×NumLeafPages× 0.01�

For example, for 5% of the rows modified in the random insert all columns
case, the number of rows would be 61 + �.05 × 6326 × .01� = 65

These results show that one storage mechanism does not provide a clear ad-
vantage over the other in all cases. Consolidating storage is very sensitive to

Storing Long-Lived Concurrent Schema and Data Versions 107

InnoDBs page split algorithm, which eliminates much of the anticipated benefit
of maintaining locality of reference for trunk and branch data. The data indicates
that for large page fill factors, separate storage is considerably more beneficial,
while for smaller fill factors, consolidated storage is somewhat better.

5 Conclusions

We believe that the versioning system we have proposed can provide a strong
foundation for a MySQL-based schema and data versioning system. This system
will allow the simultaneous existence of multiple versions of schema and data
in an OLTP database. We believe that this system can significantly simplify
the operation of cloud-based systems that use an OLTP database as a central
component; upgrades to new versions and customizations of the schema and data
can be made and tested in branches of the database, then the changes can be
committed and merged into the production version without downtime.

In this work, we have considered a small subset of this versioning system,
the storage of multiple versions of the data in a table. We have considered two
storage alternatives for data and indices for the versions, one that stores each
versions changes in separate tables and another that stores the changes in the
same table with the base data. In comparing the two storage alternatives, while
there are some situations where the consolidated storage alternative may offer
better performance, these situations are not strongly compelling. We did not find
that consolidating the branch storage in the same table as the trunk provided
the expected significant benefits because it retained locality of reference; this was
offset by the increased page splitting. This behavior is sensitive to the storage
systems page management algorithm; in future work, we will evaluate these
scenarios with other database engines to measure the variability.

References

1. Curino, C., Jones, E., Popa, R., Malviya, N., Wu, E., Madden, S., Balakrishnan,
H., Zeldovich, N.: RelationalCloud: a Database Service for the Cloud. In: Proc.
of Fifth Biennial Conference on Innovative Data Systems Research (CIDR 2011),
Asilomar, CA, pp. 235–240 (2011)

2. Wall, B.: Research on a Schema and Data Versioning System. In: Proc. of the
VLDB 2011 PhD Workshop, Seattle, WA, USA, pp. 43–48 (September 1, 2011)

3. Agarwal, S., Arun, G., Chatterjee, R., Speckhard, B., Vasudevan, R.: Long Trans-
actions in an RDBMS. In: 26th Annual Conference on Geospatial Information &
Technology Association (GITA), San Antonio, TX (2003)

4. Chatterjee, R., Arun, G., Agarwal, S., Speckhard, B., Vasudevan, R.: Using Data
Versioning in Database Application Development. In: Proc. of the 26th Intl. Con-
ference on Software Engineering (ICSE 2004), Edinburgh, Scotland, pp. 315–325
(2004)

5. Wall, B., Angryk, R.: Minimal Data Sets vs. Synchronized Data Copies in a Schema
and Data Versioning System. In: Proc. of PIKM 2011: The 4th ACM Workshop for
Ph.D. Students in Information and Knowledge Management, in Association with
20th ACM Conference on Information and Knowledge Management (CIKM 2011),
Glasgow, Scotland, pp. 67–73 (October 28, 2011)

108 B. Wall and R. Angryk

6. Ra, Y.-G., Rundensteiner, E.: A Transparent Schema-Evolution System Based on
Object-Oriented View Technology. IEEE Transactions on Knowledge and Data
Engineering 9(4), 600–624 (1997)

7. Zhang, X., Rundensteiner, E.: The SDCC Framework For Integrating Existing Al-
gorithms for Diverse Data Warehouse Maintenance Tasks. In: 1999 Intl. Database
Engineering and Applications Symposium, pp. 206–214 (1999)

8. Grandi, F., Mandreoli, F.: A Formal Model for Temporal Schema Versioning in
Object-Oriented Databases. Data & Knowledge Engineering 46(2), 123–167 (2003)

9. Galante, R., Santos, C., Edelweiss, N., Moreira, Á.: Temporal and Versioning Model
for Schema Evolution in Object-Oriented Databases. Data and Knowledge Engi-
neering 53(2), 99–128 (2005)

10. Curino, C., Moon, H., Tanca, L., Zaniolo, C.: Schema Evolution in Wikipedia:
toward a Web Information System Benchmark. In: 10th Intl. Conference on Enter-
prise Information Systems (ICEIS 2008) (2008)

11. Moon, H., Curino, C., Zaniolo, C.: Scalable Architecture and Query Optimization
for Transaction-Time Databases with Evolving Schemas. In: Proc. of the 2010 Intl.
Conference on Management of Data (SIGMOD 2010), pp. 207–218 (2010)

12. Curino, C., Difalla, D., Pavlo, A., Cudre-Maroux, P.: Benchmarking OLTP/Web
Databases in the Cloud: the OLTP-bench Framework. In: Proc. of the 4th Intl.
Workshop on Cloud Data Management (CloudDB 2012), New York, NY, pp. 17–
20 (2012)

13. Curino, C., Moon, H., Deutsch, A., Zaniolo, C.: Automating the Database Schema
Evolution Process. VLDB Journal 22(1), 73–98 (2013)

14. Schiller, O., Schiller, B., Brodt, A., Mitschang, B.: Native Support of Multi-tenancy
in RDBMS for Software as a Service. In: Proc. of the 14th Intl. Conference on
Extending Database Technology (EDBT 2011), New York, NY, pp. 117–128 (2011)

15. Schiller, O., Cipriani, N., Mitschang, B.: ProRea: Live Database Migration for
Multi-tenant RDBMS with Snapshot Isolation. In: Proc. of the 16th Intl. Confer-
ence on Extending Database Technology (EDBT 2013), New York, NY, pp. 53–64
(2013)

16. Das, S., Agrawal, D., El Abbadi, A.: ElasTraS: An Elastic, Scalable, and Self-
managing Transactional Database for the Cloud. ACM Transactions on Database
Systems (TODS) 38(1), Article 5 (April 2013)

17. Moon, H., Haćıgümüş, H., Chi, Y., Hsiung, W.-P.: SWAT: a Lightweight Load
Balancing Method for Multitenant Databases. In: Proc. of the 16th Intl. Conference
on Extending Database Technology (EDBT 2013), pp. 65–76 (2013)

18. Quamar, A., Kumar, K.A., Deshpande, A.: SWORD: Scalable Workload-Aware
Data Placement for Transactional Workloads. In: Proc. of the 16th Intl. Conference
on Extending Database Technology (EDBT 2013), pp. 430–441 (2013)

19. Aulbach, S., Grust, T., Jacobs, D., Kemper, A., Rittinger, J.: Multi-Tenant
Databases for Software as a Service: Schema-Mapping Techniques. In: Proc. of the
2008 ACM SIGMOD Intl. Conference on Management of Data (SIGMOD 2008),
Vancouver, BC, Canada, pp. 1195–1206 (2008)

20. Cole, J.: On learning InnoDB: A journey to the core. Blog (2013),
http://blog.jcole.us/2013/01/02/

on-learning-innodb-a-journey-to-the-core/

http://blog.jcole.us/2013/01/02/on-learning-innodb-a-journey-to-the-core/
http://blog.jcole.us/2013/01/02/on-learning-innodb-a-journey-to-the-core/

An Empirical Approach to Query-Subquery Nets

with Tail-Recursion Elimination

Son Thanh Cao1,2 and Linh Anh Nguyen2,3

1 Faculty of Information Technology, Vinh University
182 Le Duan Street, Vinh, Nghe An, Vietnam

sonct@vinhuni.edu.vn
2 Institute of Informatics, University of Warsaw

Banacha 2, 02-097 Warsaw, Poland
nguyen@mimuw.edu.pl

3 Faculty of Information Technology
VNU University of Engineering and Technology

144 Xuan Thuy, Hanoi, Vietnam

Abstract. We propose a method called QSQN-TRE for evaluating
queries to Horn knowledge bases by integrating Query-Subquery Nets
with a form of tail-recursion elimination. The aim is to improve the
QSQN method by avoiding materialization of intermediate results dur-
ing the processing. We illustrate the efficiency of our method by empirical
results, especially for tail-recursive cases.

1 Introduction

Query optimization has received much attention from researchers in the database
community. Several optimization methods and techniques have been developed
to improve performance of query evaluation. One of them is to reduce the num-
ber of materialized intermediate results during the processing by using the tail-
recursion elimination. The general form of recursion requires the compiler to
allocate storage on the stack at run-time. Such a memory consumption may be
very costly. A call is tail-recursive if no work remains to be done after the call
returns. Tail recursion is a special case of recursion that is semantically equiv-
alent to the iteration construct, so a tail-recursive program can be compiled as
efficiently as iterative programs.

This work studies optimizing query evaluation for Horn knowledge bases.

1.1 Related Work

Horn knowledge bases are a generalization of Datalog deductive databases
as they allow function symbols and do not require the range-restrictedness
condition. Researchers have developed a number of evaluation methods for
Datalog deductive databases such as the top-down methods QSQ [15,1],
QSQR [15,1,9], QoSaQ [16], QSQN [10] and the bottom-up method Magic-
Set [1,2]. By Magic-Set we mean the evaluation method that combines the

c© Springer International Publishing Switzerland 2015 109
N. Bassiliades et al. (eds.), New Trends in Database and Information Systems II,
Advances in Intelligent Systems and Computing 312, DOI: 10.1007/978-3-319-10518-5_9

110 S.T. Cao and L.A. Nguyen

magic-set transformation with the improved semi-naive evaluation method.
In [9], Madalińska-Bugaj and Nguyen generalized the QSQR method for Horn
knowledge bases. Some authors also extended the magic-set technique together
with the breadth-first approach for Horn knowledge bases [12,8]. One can also
try to adapt computational procedures of logic programming that use tabled
SLD-resolution [14,16,17] for evaluating queries to Horn knowledge bases.

In [10], we formulated the Query-Subquery Nets (QSQN) framework for eval-
uating queries to Horn knowledge bases. The aim was to increase efficiency of
query processing by eliminating redundant computation, increasing flexibility
and reducing the number of accesses to the secondary storage. The preliminary
comparison between QSQN, QSQR and Magic-Set reported in [3] justifies the
usefulness of QSQN.

In [13], Ross proposed an optimization technique that integrates Magic-Set
with a form of tail-recursion elimination. It improves the performance by not
representing intermediate results, as can be seen in the following example.

Example 1. This example shows the inefficiency of a logic program without
a tail-recursive evaluation. It is a modified version of Example 1.1 from [13].
Consider the following positive logic program P :

p(x, y) ← e(x, z), p(z, y)
p(n, x) ← t(x).

where p is an intensional predicate, e and t are extensional predicates, n is
a natural number (constant) and x, y, z are variables. Let p(1, x) be the query,
m a natural number, and let the extensional instance I for e and t be as follows:

I(t) = {(1), (2), . . . , (m− 1), (m)},
I(e) = {(1, 2), (2, 3), . . . , (n− 1, n), (n, 1)}.

In order to answer the query, a method such as QSQR, QSQN, Magic-Set
would evaluate every tuple of the form p(i, j), where 1 ≤ i ≤ n and 1 ≤ j ≤ m.
Thus, it stores a set of n×m tuples, but many of them are not closely related
to the query in question. As we shall see, for answering the query p(1, x), we do
not need to evaluate p(i, j) for i > 1 if we apply a tail-recursive evaluation. We
only need to evaluate p(1, j) for 1 ≤ j ≤ m and additional tuples for some newly
introduced relations. Thus, the total number of evaluated tuples is smaller than
that of the standard approach. �

1.2 Our Contributions

In this paper, we propose a method called QSQN-TRE for evaluating queries to
Horn knowledge bases. The method integrates the QSQN method from [10] with
a form of tail-recursion elimination.

Our method has many advantages: it reduces the number of evaluated inter-
mediate tuples/subqueries during processing, increases flexibility and eliminates
redundant computation. Furthermore, since unnecessary intermediate results are

An Empirical Approach to QSQN with Tail-Recursion Elimination 111

not stored, it usually performs better than the QSQN method for the case as
in Example 1. To deal with function symbols, we use a term-depth bound for
atoms and substitutions occurring in the computation and propose to use iter-
ative deepening search which iteratively increases the term-depth bound. Sim-
ilarly to the QSQN method, our new method allows various control strategies
such as Depth-First Search (DFS), Improved Depth-First Search (IDFS) and
Disk Access Reduction (DAR), which have been proposed in [10,3,5].

2 Preliminaries

We assume that the reader is familiar with the notions of term, atom, predicate,
substitution, unification, mgu (most general unifier) and related ones. We refer
the reader to [1,11] for further reading.

We classify each predicate either as intensional or as extensional. A generalized
tuple is a tuple of terms, which may contain function symbols and variables.
A generalized relation is a set of generalized tuples of the same arity.

A program clause is a formula of the form (A ∨ ¬B1 ∨ . . .∨ ¬Bn) with n ≥ 0,
written as A ← B1, . . . , Bn, where A,B1, . . . , Bn are atoms. A is called the head,
and B1, . . . , Bn the body of the program clause. If p is the predicate of A then
the program clause is called a program clause defining p.

A positive (or definite) logic program is a finite set of program clauses. From
now on, by a “program” we will mean a positive logic program.

A goal is a formula of the form (¬B1 ∨ . . . ∨ ¬Bn), written as ← B1, . . . , Bn,
where B1, . . . , Bn are atoms and n ≥ 0. If n = 1 then the goal is called a unary
goal. If n = 0 then the goal is referred to as the empty goal.

Given substitutions θ and δ, the composition of θ and δ is denoted by θδ, the
domain of θ is denoted by dom(θ), the range of θ is denoted by range(θ), and
the restriction of θ to a set X of variables is denoted by θ|X . The term-depth
of an expression (resp. a substitution) is the maximal nesting depth of function
symbols occurring in that expression (resp. substitution). Given a list/tuple α
of terms or atoms, by Vars(α) we denote the set of variables occurring in α.

A Horn knowledge base is defined as a pair that consists of a positive logic pro-
gram P (which may contain function symbols and not be “range-restricted”) for
defining intensional predicates and a generalized extensional instance I, which
is a function mapping each extensional n-ary predicate to an n-ary generalized
relation.

A query to a Horn knowledge base (P, I) is a formula q(x), where q is an
n-ary intensional predicate and x is a tuple of n pairwise different variables.
An answer to the query is an n-ary tuple t of terms such that P ∪ I |= q(t),
treating I as the corresponding set of atoms of the extensional predicates.

Definition 1 (Tail-recursion). A program clause ϕi = (Ai ← Bi,1, . . . , Bi,ni),
for ni > 0, is said to be recursive whenever some Bi,j (1 ≤ j ≤ ni) has the same
predicate as Ai. If Bi,ni has the same predicate as Ai then the clause is tail-
recursive. �

112 S.T. Cao and L.A. Nguyen

p(x, y)← q(x, y)
p(x, y)← q(x, z), p(z, y).

pre filter1
�� filter1,1

�� post filter1

�������
�����

�����
��

input p

��������

����
���

�
ans p

��
pre filter2

�� filter2,1
�� filter2,2

��

��

post filter2

���������

pre filter1
�� filter1,1

�� post filter1

		����
�����

���

input p

�������

�����
����

ans p

pre filter2
�� filter2,1

�� filter2,2

��

Fig. 1. The QSQ topological structure and the QSQN-TRE topological structure of
the program given in Example 2

3 QSQ-Nets with Tail-Recursion Elimination

In this section we specify the notion QSQN-TRE (QSQ-net with tail-recursion
elimination) and describe our QSQN-TRE evaluation method for Horn knowl-
edge bases. QSQN-TRE is an extension of QSQN introduced in [11,10] and can be
viewed as a flow control network for determining which set of tuples/subqueries
should be processed next.

Example 2. This example is taken from [10]. The upper part of Figure 1 illus-
trates a logic program and its QSQ topological structure, where p is an inten-
sional predicate, q is an extensional predicate and x, y, z are variables. �

In what follows, P is a positive logic program and all ϕ1, . . . , ϕm are the pro-
gram clauses of P , with ϕi = (Ai ← Bi,1, . . . , Bi,ni), for 1 ≤ i ≤ m and ni ≥ 0.
The following definition shows how to make a QSQN-TRE structure from the
given positive logic program P .

Definition 2 (QSQN-TRE structure). A query-subquery net structure with
tail-recursion elimination (QSQN-TRE structure for short) of P is a tuple
(V,E, T) such that:

– T is a pair (Tedb, Tidb), called the type of the net structure.
– Tidb is a function that maps each intensional predicate to true or false. (If

Tidb(p) = true then the intensional relation p will be computed using tail-
recursion elimination).

– V is a set of nodes that includes:
• input p and ans p, for each intensional predicate p of P ,

An Empirical Approach to QSQN with Tail-Recursion Elimination 113

• pre filter i, filter i,1, . . . , filter i,ni
, for each 1 ≤ i ≤ m,

• post filter i if either ϕi is not tail-recursive or Tidb(p) = false, for each
1 ≤ i ≤ m, where p is the predicate of Ai.

– E is a set of edges that includes:
• (input p, pre filter i), for each 1 ≤ i ≤ m, where p is the predicate of Ai,
• (pre filter i, filter i,1), for each 1 ≤ i ≤ m such that ni ≥ 1,
• (filter i,1, filter i,2), . . . , (filter i,ni−1, filter i,ni

), for each 1 ≤ i ≤ m,
• (filter i,ni

, post filter i), for each 1 ≤ i ≤ m such that ni ≥ 1 and either ϕi

is not tail-recursive or Tidb(p) = false, where p is the predicate of Ai,
• (pre filter i, post filter i), for each 1 ≤ i ≤ m such that ni = 0,
• (post filter i, ans p), for each 1 ≤ i ≤ m such that either ϕi is not tail-

recursive or Tidb(p) = false, where p is the predicate of Ai,
• (filter i,j , input p), for all 1 ≤ i ≤ m and 1 ≤ j ≤ ni such that the

predicate p of Bi,j is an intensional predicate,
• (ans p, filter i,j), for each intensional predicate p and for all 1 ≤ i ≤ m

and 1 ≤ j ≤ ni such that Bi,j is an atom of p and either ϕi is not
tail-recursive or Tidb(p) = false.

– Tedb is a function that maps each filter i,j ∈ V such that the predicate of
Bi,j is extensional to true or false. (If Tedb(filter i,j) = false then subqueries
for filter i,j are always processed immediately without being accumulated at
filter i,j). �

From now on, T (v) denotes Tedb(v) if v is a node filter i,j such that Bi,j is an
extensional predicate, and T (p) denotes Tidb(p) for an intensional predicate p.
Thus, T can be called a memorizing type for extensional nodes (as in QSQ-net
structures), and a tail-recursion-elimination type for intensional predicates.

We call the pair (V,E) the QSQN-TRE topological structure of P w.r.t. Tidb.
The lower part of Figure 1 illustrates the QSQN-TRE topological structure of
the positive logic program given in Example 2 w.r.t. the Tidb with Tidb(p) = true.

We now specify the notion QSQN-TRE and the related ones. We also show
how the data is transferred through the edges in QSQN-TRE.

Definition 3 (QSQN-TRE). A query-subquery net with tail-recursion elim-
ination (QSQN-TRE for short) of P is a tuple N = (V,E, T, C) such that
(V,E, T) is a QSQN-TRE structure of P , C is a mapping that associates each
node v ∈ V with a structure called the contents of v, and the following conditions
are satisfied:

– If either (v = input p and T (p) = false) or v = ans p then C(v) consists of:
• tuples(v) : a set of generalized tuples of the same arity as p,
• unprocessed(v, w) for (v, w) ∈ E: a subset of tuples(v).

– If v = input p and T (p) = true then C(v) consists of:
• tuple pairs(v): a set of pairs of generalized tuples of the same arity as p,
• unprocessed(v, w) for (v, w) ∈ E: a subset of tuple pairs(v).

– If v = pre filter i then C(v) consists of:
• atom(v) = Ai and post vars(v) = Vars((Bi,1, . . . , Bi,ni)).

– If v = post filter i then C(v) is empty, but we assume pre vars(v) = ∅.

114 S.T. Cao and L.A. Nguyen

– If v = filter i,j and p is the predicate of Bi,j then C(v) consists of:

• kind(v) = extensional if p is extensional, and
kind(v) = intensional otherwise,

• pred(v) = p (called the predicate of v) and atom(v) = Bi,j ,
• pre vars(v) = Vars((Bi,j , . . . , Bi,ni)) and
post vars(v) = Vars((Bi,j+1, . . . , Bi,ni)),

• subqueries(v): a set of pairs of the form (t, δ), where t is a generalized
tuple of the same arity as the predicate of Ai and δ is an idempotent
substitution such that dom(δ) ⊆ pre vars(v) and dom(δ) ∩ Vars(t) = ∅,

• unprocessed subqueries(v) ⊆ subqueries(v),
• in the case p is intensional :

unprocessed subqueries2 (v) ⊆ subqueries(v),
unprocessed tuples(v): a set of generalized tuples of the same arity as p;

• if v = filter i,ni
, kind(v) = intensional, pred(v) = p and T (p) = true then

unprocessed subqueries(v) and unprocessed tuples(v) are empty (and can
thus be ignored).

– If v = filter i,j , kind(v) = extensional and T (v) = false then subqueries(v)
and unprocessed subqueries(v) are empty (and can thus be ignored).

A QSQN-TRE of P is empty if all the sets of the form tuple pairs(v),
tuples(v), unprocessed(v, w), subqueries(v), unprocessed subqueries(v),
unprocessed subqueries2 (v) or unprocessed tuples(v) are empty. �

If (v, w) ∈ E then w is referred to as a successor of v. Observe that:

– if v ∈ {pre filter i, post filter i} or v = filter i,j and kind(v) = extensional then
v has exactly one successor, which we denote by succ(v);

– if v is filter i,ni
with kind(v) = intensional, pred(v) = p and T (p) = true then

v has exactly one successor, which we denote by succ2(v) = input p;
– if v is filter i,j with kind(v) = intensional, pred(v) = p and either j < ni

or T (p) = false then v has exactly two successors: succ(v) = filter i,j+1 if
ni > j; succ(v) = post filter i otherwise; and succ2(v) = input p.

By a subquery we mean a pair of the form (t, δ), where t is a general-
ized tuple and δ is an idempotent substitution such that dom(δ) ∩Vars(t) = ∅.
The set unprocessed subqueries2 (v) (resp. unprocessed subqueries(v)) contains
the subqueries that were not transferred through the edge (v, succ2(v)) (resp.
(v, succ(v)) – when it exists).

For an intensional predicate p with T (p) = true, the intuition behind a pair

(t, t
′
) ∈ tuple pairs(input p) is that:

– t is a usual input tuple for p, but the intended goal at a higher level is ← p(t
′
),

– any correct answer for P ∪ I ∪ {← p(t)} is also a correct answer for

P ∪ I ∪ {← p(t
′
)},

– if a substitution θ is a computed answer of P ∪ I ∪ {← p(t)} then we will

store in ans p the tuple t
′
θ instead of tθ.

An Empirical Approach to QSQN with Tail-Recursion Elimination 115

We say that a tuple pair (t, t
′
) is more general than (t2, t

′
2), and (t2, t

′
2) is an

instance of (t, t
′
), if there exists a substitution θ such that (t, t

′
)θ = (t2, t

′
2).

For v = filter i,j and p being the predicate of Ai, the meaning of a sub-
query (t, δ) ∈ subqueries(v) is as follows: if T (p) = false (resp. T (p) = true)
then there exists s ∈ tuples(input p) (resp. (s, s′) ∈ tuple pairs(input p)) such
that for processing the goal ← p(s) using the program clause ϕi = (Ai ←
Bi,1, . . . , Bi,ni), unification of p(s) and Ai as well as processing of the sub-
goals Bi,1, . . . , Bi,j−1 were done, amongst others, by using a sequence of mgu’s
γ0, . . . , γj−1 with the property that t = sγ0 . . . γj−1 (resp. t = s′γ0 . . . γj−1)
and δ = (γ0 . . . γj−1)|Vars((Bi,j ,...,Bi,ni

)). Informally, a subquery (t, δ) transferred
through an edge to v is processed as follows:

– if v = filter i,j , kind(v) = extensional and pred(v) = p then, for each t
′ ∈ I(p),

if atom(v)δ = Bi,jδ is unifiable with a fresh variant of p(t
′
) by an mgu γ

then transfer the subquery (tγ, (δγ)|post vars(v)) through (v, succ(v)).
– if v = filter i,j , kind(v) = intensional, pred(v) = p and either T (p) = false or

(T (p) = true and (either j < ni or p is not the predicate of Ai)) then

• if T (p) = false then transfer the input tuple t
′

such that p(t
′
) =

atom(v)δ = Bi,jδ through (v, input p) to add a fresh variant of it to
tuples(input p),

• if T (p) = true and either j < ni or p is not the predicate of Ai then

transfer the input tuple pair (t
′
, t

′
) such that p(t

′
) = atom(v)δ = Bi,jδ

through (v, input p) to add a fresh variant of it to tuple pairs(input p),

• for each currently existing t
′ ∈ tuples(ans p), if atom(v)δ = Bi,jδ is

unifiable with a fresh variant of p(t
′
) by an mgu γ then transfer the

subquery (tγ, (δγ)|post vars(v)) through (v, succ(v)),

• store the subquery (t, δ) in subqueries(v), and later, for each new t
′
added

to tuples(ans p), if atom(v)δ = Bi,jδ is unifiable with a fresh variant

of p(t
′
) by an mgu γ then transfer the subquery (tγ, (δγ)|post vars(v))

through (v, succ(v)).
– if v = filter i,ni

, kind(v) = intensional, pred(v) = p, T (p) = true and p

is the predicate of Ai then transfer the input tuple pair (t
′
, t) such that

p(t
′
) = atom(v)δ = Bi,niδ through (v, input p) to add a fresh variant of it to

tuple pairs(input p).
– if v = post filter i and p is the predicate of Ai then transfer the answer tuple t

through (post filter i, ans p) to add it to tuples(ans p).

Formally, the processing of a subquery, an input/answer tuple or an input
tuple pair in a QSQN-TRE is designed so that:

– every subquery or input/answer tuple or input tuple pair that is subsumed
by another one or has a term-depth greater than a fixed bound l is ignored;

– the processing is divided into smaller steps which can be delayed at each
node to maximize flexibility and allow various control strategies;

– the processing is done set-at-a-time (e.g., for all the unprocessed subqueries
accumulated in a given node).

116 S.T. Cao and L.A. Nguyen

The procedure transfer2(D, u, v) given in [11] specifies the effects of transfer-
ring data D through an edge (u, v) of a QSQN-TRE. If v is of the form pre filter i
or post filter i or (v = filter i,j and kind(v) = extensional and T (v) = false) then
the input D for v is processed immediately and an appropriate data Γ is pro-
duced and transferred through (v, succ(v)). Otherwise, the input D for v is not
processed immediately, but accumulated into the structure of v in an appropriate
way. The function active-edge(u, v) given in [11] returns true for an edge (u, v)
if the data accumulated in u can be processed to produce some data to transfer
through (u, v), and returns false otherwise. If active-edge(u, v) is true, the pro-
cedure fire2(u, v) given in [11]1 processes the data accumulated in u that has
not been processed before to transfer appropriate data through the edge (u, v).
Both the procedures fire2(u, v) and transfer2(D, u, v) use a parameter l as a
term-depth bound for tuples and substitutions.

Algorithm 2 of [11] presents our QSQN-TRE evaluation method for Horn
knowledge bases. It repeatedly selects an active edge and fires the operation
for the edge. Such a selection is decided by the adopted control strategy, which
can be arbitrary. If there is no tail-recursion to eliminate or T (p) = false for
every intensional predicate p, the QSQN-TRE method reduces to the QSQN
evaluation method. See [11] for properties on soundness, completeness and data
complexity of the QSQN-TRE method.

4 Preliminary Experiments

This section presents our experimental results and a discussion about the per-
formance of the QSQN-TRE evaluation method in comparison with the QSQN
method using the IDFS control strategy [5]. All the experiments have been per-
formed using our Java codes [4] and extensional relations stored in a MySQL
database. The package [4] also contains all the experimental results reported
below. In the following tests, we use typical examples that appear in many well-
known articles related to deductive databases, including tail/non-tail recursive
logic programs as well as logic programs with or without function symbols. Our
implementation allows queries of the form q(t), where t is a tuple of terms.

4.1 The Settings

The experiments are divided into two stages. All the experimental results re-
ported below are for the first stage.

1. In the first stage, we assume that the computer memory is large enough to load
all the involved extensional relations and keep all the intermediate relations.
During execution of the program, for each operation of reading from a relation
(resp. writing a set of tuples to a relation), we increase the counter of read
(resp. write) operations on this relation by one. For counting the maximum
number of kept tuples/subqueries in the memory, we increase (resp. decrease)

1 The step 3 in the macro compute-gamma for the procedure fire2 in [11] should be
replaced by “else if j < ni or p is not the predicate of Ai then”.

An Empirical Approach to QSQN with Tail-Recursion Elimination 117

Table 1. A comparison between the QSQN and QSQN-TRE methods w.r.t. the num-
ber of read/write operations. The “Reading inp /ans /sup /edb” column means the
number of read operations from input/answer/supplement/extensional relations, re-
spectively. Similarly, the “Writing inp /ans /sup ” column means the number of write
operations to input/answer/supplement relations, respectively. The last column shows
the maximum number of kept tuples in the memory for each test.

Tests Methods
Reading (times) Writing (times) Max No. of
inp /ans /sup /edb inp /ans /sup kept tuples

Test 1 QSQN 156 (40+38+57+21) 58 (20+19+19) 248
(a) QSQN-TRE 100 (40+1+38+21) 40 (20+1+19) 97

Test 1 QSQN 64 (3+38+21+2) 21 (1+19+1) 229
(b) QSQN-TRE 100 (40+1+38+21) 40 (20+1+19) 781

Test 2 QSQN 190 (41+59+69+21) 69 (20+29+20) 992
(a) QSQN-TRE 101 (40+1+39+21) 40 (20+1+19) 151

Test 2 QSQN 95 (3+59+31+2) 31 (1+29+1) 963
(b) QSQN-TRE 151 (60+1+59+31) 60 (30+1+29) 3573

Test 3
QSQN 43 (5+21+16+1) 13 (1+9+3) 101
QSQN-TRE 58 (19+15+19+5) 19 (5+5+9) 237

Test 4
QSQN 56 (15+14+20+7) 20 (7+6+7) 136
QSQN-TRE 39 (14+4+14+7) 15 (7+2+6) 93

Test 5
QSQN 403 (101+101+150+51) 150 (50+50+50) 10,350
QSQN-TRE 253 (101+1+100+51) 101 (50+1+50) 600

Test 6
QSQN 184 (48+46+66+24) 67 (23+22+22) 930
QSQN-TRE 126 (48+8+46+24) 49 (23+4+22) 566

Test 7
QSQN

91 (7+39+25+20) 25 (3+19+3) 195
QSQN-TRE

the counter of kept tuples by two if a tuple pair is added to (resp. removed
from) tuple pairs(input p), otherwise we increase (resp. decrease) it by one.
The returned value is the maximum value of this counter.

2. The second stage follows the first one. We will limit the space available in
computer memory for storing the tuples/subqueries on each test. This will
require load and unload operations on disk when the computer memory is
not enough to hold all the relations. The aim of this stage is to estimate the
number of disk accesses. This stage is still in progress.

4.2 Experimental Results

We compare the QSQN-TRE and QSQN methods with respect to the number
of accesses to the intermediate relations and extensional relations as well as the
number of kept tuples/subqueries in the memory for the following tests.

Test 1. Reconsider the logic program from Example 2, where p is an intensional
predicate, q is an extensional predicate, and x, y, z are variables. Let the exten-
sional instance I for q be as follows: I(q) = {(ai, ai+1) | 1 ≤ i < n}, where ai
are constant symbols and n is a natural number.

p(x, y) ← q(x, y)
p(x, y) ← q(x, z), p(z, y).

We perform this test using the following queries: (a) p(a1, x), (b) p(x, y).

118 S.T. Cao and L.A. Nguyen

Similar to the discussion in Example 1, in order to answer a query as in the
part (a) or (b), QSQN has to evaluate all tuples of the form (ai, aj), where
1 ≤ i < j ≤ n. However, for the query p(a1, x) as in the part (a), by applying
tail-recursion elimination, QSQN-TRE only needs to evaluate a set of tuples of
the form (a1, aj) with 1 < j ≤ n. Thus, in this case, the number of evaluated
tuples for QSQN-TRE is much smaller than QSQN. In contrast, for queries
without any bound parameter such as p(x, y) as in the part (b), QSQN-TRE
has to evaluate also all the related tuples and may be worse than QSQN. The
reason is that, after the processing at node v = filter i,ni

with p = pred(v), if
T (p) = true, QSQN-TRE produces a set of tuple pairs and accumulates them
in tuple pairs(input p), which are not instances of each other. Meanwhile, QSQN
adds the answers to tuples(ans p) for later processing, and also transfers data
through (v, input p) without adding any new tuple to tuples(input p) because
it already contains a fresh variant of (x, y) that is more general than all the
other tuples. As the result, in this case, QSQN-TRE may keep more tuples than
QSQN. We use n = 20 for this test.

Test 2. This test uses the logic program P and the queries as in Test 1, but the
extensional instance I for q is extended to contain cycles as follows, where ai
and bi are constant symbols:

I(q) = {(ai, ai+1) | (1 ≤ i < 20)} ∪ {(a20, a1)} ∪
{(a1, b1)} ∪ {(bi, bi+1) | 1 ≤ i < 10} ∪ {(b10, a1)}.

Test 3. This test involves the transitive closure of a binary relation [2,3]. Con-
sider the following logic program P , where path is an intensional predicate, arc
is an extensional predicate, and x, y, z are variables. The query is path(x, y) and
the extensional instance I is specified by I(arc) = {(1, 2), (2, 3), . . ., (9, 10)}.

path(x, y) ← arc(x, y)
path(x, y) ← path(x, z), path(z, y).

Test 4. This test is taken from [9]. Consider the following program P , where p, s
are intensional predicates, q is an extensional predicate, and x, y, z are variables.
The query is s(x) and the extensional instance I for q consists of the following
pairs, where a− o are constant symbols: I(q) = {(a, b), (b, c), (c, d), (d, e), (e, f),
(f, g), (a, h), (h, i), (i, j),(i, d), (j, k), (k, f), (a, l), (l,m), (l, i), (m,n), (n, o),
(n, k), (o, g)}.

p(x, y) ← q(x, y)
p(x, y) ← q(x, z), p(z, y)

s(x) ← p(a, x).

Test 5. This test is taken from Example 1 using m = 200, n = 50. As shown in
Table 1, the maximum number of kept tuples for the QSQN evaluation method
is much larger than for the QSQN-TRE evaluation method.

Test 6. This test is taken from [3]. Consider the following program P and the
following extensional instance I, where p, q1, q2 are intensional predicates, r1, r2
are extensional predicates, x, y, z are variables, and ai, bi,j are constant symbols.

An Empirical Approach to QSQN with Tail-Recursion Elimination 119

– the positive logic program P :

p(x, y) ← q1(x, y)
p(x, y) ← q2(x, y)

q1(x, y) ← r1(x, y)
q1(x, y) ← r1(x, z), q1(z, y)

q2(x, y) ← r2(x, y)
q2(x, y) ← r2(x, z), q2(z, y).

– the extensional instance I:

I(r1) = {(ai, ai+1) | 0 ≤ i < 10}
I(r2) = {(a0, b1,j) | 1 ≤ j ≤ 9} ∪

{(bi,j, bi+1,j) | 1 ≤ i < 9
and 1 ≤ j ≤ 9} ∪

{(b9,j, a10) | 1 ≤ j ≤ 9}.

– the query: p(a0, x).

Test 7. This test is taken from Test 2 of [5] to show a case with function sym-
bols. It is a non-tail-recursive program. In this case, the QSQN-TRE evaluation
method reduces to the QSQN method, and they have the same results. See [5]
for details of the logic program and its extensional instance.

4.3 Discussion

Table 1 shows the comparison between the QSQN and QSQN-TRE evaluation
methods. As can be seen in this table, if we use a tail-recursive program with
at least a bound parameter either in the query as in Tests [1(a), 2(a), 5, 6] or
in the body of a rule that is related to a tail-recursive predicate as in Test 4,
by not representing intermediate results during the computation, the QSQN-
TRE method usually outperforms the QSQN method. In these cases, as shown
in Table 1, the QSQN-TRE method reduces not only the number of accesses to
the mentioned relations but also the number of kept tuples/subqueries in the
memory in comparison with the QSQN method.

In contrast, for queries without any bound parameter as in Tests [1(b), 2(b)]
and for cases with a tail-recursive clause with more than one intensional predi-
cate p in the body such that T (p) = true as in Test 3, QSQN-TRE may be worse
than QSQN. The explanation is similar to that of Test 1.

5 Conclusions

We have proposed the QSQN-TRE method for evaluating queries to Horn knowl-
edge bases. It extends the QSQN method with tail-recursion elimination that al-
lows to avoid materializing intermediate results during the processing. Similarly
to QSQN, our new method also allows various control strategies such as DFS,
IDFS and DAR [10,3,5].

The experimental results in Table 1 show that QSQN-TRE is better than
QSQN for tail-recursive cases with at least a bound parameter in the query,
especially for the positive logic program and the query given in Example 1 (as
shown for Test 5 in Table 1). The preliminary comparison between QSQN, QSQR
and Magic-Set reported in [3] justifies the usefulness of QSQN and hence also
the usefulness of QSQN-TRE. As a future work, we will compare the methods
in more detail, especially w.r.t. the number of accesses to the secondary storage
when the computer memory is limited, as well as apply our method to Datalog-
like rule languages for the Semantic Web [6,7].

120 S.T. Cao and L.A. Nguyen

Acknowledgments. This work was supported by Polish National Science Cen-
tre (NCN) under Grants No. 2011/02/A/HS1/00395 (for the first author) and
2011/01/B/ST6/02759 (for the second author). The first author would like to
thank the Warsaw Center of Mathematics and Computer Science for support.
We would also like to express our special thanks to Dr. Joanna Golińska-Pilarek
from the University of Warsaw for very helpful comments and suggestions.

References

1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison Wesley
(1995)

2. Beeri, C., Ramakrishnan, R.: On the power of magic. J. Log. Program. 10, 255–299
(1991)

3. Cao, S.T.: On the efficiency of Query-Subquery Nets: an experimental point of
view. In: Proceedings of SoICT 2013, pp. 148–157. ACM (2013)

4. Cao, S.T.: An implementation of the QSQN-TRE evaluation methods (2014),
http://mimuw.edu.pl/~sonct/QSQNTRE14.zip

5. Cao, S.T., Nguyen, L.A.: An Improved Depth-First Control Strategy for Query-
Subquery Nets in evaluating queries to Horn knowledge bases. In: van Do, T., Thi,
H.A.L., Nguyen, N.T. (eds.) Advanced Computational Methods for Knowledge
Engineering. AISC, vol. 282, pp. 281–296. Springer, Heidelberg (2014)

6. Cao, S.T., Nguyen, L.A., Szalas, A.: The Web ontology rule language OWL 2 RL+
and Its extensions. T. Computational Collective Intelligence 13, 152–175 (2014)

7. Cao, S.T., Nguyen, L.A., Szalas, A.: WORL: a nonmonotonic rule language for the
Semantic Web. Vietnam J. Computer Science 1(1), 57–69 (2014)

8. Freire, J., Swift, T., Warren, D.S.: Taking I/O seriously: Resolution reconsidered
for disk. In: Naish, L. (ed.) Proc. of ICLP 1997, pp. 198–212. MIT Press (1997)

9. Madalińska-Bugaj, E., Nguyen, L.A.: A generalized QSQR evaluation method for
Horn knowledge bases. ACM Trans. on Computational Logic 13(4), 32 (2012)

10. Nguyen, L.A., Cao, S.T.: Query-Subquery Nets. In: Nguyen, N.-T., Hoang, K.,
Jȩdrzejowicz, P. (eds.) ICCCI 2012, Part I. LNCS, vol. 7653, pp. 239–248. Springer,
Heidelberg (2012)

11. Nguyen, L.A., Cao, S.T.: Query-Subquery Nets (2012),
http://arxiv.org/abs/1201.2564

12. Ramakrishnan, R., Srivastava, D., Sudarshan, S.: Efficient bottom-up evaluation of
logic programs. In: Vandewalle, J. (ed.) The State of the Art in Computer Systems
and Software Engineering. Kluwer Academic Publishers (1992)

13. Ross, K.A.: Tail recursion elimination in deductive databases. ACM Trans.
Database Syst. 21(2), 208–237 (1996)

14. Tamaki, H., Sato, T.: OLD resolution with tabulation. In: Shapiro, E. (ed.) ICLP
1986. LNCS, vol. 225, pp. 84–98. Springer, Heidelberg (1986)

15. Vieille, L.: Recursive axioms in deductive databases: The query/subquery ap-
proach. In: Proceedings of Expert Database Conf., pp. 253–267 (1986)

16. Vieille, L.: Recursive query processing: The power of logic. Theor. Comput.
Sci. 69(1), 1–53 (1989)

17. Zhou, N.-F., Sato, T.: Efficient fixpoint computation in linear tabling. In: Proceed-
ings of PPDP 2003, pp. 275–283. ACM (2003)

http://mimuw.edu.pl/~sonct/QSQNTRE14.zip
http://arxiv.org/abs/1201.2564

Part V
Spatial and Temporal Data

Reasoning over Spatial Orientation
Relations Using Rules

Sotiris Batsakis, Grigoris Antoniou, and Ilias Tachmazidis

Department of Informatics
University of Huddersfield

Queensgate, Huddersfield, West Yorkshire, HD1 3DH, UK
{S.Batsakis,G.Antoniou,Ilias.Tachmazidis}@hud.ac.uk

Abstract. Representation of spatial information for the Semantic Web often in-
volves qualitative defined information (i.e., information described using natural
language terms such as “Left”), since precise arithmetic descriptions using coor-
dinates and angles are not always available. A basic aspect of spatial information
is directional relations, thus embedding directional spatial relations into ontolo-
gies along with their semantics and reasoning rules is an important practical is-
sue. This work proposes a new representation for directional spatial information
in ontologies by means of OWL properties and reasoning rules in SWRL embed-
ded into the ontology. The proposed representation is based on the combination
of object orientations (e.g., same direction or opposite) and cone shaped direc-
tional relations of positions using an egocentric reference (e.g., left or right of
an object). The proposed representation is to the best of our knowledge a novel
one, and in this work, the proposed representation is analysed, implemented and
evaluated.

1 Introduction

Understanding the meaning of Web information requires formal definitions of concepts
and their properties, using the Semantic Web Ontology definition language OWL. OWL
provides the means for defining concepts, their properties and their relations, and allows
for reasoning over the definitions and the assertions of specific individuals using reason-
ers such as HermiT. Furthermore, reasoning rules can be embedded into the ontology
using the SWRL rule language.

Spatial information is an important aspect of represented objects in many application
areas. Spatial information in turn can be defined using quantitative (e.g., using coordi-
nates) and qualitative terms (i.e., using natural language expressions such as “Behind”).
Qualitative spatial terms have specific semantics which can be embedded into the on-
tology using reasoning rules. In previous work [1,6], such a representation is proposed
for allocentric (i.e., using an external reference frame, such as North-South) directional
relations in OWL.

Current work deals with the case of egocentric directional spatial information, and
proposes a new representation for such information. Egocentric directional relations are
applied over local reference frames e.g., using terms such as “front” or “left”, that are
defined with respect to specific objects and the placement of objects relative to these

c© Springer International Publishing Switzerland 2015 123
N. Bassiliades et al. (eds.), New Trends in Database and Information Systems II,
Advances in Intelligent Systems and Computing 312, DOI: 10.1007/978-3-319-10518-5_10

124 S. Batsakis, G. Antoniou, and I. Tachmazidis

points of reference. Egocentric orientation relations are analysed into two sets of rela-
tions; The first set represents the directional orientation relation between two objects
(e.g., “same” or “opposite” direction). This set of relations is a modified form of the re-
lations proposed in [7]. The second set represents the positional orientation relations in
terms of the egocentric reference frame of each object (e.g., “front” or “behind”). This
set is a modified form of OPRA calculi proposed in [8]. Thus, for example if object B
is in front of object A and is directed towards it, the following relations hold: B oppo-
site A and B front-of A. Both relations correspond to cone shaped regions in the plane,
and their definitions and semantics are introduced in the current work. Reasoning is ap-
plied on directional orientation relations separately, since orientation of directed objects
does not depend on the position of one wrt the other (e.g., an object can be directed to
an opposite direction wrt another, and simultaneously can be left, right, front or back
of it). On the other hand, reasoning over positional orientation relations combines di-
rectional orientation relations as well. Current work proposes a reasoning mechanism
for the proposed representation. Properties of the reasoning mechanism are analysed
and the mechanism is implemented and evaluated. Furthermore, the implementation is
based on OWL axioms and SWRL rules embedded into an ontology, thus it is suitable
for Semantic Web applications, since reasoning can be achieved using only standard
reasoners that support SWRL such as HermiT [9].

Current work is organized as follows: related work in the field of spatial knowledge
representation is discussed in Section 2. The proposed representation is presented in
Section 3 and the corresponding reasoning mechanism in Section 4 followed by evalu-
ation in Section 5 and conclusions and issues for future work in Section 6.

2 Background and Related Work

Definition of ontologies for the Semantic Web is achieved using the Web Ontology
Language OWL1. The current W3C standard is the OWL 22 language, offering in-
creased expressiveness while retaining decidability of basic reasoning tasks. Reasoning
tasks are applied both on the concept and property definitions into the ontology (TBox)
and the assertions of individual objects and their relations (ABox). Reasoners include
among others Pellet3, and HermiT4. Reasoning rules can be embedded into the ontology
using SWRL5. To guarantee decidability, the rules are restricted to DL-safe rules that
apply only on named individuals in the ontology ABox. Horn Clauses (i.e., a disjunc-
tion of atoms with at most one positive literal), can be expressed using SWRL, since
Horn clauses can be written as implications (i.e., ¬A ∨ ¬B... ∨ C can be written as
A ∧B ∧ ... ⇒ C).

Qualitative spatial reasoning (i.e., inferring implied relations and detecting incon-
sistencies in a set of asserted relations) typically corresponds to Constraint Satisfaction
problems which are NP-hard, but tractable sets (i.e., solvable by polynomial algorithms)

1 http://www.w3.org/TR/owl-ref/
2 http://www.w3.org/TR/owl2-overview/
3 http://clarkparsia.com/pellet/
4 http://hermit-reasoner.com/
5 http://www.w3.org/Submission/SWRL/

http://www.w3.org/TR/owl-ref/
http://www.w3.org/TR/owl2-overview/
http://clarkparsia.com/pellet/
http://hermit-reasoner.com/
http://www.w3.org/Submission/SWRL/

Reasoning over Spatial Orientation Relations Using Rules 125

are known to exist [2]. Formal spatial representations have been studied extensively
within the Semantic Web community. Relations between spatial entities in ontologies
can be topological, directional, or orientation relations. Furthermore, spatial relations
are distinguished into qualitative (i.e., relations described using lexical terms such as
“Behind”) and quantitative (i.e., relations described using numerical values such as “45
degrees Right”).

Embedding spatial reasoning into the ontology by means of SWRL rules applied on
spatial object properties forms the basis of the SOWL model proposed in [1,6]. Based
on the representation proposed in [1] the dedicated Pellet-Spatial reasoner [3] has been
extended for directional relations in the CHOROS system [4] (Pellet-Spatial supports
only topological relations). None of the above supports orientation relations which typ-
ically appear in natural language scene descriptions and in robotics among others. In
this work, a representation of orientation relations based on a combination of modified
versions of the relations proposed in [7,8] is proposed. The proposed representation is
combined with a tractable reasoning mechanism over specific sets of relations, con-
taining basic relations of both sets that are parts of the mechanism. Furthermore, the
reasoning mechanism is implemented by means of OWL axioms and SWRL rules that
are fully compliant with existing Semantic Web standards and tools.

3 Spatial Representation

Orientation relations in this work are represented as object properties between OWL
objects representing spatial entities. For example if Object1 is Left Of Object2, user
asserts the binary relation Object1 Left Object2, or equivalently Left(Object1, Ob-
ject2). This approach is similar to the approach used in [1] for cardinal directional
relations, as part of the SOWL model. In [7] and [8] orientation relations are defined
between objects based on cone-shaped regions around objects. In both cases lines sep-
arating the cone-shaped regions are also different relations, similar to the star calculus
proposed in [5]. Reasoning over star calculus have been proven to be NP-complete,
even if reasoning is restricted over basic relations. On the other hand, lines separating
cone-shaped regions can belong to one of these regions instead of being separate basic
relations. This calculi is called the revised star calculus and it is also presented in [5].
Furthermore reasoning over basic relations of the modified calculi is decided by path
consistency and is tractable [5]. This approach is also used for representing cardinal di-
rectional relations in [1,6]. In this work, orientation relations correspond to cone-shaped
regions, and lines separating the regions belong to only one of these regions. This is the
basic difference to relations proposed in [7] and [8].

Note that representations based on projections on orthogonal 2D axis and reasoning
over the pairs of relations on these one-dimensional spaces, instead of cone shaped
regions in bi-dimensional space have been proposed as well in [2]. Projection based
representations have different semantics than the proposed cone-shaped representation,
thus it can not be consider as an alternative to it. For example, using the projection based
approach, if a point is located far left relatively to another point and slightly behind
it, following the projection based approach relations Left and Behind will hold at
the horizontal and the vertical axis respectively. Following the cone-shaped approach

126 S. Batsakis, G. Antoniou, and I. Tachmazidis

(a) Directional Orientation of Objects (b) Directional Orientation Relations

Fig. 1. (a) Egocentric Directional Orientation of Objects (b) Egocentric Directional Orientation
Relations

only the relation Left holds, which is conceptually right according to the way humans
usually refer to orientation relations.

The basic directional orientation relations are: Same, Opposite, Left and Right as
presented in Figure 1(b). These relations are abbreviated as S,O,L,R respectively. The
relations are defined as follows, if 2D vectors v1 and v2 represent the orientation of
objects o1 and o2 on the 2D plane, then the angle θo between vector v1 and v2 specify the
egocentric orientation relation between o1 and o2 as illustrated in Figure 1(a). Note that
lines separating the cone shaped regions belong only to one of these regions according
to definitions of relations. Specifically:

−π

4
≤ θo <

π

4
≡ S(o1, o2)

π

4
≤ θo <

3π

4
≡ R(o1, o2)

3π

4
≤ θo <

5π

4
≡ O(o1, o2)

5π

4
≤ θo <

7π

4
≡ L(o1, o2)

Positional orientation relations are Front, Back, Left and Right, presented in Figure 2(a)
(note that terms Back and Behind can be used interchangeably). Lines separating the
cone-shaped regions belong to only one of the adjacent regions, as in the case of direc-
tional orientation relations. By convention, they also belong to the region to the right of
the line, moving clockwise (but other conventions are valid as long as each line belongs
to exactly one adjacent cone shaped region). Although positional orientation relations
seem similar to directional orientation relations, their definition and semantics are dif-
ferent. Specifically, positional orientation relations are defined as follows, if 2D vector
p2 represents the position (and not orientation, as for directional orientation relations)
of object o2 on the 2D plane, that has o1 position as reference frame, y-axis defined us-
ing v1 (orientation of o1) and x-axis perpendicular to y-axis, then the angle θp between

Reasoning over Spatial Orientation Relations Using Rules 127

vector v1 and p2 specify the egocentric positional orientation relation between o1 and
o2 as illustrated in Figure 2(a). Relations are defined as follows:

−π

4
≤ θp <

π

4
≡ Front(o1, o2)

π

4
≤ θp <

3π

4
≡ Right(o1, o2)

3π

4
≤ θp <

5π

4
≡ Back(o1, o2)

5π

4
≤ θp <

7π

4
≡ Left(o1, o2)

(a) Positional Orientation Relations (b) Orientation Example

Fig. 2. (a) Positional Orientation Relations (b) Orientation Example

An example presenting both relations is illustrated in Figure 2(b). Directional orien-
tation relation is defined by angle θo between vector v1 representing the orientation of
object o1 and vector v2 representing the orientation of object o2. Positional orientation
relation is defined by angle θp between vector v1 representing orientation of object o1
and vector p2 representing position of object o2. In this example, object o2 has the same
orientation as object o1 and it is located at the right of object o1.

Additional OWL axioms required for the proposed representation; basic relations of
each set are pairwise disjoint e.g., Left is disjoint with Front. Also Left is inverse
of Right (in both sets) and Front is inverse of Back. On the other hand, directional
orientation relations same and opposite are symmetric. Note also that if two objects
are identical then the equality relation holds between them. Instead of using a separate
equality relation the OWL sameAs keyword can be used instead for this case as in [1].

4 Spatial Reasoning

Reasoning is realized by introducing a set of SWRL rules operating on spatial relations.
Reasoners that support DL-safe rules such as HermiT can be used for inference and

128 S. Batsakis, G. Antoniou, and I. Tachmazidis

consistency checking over orientation relations. Defining compositions of relations is
a basic part of the spatial reasoning mechanism. Table 1 represents the result of the
composition of two directional orientation relations of Figure 1(b) (relations Same,
Right, Opposite and Left, are denoted by “S”,“R”,“O”, “L” respectively).

Table 1. Composition Table for Directional Orientation Relations

Relations S(Same) R(Right) O(Opposite) L(Left)

S S,R,L S,R,O R,O, L S,O,L

R S,R,O R,O, L S,O, L S,R,L

O R,O, L S,O, L S,R,L S,R,O

L S,O, L S,R,L S,R,O R,O,L

Composition Table can be interpreted as follows: if relation R1 holds between object
o2 and object o1 and relation R2 holds between object o3 and object o2, then the entry
of the Table 1 corresponding to line R1 and column R2 denotes the possible relation(s)
holding between object o3 and object o1. For example, if object o2 is at Same direc-
tion to object o1 and object o3 is Right (in terms of directional orientation) to object
o2 then object o3 is right, same direction or opposite to object o1. Entries in the above
composition table are determined using the following observation: composition of two
relations corresponds to the addition of two angles representing the relative directional
orientation of point2 to point1 and point3 to point2, forming angles θ1 and θ2 respec-
tively with the reference (vertical) axis. Combining this observation with the definition
of relations in Section 3 the above compositions of Table 1 are defined. So for exam-
ple composition of same and opposite is interpreted as adding 7π

4 ≤ θ1 < π
4 and

3π
4 ≤ θ2 < 5π

4 which yields 2π
4 ≤ θ12 < 6π

4 which corresponds to a cone shaped
region into the region defined by the disjunction of Right, Opposite, Left.

Composing positional orientation relations (Figure 2(a)) requires combining also di-
rectional orientation relations (Figure 1(b)). Specifically, composing orientation rela-
tions can be defined as follows: if object o1 is related with object o2 with directional
orientation relation Ro21 and positional orientation relation Rp21 and object o2 is re-
lated with object o3 with directional orientation relation Ro32 and positional orientation
relation Rp32 then between object o1 and object o3 the directional orientation relation
Ro31 is defined using the compositions of Table 1 as: Ro31 ≡ Ro21 ◦ Ro32 (◦ denotes
composition).

Composition of positional relations is more complex: when composing relations
Rp21 and Rp32 , the fact that object o2 may have a different directional orientation wrt
object o1 must be also taken into account. For example, if object o2 is Right of ob-
ject o1, object o3 is Left of object o2, but because object o2 is opposite of object o1
(see Figure 3(a)), directional orientation of objects o1 and o2 must be aligned, before
composing positional relations. Specifically, after rotating object o2 wrt object o1 (i.e.,
aligning their directional orientation, by changing direction of object o2 from v2 to v2′),
then object o3 is not considered to be located Left of object o2, but Right, Front or
Back of object o2 (see Table 2). Then we can compose positional orientation relations
and infer possible relations holding between objects o1 and o3.

Reasoning over Spatial Orientation Relations Using Rules 129

Intuitively, for the composition of Rp21 and Rp32 object o1 is now the reference
point for both object o2 and object o3, thus before composing the two relations, Rp32

must be adjusted to the reference frame of object o1 and this is achieved by perform-
ing the rotation specified by relation Ro21 . The result of this rotation, which will be
described in detail is denoted by Ro21♦Rp32 . The resulting relation which is a po-
sitional orientation relation of Figure 2(a) can be composed with relation Rp21 , thus
Rp31 ≡ Rp21 ◦ (Ro21♦Rp32). Since rotation is defined as an addition of two angles, the
result of the rotation is similar to compositions of Table 1. Specifically, rotations are de-
fined in Table 2. Given a directional orientation relation Ro and a positional orientation
relation Rp, each entry in Table 2 corresponding to row Ro and column Rp represent
the result of the rotation of relation Rp with respect to relation Ro, yielding a set of
positional orientation relations.

Table 2. Rotation Table for Positional Orientation with respect to Directional Orientations

Relations F (Front) R(Right) B(Back) L(Left)

S(Same) F,R,L F,R,B R,B,L F,B,L

R(Right) F,R,B R,B,L F,B,L F,R,L

O(Opposite) R,B,L F,B,L F,R,L F,R,B

L(Left) F,B,L F,R,L F,R,B R,B,L

(a) Composition Example (b) Positional Composition Example

Fig. 3. (a) Composition Example (b) Positional Composition Example

After performing the rotation of the second positional orientation relation, the two
positional orientation relations can be composed. Table 3 represents the result of the
composition of two positional orientation relations of Figure 2(a) (relations Front,
Right, Back and Left, are denoted by “Fr”,“Ri”,“Ba”, “Le” respectively, and All
denotes the disjunction of all relations).

130 S. Batsakis, G. Antoniou, and I. Tachmazidis

Table 3. Composition Table for Positional Orientation Relations

Relations Fr Ri Ba Le

Fr Fr Fr,Ri All Fr,Le

Ri Fr,Ri Ri Ri,Ba All

Ba All Ri,Ba Ba Ba,Le

Le Fr,Le All Ba,Le Le

Composition Table can be interpreted as follows: if relation R1 holds between point2
and point1 and relation R2 holds between point3 and point2, then the entry of the Ta-
ble 3 corresponding to line R1 and column R2 denotes the possible relation(s) holding
between point3 and point1 (points represent the centroid of corresponding objects).
For example, if point2 is Front of point1 and point3 is Left to point2 (after ro-
tating object o2 to so as to point to the same direction as object o1) then point3 is
Front or Left to point1. Entries in the above composition tables are determined us-
ing the following observation: composition of two relations corresponds to the addition
of two vectors representing the relative placement of point2 to point1 and point3 to
point2 (after performing the aforementioned rotation) forming angles θ1 and θ2 respec-
tively with the reference axis. The resulting vector represents the relative placement of
point3 to point1, i.e., the composition of two vectors, as illustrated in Figure 3(b).
When adding the two vectors the resulting vector forms an angle θ with the reference
axis such that θ2 ≤ θ ≤ θ1. Angle θ defines the relation between point1 and point3.
Using this observation it can be concluded for example that composing relations Right
and Front yields the disjunction of these two relations as a result.

A series of compositions of relations may yield relations which are inconsistent with
existing ones (e.g., the above example will yield a contradiction if point3 back of of
point1 has been also asserted into the ontology). Consistency checking is achieved by
ensuring path consistency by applying formula:

∀x, y, k Rs(x, y) � Ri(x, y) ∩ (Rj(x, k) ◦Rk(k, y))

representing intersection of compositions of relations with existing relations (symbol ∩
denotes intersection, symbol ◦ denotes composition and Ri, Rj , Rk, Rs denote direc-
tional relations). The formula is applied until a fixed point is reached (i.e., the applica-
tion of the rules above does not yield new inferences) or until the empty set is reached,
implying that the ontology is inconsistent. Implementing path consistency formula re-
quires rules for both compositions and intersections of pairs of relations.

Compositions of relations R1, R2 yielding a unique relation R3 as a result are ex-
pressed in SWRL using rules of the form:

R1(x, y) ∧R2(y, z) � R3(x, z)

Note that for directional orientation relations of Figure 1(b), rules of the above form
apply, but for positional orientation relations of Figure 2(a), rules are of the form:

R1(x, y) ∧Ro1(x, y) ∧R2(y, z) � R3(x, z)

Reasoning over Spatial Orientation Relations Using Rules 131

where Ro1 is a relation of the set presented in Figure 1(b).
The following is an example of such a composition rule:

Front(x, y) ∧ Front(y, z) � Front(x, z)

Rules yielding a set of possible relations cannot be represented directly in SWRL, since
disjunctions of atomic formulas are not permitted as a rule head. Instead, disjunctions of
relations are represented using new relations, whose compositions must also be defined
and asserted into the knowledge base. For example, the composition of relations Front
and Right yields the disjunction of two possible relations (Front and Right) as a result:

Front(x, y) ∧Right(y, z) → (Front ∨Right)(x, z)

If the relation Front Right represents the disjunction of relations Front and Right,
then the composition of Front and Right can be represented using SWRL as follows:

Front(x, y) ∧Right(y, z) → Front Right(x, z)

A set of rules defining the result of intersecting relations holding between two points
must also be defined in order to implement path consistency. These rules are of the
form:

R1(x, y) ∧R2(x, y) � R3(x, y)

where R3 can be the empty relation. For example, the intersection of relations Left and
Right yields the empty relation, and an inconsistency is detected:

Left(x, y) ∧Right(x, y) � ⊥

Intersection of relations Right and Right Back (representing the disjunction of Right
and Back yields relation Right as a result:

Right(x, y) ∧Right Back(x, y) � Right(x, y)

Thus, path consistency is implemented by defining compositions and intersections of re-
lations using SWRL rules and OWL axioms for inverse relations as presented in Section
3. Another important issue for implementing path consistency is the identification of the
additional relations, such as the above mentioned Right Back relation, that represent
disjunctions. Specifically minimal sets of relations required for defining compositions
and intersections of all relations that can be yielded when applying path consistency
on the basic relations of Figures 1(b) and 2(a) are identified. The identification of the
additional relations is required for the construction of the corresponding SWRL rules.

In this work, the closure method [2] of Table 4 is applied for computing the mini-
mal relation sets containing the set of basic relations: starting with a set of relations,
intersections and compositions of relations are applied iteratively until no new relations
are yielded forming a set closed under composition, intersection and inverse. Since
compositions and intersections are constant-time operations (i.e., a bounded number of
table lookup operations at the corresponding composition tables is required) the run-
ning time of closure method is linear to the total number of relations of the identified
set. This method is applied over both sets of relations.

132 S. Batsakis, G. Antoniou, and I. Tachmazidis

Table 4. Closure method

Input: Set S of tractable relations
Table C of compositions
WHILE S size changes

BEGIN
Compute C:Set of compositions of relations in S
S=S ∪ C
Compute I:set of intersections of relations in S
S= S ∪ I

END
RETURN S

A reduction to required relations and rules can be achieved by observing that the
disjunction of all basic relations when composed with other relations yields the same
relation, while intersections yield the other relation. Specifically, given that All repre-
sents the disjunction of all basic relations and Rx is a relation in the supported set, then
the following holds for every Rx:

All(x, y) ∧Rx(x, y) → Rx(x, y)

All(x, y) ∧Rx(y, z) → All(x, z)

Rx(x, y) ∧ All(y, z) → All(x, z)

Since relation All always holds between two points, because it is the disjunction of all
possible relations, all rules involving this relation, both compositions and intersections,
do not add new relations into the ontology and they can be safely removed. Also, all
rules yielding the relation All as a result of the composition of two supported relations
Rx1, Rx2:

Rx1(x, y) ∧Rx2(y, z) → All(x, z)

can be removed as well. Thus, since intersections yield existing relations and the fact
that the disjunction over all basic relations must hold between two objects, all rules
involving the disjunction of all basic relations, and consequently all rules yielding this
relation, can be safely removed from the knowledge base. After applying the closure
method and optimizations the required number of relations for representation and rea-
soning (basic and disjunctive) is 23 (14 directional and 9 positional).

5 Evaluation

In the following the proposed representation and reasoning mechanism is evaluated
both theoretically and experimentally.

5.1 Theoretical Evaluation

The required expressiveness of the proposed representation is within the limits of OWL 2
expressiveness. Reasoning is achieved by employing DL-safe rules expressed in SWRL
that apply on named individuals in the ontology ABox, thus retaining decidability.

Reasoning over Spatial Orientation Relations Using Rules 133

Specifically, any object can be related with every other object with two basic direc-
tional relations (one of each set presented in Figures 1(b) and 2(a)). Since relations of
each set are mutually exclusive, between n objects, at most 2n(n− 1) relations can be
asserted. Furthermore, path consistency has O(n5) time worst case complexity (with
n being the number of points). In the most general case where disjunctive relations
are supported, in addition to the basic ones, any object can be related with every other
object by at most k relations, where k is the size of the set of supported relations. There-
fore, for n objects, using O(k2) rules, at most O(kn2) relations can be asserted into the
knowledge base.

The O(n5) upper limit for path consistency running time referred to above is ob-
tained as follows: At most O(n2) relations can be added in the knowledge base. At
each such addition step, the reasoner selects 3 variables among n objects which cor-
responds to O(n3) possible different choices. Clearly, this upper bound is pessimistic,
since the overall number of steps may be lower than O(n2), because an inconsistency
detection may terminate the reasoning process early, or the asserted relations may yield
a small number of inferences. Also, forward chaining rule execution engines employ
several optimizations, thus the selection of appropriate variables usually involves fewer
than O(n3) trials. Nevertheless, since the end user may use any reasoner supporting
SWRL, a worst case selection of variables can be assumed in order to obtain an upper
bound for complexity. Also, retaining control over the order of variable selection and
application of rules yields an O(n3) upper bound for path consistency [3].

5.2 Experimental Evaluation

Measuring the efficiency of the proposed representation requires the spatial ontology
of Section 3, containing instances, thus a data-set of 10K to 100K objects generated
randomly was used for the experimental evaluation. Reasoning response times of the
spatial orientation reasoning rules are measured as the average over 10 runs. HermiT
1.3.8 running as a library of a Java application was the reasoner used in the experiments.
All experiments where run on a PC, with Intel Core CPU at 2.4 GHz, 6 GB RAM, and
Windows 7.

Fig. 4. Average reasoning time for orientation relations as a function of the number of objects

134 S. Batsakis, G. Antoniou, and I. Tachmazidis

Measurements illustrate that the proposed approach can efficiently represent thou-
sands of objects and reason over them in a few seconds, without using specialized soft-
ware besides a standard OWL reasoner such as HermiT.

6 Conclusions and Future Work

In this work, a representation framework for handling orientation spatial information in
ontologies is introduced. The proposed framework handles both, egocentric directional
and positional information using an inference procedure based on path consistency.

The proposed representation is fully compliant with existing Semantic Web stan-
dards and specifications, which increases its applicability. Being compatible with W3C
specifications, the proposed framework can be used in conjunction with existing edi-
tors, reasoners and querying tools such as Protégé and HermiT, without requiring any
additional specialized software. Therefore, information can be easily distributed, shared
and modified. Directions of future work include the development of applications based
on the proposed mechanism. Such applications could combine temporal and topolog-
ical spatial representations with the proposed orientation representation and reasoning
mechanism.

References

1. Batsakis, S., Petrakis, E.G.M.: SOWL: A Framework for Handling Spatio-Temporal Infor-
mation in OWL 2.0. In: Bassiliades, N., Governatori, G., Paschke, A. (eds.) RuleML 2011 -
Europe. LNCS, vol. 6826, pp. 242–249. Springer, Heidelberg (2011)

2. Renz, J., Nebel, B.: Qualitative Spatial Reasoning using Constraint Calculi. In: Handbook of
Spatial Logics, pp. 161–215. Springer, Netherlands (2007)

3. Stocker, M., Sirin, E.: PelletSpatial: A Hybrid RCC-8 and RDF/OWL Reasoning and Query
Engine. In: OWLED 2009. CEUR Workshop Proceedings, vol. 529, pp. 2–31 (2009)

4. Christodoulou, G., Petrakis, E.G.M., Batsakis, S.: Qualitative Spatial Reasoning using Topo-
logical and Directional Information in OWL. In: Proc. of 24th International Conference on
Tools with Artificial Intelligence (ICTAI 2012), November 7-9 (2012)

5. Renz, J., Mitra, D.: Qualitative Direction Calculi with Arbitrary Granularity. In: Zhang, C.,
Guesgen, H.W., Yeap, W.-K. (eds.) PRICAI 2004. LNCS (LNAI), vol. 3157, pp. 65–74.
Springer, Heidelberg (2004)

6. Batsakis, S.: Reasoning over 2D and 3D directional relations in OWL: a rule-based approach.
In: Morgenstern, L., Stefaneas, P., Lévy, F., Wyner, A., Paschke, A. (eds.) RuleML 2013.
LNCS, vol. 8035, pp. 37–51. Springer, Heidelberg (2013)

7. Baruah, R., Hazarika, S.M.: Qualitative directions in egocentric spatial reference frame. In:
2012 12th International Conference on Intelligent Systems Design and Applications (ISDA).
IEEE (2012)

8. Mossakowski, T., Moratz, R.: Qualitative reasoning about relative direction of oriented points.
Artificial Intelligence 180, 34–45 (2012)

9. Shearer, R., Motik, B., Horrocks, I.: HermiT: A Highly-Efficient OWL Reasoner. In: OWLED,
vol. 432 (2008)

© Springer International Publishing Switzerland 2015 135
N. Bassiliades et al. (eds.), New Trends in Database and Information Systems II,
Advances in Intelligent Systems and Computing 312, DOI: 10.1007/978-3-319-10518-5_11

An Efficient Approach for Detecting and Repairing
Data Inconsistencies Resulting from Retroactive Updates

in Multi-temporal and Multi-version XML Databases

Hind Hamrouni, Zouhaier Brahmia, and Rafik Bouaziz

University of Sfax, Tunisia
hindhamrouni@gmail.com,

{zouhaier.brahmia,raf.bouaziz}@fsegs.rnu.tn

Abstract. In multi-temporal XML databases supporting schema versioning, up-
dating a past element with retroactive effect is not always a graceful task, since
it could give rise to inconsistencies in the database. In fact, modifying a past
element due to a detected error means that the database has included erroneous
information during some period and, therefore, its consistency should be res-
tored by correcting all errors and inconsistencies that have occurred in the past.
In this paper, we propose an efficient approach which preserves data consisten-
cy in multi-temporal and multi-version XML databases. More precisely, after
any retroactive update, the proposed approach allows (i) determining the period
of database inconsistency, which results from that update, and (ii) repairing of
all data inconsistencies and their consequent side effects.

Keywords: Temporal XML Databases, Schema Versioning, Retroactive Up-
date, Data Inconsistency, Inconsistency Period, Repairing Inconsistencies.

1 Introduction

Nowadays, supporting the temporal aspect is a requirement for most computer appli-
cations, including processing of scientific and census data, banking and financial
transactions, and record-keeping applications. In fact, these applications need to store
and manipulate data while taking into account the time dimension. This has led to the
appearance of temporal databases [1, 2] which retain data evolution over transaction-
time dimension and/or valid-time dimension [3]: (i) the valid-time of a datum is the
time when this datum is true in the real world; each datum is timestamped with a va-
lidity start time (VST) and a validity end time (VET); (ii) the transaction-time of a
datum is the time when this datum is current in the database; each datum is time-
stamped with a transaction start time (TST) and a transaction end time (TET).

Thus, according to the temporal dimensions they support, temporal databases are
classified into five categories [3]: transaction-time (including only transaction-time
data), valid-time (containing only valid-time data), bitemporal (storing only bitempor-
al data), snapshot (containing only nontemporal/conventional data) or multi-temporal
(supporting data of different temporal formats).

136 H. Hamrouni, Z. Brahmia, and R. Bouaziz

Besides, evolution of database schema (e.g., dropping or adding entities, dropping
or adding attributes of entities) over time is unavoidable in the context of information
systems and may occur due to several reasons: meeting new user requirements, taking
into account new regulations, etc. In temporal databases, changing schema could lead
to some problems like data loss when dropping some entities and/or attributes. Thus,
although temporal databases allow keeping track of data history when the schema is
static, they do not provide a complete data history when they do not keep track also of
database schema evolution over time. Therefore, to avoid this drawback and to pro-
vide a complete data history which allows performing operations on data defined
under any schema version, researchers in the database community have proposed to
adopt the schema versioning technique in temporal databases [4, 5].

On the other hand, XML databases [6] are widely used, especially on the Web. The
introduction of temporal and schema versioning aspects in such databases gave rise to
multi-temporal and multi-version XML databases [7] in which any XML document
can store elements of different temporal formats (snapshot, transaction-time, valid-
time and bitemporal) and any XML schema evolves over time through multiple ver-
sions. Moreover, these databases are very useful for several domains (e.g., managing
evolution of customer profiles and requirements in e-commerce systems, managing
evolution of legal texts in e-government systems...).

In multi-temporal and multi-version XML databases, there are three types of up-
dates concerned with the time when updates are made: retroactive, proactive [8], and
real-time (or on-time) updates. Indeed, a retroactive update is done after the change
occurred in reality (i.e., the TST of the datum is superior to its VST). A proactive
update is done before the change occurs in reality (i.e., the TST of the datum is infe-
rior to its VST). A real-time update is done when the change occurs in reality (i.e., the
TST of the datum is equal to its VST).

Retroactive and proactive updates occur naturally in many applications. For exam-
ple, a postdated check is a proactive update, and a salary increase may be retroactive
to some past date. However, retroactive updates are not always performed safely since
they could have a harmful effect on the consistency of the database. Let’s take the
sample of correcting a past XML element representing a past banking interest rate in a
bank, which was applied during the period going from 2013-01-01 to 2013-12-31. All
existing data (e.g., interest bank accounts, balances of bank accounts, and scheduled
payment amounts) that have been obtained using the erroneous past banking interest
rate are consequently erroneous and should be corrected. The database was inconsis-
tent during the period where this interest rate was effective.

In this paper, we focus on the impacts of retroactive updates on the consistency of
the database and we propose an efficient approach that preserves such a consistency:
we show how to repair automatically and safely data inconsistencies which result
from a transaction that includes some operations acting on past data.

The rest of this paper is organized as follows: the next section motivates the need
for a new approach for preserving the consistency of a multi-temporal and multi-
version XML database; Section 3 describes data inconsistencies resulting from re-
troactive updates; Section 4 presents our approach for an automatic and safe repairing

 An Efficient Approach for Detecting and Repairing Data Inconsistencies Resulting 137

of data inconsistencies that occur due to a retroactive update; Section 5 discusses
related work; Section 6 concludes the paper.

2 Motivation

In this section, we first present an example that illustrates how maintaining consisten-
cy in temporal XML databases after a retroactive update is a complicated task that
could not be achieved using supports provided by existing database management sys-
tems (DBMSs). Then we show the need for systems providing supports for preserving
consistency of multi-temporal and multi-version XML databases.

2.1 Motivating Example

Suppose that on 2014-06-10, the personnel officer detects an error that has occurred
on 2013-01-03: he/she saved an erroneous value for the salary of the employee Fateh:
1120 TND (the erroneous value) instead of 1210 TND (the correct value); thus, an
amount of 90 TND has not been considered in the salary, and during a period of twen-
ty-nine months. Obviously, this error was propagated to all results of operations that
have been performed using this salary (i.e., 1120), especially those which calculated
taxes and social security contributions, as well as to all successor salaries.

Currently, the semantics of the temporal data update operation [9], which should be
used to correct the erroneous salary that was inserted on 2013-01-03, does not support
the correction of all effects of this error (i.e., it does not correct all taxes and social
security contributions, that were calculated after 2013-01-03 based on the erroneous
salary, as well as all other successor salaries). Such an operation corrects only the
value of the corresponding salary. The XML element that represents the erroneous
salary is stored as a past erroneous element, and the correct salary is stored in a new
XML element which represents a past correct element <salary/> (see Fig. 1); the mod-
ification is performed in a non-destructive manner, since we are in a temporal setting.

To repair all data inconsistencies, the database administrator should proceed in an
ad hoc manner: first, he/she should determine the list of all operations that were done
using the erroneous salary, in order to know all data that were calculated based on the
erroneous salary or on other data obtained from the erroneous salary, going from
2013-01-03 to 2014-06-10. Then, he/she should correct all erroneous data by writing
an appropriate XML update [10, 11]. Fig. 1 shows that all salaries introduced after the
corrected salary have been also corrected by inserting new correct past <salary/> ele-
ments, except the last salary which is replaced by a new correct current <salary/>
element (i.e., the <salary/> element with TET attribute equal to “UC”); notice that
“UC” (Until Change) [3] means that the salary is current until new change. The figure
1 shows also that both the social security contributions and taxes corresponding to the
corrected salaries have also been corrected accordingly (a social security contribution
is equal to 10% of the salary paid during the same period, whereas a tax is equal to
5% of the corresponding salary).

138 H. Hamrouni, Z. Brahmia, and R. Bouaziz

<employees>

<employee>

<SSN>12345678</SSN>

<name>Fateh</name>

<salaries>

<salary VST=”2013-01-01” VET=”2013-12-31” TST=”2013-01-03” TET=”2014-01-03”>1120</salary>

<salary VST=”2013-01-01” VET=”2013-12-31” TST=”2014-06-10” TET=”2014-06-10”>1210</salary>

<salary VST=”2014-01-01” VET=”2014-12-31” TST=”2014-01-03” TET=”2014-06-10”>1250</salary>

<salary VST=”2014-01-01” VET=”2014-12-31” TST=”2014-06-10” TET=”UC”>1300</salary>

</salaries>

<socialSecurityContributions>

<socialContribution VST=”2013-01-01” VET=”2013-12-31”

 TST=”2013-01-03” TET=”2014-01-03”>112</socialContribution>

<socialContribution VST=”2013-01-01” VET=”2013-12-31”

 TST=”2014-06-10” TET=”2014-06-10”>121</socialContribution>

<socialContribution VST=”2014-01-01” VET=”2014-12-31”

 TST=”2014-01-03” TET=”2014-06-10”>125</socialContribution>

<socialContribution VST=”2014-01-01” VET=”2014-12-31”

 TST=”2014-06-10” TET=”UC”>130</socialContribution>

</socialSecurityContributions>

<taxes>

<tax VST=”2013-01-01” VET=”2013-12-31” TST=”2013-01-03” TET=”2014-01-03”>56</tax>

<tax VST=”2013-01-01” VET=”2013-12-31” TST=”2014-06-10” TET=”2014-06-10”>60.5</tax>

<tax VST=”2014-01-01” VET=”2014-12-31” TST=”2014-01-03” TET=”2014-06-10”>62.5</tax>

<tax VST=”2014-01-01” VET=”2014-12-31” TST=”2014-06-10” TET=”UC”>65</tax>

</taxes>

</employee>

…

<employees>

Fig. 1. Salaries of the employee Fateh, and corresponding social security contributions and
taxes, corrected after a retroactive update

2.2 Need for New DBMS Supports

The consistency of a multi-temporal and multi-version XML database could not be
ensured easily, since (i) all temporal dimensions are supported (i.e., data can evolve
over transaction time and/or valid time), (ii) there are several schema versions and
consequently several database instances, and (iii) a data management operation that is
originally devoted to insert, delete, or update an XML element could involve several
other XML elements (e.g., when the temporal interval of a new element that modifies
an existing one overlaps, completely or partially, temporal intervals of other existing
XML elements or when the value of an element is deducted from the value of errone-
ous element), defined under the same XML schema version or under several XML
schema versions. Thus, the challenges described above show that end us-
ers/applications, interacting with multi-temporal and multi-version XML databases,
need DBMSs with built-in support for repairing inconsistencies that result from re-
troactive updates.

3 Data Inconsistencies Resulting from Retroactive Updates

In a multi-temporal and multi-version XML database, inserting, updating or deleting
past data give rise to data inconsistencies during some periods. In [12], the authors

 An Efficient Approach for Detecting and Repairing Data Inconsistencies Resulting 139

defined an inconsistency period resulting from a retroactive update of data as the tem-
poral interval which delimits the scope of side effects that are expected to be generat-
ed by this update. Such an inconsistency period could be of one of the following three
types: “Wrong Absence of Data”, “Wrong Presence of Data”, or “Errors in Data”.

• Wrong Absence of Data: the inconsistency is due to the absence of a datum that
had to be present in the database during this period;

• Wrong Presence of Data: the inconsistency comes from the presence of a datum
that had to be absent in the database during this period;

• Errors in Data: the inconsistency results from the existence of some data with erro-
neous values during this period.

An inconsistency period, resulting from a retroactive update can be divided into
several sub-periods; each one of these sub-periods should be interpreted according to
the nature (i.e., insertion, deletion, or correction) of the retroactive update. In the fol-
lowing, we study periods of inconsistency resulting from retroactive updates.

3.1 Data Inconsistencies Resulting from a Retroactive Insertion of Data

The insertion of an XML element with retroactive effect generates an inconsistency
period of “Wrong Absence of Data” type: the inserted element, which was absent
before its TST, should be normally present in the temporal database since its VST.
Fig. 2 illustrates such a period of inconsistency. In the following, we use CT to denote
the “current time”.

Fig. 2. The inconsistency period resulting from a retroactive insertion of data

As shown by Fig. 2, the period of inconsistency is delimited by the VST (period
beginning) and the TST (period ending) of ei; it can be divided into two sub-periods:

• [VSTi – VETi]: the interval during which the consequent side effects concern all
processings that had to use the element ei while it had to be a current element;

•]VETi – TSTi]: the interval during which the generated side effects concern all
processings that had to use the element ei while it had to be a past element.

3.2 Data Inconsistencies Resulting from a Retroactive Deletion of Data

The removal of an XML element with retroactive effect generates an inconsistency
period of “Wrong Presence of Data” type: the deleted element, which was present
before the instant of its deletion (i.e., before the TST of the deletion element [9, 11],

140 H. Hamrouni, Z. Brahmia, and R. Bouaziz

that is the XML element which is used to delete the corresponding element), should
not normally exist in the temporal database since its VST. Fig. 3 illustrates such a
period.

Fig. 3. The inconsistency period resulting from a retroactive deletion of data

As shown by Fig. 3, the period of inconsistency, which starts at the VST of ei and
ends at the TST of ej, can be divided into two sub-periods:

• [VSTj - VETi]: the interval during which the resulting side effects concern all pro-
cessings that had used the element ei while it was a current element;

•]VETi - TSTj]: the interval during which the consequent side effects concern all
processings that had used the element ei while it was a past element.

3.3 Data Inconsistencies Resulting from a Retroactive Correction of Data

Retroactive correction operations could be done only on valid-time and bitemporal
data. In this paper, we deal only with retroactive correction of bitemporal data, since
we think that it is the most complicated case and, thus, it requires much attention.

The correction of a bitemporal element is performed by inserting a new element
containing the correct values, called the element of correction [9, 11]. A correction
operation can affect (i) the contents of the corrected element, (ii) values of non-
temporal attributes (i.e., attributes different of VST, VET, TST, and TET attributes)
of the corrected element, and/or (iii) the valid-time interval of the corrected element
(i.e., values of VST and VET attributes); obviously, the transaction-time interval (i.e.,
values of TST and TET attributes) of any element cannot be modified owing to the
definition of transaction time. In the first and/or the second case (i.e., points (i) and
(ii)), the correction operation generates an inconsistency period of type “Errors in
Data”. However, in the third case (i.e., point (iii)), it generates an inconsistency period
which can be divided into several sub-periods each one of them has a different type.
A more detailed analysis of inconsistency periods can be found in [13].

In the following, we deal with inconsistencies resulting from a retroactive correc-
tion operation that updates the contents and/or the values of non-temporal attributes of
a bitemporal element; it modifies neither the VST attribute, nor the VET attribute.
This correction generates an inconsistency period of type “Errors in Data”: it means
that the corrected element had an erroneous value. Fig. 4 illustrates such a period of
inconsistency.

 An Efficient Approach for Detecting and Repairing Data Inconsistencies Resulting 141

As shown by Fig. 4, the period of inconsistency, which is delimited by the VST of
ei (period beginning) and the TST of ej (period ending), can be divided into two sub-
periods:

• [VSTi - VETi]: the interval during which the generated side effects concern all
processings that had used the element ei while it was a current element;

•]VETi - TSTj]: the interval during which the consequent side effects concern all
processings that had used the element ei while it was a past element.

Fig. 4. The inconsistency period resulting from a retroactive correction operation which does
not modify the valid-time interval of a bitemporal element

4 The Proposed Approach for Repairing Data Inconsistencies
Resulting from Retroactive Updates of Temporal XML Data

In this section, we propose an approach that allows repairing automatically and safely
data inconsistencies resulting from retroactive updates in multi-temporal XML data-
bases supporting schema versioning. First, we describe the process of repairing data
inconsistencies. Then, we present the architecture of a native temporal XML DBMS
which supports repairing such data inconsistencies.

4.1 Process of Repairing Automatically and Safely Data Inconsistencies

When an end user or an application submits to the temporal XML DBMS a retroac-
tive update of temporal XML data, it performs the following sequence of tasks:

Task 1: it updates the database as required by the end user or the application (ob-
viously after checking the update syntactically).

Task 2: it determines the period of inconsistency resulting from the retroactive up-
date of data, and its sub-periods.

Task 3: it determines the list of transactions that were executed during each sub-
period of inconsistency and had used erroneous past data (in case that the correspond-
ing sub-period of inconsistency is of type “Wrong Presence of Data” or “Errors in
Data”) or had to use new data (in case that the corresponding sub-period of inconsis-
tency is of type “Wrong Presence of Data” or “Errors in Data”); for each concerned
transaction, it should provide its commit time, all its elementary operations (for the
sake of simplicity, we suppose that a transaction is composed of a single operation,
i.e., a single insert, delete, or update operation), and all data that were written and read
by this transaction.

142 H. Hamrouni, Z. Brahmia, and R. Bouaziz

Task 4: it re-executes in a provisory workspace the list of corresponding transac-
tions during each sub-period of inconsistency either (a) without using the correspond-
ing past data, if this sub-period is of type “Wrong Presence of Data”, or (b) while using
(b.1) the correct values of past data, if this sub-period is of type “Errors in Data”, or
(b.2) the specified past data, if this sub-period is of type “Wrong Absence of Data”.

Task 5: it compares the old results of determined transactions (i.e., results already
stored in the database, as written data by these transactions) with their new results
(i.e., the new data that are written by these transactions in the provisory workspace).

Task 6: it replaces every old result with the corresponding new result when there is
a difference between them.

In the following, we provide main requirements of some tasks presented above:

• Task 1 requires that the DBMS supports management of temporal XML data under
schema versioning; we have studied this aspect in our previous works [9, 11].

• Task 3 requires beforehand keeping track of all transactions which are executed:
for each transaction, the DBMS should store all operations which compose this
transaction, all written and read data, and its commit time;

• Task 4 requires that the provisory workspace should be a copy of the database
(schema and instances) during the inconsistency period and before the execution of
the retroactive update operation.

• Task 6 requires that replacing old data with new data should be performed logical-
ly and not physically. Each existing erroneous data is logically corrected by a new
correct data (i.e., in a non-destructive manner). After restoring the database consis-
tency, only correct data must be used by the DBMS to answer user/application que-
ries; erroneous data could be vacuumed later by the database administrator.

4.2 Architecture of a DBMS Supporting Repair of Data Inconsistencies

Owing to the architecture of a DBMS [14], the transaction manager is the component
which is devoted to managing transactions resulting from user/applications queries
and updates submitted to the database. Therefore, if we would like to have an auto-
matic and graceful repairing of data inconsistencies which result from any retroactive
update of temporal XML data in a multi-schema context, we think that (i) the transac-
tion manager of a temporal XML DBMS should be extended by three new compo-
nents: “Retroactive Update Checker”, “Inconsistency Period Manager” and “Side
Effect Recovery Manager”, and (ii) the temporal XML DBMS itself should include a
“Transaction Catalog Manager”, a “Transaction Catalog”, and a “Provisory Work-
space”. The new general architecture of such a DBMS is depicted in Fig. 5.

The “Retroactive Update Checker” checks that the Temporal XML Update submit-
ted by the end user/application is a retroactive update operation.

The “Inconsistency Period Manager” determines the period of inconsistency which
results from a retroactive update of data, and its sub-periods with their types. It is
invoked by the “Retroactive Update Checker” in case this latter detects a retroactive
update.

After determining all sub-periods of inconsistency, the “Inconsistency Period Man-
ager” (i) invokes the “Transaction Catalog Manager” in order to retrieve from the

 An Efficient Approach for Detecting and Repairing Data Inconsistencies Resulting 143

“Transaction Catalog” the list of transactions that were executed during each one of
these sub-periods, and (ii) sends all retrieved transactions to the “Side Effect Recov-
ery Manager”.

Fig. 5. General architecture of a temporal XML DBMS supporting automatic and graceful
repairing of data inconsistencies resulting from retroactive updates

The “Side Effect Recovery Manager” controls the re-execution of transactions
which have used erroneous data (i.e., transactions executed during a period of incon-
sistency of type “Wrong Presence of Data” or “Errors in Data”) and transactions that
had to use newly added data (i.e., transactions executed during a period of inconsis-
tency of type “Wrong Absence of Data”). The concerned transactions are re-executed
in a “Provisory Workspace” which is a copy of the database during the corresponding
period of inconsistency. At the end of the re-execution of transactions, the “Side Ef-
fect Recovery Manager” (i) compares the results of determined transactions already
stored (as written data) in the database with their results in the “Provisory Work-
space”, and (ii) replaces each old result with the corresponding new one when a dif-
ference between them is detected.

The “Transaction Catalog Manager” is added in order to have a history of transac-
tions, which is complete (all details of transactions) and useful (i.e., easy-to-use by
Side Effect Recovery Manager). For each transaction, it saves its commit time, the
specified insert, delete, or update operation which composes it, data read from the
database, data written to the database.

5 Related Work

Despite the importance of preserving consistency of databases after retroactive up-
dates, this issue has been considered only to a limited extent in current literature.

144 H. Hamrouni, Z. Brahmia, and R. Bouaziz

However, it has not yet been studied in a multi-temporal and multi-version XML
environment.

In [12], the authors proposed a solution for redressing side effects generated by a
retroactive update, named “correction propagation”. This solution is defined to repair
only inconsistencies which affect cumulative attributes (i.e., attributes which can un-
dergo only operations of additions or subtractions of values, like the balance of a bank
account or the turnover of a company). So, this solution does not preserve the data-
base consistency under retroactive updates of values of attributes which are not cumu-
lative. Furthermore, this solution was defined for a temporal relational environment
which does not support schema versioning.

In [15], the author proposed the use of temporal active rules and retroactive rules in
order to redress side effects resulting from a retroactive update in a temporal relation-
al active database. An active rule is said to be temporal if (i) the event is temporal, or
(ii) the condition is temporal. A retroactive rule is a rule whose action includes a re-
troactive update.

On the other hand, retroactive and proactive updates were studied in temporal ac-
tive databases [16] and in conventional (non-temporal) databases [8]. Furthermore,
Brahmia et al. [9] and Hamrouni [11] have studied data updates in multi-temporal
XML databases supporting schema versioning. However, none of these works has
taken into account data inconsistencies resulting from retroactive updates.

Other works have dealt with the issue of preserving data consistency in temporal
databases but with regard to (i) the concurrency control of transactions, by proposing
new pessimistic [17] and optimistic algorithms [18], (ii) the forensic analysis of data-
base tampering [19], or (iii) the respect of integrity constraints [20].

Pardede et al. [21] propose a generic methodology for the management of XML
data update in XML-enabled databases. Such a methodology preserves the conceptual
semantic constraints and avoids inconsistencies in XML data during update opera-
tions. But, the authors did not deal with retroactive updates, and define a data incon-
sistency as a data invalidity resulting from an XML data update.

In [22], the author proposed an approach for managing inconsistency in databases,
within the framework of database repairs; a repair of an inconsistent database is a
database over the same schema that satisfies the integrity constraints at hand and dif-
fers from the given inconsistent database in some minimal way.

Consistency of data, which takes into account the violation of semantic rules de-
fined over a set of data items, has been also studied within the issue of data cleansing
[23] and considered as a data quality dimension.

Zellag et al. [24] propose an approach for detecting consistency anomalies and au-
tomatically reducing their occurrence, in multi-tier architectures. Since the authors
introduce a completely DBMS-independent approach, they propose that the system
implementing their approach should be embedded into the middle-tier.

6 Conclusion

In this paper, we propose an efficient approach for an automatic and graceful repair-
ing of data inconsistencies resulting from retroactive updates in multi-temporal

 An Efficient Approach for Detecting and Repairing Data Inconsistencies Resulting 145

databases supporting schema versioning. It allows the DBMS (i) to detect any data-
base inconsistency that happens after a retroactive update operation, and (ii) to per-
form necessary processings, in a transparent way, in order to repair inconsistencies
automatically.

We think that our approach (i) maintains effectively the consistency of the data-
base, and (ii) provides a low-impact solution since it requires neither modifications of
existing temporal database, nor extensions to existing temporal XML models (e.g.,
τXSchema [25]) and query languages (e.g., τXQuery [26]).

In order to show the feasibility of our approach, currently we are developing a pro-
totype system as a temporal stratum on top of the existing XML DBMS xDB [27].

As a part of our future work, we envisage to extend our work by (i) dealing with
retroactive updates which concern several temporal XML elements (in our present
work, we have supposed that a retroactive update consider always one temporal XML
element), and (ii) studying transactions that include several temporal XML updates
with retroactive effect (in the current work, we supposed that a transaction include
always a single temporal XML retroactive update operation). Furthermore, we also
plan to study how to repair inconsistencies resulting from on-time and proactive up-
dates of temporal XML databases, since the update of a current or a future temporal
XML element could also give rise to some inconsistencies.

References

[1] Etzion, O., Jajodia, S., Sripada, S. (eds.): Dagstuhl Seminar 1997. LNCS, vol. 1399.
Springer, Heidelberg (1998)

[2] Grandi, F.: Temporal Databases. In: Koshrow-Pour, M. (ed.) Encyclopedia of Informa-
tion Science and Technology, 3rd edn. IGI Global, Hershey (in press)

[3] Jensen, C.S., et al.: The Consensus Glossary of Temporal Database Concepts – February
1998 Version. In: Etzion, O., Jajodia, S., Sripada, S. (eds.) Dagstuhl Seminar 1997.
LNCS, vol. 1399, pp. 367–405. Springer, Heidelberg (1998)

[4] De Castro, C., Grandi, F., Scalas, M.R.: Schema versioning for multitemporal relational
databases. Information Systems 22(5), 249–290 (1997)

[5] Brahmia, Z., Mkaouar, M., Chakhar, S., Bouaziz, R.: Efficient management of schema
versioning in multi-temporal databases. International Arab Journal of Information Tech-
nology 9(6), 544–552 (2012)

[6] Bourret, R.: XML and Databases,
http://www.rpbourret.com/xml/XMLAndDatabases.htm
(last updated in September 2005)

[7] Brahmia, Z., Grandi, F., Oliboni, B., Bouaziz, R.: Schema Change Operations for Full
Support of Schema Versioning in the τXSchema Framework. International Journal of In-
formation Technology and Web Engineering (in press)

[8] Etzion, O., Gal, A., Segev, A.: Retroactive and Proactive Database Processing. In: Pro-
ceedings of the 4th International Workshop on Research Issues in Data Engineering: Ac-
tive Database Systems (RIDE-ADS 1994), Houston, Texas, February 14-15, pp. 126–131
(1994)

[9] Brahmia, Z., Bouaziz, R.: Data Manipulation in Multi-Temporal XML Databases Sup-
porting Schema Versioning. In: Proceedings of the 4th International EDBT Workshop on
Database Technologies for Handling XML Information on the Web (DaTaX 2009), Saint-
Petersburg, Russia (March 22, 2009)

146 H. Hamrouni, Z. Brahmia, and R. Bouaziz

[10] W3C, XQuery Update Facility 1.0, W3C Candidate Recommendation (March 17, 2011),
http://www.w3.org/TR/2011/REC-xquery-update-10-20110317/

[11] Hamrouni, H.: Extending XQuery Update Facility to Temporal and Versioning Aspects,
Master thesis, Faculty of Economics and Management of Sfax, Tunisia (December 2012)

[12] Bouaziz, R., Moalla, M.: Historisation of Data and Recovery of Side Effects. In: Proceed-
ings of the 14th Journées de Bases de Données Avancées (BDA 1998), Hammamet, Tu-
nisia, October 23-26, pp. 487–507 (1998) (in french)

[13] Hamrouni, H., Brahmia, Z., Bouaziz, R.: An Efficient Approach for Detecting and Re-
pairing Data Inconsistencies Resulting from Retroactive Updates in Multi-Temporal and
Multi-version XML Databases. TimeCenter Technical Report TR-97, 22 pages (June 17,
2014),
http://timecenter.cs.aau.dk/TimeCenterPublications/TR-97.pdf

[14] Hellerstein, J.M., Stonebraker, M., Hamilton, J.: Architecture of a Database System.
Foundations and Trends® in Databases 1(2), 141–259 (2007)

[15] Samet, A.: Automatic Recovery of Side Effects in a Multi-Version Environment, Master
thesis, Faculty of Science of Tunis, Tunisia (March 1997)

[16] Deng, M., Sistla, A.P., Wolfson, O.: Temporal Conditions with Retroactive and Proactive
Updates. In: Proceedings of the 1st International Workshop on Active and Real-Time Da-
tabase Systems (ARTDB 1995), Skövde, Sweden, June 9-11, pp. 122–141 (1995)

[17] De Castro, C.: On Concurrency Management in Temporal Relational Databases. In: Pro-
ceedings of the 6th Italian Symposium on Advanced Database Systems (SEBD 1998),
Ancona, Italy, pp. 189–202 (June 1998)

[18] Shirvani, M.H., Mohsenzadeh, M., Shirvani, S.M.H.: A New Concurrency Control Algo-
rithm in Temporal Databases. Journal of Advances in Computer Research 4(2), 63–73
(2013)

[19] Pavlou, K.E., Snodgrass, R.T.: Generalizing database forensics. ACM Transactions on
Database Systems 38(2) (2013), paper 12

[20] Švirec, M., Mlýnková, I.: Efficient Detection of XML Integrity Constraints Violation. In:
Benlamri, R. (ed.) NDT 2012, Part I. CCIS, vol. 293, pp. 259–273. Springer, Heidelberg
(2012)

[21] Pardede, E., Rahayu, J.W., Taniar, D.: XML data update management in XML-enabled
database. Journal of Computer and System Sciences 74(2), 170–195 (2008)

[22] Afrati, F.N., Kolaitis, P.G.: Repair Checking in Inconsistent Databases: Algorithms and
Complexity. In: Proceedings of the 12th International Conference on Database Theory
(ICDT 2009), March 23-25, pp. 31–41. St. Petersburg, Russia (2009)

[23] Mezzanzanica, M., Boselli, R., Cesarini, M., Mercorio, F.: Automatic Synthesis of Data
Cleansing Activities. In: Proceedings of the 2nd International Conference on Data Man-
agement Technologies and Applications (DATA 2013), Reykjavík, Iceland, July 29-31,
pp. 138–149 (2013)

[24] Zellag, K., Kemme, B.: Consistency anomalies in multi-tier architectures: automatic de-
tection and prevention. The VLDB Journal 23(1), 147–172 (2014)

[25] Snodgrass, R.T., Dyreson, C.E., Currim, F., Currim, S., Joshi, S.: Validating Quicksand:
Schema Versioning in τXSchema. Data Knowledge and Engineering 65(2), 223–242
(2008)

[26] Gao, D., Snodgrass, R.T.: Temporal slicing in the evaluation of XML documents. In:
Proceedings of the 29th International Conference on Very Large Data Bases (VLDB
2003), Berlin, Germany, September 9-12, pp. 632–643 (2003)

[27] EMC, Documentum xDB (2014),
http://www.emc.com/products/detail/software2/documentum-xdb.htm

Integrated Representation of Temporal Intervals
and Durations for the Semantic Web

Sotiris Batsakis, Grigoris Antoniou, and Ilias Tachmazidis

Department of Informatics
University of Huddersfield

Queensgate, Huddersfield, West Yorkshire, HD1 3DH, UK
{S.Batsakis,G.Antoniou,Ilias.Tachmazidis}@hud.ac.uk

Abstract. Representation of temporal information for the Semantic Web often
involves qualitative defined information (i.e., information described using natu-
ral language terms such as “before” or “lasts longer than”), since precise dates,
times and durations are not always available. A basic aspect of temporal infor-
mation is duration of intervals, thus embedding duration relations into ontologies
along with their semantics and reasoning rules is an important practical issue.
This work proposes a new representation for intervals and their durations in on-
tologies by means of OWL properties and reasoning rules in SWRL embedded
into the ontology. The proposed representation is based on the decomposition
of Interval Duration calculus relations (INDU) offering a compact representa-
tion and a tractable reasoning mechanism. Furthermore, by embedding reasoning
rules using SWRL into the ontology, reasoning semantics are an integrated part
of the representation which can be easily shared and modified without requiring
additional specialized reasoning software.

1 Introduction

Understanding the meaning of Web information requires formal definitions of concepts
and their properties, using the Semantic Web Ontology definition language OWL. This
language provides the means for defining concepts, their properties and their relations,
allowing for reasoning over the definitions and the assertions of specific individuals us-
ing reasoners such as Pellet and HermiT. Furthermore, reasoning rules can be embedded
into the ontology using the SWRL rule language.

Temporal information is an important aspect of represented objects in many applica-
tion areas involving change. Temporal information in turn can be defined using quanti-
tative (e.g., using dates) and qualitative terms (i.e., using natural language expressions
such as “During”). Qualitative temporal terms have specific semantics which can be
embedded into the ontology using reasoning rules. In previous work [1,2] such a rep-
resentation is proposed for interval based temporal information in OWL, but duration
information, which is necessary for representing assertions such as “process P2 starts
after and lasts longer than process P1”, was not represented.

Current work deals exactly with the case of combined interval and duration informa-
tion which is more expressive than the representation proposed in [1]. Interval informa-
tion is represented using the combined Interval Duration (INDU) relations introduced

c© Springer International Publishing Switzerland 2015 147
N. Bassiliades et al. (eds.), New Trends in Database and Information Systems II,
Advances in Intelligent Systems and Computing 312, DOI: 10.1007/978-3-319-10518-5_12

148 S. Batsakis, G. Antoniou, and I. Tachmazidis

in [4]. The proposed representation, which is to the best of our knowledge the first such
representation for the Semantic Web, is based on the decomposition of the INDU calcu-
lus relations. Specifically, between each pair of intervals two relations are asserted (e.g.,
“Before” and “Longer”). The first relation represents the relative placement of intervals
along the axis of time (Allen relation [3]) and the second the relation of their durations
(i.e., “Longer”, “Shorter” or “Equal”). Representation and reasoning for both sets of
relations are presented in detail. Reasoning is applied on each set of relations sepa-
rately, achieving a decomposition of INDU temporal relations. After decomposing the
relations, the two reasoning mechanisms must be combined by taking into account the
interactions of these two sets of relations. For example, when the duration of an interval
i1 is shorter than that of a second interval i2, then the fist interval cannot contain the
second (i.e., Allen relation contains is incompatible with duration relation shorter). Im-
plementation of reasoning is based on 4-consistency, applied on a specific tractable set
of INDU relations that is identified in this work. Furthermore, reasoning is implemented
using SWRL rules that are embedded into OWL ontology containing the definitions of
temporal properties. A total set of 180 Allen relations and 4 duration relations are part
of the representation and reasoning mechanism.

Embedding reasoning rules into the ontology makes sharing of data easier since all
SWRL compliant reasoners (such as Pellet and HermiT) can be used for temporal rea-
soning. To the best of our knowledge, this work is the first to represent INDU relations
for the Semantic Web using a representation based on the decomposition of INDU re-
lations, and also the first to deal with INDU reasoning based on a rule based approach
embedded into OWL ontologies.

Current work is organized as follows: related work in the field of temporal knowledge
representation is discussed in Section 2. The proposed representation is presented at
Section 3 and the corresponding reasoning mechanism in Section 4. The extension to
a combined interval-duration reasoning mechanism is presented in Section 5, followed
by evaluation in Section 6 and conclusions and issues for future work in Section 7.

2 Background and Related Work

Definition of ontologies for the Semantic Web is achieved using the Web Ontology
Language OWL. Specifically, the current W3C standard is the OWL 21 language, of-
fering increased expressiveness while retaining decidability of basic reasoning tasks.
Reasoning tasks are applied both on concept and property definitions into the ontology
(TBox), and on assertions of individual objects and their relations (ABox). Reasoners
include among others Pellet2 and HermiT3. Reasoning rules can be embedded into the
ontology using SWRL4. To guarantee decidability, the rules are restricted to DL-safe
rules that apply only on named individuals in the ontology ABox. Horn Clauses (i.e., a
disjunction of literals with at most one positive literal), can be expressed using SWRL,

1 http://www.w3.org/TR/owl2-overview/
2 http://clarkparsia.com/pellet/
3 http://hermit-reasoner.com/
4 http://www.w3.org/Submission/SWRL/

http://www.w3.org/TR/owl2-overview/
http://clarkparsia.com/pellet/
http://hermit-reasoner.com/
http://www.w3.org/Submission/SWRL/

Integrated Representation of Temporal Intervals and Durations for the Semantic Web 149

since Horn clauses can be written as implications (i.e., ¬A ∨ ¬B... ∨ C can be written
as A ∧B ∧ ... ⇒ C).

Qualitative temporal reasoning (i.e., inferring implied relations and detecting incon-
sistencies in a set of asserted relations) typically corresponds to Constraint Satisfaction
problems which are NP , but tractable sets (i.e., solvable by polynomial algorithms)
are known to exist [6]. Formal temporal representations have been studied extensively
within the Semantic Web and Database communities (e.g., the temporal capabilities
in SQL 2011 standard or TSQL2 support for qualitative Allen’s intervals). For almost
thirty years, researchers have been using temporal logic of Allen for representing point,
interval and relative events in databases [12]. Relations between dynamic (i.e. evolving
in time and having time dependent properties) entities in ontologies are typically repre-
sented using Allen temporal relations. In this work, duration information about intervals
is combined with Allen relations. Furthermore, temporal relations are distinguished into
qualitative (i.e., relations described using lexical terms such as “After”) and quantita-
tive (i.e., relations described using specific dates for representing the starting and ending
points of intervals).

Embedding spatial reasoning into the ontology, by means of SWRL rules applied
on temporal intervals, forms the basis of the SOWL model proposed in [1] and the
CHRONOS system [9]. CHRONOS and the underlying SOWL model were both not
addressing the issue of combined interval duration relations. Such information is re-
quired for representing expressions such as “process P2 and P3 follow process P1, P2
lasts longer than P3, while process P4 starts directly after P2 finishes”, that commonly
appear in scheduling problems. Current work addresses this issue and to the best of our
knowledge is the first such representation for the semantic Web.

3 Temporal Representation

The proposed representation deals with duration relations between intervals in addition
to their Allen relations. Qualitative duration relation of two intervals is represented
using an object property specifying their relative duration. Specifically between two
intervals three possible size relations can hold, these relations are “<”,“>”,“=” also
referred to as shorter, longer and equals respectively.

An interval temporal relation can be one of the 13 pairwise disjoint Allen relations
[3] of Figure 1. In cases where the exact durations of temporal intervals are unknown
(i.e., their starting or ending points are not specified), their temporal relations to other
intervals can still be asserted qualitatively by means of temporal relations (e.g., “event
A happens before event B” even in cases where the exact durations of either A, B, or
both are unknown).

Objects with dynamic properties (or fluent properties) can be represented into on-
tologies using the N-ary relations approach [11], which suggests representing an n-ary
relation as two properties each related with a new object. Note that this approach re-
quires one additional object for every temporal relation. An example of a representation
of a relation holding during a specific temporal interval is illustrated in Figure 2(a). An
alternative approach called the 4D-fluents (perdurantist) approach [10] can be applied
for representing temporal information and the evolution of temporal concepts in OWL.

150 S. Batsakis, G. Antoniou, and I. Tachmazidis

ji

Meets(i,j)

Before(i,j)

Overlaps(i,j)

Starts(i,j)

During(i,j)

Finishes(i,j)

Equals(i,j)

Inverse RelationRelation

After(j,i)

MetBy(j,i)

OverlappedBy(j,i)

StartedBy(j,i)

Contains(j,i)

FinishedBy(j,i)

Fig. 1. Allen Temporal Relations

(a) N-ary Relations (b) 4D fluents

Fig. 2. Example of (a) N-ary Relations and (b) 4D-fluents

An example of a representation of a relation holding during a specific temporal interval
using 4D-fluents is illustrated in Figure 2(b). Since the qualitative temporal relations
that are used in this work (duration and Allen relations) hold between interval objects,
the proposed representation can be combined with both N-ary relations and 4D-fluents
by just adding the new relations and rules into the corresponding ontology without any
additional modification.

Besides temporal property definitions, additional OWL axioms are required for the
proposed representation; basic relations on each set are pairwise disjoint i.e., “<”,“>”
and “=” size relations are pairwise disjoint and all Allen relations of Figure 1 are pair-
wise disjoint as well. In addition to that “<” is inverse of “>”, while “=” is symmet-
ric and transitive. Also Before is inverse of After, Meets is inverse of MetBy,
During is inverse of Contains, Finishes is inverse of FinishedBy, Starts is
inverse of startedBy and Overlaps is inverse of OverlappedBy. Equals is sym-
metric and transitive. Note that in this work the representation of Interval-Duration
relations is achieved by decomposing the relations into two different sets instead of
representing directly the 25 basic INDU relation as proposed in [4]. By applying this
decomposition, the required number of relations is reduced to 13 basic Allen relations
and 3 duration (size) relations, thus 16 basic relations in total. Between each pair of
intervals, two basic relations (one from each set) can hold.

Integrated Representation of Temporal Intervals and Durations for the Semantic Web 151

4 Temporal Reasoning

Inferring implied relations and detecting inconsistencies are handled by a reasoning
mechanism. In the case of qualitative relations, assertions of relations holding between
temporal entities (i.e., intervals) restrict the possible assertions holding between other
temporal entities in the knowledge base. Then, reasoning on qualitative temporal rela-
tions can be transformed into a constraint satisfaction problem, which is known to be
an NP-hard problem in the general case [6]. Inferring implied relations is achieved by
specifying the result of compositions of existing relations. Specifically, when a rela-
tion (or a set of possible relations) R1 holds between intervals i1 and i2 and a relation
(or a set of relations) R2 holds between intervals i2 and i3 then, the composition of
relations R1, R2 (denoted as R1 ◦R2) is the set (which may contain only one relation)
R3 of relations holding between i1 and i3.

Qualitative relations under the intended semantics may not apply simultaneously be-
tween a pair of individuals. For example, given the time intervals i1 and i2, i1 can not
be simultaneously before and after i2. Typically, in temporal representations (e.g.,
using Allen relations), all basic relations (i.e., simple relations and not disjunctions of
relations) are pairwise disjoint. When disjunctions of basic relations hold true simul-
taneously, then their set intersection holds true as well. For example, if i1 is before
or equals i2 and simultaneously i1 is after or equals i2 then i1 equals i2. In case the
intersection of two relations is empty, these relations are disjoint. Checking for consis-
tency means, whenever asserted and implied relations are disjoint, an inconsistency is
detected.

4.1 Reasoning over Interval Allen Relations

Reasoning is realized by introducing a set of SWRL rules operating on temporal rela-
tions. Reasoners that support DL-safe rules such as HermiT can be used for inference
and consistency checking over INDU (Allen-duration) relations. The temporal reason-
ing rules for Allen relations are based on the composition of pairs of the basic Allen
relations of Figure 1 as defined in [3]. Specifically, if relation R1 holds between inter-
vals i1 and i2, and relation R2 holds between intervals i2 and i3, then the composition
table defined in [3] denotes the possible relation(s) holding between intervals i1 and
i3. Not all compositions yield a unique relation as a result. For example, the composi-
tion of relations During and Meets yields the relation Before as a result, while the
composition of relations Overlaps and During yields three possible relations namely
Starts, Overlaps and During.

A series of compositions of relations may yield relations which are inconsistent with
existing ones (e.g., if i1 before i2 is inferred using compositions, a contradiction arises if
i1 after i2 has been also asserted into the ontology). Reasoning over temporal relations
is known to be an NP-hard problem and identifying tractable cases of this problem has
been in the center of many research efforts over the last few years [6]. The notion of
k-consistency is very important in this research. Given a set of n intervals with relations
asserted between them imposing certain restrictions, k-consistency means that every
subset of the n intervals containing at most k intervals does not contain an inconsistency.

152 S. Batsakis, G. Antoniou, and I. Tachmazidis

Notice that, checking for all subsets of n entities for consistency is exponential on
the n.

There are cases where, although k-consistency does not imply n-consistency in gen-
eral, there are specific sets of relations Rt (which are subsets of the set of all possible
disjunctions of basic relations R), with the following property: if asserted relations are
restricted to this set, then k-consistency implies n-consistency and Rt is a tractable set
of relations or a tractable subset of R [6]. Tractable sets of Allen interval algebra have
been identified in [8], tractable subsets for Point Algebra which can represent duration
relations have been identified in [7] and tractable subsets for INDU relations have been
identified in [4]. Additional tractable sets for Allen relations have been identified in
[1]. Consistency checking in [1] is achieved by ensuring path consistency by applying
formula:

∀x, y, k Rs(x, y) � Ri(x, y) ∩ (Rj(x, k) ◦Rk(k, y))

For the case of INDU relations, consistency over basic relations is not decided by path-
consistency (or 3-consistency), but by 4-consistency, which corresponds to applying
formula:

∀x, y, k, l Rs(x, y) � Ri(x, y) ∩ (Rj(x, k) ◦Rk(k, z) ◦Rl(z, y))

representing intersection of compositions of relations with existing relations (symbol
∩ denotes intersection, symbol ◦ denotes composition and Ri, Rj , Rk,Rl, Rs denote
temporal relations). The formula is applied until a fixed point is reached (i.e., the ap-
plication of the rules above does not yield new inferences) or until the empty set is
reached, implying that the ontology is inconsistent. Implementing 4-consistency for-
mula requires rules for both compositions and intersections of pairs of relations. If a set
of relationsR is closed under composition, then any arbitrary sequence of compositions
can be implemented using compositions of pairs of relations and then composing the
results.

The above holds for composing pairs of relations by definition. Also compositions
of triples of relations can be computed from compositions of pairs of relations: R1 ◦
R2 ◦R3 ≡ ((R1 ◦R2)◦R3). This can be extended using induction for any composition
sequence for sets of relations closed under composition. This proves that 4-consistency
can be enforced by composing and intersecting pairs of relations for all pairs of inter-
vals. Compositions of relations R1 and R2 yielding a unique relation R3 as a result are
expressed in SWRL using rules of the form:

R1(x, y) ∧R2(y, z) � R3(x, z)

The following is an example of such a composition rule:

Before(x, y) ∧Contains(y, z) � Before(x, z)

Rules yielding a set of possible relations cannot be represented directly in SWRL since,
disjunctions of atomic formulas are not permitted as a rule head. Instead, disjunctions
of relations are represented using new relations whose compositions must also be de-
fined and asserted into the knowledge base. For example, the composition of relations

Integrated Representation of Temporal Intervals and Durations for the Semantic Web 153

Overlaps and During yields the disjunction of three possible relations (During, Over-
laps and Starts) as a result:

Overlaps(x, y) ∧During(y, z) →

During(x, z) ∨ Starts(x, z) ∨Overlaps(x, z)

If the relation DOS represents the disjunction of relations During, Overlaps and Starts,
then the composition of Overlaps and During can be represented using SWRL as
follows:

Overlaps(x, y) ∧During(y, z) → DOS(x, z)

The set of possible disjunctions over all basic Allen’s relations contains 213 relations,
and complete reasoning over all temporal Allen relations has exponential time com-
plexity. However, tractable subsets of this set that are closed under composition (i.e.,
compositions of relation pairs from this subset yield also a relation in this subset) are
also known to exist [8,7]. In this work, we use the subset identified in Section 5, which
is identified by taking into account interactions between interval and duration relations.

An additional set of rules defining the result of intersection of relations holding be-
tween two intervals is also required. These rules are of the form:

R1(x, y) ∧R2(x, y) → R3(x, y),

where R3 can be the empty relation. For example, the intersection of relation DOS
(represents the disjunction of During, Overlaps and Starts) with relation During,
yields relation During as a result:

DOS(x, y) ∧During(x, y) → During(x, y).

The intersection of relations During and Starts yields the empty relation, and an
inconsistency is detected:

Starts(x, y) ∧During(x, y) → ⊥.

Thus, path consistency is implemented by defining compositions and intersections
of relations using SWRL rules and OWL axioms for inverse relations as presented in
Section 3.

4.2 Reasoning over Duration relations

Possible relations between interval durations are shorter, longer and equals, denoted
as “<”,“>”,“=” respectively. Table 1 illustrates the set of reasoning rules defined on
the composition of existing relation pairs. The three temporal relations are declared as
pairwise disjoint, since they cannot simultaneously hold between two intervals. Not all
compositions yield a unique relation as a result. For example, the composition of rela-
tions shorter and longer yields all possible relations as a result. Because such com-
positions do not yield new information these rules are discarded. Rules corresponding
to compositions of relations R1 and R2 yielding a unique relation R3 as a result are

154 S. Batsakis, G. Antoniou, and I. Tachmazidis

Table 1. Composition Table for point-based temporal relations

Relations < = >

< < < <,=, >

= < = >

> <,=, > > >

retained (7 out of the 9 entries of Table 1 are retained), and are directly expressed in
SWRL. The following is an example of such a temporal inference rule:

shorter(x, y) ∧ equals(y, z) → shorter(x, z)

Therefore, 7 out of 9 entries in Table 1 can be expressed using SWRL rules, while
the two remaining entries do not convey new information. A series of compositions
of relations may imply relations which are inconsistent with existing ones. In addition
to rules implementing compositions of temporal relations, a set of rules defining the
result of intersecting relations holding between two instances must also be defined in
order to check consistency. For example, the intersection of the relation representing the
disjunction of shorter, longer and equals (abbreviated as All), and the relation shorter
yields the relation shorter as result:

All(x, y) ∧ shorter(x, y) → shorter(x, y)

The intersection of relations shorter and longer yields the empty relation, and an
inconsistency is detected:

shorter(x, y) ∧ longer(x, y) → ⊥

As shown in Table 1, compositions of relations may yield one of the following four
relations: shorter, longer, equals and the disjunction of these three relations. Intersect-
ing the disjunction of all three relations with any of these leaves existing relations un-
changed. Intersecting any one of the tree basic (non disjunctive) relations with itself
also leaves existing relations unaffected. Only intersections of pairs of different basic
relations affect the ontology by yielding the empty relation as a result, thus detecting
an inconsistency. By declaring the three basic relations shorter, longer, equals as pair-
wise disjoint, all intersections that can affect the ontology are defined. Thus, checking
consistency of duration relations is implemented by defining compositions of relations
using SWRL rules and by declaring the three basic duration relations as disjoint.

5 Combining Interval and Duration Representation and
Reasoning

The implementation of the reasoning mechanism over INDU relations requires the def-
inition of all interactions between duration and Allen relations. Furthermore, since both
sets of relations require the identification of a tractable set that is closed under compo-
sitions and intersections, interaction rules must be taken into account prior to tractable
relations identification.

Integrated Representation of Temporal Intervals and Durations for the Semantic Web 155

The first constraint is that when the duration relation between two intervals is the
relation shorter then the Allen relation can be one of Before, After, Meets, MetBy,
Overlaps, OverlappedBy, During, Starts and Finishes:

shorter(x, y)→ Before(x, y) ∨After(x, y) ∨Meets(x, y) ∨MetBy(x, y)

∨Overlaps(x, y) ∨OverlappedBy(x, y) ∨During(x, y) ∨ Starts(x, y) ∨ Finishes(x, y)

The second constraint is that when the duration relation between two intervals is the
relation longer then the Allen relation can be one of Before, After, Meets, MetBy, Over-
laps, OverlappedBy, Contains, StartedBy and FinishedBy:

longer(x, y) → Before(x, y) ∨ After(x, y) ∨Meets(x, y) ∨MetBy(x, y)
∨Overlaps(x, y) ∨OverlappedBy(x, y) ∨ Contains(x, y)
∨StartedBy(x, y) ∨ FinishedBy(x, y)

The third constraint is that when the duration relation between two intervals is the rela-
tion equals then the Allen relation can be one of Before, After, Meets, MetBy, Overlaps,
OverlappedBy, and Equals:

equals(x, y) → Before(x, y) ∨ After(x, y) ∨Meets(x, y) ∨MetBy(x, y)
∨Overlaps(x, y) ∨OverlappedBy(x, y) ∨ Equals(x, y)
All the above relations that appear on the right hand side of a rule introduce disjunctions
that must be supported by the reasoning mechanism. Similar restrictions on the duration
relations are imposed by the Allen relation holding between two intervals. Specifically:

During(x, y) → shorter(x, y)

Finishes(x, y) → shorter(x, y)

Starts(x, y) → shorter(x, y)

Contains(x, y) → longer(x, y)

FinishedBy(x, y) → longer(x, y)

StartedBy(x, y) → longer(x, y)

Equals(x, y) → equals(x, y)

Notice that Allen relations do not impose restrictions on duration relations requir-
ing additional disjunctive relations that are not part of the representation mechanism of
section 4.2. Thus, the representation and reasoning mechanism of section 4.2 combined
with above rules is sufficient for representing desired relations. On the other hand, the
set of relations used in the reasoning mechanism of section 4.1 must contain the im-
posed relations, thus propagating constraints from duration relations to Allen relations.

In order to implement the reasoning mechanism, while enforcing consistency over
Allen relations, additional relations and rules must be minimized. Existing work (e.g.,
[8]) emphasizes on determining maximal tractable subsets of relations, while practical
implementations calls for minimization of such relation sets (i.e., finding the minimal
tractable set that contain the required relations).

156 S. Batsakis, G. Antoniou, and I. Tachmazidis

Table 2. Closure method

Input:Set S of tractable relations
Table C of compositions
WHILE S size changes

BEGIN
Compute C:Set of compositions of relations in S
S=S ∪ C
Compute I:set of intersections of relations in S
S= S ∪ I

END
RETURN S

In this work, we apply the closure method of Table 2 for computing the minimal re-
lation sets containing a tractable set of basic relations: starting with a set of relations,
intersections and compositions of relations are applied iteratively until no new relations
are produced. Since compositions and intersections are constant-time operations (i.e., a
bounded number of table lookup operations at the corresponding composition table) the
running time of closure method is linear to the total number of relations of the identified
tractable set.

Applying the closure method over the set of basic Allen relations yields a tractable
set containing 29 relations [1], but after adding the additional relations that result from
propagating duration constraints, the minimal set of Allen relations containing the im-
posed restrictions consists of 180 relations. The new set is also tractable since the 13
basic relations and the additional three disjunctive Allen relations imposed by propa-
gating constrains from duration relations belong to the maximal tractable set of Allen
relation as identified in [8]. The full set will not be presented due to space limitations.
Besides defining compositions and intersections between relations of the closed set,
propagation of restrictions of the set to duration relations must be implemented as well.
After checking all 180 relations, two additional restrictions must be imposed:

(Finishes(x, y) ∨ FinishedBy(x, y)) ∧ equals(x, y) → ⊥

(Starts(x, y) ∨ StartedBy(x, y)) ∧ equals(x, y) → ⊥

6 Evaluation

The required expressiveness of the proposed representation is within the limits of OWL
2 expressiveness. Furthermore, since the proposed representation is equivalent to the di-
rect INDU representation, reasoning using the polynomial time 4-consistency algorithm
is sound and complete, as in the case of non-decomposed INDU relations [4].

Specifically, any interval can be related with every other interval with two basic re-
lations (one Allen and one duration relation) . Since relations of each set are mutually
exclusive, between n intervals, at most 2n(n − 1) relations can be asserted. Further-
more, 4-consistency has O(n5) time worst case complexity (with n being the number
of intervals). In the most general case where disjunctive relations are supported in addi-
tion to the basic ones, any interval can be related with every other interval by at most k

Integrated Representation of Temporal Intervals and Durations for the Semantic Web 157

relations, where k is the size of the set of supported relations (containing 180 relations
in case of Allen algebra subset identified in this work). Therefore, for n intervals, using
O(k2) rules, at most O(kn2) relations can be asserted into the knowledge base.

The O(n5) upper limit for consistency running time referred to above is obtained as
follows: At most O(n2) relations can be added in the knowledge base. At each such ad-
dition step, the reasoner selects 3 variables among n intervals (composition relations)
which corresponds to O(n3) possible different choices. Clearly, this upper bound is
pessimistic, since the overall number of steps may be lower than O(n2) because an
inconsistency detection may terminate the reasoning process early, or the asserted re-
lations may yield a small number of inferences. Also, forward chaining rule execution
engines employ several optimizations (e.g., the Rete algorithm employed at the SWRL
implementation of Pellet), thus the selection of appropriate variables usually involves
fewer than O(n3) trials. Nevertheless, since the end user may use any reasoner sup-
porting SWRL, a worst case selection of variables can be assumed in order to obtain an
upper bound for complexity.

6.1 Experimental Evaluation

Measuring the efficiency of the proposed representation requires the temporal ontology
of section 3 containing instances, thus a data-set of 100 to 1000 intervals generated
randomly was used for the experimental evaluation. Reasoning response times of the
temporal reasoning rules are measured as the average over 10 runs. HermiT 1.3.8 run-
ning as a library of a Java application was the reasoner used in the experiments. All
experiments where run on a PC, with Intel Core CPU at 2.4 GHz, 6 GB RAM, and
Windows 7.

Fig. 3. Average reasoning time for INDU relations as a function of the number of intervals

Measurements illustrate that the proposed approach can efficiently represent hun-
dreds of intervals and reason over them in a few minutes, or even seconds without using
any specialized software besides a standard OWL reasoner such as HermiT.

158 S. Batsakis, G. Antoniou, and I. Tachmazidis

7 Conclusions and Future Work

In this work, a representation framework for handling duration and interval relations
in ontologies is introduced. The proposed framework handles both duration and Allen
relations using an inference procedure based on 4-consistency, while the proposed rep-
resentation is based on decomposition of INDU relations.

The proposed representation is fully compliant with existing Semantic Web stan-
dards and specifications, which increases its applicability. Being compatible with W3C
specifications the proposed framework can be used in conjunction with existing editors,
reasoners and querying tools such as Protégé and HermiT without requiring special-
ized software. Therefore, information can be easily distributed, shared and modified.
Directions of future work include the development of real world applications based on
the proposed mechanism. Such applications could combine duration and interval infor-
mation in order to facilitate scheduling tasks. Furthermore, parallelizing our rule based
reasoning mechanism is another promising direction of future research.

References

1. Batsakis, S., Petrakis, E.G.M.: SOWL: A Framework for Handling Spatio-Temporal Infor-
mation in OWL 2.0. In: Bassiliades, N., Governatori, G., Paschke, A. (eds.) RuleML 2011 -
Europe. LNCS, vol. 6826, pp. 242–249. Springer, Heidelberg (2011)

2. Batsakis, S., Stravoskoufos, K., Petrakis, E.G.M.: Temporal Reasoning for Supporting Tem-
poral Queries in OWL 2.0. In: König, A., Dengel, A., Hinkelmann, K., Kise, K., Howlett,
R.J., Jain, L.C. (eds.) KES 2011, Part I. LNCS, vol. 6881, pp. 558–567. Springer, Heidelberg
(2011)

3. Allen, J.F.: Maintaining Knowledge about Temporal Intervals. Communications of the
ACM 26(11), 832–843 (1983)

4. Pujari, A., Kumari, V., Sattar, A.: INDU: An interval & duration network. In: Advanced
Topics in Artificial Intelligence, pp. 291–303 (1999)

5. Welty, C., Fikes, R.: A Reusable Ontology for Fluents in OWL. Frontiers in Artificial Intel-
ligence and Applications 150, 226–236 (2006)

6. Renz, J., Nebel, B.: Qualitative Spatial Reasoning using Constraint Calculi. In: Handbook of
Spatial Logics, pp. 161–215. Springer, Netherlands (2007)

7. van Beek, P., Cohen, R.: Exact and approximate reasoning about temporal relations. Compu-
tational Intelligence 6(3), 132–147 (1990)

8. Nebel, B., Burckert, H.J.: Reasoning About Temporal Relations: A Maximal Tractable Sub-
class of Allen’s Interval Algebra. Journal of the ACM (JACM) 42(1), 43–66 (1995)

9. Preventis, A., Makri, X., Petrakis, E., Batsakis, S.: CHRONOS: A Tool for Handling Tem-
poral Ontologies in Protege. In: Proceedings of 24th International Conference on Tools with
Artificial Intelligence (ICTAI 2012), Athens, Greece, November 7-9 (2012)

10. Welty, C., Fikes, R.: A Reusable Ontology for Fluents in OWL. In: Formal Ontology in
Information Systems: Proceedings of the Fourth International Conference (FOIS 2006),
pp. 226–336 (2006)

11. Noy, N., Rector, A., Hayes, P., Welty, C.: Defining N-ary Relations on the Semantic Web.
W3C Working Group Note 12 (2006)

12. Mylopoulos, J., Borgida, A., Jarke, M., Koubarakis, M., Telos, M.: Representing knowledge
about information systems. ACM Transactions on Information Systems (TOIS) 8(4), 325–
362 (1990)

Temporal State Management for Supporting the
Real-Time Analysis of Clinical Data

Andreas Behrend1, Philip Schmiegelt2, Jingquan Xie3, Ronny Fehling4,
Adel Ghoneimy4, Zhen Hua Liu4, Eric Chan4, and Dieter Gawlick4

1 University of Bonn, Germany
behrend@cs.uni-bonn.de

2 Fraunhofer FKIE, Germany
{philip.schmiegelt}@fkie.fraunhofer.de

3 Fraunhofer IAIS, Germany
jingquan.xie@iais.fraunhofer.de

4 Oracle, USA
{first.last}@oracle.com

Abstract. Database systems are more and more employed to analyze
an ever increasing amount of temporal data by applying a continuously
evolving knowledge and are expected to do this in a timely fashion. Ex-
amples are financial services, computer systems monitoring, air traffic
monitoring, and patient care. In each of these cases data are processed
in order to understand current situations and to determine optimal re-
sponses. In this paper, we exemplarily investigate system requirements
for a patient care scenario in which patient data are continuously col-
lected and processed by a database system. We show that the concepts
provided by today’s systems are still not enough for supporting the com-
plex reasoning process needed. In particular, we identify situation-based
reasoning as a missing database component and propose a temporal state
concept for leveraging simple event processing. States provide a high level
(and qualitative) description of past and current situations defined over
streams of medical data, complemented by projections into the future.
Our proposed database extension allows for a compact and intuitive rep-
resentation of medical data; much like physicians use abstraction from
details and dramatically simplifies the analysis of medical data.

Keywords: Monitoring, Medical Databases, Data Streams, CEP, Prove-
nance, Knowledge Management, Declarative Programming.

1 Introduction

Databases are able to store, manage, and retrieve large amounts and a broad
variety of data. However, the task of understanding and reacting to the data is
often left to tools or user applications outside the database. As a consequence,
monitoring applications are often relying on problem-specific imperative code
for data analysis, scattering the application logic. This leads to isolated ap-
plications which are hard to maintain, give raise to security and performance

c© Springer International Publishing Switzerland 2015 159
N. Bassiliades et al. (eds.), New Trends in Database and Information Systems II,
Advances in Intelligent Systems and Computing 312, DOI: 10.1007/978-3-319-10518-5_13

160 A. Behrend et al.

problems due to the separation of data storage and analysis. In particular, the
process of problem solving, which requires understanding and tracking the cur-
rent status and evolution of data, knowledge, and events, is still handled mostly
by humans and not by the recording databases. The lack of a database support
for the problem of process solving and data monitoring led to various approaches
(e.g., CEP. MapReduce or DSMS) or specialized systems such as moving object
databases. Especially CEP appeared to be well-suited for handling the dynam-
ics of an application and we considered this paradigm for various projects (e.g.,
Air traffic surveillance [15] or patient care [4,5]) in which a database serves as a
backend in order to deal with the strict auditing requirements. Pure event-based
calculus turned out to be useful for general temporal reasoning over continu-
ous changes but it is not well-suited for modelling the discrete changes between
domain-specific situations. In our context, a situation is defined as a period of
time during which a certain set of properties holds [10]. Observed events may
change properties such that a situation is replaced by another (subsequent) one.
This way, state transitions are performed which allow for various kinds of tem-
poral analysis such as the detection of valid transition sequences or hypothetical
reasoning over future state transitions.

Let us consider an air traffic scenario in which various events (e.g. changes of
altitude, speed, and heading of an aircraft) are frequently processed for detect-
ing anomalies (cf. Figure 1). As long as an aircraft is at its predefined course,
however, all detected events (e.g. radar measurements) do not really have to be
processed as they just confirm the situation "cruising". This changes as soon as
the airplane enters the landing phase which is usually much more dangerous and
should be monitored more closely. Such an additional abstraction would also al-
low for querying flight histories in a more natural way, e.g., if we want to count
all flights with a starting and landing phase but no cruising phase in between. In
this paper, we present an ongoing project from database industry and academia
for adding a combination of event and situation calculus to the Oracle database.
We use the notion states instead of ”situations“ or ”phases“ for describing a set
of properties with a certain duration. We refine the state concept from [16] by
means of the following contributions:

– Introducing abstraction levels for states.
– Determining the basic functionality needed for managing probabilistic states.
– Investigating the possibilities for hypothetical reasoning using predicted

states.
– Identifying implementation issues and discussing a possible solution by in-

tegrating CEP into a DBMS.

The paper is organized as follows: After motivating the state concept more deeply
in Section 2, we formally define the state concept and its properties. To this end,
the state concept is embedded into a high-level data model called KIDS [8] for de-
signing complex reactive systems in a systematic way. Afterwards, Section 3 shows
how states could be used for a comprehensive in-database analytics including ret-
rospective as well as predictive analysis of temporal data. Finally, first implemen-
tation issues are discussed in Section 5 and possible solutions are identified.

Temporal State Management for Supporting the Real-Time Analysis 161

starting

cruising

Stream of Events

CE1 CE2

. . .

CE3

1st Abstraction

Layer

2cnd Abstraction

Layer
starting cruising maneuv

.

landing

. . .

History of States Active State(s) Predicted State(s)

Current Time

ering

Fig. 1. States Abstracting From Data Changes or Events

2 Motivation

In order to support the declarative analysis of data in highly dynamic environ-
ments, CEP has been proven to be a well-suited paradigm for various appli-
cations. CEP is based on an event calculus - a well-established formalism for
temporal reasoning with explicit references to object properties at certain time-
points. These explicit references to timepoints, however, may sometimes com-
plicate the reasoning process over object properties which are not instantaneous
but rather last over a certain period of time.

2.1 Simplifying Queries on Periods

In the following we show how difficult situation-based reasoning can become
using a CEP approach. Let us assume we want to know the time interval during
which a patient has had fever but not tachycardia (called ‘FnT’ for brevity). In
case that only one tachycardia interval lies completely inside a fever period, two
resulting FnT periods have to be determined by the system. In general, however,
a fever period may coincide with several tachycardia periods leading to various
sub-intervals of FnT periods to be computed.

In a CEP system, we may assume that the starting and ending times of fever
as well as of tachycardia periods is provided by corresponding input streams.
It is, however, hard to test whether a condition like “fever” is satisfied over a
certain time interval by means of a CEP query. To this end, we would need
to store the first and last fever respectively tachycardia event and query all
possible sequences. Let us assume we store the respective event information
in two tables called “feverStatus” and “tachycardiaStatus”. For initializing the
reasoning process, both tables are filled with a default event indicating the end
of the respective diagnosis. To cover all possible sequences, four queries are
necessary which determine the begin and end of an FnT state within the incoming
stream. Using the Esper system1, the query pattern looks like this:
1 http://esper.codehaus.org

http://esper.codehaus.org

162 A. Behrend et al.

SELECT fever.timestamp AS FnT.start FROM fever
WHERE fever.type=start AND

last(tachycardiaStatus).type=end ...

SELECT tachycardia.timestamp AS FnT.end FROM tachycardia
WHERE tachycardia.type=start AND

last(feverStatus).type=start

Let us assume that the results of the above queries are materialized using the
output stream FnT_Stream. For determining the duration of FnT periods, one
more query would be necessary:

SELECT * FROM FnT_Stream.win:length(2) match_recognize
measures B.timestamp-A.timestamp AS duration,
pattern (A B) define A AS FnT.type=start,B AS FnT.type=end

The inherent complexity of the reasoning process is already visible and becomes
even more apparent as soon as more than two conditions are compared this
way. This is due to the fact that all possible sequences of time points in the
underlying event calculus have to be considered. In contrast, a situation calculus
could directly provide operations on time intervals which free the programmer
from those explicit time point comparisons. In a database system supporting
this kind of a (temporal) state concept, the following query could be used to
detect FnT occurrences:

SELECT Name, Period.Start, Period.End FROM SELECT ID FROM patient
WHERE P.Name="John",

TABLE (TDIFF(vwFever(ID),vwTachycardia(ID)) Period

The complexity of the query is drastically reduced as all time point comparisons
are hidden in the table function TDIFF (see Section 4.2) which is laterally joined
with the ID generating subquery. The latter provides one or more patient IDs
for persons named John. Apparently, the resulting expression is more easy to
read and to maintain, making the query less error-prone.

2.2 Advantages of a State Concept

Another advantage of a state concept is the possibility to associate a state with
appropriate directives (actions or treatments) which may be employed in order
to initiate a desired state transition within a certain time interval. In addition,
an abstraction hierarchy of states could be employed in order to prescind from
certain minor important situations. For example, the fever period of a patient
could be the result of a liver disease while the tachycardia phases may be re-
lated to a heart problem. A state hierarchy would allow physicians to get a brief
overview of the general status of a patient before initiating a detailed investiga-
tion. A state concept could also be used to automatically detect the violation
of transition constraints. States may be exclusive or non-exclusive. For exam-
ple, a patient may have fever and tachycardia at the same time while fever and

Temporal State Management for Supporting the Real-Time Analysis 163

hypothermia cannot coincide. Quite similar, the transition of two consecutive
states may violate domain specific condition constraints. For example, a certain
therapy may not be replaced by another one as their combination may cause se-
rious adverse effects. In order to automatically detect these constraint violations,
a transition graph containing all valid state transitions [16] can be used. Corres-
ponding continuous queries could be automatically derived from this graph for
detecting and signaling invalid state sequences. Note that the resulting contin-
uous queries cannot be regarded as classical integrity constraints because of the
assumed stream context.

Another positive aspect of a state concept is the possibility to perform pre-
dictive reasoning complemented by a strict provenance support. The reasoning
process can also be easily customized which allows for various state-based rea-
soning lines at the same time. In this way, the individual knowledge of more
than one physician could be simultaneously applied for interpreting the underly-
ing observations. Query optimization could be guided by currently active states
because they provide valuable context information in which the processing of
certain observed events may be avoided. In sum, a state concept would simplify
the development of various monitoring applications in which the analysis of sit-
uations plays a prominent role. In particular, we believe that states would allow
to drastically simplify the development, maintenance as well as debugging of
database software for monitoring scenarios.

3 Use Case

We consider a health care scenario because it very naturally illustrates the re-
quirements for designing a state concept. In health care states are already im-
plicity used by many physicians in order to describe the temporal status of a
patient. For example, [11] presents a Bayesian network which represents a prob-
abilistic causal model for the diagnosis of liver disorders (LD). Every node is
one symptom for LD which represents a currently active/inactive (e.g. ’fatigue’)
or historic temporal state (e.g. ’history of alcoholic abuse’) of the respective pa-
tient. The given BN could be employed as decision support system but it also
shows how physicians really abstract from symptoms provided in a stream of
patient-related observations. This abstraction can be even increased by intro-
ducing an hierarchical version of the BN where groups of nodes are clustered in
submodels.

In Figure 2 a subgraph of the respective state hierarchy is depicted which is
subsequently employed for illustrating the reasoning process using a state con-
cept. To this end, we have organized the states in form of a superstate and
substate relationship. For example, the state LD is a superstate of the state
’Sweating’. In addition, we have introduced a new derived state ’Heart Problems’
(HP) at the same abstraction level as LD and the new state ’Organ Problems’
(OP) for abstracting from these two. Furthermore, we use the new states ’Mea-
surements’ (ME) and ’Visible Symptoms’ (VS) for abstracting from respective
LD or HP indicating symptoms by means of abnormal platelet counts (PC) or

164 A. Behrend et al.

Organ

Problems

Liver

Disorder

Heart

Problems

. . .

Measure-

ments

Visible

Symptoms

Bright Spot

Gallium Scan

Abnormal

Platelet Ct

Abnormal

Potassium LEL
Sweating

Hair

Loss
Fatigue

Fig. 2. Hierarchy of States for Detecting Liver Disorder

potassium levels (PL) respectively sweating or hair loss. We have chosen a rep-
resentation in which not every substate is really contributing to the activation of
every superstate in order to have a very concise state representation. For exam-
ple, an abnormal PL may indicate heart problems but it is not an indicator for
liver disorder. On the other hand, every connection line from a substate to a (di-
rect) superstate really represents a measurable influence. These design decisions
have to be guided by a corresponding developer tool which also provides the user
with information about possible performance issues. In fact, the abstraction hi-
erarchy is meant to provide a focus on the most important issues first but allows
for drilling down to more specific states for explaining details later.

3.1 States for Detecting Liver Disorder

Let us consider a patient who suffers from fatigue syndrome (FA) indicating
heart problems as the most likely cause. After a short time, hair loss (HL) is
observed as additional symptom such that the diagnosis liver disorder becomes
more likely. As a consequence, a platelet count is ordered. The resulting value
increases the likelihood of a liver disorder situation. After a certain time, the
probability of the still active diagnosis HP falls below a given threshold such
that the respective state is reset to be inactive. Finally, a gallium scan is or-
dered leading to bright spots in the respective area which further increases the
probability of LD. We assume that the corresponding symptoms are continu-
ously recorded by a database system leading to the activation of various states.
Note that the patient is in the respective state with a certain probability which
could be determined, e.g., by using a Bayesian Network, decision trees or any
other techniques for performing probabilistic reasoning. A state is considered ac-
tive as soon as certain threshold for its probability has been reached. The state
probability changes due to new observed symptoms. In case of HP, however, the
probability value was decreased automatically as new confirming observations
were not recorded by the system. This form of information decay has to be mod-
elled individually for each state. A state may refer to a certain set of associated

Temporal State Management for Supporting the Real-Time Analysis 165

Fig. 3. Evolving State Hierarchy for Detecting Organ Problems

directives which allows for strengthening/weakening the certainty of being in
the respective state or initiate a state transition. In the example, the directive
"perform a PC" is used in order to increase the probability of the state LD. Once
a directive is issued, the system could be programmed to expect the observation
of corresponding results within a provided time interval. This way the reaction
to the non-occurrence of events could be implemented in an elegant way.

3.2 Evolving States in the Use Case

In Fig. 3 the temporal development of the affected states are presented using
temporal tables. The table Events stores the observed symptoms. Its first entry
FA at 9:00 o’clock leads to the initialization of an FA state for patient 1 which is
stored in the table States with a respective valid time interval. The probability
attribute of the states are maintained using the temporal table Probabilities
and a corresponding entry is made for FA setting the probability value to 95%.
This is the default value for FA observations which can be overridden by another
probability value directly provided by the observed event. The Fatigue state
(FA) is a substate of Visible Symptoms (VS) which becomes activated with
100% at the same time indicating for patient 1 that visible disease symptoms
have been observed. Furthermore, the superstates LD and HP are activated with
probability 4% resp. 9%, leading to the activation of the state Organ Problems
(OP). At 9:15, the additional symptom HL is observed leading to an increase of
the probabilities for LD and OP (making LD the most likely cause for OP). For
supporting full provenance, the old probability values of LD and OP are shifted
into the history of the table Probabilities by closing the corresponding valid
time interval at 9:14. Every new observation recorded in table Events leads
to a recomputation of probability values. However, the state HP is deactivated
at 10:05 as its probability value fell below 4%. This drop was initiated by an
internal timer associated with the HP state which models the information decay
over time if no state confirming events are detected.

166 A. Behrend et al.

4 A State Concept for Databases

A calculus for situations was first introduced by McCarthy in 1963, refined by
Ray Reiter [12] in 1992. It represents a classical approach in AI and is basically
the counterpart to an event calculus [6]. While situation calculus is as expressive
as the event calculus, it has been shown that the combination of both could be
beneficial [2]. In fact, a state concept would really complement a CEP system and
simplify certain parts of the underlying reasoning process. Our initial attention
to this concept was drawn during the development of the KIDS [8] model for
realizing data as well as knowledge intensive applications.

4.1 The Abstract State Concept

In general, a named state is employed to describe the status of a tracked object
with respect to certain properties (or features) managed by the database. We use
an extensible user-defined datatype known form ORDBMS for defining abstract
state types. The employed standard attributes (e.g., Start,End, object_ID, de-
cay_fun, etc..) are depicted in Fig. 4. The start and end variables capture the
time points during which the state was considered active. A state may also con-
tain other attributes such as a probability value. All attributes are managed by
the bi-temporal support of current database systems and have at least one asso-
ciated valid time interval. Apart from state-related attributes, a state contains
references to the super- and sub-states in the provided state hierarchy. In ad-
dition, a list of applicable directives as well as covered properties is maintained
by a state. The latter provides all recorded properties (or features) in the given
monitoring scenario. In the investigated clinical context the properties basically
cover all data from electronic medical records. Finally, the function decayfun
specifies the decay of information over time. More formal details on the defini-
tion of states are given in [14,16]. In Figure 4 a sample instance of the LD state
for the patient with ID=1 is depicted. This state became active at 09:00 and
its end is still undetermined. The list of applicable directives refers to an MRI
scan, a biopsy and a gallium scan. The property list refers to LD symptoms like
abnormal platelet counts (PC) or fatigue syndromes (FA).

4.2 State Related Operators

A complete list of the different temporal relationships between intervals (sit-
uations) is already given by means of the Allen’s operators, e.g., equals/2,
includes/2, overlaps/2, begins/2 or ends/2. They led to corresponding propos-
als for the development of TSQL [17] as well as system-specific solutions such
as the valid time support of Oracle. If you want to query a history of situa-
tions, then it is usually necessary to compare sets of intervals and the above-
mentioned operators are not suited anymore. As an example, consider a relation
{(FE,[10:00,11:00]),(TA,[10:10,10:20]),. . . } for storing fever (FE) and tachycar-
dia states (TA) of a patient. For determining the FnT intervals, every fever state

Temporal State Management for Supporting the Real-Time Analysis 167

Fig. 4. Sample Instance of Liver Disorder State

has to be compared with every tachycardia state. In particular, several FnT inter-
vals may result from these comparisons even if only one fever and one tachycar-
dia period are considered as input: { (FnT,[10:00,10:09]), (FnT,[10:21,11:00]) }.
Therefore, a table generating function is necessary in order to model the required
one-to-many mapping. In Section 2 we have already employed the function TDIFF
for determining the difference periods of two input sets of time intervals. In a
similar way, various other interval operators from above have to be translated
into table functions for simplifying the reasoning process over states including
TINTERSECTION and TUNION. The handling with states is further homogenized
by using access functions for their attributes such as getObject/1, getName/1,
getBegin/1, getEnd/1, or getProbability/1. In addition, some auxiliary functions
like sameObject/2 or duration/2 are used to facilitate the reasoning with states.

4.3 Reasoning with States

The knowledge for performing diagnostic as well as predictive reasoning over
states can be represented in various ways. This includes functionalities provided
by the database system (such as materialized views or CQN techniques) but also
external rule representations such as neural or (dynamic) Bayesian networks. The
latter are often used in the medical domain for handling the intrinsic uncertainty
of medical data and diagnostic reasoning. Decision trees or logic programs would
be another choice for performing a definite state derivation. No matter how we
represent the knowledge and reasoning process, every time a new event has been
observed by the system the corresponding reasoning process has to be triggered
and the affected state related attribute values updated. The simplest way to
access the states maintained this way is the usage of a snapshot query, e.g.:

SELECT getObject(S) AS Patient
FROM tblStates AS OF PERIOD FOR valid_time TO_TIMESTAMP(’04-Jun-13’) AS S
WHERE getName(S)=’HP’

168 A. Behrend et al.

This query based on Oracle’s SQL would return the list of patients with heart
problems on June 4th. We have already used functions for simplifying the needed
state attribute access. The UDF getName is employed to determine the state
name ’HP’ while getObject provides the corresponding patient ID using the
state attribute ID from tuple S. If we are interested in the states over a period of
time, the above query could be modified by using version statement within the
FROM part. For analyzing historical states, very often sequences of states have
to be found. To this end, the two tables tblSequence and tblStrictSequence
are automatically maintained by our system for a fast identification of (strict)
consecutive states. This facilitates the determination of complex patterns of state
occurrences, e.g.:
SELECT count(*) FROM sequence P1, strictSequence P2
WHERE sameObject(P1.S1,P1.S2,P2.S1,P2.S2) AND WM_LESSTHAN(P1.S2,P2.S1) AND

getName(P1.S1)=’AA’ AND getName(P1.S2)= ’HL’ AND getName(P2.S1)=’FE’ AND
getName(P2.S2)=’PC’ AND getObject(P1.S1)=’John’ AND getMax(P2.S1)>41 AND
duration(P1.S1)> INTERVAL ’01’ YEAR

This query counts the number of disease phases for patient John in which he first
suffered from alcohol addiction (’AA’) for more than one year and afterwards hair
loss followed by a period of fever with over 41 degrees which was directly followed
by an abnormal platelet count phase. Note that the sequence table just stores
two states S1 and S2 with S1.END < S2.END which means that the ’AA’ and
’HL’ periods in this query may even overlap. The complexity of the reasoning
process becomes obvious and can even be increased by utilizing operators on
time intervals as already indicated by the table function TDIFF from Section 2.
This way, complex interval queries such as the determination of time periods
over more than one day in which a patient suffered from fever and liver disorder
but not hair loss can be expressed in a rather condensed form. Additionally, the
state concept quite naturally allows for expressing the non-occurrence of events
which is rather difficult for an event-based calculus.

States represent derived data which is generated by applying domain knowl-
edge over stored observations and already determined states. Consequently, our
query language should allow for deriving new states based on other ones. The fol-
lowing query serves as an example how a new state instance for organ problems
’OP’ could be determined for patient John with probability 40% after observing
the state sequence fever and hypothermia ’HT’:
SELECT op(seq.nval,’OP’,getObject(S1),NOW,null,0.4)
FROM strictSequence WHERE sameObject(S1,S2) AND getName(S1)=’FE’ AND

getName(S2)=’HT’ AND getObject(S1)=’John’

The keyword op within the select part represents a constructor for the respective
user-defined state type. The function seq.nval automatically generates a unique
internal identifier for this new instance. The start attribute of this state is set to
NOW while its end is still undefined. In order to really activate this state, the
corresponding data must be materialized, e.g., by using an INSERT statement.
This algebraic approach to generating and activating derived states is especially
useful for performing predictive reasoning.

Temporal State Management for Supporting the Real-Time Analysis 169

5 Implementation Issues

The presented sample queries already showed that most of the needed functionali-
ty can be realized by adding new user-defined data types and functions to a CEP
system. For maintaining the entire workflow of a state-driven monitoring appli-
cation, a new middleware component is necessary placed on top of the underlying
and already extended CEP engine. The proposed query language for states is
supposed to be plain SQL which is seamlessly extended by various new UDFs
and data types. One of the key features needed for this extension, however, is
that the underlying CEP or database system fully supports the management of
bi-temporal data. The possibility to perform probabilistic reasoning represents
another functionality necessary for implementing the proposed state concept. In
our example we have used rules from a LD detecting BN for determining the
continuously changing state probabilities. Every time a new observation is made,
the BN rules are called and the state values updated accordingly. In order to
incorporate information aging, we have extended the BN rules by a monotoni-
cally decreasing e-function. As an example, consider the rule for determining the
probability of HL after the observation of an HL event E at E.time:

s.prob[t] :=

⎧
⎪⎨

⎪⎩

0.75e−0.1(t−E.t), ∃ last(E) : E.o = s.o ∧ E.t ≤ t ∧ E.n = ’HL’∧
E.v = TRUE

0, else

E.o refers to the affected patient while last returns the newest event E in the
event history. The term s.LD[t] := s.prob[t]

7.5 is used in the HL state in order to
describe the impact of the HL state’s probability to the state LD. In a similar
way, the potassium level (PL) is modelled using

s.prob[t] :=

⎧
⎪⎨

⎪⎩

0.95e−0.5(t−E.t), ∃ last(E) : E.o = s.o ∧ E.t ≤ t ∧ E.n = ’PL’∧
(E.v < 3.7 ∨ E.v > 5.2)

0, else

while the LD impact value is set to zero s.LD[t] := 0 as a PL state indicates HP
but not LD. Finally, liver disorder is derived using the accumulated probability
values of its substates normalized by the sum of all possible contribution:

s.prob[t] :=
∑

l∈actState(s.o,t)
l.LD[t] ÷

∑

l∈allStates(s.o,t)
l.LD[t].

6 Discussion

We have presented a refined version of the state concept from [16] which combines
the best of two worlds: The scalable real-time processing capabilities of an event
calculus and the complex analysis and planing features of a situation calculus [2].
In particular one can think of event processing as the technology to identify

170 A. Behrend et al.

changes and states as the abstraction that captures the current situation in a
compact way and that also allows us to focus our attention on what is currently
important and how facts have to interpreted in that context. Our work is related
to various other research fields: Stream processing has first been mentioned in [9].
After that, numerous event processing engines and languages have been proposed
most of them supporting discrete timestamps, only. There are only few proposals
for events with a duration [1,3,13]. Some CEP engines (like [7]) allow at least for
the specification of time intervals. Such interval specifications, however, differ
from the state concept, as a state is allowed to only have a starting time with
an unknown end. Probabilistic databases represents another active research field
related to the proposed reasoning process in this paper.

References
1. Adaikkalavan, R., Chakravarthy, S.: Formalization and Detection of Events using

Interval-Based Semantics. In: COMAD, pp. 58–69 (2005)
2. Belleghem, K.V., Denecker, M., Schreye, D.D.: Combining Situation Calculus and

Event Calculus. In: ICLP, pp. 83–97 (1995)
3. Galton, A., Augusto, J.C.: Two Approaches to Event Definition. In: Hameurlain,

A., Cicchetti, R., Traunmüller, R. (eds.) DEXA 2002. LNCS, vol. 2453, pp. 547–
556. Springer, Heidelberg (2002)

4. Gawlick, D., Ghoneimy, A., Liu, Z.H.: How to build a modern patient care appli-
cation. In: HEALTHINF, pp. 427–432 (2011)

5. Guerra, D., Gawlick, U., Bizarro, P., Gawlick, D.: An Integrated Data Management
Approach to Manage Health Care Data. In: BTW, pp. 596–605 (2011)

6. Kowalski, R.A., Sergot, M.J.: A Logic-Based Calculus of Events. New Generation
Computing 4(1), 67–95 (1986)

7. Krämer, J., Seeger, B.: PIPES - A Public Infrastructure for Processing and Ex-
ploring Streams. In: SIGMOD, pp. 925–926 (2004)

8. Liu, Z.H., Behrend, A., Chan, E., Gawlick, D., Ghoneimy, A.: Kids - a model for
developing evolutionary database applications. In: DATA, pp. 129–134 (2012)

9. Luckham, D.: The Power of Events: An Introduction to Complex Event Processing
in Distributed Enterprise Systems, 1st edn. Addison-Wesley (2002)

10. McCarthy, J., Hayes, P.J.: Some philosophical problems from the standpoint of
artificial intelligence. Machine Intelligence 4, 463–502 (1969)

11. Onisko, A., Druzdzel, M.J., Wasyluk, H.: A Bayesian Network Model for Diagnosis
of Liver Disorders. Biocybernetics and Biomedical Engineering, 842–846 (1999)

12. Reiter, R.: Formalizing Database Evolution in the Situation Calculus. In: FGCS,
pp. 600–609 (1992)

13. Roncancio, C.L.: Toward Duration-Based, Constrained and Dynamic Event Types.
In: Andler, S.F., Hansson, J. (eds.) ARTDB 1997. LNCS, vol. 1553, pp. 176–193.
Springer, Heidelberg (1999)

14. Schmiegelt, P., Xie, J., Schüller, G., Behrend, A.: Database functionalities for evolv-
ing monitoring applications. In: DATA (2013)

15. Schüller, G., Behrend, A., Manthey, R.: AIMS: An SQL-based System for Airspace
Monitoring. In: IWGS, pp. 31–38 (2010)

16. Schüller, G., Schmiegelt, P., Behrend, A.: Supporting Phase Management in Stream
Applications. In: Morzy, T., Härder, T., Wrembel, R. (eds.) ADBIS 2012. LNCS,
vol. 7503, pp. 332–345. Springer, Heidelberg (2012)

17. Snodgrass, R.T. (ed.): The TSQL2 Temporal Query Language. Kluwer (1995)

Part VI
Streams

A Concept of Time Windows Length Selection

in Stream Databases in the Context of Sensor
Networks Monitoring

Monika Chuchro, Micha�l Lupa, Anna Piȩta,
Adam Piórkowski, and Andrzej Leśniak

Department of Geoinformatics and Applied Computer Science
AGH University of Science and Technology
al. Mickiewicza 30, 30-059 Cracow, Poland
{chuchro,apieta}@geol.agh.edu.pl,

{mlupa,pioro,lesniak}@agh.edu.pl

http://www.geoinf.agh.edu.pl

Abstract. Monitoring systems are a source of large amounts of data.
These streams of data flow down as information which, in the case of
sensor networks is often associated with the measurement of the selected
physical signals. Processing of these data is a non-trivial issue, because
accurate calculations often require dedicated solutions and large com-
puting power.

In the case of flood embankment monitoring systems the essence of the
calculation is the analysis of time series in terms of similarities to herald
danger scenarios. This analysis also includes data series from neighbor-
ing sensors, which increases the difficulty of the calculation. This paper
proposes the concept of a data analysis system, allowing for dynamic
evaluation of the embankments.

Keywords: time series, time windows, stream database, embankments,
flood.

1 Introduction

Integrated embankment monitoring systems have been created in a few coun-
tries, such as in the Netherlands [2,12]. In Poland, in cooperation with the AGH
University of Science and Technology in Cracow and Cracow companies SWECO
Hydroprojekt Ltd and Neosentio, project ISMOP (Computer Monitoring Sys-
tem for Flood Embankments) has been developed. This was founded under the
NCBiR project (National Centre for Research and Development, Poland), which
involves the creation of a monitoring system of static and dynamic behavior of
the embankments that works in real time [17,19].

The basic problem of flood embankment is to control their condition, both
during the flood season and during exposure to the interruption of the embank-
ment. Visual observation of the shaft during the flood does not answer whether
the section of the shaft has lost stability, and if so, how long it can effectively

c© Springer International Publishing Switzerland 2015 173
N. Bassiliades et al. (eds.), New Trends in Database and Information Systems II,
Advances in Intelligent Systems and Computing 312, DOI: 10.1007/978-3-319-10518-5_14

http://www.geoinf.agh.edu.pl

174 M. Chuchro et al.

resist the flood. The aim of the research is to provide answers to the question of
whether the measurement of technical parameters inside the shaft, such as tem-
perature, pore pressure and humidity, can allow us to estimate the probability
of damage to the embankment. An additional difficulty in giving a clear answer
to this question is heterogeneous building embankments - the most common
material that is near the bund.

1.1 Sensor Network for Embankments Monitoring System

This article concerns the difficult issue of assessment of flood embankment sta-
bility. This is a complex problem due to the amount of data processed from
sensors located in the experimental embankment and the calculations required
to assess flood embankment stability.

In order to facilitate the evaluation, an experimental embankment was divided
into sections with a length of 1km. In each section of the embankment, there are
1,000 sensors arranged in 5 layers. A cross section of the experimental embank-
ment is shown in Fig. 1. Each sensor measures parameters which can influence
the condition of the embankment. These include: temperature, pressure, pore
water, humidity, stress, strain and electrical conductivity. A sensor network is
thus created [17,13]. Due to the advances in the electronic design, sensor network
use IPv6 [3,18] for communication purposes. It enables possibility to expose its
functionality as services [20] and make them coherent with the server side part
of the system. Depending on the depth of the sensor in the embankment, the
average measured values may vary slightly. These differences in measured values
are caused by weather conditions and hydrogeological sensors located in the sub-
surface layers. All measurements are carried out with a time step of 15 minutes,

25 m
S11

S21

S31

S51

5 m S41

Fig. 1. The schema of experimental flood embankments with location of sensors (Snm)

giving 540 000 observations every hour (15×1000×9×4), and almost 13 million
per day on a 1km length of the experimental embankment. Taking into account
the length of the flood embankment in the municipalities, the huge amount of
incoming data is a big challenge. The first problem that must be solved is the
collection and storage of data. The second problem is assessment of the state
of the experimental embankment. This state assessment includes a comparison
of data flowing from the sensors with the previously created numerical models.

A Concept of Time Windows Length Selection 175

Also the state assessment contains the visualization of models in a short period
of time, shorter than getting the new batch of data from sensors.

Real data flowing from the sensors can be written as a multivariate time series
of moments of time step of 15 min (1) [21,14].

Y (t) = {ya, yb, ..., yi}
t = 1, 2, ..., τ.

(1)

where:

– t - time step,
– ya - observation of one parameter on the time step t,
– i - measured parameters (a, ..., i).

The time series of a single sensor includes, in addition to the seven parameters, a
timestamp and the coordinates of the point in space where the sensor is located.
In addition to the data from the sensors, weather data from a weather station
located in close proximity to the experimental flood embankment are processed
and collected.

Assessment of the embankment stability is based on a comparison of data
flowing from the sensor with dynamic numerical models of the embankment sta-
bility performed in the Flac [9]. Flac is a numerical modeling code for advanced
geotechnical analysis, used in project for dynamical modeling. The concept used
in Flac which is based on Lagrangian analysis is applied in many field (e.g.
in obtaining a fluid-flow-based mechanical model for prediction of probability
distribution [1]). Simulations in this environment are conducted on a numeri-
cal model of the embankment with the same parameters as the experimental
embankment. In addition to the initial conditions, external conditions are used
to simulate real phenomena occurring on and within the experimental embank-
ment and in its proximity. Due to the possibly infinite number of opportunities
to model the initial and external parameters, team modeling in Flac have to
uniformly sampled space of possible initial and external parameters. The final
result is a dynamic simulation of the embankment stability under the influence
of different values of various external factors.

The simulated evaluation of the embankment stability should be consistent
with the actual experimental embankment state. To facilitate searching the Flac
models database, a treelike structure was created in which the first divisions con-
cerned the initial conditions, and further divisions covered external conditions.

2 A Concept of Flood Embankment Condition
Assessment

Due to the nature of the data and analysis requirements, no solution available is
able to properly evaluate the condition of the experimental flood embankment.
The number of observations in 1 km of the embankment, and the requirement
that the assessment be realized in not more than 15 minutes, exclude a relational

176 M. Chuchro et al.

database. Daily, seasonal and annual cyclicality hinder the creation of generalized
models, which is why correct space sampled of possible solutions will be a big
challenge, especially for air temperature and humidity. On the other hand a
strong dependence of autocorrelation means that the best solution seems to be
to analyze the data into time windows using stream databases.

The general process of flood embankment condition assessment is shown in
Fig. 2. Data flowing from the 1,000 sensors are evaluated for correctness. In
the case of abnormalities or anomalies an error message is sent to the system
administrator. An important step is the preprocessing of data, which includes
examining the similarity of the values measured by the sensors in the moment
τ and τ − 1. If the module assessment of the shaft is not running, and the
difference between the measured values of the parameters for the individual
sensor does not exceed 5%, the system goes into idle mode until time τ + 1.
If the difference between the values of the parameters of the time τ and τ − 1
(even of a single parameter or the sensor) is higher than 5%, that module of
embankment stability assessment is enabled. Shutdown of assessment modules
occur only when all of the scenarios created in Flac suggest ”very good condition
of experimental flood embankment” and the subsequent n measured values for
all parameters did not show differences between them more than 5%. In the
first step after starting the module assessment of the embankment stability, the
last ten values for each sensor and each parameter are read from the database.

Comparison module

Treelike

structure

of models

Preprocessing of

data

Sensor 1

Sensor 2

Sensor n

Data

stream

Group

of

models

Initials

parameters

values (from

10 first τ)

Window size

T

Model N

window

1 from

Model N

Data

stream

Window

2 from

Model N

Window

3 from

model N

Similarity

measures

SMHN

SMHN<0.3

List of

models with

the highest

Similarity

value

Assesment of

local and

global

enbarkment

stability

Fig. 2. The concept of flood embankment condition assessment

A Concept of Time Windows Length Selection 177

With these values, average values are calculated, which we consider as initial
values. Calculated initial values are compared with the initial values for the
Flac scenarios. The group of scenarios with the highest degree of similarity are
selected for further evaluation of the embankment stability.

As a measure of similarity between two multidimensional windows ranks time
series considered one of several measures of mathematical and statistical. Ini-
tially, a typical measure of similarity like as Pearson’s correlation coefficient is
excluded because of the lack of fit to the nature of multivariate and nonlinear
time series. Eight similarity and dissimilarity measures has been selected from
many existing measures to test. In many fields it has been shown that the differ-
ent similarity measures can lead to substantial differences in final results and the
similarity measure performance can be influenced by dataset characteristic [11].
For testing were chosen: Jacard coefficient, Sorensen coefficient, Czekanowski co-
efficient, determination coefficient, average measure of the error, mean absolute
percentage error (MAPE), average absolute error known as L1 Norm (2), root
mean square error (square L2 Norm) [4,8,5].

L1 =
1

n

n∑
i=1

|Yτ − Yp| (2)

The selection of the optimal similarity measure to use was made on the basis
of experiment. 100 pairs of series of 1000 observations were generated in terms
discraibed in [16], corresponding to series of a single sensor (real data) and to
Flac models. The ”real” time series were composed of a slowly varying sinusoidal
function with strong irregular components, which were Gaussian noise. Flac
models deviated slightly from the real data time series, but the Flac model time
series do not have Gaussian noise. Due to the nature of the modeled data the
similarity measure should:

– properly evaluate similarity ranks in the case of one of the time series having
a stochastic component (noise),

– evaluate the similarity in the case of linear and nonlinear dependencies,
– lower the value of similarity in the models which do not adapt to the extreme

values, which may indicate deterioration of embankment stability,
– be easy to interpret.

The measure of average absolute error (2) fulfills the abovementioned require-
ments, and this measure will be used in the project as a measure of similarity. Ex-
perimental embankment stability assessment runs iteratively. As the first group
of embankments dynamic models was selected, this group, which was calculated
for the highest similarity measure for the initial parameters values. Generally
speaking, the same number of observations are selected for the first sensor and
the first dynamic model, counting the real time series from a sensor 1. Then,
for both multidimensional time series a measure of similarity is calculated. The
calculated value of similarity and the number of initial observations of the time
window are written to a temporary table. In the next iteration, the time window
is shifted to the right by one observation in the dynamic model and then the

178 M. Chuchro et al.

measure of similarity is calculated again. If the new measured value is higher
than the similarity stored in a temporary table, these values are overwritten. If
the iterations come to the last observation in the first dynamic model, the highest
value of the similarity measure, together with the number of initial observations
of the time window, the number of dynamic model and the result of the script is
saved to the table with the best match scenarios, provided that the measure of
similarity does not exceed the limit value. The predetermined threshold based
on the similarity measure experiments is 0.3. After calculating the measure of
similarity for the first dynamic model and real times series from the first sensor,
similarity measures are calculated for all dynamic model parameters preselected
by initial values of parameters.

The final of the dynamic model is stored in binary form, in which 0 represents
break or destruction of the flood embankment and 1 is maintained stability of the
embankment. The local assessment of embankment stability, called ”state”, for
a single sensor positioned in the experimental embankment is calculated based
on Bayesian probability from all chosen by similarity measue models finals and
is stated as P (Ck), where P is a Bayesian probablility and Ck is a sensor number
[15,24]. For a single sensor at time t can take one of five states chosen arbitrary:

– Alarm status - threat of break or damage to the embankment. The system
sends a message indicating the status of the emergency to the designated
administrative units along with the location of the threat (3).

P (Ck) < 0.2 (3)

– Warning status - threat of break or destruction of the experimental embank-
ment, but also with the possible improvement of the embankment condition.
The system sends a message indicating the status of the emergency to the
designated administrative units along with the location of the threat (4).

0.2 ≤ P (Ck) < 0.4 (4)

– Neutral status - depending on external conditions the experimental embank-
ment may stabilize, or a real threat of break or destruction of the embank-
ment may occur (5).

0.4 ≤ P (Ck) < 0.6 (5)

– Good status - the likelihood of disturbances of the state of the experimental
embankment is low, however, some dynamic models indicate the possibility
of destruction of the embankment in the future (6).

0.6 ≤ P (Ck) < 0.8 (6)

– Very good status - the likelihood of disturbances to the state of the shaft is
very low (7).

P (Ck) ≥ 0.8 (7)

A Concept of Time Windows Length Selection 179

The final threshold values of P (Ck) will be modified during the experiments on
real flood embankment.

Global assessment of the stability state of the entire experimental embank-
ment is calculated as the average value of local states calculated in parallel to
each other. A special case is the occurrence of a warning or alarm condition even
for a single sensor (9 parameters). The status of the warning or alarm for a sin-
gle sensor automatically grants the same status to the global assessment. In the
case of an output state indicating possible damage or break of the experimental
embankment, it is possible to run predictive modules allowing the assessment
of the future state of the embankment on the basis of current data. For each
evaluation time reports are generated with graphical presentation of the results,
which are sent to the control and administration unit.

3 The Issue of Time Window Length Selection

Data in the stream database are processed and modeled in the form of streams
of data. A single stream S can be called a multicollection of elements in the
form < s, τ > in which s is a tuple, and τ is the time of appearance of the
item, or timestamp. A characteristic feature of streams is their possible unlimited
length and repeatable values τ . One of the most important features of the stream
database is the time of arrival of the data to the database (timestamp). The older
the data is, the less that data is associated with the current data streaming to
the database. For this reason and because of the computational complexity, for
processing streaming data generally only the last n observations are used with
sliding time windows [6,7,22]. The time window converts the data stream into a
table. In the stream each tuple has a timestamp τ . The time window is a function
that defines the life of the component in a table based on timestamp tuple. The
arrival of a new tuple will update the current time of the operator in accordance
with the time stamp of the tuple. Depending on the determining method, we
distinguish agglomeration, sliding and sequencing time windows. The initial time
window is in the agglomerative windows parameter, and the window size changes
with each new input tuple. After updating, the current time window is increased
by the unit of time. A sliding (sliding window) - parameter window is the size of
T in units of time. Each new input tuple is inserted into the table. The next step
is to update operator current time. Then the table is cleared of tuples whose
timestamp is beyond the scope of the window. The sliding window allows the
grouping of tuples from within T units of time. This can be expressed as (8):

R(τ) = {s|s, τ ′ ∈ S ∧ (τ ′ ≤ τ) ∧ (τ ′ ≥ max(τ − T, 0)}. (8)

where:

– S - data stream,
– τ - current time operator,
– τ ′ - the newest tuple,
– T - window size.

180 M. Chuchro et al.

Time-based sliding window contains all the elements at the time τ of the stream
S, which appeared from time τ − T to time τ . Another type of window is the
tuple-base sliding window, which is associated with a fixed number of tuples, and
contains the N most recent tuples that have emerged to date τ . The last type of
sliding window is the partitioned sliding window. The stream S is divided into
subattributes with identical features. The next step is selection of N most recent
tuples to time τ . Shifting / fixed window - window parameter is the size of T in
units of time. The interval is defined as:

– Beginning marker: i ∗ T
– End marker: (i + 1) ∗ T

3.1 A Concept of Experimental Flood Embankments Condition
Assessment in Time Windows

Assessment of the experimental embankment is carried out iteratively, in the
time windows. Already, on the basis of preliminary findings, two types of time
windows were excluded (partitioned sliding and shifting windows) as not fulfill-
ing the requirements of the project. Two types of windows were chosen as the
most promising, fitted simultaneously to the data coming from the sensors and
the planned evaluation of the stability of experimental embankment. The first
type of time window selected is the sliding window with a fixed number of obser-
vations of 100 tuples from a single sensor, with a time-resolution of 15 minutes
(Fig. 3). The advantage of such a solution, based on streaming databases, is that
it does not require intermediary relational database calculations and so perfor-
mance problems that could result from this kind of data storage are avoided. In
addition, fixed window size reduces the assessment time, by reducing the number
of function calls which count the length of the time series of measurements from
the sensor, and function calls choosing an adequate number of observations for
the dynamic models. The disadvantage of fixed size time windows is the possibil-
ity of loss of part of the dynamic models, due to the loss of initial readings from
the sensors. To prevent the loss of significant parts of the models it would be
necessary, for each time window τ − T , to calculate the new initial value and to

1 2 3 4 5 6 7 8 9 10

τ -6 τ -5 τ -4 τ -3 τ -2 τ -1 τ

Data Stream

Model N

SMN1

SMN2

SMN4

SMN3

Similarity Measure

Temporal file

Highest value of

SMHN

SMN>SMHN

YES

SMHN<0.3

List of models

with the

highest

Similarity

value

Fig. 3. Processing in agglomerative window

A Concept of Time Windows Length Selection 181

1 2 3 4 5 6 7 8 9 10

τ -6 τ -5 τ -4 τ -3 τ -2 τ -1 τ

Data Stream

Model N

SMN1

SMN2

SMN4

SMN3

Similarity Measure

Temporal file

Highest value of

SMHN

SMN>SMHN

YES

SMHN<0.3

List of models

with the

highest

Similarity

value

Fig. 4. Processing in sliding window

research the treelike structure of dynamic models. This research, unfortunately,
will increase the number of time-consuming calculations and increase hardware
resource requirements. The second solution is to use the agglomerative time win-
dows (Fig. 4). The disadvantage of this solution is an increase in the number
of calculation and in the time of calculation. With each new moment, a time
window increases by 9 parameter values for a single sensor, which gives 9 000
new observations for a 1 km stretch of the experimental shaft for a moment, and
during the day up to 864 000 additional observations. Additionally, the com-
puting time also increases because of selecting and counting invoke functions.
In the classical approach to stream databases, the computationally less expen-
sive solution is to introduce time windows with a fixed number of observations,
despite the possibility of losing a valuable part of dynamic models of the sta-
bility flood embankment development. However, this solution is not optimal in
terms of obtaining full information about the status of the flood embankment.
To be able to take advantage of the benefits of the agglomerative window, a way
to shorten the time of analysis is needed, which will be iteratively longer and
longer with each new τ . Reducing the time may be accomplished by searching
and reading tuples in the stream database, or reducing the number of parameters
in the analysis. However the second solution reduces the possibility of a correct
assessment of the embankment stability, the same as sliding windows. For this
reason, we decided to use indexation of data dynamic model and in time series
from sensors.

4 Conclusions and Further Work

This project on embankments monitoring is important due to the possibility of
providing an early warning about embankment breach. This results in greater
security in flood risk areas. It is necessary to establish and implement a dedicated
system due to the lack of existing software that meets the requirements asso-
ciated with the collection, analysis, and prediction of embankment condition.
For this reason, the authors have proposed their own solutions, based on stream
databases, where the information is evaluated by time series analysis tools.

182 M. Chuchro et al.

The essence of time series analysis of data from the sensor network is the use
of time windows, and the selection of the type and length of the windows, which
will be adequate to the cyclicality periodic data (e.g. daily, monthly, yearly).
This work also considers the selection of optimal time windows in the context of
determining the similarity measure of time series and model data. The advan-
tages and disadvantages of the proposed solution in relation to computational
complexity were also presented. In future, the management of stream databases
for discussed flood embankment will be considered [23,10].

Acknowledgments. This work is financed by the National Centre for Research
and Development (NCBiR), Poland, project PBS1/B9/18/2013 - (no 180535).

This work was partly support by the AGH - University of Science and Tech-
nology, Faculty of Geology, Geophysics and Environmental Protection, as a part
of statutory project number No.11.11.140.032.

References

1. Augustyn, D.R.: Using the model of continuous dynamical system with viscous
resistance forces for improving distribution prediction based on evolution of quan-
tiles. In: Kozielski, S., Mrozek, D., Kasprowski, P., Ma�lysiak-Mrozek, B. z. (eds.)
BDAS 2014. CCIS, vol. 424, pp. 1–9. Springer, Heidelberg (2014)

2. Balis, B., Kasztelnik, M., Bubak, M., Bartynski, T., Guba�la, T., Nowakowski, P.,
Broekhuijsen, J.: The urbanflood common information space for early warning
systems. Procedia Computer Science 4, 96–105 (2011)

3. Brzoza-Woch, R., et al.: Implementation, Deployment and Governance of SOA
Adaptive Systems. In: Ambroszkiewicz, S., Brzezinski, J., Cellary, W., Grzech,
A., Zielinski, K. (eds.) Advanced SOA Tools and Applications. SCI, vol. 499, pp.
261–323. Springer, Heidelberg (2014)

4. Cha, S.H.: Comprehensive survey on distance/similarity measures between proba-
bility density functions. International Journal of Mathematical Models and Meth-
ods in Applied Sciences 1(4), 300–307 (2007)

5. Clements, M., Hendry, D.: Forecasting economic time series. Cambridge University
Press (1998)

6. Golab, L., Özsu, M.T.: Issues in data stream management. ACM Sigmod
Record 32(2), 5–14 (2003)

7. Golab, L., Özsu, M.T.: Processing sliding window multi-joins in continuous queries
over data streams. In: Proceedings of the 29th International Conference on Very
Large Data Bases, vol. 29, pp. 500–511. VLDB Endowment (2003)

8. Hamilton, J.D.: Time series analysis, vol. 2. Princeton University Press, Princeton
(1994)

9. Itasca Consulting Group, Inc.: FLAC Fast Lagrangian Analysis of Continua and
FLAC/Slope – User’s Manual (2008)

10. Koudas, N., Ooi, B.C., Tan, K.L., Zhang, R.: Approximate nn queries on streams
with guaranteed error/performance bounds. In: Proceedings of the Thirtieth In-
ternational Conference on Very Large Data Bases, vol. 30, pp. 804–815. VLDB
Endowment (2004)

A Concept of Time Windows Length Selection 183

11. Gruca, A., Kozielski, M.: Correlation of genes similarity measures based on GO
terms similarity and gene expression values. In: Czachórski, T., Kozielski, S.,
Stańczyk, U. (eds.) Man-Machine Interactions 2. AISC, vol. 103, pp. 137–144.
Springer, Heidelberg (2011)

12. Krzhizhanovskaya, V.V., Shirshov, G., Melnikova, N., Belleman, R.G., Rusadi, F.,
Broekhuijsen, B., Gouldby, B., Lhomme, J., Balis, B., Bubak, M., et al.: Flood
early warning system: design, implementation and computational modules. Proce-
dia Computer Science 4, 106–115 (2011)

13. Li, J., Cai, Z., Li, J.: Data management in sensor networks. In: Wireless Sensor
Networks and Applications, pp. 287–330. Springer (2008)

14. McGovern, A., Rosendahl, D.H., Brown, R.A., Droegemeier, K.K.: Identifying pre-
dictive multi-dimensional time series motifs: an application to severe weather pre-
diction. Data Mining and Knowledge Discovery 22(1-2), 232–258 (2011)

15. McKenzie, C.R.: The accuracy of intuitive judgment strategies: Covariation assess-
ment and bayesian inference. Cognitive Psychology 26(3), 209–239 (1994)

16. Pieta, A., Bala, J., Dwornik, M., Krawiec, K.: Stability of the levees in case of high
level of the water. In: 14th SGEM Geoconference On Informatics, Geoinformatics
And Remote Sensing – Conference Proceedings, vol. 1, pp. 809–815 (2014)

17. Piórkowski, A., Leśniak, A.: Using data stream management systems in the design
of monitoring system for flood embankments. Studia Informatica 35(2), 297–310
(2014)

18. Szydlo, T., Gut, S., Puto, B.: Smart applications: Discovering and interacting with
constrained resources ipv6 enabled devices. Przeglad Elektrotechniczny, 221–226
(June 2013)

19. Szydlo, T., Nawrocki, P., Brzoza-Woch, R., Zielinski, K.: Power aware mom for
telemetry-oriented applications using gprs-enabled embedded devices – levee mon-
itoring use case. In: Federated Conference on Computer Science and Information
Systems (FedCSIS), September 7-10 (in print, 2014)

20. Szyd�lo, T., Suder, P., Bibro, J.: Message oriented communication for ipv6 enabled
pervasive devices. Computer Science 14(4) (2013)

21. Vlachos, M., Hadjieleftheriou, M., Gunopulos, D., Keogh, E.: Indexing multidimen-
sional time-series. The VLDB Journal—The International Journal on Very Large
Data Bases 15(1), 1–20 (2006)

22. Wang, W., Li, J., Zhang, D., Guo, L.: Processing sliding window join aggregate in
continuous queries over data streams. In: Benczúr, A.A., Demetrovics, J., Gottlob,
G. (eds.) ADBIS 2004. LNCS, vol. 3255, pp. 348–363. Springer, Heidelberg (2004)

23. Zhang, R., Koudas, N., Ooi, B.C., Srivastava, D.: Multiple aggregations over data
streams. In: Proceedings of the 2005 ACM SIGMOD International Conference on
Management of Data, pp. 299–310. ACM (2005)

24. Zyphur, M.J.: Bayesian probability and statistics in management research: A new
horizon. Journal of Management 39, 5–13 (2013)

Partitioning for Scalable Complex Event

Processing on Data Streams

Omran Saleh, Heiko Betz, and Kai-Uwe Sattler

Department of Computer Science and Automation
Technische Universität Ilmenau, Germany

{first.last}@tu-ilmenau.de

Abstract. Many applications processing dynamic data require to filter,
aggregate, join as well as to recognize event patterns in streams of data in
an online fashion. However, data analysis and complex event processing
(CEP) on high volume and/or high rate streams are challenging tasks.
Typically, partitioning techniques are leveraged for achieving low latency
and scalable processing. Unfortunately, sequence-based operations such
as CEP operations as well as long-running continuous queries make par-
titioning much more difficult than for batch-oriented approaches.

In this paper, we address this challenge by presenting partitioning
strategies for CEP queries. We discuss two strategies for stream and
pattern partitioning and we present a cost-based optimization approach
for determining the number of partitions as well as the split points in
the queries to achieve better load balancing and avoid congestions of
processing nodes in a cluster environment.

1 Introduction

Over the last few years, several approaches [3,2,6,5] have been developed to ad-
dress the big data challenge also for dynamic data. This is motivated by applica-
tions on environmental and systems monitoring, stock trading, realtime business
analytics, or social media analysis. One of the basic strategy for scalable process-
ing both for batch processing and online processing is to exploit data and/or task
parallelism. For complex event processing on data streams, this means either (1)
to partition the input data stream and send the sub-streams to different cluster
nodes processing the same sub-graph of the dataflow (stream partitioning) or
(2) to split complex operators such as CEP pattern matchers and assign them
to different nodes (pattern partitioning). However, such partitioning strategies
are not as easily applicable like in batch processing for the following reasons.
First, whereas stateless operators do not cause problems, partitioning for state-
ful operators is more challenging. This is particularly the case for window- and
sequence-based operators which includes CEP. Here, stream partitioning is ap-
plicable only if sub-streams can be processed independently, e.g., if partition
criteria are induced by pattern specification or if punctuations allow to sepa-
rate sub-streams. Furthermore, partitioning across multiple compute nodes may
increase latencies which have to be considered, too. Second, queries on data

c© Springer International Publishing Switzerland 2015 185
N. Bassiliades et al. (eds.), New Trends in Database and Information Systems II,
Advances in Intelligent Systems and Computing 312, DOI: 10.1007/978-3-319-10518-5_15

186 O. Saleh, H. Betz, and K.-U. Sattler

streams are typically long-running queries prohibiting to simply restart and re-
allocate resources if data loss is not acceptable. Thus, planning and deploying
such queries (which includes to find an optimal partitioning) is a critical issue.

In this paper, we address these challenges by presenting and evaluating tech-
niques for stream and pattern partitioning in CEP queries. We discuss strategies
which work both locally for multicore processing as well as for distributed cluster
environments. In order to make the partitioning transparently to the user and to
support a resource-aware query deployment, we present a cost-based approach
for partitioning dataflow graphs that forms the rewriting step of query planning.
Our cost model is based on existing rate-based models but takes also resource
requirements into account.

2 The PipeFlow Language and Engine

The techniques proposed in the following are developed in the context of the
PipeFlow system – a scalable distributed stream processing engine (SPE)
with complex event processing features. In our system, we assume an event
stream model (or tuples model) based on existing works on semantics of data
streams [4] and CEP operators [8]. It is based on a library of C++ modules
implementing various data stream operators as well as auxillary functionali-
ties (e.g., a ZooKeeper interface). The frontend to our system is formed by the
PipeFlow compiler which compiles declarative dataflow specifications into exe-
cutable PipeFlow programs. PipeFlow is inspired by dataflow languages like
Pig or Jaql: a script describes a directed acyclic graph of dataflow operators
which are connected by named pipes. A single statement is given by:

$out := op($in1, $in2, ...) using (parameters);

where $out denotes a pipe variable referring to the typed output stream of
operator op and $ini refers to input streams. By using the output pipe of
one operator as input pipe of another operator, a dataflow graph is formed.
PipeFlow provides a large set of predefined operators such as sources (file and
database readers, network socket readers, . . .), filters and projections, streaming
and relation joins, grouping and aggregations as well as sliding and tumbling win-
dows. Furthermore, it supports (externally implemented) user-defined operators
as well as composite operators. The different operators are parametrized by a
using clause and can be augmented with the schema (e.g., for source operators),
and additional operator-specific clauses. For network communication, we use the
0MQ middleware1 by providing dedicated operators such as zmq publisher and
zmq subscriber. The following PipeFlow script shows an example for receiv-
ing data via a 0MQ socket, filtering tuples, and calculating the median over a
sliding window of 5 minutes. The result is then published via a 0MQ sink:

$in := zmq subscriber() with (x int, y int) using (endpoint = "...");

$f := filter($in) by x >100;

$w := window($f) using (slide len = 300);

$a := aggregate($w) produce median(y) using (slide len = 0);

$res := zmq publisher($a) using (endpoint = "tcp://*:1235");

1 http://zeromq.org

http://zeromq.org

Partitioning for Scalable Complex Event Processing on Data Streams 187

Matching of complex event patterns is supported by a dedicated matcher oper-
ator where the pattern is specified by the following clauses:

– event allows to specify the pattern over primitive events like SEQ, AND, OR
etc. [8], e.g., SEQ(A, B) as the sequence of events A followed by B.

– where defines the primitive events and predicates, i.e., each primitive event
A, B, . . . is defined in terms of a predicate on a tuple. Predicates can be
intra-event predicates (on a single tuple) like A = x < 10, or intra-event
predicates, e.g., B = (id == A.id && x >= 10).

– using is used for additional parameters such as time window of validity (e.g.,
“within 60 seconds”) and the matching strategy (first, every, etc.).

The following example shows the basic usage of the matcher operator for de-
tecting a complex event where the value of x of the same item (id) is increased
within 10 seconds:

$res := matcher($in) event SEQ(A, B)

where B = (id == A.id && x >=A.x * 1.1) using (within = 10);

The matcher operator is implemented by Non-deterministic Finite Automata
(NFA) to evaluate event patterns over tuple streams in a way similar to reg-
ular expressions. A NFA represents the event pattern as a collection of con-
nected states that must be traversed. The structure of a NFA is created by the
PipeFlow compiler by mapping consecutive event types to NFA states.

A PipeFlow script is compiled into a physical execution plan represented as
C++ code. Particularly, this involves graph rewriting steps (e.g., for partition-
ing as described in Sect. 3) as well as generating native code for implementing
predicates, automata etc. Note that a PipeFlow script can be compiled to
multiple executables which can be deployed to different machines for distributed
query processing. This is supported by additional higher-level operators which
we discuss in the following section.

3 Partitioning Techniques

The main motivation for leveraging partition techniques in data stream and com-
plex event processing is to increase performance/throughput and/or scalability
by load distribution. For CEP on data streams, two basic strategies exist: stream
partitioning and pattern partitioning.

Stream Partitioning. The stream partitioning pattern exploits data paral-
lelism by partitioning the input stream and sending the tuples of each partition
(sub-stream) to a replicated subgraph of the dataflow program. This approach
requires to split the stream in some way (e.g., round-robin or value-based such
as range- or hash-partitioned), process the sub-streams independently, and fi-
nally merge the results into a single stream. Depending on the processing tasks
applied to the sub-streams and the split strategy, the merge step could be either
(1) a simple union of the sub-streams or (2) could require post-processing (e.g.,
post-aggregation or even a reordering of the tuples). In PipeFlow, we support

188 O. Saleh, H. Betz, and K.-U. Sattler

this by introducing a map operator as a simplified version of the corresponding
MapReduce operator. Our map version takes a dataflow graph as parameter,
partitions the input stream according to a given key, and applies the parameter
graph to each partition. There is no explicit reduce step because the resulting
sub-streams produced by the mappers are simply merged into a single stream
allowing to apply global post-processing (including aggregation or reordering).

The following example illustrates the use of the map operator together with
the matcher introduced above. A user-defined composite operator is introduced
which is then used as mapper task. The stream is partitioned on the field C

because there exist no dependencies between the individual mappers.
define find raise($in) returns $res {

$res := matcher($in) event SEQ(A, B) where ...

};
$out := map($stream) on C do find raise;

The map operator supports both a local and a distributed mode: with the lo-
cal mode, the mappers run in separate threads on the same machine, whereas
in the distributed mode, the mappers run on remote machines by inserting
0MQ send/receive primitives into the dataflow graph. Furthermore, the num-
ber of initial partitions/mappers can be specified explicitly by the parameter
num partitions, additional partitions can be added on-the-fly to a running
query (but not yet automatically).

However, the application of stream partitioning is restricted to cases where
the mappers can process their sub-streams independently. For the CEP operator
this can be checked as follows. Given a pattern specification like

event SEQ(A,B) where A = x > 100, B = (x < 100 && id == A.id)

It is obvious that matching tuples always share the same value for the field id.
Thus, tuples with different id values will never match and can be independently
processed. In summary, this means a pattern matcher is stream partitionable on
an attribute x iff all pairs of primitive events A,B of the pattern specification
are pairwise connected by an equality predicate on x, i.e., B = (x == A.x).

CEP Pattern Partitioning. If a pattern matcher is not stream partitionable
but the operator is still too expensive for a single compute node, the CEP pat-
tern itself could be split up and distributed over different nodes to meet the
throughput requirements. There has been a few recent works focusing on CEP
pattern partitioning, e.g., [1]. The main idea behind these approaches is to seg-
ment each NFA state to be run on a separate node in parallel as a pipeline. To
each state in the NFA, a predicate is assigned which is evaluated for the whole
incoming event stream. After matching an event by the corresponding state, a
match from this state has to be appended as a partial result and forwarded to
the next state in the chain. This continues until reaching the final state.

Obviously, this approach has some potential issues: (i) it produces a commu-
nication overhead between states running on separate machines. For example,
if the pattern consists of a sequence of length 9, the system has to forward the
partial matches among the consecutive nodes 9 times (ii) the input stream must
be replicated and forwarded to every node representing a state in the NFA which
leads to add up more overhead on the system (iii) different nodes in the system

Partitioning for Scalable Complex Event Processing on Data Streams 189

receive and process events at different rates depending on the match result from
their predecessor nodes. This occurs as a result of different processing times
for evaluating the predicates associated with the different states. To overcome
these issues, CEP patterns should be decomposed into a more efficient way by
segmenting the NFA into automata for sub-patterns where multiple states are
combined in a single sub-pattern. In other words, one matcher operator can be
rewritten into multiple independent matcher operators.

As an example, we consider the following pattern specification which contains
a hypothetical predicate that is computational expensive:

$res := matcher($in) event SEQ(A, B, C) where A = expensive pred (x),

B = (x < 100 && id == A.id), C = (x < 200 && id == B.id)

using (within = 60);

This pattern can be rewritten into the following query that separates the pro-
cessing of the A event from the pattern on SEQ(B, C). For this purpose, the
original input stream ($in) is joined using a variant of a hash join (called
combine hash join) with the result stream of the matcher on A (denoted by
$res1) and fed into the matcher for SEQ (B, C). This join implementation main-
tains a queue for all incoming tuples of the first stream and tries to combine the
incoming tuple from the second stream with the first element of this queue. As
soon as a match was found, the tuple is removed from the queue. Note, that the
join condition ($in1.id == $res1.id) can be derived from the original pattern
specification:

$res1 := matcher($in) event SEQ(A) where A = expensive pred (x);

$res2 := combine hash join($in1, $res1) on $in1.id == $res1.id;

$res := matcher($res2) event SEQ(B, C)

where B = x < 100, C = x < 200 using (within = 60);

Therefore, by using rewriting rules for each pattern supported by the matcher

operator, a modified dataflow graph can be derived where the pattern matcher
is decomposed into a sub-graph of operators.

4 Partitioning Dataflow Graphs

Given the partitioning techniques for dataflow graphs with CEP operators as
described in the previous section, our goal is to decide about the number of
partitions and the split points for partitioning. The main motivation for a par-
titioning is to avoid congestions in the processing nodes. Redundancy issues for
increasing reliability is an orthogonal aspect and not covered here.

However, whether a dataflow graph should be partitioned at all and how many
partitions are introduced depends heavily on the work done on the individual
partitions. Therefore, a cost-based decision model and a partition planning phase
are required which we describe in the following.

Cost Model. The foundation for our decision model is a basic rate-based cost
model as presented in [7]. A query is represented as dataflow graph G of op-
erators. We assume that tuples arrive with a known average input rate irate
measured in tuples per second. Furthermore, each operator opi is characterized

190 O. Saleh, H. Betz, and K.-U. Sattler

by the selectivity seli as the ratio of output tuples vs. input tuples per time
unit and the tuple processing time ptimei as the average time for processing a
tuple. We assume that these parameters are obtained from a preceding calibra-
tion process where runtime statistics of the individual operators on the specific
underlying hardware were collected. PipeFlow provides appropriate facilities
for this monitoring. Using these parameters, we can estimate for each operator

the tuple output rate oratei = min

{
1

ptimei
, iratei

}
· seli. Furthermore, the CPU

utilization ui of an operator opi is for unary operators ui = iratei ·ptimei and for
binary operators with two input streams l and r: ui = (iratel + irater) · ptimei.
Obviously, iratei = oratej if operator opj provides the input for opi. Similarly,
we can estimate the memory consumption memi of operator opi which is for
stateless operators memi = c where c denotes a constant value and for stateful
operators an operator-specific estimation, e.g., for a sliding range-based window
of size wlen: memi = wlen · iratei · c. Based on the estimations for all opera-
tors of a dataflow graph G, the total utilization and memory consumption are
UG =

∑
i∈G ui and MemG =

∑
i∈G memi. A graph G is congestion-free as long

as the following conditions are satisfied: UG ≤ 1 and MemG ≤ AvailMem. In this
case, the complete graph can be deployed to a single machine without congestion
in the tuple processing.

However, this does not necessarily mean that this topology represents a graph
with minimal processing latency. We define latency as the average time needed
for a tuple from arriving at the system until producing a result at a sink operator.
Given a path op1op2 . . . opk in a dataflow graph from a source operator op1 to
any other operator opk, the latency for opk is just

latency(opk) =

{
ptimei + latency(opi−1) if opk is unary

ptimei + max{latency(opl), latency(opr)} if opk is binary

where for a binary operator opl and opr denote the input operators.
Thus, our goal is to find a partitioning P(G) of graph G with P(G) =

{P1, . . . , Pn} where (1) Pi ⊆ G, (2) each partition is congestion-free, i.e.,
∀Pi ∈ P : UPi ≤ 1 and MemGi ≤ AvailMem, and (3) the latency for sink
operators is minimal. Note, that partitioning means not only to partition the
graph but also to split operators whose utilization exceeds the threshold of 1.
Furthermore, if partitions are placed on different servers additional send/receive
operators have to be inserted which increase the latency on this edge. We con-
sider only the case of a single sink operator, but this approach can be easily
extended to cases with multiple sinks by just aggregate latencies (e.g., average
of latencies at all sinks or maximum).

Partition Planning. Being able to estimate costs in terms of latency and mem-
ory consumption of a given dataflow graph, the second task is to determine an
optimal partitioning. Graph partitioning is a well-known problem in graph the-
ory and, in principle, two problems are related here. First, the max-flow min-cut
problem theorem states that the maximum amount of flow passing from a source
to the sink is equal to the minimum capacity of all cuts. Applied to our problem,

Partitioning for Scalable Complex Event Processing on Data Streams 191

an algorithm like Ford-Fulkerson would split the dataflow graph into subgraphs
where the required network bandwidth between the subgraphs is minimized.
However, in our case cutting a graph requires to change the capacity on this link
(due to inserting a pair of send/receive operators) and we want to be able to
change the number of partitions, i.e., replicating subgraphs. The second related
problem is bin packing as a combinatorial optimization problem where n pack-
ages have to be packed into m larger bins which correspond to computing nodes
in our case and have a maximum capacity. Bin packing is a NP-hard problem
and does not take into account the latency resulting from putting connected
operators of the dataflow graph into separate bins.

Thus, we present in the following a greedy algorithm for this problem.
Given a dataflow graph G = {op1, op2, . . . } and a set of computing nodes
M = {m1,m2, . . . }, we try to find a partitioning P(G) where each partition
Pi can be assigned to one node of M . Starting at sink operators, we try to place
operators along the path of G at the same node. As soon as the underlying node
of partition Pi is overloaded, a split point is introduced and a new partition is
created. A split point is represented by a pair of send/receive operators which
contribute to the total costs. In this way, we take communication costs into ac-
count. Particularly, we have to handle three cases: (i) the resources of a single
operator opi exceed the maximum utilization of a partition, i.e., ui > Umax, (ii)
assigning an operator opi to an existing partition Pj would exceed its utiliza-
tion, i.e., UPj + ui > Umax, or (iii) otherwise. Umax = 1 if only this partition is
assigned to the node or Umax = 1 − UG if another partition is already running
there. For case (i) either stream or pattern partitioning have to be applied, for
case (ii) the dataflow graph has to be split by introducing send/receive opera-
tors. However, we can handle both cases with our partition planning approach.
Note, that for illustration purposes we use only the CPU utilization UPi here,
but in fact we have to consider a vector of resource utilization, i.e., 〈ui,memi〉.

Our planning algorithm implements a variant of bin packing and works in
three phases. In the preparation phase, all operators are assigned to equivalence
classes C according their maximum path length to the source operators (in num-
ber of hops). As the result, each class Ck ∈ C contains the set of operators with
the same maximum path length. In the second phase shown in Algorithm 1,
the operators are processed class-wise starting at the equivalence class with the
highest index. The first step (line 6) is to check whether a single operator would
overload a node. In this case, the operator has to be split by applying either
stream or pattern partitioning. Which of this strategy is used depends on the
operator semantics. If multiple strategies are applicable, all of them should be
considered as alternatives in the following steps (not shown here). Otherwise,
connected operators are assigned to the same partition as long as the maximum
utilization is not exceeded. In line 11, the partition with the lowest utilization
is determined which has a connection to the operator opi and will not be over-
utilized if the operator is added. Then, the operator is assigned to this partition
(line 18). If no partition satisfying these condition can be found, a new partition
is created (line 14). The predicate is connected(Pj, opi) is satisfied iff opi has

192 O. Saleh, H. Betz, and K.-U. Sattler

either a direct link to any operator in Pj or is already a member of Pj , i.e.,
opi ∈ Pj . Finally, in the third phase the number of required computing nodes
is minimized by merging partitions. Remember that operator opi is already as-
signed to partition Pcurrent. Now, we try recursively to merge a second partition
to which opi is also connected with Pcurrent. As before, this is done only if the
partition is not overloaded and with the least utilized partition (Algorithm 2).

Algorithm 1. Greedy-based graph partitioning

input : equivalence classes C = {C0, . . . , Cn}
input : partitioning of operators P = {P1, . . . }

1 maxp := 1;
2 for k := n to 0 do
3 /* process equivalence classes in descending order */
4 foreach opi ∈ Ck do
5 /* check whether we have to split the operator */
6 if ui > Umax then
7 split operator opi and assign the resulting sub-graph to the

corresponding classes in C;
8 continue;
9 end

10 /* determine the least utilized partition connected to opi */

11 Pcurrent := arg minUPj
Pj with UPj + ui ≤ Umax∧ is connected (Pj , opi);

12 if no Pcurrent found then
13 /* create new partition Pmaxp and assign opi to it */

14 Pmaxp.assign (opi);
15 maxp := maxp + 1;
16 else
17 /* assign opi to Pcurrent */

18 Pcurrent.assign (opi);
19 merge partition (Pcurrent, opi);
20 end
21 end
22 end

Sorting the operators according their distance to the source operators in the
query and assigning them to equivalence classes ensures that operators are al-
ways processed before their input operators. Second, operators of the same class
are processed equally and disjoint paths are assigned to different partitions if
necessary. Furthermore, if such branches share a common input operator, the
algorithm tries to merge both partitions again.

5 Evaluation

For our experiments, we have implemented a synthetic stock ticker events gener-
ator which creates a stream of events and allows to control various parameters,
e.g., the data distribution. We have produced multiple sets of different sizes:
1M, 3M, 5M, 12M, 20M, and 30M. The schema of the datasets comprises five
attributes of type integer: timestamp, seqno, symbol, price, and volume. We
have mainly focused on the price attribute which is generated randomly with
uniform distribution and various maximum values (10, 50, 100, 300, 500, 700).

Partitioning for Scalable Complex Event Processing on Data Streams 193

Algorithm 2. Merging partitions

input: partition Pm, operator opi
set of all partitions P

1 finished:= false;
2 Pold := {};
3 while ¬ finished do
4 Pcand := arg minUPj

Pj with UPj + UPm ≤ Umax ∧ opi �∈ Pj∧ is connected

(Pj , opi);
5 if Pcand found then
6 Pm := Pm ∪ Pcand;
7 Pcand := {};
8 if Pold = Pm then finished:= true Pold := Pm;
9 else

10 finished:= true;
11 end
12 end

For simplicity, we refer to each set with price-size-max value, e.g., a dataset with
the maximum price 100 and 3M tuples is referenced by price-3M-100.

In the experiments, we have used different machines as evaluation environ-
ments. For centralized and local (i.e., multi-core) experiments, we used a single
machine which comes with an Intel Xeon E5-2630 CPU with 24 cores at clock-
speed 2.30GHz. The machine runs Ubuntu Linux and has a 128GB main memory.
For the distributed setup, we used several machines from our local cluster. Each
of this machine has an Intel Xeon E5645 CPU with 6 cores at 2.4GHz and a
8GB main memory. Based on the datasets described above, we have defined a
number of queries with various properties for our experiments. These queries
differ in their structures, i.e., in pattern syntax. Table 1 shows these queries.
Each query was executed ten times and the average throughput of all runs was
calculated.

Baseline and Comparison with Other Systems. In order to get a baseline
for evaluation of the partitioning techniques, we measured the throughput of
the queries for different datasets with a pure centralized setup. In addition, we
compared the results of implementation with two existing CEP engines SASE2

and Siddhi3 by adapting the queries accordingly. We have chosen these engines
because they are open source engines and are used as reference in several research
articles. We used the same prior two set queries which SASE has already used
for the evaluation [8]. In the first query set, the sequence length of the pattern
is varied from 2 to 6 with one equality attribute (i.e., price) in a way similar to
the following query pattern:

event SEQ(A, B, C, ...) where A = true, B = price == A.price,

C = price == B.price ...

For the second query set, multiple equality attributes (e.g., price and volume)
are used indicating that these values should be stable for three consecutive

2 V. 1.0 from http://code.google.com/p/sase-umass/
3 V. 2.0 from http://svn.wso2.org/repos/wso2/branches/commons/siddhi/

http://code.google.com/p/sase-umass/
http://svn.wso2.org/repos/wso2/branches/commons/siddhi/

194 O. Saleh, H. Betz, and K.-U. Sattler

states (i.e., B = (price == A.price && volume == A.volume)). The price-X-
100 and price-X-[10,50,100,500] datasets with varying sizes denoted by X were
used for the first and second query sets, respectively. Fig. 1a and Fig. 1b show the
throughput results of the three engines for the first and second query sets, respec-
tively. In all cases, the PipeFlow engine achieves significantly better through-
put; particularly with increasing data volume (i.e., greater then 12M tuples) and
sequence length and when multiple equivalence attributes are used.

(a) Results for query set #1 (b) Results for query set #2

Fig. 1. Baseline comparisons

Stream Partitioning. The goal of these experiments was to evaluate the per-
formance of the stream partitioning technique described in Sect. 3 both for local
partitioning (i.e., on a multi-core machine) and distributed processing in a clus-
ter. The evaluation was done using the synthetic price-30M-100 data set.

Table 1. CEP queries for the experiments

ID Pattern Predicate

Q1 SEQ(A, B, C, D, F) A.price < 20, B.price > 30 AND B.price < 40, C.price
> 60, D.price == 90 OR D.price == 95, F.price > 95

Q2 SEQ(A, B, C, D, F) A == true, B.price > A.price, C.price > B.price
F.price > D.price

Q3 SEQ(A, B*, C+, D?, F) A.price < 20, B.price > 30 AND B.price < 40, C.price
== 50, D.price > 70, F.price == 80

Q4 SEQ(A, B+, C) A == true, price > AVG(B.price), C.price > 2*B.price

Local Stream Partitioning. In this setup, the map operator was used to parti-
tion the input stream on symbol attribute into sub-streams which are processed
in parallel by the actual matcher operator in separate threads (cores). In Fig. 2a,
the throughput results of runs on the 24-core machine are shown. The lowest
throughput of all queries was obtained when non-partitioned setup (=1 core)
was used. The results show that local stream partitioning helps to improve the
performance (throughput) of the matcher operator. However, the figure high-
lights an important issue: the optimal degree of parallelism, i.e., the number of
partitions for which the maximum throughput can be achieved. For example, the

Partitioning for Scalable Complex Event Processing on Data Streams 195

highest throughput was 2,700,000 events/sec. for Q3 on 8 cores and 2,270,000
events/sec. for Q1 on 4 cores. Depending on the query, the best degree paral-
lelism could be achieved with 4 and 8 cores while further partitioning does not
yield better results (according to Amdahl’s law). Obviously, this is caused by
synchronization overhead and depends on the characteristics of the map tasks.

(a) Local partitioning (b) Distributed partitioning

Fig. 2. Baseline comparisons

Distributed Stream Partitioning. In this experiment, stream partitioning
was used for distributed processing on a shared-nothing cluster of several 6-
core machines. The setup used in this experiment have several nodes. The map

node is used to perform the partition using a hash function into sub-streams.
It also forwards the tuples to the actual CEP operators running on other nodes
via 0MQ pub-sub operator. The latter nodes (processing nodes) process a
replicated sub-graphs with a 0MQ subscriber as an input and another 0MQ
operator to publish the results. Finally, the merger node collects the results
from all processing nodes. Fig. 2b shows the results of this experiment. For
three of the queries, a higher throughput than with local stream partitioning
was achieved – only Q3 is the exception. Moreover, in the range of 2-7 machines
(compared to 2-7 threads) the results are better than in Fig. 2a. So, we were
able to process approx. 2,420,000 events/secs on four machines. However, also
in this setup a further increase of partitions does not yield better results.

Pattern Partitioning. In the next experiment, we have evaluated the CEP
pattern partitioning technique. To clarify the idea of pattern partitioning, we
employed the same CEP query as in Sect. 3 (i.e., x replaced with price and id

with symbol) with the price-30M-100 dataset as an input stream. For simpli-
fication, eexpensive pred was simulated by a sleep call with varying time and a
price < 20 predicate evaluation. This query is rewritten as described in Sect. 3.
In Fig. 3 the throughput results are shown in both cases: in the centralized pro-
cessing and when CEP pattern partitioning strategy was applied. For the query
with different sleep period, the speed-up achieved was in the range between 2.5-
2.9. In general, we can observe that the first node determines the maximum
throughput and, therefore, is critical for partition planning.

196 O. Saleh, H. Betz, and K.-U. Sattler

Partition Planning. The goal of the experiment described below was to get an
impression of the quality of the partitioning scheme obtained using the planning
approach from Sect. 4. In order to obtain operator statistics, we ran the queries
for a short time with activated profiling statistics provided by PipeFlow. Based
on the operator-specific processing time ptimei and selectivity sel i derived from
these profiling information as well as from the global input rate of the stream,
the planner calculated the values form operator utilization ui and determined
the partitioning as described in Algorithm 1.

The results in terms of the number of partitions (#partitions) for the four
queries are shown in Table 2. Here, “measured” denotes the optimal values ob-
tained empirically (Fig. 2a) and “planner” the partitioning scheme derived by
the planner. We do not give the estimated costs here, because they are very close
to the actual costs simply due to the usage of a calibrated cost model. Instead,
the results show that the partition planner produces the optimal partitioning
scheme for all examples queries. Though, the planner recommends 13 partitions
instead of the optimal value of 8, the results in Fig. 2a show that the difference
between the throughput on 8 up to 20 partitions is very small. Note, that the
results are given only for the local stream partitioning case, but results for the
distributed case are similar.

Fig. 3. Pattern partitioning result

Table 2. Results of partition plan-
ning

Query #partitions #partitions
(measured) (planner)

1 4 5

2 4 4

3 8 8

4 8 13

6 Conclusion

In this paper, we have discussed several techniques taking the specifics of CEP
operators into account which we have implemented and evaluated in the context
of our PipeFlow system. Furthermore, we have introduced a simple rate-based
cost model allowing to determine a nearly optimal partitioning of a query. In
our ongoing work we plan to extend this static planning approach towards a
dynamic autoscaling solution allowing to add new partitions on-the-fly.

References

1. Brenna, L., Gehrke, J., Hong, M., Johansen, D.: Distributed event stream processing
with non-deterministic finite automata. In: DEBS 2009, pp. 3:1–3:12 (2009)

2. Condie, T., Conway, N., Alvaro, P., Hellerstein, J.M., Elmeleegy, K., Sears, R.:
MapReduce online. Technical Report UCB/EECS-2009-136, EECS Department,
UC, Berkeley (October 2009)

Partitioning for Scalable Complex Event Processing on Data Streams 197

3. Hirzel, M.: Partition and compose: Parallel complex event processing. In: DEBS
Conference, pp. 191–200. ACM (2012)

4. Krämer, J., Seeger, B.: Semantics and implementation of continuous sliding window
queries over data streams. ACM Trans. Database Syst. 34(1) (2009)

5. Neumeyer, L., Robbins, B., Nair, A., Kesari, A.: S4: Distributed stream computing
platform. In: ICDMW 2010, pp. 170–177 (2010)

6. Schultz-Møller, N.P., Migliavacca, M., Pietzuch, P.: Distributed complex event pro-
cessing with query rewriting. In: DEBS Conference, pp. 4:1–4:12. ACM (2009)

7. Viglas, S., Naughton, J.F.: Rate-based query optimization for streaming information
sources. In: SIGMOD Conference, pp. 37–48 (2002)

8. Wu, E., Diao, Y., Rizvi, S.: High-performance complex event processing over
streams. In: SIGMOD Conference, pp. 407–418 (2006)

Part VII
GID 2014 Workshop

Improving High-Performance GPU Graph Traversal
with Compression�

Krzysztof Kaczmarski1, Piotr Przymus2, and Paweł Rzążewski1

1 Warsaw University of Technology, Poland
{p.rzazewski,k.kaczmarski}@mini.pw.edu.pl

2 Nicolaus Copernicus University, Poland
eror@mat.umk.pl

Abstract. Traversing huge graphs is a crucial part of many real-world problems,
including graph databases. We show how to apply Fixed Length lightweight com-
pression method for traversing graphs stored in the GPU global memory. This
approach allows for a significant saving of memory space, improves data align-
ment, cache utilization and, in many cases, also processing speed. We tested our
solution against the state-of-the-art implementation of BFS for GPU and obtained
very promising results.

Keywords: graph searching, BFS, graph compression, data-intensive computa-
tion, GPU, CUDA, graph databases.

1 Introduction

Graph algorithms are a foundation of many fields of computer science, including graph
databases. Since the graphs appearing in applications tend to be bigger and bigger, both
science and industry conduct research to find some more efficient and powerful methods
allowing to process them.

Recently, implementations of graph algorithms for the Graphic Processing Units
(GPUs) have received considerable attention. A prominent speed-up has been expected
due to a massive parallelism offered by the GPU technology. Although the parallel
threads programming is now much simplified in this programming model, most of the
algorithms (except the ones for embarrassingly parallel problems) need to be redesigned
and rewritten. For this reason, new GPU implementations of already known graph al-
gorithms are extensively studied. An example of such an algorithm is the Breadth-first
search (BFS), being a building block of many more complicated algorithms and data
mining techniques. There have been many studies addressing the implementation of this
algorithm on a GPU, followed by a novel work of Merrill, Garland and Grimshaw [11],
which outperformed all previous achievements. As the GPU cards often have severe
memory limitations, Merril et al. also cover the usage of multiple GPU cards, which
allows to scale the problem, when the size of the data increases.

In this work we propose an extension and improvement to the work by Merrill
et al. [11], by combining BFS with a lightweight compression algorithm. As a result, it

� The project was funded by National Science Centre, decision DEC-2012/07/D/ST6/02483.

© Springer International Publishing Switzerland 2015 201
N. Bassiliades et al. (eds.), New Trends in Database and Information Systems II,
Advances in Intelligent Systems and Computing 312, DOI: 10.1007/978-3-319-10518-5_16

202 K. Kaczmarski, P. Przymus, and P. Rzążewski

is possible to decrease an overall communication cost between the CPU and the GPU
and fit significantly larger graphs in a single GPU. Surprisingly, for large graphs it is
also possible to improve the processing time of the algorithm on a single GPU device.

1.1 Preliminaries

In this paper, we consider directed graphs G = (V,E), being a pair of a vertex set V and
a directed edge (arc) set E ⊆V ×V . Neither multiple edges of loops are allowed. We use
a well-known compressed sparse row (CSR) format to represent an adjacency matrix of
our graph. The vertices are indexed with successive non-negative integers. We store a
graph G = (V,E) using two arrays C and R. The array C is a concatenation of adjacency
list of successive vertices. Therefore its length is exactly |E|. The array R has |V |+ 1
elements. The value of R[i] (for i ∈ {0,1, .., |V | − 1}) points to the index in C of the
first element of adjacency list of i. In R[|V |] we keep the total number of edges |E|. See
Figure 1 for an example. Let Cv be a subarray (segment) of C containing nodes pointed
by edges of vertex v, i.e. an adjacency list of v. Clearly Cv =C[R[v]], . . . ,C[R[v+1]−1].

0

12

34

5 6

7

8

C:
2 5 8 1 3 4 4 1 1 8 3 6 7
0 1 2 3 4 5 6 7 8 9 10 11 12

R:
0 2 3 6 7 7 8 9 10 13
0 1 2 3 4 5 6 7 8 9

Iter. Vertex Edge
frontier frontier

1 {0} {2,5}
2 {2,5} {1,1,3,4}
3 {1,3,4} {4,8}
4 {8} {3,6,7}
5 {6,7} {1,8}
6 /0

Fig. 1. A graph, its CSR representation and vertex- and edge-frontiers in iterations of BFS started
with node 0

BFS (Breadth-first search), one of the best known graph algorithms, starts from a
given vertex v and traverses the set of all vertices in a breadth-first manner. Every vertex
is labelled with its distance from v (measured in the number of edges). Sometimes we
also store the immediate predecessor of each vertex on the shortest path from v. This
allows us to re-create all such paths. The complexity of a sequential BFS is O(|V |+ |E|).

Although BFS is simple and not very interesting on itself, it is a crucial part of many
more complicated and useful graph algorithms, e.g. detecting (strongly) connected com-
ponents, detecting cycles, checking for bipartiteness or finding a maximum flow. We
refer the reader to a classical book by Cormen et al. [3] for more information about
possible uses of BFS.

Parallel versions of BFS have also been investigated. In this approach, we also start
with some initial vertex, forming a one-element set V1, called a vertex-frontier. Then,
in every iteration i, the current vertex frontier Vi is expanded, forming a multiset V ′

i+1
of neighbours of vertices from vertex frontier. This multiset is called an edge-frontier.
To obtain the next vertex frontier Vi+1, we need to remove from V ′

i+1 all duplicates and
all vertices that have already been visited. If so obtained vertex frontier is empty, the
algorithms stops. For an example, consult Figure 1.

Improving High-Performance GPU Graph Traversal with Compression 203

1.2 Short History of BFS Implementations for the GPU

In 2006 NVIDIA published the first version of the CUDA platform which enabled
programmers to write arbitrary programs executed by vectorised parallel threads with
simplified random memory access. Simplified programming paradigm and spectacular
benefits in many applications have led CUDA to become a de-facto standard in the gen-
eral purpose graphic processor unit programming (GPGPU). In this paper, we assume
that a reader is familiar with general purpose GPU computing problems and NVIDIA
CUDA architecture. Due to the strong page limit we shall not describe notions like
SIMD computing, threads, warps, blocks and various memory hierarchy levels. We
kindly suggest reading the documentations provided by NVIDIA [12,13], if necessary.

Breadth-first search, being a building block of many graph algorithms and data min-
ing techniques, appeared to be an important task for GPU devices. In 2007 Harish and
Narayanan [7] presented the first CUDA implementation. Their approach processes a
graph in levels, starting from a given source vertex. In each iteration all vertices which
have to be visited in the next step are marked by parallel threads. No global queue of
vertices is created due to possible conflicts in memory access by parallel threads and
necessity of duplicates removal. This becomes a problem for graphs of high average de-
gree, where the same vertex may be pointed to by many edges. Parallel post-processing
and removal of duplicates in the vertex frontier may become a complex and expensive
task itself. An obvious strategy is then not to create the vertex queue at all and visit
all vertices in each iteration, checking if each vertex has to be visited or not. Unfortu-
nately this solution leads to quadratic processing time (compared to O(|V |+ |E|) for
the sequential algorithm).

Deng et al. [5] achieved the same quadratic complexity for sparse graphs represented
by adjacency matrices. In each iteration a frontier propagation is computed by multi-
plication of a matrix and a vertex vector. Since the entire graph traversal will require
O(|V |) multiplications in the worst case and each multiplication has a complexity of
O(|E|), we again get at least quadratic processing time.

The only way to achieve an efficiency comparable to a sequential algorithm is to
organize a set of vertices to be visited in the next step optimally, without duplicates.
Luo, Wong and Hwu [9] were the first who presented such a solution for the GPU.
Their hierarchical queue structure produces a vertex frontier array processing incoming
vertices. It is first initiated in the shared memory, using the warp-level threads cooper-
ation. Then, on the block-level, the next step of a queue processing is performed. The
final shape of the array is formed in the global memory by a proper copying of block
level frontiers. It is worth to mention that an efficient implementation is guaranteed by
memory coalesced writes and reads.

In 2011 Hong et al. [8] noticed that performance may be significantly improved,
if the edge frontier array can be processed by warps instead of single threads. They
described a warp-based task allocation model and extended it further to virtual warps
(smaller than normal 32-thread warps), which allowed for better utilization of threads
in multiprocessors. In this approach each thread in a virtual warp processes the same
vertex and then it processes a single edge coming out of this vertex. Although authors
were successful in general description of a better task allocation method, their BFS

204 K. Kaczmarski, P. Przymus, and P. Rzążewski

implementation is based on the Harish and Narayanan solution and achieves only
quadratic performance.

In 2011 Merrill, Garland and Grimshaw [11] presented a new implementation of
the BFS, which significantly outperformed all previous works. Since this solution is a
starting point for our research, a more detailed description follows in the next section.

1.3 Highly Optimized BFS Implementation

The most important part of various BFS implementations is the generation of a vertex
frontier for iteration i from a vertex-frontier in iteration i− 1 (and possibly some other
data). Merrill et al. [11] described and evaluated a few possible strategies listed below.

Expand-contract. In this approach a single kernel takes care of the current vertex-
frontier, expands it into an edge-frontier and then contracts it into the next vertex-
frontier. First, threads try to detect duplicates within the warp using some heuristic
methods. Then the majority of duplicates and already visited vertices is discarded on
the block level. Finally, the whole block is assigned to gather the neighbours from un-
expanded adjacency lists of the vertices from the vertex-frontier. This assignment is
fine-grained and uses a prefix-sum operation.

Contract-expand. This approach is very similar to the previous one. A single kernel
first contracts a given edge-frontier by deleting already visited vertices and identifying
most of the duplicates. Then it expands this vertex frontier to an edge frontier, again
using prefix-sum operation.

Two-phase. This approach provides separate kernels for the expansion and contraction
steps. The expansion kernel uses a clever synchronization strategy, using block-level
and warp-level synchronization. Then the duplicates and previously visited vertices are
deleted by the contraction kernel, thus producing the next vertex frontier.

The authors finally decide to use the hybrid strategy. They perform the two-phase
approach for large iterations and the contract-expand approach in small iterations (i.e.
when the edge frontier is small).

It is important to mention that using refined strategies for transforming a vertex-
frontier to an edge-frontier and then again to a next vertex-frontier, requires a random
access to arrays in which we store the graph. This was not the case in previous, less
complicated implementations.

Merrill et al. [11] test their solution against the previous solutions for the GPU by
Hong et al. [8] and Luo et al. [9] and also some CPU implementations (both serial
and parallel). They were able to obtain a significant improvement in all test cases. The
performance they achieve reaches 3.3 ·109 traversed edges per second.

1.4 Motivation

Graphs that need to be processed in real-life applications tend to be really huge. For
example, Facebook has about 1.23 · 109 monthly active users (1.26 · 109 total). The

Improving High-Performance GPU Graph Traversal with Compression 205

number of friendships (i.e. edges in the social graph) is 125 ·109. The average degrees
may vary depending on the region. For example there are 128 · 106 Facebook users in
the US and an average number of Facebook friends for them is 350. For a detailed
analysis of the Facebook social graph, we refer the reader to Ugander et al. [19].

Above mentioned examples shows that the time needed to process an input graph
is not the only constraint – we also need to be able to store it in the memory (in our
case, memory of the GPU device) somehow. A common solution here is to distribute
the algorithm to multiple GPUs, each of which keeps a part of the graph.

In this paper we show how to compress the graph, so that we can store more data in a
memory of a single GPU device. This, combined with the distribution of work to mul-
tiple GPUs, would allow us to process some extremely large graphs. Our compression
proposal has the following properties:

– a smooth integration with existing algorithms,
– a minimal instruction overhead,
– a decreased overall memory footprint (so that bigger graphs can be stored on single
GPU device),
– a localized warp-centric and thread-centric decompression, minimizing the number
of instructions necessary for the decompression.

Our experience from other applications of a compression shows that in many data-
intensive algorithms, the decompression procedure may increase instruction through-
put, since threads often have to wait for memory reads to complete. We expect that our
approach will improve graph processing algorithms in graph databases.

1.5 Lightweight Compression Methods

The GPU compression topic was raised in several studies. A considerable has been paid
to the so-called lightweight compression algorithms, which are primarily intended for
real-time applications and favor compression/decompression speed over the compres-
sion ratio. Their main purpose is to increase a data throughput by a reduction of a data
volume. A detailed description of presented compression algorithms may be found in
[6,22,4,15].

Interesting results on the GPU compression were presented by Andrzejewski et al. [1],
where Word Aligned Hybrid compression algorithm for the GPU was presented. Wu et al.
[20] discussed an implementation of Lempel-Ziv 77 (LZ77) algorithm on CUDA frame-
work and showed that the performance of this algorithm was poor on the GPU processor
when compared to the classical CPU implementation, due to many branches and threads
divergence problem. Interesting results in the area of lossless compression on the GPU
were presented by Fang et al. [6]. Using a compression planner it was possible to achieve
a significant improvement in overall query processing on the GPU by reducing a data
transfer time from RAM to the global device’s memory space.

In our previous work we studied possibilities of composing several lightweight com-
pression methods to improve the compression ratio. We have shown that finding the
optimal compression plan by a dynamic data analysis may significantly improve results
without sacrificing the decompression speed [16].

206 K. Kaczmarski, P. Przymus, and P. Rzążewski

The Fixed Length (FL) compression method works by removing leading zeros at
the most significant bits and thus truncating each value to a fixed length, which is the
same for all input elements. The main advantage of the FL algorithm (and its variants) is
the fact that both compression and decompression are highly effective on the GPU, be-
cause these routines contain minimal number of branching-conditions, which decrease
parallelism of SIMD operations. For the best efficiency, dedicated compression and de-
compression routines are prepared for every bit encoding length with unrolled loops
and using only shift and mask operations. In our case this method may be used for
both arrays R and C. Additionally for C, the number of bits may be different for Cv for
each vertex v. This may lead to a better compression ratio, but also a more complicated
decompression.

Another method, which may be used, is the Frame Of Reference (FOR). It works
in a similar way to FL, but before a compression it transforms each value into an offset
from the reference value (for example the smallest value in the set) in a compression
block. The reference value is then stored in the compression header. In this situation,
we need exactly �log2(max−min)�+ 1 bits to encode each value in the frame and
�log2 min�+ 1 to store the reference value. The best efficiency can be reached if the
ordering of vertices reflects the structure of a graph in such a way that the vertices that
are close to each other (in the graph) have relatively close indexes. This can be achieved
for example by clustering the graph and ordering the vertices of each cluster separately.

Let us now analyse the applicability of FOR compression of C and R arrays (hav-
ing in mind that we require a random access to its elements). As explained above, this
method divides data into segments named frames. All values in one frame are com-
pressed together but it is possible to decompress any of them by reading a header (the
reference value) and a compressed value itself. Reading two values (instead of one) in
each read operation is a waste of bandwidth and processing time.

The Differential Representation approach stores only the differences between suc-
cessive data points. Since we need a random access to all elements, a decompression
of a value would require to scan the whole array, which takes a linear time. Also the
Dictionary method (in all variants including the Tunstall encoding) is not suitable for
CSR graph representation, since there are too many different values to encode. Creating
a dictionary of them would make no sense. The Run length encoding stores an array
of repeating values as an array of pairs: value and run length (the number of successive
appearances of an element). This method is not suitable for us, since we do not expect
values to repeat often on consecutive positions in the arrays R (they would correspond
to subsequent vertices with no out-edges) or C (they would correspond to subsequent
vertices of out-degree 1, having a common neighbour).

All integer encoding methods of variable length based on prefix-codes (e.g. Elias,
Shannon-Fano, Huffman, Golomb – consult a comprehensive book by Salomon [18]
for more information) do not support a random access and thus are not applicable in
case of graph algorithms.

The main drawback of many lightweight compression schemes is that they are
prone to outliers in the data frame. For example, consider the following data frame
{1,2,3,5,7,128} and the FL compression scheme. One could use a 3-bit fixed-length
compression to encode almost all values in the frame, but due to the outlier (the value

Improving High-Performance GPU Graph Traversal with Compression 207

128) we have to use 7-bit fixed-length compression. A solution of this problem is to use
the so-called Patched Lightweight Compression. An example of this approach has
been proposed by Zukowski et al. [22] as a modification of three lightweight compres-
sion algorithms. Their main idea is to store outliers as exceptions in an additional array.
However, variable number of exceptions lead to many branches in code and decrease
efficiency of parallel threads. Various solutions have been proposed to cope with this
problem, such as reducing the frame size [22], avoiding too many exceptions [4,21] or
separating decoding and patching processes [14,17].

2 Compression of the CSR Graph Representation

To choose a compression method which is suitable for graph processing using a GPU
device, we need to analyse the behavior of the BFS algorithm in the aspect of memory
access and the graph representation in memory.

To our best knowledge, in parallel implementations of BFS there are two possibilities
of parallel threads behavior, when reading the edges to be visited in the next algorithm
iteration:

- A single thread reads a vertex to be visited and then performs a series of sequential
read operations in the array Cv, looking for the corresponding edges.
- A group of threads (a warp or a block) reads the same vertex to be visited and then,
in parallel, reads all its edges from the array Cv. If the number of edges is bigger than
the number of threads, then this process iterates until all edges are visited. Similarly, if
number of edges is smaller, then some threads may be idle.

In both options, both arrays C and R are accessed randomly, but in the second solution
bigger fragments of array C can be read together.

In the case of our example in Figure 1, the first approach would lead to one thread
reading vertex number 0 and then its neighbours {2,5} followed by two threads pro-
cessing two vertices 2 and 5 in parallel and producing two edge frontiers {1,3,4} and
{1}, respectively. The number of read operations is three in the case of the the first
thread and only one for the second thread.

The second approach would use a group of threads (most effectively a warp) for
reading vertex 0 from the vertex frontier. Next two threads would concurrently read
two edges from the C0 array and then produce one edge frontier containing {2,5}. In
the second iteration two groups (warps) would access two distant places in array C read-
ing corresponding edge frontiers. Each thread in a group would read its corresponding
value: 1,3 and 4 in the first group and 1 in the second group. Two resulting frontiers
will be created simultaneously in one step. If a coalesced memory access is possible,
then the process would end in two memory read operations. This fact of a better thread
utilization in the case of a warp-level edge-frontier access was already noted by other
authors [9,11] and is related to the parallel processing model of the GPU device.

Considering the memory space needed to store the graph, we observe that the array
R is sorted and stores indices of the much bigger array of edges C. Each segment Cv

can also be sorted. Both arrays contain only non-negative integers. We also need to note
that R contains much bigger values (its last element is the sum of degrees of all vertices,
which is equal to the total number of edges).

208 K. Kaczmarski, P. Przymus, and P. Rzążewski

The threads behaviour and memory representation leads to important conclusions:
1. the array R after compression must allow for a random access to any of its elements;
2. the same holds for the array C, but this array may be divided into blocks Cv;
3. a group of threads may cooperate in decompression of edge frontiers read from C.

Note that BFS is a data intensive algorithm. It performs very few computations and
can significantly slow down if a decompression method is too expensive or creates some
unwanted threads divergence by branching.

The above statements focus our attention on lightweight compression methods, which
are local, do not use patching mechanisms and allow a value to be decompressed solely
upon information from the data read in a constant time. According to the analysis from
Section 1.5, the FL compression method seems to be the most flexible and promising.
Therefore we chose to use it in our approach.

2.1 Fixed-Length Compression of Large In-Memory Arrays

In this section we discuss in detail the consequences of choosing the FL compression
scheme for a large array, which require a random access.

Memory Organization Consequences of the FL Compression Method. Consider an
array compressed with the FL algorithm, with each value written on � bits. We store
them in an array of k-element memory cells (in most cases we shall use k = 32, as it
is best supported by current GPU devices). Observe that some values will be stored in
two consecutive memory cells. In those cases, to retrieve the value, we need to read two
cells, which significantly increases the cost of the read operation. Therefore we want
to keep the number of such values as small as possible. In a perfect situation, when �
divides k, there are no values spanning over multiple cells.

Consider a block A of our array, whose length is equal to lcm(k, �), being the least
common multiple of k and � (as the whole array consists of such blocks and some
remainder, which has constant length and therefore can be omitted in our analysis). Let
x and y be integers such that lcm(k, �) = x · � = y · k. The number of values spanning
over two consecutive cells is exactly y− 1 = �

gcd(k,�) − 1 (�).
From this we can see that there are two ways to minimize the number of read opera-

tions – by making � small or by making gcd(k, �) large.

Expected Cost of Random Array Access. The above statements lead to an important
conclusion that the additional cost of memory operations (when compared to an array
without any compression) depends on the values of � and k. Suppose we have an array
of X values, consisting of blocks of size k

gcd(k,�) (as mentioned before, we do not care
about some remainder, as its length is constant). Therefore, from (�), the total number

of values which occupy two consecutive cells is X
x ·

(
�

gcd(k,�) − 1
)
= X · �−gcd(k,�)

k . Let

α := �−gcd(k,�)
k . Now αX is the number of values spanning over two consecutive cells. If

we choose a random value (with a uniform probability), we get a value in two cells with
probability αX

X = α and a value in just one cell with probability 1−αX
X = 1−α . Suppose

we want to read m random values, chosen with uniform probability. The expected value
of read operations is:

Improving High-Performance GPU Graph Traversal with Compression 209

EX(number of read operations when reading m values) =

m ·EX(number of read operations when reading one value) =

= m · (1 · (1−α)+ 2 ·α)= m · (1+α) = m · (1+ �− gcd(k, �)
k

).

This is compared with m read operations needed to retrieve m values from a non-
compressed array. Obviously if � divides k then additional cost is 0.

Moreover, observe that so far we only considered the simplest case when each value
was immediately followed by the next one and we had no unused bits. However, this
may not be an optimal approach. Consider for example cells of size k = 32 bits and
�= 5. We may consider storing 6 values in a single cell and leaving two remaining bits
unused (so the next value starts in the next cell). With this approach we increase the
size of the data (and thus reduce the compression ratio), but we never have to read more
than one cell to retrieve a single value, which improves the efficiency of processing (we
need m read operations to read m values).

Actually, in our experiment we use such a modification. Instead of storing each value
on � = max{�log2 z�+ 1: z is a value to be stored} bits, we chose some �′ ≥ �, which
allows us to reduce the number of values spanning over two cells. Table 1 shows the
optimal values � and chosen values �′ for benchmark graph. If �′ = 21, then we just
stored three values in two 32-bit memory cells and left one last bit unused. For the
graphs with � = �′ = 16, we just stored two values in a single 32-bit memory cell.
Observe that a small loss in the compression ratio is justified by fewer read operations.

3 Benchmark Graphs and Results of Experiments

In order to confirm the effectiveness of our approach we test it against the fastest known
BFS implementation, which was already discussed in Section 1.3. Unfortunately most
of the data sets mentioned by Merrill et al. were not available when we performed
the tests. We only managed to download several Citeseer and DBLP graphs. However,
we were able to use the same graph generator: R-MAT (see Chakrabarti et al. [2] for
details). Such graphs reflect specific properties of large graphs appearing in real-world
applications.

We run the experiments on graphs having from 65.5 ·103 to 2 ·106 vertices and up to
300 ·106 edges. Table 1 lists the parameters of benchmark graphs.

The code of the solution by Merrill et al. [11] is available for public as a part of the
back40computing (b40c) project [10]. Therefore we were able to apply our improve-
ments directly into their fine-tuned implementation. Although the changes were not
straight-forward, eventually we modified the original code in two aspects (altogether
highly touching many places in the code):

– creating graph representation in the memory (by adding the FL compression),
– the function call controlling an access to the elements of C (decoding vertices).

The graph compression depends on the selected method’s parameters �, k and was
explained in Section 2.1.

210 K. Kaczmarski, P. Przymus, and P. Rzążewski

The internal architecture of the b40c implementation is using almost all available
on-chip shared memory. We were not able to utilize it in the decompression process.
Therefore the vertex decoding had to be done in a very simple way just using threads’
private registers and without any additional intercommunication between threads. This
solution required more memory operations and processing when compared to the ideal
one. The differences between the thread behavior in the original approach and our ap-
proach is presented in Figure 2.

Fig. 2. A simple strategy of parallel values decoding. A) no compression. A single memory cell
stores a single value, which is read by a single thread. B) The FL compression. One memory cell
stores 1.5 values. Some threads need to read two cells with 100% cache hits. Overall cache usage
is decreased. No threads intercommunication.

An example of a decompression function is shown in Figure 3. It was prepared for
�′ = 21 bits. Choosing another length would require slight changes in the function. The
key point in this code are modulo operations which are done by bit operations only.
They are necessary to find beginnings of compressed values. In some cases, if the value
is split across two memory cells, a thread needs to perform another read operation (see
line 13). This is necessary if we assume no communication between threads.

We believe that this approach will be successful also in other applications since it
allows for a random array access and imposes no additional restrictions.

1 e f i n e NBITSTOMASK(n) ((1 < <(n)) − 1)
2 e f i n e GETNBITS(a , n) ((a) & NBITSTOMASK(n)) / / r e t u r n s a0a1..an−1
3 e f i n e GETNPBITS(a , n , p) GETNBITS ((a>>p) , (n)) / / r e t u r n s apap+1..ap+n−1

4

5 d e v i c e _ _ _ _ f o r c e i n l i n e _ _ s t a t i c
6 i d Ld_21_64 (T &va l , T * p t r , l ong n) {
7 unsigned i n t a = (unsigned) n ;
8 a = (0 x55555555 *a +(a >>1)−(a > >3)) > >30;
9 unsigned i n t pos = ((unsigned) n−a)*0xAAAAAAAB;

10 pos = pos * 2 + (a > >1);
11 v a l = GETNPBITS(p t r [pos] ,21 −10*(a & 1) , ((a * 2 1) & 3 1)) ;
12 i f (a&1)
13 v a l = v a l | GETNPBITS (p t r [pos +(a &1)] , 10*(a &1) ,0) < <11;

Fig. 3. An example of a data retrieving function. Ld_21_32 function with FL decompression for
�′ = 21 and k = 32 (three values are encoded in two subsequent integers) n – an index of an
element to be decoded.

Improving High-Performance GPU Graph Traversal with Compression 211

Table 1. Experimental data sets. The first group of columns shows the number of vertices, edges
and an average degree of each graph. The second group shows an optimal (�) and a chosen by us
(�′) length of an encoding of a single value and k, being the size of a single memory cell. Third
group shows the size of C before compression, after compression with each value encoded on �
or �′ bits and corresponding compression ratios.

vert. edges avg. � �′ k C FL�(C) compr. FL�′ (C) compr.

Graph ·103 ·106 degree bits bits bits [MB] [MB] ratio (�) [MB] ratio (�′)

citationCiteseer 268 1.15 4.3 20 21 32 4.39 2.74 0.63 2.92 0.67

coAuthorsCiteseer 227 0.81 3.58 20 21 32 3.09 1.93 0.63 2.06 0.67

coAuthorsDBLP 299 0.98 3.26 20 21 32 3.74 2.34 0.63 2.49 0.67

coPapersCiteseer 434 16.03 37.55 20 21 32 61.15 38.22 0.63 40.77 0.67

coPapersDBLP 540 15.24 28 20 21 32 58.14 36.33 0.63 38.76 0.67

RM131Kv19Me 131 19.65 150 17 21 32 74.96 39.82 0.53 49.97 0.67

RM131Kv39Me 131 39.30 300 17 21 32 149.92 79.64 0.53 99.95 0.67

RM131Kv78Me 131 78.60 600 17 21 32 299.84 159.29 0.53 199.89 0.67

RM2Mv150Me 2000 150 150 21 21 32 572.20 375.51 0.66 381.47 0.67

RM2Mv301Me 2000 301 301 21 21 32 1148.22 753.52 0.66 765.48 0.67

RM2Mv350Me 2000 350 350 21 21 32 1335.14 876.19 0.66 890.10 0.67

RM2Mv400Me 2000 400 400 21 21 32 1525.88 1001.36 0.66 1017.25 0.67

RM65.5Kv10Me 65.5 10 152.67 16 16 32 38.15 19.07 0.50 19.07 0.50

RM65.5Kv67Me 65.5 67 1022.90 16 16 32 255.58 127.79 0.50 127.79 0.50

RM65.5Kv104Me 65.5 104 1587.78 16 16 32 396.73 198.36 0.50 198.36 0.50

RM65.5Kv268Me 65.5 268 4091.60 16 16 32 1022.34 511.17 0.50 511.17 0.50

All the experiments were executed on the same model of GPU processor as the exper-
iments by Merrill et al. [11]. Detailed hardware configuration: two six-core processors
Intel® Xeon® E5649 2.53GHz, 8GB RAM and Nvidia® Tesla M2070 card.

3.1 Discussion on Results

The results of our experiments are shown in Table 2 (average value of 10 executions).

Compression. Due to the limitation of the BFS implementation we worked with, we
could only use a very simple FL compression scheme with a random access to the array
of edges (C). Obviously in such a case the compression ratio depends on the number of
bits which are used to store a vertex identifier. In most of the reference sample data sets
only 21 bits were used, which was enough to pack three nodes into two integers (i.e. a
64 bit segment). In such cases, achieved compression ratio varied from 0.53 to 0.62 (of
the original size).

Let us now analyse how big graphs may be stored in a GPU device with 6 GB of
memory (this is the theoretical storage space of Nvidia® Tesla M2070), assuming that
the average degree of a node is 40 and the values are stored as 32-bit integers. Using
the CSR representation, a single vertex v requires 4 bytes for a corresponding cell in R
array and 40 · 4 bytes on average for the Cv array. Therefore, in theory, a professional
GPU device with a memory of 6 442 450 944 bytes lets us to store a graph of up to

212 K. Kaczmarski, P. Przymus, and P. Rzążewski

n := 39 283 237 vertices (of course this would require to use all the memory just for the
graph representation, leaving no space for e.g. some additional structures used by the
algorithm, so it is just a theoretical upper bound). To store the indices of these nodes
we need 26 bits. By compressing the array C with FL method and using � = 26 and
k = 32, we could pack 6 values in 5 integers (by wasting 4 bits). A single vertex with its
out-edges needs now 4(1+

⌈
5·40

6

⌉
) = 140 bytes on average. Therefore our graph with

n vertices would occupy only 5 499 653 180 bytes together gives 5.12GB. Memory
we saved in such a way would let us to store 6 734 629 additional vertices and their
compressed edges (note that the vertex indices still can be stored on 26 bits). In this
configuration we managed to increase the practical device capacity by over 17%. Notice
that this can be significantly improved for graphs with larger average degree (as the
number of bits needed to represent a vertex remains low and the size of C grows).

This may be crucial is some cases – e.g. a graph with 2 · 109 vertices and 400 · 109

was too big to fit into the memory of the GPU device without a compression (Table 2).
We also observe that it would need a device with memory storage of 328 GB to use

all 32 bits in an integer encoding the vertex indices. Therefore, in the case of current
GPU devices, savings using the FL compression are always possible.

Another benefit of this compression method is that it can significantly decrease
the memory bandwidth when executing multi-GPU algorithms and whenever memory
transfer of a graph or its parts is used.

BFS Algorithm Time. At the beginning we have to observe that the time of processing
of compressed graphs depends on two factors: a ratio between � (or �′) and k, i.e. the
efficiency of a compression (being the number of values we can pack into a single
memory cell) and an average degree of a vertex.

Moreover, we observe that the additional compression/decompression cost is com-
pensated for medium-sized graphs. For large graphs we are even able to speed up the
computation.

Table 2. The time of BFS processing for benchmark graphs [ms] (smaller is better). The
last column shows the improvement over the original solution (greater is better). The graph
RM2Mv400Me with 400 ·109 edges could not be processed without the compression.

Processing time [ms] Speed up

Graph b40c b40c+FL [%]

citationCiteseer 2.9948 3.4951 -14.31

coAuthorsCiteseer 2.0487 2.6138 -21.62

coAuthorsDBLP 2.4007 2.9336 -18.17

coPapersCiteseer 12.7294 14.2871 -10.90

coPapersDBLP 11.5055 12.5845 -8.57

RM131Kv19.6Me 7.0177 7.0178 0.00

RM131Kv39.3Me 12.6992 12.5758 0.98

RM131Kv78.6Me 23.897 23.5884 1.31

Processing time [ms] Speed up

Graph b40c b40c+FL [%]

RM2Mv150Me 61.3072 59.4512 3.12

RM2Mv301Me 115.656 111.2375 3.97

RM2Mv350Me 132.7916 127.9881 3.75

RM2Mv400Me X 144.6979 X

RM65.5Kv10Me 4.6509 4.3214 7.62

RM65.5Kv67Me 22.9852 20.9861 9.53

RM65.5Kv104Me 35.6296 32.466 9.74

RM65.5Kv268Me 97.943 86.212 13.61

Improving High-Performance GPU Graph Traversal with Compression 213

Fig. 4. Rate (edges per millisecond, greater is better) of the BFS algorihtm for graphs with
65.5 ·103 vertices and different number of edges

4 Conclusions and Future Work

We have presented a method of compressing graphs stored in the CSR format and pro-
cessed in GPU devices. Our solution is characterized by an ultra-fast decompression
time, a simplicity of integration with already existing algorithms and an optimization
of parallel threads computation.

We evaluated our solution against the state-of-the-art in graph algorithms – the
highly-optimized BFS implementation for GPU devices by Merrill et al. [11]. Our re-
sults show that for big graphs the compression not only allows to fit more vertices and
edges into a single GPU, but also speeds up the processing by a better utilization of
memory caches.

We believe that our improvement can also be used in a case of a distributed com-
putation performed on multiple GPU nodes or in clusters. Using a compression should
significantly speed up the most critical operation, which is a data transfer.

References

1. Andrzejewski, W., Wrembel, R.: GPU-WAH: Applying gPUs to compressing bitmap indexes
with word aligned hybrid. In: Bringas, P.G., Hameurlain, A., Quirchmayr, G. (eds.) DEXA
2010, Part II. LNCS, vol. 6262, pp. 315–329. Springer, Heidelberg (2010)

2. Chakrabarti, D., Zhan, Y., Faloutsos, C.: R-MAT: A recursive model for graph mining. In:
SDM, pp. 442–446 (2004)

3. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 3rd edn.
MIT Press (2009)

4. Delbru, R., Campinas, S., Samp, K., Tummarello, G.: Adaptive frame of reference for com-
pressing inverted lists. Technical report, DERI – Digital Enterprise Research Institute (De-
cember 2010)

5. Deng, Y.S., Wang, B.D., Mu, S.: Taming irregular EDA applications on GPUs. In: Proceed-
ings of the 2009 International Conference on Computer-Aided Design, ICCAD 2009, pp.
539–546. ACM, New York (2009)

6. Fang, W., He, B., Luo, Q.: Database compression on graphics processors. Proceedings of the
VLDB Endowment 3(1-2), 670–680 (2010)

214 K. Kaczmarski, P. Przymus, and P. Rzążewski

7. Harish, P., Narayanan, P.J.: Accelerating large graph algorithms on the GPU using CUDA. In:
Aluru, S., Parashar, M., Badrinath, R., Prasanna, V.K. (eds.) HiPC 2007. LNCS, vol. 4873,
pp. 197–208. Springer, Heidelberg (2007)

8. Hong, S., Kim, S.K., Oguntebi, T., Olukotun, K.: Accelerating CUDA graph algorithms at
maximum warp. In: Cascaval, C., Yew, P.-C. (eds.) PPOPP, pp. 267–276. ACM (2011)

9. Luo, L., Wong, M.D.F., Mei, W., Hwu, W.: An effective GPU implementation of breadthfirst
search. In: Sapatnekar, S.S. (ed.) DAC, pp. 52–55. ACM (2010)

10. Merrill, D.: Back40computing (2013),
https://code.google.com/p/back40computing/

11. Merrill, D., Garland, M., Grimshaw, A.S.: Scalable gpu graph traversal. In: Ramanujam, J.,
Sadayappan, P. (eds.) PPOPP, pp. 117–128. ACM (2012)

12. NVIDIA Corporation. NVIDIA CUDA C programming guide 5.5 (2013)
13. NVIDIA Corporation. CUDA C Toolkit v.5.5 (2014)
14. Przymus, P., Kaczmarski, K.: Improving efficiency of data intensive applications on GPU

using lightweight compression. In: Herrero, P., Panetto, H., Meersman, R., Dillon, T. (eds.)
OTM 2012 Workshops. LNCS, vol. 7567, pp. 3–12. Springer, Heidelberg (2012)

15. Przymus, P., Kaczmarski, K.: Dynamic compression strategy for time series database using
GPU. In: Catania, B., et al. (eds.) New Trends in Databases and Information Systems. AISC,
vol. 241, pp. 235–244. Springer, Heidelberg (2014)

16. Przymus, P., Kaczmarski, K.: Dynamic compression strategy for time series database using
GPU. In: Catania, B., et al. (eds.) New Trends in Databases and Information Systems. AISC,
vol. 241, pp. 235–244. Springer, Heidelberg (2014)

17. Przymus, P., Kaczmarski, K.: Time series queries processing with GPU support. In: Catania,
B., et al. (eds.) New Trends in Databases and Information Systems. AISC, vol. 241, pp. 53–
60. Springer, Heidelberg (2014)

18. Salomon, D.: Data Compression: The Complete Reference. Springer (1998)
19. Ugander, J., Karrer, B., Backstrom, L., Marlow, C.: The anatomy of the Facebook social

graph. CoRR, abs/1111.4503 (2011)
20. Wu, L., Storus, M., Cross, D.: CS315A: Final project CUDA WUDA SHUDA: CUDA com-

pression project (2009)
21. Yan, H., Ding, S., Suel, T.: Inverted index compression and query processing with optimized

document ordering. In: Proc. of the 18th Intern. Conf. on World Wide Web, pp. 401–410.
ACM (2009)

22. Zukowski, M., Heman, S., Nes, N., Boncz, P.: Super-scalar RAM-CPU cache compression.
In: Proc. of the 22nd Intern. Conf. on Data Engineering, ICDE 2006, pp. 59–59. IEEE (2006)

https://code.google.com/p/back40computing/

GPU-Accelerated Method of Query Selectivity

Estimation for Non Equi-Join Conditions
Based on Discrete Fourier Transform

Dariusz Rafal Augustyn and Lukasz Warchal

Silesian University of Technology, Institute of Informatics,
16 Akademicka St., 44-100 Gliwice, Poland
{draugustyn,lukasz.warchal}@polsl.pl

Abstract. Selectivity factor is obtained by database query optimizer
for estimating the size of data that satisfy a query condition. This allows
to choose the optimal query execution plan. In this paper we consider the
problem of selectivity estimation for inequality predicates based on two
attributes, therefore the proposed solution allows to estimate the size of
data that satisfy theta-join conditions. The proposed method is based on
Discrete Fourier Transform and convolution theorem. DFT spectrums are
used as representations of distribution of attribute values. We compute
selectivity either performing Inverse DFT (for an inequality condition
based on two attributes) or avoiding it (for a single-attribute range one).
Selectivity calculation is a time-critical operation performed during an
on-line query preparing phase. We show that by applying parallel pro-
cessing capabilities of Graphical Processing Unit, the implementation of
the method satisfies the assumed time constraint.

Keywords: Query Selectivity Estimation, Theta-Join Condition, Dis-
crete Fourier Transform, CUDA.

1 Introduction

Query processing includes an optimization phase when the most efficient plan
of query execution should be obtained. This activity is performed by the cost
query optimizer (CQO). To choose the optimal method of query execution CQO
needs an early estimation of the size of data that satisfy a selection condition.
To do this CQO calculates so-called query selectivity factors for particular pred-
icates that are included in a query condition. Selectivity for a query condition is
the number of table rows satisfying it, divided by the number of all rows in this
table. For a single-table range query with a condition based on a single attribute
with continuous domain the selectivity is defined:

sel(Q(a < xj < b) =

b∫
a

fxj(xj)dxj . (1)

c© Springer International Publishing Switzerland 2015 215
N. Bassiliades et al. (eds.), New Trends in Database and Information Systems II,
Advances in Intelligent Systems and Computing 312, DOI: 10.1007/978-3-319-10518-5_17

216 D.R. Augustyn and L. Warchal

where: xj – a table attribute, a, b – range query boundaries, fxj(xj) – a probabil-
ity density function (PDF) of xj distribution. Thus, to calculate the selectivity
estimation we need some representation of PDF.

There are many approaches to the problem of selectivity estimation for a com-
plex query condition based on many table attributes. Then obtaining a selectivity
value requires to have a multidimensional representation of multivariate PDF of
attributes values. For high dimensions we should overcome the curse of dimen-
sionality problem, because multidimensional representations become too much
space-consuming when dimensionality increases. There are well-known methods
of creating a space-efficient representation of multidimensional distribution of
attributes values. Some of them are based on Discrete Cosine Transform [13],
Cosine Series [17] or Discrete Wavelet Transform [7]. While Discrete Fourier
Transform has been used in selectivity estimation for equi-join conditions [16]
where attributes comes from different tables.

Sometimes a distribution of values in database enables to apply the attribute
value independency rule (AVI) which allows to obtain a selectivity without
having multidimensional representation of joint distribution but using only a
space-efficient 1-dimensional representations of marginal distribution. This is
the well-know technique commonly used in CQO. AVI rule will be also used in
the method proposed in this paper.

In this paper we consider the problem of estimating selectivity values for a
query condition which determines non equi-join between two database tables.
Such condition is equivalent to a range condition based on a difference between
joined attributes. Calculation of a selectivity value for such query condition is
based on a distribution of attribute difference values and it uses Discrete Fourier
Transform (DFT) and convolution theorem.

The query optimization phase is performed during an on-line query processing
and it is a time-critical operation. Commonly, we assume that an execution time
of task of query preparing should be less than about 10ms, so a subtask of
selectivity estimation should take significantly less, e.g. let us assume no more
than 1ms.

The method of selectivity estimation for query selection conditions based on
sum of attributes has been already considered [3]. The problem of DFT-based se-
lectivity estimation for such condition (a range condition for a sum of attributes)
is similar to the one considered in this paper. However, the experimental results
from [3] shows that the simple Java-based implementation of that approach sat-
isfies the assumed time constraint (< 1ms) only for vectors with a length less
or equals 256. Thus, we propose the enough time-efficient hardware-accelerated
implementation. It enables our method of selectivity estimation for non equi-join
conditions and high resolution representations of PDFs of attribute values.

Hardware-accelerated modules supporting database operations becomes pop-
ular including those that use parallelization capabilities of modern Graphical
Processing Unit (GPU) (e.g. [6,10,5] and many others). At the field of query
selectivity estimation, there are many methods which involve GPU processing
(e.g. [4,11,18]), like the one proposed in this paper.

GPU-Accelerated Query Selectivity Estimation of Non Equi-Join Conditions 217

The contributions of this paper are:

– the algorithm of query selectivity estimation (based on DFT spectrums) for
query conditions like a < xj−xl < b, where independent attributes xj and xl

may come either from the same table (selection condition) or from different
tables (theta-join condition),

– the algorithm of query selectivity estimation for range conditions like a <
xj < b; the algorithm operates directly on a DFT spectrum (with no need
to perform inverse DFT),

– implementations of these algorithms that use capabilities of CUDA [14] and
SSE technologies [12], i.e. the GPU-based implementation which uses cuFFT
library [15] and the CPU-based one which uses FFTW library [8].

2 Selectivity Estimation for Non Equi-Join Condition

A theta-join is any Cartesian product of two tables t1, t2 that is filtered by
a condition t1.xjΘt2.xl which compares attribute values of xj and xl from both
tables (where xj is an attribute from t1 and xl from t2, respectively).

An execution plan of a query which contains a theta-join condition depends on
an estimated size of result set which includes joined tuples. We propose the query
selectivity estimation method for non equi-join conditions i.e. t1.xj < t2.xl.

Let us assume that fxj (xj) and fxl
(xl) are PDFs of xj , and xl. We assume

that values of xj and xl are independent because they come from different tables.
Instead of considering xj < xl we may consider the following condition:

z = xj − xl < 0. (2)

We may find continuous Fourier transforms of PDF of xj and xl:

F(fxj) = Fxj (t) =

∫ +∞

−∞
e−itxjfxj (xj)dxj ,

F(fxl
) = Fxl

(t) =

∫ +∞

−∞
e−itxlfxl

(xl)dxl, (3)

We may find PDF of z denoted by fz(z) using:

F(fz) = Fxj(t)Fxl
(−t) = Fxj(t)Fxl

(t), (4)

where Fxl
(t) is a complex conjugate of Fxl

(t).
This allows to obtain the required selectivity as follows:

sel(xj < xl) = sel(z < 0) =

∫ 0

−∞
fz(z)dz. (5)

Using (4) and (5) we may obtain the selectivity value from spectrums:

sel(z < 0) =

∫ 0

−∞
F−1

(
Fxj (t)Fxl

(t)
)

dz. (6)

218 D.R. Augustyn and L. Warchal

2.1 Using a DFT Spectrum as a Representation of Attribute Values
Distribution

Let us find minall and maxall values:

minall = min(min(xj),min(xl)) ∧maxall = max(max(xj),max(xl)). (7)

We use equi-width histograms as representations of PDFs. N is the number of
buckets of the equi-width histograms. (maxall − minall)/N is the length of a
bucket of the equi-width histograms. Both histograms’ domains start at minall.
For the xj attribute we define:

F j =
(
fjn

)N−1

n=0
(8)

– a vector whose elements represent frequencies of occurrences of attribute values
in a histogram bucket. fjn is the probability that xj belongs to the (n + 1)-th
bucket of the equi-width histogram.

To utilize the formula (6) we use Discrete Fourier Transform (DFT).
Let us introduce a DFT spectrum – the vector of complex values:

Sj =
(
sjk

)N−1

k=0
. (9)

Because of Sj = DFT(F j) we may obtain spectrum coefficients as follows:

sjk =

N−1∑
n=0

fjne
−i 2πkn

N . (10)

By applying inverse DFT (DFT−1) we may find fjn using sjk as follows:

fjn =
1

N

N−1∑
k=0

sjke
i 2πkn

N . (11)

The procedure of selectivity estimation requires to create a statistics data.
This preliminary step is preformed during an update statistics.
In this phase we create temporary equi-width histograms that describe xj and
xl distributions (i.e. we create F j and F l vectors).
To obtain the distribution of difference between xj and xl we have to use zero-
padded frequency vectors F ′

j and F ′
l, with lengths equal 2N . For example F ′

j is
defined as follows:

F ′
j =

(
f ′
jn

)2N−1

n=0
∧ f ′

jn =

{
fjn for n = 0, . . . , N − 1
0 for n = N, . . . , 2N − 1

(12)

Then we obtain relevant spectrum vectors: S′
j = DFT(F ′

j) and S′
l = DFT(F ′

l),
both also with lengths equal 2N .

During the update statistics we prepare S′′
j , S′′

l so-called shifted spectrum
vectors. S′′

j is obtained by swapping left and half halves of S′
j and moving s′j0

GPU-Accelerated Query Selectivity Estimation of Non Equi-Join Conditions 219

(so-called DC component of the spectrum) to the center of S′′
j . S′′

l is obtained
from S′

l analogously.
Values of S′′

j and S′′
l are stored in a database metadata dictionary and they

will be directly used by a selectivity estimation procedure described below. There
is no need to persist F ′

j and F ′
l.

2.2 Selectivity Estimation of a Range Condition Based on
Difference of Attributes

The proposed method will allow to calculate selectivity value for such range
query condition:

sel(a < z = xj − xl < b). (13)

For a = minall −maxall and b = 0 the formula (13) is equivalent to sel(−∞ <
z < 0).

Let us denote

F z =
(
fzn

)2N−1

n=0
(14)

as a frequency vector for z variable, i.e. a sequence of values of an equi-width
histogram which describes z distribution. F z will be obtained by applying Inverse
DFT (see eq. (6)). The equi-width histogram will have 2N buckets and its domain
is [minall −maxall,maxall −minall].

To estimate selectivity value we use a sum of selected elements from F z (in-
stead of using the definite integral in eq. (5)):

sel(a < z < b) =

2N−1∑
n=0

fznIn(a, b), (15)

where In(a, b) ∈ [0, 1] is an including function which determines a degree of
overlapping the n-th bucket [rn, ln) of the equi-width histogram by the query
range interval [a, b]:

In(a, b) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 for rn ≤ a ∨ ln ≥ b
1 for ln ≥ a ∧ rn ≤ b

b− a

rn − ln
for ln < a ∧ rn > b

rn − a

rn − ln
for ln < a ∧ a < rn < b

b− ln
rn − ln

for a < ln < b ∧ rn > b

(16)

where ln = (minall−maxall)+n
maxall −minall

N
and rn = ln+

maxall −minall

N
for n = 0 . . . 2N − 1.

In this section we introduce the algorithm of selectivity estimation for range
condition for a difference between xj and xl. The proposed Algorithm 1 uses
known values of S′′

j , S′′
l , minall, maxall, and N obtained earlier during the

update statistics.

220 D.R. Augustyn and L. Warchal

Algorithm 1. The algorithm for calculating selectivity of a range condition
based on a difference between attributes
1: Sz ← S′′

l

2: Sz ← Sz � complex conjugate (eq. (4))
3: Sz ← Sz. ∗ S′′

j � complex element wise multiplication (eq. (4))
4: Sz ← ifttshift(Sz) � operation of swapping right and left halves of array
5: F z ← IDFT(Sz) � applying fast algorithm of inverse DFT
6: sel← 0
7: for all fznin F z do
8: sel← sel + fzn ∗ In(minall −maxall, 0)
9: end for

10: return sel

As mentioned earlier, calculated selectivity value may be used for estimating
the size of a query result, i.e. the number of tuples that satisfy a query condition
as follows:

– for a non equi-join (t1.xj < t2.xl): M1 · M2 · sel, where M1 and M2 are
numbers of rows in tables t1 and t2, respectively,

– for a single-table selection condition (t1.xj < t1.xl): M1 · sel.

Furthermore, because the proposed method calculates selectivity for condition
(13), it can also compute the following selectivity sel(xj ≈ xl), where xj is similar
to xl, if we define the similarity operator as follows:

xj ≈ xl
def≡
∣∣∣xj − xl

∣∣∣ < ε ≡ −ε < xj − xl < ε, (17)

where ε is a permissible absolute error value.

3 Calculating Selectivity Values Directly from Spectrum
(Without Inverse DFT) for Simple Range Predicates

In the previously described solution we assume that someone creates and stores

statistics metadata that describe a set of selected attributes
(
xj

)D
j=1

, i.e.:

(
S′′

j

)D
j=1

,minall = minj=1...D(min(xj)),maxall = maxj=1...D(max(xj)). (18)

In calculation of selectivity we may use any two attributes xj and xl (j, l =
1, . . . , D ∧ j
= l). They may come from two different tables or from the same
table (in the second case, we assume truth of attribute values independence rule).

Having already prepared set of spectrums
(
S′′

j

)D
j=1

we may ask if they may

be useful for fast selectivity estimation of the simplest range condition based
only on a single attribute like a < xj < b. This may eliminate the necessity of

storing a set of additional histograms
(
F j

)D
j=1

.

GPU-Accelerated Query Selectivity Estimation of Non Equi-Join Conditions 221

Selectivity estimation based on elements of F j for the simple range condition
may be calculated as follows:

sel(a < xj < b) ≈ sel(j, na, nb) =

nb∑
n=na

fjn, (19)

where:

– na – the number of the first bucket of the equi-width histogram (with domain
[minall,maxall] and N buckets) which is overlapped (in at least 50%) by
range interval [a, b],

– nb – the number of the last bucket which is overlapped (in at least 50%) by
range interval [a, b],

– na, nb = 0, . . . , N − 1, and na ≤ nb.

We do not have F j and we want to obtain it during selectivity estimation
from spectrum Sj .

The problem is that we have vector S′′
j instead of Sj . We will show that we

may obtain Sj from some elements of S′′
j .

Of course, we may obtain S′
j by shifting elements of S′′

j .
Using DFT definition (10) we may find elements of S′

j :

s′jk =

2N−1∑
n=0

f ′
jne

−i 2πkn
2N for k = 0, . . . , 2N − 1, (20)

and

s′jk =

N−1∑
n=0

f ′
jne

−i 2πkn
2N +

2N−1∑
n=N

f ′
jne

−i 2πkn
2N . (21)

Using (11) we obtain:

s′jk =

N−1∑
n=0

fjne
−iπkn

N +

2N−1∑
n=N

0e−iπkn
N . (22)

Using only k = 2r for r = 0, . . . , N − 1 we obtain:

s′j2r =

N−1∑
n=0

fjne
−iπ2rn

N ∧
N−1∑
n=0

fjne
−i 2πrn

N = sjr (23)

Thus using (23) for obtaining Sj we use every second element from S′
j .

It is obvious that the simplest way to obtain F j is to apply IDFT for already
obtained Sj . But we propose calculating the selectivity without using IDFT (i.e.
without explicit calculating elements fjn).

Using (11) and (19) we obtain:

sel(j, na, nb) =

nb∑
n=na

fjn =
1

N

nb∑
n=na

N−1∑
k=0

sjke
i 2πkn

N =
1

N

N−1∑
k=0

nb∑
n=na

sjke
i 2πkn

N ,

(24)

222 D.R. Augustyn and L. Warchal

sel(j, na, nb) =
1

N

N−1∑
k=0

(
sjk

nb∑
n=na

ei
2πkn

N

)
=

=
1

N

(
(nb − na + 1)sj0 +

N−1∑
k=1

(
sjk

nb∑
n=na

ei
2πkn

N

))
.

(25)

Using zk
def
= ei

2πk
N we may obtain:

sel(j, na, nb) =
1

N

(
(nb − na + 1)sj0 +

N−1∑
k=1

(
sjk

nb∑
n=na

ezkn

))
. (26)

We can define and calculate the difference between two geometric series with
ratio zk:

w(k, na, nb) =

nb∑
n=na

ezkn =

nb∑
n=1

ezkn −
na∑
n=1

ezkn =
ezkna − ezk(nb+1)

1 − ezk
(27)

for k = 1, . . . , N − 1.
Let us define w(k, na, nb) also for k = 0 as follows:

w(0, na, nb) = nb − na + 1. (28)

Finally, using (26), (27) and (28) we obtain:

sel(j, na, nb) =
1

N

N−1∑
k=0

sjkw(k, na, nb). (29)

All above allows to formulate the following algorithm (Algorithm 2):

Algorithm 2. The algorithm for calculating selectivity of a range condition
based on a single attribute without applying IDFT

1: na ← . . . ;nb ← . . . � values obtained using: a, b, minall, maxall, N
2: S′

j ← fftshift(S′′
l) � shifting halves of an array

3: Sj ← S′
j ↓ 2 � downsampling - keeping the even indexed elements

4: sel← 0
5: for k = 0→ N − 1 do � for every spectrum coefficient
6: sel← sel + sjk ∗ w(k, na, nb)
7: end for
8: sel← sel/N
9: return sel

In a real implementation of the Algorithm 2 there is no need to copy vector
S′′

l to S′
j (line 2) and then to create vector Sj form S′

j (line 3), because elements
sjk (later used in line 6) may be obtained directly from S′′

j :

sjk = s′j2k =

{
s′′j(2k+N) for 2k < N

s′′j(2k−N) for 2k ≥ N
for k = 0, . . . , N − 1. (30)

GPU-Accelerated Query Selectivity Estimation of Non Equi-Join Conditions 223

4 GPU-Accelerated Selectivity Estimation

Algorithms described in sections 2 and 3 were implemented in C language and
designed in a way that leverage the parallel computing model, which Compute
Unified Device Architecture (CUDA) technology delivers.

DFT and IDFT were performed with cuFFT library [15], which is provided
off-the-shelf with CUDA toolkit. It offers simple API to compute discrete Fourier
transforms with FFT algorithm on NVIDIA GPU devices. Its design is similar
to the FFTW library [8], which is widely used in CPU-only applications. FFTW
was used in single-threaded CPU benchmarking application, which was written
to compare the speed-up achieved with GPU. In both cases we used 1D vec-
tors of single precision floating point numbers to obtain better performance and
reasonably good accuracy.

Each component of the sum i.e. fzn ∗ In(minall −maxall, 0) (in line 8 of the
Algorithm 1) or sjk ∗ w(k, na, nb) (in line 6 of the Algorithm 2) is computed by
a separate GPU-thread.

In the Algorithm 1 (line 4) we use FFT-Shift operation to center the DC com-
ponent of the spectrum. However, neither of mentioned earlier libraries provide
such function out of the box. In our implementations we use the solution for 1D
vectors from library described in [2].

In proposed algorithms the resulting selectivity value is calculated as a sum of
some components (lines 7-9 in the Algorithm 1 and 5-7 in the Algorithm 2). The
sum is computed partially on the GPU and CPU. To achieve better performance,
on the GPU side we used reduction mechanism [9]. This imposes that the kernel
function which performs these calculations is invoked with thread block of size
2 ×WARP SIZE (64 in case of used GPU cards).

The module which implements the Algorithm 1 (for calculation a selectivity
of a range condition based on difference between the attributes a < xj − xl < b)
invokes:

– the first GPU-kernel function for preparing Sz (lines 1-4),
– cufftExec to obtain Fz from Sz (usage of cuFFT library) (line 5),
– the second GPU-kernel function for calculating a share of each bucket fzn ∗

In(a, b) (line 8),
– the third GPU-kernel function for summing shares within a block of threads

(here we use warp-synchronous mode),
– the CPU-based part of the implementation designated for gathering partial

results from GPU and for summing them by CPU.

In the most efficient implemenation of Algorithm 2 (for calculation a selec-
tivity of a range condition based on one attribute a < xj < b) we do not use
cuFFT library at all. The implementation is based on calls of two GPU-kernel
functions. The detailed sequence of calls is following:

– the CPU-based part of the algorithm to obtain na, nb values, that determi-
nate the number of histogram buckets overlapped by interval [a, b]
(line 1),

224 D.R. Augustyn and L. Warchal

– the first GPU-kernel function for calculating w(...) value and multiply it be
the proper spectrum coefficient sjk (eq. (30)) (line 6),

– the second GPU-kernel function for summing the previously obtained shares
i.e. sjk ∗ w(k, na, nb) within a block of threads (run in warp-synchronous
mode),

– the CPU-based part of the implementation designated for gathering partial
results from GPU and for summing them by CPU, and finally dividing the
result by N .

5 Experimental Results

Experiments were conducted on two NVIDIA GPU devices: Quadro FX 580
(compute capability 1.0) and GeForce GTX 560 Ti (compute capability 2.1) and
CPU Intel Xeon W3550 @ 3.07 GHz. In our implementations we used CUDA
toolkit version 5.5 and FFTW library version 3.3.4. Additionally, FFTW was
compiled with SSE instruction set [12] enabled to leverage Intel Xeon compute
capabilities.

In reported results we do not take into account the time needed to compute

spectrum vectors
(
S′′

j

)D
j=1

. This can be done once during the update statistics

phase, and obtained values can be transferred to the GPU memory and then
directly used during selectivity calculations.

The experimental results for a non equi-join condition i.e. computation times
of selectivity estimation for N = 512, 1024, . . . , 16384 (0.5K, 1K,. . . ,16K) using
GPU kernels (for FX 580 and GTX 560Ti) and cuFFT library and CPU modules
invoking FTTW library (with SSE enabled or disabled) are shown in Fig. 1a.
Only for N about 512 CPU-based implementations are faster than GPU-ones.
For greater values of N they become slower and for N greater than 4K they
become unacceptable with subject to the assumed absolute estimation time con-
straint (Testim < Tmax = 1ms). The GPU-based implementation satisfies the
constraint for all N = 0.5K,. . . ,16K and for high N it is significantly faster
(see the ratios in Fig. 1b – GPUs-based implementation speedup relative to
CPU-SSE-based one). Among others, justification for this is that cuFFT library
outperforms FFTW when N grows [1].

We also conducted experiments for selectivity estimation (based on existing
DFT spectrums) of a simple range single-attribute-based condition. Fig. 1c shows
calculation times of the selectivity estimation for:

– GPU-based implementation of the Algorithm 2 (using spectrum coefficients
directly, without inverse DFT) launched on GPU FX 580,

– GPU-based implementation utilizing cuFFT (performing inverse DFT),
– CPU implementation of the Algorithm 2 utilizing FFTW (with SSE en-

abled).

Only GPU-based implementations are acceptable for all N=0.5K,. . . ,16K with
subject to Testim < Tmax. Furthermore, the GPU-based implementation of the

GPU-Accelerated Query Selectivity Estimation of Non Equi-Join Conditions 225

Fig. 1. Experimental results for selectivity estimations for a < xj − xl < b condition
(a – times of estimation, b – speedup ratios) and for a < xj < b condition (c – times
of estimation, d – speedup ratios)

226 D.R. Augustyn and L. Warchal

Algorithm 2 which avoids IDFT is always a few times faster than those one
which uses it (see the speedup ratio GPU-FX-580-Direct to GPU-FX-580-IDFT
in Fig. 1d).

6 Conclusions

In this paper we propose the method of selectivity estimation for non equi-
join conditions, which is based on Discrete Fourier Transform and convolution
theorem.

We describe its high performance implementation leveraging parallel
processing capabilities of CUDA-enabled GPUs. We show that this approach
outperforms the CPU-based solution (speed-up up to 8X for N=16K) and as-
sures meeting the assumed time constraint i.e. less then 1ms for selectivity
calculation.

This paper describes also the method of query selectivity estimation for range
conditions based on a single attribute. In the proposed algorithm selectivity is
calculated from prepared DFT spectrums, but without the DFT inverse
operation.

We present experimental results for GPU-based implementation of this algo-
rithm compared to pure CPU-based solution and another GPU-based version,
which performs DFT inversion. Both GPU-based implementations reveal the
benefits of parallel processing with respect to the computation time, however
only the implementation of the proposed algorithm complies with the estab-
lished time constraint for all considered vector sizes.

References

1. CUFFT vs FFTW comparison (2008),
http://www.sharcnet.ca/~merz/CUDA_benchFFT

2. Abdellah, M., Saleh, S., Eldeib, A., Shaarawi, A.: High performance multi-
dimensional (2d/3d) fft-shift implementation on graphics processing units (gpus)

3. Augustyn, D.R.: The method of query selectivity estimation for selection conditions
based on sum of sub-independent attributes. In: Gruca, A., Czachórski, T., Koziel-
ski, S. (eds.) Man-Machine Interactions 3. AISC, vol. 242, pp. 601–609. Springer,
Heidelberg (2014)

4. Augustyn, D.R., Zederowski, S.: Applying cuda technology in dct-based method
of query selectivity estimation. In: Pechenizkiy, M., Wojciechowski, M. (eds.) New
Trends in Databases & Inform. AISC, vol. 185, pp. 3–12. Springer, Heidelberg
(2012)

5. Breß, S., Beier, F., Rauhe, H., Sattler, K.U., Schallehn, E., Saake, G.: Efficient
co-processor utilization in database query processing. Inf. Syst. 38(8), 1084–1096
(2013), http://dx.doi.org/10.1016/j.is.2013.05.004,
doi:10.1016/j.is.2013.05.004

6. Breß, S., Heimel, M., Siegmund, N., Bellatreche, L., Saake, G.: Exploring the de-
sign space of a GPU-aware database architecture. In: Catania, B., Cerquitelli, T.,
Chiusano, S., Guerrini, G., Kämpf, M., Kemper, A., Novikov, B., Palpanas, T.,
Pokorny, J., Vakali, A. (eds.) New Trends in Databases and Information Systems.
AISC, vol. 241, pp. 225–234. Springer, Heidelberg (2014)

http://www.sharcnet.ca/~merz/CUDA_benchFFT
http://dx.doi.org/10.1016/j.is.2013.05.004

GPU-Accelerated Query Selectivity Estimation of Non Equi-Join Conditions 227

7. Chakrabarti, K., Garofalakis, M., Rastogi, R., Shim, K.: Approximate query pro-
cessing using wavelets. The VLDB Journal 10(2-3), 199–223 (2001),
http://dl.acm.org/citation.cfm?id=767141.767147

8. Frigo, M., Johnson, S.G.: FFTW Library (2014), http://www.fftw.org
9. Harris, M.: Optimizing Parallel Reduction in CUDA (2011),

http://developer.download.nvidia.com/assets/cuda/files/reduction.pdf

10. He, B., Lu, M., Yang, K., Fang, R., Govindaraju, N.K., Luo, Q., Sander, P.V.: Re-
lational query coprocessing on graphics processors. ACM Transactions on Database
Systems (TODS) 34(4), 21 (2009)

11. Heimel, M., Markl, V.: A first step towards gpu-assisted query optimization. In:
The Third International Workshop on Accelerating Data Management Systems
using Modern Processor and Storage Architectures, Istanbul, Turkey, pp. 1–12.
Citeseer (2012)

12. Intel Corporation: Intel R©65 and IA-32 Architectures Software Developers Manual
(2001)

13. Lee, J.H., Kim, D.H., Chung, C.W.: Multi-dimensional selectivity estimation us-
ing compressed histogram information. SIGMOD Rec. 28(2), 205–214 (1999),
http://doi.acm.org/10.1145/304181.304200, doi:10.1145/304181.304200

14. NVidia Corporation: NVIDIA CUDATMC Programming Guide, version 6.0 (2014),
http://docs.nvidia.com/cuda/pdf/CUDA/C/ProgrammingGuide.pdf

15. NVidia Corporation: NVIDIA cuFFT Library User’s Guide (2014),
http://docs.nvidia.com/cuda/pdf/CUFFT_Library.pdf

16. Saraç, K., Egecioglu, Ö., Abbadi, A.E.: Dft techniques for size estimation of
database join operations. Int. J. Found. Comput. Sci. 10(1), 81–102 (1999),
http://dblp.uni-trier.de/db/journals/ijfcs/ijfcs10.html#SaracEA99

17. Yan, F., Hou, W.C., Jiang, Z., Luo, C., Zhu, Q.: Selectivity estimation of range
queries based on data density approximation via cosine series. Data Knowl.
Eng. 63(3), 855–878 (2007), http://dx.doi.org/10.1016/j.datak.2007.05.003,
doi:10.1016/j.datak.2007.05.003

18. Zhang, J., You, S., Gruenwald, L.: Parallel selectivity estimation for optimizing
multidimensional spatial join processing on gpus

http://dl.acm.org/citation.cfm?id=767141.767147
http://www.fftw.org
http://developer.download.nvidia.com/assets/cuda/files/reduction.pdf
http://doi.acm.org/10.1145/304181.304200
http://docs.nvidia.com/cuda/pdf/CUDA/C/ProgrammingGuide.pdf
http://docs.nvidia.com/cuda/pdf/CUFFT_Library.pdf
http://dblp.uni-trier.de/db/journals/ijfcs/ijfcs10.html#SaracEA99
http://dx.doi.org/10.1016/j.datak.2007.05.003

© Springer International Publishing Switzerland 2015 229
N. Bassiliades et al. (eds.), New Trends in Database and Information Systems II,
Advances in Intelligent Systems and Computing 312, DOI: 10.1007/978-3-319-10518-5_18

GPU-Accelerated Quantification Filters for Analytical
Queries in Multidimensional Databases*

Peter Tim Strohm, Steffen Wittmer, Alexander Haberstroh, and Tobias Lauer

Jedox AG
Bismarckallee 7a

D-79106 Freiburg, Germany
{peter.strohm,steffen.wittmer,alexander.haberstroh,

tobias.lauer}@jedox.com

Abstract. In online analytical processing (OLAP), filtering elements of a given
dimensional attribute according to the value of a measure attribute is an essen-
tial operation, for example in top-k evaluation. Such filters can involve extreme-
ly large amounts of data to be processed, in particular when the filter condition
includes “quantification” such as ANY or ALL, where large slices of an OLAP
cube have to be computed and inspected. Due to the sparsity of OLAP cubes,
the slices serving as input to the filter are usually sparse as well, presenting a
challenge for GPU approaches which need to work with a limited amount of
memory for holding intermediate results. Our CUDA solution involves a hash-
ing scheme specifically designed for frequent and parallel updates, including
several optimizations exploiting architectural features of Nvidia’s Fermi and
Kepler GPUs.

1 Introduction

Multidimensional databases allow users to analyze data from different perspectives by
applying OLAP operations such as roll up, drill down, or slice and dice. Handling
very large dimensions with hundreds of thousands or even millions of elements re-
quires filter methods in order to show users only those data that are relevant to their
analytical needs. Apart from simple filters based on characteristics of the elements
themselves (e.g. element names, hierarchy levels, etc.), more advanced methods can
filter elements based on conditions regarding the values of the (numeric) measures
associated with the elements and stored in the OLAP cube.

An example from the sales analytics domain would be to show only those products
of which at least k units were sold in any store (or, alternatively: all stores) during a
certain time. Filters involving such an ANY or ALL requirement are called quantifi-
cation filters and are the central topic of this paper. Other filters might require that an
aggregated value such as SUM, MIN, MAX, or AVG fulfills a condition; those are
called aggregation filters.

* Parts of the research described in this paper were presented by the authors at Nvidia’s GPU

Technology Conference in San Jose, CA (USA) in March 2014.

230 P.T. Strohm et al.

The calculation of all such filters involves the processing of very large amounts of
data. Essentially, for each of the input elements to be filtered, an (n-1)-dimensional
slice of an n-dimensional cube must be scanned with respect to the given condition(s).
The slices may consist of aggregated values, which have to be computed first (cf.
Fig. 1). While research on traditional relational approaches (ROLAP) has often con-
centrated on the partial pre-computation of aggregate values and the question which
subset of aggregates should be pre-calculated to be stored in a given amount of avail-
able memory, in recent years a multitude of in-memory database systems have been
emerging, many of them non-relational but using specialized multidimensional data
structures [11, 12, 13]. Those systems store only base data (Fig. 2) and compute all
calculated values on demand, i.e. at query time. This obviates the need for pre-
computation but requires algorithms and computational resources for extremely fast
aggregation in order to deliver results to users in (near) real time to support interactive
operations such as slicing, dicing, roll-up and drill-down.

Fig. 1. OLAP cube with base cells (light blue) and aggregated cells (yellow and orange)

Hence, it is essential that aggregates along the relevant dimensions of a data cube
can be calculated as efficiently as possible.

General-purpose computing on graphics processing units (GPGPU) is a trend used
in many computing domains with the potential for tremendous speedups through the
massively data-parallel computation available on such devices. During the past dec-
ade, a growing number of database operations and applications have been examined
in this respect, with relatively mixed results [4, 5, 8]. One reason for this diversity lies
in the nature of database operations, which are more often bandwidth-bound rather
than computation-bound. In addition, if GPUs are used as pure co-processors, the
bottleneck is typically the transfer of the data to and from GPU memory, rather than
the computation itself [4]. As the vast majority of research contributions try to accele-
rate the computation of individual relational operators [2, 4, 5, 8], this problem re-
mains inherent. Only in few approaches – such as [7], [10] and our own system – the
graphics processors form an integral part of the database system design and GPU
memory is also explicitly used for data storage.

 GPU-Accelerated Quantification Filters for Analytical Queries 231

Fig. 2. Only base cells are stored with in-memory databases. All aggregates are calculated on
demand.

The main contribution of this paper is a massively parallel approach to the compu-
tation of quantification filters, with an implementation for graphics processing units
using Nvidia’s CUDA. Since the actual filter is applied on a pre-aggregated area (or,
sub-cube), the first part of our contribution is an efficient parallel aggregation method
for large (and possible sparse) areas of aggregated cells, also implemented in CUDA.
All of the described algorithms have been integrated in the commercially available
Jedox OLAP Server [13].

2 Motivation: Computation of Quantification Filters

A quantification filter as described above can be seen as a two-stage process. In a first
step the values that need to be inspected are computed and collected such that each
element of the filter dimension is associated with a corresponding slice of the OLAP
cube. For instance, assume the filter dimension consists of the products sold by a
company. In this case, each product might be associated with the cube slice contain-
ing sales figures of this product (over a time span) for each individual store, but
totaled over all other dimensions. Obtaining all the slices involves a lookup and pre-
aggregation procedure resulting in an area or “grid” of values, whose parallel compu-
tation is described in section 3.

In the second step, explained in section 4, the filter condition is checked for each
element of the filter dimension, i.e. for the values in each slice of the area computed
in step 1. For instance, the filter condition might require that the total sales for a prod-
uct in ALL stores (i.e. in every single store) are greater than US$ 100,000. In this
case, all values in the slice have to be inspected to verify the condition. Note that each
slices can be an up to (n-1)-dimensional sub-cube of the original n-dimensional
OLAP cube. Hence, both of the above steps can become computationally expensive,
the first due to its potentially large output, the second due to the size of its input (the
output of the filter is limited by the cardinality of the filter dimension).

232 P.T. Strohm et al.

3 Parallel Computation of Aggregate Areas

It has been shown in previous work that individual OLAP aggregations as well as
reasonably sized bulks of aggregations can be accelerated significantly by using
GPUs [4]. However, in quantification filters a large structured area of aggregated
values, potentially consisting of billions of cells, must be computed. In OLAP scena-
rios, such areas are typically very sparse, meaning that a majority of the values are
zero because no base data exist to enter the aggregate.

If such values are calculated by a standard target-driven approach such as the one
described in [4] and summarized in section 3.1, many unnecessary queries will be
launched. Added up, these queries can significantly increase overall response time.

We therefore propose an alternative, source-driven aggregation approach designed
for large areas of aggregated values, in section 3.2.

3.1 Target-Driven Aggregation

In target-driven approaches, the computation takes the targets as a starting point. A
variable is assigned (i.e. memory is allocated) for each target cell to hold its output
value (and any intermediate values during the computation). Then, for any source cell
to be examined, the aggregation algorithm would typically check whether that source
contributes to the target, and add the source value to the current aggregate value, tak-
ing into account possible weight factors defined on dimensional hierarchies. For
checking source cells, a parent-to-child map of dimensional hierarchies is required,
which provides, for each coordinate in a target path, the coordinate(s) of all matching
source cells and corresponding weights.

Such an approach works very well for individual targets and can also nicely be pa-
rallelized with GPUs: checking source cells can be distributed among as many threads
as are available, and results can be aggregated by parallel reduction, a well-known
parallel building block [3]. The CUDA implementation minimizes thread divergence
and maximizes coalesced memory accesses. If the data is kept in GPU memory, tre-
mendous speedups over CPU solutions can be achieved, especially for high-level
aggregations. More details can be found in [6].

The main shortcoming of this approach is that this parallelization only works with
a limited amount of target cells. This is because of memory limitations, regarding
both the number of registers available per thread and of the on-device shared memory
required for efficient thread communication and cooperation. If a large number of
aggregated cells are to be computed, they will have to be split into smaller bulks
which must be computed by separate kernel calls. Hence, roughly speaking, the ap-
proach can be described as a sequence of parallel computations, and its runtime de-
pends heavily on the number of targets to be computed (apart from the size of the
input, i.e. the number of source values involved).

There are two more disadvantages when dealing with large and sparse areas of tar-
gets. First, a lot of memory has to be allocated, much of which will be unused when

 GPU-Accelerated Quantification Filters for Analytical Queries 233

many of the results are zero. Given the limited memory of GPUs, this soon creates a
problem. Second, even just checking for a value that will be zero is computationally
expensive if it happens many times. In such a case, GPU-based calculation can actual-
ly become a disadvantage rather than an advantage, as the invocation of GPU kernels
typically takes longer than invocation of a pure host method.

3.2 Source-Driven Aggregation

An alternative approach to computing aggregates is to drive the calculation not by
targets, but by the source cells. Instead of a parent-to-child map in dimensions, we use
a child-to-parent mapping, which allows a thread to look up, for a given source cell,
all the target paths of the query to which it contributes (see Fig. 3), together with the
corresponding weights. The thread can then “construct” the target paths and add the
value of this source to all appropriate target values. Hence, unlike the target-driven
method, which could be labeled a “sequence of parallel aggregations” (in CUDA, it
would consist of multiple calls of one simple kernel), the source-driven one is a “pa-
rallel execution of serial aggregations” (one complex CUDA kernel).

Fig. 3. Child-to-parent map required for source-driven aggregation

The most important advantage of such an approach is that targets with zero value
are never created, i.e. no memory must be allocated for them and no computational
resources are wasted for them. To achieve this, existing targets will be placed (and
looked up) in a common hash table [1] located in GPU global memory. Using the
terminology of [9], our approach would classify as “shared” for each GPU, but “inde-
pendent” between multiple GPUs. Figure 4 gives an overview of the overall method
on one GPU. The dotted line of cells labeled “target cell area” is not fully materia-
lized – only existing target cells are created and placed in the hash table.

This approach results in a time complexity that is independent of the target area
size, but depends on the actual number of non-empty targets. Moreover, since only
one kernel call is require even for a large number of targets, each input will be in-
spected only once, which reduces actual running time.

234 P.T. Strohm et al.

Fig. 4. Algorithm for source-driven aggregation. Source values are added to targets stored in a
hash table in GPU RAM.

However, there are several challenges, regarding the SIMD-like parallelization that
GPUs are built for: First, the number of targets for different source cells may vary
dramatically; hence some threads will do significantly more work than others, and
considerable thread divergence is not only likely but almost inevitable. Our solution
benefits from the locality effect caused by a global sorting of source cells: adjacent
source cells, which are handled by threads in the same warp (a group of 32 threads
scheduled together on the same multiprocessor), are likely to have a similar number
of targets to which they contribute.

Second, coalesced memory accesses (especially writes) are almost impossible to
achieve, with target cells being scattered across a hash table. Even worse, many
threads may compete to update (i.e. add their value to) the same target at a time,
which makes it necessary to use atomic operations on the hash table, leading to con-
gestion (see Fig. 5). On Nvidia GPUs with compute capability 1.3 or lower, the latter
problem made the source-driven approach completely infeasible, leading to crashes
and instabilities.

However, atomic operations have been improved significantly with both the Fermi
and the Kepler architectures, and new features of the CUDA programming model can
improve this even further. Since version 4.0, CUDA supports the __ballot operation,
which allows threads in the same warp to compare their values of the same thread-
local variable. This allows the pre-aggregation of values from all those threads which
try to write to the same target location at the same time, and then let only one thread
do the writing to the hash table. This warp-internal pre-aggregation (see. Fig. 6) can
drastically reduce congestion, but warps from different multiprocessors may still
compete for writing to the same memory address.

 GPU-Accelerated Quantification Filters for Analytical Queries 235

Fig. 5. Contention caused by thread serialization through atomic memory operations

Fig. 6. Warp-wise pre-aggregation on Fermi or newer architectures

To further avoid contention, we can trade off some memory for better performance
by allowing multiple hash functions. This is similar (though not identical) to the con-
cept of “cloning”, as described in [9]. If different warps use different hash functions,
they will write their results to different locations in the hash table. Of course this will
increase the size of the hash table k-fold, if k hash functions are used. Also, an extra
step is required to summarize the (up to) k results for the same target before returning
them. This can be combined with a sort and compact step that removes the unused
slots of the hash table and sorts the results according to their target path. The best
value for the number k of hash functions cannot be determined a priori, since the

236 P.T. Strohm et al.

number of existing targets in unknown; our implementation chooses k heuristically,
taking into account the sizes of source and target areas, the number of warps used in
the kernel, and the maximum allowed size of the hash table.

Fig. 7. Using different hash functions for different warps

3.3 Performance of GPU Aggregation Algorithms

While the target-driven approach is faster for small numbers of target cells, the
source-driven method matches and outperforms it already at around 70 targets aggre-
gated simultaneously. Fig. 8 shows a comparison of aggregation runtimes between the
two approaches, on a cube containing approximately 128 million base cells. As can be
seen, the time required by the source-driven algorithm is much less dependent on the
target area size.

4 Parallel Filtering

As a result from step 1, we have a sparse aggregated area of cells, which can be im-
agined as a table, with each row corresponding to one element of the filter dimension
and containing the slice with the respective values. Note, however, that the actual
representation is simply a list of key/value pairs. Moreover, only cells with non-zero
values are represented to account for sparsity. Since empty cells are still counted as 0
(zero) values for the filter condition, we have to distinguish 4 cases, depending on

(a) whether or not a 0 (zero) value satisfies the specified condition, and
(b) whether ANY or ALL cells of a slice are required to satisfy the condition.

 GPU-Accelerated Quantification Filters for Analytical Queries 237

Fig. 8. Time (in seconds) for target-driven vs. source-driven aggregation by target area size

The four cases are depicted in Fig. 9. For example, consider the condition
“ALL < 100”, which means that all cells in the slice corresponding to an element of
the filter dimension must have a value less than 100 for that element to be included in
the output. In this case, any empty cells (i.e. cells with value 0) fulfill the condition.
On the other hand, if the condition is “ALL > 100”, the mere existence of an empty
cell in the slice means that the element does not meet the condition.

Fig. 9. Four cases of the Quantification Filter: ALL | ANY vs. zero included | not included.
(1) Flag: current cell value satisfies given condition (e.g. val > 1000)

(2) counter is incremented in special cases to keep track of all flag results
(3) Condition which has to be satisfied to add an element to result set

Our CUDA approach implements the computation of the second step filters by a
parallel scan of all cells in all slices, using tens of thousands of concurrent threads.
We use a variant of the parallel hashing scheme described in step 1 to hold the results.
In addition, we employ a mechanism for minimizing unnecessary checks as much as
possible, and a space-efficient method for checking multiple conditions (condition
tree). The following paragraphs describe the procedure in more detail.

0

2

4

6

8

10

6 18 30 42 54 66 84 102 126 150 174 198

source [s] target [s]

238 P.T. Strohm et al.

First, we need to initialize a GPU hash table with enough slots capable to hold all
of the elements in the filter dimension (in the extreme case, all elements meet the
filter criteria). Each slot in the hash table has space for an element ID, a value, a (bi-
nary) flag, a counter, and a lock. The lock is needed because all threads scanning cells
of the same slice will try to write to the same hash table position; hence a synchroni-
zation mechanism is required. In order to save memory, our implementation uses the
same variable for the flag and the lock.

The scan of the cells is implemented as a CUDA kernel, where each thread ex-
amines one cell at a time as follows:

(a) Compute the hash table position for the corresponding element, check existing
flag and – if necessary – acquire the lock for that position.

(b) In the ANY (ALL) case, set the flag to TRUE (FALSE) if the value satisfies
the condition and to FALSE (TRUE) if it does not (see Fig. 9).

(c) In the ANY (ALL) case, increment the counter if the condition is not satisfied
(is satisfied) AND a zero value would satisfy (would not satisfy) the condition
(see Fig. 9).

(d) Release the lock of the hash table position.

After the kernel has finished, the flags (1) and counters (2) contain all the informa-
tion required for deciding whether or not the corresponding element has to be in-
cluded in the result. The bottom line (3) in each quadrant of Fig. 9 lists the condition
to be verified for the decision.

However, the result might still be incomplete. This is because there might be ele-
ments for which no hash entry was created because no cells exist in the corresponding
slice. If zero values also satisfy the filter condition (left quadrants of Fig. 9), these
elements must be added to the result.

Fig. 10 summarizes the overall procedure. Starting with the preprocessed cells
from step 1, the kernel checks each cell and fills the hash table. If necessary, elements
for zero-values are added, yielding the list of result cells after some postprocessing.

Fig. 10. Workflow of quantification process for ALL | ANY. Preprocessed cells are the result
from step 1 (aggregation).

 GPU-Accelerated Quantification Filters for Analytical Queries 239

In order to minimize unnecessary checks, some optimization can be done. In par-
ticular, if the result is already clear, the check of a cell can be terminated without
accessing the hash table, thus avoiding expensive locks and memory accesses. By
checking the flag/lock at the hash table position of the processed cell we can discard
those cells contributing to an element of the filter dimension which is already marked
as “satisfied | not satisfied”. The flow diagram of the optimized algorithm is depicted
in Fig. 11.

Fig. 11. Flow graph of optimized CUDA kernel minimizing locks and global memory accesses

The variable used for locking the access to a hash table entry is used at the same
time as a flag to mark targets that have already been decided. If a thread discovers the
flag is set for a target, it can immediately finish and continue with the next target. For
targets that could still change, a different value for the lock is used. Actual locking is
required only for the operations shown in pink boxes.

5 Performance Comparison

Our GPU algorithm can greatly speed up the computation of quantification filters. We
compared the times of the standard (sequential) CPU algorithm (run on an Intel Xeon
E5-2643) with our CUDA implementation on the same system with 2x Nvidia Tesla
K40c GPUs, using a data model from Wikipedia.

The example data consists of the Wikipedia page access statistics of the year 2013.
The main cube has over 1.8 million page names stored for every hour on every day in
2013. It also consists of different languages, projects and measures and sums up in
over 300 million cells, corresponding to about 4.8 GB of compressed data in the GPU
cube. We had three test cases for our test scenario:

240 P.T. Strohm et al.

(1) Popular Wikipedia pages, where we filtered out the top ranked pages de-
pending on the page access count.

(2) Peak search, where we added a virtual measure “peak factor” which consists
of the page access count of a given month divided by the page access count
of a constant month (e.g. current month / August). The element is then a val-
ue less than 1 if the current month has a smaller page access count then the
constant month, and a value greater than 1 if it has a higher page access
count. By filtering on that measure, the top pages for every month can be ob-
tained.

(3) “What’s new” combines the peak search with an additional filter such that
the result will be those pages that have a low peak factor since the selected
month, and a high peak factor from then on until the end of the year. So we
are searching not for a peak but for a constant high after a constant low.

All examples have to calculate the input of the quantification filter first. In this step
the source size as well as the target size can be rather big (the page dimension consists
of over 1.8 million elements) and could not be handled with the target driven ap-
proach (cf. section 3.1). So for all these quantification filters the source driven
approach of our algorithm is used.

Fig. 12. Performance of quantification filters on GPU | CPU on Wikipedia example with differ-
ent source sizes

 GPU-Accelerated Quantification Filters for Analytical Queries 241

In Fig. 12 the performance comparison of our GPU approach versus the CPU ver-
sion is shown. The results are ordered by their source size from 3.9 million to 120
million (~6.25 million cells = 100 MB). As can be seen, the performance does not
only depend on the input size but also on the different test scenarios. The blue boxes
show the speedup factor of GPU versus CPU. With our new GPU approach it is now
possible to obtain the results of data filters on big data sources in seconds instead of
minutes and we gained speedups of about 60-100 times compared to the sequential
CPU times.

Because the current maximum amount of GPU memory is 12 GB on a single Tesla
K40, our GPU approach is limited to the amount of K40 card memory in the used
system. With our test system (2x K40) we are able to store about 1 billion cells
(16 GB) and then do complex filtering on the data which also requires temporary
space on the GPU. High end systems can easily extend the amount of Tesla K40 cards
to 4 or even 8 so that about 64 GB or 4 billion cells can be handled with our approach.

6 Conclusion

In this paper, we have presented a method for computing large and sparse areas of
aggregated values for OLAP and other analytical database queries on GPU. In the
first step we highlighted the differences of our source-driven approach to an earlier
target-driven algorithm and described improvements to reduce contention related to
atomic memory operations. In the second step we described our highly optimized
approach of massive parallel quantification filters on big data sources and the excel-
lent speedup compared to the CPU algorithms.

While first tests showed the usefulness of our approach in practice, the next step is
to provide mechanisms and criteria which allow the decision on the best available
algorithm (CPU, GPU target-driven, GPU source-driven) for a given query both
effectively and efficiently, such as the method proposed in [2].

References

1. Alcantara, D.: Efficient Hash Tables on the GPU. PhD dissertation, University of Califor-
nia Davis (2011)

2. Breß, S., Beier, F., Rauhe, H., Sattler, K.-U., Schallehn, E., Saake, G.: Efficient Co-
Processor Utilization in Database Query Processing. Information Systems 38(8), 1084–
1096 (2013)

3. Wilt, N.: The CUDA Handbook (ch. 12: ”Reduction”). Addison-Wesley (2013)
4. Govindaraju, N.K., Lloyd, B., Wang, W., Lin, M., Manocha, M.D.: Fast computation of

database operations using graphics processors. In: Proceedings of SIGMOD, Paris, France,
pp. 206–217. ACM, New York (2004)

5. He, B., Lu, M., Yang, K., Fang, R., Govindaraju, N.K., Luo, Q., Sander, P.V.: Relational
query coprocessing on graphics processors. In: Transactions on Database Systems,
vol. 34(4). ACM, New York (2009)

242 P.T. Strohm et al.

6. Lauer, T., Datta, A., Khadikov, Z., Anselm, C.: Exploring Graphics Processing Units as
Parallel Coprocessors for Online Aggregation. In: Proceedings of DOLAP 2010, Toronto,
Canada (October 2010)

7. Mostak, T.: An Overview of Map-D (Massively Parallel Database) Online whitepaper
(2013), http://www.map-d.com/docs/mapd-whitepaper.pdf

8. Wu, H., Diamos, G., Sheard, T., Aref, M., Baxter, S., Garland, M., Yalamanchili, S.: Red
Fox: An Execution Environment for Relational Query Processing on GPUs. In: Interna-
tional Symposium on Code Generation and Optimization (CGO) (February 2014)

9. Ye, Y., Ross, K.A., Vesdapunt, N.: Scalable Aggregation on Multicore Processors. In:
Proceedings of the Seventh International Workshop on Data Management on New Hard-
ware (DaMoN 2011), Athens, Greece. ACM (2011)

10. Ghodsnia, P.: An In-GPU-Memory Column-Oriented Database for Processing Analytical
Workloads. In: VLDB 12 PhD Workshop, Istanbul, Turkey. ACM (August 2012)

11. Cognos TM1,
http://www-03.ibm.com/software/products/en/cognostm1

12. Infor B,
http://www.infor.com/content/brochures/
infor10ionbicomprehensivebi.pdf

13. Jedox OLAP,
http://www.jedox.com/en/products/jedox-premium/
jedox-olap.html

Part VIII
OAIS 2014 Workshop

Linked Open Data for Medical Institutions and

Drug Availability Lists in Macedonia

Milos Jovanovik, Bojan Najdenov, Gjorgji Strezoski, and Dimitar Trajanov

Faculty of Computer Science and Engineering
Ss. Cyril and Methodius University

Skopje, Macedonia
{firstname.lastname}@finki.ukim.mk

Abstract. One of the most active fields of research in the past decade
has been data representation, storage and retrieval. With the vast amount
of data available on the Web, this field has initiated the development of
data management techniques for distributed datasets over the existing
infrastructure of the Web. The Linked Data paradigm is one of them,
and it aims to provide common practices for publishing and linking data
on the Web with the use of Semantic Web technologies. This allows for
a transformation of the Web from a web of documents, to a web of
data. With this, the Web becomes a distributed network for data access,
usable by software agents and machines. The interlinked nature of the
distributed datasets provides new use-case scenarios for the end users,
scenarios which are unavailable over isolated datasets. In this paper, we
are describing the process of generating Linked Open Data from the
public data of the Health Insurance Fund along with data from the As-
sociated Pharmacies of Macedonia. With this we generate and publish an
interlinked RDF dataset in a machine-readable format. We also provide
examples of newly available use-case scenarios which exploit the Linked
Data format of the data. These use-cases can be used by applications
and services for providing relevant information to the end-users.

Keywords: Linked Data, Open Data, Health Care, Medical Institu-
tions, Pharmacies, Drugs, Macedonia.

1 Introduction

As we explore and discover new technologies we thrive towards bettering our lives
in a variety ways. One of the most active fields of research in the past decade has
been the field of data management representation, storage and retrieval. With
the vast amounts of data available on the Web today, this field has initiated the
development of data management techniques for distributed datasets over the
existing infrastructure of the Web. The Linked Data paradigm is one of them, and
it aims to provide common practices for publishing and linking data on the Web
with the use of Semantic Web technologies [1]. This allows for a transformation
of the Web from a web of documents, to a web of data, envisioned in the original
Semantic Web idea. With this, the Web becomes a distributed network for data

c© Springer International Publishing Switzerland 2015 245
N. Bassiliades et al. (eds.), New Trends in Database and Information Systems II,
Advances in Intelligent Systems and Computing 312, DOI: 10.1007/978-3-319-10518-5_19

246 M. Jovanovik et al.

access, usable by software agents and machines. The interlinked nature of the
distributed datasets provides new use-case scenarios for the end users, scenarios
which are unavailable over isolated datasets.

The adoption of the Linked Data best practices has led to the extension of the
Web into a global data space, interconnecting data from diverse domains, such
as people, companies, books, scientific publications, films, music, television and
radio programs, genes, proteins, drugs and clinical trials, online communities,
statistical and scientific data, etc. This web of data has been embodied into
the Linked Open Data (LOD) Cloud1, a vast network of datasets published
and interlinked according to the Linked Data principles, and available for access
over the existing infrastructure of the Web (Fig. 1). The LOD Cloud data can
be traversed with the use of the technologies of the Semantic Web, i.e. by using
the SPARQL query language and the SPARQL federation functionality. This
allows for data access and retrieval over distributed data sources on the Web, in
a manner similar to accessing a local database.

Fig. 1. The LOD Cloud, as of September 2011

The LOD Cloud also provides new possibilities for both domain-specific and
cross-domain applications. Unlike Web 2.0 mashups which work against a fixed
set of data sources, Linked Data applications operate on top of an unbounded,
global data space. This enables them to deliver more complete answers as new
data sources appear on the Web [1].

In this paper, we are describing the process of generating Linked Open Data
from the public data of the Health Insurance Fund along with data from the

1 http://lod-cloud.net/

http://lod-cloud.net/

Linked Open Data for Medical Institutions 247

Associated Pharmacies of Macedonia. With this we generate and publish an
interlinked RDF dataset in a machine-readable format. We also provide examples
of newly available use-case scenarios which exploit the Linked Data format of
the data. These use-cases can be used by applications and services for providing
relevant information to the end-users.

2 Related Work

Many organizations are now exploring the use of Semantic Web technologies in
the hope of relaxing the costs of data integration. The benefits these technolo-
gies provide include integration of heterogeneous data using explicit semantics,
simplified annotation and sharing, rich explicit models for data representation,
aggregation and search, easier re-use of data, and the application of logic to infer
additional information.

The World Wide Web Consortium (W3C) has established the Semantic Web
for Health Care and Life Sciences Interest Group (HCLS IG)2 to help organiza-
tions from the health domain in their adoption of the Semantic Web technologies.

The NeuroCommons Project3 has a prototype knowledge base which repre-
sents a demonstration intended to show the feasibility and benefits of Semantic
Web technologies in the biomedical domain, for assembling and querying biomed-
ical knowledge from multiple sources and disciplines [2]. The prototype allows
the exploration of the scalability of current Semantic Web tools and methods for
creating a biomedical knowledgebase, and to reveal issues that will need to be
addressed in order to further expand its scope and use. The utility of the knowl-
edge base is demonstrated by reviewing a few example queries which provide
answers to precise questions relevant to the understanding of the disease.

Other notable projects from this field include the LODD Project4, which
is focused on interlinking drug datasets already present on the Web [3][4], the
DrugBank Project5, which provides RDF data about drugs (chemical, pharmaco-
logical and pharmaceutical information) from an open, but non-RDF database6

[5], then LinkedCT7 [6], OBO Foundry8, etc.
In Macedonia, our research team has already worked in applying the Linked

Data principles and the technologies of the Semantic Web in the health care
domain. We have transformed and published the drug data from the Health
Insurance Fund of Macedonia as 5-star Linked Data9, connected to the LODD
and LOD Cloud datasets, via the DrugBank dataset [7].

2 http://www.w3.org/blog/hcls/
3 http://neurocommons.org/
4 http://www.w3.org/wiki/HCLSIG/LODD
5 http://wifo5-03.informatik.uni-mannheim.de/drugbank/
6 http://drugbank.ca/
7 http://linkedct.org/
8 http://obofoundry.org/
9 http://5stardata.info/

http://www.w3.org/blog/hcls/
http://neurocommons.org/
http://www.w3.org/wiki/HCLSIG/LODD
http://wifo5-03.informatik.uni-mannheim.de/drugbank/
http://drugbank.ca/
http://linkedct.org/
http://obofoundry.org/
http://5stardata.info/

248 M. Jovanovik et al.

3 Creating Linked Open Data for Medical Institutions
and Drug Availability Lists

The Health Insurance Fund of Macedonia (HIFM) is a government operated
central organization that coordinates all the medical institutions in the coun-
try, from pharmacies, to specialist and hospital healthcare. HIFM has started
to regularly publish public data on their website10, making it available to the
public for insight, analysis and reuse. However, this data from HIFMs website
is mostly of 1-star or 2-star data quality. This means that the files available on
their website are mostly PDFs, images or plain text documents, which are not
machine-readable, at least not easily.

But, most of this data can easily be transformed into machine-readable for-
mats, such as CSV or Excel spreadsheets, which have the potential of being
directly used from applications, or being further transformed into 4-star and 5-
star data. This means annotating them with ontology concepts in RDF format,
and interlinking them with other entities from Linked Data datasets from the
LOD Cloud.

The public data from the HIFM website can support many use-case scenarios
in applications and services for the general public, as we have already suggested
and demonstrated in [7]. This time, we chose to work with data about the duty
hours of the medical institutions in Macedonia, their geographical coordinates,
their medical category and the drugs available for purchase in the pharmacies
from ZAM11, one of the pharmacy associations in Macedonia.

Since the lists of available drugs for individual pharmacies are not yet publicly
available, the pharmacies from the Neven-Pharm chain have agreed to give us
access to their lists, in order to provide us with grounds for demonstrating the
various use-case scenarios which can be supported with this type of data.

Also, the geographical coordinates of the medical institutions in Macedonia is
not part of the data published by HIFM. Using the address information available
from the HIFM websites, the Eco-Informatics team at our Faculty was able to
geo locate each of the medical institutions, and derive its latitude and longitude
values. We added them to the HIFM medical institutions dataset, and used it
for the next steps of transformation and interlinking of the data.

In the following sections, we present the processes of mapping, conversion and
interlinking of the data.

3.1 Identifying and Obtaining the Source Datasets

Medical Institutions, their Geo Coordinates and Schedules. The Health
Insurance Fund publishes 2-star data with category and contact information
about all medical institutions in Macedonia (Table 1). Also, there is a dataset
with the working date and time of each medical institution (Table 2). These

10 http://www.fzo.org.mk/
11 http://www.zam.mk/

http://www.fzo.org.mk/
http://www.zam.mk/

Linked Open Data for Medical Institutions 249

datasets are available as XML and as Excel spreadsheets, respectively. We trans-
formed the structured data into an RDF graph using already existing ontologies
and by defining some properties of our own, following the ontology design best
practices. The process of conversion and mapping will be explained further in
the paper.

Table 1. Properties of the Medical Institutions Geo Location Dataset

Property Description

Id The id of the medical institution.

Code The unique identifier in the Health Insurance Fund of Macedonia.

Name The name of the medical institution.

Field The field of work of the medical institution.

City The city in which the medical institution is located.

Address The address of the medical institution.

Latitude Latitude coordinates of its location.

Longitude Longitude coordinates of its location.

In order to annotate the data and transform it into RDF data, we needed
suiting ontologies. The first ontologies which come to mind when describing an
organization or institution are the vCard12 and the W3C Geospatial13 ontolo-
gies. The W3C Geospatial ontology is the base ontology we used for mapping
the geographical characteristics of the medical institutions. This ontology pro-
vides us with the possibility to describe geographical entities in great detail.
The vCard ontology offers properties which describe details about telephone
numbers, emails, websites, etc., for a company. Since both ontologies are largely
used in datasets from the LOD Cloud, this allows further interlinking with data
annotated with the same ontology concepts and properties.

Table 2. Properties of the Duty Schedule Dataset

Property Description

Id The id of the assigned duty day for the medical institution.

City The city in which the medical institution is located.

Name The name of the medical institution.

Date The date in question.

Phone Telephone number of the medical institution.

Note Extra notes (mostly work hours).

12 http://www.w3.org/TR/vcard-rdf/
13 http://www.w3.org/2005/Incubator/geo/XGR-geo/

http://www.w3.org/TR/vcard-rdf/
http://www.w3.org/2005/Incubator/geo/XGR-geo/

250 M. Jovanovik et al.

Since the entries from the two datasets are not directly linked, i.e. they dont
refer to the same medical institution ID, we needed to link the data from the two
datasets by matching the medical institution names. Since the data published
by HIFM was raw, we used OpenRefine14 to clean the data first. This allowed us
to create links between the datasets in the process of transformation into RDF,
when we used the same IDs for data referring to the same medical institution in
the two separate datasets.

Drug Availability Lists for Pharmacies. Most of the pharmacies in Macedo-
nia have contracts with HIFM, which means that each month they get a shipment
of HIFM-regulated drugs by special prices for the people that have health in-
surance. The list of drugs shipped to the pharmacies depends on the order that
the pharmacy makes every month. This order is made via a special interface
on the HIFM website, intended for pharmacies. This gives us a hint that HIFM
has information about the amount of drugs available in each pharmacy, at the
beginning of each month. Unfortunately, this data is not yet publicly available.
However, if a proper FOI request is submitted to HIGM, access to this data will
be granted. Therefore, the pharmacies from the Never-Pharm pharmacy chain
decided to share their drug availability lists with us, for the purpose of this
research.

The drug availability dataset was initially in an Excel format, so we trans-
formed it into CSV for further mapping into RDF and later into Linked Data
(Table 3).

Table 3. Properties of the Drug Availability Dataset

Property Description

Id The id of the specified drug.

Name The name of the drug.

Type The type of drug delivery system.

Dosage Dose of the drug in each unit.

Manufacturer The manufacturing company.

Quantity Quantity available.

In order to start the conversion to RDF, we needed an ontology for describing
the drugs contained in the drug availability dataset. For this purpose, we chose
to use the DrugBank15 ontology, the Schema.org16 vocabulary, and HIFM17

ontology [7] since they completely cover the properties we need and offer us easier
interlinking possibilities for further transformation. Since we knew in advance

14 http://openrefine.org/
15 http://wifo5-04.informatik.uni-mannheim.de/drugbank/resource/drugbank/
16 http://schema.org/
17 http://purl.org/net/hifm/ontology#

http://openrefine.org/
http://wifo5-04.informatik.uni-mannheim.de/drugbank/resource/drugbank/
http://schema.org/
http://purl.org/net/hifm/ontology#

Linked Open Data for Medical Institutions 251

which pharmacies (medical institutions) was the list of drugs referring to, we
added the medical institution ID in the dataset, allowing us to create a link
from an entity in this dataset (a drug) to the medical institution (pharmacy)
which its availability is referring to.

3.2 Transformation from 2-Star to 5-Star Linked Open Data

Transformation from CSV to RDF. After obtaining the three datasets, we
first needed to transform them into 4-star data. For the mapping purposes, we
used a Virtuoso Universal Server18 instance. We loaded the CSV data into a
Virtuoso instance, where they are stored in a traditional relational database.
We then used R2RML19, a language for mappings from relational databases to
RDF datasets, and custom mapper files in order to make the transformations.
This transformation resulted in creating RDF Views over the relational database
tables, which we then used to create one single RDF graph, containing the data
from all three input datasets. This was made possible by having the medical ID
information in all three datasets, so the entities from all three source datasets
are referring to the same medical institution entity in the RDF graph.

Transformation into Linked Data. In order to transform our data into 5-star
Linked Open Data, a link to outside entities must be made. We already have a
publicly available Linked Drug Data dataset20, with drugs from HIFM, which
is interlinked with the LODD and LOD Clouds. Therefore, since we have drug
information in our new RDF dataset, we decided to interlink these two datasets.
For this purpose, we used matching of drugs by their name, dosage form and
manufacturer, and added the ‘owl:sameAs’ relation between the drug IDs. This
interconnection allows us to create use-case scenarios which will provide us with
detailed information about a specific drug, information which is not available
in the original HIFM source data. These detailed information can include food
interactions of the drug, its chemical formula, other manufacturers, form factors
and brand names, drug-drug interactions, etc.

4 Use-Case Scenarios

The concept of Linked Data allows the users to traverse large amounts of diverse
data located on distributed locations on the Web, by starting at one single point.
This allows creation of complex use-case scenarios which provide the end-users
with additional information and services, previously unavailable over the isolated
dataset. In this section, we will provide example use-case scenarios which have
the purpose to illustrate the capabilities the Linked Data nature of the datasets
can provide.

18 http://virtuoso.openlinksw.com/
19 http://www.w3.org/TR/r2rml/
20 http://purl.org/net/hifm/data#

http://virtuoso.openlinksw.com/
http://www.w3.org/TR/r2rml/
http://purl.org/net/hifm/data#

252 M. Jovanovik et al.

One possible use-case scenario would be to find a pharmacy which works a
24-hour shift on a specific date, in a specific town. This query can be used from
a mobile application, for instance, to locate the nearest pharmacy which is on
24-hour duty in the current day, based on the location of the user.

Here is one example SPARQL query which retrieves the pharmacy which works
overnight on the 2nd February 2014, in Bitola (prefixes omitted for brevity):

select ?pharmacyName ?lat ?lng ?phone ?notes

from <http://linkeddata.finki.ukim.mk/lod/data/hifmpharm#>

where {

?pharmacy rdf:type schema:MedicalOrganization;

hifm:medicalFacilityName ?pharmacyName;

geo:city ?city;

geo:latitude ?lat;

geo:longitude ?lng;

hifm:dateOnDuties ?date;

vcard:Phone ?phone;

vcard:Notes ?notes.

filter(contains(lcase(?city),’bitola’) && str(?date)=’2/22/2014’)

}

The result of the query is given in Table 4.

Table 4. Results from the SPARQL query

Property Value

Pharmacy Name PZU Apteka Medika Karta

Latitude 41.02503967285156

Longitude 21.31836891174316

Phone 047/225-285

Notes from 23:00h to 07:00h

Another use-case scenario made available from the three source datasets we
use, is the retrieval of information about the drugs available for purchase in a
specific pharmacy. This scenario can be used in drug and pharmacy applications
and services, which could provide the end-users with the information whether a
given drug is available in a pharmacy, or possibly locating the nearest pharmacy
which has the necessary drug. Here is an example SPARQL query which retrieves
a shortened list of drugs available in the pharmacy with ID= 25046508 (prefixes
omitted for brevity):

select ?label ?dosage ?strength ?quantity

from <http://linkeddata.finki.ukim.mk/lod/data/hifmpharm#>

where {

Linked Open Data for Medical Institutions 253

?pharmacy hifm:pharmacyID ’25046508’;

hifm:hasAvaliableMedicine ?drug.

?drug hifm:available ?quantity;

hifm:dosageForm ?dosage;

hifm:strength ?strength;

rdfs:label ?label.

} limit 10

The results of the query are given in Table 5.

Table 5. Results from the SPARQL query

Drug Name Dosage Strength Quantity

FURAL Capsules 30X100MG 2

FURAL Suspension 90ML 2

GENTAMICIN AMP. 10X40MG 2

MENDILEX Tablets 2MG.X50 2

NIFLAM Tablets 20X200MG 2

PROCULIN TEARS SOL. 10ML 2

REGLAN Syrup 120ML. 2

SUMETRIN Tablets 50MGX3 2

TIMOLOL Eye drops 0.5% 5ML 2

VASOFLEX Tablets 30X1MG 2

Since we have links in our RDF dataset to the DrugBank dataset, and it
is already connected to a large number of datasets from the LODD and LOD
Clouds, we can access and retrieve information from those datasets as well.
One such possible scenario would be to obtain the description of a particular
drug the user is interested in. Since this data is not available from the original
HIFM dataset, we can traverse the LOD Cloud and obtain a short description
from DrugBank or the DBpedia dataset21. Here is an example SPARQL query
which provides both descriptions for a drug available in the pharmacy with
ID=25046508 (prefixes omitted for brevity):

select distinct ?name str(?dbdesc) str(?dpdesc)

where {

graph <http://linkeddata.finki.ukim.mk/lod/data/hifmpharm#> {

?pharmacy hifm:pharmacyID ’25046508’;

hifm:hasAvaliableMedicine ?drug.

?drug owl:sameAs ?hifmDrug.

}

graph <http://linkeddata.finki.ukim.mk/lod/data/hifm#> {

21 http://dbpedia.org/

http://dbpedia.org/

254 M. Jovanovik et al.

?hifmDrug rdfs:seeAlso ?dbdrug ;

drugbank:genericName ?name.

}

service <http://wifo5-04.informatik.uni-mannheim.de/drugbank/sparql> {

?dbdrug drugbank:description ?dbdesc ;

owl:sameAs ?dpdrug.

}

service <http://dbpedia.org/sparql> {

?dpdrug dbpedia-owl:abstract ?dpdesc.

filter langMatches(lang(?dpdesc), "EN")

}

}

The result of the query are given in Table 6.

Table 6. Results from the SPARQL query

Drug
Name

DrugBank Description DBpedia Description (partial
result)

Amoxicillin A broad-spectrum semisyn-
thetic antibiotic similar to
ampicillin except that its
resistance to gastric acid
permits higher serum lev-
els with oral administration.
[PubChem]

Amoxicillin, formerly amoxy-
cillin, and abbreviated amox,
is a moderate-spectrum, bac-
teriolytic, -lactam antibiotic
used to treat bacterial infec-
tions caused by susceptible
microorganisms...

All of these use-cases can easily be implemented in mobile or web applications,
since the SPARQL endpoint22 is available for use as a REST service:

http://linkeddata.finki.ukim.mk/sparql?query=SPARQLQUERY&format=FORMAT

Here, ‘SPARQLQUERY’ represents the SPARQL query, as the ones shown
above, and ‘FORMAT’ represents the format of the response, such as HTML,
XML, JSON, CSV, RDF/XML, N3, Turtle, JSON-LD, etc. This would allow
application developers access to additional information, previously unavailable
over the isolated datasets obtained from the HIFM website.

5 Conclusion and Future Work

The Linked Data concept provides new ways of publishing and connecting data
from different distributed sources and with this it provides a new spectrum of use-
case scenarios, by both businesses and independent developers, for developing
innovative applications and services. The opportunities that lie with the creation

22 http://linkeddata.finki.ukim.mk/sparql

http://linkeddata.finki.ukim.mk/sparql

Linked Open Data for Medical Institutions 255

of new use-case scenarios are a field whose potential is becoming increasingly
recognized [8].

As we already noted, the healthcare domain is already adopting the Semantic
Web technologies and the Linked Data principles, enabling important informa-
tion retrieval in health fields which are faced with separated data stores [9].

In this paper, we identify the field of healthcare as an important field for
end-users which would greatly benefit from the opportunities presented by the
Linked Data principles. Therefore, we transformed the 2-star data available on
the HIFM website and a chain of pharmacies, into 5-star Linked Open Data.
This enabled us to provide example use-case scenarios which can be used when
from businesses and independent developers when developing applications and
services in the healthcare domain.

Since an important part of our source datasets has been obtained directly by
our research team, and was not publicly available, we wanted to show through
the use-cases and the paper in general what the benefits of opening up this data
would be for the general public. We hope that the presented example use-cases
would be a reason for initiating the process of publishing drug availability lists
as open, public data.

Acknowledgment. The work in this paper was partially financed by the Fac-
ulty of Computer Science and Engineering, at the Ss. Cyril and Methodius Uni-
versity in Skopje, as part of the research project Semantic Sky 2.0: Enterprise
Knowledge Management.

References

1. Heath, T.: C. Bizer Linked Data: Evolving the Web into a Global Data Space.
Synthesis Lectures on the Semantic Web: Theory and Technology 1(1), 1–136 (2011)

2. Ruttenberg, A., Rees, J.A., Samwald, M., Marshall, S.: Life Sciences on the Semantic
Web: the Neurocommons and Beyond. Briefings in Bioinformatics 004 (2009)

3. Jentzsch, A., Zhao, J., Hassanzadeh, O., Cheung, K.-H., Samwald, M., Andersson,
B.: Linking Open Drug Data. In: I-SEMANTICS (2009)

4. Samwald, M., Jentzsch, A., Bouton, C., Kallesøe, C.S., Willighagen, E., Hajagos,
J., Marshall, S., Prud’hommeaux, E., Hassanzadeh, O., Pichler, E.: Linked Open
Drug Data for Pharmaceutical Research and Development. Journal of Cheminfor-
matics 3(1), 19 (2011)

5. Law, V., Knox, C., Djoumbou, Y., Jewison, T., Guo, A.C., Liu, Y., Maciejewski,
A., Arndt, D., Wilson, M., Neveu, V.: Drugbank 4.0: Shedding New Light on Drug
Metabolism. Nucleic Acids Research 42(D1), D1091–D1097 (2014)

6. Hassanzadeh, O., Kementsietsidis, A., Lim, L., Miller, R.J., Wang, M.: LinkedCT:
A Linked Data Space for Clinical Trials. arXiv preprint arXiv:0908.0567 (2009)

7. Jovanovik, M., Najdenov, B., Trajanov, D.: Linked Open Drug Data from the Health
Insurance Fund of Macedonia. In: Proceedings of the 10th Conference on Informatics
and Information Technology, pp. 56–61 (2013)

256 M. Jovanovik et al.

8. Kundra, V.: Digital Fuel of the 21st Century: Innovation through Open Data and
the Network Effect. Joan Shorenstein Center on the Press, Politics and Public Policy
(2012)

9. Cheung, K.-H., Prudhommeaux, E., Wang, Y., Stephens, S.: Semantic Web for
Health Care and Life Sciences: a Review of the State of the Art. Briefings in Bioin-
formatics 10(2), 111–113 (2009)

Integrating Multi-viewpoints Paradigm

in Ontology Using Ontology Design Patterns

Soumaya Kasri and Fouzia Benchikha

Département d’informatique, université 20 Aot 1955 Skikda, Algérie
Laboratoire LIRE , université Constantine 2, Constantine, Algérie

{kasri.soumaya,f_Benchikha}@yahoo.fr

Abstract. Everyone has his own perception or viewpoint of real worlds
objects. In this paper, a multi-viewpoints paradigm is integrated in on-
tology with using the ontology design patterns. Ontology development
and use constitute an important research area for semantic web. Ontol-
ogy has been established for knowledge sharing and is widely used as
a means for conceptually structuring domains of interest. An ontology
that supports multi-views representation of its concepts is the key to
achieve the objective of allowing each user to build his own view accord-
ing to his perception of the world / his needs and independently of other
users. This paper describes a new ontology design pattern called multi-
viewpoints pattern for integrating viewpoints notion in ontology. The
multi-view pattern is evaluated by an extended formal concept analysis.

Keywords: Multi-Viewpoints Notion, Ontology, Ontology Design Pat-
tern, Pattern Evaluation, Formal Concept Analysis, Pattern Structures.

1 Introduction

In the literature, there are many definitions of ontology. The most cited is
Gruber’s definition ”Ontology is a formal explicit specification of a shared con-
ceptualization” [18]. Shared refers to the notion that an ontolo-gy captures
consensual knowledge. Indeed, several ontologies that represent particu-lars or
partials viewpoint are developed separately and coexist with the risk of incon-
sistency associated with them. Each ontology engineer or ontology group engi-
neers has a different viewpoint of the world to the others. In opposition to the
monolithic vision of knowledge representation where the universe of discourse
is unique and all observers perceive it in the same way, the multi-viewpoints
approach allows us to model the same reality with different viewpoints. Several
research teams have been working for several years on the integration of the
viewpoint notion in their fields [2] [4] [23]. Ontology Design patterns constitute
an important advance in the ontology design by offering the quality and reuse.
The patterns are used in many areas, they were first mentioned in the field of
architecture by Christopher Alexander in 1977[1]. In software engineering, a de-
sign pattern has been successfully applied to the object oriented (OO) paradigm
to address recurring design problems. They are formalized for the first time in

c© Springer International Publishing Switzerland 2015 257
N. Bassiliades et al. (eds.), New Trends in Database and Information Systems II,
Advances in Intelligent Systems and Computing 312, DOI: 10.1007/978-3-319-10518-5_20

258 S. Kasri and F. Benchikha

1995 in the book ”Gang of Four” [14]. The ontology engineering adopts the
design patterns in the entities representation according to the generic and the
reusable models. We define a ontology design pattern as an appropriate solution
for many conceptualizations, according to several ontology engineers, in a similar
problem. A design pattern is independent of the domain and ontology language.
However, the current efforts to catalog the patterns relate only to OWL language
(implanted patterns in OWL) through the ontology design patterns community
portal [22]. In this paper, we introduce a new pattern to describe the multi-view
point concepts in an ontology. The multi-viewpoints pattern is designed to pro-
vide a model to solve a recurring problem when the objective is the creation of a
multi-viewpoint ontology. The extending formal concept analysis patterns struc-
ture is used to evaluate it. The paper is organized as follows. Section 2 presents
the related work. In section 3, we present how to integrate the viewpoint notion
on ontology. We also present the proposed pattern, it validation with extend-
ing formal concept analysis (pattern structures) and how to use it by imitation
operation. Section 4 concludes our work and presents our research perspectives.

2 Related Work

The integration of viewpoint notion in the ontology design consists to: (i) elab-
orate a shareable ontological model and accessible from several viewpoints; (ii)
align the local ontologies to link the different views. The first approach is close to
the multi-representation notion of the same spacial objects from different view-
points and at different levels of resolution in the spatial systems [25]. Benslimane
et al [6] define a contextual ontology language to support multiple representa-
tions of ontologies. The underlying key idea of their work is to adapt the stamping
mechanism proposed in [25]. Falquet and Mottaz [13] present a building multi-
viewpoints ontology where concepts are associated to many formal definitions
corresponding to different view-points of concepts in question. The second ap-
proach preserves the independence of each local ontology. The integration of the
viewpoint notion and multiple viewpoints consists to put semantic bridges to link
the local ontologies that present different views [3]. Bouquet et al [8] propose
C-OWL as an extension of OWL language for the representation of contextual
ontologies. In C-OWL, knowledge is contained in a set of contexts, called space.
Each context of this space is an OWL ontology. The alignments are expressed
with ”bridges”. In ontology engineering, ontology design patterns (ODPs) con-
stitute one of the most promising means for the design and creation of ontologies.
The ODPs are classi-fied into six families (Structural, Correspondence, Content,
Reasoning, Presentation, Lexico-Syntactic [16]. Several works have been aimed
to improve ontology design patterns aspects. Whitehead et al use the ontology
design pattern to describe transport phenomena [25]. The core Semantic Trans-
port ODP is deliberately simplified to essential elements, to be applicable to
a wide range of use cases in the physical sciences. In [20], the authors present
a geo-ontology design pattern for semantic trajectories and demonstrated its
applicability. vb [26] proposes to use patterns to obtain better automatic match-
ing algorithms. In this paper, we propose a content pattern for inte-gration the

Integrating Multi-viewpoints Paradigm in Ontology Using ODPs 259

viewpoint notion in ontology. Such pattern, called multi-viewpoint pattern. As
ontologies domain, Formal Concept Analysis (FCA) aim at modeling concepts.
It regroups a set of objects sharing the same set of attributes in the same con-
cept based in Galois theory. Haav [19] was the first that introduce to use the
FCA com-bined with a rule-based language to extract and design an ontology.
Cimiano et al [10] in their article present an approach to the automatic acqui-
sition of taxonomies or concept hierarchies from a text corpus. It is based on
FCA. Bendouad et al [5] used FCA and Relational Concept Analysis (RCA) to
construct an ontology in PACTOLE system. Batrice et al [7] propose to use FCA
and RCA for extracting and completing an ODP from a UML schema. We are
however the first to propose to use the pattern structures, an extension of FCA
for ontology design patterns evaluation. The work that we present in this article
is to the first of our knowledge attempt to evaluate ontology design patterns.

3 Integrating Viewpoints Paradigm in Ontology Using
ODPs

To represent the multi-viewpoints concept, it can create a new language or ex-
tend a language as C-OWL but this increases the cost of ontology development,
the time spent to learn and use these languages and the effort spent to adapt
or create new editors, reasoners ... etc. for this, it is highly desirable to save
the same language, formalism, tools to manipulate (express, operate, reason)
the multi-viewpoints concept.. For this reason, we introduce a new pattern from
which each user will be able to interpret his own view on a given domain.

Multi-Viewpoints Ontology Design Pattern. We describe our pattern by
name, problem solving, proposed solution, consequences of its use.

1. Name: the multi-viewpoints pattern
2. Problem: To represent the multi-viewpoints concepts
3. Solution: We informally define the key concepts of multi-viewpoints pat-

tern(shown in figure 1). The main features of the pattern are:
• Multi-viewpoints concept has two relationships to encapsulate the unique

identi-fication (global concept) of an individual and attach one or more
views(local concepts).

• Global concept: Also called global view, a global concept contains the
shared knowledge among different views. This concept refers to local
concepts.

• Local concept: Also called local view, local concepts represent the differ-
ent views of the same object.

• AbstractView concept: The root of all local hierarchy, it is the abstract
concept and the father of all local concepts. This concept is used to hide
views. A user sees only the views which interest.

260 S. Kasri and F. Benchikha

• SpaceName (Multi-viewpoints:: View) : Adding a level that represents
the roots of the local hierarchies. This level is useful to regroup the same
views in the same hierarchy. The main advantage of a namespace is to
allow the thorough research from the root.

• has globalView relationship: Relationship between the multi-viewpoints
con-cept and the global concept that encapsulates its identification.

• has localViews relationship: Relationship between the multi-viewpoints
con-cept and its local view concepts. It can provide constraints on the
type of in-stances that participate in the relationship

• is-A relaionship: The different concepts are organized by a subsumption
rela-tionship according to order of generalization or specialization.

• with Constraints axiom: This axiom has several rules that act on the
consistency of a multi-viewpoints concept during its creation from the
views linked by the bridges presented below.

• with Bridge axiom: Axiom is an interaction that expresses a relation-
ship be-tween view concepts. A bridge symbolizes both the separation
between two concepts of the same view or distinct views and the con-
nection between them. In our pattern, we use the bridges in the same
view hierarchy ”intra-view” and between views ”inter-views”.
The bridges are represented by rules that affirm the direction, the pos-
sibility or impossibility of passing from a view concept to another. In
what follows, we present the bridges that we have built into our pattern.
We put:

– MVP a multi-viewpoints concept that can be linked to multiple views
V j ∈ {V 1, V 2, V 3..}, j = 1...n;

– S,K,M are the view concepts and i is an individual of one of these con-
cepts.

– We adopt the following notation to present the namespace in which we
can create the multi-viewpoints concepts: (MVP ::Vj ::view concept)

• Total inclusion bridge: It is a full inclusion between two concepts and
it translates that all individuals of the first concept are also individuals
of the second concept. This bridge can be described by the rule: ∀i ∈
MPV :: V j :: S ⇒ i ∈ MPV :: V j :: K

• Partial inclusion bridge: It translates that few individuals of the first con-
cept are individuals of the second concept. This bridge can be described
by the rule:∃i ∈ MPV :: V j :: S ⇒ i ∈ MPV :: V j :: K

• Exclusion bridge: It reflects that an individual can belong to either the
first concept or the second concept but not both. This bridge is described
by the rule: ∀i ∈ MPV :: V j :: S ⇒ i /∈ MPV :: V j :: K

4. Consequences

• The pattern allows to create a multi-viewpoints instance with the same
pattern structure. This coexistence of multiple views at the same time
allows to express constraints inter-views.

• The presence of AbstractView concept as root of local hierarchies gives
a scalability to pattern. It can dynamically add or delete a local concept
or a full view without changing the pattern structure.

Integrating Multi-viewpoints Paradigm in Ontology Using ODPs 261

• The constraints on has localViews relationship allow a more accurate
representation and prohibit inconsistent cohabitation of views.

Fig. 1. Multi-viewpoints pattern with UML representation [9]

Pattern Reuse. To apply the pattern in a given context, imitation is the sim-
plest operation to use a pattern in the oriented object approach [11]. Imitation
is to duplicate the solution and adapt it to a given context, is defined as follows
[24]:

Imitate = to adapt the proposed solution in pattern

Adapt = (rename / add / remove property)*

For this, we illustrate our pattern using the imitation on a small example
concerning rental / housing system. In this example, we adapt our pattern to
support a five views for the housing concept: ”Size view” contains properties that
relate, for example, the number of housing parts, ”Localization view” takes into
account the housing envi-ronment, ”Type view” that decomposes the housing
according to type (house or apartment), ”occupation duration view” housing
for temporary duration or permanent and ”Financial view ” deals the rental
costs of housing. In addition, the housing concept has a global view which could
regroup all the common properties between the different views (see figure 2).
The axioms can be expressed with the bridges, for example, if we know that all
big housing is expensive. We can express this inter-views knowledge(Size and
Financial) for housing concept as a total inclusion bridge from Big Housing con-
cept to Expensive Housing concept as follows : ∀i ∈ Housing::Size::Big Housing
⇒ i ∈ Housing::Financial::Housing Expensive. We also know that a studio will
never be a home. This intra-view knowledge (type) can be expressed for hous-
ing concept as exclusion bridge as follows: ∀i ∈ Housing::Size::Studio ⇒ i /∈
Housing::Size::Home.

262 S. Kasri and F. Benchikha

Fig. 2. Imitation of multi-viewpoints pattern in rental / sale of housing system

Evaluation with Pattern Structures. There are not yet rigorous methodolo-
gies to evaluate the Ontology Design Patterns (ODPs) but only certain criteria,
such as reuse, to evaluate the success of ODPs [15]. In this evaluation, We use an
extension of the formal concepts analysis FCA (pattern structures) to complete
the pattern with a formal specification. This formal specification plays a great
role to check if the implementation of pattern solves the design problem while
respecting its properties. The evaluation result, on a given example, is a lattice
which presents a viewpoint of current user. The classic FCA is valid to build
a concept lattice when objects are described by bi-nary attributes but not for
complex objects such as viewpoint individuals. They are described by a set of
view individuals (local and global). For building a concept lattice of viewpoint
individuals (user viewpoint), it is necessary to define a partial order of their
descriptions. This is the main idea of the pattern structures defined by Ganter
& Kuznetsov [17]. Such a structure is formalized by a triple (G, (D,�), δ) where
G is a finite set of objects. (D,�) is a meet-semi-lattice of objects description
called patterns with infimum (meet) operator �. This operator is idempotent,
associative and commutative. δ is a function which associates to any object g∈G
its description (g) in D. The pattern of D are ordered by subsumption relation
� where c � d ⇔ c�d = c, ∀c, d ∈ D. The following operators (.)� form a Galois
connection between the power set of G and (D,�) with A � G et d ∈ (D, δ):

A� = �g∈Gδ(g); (1)

d� = {g ∈ G|d � δ(g)}; (2)

Concepts obtained are the pairs (A,d) with A ∈ G and d ∈ (D,�), such that
A� = d and A = d� are ordered by (A1, d1) ≤ (A2, d2) ⇔ A1 � A2(⇔ d2 � d1)
to form a lattice of concepts. We detail in the following the elements needed
to build a lattice of viewpoint concepts by using the pattern structures and
exploiting the multi-viewpoints pattern.

Integrating Multi-viewpoints Paradigm in Ontology Using ODPs 263

• Textual representation of multi-viewpoints pattern
The essential concepts represented to make the pattern usable by the pattern
structures are: View concept, viewpoint concept, view individual, viewpoint
individual.

• View concept (global/local): We represent by a vector of property and
domain pairs. We take the example previously mentioned:
Global Housing=<[number:String],[address:String],[floor:Integer],
[surface:Integer]>
Big housing=<[nbr Balconies : Integer],[nbr Rooms≥ 3]>

• View Individual: It is the instantiation of a view concept. We replace the
domain of properties concepts with values. Ho global=<[number=001],
[adress=Skikda],[floor=3],[surface=140]>,Appa=<[annex=park00E]>,
Ho F4=<[nbr Balconies=3],[nbr Rooms=4]>

• Viewpoint concept: It is created by user from multi-viewpoints concept
by the inheritance mechanism. We represent viewpoint concept with a
set of view concepts presented above, to participate in it building.
VP1 Housing={<[number:String],[adress:String],[floor:Integer],[surface
:Integer]>,<[annex:Park]>,<[nbr Balconies:Integer],[nbr Rooms≥ 3]>,
<[rent:Integer],[expenses:Integer]>}

• Viewpoint individual: It is the instantiation of a viewpoint concept. We
replace the domain of properties concepts with values
Ho VP1=={<[number=001],[adress=Skikda],[floor=3],[surface=90]>,
<[annex=Park00E]>,<[nbr Balconies=3],[nbr Rooms=4]>,
<[rent=60000],[expenses=1000]>}

• Workspace : instantiation space D
From the view of design pattern, instantiation of multi-viewpoints pattern
consists in replacing the pattern concepts with those of its application do-
main. This task commences by creating the viewpoint concept from the
multi-viewpoints concept. The instantiation of viewpoint concept consists
to create an individual which at least one property of type has localViews
or has globalView has a value when the type is an instance of a local con-
cept or a global concept. This individual is created according to an op-
eration of instantiation in an instantiation space D. Instantiation space
D is composed of the vectors that represent the view concepts constitut-
ing the pattern. For our example in Figure 2, the instantiation space is:
D={<[number:String],[adress:String],[floor:Integer],[surface:Integer]>,<[
annex:Park]>,<[nbr Balconies:Integer],[nbr Rooms≥ 3]>,<[rent:Integer],
[expenses:Integer]>. . . }

• The set intersection operator
⋂

as a meet operator �
Viewpoint individuals noted for VPI are ordered in a meet-semi-lattice (D,⋂

) where D presents the instantiation space D of these individuals. The
set-intersection operator

⋂
has the properties of a meet operator � in a

semi-lattice. The VPI individuals are designated by the sets. For this, we
use here the set-intersection as an operator giving the meet of di patterns
in D. So in what follows multi-viewpoints individuals views are ordered in a
meet-semi-lattice (D,

⋂
).

264 S. Kasri and F. Benchikha

• δ, affectation function
The pattern structure is formalized by a triplet(VPI,(D,

⋂
),δ(vpi)) where

VPI is all viewpoint individuals,(D,
⋂

) is a semi-lattice of viewpoint indi-
viduals and δ is an affectation function which associates to any vpi ∈ VPI
its description (vpi) in D. This description is given by a set of descriptions
of the view individuals. We can compute δ(vpi) by grouping δ of each view
individual constituting vpi. Function δ of view individual is given by a direct
projection in space instantiation D.

• Building the viewpoint concepts lattice
We can classify viewpoint individuals and concepts in order by the two op-
erators A� and d�with A ⊆ VPI and d ∈ (D,

⋂
). For this, we replace �

by= in d� because we seek to regroup individuals that are in the same class
(concept).

• Evaluation of pattern implementation in rental/ housing system
At first, we assume that the multi-viewpoints ontology of rental/ housing
system has already been built by pattern, using any means (presented in
future work). In this section, we study the possibility of constructing a view-
point hierarchy from this ontology. The objective here is to illustrate how to
construct the user viewpoint by lattice of concepts. This lattice will be trans-
formed by following to an ontological hierarchy that indicates the viewpoint
of current user. In the system, the X user selects the views (view individu-
als) that are interested to build his viewpoint VP Housing userX. We will
classify these individuals to construct the lattice of concepts. Let consider,
for example instantiation space D:={<[number:Integer],[adress:String],[floor
:Integer], [surface:Integer]>,<[annex=Park]>,<[annex=Grage]>,
<[nbr Balconies :Integer],[nbr Rooms≥ 3]>,
<[nbr Balconies:Integer],[nbr Rooms< 3]>,
<[rent ≥ 10000],[expenses:Integer]>,
<[rent< 10000],[expenses:Integer]>,<[localization:CenterCity]>,
<[localization:SeaSide]>. } The descriptions of individuals selected by
the user X:

• Ho VP1={<[number=001],[adress=Skikda],[floor=3],[surface=140]>,<[
annex=park00E]>,<[nbr Balconies=3],[nbr Rooms=4]>,<[rent=20000],
[expenses=200]>}

• Ho VP2={<[number=002],[adress=Alger],[floor=2],[surface=120]>,<[
annex=park00B1]>,<[nbr Balconies=2],[nbr Rooms=3]>,
<[rent=33476],[expenses=780]>}

• Ho VP3={<[number=003],[adress=Skikda],[floor=3],[surface=140]>,<[
annex=park00H]>,<[nbr Balconies=3],[nbr Room=4]>,<[rent=25000],
[expenses=200]>,<[localization=citycenter]>}

For demonstration, we apply the derivation operators on the some individ-
uals of example given above and determine the subsumption relationship
between them. In lattice, a viewpoint concept is represented by a pair (A,
d) where d is the pattern or the description that represents the concept in
instantiation space D and A is the set of view individuals of this concept.

Integrating Multi-viewpoints Paradigm in Ontology Using ODPs 265

Our process is as follows:

• First operator: We take A={Ho VP1,Ho VP2 } so A� =
{Ho V P1, Ho V P2}� {Ho V P1, Ho V P2}�=δ(Ho V P1)

⋂
δ(Ho V P2)

δ(Ho V P1)={(<[number=001],[adress=Skikda],[floor=3],[surface=140]>),
(<[annex=Park00E]>),(<[nbr Balconies=3],[nbr Rooms=4]>),(<[rent
=20000],[expenses=200]>)}={<[number:Integer],[adress:String],[floor:
Integer],[surface:Integer]>,<[annex=Park]>,<[nbr Balconies:Integer],
[nbr Rooms≥ 3]>,<[rent≥ 10000],[expenses:Integer]>}
δ(Ho V P2)={(<[number=002],[adress=Alger],[floor=2],[surface=120]>),
(<[annex=Park00B1]>),(<[nbr Balconies=2],[nbr Rooms=3]>),(<[
rent=33476],[expenses=870]>)}=
{<[number:Integer],[adress:String],[floor:Integer],[surface:Integer]>,
<[annex=Park]>,<[nbr Balconies:Integer],[nbr Rooms≥ 3]>,
<[rent ≥ 10000],[expenses:Integer]>} so {Ho V P1, Ho V P2}� =
{<[number:Integer],[adress:String],[
floor:Integer],[surface:Integer]>,<[annex=Park]>,<[nbr Balconies:Integer],[
nbr Rooms≥ 3]>,<[rent≥ 10000],[expenses:Integer]>}

• Second operator: We take the result of {Ho V P1, Ho V P2}� as and we
will calculate d� ({<[number : Integer], [adress : String], [floor : Integer],
[surface : Integer]>,<[annex = Park]>,<[nbr Balconies : Integer],
[nbr Rooms ≥ 3]>,<[rent ≥ 10000], [expenses : Integer]>})�

={Ho VP1,Ho VP2} We have {Ho V P1, Ho V P2}�
={<[number:Integer],[adress:String],[floor:Integer],[surface:Integer]>,
<[annex=Park]>,<[nbr Balconies:Integer],[
nbr Rooms ≥ 3]>,<[rent≥ 10000],[expenses:Integer]>} And({<[number :
Integer], [adress : String], [floor : Integer], [surface : Integer]>,<[annex
= Park]>,<[nbr Balconies : Integer], [nbr Rooms ≥ 3]>,<[rent ≥ 10000],
[expenses : Integer]>})� ={Ho VP1,Ho VP2} so
({ Ho VP1,Ho VP2},<[number:Integer],[adress:String],[floor:Integer],[surface
:Integer]>,<[annex=Park]>,<[nbr Balconies:Integer],[nbr Rooms ≥ 3]>,
<[rent ≥ 10000],[expenses:Integer]>}) is viewpoint formal concept named
VP12 housing userX noted for (A1,d1) because A�= d and d� =A.
We have also (A2,d2)=({Ho VP3},{<[number :Integer],[adress:String],[floor
:Integer],[surface:Integer]>,<[annex:Park]>,<[nbr Balconies:Integer],[nbr
Rooms≥ 3]>,<[rent ≥ 10000],[expenses:Integer]>,<[localization:CenterCity]
>})is viewpoint formal concept named VP3 housing userX noted for(A2,d2).

• Building the user viewpoint (Building the lattice): Now, we introduce
how to order the viewpoint formal concepts in lattice. The viewpoints con-
cepts are presented by a pair(A, d). According to the textual representation
proposed in section 3 A and d are the set of vectors. In our approach, the or-
dering is based on d description. The two concepts obtained above are ordered
by (A2, d2) ≤ (A1, d1) because d1 � d2 to form the concepts lattice i.e. the
VP3 housing userX concept is subsumed by VP12 housing userX concept.
The result lattice of the above example is shown in Figure 3:

266 S. Kasri and F. Benchikha

Fig. 3. Viewpoint lattice of VP Housing userX

4 Conclusion

In this paper, we discussed how to integrate viewpoint notion in ontology with
pattern. Our main contribution consists to create a new ontology design pat-
terns, called multi-viewpoints patterns, and its evaluation with pattern struc-
tures. For a concrete validation of proposed pattern, we are continuing the work
to represent the data in the web of linked open data. The web of linked data
is characterized by linking structured data from different sources using equiv-
alence statements, such as owl:sameAs. We will replace the OWL: sameAs by
multi-viewpoints pattern.

References

1. Alexander, C., Ishikawa, S., Silverstein, M.: A Pattern Language. Oxford Press
(1977)

2. Attardi, G., Simi, M.: A Formalization of Viewpoints. Fundamenta Informati-
cae 23(2/3/4), 149–173 (1995)

3. Bach, T.L.: Construction dun Web Smantique Multi-Points de Vue. Unpublished
doctoral dissertation, School of Mines of Paris, Sophia, French (2006)

4. Benchikha, F., Boufaida, M.: The Viewpoint Mechanism for Object oriented Data-
bases Modelling, Distribution and Evolution. Journal of Computing and Informa-
tion Technology 15, 95–110 (2007)

5. Bendaoud, R., Toussaint, Y., Napoli, A.: LAnalyse Formelle de Concepts au ser-
vice de la construction et lenrichissement dune ontologie. Revue des Nouvelles
Technologies de l’Information, RNTI-E-18, 133–164 (2010)

Integrating Multi-viewpoints Paradigm in Ontology Using ODPs 267

6. Benslimane, D., Arara, A., Falquet, G., Maamar, Z., Thiran, P., Gargouri, F.: Con-
textual Ontologies: Motivations, Challenges, and Solutions. In: Fourth Biennial
International Conference on Advances in Information Systems., pp. 168–176 (2006)

7. Batrice, F., Huchard, M., Napoli, A.: Une etude sur la mise en forme de patrons
de conception pour les ontologies avec analyse formelle de concepts. Langages et
Modles Objets, 83–98 (2010)

8. Bouquet, P., Giunchiglia, F., Van Harmelen, F., Serafn, L., Stuckenschmidt, H.:
Contextualizing Ontologies. Journal of Web Semantics 26, 1–19 (2004)

9. Brockmans, S., Volz, S., Eberhart, A., Loeffler, P.: Visual modeling of OWL DL
ontologies using UML.Van. In: The Third International Semantic Web Conference,
pp. 198–213 (2004)

10. Cimiano, P., Hotho, A., Staab, S.: Learning concept hierarchies from text corpora
using formal concept anaylsis. Journal of Artificial Intelligence Research 24, 305–
339 (2005)

11. Coad, P.: Object-Oriented Patterns. Communication of ACM 35(9) (1992)
12. Daga, E., Blomqvist, E., Gangemi, A., Montiel, E., Nikitina, N., Presutti, V.,

Villazn-Terrazas, B.: NeOn D2.5.2 Pattern based ontology design. Methodology
and Software Support (January 31, 2010) http://www.neon-project.org (re-
trieved)

13. Falquet, G., Mottaz, C.L.: A Model for the Collaborative Design of Multi-Point-
of-View Terminological Knowledge Bases. In: Knowledge Management and Orga-
nizational Memories, pp. 193–202 (2002)

14. Gamma, E., Helm, R., Johnson, R.E., Vlissides, J.: Design Patterns -Elements
of Reusable Object-Oriented Software. Addison-Wesley Longman Publishing Co.
(1995)

15. Gangemi, A.: Ontology design patterns for semantic web content. In: Gil, Y.,
Motta, E., Benjamins, V.R., Musen, M.A. (eds.) ISWC 2005. LNCS, vol. 3729,
pp. 262–276. Springer, Heidelberg (2005)

16. Gangemi, A., Presutti, V.: Ontology Design Patterns. In: Handbook of Ontologies,
Springer, Berlin (2009)

17. Ganter, B., Kuznetsov, S.O.: Pattern structures and their projections. In: Delugach,
H.S., Stumme, G. (eds.) ICCS 2001. LNCS (LNAI), vol. 2120, p. 129. Springer,
Heidelberg (2001)

18. Gruber, T.R.: A translation approach to portable ontologies. Knowledge Acquisi-
tion 5(2), 199–220 (1993)

19. Haav, H.: A Semi-automatic Method to Ontology Design by Using FCA. In: Pro-
ceedings of the 2nd International Workshop on Concept Lattices and their Appli-
cations, pp. 13–25 (2004)

20. Hu, Y., Janowicz, K., Carral, D., Scheider, S., Kuhn, W., Berg-Cross, G., Hitzler,
P., Dean, M., Kolas, D.: A geo-ontology design pattern for semantic trajectories. In:
Tenbrink, T., Stell, J., Galton, A., Wood, Z. (eds.) COSIT 2013. LNCS, vol. 8116,
pp. 438–456. Springer, Heidelberg (2013)

21. Marino, O.: Raisonnement classificatoire dans une reprsentation objets multi-
points de vue. Unpublished doctoral dissertation, University of Joseph Fourier,
Grenoble, French (1993)

22. Presutti V, Daga E, Gangemi A, Salvati A.:(2008),
http://www.ontologydesignpatterns.org

23. Ribire, M., Dieng, R.: Introduction of Viewpoints in Conceptual Graph Formalism.
In: The 5th International Conference on Conceptual Structures, pp. 168–182 (1997)

24. Rieu, D., Giraudin, J.P., Saint-Marcel, C., Front-Conte, A.: Des oprations et des
relations pour les patrons de conception, Congrs INFORSID99, Toulon, Juin (1999)

http://www.neon-project.org
http://www.ontologydesignpatterns.org

268 S. Kasri and F. Benchikha

25. Spaccapietra, S., Parent, C., Vangenot, C.: Gis databases:From multi-
scale to multire-presentation. Abstraction, Reformulation, and Approximation
1864,SARA-2000, pp. 57–70. Springer (2000)

26. Vb, O.: Exploiting patterns in Ontology Mapping. In: Proceedings of the 6th In-
ternational Semantic Web Conference and 2nd Asian Semantic Web Conference,
pp. 950–954 (2007)

27. Whitehead, B., Adams, B., Schildhauer, M., Vardeman, C., Kuhn, W., Shepherd,
A., Sinha, K.: Abstracting Transport to an Ontology Design Pattern for the Geo-
sciences. In: 4th Workshop on Ontology and Semantic Web Patterns, Sydney Con-
vention & Exhibition Centre in Darling Harbour, Australia (2013)

Part IX
TQMCA 2014 Workshop

Technologies for Databases Change Management

Kai Jannaschk1,� Hannu Jaakkola2 and Bernhard Thalheim1

1 Christian-Albrechts-University Kiel, Computer Science Institute, 24098 Kiel, Germany
{jannaschk,thalheim}@is.informatik.uni-kiel.de
http://www.is.informatik.uni-kiel.de/˜jannaschk,
http://www.is.informatik.uni-kiel.de/ t̃halheim

2 Tampere University of Technology, P.O. Box 300, FI-28101 Pori, Finland
hannu.jaakkola@tut.fi

http://www.pori.tut.fi/˜hj

Abstract. Database quality must be maintained during the entire database life
span that spans over decades. Quality is typically an issue during development
and installation. Later the database system, e.g. the database structure is going
to be changed from time to time. This change can be forecasted on the basis of a
facilitation methodology. Change management can be based on separation of con-
cern by levels and on abstraction layering techniques. We propose an approach
to change-aware database development. The approach is based on an category-
problem-cause model that separates change requests into categories which allow
a more specific treatment of changes. These specific changes are based on tech-
niques, e.g. restructuring techniques. Category-cause-solution pattern are derived
for systematic treatment of changes.

1 Introduction

1.1 Characteristics of Database System Development

Databases are essential parts of almost all information systems (IS). It can be seen as
a critical kernel of it that has to adapt in all changes over the whole life span of the
IS. There seems to be tendency towards more and more complex information systems
- partially because of growing interoperability requirements between individual appli-
cations, but partially also because of longer life span of legacy systems. There are a
lot of examples of information systems having their roots in the past of decades ago;
this was seen in the year 2000 when big amount of information systems had to be up-
dated to accept the change of millennium in time dependent data handling. Nowadays
complex applications handle data from variety of origins. Information about the origin,
context, derivation, lineage, ownership or history of some artifact plays a vital role in
those applications and is termed as provenance [11].

Information systems can be seen as a construction of layers, in which the layers
closest to the user are more tended to radical changes - e.g. user interface technologies
are adapted in the trends and technologies. The layers deeper in the structure are staying
more stable, but are anyway sensitive for changes having their source either in changing

� Corresponding author.

c© Springer International Publishing Switzerland 2015 271
N. Bassiliades et al. (eds.), New Trends in Database and Information Systems II,
Advances in Intelligent Systems and Computing 312, DOI: 10.1007/978-3-319-10518-5_21

http://www.is.informatik.uni-kiel.de/~ jannaschk
http://www.is.informatik.uni-kiel.de/~ thalheim
http://www.pori.tut.fi/~ hj

272 K. Jannaschk, H. Jaakkola, and B. Thalheim

requirements, changing environment or changing other parts of IS. This is the situation
with databases, too. They can be seen as a stable part of information system carrying
the responsibility of continuing data management over time, but simultaneously has
pressure to conceptual, logical and physical change requests. If these requests are not
managed properly the quality of data and database is not anymore in an acceptable level.

1.2 Data Quality

Data(base) quality as a part of quality management related studies has been on the
background reasonable long time. First the focus was given to process quality, which
was handled by general purpose quality standards (e.g. ISO 9000) and in Information
Technology (IT) context by different software process related applications of it (e.g. ISO
9000-3, ISO 15504, CMM(I)). Simultaneously to this some focus was also transferred
to factors related to software product quality. The series of standards ISO 9126 (parts 1-
3) defined three product related quality factor categories: internal, external and quality
in use. These standards have been the basis for the current work by ISO/IEC JTC1/SC7
having named “Software product Quality Requirements and Evaluation” (SQuaRE),
which has widener the scope of product quality standard to cover also data quality in
ISO/IEC 25012 [5].

SQuaRE defines fifteen data quality factors from from two different viewpoints: in-
herent (“the degree to which quality characteristics of data have the intrinsic potential
to satisfy stated and implied needs when data is used under specified conditions and
system dependent”) and system dependent (“the degree to which data quality is at-
tained and preserved within a computer system when data is used under specified con-
ditions”). The standard [5] lists five inherent quality factors (Accuracy, Completeness,
Consistency, Credibility and Currentness), and three system dependent quality factors
(Availability, Portability and Recoverability). The factors common to both of the views
are Accessibility, Compliance, Confidentiality, Efficiency, Precision, Traceability. Mor-
aga et al. in [11] extend this framework to cover quality issues related to web based
information systems and list 44 quality factors in four different factor categories.

The above mentioned studies are focused in data quality, which is an essential part
of database quality, but not all. Hoxmeier has given additional focus in database (struc-
tural) issues in his articles [4] and [3]. He categorizes the database quality factors in four
main categories which are further divided in more detailed factors in two level hierar-
chy: process (the role of development phases, data (quality of data), model (importance
of variety of data models), behavior (dynamic properties in data handling). The final list
of characteristics covers 34 quality factors in [4].

1.3 Towards Systematic Approach for Database Change Management - From
Individual Attributes to a Generic Method

The discussion above points out the importance of database change management as
a part of IS life cycle and maintenance. To maintain the quality of database and its
data has challenges, especially in connection with complex applications handling large
amount of diverse data from different sources and from legacy systems having long
life cycle. This paper introduces a framework that is planned to support systematic

Technologies for Databases Change Management 273

change management in databases. The Category-Problem-Cause (CPC) model applies
the principles introduced by Category-Cause-Solution (CCS) method of the authors in
[6]. CCS introduces selected change patterns that in software product life cycle context,
whereas CPC model is aimed to be used in database context.

The paper is structured as follows. Most challenging task in database change man-
agement relates to changes in database structure, which is also in main focus of our
paper. The paper is structured as follows. Section 2 introduces the basic elements of
our model - facilitation model, separation of concerns and the layered structure of data
handling. Section 3 handles the change management in conceptual level by introducing
the principles of CPC model. In this Section we also discuss about change policies and
methods for evolution of database system models. Section 4 applies the ideas discussed
above in database structure change management. Section 5 summarizes the paper.

2 Change-Aware Development of Database Systems

Database systems evolve during their lifespan due to some changes in the enterprise or
organisation, due to technology used for the system, due to integration of several (sub-
)systems, due to the changes in the application area and due to the evolution of the tasks
of the system. We might manage changes on the fly, i.e. handling the change whenever
it is necessary. We may however also use a framework that can be quickly adopted to
the given change and that handles changes already at the development and installation
phases. Change-aware database development is an open research issue mainly due to
the large variety of potential changes.

2.1 The Facilitation Model

The Facilitation Model [15] is a methodology model and uses eight stages:
Inquire - Discovering the symptoms.
Investigate - Defining the current state.
Vision - Defining the possibilities.
Analyse - Generating a list of potential solutions.
Qualify- Narrowing solutions down to those with the greatest leverage.
Plan - Securing ownership, commitment, permission.
Apply - Managing the realisation of the solution(s).
Report - Measuring the final outcome and capturing experience.

This model provides developers with proactive, solution-focused templates. They con-
tinuously engender support to both the personnel that face a change and the manager or
application engineer. Through this continuous involvement, the Facilitation Model cre-
ates awareness, ownership, and commitment to the success of the selected solution(s).
Proactive change handling can be based on a general conceptual approach. [15] uses
the following list as a work plan:

(a) Conceptualisation of change handling solutions.
(b) Enhancement of conceptual schemata by change handling templates.
(c) Development of control and measurement practices.

274 K. Jannaschk, H. Jaakkola, and B. Thalheim

(d) Development of parameter set reduction and dependence representation techniques.
(e) Substantiation of data mining and statistics techniques for performance analysis.
(f) Development of a change handling framework.

2.2 Change Management by Separation into Levels

Change management can be based on a separation of concerns. We may systematically
separate a number of concerns according to the classical project management frame-
work [6]: ‘what’ (level 1) provides a specification; ‘how’ (level 2) defines the way the
framework is going to work; ‘do’ (level 3) prescribes the application of the measures;
‘plan’ (level 4) provides the schedule for the application; ‘manage’ (level 5) governs
the way of work; ‘coordinate’ (level 6) integrates the framework into the entire devel-
opment process; ‘optimize’ (level 7) revises the project management.

The first four levels for change management are:

1. The specification or the conceptualisation level is used for a description of the
change. The description consists of a specification of the change property, the mea-
surement, and the policies for evaluation. It can be extended by specific policies
for various development methods such as agile development, by transformations
of change properties into others, and by associations among change properties. Fi-
nally, we may derive constraints for the application of the change property.

2. The control or technical level deals with the application of the change model. It
provides guidance for the control procedures such as setting the control manage-
ment, deriving the scope of control, definition of the control tasks and its actors.
The application of the change framework is based on a quality property portfolio.

3. The application or technology level handles the management of change evaluation
within software etc. projects based on the technology of development.

4. The establishment or organisational level is based on a methodology and may be
supported by an change management system.

This four-level framework for change management can be extended by level five
that provides facilities for handling resolution of change properties and for predicting
changes in satisfaction whenever software evolves. Level six integrates change man-
agement into the optimisation of the software development process. Level seven uses
experiences gained for the innovation and adaptation of other processes and products
that have not yet reached this maturity.

2.3 Layering for Change Handling

Software systems and especially database systems are layered systems defined on the
basis of a systems architecture. This architecture typically allows to abstract from de-
tails such as location of certain operation, infrastructure provided for computation,
business user operating the system, or internal structure and functionality of a system.
Typically a system architecture allows a number of views such as module or techni-
cal architecture, application behaviour architecture, or infrastructure architecture [12]
. Moreover, database systems are layered into an external system that communicates
with the business through views or public base tables, conceptual system that describes

Technologies for Databases Change Management 275

the database system with all its facilities, and internal layer describing the realisation of
the system on the basis of a platform or database management system.

This layering and architecturing allows also a multi-layering of system objects into
object that are in a ‘good’ (correct and finalised) state, or ‘bad’ (incorrect but known
or intermediate) state, or state to be changed. We may thus separate the state of the
database system into normal state, intermediate state, final state, and exceptional state.
We detected in the previous cooperation project that this separation of concern can be
matched with the architecture [7].

Additionally, change handling can be defined on top of business rules. In this case,
business transactions and consistency maintenance programs such as triggers or stored
procedures can be extended by injecting change handling into these programs. One pre-
liminary prerequisite for such kind of injection is a clear understanding of all possible
kinds of changes. This understanding is the main goal for the first task in our framework.

We aim to develop change containers that can be automatically called whenever the
system detects or faces some kind of changes. The architecture research in the previous
cooperation projects resulted in the discovery how orthogonal schemata may be added
to database system conceptual schemata thus forming a way how to combine these
schemata. This schema construction approach has been developed in [9] . It allows a
multi-shell change handling based on a multi-shell encapsulation of change handlers.

3 Towards Conceptualisation for Change Management

3.1 The Category-Problem-Cause Model

We can classify and manage changes based on the distinction of their causes. The sim-
plest and obvious cause requiring a change is an error, which may relate to design,
operation, or organisation. Errors must be corrected. They can occur during application
domain description, requirements prescription, software specification as well as during
coding. There cannot be any systematic treatment for such. So, we neglect this cause
for further consideration. Five main kinds of changes can be distinguished:

– The first cause requiring a change is incompleteness (A). A software system oper-
ates in an environment (or context), which, following McCarthy [10], we denote
by (w, t), where w is a slice of the world at time t. Unfortunately it is rarely pos-
sible to determine in advance all the components of w that are relevant, and how
the relevant components are expected to evolve over time. It is impossible to de-
termine in advance the effect of these components on a computation, which means
that changes due to incompleteness require human intervention.

– The second cause requiring a change is based on insufficiency (B) to represent
the current knowledge about the application, about technology on hand or other
issues such as organisational, social and strategic background. Insufficiency typi-
cally leads to so-called workarounds that partially patch or repair a situation. This
approach causes another stream of changes.

– The third and fourth type corresponds to deviation from normality. Users, system
developers, and implementers are biased by the ‘normal’ case and do not keep in
mind that states different from the normal ones may occur. The system thus operates
well in 80% of operating time and suddenly stops normal operating or suddenly
behaves in a way that has not been anticipated.

276 K. Jannaschk, H. Jaakkola, and B. Thalheim

• Changes are caused when lifespan changes (C) are not foreseen.
• Another kind of change is caused by overestimation of the normal case. Hidden

cases (D) are overlooked but important.
– The fifth cause requiring a change is context dependence (E). Systems are not oper-

ating on their own. They share resources with other systems, are used in a combined
fashion by users, have different maintenance regimes, have different deployment
conditions and thus must be considered to be context dependent. This kind of de-
pendence on the system is observed for all engineering disciplines but not properly
handled for software systems.

Architectures of modern computer systems, solutions to application domain tasks, and
code developed under these assumptions and environments are interdependent. Change
problems are typically observed at the runtime but must be directly tracked back to
the systems development and deployment decisions. For instance, the change category
‘space’ with the problem ‘out of space conditions (storage structures)’ can be tracked
back to change causes in the DBMS Oracle ‘poorly forecasted data volumes in physical
design’, ‘tablespace fragmentation’, ‘invalid settings for either object space sizes or
tablespace object settings’, or ‘not using locally-managed tablespaces’.

This Category-Problem-Cause Model is the basis for our solution to develop
change-aware systems. It is combined with the characterisation by content, motivation,
examples, fit criterion, measurements, and considerations.

3.2 The Change Policy and Change Patterns

A change policy is based on a problem description and a chosen change solution. Prob-
lems are specified by describing a database state in which a problem occurs, by de-
scribing properties of better states, by describing potential actions to change states of a
system in general, by goal tests that allow to ascertain whether the problem has disap-
peared and a problem solution controller that traces future states of the database. The
change solution is based on a definition of the solution, an illustration of the solution,
examples that illustrate the successful solution and patterns that have been used for the
solution.

Basic solution patterns specify the required behaviour that should be satisfied under
certain conditions, the commanded behaviour that is to be controlled in accordance with
commands issued by an operator, the information display for control of the success
of the solution states and behaviour information, the simple workpiece used during
solution, and the transformation that must be applied to the system for resolving the
problem. There are few examples for general solution patterns so far. We defer the
development of solution patterns to future research.

We may use a number of change patterns. In this paper we provide details for three
basic patterns. The first and third pattern correspond to strategies that have been applied
for database migration (chicken little and butterfly). A fourth pattern which could be
called big bang pattern [8] seems not to be applicable in change management.

Liquefaction of problem area: The problem area is completely gathered with all
structures, constraints and functions. The problematic elements are collected in a
specific notice board. Then the elements are categorised and composed to database

Technologies for Databases Change Management 277

types together with the corresponding integrity constraints. The result is a new
database schema. This new database schema allows us to derive an extract-
transform-load program for transforming a part of the current database to a new
one. In parallel rewrite rules for functions are derived. They allow to transform ex-
isting functions to new functions. The same kind of rules can also be derived for
views. This rule set may be incomplete and for this reason we might have to remain
the old part for certain applications. Backward gateways and wrappers [14] provide
a basis for a solution to this problem.

Change after satisfying observation: The pattern generalises the butterfly method
[1,2,8] to database migration and can be considered to be a lazy change. It uses
two change steps. The intermediate change step transforms the initial model to
an intermediate model that is tested in application situations and has a validity
deadline. If the validity deadline is reached without a transformation success then
the initial model and the initial database are enabled and the intermediate model
and databases are disabled. The intermediate model is enhanced by controllers that
monitor and control the success of the changes. The finalisation change step trans-
forms the intermediate model to the finalised model and applies this transformation
to the application system as well in the case the validity deadline has successfully
been reached.

Transfer after parallel run: First the current database application is frozen. A solu-
tion to the problems is developed and a new solution is going to be developed in the
initial step. A set of cluster types [13] is developed for data retrieval. These types
allow to retrieve old and new data. The intermediate step uses now both systems in
parallel. Any new data or any modified data within the change scope is stored in the
new system. In the case of change the old data are removed from the old database.
In parallel rewrite rules and extract-transform-load programs are tested within a
test environment. In the finalisation step the database and the application functions
are taken over to the new system.

There are far more patterns known in practice but not yet systematically founded by
theory. Pattern are extended by test portfolio which are used for check whether the
problem has been solved. This change pattern allows us to define specific change tem-
plates. For instance, the change methodology (generalised from [1]) consists of two
evolution steps:

– The intermediate evolution step transforms the initial model to an intermediate
model that is tested in application situations and has a validity deadline. If the va-
lidity deadline is reached without a transformation success then the initial model
and the initial database are enabled and the intermediate model and databases are
disabled.

– The finalisation evolution step transforms the intermediate model to the finalised
model and applies this transformation to the application system as well in the case
the validity deadline has successfully been reached.

3.3 Methodologies for Evolution of Database System Models

The conceptual model for evolving database system models is based on a formal evolu-
tion methodology consisting of

278 K. Jannaschk, H. Jaakkola, and B. Thalheim

– an extended database system model MDB that supports a standard notion of evolv-
ing models (equipped with all the usually model change operators) for which a
semantics is provided;

– a collection of interesting reasoning tasks to support the design and management of
an evolving model;

– a set of tasks that are combined into a transformation portfolio, a testing portfolio,
a data migration portfolio for transformation.

This methodology allows to define specific evolution steps. For instance, the change
methodology (generalised from [1]) consists of two evolution steps:

– The intermediate evolution step transforms the initial model to an intermediate
model that is tested in application situations and has a validity deadline. If the va-
lidity deadline is reached without a transformation success then the initial model
and the initial database are enabled and the intermediate model and databases are
disabled.

– The finalisation evolution step transforms the intermediate model to the finalised
model and applies this transformation to the application system as well in the case
the validity deadline has successfully been reached.

A methodology typically provides a comprehensive set of constructs and rules for
their application that serve as the background for constructing applications. We may
systematically separate a number of concerns according to the classical project man-
agement frame: ‘what’ (level 1) provides a specification; ‘how’ (level 2) defines the
way the framework is going to work; ‘do’ (level 3) prescribes the application of the op-
erations and their effect; ‘plan’ (level 4) provides the methodology for the application;
‘manage’ (level 5) allows the governance of the change framework; ‘coordinate’ (level
6) integrates the framework into the entire development process; ‘optimise’ (level 7)
revises the change management.

We are going to elaborate only levels 1, 2 and 3 of the methodology. The specifica-
tion level consists of a specification of model changes. It can be extended by specific
policies for various development methods such as agile development. The control or
technical level provides guidance for the control procedures such as setting the control
management, deriving the scope of control, definition of the control tasks and its actors.
The application or technology level handles the management of changes.

4 Techniques for Database Structure Change Management

4.1 Elementary Structural Change Templates

Elementary structural change steps evolve an existing application model and the corre-
sponding database in small steps at a time to improve the quality of the model and the
application without changing static and dynamic semantics, functionality and interac-
tion. For instance, the following structural change templates are used within schemata
specified in the extended entity-relationship model: apply operation CUD1 to a type or

1 Create (add), update (modify), drop (delete); CRUD = CUD + retrieve.

Technologies for Databases Change Management 279

a constraint. An element under change has a scope that leads typically beyond the el-
ement. For instance, a modification of an attribute has also an impact on functions, on
other attributes, on views, etc.

Structural change templates use the following structure:
Problem-Cause-Solution: explicit and refined statement together with the scope;
Controller: monitor deviations from expected behaviour and evaluate;
Tradeoff: evaluation of the solution after change;
Change pattern: applied pattern with database transformation;
Function/view/support change mechanics: changes to the entire interface system.
We applied this template to the extended entity-relationship model [13]. We could re-
strict the number of change pattern to two dozen.

Example 1. Let us illustrate elementary change steps for insufficiency to represent the
current knowledge in the application domain, e.g. bundled complex objects which have
rather stable and almost not changing values and constantly changing values for some
attributes. We consider the type Insurance in the application sketched in Figure 3.

Insurance
Attributes:...

Constraints,
Functions, views, ...

Insurance
All attributes: ...

Stable constraints,
Transient constraints, ...

Stable functions, views, ...
Transient functions, views

[event = on CRUD ...]
monitor each CRUD to transient

[drop date = 30-8-2012]

�

����
����

����
����

Contracting
Specifics

Redundant data
[event = CUD ...]

[finalise date = 30-8-2012]

Maintain data coherence
[policy = materialise]
[style = master/slave]

Insurance
Stable attributes: ...

Stable constraints,
Stable functions, views, ...

�

����
����

����
����

Contracting
Specifics

Transient attributes: ...
Transient constraints ...

Transient functions, views, ...

initial model intermediate model final model

Fig. 1. Shifting attributes to subtype in a specialisation hierarchy using unary relationship types

Problem-Cause-Solution

(P) repeated input of data for the type Insurance; difficult to maintain coherence in
the insurance contracts; maintenance of integrity constraints; code lookup; specific
attribute constraints; repeated low-level descriptions;
(C) transient data (insurance company details, agent) are combined with general
data (insurance company);
(S) introduction of a type representing the background data for insurance com-
panies and linking specifics of insurance contracts to the general type; keeping
redundant data at new data in a master-slave pattern;

280 K. Jannaschk, H. Jaakkola, and B. Thalheim

Controller: record violations in access to insurance data instead of access to new data;
in case of violation send notice and trigger additional changes;

Tradeoff: initialisation, changes in performance;
Change pattern: change after observation with a change observation period; separate

transient and stable data; unary relationship type for IsA relationship;
Function/view/support change mechanics: views for combined insurance data; link-

ing facilities for insurance contracts;

Figure 2 displays corresponding sub-schemata in the HERM [13] notion. �EoExample

The types under consideration can be attribute types, entity types, relationship types
and cluster types. The change operations taxonomy is thus built by combining model
language elements, which are subject to change, with elementary modifications, add,
drop, and change, which they undergo.

Elementary change steps. Elementary change steps evolve an existing application model
and the corresponding database in small steps at a time to improve the quality of
the model and the application without changing static and dynamic semantics and
interaction.

Test portfolio. Any modification of an application model must be verified by a full re-
gression test on the system. We must ensure that the application model and the database
actually work.

We shall illustrate now structural elementary model changes. We use control
functions for control of intermediate evolution. Control functions are attached to type
structures or their components or to functions. For instance, the controls [event = on
update—insert of invoice], [modification kind = slave], [policy = materialise] and [drop
date = 1-1-2011] denote the automatic enforcement of evaluation of a value of a function
or value, the master-slave change of a dependent value or function, the explicit storage
of results of function application and the deadline of maintenance of the intermediate
schema.

Shift of types within a schema. Specific instantiations of this transformation are shifts
of attributes and functions displayed in Figures 22. The first example shifts a function
to the type that requests this function.

4.2 Change of a Singleton Model

Similar to the elementary case we may develop a number of category-problem-cause-
solution templates for each of the problem-cause cases in (A), ..., (E). These tem-
plates are refined to special templates for each case. For instance, the incompleteness
with an incomplete coverage might also be caused by incomplete separation of con-
cern. Schemata with such incompleteness suffer from overloaded types. A change in

2 We use an simplified extended entity-relationship model which type structures are pictured by
rectangles (or diamonds) and which type functions are pictured by rectangles with rounded
corners attached to the type structure.

Technologies for Databases Change Management 281

Offering
...

Calculate total

�

Invoice

...

�

Offering
...

Calculate total
[event = on update ...]
[drop date = 1-1-2011]

�

Invoice
...

Calculate offering
[policy = materialise]

Offering

�

Invoice
...

Calculate offering
[policy = materialise]

initial model intermediate model final model

Fig. 2. Shifting a function to another type

a schema is seldom applied to a singleton type. It rather uses a subschema which
has a border to the rest-schema that remains unchanged and an internal part that is
changed. Therefore we start with separating an inner subschema from its border and a
rest-schema in a schema.

Example 2. Let us consider a simplified application that might be used for managing
transportation data which is depicted in Figure 3. We assume that cars which are owned
by owners are used to transport goods from one depository (store) belonging to a sup-
plier to another store (retail store) belonging to a market. The first choice could be a
complex relationship type on entity types Car (incorporating ownership data), Trans-
port Company, Marketing Company, Retail Store, Insurance Company, Good (incor-
porating supplier data), Depository Store and Billing Company. We abstract from all
attributes, e.g., from Time for Transport. �EoExample

��� ���
�������

�

�

�TransportRetail
Store Car

Trading
Company Good

Depository
Store

Transport
Company

�������

������	

��� ���
������� Insurance

Insurance
Company

�

��� ���
������ �Bill

Billing
Company

�
�

��

Fig. 3. Decomposable independent concepts

282 K. Jannaschk, H. Jaakkola, and B. Thalheim

Schemata can be analysed based on the quality criteria in the HERM book [13].
Quality optimisation is multi-criteria optimisation and should take into account critical
sub-schemata. For instance, a spider subschema has a clique structure in the graph
and uses at the same time general cardinality constraints that cannot be expressed by
simple lookup and participation cardinality constraints. There is no systematic study on
criticality yet. Currently we use heuristical rules for it.

Example 3. The schema in Figure 3 has a number of critical points:
- Insurances are issued for cars and companies. The transport application is restricted
to this kind of insurance.
- Billing is typically applied to the entire transportation event.
- Cars and owners from the first side, markets and their retail stores from the second
side and goods and their depository location are relatively independent from each other.
This relative independence is not complete.
�EoExample

The change template for structural changes is similar to the one we used in 4.1:

Problem-Cause-Solution:
(P) spider types in a schema with complex semantics;
(C) overloaded combined type that simultaneously represent different facet in com-
bined form;
(S) decompose the spider type with redevelopment of subschema; detect layering
along cardinality constraints; apply pivoting graph grammar rules and use decom-
position graph grammar rule [13];

Controller: monitor exceptions for irregular semantical cases;
Tradeoff: loosing flexibility for irregular cases; concentration on stereotyped treat-

ment;
Change pattern: decomposition of a complex type using the schema algebra for HERM

[9] including introduction of new types;
Function/view/support change mechanics: derive views representing spider type; split

CUD for spider type into transactions;

Example 4. The schema in Example 2 and in Figure 3 is now going to be restructured
based on the spider type restructuring template.

– We may separate by pivoting rules cars with their owners and insurance from the
transport request and transport events.

– Marketing companies have their retail stores (RLocation). Goods are stored at a de-
pository store (DLocation). We thus separate these direct associations by pivoting.

– A transport request relates goods with their current location to markets with their
retail stores. We thus reduce transports to transport requests.

– A transport event relates a transport request with a car used for transport. We thus
pivot transport events from transport requests.

– Billing applies to the transport event and thus relates to the transporting car and
the transport request. It inherits thus the transport request. The transformation to
a relational schema that does not use identifier attributes for separate types results

Technologies for Databases Change Management 283

in a relation schema with markets, their retail stores, goods and their depository
stores, cars and additional attributes such as time of the transport event. Billing is
issued to the market that requested a transport. We do not assume other kinds of
billing.

The resulting schema is displayed in Figure 4.

���
���
������

� �Ownership Car
Transport
Company

���
���
������

� �TRequest

���
���
������

�

�

TEvent

���
���
������

� �Insurance
Contract

���
���
������

�

Contract
Specifics

Insurance
Company

���
���
������

�

�DLocation

Good

Depository
Store

���
���
������

� �Bill
Billing

Company

���
���
������

�

�

RLocation
Marketing
Company

Retail
Store

Fig. 4. Representation of independent concepts by relationship types

This schema is the result of a sequence of operations which also use results from
Subsection 4.1:

(1) Projection: Cars and transport companies are associated to each other. We may
introduce a new type ownership.

(2) Shifting: Transports are carried by cars. The ownership for cars is independent.
(3) Pivoting: Transports are completed events based on an issuing event such as re-

quests.
(4) Multiple shifting: Insurances are issued for cars and are independent from transport

events and transport requests. They are assumed to be independent from ownership.
(5) Decomposition: Transport requests are considered to relate markets with their retail

stores to goods with the location. Therefore, we introduce new types RLocation
and DLocation. These new types form the basis for storing data about transport
requests.

�EoExample

5 Summary

Change handling is often neglected in database projects and currently not considered
in a systematic way. Most database engineering approaches do not take into account

284 K. Jannaschk, H. Jaakkola, and B. Thalheim

change handling. Neglecting in this way is correct whenever the specification is com-
plete, whenever the system is correct, whenever the language for specification and cod-
ing covers all potential specifics, whenever no changes occur, whenever there are no
hidden cases, and whenever the computational environment is entirely in the hands of
the programmer team. It seems however that in almost no application this is true.

We developed a systematic approach to change handling. This approach is based
on a categorisation of changes. Categories can be associated to causes and resulting
problems. We showed that this category-problem-cause model can be extended by cor-
responding solutions. To become more systematic a facilitation model must be devel-
oped. We may however use the approach given by Tropmann [15] that has been used
for sophisticated performance tuning. We show however that by separation into levels
the facilitation model is feasible.

There are still many open research issues beside the detailed formalisation of the fa-
cilitation model. Open issues are hierarchically structured change sets, general monitors
for change sets, tracers and detectors for changes of various categories and changes of
changes.

We considered so far only structure or schema changes. Function and feature changes
are going to be proposed in a forthcoming paper.

Acknowledgment. We would like to thank the Academy of Finland and the German
Academic Exchange Service (DAAD) for the support of this research.

References

1. Ambler, S.W., Sadalage, P.J.: Refactoring databases - Evolutionary database design.
Addison-Wesley (2006)

2. Brodie, M.L., Stonebraker, M.: Migrating Legacy Systems - Gateways, Interfaces & The
Incremental Approach. Morgan Kaufmann (1995)

3. Hoxmeier, J.A.: A framework for assessing database quality. In: Proceedings of the Work-
shop on Behaioral Models and Design Transformations: Issues and Opportunities in Concep-
tual Modeling at the International Conference on Conceptual Modeling, Springer (1997)

4. Hoxmeier, J.A.: Typology of database quality factors. Software Quality Journal 7(3/4), 179–
193 (1998)

5. International Standardization Organization ISO. Iso/iec-25012: Software engineering - soft-
ware product quality requirements and evaluation (square) - data quality model. Technical
report, ISO/IEC (2008)

6. Jaakkola, H., Thalheim, B.: Framework for high-quality software design and development: a
systematic approach. IET Software 4(2), 105–118 (2010)

7. Jaakkola, H., Thalheim, B.: Architecture-driven modelling methodologies. In: Information
Modelling and Knowledge Bases, vol. XXII, pp. 97–116. IOS Press (2011)

8. Klettke, M., Thalheim, B.: Evolution and migration of information systems. In: The Hand-
book of Conceptual Modeling: Its Usage and Its Challenges, ch.12, pp. 381–420. Springer,
Berlin (2011)

9. Ma, H., Schewe, K.-D., Thalheim, B.: Modelling and Maintenance of Very Large Database
Schemata Using Meta-structures. In: Yang, J., Ginige, A., Mayr, H.C., Kutsche, R.-D. (eds.)
Information Systems: Modeling, Development, and Integration. Lecture Notes in Business
Information Processing, vol. 20, pp. 17–28. Springer, Heidelberg (2009)

Technologies for Databases Change Management 285

10. McCarthy, J.: Notes on formalizing context. In: 13th Internat. Joint Conf. Artificial Intelli-
gence, pp. 555–560 (1993)

11. Moraga, C., Moraga, M.Á., Calero, C., Caro, A.: SQuaRE-aligned data quality model for
web portals. In: QSIC, pp. 117–122. IEEE Computer Society Press (2009)

12. Siedersleben, J.: Moderne Softwarearchitektur. dpunkt-Verlag, Heidelberg (2004)
13. Thalheim, B.: Entity-relationship modeling – Foundations of database technology. Springer,

Berlin (2000)
14. Thiran, P., Hainaut, J.-L., Houben, G.-J., Benslimane, D.: Wrapper-based evolution of legacy

information systems. ACM Trans. Softw. Eng. Methodol. 15(4), 329–359 (2006)
15. Tropmann, M., Thalheim, B.: Performance forecasting for perfomance critical huge

databases. In: Information Modelling and Knowledge Bases, vol. XXII, pp. 206–225. IOS
Press (2011)

© Springer International Publishing Switzerland 2015 287
N. Bassiliades et al. (eds.), New Trends in Database and Information Systems II,
Advances in Intelligent Systems and Computing 312, DOI: 10.1007/978-3-319-10518-5_22

Factors That Influence the Quality of Crowdsourcing

May Al Sohibani, Najd Al Osaimi, Reem Al Ehaidib,
Sarah Al Muhanna, and Ajantha Dahanayake*

Dept. of Software Engineering, College of Computer & Information Sciences,
Prince Sultan University - Riyadh, Saudi Arabia

adahanayake@psacw.psu.edu.sa

Abstract. Crowdsourcing is a technique that aims to obtain data, ideas, and
funds, conduct tasks, or even solve problems with the aid of a group of people.
It’s a useful technique to save money and time. The quality of data is an issue
that confronts crowdsourcing websites; as the data is obtained from the crowd,
and how they control the quality of data. In some of the crowdsourcing websites
they have implemented mechanisms in order to manage the data quality; such
as, rating, reporting, or using specific tools. In this paper, five crowdsourcing
websites: Wikipedia, Amazon Mechanical Turk, YouTube, Rally Fighter, and
Kickstarter are studied as cases in order to identify the possible quality assur-
ance methods or techniques that are useful to represent crowdsourcing data.
A survey is conducted to gather general opinion about the range of reliability of
crowdsourcing sites, their passion and contribution to improve the contents of
these sites. Combining those to the available knowledge in the crowdsourcing
research, the paper highlights the factors that influence the data quality in
crowdsourcing.

Keywords: Crowdsourcing, Quality, Quality Factors, Crowdsourcing
Techniques.

1 Introduction

Crowdsourcing was introduced by Jeff Howe in 2006 [1], and was defined as “the
process by which the power of the many can be leveraged to accomplish feats that
were once the province of the specialized few”. However, according to the Merriam
Webster’s online dictionary definition it means “the practice of obtaining needed
services, ideas, or content by soliciting contributions from a large group of people and
especially from the online community rather than from traditional employees or sup-
pliers” [2]. Crowdsourcing is a new way of sourcing, using people who are willing to
provide the help or work on some projects. It involves the transfer of available man-
power in beneficial manners to help individuals or small business for accomplishing
their work.

* Corresponding author.

288 M.A. Sohibani et al.

The quality is a characteristic or feature that someone or something has [3]. It is as-
sumed that the data is of high quality when they fit the intended use in operations,
decision making, and planning. Alternatively, the data are deemed of high quality if
they correctly represent the real-world constructs which they refer to [4].

In the crowdsourcing literature, different researchers have categorized crowdsourc-
ing into different types. Therefore we have summarized them as following:

Daren C. Brabham [5,6] identifies four crowdsourcing types as:

• Knowledge discovery and management approach: crowdsourcing depends on an
online community, which produces knowledge or information in well-organized
way.

• Broadcast search approach: where it aims to solve problems. When an organization
or someone has a problem that is required to be solved, the crowd submits a possi-
ble solution.

• Peer-vetted creative production approach: depends on the crowd support, taste, or
opinion. It is perfect for designing problems, visual problems, or policy problems.

• Distributed human intelligence tasking: This approach is appropriate for tasks that
require human intelligence which it cannot be performed by computers.

Darren Stevens [7] categorized crowdsourcing types as:

• Crowdfunding: when the project is funded by a large group of people, like most
charity events.

• Crowdsourced design: when the crowd starts designing different things for differ-
ent people.

• Crowdwisdom: the type of crowdsourcing when users ask questions to pool of
people who are willing to answer.

Thomas Erickson [8] classified another four different types of crowdsourcing based
on time and space:

• Audience-centric crowdsourcing (same time, same place): Audience-played games;
where audience are divided into subgroups using individual controller such as
flight simulator.

• Event-centric crowdsourcing: is a crowdsourcing type that requires a crowd to be
hired for a specific event.

• Geocentric crowdsourcing (different times, same place): this type the crowd fo-
cuses on the place or region, it enables them to provide tips and information for
other users any time such as “Google Maps”.

• Global crowdsourcing (different times, different places): it includes the most
commonly known examples of crowdsourcing; it does not require any specific time
or place for example “Wikipedia”.

From the many challenges associated when considering crowdsourcing technology,
the remote management of the huge amount of participants (crowd) and how to guar-
antee the quality of data that is received from the crowd are the main worries for
crowdsourcing technologies. Therefore, this study hopes to fulfil the gap in research

 Factors That Influence the Quality of Crowdsourcing 289

and literature that explores the influence and present knowledge of the crowdsourcing
data quality.

This paper aims at identifying factors that influence the quality of crowdsourcing
data based on a literature review, a survey, and five case studies. This triangulation
approach is promising [34]. Therefore, an informative literature review is carried out
in order to produce a concept centric approach for gathering quality defining concepts
available within crowdsourcing literature. A survey is designed and carried out de-
scribing detailed sampling techniques to show how the survey affects the validity of
the concepts. Five case studies are conducted on the widely used and popular crowd-
sourcing sites and used to justify the identified factors that are derived from literature
and the empirical research. The research methodology of this paper is a qualitative
study directed by multiple research methods [35].

2 Concepts Elicitation through Literature Review

In this section we provide an overview of the quality defining concepts in crowd
sourcing literature.

Quality Control for Real-time Ubiquitous Crowdsourcing [9]: is about the chal-
lenges of controlling the quality of Ubiquitous crowdsourcing, it proposes a technique
that lay on the mobility of the crowd to estimate the credibility of data that is provided
by the crowd. The information that are provided by the contributors who are not li-
mited to passively-sensor-readings from the device, but also to the productively-
generated user’s opinions and perspectives, that are processed to offer real-time
service. The main challenge in Ubiquitous Crowdsourcing approach is the credibility
of the participants, since such approach allows anybody to participate. Furthermore,
to understand this challenge the paper has introduced some of the properties of Ubi-
quitous Crowdsourcing leading to different requirements for controlling the quality of
the contributions, such as: Real-time Events; when needed to analyze some collected
information to act upon the result, Dynamic Crowd; when the sample of crowd is
changing rapidly. The paper has introduced the technique of estimating the quality of
contributions based on the contributor’s mobility to overcome the above-mentioned
challenges. In fact, as a by-product of this research one can learn a lot of information
about a human by monitoring their mobility.

Quantification of YouTube QoE via Crowdsourcing [10]: demonstrates how it
approached successfully to leverage the inherent strengths of crowdsourcing while
addressing critical aspects such as the reliability of the obtained experimental data.
Here the crowdsourcing is seen as the appropriate model for deriving the Quality of
Experience (QoE). A generic subjective QoE assessment methodology is proposed for
multimedia applications. The YouTube QoE model takes into account the stalling as a
key influence factor based on subjective user studies. It also includes a generic sub-
jective QoE testing methodology for Internet applications like YouTube based on
crowdsourcing for efficiently obtaining highly valid and reliable result. The paper

290 M.A. Sohibani et al.

quantifies the YouTube QoE for a realistic impairment scenario, where the YouTube
video is streamed over a bottleneck link discussing the potential of the crowdsourcing
method.

Assessing Crowdsourcing Quality through Objective Tasks [11]: investigates the
factors that can influence the quality of the results obtained through Amazon’s Me-
chanical Turk crowdsourcing platform. It investigates the impact of different presen-
tation methods (free text versus radio buttons), workers’ base (USA versus India as
the main bases of M-Turk workers) and payment scale (about $4, $8 and $10 per
hour) on the quality of the results. For each run an assessment is made on the results
provided by 25 workers on a set of 10 tasks. Two different experiments are run using
objective tasks: math and general text questions. In both tasks the answers are unique
thereby, eliminates the uncertainty that is usually present in subjective tasks. The
reason that may cause this doubt is not figured out: whether the unexpected answer
was caused by a lack of worker’s motivation, the worker’s interpretation of the task or
genuine ambiguity. This work presents a comparison of the results and the influence
of different factors used. One of the interesting findings is that the results do not con-
firm to previous studies which concluded that an increase in payment attracts more
noise. The country of origin only has an impact in some of the categories and only in
general text questions, but there is no significant difference at the top pay.

Programmatic Gold: Targeted and Scalable Quality Assurance in Crowdsourc-
ing [12]: claims that due to the large number and variety of crowdsourcing users, the
quality of the data will be affected. The programmatic gold process is a process that
generates gold units automatically with previously known answers. The programmatic
gold process increases the accuracy and amount of data. Moreover, it is considered
scalable and inexpensive. Research has demonstrated two experiments; the first one
compares the effect of manual and programmatic gold, while the other tests the scala-
bility of gold units from 10 to 22,000 units. Discuss mechanisms for controlling the
quality through the elimination of suspicious behaviour of fraud, un-ethical or lazy
workers by enforcing strategies that assure the quality of the data and work carried
out by crowdsourcing. These strategies are: worker screening and inferring workers
trust. According to the idea of worker screening, it provides multiple choice ques-
tions. Depending on the people’s answer they will be accepted and they will perform
as required. This strategy is been used in Amazon Mechanical Turk. The inferring
workers trust strategy requires several judgments for multiple units of data to estimate
the worker accuracy, true answers and worker biases. True responses can be provided
by repeating the process several times. This way, it will be possible to categorize
trusted workers and reject the rest. For these strategies, both advantages and disadvan-
tages are listed in the research paper. This approach has alluded to Gold-based quali-
ty, its challenges, size of gold database, composition of gold units, disguising gold
units, how to detect new error types, and how to prevent scammer behavior.

Analysis of the Key Factors for Software Quality in Crowdsourcing Develop-
ment: An Empirical Study on TopCoder.com [13]: provides a detailed explanation

 Factors That Influence the Quality of Crowdsourcing 291

on TopCoder.com platform; which is effective software for data development and
crowdsourcing platforms. Gives details of a performed experiment analysis - to classi-
fy key factors of software quality in crowdsourcing and have discovered 23 factors
according to the platform and project. Subsequent application of several mathematical
equations of mean, standard deviation, and linear regression the results led to deter-
mining 6 factors that have significant impact on the quality. These factors are: number
of registered developers, number of contemporary projects, maximum rating of sub-
mitted developer, design score, average quality score of the platform, and length of
component document. All of the factors mentioned above have positive influence on
the quality except the last one. Have proposed four guides to improve the quality of
crowdsourcing developments.

Crowdsourcing Translation: Professional Quality from Non-professionals [14]:
focus on how to improve the quality of translation for non- professional translator in
crowdsourcing for a low cost by experiments using crowdsourcing websites to trans-
late sentences from Urdu to English language. To improve and evaluate the quality of
that translation several steps are performed. First step is using a professional transla-
tions dataset to compare it with non-professional translations sentences. Second step
is, collecting low quality translations of sentences from crowdsourcing website Ama-
zon Mechanical Turk. Third step is, in addition to the previous steps, collecting from
US-based worker a post-edited version of the translations, and ranking judgments
about translations quality. Fourth step is, the selection of the best translation for each
sentence. Finally, comparing the selected translations with high quality translations
that performed by professional translators in order to evaluate a several selection
techniques. According to what is mentioned previously, determined the best quality
of data from crowdsourcing website by using a theory. Simple description of that
theory is assigning a score to each translation of one sentence to choose the highest
score and determine a weight and feature vectors by two different approaches using
the “Worker Calibration Feature”; which evaluates the efficiency of each worker by
the assigned score to their translations in comparison with reference. Then, evaluate
the translation that was obtained from professional translators by calculating the
BLEU score [15] for the translator and then compare the BLEU score of translations.
Further to determine whether a high quality worker translations exists using two
oracle experiments and examine two methods of voting-inspired and assigned BLEU
scores to each one. This paper focus on how to improve the quality of translations
obtained from crowdsourcing using various methods such as; edit-post, ranking, fea-
tures function, and scoring.

Quality Management on Amazon Mechanical Turk [16]: presents an algorithm for
accuracy estimation of workers quality in order to assure the quality of data obtained
from crowdsourcing site. It focuses on accurate estimation of workers quality in
Amazon Mechanical Turk website in order to assure quality of submitted data. Ap-
plies an improved Dwid and Skene [17] algorithm, which returns a confusion matrix
(estimated correct results of each task), and error probabilities for each worker. How-
ever, the algorithm is not sufficient to measure the quality of workers, because there is

292 M.A. Sohibani et al.

an unrecoverable error rate. Therefore, presents an algorithm to separate that error
rate from worker’s bias in order to obtain reliable quality and performs experiments to
examine the accuracy of this algorithm.

3 Survey Results

An electronic questionnaire was distributed via social media directed at males and
females in Saudi Arabia to determine the factors that influence the quality of crowd-
sourcing. The questionnaire checks the reliability range of crowdsourcing sites to
gauge people’s opinion, their enthusiasm to improve the content of these sites, and
their participation to improve the data quality. The survey is designed in two parts;
first part is about personal information, and the second part on the usage of crowd-
sourcing sites.

The analysis is based on a sample of 452 responses of which 307 females and 136
males with 9 undetermined. Of the 452 responders, 325 are of above 26 years, 76 are
between 21 and 25 years, 41 between 15 and 20 years, 7 are less than 15 years and the
age of 3 responders are undetermined. The education background of this sample is
made up of 28 PhD holders, 78 Master’s degree holders, 277 Bachelor’s degree hold-
ers, 21 Diploma holders, 2 with elementary education and the education level of
2 responders is undetermined.

Along the influence of usage in crowdsourcing site following questions are
evaluated.

• The trust in crowdsourcing sites
• The participation in these sites for the improvement of content
• The participation in the improvement of the quality of the content

The answers according to the reliability range of crowdsourcing sites showed that:

• 300 of them search for information in the Wikipedia, 150 don’t, and 2 didn’t an-
swer at all.

The responses for whether they trust the information in some of the crowdsourcing
sites:

• Wikipedia; 277 yes, 161 no, and 14 no responses
• Google translate: 38 excellent, 139 very good, 134 good, 101 neither good nor bad,

36 bad, and 4 no responses
• The extent of trusting the answers provided by people in Crowd-wisdom sites, such

as; yahoo answers (Scores: “5” is reliable to “1” unreliable), 68 of them gave “1”,
142 gave “2”, 195 gave “3”, 32 gave “4”, 2 gave “5”, and 13 didn’t answer.

When asked whether they agree on performing some of their tasks via Internet by
anonymous workers who they haven’t worked with previously, such as; Amazon
Mechanical Turk, or freelancer websites.

• The responses showed 229 answered yes, 216 no, and 7 didn’t answer.

 Factors That Influence the Quality of Crowdsourcing 293

On improving the crowdsourcing sites content:

• The respondents’ participation in improving the Internet content: 93 of them ans-
wered yes, 356 answered no, and 3 didn’t answer.

• The participation in answering people’s questions in Crowd-wisdom or knowledge
sites, such as yahoo answers: 91 of them answered yes, 358 answered no, and 3
didn’t answer.

• The improvement of data quality in crowdsourcing sites such as participating in
rating the information quality in Wikipedia: 46 yes, 393 answered no, and 13
didn’t answer.

On the percentage of higher ratings of crowdsourcing sites influenced the trust in their
information: 321 answered yes, 120 answered no, and 11 didn’t answer.

Furthermore, textboxes were made available for respondents’ comments:

• It is widely acknowledged that the trust in information depends on the website
• The data that is obtained from crowdsourcing is used as knowledge but not for

scientific or academic purposes.
• Some of them mentioned that Wikipedia is generally inaccurate, but they used

anyhow
• English pages are used more than the Arabic pages

Overall, more than 50% of the respondents indicated that they somehow trust
crowdsourcing websites. Unfortunately, most of them don’t participate to improve the
Internet content or answering questions in Crowd-wisdom sites. They rarely partici-
pated in rating the data quality in Wikipedia which is the most common crowdsourc-
ing site. On the other hand, most of them acknowledged that their reliability of the
information is affected by higher ratings of data, which means that the general public
trusts the quality techniques that are provided by the crowdsourcing sites.

4 Case Studies

4.1 Amazon Mechanical Turk

Amazon Mechanical Turk provides multiple qualification approaches for the request-
ers in order to assure the submitted data quality. Some quality approaches related to
workers level, and others related to the task requirements. The qualification deter-
mined by various criteria that websites provide, which are the number of submitted
tasks, how many rejects, and how many approvals that they have accumulated. First
type of qualification approaches is allowing a requester to choose worker level by
specifying his/her task to Workers, Categorization Masters, or Photo Moderation
Masters. The master group is workers with high accuracy qualifications. Second
approach is allowing requester to specify location, approval rate for all requesters’
tasks, adult content qualification, and number of tasks approved, and customize
qualifications [18].

294 M.A. Sohibani et al.

Furthermore, there two types of qualification task that required from worker in or-
der to perform the task. First one is qualification test, which is a rating qualification,
and the second one is confidentiality qualification, which is a task agreement that the
worker should confirm after reading and agreeing to the terms of qualification
agreement [19].

Overall, the qualification methods that Amazon Mechanical Turk use are approv-
al/rejection rating, workers level, workers location, qualification test, and confiden-
tiality qualification.

4.2 Wikipedia

Wikipedia is an online multilingual encyclopedia articles that could be edited by the
crowd; anyone with internet access could contribute to Wikipedia either by introduc-
ing a new article or by editing an existing one. It is the most famous crowdsourcing
website. The core idea of Wikipedia is to have a huge website references for the
crowd which is provided by the crowd, as well as enabling people to access and con-
tribute anonymously or with their real names. Anybody can access and edit any article
but there are exceptions for some of the articles to prevent disruption or vandalism.

Wikipedia has five fundamental principles [20]:

• Wikipedia is an encyclopedia
• Wikipedia is written from a neutral point of view
• Wikipedia is free content that anyone can edit, use, modify, and distribute
• Editors should treat each other with respect and civility
• Wikipedia does not have firm rules

Wikipedia has very ambition contributors who are very alert for any new contribu-
tion and keen in editing them and making sure that the articles are free of copyright
restriction, and contentious information about living people, and also whether the
contribution fit to the Wikipedia’s policies [21]. Wikipedia also maintains pub-
lic/crowd rating of its pages.

4.3 YouTube

YouTube provide quality mechanisms about “videos” content that is inappropriate
and violates their terms of use. On the other hand, it doesn’t focus on the quality of
data that is presented. For example, if a video presents erroneous information about
specific science, yet YouTube doesn’t interfere to eliminate that. However, it provides
like/dislike, and comments services to show people’s opinion of the video, which we
might consider as an evaluation technique. In addition, YouTube provide tools that
are useful for a video production process; such as, YouTube Editor, Captions, and
Slideshows [22].

YouTube allows crowd to flag videos when there are improper types of videos in
order to review and remove it, when that inform is true. The types that are disallowed
in YouTube are any video that displays inappropriate behavior that violates YouTube

 Factors That Influence the Quality of Crowdsourcing 295

Community Guidelines [23]. Also, they provide additional reporting mechanisms;
such as, Reporting tools (when videos or comments violate YouTube Community
Guidelines), Privacy reporting (when videos or comments violate the user’s privacy),
and Moment of death or critical injury footage (when videos with content viewing
moments of death or critical injury footages) [24]. Furthermore, the site provides
“Flag for spam” feature in order to allow users to report comments as a spam. After
getting enough number of reporting’s as a spam, the comments are hidden automati-
cally [25].

In addition, YouTube emphasizes about copyright issues, and it provides ap-
proaches to eliminate copyright violations. Those approaches are infringement notifi-
cation feature, Content ID system, and Content Verification Program [26]. Content ID
is a tool which content’s owner uses to manage their YouTube’s content. When a user
uploads a video, the Content ID searches for videos in the database for similar videos
submitted as the content owner. If there is a video in the database that matches the
uploaded video, the tool applies the policy that determines the content’s owner [27].
Moreover, Content Verification Program is a tool for content owners, which is usually
used in order to flag via research results or video pages, and report videos that in-
fringe content’s owner copyright [28].

Finally, the techniques that YouTube uses to ensure data quality are: flags, reports,
notifications, tools. Also, it provides like/dislike and comments services.

4.4 Rally Fighter

Local Motors has created the Rally Fighter website, which is the first crowdsourcing
application that is specialized in designing cars by the community. Three thousands
community members from over 100 countries have submitted more than 35,000 de-
signs. Rally fighter allows members to create their cars by first submitting a design
for each piece of the car from the overall design to the electrical systems to the inte-
rior, including the name [29]. Then the community members will evaluate the submit-
ted designs by voting for the best. Members can comment on the designs or share
ideas to enhance the design. Once a full car design is completed, people can order
them online. The team of Local Motors will help the new owner in the actual manu-
facturing of the car

Local Motors does not require users to register in order to view its products, de-
signs, or user comments. Registration is required to use certain features such as post-
ing comments, evaluating submissions, participating in the forums, submitting
designs, and participating in competitions.

Local Motors increased their profits by giving this opportunity to the crowd. The
first cars built by rally fighter member costs $3 million where the manufacturing of an
airbag for a commercial model costs $6 million [30].

4.5 Kickstarter

Kickstarter [31] is a website that helps to collect funding from the crowd for varies
reasons such as: rising money for movies, gadgets, games, music, or anything you can

296 M.A. Sohibani et al.

think of. As long as Project creators meet the website’s guidelines [32], they are fully
responsible for their work. They are able to determine the funding goal that they are
willing to reach from the backers pledge and the deadline for that project; which
doesn’t exceed 60 days. In order to be eligible for funding your project, you must
reach the goal.

Kickstarter have stated a very detailed terms of use and privacy policy to assure in
somehow the quality of crowdsourcing [33]. Here are some of those points:

• To assure the maturity of the user and the ability of taking responsibility they
should be over 17 years old.

• To eliminate any fraud of suspicious actions, backers can’t reduce or cancel the
pledge before 24 hours of the deadline.

• The backers have the ability to request for refund if the project creator is unable to
provide the reward to the backer.

• Kickstarter service is only available for personal use not for commercial, unless the
project is titled to notify that.

• Details of the project must be shown to assure the growth of that project.
• Kickstarter does not require users to register in order to view the projects.
• Registration is required to use certain features such as posting comments, pledging

projects, and submitting projects.
• Any user can report any project that breaks the term of use or guidelines, or any

material that violates the copyright of the user by email.

5 Analysis

The data quality of crowdsourcing is impacted by various factors. These factors are
presented in the Figure 1. Those factors are elicited by the triangulation approach:
literature review, case study, and survey. Those quality factors are made up of 4 cate-
gories: Company’s worker i.e. the workers of the Crowdsourcing platform provider,
Crowds, Techniques, and Cost.

The quality factors related to company’s worker; who works as the reviewer of re-
ceived data, are:

• worker’s capacity for accuracy: which is affected by worker’s biases. For instant in
YouTube, the reviewer’s nationality might affect the understanding of the videos

• worker’s experience level

The quality factors which are related to the crowds:

• using data evaluation methods: when the users don’t participate in data evaluation
or the unreliable users’ evaluation of the data is made, whatever the evaluation
methods they use (rating, like/dislike, comments, etc.) in another words, if there is
a useful video that matches people’s needs in YouTube and gets a high rate of dis-
like it effects the quality of data of the site.

 Factors That Influence the Quality of Crowdsourcing 297

• user’s biases; for example, a requester requires from workers in Amazon Mechani-
cal Turk (M-Turk) to evaluate specific websites, the result task is effected by
worker’s biasness

• user’s accuracy which is effected by several things such as: user’s motivation,
user’s base (the English translation from worker in M-Turk from USA is different
from India), the user’s interpretation of the task or presented data

• user’s location and experiences; which affect the submitted data for example, task
performing in M-Turk or design voting in Rally Fighter.

• inappropriate user’s behaviour: such as, cheating (using tools to perform task),
violation of copyrights

• user’s age: this affects the data evaluation, or task’s performance
• user’s information; the registration in website or present user’s information assists

to ensure data quality that is provided by user

Fig. 1. Factors that influence the quality of crowdsourcing

The factors related to techniques that are used in crowdsourcing websites:

• tool: the accuracy result of the tools used by a website affects the data quality such
as YouTube provide dispute Content ID tool match in order to solve misidentified
video by this tool

• presentation methods: for example sometimes the use of radio buttons are more
quality prone than textbox

The factor related to cost is: the salary or payment scale, whether that cost for review-
er (company’s worker) or crowd who submit the data.

6 Conclusions and Discussions

In this paper we have made a contribution to the quality factors that influence the
crowdsourcing applications. The crowdsourcing has become a common word these

298 M.A. Sohibani et al.

days and it is important to identify the quality factors in order to define the trust in the
data. In the past, the knowledge is acquired from books, articles and other resources,
whereas then the knowledge was provided only by specialists’. But, with the evolu-
tion of crowdsourcing applications, information can be gained from unknown users
with unknown backgrounds making it difficult to trust the data generated by those
crowds. Therefore, the content or data must be evaluated to ensure the quality of the
information.

During this study we reviewed several crowdsourcing research articles and we
represented different techniques that are used by different crowdsourcing applications
to control the given information, Further, we conducted a survey in order to identify
the extent of people’s reliability of crowdsourcing applications, and extent of enthu-
siasm to improve Internet content and its data quality. Finally, we defined and pre-
sented the factors that influence the quality of crowdsourcing.

We faced many challenges while conducting this research. First we attempted to
contact crowdsourcing websites in order to gain insights into their data quality assur-
ance techniques, but unfortunately we didn’t get any responses. Second we found out
in our survey some inaccurate answers or to be honest unreliable answers because
there were questions related to each other posing different percentages. So, we de-
cided not to include those questions in the analysis.

In this paper we have made a contribution to the quality factors that influence the
crowdsourcing applications. We hope to extend this model towards a quality frame-
work for crowdsourcing applications.

References

[1] Howe, J.: The Rise of Crowdsourcing. Wired magazine 14 (6), 1-4 (2006)
[2] Webster, M.:

http://www.merriam-webster.com/dictionary/crowdsourcing
(accessed April 19, 2014)

[3] Webster, M.:
http://www.merriam-webster.com/dictionary/
quality?show=0&t=1398180177 (accessed April 19, 2014)

[4] Roebuck, K.: Data Quality: High-impact Strategies - What You Need to Know: Defini-
tions Adoptions, Impact, Benefits, Maturity, Vendors. Emereo Publishing (2001)

[5] Brabham, D.C.: Crowdsourcing: A Model for Leveraging Online Communities. In: Del-
wiche, A., Henderson, J. (eds.) The Routledge handbook of participatory cultures. Rout-
ledge, New York (2001)

[6] Aitamurto, T., Leiponen, A., Tee, R.: The Promise of Idea Crowdsourcing – Benefits,
Contexts, Limitations. white paper online available (2011)

[7] Soresina, C.: SkipsoLabs,
http://www.skipsolabs.com/en/blog/crowdsourcing/
types-ofcrowdsourcing (accessed March 6, 2014)

[8] Erickson, T.: Geocentric Crowdsourcing and Smarter Cities: Enabling Urban Intelligence
in Cities and Regions. Founded in the industry website, Crowdsourcing.org (September
2010)

 Factors That Influence the Quality of Crowdsourcing 299

[9] Mashhadi, A.J., Capra, L.: Quality Control for Real-time Ubiquitous Crowdsourcing. In:
Proceedings of the 2nd international workshop on Ubiquitous Crowdsouring, pp. 5–8
(2011)

[10] Hoßfeld, T., Seufert, M., Hirth, M., Zinner, T., Tran-Gia, P., Schatz, R.: Quantification of
YouTube QoE via Crowdsourcing. In: IEEE International Symposium on Multimedia, pp.
494–499 (2011)

[11] Aker, A., El-Haj, M., Albakour, M.-D., Kruschwitz, U.: Assessing Crowdsourcing Quali-
ty through Objective Tasks. In: Proceedings of the 8th International Conference on Lan-
guage Resources and Evaluation (LREC 2012), Istanbul (2012)

[12] Oleson, D., Sorokin, A., Laughlin, G., Hester, V., Le, J., Biewald, L.: Programmatic Gold:
Targeted and Scalable Quality Assurance in Crowdsourcing, Human Computation. Papers
from the 2011 AAAI Workshop (WS-11-11), pp. 43–48 (2011)

[13] Li, K., Xiao, J., Wang, Y., Wang, Q.: Analysis of the Key Factors for Software Quality in
Crowdsourcing Development: An Empirical Study on TopCoder.com. In: IEEE 37th An-
nual Computer Software and Applications Conference, pp. 812–817 (2013)

[14] Zaidan, O.F., Callison-Burch, C.: Crowdsourcing Translation: Professional Quality from
Non-Professionals. In: Proceedings of the 49th Annual Meeting of the Association for
Computational Linguistics (ACL 2011), pp. 1220–1229 (2011)

[15] Papineni, K., Poukos, S., Ward, T., Zhu, W.-J.: BLEU: a method for automatic evaluation
of machine translation. In: Proceedings of ACL, pp. 311–318 (2002)

[16] Ipeirotis, P.G., Provost, F., Wang, J.: Quality management on Amazon Mechanical Turk.
In: Proceedings of the Second Human Computation Workshop (KDD-HCOMP 2010),
Washington DC, USA (2010)

[17] Dawid, A.P., Skene, A.M.: Maximum likelihood estimation of observer error-rates using
the EM algorithm. J. Roy. Statist. Soc. C (Applied Statistics) 28(1), 20–28 (1979)

[18] QualificationRequirement - Amazon Mechanical Turk,
http://docs.aws.amazon.com/AWSMechTurk/latest/AWSMturkAPI/
ApiReference_QualificationRequirementDataStructureArticle.html
(accessed March 27, 2014)

[19] SpeechInk, Getting Qualified To Do Jobs (June 26, 2010),
http://www.youtube.com/watch?v=yMXlCaH7VcQ (accessed March 27, 2014)

[20] Wikipedia, http://en.wikipedia.org/wiki/Wikipedia:Five_pillars
(accessed April 22, 2014)

[21] Wikipedia, http://en.wikipedia.org/wiki/Wikipedia:About
(accessed April 22 2014)

[22] Tools - YouTube, YouTube,
https://www.youtube.com/yt/creators/tools.html
(accessed April 25, 2014)

[23] YouTube Community Guidelines, YouTube,
https://www.youtube.com/t/community_guidelines
(accessed April 25, 2014)

[24] Other reporting options,YouTube,
https://support.google.com/youtube/answer/
2802057?hl=en&ref_topic=2803138 (Accessed April 25, 2014)

[25] What does the, Mark as Spam, feature do?, YouTube,
https://support.google.com/youtube/answer/128036?hl=en
(accessed 25 April 2014)

300 M.A. Sohibani et al.

[26] Submit a copyright infringement notification, YouTube,
https://support.google.com/youtube/answer/128036?hl=en
(accessed April 25, 2014)

[27] How Content ID works, YouTube,
https://support.google.com/youtube/answer/2797370?p=cid_what
_is&rd=1 (accessed April 25, 2014)

[28] How to use the YouTube Content Verification Program, YouTube,
https://support.google.com/youtube/answer/3010500?hl=en
(accessed April 25, 2014)

[29] Rally Fighter, http://localmotors.com/rallyfighter/
(accessed April 17, 2014)

[30] Munoz, J.A.: CNN, How the Internet built a $100,000 race car (March 13, 2013),
http://www.cnn.com/2013/03/12/tech/web/crowdsourced-carsxsw/
(accessed April 17, 2014)

[31] Kickstarter, https://www.kickstarter.com/ (accessed April 21, 2014)
[32] kickstarter, https://www.kickstarter.com/help/guidelines

(accessed April 21, 2014)
[33] kickstarter, https://www.kickstarter.com/privacy?ref=footer

(Accessed April 21, 2014)
[34] Jane, W., Watson, R.T.: Analyzing the past to present, MIS quarterly (2001),

https://www.kickstarter.com/privacy?ref=footer
[35] Saunders, M., Lewis, P., Thornhill, A.: Research Methods for Business Students, 6th edn.

Prentice Hall/ Pearson Education (2009)

© Springer International Publishing Switzerland 2015 301
N. Bassiliades et al. (eds.), New Trends in Database and Information Systems II,
Advances in Intelligent Systems and Computing 312, DOI: 10.1007/978-3-319-10518-5_23

Framework for Social Media Big Data Quality Analysis

Dua’a Al-Hajjar, Nouf Jaafar, Manal Al-Jadaan, and Reem Alnutaifi

Prince Sultan University – College for Women, King Abdullah Road,
Riyadh 11586 Saudi Arabia

Abstract. Unlimited amount of unstructured data is being captured and ana-
lyzed over social media. The paper highlights the issue of lack of standard qual-
ity control approaches that could be utilized for all social media sites. This is
due to the variety of formats of big data acceptable over these sites. The issue
reveals a challenge not only in the capture of big data but also in the analysis
and yield of valuable data, which affect decision-making. The paper reviews a
collection of archived documents in the field of big data and social media. This
paper presents a framework identifying the issues of quality analysis of big data
on social media, examining current techniques used by social media companies
to capture and analyze big data, and mapping social media sites and the appro-
priate combinations of big data capture and analysis techniques with the data
quality control requirements.

Keywords: Big data, Social Media, Framework, Quality Analysis.

1 Introduction

Nowadays, the amount of data collected and analyzed is increasing enormously.
Companies collect a constantly growing amount of data whose size ranges from a few
dozens of terabytes to many petabytes of data. Matthew Gold [1] defined the term big
data as “data sets whose size is beyond the ability of commonly used software tools to
capture, manage and process data within a tolerable time”. Unlike regular data, which
is primarily consistent, structured, and built on relational database platforms, big data
is unstructured and puts a challenging limitation on the relational databases [2]. In-
itially, they believed that the volume of information collected and available to them
outstripped the capabilities of the memories used by their computers for processing.
This encouraged scientists in Google and Yahoo to implement Google’s MapReduce
and Hadoop [3]. Volume is not the only distinguished property of big data. There are
four properties associated with big data and known as the four V’s of big data[4]:

A. Volume: Volume explains the massive amount of data available.

B. Velocity: Velocity or speed includes aspects like how fast data is being generated,
and how fast it becomes stale or obsolete, and how fast we need to analyze it to make
the data meaningful.

C. Variety: Big data is a collection of data sets which are in different formats, and
combining these data sets together to analyze them is very complex. This makes it

302 D. Al-Hajjar et al.

difficult to be processed by traditional data processing techniques; therefore, big data
problems can’t be solved with the computing resources that are available to most
organizations.

D. Veracity: Veracity can be defined as the degree of accuracy and certainty of data.
Data must be truthful and trustworthy, or the decisions made by organizations will not
be meaningful and valuable.

Big data is often used in social media and customer sentiments that help business
organizations to get customer feedback. This feedback is later used to make decisions.
The number of users of social media is increasing enormously. Mayer-Schönberger
and Cukier [3] have exemplified the huge amount of big data by providing some
numbers and statistics. One example is Facebook which gets 10 million new photos
being uploaded every hour. This creates a digital trail that Facebook could analyze to
learn about their users’ preferences [3]. According to [5], monitoring and analyzing
this rich content can yield unprecedentedly valuable information that enables users
and organizations to acquire actionable knowledge. The quality of data captured,
processed and analyzed over these networks has remained a questionable issue.

In this paper, issues related to quality of data being collected on social media are
investigated and current techniques used for data capture, analysis, and processing are
assessed and compared. The purpose is to create a framework of quality assessment
techniques of big data on social media that suits several social networks depending on
needs and specifications. The main objective is to measure to what extent the current
big data quality assessment techniques influence collecting, processing, and anazlyz-
ing big data on social media. Section 2 provides an overview of the big data analytics
and data quality requirements on social media. Section 3 presents the research method
that is used to collect related data about the topic. Section 4 discusses the techniques
used to capture and analyze big data in four of the most popular social media services
and maps the techniques to the quality aspects resulting in a framework. The frame-
work is presented in Section 5. The paper concludes and provides recommendations
in Section 6.

2 Related Works

The author in [6] indicated that metadata, which means data about data, influences big
data analytics. The author proposed a framework for metadata management in big da-
ta analytics that consists of: metadata discovery, metadata collection, metadata gover-
nance, metadata storage and metadata distribution. Vemuganti believed that there is a
need to create a testing environment to conduct an intensive functional and
non-functional testing. Their testing techniques focused on Hadoop ecosystem as a
baseline for big data processing. They discussed three main testing steps that could be
performed in each big data processing phase. The first phase is the validation of pre-
Hadoop processing to tackle issues in data capturing where the unstructured data is
loaded into Hadoop Distributed File System (HDFS). Secondly, validation of Hadoop
MapReduce process to overcome any problem that might be introduced in data
processing phase. Then, validation of data extracts needs to be conducted. Overall,
this paper concludes that for each data source, there is a need to establish specific data

 Framework for Social Media Big Data Quality Analysis 303

quality requirements that align the nature of these data sources to tackle the potential
data quality issues.

Liang and Dai in [7] proposed a new system architecture that can automatically
analyze the sentiments of micro-blogging messages. They combined their proposed
system with manually annotated data from Twitter for the task of sentiment analysis.
They confirmed that machines will be able to extract a set of messages and determine
their sentiment direction when using this architecture.

The authors in [8] explained the ways used in analyzing Twitter data to detect the
emotions change and matching it with events that cause that change. Also, they ex-
plained the process of analyzing the information used in US elections by using com-
putational methods to detect and extract the most dominated people in the elections.
They illustrated ways compare and analyze different sets of topics to detect the bias,
common people, and writing styles properties by using Support Vector Machines,
which is a machine learning technique. In addition, they described the techniques
used in discovering the trend of different set of articles in many languages of different
networks from different countries by using machine translation technology combined
with other computational methods.

Analyzing the big data on social media is a challenge. The authors in [9] intro-
duced different classification techniques and algorithms that could be used for analyz-
ing large-scale social media data like Latent Dirichlet Allocation, support vector
machines and Naïve Bayes classifier. They proposed a workflow for analyzing social
media data. Based on the workflow, the tools can be implemented to provide integra-
tion between qualitative analysis and the detection algorithms.

3 Research Method

This research is designed to propose a framework for quality assurance of big data
techniques in certain social media sites. The research is exploratory in nature. The re-
search is conducted to obtain the recent and most useful techniques or strategies that
are used in social media big data analysis. These techniques are collected and ana-
lyzed from different sources based on qualitative research methods. The following
process is followed: first, the collection of archived papers to discuss quality issues of
big data in social media. Second, techniques used to capture, process, and analyze
social data on four popular sites are discussed. Quality aspects related to these tech-
niques are explored. Then, a framework is developed to map the techniques on
studied social media sites and their quality aspects.

4 Identifying Quality of Social Media Data Analytics
Techniques

The authors choose to survey and analyze the quality analysis techniques of the most
popular social media sites. The decision of which social media services to study is
based on Alexa website which is a sub-company of Amazon that provides deep
analytical insights to benchmark, compare and optimize businesses on the web.

304 D. Al-Hajjar et al.

According to Alexa [10], Facebook is globally ranked as the second popular site fol-
lowing the most popular search engine, Google. Twitter comes in the eighth place.
Linkedin is ranked as 10. Also, Flickr is explored as one of the first image and video
hosting social media sites.

4.1 Twitter

Analysis of data on twitter is a challenge because Twitter streams contain large
amounts of meaningless messages and polluted content, which may negatively affect
the detection performance [5]. Twitter tweets are restricted in length to 140 charac-
ters. Twitter Public information includes the following [11] [12]:

A. Tweet Data: Tweet text, Timestamp, and Unique tweet ID
B. Profile Information of the tweet author: user’s Twitter handle; e.g. @user1,

user’s location; e.g. NY, USA, URL, which contains more information about
the user on an external website, textual description about the user and his/her
interests, user’s network activity information on Twitter; e.g. 1 follower, and
following 6 friends, number of tweets published by the user; e.g. 3 tweets,
profile creation date, verified mark if the identity of the user has been exter-
nally verified by Twitter

C. Geo-location Data Specific to Tweet, for example, latitude and longitude
coordinates of the mobile location if this feature is enabled by the author

D. Twitter’s Entities: Images, URL’s, @Mentions, Hashtags

To allow applications to search and download public information: REST (or
Search) APIs and Streaming APIs [11] are used. According to [12], REST APIs use
the pull strategy for data retrieval while Streaming APIs rely on the push strategy for
data retrieval. However, Twitter APIs have certain limitations; the search query is li-
mited to 1000 characters and only up to 6-9 days of historical data can be retrieved.
Also, the retrieved data is based on relevance, not completeness, which may lead to
some missing data or users [13].There are three licensed resellers on Twitter data that
rely on Twitter APIs and have complete access to Twitter Firehose - the complete
stream of tweets that users post to the service [14]. The resellers are as follows[11]:

4.1.1 DataSift
DataSift is a licensed third party reseller of Twitter data that provides access to past
data as well as streaming data. The main solutions used are [15] [16]:

4.1.1.1 Pull Connector
This connector helps customers collect data using the Push delivery mechanism.

4.1.1.2 MongoDB
MongoDB is a NoSQL, document-based, scalable, high-performance, open source da-
tabase used mainly for big data applications in social media. MongoDB data is orga-
nized into a hierarchy as follows: database, collection, and documents. A database is a
set of collections while a collection is a set of schema-less JSON-like documents.
MongoDB has its own built-in aggregation MapReduce functions that can be used to
aggregate large amounts of data [17]. MongoDB relies on REST API. The architec-
ture of MongoDB is designed such that each MongoDB cluster is composed of one or

 Framework for Social Media Big Data Quality Analysis 305

more shards where each shard holds a portion of the total data. Reads and writes are
automatically routed to the appropriate shards [18]. A replica set-backs each shard by
holding a replication of the shard data. MongoDB has the capability to automatically
shard the data between multiple hosts. This allows Mongo to scale horizontally to
thousands of servers [18].

4.1.1.3 CouchDB
CouchDB is a NoSQl, document-based database that supports replication and version-
ing. All operations are performed using a REST API.

4.1.1.4 Zoomdata
Zoodata is a data analysis and visualization tool used by DataSift subscribers.

The following are quality related aspects to DataSift products:

• Twitter sends DataSift a notification whenever one of their users deletes a
public tweet. These notifications are passed to DataSift subscribers as part of
the stream. However, there are no delete messages from these private ac-
counts.

• The cursor, which is a pointer to the Push queue and is associated with the
current Push subscription, may point to data that is not stored in the subscrip-
tion queue. Using a cursor that points to a batch of interactions that no longer
exist in the queue leads to a bad request error.

• A limit of two requests per second is put on Pull Connector’s subscribers’
requests.

• MongoDB supports horizontal scalability making it easy to copy and deploy
one database from one server to another [17].

• A highly scalable, redundant cluster, with no single point of failure results
when combining shards with replica sets [18].

• MongoDB data files are unencrypted and no automatic method is provided to
automatically encrypt data files. Therefore, any attacker with access to the
file system may be able to directly extract information from the data files. To
resolve this security issue, the user shall encrypt sensitive information before
saving it to the MongoDB database [18].

• In an experiment conducted by Li and Manoharan [19], the researchers
proved that MongoDB is amongst the fastest NoSQL techniques in creating
database buckets, reading, writing and deleting key-value pairs from the
buckets.

• If the data stream generates data at a faster rate than the permitted by the de-
livery, the buffer is filled up until it reaches to the point where some data is
discarded.

4.1.2 Gnip
Gnip provides access to streaming (real time) data as well as public archived data.
Three common GNIP products used for social data collection are [16]:

306 D. Al-Hajjar et al.

4.1.2.1 Data Collector
Data Collector is a solution to collect social data from multiple public APIs. Retrieval
requests are optimized for maximum data retrieval and duplications are removed.

4.1.2.2 Rehydration API
This product delivers full Twitter content including the associated metadata and Gnip
enrichments.

4.1.2.3 PowerTrack
PowerTrack is a filtering language that gives users the ability to get complete cover-
age of the data they need and allows filtering on geo-boundaries, keyword and phrase
matches, the presence of links or images, and the language of an activity.

Certain quality aspects are related to Gnip products:

• Gnip provides reliable and sustainable access to social media data.
• By tracking the activities sent to users in real-time, Gnip ensures protection

from data loss caused by brief disconnects from the user’s real time connec-
tion. A redundant stream can mitigate the effects of a disconnected stream by
providing a second live connection to the stream. The redundant stream can
help bridge periods of disconnection and potentially prevent missed data.

4.1.3 Topsy
Topsy provides access to past data only. Topsy provides search results on a topic
based on the influence of a person’s posting about the topic. The influence is meas-
ured mainly by how many times the author’s tweet has been re-tweeted or reposted by
other people and the number of people who follow and read that person’s tweets.
Topsy analyzes all traffic and then selects the top most important and influencing
Tweets, articles, and other media to include [20].

The following aspect affects the quality of Topsy:
• Retrieving results is based on influence rather than completeness and that

may affect in turn the quality of the search results.

4.2 Flickr

Flickr is one of the dominant social networks in photo sharing services. The analysis
process of its data can reveal useful information to support different purposes involv-
ing: Personal Network Analysis, E-commerce and Geo-Tagged Applications [21].
Flickr has an API and provides a variety of options to access it by different program-
ming languages to conduct an analysis. Recently, the social data analytics that ex-
tracted from Flickr is widely generated by using social network analysis (SNA) tools
to automate the analysis process [22]. SNA tools emphasize on extracting information
from social data by applying quantifiable metrics and visualization techniques to
demonstrate the social interactions patterns [22].

4.2.1 NodeXL SNA Tool
NodeXL (Network Overview for Discovery and Exploration in Excel) is an open-
source tool developed to perform social networks analysis and plugged easily into

 Framework for Social Media Big Data Quality Analysis 307

Excel [23]. It supports the workflow of undertaking a basic networks analysis and in-
cludes: collecting, storing, analyzing, visualizing and publishing [23]. This tool is use-
ful to obtain insight from social media data that enable the user to interact through
photos. Different pictures’ elements in terms of tags can be analyzed through this tool
including: people tagged in the picture, locations of this picture, dates, comments and
the events behind each picture [24].

Capturing and analyzing data can be summarized in the following points:

• Social Network Importer: NodeXL provides several options to import data
from different social media including: Twitter, Facebook, YouTube, Flickr,
email, blogs and wikis [23]. The data can be imported directly from these
sources or by storing the data in separate files such as: text, CSV, or
GraphML files [23]. At this stage the imported data is demonstrated in a
structured workbook template that includes multiple worksheets to store all
the information needed to represent a network graph. Network relationships
are represented as an “edge list”, which contains all pairs of entities that are
connected in the network. While, worksheets contain information about each
vertex and cluster [22].

• Social data analyzing: NodeXL involves a collection of measures provided
by The Stanford Network Analysis Platform SNAP and integrated within
NodeXL: the Betweenness Centrality, Closeness Centrality, Eigenvector
Centrality and Page Rank metric. They also include two clustering algo-
rithms: Girvan-Newman and Clauset-Newman-Moore that are responsible of
grouping the nodes into collections in the network graph automatically [25].

The following are quality related aspects to NodeXL tool:

Amount of data: There is limitation of the amount of data that can be imported since
the spreadsheet of NodeXL cannot store more than1048576 rows [24] [26].

Timeliness: Provides the ability to generate a pre-scheduled analysis reports to cap-
ture the updated data [23].

Accessibility: Different types of data can be retrieved from Flickr easily and quickly
such as: List of photos with links to their sources, Photo to photo relationship that
contains pairs of photos linked by a tag and List of tags by photo[24].Once the data is
retrieved it will be directly accessible through the spreadsheet [23]. Moreover, No-
deXL is an open-source tool that allow user to modify or commercially apply it [23].

Usefulness
• The interface combines both statistics and visualizations facilities into one single

view in order to demonstrate the relationship between the data and the associated
visualization simultaneously [27].

• NodeXL is plugged into Excel, so it can utilize the existing charts facilities that
provided by Excel [27].

• NodeXL enable the novice and expert users to analyze the networks regardless of
the simplicity or complexity of the network [23].

308 D. Al-Hajjar et al.

• It has the ability to generate automated reports which scheduled on specific basis
to get new updates and a summarized description as well as the network graph.
Also, these reports can be shared with others through the email or the web [23].

• It supports automation feature in which the user can automate the process of net-
work analysis one a single step [23].

• Most effective algorithm have been implemented on this tool such as: calculating
the betweenness centrality, which aims to reduce time and cost [21].

• The data can be imported easily on this tool and the associated graph can be gen-
erated quickly to illustrate these data [27].

Consistency: The statistical data that is displayed in the spreadsheet is consistent with
the information in the associated graph and any changes happened to the data will in-
corporated automatically in the graph [23].

Understandability
• NodeXL provides sophisticated methods to organize the data through the work-

book template that consists of different worksheets required to store information
that will be used to generate the corresponding network graph [22].

• NodeXL supports an “encode” feature; the user can display different representa-
tions of network graph and select multiple properties such as: shape, colour, size,
transparency, and location to understand the crucial relationship between graph’s
elements clearly [22][27].

• NodeXL supports the “connect” feature; the user can easily explore the interrela-
tion between the data displayed in the workbook template and the network graph
[27].

Other quality issues and improvement tasks of this tool have been noticed and
suggested by different users and can be concluded in the following points [27]:

1. There is a need of more clustering algorithms to group the nodes effectively.
2. The tool cannot be accessed outside Excel.
3. Some users were unable to export the final analysis through this tool.
4. The tool doesn’t have undo/redo function to provide traceable histories of explo-

ration and the option of safe mode to save the work if failure occurs.
5. There is a quality issue related to the produced graph, which has a large file size

since it has JPEG or BMP formats which are uncompressed. The user can face is-
sue in text legibility when he/she attempts to resize the graph and display it in
other applications.

4.3 Facebook

Facebook has a large number of active users with high privacy model. Facebook col-
lects three types of data considered as company's assets [28]:

1. Profile data: contains user name, country, photos, interests, contact information,
and education.

 Framework for Social Media Big Data Quality Analysis 309

2. The social graph: represent the relationship between Facebook users. The social
graph helps to detect the common interests between the users, identify the friend-
ship between the users, obtain user profile data in efficient ways, and obtain us-
er's friends’ data.

3. Traffic Data: related to the users privacy data like IP address, session’s informa-
tion, web browser used to access Facebook, etc.

Several techniques exist; some described below, to extract/analyze the required da-
ta from the Facebook:

4.3.1 Facebook Query Language FQL
The authors in [28] explained how Facebook allows application developers to extract
data by making queries using FQL that is embedded into applications. It is a subtype
of the SQL database language. It allows retrieving user's information to gather social
graph data. By using FQL, we can easily extract user IDs by typing query like: Select
UID from user where UID in (…..).It is also possible to retrieve information of the
group members by submitting query like (SELECT uid FROM group_member
WHERE gid = G;).However, it is restricted to return a maximum of 500 group’s
members. After getting large list of UIDs, then it is possible to extract their friend-
ships connections by typing this query:(SELECT uid1, uid2 FROM friend WHERE
uid1 IN (X,Y, ... Z)AND uid2 IN (U,V, ... W);).The following explain the quality
aspects related to FQL:

• High performance as it is speed and robust tool [29].
• High availability since it is embedded into applications [28].
• There are many flaws detected which allow applications with no registered

users to access and collect data of the social graph from Facebook [28].
• There a restriction in amount of data returned since FQL return result doesn’t

exceed 5k edges for any query. So, the query needs to be broken in many sub
queries [29].

• This tool can access information that is might be invisible to the other tools
or methods due to the privacy settings. The users need to withdraw from Fa-
cebook to hidden their information from the query results [28].

4.3.2 Netvizz
Netvizz is a Facebook application written in PHP runs on a server provided by Digital
Methods Initiative and used to extract and analyze Facebook data. It is used to collect
data and generate data files of many sections of Facebook without the need to do the
manual data collection process or develop scripts. Also, it provides raw data for per-
sonal networks, pages, and groups. Additionally, it provides data perspectives through
comment text extraction. It generates a .gdf file that contains the information of the
bulleted sections. Netvizz extracts data from three section of Facebook [30]:

A. Personal Network: divided into 2 types:
• Friendship network: provides a graph where users are represented as nodes

and friendship as edges. Other information like gender, language, posts and
likes counts are displayed upon request.

310 D. Al-Hajjar et al.

• Like network: It works like the above feature as it represents the user and
the liked elements as nodes and liking process as edges.

B. Groups: work similar to friendship network. Another feature in the group is
social graph which represent the interaction between the group members so
that an edge created between users when one user makes some activities in
another's profile.

C. Pages: represented as a bipartite network since the users and posts are nodes
and edge created between them when the user like or comment on the post.
From this network we can identify the most active users and popular post by
the number of comments or likes which represented as edges to be used in
statistical analysis.

Netvizz doesn’t contain a visual interface, so it produces the collected informa-
tion in two types of data file that can be used in analysis process: Network file and
Tabular file, which is used in traditional statistical analysis techniques. However,
Netvizz connects the data and the various network analysis toolkits provide visual re-
presentation that is provided by Facebook such as Gephi. Grephi is a tool used to ma-
nipulate and explore the graph by many provided properties. After collecting the
required data, it can be visualized by using Gephi as an example through displaying
graph that contains nodes and the edges connecting them based on the source of the
data: group, page, etc. Moreover, Netvizz includes many metrics used to facilitate the
analysis process likeBetweenness Centrality, a graph metric that works based on co-
louring the nodes. We can demonstrate the node’s social status and its influence to
other nodes using this metric. Below are some quality related aspects to Netvizz [30]:

• There is a restriction in the amount of data due to limitation of the number of
users that can be retrieved from a group to 5000.

• It supports security as it is one of the Facebook applications. The users need
to login with their Facebook account to access the data. Also, Netvizz
doesn’t store any type of the retrieved data in the database and the generated
files are deleted in regular basis.

• As it is an API type then it seems to have high availability and reliability.
• The displayed data is accurate since it is extracted from the Facebook data-

base and analyzed using robust tool.
• It provides high accessibility as the Netvizz extracts many types of data from

different sections like personal network, like network, groups, and pages.
The pages feature provided by Netvizz enables extracting the needed data of
the users and their uses without access individual accounts. Additionally,
Netvizz can be accessed from many visulization tools like Gephi, which al-
lows exporting the analyzed data as svc or pdf.

4.4 LinkedIn

LinkedIn is the largest social network on the Internet for business professional with
over 277 million members. Generating a multi-dimensional of data by LinkedIn
members has been massively growing year by year. Avatara, Voledmort and Hadoop
are well-suited techniques for this data. These techniques are used in collecting,
processing and analyzing data. According to [31], some libraries can be used with

 Framework for Social Media Big Data Quality Analysis 311

Hadoop techniques to improve the style and quality of testing like Pig, Kafka and Da-
taFu’s. We describe quality issues on LinkedIn feature and techniques in more details
in the following subsections.

4.4.1 Quality Issues on LinkedIn
The main issue with Skills and Expertise feature is unstructured textual data like ab-
breviations and contextual. For instance, a member may identify his skills with JSP (a
common abbreviation for Java Server Pages). The challenges for this issue are
tackled by using standardized corpus that has some classification on it. As a result, the
reliability and correctness of data are increased. Using different analytics techniques
like natural language processing, text mining, entity extraction and machine learning
can perform this.

Another significant feature in LinkedIn is People You May Know. One of the pri-
mary issues of this feature is scalability of matching data, matching member to all
other 277 million members. Voldemort technique is one of the most suitable solutions
for this problem.

4.4.2 Techniques

4.4.2.1 Text Mining
As mentioned in [32], text mining technique is used to increase efficiency, accessibili-
ty and relevance of data content. Three main steps to mining the text are pre-
processing the text by comparing the text with natural language, applied appropriate
algorithm in order to process the text such as classification, visualization and
clustering and finally analyse the text. The author in [33] demonstrates some related
limitations; unstructured data can’t analyze directly but it must transpose text into
numerical values that can then be linked with structured data in a database. According
to [34], ambiguities on natural language text led to flexibility, usability and consisten-
cy issues.

4.4.2.2 DataFu’s
According to Vaughan [35], Datafu’s is an open source collection of useful user-
defined functions (UDF) working with large-scale data in Hadoop and Pig. All of the
UDF are well-tested library to ensure quality and to help in data mining and statistical
task. Let’s take the task to counting event in recommendation system as an example.
In this system the member will be recommended an item, called an impression, and he
can accept, reject or ignore that recommendation. To perform this task, a list will be
generated for each member. The list includes all items with a count of how many
items were accepted, how many items were rejected and how many items were seen.
DataFu technique is used to group all of the data together by the member then count
the occurrences of each items using CountEach UDF. Next, it merges all of the sepa-
rate counts for each type of event together into one tuple per item. Finally, it cleans up
the schema and puts some default values in place where member did not take any ac-
tions reject or accept. Datafu technique will trigger only one mapreduce job and the
percentage of the slowest map and reduce task of each job is 10%. Two main libraries
for DataFu techniques are:

312 D. Al-Hajjar et al.

• DataFu Pig is high-level data flow language that consists of dozen operators and
makes it easy to write Hadoop MapReduce jobs. It support UDF’s and includes
functions for statistics, Bags, sessions, set operations, estimations, link analysis
and sampling.

• DataFu Hourglass is a library for incrementally processing data using Hadoop
MapReduce that was designed to make computations over sliding windows more
efficient. As mentioned in [31], this library is utilized in tracking metrics accu-
rately and efficiently by using basic arithmetic to make query incremental rather
than scheduling a query that runs on daily basis to gather the data for specific
number of days which is time consuming and requires recalculating the stats for
that number of days. The main concept of this library is that the input data is par-
titioned by day and output data is produced from the previous data by adding and
subtracting input data that enables processing only the new data. The main two
type of incremental processes job are Partition-preserving and Partition-
collapsing. The partition-preserving job is performed by consumes partitioned
input data and produce partition output data whereas partition-collapsing job is
performed by consumes partitioned input data and merges it to produce a single
output. The goal of this technique is achieved by reducing the computational re-
sources required and by improving the performance.

5 Framework for Quality Analysis of Big Data on Social Media

The table below provides a framework of the satisfied quality factors of big data tech-
niques on social media. We map social networks and their capture and processing
techniques to quality factors [16] [17] [18] [19] [20] [22] [23] [24] [25] [26] [27] [28]
[29] [30] [31] in the framework given below.

Table 1. Framework for Quality Analysis of Big Data on Social Media

Social Network Technique Satisfied Quality Factors

Twitter DataSift Scalability, Performance, Reliability, Fast opera-
tions, Backup, and Accessibility

Gnip Sustainability, Reliability, Protection from data
loos, Availability, and Accessibility

Topsy Accessibility
Flickr NodeXL Timeliness, Accessibility, Usefulness, Consis-

tency, and Understandability

Facebook FQL Performance, Accessibility, and Availability

Netvizz Security, Availability, Accuracy, Accessibility,
and Reliability

LinkedIn Text mining Efficiency, Reliability, Correctness, and Ac-
cessibility

DataFu Pig

Efficiency, Performance, and Accuracy

DataFu Hourglass

Efficiency, Performance, and Accuracy

 Framework for Social Media Big Data Quality Analysis 313

Fig. 1. Framework for Quality Analysis of Big Data on Social Media

6 Conclusion
This paper provided an overview of quality issues of techniques used in the capture,
analysis and processing of big data on social media and it produces a framework for
mapping big data analysis techniques with the satisfied quality control factors for sev-
eral social media sites. Hopefully, this paper could provide suggested areas for busi-
ness to improve their quality issues. The business must ensure that all the required
quality factors, such as performance, efficiency and flexibility, are satisfied in the
technique most of the challenges will be controlled.

References
[1] Gold, M.K.: Debates in the Digital Humanities. Univ of Minnesota Press (2012)
[2] Deters, R., Lomotey, R.K.: RSenter: terms mining tool from unstructured data sources.

Int. J. of Business Process Integration and Management 6, 298–311 (2014)
[3] Mayer-Schönberger, V., Cukier, K.: Big Data: A Revolution that Will Transform how We

Live, Work, and Think. Eamon Dolan/Houghton Mifflin Harcourt, New York (2013)
[4] Robinson, D.: Big Data – The 4 V’s: What Was Old is New Again; Part 1, from Making

Data Meaningful (December 3, 2012),
http://makingdatameaningful.com/2012/12/03/big-data-the-4-
vs-what-was-old-is-new-again-part-1/ (retrieved March 4, 2014)

[5] Atefeh, F., Khreich, W.: A Survey of Techniques For Event Detection in Twitter. Compu-
tational Intelligence (September 4, 2013)

[6] Vemuganti, G.: Metadata Management in Big Data. Infosys Labs Briefings (2013)
[7] Liang, P.-W., Dai, B.-R.: Opinion Mining on Social Media Data. In: IEEE 14th Interna-

tional Conference on Mobile Data Management (MDM), Milan, vol. 2, pp. 91–96 (2013)
[8] Flaounas, I., Sudhahar, S., Lansdall-Welfare, T., Hensiger, E., Cristianini, N.: Big Data

Analysis of News and Social Media Content (2014), http://www.see-a-
pattern.org/sites/default/files/Big%20Data%20Analysis%20of
%20News%20and%20Social%20Media%20Content.pdf (retrieved 2014 йил 23-
03 from See a pattern)

[9] Xin Chen, M.V.: Mining Social Media Data for Understanding Students’ Learning Expe-
riences (2013)

[10] Alexa, Actionable Analytics for the Web, from Alexa (April 5, 2014),
http://www.alexa.com/ (retrieved)

[11] Kumar, S., Morstatter, F., Liu, H.: Twitter Data Analytics. Springer (2013)

314 D. Al-Hajjar et al.

[12] Small, H., Kasianovitz, K., Blanford, R., Celaya, I.: What Your Tweets Tell Us About
You: Identity, Ownership and Privacy of Twitter Data. The International Journal of Digi-
tal Curation 7(1), 174–197 (2012)

[13] Chen, X., Madhavan, K., Vorvoreanu, M.: A Web-Based Tool for Collaborative Social
Media Data Analysis. In: IEEE Third International Conference on Cloud and Green Com-
puting, pp. 383–388. IEEE Computer Society, Karlsruhe (2013)

[14] Miners, Z., Ribeiro, J.: Apple snaps up Topsy, PrimeSense: acquisitions reflect interest in
Twitter access, 3D sensing technology. Macworld 31(3), 24 (2014)

[15] DataSift. Pull. from DataSift Developers (February 10, 2014) (retrieved April 18, 2014)
[16] Information Management Journal. Search Firms to Mine Tweets. Information Manage-

ment Journal 46(3), 17 (2012)
[17] Boicea, A., Radulescu, F., Agapin, L.I.: MongoDB vs Oracle - database comparison. In:

Third International Conference on Emerging Intelligent Data and Web Technologies, pp.
330–335. IEEE Computer Society, Bucharest (2012)

[18] Okman, L., Gal-Oz, N., Gonen, Y., Gudes, E., Abramov, J.: Security Issues in NoSQL
Databases. In: 2011 IEEE 10th International Conference on Trust, Security and Privacy in
Computing and Communications (TrustCom), pp. 541–547. IEEE Computer Society,
Changsha (2011)

[19] Li, Y., Manoharan, S.: A performance comparison of SQL and NoSQL databases. In:
2013 IEEE Pacific Rim Conference on Communications, Computers and Signal
Processing (PACRIM), pp. 15–19. IEEE, Victoria (2013)

[20] Information Today. Topsy introduces alerts and reports. EContent 36(4), 15
[21] Akrouf, S., Meriem, L., Yahia, B., Eddine, M.N.: Social Network Analysis and Informa-

tion Propagation: A Case Study Using Flickr and YouTube Networks. International Jour-
nal of Future Computer and Communication (2013)

[22] Hansen, D.L., Rotman, D., Bonsignore, E., Milic-Frayling, N., Rodrigues, E.M., Smith,
M., Shneiderman, B.: Do You Know the Way to SNA?: A Process Model for Analyzing
and Visualizing Social Media Network Data. In: 2012 International Conference on Social
Informatics (SocialInformatics), Lausanne (2012)

[23] Smith, M.A.: NodeXL: Simple network analysis for social media. In: 2013 International
Conference Collaboration Technologies and Systems (CTS), San Diego, CA (2013)

[24] Gómez, J.A., Shneiderman, B.: Understanding social relationships from photo collection
tags. Human-Computer Interaction Lab & Department of Computer Science (2011)

[25] Smith, M.M.-F.: NodeXL: a free and open network overview, discovery and exploration
add-in for Excel (2007/2010), http://nodexl.codeplex.com/ (retrieved 2014
йил 20-April from CodePlex)

[26] Microsoft. Excel specifications and limits, http://office.microsoft.com/en-
us/excel-help/excel-specifications-and-limits-
HP010073849.aspx (retrieved 2014 йил 20-April from Microsoft Office)

[27] Bonsignore, E.M., Dunne, C., Rotman, D., Smith, M., Capone, T., Hansen, D.L., Shnei-
derman, B.: First Steps to Netviz Nirvana: Evaluating Social Network Analysis with No-
deXL. In: International Conference on Computational Science and Engineering, CSE
2009, Vancouver, BC (2009)

[28] Bonneau, J., Anderson, J.: Prying Data out of a Social Network. Cambridge, UK (2009)
[29] Hogan, B.: Facebook as a data capture site: Techniques, Traps, Terms & Conditions

(2011 йил 24-March), http://www.slideshare.net/primath/dl-tech-
talkhogan (retrieved 2014 йил 18-April from slideshare)

[30] Rieder, B.: Studying Facebook via Data Extraction. The Netvizz, Amesterdam (2013 йил
29-June)

[31] Hayes, M.: DataFu’s Hourglass: Incremental Data Processing in Hadoop (October 03, 2013)
[32] Diane, M.: The Value and Benefits of Text Mining
[33] Sukanyal, M., Biruntha, S.: Techniques on Text Mining (2012)
[34] Alfawareh, S.J.: Techniques, Applications and Challenging Issue in Text Mining (2012)
[35] Vaughan, W.: DataFu 1.0 (September 2013)

Part X
Doctoral Consortium

Querying and Managing Complex Data

Luiz Gomes-Jr. and André Santanchè

Institute of Computing, State University of Campinas (UNICAMP)
13083-852, Campinas, SP, Brazil

{gomesjr,santanche}@ic.unicamp.br

http://www.ic.unicamp.br

Abstract. Advances in models, algorithms and computing power en-
abled complex network research to be applied in several areas. From so-
cial sciences to the internet, from microscopic to macroscopic phenomena,
from natural to man-made networks, network analysis have expanded
its application scenarios to most areas of human activity. Although re-
search in complex networks has generated tools that cover a wide range
of topics, the analysis is still largely restricted to experts and done in
ad-hoc settings. Our goal is to develop data querying and management
mechanisms for complex networks. We are defining and developing the
Complex Data Management System (CDMS), which is intended to pro-
vide database-like means to interact with complex networks. Our current
query model is based on ranking clauses defined over a Spreading Acti-
vation (SA) processing model. SA allows us to compose metrics that can
capture several aspects of the dynamics of the underlying network.

Keywords: Complex Networks, Graph Data Models, Graph Query
Languages, Complex Data.

1 Introduction

Data and query models have evolved towards supporting increasingly complex
interrelationships. Highly structured models for management of relational data,
with precise query semantics and predictable results, preceded semi-structured
models that added path indirection and flexible schema. Document manage-
ment and information retrieval (IR) has to deal with even greater indirections,
typically correlating imprecise queries (e.g. keywords) to lists of results ranked
according to metrics that capture non-obvious aspects of the underlying data
(e.g. PageRank). More recently, graph databases have taken this diversity to
new levels, allowing unrestricted correlation of data elements.

As a consequence of the advances in models, algorithms and computing power,
new types of applications became possible, such as social networks, recommen-
dation systems and collaborative filtering. Network analysis, usually associated
with the complex network field, has become an important resource for sup-
porting these new applications and has been used in diverse areas such as sys-
tems biology, neuroscience, communications, transportation, power grids, and
economics [1].

c© Springer International Publishing Switzerland 2015 317
N. Bassiliades et al. (eds.), New Trends in Database and Information Systems II,
Advances in Intelligent Systems and Computing 312, DOI: 10.1007/978-3-319-10518-5_24

http://www.ic.unicamp.br

318 L. Gomes-Jr. and A. Santanchè

Although graph databases and complex network research are fueled by the
same increase in data complexity and analysis demands, there is little intersec-
tion between the areas. Graph databases are typically based on query languages
specialized in matching and retrieving subgraphs while complex network tasks
often rely on ad hoc algorithms running on various analysis software. Although
graph analysis algorithms can be and are often run over graph databases, it
represents little more than a data storage mechanism.

In the complex networks area, non-obvious, topology dependent properties are
formalized as network dynamics processes. The analysis of the network dynamics
reveals emergent behavior that cannot be expressed as graph isomorphism tasks.
To aggregate this type of graph analysis in current graph databases, one typically
has to run off-line algorithms and store the results in node properties. After this
off-line and time-consuming step, the values can be used to query the database.
This set-up provides no flexibility for the user to influence how the graph analysis
should be undertaken. In our approach, we focus on providing the user with a
query language that can specify subgraphs in which the analysis should be done,
select the types of links that are relevant, and combine several graph analysis
metrics – all in a declarative fashion and in an online querying scenario.

Supporting these queries in a DBMS (DataBase Management System) brings
several new architectural requirements: (i) the data model must support the high
level of complexity, (ii) the query language should be flexible enough to allow
correlation of data when little is known about how they are linked and organized,
(iii) a new abstraction for query evaluation should be able to capture the intended
network dynamics while allowing for under-the-hood optimizations, (iv) data
management mechanisms must be coherent with the heightened importance and
diversity of relationships.

We propose a new definition for the increasingly important type of data we
aim at supporting. Inspired by the area of complex networks, we adopted the
term complex data. Our research aims developing the CDMS (Complex Data
Management System), a system suited to query and manage complex data. Our
goal is to provide a tighter integration between complex networks and databases,
enabling a database-like interaction for complex network tasks and, conversely,
incorporating graph analysis capabilities into graph query languages.

2 Research Directions

Our solution for complex data querying is based on a property graph data model
with weighted relationships. We propose a new query language that allows rank-
ing of elements based on properties of the topology of the graph (the dynamics
of the network). The queries are evaluated based on a variation of the spreading
activation model, which is the core of the query processor and the main target
for query optimization strategies.

Our proposed query language extend current graph query languages by adding
a “RANK BY” clause. The clause should enable an arbitrary combination of
metrics that expresses the global ranking condition defined by the user. Figure 1

Querying and Managing Complex Data 319

show some query exemples over SPARQL and Cypher1. These queries are meant
to demonstrate the expressiveness of the approach in a wide range of applications
[5]. More details about the language and its design principles can be found
in [4].

Figure 1a shows a Cypher query that suggests diagnoses of patients based on
their symptoms. It is based on an underlying database containing symptom-
diagnosis relationships specified by professionals in a previously unrelated project.
The combination of the Connectivity and Relevance metrics showed results com-
parable to unassisted diagnoses from health professionals (details in [4]).

Figure 1b shows a product recommendation query (SPARQL) that finds prod-
ucts that the client Bob (with uri :bob) has not purchased. The query traverses
Bob’s friendship network to find products purchased by his friends that might
be relevant to him.

The query in Figure 1c (SPARQL) ranks species that play an important role in
the food web and are related to the biome of coral reefs. This type of query would
identify species that should be main targets for monitoring and preservation
efforts.

Fig. 1. Examples of extended queries (namespaces have been omitted)

The ranking clauses in the queries are based on a set of metrics that we are
developing. To capture the underlying network dynamics we employ spreading
activation processes (TSA). Spreading activation [2] was developed to infer re-
lationships among nodes in associative networks. The mechanism is based on
traversing the network from an initial set of nodes, activating new nodes until
certain stop conditions are reached. By controlling several aspects related to this
activation flow, it is possible to infer and quantify the relationships of the initial
nodes to the reached ones. The SA-based metrics proposed so far are Relevance,
Connectivity, Reputation, Influence, Similarity, and Context.

The proposed query language and new type of user interaction envisioned
for the CDMS also require changes in architectural elements when compared to

1 http://docs.neo4j.org

http://docs.neo4j.org

320 L. Gomes-Jr. and A. Santanchè

traditional database systems. Query processing and data management mecha-
nisms such as query optimizers, Data Manipulation Languages (DMLs), indexes
and collection of data statistics must be coherent with the heightened impor-
tance and diversity of relationships. We propose several query optimization and
approximation strategies to speed up query processing. We also introduce the
concept of mappers in our DML, which are similar to stored procedures, but are
aimed at relationship creation and can be integrated in the query language to
allow query-time correlation of data.

3 Progress to Date

In our research so far we have elicited the main requirements for a database man-
agement system suited for Complex Network tasks. To meet the requirements,
we proposed a new query processing model, based on spreading activation, that
can capture diverse aspects of network dynamics. The proposed constructs are
used to compose ranking metrics that are integrated in a declarative query lan-
guage. This set-up allows users to write queries based on parameters tailored to
their information needs.

We have implemented prototypes of several parts of our proposed system,
including a query processor supporting several ranking metrics, query optimiza-
tion and approximation mechanisms, and data management extensions. We have
tested our framework on real data and real applications such as nursing diagno-
sis. Our preliminary experiments show that our approach is practical in terms
of performance and that our language can express complex concepts in real data
and application scenarios. Combining the TSA model and a declarative query
language offers many opportunities for query optimization (as reported in [3]).

Besides the new query language and model, the CDMS must offer adequate
data management mechanism. We have implemented the parts of the mapper
mechanism and have integrated them in the query language, enabling a more
flexible interaction and data management.

As ongoing and future research, we are working on query optimization mecha-
nisms, analyzing alternative query processing approaches, gathering new datasets
and use cases, and devising model extensions to support a wider range of complex
network tasks.

Acknowledgments. This work was partially financed by the Microsoft Re-
search FAPESP Virtual Institute (NavScales project), CNPq (MuZOO Project
and PRONEX-FAPESP), INCT in Web Science (CNPq 557.128/2009-9) and
CAPES-COFECUB, with individual grants from CAPES and FAPESP (Proc.
2012/15988-9 and 2014/01419-8).

References

1. Costa, L., Oliveira Jr., O., Travieso, G., Rodrigues, F., Boas, P., Antiqueira, L.,
Viana, M., Rocha, L.: Analyzing and modeling real-world phenomena with complex
networks: A survey of applications. Advances in Physics 60, 329–412 (2011)

Querying and Managing Complex Data 321

2. Crestani, F.: Application of spreading activation techniques in information retrieval.
Artif. Intell. Rev. 11(6), 453–482 (1997)

3. Gomes-Jr, L., Costa, L., Santanchè, A.: Querying complex data. Technical Report
IC-13-27, Institute of Computing, University of Campinas (October 2013)

4. Gomes-Jr, L., Jensen, R., Santanchè, A.: Towards query model integration:
topology-aware, ir-inspired metrics for declarative graph querying. In: GraphQ-
EDBT (2013)

5. Gomes-Jr, L., Santanchè, A.: The Web Within: leveraging Web standards and graph
analysis to enable application-level integration of institutional data. Technical Re-
port IC-13-01, Institute of Computing, University of Campinas (January 2013)

© Springer International Publishing Switzerland 2015 323
N. Bassiliades et al. (eds.), New Trends in Database and Information Systems II,
Advances in Intelligent Systems and Computing 312, DOI: 10.1007/978-3-319-10518-5_25

Implementation of Generalized Relational Algebraic
Operations with AsterixDB BDMS

Nickolay Saveliev

Saint Petersburg State University, St. Petersburg, Russian Federationa
spbu@spbu.ru,

nickolay.saveliev@gmail.com

Abstract. Every year data with a large volume and variety to be processed is
growing. Such data handling requires special approaches, methodologies and
tools. One of the most important parts of manipulating information is a high-
level declarative query language that helps us not only to solve a lot of kinds of
problems, but gives us great possibility for optimization.

In this paper there will be considered a practical part of approach that intro-
ducing an extended relational algebra from [1]. This algebra can be used by
query optimizer based on cost models. Implementation of generalized algebraic
operations that uses big data management system AsterixDB [2], a cost model
for estimation and optimization is the main aim of this work.

1 Introduction

Nowadays Big Data is synonymous with large volume of data with different structure
and diversity. That’s why it is important to have a possibility for fast implementation
of information retrieval algorithms for such data. A high-level declarative query lan-
guage can give as such opportunity. Also a powerful platform for query execution is
required.

General stages of query execution in relational databases are described in [7] and
consist of query language parser, optimizer, code generator and executor. If we are
talking about relational databases, all these components are parts of one system. The
minus of such systems is that it is required to store all processed data in some prede-
fined formats. But today the amount of data is very large, so data is stored in different
formats. That’s why systems to process data from heterogeneous information re-
sources are required.

One of the ways to build such system is to provide user a high-level query lan-
guage, implement optimizer based on generalized relational algebra, code generators
and executors for every informational resource that it contains. To minimize work
databases can be treated as heterogeneous informational resources where information
is stored and can be queried without developing executors for every data source. But
such approach still needs a code generator for every database management system and
a cost model for optimizer to choose not only an optimal query plan but also a plat-
form where the plan will be executed with the best efficiency. There is a query
processing flowchart on Fig.1.

324 N. Saveliev

Fig. 1. Query execution flowchart

As you can see from pic.1 user has a common interface to query heterogeneous da-
ta sources. The optimizer is connected with all data sources through adapters. Every
adapter is responsible for generating code for the query plan, computing additional
information (scores, estimations, identities, attributes and etc.) for data for correct
handling and computing cost model functions to find optimal plan. The main purpose
of this work is to implement such adapter for a big data management system Aste-
rixDB that is used as an execution platform.

In the next sections firstly the extended relational algebra from [1] will be de-
scribed and some features of AsterixDB BDMS [2] that is used in this work will be
provided. Next there will be a description of integrating AsterixDB to the optimizer
and query code generation for generalized algebraic operations. After that, executed
work with some examples and future work with plans and problems will be
represented. And finally, related works and projects will be reviewed.

2 Extended Relational Algebra

The optimizer of heterogeneous system uses the generalized relational algebra intro-
duced in [1]. This algebra exploits similarity as a matching tool. The central concept
of it is a q-set defined as a triple (q, B, S) where:

• q is a query;
• B is a base set of objects for query processing;
• S is scoring function for objects in B.

Implementation of Generalized Relational Algebraic Operations with AsterixDB BDMS 325

Q-set encapsulates both the query and the result of its evaluation represented as scor-
ing function. There is no matter how the query (q) will be represented in this model.
But it is required for every object from the base set (B) to have an additional field
with the score that can represent numerical value of object precision, precision of
object’s resource or other values. In general case an object score represents relevance
of an object to a query. This scoring value can be used for fuzzy queries and an ap-
proximate result computing. The scoring function (S) is used to modify object scores
and depends on a query.

All generalized algebraic operations from extended relational algebra are defined
on q-sets. There are such operations as:

1. filter – some kind of select statement with a sequential evaluating scoring function
on all objects of a base set;

2. joins;
3. aggregations;
4. fusion;
5. nest/unnest.

There some examples of such operations:

• filter(restaurants, ‘Italian’) - where a query finds Italian restau-
rants from base set ‘restaurants’ without modifying scores;

• filter(objects, score_function=’normalization’) - where
object scores will be calibrated and normalized to make objects from different
sources comparable;

• group_join (filter (shops, ‘has spaghetti’),
 filter (restaurants, ‘Italian’),
 ‘distance < 20 km’)

The informal query is to find shops with spaghetti located closely to Italian restau-
rants.

A full list of generalized algebraic operations can be found in [1]. It is important to
note that operations can have parameters (algorithms, execution time frames and oth-
er) and can use remote execution.

3 AsterixDB BDMS

AsterixDB BDMS is a Big Data Management System (BDMS) with a semi structured
noSQL style data model resulting from extending JSON with object database ideas
and expressive and declarative query language (AQL) that supports a broad range of
queries and analysis over semi structured data. A full description of this system is
given in [5]. The main reasons to use it as execution platform are powerful query
language which can be simply translated to algebraic operators represented in [1],
using pipeline for computing query results without materialization and external data
processing with support of different information formats.

326 N. Saveliev

4 Integrating AsterixDB to the Optimizer

One of the ideas of this work is using AsterixDB as an execution platform for opti-
mizer. To integrate it we should provide an adapter to a data source that consists of a
code generator (translator) and a cost model. Such module generates code on Aste-
rixDB Query Language for algebraic operators, gives cost model for optimizer to
build optimal execution plan and connects optimizer to AsterixDB instance to send
queries and receive results.

The query optimizer constructs a query tree where algebraic operations are nodes
and information resources are leaves and transforms it to optimize query plan. It does
not only use algebraic operator’s properties to transform tree, but it also can choose a
better execution platform for computing result of some sub tree. That's why we need a
cost model for all platforms. The cost model computes its execution time at chosen
platform for every sub tree and the optimizer decides on what platform is better to
execute sub tree. Also some sub tree that was executed at one processing platform can
be treated as an information resource for another platform to handle nodes above this
sub tree.

5 Query Translation

5.1 Q-Set Translation

The main idea of implementing generalized algebraic operations in AsterixDB BDMS
is a translation from extended relational algebra operator’s syntax to AQL. That’s
why we need a representation of q-set in AsterixDB BDMS.

The query from tripe (q,B,S) can be represented in any forms. From a practical
point of view it can be some skeleton of a query on AsterixDB Query Language
(AQL) with prepared fields for the base set (B) and the scoring function(S). It is im-
portant to note that the base set can be another generalized algebraic operation, so we
can build queries as a chain of different operations.

AQL is designed according to XQuery – a query and functional programming lan-
guage for structured and unstructured data.

For example, let’s build simple query skeleton for q-set triple (q, B, S):

q = “for $item in B return S ($item)”

This query only modifies object scores according to the scoring function S. Almost
all queries expressed by AQL use FLWOR expression (for, let, where, order by, re-
turn). That’s why all algebraic operators are written with such expression.

5.2 Operation Translation

The query translator operates with query skeletons, base set and scoring function
pointers. It performs no nontrivial optimization of generated query, because it will be
done by an AsterixDB BDMS optimizer.

Implementation of Generalized Relational Algebraic Operations with AsterixDB BDMS 327

There is an example of translation from a generalized algebraic query to AQL:

Input query:

 Group_join(
 filter(Employee, ‘age <30’),
 filter(Department, *),
 ‘department name’)

A query, translated to AQL:

 for $dep in dataset Departments
 for $emp in dataset Employees
 where $dep.id=$emp.department_id
 and $emp.age <30
 group by $department:=$dep.name with $emp
 return {
 "department":$department,
 "name":for $t in $emp
 return $t.name
 };

As you can see, an AQL code generation for algebraic operators is quite clear. The
code generator can translate nested operators using FLWOR expressions for each
operator.

6 Done Work

At the moment some algebraic operator’s translation with a cost model for them are
implemented. All information about parts of done work can be found below.

6.1 Translator

The main part of an implementation of generalized algebraic operations is a translator.
It receives a query sub tree, tranforms it to AQL, computes for optimizer an approx-
imate execution time or sends the resulted query to AsterixDB BDMS for execution.

6.2 Q-Set

The q-set has already defined in terms of AsterixDB BDMS. Q-set is a triple (q, B, S)
and according to section “5. Query translation”, ‘q’ is a query skeleton and both ‘B’
and ‘S’ are pointers to a data set and scoring function respectively. Also we need to
represent scores for every object of data set. The simplest way to do it is to add a new
field to every object with a score.

328 N. Saveliev

6.3 Filter Operator

Filter operation evaluates some predicate or expression and scoring function (or some
predicate too) on every object from base set or another operation from extended alge-
bra.

The general translation rule for such operation is specified below:
Input query:

 filter(BaseSet, Expression(arguments),ScoringFunction);

A query, translated to AQL:

 for $obj in BaseSet
 where Expression (arguments)
 return ScoringFunction($obj);

As is shown above, “filter” expression evaluates in “where” section and a scoring
function computes new scores for every object from base set.

6.4 Join Operator

Join operations can be represented in terms of AQL as nested cycles that iterate on the
base sets with some join condition.

The general translation rule for precise inner join operation is specified below:
Input query:

 join(FirstSet, SecondSet, Expression(arguments),
 ScoringFunction);

A query, translated to AQL:

 for $first in FirstSet
 for $second in SecondSet
 where Expression (arguments)
 return {
 $first,
 $second,
 ScoringFunction($first, $second)
 };

As you can see, the query joins two sets of objects with some condition. The result of
this operation is a set of new objects where every object consists of two joined objects
from base sets with score that are the result of scoring function evaluation.

6.5 Cost Model

Some assumptions about AsterixDB BDMS data processing to design cost model
were made. AstersixDB has shared-nothing architecture, that’s why all of the data

Implementation of Generalized Relational Algebraic Operations with AsterixDB BDMS 329

stored in it is splitted to all its nodes. is defined as a number of execution platform
working nodes. Also one of the main constants that used by this model is – time
to read one data block of base set no matter from disk or from another working node.

Filter Operation. Cost function for execution time () of filter operation has a linear
complexity and takes in account a number of blocks to read for a base set (| |
is cardinality of), an execution time of filter expression and a scoring function on every object. | | 1

All working nodes use only their own data to compute result of filter operation
without broadcasting to other nodes.

Join Operation. An assumption that AsterixDB BDMS use divide and broadcast-
based parallel join algorithm [9] was made to define time execution cost function for
a join operation. This algorithm is composed of two stages: a data partitioning using
the “divide and broadcast” method and a local join. The “divide and broadcast” data
partitioning method consists of a dividing one base set into multiple disjoint parti-
tions, where each partition is allocated on a working node, and broadcasts the other
base set of join operation to all available nodes. Because of AsterixDB has a shared-
nothing architecture there is no need in a dividing stage and data blcks of smallest of
two base sets should be broadcasted to all working nodes to use a local join.

Local join operation uses three different algorithms. That’s why three cost func-
tions for execution time was designed. All of these functions have such parameters as
base sets and , numbers of base set data blocks and , where is
smaller or equal to , and algorithm specific constant .

Hash join algorithm. This algorithm has a linear complexity and requires an equijoin
predicate. A cost function takes in account time to read base set data blocks and to
evaluate hash join algorithm. 1 | | | | 2

Sort-merge join algorithm. This algorithm is based on sorting base sets and requires a
transitive join predicate. A cost function takes in account time to read and sort base
set data blocks and to evaluate sort-merge join algorithm.

 log log 1 | | | |
| | log | | | | | | 3

Nested loop join algorithm. This algorithm is based on nested loops and can be evalu-
ated with every join predicate. A cost function takes in account a time to read base set
data blocks in nested loops and to evaluate join predicate on every object.

330 N. Saveliev

 1 | || | 4

The first summand of all this functions is a time to read data blocks for local join
where a broadcasting data blocks of smallest base set is taken in account and the
second one is a time for join algorithm evaluation.

7 Future Work

7.1 Other Operations

First of all implementation of other generalized algebraic operations, such as group
join, aggregation, fusion, nest/unnest and cost functions for them is planned.

7.2 Cost Model Quality Assessment

A quality of introduced cost model for execution time estimation needs to be checked
on various data sets volumes and different number of AsterixDB working nodes.

7.3 Remote Execution

We want to have possibility to call remote function from our operations. That’s
why we should implement such option for all operations as a parameter. It is planned
to use RPC for remote execution, because of AsterixDB BDMS provides such
technology.

7.4 Approximate Operations

After implementation of exact algorithms for generalized algebraic operations we
plan to implement approximate algorithms and add to all operations additional para-
meter that will specify algorithm for execution.

8 Related Work

Querying heterogeneous distributed data is a very important field of informational
retrieval. There are a lot of projects and products that deal with handling heterogene-
ous data sources. Some of them implement an idea of federated databases. Several
commercial products are represented in [11, 12, and 14]. All of them combine infor-
mation from different data sources into a federated database with possibility for com-
plex querying. Oracle Database [11] offers to users an environment for handling data
from different sources, such as XML documents, DB2, Informix, MS SQL, Teradata
and etc. The Garlic project idea is represented in [13]. This system integrates various
data sources to build complex queries.

Implementation of Generalized Relational Algebraic Operations with AsterixDB BDMS 331

Optiq [10] is a framework over Apache Hive or Apache Drill for processing hete-
rogeneous and federated data. It based on translation from SQL-based query language
to platform-oriented languages. Optiq uses adapters to connect to data sources and
provides user unified interface to query it. This framework translates and optimizes
queries according to rules and cost estimations.

Different types of extended relational algebras are represented in [1, 3 and 4]. Im-
plementation of generalized algebraic operations from [1] that can be used by hetero-
geneous system optimizer is considered at this work. There are such operations as
projections, joins, aggregations, nest and unnest operators and other. Authors intro-
duce extended relational algebra with a uniform approach to formal representation,
optimization, specification and execution of complex queries. A generalization of the
classical algebra by introducing fuzzy operations and weights is proposed in [4]. Au-
thors define a declarative query language, which brings together traditional relational
domain calculus and handling of fuzzy values. This algebraic framework contains
join, product, projection, selection, union, intersection and difference operation. The
query language also contains operations for weighting similarity predicates. A simi-
larity algebra based on relational operations on object lists with scores is introduced in
[3]. Complex queries with different interpretations of similarity values and algorithms
for computing these values can be specified in this algebra. The algebra supports
joins, merge, select, map operations, union, intersection, and difference operations.

An optimizer needs a cost model to find optimal query plan. Several approaches to
design cost model for extended relational algebraic operators are represented in [3, 6
and 8]. Cost models that use estimation of operation cardinality and selectivity are
represented in [3]. Authors of [6] introduce fuzzy cost model for query optimization
in multi-database systems based on experience, knowledge, tests and heuristics of the
required parameters of optimization. Designing cost models for parallel join algo-
rithms are considered in [8]. Author builds cost models for different parallel join algo-
rithms and compare them with each other.

9 Conclusions

A system for processing heterogeneous data sources based on extended relational
algebra was represented. An approach to support AsterixDB BDMS as data source at
this system was introduced. It consisted of developing a code generator for translating
a query plan, which is expressed in terms of algebraic operations to AsterixDB query
language and a cost model for query evaluation time prediction.

References

1. Novikov, B., Vassilieva, A., Yarygina, A.: Querying Big Data. In: Proceedings of the 13th
International Conference of Computer Systems and Technologies, CompSysTech 2012,
pp. 1–10 (2012)

2. AsterixDBBDMS Web site, http://asterix.ics.uci.edu/

332 N. Saveliev

3. Fagin, R.: Fuzzy queries in multimedia database systems. In: Proceedings of the Seven-
teenth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems,
PODS 1998, pp. 1–10. ACM, New York (1998)

4. Deshpande, A., Ives, Z.G., Raman, V.: Adaptive query processing. Foundations and
Trends in Databases 1(1), 1–140 (2007)

5. Borkar, V.R., Carey, M.J., Li, C.: Inside “Big Data Management”: Ogres, Onions, or Par-
faits? In: EDBT 2012 (2012)

6. Zhu, Q., Larson, P.-A.: Establishing a fuzzy cost model for query optimization in a multi-
database system. In: Proc. of 27th ACM/IEEE Hawaii Int’l Conf. on Syst. Sci. (February
1994)

7. Ioannidis, Y.E.: Query optimization. ACM Comput. Surv. 28(1), 121–123 (1996)
8. Pigul, A.: Generalized parallel join algorithms and designing cost models. In: Proceedings

of the Eighth Spring Researchers Colloquium on Database and Information Systems,
SYRCoDIS 2012, pp. 29–40 (2012)

9. Taniar, D., Leung, C.H.C., Rahayu, W., Goel, S.: High-performance parallel database
processing and grid databases. A John Wiley & Sons, Inc., Publication, New Jersey (2008)

10. Optiq framework Web site,
https://wiki.apache.org/incubator/OptiqProposal

11. Oracle Database Web site,
http://www.oracle.com/ru/products/database/overview/index.html

12. IBM Garlic Project Web site,
http://www.research.ibm.com/topics/popups/deep/manage/html/
garlic.html

13. Tork Roth, M., Arya, M., Haas, L., Carey, M., Cody, W., Fagin, R., Schwarz, P., Thomas,
J., Wimmers, E.: The Garlic project. In: Proceedings of the 1996 ACM SIGMOD Interna-
tional Conference on Management of Data, SIGMOD 1996, p. 557 (1996)

14. Composite Information Server Web site,
http://www.compositesw.com/products-services/
information-server/

Data Warehouse Schema Evolution Perspectives

Danijela Subotić

University of Rijeka, Department of Informatics, Rijeka, Croatia
dsubotic@inf.uniri.hr

Abstract. The paper presents a short analysis of research related to the
problem of the data warehouse (DW) evolution. The main contributions
of the paper are: a) analysis of existing methods and approaches to the
DW schema evolution, and b) characterization of the general research
idea for the DW schema evolution problem. The general research idea
includes a meta-Data Vault (DV) model that will integrate the DW with
the master data management (MDM) system. We believe the following
issues could be resolved: a) tracking the origin of data, b) tracking the
history of changes, c) avoiding loss of data, d) faster and simpler migra-
tion and transformation of data, and e) trend projections. Also, due to
long-term storage of historical data and tracking the origin of data, the
DW could be used as a complete system of records and as the basis for
the data governance (MDM integrated with the DW).

Keywords: data warehouse evolution, schema evolution, schema ver-
sioning, view maintenance, master data management, data vault.

1 Introduction

A data warehouse (DW) integrates a number of heterogeneous data sources and
provides for a quick and efficient analysis of business needs. However, today’s
data sources often change their content and structure, which greatly affects the
DW - it should contain the latest data to be able to reflect the evolving state
of the real world and our evolving understanding of it. Because of this, it is
necessary to properly manage all types of changes and appropriately update the
DW. With respect to the literature, the DW evolution research can be grouped
into research on managing the data and schema changes in the data warehouse,
managing the data changes in the data mart and managing the schema changes
in the data mart. However, we will observe the DW schema evolution more
broadly, through three approaches - schema evolution, schema versioning and
view maintenance. The aim of this paper is to present a short analysis of research
related to the problem of the DW schema evolution and to briefly describe
our general idea for the future research. The paper is organized as follows; in
section 2, research related to the DW evolution is analyzed; in section 3, a
characterization of the general research idea is presented; and section 4 contains
the conclusion and directions for future work.

c© Springer International Publishing Switzerland 2015 333
N. Bassiliades et al. (eds.), New Trends in Database and Information Systems II,
Advances in Intelligent Systems and Computing 312, DOI: 10.1007/978-3-319-10518-5_26

334 D. Subotić

2 Analysis of Related Work

We will mainly observe schema evolution and schema versioning approaches in
this paper, as they are the most relevant approaches for our future research. More
detailed state of the art will not be presented here, as this is only a short paper.
The process of schema evolution [1,2,3,4] and versioning [5,6,7,8,9,10,11] is still
demanding in terms of invested time and resources. Perhaps the biggest problem
here is the preservation of schema consistency and data integrity (there is still
a lack of an integrated system-of-records). Also, migration and transformation
of data is still slow and expensive, the loss of data during these processes is still
present and there is a lack of effective integration, organization and management
of metadata. Although the academic community has made steps towards solving
these problems, there is still room for improvement, as well as for defining gen-
eral solutions and fully effective commercial solutions. Different approaches to
solving the DW schema evolution problem are presented in literature, but there
is still no widely accepted solution for managing DW schema changes. We be-
lieve it is necessary to find a simple and complete solution for preserving schema
consistency and data integrity. All this issues will serve as requirements for a
new approach in which we will try to make a departure from previous research
and try to find a new perspective and solution to the DW schema evolution
problem.

3 General Research Idea

We observe the problem of the schema evolution as a double issue or a dual
problem- from the DW perspective, and from the master data management
(MDM) perspective. MDM represents the master and reference data (golden
copy) and related metadata, set of policies, governance, standards, processes and
tools that define and manage the master and reference data (of an organization)
to provide a single point of reference, with the purpose of increasing data and
business analysis quality. From the DW perspective every fact that is associated
with dimensions is observed and star schemas are standard representation used
for visualization. From the MDM perspective every master entity (dimension)
that is associated with events (facts) is observed and an inverse star-like schema
can be used for visualization [16]. In the case of MDM, as in a DW case, there
is the problem of schema evolution after changes in the data sources or user
requirements, and as such we will address it together. Our general research idea
includes a Data Vault meta-model based modeling approach [12,13] that will
integrate the DW with the MDM metadata in a common model to serve as an
extension of a generic DBMS catalog. The relational model is largely responsible
for physical data independence, but we can conclude that it is not convenient to
simply and effectively support the evolution of the logical structure of the DB
schema. Data Vault (DV) is a data modeling method that supports design of
data warehouses for long-term storage of historical data collected from various
data sources. Its main advantage is the separation of the structural data from

Data Warehouse Schema Evolution Perspectives 335

descriptive attributes, which makes the model flexible to changes in business
environment. Also, it highlights the need for tracking the origin of data con-
tained in the database and the history of changes, through empirically defined
set of metadata (record source, load datetimestamp). Furthermore, any change
is implemented in the model as an independent extension of the existing model,
which means that the changes do not affect current applications and all versions
of the model are a subset of the DV model.

With a development and implementation of our research idea we expect that
the following issues will be resolved (mainly through the use of a DV modeling
method): a) tracking the origin of data, b) tracking the history of changes, c)
avoiding the loss of data, d) slow and expensive migration and transformation
of data, and e) trend projections. Due to the long-term storage of historical
data and tracking the origin of data, the preservation of DW integrity would be
facilitated and the DW would then contain both a ”single version of the fact”
[12] and a ”single version of the truth” [14]. Also, it could be used as a complete
and integrated dual solution and system of records [15] with the support for data
sources evolution, user requirements evolution and data security evolution.

3.1 Characterization of the General Research Idea

Figure 1 shows a diagram of the proposed DW architecture. The proposed ar-
chitecture consists of four parts: a) data sources, b) enterprise DW, c) reporting
DW and d) user analysis. Data sources are usually distinguished (in the liter-
ature and practice) by their place of origin and maintenance. Accordingly, we
make a distinction between internal and external reference data (which is ob-
tained from internal or external data sources). Reporting DW (RDW) consists
of a derivative (summarized, aggregated and computed) data stored in materi-
alized or virtual DM. User analysis is the user side of the system architecture

Fig. 1. Suggested Data Warehouse Architecture Diagram

336 D. Subotić

where the tools for analysis and reporting are located. With the help of these
tools the user is directly accessing the RDW. Our research will mainly focus on
the Enterprise DW part of the proposed architecture. Enterprise DW (EDW) in-
cludes the raw data vault (RDV) and business master data vault (BDV), which
are integrated via metadata data vault (MDV). The RDV is oriented toward
data sources. With the help of ETL tools and processes data is extracted and
loaded into the RDV. The RDV contains actual copies of the originals from the
data sources. Once the data is entered into the RDV, it is no longer deleted
(all changes are implemented through additions-only). This means that copies
of the originals are kept permanently in RDV. With this persistent preservation
of history the loss of data is avoided and a solid basis for the audit process is
provided. The BDV is created by upgrading the RDV with the application of
standardized master data and business rules, for the purpose of business integra-
tion. The RDV and the BDV are shown as separate systems in Figure 1, but that
is only a logical representation. Physically it is possible to implement them indi-
vidually or as a single system. Our EDW will consist of a single DV model which
is partially oriented towards the data sources side (RDV), and partially oriented
towards the MDM and reporting side (BDV). Also, because they are now phys-
ically separated, we can distinguish reversible (light) and irreversible (heavy)
transformations [15]. Reversible transformations are used for loading data from
a data source into the RDV, and it is possible to reverse their effects, in order
to obtain the system-of records. They allow RDV to reach the exact copies of
the original from the data source. Irreversible transformations are mainly based
on the business and master rules and are usually irreversible. In this case, both
the transformations and the original data must be preserved in order to trace
exits back to the source and reconstruct them if necessary. The proposed ar-
chitecture moves irreversible transformations downstream - after RDV, towards
BDV and reporting DW (they are loading materialized DMs). Because of those
two types of separation (raw/business data and light/heavy transformations),
we can target only the needed set of data at a given time which will reduce the
time and the cost of data migration and transformation processes, and we can
preserve the whole history of changes (of the schema and the data) in the EDW.
This is the key idea for getting an integrated EDW system of records which will
also serve as the basis for the data governance [15,18]. Finally, MDV is a key
component of the proposed architecture, which serves to integrate the RDV and
BDV in the EDW system of records (we can say that MDV is the DW on the
DW). MDV logical model is based on the DV model. The aim of our research is
to define and formalize the MDV model and a final set of change cases for the
DW and MDM schema evolution scenarios (DW and MDM – dual solution). We
have a preliminary, true working draft version of the MDV for now, but it will
not be shown here. However MDV will keep historicized hubs, links, satellites,
attributes, domains and reference tables as a hub in a DV model, which will
serve as a mechanism for monitoring the data sources evolution. We also plan
to resolve (at the meta-level) the transformation from a source into the RDV
(via the extraction rules and light transformations), the transformation from the

Data Warehouse Schema Evolution Perspectives 337

RDV into the BDV (via the business and master rules and heavy transforma-
tions) and finally, the transformation from the integrated RDV/BDV into the
DM (also via the business rules and heavy transformations). This way MDV will
provide a mechanism for monitoring the user requirements evolution. Further-
more on a meta-level, the security aspect will be resolved, i.e. the user’s access
rights will be historicized and managed so a mechanism for monitoring the data
security evolution will be provided.

4 Conclusion

The paper presents a short analysis of previous DW schema evolution research
and characterization of our general research idea. The DW evolution process is
still quite complex, error prone and requires a lot of time and resources. There
is still room for research and improvement regarding the process of: a) transfor-
mation and migration of a DB on a new schema (system overload and system
downtime are still present, and these processes are still slow and expensive), b)
preservation of information during migration (the data is often lost, which affects
schema consistency and data integrity), c) rewriting queries and applications in
order to run on the new schema (current solutions have high maintenance cost)
and d) effective integration, organization and management of metadata. Also
the lack of defined mechanism for monitoring the data source model evolution,
the lack of support for model relativism and the lack of support for the data
security evolution can be noticed. Furthermore, only few of the approaches aim
to solve all these DW evolution problems together - the majority focus on just
one aspect. We believe that the problem of the DW and MDM schema evolu-
tion must be addressed at the general level and that all these problems must
be dealt with together - as a dual solution. We are not resolving the problem of
the DW and the MDM schema evolution ”on the fly” at the operational level
(where it occurs), but suggest a permanent general solution situated on a higher
(meta) level using the DV model. A key component here is MDV (metadata
repository model - metadata data vault) which in this context can be observed
as a DW on the DW. MDV will serve to integrate raw and persistent DW with
the business aligned MDM in order to obtain one consolidated EDW system
of records. We expect the end result to be a flexible, modular, general solution
which will track and manage changes in data and metadata, as well as their
schemas. We just started our research, after completing state of the art review,
and are working on a meta-Data Vault model and general requirements for de-
sired dual solution model. Among directions of ongoing and/or future research
are development and formalization of a final set of evolution change cases for
the proposed architecture, formalization of a data vault based metadata catalog
and incremental development of an Meta-Data Vault implementation prototype
with various aspects included (source, rules/transformation, materialized view
for DMs, and security) for an empirical evaluation of a proposed solution, as well
as an experimental benchmark test based on a completed case study model.

338 D. Subotić

Acknowledgements. This paper is based upon work supported by the Univer-
sity of Rijeka under project titled ”Metode i modeli za dizajn i evoluciju skladita
podataka”.

References

1. Hurtado, C.A., Mendelzon, A.O., Vaisman, A.: Maintaining Data Cubes under
Dimension Updates. In: Proceedings of the 15th International Conference on Data
Engineering (ICDE), Sydney, Australia, pp. 346–355 (1999)

2. Blaschka, M., Sapia, C., Höfling, G.: On Schema Evolution in Multidimensional
Databases. In: Mohania, M., Tjoa, A.M. (eds.) DaWaK 1999. LNCS, vol. 1676, pp.
153–164. Springer, Heidelberg (1999)

3. Marotta, A., Ruggia, R.: Data Warehouse Design: A Schema-Transformation Ap-
proach. In: 22nd International Conference of the Chilean Computer Science Society
(SCCC), Copiapo, Chile (2002)

4. Fan, H., Poulovassilis, A.: Schema Evolution in Data Warehousing Environments –
A Schema Transformation-based Approach. In: Atzeni, P., Chu, W., Lu, H., Zhou,
S., Ling, T.-W. (eds.) ER 2004. LNCS, vol. 3288, pp. 639–653. Springer, Heidelberg
(2004)

5. Eder, J., Koncilla, C.: Evolution of Dimension Data in Temporal Data Warehouses.
Technical Report (2000)

6. Body, M., Miquel, M., Bedard, Y., Tchounikine, A.: A Multidimensional and Mul-
tiversion Structure for OLAP Applications. In: 5th ACM International Workshop
on Data Warehousing and OLAP (DOLAP 2002), McLean, Virginia, USA, pp.
1–6. ACM Press (2002)

7. Golfarelli, M., Lechtenbörger, J., Rizzi, S., Vossen, G.: Schema Versioning in Data
Warehouses. In: Wang, S., et al. (eds.) ER Workshops 2004. LNCS, vol. 3289, pp.
415–428. Springer, Heidelberg (2004)

8. Bebel, B., Eder, J., Koncilia, C., Morzy, T., Wrembel, R.: Creation and Manage-
ment of Versions in Multiversion Data Warehouse. In: 19th ACM Symposium on
Applied Computing (SAC 2004), Nicosia, Cyprus, pp. 717–723. ACM Press (2004)

9. Papastefanatos, G., Vassiliadis, P., Simitsis, A., Vassiliou, Y.: What-if Analysis for
Data Warehouse Evolution. In: Song, I.-Y., Eder, J., Nguyen, T.M. (eds.) DaWaK
2007. LNCS, vol. 4654, pp. 23–33. Springer, Heidelberg (2007)

10. Solodovnikova, D.: Data Warehouse Evolution Framework. In: Proceedings of the
Spring Young Researcher’s Colloquium on Database and Information Systems,
SYRCoDIS, Moscow, Russia (2007)

11. Malinowski, E., Zimányi, E.: A conceptual model for temporal data warehouses and
its transformation to the ER and the object-relational models. Data & Knowledge
Engineering 64, 101–133 (2008)

12. Linstedt, D.: SuperCharge Your Data Watehouse: Invaluable Data Modeling Rules
to Implement Your Data Vault. CreateSpace Independent Publishing Platform,
USA (2011)

13. Jovanovic, V., Bojiéic, I.: Conceptual Data Vault Model. In: Proceedings of the
Southern Association for Information Systems Conference, Atlanta, USA (2012)

14. Inmon, W.H., Strauss, D., Neushloss, G.: DW 2.0: The Architecture for the Next
Generation of Data Warehousing. Morgan Kaufmann Publishers, Burlington (2008)

15. Jovanovic, V., Bojiéic, I., Knowles, C., Pavlic, M.: Persistent Staging Area Models
For Data Warehouses. Issues in Information Systems 13(1), 121–132 (2012)

16. Berson, A., Dubbov, L.: Master Data management and Data Governance, 2nd edn.
McGraw Hill (2011)

Author Index

Al Ehaidib, Reem 287
Al-Hajjar, Dua’a 301
Al-Jadaan, Manal 301
Al Muhanna, Sarah 287
Alnutaifi, Reem 301
Al Osaimi, Najd 287
Al Sohibani, May 287
Angryk, Rafal 97
Antoniou, Grigoris 123, 147
Augustyn, Dariusz Rafal 215

Batsakis, Sotiris 123, 147
Behrend, Andreas 159
Beis, Sotirios 3
Benchikha, Fouzia 257
Berro, Alain 29
Betz, Heiko 185
Bouaziz, Rafik 135
Brahmia, Zouhaier 135

Cao, Son Thanh 109
Chan, Eric 159
Chuchro, Monika 173

Dahanayake, Ajantha 287

Fehling, Ronny 159

Gawlick, Dieter 159
Georgiev, Marjan 71
Ghoneimy, Adel 159
Gomes-Jr., Luiz 317

Haberstroh, Alexander 229
Hamrouni, Hind 135
Hanisch, Alfred 85

Jaafar, Nouf 301
Jaakkola, Hannu 271
Jäger, Oliver 59
Jannaschk, Kai 271
Jovanovik, Milos 71, 245

Kaczmarski, Krzysztof 201
Kasri, Soumaya 257
Kliimask, Margus 41
Kompatsiaris, Yiannis 3
Kramer, Frank 59

Lauer, Tobias 229
Lehner, Wolfgang 85
Leśniak, Andrzej 173
Liu, Zhen Hua 159
Lupa, Michał 173

Megdiche, Imen 29

Najdenov, Bojan 245
Nguyen, Linh Anh 109

Papadopoulos, Symeon 3
Piȩta, Anna 173
Piórkowski, Adam 173
Przymus, Piotr 201

Rokosik, Monika 15
Rzążewski, Paweł 201

Saleh, Omran 185
Santanchè, André 317
Sattler, Kai-Uwe 185
Saveliev, Nickolay 323

340 Author Index

Schmiegelt, Philip 159
Stojanov, Riste 71
Strezoski, Gjorgji 245
Strohm, Peter Tim 229
Subotić, Danijela 333

Tachmazidis, Ilias 123, 147
Tammet, Tanel 41
Teste, Olivier 29
Thalheim, Bernhard 59, 271
Tomingas, Kalle 41
Trajanov, Dimitar 71, 245

Voigt, Hannes 85

Wall, Bob 97
Warchal, Lukasz 215
Wittmer, Steffen 229
Wojciechowski, Marek 15

Xie, Jingquan 159

Zdraveski, Vladimir 71

	Preface
	Organization
	Steering Committee
	Workshop on GPUs In Databases (GID 2014)
	Workshop on Ontologies Meet AdvancedInformation Systems (OAIS 2014)
	Workshop on Technologies for QualityManagement in Challenging Applications(TQCMA 2014)
	Contents
	Part I: Data Mining
	Benchmarking Graph Databases on the Problem of Community Detection
	1Introduction
	2Related Work
	3Workload Description
	3.1Clustering Workload
	3.2Supplementary Workloads

	4enchmark Description
	5Experimental Study
	5.1Datasets
	5.2Benchmark Results

	6Conclusions and Future Work

	Efficient Processing of Streams of Frequent Itemset Queries
	1Introduction
	2Related Work
	3Background and Common Counting Technique
	3.1Basic Definitions
	3.2Common Counting

	4Common Counting Stream
	5Experimental Results
	6Conclusions and Future Work

	Part II: Data Warehouses
	A Content-Driven ETL Processes for Open Data
	1Introduction
	2A Process for Self-service BI on Open Data
	3Extracting and Transforming Poorly-Structured Open Data
	3.1Extracting Poorly-Structured Open Data
	3.2Transforming Open Data into Instance-Schema Graphs

	4Experimetation
	5Conclusion

	Data Integration Patternsfor Data Warehouse Automation
	1 Introduction
	2 Related Work
	3 System Architecture
	3.1 Data Transformation Language (XDTL)
	3.2 Knowledge Repository Structure (MMX)

	4 Template Based SQL Construction
	4.1 Mappings, Patterns and Templates

	5 Experimental Abstract Syntax Pattern Case Study
	6 Case Studies for Automating Data Lineage Analysis
	7 Conclusions and Future Work
	References

	Part III: Issues of Information Systems
	Secure Data Storage and Exchange with a Private Wallet
	1Introduction
	2The Privacy Wallet Functionality
	2.1Request-a-Key
	2.2Request-a-Document
	2.3Response-a-Document
	2.4Synchronize
	2.5Ask-for-Extended-Rights
	2.6Request-a-Person

	3Privacy Wallet Realization
	3.1Modules and Task Areas
	3.2User Management
	3.3Encryption
	3.4Data Transfer
	3.5Data Management

	4Related Work
	5Conclusion and Outlook

	Live Objects - Collaborative Window in the Corporate Documents
	1Introduction
	2Related Work
	3Semantic Sky Platform
	3.1Semantic Sky Architecture
	3.2Live Objects
	3.3Semantic Sky Document Editor Addin

	4Semantic Sky Implementation
	4.1Live Object Initialization
	4.2Live Object Synchronization

	5Evaluation
	4Conclusion

	Part IV: Physical Level
	Flexs – A Logical Model for Physical Data Layout
	1Introduction
	2Flexs Notation
	3Block Set Materialization
	4Related Work
	5Conclusion

	Storing Long-Lived Concurrent Schema and Data Versions in Relational Databases
	1Introduction
	2Background
	2.1InnoDB Basics

	3Data Version Storage
	4Comparative Analysis
	4.1Experimental Data
	4.2Experimental Scenarios
	4.3Experimental Results

	5Conclusions

	An Empirical Approach to Query-Subquery Nets with Tail-Recursion Elimination
	1Introduction
	1.1Related Work
	1.2Our Contributions

	2Preliminaries
	3QSQ-Nets with Tail-Recursion Elimination
	4Preliminary Experiments
	4.1The Settings
	4.2Experimental Results
	4.3Discussion

	5Conclusions

	Part V: Spatial and Temporal Data
	Reasoning over Spatial Orientation Relations Using Rules
	1Introduction
	2Background and Related Work
	3Spatial Representation
	4Spatial Reasoning
	5Evaluation
	5.1Theoretical Evaluation
	5.2Experimental Evaluation

	6Conclusions and Future Work

	An Efficient Approach for Detecting and RepairingData Inconsistencies Resulting from Retroactive Updatesin Multi-temporal and Multi-version XML Databases
	1 Introduction
	2 Motivation
	2.1 Motivating Example
	2.2 Need for New DBMS Supports

	3 Data Inconsistencies Resulting from Retroactive Updates
	3.1 Data Inconsistencies Resulting from a Retroactive Insertion of Data
	3.2 Data Inconsistencies Resulting from a Retroactive Deletion of Data
	3.3 Data Inconsistencies Resulting from a Retroactive Correction of Data

	4 The Proposed Approach for Repairing Data InconsistenciesResulting from Retroactive Updates of Temporal XML Data
	4.1 Process of Repairing Automatically and Safely Data Inconsistencies
	4.2 Architecture of a DBMS Supporting Repair of Data Inconsistencies

	5 Related Work
	6 Conclusion
	References

	Integrated Representation of Temporal Intervals and Durations for the Semantic Web
	1Introduction
	2Background and Related Work
	3Temporal Representation
	4Temporal Reasoning
	4.1Reasoning over Interval Allen Relations
	4.2Reasoning over Duration relations

	5Combining Interval and Duration Representation and Reasoning
	6Evaluation
	6.1Experimental Evaluation

	7Conclusions and Future Work

	Temporal State Management for Supporting the Real-Time Analysis of Clinical Data
	1Introduction
	2Motivation
	2.1Simplifying Queries on Periods
	2.2Advantages of a State Concept

	3 Use Case
	3.1States for Detecting Liver Disorder
	3.2Evolving States in the Use Case

	4A State Concept for Databases
	3.1 Abstract State Concept
	3.2State Related Operators
	3.3Reasoning with States

	5Implementation Issues
	6Discussion

	Part VI: Streams
	A Concept of Time Windows Length Selection in Stream Databases in the Context of Sensor Networks Monitoring
	1Introduction
	1.1Sensor Network for Embankments Monitoring System

	2A Concept of Flood Embankment Condition Assessment
	3The Issue of Time Window Length Selection
	3.1A Concept of Experimental Flood Embankments Condition Assessment in Time Windows

	4Conclusions and Further Work

	Partitioning for Scalable Complex Event Processing on Data Streams
	1Introduction
	2The PipeFlow Language and Engine
	3Partitioning Techniques
	4Partitioning Dataflow Graphs
	5Evaluation
	6Conclusion

	Part VII: GID 2014 Workshop
	Improving High-Performance GPU Graph Traversal with Compression
	1Introduction
	1.1Preliminaries
	1.2Short History of BFS Implementations for the GPU
	1.3Highly Optimized BFS Implementation
	1.4Motivation
	1.5Lightweight Compression Methods

	2Compression of the CSR Graph Representation
	2.1Fixed-Length Compression of Large In-Memory Arrays

	3 Benchmark Graphs and Results of Experiments
	3.1Discussion on Results

	4Conclusions and Future Work

	GPU-Accelerated Method of Query Selectivity Estimation for Non Equi-Join Conditions Based on Discrete Fourier Transform
	1Introduction
	2Selectivity Estimation for Non Equi-Join Condition
	2.1Using a DFT Spectrum as a Representation of Attribute Values Distribution
	2.2Selectivity Estimation of a Range Condition Based on Difference of Attributes

	3Calculating Selectivity Values Directly from Spectrum (Without Inverse DFT) for Simple Range Predicates
	4GPU-Accelerated Selectivity Estimation
	5Experimental Results
	6Conclusions

	GPU-Accelerated Quantification Filters for AnalyticalQueries in Multidimensional Databases
	1 Introduction
	2 Motivation: Computation of Quantification Filters
	3 Parallel Computation of Aggregate Areas
	3.1 Target-Driven Aggregation
	3.2 Source-Driven Aggregation
	3.3 Performance of GPU Aggregation Algorithms

	4 Parallel Filtering
	5 Performance Comparison
	6 Conclusion
	References

	Part VIII: OAIS 2014Workshop
	Linked Open Data for Medical Institutions and Drug Availability Lists in Macedonia
	1Introduction
	2Related Work
	3Creating Linked Open Data for Medical Institutions and Drug Availability Lists
	3.1Identifying and Obtaining the Source Datasets
	3.2Transformation from 2-Star to 5-Star Linked Open Data

	4Use-Case Scenarios
	5Conclusion and Future Work

	Integrating Multi-viewpoints Paradigmin Ontology Using Ontology Design Patterns
	1 Introduction
	2 Related Work
	3 Integrating Viewpoints Paradigm in Ontology UsingODPs
	4 Conclusion
	References

	Part IX: TQMCA 2014 Workshop
	Technologies for Databases Change Management
	1Introduction
	1.1Characteristics of Database System Development
	1.2Data Quality
	1.3Towards Systematic Approach for Database Change Management - From Individual Attributes to a Generic Method

	2Change-Aware Development of Database Systems
	2.1The Facilitation Model
	2.2Change Management by Separation into Levels
	2.3Layering for Change Handling

	3Towards Conceptualisation for Change Management
	3.1The Category-Problem-Cause Model
	3.2The Change Policy and Change Patterns
	3.3Methodologies for Evolution of Database System Models

	4Techniques for Database Structure Change Management
	4.1Elementary Structural Change Templates
	4.2Change of a Singleton Model

	5Summary

	Factors That Influence the Quality of Crowdsourcing
	1 Introduction
	2 Concepts Elicitation through Literature Review
	3 Survey Results
	4 Case Studies
	4.1 Amazon Mechanical Turk
	4.2 Wikipedia
	4.3 YouTube
	4.4 Rally Fighter
	4.5 Kickstarter

	5 Analysis
	6 Conclusions and Discussions
	References

	Framework for Social Media Big Data Quality Analysis
	1 Introduction
	2 Related Works
	3 Research Method
	4 Identifying Quality of Social Media Data AnalyticsTechniques
	4.1 Twitter
	4.2 Flickr
	4.3 Facebook
	4.4 LinkedIn

	5 Framework for Quality Analysis of Big Data on Social Media
	6 Conclusion
	References

	Part X: Doctoral Consortium
	Querying and Managing Complex Data
	1Introduction
	2Research Directions
	3Progress to Date

	Implementation of Generalized Relational AlgebraicOperations with AsterixDB BDMS
	1 Introduction
	2 Extended Relational Algebra
	3 AsterixDB BDMS
	4 Integrating AsterixDB to the Optimizer
	5 Query Translation
	5.1 Q-Set Translation
	5.2 Operation Translation

	6 Done Work
	6.1 Translator
	6.2 Q-Set
	6.3 Filter Operator
	6.4 Join Operator
	6.5 Cost Model

	7 Future Work
	8 Related Work
	9 Conclusions
	References

	Data Warehouse Schema Evolution Perspectives
	1Introduction
	2Analysis of Related Work
	3General Research Idea
	3.1Characterization of the General Research Idea

	4Conclusion

	Author Index

