
Applications of the Newton Index

to the Construction of Irreducible Polynomials
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Abstract. We use properties of the Newton index associated to a poly-
nomial with coefficients in a discrete valuation domain for generating
classes of irreducible polynomials. We obtain factorization properties
similar to the case of bivariate polynomials and we give new applications
to the construction of families of irreducible polynomials over various dis-
crete valuation domains. The examples are obtained using the package
gp-pari.

1 Introduction

The construction of classes of irreducible polynomials is based on some few irre-
ducibility criteria or is the result of factorization algorithms. One of the devices
used for obtaining irreducibility criteria is to associate properly to a polynomial
a Newton polygon and to deduce from the properties of the polygon useful in-
formation concerning the irreducibility. This was done by G. Dumas [10] in his
extension of the irreducibility criteria of T. Schönemann [16] and G. Eisenstein
[11]. In fact Dumas considered the product of two univariate polynomials F1

and F2 with integer coefficients and studied the relations among the slopes of
the Newton polygons of the polynomials F1, F2 and their product F = F1F2.

The Newton polygon method was subsequently used by various authors for
the study of the irreducibily of the polynomials. Recently such results were
obtained by A. Bishnoi–S. K. Khanduja–K. Sudesh [3], C. N. Bonciocat [7], C.
N. Bonciocat–Y. Bugeaud–M. Cipu–M. Mignotte [8], D. Ştefănescu [17], [18] and
S. H. Weintraub [20].

The Newton polygon was initially defined for bivariate polynomials. Another
approach is to associate a Newton polygon to a univariate polynomial with the
coefficients in a discrete valuation domain. However, the irreducibility criterion
of G. Dumas [10] makes use of Newton polygons of univariate polynomials over
the integers and of the valuation defined by powers of a prime p . This result
was improved by O. Ore [13]. This idea was used by many authors, recently the
irreducibility over valued fields was considered by A. Bishnoi–S. K. Khanduja–
K. Sudesh [3], A. I. Bonciocat–C. N. Bonciocat [4], [5], C. N. Bonciocat [6], [9],
and A. Zaharescu [19]. On the other hand, the Newton polygon was used by L.
Panaitopol–D. Ştefănescu [14] for obtaining irreducibility criteria for bivariate
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polynomials. The Newton polyhedra were considered by A. Lipkovski [12] for
the study of absolute irreducibility of multivariate polynomials.

In this paper we consider properties of the Newton index for obtaining infor-
mation on the factorization of a univariate polynomial with the coefficients in a
discrete valuation field. A related method was first used by the author in [17], in
the case of bivariate polynomials. However, the results cannot be applied directly
to polynomials with coefficients in a valuation domain, so we restate Theorem 1
from [17] in this context, as Theorem 1. The Theorem 2 gives more information
on the factorization of a general univariate polynomial over a discrete valua-
tion domain. These results will be used for generating families of irreducible
polynomials. In particular, we construct new classes of univariate irreducible
polynomials over the integers and over fields of formal power series. Other appli-
cations are given to bivariate irreducible polynomials over algebraically closed
fields of characteristic zero.

2 On the Newton Index

We consider a univariate polynomial F (X) =
∑d

i=0 aiX
d−i with coefficients in

a discrete valuation domain (A, v). We remind that the Newton polygon N(F )

of the polynomial F (X) =
∑d

i=0 aiX
d−i is the lower convex hull of the set

{(d− i, v(ai)) ; ai �= 0} . The slopes of the Newton polygon are the slopes of some
line segment. We note that the slope of the line joining the points (d, v(a0)) and

(d − i, v(ai)) is
v(a0)− v(ai)

i
. The Newton index e(F ) of the polynomial F is

the largest slope e(F ) of these lines. More precisely,

e(F ) = max
1≤i≤d

v(a0)− v(ai)

i
.

G. Dumas [10] studied the relationship between the Newton indices of two
polynomials and the index of their product. He considered the case of univariate
integer polynomials with the valuation defined by powers of a prime p . If F1

and F2 are such polynomials, he established that the Newton polygon of the
product F1F2 can be obtained by translating the edges of the polygons N(F1)
and N(F2) in such a way that they compose a convex polygonal path with the
slopes of the edges ordered increasingly. The proof of Dumas is based only on
properties of the Newton polygons and it remains true for the case of arbitrary
discrete valuations. From the result of Dumas we obtain:

Proposition 1. If F1 , F2 ∈ A[X ] \A then

e(F1F2) = max (e(F1), e(F2)) .

In the case of bivariate polynomials Proposition 1 gives a relation between
the degree indices of two polynomials and the degree index of their product. We
remind that, in [17], to a bivariate polynomial F (X,Y ) =

∑d
i=0 Pi(X)Y d−i we

associated the degree-index

PY (F ) = max
1≤i≤d

deg(Pi)− deg(P0)

i
.
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It was used for obtaining irreducibility criteria for bivariate generalized difference
polynomials and their extensions by L. Panaitopol–D. Ştefănescu [14]. Among
other generalizations of irreducibility tests on generalized difference polynomials
we mention those of G. Angermüller [1], S. Bhatia–S. K. Khanduja [2], and A.
Bishnoi–S. K. Khanduja–K. Sudesh [3], D. Ştefănescu [17] and [18].

The oldest polynomial irreducibility criterion that applies to a general family
of polynomials was obtained by T. Schönemann [16] in 1846. A particular case
is Eisenstein’s criterion [11] published in 1850. G. Dumas [10] noted that Eisen-
stein’s criterion is related to properties of the Newton polygon and obtained a
generalization of the Schönemann–Eisenstein criterion. We remind its valuation
approach:

Lemma 1 (G. Dumas, 1906). Let F (X) =
∑d

i=0 aiX
d−i ∈ A[X ] be a poly-

nomial over a discrete valuation domain A, with the valuation field (K, v). If the
following conditions

i) v(a0) = 0 ,

ii) v(ad)
d < v(ai)

i for all i ∈ {1, 2, . . . , d− 1},
iii) gcd(v(ad), d) = 1,

are satisfied, the polynomial F (X) is irreducible in K[X ].

Remark 1. The condition ii) in Lemma 1 means that the Newton index of the
polynomial F is e(F ) = −v(ad)/d .

Remark 2. We consider now a generalized difference polynomial F (X,Y ) ∈
k[X,Y ] , where k is a field,

F (X,Y ) = cY d +
d∑

i=1

Pi(X)Y d−i ,

with c ∈ k \ {0}, ∈ N
∗, Pi(X) ∈ k[X ] and

deg(Pi)

i
<

deg(Pd)

d
for all i, 1 ≤ i ≤ d− 1 . (1)

Putting, for a polynomial P ∈ k[X ] , v(P ) = − deg(P ), we observe that
k[X,Y ] can be organized as a discrete valuation domain. The relation (1) be-
comes exactly the condition ii) from Theorem 1. Because v(c) = 0 the Theorem
of Dumas 1 states that the generalized difference polynomial F (X,Y ) is irre-
ducible if (deg(Pd), d) = 1 . This proves a result established, using a different
method, by G. Angermüller in [1].

We will look at factorization properties of univariate polynomials over a dis-
crete valuation domain for which the hypotheses in Theorem 1 are not satisfied.

3 Factorization Conditions

Let (A, v) be a discrete valuation domain and F (X) =
∑d

i=0 aiX
d−i ∈ A[X ] .

We will consider the case in which the Newton index could be attained for an
index s �= d and for which v(a0) could be nonzero.



Applications of the Newton Index 463

Theorem 1. Let (A, v) be a discrete valuation domain, and let

F (X) = a0X
d + a1X

d−1 + · · ·+ ad−1X + ad ∈ A[X ] ,

with a0ad �= 0 and d ≥ 2 . We assume that there exists an index s ∈ {1, 2, . . . , d}
such that

(a)
v(a0)− v(as)

s
>

v(a0)− v(ai)

i
for i ∈ {1, 2, ..., d}, i �= s ,

(b)
v(a0)− v(as)

s
− v(a0)− v(ad)

d
=

1

ds
,

(c) gcd(v(a0)− v(as), s) = 1 .

Then the polynomial F is either irreducible in A[X ], or has a factor whose degree
is a multiple of s.

Proof. The proof follows the same lines as that of Theorem 5 in [18], using valu-
ations instead of degrees. We suppose that there exists a nontrivial factorization
F = F1F2 in A[X ] . We have d = deg(F ) and we put

d1 = deg(F1) , d2 = deg(F2) .

We suppose that

F1(X) =

d1∑

i=0

a1iX
d1−i , F2(X) =

d2∑

i=0

a2iX
d2−i .

We observe that ad = a1d1a2d2 and, a0 = a10a20 .
Then we put

c = v(a0)− v(as) , m = v(a0)− v(ad) .

m1 = v(a10)− v(a1d1) , m2 = v(a20)− v(a2d2) .

We observe that
d = d1 + d2 , m = m1 +m2 .

¿From the condition (b) we obtain

cd− sm = 1 . (2)

By Proposition 1 we have e(F ) = max{e(F1), e(F2)} and, by the hypothesis (a),
it follows that

c

s
=

v(a0)− v(as)

s
= e(F ) ≥ e(F1) ≥ v(a10)− v(a1d1)

d1
=

m1

d1
,

which gives
c

s
− m1

d1
≥ 0 ,
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so

cd1 − sm1 ≥ 0 .

Because e(F ) ≥ e(F2) we also have

cd2 − sm2 ≥ 0 .

But we have

1 = cd− sm = (cd1 − sm1) + (cd2 − sm2) ,

so one of the positive integers cd1 − sm1 and cd2 − sm2 must be 0 .

Suppose, for example, that we have cd − sm1 = 0 . So cd = sm1 . But, by the
condition (c), the integers c and s are coprime. Therefore, s must divide d . If
cd − sm2 = 0 we obtain that s must divide m2. So, if the polynomial F is
reducible, the degree of one of its divisors must be a multiple of s . ��

Corollary 1. In the conditions of Theorem 1, if d ≥ 3 and s > d/2, then the
polynomial F is either irreducible, or has a divisor of degree s.

Proof. By Theorem 1 the polynomial F is irreducible or it has a factor of degree
a multiple of s . If F would have a factor of degree ks, with k ≥ 2, then we would
obtain

d > ks > k
d

2
≥ d ,

a contradiction. Therefore, k = 1 or F is irreducible. ��
If the difference between the numbers in the left-hand side in condition (b)

in Theorem 1 is larger than 1
ds we can also say something about the possible

divisors of F . More precisely, we have the following result:

Theorem 2. Let (A, v) be a discrete valuation domain, and let

F (X) = a0X
d + a1X

d−1 + · · ·+ ad−1X + ad ∈ A[X ] ,

with a0ad �= 0 and d ≥ 2 . We assume that there exists an index s ∈ {1, 2, . . . , d}
such that

(a)
v(a0)− v(as)

s
>

v(a0)− v(ai)

i
for i ∈ {1, 2, ..., d}, i �= s;

(b)
v(a0)− v(as)

s
− v(a0)− v(ad)

d
=

u

ds
, with u ≥ 2 ;

(c) gcd(v(a0)− v(as), s) = 1 .

Then one of the following conditions is satisfied:

i. The polynomial F is irreducible in A[X ] .

ii. The polynomial F has a divisor whose degree is a multiple of s .

iii. The polynomial F admits a factorization F = F1F2 and s divides β d1 −
αd2, for some α , β ∈ {1, 2, . . . , u− 1} , where d1 = deg(F1) , d2 = deg(F2) .
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Proof. We use the same notation as in the proof of Theorem 1. We obtain the
relation

cd− sm = u . (3)

We have cd1 − sm1 ≥ 0 , cd2 − sm2 ≥ 0 and

(cd1 − sm1) + (cd2 − sm2) = u . (4)

We look to the possible values of cd1 − sm1.
If cd1 − sm1 = 0 as in Theorem 1 we deduce that the degree of a divisor of

the polynomial F must be divisible by s .
If cd1 − sm1 = 1 we have cd2 − sm2 = u− 1 and we obtain

c (d2 − (u − 1)d1)) = (m2 − (u− 1)m1) ,

therefore s divides d2 − (u− 1)d1 .

In general, we suppose that

cd1 − sm1 = α ,
cd2 − sm2 = β ,

(5)

with α+ β = u .

From the relations (5) we obtain

c(β d1 − αd2) = s(β m1 − αm2) .

But s and c are coprime, so s should divide β d1 − αd2. Therefore, the case iii
is satisfied. ��

4 Applications

We consider univariate polynomials over particular discrete valuation domains
(the p–adic numbers, the integers, the formal power series) and bivariate poly-
nomials with coefficients in an algebraically closed field of characteristic zero.

Theorems and 1 and 2 are suitable for constructing families of irreducible
polynomials over A[X ] , where A = (A, v) is a discrete valuation domain. Given
a nonconstant polynomial F (X) = a0X

d + a1X
d−1 + · · ·+ ad−1X + ad ∈ A[X ] ,

with a0ad �= 0 , d ≥ 2 the method is summarized in the following steps:

– Compute the valuations v(a0), v(a1), . . . , v(ad) .
– Compute the Newton index e(F ) = max1≤i≤d {(v(a0)− v(ai)) /i} and the

index s for which e(F ) = (v(a0)− v(as)) /s .
– Compute gcd (v(a0)− v(as)) .
– If gcd (v(a0)− v(as)) �= 1, the irreducibility of the polynomial cannot be

tested by this method.
– If s = d we conclude that F is irreducible by the argument in the Theorem

of Dumas.
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– If s �= d we compute u such that

e(F )− v(a0)− v(ad)

d
=

u

sd
.

– If u �∈ {1, 2, . . . , d− 1} , the irreducibility cannot be tested by this method.
– If u = 1 we apply Theorem 1.
– If u ∈ {2, . . . , d− 1} we apply Theorem 2.

Using the package gp-pari we computed the Newton indices and we found
couples of numbers (s, u) that satisfy the hypotheses in Theorems 1 or 2.

4.1 Univariate Polynomials over p–adic Numbers

Let r ∈ Zp be a p–adic number, r = pn
∑∞

i=0 aip
i , ai ∈ {0, 1, . . . , p−1} , a0 �= 0 ..

We define a discrete valuation by v(r) = n.

Example 1. Let F (X) = Xd + aX2 + bX + c ∈ Zp[X ] . Suppose that d ≥ 2 and
v(a) = d , v(b) = d− 2 , v(c) = d− 1 . We have

v(1)− v(a)

d− 2
=

−d

d− 2
< 0 ,

v(1)− v(b)

d− 1
=

1

d− 1
− 1 ,

v(1)− v(c)

d
=

1

d
− 1 .

It follows that e(F ) = v(1)−v(b)
d−1 and

e(F )− v(1)− v(c)

d
=

1

d(d− 1)
.

We have s = d− 1 and, by Theorem 1, we conclude that F is either irreducible,
or has a factor of degree d − 1, and hence also a linear factor. Therefore, if F
has no p–adic roots it is irreducible over Zp[X ] .

4.2 Univariate Polynomials over Formal Power Series

Let k be an algebraically closed field of characteristic zero. If f(X) =
∑∞

i=0 aiX
i

is a formal power series from k[[X ]] we put v(f) = ord(f) := mini{i; ai �= 0} .
Example 2. Let F (Y ) = XY d + f(X)Y d−1 + g(X)Y 2 + Y + h(x) ∈ k[[X ]][Y ] ,
with d ≥ 3 ,

f(X) = Xd +Xd+1 + . . .+Xd+n + . . .) ,
g(X) = Xd−2 +Xd−1 +Xd ,
h(X) = Xd+1(1−X +X2 −X3 + · · ·) .



Applications of the Newton Index 467

We have v(X)−v(f)
1 = 1−d , v(X)−v(g)

d−2 = 3−d
d−2 ,

v(X)−v(1)
d−1 = 1

d−1 ,
v(1)−v(h)

d = −1 .

Therefore, e(F ) = v(1)−v(1)
d−1 = 1

d−1 and we have s = d−1 . We have by Theorem 1
that F is either irreducible in K[X,Y ], or has a factor whose degree is a multiple
of d− 1. Hence F is either irreducible, or has a linear factor.

4.3 Univariate Polynomials over the Integers

We suppose that F (X) ∈ Z[X ] \ Z and we consider the valuation given by the
power with respect to a prime ≥ 2 .

Example 3. Let F (X) = (p2 + p+ 1)Xd +X3 + pd−2(p+ 1)X + pd , with d ≥ 4
and p a prime. We have

v(a0) = 0 , v(ad−3) = 0 , v(ad−1) = d− 2 , v(ad) = d .

e(F ) = max

{−d+ 2

d− 1
,−1

}

=
−d+ 2

d− 1
=

v(a0)− v(ad−1)

d− 1
,

so we can apply Theorem 1. We have s = d − 1 and gcd (v(a0)− v(ad−1), s) =
gcd(d− 2, d− 1) = 1 .

Therefore, the polynomial F is irreducible or has a divisor of degree s = d−1 .
In this case, it should have also a linear divisor, so an integer root. Such roots
should be of the form −pt , with t ∈ {0, 1, . . . , pd}, and this can be checked for
particular values of d and t .

4.4 Bivariate Polynomials

Let k be an algebraically closed field of characteristic zero and suppose that F is
a bivariate polynomial from k[X,Y ] . We suppose that it has the representation

F (X,Y ) = P0(X)Y d + P1(X)Y d−1 + . . .+ Pd−1(X)Y + Pd(X) ,

where Pi ∈ k[X ] , P0 �= 0 .
For P ∈ k[X ] we put v(P ) = − deg(P ), and this defines a discrete valuation

on A := k[X ] . Because

v(P0)− v(Pi) = deg(Pi)− deg(P0)

the Newton index of the polynomial F (X,Y ) ∈ A[Y ] becomes

e(F ) = max
1≤i≤d

{
deg(Pi)− deg(P0)

i

}

,

which is exactly the degree index considered bu L. Panaitopol–D. Ştefănescu
in [14]. The results within Section 3 have, therefore, polynomial approaches. For
example, by Theorem 1 we obtain:
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Corollary 2 (D. Ştefănescu [18]). Let k be an algebraically closed field of
characteristic zero and let

F (X,Y ) = P0(X)Y d + P1(X)Y d−1 + . . .+ Pd−1(X)Y + Pd(X) , P0 Pd �= 0 .

If there exists an index s ∈ {1, 2, . . . , d} such that the following conditions are
satisfied

(a)
deg(Pi)− deg(P0)

i
<

deg(Ps)− deg(P0)

s
for i ∈ {1, 2, ..., d}, i �= s;

(b)
deg(Ps)− deg(P0)

s
− deg(Pd)− deg(P0)

d
=

1

ds
.

(c) gcd(deg(Ps)− deg(P0), s) = 1

the polynomial F is either irreducible in A[X ], or has a factor whose degree is a
multiple of s.

Example 4. Let F (X,Y ) = XmY d + XY d−1 + XY d−2 + Y 2 + p(X)Y + q(X)
with deg(p) = deg(q) = m+ 1 , m ≥ 1 , d ≥ 5 and q(0) �= 0 . We have

deg(P1)− deg(P0)

1
=

1−m

1
,

deg(P2)− deg(P0)

1
=

1−m

2
,

deg(Pd−2)− deg(P0)

d− 2
=

−2

d− 3
,

deg(Pd−1)− deg(P0)

d− 1
=

1

d− 1
,

deg(Pd)− deg(P0)

d
=

1

d
.

We then apply Theorem 1 and obtain that the polynomial F is either irreducible
or it has a divisor of degree d− 1 with respect to Y . Therefore, F is irreducible
or has a linear divisor with respect to Y .

Example 5. Let F (X,Y ) = (X3+1)Y d+X2Y d−1+(Xd−2+X+1)Y 3−XY +
Xd+1 + 1 . We have

deg(P1)− deg(P0)

1
=

0− 3

1
= −3 ,

deg(Pd−3)− deg(P0)

d− 3
=

d− 2

d− 3
> 1 ,

deg(Pd−1)− deg(P0)

d− 1
=

1− 3

d− 1
= − 2

d− 1
,

deg(Pd)− deg(P0)

d
=

4− 3

d
=

1

d
.
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It follows that the Newton index is e(F ) = d−2
d−3 . We have s = d−3 , (d−2, d−3) =

1 and

deg(Pd−3)− deg(P0)

d− 3
− deg(Pd)− deg(P0)

d
=

d− 2

d− 3
− d+ 1

d
=

3

d(d− 3)
.

So we can apply Theorem 2. We have the following possibilities.

i. The polynomial F is irreducible in k[X,Y ] .

ii. The polynomial F has a divisor whose degree with respect to Y is a multiple
of d− 3 . Therefore, there exists a divisor of degree 3 with respect to Y .

iii. There exists a nontrivial factorization F = F1F2 such that d − 3 divides
β d1 − αd2 , where d1 = deg(F1), d2 = deg(F2) and α, β ∈ {1, 2, 3} . If we look
at the proofs of Theorems 1 and 2 we can compute α and β .

In fact, from the relations

cd1 − sm1 = 1 ,
cd2 − sm2 = 2

we obtain c(d2 − 2d1) = s(m2 − 2m1) , so s must divide d2 − 2d1 .

For our example we deduce that d2−2d1 must be divisible by 3 . For particular
values of d this condition is not satisfied. For example, for d = 5, we have
(d2, d1) ∈ {(1, 4), (2, 3), (3, 2), (4, 1)}, so the cases to be considered are

1− 2 · 4 = −7 ,
2− 2 · 3 = −4 ,
3− 2 · 2 = −1 ,
4− 2 · 1 = 2 ,

and none of them is a multiple of 3 .

Example 6. Let F (X,Y ) = p(X)Y d + Y d−1 + q(X)Y 2 + r(X) , with deg(p) =
m ≥ 1, deg(q) = d+m− 1, deg(r) = d+m+ 1, d ≥ 5 . We have

deg(P1)− deg(P0)

1
=

0−m

1
= −m,

deg(Pd−2)− deg(P0)

d− 2
=

d+m− 1−m

d− 2
= −d− 1

d− 2
,

deg(Pd)− deg(P0)

d
=

d+m− 2−m

d
=

d+ 1

d
.

We obtain e(F ) = d−1
d−2 and d− 1 and d− 2 are coprime. On the other hand,

e(F )− deg(r)

d
=

d− 1

d− 2
− d+ 1

d
=

2

d(d− 2)
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and we can apply Theorem 2. There are three possible cases:

i. The polynomial F is irreducible in k[X,Y ] .

ii. The polynomial F has a divisor whose degree with respect to Y is a multiple
of d− 2 . So this divisor is od degree d− 2 with respect to Y . Therefore F could
have a quadratic divisor with respect to Y .

iii. There exists a factorization F = F1F2 and the difference of their degrees is
a multiple of d−2. If we suppose 1 ≤ d1 ≤ d2 ≤ d−1 we obtain 0 ≤ d2−d1 ≤ d−2 .
It follows that we have

d1 = d2 or d2 − d1 = d− 2 .

The last condition is satisfied only if d1 = 1 and d2 = d− 1 .

We conclude that the polynomial F is irreducible if it does not have quadratic
divisors with respect to Y and satisfies one of the two conditions:

a. Its degree d is odd.

b. It does not have linear divisors with respect to Y .

5 Conclusion

In this paper we proposed a method for the construction of univariate irreducible
polynomials over discrete valuation domains. We proved that our approach ex-
tends basic results on the irreducibility of univariate polynomials over the inte-
gers and on bivariate polynomials over an algebraically closed field. The method
has applications also to polynomials in other discrete valuation domains. It re-
quires the computation of families of numbers that satisfy some conditions. The
use of computer packages allows us to obtain new classes of irreducible polyno-
mials.

Future work will be done for applying these techniques for the construction
of multivariate irreducible polynomials.

Acknowledgement. The author is grateful to the anonymous referees for valu-
able comments and suggestions.
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Journal de Math. Pures et Appl. 12, 191–258 (1906)
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