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Abstract. The satellite version of the restricted three-body problem
formulated on the basis of classical Gylden–Meshcherskii problem is con-
sidered. Motion of the point P2 of infinitesimal mass about the point P0

is described in the first approximation in terms of the osculating elements
of the aperiodic quasi-conical motion, and an influence of the point P1

gravity on this motion is analyzed. Long-term evolution of the orbital
elements is determined by the differential equations written in the Hill
approximation and averaged over the mean anomalies of points P1 and
P2. Integrability of the evolutionary equations is analyzed, and the laws
of mass variation have been found for which the evolutionary equations
are integrable. All relevant symbolic calculations and visualizations are
done with the computer algebra system Mathematica.

1 Introduction

The restricted three-body problem is a well-known model of celestial mechanics,
having a lot of applications (see [9]). In the simplest case, it is assumed that two
massive points P0, P1 move in the Keplerian orbits about their common center
of mass, while the third point P2 of negligible mass does not influence on their
motion and moves in the gravitational field generated by P0, P1. This problem is
not integrable, and so the perturbation theory is usually applied to the analysis of
the point P2 motion, and quite cumbersome symbolic calculations are involved.
As a general solution of the two-body problem is known, one can consider in the
first approximation that the point P2 moves around the point P0, for example,
as a satellite and its Keplerian orbit is disturbed by the gravity of point P1.
Such a model has been used successfully in the study of satellite motion in the
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system Earth–Moon or Sun–planet [4,5]. It was shown that doubly averaged
equations of motion determining the evolution of satellite orbit may become
integrable. The corresponding general solution may be found in analytic form,
and it enables investigation of main qualitative features of the orbit parameters
(see, for example, [10]).

If masses of points P0 and P1 vary with time as it takes place in case of a
binary star, losing the mass due to the corpuscular and photon radiation, the
problem becomes much more complicated because a general solution of the cor-
responding two-body problem cannot be found in an analytical form (see [2,1,6]).
Actually, using the relative coordinate system with origin at point P0, one can
write equation of the point P1 motion in the form

d2R1

dt2
= −G(m0(t) +m1(t))

R1

R3
1

, (1)

where R1 is a radius-vector of point P1, R1 = |R1|, and G is the constant of
gravitation. Equation (1) is known as the classical Gylden–Meshcherskii problem
(see [2]), and its general solution can be found in symbolic form only for special
cases. In the present paper, we assume that the massesm0(t) and m1(t) of points
P0 and P1, respectively, vary isotropically with different rates, but their total
mass reduces according to the joint Meshcherskii law

m00 +m10

m0(t) +m1(t)
=
√
At2 + 2Bt+ C ≡ v(t), (2)

where m00 = m0(t0), m10 = m1(t0), t0 is an initial instant of time, and param-
eters A,B,C are chosen in a way to satisfy the condition v(t0) = 1 and v(t)
to be an increasing function for t > t0. Then equation (1) is reduced to ordi-
nary equation of Keplerian motion for constant masses by means of variables
transformation (see [2])

R1(t) = v(t)R(τ) ,
dt

v2(t)
= dτ , (3)

where R(τ) = (X,Y, Z) is a new radius-vector, and τ is a new independent
variable (new ”time”). A uniform motion in a circle of radius a1 situated in the
coordinate plane XOY is a particular case of Keplerian motion and is given by

X(τ) = a1 cosM1(τ), Y (τ) = a1 sinM1(τ), Z(τ) = 0, (4)

where M1(τ) = ω1τ , and angular velocity ω1 is

ω1 =

(
AC −B2 +

K

a31

)1/2

, K = G(m00 +m10) .

Assuming that motion of point P1 is determined by equations (3)-(4), we con-
sider here the satellite version of the restricted three-body problem when the
point P2 moves around point P0, being perturbed by the gravity of point P1.
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We use the Hill approximation [3], when a distance between points P0 and P1

is considered to be much greater than distance between P0 and P2. The main
purpose of this paper is to find a class of functions m0(t), m1(t), for which the
evolutionary equations, describing the secular perturbations of point P2 trajec-
tory, become integrable, and to obtain the corresponding solutions in analytic
form. The relevant cumbersome symbolic calculation and visualization of the
results are done with the computer algebra system Mathematica [11].

The paper is organized as follows. In section 2, we obtain the equations of point
P2 motion in the framework of the Hill approximation, considering an aperiodic
motion on quasi-conical section as the unperturbed motion. Doubly averaging
the equations of motion, we obtain the differential equations determining the
long-term evolution of the orbital parameters. Then we look in section 3 for
the solutions of the evolutionary equations in analytic form and analyze the
conditions under which such solutions exist and describe a quasi-elliptic motion
of point P2. Finally, in section 4 we determine the mass variation laws for which
a general solution of the evolutionary equations can be found in analytical form.
And we conclude in section 5.

2 Evolutionary Equations

Assume that position of point P2 in the relative coordinate system with origin
at point P0 is given by the radius-vector R2. Then equations of its motion are
given by (see [6])

d2R2

dt2
= −Gm0(t)

R2

R3
2

−Gm1(t)
R1

R3
1

+Gm1(t)
R1 −R2

R3
12

, (5)

where R2 = |R2|, R12 = |R1−R2|. Applying the scale transformation of spatial
coordinates and time defined in (3), we reduce equation (5) to the form

d2r

dτ2
= −(AC −B2)r −Gm0(t)v(t)

r

r3
+Gm1(t)v(t)

(
R− r

Δ3
12

− R

R3

)
, (6)

where r(τ) = R2(t)/v(t) is a new radius-vector of point P2, and Δ12 = |R− r|.
Note that massesm0(t) andm1(t) in (6) are arbitrary non-increasing functions

satisfying the condition (2). It is convenient to represent them in the form

mj(t) =
mj0

v(t)γj(τ)
, (j = 0, 1) , (7)

where the functions γj(τ) are constrained by the condition

m00

γ0(τ)
+

m10

γ1(τ)
= m00 +m10 , (8)

that follows from (2). Then equation (6) takes the form

d2r

dτ2
= −(AC −B2)r − Gm00

γ0(τ)

r

r3
+

Gm10

γ1(τ)

(
R− r

Δ3
12

− R

R3

)
. (9)
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In case of γ0 = 1, when each of the masses m0 and m1 decreases with time
according to the joint Meshcherskii law (see (2), (7)–(8)), equation (9) reduces to
the restricted three-body problem with constant masses. Note that appearance
of a linear term (AC − B2)r in the right-hand side of (9) does not destroy its
integrability for m1 = 0, although it can be integrated only in quadratures. So
it is convenient to analyse the corresponding evolutionary equations under an
assumption that in the first approximation, point P2 moves around point P0 on
Keplerian orbit but its orbital parameters are disturbed by the gravity of point
P1 and by additional force being a linear function of r. One can show that the
differential equations determining evolution of the orbital parameters can then
be integrated in analytic form.

To analyse a general case and to find other functions γ0(τ) for which the
evolutionary equations are integrable, one can apply similar approach, exploiting
integrability of the differential equation

d2r

dτ2
=

γ̈0
γ0

r − Gm00

γ0(τ)

r

r3
, (10)

where γ̈0 ≡ d2γ0/dτ
2. Note that γ0(τ) in (10) is an arbitrary twice continuously

differentiable function and this equation determines an aperiodic motion of a
point on quasi-conical section (see [6,8]). The corresponding solution r = (x, y, z)
can be represented in the form

x = γ0a((cosE − e)(cosω cosΩ − sinω sinΩ cos i)−
−
√
1− e2(sinω cosΩ sinE + cosω sinΩ sinE cos i)) ,

y = γ0a((cosE − e)(cosω sinΩ + sinω cosΩ cos i)− (11)

−
√
1− e2(sinω sinΩ sinE − cosω cosΩ sinE cos i)) ,

z = γ0a((cosE − e) sinω sin i+
√
1− e2 cosω sinE sin i) ,

where the constants a, e, i, Ω, ω are the analogues of orbital elements known
from the classical two-body problem with constant masses (see, for example, [7]),
and the eccentric anomaly E is determined by the equation

E − e sinE = M =

√
K0

a3/2
(Φ(τ) − Φ(τ0)) . (12)

The function Φ(τ) in (12) is given by

Φ(τ) =

∫ τ

τ0

dτ

γ2
0(τ)

, K0 = Gm00 .

In case of γ0 = 1 equation (10) reduces to a pure Keplerian problem with con-
stant masses when the variableM becomes a linear function of time known as the
mean anomaly and the constant τ0 is the time of perihelion passage (see [6,7]).
Note that orbital parameters a, e, i, Ω, ω, and τ0 are determined from the initial
conditions of motion, and expressions (11), (12) determine an exact solution of
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the two-body problem (10) for any given function γ0(τ) satisfying the conditions
above.

As equation (9) does not contain a linear term being proportional to the
second derivative of the function γ0, one can add and subtract the corresponding
term and rewrite the equation in the form

d2r

dτ2
=

γ̈0
γ0

r−Gm00

γ0(τ)

r

r3
−
[
(AC −B2)r +

γ̈0
γ0

r − Gm10

γ1(τ)

(
R− r

Δ3
12

− R

R3

)]
. (13)

Then its solution can be sought in the form (11) under the condition that the
orbital parameters are functions of time. Such approach is known as a method of
variation of constants and is widely used in the theory of differential equations.

To derive the differential equations determining the time evolution of orbital
parameters in the simplest form, it is convenient to rewrite equation (13) in the
Hamiltonian form and to change to the special set of canonical variables known
as Delaunay’s variables (see [6,8]). Three pairs of the corresponding canonical
conjugate coordinates and momenta (l, L), (g,G) and (h,H) are related to the
analogues of the Keplerian orbital elements as

l = M, L =
√
K0a, g = ω, G = L

√
1− e2, h = Ω, H = G cos i . (14)

The Hamiltonian function in the Delaunay variables may be written in the form

H = − K2
0

2γ2
0L

2
+

1

2

(
AC −B2 +

γ̈0
γ0

)
(x2 + y2 + z2)− V, (15)

where the function V is given by

V =
K1

γ1(τ)

(
1

Δ12
− xX + yY + zZ

R3

)
, K1 = Gm10 ,

and components of vectors R and r are given by (4) and (11), respectively.
Assuming further the ratio of the distances r and R to be small (r/R << 1),

one can expand the function V into a power series in terms of r/R and keep
only the main term of the expansion in the Hamiltonian (15). It means that we
consider the problem in the Hill approximation [3]. Then the Hamiltonian takes
the form

H = − K2
0

2γ2
0L

2
+

1

2

(
AC −B2 +

γ̈0
γ0

+
K1

γ1a31

)
(x2 + y2 + z2)−

− 3K1

2γ1a31

(
x2 cos2 M1 + y2 sin2 M1 + xy sin(2M1)

)
. (16)

As we are interested in the secular evolution of the point P2 orbit under an
influence of massive point P1, one may disregard the short-period perturbations
of orbital elements by means of averaging of the Hamiltonian (16) over the mean
anomalies of points P1 and P2 (see [5]). The averaged Hamiltonian is determined
as (see (12))

H̄ =
1

4π2

∫ 2π

0

∫ 2π

0

HdMdM1 =
1

4π2

∫ 2π

0

∫ 2π

0

H(1 − e cosE)dEdM1,
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and is given by

H̄ = − K2
0

2γ2
0L

2
+

γ2
0L

4

4K2
0

(
AC −B2 +

γ̈0
γ0

+
K1

γ1a31

)(
5− 3G2

L2

)
− (17)

− 3K1γ
2
0L

4

16γ1a31K
2
0

(
2 +

2H2

G2
+

(
1− G2

L2

)(
3 +

3H2

G2
+ 5 cos(2g)

(
1− H2

G2

)))
,

where the relationships (14) have been taken into account.
Obviously, the averaged Hamiltonian (17) does not depend on the mean

anomaly M ≡ l and so its canonical conjugate variable L is constant. The first
term in the right-hand side of expression (17), depending only on L, influences
on the time evolution of mean anomaly M but doesn’t influence on other orbital
parameters of point P2. Therefore, if the rest terms of the Hamiltonian (17)
contained the same multiplier γ2

0/γ1, depending on time, it would be possible
to reduce the differential equations, determining the secular evolution of orbital
parameters g, h, G, H , to the autonomous case by means of the scale transfor-
mation of time. We shall show later that such autonomous differential equations
may be integrated. So let us consider a class of functions γ0(τ) satisfying the
condition

γ̈0
γ0

+AC −B2 = −α
K1

γ1a31
, (18)

where α is a parameter. Then the Hamiltonian (17) can be rewritten as

H̄ = − K2
0

2γ2
0L

2
+

K1γ
2
0L

4

4γ1a31K
2
0

[
(1− α)

(
5− 3G2

L2

)
− 3

2

(
1 +

H2

G2

)
−

− 3

4

(
1− G2

L2

)(
3 +

3H2

G2
+ 5 cos(2g)

(
1− H2

G2

))]
. (19)

Differential equations for orbital parameters g, h, G, H are obtained in the
standard Hamiltonian form as

dg

dτ
=

∂H̄
∂G

,
dG

dτ
= −∂H̄

∂g
,
dh

dτ
=

∂H̄
∂H

,
dH

dτ
= −∂H̄

∂h
. (20)

Substituting expression (19) into (20) and taking into account (14), after quite
standard symbolic calculations we obtain differential equations determining the
secular evolution of the orbital parameters in the form

dz

dn
= 20z

√
1− z sin2 i sin(2ω) , (21)

di

dn
= − 10z√

1− z
sin i cos i sin(2ω) , (22)
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dω

dn
=

4√
1− z

(
5 cos2 i sin2 ω + (1− z)(2α+ 2− 5 sin2 ω)

)
, (23)

dΩ

dn
= − 4 cos i√

1− z

(
1− z + 5z sin2 ω

)
, (24)

where z = e2, and n is a new dimensionless independent variable determined by
the equation

dn =
3K1γ

2
0(τ)a

2

16γ1(τ)a31
√
K0a

dτ . (25)

Note that the system of differential equations (21)-(24) looks similarly to the
corresponding equations describing evolution of satellites of Uranus (see [10]).
But due to dependence of the points masses on time equation (23) contains
additional term 2α(1−z) in the parentheses in the right-hand side and additional
parameter α. Therefore, the system behaviour and its analysis should be more
complicated, although it can be investigated in a similar way as in [10].

3 Integration of the Evolutionary Equations

Direct symbolic calculation shows that the system of three equations (21)-(23)
has two independent integrals of motion

(1 − z) cos2 i = c1 = const, (26)

z

(
2

5
N − sin2 i sin2 ω)

)
= c2 = const, (27)

whereN = 1+α is a new parameter. This enables us to eliminate two variables in
the system (21)-(23) and to reduce it to an ordinary differential equation with
respect to the function z(n) that can be integrated. As determination of the
function Ω(n) reduces then to simple integrating the right-hand side of equation
(24) we focus here on analysis of system (21), (26), (27) and will discuss solving
the equations (22), (23) only if the corresponding solutions cannot be obtained
from the integrals (26), (27).

Note that in case of quasi-elliptic motion of point P2 eccentricity of its orbit
should be less than 1 or 0 ≤ z < 1. Hence, the first integral c1 must belong
to the interval 0 ≤ c1 ≤ 1. Consequently, for given c1, expression (26) restricts
possible values of z to the interval 0 ≤ z ≤ 1− c1. Eliminating the variable i in
the system (26)-(27), we obtain

sin2 ω =
(1− z)(2Nz − 5c2)

5z(1− z − c1)
. (28)

Then the condition 0 ≤ sin2 ω ≤ 1 gives two inequalities

2Nz − 5c2 ≥ 0 , (5− 2N)z2 − z(5− 2N − 5c1 − 5c2)− 5c2 ≤ 0 . (29)
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Applying the Mathematica built-in function Reduce to the system (29) com-
bined with inequalities 0 ≤ z ≤ 1 − c1, 0 ≤ c1 ≤ 1 and separating the results
with the function LogicalExpand, one can get a long list of different solutions,
determining possible values of the integral c2 and the variable z, corresponding
to quasi-elliptic motion of point P2. Depending on the value of parameter N ,
one can separate three different cases which are considered below.

3.1 Case N = 5
2

In this case, the system (29) reduces to the following inequalities

0 ≤ c2 ≤ z ≤ c2
c1 + c2

, c1 + c2 ≤ 1 , 0 ≤ c1 ≤ 1 . (30)

Therefore, the domain of possible values of the integrals c1, c2 in the plane Oc1c2
is a triangle bounded by the lines c1 = 0, c2 = 0, c1 + c2 = 1.

Using expressions (26), (28), we eliminate the variables i and ω in (21) and
obtain the following differential equation

dz

dn
= 40sgn(sin(2ω0))

√
(z − c2)(c2 − z(c1 + c2)) , (31)

where the function sgn(x) determines a sign of sin(2ω0) at the initial instant of
time (ω0 = ω(t0)). This equation is easily integrated, and its solution is given by

z = c2 +
c2(1− c1 − c2)

c1 + c2
sin2

(
20sgn(sin(2ω0))

√
c1 + c2n+ ϕ0

)
, (32)

where

ϕ0 = arcsin

√
(z0 − c2)(c1 + c2)

c2(1− c1 − c2)
, z0 = z(0) .

Expression (32) shows that z(n) is an oscillating function, and its values belong
to the interval (30). The function i(n) = arccos

√
c1/(1− z) also oscillates, and

an interval of its values is determined by inequality

c1
1− c2

≤ cos2 i ≤ c1 + c2 .

One can readily check that the function ω(n) increases with time because its
derivative (see (23)) is positive under the conditions (30), while its values are
determined by the expression (28).

One should note that in case of c2 = 0 there exists additional stationary
solution of equation (21) that cannot be obtained as a limit case of (32). Actually,
an equality c2 = 0 takes place either in case of z = 0 or in case of sin2 i = 1 and
sin2 ω = 1 (see (27)). The second case implies c1 = 0, and the corresponding
solution is given by

0 ≤ z = const < 1 , i =
π

2
, ω =

π

2
or ω =

3π

2
. (33)

Solution (33) describes motion of point P2 on elliptic orbit in a plane that
is perpendicular to the orbital plane of point P1. Note that in case of constant
masses, such motion always results in collision of points P0 and P2 (see [4]).
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3.2 Case N > 5
2

Analysis of inequalities (29) shows that the domain of possible values of the
integrals c1 and c2 in the plane Oc1c2 is a triangle determined by inequalities

c1 ≥ 0 , c2 ≥ 0 , c1 ≤ 1− 5c2
2N

. (34)

On its boundary c2 = 0, equations (21), (22) have only a stationary solution
z = 0, cos2 i = c1, while equation (23) takes the form

dω

dn
= 4

(
2N − 5(1− c1) sin

2 ω
)
,

and is integrated in terms of elementary functions, the result is easily found with
the Mathematica built-in function DSolve, for example.

On the other border c1 = 1 − 5c2/(2N), inequalities (29) can be written in
the form

z − 5c2
2N

≥ 0 , 2N − z(2N − 5) ≤ 0 .

One can readily see that inside of the interval z ∈ [0, 1] there is only one point
z = 5c2/(2N) satisfying these inequalities. Therefore, equations (21) and (22)
have only a stationary solution z = 5c2/(2N) = 1− c1, cos

2 i = 1, and equation
(23), taking the form

dω

dn
=

4√
c1

(
2Nc1 + 5(1− c1) sin

2 ω)
)
,

is again integrable in terms of elementary functions.
On the third border c1 = 0, when 0 ≤ c2 < 2N/5 and cos2 i = 0, inequalities

(29) can be written in the form

z − 5c2
2N

≥ 0 , (1− z) (5c2 − z(2N − 5)) ≥ 0 . (35)

Therefore, the variable z belongs to the interval

5c2
2N

≤ z <
5c2

2N − 5
< 1 ,

for 0 ≤ c2 < 2N/5− 1, and
5c2
2N

≤ z ≤ 1 ,

for 2N/5− 1 ≤ c2 < 2N/5. In this case, solution of equation (21) becomes more
complicated, although it may be integrated in terms of elliptic functions. As the
method applied is similar to the case when values of the integrals c1, c2 belong
to the domain inside of the triangle (34) in the plane Oc1c2, let us consider such
general case.
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Using expressions (26), (28) and eliminating the variables i and ω in equation
(21), one can rewrite it in the form

dz

dn
= 8sgn(sin(2ω0))

√
Q(z) , (36)

where the third-degree polynomial Q(z) is given by

Q(z) = (2Nz − 5c2)(5c2 + z(5− 2N − 5c1 − 5c2)− z2(5 − 2N)) , (37)

and it is assumed that the variable z takes only such values, for which Q(z) ≥ 0.
Solving the equation Q(z) = 0, we obtain in general three different roots

z1,2 =
1

2

⎡

⎣1 +
5(c1 + c2)

2N − 5
±
((

1 +
5(c1 + c2)

2N − 5

)2

− 20c2
2N − 5

)1/2
⎤

⎦ ,

z3 =
5c2
2N

. (38)

Analysis of expressions (37), (38) shows that inside of the domain (34) two
roots z2, z3 of polynomial Q(z) belong to the interval [0, 1], and Q(z) ≥ 0 if
z3 ≤ z ≤ z2 < 1, while the third root z1 ≥ 1. Then Q(z) may be represented in
the form

Q(z) = 2N(2N − 5)(z1 − z)(z2 − z)(z − z3)

and equation (36) may be integrated in the elliptic quadrature. Its solution is

8 sgn(sin(2ω0))
√
2N(2N − 5) n =

∫ z

z0

dz
√
(z1 − z)(z2 − z)(z − z3)

. (39)

An integral in the right-hand side of (39) is calculated in terms of the elliptic
functions and the solution may be represented as

z(u) = z3 + (z2 − z3)sn
2u , (40)

where

u = 4sgn(sin(2ω0))
√

2N(2N − 5)(z1 − z3)n+ u0 , u0 = F (ϕ0, κ
2) ,

κ2 =
z2 − z3
z1 − z3

< 1 , sin2 ϕ0 =
z0 − z3
z2 − z3

, z0 = z(0) .

Here snu and F (ϕ0, κ
2) are the Jacobi elliptic sine and the incomplete elliptic

integral of the first kind, respectively.
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1

0

1
2N

51
2N

5

2N

5

c1

c2

c1 1
5 c2

2N

Fig. 1. Domain of possible values of the integrals c1, c2 for 0 ≤ N < 5/2

3.3 Case N < 5
2

In case of N ≥ 0 possible values of integrals c1, c2 must belong to the domain
shown in Fig. 1, which are bounded by the lines

c1 = 0 , c2 = 0 , c1 = 1− 5c2
2N

, (41)

and the curve

c1 = 1− c2 − 2N

5
− 2

√

(−c2)

(
1− 2N

5

)
. (42)

On the line c2 = 0, polynomial Q(z) has three roots, namely, z1 = 1 −
c1/(1− 2N/5) and z2,3 = 0. The root z1 is negative for 1− 2N/5 < c1 ≤ 1 (the
corresponding points are shown in Fig. 1 as a dashed bold line), and equation
(21) has the only solution z = 0. But for 0 ≤ c1 < 1−2N/5, the root z1 becomes
smaller than 1, and the polynomial (37), taking a form

Q(z) = 2Nz2(5− 2N − 5c1 − z(5− 2N)) , (43)

is non-negative for 0 ≤ z ≤ z1.
Substituting the polynomial (43) into equation (36), one can readily see that

the differential equation is integrated in terms of elementary functions and its
solution is determined by the equation

ln

√
a−√

a− bz√
a+

√
a− bz

= 8
√
10Na sgn(sin(2ω0))n+B0 , (44)

where

B0 = ln

√
a−√

a− bz0√
a+

√
a− bz0

, a = 1− c1 − 2N/5 , b = 1− 2N/5 .
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Fig. 2. Domain of possible values of the integrals c1, c2 for N ≤ 0

On the line c1 = 1− 5c2/(2N), polynomial Q(z) takes the form

Q(z) = (2Nz − 5c2)
2

(
z

(
1− 5

2N

)
− 1

)
,

and has three zeros

z1 =
1

1− 5
2N

, z2,3 =
5c2
2N

.

For N ≥ 0 we have c2 > 0 (see Fig. 1), and the root z1 is negative, so equation
(21) has only a stationary solution z = z2,3 = 1−c1. But for N < 0, when the line
c1 = 1−5c2/(2N) touches the curve (42) (see Fig. 2) and parameters c1, c2 must
satisfy the conditions 0 ≤ c1 ≤ 1/(1−2N/5), 2N/5 ≤ c2 ≤ −4N2/(25−10N), we
obtain 0 < z1 ≤ z2,3 ≤ 1 and polynomial (37) is non-negative for z ∈ [z1, z2,3].
Then equation (36) is integrated in terms of elementary functions similar to the
previous case (see (43), (44)).

On the curve (42), the polynomial Q(z) takes the form

Q(z) = 2N(5− 2N)

(
z − 5c2

2N

)(

z −
√

(−c2)

1− 2N/5

)2

,

where we have taken into account that c2 < 0 and N < 5/2. The corresponding
roots are given by

z1,2 =

√
(−c2)

1− 2N/5
, z3 =

5c2
2N

.

One can readily check that for 0 ≤ N < 5/2, we have 0 ≤ z1,2 ≤ 1, z3 < 0
and, hence, equation (21) has only a stationary solution z = z1,2. This solution
remains also for N < 0 and −1 + 2N/5 ≤ c2 < 2N/5 when the root z3 becomes
greater than 1. But for N < 0 and 2N/5 ≤ c2 < −4N2/(25− 10N) we obtain

1

1− 5/(2N)
< z1,2 < z3 ≤ 1 .
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Polynomial Q(z) is non-negative for z ∈ [z1,2, z3], and equation (21) is integrated
in terms of elementary functions similarly to the cases above.

On the last boundary c1 = 0, we have cos2 i = 0, and polynomial Q(z) taking
the form

Q(z) = (2Nz − 5c2)(1 − z)(5c2 + z(5− 2N)) ,

has three different roots

z1 = 1, z2 =
5c2

2N − 5
, z3 =

5c2
2N

.

If 0 ≤ N < 5/2 and c2 ≥ 0 then these roots satisfy the inequalities

z2 ≤ 0 ≤ z3 ≤ z1 = 1 ,

and the polynomial Q(z) ≥ 0 for z ∈ [z3, z1]. If c2 becomes negative then we
obtain

z3 ≤ 0 ≤ z2 ≤ z1 = 1 ,

and Q(z) ≥ 0 for z ∈ [z2, z1]. Finally, for N < 0 and (−1 + 2N/5) ≤ c2 ≤ 2N/5
the corresponding inequalities become

0 ≤ z2 ≤ z1 = 1 ≤ z3 ,

and again Q(z) ≥ 0 for z ∈ [z2, z1]. In all three cases one of the roots is outside
the interval [0, 1] and two other roots zj , zk are inside it, while Q(z) ≥ 0 for
z ∈ [zj, zk]. Then equation (36) is integrated in elliptic quadratures and its
solution looks similarly to the expression (39).

Analysis of expressions (38) shows that at the internal points of the domains
shown in Fig. 1, 2, we have similar situation, when three roots of the polynomial
Q(z) are different and only two of them belong to the interval [0, 1]. In all such
cases, equation (21) is reduced to the form (36), and the result of its integration
is expressed in terms of the elliptic functions with some permutation of the roots
z1, z2, z3.

4 Mass Variations

As we have seen above, the evolutionary equations are integrable in terms of
elementary and elliptic functions if the functions γ0(τ), γ1(τ) satisfy equation
(18). Taking into account condition (8), we can rewrite (18) in the form

d2γ0
dτ2

+

(
AC −B2 + α

K

a31

)
γ0(τ) = α

K0

a31
. (45)

One can readily see that equation (45) is integrable, and its solution satisfying
the condition γ0(0) = 1 is given by

γ0(τ) = α
K0

σ2a31
+

(
1− α

K0

σ2a31

)
cos(στ) + Φ sin(στ) , (46)
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where Φ is an arbitrary constant, and

σ2 = AC −B2 + α
K

a31
.

Taking into account equation (8), one can represent differential equation (25),
determining the variable n, in the form

dn

dτ
=

3a3/2

16a31K
1/2
0

(Kγ2
0(τ) −K0γ0(τ)) ,

where the function γ0(τ) is given by (46). Obviously, this equation is easily inte-
grated, and an explicit expression for the function n(τ) together with different
explicit and implicit solutions z(n) found in previous section gives a complete
solution of the evolutionary equations in the considered restricted three-body
problem with variable masses.

5 Conclusion

We have considered the satellite version of the restricted three-body problem
formulated on the basis of the classical Gylden–Meshcherskii problem. We have
obtained the evolutionary equations of the massless point P2, describing a long-
term evolution of its orbital elements, in the Hill approximation, and investigated
their integrability. It was shown that the evolutionary equations are integrable
in terms of the elementary and elliptic functions if masses of points P0, P1 vary
isotropically with different rates determined by the expressions (2), (8), (46).
Solutions of these equations describe quasi-elliptic motion of the point P2 if initial
conditions of motion are chosen in such a way that two integrals of motion c1,
c2 belong to the domains shown in Fig. 1, 2. All relevant symbolic calculations
and visualizations are done with the computer algebra system Mathematica.
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