
Real Polynomial Root-Finding by Means

of Matrix and Polynomial Iterations

Victor Y. Pan

Departments of Mathematics and Computer Science
Lehman College and the Graduate Center of the City University of New York

Bronx, NY 10468 USA
victor.pan@lehman.cuny.edu

http://comet.lehman.cuny.edu/vpan/

Abstract. Frequently one seeks approximation to all r real roots of
a polynomial of degree n with real coefficients, which also has nonreal
roots. We split a polynomial into two factors, one of which has degree
r and has r real roots. We approximate them at a low cost, and then
decrease the arithmetic time of the known algorithms for this popular
problem by roughly a factor of n/k, if k iterations prepare splitting. k is
a small integer unless some nonreal roots lie close to the real axis, but
even if there nonreal roots near the real axis, we substantially accelerate
the known algorithms. We also propose a dual algorithm, operating with
the associated structured matrices. At the price of minor increase of the
arithmetic time, it facilitates numerical implementation. Our analysis
and tests demonstrate the efficiency of our approach.

Keywords: polynomials, real roots, matrices, matrix sign iteration,
companion matrix, real eigenvalues, Frobenius algebra, square root it-
eration, root squaring.

1 Introduction

In some applications, e.g., to algebraic and geometric optimization, one seeks
real roots of a univariate polynomial

p(x) =

n∑

i=0

pix
i = pn

n∏

j=1

(x − xj), pn �= 0, (1)

of degree n that has real coefficients, r real roots x1, . . . , xr, and s = (n − r)/2
pairs of nonreal complex conjugate roots xr+1, . . . , xn (typically r � n). This
is a well studied subject (see [13, Chapter 15], [21], [25], and the bibliography
therein), but we propose new efficient algorithms by extending and combining
the techniques of [23] and [20]. We combine the two known low cost steps, recalled
in Section 2, that is, splitting a polynomial into two factors whose two sets of
roots are isolated from one another, and real root-finding when all n roots of the
input polynomial are real. Namely, our iterative processes split out the factor

V.P. Gerdt et al. (Eds.): CASC Workshop 2014, LNCS 8660, pp. 335–349, 2014.
c© Springer International Publishing Switzerland 2014

http://comet.lehman.cuny.edu/vpan/

336 V.Y. Pan

s(x) =
∏r

j=1(x−xj) of degree r that shares with the input polynomial p(x) all its
real roots, and as soon as this factor has been computed, we readily approximate
its r roots at a low computational cost. As a result, we yield the solution at the
arithmetic cost O(kn log(n)), provided that k iterations prepare splitting of the
factor. Our iterative algorithms converge exponentially fast (with quadratic or
cubic rates), and so k = O(b+d), assuming the tolerance 2−b to the errors of the
output approximation and the minimal distance 2−d of the nonreal roots from
the real axis. Usually this bound on k is not large, except for the inputs having
nonreal roots that lie very close to the real axis. In Remark 4, we discuss some
techniques for handling even such harder inputs. According to our preliminary
considerations (cf., e.g., Remark 8) and the test results, our algorithms can be
implemented with a reasonably bounded precision of computing, but we leave
the formal study of this subject and of the Boolean complexity of our algorithms
as a challenge for further research.

We devise dual iterations with polynomials generated from the input polyno-
mial p(x) of (1) and with matrices generated from the companion matrix of this
polynomial. In the latter case, we seek real eigenvalues of this matrix, extend the
matrix sign classical iteration toward this goal, and employ the known results and
techniques in this well developed area. Dealing with matrices one can engage ef-
ficient packages of subroutines available for numerical matrix computations with
the IEEE standard double precision. The highly structured companion matrix
generates the Frobenius matrix algebra, in which one can perform FFT-based
computations in nearly linear time, that is, as fast as the similar operations with
polynomials. In some cases, we take advantage of combining the power of op-
erating with matrices and polynomials (see Remark 13). Finding their deeper
synergistic combinations is another natural research challenge.

We present a number of promising algorithms. Algorithms 2 and 5 have the
lowest estimated arithmetic costO(kn log(n)), which increases toO(kn log2(n))+
c(n, r) for Algorithms 3 and 4. Here c(n, r) is the overhead due to randomization
for Algorithm 3 and to computing approximate polynomial GCDs for Algorithm
4. We include these algorithms since they use some promising techniques and
since Algorithm 3 showed superior numerical stability in our tests.

We engage, extend, and combine the number of efficient methods available
for complex polynomial root-finding, particularly the ones of [23] and [20], but
we also propose new techniques and employ some old methods in novel and
nontrivial ways. E.g., our Algorithm 2 streamlines and substantially modifies
[23, Algorithm 9.1] by avoiding the stage of root-squaring and the application of
the Cayley map, and similar comments apply to our adjustment of the matrix
sign classical iteration to real eigen-solving. Most of the techniques of Algorithm
3 are implicit in [20, Section 5], but we specify the algorithm in some detail,
include initial scaling, substantially modify the recovery of the eigenvalues, and
combine it with Algorithm 2. Algorithms 4 and 5 are new, in spite of some links to
Algorithms 2 and 3 and hence to [20, Section 5] and [23, Section 9]. Our interplay
with matrix and polynomial computations to the benefit of both subjects (this
idea can be traced back to [14] and [2]) as well as our exploitation of the complex

Root-Finding by Means of Matrix and Polynomial Iterations 337

plane geometry and of various transforms of the variable can be of independent
interest. Our simple recipe for real root-finding by means of combining the root
radii algorithm with Newton’s iteration in Algorithm 1 works for a large class
of inputs, and even the extension of our approach to the approximation of real
eigenvalues of a real matrix can be of some potential interest.

Hereafter “ops” stands for “arithmetic operations”, “lc(p)” stands for “the
leading coefficient of p(x)”. D(X, r) = {x : |x − X | ≤ r} and C(X, r) = {x :
|x −X | = r} denote a disc and a circle on the complex plane, respectively. We
write ||∑i vix

i||q = (
∑

i |vi|q)1/q for q = 1, 2 and ||∑i vix
i||∞ = maxi |vi|. A

function is in Õ(f(bc)) if it is in O(f(bc)) up to polylogarithmic factors in b and c.
agcd(u, v) denotes the approximate greatest common divisor of two polynomials
u(x) and v(x) (see [1] on definitions and algorithms).

2 Basic Results for Polynomials

Next we present some building blocks for our root-finders. Besides the two cited
results, used as the main blocks of our algorithms (that is, inexpensive splitting
of a polynomial into two factors and fast real root-finding for a polynomial that
has only real roots) we recall scaling, shifting, inverting and squaring the roots,
their mapping from the real axis or from a real line interval into a fixed circle
and back, and the approximation of the absolute values of all roots |x1|, . . . , |xn|.
All these operations can be performed at a low arithmetic cost as well.

Theorem 1. (Root Radii Approximation, cf. [24], [13, Section 15.4], [5].) As-
sume a polynomial p(x) of (1) and two scalars c > 0 and d. Define the n root
radii rj = |xkj | for j = 1, . . . , n and r1 ≥ r2 ≥ · · · ≥ rn, so that all roots lie in
the disc D(0, r1). Then approximations r̃j such that r̃j ≤ rj ≤ (1 + c/nd)r̃j for
j = 1, . . . , n can be computed by using O(n log2(n)) ops.

Theorem 2. (Root Inversion, Shift and Scaling, cf. [17].) Given a polynomial
p(x) of (1) and two scalars a and b, we can compute the coefficients of the
polynomial q(x) = p(ax+ b) by using O(n log(n)) ops. We need only 2n− 1 ops
if b = 0. Reversing a polynomial inverts all its roots, involving no ops, because
prev(x) = xnp(1/x) =

∑n
i=0 pix

n−i = pn
∏n

j=1(1 − xxj).

By combining Theorems 1 and 2 we can move the roots of a polynomial into a
fixed disc, e.g., D(0, 1) = {x : |x| ≤ 1}.
Theorem 3. (Root Squaring, cf. [10].) (i) Assume a monic polynomial p(x) of
(1), pn = 1. Then the map q(x) = (−1)np(

√
x)p(−√

x) squares the roots, that
is, q(x) =

∏n
j=1(x−x2

j), and (ii) one can evaluate p(x) at the k-th roots of unity
for k > 2n and then interpolate to q(x) by using O(n log(n)) ops.

Theorem 4. (The Cayley Maps, cf. [9].) The maps y = (x−√−1)/(x+
√−1)

and x =
√−1(y+1)/(y−1) send the real axis {x : x is real} into the unit circle

C(0, 1) = {x : |x| = 1}, and vice versa.

338 V.Y. Pan

Theorem 5. (Möbius Map.) (i) The maps y = 1
2 (x+1/x) and x = y±√

y2 − 1
send the unit circle C(0, 1) into the real line interval [−1, 1] = {y : �y = 0, −1 ≤
y ≤ 1}, and vice versa. (ii) Write y = 1

2 (x + 1/x) and yj = 1
2 (xj + 1/xj),

j = 1, . . . , n. Then q(y) = p(x)p(1/x) = qn
∏n

j=1(y − yj) (cf. [3, eq. (14)]).
(iii) Given a polynomial p(x) of (1) one can interpolate to the polynomial q(y) =
p(x)p(1/x) = qn

∏n
j=1(y − yj) by using O(n log(n)) ops.

Proof. Follow [3, Section 2]. Apply the algorithms of [16] to interpolate to the
polynomial q(y) from its values at the Chebyshev knots at the cost O(n log(n)).

Theorem 6. (Error Bounds of the Möbius Iteration.) Fix a complex x = x(0)

and define the iterations

x(h+1) =
1

2
(x(h) + (x(h))−1) and γ =

√−1 for h = 0, 1, . . . , (2)

x(h+1) =
1

2
(x(h) − (x(h))−1) and γ = 1 for h = 0, 1, . . . (3)

If x(0)γ is real, then x(h)γ are real for all h. Otherwise |x(h) − sign(x)
√−1/γ| ≤

2τ2h

1−τ2h
for τ = |x−sign(x)

x+sign(x) | and h = 0, 1, . . .

Proof. Under (2), for γ =
√−1, the bound is from [3, page 500]). It is readily

extended to the case of (3), for γ = 1.

Theorem 7. (Root-finding Where All Roots Are Real). The modified Laguerre
algorithm of [8] converges to all roots of a polynomial p(x) of (1) right from the
start with superlinear convergence rate and uses O(n) ops per iteration. Conse-
quently the algorithm approximates all n roots within ε = 1/2b by using O(log(b))
iteration loops, performing Õ(n log(b)) ops overall. This cost bound is optimal
and is also supported by the alternative algorithms of [6] and [4].

Algorithm 1. (Real Root-finding via Root Radii Approximation.)
1. Compute approximations r̃1, . . . , r̃n to the root radii of a polynomial p(x)

of (1) (see Theorem 1). (This defines 2n candidates points ±r̃1, . . . ,±r̃n for the
approximation of the r real roots x1, . . . , xr.)

2. Evaluate the polynomial at these 2n points, at a low arithmetic and Boolean
cost, to exclude a number of extraneous candidates.

3. Apply Newton’s iteration x(h+1) = x(h) − p(x(h))/p′(x(h)), h = 0, 1, . . .
concurrently at the remaining candidate points. (Its single concurrent step or
a few steps, performed at a low arithmetic and Boolean cost (cf. [22]), should
exclude the other extraneous candidates and refine the remaining approximations
to the real roots, as long as these roots are well isolated from the nonreal roots.)

Theorem 8. (Splitting a Polynomial into Two Factors Over a Circle, cf. [24]
or [13, Chapter 15].) Suppose a polynomial t(x) of degree n has r roots in the
disc D(0, ρ) and n − r roots outside the disc D(0, R) for R/ρ ≥ 1 + 1/n. Let
ε = 1/2b for b ≥ n. Then we can compute two polynomials f̃ and g̃ such that

Root-Finding by Means of Matrix and Polynomial Iterations 339

||p − f̃ g̃||q ≤ ε||p||q for q = 1, 2 or ∞, the polynomial f̃ of degree r has r roots
inside the circle C(0, 1), and the polynomial g̃ of degree n − r has n − r roots
outside the circle. The algorithm performs O((log2(n)+log(b))n log(n)) ops (that
is, O(n log3(n)) ops for log(b) = O(log2(n))), with a precision of O(b) bits.

Remark 1. (Increasing Isolation by Means of Repeated Squaring.) Let the as-
sumptions of Theorem 8 hold, except that R/ρ = 1 + c/nd < 1 + 1/n, for two
positive constants c and d. Then the map of Theorem 3 squares the ratio R/ρ. So
d = O(log(n)) applications of this map (using O(n log2(n)) ops overall) increase
the ratio above 1 + 1/n, which supports the application of Theorem 8.

3 Root-Finding as Eigen-Solving and Basic Results for
Matrix Computations

3.1 Companion Matrix, Its Maps, and Maps of Its Eigenvalues

Cp =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

0 −p0/pn

1
. . . −p1/pn
. . .

. . .
...

. . . 0 −pn−2/pn
1 −pn−1/pn

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

denotes the companion matrix of a polynomial p(x) of (1). p(x) = cCp(x) =
det(xIn −Cp) is its characteristic polynomial. Its roots form the spectrum of Cp,
and so our problem can be restated as the problem of real eigen-solving for the
companion matrix Cp. Next we recall that operations with this matrix are as
inexpensive as with polynomials and restate the maps for the variable x of the
polynomials in terms of maps of the matrix Cp, playing the role of this variable.

Theorem 9. (The Cost of Computations in the Frobenius Matrix Algebra, cf.
[7].) The companion matrix Cp ∈ Cn×n of a polynomial p(x) of (1) generates
the Frobenius matrix algebra Ap. One needs O(n) ops for addition, O(n log(n))
ops for multiplication, and O(n log2(n)) ops for inversion in this algebra. One
needs O(n log(n)) ops to multiply a matrix in this algebra by a vector.

3.2 Some Fundamental Matrix Computations

To study the eigen-solving for Cp, next we recall some fundamentals of ma-
trix computations. In the next subsection we focus on the basic properties of
eigenvalues and eigenspaces of matrices, that we use in our algorithms.

MT = (mji)
n,m
i,j=1 is the transpose of a matrix M = (mij)

m,n
i,j=1. M

H is its
Hermitian transpose. I = In = (e1 | e2 | . . . | en) is the n × n identity ma-
trix whose columns are the n coordinate vectors e1, e2, . . . , en. diag(bj)

s
j=1 =

diag(b1, . . . , bs) is the s× s diagonal matrix with the diagonal entries b1, . . . , bs.

340 V.Y. Pan

A matrix Q is unitary if QHQ = I or QQH = I. Let (Q,R) = (Q(M), R(M))
for an m× n matrix M of rank n denote a unique pair of unitary m× n matrix
Q and upper triangular n × n matrix R such that M = QR and all diagonal
entries of the matrix R are positive [9, Theorem 5.2.2].

M+ is the Moore–Penrose pseudo inverse of M [9, Section 5.5.4]. An n ×m
matrix X = M (I) is a left (resp. right) inverse of an m×n matrix M if XM = In
(resp. if MY = Im). M (I) = M+ for a matrix M of full rank. M (I) = MH for
an orthogonal matrix M . M (I) = M−1 for a nonsingular matrix M .

R(M) is the range of a matrix M , that is the linear space generated by its
columns. A matrix of full column rank is a matrix basis of its range.

3.3 Eigenspaces and Eigenvalues

Definition 1. S is the invariant subspace of a square matrix M if MS = {Mv :
v ∈ S} ⊆ S. A scalar λ is an eigenvalue of a matrix M associated with an
eigenvector v if Mv = λv. All eigenvectors associated with an eigenvalue λ of
M form an eigenspace S(M,λ), which is an invariant space. Its dimension d is
the geometric multiplicity of λ. The eigenvalue is simple if d = 1. The set Λ(M)
of all eigenvalues of the matrix M is called its spectrum.

Our next goal is to limit eigen-solving for the matrix Cp to the study of
its invariant space of dimension r associated with the r real eigenvalues. The
following theorem is basic for this step.

Theorem 10. (Decreasing the Eigenproblem Size to the Dimension of an In-
variant Space, cf. [26, Section 2.1].) Let U ∈ Cn×r, R(U) = U , and M ∈ Cn×n.
Then U is an invariant space of M if and only if there exists a matrix L ∈ Ck×k

such that MU = UL or equivalently L = U (I)MU . The matrix L is unique (that
is independent of the choice of the left inverse U (I)) if U is a matrix basis for
the space U . Hence MUv = λUv if Lv = λv, Λ(L) ⊆ Λ(M), and if U is an
orthogonal matrix, then L = UHMU .

To facilitate the computation of the desired invariant space of Cp, we reduce
the task to the case of an appropriate matrix function, for which the solution
is simpler, but we still solve our problem, because, by virtue of the following
theorem, a matrix function shares its invariant spaces with the matrix Cp.

Theorem 11. (Reduction of the Eigenproblem for a Matrix to That for a Ma-
trix Function.) Suppose M is a square matrix, a rational function f(λ) is defined
on its spectrum, and Mv = λv. Then (i) f(M)v = f(λ)v. (ii) Let U be the
eigenspace of the matrix f(M) associated with its eigenvalue μ. Then this is an
invariant space of the matrix M generated by its eigenspaces associated with all
its eigenvalues λ such that f(λ) = μ. (iii) The space U is associated with a single
eigenvalue of M if μ is a simple eigenvalue of f(M).

We readily verify part (i), which implies parts (ii) and (iii).
Suppose we have computed a matrix basis U ∈ Cn×r for an invariant space U

of a matrix function f(M) of an n× n matrix M . By virtue of Theorem 11 this

Root-Finding by Means of Matrix and Polynomial Iterations 341

is a matrix basis of an invariant space of the matrix M . We can first compute a
left inverse U (I) or the orthogonalization Q = Q(U) and then approximate the
eigenvalues of M associated with this eigenspace as the eigenvalues of the r × r
matrix L = U (I)MU = QHMQ (cf. Theorem 10). Empirically the QR algorithm
uses O(r3) ops at the latter stage.

Given an approximation μ̃ to a simple eigenvalue of a matrix function f(M),
we can compute an approximation ũ to an eigenvector u of the matrix f(M)
associated with this eigenvalue, recall from Theorem 11 that this is also an eigen-
vector of the matrix M , associated with its simple eigenvalue, and approximate

this eigenvalue by the Rayleigh Quotient ũTMũ
ũT ũ .

3.4 Some Maps in the Frobenius Matrix Algebra

For a polynomial p(x) of (1) and a rational function f(x) defined on the set
{xi}ni=1 of its roots, the rational matrix function f(Cp) has spectrum Λ(f(Cp)) =
{f(xi)}ni=1, by virtue of Theorem 11. In particular, the maps

Cp → C−1
p , Cp → aCp + bI, Cp → C2

p , Cp → Cp + C−1
p

2
, and Cp → Cp − C−1

p

2

induce the maps of the eigenvalues of the matrix Cp, and thus induce the maps
of the roots of the characteristic polynomial p(x) given by the equations

y = 1/x, y = ax+ b, y = x2, y = 0.5(x+ 1/x), and y = 0.5(x− 1/x),

respectively. By using the reduction modulo p(x), define the five dual maps

y = (1/x) mod p(x), y = ax+ b mod p(x), y = x2 mod p(x),

y = 0.5(x+ 1/x) mod p(x), and y = 0.5(x− 1/x) mod p(x),

where y = y(x) denote polynomials. Apply the two latter maps recursively,
to define two iterations with polynomials modulo p(x) as follows, y0 = x,
yh+1 = 0.5(yh + 1/yh) mod p(x) (cf. (3)) and y0 = x, yh+1 = 0.5(yh − 1/yh)
mod p(x), h = 0, 1, More generally, define the iteration y0 = x, yh+1 = ayh+
b/yh mod p(x), h = 0, 1, . . . , for any pair of scalars a and b. Here yh = yh(x) are
the characteristic polynomials of the matricesM0 = Cp, Mh+1 = 0.5(Mh±M−1

h)
and M0 = Cp, Mh+1 = aMh + bM−1

h , h = 0, 1, . . . , respectively.

4 Real Root-Finders

4.1 Möbius Iteration

Theorem 6 implies that right from the start of iteration (3) the values x(h)

converge to ±√−1 exponentially fast unless the initial value x(0) is real, in
which case all iterates x(h) are real. It follows that right from the start the values
y(h) = (x(h))2 + 1 converge to 0 exponentially fast unless x(0) is real, in which

342 V.Y. Pan

case all values y(h) are real and exceed 1. Write qh(y) =
∏n

j=1(y − (x
(h)
j)2 − 1)

for h = 1, 2, . . . and uh(y) =
∏r

j=1(y− (x
(h)
j)2−1). The roots of the polynomials

qh(y) and uh(y) are the images of all roots and of the real roots of the polynomial
p(x) of (1), respectively, produced by the composition of the maps (3) and y(h) =
(x(h))2+1. Therefore qh(y) ≈ y2suh(y) for large integers h where the polynomial
uh(y) has degree r and has exactly r real roots, all of them exceeding 1. Hence for
sufficiently large integers h, we can closely approximate the polynomial y2suh(y)
simply by the sum of the r + 1 leading terms of the polynomial qh(y). To verify
that the 2s trailing coefficients nearly vanish, we need just 2s comparisons. The
above argument shows correctness of the following algorithm.

Algorithm 2. Möbius iteration for real root-finding.
Input: two integers n and r, 0 < r < n, and the coefficients of a polynomial
p(x) of equation (1) where p(0) �= 0.
Output: approximations to the real roots x1, . . . , xr of p(x).
Initialization: Write p0(x) = p(−x

√−1).
Computations:

1. Recursively compute the polynomials ph+1(y) = ph(x)ph(1/x) for y = (x +
1/x)/2 and h = 0, 1, . . . (Part (ii) of Theorem 5 and Theorem 6 define the
images of the real and nonreal roots of the polynomial p(x) for all h.)

2. Periodically, at some selected Stages k, compute the polynomials

th(y) = (−1)nqk(
√
y + 1)qh(−

√
y + 1)

where qk(z) = pk(z)/lc(pk) (cf. Theorems 2 and 3). When the integer k
becomes large enough, so that 2s trailing coefficients of the polynomial qk(x)
nearly vanish, approximate the factor vk(x) of the polynomial tk(x) that has
r real roots on the ray {x : x ≤ −1} (see above).

3. Apply one of the algorithms of [6], [4], and [8] (cf. Theorem 7) to approximate
the r roots z1, . . . , zr of the polynomial vk(x).

4. Extend the descending process from [15], [18] and [3] to recover approxi-
mations to the r roots −xi

√−1, i = 1, . . . , r, of the polynomial p0(x) =
p(−x

√−1). First approximate 2r candidates for r roots of the polynomial
qk(y) lying on the imaginary axis and select r of them on which the polyno-
mial qk(y) nearly vanishes. Similarly define from these r roots 2r candidates
for approximating the r roots of pk−1(x) lying on the imaginary axis. Recur-
sively descend down to the r roots of p0(x) lying on the imaginary axis. This
process is not ambiguous because only r roots of the polynomial ph(x) lie on
that axis for each h, by virtue of Theorem 6.

5. Having approximated the r roots −xi

√−1, i = 1, . . . , r, output the approxi-
mations to the real roots x1, . . . , xr of the polynomial p(x).

Like lifting Stage 1, descending Stage 4 involves order of kn log(n) ops, which
also bounds the overall cost of performing the algorithm.

Remark 2. (Countering Degeneracy.) If p(0) = p0 = · · · = pm = 0 �= pm+1, then
we should output the real root x0 = 0 of multiplicity m and apply the algorithm

Root-Finding by Means of Matrix and Polynomial Iterations 343

to the polynomial p(x)/xm to approximate the other real roots. Alternatively
we can apply the algorithm to the polynomial q(x) = p(x− s) for a shift value s
such that q(0) �= 0. With probability 1, this holds for Gaussian random variable
s, but alternatively we can approximate the root radii of the polynomial p(x)
(cf. Theorem 1) to find a shift scalar s such that q(x) has no roots near 0 as well.

Remark 3. (Saving the Recursive Steps of Stage 1.) We would decrease the pa-
rameter k of the cost estimate, if we approximate the factor vk(x) of the poly-
nomial tk(x) for a smaller integer k. Theorem 8 enables us to do this (at a
reasonable cost) if its assumptions are satisfied for t(x) = tk(x). We can verify
if the assumptions hold by applying the root radii algorithm of Theorem 1. For
a fixed k this requires O(n log2(n)) ops), so even the verification for all integers
k in the range is not costly, unless the integer k is large, but we can periodically
test just selected integers k, by applying binary search.

Remark 4. (Handling the Nearly Real Roots.) The integer parameter k and the
overall cost of performing the algorithm are large if 2−d = minnj=r+1 |�(xj)|
is small. To counter this deficiency, we can split out a factor vk,+(x) of the
polynomial p(x) having a degree r+ > r and having r+ real and nearly real roots
such that the other nonreal roots lie sufficiently far from the real axis. Indeed
our convergence analysis and the techniques for splitting out the factor vk(x)
can be readily extended to splitting out the factor vk,+(x). Having this factor
approximated, we can tentatively apply to it the modified Laguerre algorithm
of [8], expecting fast convergence to the r+ roots of the polynomial vk,+(x) if all
its roots lie on or sufficiently close to the real axis.

Remark 5. (The Number of Real Roots.) We assume that we are given the num-
ber r of the real roots (e.g., computed by means of non-costly techniques of
computer algebra if the roots are distinct and simple), but we can compute this
number as by-product of Stage 2, and similarly for our other algorithms. More-
over with a proper try-and-test policy we can apply our algorithm for at most
2 + 2
log(r)� tentative choices of integers k in the range [0, 2k − 1] to detect r.

Remark 6. The known upper bounds on the condition numbers of the roots of
the computed polynomials pk(y) grow exponentially as k grows large (cf. [3,
Section 3]). So, unless these bounds are overly pessimistic, Algorithm 2 is prone
to numerical stability problems already for moderately large integers k.

4.2 Adjusted Matrix Sign Iteration

To avoid the latter potential deficiency, we replace the polynomial iteration at
Stages 1 and 2 by the dual matrix sign classical iteration

Zh = 0.5(Zh + Z−1
h) for h = 0, 1, . . . (4)

It maps the eigenvalues of the matrix Z0 according to (2). Therefore, by virtue
of part (ii) of Theorem 5, Stage 1 of Algorithm 2 maps the characteristic poly-
nomials of the above matrices Zh. Unlike the case of the latter map, working

344 V.Y. Pan

with matrices enables two minor implications: (i) we recover the desired real
eigenvalues of the matrix Cp by means of our recipes of Section 3, without re-
cursive descending, and (ii) we avoid scaling by

√−1 and just slightly modify
the iteration to keep the computations in the field of real numbers.

Algorithm 3. Matrix sign iterations modified for real eigen-solving.
Input and Output as in Algorithm 2, except that FAILURE can be output
with a probability close to 0.
Computations:

1. Write Y0 = Cp and recursively compute the matrices

Yh+1 = 0.5(Yh − Y −1
h) for h = 0, 1, (5)

(For sufficiently large integers h, the 2s eigenvalues of the matrix Yh lie
near the points ±√−1, whereas the r other eigenvalues are real, by virtue of
Theorem 6.)

2. Fix a sufficiently large integer k and compute the matrix Y = Y 2
k + In.

The map Y0 = Cp → Y sends all nonreal eigenvalues of Cp to a small
neighborhood of the origin 0 and sends all real eigenvalues of Cp into the ray
{x : x ≥ 1}.

3. Apply the randomized algorithms of [12] to compute the numerical rank of
the matrix Y . Suppose it equals r. (Otherwise go back to Stage 1.) Gener-
ate a standard Gaussian random n× r matrix G and compute the matrices
H = Y Q(G) and Q = Q(H). (The analysis of preprocessing with Gaussian
random multipliers in [12, Section 4], [19, Section 5.3] shows that, with a
probability close to 1, the columns of the matrix Q closely approximate an
orthogonal basis of the invariant space of the matrix Y associated with its r
absolutely largest eigenvalues, which are the images of the real eigenvalues
of the matrix Cp. Having this approximation is equivalent to having a small
upper bound on the residual norm ||Y −QQHY || [12], [19].) Verify the latter
bound. In the unlikely case where the verification is failed, output FAILURE
and stop the computations.

4. Otherwise compute and output approximations to the r eigenvalues of the
r×r matrix L = QHCpQ. They approximate the real roots of the polynomial
p(x). (Indeed, by virtue of Theorem 11, Q is a matrix basis for the invariant
space of the matrix Cp associated with its r real eigenvalues. Therefore, by
virtue of Theorem 10, the matrices Cp and L share these eigenvalues.)

Stages 1 and 2 involve O(kn log2(n)) ops by virtue of Theorem 9. This exceeds
the estimate for Algorithm 2 by a factor of log(n). Stage 3 adds O(nr2) ops and
the cost arn of generating n × r standard Gaussian random matrix. The cost
bounds are O(nr2) at Stage 4 and O((kn log2(n) + nr2) + arn overall.

Remark 7. (Counting Real Eigenvalues.) If the number of real eigenvalues is not
given, we can apply binary search to compute it as the numerical rank of the
matrices Y 2

k + I when this rank stabilizes.

Root-Finding by Means of Matrix and Polynomial Iterations 345

Remark 8. (Avoiding Numerical Problems.) The images of nonreal eigenvalues
of the matrix Cp converge to ±√−1 in the recursive process of the algorithm.
So the process involves ill conditioned matrices if and only if the images of some
real eigenvalues of Cp lie close to 0. We can detect that this has occurred if it is
hard to invert the matrix Yh of (5) or by computing the smallest singular value
of that matrix (e.g., by applying the Lanczos efficient, cf. [9, Proposition 9.1.4]).
As soon as we detect an ill conditioned matrix Yh, we would shift it (and hence
shift its eigenvalues) by adding the matrix sI for a reasonably small real scalar
s, which we can select by applying Theorem 1, heuristic, or randomization.

Remark 9. (Acceleration by Using Random Circulant Multiplier.) We can de-
crease the cost of performing Stage 3 to an+r+O(n log(n)) by replacing an n×r
standard Gaussian random multiplier by the product ΩCP where Ω and C are
n×n matrices, Ω is the matrix of the discrete Fourier transform, C is a random
circulant matrix, and P is an n× l random permutation matrix, for a sufficiently
large l of order r log(r). (See [12, Section 11], [19, Section 6] for the analysis and
for supporting probability and cost estimates. They are only slightly less favor-
able than in the case of a Gaussian random multiplier.) The overall arithmetic
cost bound would change into O(kn log2(n) + nr2) + ar+n.

Remark 10. (Acceleration by Means of Scaling.) We can dramatically accelerate
the initial convergence of Algorithm 3 by applying determinantal scaling (cf.
[11]), that is, by computing the matrix Y1 as follows, Y1 = 0.5(νY0 − (νY0)

−1)

for ν = 1/| det(Y0)|1/n = |p(k)n /p
(k)
0 |, Y0 = Cp(k) , and p(k)(x) =

∑n
i=0 p

(k)
i xi.

Remark 11. (Hybrid Matrix and Polynomial Algorithms.) Can we modify Al-
gorithm 3 to keep its advantages but to decrease the computational cost of its
Stage 1 to the level kn log(n) of Algorithm 2? Yes, if all or almost all nonreal
roots of the polynomial p(x) lie not too far from the points ±√−1, namely in the
discs D(±√−1, 1/2). Indeed in this case both iterations Yh+1 = 0.5(Y 3

h + 3Yh)
and Yh+1 = −0.125(3Y 5

h + 10Y 3
h + 15Yh) for h = 0, 1, . . . use O(n log(n)) ops

per loop. Right from the start they send the nonreal roots lying in these discs to
the two points ±√−1 with quadratic and cubic convergence rates, respectively
(extend the proof of [3, Proposition 4.1]), while keeping the real roots real. This
suggests the following policy. Heuristically or by applying Theorem 1 choose a
proper integer h and run Algorithm 2 until all or almost all nonreal roots of
p(x) are moved into the discs D(±√−1, 1/2). Then apply one of the two latter
inversion-free variants of Algorithm 3 to the polynomial qh(x) produced by Al-
gorithm 2. Descend from the output roots to the real roots of the polynomial
p(x). The hybrid algorithm combines the benefits of both Algorithms 2 and 3
when the above integer h is not large.

4.3 Adjusted Modular Square Root Iteration

The polynomial version of Algorithm 3 is known as the square root iteration. It
mimics Algorithm 3, but replaces all rational functions in the matrix Cp by the

346 V.Y. Pan

same rational functions in the variable x, and then reduces all these functions
modulo the input polynomial p(x). The reduction does not affect the values of
the functions at the roots of p(x), and so these values are precisely the eigenvalues
of the rational matrix functions involved in Algorithm 3.

Algorithm 4. Square root modular iteration modified for real root-finding.
Input and Output as in Algorithm 2.
Computations:

1. Write y0 = x and Y0 = Cp and (cf. (5)) compute the polynomials

yh+1 = (yh − y−1
h)/2 mod p(x). (6)

2. Periodically, for selected integers k, compute the polynomials tk = y2k + 1
mod p(x) and gk(x) = agcd(p, tk).

3. If deg(gk)) = n− r = 2s, compute the polynomial vk ≈ p(x)/gk(x) of degree
r. Otherwise continue the iteration of Stage 1.

4. Apply one of the algorithms of [6], [4], and [8] (cf. Theorem 7) to approximate
the r roots y1, . . . , yr of the polynomial vk. Output these approximations.

By virtue of our comments preceding this algorithm, the values of the polyno-
mials tk at the roots of p(x) equal to the images of the eigenvalues of the matrix
Cp in Algorithm 3. Hence the values of the polynomials tk at the nonreal roots
converge to 0 as k → ∞, whereas their values at the real roots stay far from
0. Therefore, for sufficiently large integers k, agcd(p, tk) turn into the polyno-
mial

∏n
j=r+1(x − xj). This implies correctness of the algorithm. Its asymptotic

computational cost is O(kn log2(n)) plus the cost of computing agcd(p, tk) and
choosing the integer k (see our next remark).

Remark 12. Compared to Algorithm 3, the latter algorithm reduces real root-
finding essentially to the computation of agcd(p, tk), but the complexity of this
computation is not easy to estimate [1]. Moreover, the following example exhibits
serious problems of numerical stability for this algorithm and apparently for the
similar algorithms of [7] and [3]. Consider the case where r = 0. Then the
polynomial t(x) has degree at most n− 1, and its values at the n nonreal roots
of the polynomial p(x) are close to 0. This can only occur if ||tk|| ≈ 0.

Remark 13. We can concurrently perform Stages 1 of both Algorithms 3 and 4.
The information about numerical rank at Stage 3 of Algorithm 3 can be a guiding
rule for the choice of the integer parameter k and computing the polynomials
tk, gk and vk of Algorithm 4. Having the polynomial vk available, Algorithm 4
produces the approximations to the real roots more readily than Algorithm 3
does this at its Stage 4.

5 Cayley Map and Root-Squaring

The following algorithm is somewhat similar to Algorithm 2, but employs re-
peated squaring of the roots instead of mapping them into their square roots.

Root-Finding by Means of Matrix and Polynomial Iterations 347

Algorithm 5. Real root-finding by means of repeated squaring.
Assume a polynomial p(x) of (1) with p(0) �= ±√−1 and proceed as follows.
1. Compute the polynomial q(x) = p((x +

√−1)(x − √−1)−1) =
∑n

i=0 qix
i.

(This is the Cayley map, cf. Theorem 4. It moves the real axis, in particular, the
real roots of p(x), onto the unit circle C(0, 1).)

2. Write q0(x) = q(x)/qn, choose a sufficiently large integer k, and apply
the k squaring steps of Theorem 3, qh+1(x) = (−1)nqh(

√
x)qh(−√

x) for h =
1, . . . , k − 1. (These steps keep the images of the real roots of p(x) on the circle
C(0, 1) for any k, while sending the images of every other root of p(x) toward
either the origin or the infinity.)

3. For a sufficiently large integer k, the polynomial qk(x) approximates the
polynomial xsuk(x) where the polynomial uk(x) =

∑r
i=0 uix

i has all its roots
lying on the unit circle C(0, 1). Extract the approximation to this polynomial
uk(x) from the coefficients of the polynomial qk(x).

4. Compute the polynomial vk(x) =
√−1(uk(x) + 1)(uk(x) − 1)−1. (This is

the inverse Cayley map. It sends the images of the real roots of the polynomial
p(x) from the unit circle C(0, 1) back to the real line.)

6. Apply one of the algorithms of [6], [4], and [8] to approximate the r real
roots z1, . . . , zr of the polynomial vk(x) (cf. Theorem 7).

7. Apply the Cayley map wj = (zj +
√−1)(zj −

√−1)−1 for j = 1, . . . , r to
extend Stage 6 to approximating the r roots w1, . . . , wr of the polynomials uk(x)
and yk(x) = xsuk(x) lying on the unit circle C(0, 1).

8. Apply the descending process (similar to the ones of [15], [18], and of our

Algorithm 2) to approximate the r roots x
(h)
1 , . . . , x

(h)
r of the polynomials qh(x)

lying on the unit circle C(0, 1) for h = k − 1, . . . , 0.

9. Apply the inverse Cayley map to approximate the r real roots xj = (x
(0)
j +√−1)(x

(0)
j −√−1)−1 of the polynomials p(x).

Our analysis of Algorithm 2 (including its complexity estimates and the com-
ments and recipes in Remarks 2–6) can be extended to Algorithm 5. The straight-
forward matrix version of this numerical algorithm, however, fails because high
matrix powers have small numerical rank. Indeed their columns lie near the in-
variant space associated with the absolutely largest eigenvalues, and as a rule,
this space has a small dimension. A more tricky modification, based on binomial
factorization, promises to produce a working matrix iteration. We postpone its
presentation.

6 Numerical Tests

Two series of numerical tests have been performed in the Graduate Center of
the City University of New York by Ivan Retamoso and Liang Zhao. In both
series, they tested Algorithm 3, without using the techniques of Remark 3, that
is, in much weakened form. Still the test results are quite encouraging.

In the first series of tests, Algorithm 3 has been applied to one of the Mignotte
benchmark polynomials, namely to p(x) = xn + (100x − 1)3. It is known that

348 V.Y. Pan

this polynomial has three ill conditioned roots clustered about 0.01 and has n−3
well conditioned roots. In the tests, Algorithm 3 has output the roots within the
error less than 10−6 by using 9 iterations for n = 32 and n = 64 and by using
11 iterations for n = 128 and n = 256.

In the second series of tests they randomly generated polynomials p(x) of
degree n = 50, 100, 150, 200, 250 as the product p(x) = f1(x)f2(x). They gen-
erated the polynomials f1(x) and f2(x) where f1(x) =

∏r
j=1(x − xj), f2(x) =

∑n−r
i=0 aix

i, and xi and aj were i.i.d. standard Gaussian random variables, for
j = 1, . . . , r, i = 0, . . . , n − r, and r = 4, 8, 12, 16. Hence the polynomial
p(x) = f1(x)f2(x) had at least r real roots. Then Algorithm 3 (performed with
double precision) was applied to 100 randomly generated polynomials p(x) for
each pair of n and r, and the output data were recorded, namely, the numbers
of iterations and the maximum difference of the output values of the roots from
their values produced by MATLAB root-finding function ”roots()”. The test
results were similar to the case of the Mignotte polynomials (see the Journal
version of the paper).

Acknowledgement. I am grateful to NSF, for the support under Grant CCF
1116736, and to the reviewers, for their thoughtful and valuable comments.

References

1. Bini, D.A., Boito, P.: A fast algorithm for approximate polynomial GCD based on
structured matrix computations. In: Operator Theory: Advances and Applications,
vol. 199, pp. 155–173. Birkhäuser Verlag, Basel (2010)

2. Bini, D., Pan, V.Y.: Polynomial and Matrix Computations. Fundamental Algo-
rithms, vol. 1. Birkhäuser, Boston (1994)

3. Bini, D., Pan, V.Y.: Graeffe’s, Chebyshev, and Cardinal’s processes for splitting a
polynomial into factors. J. Complexity 12, 492–511 (1996)

4. Bini, D., Pan, V.Y.: Computing matrix eigenvalues and polynomial zeros where
the output is real. SIAM J. on Computing 27(4), 1099–1115 (1998); (Also in Proc.
of SODA 1991)

5. Bini, D.A., Robol, L.: Solving secular and polynomial equations: A multiprecision
algorithm. J. Computational and Applied Mathematics (in press)

6. Ben-Or, M., Tiwari, P.: Simple algorithms for approximating all roots of a poly-
nomial with real roots. J. Complexity 6(4), 417–442 (1990)

7. Cardinal, J.P.: On two iterative methods for approximating the roots of a polyno-
mial. Lectures in Applied Mathematics 32, 165–188 (1996)

8. Du, Q., Jin, M., Li, T.Y., Zeng, Z.: The quasi-Laguerre iteration. Math.
Comput. 66(217), 345–361 (1997)

9. Golub, G.H., Van Loan, C.F.: Matrix Computations, 3rd edn. The Johns Hopkins
University Press, Baltimore (1996)

10. Householder, A.S.: Dandelin, Lobachevskii, or Graeffe. Amer. Math. Monthly 66,
464–466 (1959)

11. Higham, N.J.: Functions of Matrices. SIAM, Philadelphia (2008)
12. Halko, N., Martinsson, P.G., Tropp, J.A.: Finding structure with randomness: prob-

abilistic algorithms for constructing approximate matrix decompositions. SIAM
Review 53(2), 217–288 (2011)

Root-Finding by Means of Matrix and Polynomial Iterations 349

13. McNamee, J.M., Pan, V.Y.: Numerical Methods for Roots of Polynomials, Part 2,
XXII + 718 pages. Elsevier (2013)

14. Pan, V.Y.: Complexity of computations with matrices and polynomials. SIAM
Review 34(2), 225–262 (1992)

15. Pan, V.Y.: Optimal (up to polylog factors) sequential and parallel algorithms for
approximating complex polynomial zeros. In: Proc. 27th Ann. ACM Symp. on
Theory of Computing, pp. 741–750. ACM Press, New York (1995)

16. Pan, V.Y.: New fast algorithms for polynomial interpolation and evaluation on the
Chebyshev node set. Computers Math. Appls. 35(3), 125–129 (1998)

17. Pan, V.Y.: Structured Matrices and Polynomials: Unified Superfast Algorithms,
Birkhäuser, Boston. Springer, New York (2001)

18. Pan, V.Y.: Univariate polynomials: nearly optimal algorithms for factorization and
rootfinding. J. Symb. Computations 33(5), 253–267 (2002); Proc. version in ISSAC
2001, pp. 253–267, ACM Press, New York (2001)

19. Pan, V.Y., Qian, G., Yan, X.: Supporting GENP and Low-rank Approximation
with Random Multipliers. Technical Report TR 2014008, PhD Program in Com-
puter Science. Graduate Center, CUNY (2014),
http://www.cs.gc.cuny.edu/tr/techreport.php?id=472

20. Pan, V.Y., Qian, G., Zheng, A.: Real and complex polynomial root-finding
via eigen-solving and randomization. In: Gerdt, V.P., Koepf, W., Mayr, E.W.,
Vorozhtsov, E.V. (eds.) CASC 2012. LNCS, vol. 7442, pp. 283–293. Springer, Hei-
delberg (2012)

21. Pan, V.Y., Tsigaridas, E.P.: On the Boolean Complexity of the Real Root Refine-
ment. Tech. Report, INRIA (2013), http://hal.inria.fr/hal-00960896; Proc.
version in: M. Kauers (ed.) Proc. Intern. Symposium on Symbolic and Algebraic
Computation (ISSAC 2013), pp. 299–306, Boston, MA, June 2013. ACM Press,
New York (2013)

22. Pan, V.Y., Tsigaridas, E.P.: Nearly optimal computations with structured matrices.
In: SNC 2014. ACM Press, New York (2014); Also April 18, 2014, arXiv:1404.4768
[math.NA] and, http://hal.inria.fr/hal-00980591

23. Pan, V.Y., Zheng, A.: New progress in real and complex Ppolynomial root-finding.
Computers Math. Applics. 61(5), 1305–1334 (2011)

24. Schönhage, A.: The Fundamental Theorem of Algebra in Terms of Computational
Complexity. Math. Department, Univ. Tübingen, Germany (1982)

25. Sagraloff, M., Mehlhorn, K.: Computing Real Roots of Real Polynomials, CoRR,
abstract 1308.4088 (2013)

26. Watkins, D.S.: The Matrix Eigenvalue Problem: GR and Krylov Subspace
Methods. SIAM, Philadelphia (2007)

http://www.cs.gc.cuny.edu/tr/techreport.php?id=472
http://hal.inria.fr/hal-00960896
http://hal.inria.fr/hal-00980591

	Real Polynomial Root-Finding by Means
of Matrix and Polynomial Iterations

	1 Introduction
	2 Basic Results for Polynomials
	3 Root-Finding as Eigen-Solving and Basic Results for Matrix Computations
	3.1 Companion Matrix, Its Maps, and Maps of Its Eigenvalues
	3.2 Some Fundamental Matrix Computations
	3.3 Eigenspaces and Eigenvalues
	3.4 Some Maps in the Frobenius Matrix Algebra

	4 Real Root-Finders
	4.1 M¨obius Iteration
	4.2 Adjusted Matrix Sign Iteration
	4.3 Adjusted Modular Square Root Iteration

	5 Cayley Map and Root-Squaring
	6 NumericalTests
	References

