
Vladimir P. Gerdt Wolfram Koepf
Werner M. Seiler Evgenii V. Vorozhtsov (Eds.)

 123

LN
CS

 8
66

0

16th International Workshop, CASC 2014
Warsaw, Poland, September 8–12, 2014
Proceedings

Computer Algebra
in Scientific Computing

Lecture Notes in Computer Science 8660
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Vladimir P. Gerdt Wolfram Koepf
Werner M. Seiler Evgenii V. Vorozhtsov (Eds.)

Computer Algebra
in Scientific Computing

16th International Workshop, CASC 2014
Warsaw, Poland, September 8-12, 2014
Proceedings

13

Volume Editors

Vladimir P. Gerdt
Joint Institute of Nuclear Research
Laboratory of Information Technologies (LIT)
Dubna, Russia
E-mail: gerdt@jinr.ru

Wolfram Koepf
Universität Kassel, Institut für Mathematik
Kassel, Germany
E-mail: koepf@mathematik.uni-kassel.de

Werner M. Seiler
Universität Kassel, Institut für Mathematik
Kassel, Germany
E-mail: seiler@mathematik.uni-kassel.de

Evgenii V. Vorozhtsov
Russian Academy of Sciences
Institute of Theoretical and Applied Mechanics
Novosibirsk, Russia
E-mail: vorozh@itam.nsc.ru

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-319-10514-7 e-ISBN 978-3-319-10515-4
DOI 10.1007/978-3-319-10515-4
Springer Cham Heidelberg New York Dordrecht London

Library of Congress Control Number: 2014946203

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

© Springer International Publishing Switzerland 2014
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication
or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location,
in its current version, and permission for use must always be obtained from Springer. Permissions for use
may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution
under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

Since their start in 1998, the International Workshops on Computer Algebra in
Scientific Computing have provided excellent international forums for sharing
knowledge and results in computer algebra (CA) methods, systems, and CA
applications in scientific computing. The aim of the 16th CASC Workshop was
to provide a platform to the researchers and practitioners from both academia
as well as industry to meet and share cutting-edge development in the field.

Last autumn, Ernst Mayr, a co-founder of CASC and co-chair of the CASC
conference series since its foundation in 1997 and holding the first conference in
April 1998 retired from his positions as General Chair and Proceedings Editor
of CASC. He decided to step down to spend more time on his other professional
activities and with his family. The importance of his contributions to establish-
ing CASC as a renowned conference series and to its evident progression from
1998 until today cannot be overestimated. When Ernst informed his co-chairs
about his retirement plans, he suggested Werner M. Seiler as his successor and
expressed his readiness to assist in future CASC activities. All chairs of CASC
wish Ernst good health and continuing success in his professional work and hope
to see him again at many further CASC conferences. Werner gladly accepted the
honorable invitation to take over as General Chair and Co-editor of the proceed-
ings. He will be supported in his work by Andreas Weber, who has agreed to
assume the new position of Publicity Chair of CASC. They will try to keep
CASC in the great spirit created by Ernst.

This year the CASC conference was held in Poland, where research in the
field of CA becomes more and more popular. At present, research on the develop-
ment and application of methods, algorithms, and programs of CA is performed
at universities of Bia�lystok, Kraków, Lublin, Siedlce, Toruń, Warsaw, Zielona
Góra and others. In many universities, for example, AGH University of Science
and Technology in Kraków, Nicolaus Copernicus University in Toruń, Warsaw
University and Warsaw University of Life Sciences, regular courses have been
introduced for students on symbolic computation and application of computer
algebra to the theory of differential equations, dynamical systems, coding theory,
and cryptography. In connection with the above, it was decided to hold the 16th
CASC Workshop in Warsaw to draw the attention of young researchers to this
interesting and important field of applied mathematics and computer science.

This volume contains 33 full papers submitted to the workshop by the par-
ticipants and accepted by the Program Committee after a thorough reviewing
process. Additionally, the volume includes two invited talks.

Studies in polynomial algebra are represented by contributions devoted to
factoring sparse bivariate polynomials using the priority queue, the construc-
tion of irreducible polynomials by using the Newton index, real polynomial
root finding by means of matrix and polynomial iterations, application of the

VI Preface

eigenvalue method with symmetry for solving polynomial systems arising in the
vibration analysis of mechanical structures with symmetry properties, applica-
tion of Gröbner systems for computing the (absolute) reduction number of poly-
nomial ideals, the application of cylindrical algebraic decomposition for solving
the quantifier elimination problems, certification of approximate roots of overde-
termined and singular polynomial systems via the recovery of an exact rational
univariate representation from approximate numerical data, and new parallel
algorithms for operations on univariate polynomials (multi-point evaluation, in-
terpolation) based on subproduct tree techniques.

Several papers are devoted to using CA for the investigation of various math-
ematical and applied topics related to ordinary differential equations (ODEs):
application of CAS Mathematica for the investigation of movable singularities
of the complex valued solutions of ODEs, the decidability problem for linear
ODE systems with variable coefficients, conversion of nonlinear ODEs to inte-
gral equations for the purpose of parameter estimation.

The invited talk by L. Plaskota deals with the information-based complexity
(IBC) as a branch of computational complexity that studies continuous prob-
lems, for which available information is partial, noisy, and priced. The basic ideas
of IBC are presented, and some sample results on optimal algorithms, complexity,
and tractability of such problems are given. The focus is on numerical integration
of univariate and multivariate functions.

A number of papers deal with applications of symbolic and symbolic-numeric
computations for investigating and solving partial differential equations (PDEs)
in mathematical physics: symbolic solution of algebraic PDEs, testing unique-
ness of analytic solutions of PDE with boundary conditions, construction of
high-order difference schemes for solving the Poisson equation, symbolic-numeric
solution of the Burgers and Korteweg–de Vries–Burgers equations at very high
Reynolds numbers, and derivation of new analytic solutions of the PDEs gov-
erning the motion of a special Cosserat rod-like fiber.

Application of symbolic and symbolic-numeric algorithms in mechanics and
physics is represented by the following themes: analytic calculations in Maple
for modeling smoothly irregular integrated optical waveguide structures, the
integrability of evolutionary equations in the restricted three-body problem with
variable masses, quantum tunneling problem of diatomic molecule through
repulsive barriers, symbolic-numeric solution of the parametric self-adjoint Sturm–
Liouville problem, obtaining new invariant manifolds in the classic and general-
ized Goryachev–Chaplygin problem of rigid body dynamics.

The invited talk by G. Regensburger, article written jointly with S. Müller,
addresses a recent extension of chemical reaction network theory (CRNT), called
generalized mass-action systems, where reaction rates are allowed to be power-
laws in the concentrations. In particular, the kinetic orders (the real exponents)
can differ from the corresponding stoichiometric coefficients. As with mass action
kinetics, complex balancing equilibria (determined by the graph Laplacian of the
underlying network) can be characterized by binomial equations and parameter-
ized by monomials. However, uniqueness and existence for all rate constants and

Preface VII

initial conditions additionally depend on sign vectors of the stoichiometric and
kinetic-order subspaces. This leads to a generalization of Birch’s theorem, which
is robust with respect to certain perturbations in the exponents. Finally, the
occurrence of multiple complex balancing equilibria is discussed. The presenta-
tion is focused on a constructive characterization of positive real solutions to
generalized polynomial equations with real and symbolic exponents.

The other topics include the application of the CAS GAP (Groups, Al-
gorithms, Programming) for construction of directed strongly regular graphs,
the application of CAS Mathematica for derivation of a four-points piecewise-
quadratic interpolant, the efficient calculation of the determinant of a generalized
Vandermonde matrix with CAS Mathematica, the solution of systems of linear
inequalities by combining virtual substitution with learning strategies with the
use of the REDUCE package Redlog, finding a generic position for an al-
gebraic space curve, the application of CAS Relview for solving problems of
voting systems, computation of the truncated annihilating ideals for algebraic
local cohomology class attached to isolated hypersurface singularities, optimal
estimations of Seiffert-type means by some special Gini means, solving para-
metric sparse linear systems by local block triangularization, computation of
the topology of an arrangement of algebraic plane curve defined by implicit and
parametric equations, the use of CASs Maxima and Mathematica for studying
the coherence and large-scale pattern formation in coupled logistic-map lattices,
and enumeration of all Schur rings over the groups of orders up to 62.

Our particular thanks are due to the dean of the Faculty of Applied Infor-
matics and Mathematics, Arkadiusz Or�lowski, and the members of the CASC
2014 local Organizing Committee in Warsaw (Warsaw University of Life Sci-
ences), i.e., Alexander Prokopenya (chair of the local Organizing Committee),
and Ryszard Kozera, Luiza Ochnio, and Artur Wilinski, who have ably handled
all the local arrangements in Warsaw. Furthermore, we want to thank all the
members of the Program Committee for their thorough work. Finally we are
grateful to W. Meixner for his technical help in the preparation of the camera-
ready manuscript for this volume and the design of the conference poster.

July 2014 V.P. Gerdt
W. Koepf

W.M. Seiler
E.V. Vorozhtsov

Organization

CASC 2014 was organized jointly by the Institute of Mathematics at the Uni-
versity of Kassel, Kassel, Germany, and the Faculty of Applied Informatics and
Mathematics, Warsaw University of Life Sciences (SGGW), Warsaw, Poland.

Workshop General Chairs

Vladimir P. Gerdt (Dubna)
Werner M. Seiler (Kassel)

Program Committee Chairs

Wolfram Koepf (Kassel)
Evgenii V. Vorozhtsov (Novosibirsk)

Program Committee

François Boulier (Lille)
Hans-Joachim Bungartz (Munich)
Jin-San Cheng (Beijing)
Victor F. Edneral (Moscow)
Dima Grigoriev (Lille)
Jaime Gutierrez (Santander)
Sergey A. Gutnik (Moscow)
Jeremy Johnson (Philadelphia)
Victor Levandovskyy (Aachen)
Marc Moreno Maza (London, Canada)
Alexander Prokopenya (Warsaw)

Georg Regensburger (Linz)
Eugenio Roanes-Lozano (Madrid)
Valery Romanovski (Maribor)
Markus Rosenkranz (Canterbury)
Doru Stefanescu (Bucharest)
Thomas Sturm (Saarbrücken)
Jan Verschelde (Chicago)
Stephen M. Watt

(W. Ontario, Canada)
Andreas Weber (Bonn)
Kazuhiro Yokoyama (Tokyo)

Additional Reviewers

Parisa Alvandi
Hirokazu Anai
Alexander Batkhin
Johannes Blömer
Charles Bouillaguet
Jürgen Bräckle

Jorge Caravantes
Francisco-Jesus Castro-Jimenez
Changbo Chen
Colin Denniston
Gema M. Diaz-Toca
Matthew England

X Organization

Ruyong Feng
Mario Fioravanti
Mark Giesbrecht
Joris van der Hoeven
Martin Horvat
Silvana Ilie
Fredrik Johansson
Wolfram Kahl
Manuel Kauers
Irina Kogan
Marek Kosta
Ryszard Kozera
Dmitry Kulyabov
François Lemaire
Wei Li
Gennadi Malaschonok
Thanos Manos
Michael Monagan

Bernard Mourrain
Hirokazu Murao
Ioana Necula
Masayuki Noro
Alina Ostafe
Alfredo Parra
Roman Pearce
Marko Petkovšek
Daniel Robertz
Vikram Sharma
Takeshi Shimoyama
Kristof Unterweger
Luis Verde-Star
Konrad Waldherr
Uwe Waldmann
Uli Walther
Hitoshi Yanami
Hangzhou Zhejiang

Local Organization

Alexander Prokopenya (Chair)
Ryszard Kozera

Luiza Ochnio
Artur Wilinski

Publicity Chair

Andreas Weber (Bonn)

Website

http://wwwmayr.in.tum.de/CASC2014/

Table of Contents

Computable Infinite Power Series in the Role of Coefficients of Linear
Differential Systems . 1

Sergei A. Abramov and Moulay A. Barkatou

Relation Algebra, RelView, and Plurality Voting 13
Rudolf Berghammer

An Algorithm for Converting Nonlinear Differential Equations to
Integral Equations with an Application to Parameter Estimation from
Noisy Data . 28

François Boulier, Anja Korporal, François Lemaire,
Wilfrid Perruquetti, Adrien Poteaux, and Rosane Ushirobira

Truth Table Invariant Cylindrical Algebraic Decomposition by Regular
Chains . 44

Russell Bradford, Changbo Chen, James H. Davenport,
Matthew England, Marc Moreno Maza, and David Wilson

Computing the Topology of an Arrangement of Implicit and Parametric
Curves Given by Values . 59

Jorge Caravantes, Mario Fioravanti, Laureano Gonzalez–Vega, and
Ioana Necula

Finding a Deterministic Generic Position for an Algebraic Space
Curve . 74

Jin-San Cheng and Kai Jin

Optimal Estimations of Seiffert-Type Means by Some Special Gini
Means . 85

Iulia Costin and Gheorghe Toader

CAS Application to the Construction of High-Order Difference Schemes
for Solving Poisson Equation . 99

Grigoriy M. Drozdov and Vasily P. Shapeev

On Symbolic Solutions of Algebraic Partial Differential Equations 111
Georg Grasegger, Alberto Lastra, J. Rafael Sendra, and
Franz Winkler

Eigenvalue Method with Symmetry and Vibration Analysis of Cyclic
Structure . 121

Aurelien Grolet, Philippe Malbos, and Fabrice Thouverez

XII Table of Contents

Symbolic-Numerical Solution of Boundary-Value Problems with
Self-adjoint Second-Order Differential Equation Using the Finite
Element Method with Interpolation Hermite Polynomials 138

Alexander A. Gusev, Ochbadrakh Chuluunbaatar,
Sergue I. Vinitsky, Vladimir L. Derbov,
Andrzej Góźdź, Luong Le Hai, and Vitaly A. Rostovtsev

Sporadic Examples of Directed Strongly Regular Graphs Obtained By
Computer Algebra Experimentation . 155

Štefan Gyürki and Mikhail Klin

On the Parallelization of Subproduct Tree Techniques Targeting
Many-Core Architectures . 171

Sardar Anisul Haque, Farnam Mansouri, and Marc Moreno Maza

Deterministically Computing Reduction Numbers of Polynomial
Ideals . 186

Amir Hashemi, Michael Schweinfurter, and Werner M. Seiler

A Note on Global Newton Iteration Over Archimedean and
Non-Archimedean Fields . 202

Jonathan D. Hauenstein, Victor Y. Pan, and Agnes Szanto

Invariant Manifolds in the Classic and Generalized Goryachev–
Chaplygin Problem . 218

Valentin Irtegov and Tatyana Titorenko

Coherence and Large-Scale Pattern Formation in Coupled Logistic-Map
Lattices via Computer Algebra Systems . 230

Maciej Janowicz and Arkadiusz Or�lowski

On the Computation of the Determinant of a Generalized Vandermonde
Matrix . 242

Takuya Kitamoto

Towards Conflict-Driven Learning for Virtual Substitution 256
Konstantin Korovin, Marek Košta, and Thomas Sturm

Sharpness in Trajectory Estimation for Planar Four-points
Piecewise-Quadratic Interpolation . 271

Ryszard Kozera, Lyle Noakes, and Piotr Szmielew

Scheme for Numerical Investigation of Movable Singularities of the
Complex Valued Solutions of Ordinary Differential Equations 286

Rados�law Antoni Kycia

Generalized Mass-Action Systems and Positive Solutions of Polynomial
Equations with Real and Symbolic Exponents (Invited Talk) 302

Stefan Müller and Georg Regensburger

Table of Contents XIII

Lie Symmetry Analysis for Cosserat Rods . 324
Dominik L. Michels, Dmitry A. Lyakhov, Vladimir P. Gerdt,
Gerrit A. Sobottka, and Andreas G. Weber

Real Polynomial Root-Finding by Means of Matrix and Polynomial
Iterations . 335

Victor Y. Pan

On Testing Uniqueness of Analytic Solutions of PDE with Boundary
Conditions . 350

Sergey V. Paramonov

Continuous Problems: Optimality, Complexity, Tractability
(Invited Talk) . 357

Leszek Plaskota

On Integrability of Evolutionary Equations in the Restricted
Three-Body Problem with Variable Masses . 373

Alexander N. Prokopenya, Mukhtar Zh. Minglibayev, and
Baglan A. Beketauov

Factoring Sparse Bivariate Polynomials Using the Priority Queue 388
Fatima K. Abu Salem, Khalil El-Harake, and Karl Gemayel

Solving Parametric Sparse Linear Systems by Local Blocking 403
Tateaki Sasaki, Daiju Inaba, and Fujio Kako

Analytical Calculations in Maple to Implement the Method of
Adiabatic Modes for Modelling Smoothly Irregular Integrated Optical
Waveguide Structures . 419

Leonid A. Sevastyanov, Anton L. Sevastyanov, and
Anastasiya A. Tyutyunnik

CAS Application to the Construction of the Collocations and Least
Residuals Method for the Solution of the Burgers and Korteweg–de
Vries–Burgers Equations . 432

Vasily P. Shapeev and Evgenii V. Vorozhtsov

An Algorithm for Computing the Truncated Annihilating Ideals for an
Algebraic Local Cohomology Class . 447

Takafumi Shibuta and Shinichi Tajima

Applications of the Newton Index to the Construction of Irreducible
Polynomials . 460

Doru Ştefănescu

XIV Table of Contents

Symbolic-Numeric Algorithm for Solving the Problem of Quantum
Tunneling of a Diatomic Molecule through Repulsive Barriers 472

Sergue I. Vinitsky, Alexander A. Gusev, Ochbadrakh Chuluunbaatar,
Luong Le Hai, Andrzej Góźdź, Vladimir L. Derbov, and
Pavel Krassovitskiy

Enumeration of Schur Rings Over Small Groups . 491
Matan Ziv-Av

Author Index . 501

Computable Infinite Power Series in the Role

of Coefficients of Linear Differential Systems

Sergei A. Abramov1,� and Moulay A. Barkatou2

1 Computing Centre of the Russian Academy of Sciences, Vavilova, 40,
Moscow 119333, Russia
sergeyabramov@mail.ru

2 Institut XLIM, Département Mathématiques et Informatique,
Université de Limoges; CNRS, 123, Av. A. Thomas,

87060 Limoges cedex, France
moulay.barkatou@unilim.fr

Abstract. We consider linear ordinary differential systems over a dif-
ferential field of characteristic 0. We prove that testing unimodularity
and computing the dimension of the solution space of an arbitrary sys-
tem can be done algorithmically if and only if the zero testing problem
in the ground differential field is algorithmically decidable. Moreover, we
consider full-rank systems whose coefficients are computable power series
and we show that, despite the fact that such a system has a basis of for-
mal exponential-logarithmic solutions involving only computable series,
there is no algorithm to construct such a basis.

1 Introduction

Linear ordinary differential systems with variable coefficients appear in various
areas of mathematics. Power series are very important objects in the represen-
tation of the solutions of such systems as well as of the systems themselves. The
representation of infinite series lies at the core of computer algebra. A general
formula that expresses the coefficients of a series is not always available and may
even not exist. One natural way to represent the series is the algorithmic one,
i.e., providing an algorithm which computes its coefficients. Such algorithmic
representation of a concrete series is not, of course, unique. This non-uniqueness
is one of the reasons for undecidability of the zero testing problem for such
computable series.

At first glance, it may seem that if we cannot decide algorithmically whether
a concrete coefficient of a system is zero or not, then we will not be able to solve
any more or less interesting problem related to the search of solutions. However,
this is not completely right: at least, if we know in advance that the system is of
full rank then some of the problems can still be solved. For example, we can find

� Supported in part by the Russian Foundation for Basic Research, project no. 13-01-
00182-a. The first author thanks also Department of Mathematics and Informatics
of XLIM Institute of Limoges University for the hospitality during his visits.

V.P. Gerdt et al. (Eds.): CASC Workshop 2014, LNCS 8660, pp. 1–12, 2014.
c© Springer International Publishing Switzerland 2014

2 S.A. Abramov and M.A. Barkatou

Laurent series [3] and regular [6] solutions. Some non-trivial characteristics can be
computed as well, e.g., the so called “width” of the system [3]. Nevertheless, many
of the problems are undecidable. For example, we cannot answer algorithmically
the following question: does a given full-rank system with power series coefficients
have a formal exponential-logarithmic solution which is not regular? We prove this
undecidability in the present paper. It is also shown that if exponential-logarithmic
solutions of a given full-rank system exist then there exists a basis of the space of
those solutions such that all the series which appear in the elements of the basis are
computable; the exact formulation is given in Proposition 7 of this paper.

So, we know that there exists a basis of the solution space which consists
of computable objects, but we are not able to find this basis algorithmically.
This is analogous to some facts of constructive mathematical analysis. In fact,
the notion of a constructive real number (computable point) is fundamental
in that discipline: “... an algorithm which finds the zeros of any alternating,
continuous, computable function is impossible. At the same time, there cannot
be a computable function that assumes values of different signs at the ends of
a given interval and does not vanish at any computable point of this interval
(a priori, it is impossible to rule out the existence of computable alternating
functions whose zeros are all ‘noncomputable’). These results are due to Tseitin
[21] ...” ([14, p. 5], see also [16, §24]).

We prove in the same direction that testing unimodularity, i.e., the invertibil-
ity of the corresponding operator and computing the dimension of the solution
space of an arbitrary system can be done algorithmically if and only if the zero
testing problem in the ground differential field is algorithmically decidable. As
a consequence, these problems are undecidable when the coefficients are power
series or Laurent series which are represented by arbitrary algorithms.

If the algorithmic way of series representation is used then some of the prob-
lems related to linear ordinary systems are decidable while others are not. Note
that the above mentioned algorithms for finding Laurent series solutions and reg-
ular solutions are implemented in Maple [23]. The implementation is described
in [3,6] and, is available at http://www.ccas.ru/ca/doku.php/eg.

The rest of the paper is organized as follows: After stating some prelimi-
naries in Section 2, we give in Section 3 a review of some results related to
systems whose coefficients belong to a field K of characteristic zero. The field K
is supposed to be a constructive differential field, i.e., there exist algorithms for
the field operations, differentiation, and for zero testing. The problems that are
listed in Section 3 can be solved algorithmically. On the other hand, we show
in Section 4 that the same problems are algorithmically undecidable, if the field
K is semi-constructive, i.e., there exist algorithms for the field operations and
differentiation but there is no algorithm for zero testing. Finally, we consider in
Section 5 semi-constructive fields of computable formal Laurent series in the role
of coefficient field of systems of linear ordinary differential systems.

The results of this paper supplement known results on the zero testing problem
and some algorithmically undecidable problems related to differential equations
(see, e.g., [10], [13]).

Computable Infinite Power Series 3

2 Preliminaries

The ring of m × m matrices with entries belonging to a ring R is denoted by
Matm(R). We use the notation [M]i,∗ , 1 � i � m, for the 1×m-matrix which is
the ith row of an m×m-matrix M . The notation MT is used for the transpose
of a matrix (vector) M .

If F is a differential field with derivation ∂ then Const (F) = {c ∈ F | ∂c = 0}
is the constant field of F .

2.1 Differential Universal and Adequate Field Extensions

Let K be a differential field of characteristic 0 with derivation ∂ =′.

Definition 1. An adequate differential extension Λ of K is a differential field
extension Λ of K such that any differential system

∂y = Ay, (1)

with A ∈ Matm(K) has a solution space of dimension m in Λm over Const (Λ).

If Const (K) is algebraically closed then there exists a unique (up to a dif-
ferential isomorphism) adequate differential extension Λ such that Const (Λ) =
Const (K) which is called the universal differential field extension of K [18,
Sect. 3.2]. For any differential field K of characteristic 0 there exists a differ-
ential extension whose constant field is algebraically closed. Indeed, this is the
algebraic closure K̄ with the derivation obtained by extending the derivation of
K in the natural way. In this case, Const (K̄) = Const (K) (see [18, Exercises
1.5, 2:(c),(d)]). Existence of the universal differential extension for K̄ implies
that there exists an adequate differential extension for K, i.e., for an arbitrary
differential field of characteristic zero.

In the sequel, we denote by Λ a fixed adequate differential extension of K,
and we suppose that the vector solutions of systems in the form (2) lie in Λm.

In addition to the first-order systems of the form (1), we also consider the
differential systems of arbitrary order r � 1. Each of these systems can be
represented, e.g., in the form

Ary
(r) +Ar−1y

(r−1) + · · · +A0y = 0, (2)

where the matrices A0, A1, . . . , Ar belong to Matm(K), m � 1, and Ar (the
leading matrix of the system) is non-zero. The system (2) can be written as
L(y) = 0 where

L = Ar∂
r +Ar−1∂

r−1 + · · · +A0. (3)

The number r is the order of L (we write r = ordL). The operator (3) can be
alternatively represented as a matrix in Matm(K[∂]):⎛⎝L11 . . . L1m

.
Lm1 . . . Lmm

⎞⎠ , (4)

4 S.A. Abramov and M.A. Barkatou

Lij ∈ K [∂], i, j = 1, . . . ,m, with maxi,j ordLij = r. We say that the operator
L ∈ Matm(K [∂]) (as well as the system L(y) = 0) is of full rank, if the rows
(Li1, . . . , Lim), i = 1, . . . ,m, of matrix (4) are linearly independent over K [∂].
The matrix Ar is the leading matrix of both the system L(y) = 0 and operator
L, regardless of representation form.

2.2 Universal Differential Extension of Formal Laurent Series Field

Let K0 be a subfield of the complex number field C and K be the field K0((x))
of formal Laurent series with coefficients in K0, equipped with the derivation
∂ = d

dx . As it is well known [20, Sect. 110], if K0 is algebraically closed then the
universal differential field extension Λ is the quotient field of the ring generated
by expressions of the form

eP (x)xγ(ψ0 + ψ1 lnx+ · · · + ψs(lnx)s), (5)

where in any such expression

– P (x) ∈ K0[x−1/q], q is a positive integer,

– γ ∈ K0,

– s is a non-negative integer and

ψj ∈ K0[[x
1/q]], (6)

j = 0, 1, . . . , s.

In fact, system (1) has m linearly independent solutions b1(x), . . . , bm(x) such
that

bi(x) = ePi(x)xγiΨi(x), (7)

where the factor ePi(x)xγi is common for all components of bi, and

γi ∈K0, qi is a positive integer, Pi(x) ∈ K0[x−1/qi], Ψi(x) ∈ Km
0 [[x1/qi]][ln x],

i = 1, . . . ,m.

Definition 2. Solutions of the form (7) will be called (formal) exponential-log-
arithmic solutions. If q = 1 and P (x) = 0 then the solutions (7) are called
regular.

Remark 1. If K0 is not algebraically closed then there exists a simple algebraic
extension K1 of K0 (specific for each system) such that system (1) has m linearly
independent solutions of the form (7) with γi ∈ K1, Pi(x) ∈ K1[x−1/qi], Ψi(x) ∈
Km

1 [[x1/qi]][lnx], i = 1, . . . ,m.

Computable Infinite Power Series 5

2.3 Row Frontal Matrix and Row Order

Let a full-rank operator L ∈ Matm(K[∂]) be of the form (3). If 1 � i � m then
define αi(L) as the biggest integer k, 0 � k � r, such that [Ak]i,∗ is a nonzero
row. The matrix M ∈ Matm(K) such that [M]i,∗ = [Aαi(L)]i,∗, i = 1, . . . ,m, is
the row frontal matrix of L. The vector (α1(L), . . . , αm(L)) is the row order of L.
We will write simply (α1, . . . , αm), when it is clear which operator is considered.

Definition 3. An operator U ∈ Matm(K[∂]) is unimodular (or invertible) if
there exists Ū ∈ Matm(K[∂]) such that ŪU = UŪ = Im. An operator in
Matm(K[∂]) is row reduced if its row frontal matrix is invertible.

The following proposition is a consequence of [9, Thm. 2.2]:

Proposition 1. Let L ∈ Matm(K [∂]) then there exist U, L̆ ∈ Matm(K [∂]) such
that U is unimodular and L̆ defined by

L̆ = UL (8)

and represented in the form (4), has k zero rows, where 0 � k � m, and the row
frontal matrix of L̆ is of rank m − k over K. The operator L is of full rank if
and only if k = 0, and in this case the operator L̆ in (8) is row reduced.

We will say that the system (2) is unimodular whenever the corresponding
matrix (4) is.

3 When K Is a Constructive Field

Definition 4. A ring (field) K is said to be constructive if there exist algorithms
for performing the ring (field) operations and an algorithm for zero testing in K

This definition is close to the definition of an explicit field given in [11].

Suppose that K is a constructive field. Then the proof of the already men-
tioned theorem [9, Thm. 2.2] gives an algorithm for constructing U, L̆. We will
refer to this algorithm as RR (Row-Reduction).

3.1 The Dimension of the Solution Space of a Given Full Rank
System

Proposition 2. ([1]) Let L ∈ Matm(K [∂]) be row reduced, and denote by α =
(α1, . . . , αm) its row order. Then the dimension of its solution space VL is given
by: dimVL =

∑m
i=1 αi.

Hence, when the field K is constructive we can apply algorithm RR, and
compute, by Proposition 2, the dimension of the solution space of a given full-
rank system.

Note that in the case when K is the field of rational functions of x over a field
of characteristic zero with ∂ = d

dx , some inequalities close to the formula given
in Proposition 2 can be derived from the results of [12].

6 S.A. Abramov and M.A. Barkatou

3.2 Recognizing the Unimodularity of an Operator and Computing
the Inverse Operator

The following property of unimodular operators is a direct result of Proposition
2.

Proposition 3. [2] Let L ∈ Matm(K [∂]) be of full rank. Then L is unimodular
if and only if dimVL = 0. Moreover, in the case when the row frontal matrix of
L is invertible, L is unimodular if and only if ordL = 0.

Algorithm RR allows one to compute a unimodular U ∈ Matm(K [∂]) such
that the operator L̆ = UL has an invertible row frontal matrix. Proposition 3
implies that L is unimodular if and only if L̆ is an invertible matrix in Matm(K).
In this case (L̆)−1UL = Im, i.e., (L̆)−1U is the inverse of L. Hence the following
proposition holds (taking into account Proposition 1, we need not assume that
L is of full rank):

Proposition 4. Let K be constructive and L ∈ Matm(K [∂]). One can recognize
algorithmically whether L is unimodular or not, and compute the inverse operator
if it is.

4 When the Zero Testing Problem in K Is Undecidable

It is easy to see that if the zero testing problem in K is undecidable then the
problem of recognizing whether a given L ∈ Matm(K [∂]) is of full rank is unde-
cidable. Indeed, let u ∈ K, then the operator

L =

(
u∂ ∂
0 1

)
=

(
u 1
0 0

)
∂ +

(
0 0
0 1

)
is of full rank if and only if u �= 0, and any algorithm to recognize whether a
given L ∈ Matm(K [∂]) is of full rank can be used for zero testing in K.

Furthermore, it turns out that if the zero testing problem in K is undecidable
then even with a prior knowledge that operators under consideration are of full
rank, many questions about those operators remain undecidable.

Proposition 5. Let the zero testing problem in K be undecidable. Then for
m � 2 the following problems about a full-rank operator L ∈ Matm(K [∂]) are
undecidable:

(a) computing dimVL,
(b) testing unimodularity of L.

Proof. (a) Let u ∈ K and

L =

(
u∂ + 1 ∂

0 1

)
=

(
u 1
0 0

)
∂ +

(
1 0
0 1

)
. (9)

If u = 0 then L is unimodular:(
1 ∂
0 1

)−1

=

(
1 −∂
0 1

)

Computable Infinite Power Series 7

and, therefore, dimVL = 0. If u �= 0 then dimVL = 1 by Proposition 2. We have

dimVL =

{
0 if u = 0,
1 if u �= 0.

This implies that if we have an algorithm for computing the dimension then we
have an algorithm for the zero testing problem.

(b) As we have seen the operator L of the form (9) is unimodular if and only
if u = 0.

As a consequence of Propositions 4, 5 we have the following:

Testing unimodularity and determining the dimension of the solution space of
an arbitrary full-rank system can be done algorithmically if and only if the zero
testing problem in K can be solved algorithmically.

One of the general causes of difficulties in the zero testing problem in K may
be associated with non-uniqueness of representation of the elements of K [11,
Sect. 2]. This is illustrated in Section 5.1.

5 Computable Power Series

5.1 Semi-constructive Fields

Let K be the field K0((x)) where K0 is a constructive field of characteristic
0. The field K contains the set K|c of computable series, whose sequences of
coefficients can be represented algorithmically. That is to say that for each series
a(x) ∈ K|c there exists an algorithm Ξa to compute the coefficient ai ∈ K0

for a given i; arbitrary algorithms which are applicable to integer numbers and
return elements of K0 are allowed. For this set to be considered as a constructive
differential subfield of K, it would be necessary to define algorithmically on K|c
the field operations of the field K, the unary operation d

dx , and a zero testing
algorithm as well. However, in accordance with the classical results of Turing
[22], we are not able to solve algorithmically the zero testing problem in K|c.
As mentioned in Section 4, the undecidability of the zero testing problem is
quite often associated with the fact that the elements of the field (or ring) under
consideration can be represented in various ways, and for some of which the test
is evident while for the others is not. This holds for K|c as well.

Remark 2. The field K|c is smaller than the field K because not every sequence
of coefficients can be represented algorithmically. Indeed, the set of elements of
K|c is countable (each of the algorithms is a finite word in some fixed alphabet)
while the cardinality of the set of elements of K is uncountable.

If the only information we possess about the elements of K|c is an algorithm
to compute their coefficients then the problem of finding the valuation of a
given a(x) ∈ K|c, val a(x), is undecidable even in the case when it is known
in advance that a(x) is not the zero series. This implies that when we work

8 S.A. Abramov and M.A. Barkatou

with elements of K|c, i.e., with computable Laurent series, we cannot compute
a−1(x) for a given non-zero a(x) ∈ K|c, since the coefficient of x−1 of the
series a′(x)a−1(x) ∈ K|c is equal to val a(x), i.e., is equal to the value that
we are not able to find algorithmically knowing only Ξa. This means that a
suitable representation has to contain some additional information besides a
corresponding algorithm. The value vala(x) cannot close the gap, since we have
no algorithm to compute the valuation of the sum of two series. However, we
can use a lower bound of the valuation instead: observe that if we know that a
series a(x) is non-zero then using a valuation lower bound we can compute the
exact value of val a(x). Thus, we can use as the representation of a(x) ∈ K|c a
pair of the form

(Ξa, μa), (10)

where Ξa is an algorithm for computing the coefficient ai ∈ K0 for a given i, and
the integer μa is a lower bound for the valuation of a(x). A computable Laurent
series a(x), represented by a pair of the form (10) is equal to

∑∞
i=μa

Ξa(i)xi.
Of course, there exist other ways to represent computable Laurent series. For

example, one can use a pair (Ξa, pa(x)), where the algorithm Ξa represents a
power series that is the regular part of a(x) while pa(x) ∈ K0[x−1] represents
explicitly its singular part. We can also represent each Laurent series as a fraction
of two power series (the latter are represented algorithmically, this is possible as
the field of Laurent series is the quotient field of the ring of power series). So a
Laurent series can be represented as a couple (a(x), b(x)) of power series with
b(x) nonzero.

We can define the field structure on K|c: all field operations can be performed
algorithmically. Since we do not have an algorithm for solving the zero testing
problem in K|c, we use for K|c the term “semi-constructive field” instead.

Definition 5. A ring (field) is semi-constructive if there are algorithms to per-
form the ring (field) operations, but there exists no algorithm to solve the zero
testing problem.

Observe that if the standard representation form is used for rational functions,
i.e., for elements in K0(x), then the field K0(x) is constructive.

Remark 3. Consider for the ring R = K0[[x]] its semi-constructive sub-ring
R|c of computable power series. In this case we do not need to include a lower
bound for the valuation into a representation of a series a(x) ∈ R|c, since 0 is
such a bound.

5.2 Systems with Computable Power Series Coefficients

Below we suppose thatK0 is a constructive field of characteristic 0,K = K0((x)),
R = K0[[x]], and

K|c, R|c

Computable Infinite Power Series 9

are a semi-constructive field and, resp., a semi-constructive ring as in Section
5.1. We will consider systems of the form

L(y) = 0, L ∈ Matm

(
R|c

[
d

dx

])
. (11)

It follows from Proposition 5 that the problems (a) and (b) listed in that
proposition are undecidable if L is as in (11). At first glance, it seems that such
undecidability is mostly caused by the inability to distinguish zero and nonzero
coefficients of operators and systems. However, even if we know in advance which
of the coefficients of an operator L are null, we, nevertheless, cannot solve prob-
lems (a) and (b) of Proposition 5 algorithmically. Let u(x) ∈ R|c and

L =

(
(u(x)x+ 1) d

dx + 1 d
dx

1 1

)
=

(
u(x)x+ 1 1

0 0

)
d

dx
+

(
1 0
1 1

)
.

For such an operator, we know in advance which of its coefficients are equal to
zero, but we do not know whether the power series u(x) is equal to zero. It is
easy to see that

dimVL =

{
0 if u(x) = 0,
1 if u(x) �= 0.

5.3 On Formal Exponential-Logarithmic Solutions

In [3,6], it was proven that the problems of existence of Laurent series solutions
and regular solutions (see Definition 2) for a given system (11) are decidable. A
regular solution has the form xγw(x), where γ ∈ K̄0, and w(x) ∈ K̄0((x))m[lnx];
in the context of [6], w(x) ∈

(
K̄0((x))|c

)m
[lnx]. In those papers, it was proven

also that if non-zero Laurent series or regular solutions exist then we can con-
struct them, i.e., find a lower bound for valuations of all involved Laurent series
as well as any number of terms of the series; for regular solutions we also find the
corresponding values of γ, the degrees of polynomials in lnx etc. It was shown
also that instead of K̄0 which is the algebraic closure ofK0 some simple algebraic
extension K1 of K0 may be used.

Remark 4. The power series which appear in [3,6] as coefficients of a given
system can be represented not only by algorithms as described above but also as
“black boxes”, i.e., by procedures of unknown internal form.

Proposition 6. Let m be an integer, m � 2, and K0 be a constructive subfield
of C. Then for a given full-rank system of the form (11),

(i) the question whether nonzero Laurent series solutions exist as well as the
question whether nonzero regular solutions exist are algorithmically decidable;

(ii) the question whether nonzero formal exponential-logarithmic solutions ex-
ist is algorithmically undecidable;

(iii) the question whether nonzero formal exponential-logarithmic solutions
which are not regular solutions exist is algorithmically undecidable.

10 S.A. Abramov and M.A. Barkatou

Proof. (i) This follows from [3,6], as it was explained in the beginning of this
section.

(ii) A given L is unimodular if and only if the system (11) has no non-zero
formal exponential-logarithmic solution, and the claim follows from Proposition
5 (problem (b)).

(iii) A full-rank operator L is evidently unimodular if and only if it has no
regular solution and no exponential-logarithmic solution which is not regular. By
(i), we can test whether the system L(y) = 0 has no regular solution. Thus, if
we are able to test whether this system has no exponential-logarithmic solution
which is not regular then we can test whether L is unimodular or not. However,
this is an undecidable problem by Proposition 5 (problem (b)).

Proposition 7. Let m be an integer number,m � 2, K0 be a constructive subset
of C. Let L(y) = 0 be a full-rank system of the form (11), and d = dimVL. Then
VL has a basis b1(x), . . . , bd(x) consisting of exponential-logarithmic solutions
such that any Ψi(x) from (7) is of the form Ψi(x) = Φi(x

1/qi) where qi is a
non-negative integer,

Φi(x) ∈ ((K1[[x]]) |c)m [lnx], (12)

and K1 is a simple algebraic extension of K0. In addition to (12), γi ∈ K1,
Pi(x) ∈ K1[x−1/qi], i = 1, . . . , d.

Proof. It follows from, e.g., [4,5,8], that for any operator L of full rank there
exists an operator F such that the leading matrix of FL is invertible. The system
FL(y) = 0 is equivalent to a first order system of the form y′ = Ay, A ∈
Matms(K((x))), s = ordFL. It is known ([7]) that for a first-order system
there exists a simple algebraic extension K1 of K0 such that those γi and the
coefficients of Pi(x) which appear in its solutions of the form (7), belong to K1.
The field K1 is constructive since K0 is. Obviously, qi ∈ N.

The substitution
x = tqi , y(tqi) = z(t)ePi(t

qi),

Pi(t
qi) ∈ K1[1/t], into the original system L(y) = 0 transforms it into a full-rank

system which can be represented as

L̃(z) = 0, L̃ ∈ Matm

(
(K1[[t]])|c

[
d

dt

])
.

The Laurent series that appear in the regular solutions of this new system can
be taken to be computable, as it follows from [3,6] (see the beginning of this
section).

Thus, the series that appear in the representation of solutions are computable
(Proposition 7), but we cannot find them algorithmically (Proposition 6). In fact,
Proposition 7 guarantees existence. However, the operator F mentioned therein
cannot be constructed algorithmically.

Remark 5. In the case of first-order systems of the form (1), the questions
formulated in Proposition 6(ii, iii) are decidable. This follows from the fact that

Computable Infinite Power Series 11

for constructing exponential-logarithmic solutions of a system of this form one
needs only a finite number of terms of the entries (which are Laurent series) of
A, and the number of those terms can be computed in advance ([15,7,17]). This
holds also for higher-order systems whose leading matrices are invertible.

It is proven ([19]) that if the dimension d of the space of exponential-logarith-
mic solutions is known in advance then the basis b1, . . . , bd which is mentioned in
Proposition 7 can be constructed algorithmically. The corresponding algorithm
is implemented in Maple.

As we see, if the algorithmic representation of series is used and if arbitrary
algorithms representing series are admitted then some of the problems related to
linear ordinary differential systems are decidable, while others are not. There is
a subtle border between them, and a careful formulation of each of the problems
under consideration is absolutely necessary. A small change in the formulation
of a decidable problem can transform it into an undecidable one, and vice versa.

Acknowledgments. The authors are thankful to S. Maddah, M. Petkovšek, A.
Ryabenko, M. Rybowicz, S. Watt for interesting discussions, and to anonymous
referees for their useful comments.

References

1. Abramov, S.A., Barkatou, M.A.: On the dimension of solution spaces of full rank
linear differential systems. In: Gerdt, V.P., Koepf, W., Mayr, E.W., Vorozhtsov,
E.V. (eds.) CASC 2013. LNCS, vol. 8136, pp. 1–9. Springer, Heidelberg (2013)

2. Abramov, S.A., Barkatou, M.A.: On solution spaces of products of linear differential
or difference operators. ACM Communications in Computer Algebra (accepted)

3. Abramov, S.A., Barkatou, M.A., Khmelnov, D.E.: On full-rank differential systems
with power series coefficients. J. Symbolic Comput. (accepted)

4. Abramov, S.A., Khmelnov, D.E.: Desingularization of leading matrices of systems
of linear ordinary differential equations with polynomial coefficients. In: Inter-
national Conference “Differential Equations and Related Topics” Dedicated to
I.G.Petrovskii, Moscow, MSU, May 30-June 4, p. 5. Book of Abstracts (2011)

5. Abramov, S.A., Khmelnov, D.E.: On singular points of solutions of linear differen-
tial systems with polynomial coefficients. J. Math. Sciences 185(3), 347–359 (2012)

6. Abramov, S.A., Khmelnov, D.E.: Regular solutions of linear differential systems
with power series coefficients. Programming and Computer Software 40(2), 98–106
(2014)

7. Barkatou, M.A.: An algorithm to compute the exponential part of a formal fun-
damental matrix solution of a linear differential system. Applicable Algebra in
Engineering, Communication and Computing 8, 1–23 (1997)

8. Barkatou, M.A., El Bacha, C., Labahn, G., Pflügel, E.: On simultaneous row and
column reduction of higher-order linear differential systems. J. Symbolic Com-
put. 49(1), 45–64 (2013)

9. Beckermann, B., Cheng, H., Labahn, G.: Fraction-free row reduction of matrices
of Ore polynomials. J. Symbolic Comput. 41(5), 513–543 (2006)

10. Denef, J., Lipshitz, L.: Power series solutions of algebraic differential equations.
Math. Ann. 267, 213–238 (1984)

12 S.A. Abramov and M.A. Barkatou

11. Frölich, A., Shepherdson, J.C.: Effective procedures in field theory. Phil. Trans. R.
Soc. Lond. 248(950), 407–432 (1956)

12. Grigoriev, D.: NC solving of a system of linear differential equations in several
unknowns. Theor. Comput. Sci. 157(1), 79–90 (1996)

13. van der Hoeven, J., Shackell, J.R.: Complexity bounds for zero-test algorithms. J.
Symbolic Comput. 41(4), 1004–1020 (2006)

14. Kushner, B.A.: Lectures on Constructive Mathematical Analysis (Translations of
Mathematical Monographs) Amer. Math. Soc. (1984)

15. Lutz, D.A., Schäfke, R.: On the identification and stability of formal invariants for
singular differential equations. Linear Algebra and Its Applications 72, 1–46 (1985)

16. Martin-Löf, P.: Notes on Constructive Mathematics. Almquist &Wiskell, Stokholm
(1970)

17. Pflügel, E.: Effective formal reduction of linear differential systems. Applicable
Algebra in Engineering, Communication and Computation 10(2), 153–187 (2000)

18. van der Put, M., Singer, M.F.: Galois Theory of Linear Differential Equations.
Grundlehren der mathematischen Wissenschaften, vol. 328. Springer, Heidelberg
(2003)

19. Ryabenko, A.: On exponential-logarithmic solutions of linear differential systems
with power series coefficients (In preparation)

20. Schlesinger, L.: Handbuch der Theorie der linearen Differentialgleichungen, vol. 1.
Teubner, Leipzig (1895)

21. Tseitin, G.S.: Mean-value Theorems in Constructive Analysis. Problems of the
Constructive Direction in Mathematics. Part 2. Constructive Mathematical Anal-
ysis. Collection of Articles: Trudy Mat. Inst. Steklov, Acad. Sci. USSR 67, 362–384
(1962)

22. Turing, A.: On computable numbers, with an application to the Entscheidungs-
problem. Proc. London Math. Soc., Series 2 42, 230–265 (1936)

23. Maple online help, http://www.maplesoft.com/support/help/

http://www.maplesoft.com/support/help/

Relation Algebra, RelView, and Plurality Voting

Rudolf Berghammer

Institut für Informatik, Universität Kiel, Olshausenstraße 40, 24098 Kiel, Germany
rub@informatik.uni-kiel.de

Abstract. We demonstrate how relation algebra and a supporting tool
can be combined to solve problems of voting systems. We model plurality
votingwithin relation algebra and present relation-algebraic specifications
for some computational tasks. They can be transformed immediately into
the programming language of the BDD-based Computer Algebra system
RelView, such that this tool can be used to solve the problems in question
and to visualize the computed results. The approach is extremely formal,
very flexible and especially appropriate for prototyping, experimentation,
scientific research, and education.

1 Introduction

Since centuries systematic experiments are an accepted means for doing science.
In the meantime they have also become important in formal fields, such as math-
ematics, scientific computing, and theoretical computer science. Here computer
support proved to be very useful, e.g., for computing results and for discover-
ing mathematical relationships by means of visualization and animation. Used
are general Computer Algebra systems, like Maple and Mathematica, but
frequently also tools that focus on specific mathematical objects and (in many
cases: algebraic) structures and particular applications. RelView (cf. [2,12,15])
is a tool of the latter kind. It can be regarded as specific purpose Computer Alge-
bra system and its main purpose is the mechanization of heterogeneous relation
algebra in the sense of [13,14] and the visualization of relations. Computational
tasks can be expressed by relational functions and programs. These frequently
consist of only a few lines that present the relation-algebraic specification of the
notions in question. In view of efficiency the implementation of relations via bi-
nary decision diagrams (BDDs) proved to be superior to many other well-known
implementations, like Boolean matrices or successor lists. Their use in RelView

led to an amazing computational power, in particular if hard problems are to
solve and this is done by the search of a huge set of objects.

In [4,6] it is demonstrated how relation algebra and RelView can be com-
bined to solve computational problems of voting systems. The papers consider
two specific systems, known as approval voting and Condorcet voting. Our paper
constitutes a continuation of this work. We concentrate on plurality voting, a
further popular voting system that simply selects the alternatives with the high-
est number of first place votes and is widely used through the world. After the
presentation of the relation-algebraic preliminaries we model two versions of this

V.P. Gerdt et al. (Eds.): CASC Workshop 2014, LNCS 8660, pp. 13–27, 2014.
c© Springer International Publishing Switzerland 2014

14 R. Berghammer

kind of voting within relation algebra. Based on these models, we then present
relation-algebraic specifications for computing dominance relations and (sets of)
winners. Next, for the second model we show how relation-algebraically to solve
hard so-called control problems. For a control of an election the assumption is
that the authority conducting the election – usually called the chair – knows all
individual preferences of the voters and tries to achieve (in case of constructive
control) or to avoid (in case of destructive control) win for a specific alternative
by a strategic manipulation of the set of voters and alternatives, respectively.
The chair’s knowledge of all individual preferences and the ability to manipulate
by ‘dirty tricks’ (mistimed meetings, excuses like ‘to expensive’ or ‘legally not
allowed’, etc.) are worst-case assumptions that are not entirely unreasonable in
some settings, for instance, in case of commissions of political institutions. All
relation-algebraic specifications we will present can be transformed immediately
into the programming language of the Computer Algebra system RelView such
that this tool can be used to compute results and to visualize them. Finally, we
evaluate our approach in view of its advantages and its drawbacks.

2 Relation-Algebraic Preliminaries

In this section we recall some preliminaries of (typed, heterogeneous) relation
algebra. For more details, see [13,14], for example.

Given two sets X and Y we write [X↔Y] for the set of all (binary) relations
with source X and target Y , i.e., for the powerset 2X×Y . Furthermore, we write
R : X↔Y instead of R ∈ [X↔Y] and call then X↔Y the type of R. If the two
sets X and Y of R’s type are finite, then we may consider R as a Boolean matrix.
Since a Boolean matrix interpretation is well suited for many purposes and also
used by the RelView tool as the main possibility to visualize relations, in the
present paper we frequently use matrix terminology and notation. In particular,
we speak about the entries, rows and columns of a relation/matrix and write
Rx,y instead of (x, y) ∈R or xRy. We assume the reader to be familiar with the
basic operations on relations, viz. RT (transposition), R (complement), R ∪ S
(union), R ∩ S (intersection), and R;S (composition), the predicates R ⊆ S
(inclusion) and R = S (equality), and the special relations O (empty relation), L
(universal relation), and I (identity relation). In case of O, L, and I we overload
the symbols, i.e., avoid the binding of types to them.

By syq(R,S) := RT;S ∩ RT
;S we define the symmetric quotient of two re-

lations R : X↔Y and S : X↔Z. From this definition we get the typing
syq(R,S) : Y ↔Z and that for all y ∈Y and z ∈Z it holds

syq(R,S)y,z ⇔ ∀x ∈X : Rx,y ↔ Sx,z. (1)

Descriptions of the form (1) with relationships expressed by logical formulae and
indices are called point-wise. Such descriptions of symmetric quotients and the
constructs we introduce now for modeling sets and direct products will play a
fundamental role in the remainder of the paper. We will use them to get relation-
algebraic (or point-free) specifications, which then can be treated by RelView.

Relation Algebra, RelView, and Plurality Voting 15

Vectors are a first well-known relational means to model sets. For the purpose
of this paper it suffices to define them as relations r : X↔11 (we prefer lower
case letters in this context) with a specific singleton set 11 = {⊥} as target.
Then relational vectors can be considered as Boolean column vectors. To be
consonant with the usual notation, we always omit the second subscript, i.e.,
write rx instead of rx,⊥. Given r : X↔11 and Y ∈ 2X we then define that

r models the subset Y of X :⇔ ∀x ∈X : x ∈Y ↔ rx. (2)

A point is a specific vector with precisely one 1-entry if considered as a Boolean
column vector. Consequently, it models a singleton subset {x} of X and we then
say that it models the element x of X . In conjunction with a powerset 2X we
will also use the membership relation M : X↔ 2X , point-wisely defined by

Mx,Y :⇔ x ∈Y, (3)

for all x ∈X and Y ∈2X . The following lemma shows how symmetric quotients
and membership relations allow to describe a specific relationship between sets
relation-algebraically. The construction set(R) of the lemma is an instance of
the power transpose construction of [14] and will play a prominent role in the
remainder of the paper, too.

Lemma 2.1. For a given relation R : X↔Y and M : X↔ 2X as a membership
relation we define

set(R) := syq(R,M) : Y ↔ 2X .

Then we have set(R)y,Z iff Z = {x ∈X | Rx,y}, for all y ∈Y and Z ∈2X .

Proof. Given arbitrary y ∈Y and Z ∈2X , we get the result as follows:

set(R)y,Z ⇔ syq(R,M)y,Z

⇔ ∀x ∈X : Rx,y ↔ Mx,Z by (1)

⇔ ∀x ∈X : Rx,y ↔ x ∈Z by (3)

⇔ Z = {x ∈X | Rx,y} �

In each of our later applications we will assume the sets in question to be finite.
On powersets 2X of finite sets X we then will use the size comparison relation
S : 2X ↔ 2X , which is point-wisely defined by

SY,Z :⇔ |Y | ≤ |Z|, (4)

for all Y, Z ∈ 2X . In the next result it is shown how to compare for a finite set
X the specific sets {x ∈ X | Rx,y} of Lemma 2.1 w.r.t. their sizes within the
language of relation algebra.

Lemma 2.2. Let relations Q : X↔Y and R : X↔Z be given, where X is
finite, and S : 2X ↔ 2X be a size-comparison relation. Furthermore, let

scomp(Q,R) := set(Q); ST; set(R)T : Y ↔Z.

Then we have scomp(Q,R)y,z iff |{x ∈X | Qx,y}| ≥ |{x ∈X | Rx,z}|, for all
y ∈Y and z ∈Z.

16 R. Berghammer

Proof. We get for arbitrary y ∈Y and z ∈Z the claim as follows:

scomp(Q,R)y,z

⇔ (set(Q); ST; set(R)T)y,z

⇔ ∃U ∈2X : set(Q)y,U ∧ ∃V ∈2X : STU,V ∧ set(R)TV,z
⇔ ∃U ∈2X : U = {x ∈X | Qx,y} ∧

∃V ∈2X : |U | ≥ |V | ∧ V = {x ∈X | Rx,z} Lemma 2.1, (4)

⇔ |{x ∈X | Qx,y}| ≥ |{x ∈X | Rx,z}| �

As a general assumption, in the remainder of this paper we always assume pairs
u ∈X×Y to be of the form (u1, u2). To model direct products X×Y relation-
algebraically, the projection relations π : X×Y ↔X and ρ : X×Y ↔Y have
been proven as the convenient means. They are the relational variants of the
well-known projection functions and, in point-wise definitions, given by

πu,x :⇔ u1 = x ρu,y :⇔ u2 = y, (5)

for all u ∈ X×Y , x ∈ X and y ∈ Y . Projection relations enable us to specify
the pairing operation of functional programming with relation-algebraic means.
Assuming π and ρ as above, the (right) pairing (also called fork) of R : Z↔X
and S : Z↔Y is defined as [R,S]] := R;πT ∩ S; ρT. This leads to Z↔X×Y as
type of [R,S]] and to a point-wise description saying that

[R,S]]z,u ⇔ Rz,u1 ∧ Sz,u2 , (6)

for all z ∈Z and u ∈X×Y . Using the projection relations π : X×Y ↔X and
ρ : X×Y ↔Y , we also are able to define functions which establish an isomor-
phism between the Boolean lattices [X↔Y] and [X×Y ↔11]. The direction from
[X↔Y] to [X×Y ↔11] is given by the function vec, with vec(R) := (π;R∩ρ); L,
and that from [X×Y ↔11] back to [X↔Y] by the inverse function rel, with
rel(v) := πT; (ρ∩v; LT). In point-wise descriptions the definitions say that Ru1,u2

iff vec(R)u and vu iff rel(v)u1,u2 , for all u ∈X×Y .
As from now we assume all constructions of Section 2 to be at hand. Except

the functions set, scomp, vec and rel they are available in the programming
language of RelView as or via pre-defined operations and the implementing
BDDs of relations are comparatively small. For example, a size-comparison re-
lation S : 2X ↔ 2X can be implemented by a BDD with O(|X |2) nodes and for
a membership relation M : X↔ 2X even O(|X |) nodes suffice (for details, see
[11,12]). An implementation of set, scomp, vec, and rel in the tool is nothing else
than the translation of their relation-algebraic definitions into RelView-code;
the RelView-programs for set and scomp can be found in Section 5.

3 Relation-Algebraic Models of Plurality Voting

In Social Choice Theory (see e.g., [7] for an overview) an election consists of
a non-empty and finite set N of voters (agents, individuals), normally defined

Relation Algebra, RelView, and Plurality Voting 17

as N := {1, . . . , n}, a non-empty and finite set A of alternatives (candidates,
proposala), the individual preferences (choices, wishes) of the voters, and a voting
rule that aggregates the winners from the individual preferences. A well-known
voting rule is the plurality voting rule. In its classical form each voter votes for
exactly one alternative and the alternatives with the most votes win.

Usually, the individual preferences of the voters are expressed via a function
P : N → A such that P (i) = a iff voter i votes for alternative a, for all i ∈ N and
a ∈ A. But functions are nothing else than unique and total relations and for
the individual preferences relation P : N↔A then P (i) = a is nothing else than
an alternative notation for the relationship Pi,a. Under this view, a (classical)
plurality election is a triplet (N,A, P), with P as unique and total individual
preferences relation. Its dominance relation D : A↔A is point-wisely defined
by

Da,b :⇔ |{i ∈N | Pi,a}| ≥ |{i ∈N | Pi,b}|, (7)

for all a, b ∈A, and its set of winners is W := {a ∈ A | ∀ b ∈ B : Da,b}. At this
place it should be mentioned that (7) defines weak dominance and the definition
of W allows multiple winners. There is also a version with strict dominance and
single winners. All results of this section can immediately be transferred to this
version (see Section 6). Its disadvantage is that W may become empty.

The following first result shows how classical plurality voting can be modeled
with relation-algebraic means, i.e., how the (weak) dominance relation and the
set of winners can be specified within the language of relation algebra.

Theorem 3.1. If (N,A, P) is a plurality election and D : A↔A its dominance

relation, then we have D = scomp(P, P). Furthermore, the vector D; L : A↔11
models the set of winners W as a subset of A.

Proof. Using (7) and then Lemma 2.2, we show for all a, b ∈A that

Da,b ⇔ |{i ∈N | Pi,a}| ≥ |{i ∈N | Pi.b}| ⇔ scomp(P, P)a,b.

From this property we get the first claim by means of the point-wise description
of the equality of relations. The second claim is shown by

a ∈ W ⇔ ∀ b ∈A : Da,b ⇔ ¬∃ b ∈A : Da,b ∧ Lb ⇔ D; Lb

for all a ∈A, in combination with definition (2). �

In its classical form it is easy to control a plurality election via the removal of
voters – constructively as well as destructively. But a control via the removal of
alternatives does not make sense since in such a case the individual preferences
relation P : N↔A may become non-total. To be able to investigate the con-
structive control complexity of plurality elections via the removal of alternatives,
in [1] a refined model of plurality voting is considered. In [1] it is assumed that
each voter ranks the alternatives from top to bottom, that is, the individual
preferences of the voters i ∈ N are expressed via linear strict order relations
>i : A↔A, that collectively constitute a so-called preference profile. From the

18 R. Berghammer

latter then a (strict) dominance relation D : A↔A is computed, where Da,b iff
a has more first place preferences than b, for all a, b ∈ A, and an alternative is
defined as a winner if it (strictly) dominates all other alternatives.

In the following we concentrate again on weak dominance and allow multi-
ple winners. For reasons of simplification we furthermore consider linear order
relations ≥i : A↔A as individual preferences instead of linear strict order re-
lations. Hence, we call the triplet (N,A, (≥i)i∈N) a ranked plurality election to
distinguish it from the classical notion (N,A, P). In case of a ranked plurality
election the (weak) dominance relation D : A↔A is point-wisely defined by

Da,b ⇔ |{i ∈N | a = maxiA}| ≥ |{i ∈N | b = maxiA}|, (8)

for all a, b ∈A, where maxiB denotes the greatest element of the non-empty set
B of alternatives w.r.t. the linear order relation ≥i, for all B ∈ 2A. The set of
winners is again defined as W := {a ∈ A | ∀ b ∈ B : Da,b}.

For a relation-algebraic treatment of ranked plurality voting we first model
the individual preferences of the voters as a single relation as follows.

Definition 3.1. A relation P : N↔A2 is a model of the ranked plurality elec-
tion (N,A, (≥i)i∈N) iff Pi,u is equivalent to u1 ≥i u2, for all i ∈N and u ∈A2.

In the following RelView picture a model P : N↔A2 of a ranked plurality
election is depicted as a Boolean matrix. The labels of the rows and columns
indicate that the voters are the natural numbers from 1 to 17 and the alternatives
are the letters from a to h. A black square of the matrix means a 1-entry and
a white square means a 0-entry so that, for example, the completely black first
colum indicates that a ≥i a is true for all voters i ∈ N and the black parts of the
second colum indicates that a ≥i b is true for all voters i ∈ {7, 8, 9, 10, 15, 16, 17}.

It is rather troublesome to identify from this 17 × 64 Boolean matrix the voter’s
individual preferences. But if we select the single rows of the matrix, transpose
each of them to obtain 17 vectors of type A2 ↔11 and apply, finally, the function
rel of Section 2 to the latter, then RelView depicts the individual preferences
as 8 × 8 Boolean matrices, i.e., as relations of type A↔A. For the rows 1, 7, 11,
15, and 16 we show in the next pictures, in the same order, the Boolean matrices
for the linear order relations ≥1, ≥7, ≥11, ≥15, and ≥16. Note, that the relations
≥2 to ≥6 are equal to ≥1, the relations ≥8 to ≥10 are equal to ≥7, and so forth.

Relation Algebra, RelView, and Plurality Voting 19

Now, the preferences of the single voters are easy to see: Voters 1 to 6 rank
their alternatives from top to bottom as h, f, d, b, g, e, c, a, voters 7 to 10 as
a, c, e, g, b, d, f, h, voters 11 to 14 as a, b, c, d, e, f, g, h, voter 15 as b, a, d, c, f, e, h,
g, and the remaining voters 16 and 17 as h, g, f, e, a, b, c, d.

The above procedure also indicates how to construct, in general, the model
P : N↔A2 from the linear order relations ≥i : A↔A of a ranked plurality
election (N,A, (≥i)i∈N) by inverting it. We have to transform each relation ≥i

into the transpose vec(≥i)
T : 11↔A2 of its corresponding vector and to combine

these transposed vectors row by row into a Boolean matrix. The latter means
that we have to form the relation-algebraic sum vec(≥1)T + · · · + vec(≥n)T.
We won’t to go into details with regard to relation-algebraic sums and refer
to [14], where a specification of R + S via injection relations is given. Instead,
we demonstrate in the next theorem how also ranked plurality voting can be
modeled with relation-algebraic means, i.e., how again the dominance relation
and the set of winners can be specified within the language of relation algebra.

Theorem 3.2. If (N,A, (≥i)i∈N) is a ranked plurality election, P : N↔A2 its

model, and D : A↔A its dominance relation, then we get D =scomp(P ;π, P ;π),
where π : A2 ↔A is the first projection relation of the direct product A2. Again

the vector D; L : A↔11 models the set of winners.

Proof. First, we prove for all i ∈N and a ∈A the following property:

P ;πi,a ⇔ ¬∃u ∈A2 : P i,u ∧ πu,a
⇔ ∀u ∈A2 : Pi,u ∨ ¬πu,a
⇔ ∀u ∈A2 : u1 = a→ u1 ≥i u2 P is model, (5)

⇔ ∀ c ∈A : a ≥i c

⇔ a = maxiA definition maxi

As a consequence, now for all a, b ∈A we can calculate as follows:

Da,b ⇔ |{i ∈N | a = maxiA}| ≥ |{i ∈N | b = maxiA}| by (8)

⇔ |{i ∈N | P ;πi,a}| ≥ |{i ∈N | P ;πi,b}| see above

⇔ scomp(P ;π, P ;π)a,b Lemma 2.2

From this we get the first claim again by the point-wise description of the equality
of relations. For the second claim, see the proof of Theorem 3.1. �

The two relation-algebraic specifications of this theorem can be translated imme-
diately into RelView-code (cf. again Section 5). If we apply the corresponding

20 R. Berghammer

RelView-programs to the above model of a ranked plurality election, i.e., the
above 17 × 64 Boolean matrix, then RelView yields the following two results

for the dominance relation D : A↔A and the vector D; L : A↔11.

The Boolean vector shows that the alternative h is the only winner. This is in
accordance with the matrix since its last black row indicates that h dominates
each alternative. To demonstrate another visualization feature of RelView, we
show in the next picture how the tool depicts the strict part D ∩ I of D as a
directed graph, using the built-in hierarchical graph drawing algorithm of [9].

a
1

b
2

c
3

d
4

e
5

g
7

h
8

f
6

In this drawing the node corresponding to the winner h is highlighted as black
square and the relationships which show that h dominates all other alternatives
are highlighted as boldface arrows.

4 Relation-Algebraic Solution of Hard Control Problems

Having modeled two kinds of plurality elections relation-algebraically, we now
show how to solve hard control problems for the ranked variant with the same
means. For the ranked variant the following facts are known (see [1,10]): Con-
structive and destructive control by a removal or addition of alternatives is com-
putationally hard, but for the constructive and destructive control by the removal
or addition of voters there exist efficient algorithms. One says that plurality vot-
ing is resistant to control by manipulating the alternatives but vulnerable to
control by manipulating the voters. For reasons of space we only consider con-
trol by a removal of alternatives. We start with constructive control.

Usually, the constructive control of plurality voting via the removal of alter-
natives is formulated as the following minimization-problem: Given a ranked
plurality election (N,A, (≥i)i∈N) and a specific alternative a∗ ∈ A, compute a
minimum set of alternatives C ∈ 2A such that the removal of C from A makes

Relation Algebra, RelView, and Plurality Voting 21

a∗ to a winner. To allow for an easier relation-algebraic solution, we consider the
dual maximization-problem. We ask for a maximum set B ∈ 2A such that a∗ is
in B and wins in the ranked plurality election (N,B, (≥i)i∈N). It is obvious that
from B then a desired C is obtained via C := A \B.

For the remainder of this section we assume a fixed ranked plurality election
(N,A, (≥i)i∈N) and a fixed alternative a∗ ∈ A that shall made to a winner by
means of control. Furthermore, we assume that P : N↔A2 is a model of the
ranked plurality election and a∗ is modeled by the point p : A↔11 (i.e., we have
pb iff b = a∗, for all b ∈ A). As a first step towards a solution of our control
problem we prove the following auxiliary result.

Lemma 4.1. Using the membership relation M : A↔ 2A and π, ρ : A2 ↔A as
the first and second projection relation of the direct product A2, respectively, we
define the following relation:

R := scomp(P ; (π; p; L ∩ ρ;M), P ; [π, ρ;M]]) : 2A ↔A×2A

Then we have RB,(b,C) iff |{i ∈N | a∗ ≥i maxiB}| ≥ |{i ∈N | b ≥i maxiC}|,
for all b ∈A and B,C ∈2A.

Proof. First, we calculate for all i ∈N and B ∈2A as follows:

P ; (π; p; L ∩ ρ;M)i,B ⇔ ¬∃ u ∈A2 : P i,u ∧ (π; p; L ∩ ρ;M)u,B

⇔ ∀u ∈A2 : Pi,u ∨ ¬((π; p)u ∧ (ρ;M)u,B)

⇔ ∀u ∈A2 : (π; p)u ∧ (ρ;M)u,B → Pi,u

⇔ ∀u ∈A2 : pu1 ∧ u2 ∈B → Pi,u by (3), (5)

⇔ ∀u ∈A2 : pu1 ∧ u2 ∈B → u1 ≥i u2 P is model

⇔ ∀u ∈A2 :

u1 = a∗ ∧ u2 ∈B → u1 ≥i u2 p models a∗

⇔ ∀ c ∈A : c ∈B → a∗ ≥i c

⇔ a∗ ≥i maxiB def. maxi

In a rather similar manner we get for all i ∈N , b ∈A, and C ∈2A the following
equivalence:

P ; [π, ρ;M]]i,(b,C) ⇔ ¬∃u ∈A2 : P i,u ∧ [π, ρ;M]]u,(b,C)

⇔ ¬∃u ∈A2 : P i,u ∧ πu,b ∧ (ρ;M)u,C by (6)

⇔ ¬∃u ∈A2 : P i,u ∧ u1 = b ∧ u2 ∈C by (5), (3)

⇔ ∀u ∈A2 : Pi,u ∨ ¬(u1 = b ∧ u2 ∈C)

⇔ ∀u ∈A2 : u1 = b ∧ u2 ∈C → Pi,u

⇔ ∀u ∈A2 : u1 = b ∧ u2 ∈C → u1 ≥i u2 P is model

⇔ ∀ c ∈A : c ∈C → b ≥i c

⇔ b ≥i maxi C def. maxi

Now, we are able to prove for all b ∈A and B,C ∈2A the desired result by

22 R. Berghammer

RB,(b,C) ⇔ scomp(P ; (π; p; L ∩ ρ;M), P ; [π, ρ;M]])B,(b,C)

⇔ |{i ∈ N | P ; (π; p; L ∩ ρ;M)i,B}| ≥ |{i ∈N | P ; [π, ρ;M]]i,(b,C)}|
⇔ |{i ∈ N | a∗ ≥i maxiB}| ≥ |{i ∈N | b ≥i maxiB}|,

where we use Lemma 2.2 in combination with the above results. �

Using this lemma we now prove a theorem that shows how to specify relation-
algebraically a vector that models the set of all solutions of the constructive
control problem by a removal of alternatives for the given ranked plurality elec-
tion and the given specific alternative (modeled by the point p).

Theorem 4.1. Using the membership relation M : A↔ 2A, the first and second
projection relation π : A×2A ↔A and ρ : A×2A ↔ 2A, respectively, of the direct
product A×2A, and the relation R : 2A ↔A×2A of Lemma 4.1, we define the
following vector:

cand := MT; p ∩ (MT ∩ (R ∩ ρT);π); L : 2A ↔11

Then cand models the subset W of 2A that consists of the sets B for which a∗

wins the ranked plurality election (N,B, (≥i)i∈N). Furthermore, the vector

csol := cand ∩ ST; cand : 2A ↔11

models the subset W∗ of 2A that consists of the maximum sets of W.

Proof. To prove the first claim, we take an arbitrary set B ∈ 2A and calculate
as given below:

candB ⇔ (MT; p ∩ (MT ∩ (R ∩ ρT);π); L)B

⇔ (MT; p)B ∧ (MT ∩ (R ∩ ρT);π); LB
⇔ (∃ b ∈ A : Mb,B ∧ pb) ∧

¬∃ b ∈ A : (MT ∩ (R ∩ ρT);π)B,b ∧ Lb

⇔ Ma∗,B ∧ ¬∃ b ∈ A : Mb,B ∧ ¬((R ∩ ρT);π)B,b p models a∗

⇔ Ma∗,B ∧ ∀ b ∈ A : Mb,B → ((R ∩ ρT);π)B,b

⇔ a∗ ∈ B ∧
∀ b ∈ A : b ∈ B → ∃u ∈ A×2A : RB,u ∧ ρTB,u ∧ πu,b by (3)

⇔ a∗ ∈ B ∧
∀ b ∈ B : ∃u ∈ A×2A : RB,u ∧ u2 = B ∧ u1 = b by (5)

⇔ a∗ ∈ B ∧ ∀ b ∈ B : RB,(b,B)

Because a∗ ∈B implies {i ∈N | a∗ ≥i maxiB} = {i ∈N | a∗ = maxiB} and
b ∈B implies {i ∈N | b ≥i maxiB} = {i ∈N | b = maxiB}, from the above
calculation and Lemma 4.1 we get the following result:

candB ⇔ a∗ ∈B ∧ ∀ b ∈B : |{i ∈N | a∗ = maxiB}| ≥ |{i ∈N | b = maxiB}|

Relation Algebra, RelView, and Plurality Voting 23

But the right-hand side of this equivalence is precisely the formalization of the
fact that a∗ is a winner of the ranked plurality election (N,B, (≥i)i∈N), such
that definition (2) shows the claim. The second claim follows from the relation-
algebraic specification of greatest elements w.r.t. pre-orders that, for instance,
can be found in [13] or [14]. �

When RelView is used to compute the vector csol : 2A ↔11 of Theorem 4.1,
then at a first glance it seems to be rather difficult to identify from it the sets
of W∗, i.e., the solutions of our problem. But the relation-algebraic construction
of an embedding function generated by a vector (that is, e.g., studied in detail in
[3] and also available in the tool as a pre-defined operation) offers a simple and
elegant solution. In case of the vector csol the embedding function inj(csol) has
type W∗ ↔ 2A and it holds inj(csol)B,C iff B = C, for all B ∈ W∗ and C ∈ 2A.
Hence, in combination with M : A↔ 2A the relation M; inj(csol)T : A↔W∗

fulfills (M; inj(csol)T)a,B iff a ∈ B, for all a ∈ A and B ∈ W∗. In Boolean matrix
terminology the latter means that its columns, when regarded as single vectors,
precisely model the single sets of W∗.

The RelView-programs resulting from Lemma 4.1 and Theorem 4.1 and that
for computing the relation M; inj(csol)T : A↔W∗ are again given in Section 5.
Using them, we have solved the constructive control problem via the removal of
alternatives for the model P that is presented in Section 3 as 17 × 64 Boolean
matrix. Doing so, we considered all eight alternatives a to h. The following series
of eight RelView pictures shows, in the same order, the corresponding column-
wise representations of the sets of solutions.

To give three examples, the Boolean vector at position 1 shows that a wins if at
least two alternatives are removed and the removal of b, h is the only possibility,
the 8× 2 Boolean matrix at position 7 shows that g wins if at least four alterna-
tives are removed and the removals of a, c, e, h and of b, d, f, h, respectively, are
the only possibilities, and the Boolean universal vector at position 8 shows that
the removal of no alternative makes h to the winner.

So far, we only have considered constructive control via the removal of alterna-
tives. But if we negate the second part of the conjunction of the last equivalence
of the proof of Theorem 4.1, then the resulting right-hand side

a∗ ∈B ∧ ¬∀ b ∈B : |{i ∈N | a∗ = maxiB}| ≥ |{i ∈N | b = maxiB}|

or, more clearly, the equivalent formula

a∗ ∈B ∧ ∃ b ∈B : |{i ∈N | a∗ = maxiB}| < |{i ∈N | b = maxiB}|

specifies that the alternative a∗ is not a winner in the ranked plurality election
(N,B, (≥i)i∈N). Hence, to get from the relation R : 2A ↔A×2A of Lemma 4.1 a

24 R. Berghammer

vector dsol : 2A ↔11 that models the subset of 2A which consists of all solutions
of the destructive control problem via a removal of alternatives, only in the def-

inition of the vector cand in Theorem 4.1 the expression (MT ∩ (R ∩ ρT);π); L

must be altered to (MT ∩ (R ∩ ρT);π); L by deleting the outermost complement
operation. We have RelView also used to compute for all alternatives of our
running example the solutions of the destructive control problem. The tool re-
ported that win for the seven alternatives a, b, . . . , g can be avoided by removing
no alternative. But in case of h we obtained for dsol the empty vector. This
means that it is not possible to avoid win for the alternative h by a removal of
any subset of {a, b, . . . , g}, i.e., there is no solution for the destructive control
problem via the removal of alternatives for a∗ being h.

5 Implementation in RelView

In the following we present the RelView-code for the relation-algebraic specifi-
cations of Section 2 to 4. We start with the code for the functions set and scomp.
In set a pre-defined operation epsi is used that computes for a vector r : X↔11
the membership relation M : X↔ 2X . To obtain such a vector, the program uses
a further pre-defined operation On1 that computes for a relation Q : X↔Y the
empty vector O : X↔11. In scomp a pre-defined operation cardrel is applied
to get from a vector r : X↔11 the size comparison relation S : 2X ↔ 2X .

set(R)

DECL M

BEG M = epsi(On1(R))

RETURN syq(R,M)

END.

scomp(Q,R)

DECL S

BEG S = cardrel(On1(Q))

RETURN set(Q)*S^*set(R)^

END.

A comparison of scomp and the definition of scomp shows that in RelView

composition is denoted by the symbol ‘*’ and transposition by the symbol ‘^’.
Based on scomp, the following two programs compute the dominance relation

for classical (left) and ranked (right) plurality voting. In domrel_ranked the
pre-defined operations PROD and p-1 are used to define AA as name for the direct
product A2 and to compute the first projection relation of a direct product,
respectively. For the definition of a direct product X×Y via PROD the operation
needs arbitrary relations of type X↔X and Y ↔Y as input. In domrel_ranked

such relations are provided by the additional parameter T : A↔A.

domrel(P)

DECL D

BEG D = scomp(P,P)

RETURN D

END.

domrel_ranked(P,T)

DECL AA = PROD(T,T);

pi

BEG pi = p-1(AA)

RETURN scomp(-(-P*pi),-(-P*pi))

END.

Again a comparison of domrel_ranked and Theorem 3.2 shows that in RelView

complementation is denoted by the symbol ‘-’.

Relation Algebra, RelView, and Plurality Voting 25

The next program compR computes the relation R : 2A ↔A×2A. of Lemma
4.1. Here the relation p; pT : A↔A is used in PROD for defining the direct product
A2. The program uses four pre-defined operations which we have not mentioned
so far, viz. ‘&’ as symbol for intersection, p-2 for computing the second projection
relation of a direct product, L1n for computing for a relation Q : X↔Y the
transposed universal vector L : 11↔Y , and [·,·|] for computing pairings.

compR(P,p)

DECL AA = PROD(p*p^,p*p^);

pi, rho, M

BEG pi = p-1(AA);

rho = p-2(AA);

M = epsi(p)

RETURN scomp(-(-P*(pi*p*L1n(M) & rho*M)),-(-P*[pi,rho*M|]))

END.

In the following program cand for the vector cand the input of PROD consists
of p; pT : A↔A and the size comparison relation S : 2A ↔ 2A, such that AxPA

denotes the direct product A×2A. The pre-defined operation dom computes for
a relation Q : X↔Y its so-called domain Q; L : X↔11.

cand(P,p)

DECL AxPA = PROD(p*p^,cardrel(p));

pi, rho, M, R

BEG pi = p-1(AxPA);

rho = p-2(AxPA);

M = epsi(p);

R = compR(P,p)

RETURN M^*p & -dom(M^ & -((R & rho^)*pi))

END.

And here are, finally, the programs csol and csolList for computing the vector
csol and the relation M; inj(csol)T, respectively.

csol(P,p)

DECL S, ca

BEG S = cardrel(On1(p));

ca = cand(P,p)

RETURN ca & -(-S^*ca)

END.

csolList(P,p)

DECL M, so

BEG M = epsi(p);

so = csol(P,p)

RETURN M*inj(so)^

END.

6 Assessment of the Approach and Concluding Remarks

Despite of the use of BDDs our experiments have shown that the RelView-
programs csol and csolList of Section 5 are only feasible for elections with
at most 25 alternatives, whereas larger sets with several hundreds voters con-
stituted no problem. (In case of the programs domrel and domrel_ranked for

26 R. Berghammer

computing dominance relations also larger sets of alternatives did not lead to
problems.) We also have transferred the approach of [6], that solves control
problems for Condorcet voting via so-called relativized dominance relations, to
plurality voting. But this did not lead to faster programs either. Concerning
efficiency, therefore, our general and model-oriented approach can not compete
with algorithms that are specifically tailored for such hard problems and imple-
mented in a conventional programming language like C or Java. But we believe
that it has two decisive pros, which we will describe now.

For the presentation of the results of this paper we have used the prevalent
mathematical theorem-proof-style to enhance readability. But actually we have
obtained all relation-algebraic specifications by developing them from the orig-
inal logical specifications of the problems in question. We regard this formal
and goal-oriented development of algorithms from logical specifications, that are
correct by construction, as the first main advantage. In respect thereof it is also
beneficial that the calculations are formalized in such a way that the danger of
making errors is minimized and the use of theorem-provers seems to be possible.
Presently we investigate the use of the tool Prover9 (see [16]) for automated ver-
ification; see [5]. As the second main advantage we regard the support by means
of an appropriate Computer Algebra system. All results we have developed are
expressed by very short and concise RelView programs, which are nothing else
than their formulation in a specific syntax. The programs are easy to alter in
case of slightly changed specifications. Combining this with RelView’s possibil-
ities for visualization, animation, and the random generation of relations allows
prototyping of specifications, testing of hypotheses, experimentation with con-
cepts, exploration of ideas, generation of examples and counterexamples etc.,
while avoiding unnecessary overhead. This makes RelView very useful for sci-
entific research and also for teaching. In this regard the BDD-implementation of
relations is of immense help since it allows to treat also non-trivial examples.

Concerning slightly changed specifications, we have already mentioned that
the step from constructive to destructive control requires only to remove a com-
plement operation. To give a further example, if plurality voting with strict
dominance and single winners is to treat, then we only have to replace in the
definition of scomp(Q,R) the relation ST by S to get the relations D of Theorem
3.1 and Theorem 3.2 as strict dominance relations, to replace in the definition of
the vector that models the set of winners D by D∩ I to prevent multiple winners,
and to replace in the definition of the vector cand in Theorem 4.1 the universal
vector L by p (i.e., the complement of the point that models a∗) to compute the
solutions of the control problems. The correctness proofs are obtained by slight
modifications of those we have presented in Section 3 and Section 4, where most
of the steps of the calculations can be re-used.

In real live elections it frequently happens that a voter considers certain alter-
natives as incomparable or to be of the same value. In such a case its preferences
are not specified by a linear order relation but by a partial order relation or even a
pre-order relation. The first case is studied in [8]. Presently we investigate ranked
plurality elections (N,A, (�i)i∈N) with pre-order relations �i. Here it seems to

Relation Algebra, RelView, and Plurality Voting 27

be reasonable to define the dominance relationD : A↔A for all a, b ∈ A pointwi-
sely byDa,b iff |{i ∈N | a ∈maxiA}| ≥ |{i ∈N | b ∈maxiA}|, where now maxiA
:= {a ∈ A | ¬∃ b ∈ A : b �= a ∧ b �i a} defines the set of maximal elements of A
w.r.t. the pre-order relation �i. This leads to the relation-algebraic specification
D = scomp(P ; (π ∩ ρ), P ; (π ∩ ρ)), with π, ρ : A2 ↔A as the first and second
projection relation of the direct product A2, respectively. For this generalization
of plurality voting, among other things, by systematic RelView-experiments
we want to find out which of the desirable properties of voting systems (see e.g.,
[7]) are definitely not satisfied and which of them possibly may be (or even most
likely are) satisfied, such that in the latter cases the chance of success of proofs
is given.

Acknowledgment. I thank Henning Schnoor for valuable discussions and his
comments and suggestions.

References

1. Bartholdi III, J.J., Tovey, C.A., Trick, M.A.: How hard is it to control an election?
Mathematical and Computer Modeling 16, 27–40 (1992)

2. Berghammer, R., Neumann, F.: RelView – An OBDD-based Computer Algebra
system for relations. In: Ganzha, V.G., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC
2005. LNCS, vol. 3718, pp. 40–51. Springer, Heidelberg (2005)

3. Berghammer, R., Winter, M.: Embedding mappings and splittings with applica-
tions. Acta Informatica 47, 77–110 (2010)

4. Berghammer, R., Danilenko, N., Schnoor, H.: Relation algebra and relView ap-
plied to approval voting. In: Höfner, P., Jipsen, P., Kahl, W., Müller, M.E. (eds.)
RAMiCS 2014. LNCS, vol. 8428, pp. 309–326. Springer, Heidelberg (2014)

5. Berghammer, R., Höfner, P., Stucke, I.: Automated verification of relational while-
programs. In: Höfner, P., Jipsen, P., Kahl, W., Müller, M.E. (eds.) RAMiCS 2014.
LNCS, vol. 8428, pp. 173–190. Springer, Heidelberg (2014)

6. Berghammer, R., Schnoor, H.: Control of Condorcet voting: Complexity and a
relation-algebraic approach (Extended abstract). In: Proc. AAMAS 2014 (to ap-
pear, 2014)

7. Brandt, F., Conitzer, V., Endriss, U.: Computational social choice. In: Weiss, G.
(ed.) Multiagent Systems, 2nd edn., pp. 213–283. MIT Press (2013)

8. Faliszewski, P., Hemaspaandra, E., Hemaspaandra, L., Rothe, J.: Llull and
Copeland voting computationally resist bribery and constructive control. Journal
of Artificial Intelligence Research 35, 275–341 (2009)

9. Gansner, E.R., Koutsofios, E., North, S.C., Vo, K.P.: A technique for drawing
directed graphs. IEEE Transactions on Software Engineering 19, 214–230 (1993)

10. Hemaspaandra, E., Hemaspaandra, L., Rothe, J.: Anyone but him: The complexity
of precluding an alternative. Artificial Intelligence 171, 255–285 (2007)

11. Leoniuk, B.: ROBDD-based implementation of relational algebra with applications.
Dissertation, Universität Kiel (2001) (in German)

12. Milanese, U.: On the implementation of a ROBDD-based tool for the manipulation
and visualization of relations. Dissertation, Universität Kiel (2003) (in German)

13. Schmidt, G., Ströhlein, T.: Relations and graphs. Springer (1993)
14. Schmidt, G.: Relational mathematics. Cambridge University Press (2010)
15. RelView-homepage, http://www.informatik.uni-kiel.de/~progsys/relview/
16. Prover9-homepage, http://www.prover9.org

http://www.informatik.uni-kiel.de/~progsys/relview/
http://www.prover9.org

An Algorithm for Converting Nonlinear

Differential Equations to Integral Equations
with an Application to Parameter Estimation

from Noisy Data

François Boulier1, Anja Korporal2, François Lemaire1, Wilfrid Perruquetti2,3,
Adrien Poteaux1, and Rosane Ushirobira2

1 Université Lille 1, LIFL, UMR CNRS 8022, Computer Algebra Group,
FirstName.LastName@univ-lille1.fr

2 Inria, Non-A team
FirstName.LastName@inria.fr

3 École Centrale de Lille, LAGIS, UMR CNRS 8219

Abstract. This paper provides a contribution to the parameter esti-
mation methods for nonlinear dynamical systems. In such problems, a
major issue is the presence of noise in measurements. In particular, most
methods based on numerical estimates of derivations are very noise sen-
sitive. An improvement consists in using integral equations, acting as
noise filtering, rather than differential equations. Our contribution is a
pair of algorithms for converting fractions of differential polynomials to
integral equations. These algorithms rely on an improved version of a re-
cent differential algebra algorithm. Their usefulness is illustrated by an
application to the problem of estimating the parameters of a nonlinear
dynamical system, from noisy data.

In Engineering, a wide variety of information is not directly obtained through mea-
surement. Various parameters or internal variables are unknown or not measured.
In addition, sensor signals are very often distorted and tainted by measurement
noises. To simulate, control or supervise such processes, and to extract informa-
tion conveyed by the signals, a system has to be identified and parameters and
variables must be estimated. Most of traditional estimation methods are related
to asymptotic statistics. However, there exist some difficulties that have been long
known as inherent to these existing methods. Among them, two important limi-
tations can be pointed out: these methods apply essentially to linear systems and
they are noise sensitive due to the use of numerical derivation. The parameter esti-
mation problem has been tackled by many different approaches in control theory.
Algebraic techniques to this end were notably introduced in the works by M. Fliess
et al. [8, 15, 7, 9, 6] and inspired for instance, algebraic methods for the parameter
estimation of a multi-sinusoidal waveform signal from noisy data [22].

This paper1 provides a contribution to these issues. Two algorithms are pro-
vided which convert differential equations to integral equations. They rely on a

1 This work was partially supported by the French ANR-10-BLAN-0109 LEDA
project.

V.P. Gerdt et al. (Eds.): CASC Workshop 2014, LNCS 8660, pp. 28–43, 2014.
c© Springer International Publishing Switzerland 2014

An Algorithm for Converting Nonlinear Differential Equations 29

differential algebra [18, 14] algorithm for integrating differential fractions, which
was presented in [3, Algorithm 4]. They are applied on the so-called differential
input-output equation of a given nonlinear dynamical system in order to obtain
integral input-output equations. For some systems, such as the one considered
in this paper, the integral equation does not involve any derivative of the time
varying variables. This property implies that its numerical evaluation does not
require any numerical derivation. Indeed, numerical experiments confirm that,
on white noisy data, integral forms of an input-output equation yield much better
estimates of parameters than differential forms. It is well-known that numerical
integration process has a filtering property on noisy data.

The paper is organized as follows. First, parameter estimation methods are
presented in Section 1, notably by applying the notion of modulating functions.
This approach is classical in automatic control theory and perhaps it is not
so well-known in other fields and might be of interest for experts in integro-
differential algebras, for instance. Section 1 features our new algorithms as well.
Basic notions of differential algebra, required to understand the new algorithms,
are presented in Section 2. An improved version of [3, Algorithm 4] is presented
as Algorithm 3 in Section 3, together with additional properties (Propositions 1
and 2). Finally, two algorithms for computing integral equations are presented
in Section 4 as Algorithms 4 and 5.

1 A Parameter Estimation Method

1.1 Problem Formulation

We consider the academic two-compartment model depicted in Figure 1. Com-
partment 1 represents the blood system and compartment 2 represents some
organ. A medical drug is injected in compartment 1 at t = 0. It is diffused
between the two compartments, following linear laws: the proportionality con-
stants are named k12 and k21. The drug exits compartment 1, following a law of
Michaelis-Menten type. Such a law indicates an implicit enzymatic reaction and
in general, it depends on two constants Ve and ke. For the sake of simplicity, it
is assumed that ke = 1.

The state variables in this system are x1(t) and x2(t). They represent the
concentrations of drugs in each compartment. The system has no input. Its
output, denoted y(t), is equal to x1(t), meaning that some numerical data are

1 2

k12

k21

Ve

Fig. 1. A two-compartment model featuring three parameters

30 F. Boulier et al.

available for x1(t). No data is available for x2(t). To simplify the problem for-
mulation, assume that both compartments have unit volumes. We obtain the
following nonlinear dynamical system, which features three parameters to be
estimated : k12, k21 and Ve.

ẋ1(t) = −k12 x1(t) + k21 x2(t) − Ve x1(t)

1 + x1(t)
,

ẋ2(t) = k12 x1(t) − k21 x2(t) , (1)

y(t) = x1(t) .

Estimation methods are applied on data obtained as follows: some made-
up numerical values are assigned to the three parameters and the two initial
values x1(0) and x2(0). A numerical curve is obtained by numerically integrat-
ing (1). Some white Gaussian noise, depending on a given standard deviation σ,
is added to the curve, for σ ∈ [0, 0.2]. These curves are displayed in Figure 2.

Fig. 2. The leftmost curve is obtained by numerically integrating (1) for t = [0, 4], with
(x1(0), x2(0), k12, k21, Ve) = (1, 10, 1, 5, 3). The rightmost one is obtained by adding to
it a white Gaussian noise with standard deviation σ = 0.2.

1.2 The Input-Output Equations

In general, an input-output equation of a dynamical system is a differential equa-
tion, which belongs to the differential ideal defined by the model equations. It
depends only on the input, the output, their derivatives and the model param-
eters (observe that our example has no input). Such input-output relations are
used for parameter identification since the only measurable variables are the
input and the output. See [5, 8, 9, 6, 7, 17] and references therein. Using a
differential elimination method [2] and a ranking that eliminates state variables:

· · · > ẍ2 > ẍ1 > ẋ2 > ẋ1 > x2 > x1 > · · · > ÿ > ẏ > y > (k12, k21, Ve) ,

it is possible to automatically compute the differential input-output equation
of (1). Since our new algorithms are all about rewriting a single equation into a

An Algorithm for Converting Nonlinear Differential Equations 31

more convenient form, it is important to give the result almost as in the same
form as it is returned by the elimination procedure:

ÿ(t) y(t)2 + 2 ÿ(t) y(t) + ÿ(t)

+ ẏ(t) y(t)2 θ2 + 2 ẏ(t) y(t) θ2 + ẏ(t) θ3 + y(t)2 θ1 + y(t) θ1 = 0
(2)

where the θi stand for the blocks of parameters:

θ1 = k21 Ve , θ2 = k12 + k21 , θ3 = k12 + k21 + Ve .

Dividing (2) by the coefficient of ÿ(t) (its initial, in the terminology of differential
algebra) and observing it can be factored, one obtains a normalized differential
input-output equation:

θ1
y(t)

y(t) + 1
+ θ2

y(t) ẏ(t) (y(t) + 2)

(y(t) + 1)2
+ θ3

ẏ(t)

(y(t) + 1)2
= −ÿ(t) (3)

Equation (3) depends on the first and the second derivative of y(t). Before ap-
plying our algorithms, let us take a few lines to see what can be done easily or
not from this equation, i.e. where the issue lies. It is actually easy to decrease
by one the order of (3) since ÿ(t) occurs with degree one. Indeed∫ t

a

ÿ(t) dt =

∫ t

a

d

dτ
ẏ(τ) dτ = [ẏ(τ)]ta = ẏ(t) − ẏ(a) . (4)

It is easy to obtain the following equivalent equation by integrating (3):

θ1

∫ t

a

y(τ)

y(τ) + 1
dτ + θ2

∫ t

a

y(τ) ẏ(τ) (y(τ) + 2)

(y(τ) + 1)
2 dτ

+ θ3

∫ t

a

ẏ(τ)

(y(τ) + 1)
2 dτ = −ẏ(t) + ẏ(a) .

(5)

Let us stress that in (4), the integral operator and the derivation operator are
simplified thanks to the fact that the derivation operator is factored out under
the integral sign, i.e. the expression has the following form. However, the deriva-
tion operators still occuring under the integral signs of (5) do not satisfy this
pattern and the simplification cannot be performed easily. There lies the issue.∫ t

a

d

dτ
something (possibly nonlinear) dτ . (6)

A recent algorithm [3, Algorithm 4] applied to equation (3) solves it and
returns the following expression. This new equation (7) is a sum of expressions
that are prepared to be in the form of (6). Moreover, all differential fractions in
the above equation have order zero.

θ1
y(t)

y(t) + 1
+ θ2

d

dt

y(t)2

y(t) + 1
− θ3

d

dt

1

y(t) + 1
= − d2

dt2
y(t) (7)

We now describe the two possibilities for computing an integral equation from (7).

32 F. Boulier et al.

First Approach. Apply twice the integration operator on (7). It results an
integral input-output equation, that can be used for estimating parameters. This
formula still involves a derivative: ẏ(a). We consider it as a new parameter to be
estimated.

θ1

∫ t

a

∫ τ1

a

y(τ2)

y(τ2) + 1
dτ2 dτ1

+ θ2

(∫ t

a

y(τ)2

y(τ) + 1
dτ − y(a)2

y(a) + 1
(t− a)

)

− θ3
(∫ t

a

1

y(τ) + 1
dτ − 1

y(a) + 1
(t− a)

)
− ẏ(a) (t− a) = −y(t) + y(a)

(8)

Second Approach. A second possibility is to use some particular filter func-
tions called modulating functions. They were introduced by M. Shinbrot in the
50’s for system identification problems [20]. Shinbrot suggested the use of integral
transformations on these problems to facilitate the identification for higher-order
nonlinear dynamical systems. In addition, the effets of the initial conditions are
annihilated by the modulating functions making this method more propitious
to applications on noisy signals. Other authors have used modulating functions
for estimating parameters for different two-compartment models, for instance A.
Pearson applies Fourier modulating functions in [17] and K. Godfrey applies a
successive derivatives method for the particular model considered here [11].

A modulating function of order n is a real-valued function φn(τ) defined on
a time interval [a, t] that satisfies the 2n end-point conditions:

d�φn
dτ �

(a) =
d�φn
dτ �

(t) = 0 , 0 ≤ � < n .

Thus integration by parts yields for any function f(τ) :∫ t

a

φn(τ)
d

dτ
f(τ) dτ = [φn(τ)f(τ)]

t
a −

∫ t

a

(
d

dτ
φn(τ)

)
f(τ) dτ

= −
∫ t

a

(
d

dτ
φn(τ)

)
f(τ) dτ .

Hence, multiplying (7) by a modulating function φ2(τ), integrating once and
applying integration by parts as many times as needed gives a second integral
input-output equation, that can be used for estimating parameters:

θ1

∫ t

a

φ2(τ)
y(τ)

y(τ) + 1
dτ − θ2

∫ t

a

φ̇2(τ)
y(τ)2

y(τ) + 1
dτ

+ θ3

∫ t

a

φ̇2(τ)
1

y(τ) + 1
dτ = −

∫ t

a

φ̈2(τ) y(τ) dτ .

(9)

An Algorithm for Converting Nonlinear Differential Equations 33

For our experiments, we tested three types of modulating functions:

• Hartley modulating functions φn(τ), where μ = 0, n = 2 and cas(τ) =
cos(τ) + sin(τ), for all τ .

φn(τ) =

n∑
�=0

(−1)�
(
n

�

)
cas

(
(n+ μ− �) 2 π

t
τ

)
, (10)

• Modulating functions based on Hermite polynomials: they are based on the
weight functions for Hermite polynomials by a change of variables t �→ t−2 τ

t :

φ(t) = e
−α

(
t− 2 τ

t

)2

. (11)

Remark that the graph of φ(t) is symmetric with respect to τ = t
2 . Strictly

speaking, φ(t) is not a modulating function since it does not vanish at τ = 0
and τ = t. However, its values are arbitrarily close to zero at τ = 0 and τ = t,
depending on the factor α. Experiments were performed using α = 25

2 .
• Modulating polynomial functions defined by interpolation: we set

φ(t) = a4 τ
4 + · · · + a1 τ + a0 , (12)

such that φ(0) = φ(t) = dφ
dτ (0) = dφ

dτ (t) = 0 and φ
(
t
2

)
= 1. A polynomial of

degree four is sufficient to obtain a modulating function of order n = 2.

1.3 Method, Implementation and Results

The method (we borrowed it from [16, 5]) consists in evaluating a chosen input-
output equation for many different values of t, over the available data. Thereby,
one gets an overdetermined linear system that can be solved by linear least
squares. If one chooses a differential equation (3), (7) or the integral equation (9)
which relies on modulating functions, the unknowns are the blocks of parame-
ters θ1, θ2 and θ3. If one chooses the integral equation (8), the unknowns are
the blocks of parameters plus the extra parameter ẏ(a). In our experiments, we
picked many different values (about 20) for a. For each new value of a, we had
to introduce a new indeterminate.

The different methods were implemented in FORTRAN 77. The code is avail-
able at [21]. Linear algebra (least squares) was performed using the LAPACK
library. The numerical integration of the dynamical system (needed to produce
the experimental data) was performed using the RADAU integrator, borrowed
from [13]. The code for evaluating the modulating functions and their deriva-
tives was produced in FORTRAN, from MAPLE, using the CodeGeneration

package of MAPLE. The input-output equation (2) was produced by the BLAD
libraries [1], through the DifferentialAlgebra package of MAPLE. The nu-
merical derivations needed when using (3), (7) were computed over degree 3
polynomials best fitting about 20 consecutive data points. The numerical inte-
grations were performed using the composite Simpson’s formula.

34 F. Boulier et al.

For each input-output equation (3), (7), (8), (9), the accuracy of the esti-
mation of the blocks of parameters θ1, θ2 and θ3 was tested over noisy data,
varying the noise from σ = 0 to σ = 0.8. For each value of σ, about 50 different
simulations were performed.

Experiments show that the methods based on the two integral equations (8),
and (9) give the best results. Modulating functions give simpler formulas and
algorithms but need to be tuned carefully. See Figure 3 for details. Tuning was
possible here, because we knew in advance the exact values of the parameter
blocks. In a real life situation, it would be more complicated.

The methods based on the two different formulations of the differential input-
output equation give similar results. We were expecting the one based on (7) to
be more accurate, but we observed the opposite phenomenon.

2 Basic Notions of Differential Algebra

The reference books for this Section are [18, 14]. In this paper, we restrict
ourselves to ordinary differential rings, which are rings endowed with a single
derivation, that we assimilate do δ = d/dt. To this derivation, one associates
an independent variable t, defined by δ t = 1. One denotes X = {t}. In order
to form differential polynomials, one introduces a set U = {u1, . . . , un} of n
differential indeterminates. In Engineering, differential indeterminates would be
called dependent variables. The derivatives of various orders of the differential
indeterminates are simply called derivatives. We sometimes write u̇ instead of
δ u and ü instead of δ2 u. The order of a derivative is the number of times it is
differentiated: u, u̇ and ü have respectively orders 0, 1 and 2.

For our concerns, it is crucial that one can also handle parametric differential
equations. Parameters are nothing but symbolic constants, i.e., symbols whose
derivatives are zero. Let C denote the set of constants.

The differential fractions considered in this paper are ratios of differential
polynomials taken from the differential ring R = Z[X ∪ C]{U }, using the
notations of [14]. A differential fraction is said to be reduced if its numerator and
denominator do not have any common factor. A differential fraction is said to
be a coefficient if it belongs to the field K = Q(X ∪ C). The field K contains
a field of constants, Kc = Q(C). A fraction which is not in K thus depends on,
at least, a derivative.

A ranking is a total ordering over the set of all derivatives that satisfies the
two following axioms:

1. u ≤ δnu for any u ∈ U and nonnegative integer n,
2. u < v ⇒ δnu < δnv for all derivatives u, v and nonnegative integers n.

Rankings are well-orderings, i.e., every strictly decreasing sequence of derivatives
is finite [14, §I.8]. Rankings such that n < m ⇒ δnu < δmv for all nonnegative
integers n,m and differential indeterminates u, v ∈ U are called orderly.

Fix a ranking and consider some differential polynomial P /∈ K . The highest
derivative v w.r.t. the ranking such that deg(P, v) > 0 is called the leading

An Algorithm for Converting Nonlinear Differential Equations 35

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

"expanded_derivatives.dat"
"derivatives_after_integrate.dat"

"iterated_integrals.dat"
"Hartley_modulating.dat"

"Hermite_modulating.dat"
"polynomial_modulating.dat"

Fig. 3. Estimation of the blocks of parameters θi using different forms of the input-
output equation. In abscissa, the standard deviation σ used to produce the white
gaussian noise. In ordinate, the average value, for 50 different simulations, of the relative
error, i.e. the 2-norm of the difference between the vector of estimated values and the
vector of known values, divided by the 2-norm of the vector of known values. Therefore,
all relative errors above 1 are equivalent, since they all correspond to computed values
void of informations. For all formulas, two phases seem to occur: first, the relative
error grows linearly with the standard deviation σ ; second, the error reaches some
plateau. The best results are obtained using the integral equation (8) and the integral
equation (9), with the polynomial modulating function (12). The two intermediate
curves (for σ ∈ [0, 0.15]) are obtained using the integral equation (9), with modulating
functions of Hermite type (11), below, and Hartley type (10), above. The worst results
(for σ ∈ [0, 0.15]) are obtained by estimating derivatives on the differential equations (3)
and (7). The curve corresponding to Equation (3) is strange since the error seems to
decrease, temporarily, while σ increases. We suspect an artefact due to the example.

derivative of P . The monomial vdeg(P,v) is called the rank of P . The leading
coefficient of P w.r.t. v is called the initial of P .

Extensions of these definitions to differential fractions were introduced in [3].
The order of a reduced fraction F /∈ K is the maximum of the orders of the
derivatives it depends on. It is denoted ord(F). The order of fractions which are

36 F. Boulier et al.

not in K is defined to be zero. The leading derivative of a fraction F /∈ K
is denoted ld(F). It is the highest derivative v, with respect to the ranking,
such that ∂F/∂v �= 0. We do not need to define leading derivatives for elements
of K . Let F = P/Q be a fraction which is not in K . Its degree is defined as
deg(F) = deg(P, ld(F)) − deg(Q, ld(F)). Its rank is the pair (ld(F), deg(F)).
Ranks of fractions are ordered lexicographically. Though we have not defined
the rank of elements of K , it is sufficient to consider that they have lower rank
than any fraction which is not in K .

Lemma 1. If F /∈ K is a reduced fraction then ord(δF) = ord(F) + 1.

Proof. By [3, Proposition 3], we have ld(δF) = δ ld(F), whatever the ranking.
In particular, this Proposition holds for orderly rankings. For such rankings,
ord(F) = ord(ld(F)). Thus the lemma is true for orderly rankings. Since the
order of a fraction is ranking independent, the lemma is true for any ranking.

The expressions computed by Algorithms 4 and 5 are finite sums of differ-
ential fractions, integrated finitely many times from some lower bound a to the
independent variable t, multiplied afterwards by elements of K . Though, after
a single call to one of our algorithms, a single lower bound a occurs, we would
like to permit an expression to feature many different such bounds. Such ex-
pressions look like elements of integro-differential algebras. The introduction of
[10] provides a nice survey on integro-differential algebras and their relationship
with (differential) Rota-Baxter algebras. See also [19, 12]. A precise definition
of an algebraic structure containing the output of our algorithms, and its algo-
rithmic properties, could be much helpful for designing sound computer algebra
packages. We do not provide it here.

In the sequel, we will use the classical notation for integral operators, with
an explicit upper bound t and a trailing symbol dt which plays the role of a
closing parenthesis. To lighten notations, we will however avoid to introduce
new variables τ and write :∫ t

a

F (t) dt instead of

∫ t

a

F (τ) dτ .

3 Improvements of the integrate Algorithm

In this section, we recall the specifications of [3, Algorithms 3 and 4] and adapt
them to the context of this paper. Moreover, we fix a bug, due to a possibly
non-terminating auxiliary function. Two versions of the integrate algorithm were
given: [3, Algorithm 3] is the core algorithm while [3, Algorithm 4] is its “iter-
ated” version.

[3, Algorithm 3] gathers as input a differential fraction F0 and an independent
variable, which is t, here. It returns two differential fractions R and W such that

1. F0 = δ R+W ,
2. W is zero iff there exists R such that F0 = δ R
3. The fractions δ R and W have ranks lower than or equal to that of F0.

An Algorithm for Converting Nonlinear Differential Equations 37

[3, Algorithm 4] gathers as input a differential fraction F0 and an independent
variable, which is necessarily t, here. It returns a possibly empty list (if is empty
if, and only if F0 = 0) of differential fractions [W0, W1, . . . , Ws] such that

1. Ws is nonzero

2. F0 =W0 + δW1 + · · · + δsWs

3. W0, W1, . . . , Wi are zero if, and only if there exists a differential fraction R
and an index i < s such that F0 = δi+1R

4. The differential fractions W0, δ W1, . . . , δ
sWs have ranks lower than or

equal to that of F0.

Unfortunately, both these algorithms, as they are stated in [3], are flawed, for
they rely over an auxiliary algorithm, [3, Algorithm 2, integrateWithRemainder],
which may not terminate over some inputs. We take the opportunity of this
paper to fix this mistake, by replacing [3, Algorithm 2, integrateWithRemainder]
by [4, Mack’s linear version of Hermite reduction, page 44]. The new version is
provided in Algorithm 1.

Algorithm 1. The integrateWithRemainder (fixed version) Algorithm is nothing
but a slight variant of [4, Mack’s linear version of Hermite reduction, page 44]

Require: F0 a reduced fraction and v a variable
Ensure: Two fractions R and W such that (1) F0 = ∂ R/∂v+W ; (2) the denominator

of W is squarefree; (3) deg(W) < 0.
1: cont := the content of denom(F0) w.r.t. v
2: A := numer(F0)
3: D := denom(F0)/cont
4: G := 0
5: D− := the multivariate gcd of D and ∂D/∂v
6: D∗ := D/D−

7: while deg(D−, v) > 0 do
8: D−2 := the multivariate gcd of D− and ∂D−/∂v
9: D−∗ := D−/D−2

10: (B,C) := extendedEuclidean(−D∗ (∂D−/∂v)/D−, D−∗, A, v)
11: A := C − (∂B/∂v)D∗/D−∗

12: G := G+B/D−

13: D− := D−2

14: end while
15: R := G/cont
16: W := A/(D− cont)
17: return R,W

Since α/(α+u)+u/(α+u) = 1 one sees that a fraction whose denominator is
free of α may very well be decomposed as a sum of fractions whose denominators
depend on α. Therefore, though the next Proposition is not surprising, it cannot
be considered as obvious.

38 F. Boulier et al.

Algorithm 2. The extendedEuclidean Algorithm is a restatement of the dio-
phantine version of Euclide’s extended algorithm, given in [4, Sect. 1.3, page
13]

Require: P1, P2 and A are multivariate polynomials and v is a variable. Viewed as
univariate polynomials in v, the polynomials Pi are coprime.

Ensure: Two fractions B and C such that B P1 + C P2 = A
1: G := the gcd (a fraction) of P1 and P2 viewed as univariate polynomials in v
2: S, T := fractions such that S P1 + T P2 = G
3: Q := the quotient of A by G w.r.t. v
4: S, T := QS,QT
5: Q,R := the quotient and remainder of S by P2 w.r.t. v
6: B := R
7: C := T +QP1

8: return B,C

Proposition 1. Let α denote either a constant of C or a derivative, and Rα

the set of all fractions whose denominators are free of α. If F0 ∈ Rα then the
two fractions R,W returned by [3, Algorithm 3] belong to Rα.

Proof. The set Rα is stable under addition, multiplication and derivations (as
well δ as ∂/∂v, for any v): it is a differential subring of the field of fractions of R.
Moreover, consider two differential polynomials A and B s.t. deg(B,α) = 0.
Then, given any variable v (v may either be a constant or a derivative), the
quotient and remainder of A by B w.r.t. v are elements of Rα.

We claim that, if F0 ∈ Rα then the two fractions returned by Algorithm 1
belong to Rα. Consider Algorithm 1 and assume F0 ∈ Rα. Then, the polyno-
mials D,D−, D∗, D−2, D−∗ are always free of α. Thus, Algorithm 2 is always
called with its two first parameters, P1 and P2, free of α. Now, if A ∈ Rα then,
according to the remarks stated in the previous paragraph, the returned frac-
tions B,C ∈ Rα. Initially, A is a polynomial, thus an element of Rα. Therefore,
at line 11, we have B,C ∈ Rα whence A ∈ Rα again. Turning this argument into
an inductive proof, we see A is always an element of Rα. A similar argument
proves that G ∈ Rα. The proof of the claim is then easily completed.

To complete the proof of the Proposition, it is necessary to study the code of
[3, Algorithm 3]. We will not give details. As for Algorithm 1, the argument is a
straightforward application of the remarks stated at the beginning of this proof.

When dealing with elements ofK , [3, Algorithm 4] may have a counter-intuitive
behaviour. For instance, applied on a constant a, this algorithm returns the list
[a]. However, applied on a differential polynomial a + u(t), it returns [u(t), a t].
The reason is informally this one: the algorithm tries to integrate fractions as much
as it can but stops whenever the current fraction is an element of K , since such
an element could be integrated indefinitely. Thus, elements of K are not handled
the same way when they occur alone or mixed with fractions which are not in K .
In our context, this behaviour is a problem. To overcome it, we introduce a slight
modification of [3, Algorithm 4], in Algorithm 3.

An Algorithm for Converting Nonlinear Differential Equations 39

Algorithm 3. The integrate (coefficient free version) Algorithm is a slight vari-
ant of [3, Algorithm 4], which forbids the Wi (i ≥ 1) to be nonzero elements
of K
Require: F0 a reduced differential fraction and an independent variable t
Ensure: A list [W0,W1, . . . ,Ws] satisfying the same properties as [3, Algorithm 4]

plus the following condition:

Wi /∈ K , unless it is 0, for each 1 ≤ i ≤ s (13)

1: [W0,W1, . . . ,Ws] :=the list of fractions returned by [3, Algorithm 4] over F0 and t
2: while s ≥ 1 and Ws ∈ K do
3: Ws−1 := Ws−1 + δ Ws

4: s := s− 1
5: end while
6: for i from s− 1 to 1 by −1 do
7: if Wi ∈ K then
8: Wi−1 := Wi−1 + δ Wi

9: Wi := 0
10: end if
11: end for
12: return [W0,W1, . . . ,Ws]

The following Proposition is new.

Proposition 2. Assume the ranking is orderly and consider some differential
fraction F0. Let [W0,W1, . . . ,Ws] be the list returned by the application of Al-
gorithm 3 to F0 and t. Then i + ord(Wi) ≤ ord(F0) for each 0 ≤ i ≤ s. In
particular, s ≤ ord(F0).

Proof. If F0 ∈ K then s = 0 and the proposition is satisfied. Assume from
now on that F0 /∈ K . If W0 ∈ K then its order is 0 and the condition 0 +
ord(W0) ≤ ord(F0) holds. If it is not, then none of the nonzero Wi belong to K ,
by condition (13), stated in the specifications of Algorithm 3. Then, by Lemma 1,
we have ord(δiWi) = i+ord(Wi). Since δiWi has rank lower than, or equal to F0
(this specification of [3, Algorithm 4] holds for Algorithm 3 also) and the ranking
is orderly, one concludes that i+ ord(Wi) ≤ ord(F0) for each 0 ≤ i ≤ s. The last
sentence is a consequence of this result, and the fact that Algorithm 3 forbidsWs

to be an element of K .

4 Two Algorithms for Computing Integral Equations

Observe that, in the specifications of Algorithm 4, the differential ring which
contains (14) may be a proper differential ring extension of the differential ring R
which contains the input fraction F0. Indeed, in order to represent the values of
the derivatives at t = a, one may need to add arbitrary constants [18, chapter III,
page 57] to R and the integration process may generate polynomials in t. Note

40 F. Boulier et al.

Algorithm 4. The iteratedIntegral algorithm

Require: F0, Θ, a where Θ is a set of parameters ; F0 is a reduced ordinary differential
fraction (dependent variable t) which can be written as the product of two differ-
ential fractions F0 = P/(Q1 Q2) such that Q1 ∈ K[Θ] and Q2 does not depend
on Θ ; and a is an evaluation point (numeric or symbolic)

Ensure: an expression of the form

F =

N∑
i=1

Ci

∫ t

a

· · ·
∫ t

a︸ ︷︷ ︸
�i times

Gi dt · · ·dt︸ ︷︷ ︸
�i times

(14)

such that the Ci ∈ K(Θ), the differential fractions Gi do not depend on Θ and
the nonnegative integers �i satisfy the following property (in the case of an orderly
ranking, we have �i + ord(Gi) ≤ ord(F0) for each i):

F0 =

(
d

dt

)max(�i)

F . (15)

1: [W0,W1, . . . ,Ws] := the list of fractions returned by Algorithm 3 over F0 and t
2: F := 0
3: for i from 0 to s do

4: decompose Wi =
n∑

k=1

Ck Tk where the Ck ∈ K(Θ) and Tk do not depend on Θ

5: for k from 1 to n do
6: Q := 0
7: for j from 0 to s do
8: if j ≤ i then

9: B :=

(
d

dt

)i−j

Tk

10: Ba := B(a)
11: else

12: B :=

∫ t

a

· · ·
∫ t

a︸ ︷︷ ︸
j − i times

Tk dt · · ·dt︸ ︷︷ ︸
j − i times

13: Ba := 0
14: end if
15: P := Q−Ba

16: Q :=

∫ t

a

P dt

17: end for
18: F := F + Ck (B + P)
19: end for
20: end for
21: return F

An Algorithm for Converting Nonlinear Differential Equations 41

Algorithm 5. The modulatedIntegral algorithm

Require: F0, Θ, a, φ where Θ is a set of parameters ; F0 is a reduced ordinary dif-
ferential fraction (dependent variable t) which can be written as the product of
two differential fractions F0 = P/(Q1 Q2) such that Q1 ∈ K[Θ] and Q2 does not
depend on Θ ; a is an evaluation point ; and φ is a function of t

Ensure: an expression of the form

F =
N∑
i=1

Ci

∫ t

a

d�iφ

dt�i
Gi dt (16)

such that the Ci ∈ K(Θ), the differential fractions Gi do not depend on Θ and,
provided that φ is a modulating function of sufficient order, we have

F =

∫ t

a

φF0 dt . (17)

In the case of an orderly ranking, we have ord(Gi) ≤ ord(F0) for each i, and the
order of the modulating function can be chosen less than or equal to ord(F0).

1: [W0,W1, . . . ,Ws] := the list of fractions returned by Algorithm 3 over F0 and t
2: F := 0
3: for i from 0 to s do

4: decompose Wi =

n∑
k=1

Ck Tk where the Ck ∈ K(Θ) and Tk do not depend on Θ

5: for k from 1 to n do

6: F := F + Ck (−1)i
∫ t

a

di φ

dti
Tk dt

7: end for
8: end for
9: return F

also that one may want to put some of these constants in the set of parametersΘ,
as mentioned in the remark following (8).

Proposition 3. Algorithm 4 terminates and is correct.

Proof. Termination is clear. Let us address the correctness. According to the
specifications of Algorithm 3, recalled in Section 3, we have the following formula.
Algorithm 4 applies s times the integration from a to t operator over it:

F0 =W0 +
d

dt
W1 + · · · +

(
d

dt

)s

Ws .

A difficulty needs to be adressed at line 4 since, without any information on the
shape ofWi, the decomposition needs not be possible. First notice that, since Q1

is a constant, the list of the Wi can be obtained at line 1 by applying first
Algorithm 3 over P/Q2, then dividing all the obtained fractions by Q1. Then,
notice that, with the notations of Proposition 1, the fraction P/Q2 ∈ Rα for any
α ∈ Θ. According to this Proposition, all theWi have the same shape as F0 (i.e, if
one excepts a possible factorQ1 ∈ K[Θ] at the denominator, all parameters occur

42 F. Boulier et al.

at the numerator of the fraction). In such a case, the decomposition performed
at line 4 is possible.

Thanks to this special shape of the Wi, the blocks of parameters are moved
outside the integral operators.

The exponent max(�i) occuring in (15) is actually equal to the index s deter-
mined at line 1. The statement about orderly rankings follows Proposition 2.

Proposition 4. Algorithm 5 terminates and is correct.

Proof. Termination is clear. Let us address the correctness. The proof starts as
that of Proposition 3. According to the specifications of Algorithm 3 we have

F0 =W0 +
d

dt
W1 + · · · +

(
d

dt

)s

Ws .

The issue at line 4 is solved as in Proposition 3. Algorithm 5 then computes

F =

∫ t

a

φF0 dt

=

∫ t

a

φW0 dt+

∫ t

a

φ
d

dt
W1 dt+ · · · +

∫ t

a

φ

(
d

dt

)s

Ws dt

=

∫ t

a

φW0 dt+ (−1)

∫ t

a

dφ

dt
W1 dt+ · · · + (−1)s

∫ t

a

dsφ

dts
Ws dt .

The third formula is obtained by applying the integration by part axiom plus
the hypothesis that φ is a modulating function of order at least s. Thanks to the
shape of the Wi, blocks of parameters are moved outside the integral operators.

The statement concerning orderly rankings follows from Proposition 2 and
the fact that the order of the modulating function should be s.

5 Conclusion

We have presented two algorithms for converting nonlinear differential equations
to integral equations, taking this opportunity to fix a flaw2 in a recent algorithm.
Such conversions permit to decrease the orders of differential equations, a feature
of dramatic importance whenever equations need to be numerically evaluated,
since numerical derivation methods can be avoided, at least partially.

An interesting theoretical question, which was asked3 to us, is left open in
this paper: could we characterize the class of dynamical systems for which our
algorithms provide order zero integral equations, i.e. equations whose numerical
evaluations do not require any numerical derivation?

2 The authors would like to thank Joseph Lallemand, who contributed to fix the flaw.
3 The authors would like to thank Cédric Join and Mamadou Mboup.

An Algorithm for Converting Nonlinear Differential Equations 43

References

[1] Boulier, F.: http://www.lifl.fr/~boulier/BLAD (2004)
[2] Boulier, F., Lazard, D., Ollivier, F., Petitot, M.: Computing representations for

radicals of finitely generated differential ideals. AAECC 20(1), 73–121 (2009)
[3] Boulier, F., Lemaire, F., Regensburger, G., Rosenkranz, M.: On the Integration

of Differential Fractions. In: ISSAC 2013, pp. 101–108. ACM, New York (2013)
[4] Bronstein, M.: Symbolic Integration I. Springer (1997)
[5] Denis-Vidal, L., Joly-Blanchard, G., Noiret, C.: System identifiability (symbolic

computation) and parameter estimation (numerical computation). Numerical Al-
gorithms 34, 282–292 (2003)

[6] Fliess, M., Join, C., Sira-Ramı́rez, H.: Non-linear estimation is easy. Int. J. Mod-
elling Identification and Control 4(1), 12–27 (2008)

[7] Fliess, M., Mboup, M., Mounier, H., Sira-Ramı́rez, H.: Questioning some
paradigms of signal processing via concrete examples. In: Silva-Navarro, G., Sira-
Ramı́rez, H. (eds.) Algebraic Methods in Flatness, Signal Processing and State
Estimation, pp. 1–21. Editiorial Lagares (2003)

[8] Fliess, M., Sira-Ramı́rez, H.: An algebraic framework for linear identification.
ESAIM Control Optim. Calc. Variat. 9, 151–168 (2003)

[9] Fliess, M., Sira-Ramı́rez, H.: Closed-loop parametric identification for continuous-
time linear systems via new algebraic techniques. In: Identification of Continuous-
Time Models from Sampled Data. Advances in Industrial Control, pp. 362–391
(2008)

[10] Gao, X., Guo, L.: Constructions of Free Commutative Integro-Differential Alge-
bras. In: Barkatou, M., Cluzeau, T., Regensburger, G., Rosenkranz, M. (eds.)
AADIOS 2012. LNCS, vol. 8372, pp. 1–22. Springer, Heidelberg (2014)

[11] Godfrey, K.R.: The identifiability of parameters of models used in biomedicine.
Mathematical Modelling 7(9-12), 1195–1214 (1986)

[12] Guo, L., Regensburger, G., Rosenkranz, M.: On integro-differential algebras.
JPAA 218(3), 456–473 (2014)

[13] Hairer, E.: Homepage, http://www.unige.ch/~hairer (2000)
[14] Kolchin, E.R.: Differential Algebra and Algebraic Groups. Academic Press, New

York (1973)
[15] Mboup, M.: Parameter estimation for signals described by differential equations.

Applicable Analysis 88, 29–52 (2009)
[16] Noiret, C.: Utilisation du calcul formel pour l’identifiabilité de modèles

paramétriques et nouveaux algorithmes en estimation de paramètres. PhD the-
sis, Université de Technologie de Compiègne (2000)

[17] Pearson, A.E.: Explicit parameter identification for a class of nonlinear in-
put/output differential operator models. In: Proceedings of the 31st IEEE Con-
ference on Decision and Control, vol. 4, pp. 3656–3660 (1992)

[18] Ritt, J.F.: Differential Algebra. American Mathematical Society Colloquium Pub-
lications, vol. 33. AMS, New York (1950)

[19] Rosenkranz, M., Regensburger, G.: Integro-differential polynomials and operators.
In: ISSAC 2008, pp. 261–268. ACM, New York (2008)

[20] Shinbrot, M.: On the analysis of linear and nonlinear dynamical systems from
transient-response data. NACA, Washington, D.C (1954)

[21] The Ametista Group (2013), http://www.lifl.fr/Ametista
[22] Ushirobira, R., Perruquetti, W., Mboup, M., Fliess, M.: Algebraic parameter es-

timation of a multi-sinusoidal waveform signal from noisy data. In: European
Control Conference, Zurich (April 2013)

http://www.lifl.fr/~boulier/BLAD
http://www.unige.ch/~hairer
http://www.lifl.fr/Ametista

Truth Table Invariant Cylindrical Algebraic

Decomposition by Regular Chains

Russell Bradford1, Changbo Chen2, James H. Davenport1, Matthew England1,
Marc Moreno Maza3 and David Wilson1

1 University of Bath, Bath, BA2 7AY, UK
2 CIGIT, Chinese Academy of Sciences, Chongqing, 400714, China

3 University of Western Ontario, London, Ontario, N6A 5B7, Canada
{R.Bradford,J.H.Davenport,M.England,D.J.Wilson}@bath.ac.uk,

moreno@csd.uwo.ca, changbo.chen@hotmail.com

Abstract. A new algorithm to compute cylindrical algebraic decompo-
sitions (CADs) is presented, building on two recent advances. Firstly,
the output is truth table invariant (a TTICAD) meaning given formulae
have constant truth value on each cell of the decomposition. Secondly,
the computation uses regular chains theory to first build a cylindrical
decomposition of complex space (CCD) incrementally by polynomial.
Significant modification of the regular chains technology was used to
achieve the more sophisticated invariance criteria. Experimental results
on an implementation in the RegularChains Library for Maple verify
that combining these advances gives an algorithm superior to its indi-
vidual components and competitive with the state of the art.

Keywords: cylindrical algebraic decomposition, equational constraint,
regular chains, triangular decomposition.

1 Introduction

A cylindrical algebraic decomposition (CAD) is a collection of cells such that:
they do not intersect and their union describes all of Rn; they are arranged cylin-
drically, meaning the projections of any pair of cells are either equal or disjoint;
and, each can be described using a finite sequence of polynomial relations.

CAD was introduced by Collins in [16] to solve quantifier elimination prob-
lems, and this remains an important application (see [14] for details on how
our work can be used there). Other applications include epidemic modelling [8],
parametric optimisation [24], theorem proving [27], robot motion planning [29]
and reasoning with multi-valued functions and their branch cuts [18]. CAD has
complexity doubly exponential in the number of variables. While for some appli-
cations there now exist algorithms with better complexity (see for example [5]),
CAD implementations remain the best general purpose approach for many.

We present a new CAD algorithm combining two recent advances: the tech-
nique of producing CADs via regular chains in complex space [15], and the idea
of producing CADs closely aligned to the structure of logical formulae [2]. We
continue by reminding the reader of CAD theory and these advances.

V.P. Gerdt et al. (Eds.): CASC Workshop 2014, LNCS 8660, pp. 44–58, 2014.
c© Springer International Publishing Switzerland 2014

Truth Table Invariant CAD by Regular Chains 45

1.1 Background on CAD

We work with polynomials in ordered variables x = x1 ≺ . . . ≺ xn. The main
variable of a polynomial (mvar) is the greatest variable present with respect
to the ordering. Denote by QFF a quantifier free Tarski formula: a Boolean
combination (∧,∨,¬) of statements fi σ 0 where σ ∈ {=, >,<} and the fi are
polynomials. CAD was developed as a tool for the problem of quantifier elimi-
nation over the reals: given a quantified Tarski formula

Ψ(x1, . . . , xk) := Qk+1xk+1 . . . QnxnF (x1, . . . , xn)
(where Qi ∈ {∀, ∃} and F is a QFF), produce an equivalent QFF ψ(x1, . . . , xk).
Collins proposed to build a CAD of Rn which is sign-invariant, so each fi ∈ F
is either positive, negative or zero on each cell. Then ψ is the disjunction of
the defining formulae of those cells c ∈ Rk where Ψ is true, which given sign-
invariance, requires us to only test one sample point per cell.

Collins’ algorithm works by first projecting the problem into decreasing real
dimensions and then lifting to build CADs of increasing dimension. Important
developments range from improved projection operators [26] to the use of certi-
fied numerics when lifting [30] [25]. See for example [2] for a fuller discussion.

1.2 Truth Table Invariant CAD

One important development is the use of equational constraints (ECs), which
are equations logically implied by a formula. These may be given explicitly as in
(f = 0) ∧ ϕ, or implicitly as f1f2 = 0 is by (f1 = 0 ∧ ϕ1) ∨ (f2 = 0 ∧ ϕ2).

In [26] McCallum developed the theory of a reduced operator for the first
projection, so that the CAD produced was sign-invariant for the polynomial
defining a given EC, and then sign-invariant for other polynomials only when
the EC is satisfied. Extensions of this to make use of more than one EC have
been investigated (see for example [9]) while in [3] it was shown how McCallum’s
theory could allow for further savings in the lifting phase.

The CADs produced are no longer sign-invariant for polynomials but instead
truth-invariant for a formula. Truth-invariance was defined in [6] where sign-
invariant CADs were refined to maintain it. We consider a related definition.

Definition 1 ([2]). Let Φ = {φi}ti=1 be a list of QFFs. A CAD is Truth Table
Invariant for Φ (a TTICAD) if on each cell every φi has constant Boolean value.

In [2] an algorithm to build TTICADs when each φi has an EC was derived by
extending [26] (which could itself apply in this case but would be less efficient).
Implementations in Maple showed this offered great savings in both CAD size
and computation time when compared to the sign-invariant theory. In [3] this
theory has been extended to work on arbitrary φi, with savings if at least one
has an EC. Note that there are two distinct reasons to build a TTICAD:
1. As a tool to build a truth-invariant CAD: If a parent formula φ∗ is built from

{φi} then any TTICAD for {φi} is also truth-invariant for φ∗.
A TTICAD may be the best truth-invariant CAD, or at least the best we

can compute. Note that the TTICAD theory allows for more savings than
the use of [26] with an implicit EC built as the product of ECs from φi [2].

46 R. Bradford et al.

2. When truth table invariance is required: There are applications which provide
a list of formulae but no parent formula. For example, decomposing complex
space according to a set of branch cuts for the purpose of algebraic simplifi-
cation [1] [28] [21]. When the branch cuts can be expressed as semi-algebraic
systems a TTICAD provides exactly the required decomposition.

1.3 CAD by Regular Chains

Recently, a radically different method to build CADs has been investigated. In-
stead of projecting and lifting, the problem is moved to complex space where the
theory of triangular decomposition by regular chains is used to build a complex
cylindrical decomposition (CCD): a decomposition of Cn such that each cell is
cylindrical. This is encoded as a tree data structure, with each path through the
tree describing the end leaf as a solution of a regular system [32].

This was first proposed in [15] to build a sign-invariant CAD. Techniques
developed for comprehensive triangular decomposition [11] were used to build a
sign-invariant decomposition of Cn which was then refined to a CCD. Finally,
real root isolation is applied to refine further to a CAD of Rn. The computation
of the CCD may be viewed as an enhanced projection phase since gcds of pairs
of polynomials are calculated as well as resultants. The extra work used here
makes the second phase, which may be compared to lifting, less expensive. The
main advantage is the use of case distinction in the second phase, so that the
zeros of polynomials not relevant in a particular branch are not isolated there.

The construction of the CCD was improved in [13]. The former approach built
a decomposition for the input in one step using existing algorithms. The latter
approach proceeds incrementally by polynomial, each time using purpose-built
algorithms to refine an existing tree whilst maintaining cylindricity. Experimen-
tal results showed that the latter approach is much quicker, with its implemen-
tation in Maple’s RegularChains library now competing with existing state of
the art CAD algorithms: Qepcad [7] and Mathematica [31]. One reason for
this improvement is the ability of the new algorithm to recycle subresultant cal-
culations, an idea introduced and detailed in [12] for the purpose of decomposing
polynomial systems into regular chains incrementally.

Another benefit of the incremental approach is that it allows for simplification
when constructing a CAD in the presence of ECs. Instead of working with poly-
nomials, the algorithm can be modified to work with relations. Then branches
in which an EC is not satisfied may be truncated, offering the possibility of
a reduction in both computation time and output size. In [13] it was shown
that using this optimization allowed the algorithm to process examples which
Mathematica and Qepcad could not.

1.4 Contribution and Outline

In Section 2 we present our new algorithms. Our aim is to combine the savings
from an invariance criteria closer to the underlying application, with the sav-
ings offered by the case distinction of the regular chains approach. It requires

Truth Table Invariant CAD by Regular Chains 47

adapting the existing algorithms for the regular chains approach so that they
refine branches of the tree data structure only when necessary for truth-table
invariance, and so that branches are truncated only when appropriate to do so.

We implemented our work in the RegularChains library for Maple. In Sec-
tion 3 we qualitatively compare our new algorithm to our previous work and in
Section 4 we present experimental results comparing it to the state of the art.
Finally, in Section 5 we give our conclusions and ideas for future work.

2 Algorithm

2.1 Constructing a Complex Cylindrical Tree

Let x = x1 ≺ · · · ≺ xn be a sequence of ordered variables. We will construct
TTICADs of Rn for a semi-algebraic system sas (Definition 5). However, to
achieve this we first build CCDs of Cn with respect to a complex system.

Definition 2. Let F = {p1, . . . , ps} be a finite set from Q[x], G ⊆ F and σi ∈
{=, �=}. Then we define a complex system (denoted by cs) as a set

{pi σi 0 | pi ∈ G} ∪ {pi | pi ∈ F \G}.

The complex systems we work with will be defined in accordance with a semi-
algebraic counterpart (see Definition 5). For p ∈ Q[x] we denote the zero set of
p in Cn by ZC(p), or ZC(p = 0), and its complement by ZC(p �= 0).

We compute CCDs as trees, following [15,13]. Throughout let T be a rooted
tree with each node of depth i a polynomial constraint of type either, “any xi”
(with zero set defined as Cn), or p = 0, or p �= 0 (where p ∈ Q[x1, . . . , xi]). For
any i denote the induced subtree of T with depth i by Ti. Let Γ be a path of
T and define its zero set ZC(Γ) as the intersection of zero sets of its nodes. The
zero set of T , denoted ZC(T), is defined as the union of zero sets of its paths.

Definition 3. T is a complete complex cylindrical tree (complete CCT) of Q[x]
if it satisfies recursively:
1. If n = 1: either T has one leaf “any x1”, or it has s+ 1 (s ≥ 1) leaves p1 =

0, . . . , ps = 0,
∏s

i=1 pi �= 0, where pi ∈ Q[x1] are squarefree and coprime.
2. The induced subtree Tn−1 is a complete CCT.
3. For any given path Γ of Tn−1, either its leaf V has only one child “any xn”,

or V has s + 1 (s ≥ 1) children p1 = 0, . . . , ps = 0,
∏s

i=1 pi �= 0, where
p1, . . . , ps ∈ Q[x] are squarefree and coprime satisfying:

3a. for any α ∈ ZC(Γ), none of lc(pj , xn), j = 1, . . . , s, vanishes at α, and
3b. p1(α, xn), . . . , ps(α, xn) are squarefree and coprime.

The set {ZC(Γ) | Γ is a path of T } is called the complex cylindrical decom-
position (CCD) of Cn associated with T : condition (3b) assures that it is a
decomposition. Note that for a complete CCT we have ZC(T) = Cn. A proper
subtree rooted at the root node of T of depth n is called a partial CCT of Q[x].
We use CCT to refer to either a complete or partial CCT. We call a complex
cylindrical tree T an initial tree if T has only one path and T is complete.

48 R. Bradford et al.

Definition 4. Let T be a CCT of Cn and Γ a path of T . A polynomial p ∈
Q[x] is sign invariant on Γ if either ZC(Γ) ∩ ZC(p) = ∅ or ZC(p) ⊇ ZC(Γ). A
constraint p = 0 or p �= 0 is truth-invariant on Γ if p is sign-invariant on Γ . A
complex system cs is truth-invariant on Γ if the conjunction of the constraints
in cs is truth-invariant on Γ , and each polynomial in cs is sign-invariant on Γ .

Example 1. Let q := (x22 + x2 + x1) and p := x1q. The following tree is a CCT
such that p is sign-invariant (and p = 0 is truth invariant) on each path.

r

4x1 − 1 = 0

2x2 + 1 = 0 2x2 + 1 �= 0

x1 = 0

any x2

x1(4x1 − 1) �= 0

q = 0 q �= 0

We introduce Algorithm 1 to produce truth-table invariant CCTs, and new
sub-algorithms 2 and 3. It also uses IntersectPath and NextPathToDo from
[13]. IntersectPath takes: a CCT T ; a path Γ ; and p, either a polynomial or
constraint. When a polynomial it refines T so p is sign-invariant above each
path from Γ (still satisfying Definition 3). When a constraint it refines so
the constraint is true, possibly truncating branches if there can be no solu-
tion. This necessitates the housekeeping algorithm MakeComplete which restores
to a complete CCT by simply adding missing siblings (if any) to every node.
NextPathToDo simply returns the next incomplete path Γ of T .

Proposition 1. Algorithm 1 satisfies its specification.

Proof. It suffices to show that Algorithm 2 is as specified. First observe that Al-
gorithm 3 just recursively calls IntersectPath on constraints and so its correct-
ness follows from that of IntersectPath. When called on ECs IntersectPath
may return a partial tree and so MakeComplete must be used in line 6.

Algorithm 2 is clearly correct is its base cases, namely line 2, line 5 and
line 9. It also clearly terminates since the input of each recursive call has less
constraints. For each path C of the refined Γ , by induction, it is sufficient to
show that cs is truth-invariant on C. If p �= 0 on C, then cs is false on C. If
p = 0 on C, then the truth of cs is invariant since it is completely determined
by the truth of cs′ := cs \ {p = 0}, invariant on C by induction.

Algorithm 1. TTICCD(L)

Input: A list L of complex systems of Q[x].
Output: A complete CCT T with each cs ∈ L truth-invariant on each path.

1 Create the initial CCT T and let Γ be its path;
2 IntersectLCS(L, Γ, T);

Truth Table Invariant CAD by Regular Chains 49

Algorithm 2. IntersectLCS(L, Γ, T)

Input: A CCT T of Q[x]. A path Γ of T . A list of complex systems L.
Output: Refinements of Γ and T such that T is complete, and cs ∈ L is

truth-invariant above each path of Γ .
1 if L = ∅ then
2 return;
3 else if |L| = 1 then
4 Let cs be the only complex system;
5 IntersectPolySet(cs, Γ, T);
6 MakeComplete(T);

7 else if no cs ∈ L has an equational constraint then
8 Let F be the set of polynomials appearing in L;
9 IntersectPolySet(F, Γ, T);

10 else
11 Let cs be a complex system of L with an EC denoted p = 0;
12 IntersectPath(p, Γ, T) // Γ may become a tree

13 while C := NextPathToDo(Γ) �= ∅ do
14 if p = 0 on C then
15 cs′ := cs \ {p = 0};
16 IntersectLCS(L \ {cs} ∪ {cs′}, C, T);

17 else
18 IntersectLCS(L \ {cs}, C, T);

Algorithm 3. IntersectPolySet(F, Γ, T)

Input: A CCT T , a path Γ and a set F of polynomials (constraints).
Output: T is refined and Γ becomes a subtree. Each polynomial

(constraint) of F is sign (truth)-invariant above each path of Γ .
1 if F = ∅ then return;
2 Let p ∈ F ; F ′ := F \ {p};
3 IntersectPath(p, Γ, T); // Γ may become a tree

4 if F ′ �= ∅ then
5 while C := NextPathToDo(Γ) �= ∅ do
6 IntersectPolySet(F ′, C, T);

2.2 Illustrating the Computational Flow

Consider using Algorithm 1 on input of the form
L = [cs1, cs2] := [{f1 = 0, g1 �= 0}, {f2 = 0, g2 �= 0}].

Algorithm 1 constructs the initial tree and passes to Algorithm 2. We enter the
fourth branch of the conditional, let p = f1, and refine to a sign invariant CCT
for f1. This makes a case distinction between f1 = 0 and f1 �= 0. On the branch
f1 �= 0, we recursively call IntersectLCS on [cs2] which then passes directly to
IntersectPolySet. On the branch f1 = 0, we recursively call IntersectLCS on [{g1 �=

50 R. Bradford et al.

0}, {f2 = 0, g2 �= 0}]. This time p = f2 and a case discussion is made between
f2 = 0 and f2 �= 0. On the branch f2 �= 0, we end up calling IntersectPolySet(g1 �=
0) while on the branch f2 = 0 we call IntersectLCS on [{g1 �= 0}, {g2 �= 0}], which
reduces to IntersectPolySet(g1, g2). The case discussion is summarised by:⎧⎨⎩ f1 = 0 :

{
f2 = 0 : g1, g2
f2 �= 0 : g1 �= 0

f1 �= 0 : f2 = 0, g2 �= 0
.

2.3 Refining to a TTICAD

We now discuss how Section 2.1 can be extended from CCDs to CADs.

Definition 5. A semi-algebraic system of Q[x] (sas) is a set of constraints
{pi σi 0} where each σi ∈ {=, >,≥, �=} and each pi ∈ Q[x]. A corresponding
complex system is formed by replacing all pi > 0 by pi �= 0 and all pi ≥ 0 by pi.

A sas is truth-invariant on a cell if the conjunction of its constraints is.

Note that the ECs of an sas are still identified as ECs of the corresponding cs.
Algorithm 4 produces a TTICAD of Rn for a sequence of semi-algebraic systems.

Algorithm 4. RC− TTICAD(L)

Input: A list L of semi-algebraic systems of Q[x].
Output: A CAD such that each sas ∈ L is truth-invariant on each cell.

1 Set L′ to be the list of corresponding complex systems;
2 D := TTICCD(L′);
3 MakeSemiAlgebraic(D, n);

Proposition 2. Algorithm 4 satisfies its specification.

Proof. Algorithm 4 starts by building the corresponding cs for each sas in the
input. It uses Algorithm 1 to form a CCD truth-invariant for each of these and
then the algorithm MakeSemiAlgebraic introduced in [15] to move to a CAD.
MakeSemiAlgebraic takes a CCD D and outputs a CAD E such that for each
element d ∈ D the set d∩Rn is a union of cells in E . Hence E is still truth-invariant
for each cs ∈ L′. It is also a TTICAD for L, (as to change sign from positive to
negative would mean going through zero and thus changing cell). The correctness
of Algorithm 4 hence follows from the correctness of its sub-algorithms.

The output of Algorithm 4 is a TTICAD for the formula defined by each semi-
algebraic system (the conjunction of the individual constraints of that system).
To consider formulae with disjunctions we must first use disjunctive normal form
and then construct semi-algebraic systems for each conjunctive clause.

3 Comparison with Prior Work

We now compare qualitatively to our previous work. Quantitative experiments
and a comparison with competing CAD implementations follows in Section 4.

Truth Table Invariant CAD by Regular Chains 51

3.1 Comparing with Sign-invariant CAD by Regular Chains

Algorithm 4 uses work from [13] but obtains savings when building the complex
tree by ensuring only truth-table invariance. To demonstrate this we compare
diagrams representing the number of times a constraint is considered when build-
ing a CCD for a complex system.

Definition 6. Let cs be a complex system. We define the complete (resp. par-
tial) combination diagram for cs, denoted by Δ0(cs) (resp. Δ1(cs)), recursively:
– If cs = ∅, then Δi(cs) (i = 0, 1) is defined to be null.
– If cs has any ECs then select one, ψ (defined by a polynomial f), and define

Δ0(cs) :=

{
f = 0 Δ0(cs \ {ψ})
f �= 0 Δ0(cs \ {ψ})

, Δ1(cs) :=

{
f = 0 Δ1(cs \ {ψ})
f �= 0

.

– Otherwise select a constraint ψ (which is either of the form f �= 0, or f) and
for i = 0, 1 define

Δi(cs) :=

{
f = 0 Δi(cs \ {ψ})
f �= 0 Δi(cs \ {ψ})

.

The combination diagrams illustrate the combinations of relations that must be
analysed by our algorithms, with the partial diagram relating to Algorithm 1
and the complete diagram the sign-invariant algorithm from [13].

Lemma 3. Assume that the complex system cs has s ECs and t constraints of
other types. Then the number of constraints appearing in Δ0(cs) is 2s+t+1 − 2,
and the number appearing in Δ1(cs) is 2(2t + s) − 2.

Proof. The diagram Δ0(cs) is a full binary tree with depth s + t. Hence the
number of constraints appearing is the geometric series

∑s+t
i=1 2i = 2s+t+1 − 2.

Δ1(cs) will start with a binary tree for the ECs, with only one branch con-
tinuing at each depth, and thus involves 2s constraints. The full binary tree for
the other constraints is added to the final branch, giving a total of 2t+1 + 2s− 2.

Definition 7. Let L be a list of complex systems. We define the complete (resp.
partial) combination diagram of L, denoted by Δ0(L) (resp. Δ1(L)) recursively:
If L = ∅, then Δi(L), i = 0, 1, is null. Otherwise let cs be the first element of L.
Then Δi(L) is obtained by appending Δi(L \ {cs}) to each leaf node of Δi(cs).

Theorem 4. Let L be a list of r complex systems. Assume each cs ∈ L has s
ECs and t constraints of other types. Then the number of constraints appearing
in Δ0(L) is 2r(s+t)+1 − 2 and the number of constraints appearing in Δ1(L) is
N(r) = 2(s+ 2t)r − 2.

Proof. The number of constraints in Δ0(L) again follows from the geometric
series. For Δ1(L) we proceed with induction on r. The case r = 1 is given by
Lemma 3, so now assume N(r − 1) = 2(s+ 2t)r−1 − 2.

The result for r follows from C(r) = C(1) + (s + 2t)C(r − 1). To conclude
this identity consider the diagram for the first cs ∈ L. To extend to Δ1(L) we
append Δ1(L \ cs) to each end node. There are s for cases where an EC was not
satisfied and 2t from cases where all ECs were (and non-ECs were included).

52 R. Bradford et al.

Fig. 1. The left is a sign-invariant CAD, and the right a TTICAD, for (1)

Example 2. We demonstrate these savings by considering

f1 := x2 + y2 − 4, g1 := (x− 3)2 − (y + 3), φ1 := f1 = 0 ∧ g1 < 0,

f2 := (x− 6)2 + y2 − 4, g2 := (x− 3)2 + (y − 2), φ2 := f2 = 0 ∧ g2 < 0, (1)

and ordering x ≺ y. The polynomials are graphed in Figure 1 where the solid
circles are the fi and the dashed parabola the gi. To study the truth of the
formulae {φ1, φ2} we could create a sign-invariant CAD. Both the incremental
regular chains technology of [13] and Qepcad [7] do this with 231 cells. The 72
full dimensional cells are visualised on the left of Figure 1, (with the cylinders
on each end actually split into three full dimensional cells out of the view).

Alternatively we may build a TTICAD using Algorithm 4 to obtain only 63
cells, 22 of which have full dimension as visualised on the right of Figure 1.
By comparing the figures we see that the differences begin in the CAD of the
real line, with the sign-invariant case splitting into 31 cells compared to 19. The
points identified on the real line each align with a feature of the polynomials.
Note that the TTICAD identifies the intersections of fi and gj only when i = j,
and that no features of the inequalities are identified away from the ECs.

3.2 Comparing with TTICAD by Projection and Lifting

We now compare Algorithm 4 with the TTICADs obtained by projection and
lifting in [2]. We identify three main benefits which we demonstrate by example.

(I) Algorithm 4 Can Achieve Cell Savings from Case Distinction

Example 3. Algorithm 4 produces a TTICAD for (1) with 63 cells compared
to a TTICAD of 67 cells from the projection and lifting algorithm in [2]. The
full-dimensional cells are identical and so the image on the right of Figure 1 is
an accurate visualisation of both. To see the difference we must compare lower
dimensional cells. Figure 2 compares the lifting to R2 over a cell on the real line
aligned with an intersection of f1 and g1. The left concerns the algorithm in [2]
and the right Algorithm 4. The former isolates both the y-coordinates where
f1 = 0 while the latter only one (the single point over the cell where φ1 is true).

Truth Table Invariant CAD by Regular Chains 53

Fig. 2. Comparing TTICADs for (1). The left uses [2] and the right Algorithm 4.

If we modified the problem so the inequalities in (1) were not strict then φ1
becomes true at both points and Algorithm 4 outputs the same TTICAD as [2].
Unlike [2], the type of the non-ECs affects the behaviour of Algorithm 4.

(II) Algorithm 4 Can Take Advantage of More than One EC Per
Clause

Example 4. We assume x ≺ y and consider

f1 := x2 + y2 − 1, h := y2 − x
2 , g1 := xy − 1

4

f2 := (x− 4)2 + (y − 1)2 − 1 g2 := (x− 4)(y − 1) − 1
4 ,

φ1 := h = 0 ∧ f1 = 0 ∧ g1 < 0, φ2 := f2 = 0 ∧ g2 < 0. (2)

The polynomials are graphed in Figure 3 where the dashed curves are f1 and h,
the solid curve is f2 and the dotted curves are g1 and g2. A TTICAD produced
by Algorithm 4 has 69 cells and is visualised on the right of Figure 3 while a
TTICAD produced by projection and lifting has 117 cells and is visualised on
the left. This time the differences are manifested in the full-dimensional cells.

The algorithm from [2] works with a single designated EC in each QFF (in
this case we chose f1) and so treats h in the same way as g1. This means for
example that all the intersections of h or g1 with f1 are identified. By compar-
ison, Algorithm 4 would only identify the intersection of g1 with an EC if this
occurred at a point where both f1 and h were satisfied (does not occur here).
For comparison, a sign-invariant CAD using Qepcad or [13] has 611 cells.

To use [2] we had to designate either f1 or h as the EC. Choosing f1 gave
117 cells and h 163. Our new algorithm has similar choices: what order should
the systems be considered and what order the ECs within (step 11 of Algorithm
2)? Processing f1 first gives 69 cells but other choice can decrease this to 65 or
increase it to 145. See [20] for advice on making such choices intelligently.

(III) Algorithm 4 Will Succeed Given Sufficient Time and Memory
This contrasts with the theory of reduced projection operators used in [2], where
input must be well-oriented (meaning that certain projection polynomials cannot
be nullified when lifting over a cell with respect to them).

54 R. Bradford et al.

Fig. 3. TTICAD for (2). The left uses [2] and the right Algorithm 4.

Example 5. Consider the identity
√
z
√
w =

√
zw over C2. We analyse its truth

by decomposing according to the branch cuts and testing each cell at its sample
point. Letting z = x + iy,w = u + iv we see that branch cuts occur when

(y = 0 ∧ x < 0) ∨ (v = 0 ∧ u < 0) ∨ (yu+ xv = 0 ∧ xu− yv < 0).
We desire a TTICAD for the three clauses joined by disjunction. Assuming
v ≺ u ≺ x ≺ y Algorithm 4 does this using 97 cells, while the projection and
lifting approach identifies the input as not well-oriented. The failure is triggered
by yu+ xv being nullified over a cell where u = x = 0 and v < 0.

4 Experimental Results

We present experimental results obtained on a Linux desktop (3.1GHz Intel
processor, 8.0Gb total memory). We tested on 52 different examples, with a
representative subset of these detailed in Table 1. The examples and other sup-
plementary information are available from http://opus.bath.ac.uk/38344/.
One set of problems was taken from CAD papers [10] [2] and a second from
system solving papers [11] [13]. The polynomials from the problems were placed
into different logical formulations: disjunctions in which every clause had an EC
(indicated by †) and disjunctions in which only some do (indicated by ††). A
third set was generated by branch cuts of algebraic relations: addition formulae
for elementary functions and examples previously studied in the literature.

Each problem had a declared variable ordering (with n the number of vari-
ables). For each experiment a CAD was produced with the time taken (in sec-
onds) and number of cells (cell count) given. The first is an obvious metric and
the second crucial for applications acting on each cell. T/O indicates a time out
(set at 30 minutes), FAIL a failure due to theoretical reasons such as input not
being well-oriented (see [26] [2]) and Err an unexpected error.

We start by comparing with our previous work (all tested in Maple 18) by
considering the first five algorithms in Table 1. RC-TTICAD is Algorithm 4,
PL-TTICAD the algorithm from [2], PL-CAD CAD with McCallum projection,
RC-Inc-CAD the algorithm from [13] and RC-Rec-CAD the algorithm from [15].
Those starting RC are part of the RegularChains library and those starting PL
the ProjectionCAD package [23]. RC-Rec-CAD is a modification of the algorithm
currently distributed with Maple; the construction of the CCD is the same but

http://opus.bath.ac.uk/38344/

Truth Table Invariant CAD by Regular Chains 55

T
a
b
le

1
.
C
o
m
p
a
ri
n
g
o
u
r
n
ew

a
lg
o
ri
th
m

to
o
u
r
p
re
v
io
u
s
w
o
rk

a
n
d
co
m
p
et
in
g
C
A
D

im
p
le
m
en

ta
ti
o
n
s

R
C
-T

T
IC

A
D

R
C
-I
nc

-C
A
D

R
C
-R

ec
-C

A
D

P
L-
T
T
IC

A
D

P
L-
C
A
D

M
a
t
h
e
m
a
t
ic
a

Q
e
p
c
a
d

S
y
N
R
A
C

R
e
d
l
o
g

P
ro
bl
em

n
C
el
ls

T
im

e
C
el
ls

T
im

e
C
el
ls

T
im

e
C
el
ls

T
im

e
C
el
ls

T
im

e
T
im

e
C
el
ls

T
im

e
C
el
ls

T
im

e
C
el
ls

T
im

e

In
te
rs
ec
ti
on

†
3

54
1

1.
0

37
23

12
.0

37
23

19
.0

57
9

3.
5

37
23

29
.5

0.
1

37
23

4.
9

37
23

12
.8

E
rr

—
E
lli
ps
e†

5
71

23
1

31
7.
1

81
18

3
54

4.
9

81
19

3
78

6.
8

FA
IL

—
FA

IL
—

11
.2

50
06

09
27

5.
3

E
rr

—
E
rr

—
So

lo
ta
re
ff†

4
28

49
8.
8

54
03

7
20

9.
1

54
03

7
53

9.
0

FA
IL

—
54

03
7
40

7.
6

0.
1

16
60

3
5.
2

E
rr

—
33

53
8.
6

So
lo
ta
re
ff†

†
4

83
29

21
.4

54
03

7
22

6.
9

54
03

7
57

3.
4

FA
IL

—
54

03
7
41

4.
3

0.
1

16
60

3
5.
3

E
rr

—
83

67
13

.6
2D

E
x†

2
97

0.
2

31
7

1.
0

31
7

2.
6

10
5

0.
6

31
7

1.
8

0.
0

24
9

4.
8

31
7

1.
1

30
5

0.
9

2D
E
x†

†
2

18
3

0.
4

31
7

1.
1

31
7

2.
6

18
3

1.
1

31
7

1.
8

0.
0

31
7

4.
6

31
7

1.
2

29
3

0.
9

3D
E
x†

3
10

9
3.
5

34
97

63
.1

35
25

11
65

.7
10

9
2.
9

54
93

14
2.
8

0.
1

73
9

5.
4

—
T
/O

E
rr

—
M
on

te
sS
10

7
36

43
19

.1
36

43
28

.3
36

43
26

.6
—

T
/O

—
T
/O

T
/O

—
T
/O

—
T
/O

E
rr

—
W
an

g
93

5
50

7
44

.4
50

7
49

.1
50

7
46

.9
—

T
/O

T
/O

—
89

7.
1

FA
IL

—
E
rr

—
E
rr

—
R
os
e†

3
30

69
20

0.
9

70
75

49
8.
8

70
75

47
7.
1

—
T
/O

—
T
/O

T
/O

FA
IL

—
—

T
/O

E
rr

—
ge
nL

in
Sy

st
-3
-2
†1

1
22

28
21

30
87

.5
—

T
/O

—
T
/O

FA
IL

—
FA

IL
—

T
/O

FA
IL

—
E
rr

—
E
rr

—
B
C
-K

ah
an

2
55

0.
2

40
9

2.
4

40
9

4.
9

55
0.
2

40
9

2.
4

0.
1

26
1

4.
8

40
9

1.
5

E
rr

—
B
C
-A

rc
si
n

2
57

0.
1

22
5

0.
9

22
5

1.
9

57
0.
2

22
5

0.
9

0.
0

22
5

4.
8

22
5

0.
7

16
1

2.
4

B
C
-S
qr
t

4
97

0.
2

11
3

0.
5

11
3

1.
3

FA
IL

—
11

3
0.
6

0.
0

10
5

4.
7

10
5

0.
4

73
0.
0

B
C
-A

rc
ta
n

4
21

1
3.
5

—
T
/O

—
T
/O

FA
IL

—
—

T
/O

T
/O

—
T
/O

E
rr

—
—

T
/O

B
C
-A

rc
ta
nh

4
21

1
3.
5

—
T
/O

—
T
/O

FA
IL

—
—

T
/O

T
/O

—
T
/O

E
rr

—
—

T
/O

B
C
-P

hi
sa
nb

ut
-1

4
32

5
0.
8

38
9

1.
8

38
9

5.
8

FA
IL

—
38

9
3.
6

0.
1

37
7

4.
8

38
9

2.
0

21
7

0.
2

B
C
-P

hi
sa
nb

ut
-4

4
54

3
1.
6

20
07

13
.6

20
65

21
.5

FA
IL

—
51

76
3
93

2.
5

11
.9

51
76

3
8.
6

E
rr

—
E
rr

—

56 R. Bradford et al.

the conversion to a CAD has been improved. Algorithms RC-TTICAD and RC-
Rec-CAD are currently being integrated into the RegularChains library, which
can be downloaded from www.regularchains.org.

We see that RC-TTICAD never gives higher cell counts than any of our previ-
ous work and that in general the TTICAD theories allow for cell counts an order
of magnitude lower. RC-TTICAD is usually the quickest in some cases offering
vast speed-ups. It is also important to note that there are many examples where
PL-TTICAD has a theoretical failure but for which RC-TTICAD will complete
(see point (III) in Section 3.2). Further, these failures largely occurred in the
examples from branch cut analysis, a key application of TTICAD.

We can conclude that our new algorithm combines the good features of our
previous approaches, giving an approach superior to either. We now compare
with competing CAD implementations, detailed in the last four columns of Ta-
ble 1: Mathematica [31] (V9 graphical interface); Qepcad-B [7] (v1.69 with
options +N500000000 +L200000, initialization included in the timings and im-
plicit EC declared when present); the Reduce package Redlog [19] (2010 Free
CSL Version); and the Maple package SyNRAC (2011 version) [25].

As reported in [2], the TTICAD theory allows for lower cell counts than
Qepcad even when manually declaring an EC. We found that both SyNRAC

and Redlog failed for many examples, (with SyNRAC returning unexpected
errors and Redlog hanging with no output or messages). There were examples
for which Redlog had a lower cell count than RC-TTICAD due to the use of
partial lifting techniques, but this was not the case in general. We note that we
were using the most current public version of SyNRAC which has since been
replaced by a superior development version, (to which we do not have access)
and that Redlog is mostly focused on the virtual substitution approach to
quantifier elimination but that we only tested the CAD command.

Mathematica is the quickest in general, often impressively so. However, the
output there is not a CAD but a formula with a cylindrical structure [31] (hence
cell counts are not available). Such a formula is sufficient for many applications
(such as quantifier elimination) but not for others (such as algebraic simpli-
fication by branch cut decomposition). Further, there are examples for which
RC-TTICAD completes but Mathematica times out. Mathematica’s output
only references the CAD cells for which the input formula is true. Our implemen-
tation can be modified to do this and in some cases this can lead to significant
time savings; we will investigate this further in a later publication.

Finally, note that the TTICAD theory allows algorithms to change with
the logical structure of a problem. For example, Solotareff† is simpler than
Solotareff†† (it has an inequality instead of an equation). A smaller TTICAD
can hence be produced, while sign-invariant algorithms give the same output.

5 Conclusions and Further Work

We presented a new CAD algorithm which uses truth-table invariance, to give
output aligned to underlying problem, and regular chains technology, bringing

www.regularchains.org

Truth Table Invariant CAD by Regular Chains 57

the benefits of case distinction and no possibility of theoretical failure from well-
orientedness conditions. However, there are still many questions to be considered:
– Can we make educated choices for the order systems and constraints are

analysed by the algorithm? Example 4 and [20] shows this could be beneficial.
– Can we use heuristics to make choices such as what variable ordering (see

current work in [22] and previous work in [19] [4]).
– Can we modify the algorithm for the case of providing truth invariant CADs

for a formula in disjunctive normal form? In this case we could cease refine-
ment in the complex tree once a branch is known to be true.

– Can we combine with other theory such as partial CAD [17] or cylindrical
algebraic sub-decompositions [33]?

Acknowledgements. Supported by the CSTC (grant cstc2013jjys0002), the
EPSRC (grant EP/J003247/1) and the NSFC (grant 11301524).

References

1. Bradford, R., Davenport, J.H.: Towards better simplification of elementary func-
tions. In: Proc. ISSAC 2002, pp. 16–22. ACM (2002)

2. Bradford, R., Davenport, J.H., England, M., McCallum, S., Wilson, D.: Cylindrical
algebraic decompositions for boolean combinations. In: Proc. ISSAC 2013, pp. 125–
132. ACM (2013)

3. Bradford, R., Davenport, J.H., England, M., McCallum, S., Wilson, D.: Truth table
invariant cylindrical algebraic decomposition. Preprint: arXiv:1401.0645

4. Bradford, R., Davenport, J.H., England, M., Wilson, D.: Optimising problem
formulations for cylindrical algebraic decomposition. In: Carette, J., Aspinall,
D., Lange, C., Sojka, P., Windsteiger, W. (eds.) CICM 2013. LNCS, vol. 7961,
pp. 19–34. Springer, Heidelberg (2013)

5. Basu, S., Pollack, R., Roy, M.F.: Algorithms in Real Algebraic Geometry. Algo-
rithms and Computations in Mathematics, vol. 10. Springer (2006)

6. Brown, C.W.: Simplification of truth-invariant cylindrical algebraic decomposi-
tions. In: Proc. ISSAC 1998, pp. 295–301. ACM (1998)

7. Brown, C.W.: An overview of QEPCAD B: A program for computing with semi-
algebraic sets using CADs. SIGSAM Bulletin 37(4), 97–108 (2003)

8. Brown, C.W., El Kahoui, M., Novotni, D., Weber, A.: Algorithmic methods for in-
vestigating equilibria in epidemic modelling. J. Symb. Comp. 41, 1157–1173 (2006)

9. Brown, C.W., McCallum, S.: On using bi-equational constraints in CAD construc-
tion. In: Proc. ISSAC 2005, pp. 76–83. ACM (2005)

10. Buchberger, B., Hong, H.: Speeding up quantifier elimination by Gröbner bases.
Technical report, 91-06. RISC, Johannes Kepler University (1991)

11. Chen, C., Golubitsky, O., Lemaire, F., Maza, M.M., Pan, W.: Comprehensive tri-
angular decomposition. In: Ganzha, V.G., Mayr, E.W., Vorozhtsov, E.V. (eds.)
CASC 2007. LNCS, vol. 4770, pp. 73–101. Springer, Heidelberg (2007)

12. Chen, C., Moreno Maza, M.: Algorithms for computing triangular decomposition
of polynomial systems. J. Symb. Comp. 47(6), 610–642 (2012)

13. Chen, C., Moreno Maza, M.: An incremental algorithm for computing cylindri-
cal algebraic decompositions. In: Proc. ASCM 2012. Springer (2012) (to appear)
Preprint: arXiv:1210.5543

14. Chen, C., Moreno Maza, M.: Quantifier elimination by cylindrical algebraic de-
composition based on regular chains. In: Proc. ISSAC 2014 (to appear, 2014)

58 R. Bradford et al.

15. Chen, C., Moreno Maza, M., Xia, B., Yang, L.: Computing cylindrical algebraic
decomposition via triangular decomposition. In: Proc. ISSAC 2009, pp. 95–102.
ACM (2009)

16. Collins, G.E.: Quantifier elimination for real closed fields by cylindrical algebraic
decomposition. In: Proc. 2nd GI Conference on Automata Theory and Formal
Languages, pp. 134–183. Springer (1975)

17. Collins, G.E., Hong, H.: Partial cylindrical algebraic decomposition for quantifier
elimination. J. Symb. Comp. 12, 299–328 (1991)

18. Davenport, J.H., Bradford, R., England, M., Wilson, D.: Program verification
in the presence of complex numbers, functions with branch cuts etc. In: Proc.
SYNASC 2012, pp. 83–88. IEEE (2012)

19. Dolzmann, A., Seidl, A., Sturm, T.: Efficient projection orders for CAD. In: Proc.
ISSAC 2004, pp. 111–118. ACM (2004)

20. England, M., Bradford, R., Chen, C., Davenport, J.H., Maza, M.M., Wilson, D.:
Problem formulation for truth-table invariant cylindrical algebraic decomposition
by incremental triangular decomposition. In: Watt, S.M., Davenport, J.H., Sexton,
A.P., Sojka, P., Urban, J. (eds.) CICM 2014. LNCS, vol. 8543, pp. 45–60. Springer,
Heidelberg (2014)

21. England, M., Bradford, R., Davenport, J.H., Wilson, D.: Understanding branch
cuts of expressions. In: Carette, J., Aspinall, D., Lange, C., Sojka, P., Windsteiger,
W. (eds.) CICM 2013. LNCS, vol. 7961, pp. 136–151. Springer, Heidelberg (2013)

22. England, M., Bradford, R., Davenport, J.H., Wilson, D.: Choosing a variable or-
dering for truth-table invariant cylindrical algebraic decomposition by incremental
triangular decomposition. In: Hong, H., Yap, C. (eds.) ICMS 2014. LNCS, vol. 8592,
pp. 450–457. Springer, Heidelberg (2014)

23. England, M., Wilson, D., Bradford, R., Davenport, J.H.: Using the Regular Chains
Library to build cylindrical algebraic decompositions by projection and lifting. In:
Hong, H., Yap, C. (eds.) ICMS 2014. LNCS, vol. 8592, pp. 458–465. Springer,
Heidelberg (2014)

24. Fotiou, I.A., Parrilo, P.A., Morari, M.: Nonlinear parametric optimization using
cylindrical algebraic decomposition. In: Proc. Decision and Control, European Con-
trol Conference 2005, pp. 3735–3740 (2005)

25. Iwane, H., Yanami, H., Anai, H., Yokoyama, K.: An effective implementation of
a symbolic-numeric cylindrical algebraic decomposition for quantifier elimination.
In: Proc. SNC 2009, pp. 55–64 (2009)

26. McCallum, S.: On projection in CAD-based quantifier elimination with equational
constraint. In: Proc. ISSAC 1999, pp. 145–149. ACM (1999)

27. Paulson, L.C.: Metitarski: Past and future. In: Beringer, L., Felty, A. (eds.) ITP
2012. LNCS, vol. 7406, pp. 1–10. Springer, Heidelberg (2012)

28. Phisanbut, N., Bradford, R.J., Davenport, J.H.: Geometry of branch cuts. ACM
Communications in Computer Algebra 44(3), 132–135 (2010)

29. Schwartz, J.T., Sharir, M.: On the “Piano-Movers” Problem: II. General tech-
niques for computing topological properties of real algebraic manifolds. Adv. Appl.
Math. 4, 298–351 (1983)

30. Strzeboński, A.: Cylindrical algebraic decomposition using validated numerics. J.
Symb. Comp. 41(9), 1021–1038 (2006)

31. Strzeboński, A.: Computation with semialgebraic sets represented by cylindrical
algebraic formulas. In: Proc. ISSAC 2010, pp. 61–68. ACM (2010)

32. Wang, D.: Computing triangular systems and regular systems. J. Symb.
Comp. 30(2), 221–236 (2000)

33. Wilson, D., Bradford, R., Davenport, J.H., England, M.: Cylindrical algebraic sub-
decompositions. Mathematics in Computer Science 8(2), 263–288 (2014)

Computing the Topology of an Arrangement

of Implicit and Parametric Curves
Given by Values

Jorge Caravantes1, Mario Fioravanti2,
Laureano Gonzalez–Vega2, and Ioana Necula3,�

1 Universidad Complutense de Madrid
2 Universidad de Cantabria

3 Universidad de Sevilla

Abstract. Curve arrangement studying is a subject of great interest
in Computational Geometry and CAGD. In our paper, a new method
for computing the topology of an arrangement of algebraic plane curves,
defined by implicit and parametric equations, is presented. The polyno-
mials appearing in the equations are given in the Lagrange basis, with
respect to a suitable set of nodes. Our method is of sweep-line class, and
its novelty consists in applying algebra by values for solving systems of
two bivariate polynomial equations. Moreover, at our best knowledge,
previous works on arrangements of curves consider only implicitly de-
fined curves.

1 Introduction

Given a finite collection S of geometric objects in Rn, the arrangement associ-
ated to S is the decomposition of Rn into the connected open cells of dimen-
sions 0, 1, ..., n induced by S. The study of arrangements is a relevant problem in
Computational Geometry and CAGD, with applications in Geometric Modeling,
Computer Vision, Robot Motion Planning, etc. Edelsbrunner studied arrange-
ments of lines and hyperplanes in the 80’s [1, 2]. Arrangements of arcs in the
plane and of surface patches in higher dimensions, and several applications were
presented in [3]. Different algorithms have been proposed for the computation of
arrangements of certain kind of plane curves: for conics [4, 5], for cubics [6, 7],
for quartics [8], and for non-singular algebraic curves [9]. Recent algorithms for
computing arrangements of algebraic curves in the plane use one of two main
approaches: subdivision methods (e.g. [10–13]), and sweep-line methods (e.g.
[14, 15]). In all these papers, the curves are defined only by their implicit equa-
tions.

In this paper,a new method for computing the topology of the arrangement of
a set of plane curves, which may be given by implicit or parametric equations, is

� The authors are partially supported by the Spanish “Ministerio de Economı́a y
Competitividad” and by the European Regional Development Fund (ERDF), under
the Project MTM2011-25816-C02-02.

V.P. Gerdt et al. (Eds.): CASC Workshop 2014, LNCS 8660, pp. 59–73, 2014.
c© Springer International Publishing Switzerland 2014

60 J. Caravantes et al.

presented. The polynomials appearing in the equations are given in the Lagrange
basis, with respect to a suitable set of nodes. Our method is of sweep-line class,
and its novelty consists in applying algebra by values for solving systems of
two bivariate polynomial equations. Using algebra by values means doing all
computations (polynomial derivatives, Bezoutians, etc.) in the Lagrange basis
(see [16]). There are three main reasons for using algebra by values:

1. Avoiding the manipulation of high degree polynomials.

2. If the initial data is given in Lagrange form, it is well known that the con-
version between distinct polynomial bases may be numerically unstable, and
this instability increases with the degree (see [17–19]).

3. There is a straightforward method for building a companion matrix pen-
cil associated to a Bezoutian, such that the generalized eigenvalues of the
companion matrix pencil give the roots of the determinant of the Bezoutian.

The following example illustrates the reasons why sometimes one may prefer
slower computation through values, instead of manipulating expressions in the
monomial basis.

Example 1. Consider the polynomial f(x, y) = (x − 10)10 + (y − 10)10 − 10.
By working with the expanded version of f, and using 8-digit precision float
numbers, numerical inconsistencies are obtained when trying to determine the
topology of the curve (in the monomial basis).It is obtained the same result as
for g(x, y) = (x − 10)10 + (y − 10)10, while the topologies are different (f is a
curve quite close to a 3× 3 square centered at the point (10, 10), while g reduces
to the point (10, 10)). However, evaluating such polynomials at nodes not too
far from (10, 10), the topologies are well differentiated.

In this paper, it is not our intention to analyze in detail numerical aspects
of our method. However, we would like to remark some facts: for computing
nullspaces it is advisable to use Singular Value Decomposition, regarding effi-
ciency and accuracy [20] ; on the other hand, the issue of solving generalized
eigenvalue problems is supported by robust software As part of the input data,
the users are allowed to choose two constant bounds, in order to specify which
numerical quantities are considered too high (resp. too low) for the given curves,
due to the fact that float imprecisions can make intersections in the infinite line
to become finite (resp. can make coincident important points to separate); fi-
nally, using too low precision can lead to contradictions in the data the algorithm
will use to build the graph (depending on the implementation, this can break
the algorithm or return impossible phenomena such as branches that disappear
or bifurcate). For more details, see [21] and the references therein.

The paper is organized in the following way. In Section 2 some relevant prop-
erties of Bezoutians, its expression in the Lagrange basis and generalized eigen-
values are recalled. In Section 3.1 and Section 3.2 the methods for the case of
implicit and respectively parametric curves are presented. In the last section,
the main conclusions and comments on future work are drawn.

Topology of an Arrangement of Implicit and Parametric Curves 61

2 Preliminaries

In this section, the definition of the Bezoutian of two polynomials, the structure
of its nullspace and the generalized eigenvalue problem associated to a matrix
polynomial are reviewed. These are the main algebraic tools to be used in our
algorithms. The vector space of polynomials of degree at most d will be denoted
by Pd.

2.1 The Bezoutian

Definition 1. Let p(t), q(t) be two polynomials, n = max{deg(p(t)), deg(q(t))}.
The Cayley quotient of p(t) and q(t) is the polynomial Cp,q of degree at most
n− 1 defined by

Cp,q(t, x) =
p(t)q(x) − p(x)q(t)

t− x (1)

Thus, if Φ(t) = {φ1(t), . . . , φn(t)} is a basis for Pn−1 then Cp,q can be uniquely
written

Cp,q(t, x) =

n∑
i,j=1

bijφi(t)φj(x) = (φ1(t), . . . , φn(t)) (bij)

⎛⎜⎝ φ1(x)
...

φn(x)

⎞⎟⎠ .
The symmetric matrix Bezp, q = (bij) is called the Bezoutian in the given poly-
nomial basis Φ(t).

The following properties of the Bezoutian are well known (see, for example,
[22, 23]):

– deg(gcd(p(t), q(t))) = n− rk(Bezp, q).

– The rank of Bezp, q, when computed in monomial basis in increasing degree
order, is equal to the order of the largest nonsingular principal minor, when
starting from the lower right hand corner.

– Its determinant is proportional to the resultant of p(t) and q(t) .

The nullspace of the Bezoutian has an elegant structure presented in the
next proposition that can be used to determine the common roots of the given
polynomials (for a proof see [24], page 42).

Proposition 1. The nullspace of Bezp, q, in the monomial basis, is spanned by

nullspace(Bezp, q) = [X1, X2, . . . , Xk] (2)

where each block Xj corresponds to a different common root of p and q. The
dimension of each block is the geometric multiplicity kj of the common root xj

62 J. Caravantes et al.

(i.e., its multiplicity as a root of the greatest common divisor of p and q). More-
over each block can be parameterized by the common root xj in the form

Xj =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 . . . 0
xj 1 0 0

x2j 2xj 2
...

x3j 3x2j 6xj
. . .

...
...

...
...

. . . (kj − 1)!
...

...
... kj !xj

...
...

...

xn−1
j (n− 1)xn−2

j (n− 1)(n− 2)xn−3
j . . . (n− 1)kj−1 x

n−kj

j

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(3)

where nkj = n(n− 1) · · · (n− kj + 1).

Given a list τ = (τ1, . . . , τd+1) of distinct numerical values,

L(t; τ) = {L1(t; τ), . . . , Ld+1(t; τ)}

will denote the Lagrange basis of Pd associated to τ . A polynomial p(t) ∈ Pd is
given by values if a pair of lists τ and p = (p(τ1), . . . , p(τd+1)) are available.

Lemma 1. [16] Let p(t), q(t) ∈ Pd with d = max(deg(p(t)), deg(q(t))). We as-
sume that p(t) and q(t) are given by values, by data τ , p, and q. Suppose that
t∗ ∈ C is a simple common zero of p(t) and q(t). If B denotes Bezp, q in the
Lagrange basis L(t; τ̃) ∈ [Pd−1]

d, then L(t∗; τ̃) is a null vector of B.

Remark 1. Note that, if BM and BL represent the Bezout matrix computed
in monomial and respectively Lagrange basis, the following relation is fulfilled:
BL = V (τ) · BM · V (τ)T , where V (τ) is the Vandermomde matrix,

V (τ) =
(
τ j−1
i

)
, 1 ≤ i, j ≤ d . (4)

As a consequence, when choosing pairwise different nodes, the rank of BL equals
the rank of BM .

2.2 Generalized Eigenvalue Problem Associated to a Matrix
Polynomial

Given a r×r polynomial matrix A(t) of degree d, there are two matrices C0, C1,
with constant entries, such that detA(t) = det (tC1 − C0). The pair (C0,C1)
is called a companion matrix pencil, and the solutions of det (tC1 − C0) = 0 are
called generalized eigenvalues of A(t). If A(t) is given in the Lagrange basis, the
following definition gives an expression for the companion matrix pencil.

Topology of an Arrangement of Implicit and Parametric Curves 63

Definition 2. [25] Consider the matrix polynomial

A(t) = A1L1(t; τ) + A2L2(t; τ) + . . .+ Ad+1Ld+1(t; τ) . (5)

where, for 1 � i � d + 1, Ai are r × r matrices such that A(τi) = Ai. The
corresponding companion matrix pencil is

C0 =

⎛⎜⎜⎜⎜⎜⎝
τ1I A1

τ2I A2

. . .
...

τd+1I Ad+1

−ω1I −ω2I · · · −ωd+1I 0

⎞⎟⎟⎟⎟⎟⎠ , C1 =

⎛⎜⎜⎜⎜⎜⎝
I
I

. . .

I
0

⎞⎟⎟⎟⎟⎟⎠ , (6)

where I and 0 are the identity matrix and the zero matrix, respectively, conformal
with the r × r matrices Ai, for 1 � i � d + 1. The matrices C0 and C1 are of
dimension r(d+ 2) × r(d+ 2).

When computing eigenvalues, it is common to obtain some too big (according
to the initially chosen bound) eigenvalues, which are considered to be infinite
eigenvalues. In addition, clustering methods to combine a set of very close nu-
merical solutions into a single eigenvalue are applied. For more details referring
this numerical aspects, see [26].

3 Arrangements of Real Algebraic Plane Curves

In this section the problem of computing the topology of an arrangement of
real algebraic plane curves is tackled, considering the following cases: a) the
curves are implicitly defined, as presented in Section 3.1, and b) the curves are
parametrically defined, as presented in Section 3.2. In both cases, the curves are
supposed to be defined by values. The following result can be found in many
papers dealing about topology of arrangements of curves (e.g. [27]):

Lemma 2. Let us assume that C1, . . . , Cr are real algebraic plane curves, defined
either implicitly or parametrically. The topology of the arrangements of these
curves is completely determined by the following data:

– The critical points (α, β), which are either:

• critical points of a curve Ci (i.e. singular points or points whose first
coordinate is either locally maximum or locally minimum), or

• intersections of a pair of curves Ci and Cj
– The points (α, yα,l) which are the intersections of the critical lines x = α

with the curves (excluding the critical points).
– The points (γ, yγ,l) which are intersections of the curves with noncritical

lines x = γ, chosen such that two adjacent critical lines are separated by a
noncritical one, such that all γ are rational numbers.

64 J. Caravantes et al.

Therefore, a topology computation algorithm can be divided in the following
steps: 1) Computation of the critical points of each curve. 2) Computation of the
intersection points of each pair of curves. 3) Computation of noncritical points
on critical (vertical) lines. 4) Computation of noncritical points on noncritical
(vertical) lines. 5) Generating the graph that represents the topology of the
arrangement.

In the first case (implicitly defined curves), generic position conditions are
supposed to be verified, as it will be explained below.

The topology computation of an arrangement of curves defined by values is
approached by a sweeping algorithm. For a formal exposition of the theoretical
aspects of the algorithm, see [21].

3.1 Arrangements of Implicit Curves

Let the curves Ci be defined by fi(x, y) = 0, for i = 1, . . . , r. The main problem
in the case of a single curve is computing intersection points between the curve
defined by a polynomial f and one of its partial derivatives, fy. If we consider
the multiple curves case, the unique added problem consists in computing the
intersection points of pairs of curves.

Extending the generic position conditions presented in [21],the following con-
ditions are supposed to hold:

– {f1, ..., fr} are square-free and pairwise coprime.
– No fi has vertical asymptotes.
– Any two critical points of the same curve do not share first coordinate.
– Any two intersection points of a given pair of curves do not share first coor-

dinate.

Therefore, for the rest of this section, each fi(x, y) is a bivariate square-free
polynomial that can be, at least, evaluated. Although the expressions fi(x, y)
may be not available, or costly to be computed and/or manipulated, the values
fi(τk, σl) are supposed to be known.

Let di (resp. ei) be the degree of fi on the variable x (resp. y). Let m =
max{di}, n = max{ei}, and let τ = (τ0 < . . . < τ2m), σ = (σ0 < . . . < σn) be
real numbers.

First of all, for all k = 0, ..., 2m, l = 0, 1, ..., n, the values of the partial
derivatives, w.r.t. y at the given node (τk, σl) is computed, as in [21, Lemma 3]:

∂fi
∂y

(τk, σl) =
∑
t�=l

(fi(τk, σt) − fi(τk, σl))
∏

s�=t(σt − σs)
(σl − σt)

∏
s�=l(σl − σs)

. (7)

Once fi,y = ∂fi
∂y are known by values, fi,yy =

∂fi,y
∂y are computed using the

same method.

Computing the Critical Points of Each Curve. The Bezoutian of fi(x, y)
and fi,y(x, y), with respect to the variable y is computed by values. It has poly-
nomial entries of degree up to 2di (this is the reason of the list τ ’s length)

Topology of an Arrangement of Implicit and Parametric Curves 65

on the variable x, and is called henceforth Bi(x). The Lagrange basis L(x; τ) =

{L0(x; τ), . . . , L2d(t; τ)} is considered. Hence,Bi(x) =
∑2d

k=0 B
k
i Lk+1(x, τ), with

Bk
i = Bi(τk) = (bki (s, t))s,t ∈ Mei(R) where, as in [21, Proposition 8]:

bki (s, t) =
fi(τk, σs)fi,y(τk, σt) − fi(τk, σt)fi,y(τk, σs)

σs − σt
, if s �= t ,

bki (s, s) = fi,y(τk, σs)
2 − fi(τk, σs)fi,yy(τk, σs), otherwise.

(8)

By solving the generalized eigenvalue problem for Bi(x) as in Definition 2,
the real eigenvalues αi,1 < ... < αi,ri are obtained. According to Proposition 1
and Remark 1, these are the x-coordinates of the intersection points of fi and
fi,y. In order to obtain the y-coordinates βi,j of the critical points, which is the
common root of fi(αi,j , y) and fi,y(αi,j , y), it is necessary to compute Bi(αi,j).
Given the fact that f can be evaluated at any point, fi(αi,j , σl), fi,y(αi,j , σl) and
fi,yy(αi,j , σl) are computed (the last two using (7)) for all l = 0, ..., n. Afterwards,
Bi(αi,j) can be computed by values as in (8) (replacing τk by αi,j).

According to Proposition 1 and Remark (1), Bi(αi,j) is a singular matrix.
The following two cases are considered:

1. If rkBi(αi,j) = ei − 1, any nonzero vector [a1, ..., aei] in kerBi(αi,j) is chosen
and the y-coordinate of the critical point is:

βi,j =
σ1a1 + ...+ σeiaei
a1 + ...+ aei

.

2. If rkBi(αi,j) = ei − k with k > 1, a basis of kerBi(αi,j) is chosen and
its elements are organized in a matrix N ∈ Mei×k(R). Let V = (Vh,j) =
(σhj) ∈ M(k+1)×ei(R), which is a submatrix of the transpose of the Vander-
monde matrix. We now compute Z = V N ∈ M(k+1)×ei (R) and its lower

triangulation Ẑ = (Ẑs,t) (i.e. Ẑi,j = 0 when i < j) by Gauss method.
Then, provided generic position, the y-coordinate of the critical point is
βi,j = Ẑ(k+1),k/(kẐk,k)

Computing Intersection Points of a Pair of Curves. The procedure is
similar to the previous subsection, but fi,y is replaced fj. In this way, the Be-
zoutian Bi,j(x) of fi and fj with respect to y is computed by values. Now,Bk

i,j =

Bi,j(τk) = (bki,j(s, t))s,t ∈ Mei,j (R), such that ei,j = max{ei, ej} and:

bki,j(s, t) =
fi(τk, σs)fj(τk, σt) − fi(τk, σt)fj(τk, σs)

σs − σt
, if s �= t ,

bki,j(s, s) = fi,y(τk, σs)fj(τk, σs) − fi(τk, σs)fj,y(τk, σs), otherwise.
(9)

By solving the generalized eigenvalue problem for Bi,j(x), the real eigenvalues
αi,j,1 < · · · < αi,j,ri are obtained. According to Proposition 1 and Remark 1,
these are the x-coordinates of the intersection points of fi and fj. In order to
obtain the y-coordinate, which is the common root of fi(αi,j,k, y) and fj(αi,j , y),
Bi,j(αi,j,k) is computed. The procedure is similar to the one described in the

66 J. Caravantes et al.

previous subsection: fi(αi,j , σl), fj(αi,j , σl), fi,y(αi,j , σl) and fj,y(αi,j , σl) are
computed (the last two, using (7)), for all l = 0, . . . , n. Afterwards Bi,j(αi,j,k) is
computed by values as in (9) (replacing τk by αi,j).

According to Proposition 1 and Remark 1, Bi,j(αi,j,k) is a singular matrix.
There are two possibilities:

1. If rkBi(αi,j,k) = ei,j−1, any nonzero vector [a1, . . . , aei,j] in kerBi(αi,j) that,
due to Lemma 1, is (a1+· · ·+aei,j)[L1(βα;σ), . . . , Ln(βα;σ)], is chosen. Then
the y-coordinate of the critical point is:

βi,j,k =
σ1a1 + · · · + σei,jaei,j
a1 + · · · + aei,j

.

2. If rkBi,j(αi,j,k) = ei,j − l with l > 1, proceeding as in the previous subsec-
tion and assuming generic position, the y-coordinate of the critical point is
βi,j,k = Ẑ(l+1),l/(kẐl,l) , where Ẑ is the lower triangulation of Z = V N ∈
M(l+1)×l(R), and the columns of N form a basis of kerBi,j(αi,j,k).

Checking Conditions. The generic position conditions are checked by using
the following remarks:

Remark 2. If fi had a real vertical asymptote, then the leading coefficient of fi
with respect to y, a polynomial in R[x], would have a root in the x-coordinate
α of such asymptote, and this α would be an eigenvalue of Bi(x). In order to
check this situation, the Lagrange basis {L0(x, τ), ..., L2m(x, τ)} associated to
τ0, ..., τ2m is computed. The leading coefficient of f(α, y) is, according to [21,

Proposition 10], LCα =
∑ei

l=0

∏
s�=l(σl − σs)

∑2m
k=0 f(τk, σl)Lj(α, τ). If it does

not vanish, then x = α is not a vertical asymptote.

Remark 3. Given an eigenvalue α of Bi(x), the condition for βα, as computed
above, to be the only common root of fi(α, y) and fi,y(α, y) is that its multiplicity
as a root of the second one is k = ei−rkBi(α) + 1. Then βα is also a root of
fi,yt(α, y) for all t = 2, ..., k. Through Proposition 1, this happens if and only if,

when considering the subspaces Nt=
⋂t

s=1 nullspace
(
Bezy

(
fi(α, y),

∂sfi
∂ys (α, y)

))
for t = 1, ..., k, the conditions dim(Nt)−dim(Nt−1) = 1 hold for all t = 2, ..., k.

Remark 4. Given an eigenvalue α of Bi,j(x), the condition for βα, as computed
above, to be the only common root of fi(α, y) and fj(α, y) is that the multiplicity
of βα as a root of both polynomials is at least k = ei,j−rkBi,j(α) for any of
the polynomials. Then βα is root also of fi,yt(α, y) and fj,yt(α, y) for all t =
2, ..., k. Through Proposition 1, this happens if and only if, when considering the

subspaces Nt =
⋂t

s=1 nullspace
(

Bezy

(
∂sfi
∂ys (α, y),

∂sfj
∂ys (αj , y)

))
for t = 1, ..., k,

the conditions dim(Nt)−dim(Nt−1) = 1 hold for all t = 2, ..., k.

Computing Noncritical/Intersection Points on a Critical Line. Let
(α, β) be either a critical point of a curve fi(x, y) or an intersection point with

Topology of an Arrangement of Implicit and Parametric Curves 67

fj(x, y). Let also suppose that β is the only root of fi(α, y) (at most) already
known. From previous subsections, we also know the multiplicity mi of β as a
root of fi(α, y) (we can admit mi = 0, if we do not know any root of fi(α, y)).
Our goal now is obtaining all other roots of fi(α, y).

In order to do this, f̂(y) = fi(α,y)
(y−β)mi

is computed by values. It is a polynomial

on y of degree ei − ki, so f̂(σ1), ..., f̂(σei−mi) need to be computed (obviously,
if β happens to be one of the nodes, a different value should be chosen). By
generating the companion matrices (ei − mi + 1) × (ei − mi + 1) with these
values, solving the eigenvalue problem as in Definition 2 (where A is the 1 × 1

polynomial matrix f̂) the remaining roots of fi(α, y) are obtained.

Remark 5. It may happen that several roots of fi(α, y) (e.g., a multiple root,
a shared (different) root with fj(α, y), j �= i and a shared (also different) root
with fk(α, y), k �= i, j) are known. In any case, the multiplicities of all of them
is known (in generic position, only one can be multiple) and so nodes can be
reduced accordingly.

Computing Noncritical Arcs between Critical Lines. After finding the
x-coordinates of all critical points (both of just one curve and intersections), the
values are ordered: α1 < ... < αz. Afterwards, rational numbers γk such that
γ0 < α1 < γ1 < ... < αz < γz are chosen. Nextly, all the roots of fi(γk, y) for all
suitable i and k are computed. The method is exactly as in the previous section
in the case mi = 0.

Generating the Graph. Let k ∈ {1, ..., z}. Let
δk−1,1 < ... < δk−1,sk−1

be the roots of all fi(γk−1, y) (all
are simple, since x = γk−1 is not a critical line, and each
of them annihilates only one polynomial, since x = γk−1

is not an intersection line). Let δk,1 < ... < δk,sk be the
roots of all fi(γk, y) (same properties as with γk−1). Let
βk,1 < ... < βk,tk be the roots of all fi(αk, y). Let mk,i,j

be the multiplicity of βk,j as a root of fi(αk, y), nk,i,j
the multiplicity of δk,j as a root of fi(γk, y) and nk−1,i,j

the multiplicity of δk−1,j as a root of fi(γk−1, y).
At this moment, the nodes of the graph which shape the
topology of the arrangement are available: the dots of
types (α, β) and (γ, δ). The next step consists in gener-
ating the edges, which will be assigned a color in order
to allow the user to distinguish the different curves. The
procedure is the usual one in sweeping algorithms. For
all i = 1, ..., r:

Fig. 1. Edges of
four curves:
mk,1 = [1, 0, 1, 0],
mk,2 = [0, 1, 0, 1],
mk,3 = [0, 2, 0, 0],
mk,4 = [0, 1, 0, 0]

– Due to the generic position, the vector mk,i = [mk,i,1, ...,mk,i,tk] has all
coordinates equal to 1 or 0 except for, at most, one entry. On the other
hand, nk,i = [nk,i,1, ..., nk,i,sk] and nk−1,i = [nk−1,i,1, ..., nk−1,i,sk−1

] are
binary vectors (see Figure 1).

68 J. Caravantes et al.

– If all mk,i,j ∈ {0, 1}, for j = 1, , tk, then the amount of “ones” in mk,i is the
same as in nk,i. Then, the following edges are included with the color of fi:

(αk, βk,j)(γk, δk,l) such that mi,j has the same position among the “ones” of
mk,i as nk,i,l among the ones of nk,i. On the left side, the situation is treated

symmetrically, so the following edges are also added: (γk−1, δk−1,l)(αk, βk,j)
such that mk,i,j has the same position among the “ones” of mk,i as nk−1,i,l

among the “ones” of nk−1,i.
– If there is j0 such that mk,i,j0 > 1, then the amount of “ones” in mk,i is

lesser or equal than the amount of “ones” in nk,i (which can also be zero).
Then the following nodes are joined with an fi-colored edge:

(αk, βk,j), (γk, δk,l) with j < j0, mi,j and nk,i,l of same position
among their respective “ones”

(αk, βk,j), (γk, δk,l) with j > j0, mi,j and nk,i,l of same position
among their respective “ones” in reverse order

After this, if there exist l such that nk,i,l = 1 and (γk, δk,l) is not yet joined,
it will be joined to (αk, βk,j0).

Some Examples. The method has been tested in
some cases getting manageable times with Maple 17
running on an AMD Turion64 × 2 processor at 1.9
GHz with 2GB RAM:
Example 2. The above mentioned computer took
69.521 seconds to provide Figure 2, working with
10 (decimal) digits, with an input of 20 randomly
chosen circles.

Example 3. Consider the curves (y4 − x2 + y)(
(−y2 + x)2 − x4 − 1

100

)
+ y4x4 = 0 and (x+ y)4 +

(x−y)4−2 = 0. The computer took 222.577 seconds
to compute the graph shown in Figure 3, working
with 20 (decimal) digits.

Fig. 2. Graph of 20 ran-
dom circles

Fig. 3. Topological graph (and some details) for the two curves of Example 3

Topology of an Arrangement of Implicit and Parametric Curves 69

3.2 Arrangements of Parametric Curves

In this section, the same problem as in Section 3.1 is considered. Nevertheless,
the below considered curves are parametrically defined by values. Let C1, . . . , Cr
be a family of real curves parametrized by φi(t) = (xi(t), yi(t)), t ∈ R, with
i = 1, . . . , r, where xi(t) and yi(t) are polynomials described by values. The
curves are supposed to be proper (recall that a parametrization is said to be
proper if it is injective for almost all the curve points).

The degrees of xi(t) and yi(t), with respect to t, are mi and ni, respectively,
and di = max (mi, ni), for i = 1, . . . , r. Let τi = (τi,1 < . . . < τi,di+1) and
σi = (σi,1 < . . . < σi,di−1) be sets of given nodes. Although the parametrizations
are not available, or costly to be computed and/or manipulated, the point coordi-
nates {(xi(τi,j), yi(τi,j)) : 1 ≤ j ≤ di+1} and {(xi(σi,j), yi(σi,j)) : 1 ≤ j ≤ di−1}
of each curve Ci are supposed to be known.

Remark 6. Note that in this case, unlike the implicit curves, the possibility of
different nodes for each curve is considered. However, the existence of vertical
asymptotes is also avoided in the parametric case.

The computation of the topology of a single parametric curve has been studied,
in the monomial basis, in [28].

Computing the Critical Points of Each Curve. Our goal in this step is to
compute the singular and ramification points (those whose first coordinate meets
either a local maximum or a local minimum as a function of the parameter) of
the curve Ci. Firstly, the Bezoutian of

p(t, s) =
xi(t) − xi(s)

t− s , q(t, s) =
yi(t) − yi(s)
t− s

with respect to t is computed by values, as follows: for all k = 0, . . . , di − 1, we
compute the matrix Bk

i = Bi(τk) = (bki (u, v))u,v ∈ Mdi−1(R) such that

bki (u, v) =
[xi(τi,u) − xi(σi,k)][yi(τi,v) − yi(σi,k)] − [xi(τi,v) − xi(σi,k)][yi(τi,u) − yi(σi,k)]

(τi,u − σi,k)(τi,v − σi,k)(τi,u − τi,v)
,

if u �= v ,

bki (u, u) =
x

′
i(τi,u)[yi(τi,u) − yi(σi,k)] − y′

i(τi,u)[xi(τi,u) − xi(σi,k)]

(τi,u − σi,k)2
, otherwise.

(10)
The derivatives are computed according to (7), obtaining:

x
′
i(τi,u) =

∑
v �=u

[xi(τi,v) − xi(τi,u)]
∏

l �=u (τi,u − τi,l)
(τi,u − τi,v)

∏
l �=v (τi,v − τi,l)

, (11)

with the obvious modifications for y′i.

70 J. Caravantes et al.

By solving the generalized eigenvalue problem for Bi(s), the real eigenvalues
tsi,1, . . . , t

s
i,si

are obtained, which are the parameter values of the singular points.
Afterwards, in order to compute the ramification points, the generalized eigen-

value problem associated with (τi,u : 1 ≤ u ≤ mi) and (x
′
i(τi,u) : 1 ≤ u ≤ mi) (as

the aim consists in generating the solutions of the equation x
′
i(t) = 0) is solved,

obtaining the real eigenvalues tri,1, . . . , t
r
i,ri

, which are the parameter values of
the ramification points.

Finally, the eigenvalue clustering problem needs to be solved, distinguishing
those eigenvalues coming from the same roots, by following the approach pre-
sented in [26]. In this way, the parameter values ti,1 < . . . < ti,vi are finally
obtained. In order to compute the corresponding cartesian coordinates, the eval-
uation procedure for xi(t) and yi(t) is used:

xi(t) =

di+1∑
k=1

xi(τi,k)
∏di+1

j=1 (t− τi,j)
(t− τi,k)

∏
j �=k (τi,k − τi,j)

, yi(t) =

di+1∑
k=1

yi(τi,k)
∏di+1

j=1 (t− τi,j)
(t− τi,k)

∏
j �=k (τi,k − τi,j)

.

(12)
In order to compute the correct number of critical points, the x-coordinates

of the critical points must be obtained and also there must be identified those
points corresponding to self-intersection of the curve, by following the approach
presented in [26].

Computing the Intersection Points of a Pair of Curves. Our goal in
this step is to compute the intersection points of the curves Ci and Cj. Each
point of intersection (x̃, ỹ) is generated by a pair of real values t̃ and s̃ such that
(x̃, ỹ) = (xi(t̃), yi(t̃)) = (xj(s̃), yj(s̃)). Let us define X(s, t) = xj(s) − xi(t) and
Y (s, t) = yj(s) − yi(t).

By solving the generalized eigenvalue problem for B(t), the Bezoutians of
X(s, t) and Y (s, t) seen as polynomials in s whose coefficients are polynomials
in t, the real eigenvalues tqi,1, . . . , t

q
i,qi,j

are obtained, which are the parameter
values of the intersection points, seen as points of the curve Ci. In order to obtain
the parameter values for the other curve, the process is repeated inverting the
roles of s and t.

Finally, the corresponding cartesian coordinates are computed by using the
evaluation procedure for xi(t), yi(t), xj(s) and yj(s) (see (12)) .

Computing Noncritical Points on Critical Lines. Firstly, let X = {x1 <
. . . < xz} be the x-coordinates of all critical points. For each xl ∈ X , there may
be other noncritical points on some curve Ci sharing the same x-coordinates.
The parameter coordinates of these points are the real generalized eigenvalues
associated with (τi,k : 1 ≤ k ≤ mi + 1) and (xi(τi,k) − xl : 1 ≤ k ≤ mi + 1) (as
we are searching the solutions of the equations xi(t) = xl). Finally, those gen-
eralized eigenvalues already computed in the previous steps must be discarded,
by following the approach presented in [26].

Topology of an Arrangement of Implicit and Parametric Curves 71

Computing Noncritical Points on Noncritical Lines. Rational numbers
γl such that γ0 < x1 < γ1 < . . . xz < γz are chosen and, in a similar way as in
the previous step, for each γl the points on the curves Ci whose x-coordinates
equals γl are computed.

Generating the Graph. All the cartesian points computed in the previous
steps are stored together with the index of the curve they lay on and the cor-
responding parametric coordinate. The segment connection of these points is
realized by applying a procedure based on the signs of x

′
i(tj), as described and

proven in detail in [28].
This step is extremely important, as if the set of rules describing the segment

connection may not be successfully applied, the computing precision must be
increased and the computations repeated.

3.3 Example

In this section we present the main graphical results for the arrangement of 3
parametric curves C1, C2, C3, defined by:

x1(t) = −t3 + t2 + t− 1, y1(t) = t2 − 2 t− 1,
x2(t) = 2 t2 − t, y2(t) = −t3 − t2 + 3 t,

x3(t) = −t3 − t2 + 3 t, y3(t) =
1

2
t2 + t− 1 .

(13)

After applying the algorithm presented in the previous
section, the topological graph in Figures 4 and 5 are
obtained.
The diamond points in the graph correspond to curve
points placed on critical lines and the cross points corre-
spond to curve non critical points on non critical lines.
The algorithm has been implemented in the Symbolic
Computation System Maple Version 17. The computing
times obtained on a 2.27 GHz Intel Core i5 machine
with 4GB of RAM have been:

– singular points: 0.078 s.
– ramification points: 0.078 s.
– intersection points: 1.576 s.
– non critical points on critical lines: 1.248 s.
– non critical points on non critical lines: 1.919 s.

Fig. 4. Graph of C1, C2,
C3

Fig. 5. Zoom near the
origin

4 Conclusions and Ongoing Work

A new method for computing the topology of an arrangement of algebraic plane
curves, defined by implicit and parametric equations, has been presented. In our
approach, the polynomials appearing in the equations are given in the Lagrange

72 J. Caravantes et al.

basis, with respect to a suitable set of nodes. Our method is of sweep-line class,
and its novelty consists in applying algebra by values for the solution of systems
of two bivariate polynomial equations. Moreover, at our best knowledge, previous
related works considered only implicitly defined curves. The following issues
represent main topics of our further work:

– Generalizing the results presented in Section 3.2 to the rational case.
– Solving the arrangement problem for offset curves.
– Solving the arrengement problem for bisector curves.
– Merging all the mentioned cases (implicit, rational parametric, offset and

bisector curves) in a unique arrengement problem.

References

1. Edelsbrunner, H.: Algorithms in Combinatorial Geometry. EATCS Monographs on
Theoretical Computer Science, vol. 10. Springer (1987)

2. Edelsbrunner, H., O’Rourke, J., Seidel, R.: Constructing arrangements of lines and
hyperplanes with applications. SIAM J. Comput. 15, 341–363 (1986)

3. Agarwal, P.K., Sharir, M.: Arrangements and their applications. In: Sack, J.R.,
Urrutia, J. (eds.) Handbook of Computational Geometry, pp. 49–119. Elsevier
(2000)

4. Berberich, E., Eigenwillig, A., Hemmer, M., Hert, S., Mehlhorn, K., Schömer, E.:
A computational basis for conic arcs and boolean operations on conic polygons.
In: Möhring, R.H., Raman, R. (eds.) ESA 2002. LNCS, vol. 2461, pp. 174–186.
Springer, Heidelberg (2002)

5. Wein, R.: High-level filtering for arrangements of conic arcs. In: Möhring, R.H.,
Raman, R. (eds.) ESA 2002. LNCS, vol. 2461, pp. 884–895. Springer, Heidelberg
(2002)

6. Eigenwillig, A., Kettner, L., Schömer, E., Wolpert, N.: Exact, efficient and complete
arrangement computation for cubic curves. Computational Geometry 35, 36–73
(2006)

7. Caravantes, J., Gonzalez-Vega, L.: Improving the topology computation of an ar-
rangement of cubics. Computational Geometry 41, 206–218 (2008)

8. Caravantes, J., Gonzalez-Vega, L.: Computing the topology of an arrangement of
quartics. In: Martin, R., Sabin, M.A., Winkler, J.R. (eds.) Mathematics of Surfaces
2007. LNCS, vol. 4647, pp. 104–120. Springer, Heidelberg (2007)

9. Wolpert, N.: Jacobi curves: Computing the exact topology of arrangements of non-
singular algebraic curves. In: Di Battista, G., Zwick, U. (eds.) ESA 2003. LNCS,
vol. 2832, pp. 532–543. Springer, Heidelberg (2003)

10. Plantinga, S., Vegter, G.: Isotopic approximation of implicit curves and surfaces.
In: Boissonnat, J.D., Alliez, P. (eds.) Symposium on Geometry Processing. ACM
International Conference Proceeding Series, vol. 71, pp. 245–254. Eurographics
Association (2004)

11. Hijazi, Y., Breuel, T.: Computing arrangements using subdivision and interval
arithmetic. In: Chenin, P., Lyche, T., Schumaker, L. (eds.) Curve and Surface
Design: Avignon 2006, pp. 173–182. Nashboro Press (2007)

12. Alberti, L., Mourrain, B., Wintz, J.: Topology and arrangement computation of
semi-algebraic planar curves. Computer Aided Geometric Design 25(8), 631–651
(2008)

Topology of an Arrangement of Implicit and Parametric Curves 73

13. Mourrain, B., Wintz, J.: A subdivision method for arrangement computation of
semi-algebraic curves. In: Emiris, I.Z., Sottile, F., Theobald, T. (eds.) Nonlinear
Computational Geometry. The IMA Volumes in Mathematics and its Applications,
vol. 151, pp. 165–188. Springer (2010)

14. Eigenwillig, A., Kerber, M.: Exact and efficient 2d-arrangements of arbitrary al-
gebraic curves. In: Proceedings of the 9th Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2008, pp. 122–131. SIAM (2008)

15. Berberich, E., Emeliyanenko, P., Kobel, A., Sagraloff, M.: Exact symbolic-numeric
computation of planar algebraic curves. Theoretical Computer Science 491, 1–32
(2013)

16. Shakoori, A.: Bivariate Polynomial Solver by Values. PhD thesis, The University
of Western Ontario (2007)

17. Hermann, T.: On the stability of polynomial transformations between Taylor,
Bézier, and Hermite forms. Numerical Algorithms 13, 307–320 (1996)

18. Berrut, J., Trefethen, L.: Barycentric Lagrange interpolation. SIAM Review 46(3),
501–517 (2004)

19. Higham, N.J.: The numerical stability of barycentric Lagrange interpolation. IMA
Journal of Numerical Analysis 24, 547–556 (2004)

20. Demmel, J.W.: Applied Numerical Linear Algebra. Society for Industrial and Ap-
plied Mathematics, Philadelphia (1997)

21. Corless, R., Diaz-Toca, G., Fioravanti, M., Gonzalez-Vega, L., Rua, I., Shakoori, A.:
Computing the topology of a real algebraic plane curve whose defining equations
are available only “by values”. Comput. Aided Geom. Des. 30(7), 675–706 (2013)

22. Helmke, U., Fuhrmann, P.A.: Bezoutians. Linear Algebra and Its Applications
122/123/124, 1039–1097 (1989)

23. Bini, D., Pan, V.: Polynomial and Matrix Computations. Birkhäuser (1994)
24. Heinig, G., Rost, K.: Algebraic methods for Toeplitz-like matrices and operators.

Operator Theory: Advances and Applications 13 (1984)
25. Corless, R.M.: On a Generalized Companion Matrix Pencil for Matrix Polynomials

Expressed in the Lagrange basis. In: Symbolic-Numeric Computation, pp. 1–18.
Birkhäuser (2006)

26. Corless, R., Gonzalez-Vega, L., Necula, I., Shakoori, A.: Topology determination
of implicitly defined real algebraic plane curves. In: Proceedings of the 5th Inter-
national Workshop on Symbolic and Numeric Algorithms for Scientific Computing
SYNASC 2003, Universitatea din Timisoara. Analele Universitatii din Timisoara,
Matematica - Informatica, vol. XLI, pp. 78–90 (2003)

27. Eigenwillig, A., Kerber, M., Wolpert, N.: Fast and exact geometric analysis of real
algebraic plane curves. In: Proceedings ISSAC 2007 (July 2007)

28. Alcazar, J., Diaz-Toca, G.: Topology of 2d and 3d rational curves. Comput. Aided
Geom. Des. 27, 483–502 (2010)

Finding a Deterministic Generic Position

for an Algebraic Space Curve

Jin-San Cheng and Kai Jin

Key Lab of Mathematics Mechanization
Institute of Systems Science, AMSS, Chinese Academy of Sciences

{jcheng,jinkai}@amss.ac.cn

Abstract. Checking whether an algebraic space curve is in a generic
position or not is an important step for computing the topology of real
algebraic space curve. In this paper, we present an algorithm to find a
deterministic generic position for an algebraic space curve.

Keywords: Algebraic space curve, generic position, weak generic posi-
tion.

1 Introduction

Algebraic space curves are used in computer aided (geometric) design, and ge-
ometric modeling. Computing the topology of algebraic space curves is also a
basic step to compute the topology of algebraic surfaces [4,9]. Most of the ex-
isting work ([1,5,6,8,12]) of computing the topology of algebraic space curves
require the space curve to be in a generic position, though the definitions of the
generic position is different. The generic position property ensures the correct-
ness and completeness of the algorithms for computing the topology of algebraic
space curves(with less calculations), see [1,5,6,8,12]. But checking whether an
algebraic space curve is in a generic position or not is not a trivial task, see
[1,6,9,12]. None of the papers give an algorithm to find a deterministic generic
position for an algebraic space curve. In this paper, we will give a deterministic
algorithm to find a generic position for an algebraic space curve, which is the
main contribution of the paper.

Related Works. Let Q,R,C be the fields of rational numbers, real numbers
and complex numbers respectively. In the following, we always use C = f ∧ g to
represent the algebraic space curve defined by f, g ∈ Q[x, y, z] with gcd(f, g) = 1.
Let πz : (x, y, z) → (x, y), similarly for πy .

In [1], the generic position of an algebraic space curve C is defined as below.

Definition A. We say that C is in a space generic position if πz(C) and πy(C)
are in plane generic position w.r.t. the ox axis, and it satisfies the following three
properties.

1. The leading coefficient of either f or g w.r.t. z, and the leading coefficient of
either f or g w.r.t. y are non-zero constants.

V.P. Gerdt et al. (Eds.): CASC Workshop 2014, LNCS 8660, pp. 74–84, 2014.
c© Springer International Publishing Switzerland 2014

Generic Position of Algebraic Space Curves 75

2. The projections πz and πy of C are injective up to a finite number of excep-
tions.

3. C has no point whose projections onto the xy-plane and the xz-plane are
both multiple.

Condition 3 of Definition A implies that the algebraic space curve here is with-
out multiple points. Note that even for algebraic space curves without multiple
points, Condition 3 may not be satisfied. The authors present methods to check
the conditions in the definition. Checking Condition 1 is trivial. Condition 2 is
checked by Corollary 9. Let h denote the square-free part of Resz(f, g), and let
m denote the square-free part of Resy(f, g), then, Condition 3 is satisfied if

gcd(gcd(Resy(h,
∂h

∂x
),Resy(h,

∂h

∂y
)), gcd(Resz(m,

∂m

∂x
),Resz(h,

∂m

∂z
))) = 1.

The generic position of plane projection curves is checked by Algorithm 6 in
Section 2.

In [12], they study the general case of algebraic space curves whose defining
polynomials may be more than two. They give the following definition.

Definition B. Let C̃ ⊂ C3 be an algebraic space curve and I(C̃) ⊂ C[x, y, z] be
its ideal. We will say that C̃ is in a generic position w. r. t. the projection on the
xy-plane if the following conditions hold.

1. I(C̃) ∩ C[x, y] = I(Ch), the projection curve Ch is in a generic position and
the projection πz : (α, β, γ) ∈ C̃ → (α, β) ∈ Ch is birational,

2. C[C̃] is integral over C[Ch],
3. if (α, β, γ) is a critical point of C̃ then this point is the only one intersection

of C̃ with the line x = α, y = β,
4. if (α, β, γ) is a critical nonsingular point of C̃ then the line x = α, y = β is

not tangent to C̃ at this point,
5. if (α, β, γ) is a plane singular point of C̃ then its tangent plane does not

contain the line x = α, y = β,
6. if (α, β, γ) is nonsingular in C̃ but (α, β) is singular in Ch, then (α, β) is a

node.

They also give a symbolic based algorithm to check the generic position, which
requires the computation of generators of the radical of the ideal, that involves
Gröbner basis computation. For the case that there are only two defining poly-
nomials, they use subresultant method to check birational property of the curve
for the checking. For more details, please see [12].

In the papers [8,9], the authors give another definition (Definition C) of the
generic position for an algebraic space curve. In fact, the definition here is similar
to that of the Definition B for the case that there are only two defining poly-
nomials. Let CC, CR present that we consider the space curve in complex space,
real space.

The curve CR is in a pseudo-generic positionw.r.t. the xy-plane if and only if
almost every point of πz(CC) has only one geometric inverse-image, i.e. generically,
if (α, β) ∈ πz(CC), then π−1

z (α, β) consists one point possibly multiple.

76 J.-S. Cheng and K. Jin

Definition C. The curve CR is in a generic position w.r.t. the xy-plane if and
only if

1. CR is in a pseudo-generic position w.r.t. the xy-plane,
2. D = πz(CR) is in a generic position (as a plane algebraic curve) w.r.t. the
x-direction,

3. any apparent singularity (a plane singularity which does not related to a
space singularity of CR.) of D = πz(CR) is a node.

In their papers, Conditions 1, 2 in Defintion C both are checked by computing
subresultant of certain polynomials. The checking of Condition 3 involves testing
whether the Hessian matrix of the projection curve of the algebraic space curve
at a plane algebraic point is regular or not.

In [6,5], we give a definition of the weak generic position of an algebraic
space curve, see Definition 7, which is weaker than the pseudo-generic position
of an algebraic space curve given before. In [6], we use the technique of checking
pseudo-generic position to certify the weak generic position. But a weak generic
position is enough to compute the topology of a given algebraic space curve [5].

None of the methods above give a deterministic way to find a generic position
for an algebraic space curve. Of course, since there are only finite non-generic
positions, when trying bad positions at most on a fixed times, they can certainly
get a generic position for an algebraic space curve. But it means an increasing
complexity with a factor of a polynomial in the degree of the defining polynomials
comparing to the original ones.

We give a deterministic algorithm to find a weak generic position for an alge-
braic space curve. In [5], we use the technique in this paper to get a certified weak
generic position with which we compute the topology of general algebraic space
curves defined by two polynomials. We implement our algorithm to compute the
topology of a given algebraic space curve in Maple, which contains the algorithm
to compute the weak generic position of an algebraic space curve. The experi-
ments show the efficiency of the whole algorithm. We compute two examples to
show the computing times of our methods comparing to one existing method. It
is efficient especially for space curves with large defining polynomials.

We also give a definition of the generic position (see Definition 12), which is
weaker than Definition C. Condition 3 in Definition C is removed in Definition
12. A deterministic algorithm to find a generic position for an algebraic space
curve is given.

The paper is organized as follows. In the next section, we give some definitions
and results. In Section 3, we present two algorithms to find a (weak) generic
position for an algebraic space curve. We draw a conclusion in the last section.

2 Definitions and Theoretical Results

Let h(x, y) ∈ Q[x, y]. We denote the plane algebraic curve defined by h = 0
as Ch. Let p = (x0, y0) be a point on Ch. We call p as an x-critical point if
h(p) = ∂h

∂y (p) = 0 , a singular point if h(p) = ∂h
∂y (p) = ∂h

∂x (p) = 0.

Generic Position of Algebraic Space Curves 77

Let Cf, g denote the algebraic space curve defined by the polynomials f(x,y,z),
g(x, y, z) ∈ R[x, y, z]. We always use C to replace Cf, g when no ambiguity exists.

The following definitions can be found in [9].
Let I(g1, . . . , gs) be the radical ideal of the ideal I(f, g). Let M(X,Y, Z) be

the s × 3 Jacobian matrix with (∂gi∂x ,
∂gi
∂y ,

∂gi
∂z) as its i-th row. A point p ∈ C is

regular (or smooth) if the rank of M(p) is 2. A point p ∈ C which is not
regular is called singular. A point p = (α, β, γ) ∈ C is x-critical (or critical for
the projection on the x-axis) if the curve C is tangent at this point to a plane
parallel to the yz-plane.

The following two definitions (Definitions 1, 4) can be found in many refer-
ences, for example, in [5,6,13].

Definition 1. Let u, v ∈ Q[x, y], gcd(u, v) = 1, w = Resy(u, v) is the resultant
of the polynomials u, v w.r.t. y. We say u, v are in a generic position w.r.t. y
if the following two conditions are satisfied:

1) gcd(lc(u, y), lc(v, y)) = 1.
2) ∀α ∈ VC(w), u(α, y), v(α, y) have only one common zero in C,

where lc(q, y) is the leading coefficient of q ∈ Q[x, y] w.r.t. y, VC(p) is the zeros
of p in C (Similarly for VR(p) in the rest of the paper).

We can find out the related result of the following theorem in [11,14].

Theorem 2. Let two coprime polynomials u, v ∈ Q[x, y] such that

gcd(lc(u, y), lc(v, y)) = 1.

Let
W (s, x) = Resy(u(x+ sy, y), v(x+ sy, y)),

w(s, x) be the square free part of W (s, x), and D(s) be the discriminant of w(s, x)
w.r.t. x. If ∃s0 ∈ Q, such that

D(s0) �= 0, degy(q(x+ s0 y, y)) = deg(q(x, y)), q = u, v,

where deg (or degy) means the total degree of the polynomial (or the degree
w.r.t. y of the polynomial). Then u(x+s0 y, y) and v(x+s0 y, y) are in a generic
position w.r.t. y.

The theorem gives a deterministic method to find a generic position for a plane
algebraic curve. This technique is already used in [10,7] for bivariate polynomial
system solving. We will give an algorithm to find a generic position for a plane
algebraic curve below (see Algorithm 6). In fact, there are many other methods
to check the generic position for two plane algebraic curves (or a plane algebraic
curve), see [2,3,13] for example.

The following lemma gives an easy way to check the generic position for two
plane algebraic curves in a special case.

Lemma 3 ([7]). Let f, g∈Q[x, y] be square free polynomials, gcd(lc(f, y), lc(g, y))
is a constant, then f, g are in a generic position w.r.t. y if Resy(f, g) is square
free.

78 J.-S. Cheng and K. Jin

Definition 4. Let h be a square free polynomial in Q[x, y]. The real algebraic
plane curve defined by h is in a generic position w.r.t. y if the following two
conditions are satisfied:

1) The leading coefficient of h w.r.t. y is a nonzero constant.
2) ∀α ∈ R, h(α, y), ∂h∂y (α, y) have at most one common distinct zero in C.

The following corollary is deduced from Lemma 3 and Definition 4.

Corollary 5. Let h ∈ Q[x, y] be a square free polynomial, lc(h, y) is a constant,
then the plane curve Ch is in a generic position w.r.t. y if h, ∂h

∂y are in a generic
position w.r.t. y. Thus if the discriminant of h w.r.t. y is square free, Ch is in a
generic position w.r.t. y.

The following algorithm to find a generic position for a plane algebraic curve
is based on Proposition 3.2 in [11].

Algorithm 6. Find a generic position of an algebraic plane curve.
INPUT: A square free polynomial h ∈ Q[x, y].
OUTPUT: A univariate polynomial Q(s) whose zeros contain all the possible
values s such that h(x+ s y, y) is not in a generic position w.r.t. y.

1. Let f := h(x+ s y, y).
2. q(x, s) = sqrfree(Resy(f, ∂f∂y)), where sqrfree(p) is the square free part of the

polynomial p.
3. Q(s) = sqrfree(Resx(q, ∂q∂x)).

Choose any s0 ∈ Q\VR(Q), the curve defined by h(x+s0 y, y) = 0 is in a generic
position, where VC(h) (VR(h)) is all the complex (real) roots of the polynomial
equation h = 0.

We can simply denote Algorithm 6 as

Q(s) = PCGP(h, x, y, s). (1)

Similarly, the algorithm to compute the univariate polynomial related to no-
generic position of two plane curves based on Theorem 2 can be denoted as

Q(s) = P2CGP(f, g, x, y, s). (2)

Definition 7 ([5,6]). Let f, g ∈ Q[x, y, z] be coprime, h = sqrfree(Resz(f, g)).
We say f, g are in a weak generic position w.r.t. z if

1) gcd(lc(f, z), lc(g, z)) = 1.
2) There are only a finite number of (α, β) ∈ VC(h) ⊂ C2 such that f(α, β, z),

g(α, β, z) have more than one distinct common zeros in C.

It is close to but weaker than the definition Pseudo-generic position in [8]. In
the following, we will provide a simple method to find a weak generic position
for an algebraic space curve.

We introduce the map at first. Let

φs : R3 −→ R3

(x, y, z) −→ (x, y + sz, z)

Generic Position of Algebraic Space Curves 79

Assume that C = f∧g for f, g ∈ Q[x, y, z] is not in a weak generic position and
two branches of C, denoted as C1, C2, satisfy πz(C1) = πz(C2). If C1 intersects
C2 at a point p of C, we call p a cylindrical singularity of C.

Theorem 8. Let f, g ∈ Q[x, y, z] be coprime and gcd(lc(f, z), lc(g, z)) = 1.
Then f(x, y, z), g(x, y, z) are in a weak generic position w.r.t. z if and only
if ∃α ∈ C, such that

1. α is not the first coordinate of any cylindrical singularity of C if it exists.
2. f(α, y, z), g(α, y, z) are in a generic position w.r.t. z.

Proof. Let h(x, y) = Resz(f(x, y, z), g(x, y, z)) be the resultant of f(x, y, z) and
g(x, y, z) w.r.t. z.
⇒ If f(x, y, z), g(x, y, z) is in a weak generic position w.r.t. z, then there are only
a finite number of (xi, yi) ∈ C2 such that h(xi, yi) = 0 and f(xi, yi, z), g(xi, yi, z)
have more than one distinct common zeros in C. We choose a complex number
α which is distinct from all of those xi. Let H(y) = Resz(f(α, y, z), g(α, y, z))
and β ∈ C such that H(β) = 0. Actually h(α, β) = 0 since u(α, y) �= 0. Hence
f(α, β, z), g(α, β, z) have at most one common zero in C, which turns out that
f(α, y, z), g(α, y, z) are in a generic position w.r.t. z. Note that there is no cylin-
drical singularity in this case.
⇐ If f ∧ g is not in a weak generic position, then there exists a polynomial
h0(x, y)|h(x, y) such that almost for any p = (x0, y0) ∈ VC(h0), the polyno-
mials f(x0, y0, z), g(x0, y0, z) have more than one distinct common zeros in C

with a finite number of exceptions by Definition 7. For all these exceptions,
the related points correspond to cylindrical singularities by the definition. Thus
∀p = (α, β) ∈ VC(h0), the system {f(α, β, z) = g(α, β, z) = 0} has at least
two distinct solutions in C. This is against to that f(α, y, z), g(α, y, z) are in a
generic position w.r.t. z. Thus, the theorem is proved.

Remark. It is not difficult to find out that the image of the cylindrical singu-
larities of C will be singular points of πz ◦ φs(C) under the composite mapping
πz ◦ φs when s �= 0. Thus when we choose two different s, say s1, s2, we can get
the x-coordinates of the possible cylindrical singularities of C from the singular-
ities of πz ◦φs1(C) and πz ◦φs2(C). So we can use this fact to determine whether
the condition 1 in Theorem 8 is satisfied or not.

According to the above theorem, we can transform the problem of weak
generic position checking of an algebraic space curve into the generic position
checking of the intersection of two plane algebraic curves. Thus the original
problem is greatly simplified.

The following corollary is an extension of Lemma 3. It is useful for the reduced
algebraic space curves. It appears in [1] to check Condition 2 in Definition A.

Corollary 9. Let f, g ∈ Q[x, y, z] be square free polynomials and gcd(lc(f, z),
lc(g, z)) = 1. Then f, g are in a weak generic position w.r.t. z if Resz(f, g) is
square free.

The following corollary is a much simpler way to check the weak generic
position property of an algebraic space curve.

80 J.-S. Cheng and K. Jin

Corollary 10. Let f, g ∈ Q[x, y, z] be square free polynomials and gcd(lc(f, z),
lc(g, z)) = 1. For α ∈ R, if f(α, y, z), g(α, y, z) are in a generic position w.r.t. z
and they have only simple roots, then f, g are in a weak generic position w.r.t.
z. For α ∈ R, if Resz(f(α, y, z), g(α, y, z)) is square free, then f, g are in a weak
generic position w.r.t. z.

Proof. The first part of the corollary can be directly derived from Theorem 8.
Note that the two conditions in Theorem 8 hold directly. The second part can
de deduced from the first part and Lemma 3.

3 The Algorithms for Finding a (Weak) Generic Position
of an Algebraic Space Curve

In this section, we will present deterministic algorithms to find a (weak) generic
position for an algebraic space curve.

The following algorithm is to find a weak generic position for an algebraic
space curve.

Algorithm 11. Finding a weak generic position for an algebraic space curve.
Input: f(x, y, z), g(x, y, z) ∈ Q[x, y, z].
Output: F ∧G (isotopic to f ∧ g) is in a weak generic position w.r.t. z.

1. If deg(f) �= degz(f) and deg(g) �= degz(g), choose proper ci, i = 1, 2 such
that f := f(x+ c1 z, y+ c2 z, z), g := g(x+ c1 z, y+ c2 z, z) satisfy degz(f) =
deg(f) or degz(g) = deg(g).

2. Let H := Resz(f(x, y, z), g(x, y, z)), h := sqrfree(H).
If H = h, return f ∧ g.

3. Else, do
(a) Let q(x) = Resy(h, ∂h∂y), choose a rational number α ∈ Q \ VR(q).

(b) Denote Q(s) = P2CGP(f(α, y, z), g(α, y, z), y, z, s), choose s0 ∈ Q \
VR(Q) ∪ {0}.

(c) Let h0(x, y) = sqrfree(Resz(f(x, y+ s0 z, z), g(x, y+ s0 z, z))) and q̄(x) =
discrim(h0, y).

(d) If α �∈ VR(q̄), return f(x, y + s0 z, z) ∧ g(x, y + s0 z, z);
(e) Else, do

i. Choose β ∈ Q \ VR(q ∗ q̄).
ii. Q1(s) = P2CGP(f(β, y, z), g(β, y, z), y, z, s).

iii. If s0 �∈ VR(Q1), return f(x, y + s0 z, z) ∧ g(x, y + s0 z, z);
Else, choose s1 ∈ Q \ VR(Q ∗Q1), return f(x, y + s1 z, z) ∧ g(x, y +
s1 z, z).

Remark: “Choose” in the algorithm above is to select any number satisfying
the condition. Usually we prefer the one with a small bitsize. It is similar for the
word in Algorithm 13.

Proof for the Correctness and Termination. The termination of the al-
gorithm is clear. We will prove the correctness of the algorithm. Step 1 ensures

Generic Position of Algebraic Space Curves 81

that the gcd of the leading coefficients of f, g w.r.t. z is a constant. In Step 2, the
algebraic space curve is already in a weak generic position if H = h by Corollary
9. Steps 3.a and 3.c compute the x-coordinates of all possible cylindrical sin-
gularities if they exist. Steps 3.a, 3.b, 3.d and 3.e.i ensure that we choose right
x-value which is not equal to the x-coordinate of any cylindrical singularity of
C if it exists. Note that we choose two different projections, thus all cylindrical
singularities appears as singularities of the projection curves. Steps 3.b, 3.e.ii
and 3.e.iii ensure that the two chosen plane curves are in a generic position. So
by the Remark of Theorem 8, we prove the correctness of the algorithm.

We give the definition of generic position for an algebraic space curve below.

Definition 12. Let f, g ∈ Q[x, y, z] be squarefree polynomials. The algebraic
space curve defined by f, g, denoted as C, is called in a generic position w.r.t.
z if

1) f, g are in a weak generic position w.r.t. z
2) The projected plane curve Ch is in a generic position w.r.t. y, where h =

sqrfree(Resz(f, g)).
3) For each x-critical point p of Ch, there is at most one x-critical points of

C whose projection is p.

We give the following deterministic algorithm which finds a generic position
for an algebraic space curve.

Algorithm 13. Finding a deterministic generic position for an algebraic space
curve.
Input: f(x, y, z), g(x, y, z) ∈ Q[x, y, z].

Output: F ∧G (isotopic to f ∧ g) is in a generic position w.r.t. z.

1. If deg(f) �= degz(f) and deg(g) �= degz(g), choose proper ci, i = 1, 2 such
that f := f(x+ c1 z, y+ c2 z, z), g := g(x+ c1 z, y+ c2 z, z) satisfy degz(f) =
deg(f) or degz(g) = deg(g).

2. Let h0(y, z, s) = sqrfree(Resx(f(x, y + s z, z), g(x, y + s z, z))),

Q(s) = PCGP(h0, y, z, s).

3. Let h := sqrfree(Resz(f(x, y, z), g(x, y, z))), q(x) = Resy(h, ∂h∂y), choose a ra-

tional number α ∈ Q \ VR(q).

4. Denote Q1(s) = P2CGP(f(α, y, z), g(α, y, z), y, z, s), choose s1∈Q\VR(Q1∗
Q) ∪ {0}.

5. Let h1(x, y) = sqrfree(Resz(f(x, y + s1 z, z), g(x, y + s1 z, z))) and q̄(x) =
discrim(h1, y).

6. If α ∈ VR(q̄), do

(a) Choose β ∈ Q \ VR(q ∗ q̄).
(b) Q2(s) = P2CGP(f(β, y, z), g(β, y, z), y, z, s).

(c) If s1 ∈ VR(Q2), choose another s1 ∈ Q \ VR(Q ∗Q2) ∪ {0}.

7. f := f(x, y + s1 z, z), g := g(x, y + s1 z, z).

82 J.-S. Cheng and K. Jin

8. Let h2(x, y, s) := Resz(f(x+ s y, y, z), g(x+ s y, y, z)).

Q3(s) = PCGP(h2, x, y, s),

choose s2 ∈ Q \ VR(Q3).

9. f := f(x+ s2 y, y, z), g := g(x+ s2 y, y, z).

Proof for the Correctness and Termination. The termination of the Al-
gorithm 13 is clear. We need only to prove the correctness of the algorithm.
The proof of the correctness of the weak generic position of the algebraic space
curve in this algorithm is similar to the proof of Algorithm 11. We will not
present the similar proof here again, but we confine it to its main ideas. In
Steps 2, 4, 6.b, 6.c also ensure that the x-critical points of the new space curve
are with different (x, y)-coordinates since Step 2 ensure that the projection of
f(x, y+ s1 z, z), g(x, y+ s1 z, z) obtained in Step 7 to the yz-plane is in a generic
position w.r.t. z. Step 8 ensures that the projection of the space curve to the
xy-plane is in a generic position w.r.t. y. Note that the coordinate transforma-
tion in Step 8 does not change the weak generic position property of the space
curve and any two x-critical points of the new space curve will not overlap af-
ter the coordinate transformation. Note that h2(x, y, s) can be represented by
k(x + s y, y), so we can use PCGP to compute a generic position of the curve
h2(x, y, s) = 0 w.r.t. y. Thus the output space curve is in a generic position
w.r.t. z.

In the following, we test two examples taken from [5]. We will find a weak
generic position for the curves with our new method introduced in this paper.
We implemented Algorithm 11 in Maple 15 on a PC with Inter(R)Core(TM)i3-
2100 CPU @3.10GHz 3.10GHz, 2G memory and Windows 7 operating system.
We also implement the main steps of [9] with Maple by ourselves. It is denoted
as SubResultant, the most time-consuming part of it is to compute the subre-
sultant of the two defining polynomials. The core function of SubResultant is
SubresultantChain, which is a function in the package ChainTools of Maple.

The first example is a small one, and the algebraic space curve is not in a
generic position. The input polynomials are:
f = x2 + y2 + z2 − 4, g = (z − 1)

(
x2 + y2 − 3 z2

)
.

It is not in a generic position. Algorithm 11 spends 0.0301 seconds to find a
weak generic position w.r.t. z, while SubResultant spends 0.124 seconds to check
and search a pseudo-generic position.

The second example is a complicated one, actually the algebraic space curve
is in a generic position. The input polynomials are:
f = 2 + 23 y+ z + 2 x− y2z3 + y3z3 + y4z − x2y3 − x3z + x2y2 − x2y− x2z +

yz2−xy3 +xz3 − y2z2 − yz3 +x2z4 + yz4−xz5−xz4 + y5z+ y2z4 +x5z−xy5 +
x3y2 − yz5 + 2 x2y4 + 2 xy4 + 2 x3y − 20 yz + 2 x2z2 − 72 xy2 + 2 xy + 56 xz2 −
2 x4z+2 x3z2−2 x2z3−2 y3z2+2 x3y3−2 x3z3+2 x4z2+2 x5y−2 x4y2−2 x4y+
2 x3yz2 + 2 xyz3 + 2 xy3z− 2 xyz4 − 2 xyz− 2 x3y2z− 2 x2y2z+ 2 xy2z− x2yz−
2 xy3z2+2 x2y3z+2 xy4z+x2yz3−xy2z3−x2yz2−xy2z2+x3yz+x4yz+2 z6+
2 x2 − 11 y2 − 2 z3 + z4 + x6 − 18 y3 + y6 + 2 x3 + 2 z2 + 2 z5 − 2 x4 + 2 y5 − x5,

Generic Position of Algebraic Space Curves 83

g = −2 + y− 84 z− x− 2 xy3z3 − 2 xy2z4 − 2 xy5z + 2 x2yz4 − 2 y3z3 − y4z +
2 x3z−74 x2y+2 x2z−yz2+xy3−y2z2+yz3−x2z4−2 yz4+xz5+xz4+2 y5z+
y2z4−x5z+xy5−x3y2−yz5−x2y4−xy4−95 yz−x2z2 +xy2−17 xz2−2 x4z+
2 x3z2 + 2 x2z3 + y3z2 + x3y3 − 2 x3z3 − x4z2 − 2 x5y + x4y2 − 2 x4y − xyz2 −
x2y2z2 + 2 xyz5 + 2 x2y2z3 − 2 x2y4z − 2 x2y3z2 + 2 x3yz2 − 2 xy3z − 2 xyz4 −
2 xyz + 2 x3y2z + x2y2z − 2 xy2z + 2 x2yz − xy3z2 − 2 x2y3z − xy4z − 2 x2yz3 +
xy2z3 +x2yz2−2 xy2z2 +2 x3yz−2 x4yz−x3y2z2 +x5yz−x4y2z−2 y2−2 z3+
z4 − 2 x6 − y6 + x3 + 2 z2 − 2 z5 + x4 − 2 y5 − x5 − x4yz2 − 2 x3y3z − xy4z2 +
y4z2 + x5z2 + x3z4 − x3y4 + x6y + xz6 − y6z − 12 y2z − 81 xz − 2 y3z − 2 x6z +
2 x4z3 + 2 x2y5 − 2 xy6 + 2 x5y2 − 2 y4z3 − 2 y3z4 − 2 y7 + z7.

Based on Corollary 10, we can find that the algebraic space curve is in a
generic position w.r.t. z by computing a resultant of two bivariate polynomials.
It takes only 0.405 seconds, while SubResultant needs more than 3000 seconds
(We stop after 3000 seconds). This is due to the time-consuming computation
of subresultant sequence for the input polynomials.

4 Conclusion

We discuss how to compute a generic position for an algebraic space curve in
this paper. We present a theorem to certainly find a weak generic position for an
algebraic space curve, which transforms the 3D problem into a 2D problem. The
finding is deterministic. The other two conditions for generic position of a space
curve is certified by deterministically finding a generic position of one (or two)
plane algebraic curve(s). We can find that the algorithms given in this paper can
be optimized. In our full version of the paper, we will optimize the algorithm
and analyze its complexity.

Acknowledgement. The authors would like to thank the anonymous referees
for their helpful comments and suggestions, which led to this revised version.
The work is partially supported by NKBRPC (2011CB302400), NSFC Grants
(11001258, 60821002), SRF for ROCS, SEM.

References

1. Alcázar, J.G., Sendra, J.R.: Computation of the topology of real algebraic space
curves. Journal of symbolic Computation 39, 719–744 (2005)

2. Bouzidi, Y., Lazard, S., Pouget, M., Rouillier, F.: Rational Univariate Representa-
tions of bivariate systems and applications. In: Preceeding of ISSAC. ACM (2013)

3. Cheng, J.S., Gao, X.S., Guo, L.: Root Isolation of Zero-dimensional Polynomial
Systems with Linear Univariate Representation. Journal of Symbolic Computa-
tion 47(7), 843–858 (2012)

4. Cheng, J.-S., Gao, X.-S., Li, M.: Determining the topology of real algebraic sur-
faces. In: Martin, R., Bez, H.E., Sabin, M.A. (eds.) IMA 2005. LNCS, vol. 3604,
pp. 121–146. Springer, Heidelberg (2005)

5. Jin, K., Cheng, J.S.: Isotopic ε-Meshing of Real Algebraic Space Curves. In: SNC
2014 (to appear, 2014) (preprint)

84 J.-S. Cheng and K. Jin

6. Cheng, J.S., Jin, K., Lazard, D.: Certified Rational Parametric Approximation
of Real Algebraic Space Curves with Local Generic Position Method. Journal of
Symbolic Computation 58, 18–40 (2013)

7. Cheng, J.S., Jin, K.: A Generic Position Method For Real Roots Isolation Of Zero-
Dimensional Polynomial System, arXiv:1312.0462

8. Diatta, D.N., Mourrain, B., Ruatta, O.: On the computation of the topology of a
non-reduced implicit space curve. In: ISSAC 2008, pp. 47–54 (2008)

9. Diatta, D.N., Mourrain, B., Ruatta, O.: On the isotopic meshing of an algebraic
implicit surface. Journal Symbolic Computation 47, 903–925 (2012)

10. Diochnos, D.I., Emiris, I.Z., Tsigaridas, E.P.: On the asymptotic and practical com-
plexity of solving bivariate systems over the reals. Journal Symbolic Computation,
Special issue for ISSAC 2007 44(7), 818–835 (2009)

11. González-Vega, L., El Kahoui, M.: An improved upper complexity bound for the
topology computation of a real algebraic plane curve. Journal of Complexity 12(4),
527–544 (1996)

12. El Kahoui, M.: Topology of real algebraic space curves. Journal of Symbolic Com-
putation 43, 235–258 (2008)

13. González-Vega, L., Necula, I.: Efficient topology determination of implicitly defined
algebraic plane curves. Computer Aided Geometric Design 19, 719–743 (2002)

14. Sakkalis, T., Farouki, R.: Singular points of algebraic curves. Journal of Symbolic
Computation 9(4), 405–421 (1990)

Optimal Estimations of Seiffert-Type Means By

Some Special Gini Means

Iulia Costin1 and Gheorghe Toader2

1 Department of Computer Science, Technical University of Cluj-Napoca, Romania
Iulia.Costin@cs.utcluj.ro

2 Department of Mathematics, Technical University of Cluj-Napoca, Romania
Gheorghe.Toader@math.utcluj.ro

Abstract. Let us consider the logarithmic mean L, the identric mean I,
the trigonometric means P and T defined by H. J. Seiffert, the hyperbolic
mean N defined by E. Neuman and J. Sándor, and the Gini mean J .
The optimal estimations of these means by power means Ap and also
some of the optimal estimations by Lehmer means Lp are known. We
prove the rest of optimal estimations by Lehmer means and the optimal
estimations by some other special Gini means Sp. In proving some of the
results we used the computer algebra system Mathematica. We believe
that some parts of the proofs couldn’t be done without the help of such a
computer algebra system (at least by following our way of proving those
results).

Keywords: logarithmic mean, identric mean, Seiffert type means,
power means, Lehmer means, special Gini means, inequalities of means.

1 Introduction

A mean is a function M : IR2
+ → IR+, with the property

min(a, b) ≤M(a, b) ≤ max(a, b), ∀a, b > 0 .

Each mean is reflexive, that is

M(a, a) = a, ∀a > 0 .

This is also used as the definition of M(a, a).
A mean is symmetric if

M(b, a) = M(a, b), ∀a, b > 0 ,

and it is homogeneous (of degree 1) if

M(ta, tb) = t ·M(a, b), ∀a, b, t > 0 .

We shall refer here to the following symmetric and homogeneous means:

V.P. Gerdt et al. (Eds.): CASC Workshop 2014, LNCS 8660, pp. 85–98, 2014.
c© Springer International Publishing Switzerland 2014

86 I. Costin and G. Toader

- the Gini (or sum) means Sp,q , defined by

Sp,q(a, b) =

⎧⎨⎩
(

ap+bp

aq+bq

) 1
p−q

if p �= q ,(
aa

p · bbp
) 1

ap+bp if p = q ;

- the power means Ap = Sp,0 ;
- the arithmetic mean A = A1 ;
- the geometric mean G = A0 = S0,0 ;
- the Lehmer means Lp = Sp+1,p ;
- the special Gini means Sp = Sp−1,1 ;
- the logarithmic mean L defined by

L(a, b) =
a− b

ln a− ln b
, a �= b ;

- the identric mean I defined by

I(a, b) =
1

e

(
aa

bb

) 1
a−b

, a �= b ;

- the similar Gini mean J = S1,1 given by

J (a, b) =
(
aabb

) 1
a+b ;

- the first Seiffert mean P , defined in [16] by

P(a, b) =
a− b

2 sin−1 a−b
a+b

, a �= b ;

- the second Seiffert mean T , defined in [17] by

T (a, b) =
a− b

2 tan−1 a−b
a+b

, a �= b ;

- the Neuman-Sándor mean N , defined in [11] by

N (a, b) =
a− b

2 sinh−1 a−b
a+b

, a �= b .

As L can be represented by

L(a, b) =
a− b

2 tanh−1 a−b
a+b

, a �= b ,

the four means P , T , N , and L are very similar and are called Seiffert-type
means.

Definition 1. For two means M and N , we say that M is less than N, and
we write M < N , if M(a, b) < N(a, b) for ∀a, b > 0, a �= b.

Optimal Estimations of Seiffert-Type Means By Some Special Gini Means 87

For instance, it is known that

L < P < I < A < N < T < J , (1)

as it was shown in [16] and [11].
Some complicated means were estimated by families of simpler means. Let us

consider a family of means Fp, p ∈ IR. It is an increasing family if

Fp < Fq for p < q .

A lower (upper) estimation of a given meanM by this family of means assumes
the determination of some real index p (respectively q) such that Fp < M (re-
spectively M < Fq). A lower estimation is optimal if p is the greatest index r
such that Fr < M. Similarly an upper estimation is optimal if q is the smallest
index r with the property that M < Fr.

Optimal estimations by power means were given for the logarithmic mean in
[10]:

A0 < L < A1/3 , (2)

for the identric mean in [14]:

A2/3 < I < Aln 2 , (3)

for the Gini mean in [12]:
A2 < J , (4)

and for the first Seiffert mean in [8]:

Aln 2/ lnπ < P < A2/3 . (5)

We consider also the following

Definition 2. Two means M < N can be separated by a family of means Fp,
p ∈ IR if there is an index p such that M < Fp < N.

For example, the first separation of the means N < T by power means was given
in [4]:

N < A3/2 < T .

Using the above inequalities, the chain of means (1) was separated in [5] by
power means with equidistant indices:

A0 < L < A1/3 < P < A2/3 < I < A1 < N < A4/3 < T < A5/3 < A6/3 < J .

Optimal estimations by power means were obtained independently in [6] and
[18] for the second Seiffert mean:

Aln 2/ ln(π/2) < T < A5/3 (6)

and in [6], [19] and [2] for the Neuman-Sándor mean:

Aln 2/ ln(ln(3+2
√
2)) < N < A4/3 . (7)

88 I. Costin and G. Toader

It is easy to see that the optimal estimations by power means can be ordered as:

A0 < L < A1/3 < Aln 2/ lnπ < P < A2/3 < I < Aln 2 < Aln 2/ ln(ln(3+2
√
2))

< N < A4/3 < Aln 2/ ln(π/2) < T < A5/3 < A2 < J < A∞ . (8)

In the next sections, we present the known estimations of Seiffert-type means
by Lehmer means, we determine the optimal estimations by the other special
Gini means Sp, and we also compare the estimations by Ap, Lp and Sp. Some
applications are also given.

2 Estimations by Lehmer Means

The first (lower) estimation of one of the above means by a family of means was
published in [9] for the logarithmic mean

L−1/3 < L . (9)

In fact, in [9] it is proved that R1/3< L, where

Rp(a, b) =
abp + bap

ap + bp
,

but it is easy to see that

Rp = S1−p,−p = L−p .

The inequality (9) was shown in [1] to be optimal. A second estimation was given
in [1] for the the identric mean:

L−1/6 < I . (10)

Recently, optimal estimations for the Seiffert means

L−1/6 < P < L0 (11)

and
L0 < T < L1/3 (12)

were given in [21], while in [20] it is proved the optimal inequality

N < L1/6 . (13)

As both the power means and the Lehmer means are Gini means, we want to
compare the above estimations using the following result proved in [13]. Defining
the function

k(u, v) =

{ |u|−|v|
u−v , if u �= v,
sgn(u), if u = v,

Optimal Estimations of Seiffert-Type Means By Some Special Gini Means 89

Theorem 1. The inequality Sp,q ≤ Sr,s holds if and only if p+ q ≤ r + s and:

1. min{p, q} ≤ min{r, s} if 0 ≤ min{p, q, r, s};
2. k(p, q) ≤ k(r, s) if min{p, q, r, s} < 0 < max{p, q, r, s};
3. max{p, q} ≤ max{r, s} if max{p, q, r, s} ≤ 0.

Applying this result to Ap = Sp,0 and Lp = Sp+1,p we get the following

Corollary 1. For p ≥ 0 we have:

1. Ap ≤ Lq if and only if p ≥ 1 and q ≥ (p− 1)/2; and
2. Lq ≤ Ap if and only if 0 ≤ p ≤ 1 and q ≤ (p− 1)/2.

We deduce that:

1. A5/3 ≤ L1/3 thus the second part of (6) implies the second part of (12);
2. L−1/6 ≤ A2/3 thus the first part of (3) implies (10) and the second part of

(5) suggests the first part of (11);
3. L−1/3 ≤ A1/3 thus the second part of (2) suggests (9).
4. A4/3 ≤ L1/6 thus the second part of (7) implies (13).

In all these cases it must be proven that the estimations are optimal. Other
implications among the previous inequalities cannot be deduced this way. The
involved means are not comparable. For instance, the first inequality of (6) is
Ap < T where p = ln 2/ ln(π/2) = 1.5349...We have Ap ≤ L(p−1)/2 but L(p−1)/2

and T are not comparable, as it follows from (12) as (p− 1)/2 < 1/3.
Thus the lower optimal estimations of the mean T by power means and by

Lehmer means are not comparable. The lower optimal estimations of the mean
L by Lehmer means is better than that by power means as A0 = G = L−1/2 <
L−1/3. In all the other cases the optimal estimations by power means are better
than that by Lehmer means.

We can supplement the inequality (13) in the following:

Theorem 2. The optimal estimation of the Neuman-Sándor mean N by Lehmer
means is given by

L0 < N < L1/6 . (14)

Proof. The first part of (14) is also known from (1) as L0 = A. We want now to
prove that the estimation is optimal. We have to prove that for any ε > 0 , the
mean N is not greater than Lε. As

lim
t→∞

Lε(t, 1)

N (t, 1)
= lim

t→∞

tε+1 + 1

tε + 1
·

2 sinh−1 t−1
t+1

t− 1
= 2 sinh−1 1 = 2 ln

(
1 +

√
2
)
> 1,

for t sufficiently large we have Lε(t, 1) > N (t, 1). ��

We underline also similar results for the mean J .

Theorem 3. The optimal estimations of the Gini mean J by Lehmer means
are given by

L1/2 < J < L1 . (15)

90 I. Costin and G. Toader

Proof. The results follow easily from Theorem 1 as Lp = Sp+1,p and J = S1,1.
��

Remark 1. It follows that the estimations of the Gini mean J by Lehmer means
are better than by power means. Indeed A2 < L1/2 and there is no finite index
p such that J < Ap.

Remark 2. The optimal estimations by Lehmer means can be ordered only in
two chains:

L−1/3< L < L0 < N < L1/6 < L1/2 < J < L1 ,

and
L−1/6 < P < I < L0 < T < L1/3 .

Of course we can write also a single chain

L−1/3< L < P < I < L0 < N < T < L1/3 < L1/2 < J < L1 ,

but losing the terms L−1/6 and L1/6 which are not comparable with L and T
respectively. The means L < P < I and N < T cannot be separated by Lehmer
means.

3 Estimations by Other Special Gini Means

In [3] we have determined the optimal estimation of the logarithmic mean by
the special Gini means

S1/3 < L < S1 . (16)

In what follows we find optimal estimations for the means P , I, N , and T , by
special Gini means S. As Ap = Sp,0, Lq = Sp+1,p and Sq = Sq−1,1 we can use
Theorem 1 to obtain

Corollary 2. If p ≥ 0 we have:

1. Ap ≤ Sq if and only if q ≥ 1 and q ≥ p; and
2. Sq ≤ Ap if and only if q ≤ 1 and q ≤ p.

Corollary 3. We have:

1. Sq ≤ Lp if and only if q ≤ 2p+ 1 and one of the following situations holds:
(i) 1 ≤ q ≤ 2, p ≥ q − 1; or

(ii) q > 2, p ≥ 1; or
(iii) −1 < p < 0, q ≤ (1 + 2p)/(1 + p); and

2. Lp ≤ Sq if and only if q ≥ 2p+ 1 and one of the following situations holds:
(i) 1 ≤ q ≤ 2, 0 ≤ p; or

(ii) q > 2, 0 ≤ p ≤ 1; or
(iii) −1 < p < 0, q ≥ (1 + 2p)/(1 + p); or
(iv) p ≤ −1 .

Optimal Estimations of Seiffert-Type Means By Some Special Gini Means 91

These results will be used to deduce some estimations by special Gini means
knowing the optimal estimations with power means and with Lehmer means.

Theorem 4. The optimal estimation of the mean P by Gini means Sq is given
by

S2/3 < P < S1 . (17)

Proof. The first inequality of (17) follows from (11) and the inequality S2/3 <
L−1/6 which can be proved using Corollary 3. We want to prove that the above
estimation is optimal, thus for every ε > 0, S(2+ε)/3 is not less than P . This
happens if there is a t > 1 such that S(2+ε)/3(t, 1) > P(t, 1), that is

(
t+ 1

t(ε−1)/3 + 1

) 3
4−ε

>
t− 1

2 sin−1 t−1
t+1

,

or, equivalently

f(t, ε) = sin−1 t− 1

t+ 1
− t− 1

2

(
t(ε−1)/3 + 1

t+ 1

) 3
4−ε

> 0 .

This follows from the Taylor series expansion

f(t, ε) =
ε

48
(t− 1)

3
+O

(
(t− 1)

4
)
.

Plotting the function f(t, ε) for t ∈ (1.001, 1.01) and ε ∈ (10−3, 10−5), we obtain:

1.002
1.004

1.006
1.008

1.010

t

0.0000

0.0005

0.0010

Ε

0

5.�10�12

1.�10�11

1.5�10�11

2.�10�11

If we plot the function f for ε = 10−4, we obtain:

92 I. Costin and G. Toader

f (t)

t1.02 1.03 1.04 1.05

1.�10�11

2.�10�11

3.�10�11

4.�10�11

so
f(t, 10−4) > 0 for t ∈ (1.01, 1.048) .

The second estimation is known from (1) as S1 = A. To prove its optimality
we have to show that for every ε > 0, S1−ε is not greater than P , thus there is
a t > 1 such that S1−ε(t, 1) < P(t, 1), or(

t+ 1

t−ε + 1

) 1
1+ε

<
t− 1

2 sin−1 t−1
t+1

.

This is equivalent with the condition that the function

g(t, ε) = sin−1 t− 1

t+ 1
− t− 1

2

(
t−ε + 1

t+ 1

) 1
1+ε

< 0, for some t > 1 .

This follows from

lim
t→∞

g(t, ε) = sin−1 1 − 1

2
lim
t→∞

(
t

t+ 1
·
(
t−ε + 1

)) 1
1+ε (

1 − t−1
)
· t ε

1+ε = −∞ .

��

Remark 3. We have used the computer algebra system Mathematica to get the
Taylor series expansion of g, the plots and the interval of positivity for f . We
also used Mathematica in the same way for proving other results from the paper.

Theorem 5. The optimal estimation of the mean I by Gini means Sq is given
by

S2/3 < I < S1 . (18)

Optimal Estimations of Seiffert-Type Means By Some Special Gini Means 93

Proof. The first inequality follows from (17) and (1). The second inequality from
(18) is known from (1) as S1 = A. Their optimality follows from [7], as I is a
Stolarsky mean. ��

Theorem 6. Optimal estimation of the mean N by Gini means Sq is given by

S1 < N < S4/3 . (19)

Proof. The first inequality follows again from (1) as S1 = A. To prove that it
is optimal, we have to show that for every ε > 0, S1+ε is not less than N , thus
there is a t > 1 such that S1+ε(t, 1) > N (t, 1), or

(
t+ 1

tε + 1

) 1
1−ε

>
t− 1

2 sinh−1 t−1
t+1

.

This is equivalent with the condition that the function

f(t, ε) = sinh−1 t− 1

t+ 1
− t− 1

2

(
tε + 1

t+ 1

) 1
1−ε

> 0, for some t > 1 .

Or

lim
t→∞

f(t, ε) = sinh−1 1−1

2
lim
t→∞

t− 1

t+ 1

(
tε + 1

(t+ 1)
ε

) 1
1−ε

= ln
(

1 +
√

2
)
−0.5 = 0.38...

The second estimation from (19) follows from (7) and Corollary 2. To prove its
optimality we have to show that for every ε > 0, S(4−ε)/3 is not greater than N ,
thus there is a t > 1 such that S(4−ε)/3(t, 1) < N (t, 1), or

(
t+ 1

t
1−ε
3 + 1

) 3
2+ε

<
t− 1

2 sinh−1 t−1
t+1

.

This is equivalent with the condition that the function

g(t, ε) =
t− 1

2

(
t
1−ε
3 + 1

t+ 1

) 3
2+ε

− sinh−1 t− 1

t+ 1
> 0, for some t > 1 .

This follows from the Taylor formula

g(t, ε) =
ε

48
(t− 1)

3
+O

(
(t− 1)

4
)
.

Plotting the function g(t, ε) for t ∈ (1.001, 1.01) and ε ∈ (10−3, 10−5), we obtain:

94 I. Costin and G. Toader

1.002
1.004

1.006
1.008

1.010
t

0.0000

0.0005

0.0010
Ε

0

5.�10�12

1.�10�11

1.5�10�11

2.�10�11

If we plot the function g for ε = 10−5, we obtain:

g(t)

t
1.002 1.003 1.004 1.005 1.006 1.007

�5.�10�15

5.�10�15

1.�10�14

so, for instance
g(t, 10−5) > 0 for t ∈ (1.001, 1.007) .

��
Theorem 7. The optimal estimation of the mean T by Gini means Sq is given
by

S1 < T < S5/3 . (20)

Proof. The first inequality follows again from (1) as S1 = A. To prove that it
is optimal, we have to show that for every ε > 0, S1+ε is not less than T , thus
there is a t > 1 such that S1+ε(t, 1) > T (t, 1), or(

t+ 1

tε + 1

) 1
1−ε

>
t− 1

2 tan−1 t−1
t+1

.

This is equivalent with the condition that the function

f(t, ε) = tan−1 t− 1

t+ 1
− t− 1

2

(
tε + 1

t+ 1

) 1
1−ε

> 0, for some t > 1 .

Optimal Estimations of Seiffert-Type Means By Some Special Gini Means 95

Or

lim
t→∞

f(t, ε) = tan−1 1 − 1

2
lim
t→∞

t− 1

t+ 1

(
tε + 1

(t+ 1)
ε

) 1
1−ε

=
π

4
− 1

2
> 0 .

The second inequality in (20) follows from (6) and Corollary 2. To prove its
optimality we have to show that for every ε > 0, S(5−ε)/3 is not greater than T ,
thus there is a t > 1 such that S(5−ε)/3(t, 1) < T (t, 1), or

(
t+ 1

t
2−ε
3 + 1

) 3
1+ε

<
t− 1

2 tan−1 t−1
t+1

.

This is equivalent with the condition that the function

g(t, ε) =
t− 1

2

(
t
2−ε
3 + 1

t+ 1

) 3
1+ε

− tan−1 t− 1

t+ 1
> 0, for some t > 1 .

This follows from the Taylor formula

g(t, ε) =
ε

48
(t− 1)

3
+O

(
(t− 1)

4
)
.

Plotting the function g(t, ε) for t ∈ (1.001, 1.007) and ε ∈ (10−3, 10−5), we
obtain:

1.002
1.004

1.006t

0.0000

0.0005

0.0010
Ε

0

2.�10�12

4.�10�12

6.�10�12

If we plot the function g for ε = 10−5, we obtain:

96 I. Costin and G. Toader

g(t)

t

1.002 1.003 1.004 1.005

1.�10�15

2.�10�15

3.�10�15

4.�10�15

5.�10�15

For instance
g(t, 10−5) > 0 for t ∈ (1.001, 1.00518...) .

��

Remark 4. As J = S2 , we need no estimations for it. We can summarize the
results of this chapter by the following two chains of optimal inequalities

S1/3 < L < S1 < N < S4/3 ,

and
S2/3 < P < I < S1 < N < T < S5/3 < J = S2 .

Let us remark that the pairs of means L < P , P < I and N < T cannot be
separated by special Gini means.

4 Applications

Using again the corollaries 1, 2 and 3, the above optimal estimations can be
ordered as follows:

G = A0 < S1/3 < L−1/3 < L < A1/3 < L0 = S1 = A ,

Aln 2/ lnπ,S2/3 < L−1/6 < P < A2/3 < L0 = S1 = A ,

S2/3 < L−1/6 < A2/3 < I < Aln 2 < L0 = S1 = A ,

A = L0 = S1 < Aln 2/ ln(ln(3+2
√
2)) < N < A4/3 < L1/6 < S4/3 ,

A = L0 = S1 < Aln 2/ ln(π/2) < T < A5/3 < L1/3 < S5/3 , and

A2 < L1/2 < S2 = J = S2 < L1 < A∞ .

We remark that Aln 2/ lnπ is not comparable with S2/3 and L−1/6.
Taking some of these inequalities in the point (t, 1), we get estimations of the

following type,

t+ t1/6

1 + t1/6
<

t− 1

sin−1 t−1
t+1

<

√(
t2/3 + 1

)
2

3

, t �= 1 (21)

Optimal Estimations of Seiffert-Type Means By Some Special Gini Means 97

or

t−
√
t+ 1 < t

t
t+1 <

t2 + 1

t+ 1
, t �= 1 . (22)

But we also have:

P(1 + sin t, 1 − sin t) =
sin t

t
,

T (1 + tan t, 1 − tan t) =
tan t

t
,

N (1 + sinh t, 1 − sinh t) =
sinh t

t
,

L(et, e−t) =
sinh t

t
, and

I(et, e−t) = e
t

tan t−1 ,

so that we can obtain some other trigonometric and hyperbolic inequalities (see
also [15] for many other inequalities of these types).

References

1. Alzer, H.: Best possible estimates for special mean values. Prirod.-Mat. Fak. Ser.
Mat. 23, 331–346 (1993) (German)

2. Chu, Y.-M., Long, B.-Y.: Bounds of the Neuman-Sándor mean using power and
identric mean. Abstract Appl. Anal. Article ID 832591, 6 pages (2013)

3. Costin, I., Toader, G.: Some optimal evaluations of the logarithmic means. Aut.
Comput. Appl. Math. 22, 103–112 (2013)

4. Costin, I., Toader, G.: A nice separation of some Seiffert-type means by power
means. Int. J. Math. Math. Sc., Article ID 430692, 6 pages (2012)

5. Costin, I., Toader, G.: A separation of some Seiffert-type means by power means.
Rev Anal. Num. Th. Approx. 41, 125–129 (2012)

6. Costin, I., Toader, G.: Optimal evaluations of some Seiffert-type means by power
means. Appl. Math. Comput. 219, 4745–4754 (2013)

7. Czinder, P., Páles, Z.: Some comparison inequalities for Gini and Stolarsky means.
Math. Inequal. Appl. 9, 607–616 (2006)

8. Hästö, P.A.: Optimal inequalities between Seiffert’s means and power means. Math.
Inequal. Appl. 7, 47–53 (2004)

9. Karamata, J.: Sur quelques problèmes posés par Ramanujan. J. Indian Math. Soc.
(N. S.) 24, 343–365 (1960)

10. Lin, T.P.: The power and the logarithmic mean. Amer. Math. Monthly 81, 879–883
(1974)

11. Neuman, E., Sándor, J.: On the Schwab-Borchardt mean. Math. Panon. 14, 253–
266 (2003)

12. Neuman, E., Sándor, J.: Comparison inequalities for certain bivariate means. Appl.
Anal. Discrete Math. 3, 46–51 (2009)

13. Páles, Z.: Inequalities for sums of powers. J. Math. Anal. Appl. 131, 271–281 (1988)
14. Pittenger, A.O.: Inequalities between arithmetic and logarithmic means. Univ.

Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. 678–715, 15–18 (1980)

98 I. Costin and G. Toader

15. Sándor, J.: Trigonometric and hyperbolic inequalities arXiv:1105.0859v1
[math.CA], http://arxiv.org/abs/1105.0859

16. Seiffert, H.-J.: Problem 887. Niew Arch. Wisk (Ser. 4) 11, 176–176 (1993)
17. Seiffert, H.: Aufgabe β16. Die Wurzel 29, 221–222 (1995)
18. Yang, Z.: Sharp bounds for the second Seiffert mean in terms of power means,

http://arxiv.org/pdf/1206.5494v1.pdf

19. Yang, Z.: Sharp power means bounds for Neuman-Sándor mean,
http://arxiv.org/pdf/1208.0895v1.pdf

20. Yang, Z.-H.: Estimates for Neuman-Sándor mean by power means and their relative
errors. J. Math. Inequal. 7, 711–726 (2013)

21. Wang, M.-K., Qiu, Y.-F., Chu, Y.-M.: Sharp bounds for Seiffert means in terms of
Lehmer means. J. Math. Inequal. 4, 581–586 (2010)

http://arxiv.org/abs/1105.0859
http://arxiv.org/pdf/1206.5494v1.pdf
http://arxiv.org/pdf/1208.0895v1.pdf

CAS Application to the Construction

of High-Order Difference Schemes for Solving
Poisson Equation�

Grigoriy M. Drozdov1 and Vasily P. Shapeev2

1 Novosibirsk State University, Novosibirsk, Russia
drozdovgrigoriy@gmail.com

2 Novosibirsk State University, Novosibirsk, Russia
Khristianovich Institute of Theoretical and Applied Mechanics,

Russian Academy of Sciences, Novosibirsk, Russia
shapeev@itam.nsc.ru

Abstract. In the present work, a computer algebra system (CAS) is
applied for constructing a new difference scheme of high-accuracy order
for solving boundary-value problem for Poisson equation. The formulae
of the difference scheme are constructed in the symbol form in CAS. CAS
are used for translation of complex formulae to C++ language operators,
calculation of arithmetic values of the constructed scheme coefficients and
matrix elements of a system of linear algebraic equations for the discrete
problem approximating the initial difference problem. Efficiency of the
CAS application and of the schemes constructed with its help is shown.

1 Introduction

Search for the new high-accuracy methods for solving boundary-value problems
for partial differential equations is one of the research directions of computa-
tional mathematics [1–3,6,7,9–12]. It cannot be a substitute for the direction of
multisequencing numerical solutions on supercomputers, but it can essentially
complement it because the high-accuracy methods, being realized on comput-
ers, possess often certain advantages over the low-accuracy ones. E.g., when
a certain high accuracy is to be achieved in a problem solution with limited
computer resources, a high-accuracy method is often more efficient than a low-
accuracy one. An obvious example is the advantage of Runge–Kutta methods
over the Euler one in solving ordinary differential equations. There are many
other examples. Besides, the multisequencing does not eliminate the rounding
errors, while achieving an acceptable result by a low-accuracy method may re-
quire a large number of arithmetic operations, which leads to accumulation of
a large rounding error. The latter makes often the numerical result obtained
by this method unacceptable. One of the problem requiring application of high-
accuracy methods, the direct numerical simulation of instability of gas jets acous-
tics, is studied in [10]. Another problem is the known test problem on movement

� The work was supported by the Russian Foundation for Basic Research (grant No.
13-01-00277).

V.P. Gerdt et al. (Eds.): CASC Workshop 2014, LNCS 8660, pp. 99–110, 2014.
c© Springer International Publishing Switzerland 2014

100 G.M. Drozdov and V.P. Shapeev

of viscous fluid in 2D and 3D lid-driven cavities. The most accurate solutions
of this problem are obtained by the methods of high accuracy. In a number of
works, the methods of high accuracy are used to obtain solutions coinciding in
the values of the solution characteristic parameters with accuracy up to 10−7 –
10−8 [1, 2, 7, 11]. The constructed high-accuracy solutions of this problems re-
produce the vortices thin structure. Many researchers note that the problems of
direct numerical simulation of turbulence (DNS) [8], methods of large-eddy sim-
ulation (LES), problems of computational aeroacoustics require high accuracy
and resolution of fine scales. Otherwise, the characteristics of the objects under
investigation reproduced by the solution will not agree with the reality. Science
history confirms the thesis that its progress, beside different circumstances, is
defined by accuracy of the measurements and computations. For example, it is
the high accuracy of calculations, that primarily allowed Leverrier to discover
planet Neptune in 1846. The list of problems studied in the past, being solved
at present and requiring application of high-accuracy algorithms, no doubt, can
be continued.

The construction of new high-accuracy algorithms faces obvious difficulties.
The equations and their derivation are more complicated than in the case of
low-accuracy methods. Derivation of equations and study of properties of the
high-accuracy numerical methods can be effectively assisted by the systems of
computer algebra (CAS) [4,5,13–16]. We consider here the application of CAS for
derivation of difference schemes with high order of accuracy of solving boundary-
value problems for Poisson equation, which is important in the theory of electric
and magnetic fields, theory of minimal surfaces. The latter is widely used in
construction of individual critical parts of technical devices, optimal in their
volumes.

The method of undetermined coefficients used here is the most general method
for construction of difference schemes. Its application shows if there is the scheme
of a given order for a given equation and mesh stencil. Moreover, if the scheme
does exist, it provides the arbitrary parameters in the scheme’s formulae, i.e.,
it shows the arbitrariness with which one can define the scheme formulae on a
given stencil. It neither causes any additional troubles at construction of schemes
for equations with variable coefficients.

2 Problem Statement and Description of the Method

The boundary-value problem with Dirichlet conditions for Poisson equation in
region Ω = [0, 1] × [0, 1] is considered:⎧⎨⎩

∂2u

∂x2
+
∂2u

∂y2
= f, (x, y) ∈ Ω,

u|∂Ω = g,

(1)

where f(x, y) and g(x, y) are given functions with required smoothness, u(x, y)
is the solution sought. Poisson equation describes electrostatic field, stationary

High-Order Difference Schemes for Solving Poisson Equation 101

temperature field, pressure field, velocity potential field in hydrodynamics. Ef-
ficient methods for solving boundary-value problems for Poisson equation are
important for physics. Computational region Ω is covered by uniform grid with
nodes (xi, yj),where xi = ih, i = 0, 1, . . . , N, yj = jh, j = 0, 1, . . . , N, h = 1

N .
We will describe the construction of the mth order difference scheme on n-

point stencil for numerical solution of problem (1) by the method of undeter-
mined coefficients. We assume that all necessary derivatives of the solution with
respect to variables x and y up to the mth order exist and are continuous. Dif-
ference equation approximating differential equation (1) is sought in the form:

n−1∑
i=0

ciui − φ(x, y) = 0, (2)

where ui are values of sought difference solution of problem (1) in stencil nodes
(i = 0, ..., n−1), ci are sought undetermined coefficients, i is the number of points
in the stencil, φ(x, y) is the nonhomogeneous term of the difference scheme.
Stencils of schemes considered in this work are demonstrated in Fig. 1. At first
we expand all ui from the left-hand side of (2) into the truncated Taylor series in
the stencil central node (denote this point (x0, y0)) taking into account specific
increments of arguments x, y with respect to u0:

u(x, y) =
∑

l+m≤N

1

l!m!

∂l+mu(x0, y0)

∂xl∂ym
(x− x0)l(y − y0)m +O(hN). (3)

We denote the obtained sum by Σ1. Then, we differentiate with respect to
variables x and y equation (1) resolved with respect to derivative uxx. Then,
we eliminate step by step derivatives ∂l+mu(x0, y0)/∂xl∂ym (l = 2, 3, ...,m =
0, 1, ..., (l,m) �= (2, 0)) using relations obtained. We denote the new sum ob-
tained by Σ2. In order to find the nonhomogeneous term φ(x, y), we collect in
Σ2 free (from values of solution u(x, y) and its derivatives) term, which is a
linear combination of f(x0, y0) and different derivatives of f(x, y), and equate
the obtained expression to φ(x, y). Next, we construct a system to determine
ci on the strength of requirement of difference equation (2) to approximate dif-
ferential equation (1) on the chosen stencil with the highest possible order. For
this purpose, we collect coefficients of uxx and uyy in Σ2 and equate them to 1
in order to approximate initial equation (1). Then we equate step by step the
coefficients of higher-order derivatives of u in Σ2 to zero, beginning from the
least order and until number of linearly independent equations become equal to
n, which is the number of unknown ci. The equalities obtained form the system
of linear algebraic equations (SLAE) for coefficients ci.

A posteriori we establish that in our case coefficients ci have the order O(h−2).
Therefore, if we managed to nullify all derivatives of order less than N in the
residual

(uxx + uyy − f(x, y)) − (

n−1∑
i=0

ciui − φ(x, y)) = O(hm), (4)

102 G.M. Drozdov and V.P. Shapeev

then m is equal to N − 2. Obviously, the more n, one can obtain the more
additional equations for determining ci in such a way, and the more m. In this
work, the question was studied, what is the maximal m, which we can achieve at
given n. In particular, on a stencil with n = 13 points, we managed to construct
a scheme of the 10th approximation order (m = 10) using the described method,
on the stencil with n = 25 points – scheme with m = 18 order, with n = 37
points – 26th order scheme, with n = 49 points – 34th order.

Fig. 1. Multipoint stencils for schemes with: a) 6th order, b) 10th order and c) 18th
order

A special attention should be paid to question of approximation for nonho-
mogeneous term φ(x, y), which is a linear combination of different derivatives of
f(x, y) and function f(x, y) itself. As a rule, on n-point stencil in case of high
approximation order schemes, there is no linear combination of values of function
f , approximating φ(x, y) with order m. Therefore, we have to add k new points
to n-point stencil that do not coincide with grid nodes. In this work, additional
points for every specific stencil were taken inside the stencil between the grid
nodes. Number k is chosen as the least from those for which there exists the set
of coefficients ai, (i = 0, ..., n+ k − 1) such that

φ(x, y) =
n+k−1∑
i=0

aifi + O(hm). (5)

We find coefficients ai using the above-described method of undetermined coeffi-
cients on supplemented stencil. In general, this algorithm allows to approximate
any linear combination of derivatives of unknown function. The algorithm of writ-
ing the SLAE with respect to coefficients ai is nearly the same as we described above
in the case of coefficients ci in approximating Poisson equation. Approximation of
f(x, y) is sought in form (5). We expand all fi in the right-hand side of (5) into
the truncated Taylor series in the central node. Then, we equate coefficient affect-
ing f(x, y) with 1 and nullify all other coefficients. The obtained equations form a

High-Order Difference Schemes for Solving Poisson Equation 103

SLAE with respect to sought coefficients ai. For example, for the 6th order scheme
we have obtained the following nonhomogeneous term:

φ(x, y) = f(x, y) +
h2

12

(
f (2,0)(x, y) + f (0,2)(x, y)

)
+

+
h4

360

(
f (4,0)(x, y) + 4f (2,2)(x, y) + f (4,0)(x, y)

)
.

It contains the derivatives of f(x, y) up to the 4th order. If we seek approximation
for φ(x, y) in form (5) with k = 0, then SLAE is underdetermined. And if we sub-
stitute the found coefficients in (5), the power of h in residual term is less thanm.
But if we supplement the stencil by k = 4 additional points, placing it symmet-
rically in regard to the stencil central node, the SLAE is fully determined, and we
obtain an approximation for φ(x, y) with the necessary order. Note that in our case
function f(x, y) does not depend on u and specified in all regionΩ, and, therefore,
stencil supplementation by additional nodes for approximation φ(x, y) does not
introduce significant changes into the algorithm for solving the problem. Clearly,
with increase of the approximation order, which is to be achieved, the number of
additional points increase, since in φ(x, y) more different derivatives of function f
appear. For example, for the 6th order scheme, k = 4 additional points were intro-
duced, for 10th order scheme it was k = 16, for 18th order – k = 188.

3 CAS Application

Method of undetermined coefficients of constructing difference schemes applied
in this work requires a lot of symbolic operations. In simple problems, they often
can be performed without computers. However, in this work they represent a
serious difficulty for researcher. CAS allow us to handle such sort of difficulties
to save time of researcher and to avoid many mistakes usually made at derivation
of formulae, what was proved in works [4, 5, 13–16].

The algorithm for constructing difference scheme using the method of unde-
termined coefficients was realized in CAS Mathematica. Operator Series [...]

in this system allows to expand the function of several variables in the Taylor
series up to the required order. This operator was applied here for expanding the
left-hand side of (2), as it was described in the previous paragraph. In order to
derive differential consequences of equation (1), we differentiate it with respect
to variables x and y using the operator Derivative[...] and write obtained
equations to system by operator Table[...]. Via operator Solve[...], which
is used for solving algebraic equations, we express lower derivatives through
higher ones, and substitute them into expansion of the left-hand side of equa-
tion (2) in Taylor series. In obtained expression, we collect coefficients of solution
derivatives using operator Coefficient[...]. Equating coefficients of uxx and
uyy to 1, and coefficients of higher derivatives to 0, we obtain SLAE for sought
coefficients of difference scheme. In the code, the SLAE constructed is solved
symbolically using again the operator Solve[...]. It is useful to simplify the

104 G.M. Drozdov and V.P. Shapeev

formulae of scheme coefficients obtained from the SLAE solution to group them
and decrease the number of arithmetic operations for their computation. For this
purpose, operators Simplify[...] and FullSimplify[...] are used. Then, us-
ing operator CForm[...], we translate the expressions obtained to form the code
required for substituting into the program in C++ language for numerical solv-
ing of the problem using the difference scheme obtained.

In this work, facilities of CAS Mathematica were used for graphical repre-
sentation of results of numerical solving with the help of operators Plot[...]

and Plot3D[...], as well as constructing images of difference schemes stencils
(Figure 1) and exact solutions graphs (Figure 2,3). Also, it is important, that at
deriving new formulae, CAS allows us to facilitate verification of the formulae
obtained. For example, in this work, the numerical solution convergence obtained
using the constructed difference scheme was preliminarily verified as follows. So-
lution value in any grid node, in our case, at the center point of computational
region, was taken as unknown, and in surrounding grid nodes, the exact solu-
tion of equation (2) was specified, and then the obtained difference scheme was
applied. Then, the grid step was halved, and the same procedure was applied.
Based on the sequence of obtained solution errors in a chosen node, we can pre-
liminarily judge about convergence of solution obtained by the new difference
scheme. Moreover, in case of coincidence of convergence order of numerical solu-
tion with approximation order of the difference scheme this is a reliable criterion
of faultlessness of the constructed formulae.

In the modern conditions of fast development, power and availability of CAS,
they show themselves as a universal and effective instrument for creating new
algorithms, new numerical methods, in particular, algorithms for the numerical
solution of differential equations.

4 Schemes Formulae

Sixth-order approximation for Laplacian, which is the left-hand side of Pois-
son equation, is obtained relatively easily and looks simple. It is more difficult
to obtain the sixth-order approximation for nonhomogeneous term of Poisson
equation. We present here all formulae for schemes with 6th, 10th, and 18th ap-
proximation order of Poisson equation on grid with square cells. The 6th order
scheme on 9-point stencil has the form:

c0uij + c1(ui,j+1 + ui+1,j + ui,j−1 + ui−1,j)+

+c2(ui+1,j+1 + ui+1,j−1 + ui−1,j−1 + ui−1,j+1) = φ(x, y),

c0 = − 10

3h2
, c1 =

2

3h2
, c2 =

1

6h2
,

φ(x, y) = f(x, y) +
h2

12

(
f (2,0)(x, y) + f (0,2)(x, y)

)
+

+
h4

360

(
f (4,0)(x, y) + 4f (2,2)(x, y) + f (4,0)(x, y)

)
.

High-Order Difference Schemes for Solving Poisson Equation 105

Approximation for nonhomogeneous term φ(x, y) of the 6th order scheme looks
as follows:

φ(x, y) = a0fij + a1
(
fi,j+1 + fi+1,j + fi,j−1 + fi−1,j

)
+ a2

(
fi+1,j+1 + fi+1,j−1+

+fi−1,j−1 + fi−1,j+1

)
+ a3

(
fi+ 1

2 ,j+
1
2

+ fi+ 1
2 ,j−

1
2

+ fi− 1
2 ,j−

1
2

+ fi− 1
2 ,j+

1
2

)
,

a0 =
37

90
, a1 =

1

90
, a2 =

1

360
, a3 =

2

15
.

Residual term of the 6th order scheme is written in form:

R(h) = − h6

60480

(
3u(8,0)(x, y)+

+28u(6,2)(x, y) + 70u(4,4)(x, y) + 28u(2,6)(x, y) + 3u(0,8)(x, y)
)
.

Here are 10th order scheme formulae on 13-point stencil:

c0uij + c1(ui,j+1 + ui+1,j + ui,j−1 + ui−1,j) + c2(ui+1,j+1 + ui+1,j−1+

+ui−1,j−1 + ui−1,j+1) + c3(ui,j+2 + ui+2,j + ui,j−2 + ui−2,j) = φ(x, y),

c0 = − 25

7h2
, c1 =

16

21h2
, c2 =

1

7h2
, c3 = − 1

84h2
,

φ(x, y) = f(x, y) +
h2

14

(
f (2,0)(x, y) + f (0,2)(x, y)

)
+

+
h4

1260

(
f (4,0)(x, y) + 14f (2,2)(x, y) + f (4,0)(x, y)

)
−

− h6

10080

(
f (6,0)(x, y) − 5

(
f (2,4)(x, y) + f (4,2)(x, y)

)
+ f (0,6)(x, y)

)
−

− h8

2116800

(
13f (8,0)(x, y) − 28

(
f (2,6)(x, y) + f (6,2)(x, y)

)
+ 13f (0,8)(x, y)

)
.

Approximation for the nonhomogeneous term φ(x, y) of the 10th order scheme
can be written in form:

φ(x, y) = a0fij + a1
(
fi,j+1 + fi+1,j + fi,j−1 + fi−1,j

)
+ a2

(
fi+1,j+1+

fi+1,j−1 + fi−1,j−1 + fi−1,j+1

)
+ a3

(
fi,j+2 + fi+2,j + fi,j−2 + fi−2,j

)
+

+a4
(
fi+ 1

2 ,j+
1
2

+ fi+ 1
2 ,j−

1
2

+ fi− 1
2 ,j−

1
2

+ fi− 1
2 ,j+

1
2

)
+ a5

(
fi,j+ 1

2
+ fi+ 1

2 ,j
+

+fi,j− 1
2

+ fi− 1
2 ,j

)
+ a6

(
fi,j+ 3

2
+ fi+ 3

2 ,j
+ fi,j− 3

2
+ fi− 3

2 ,j

)
+ a7

(
fi+ 1

4 ,j+
1
4
+

+fi+ 1
4 ,j−

1
4

+ fi− 1
4 ,j−

1
4

+ fi− 1
4 ,j+

1
4

)
+ a8

(
fi− 1

2 ,j+1 + fi+ 1
2 ,j+1 + fi+1,j+ 1

2
+

+fi+1,j− 1
2

+ fi+ 1
2 ,j−1 + fi− 1

2 ,j−1 + fi−1,j− 1
2

+ fi−1,j+ 1
2

)
,

a0 =
83

9450
, a1 = − 22

14175
, a2 =

2

2025
, a3 = − 29

793800
, a4 =

632

14175
,

106 G.M. Drozdov and V.P. Shapeev

a5 =
536

14175
, a6 = − 184

33075
, a7 =

2048

14175
, a8 =

64

4725
.

The residual term of the 10th order scheme looks like the following:

R(h) =
h10

838252800

(
167u(0,12)(x, y) − 66u(2,10)(x, y) − 495u(4,8)(x, y)−

−924u(6,6)(x, y) − 495u(8,4)(x, y) − 66u(10,2)(x, y) + 167u(12,0)(x, y)
)
.

Here are the 18th order scheme formulae on the 25-point stencil:

c0uij + c1(ui,j+1 + ui+1,j + ui,j−1 + ui−1,j) + c2(ui+1,j+1 + ui+1,j−1+

+ui−1,j−1 + ui−1,j+1) + c3(ui,j+2 + ui+2,j + ui,j−2 + ui−2,j) + c4(ui+2,j+2+

+ui+2,j−2 + ui−2,j−2 + ui−2,j+2) + c5(ui−1,j+2 + ui+1,j+2 + ui+2,j−1+

+ui+2,j+1 + ui+1,j−2 + ui−1,j−2 + ui−2,j−1 + ui−2,j+1) = φ(x, y),

c0 = − 17459

5082h2
, c1 =

5440

7623h2
, c2 =

3400

22869h2
, c3 = − 95

15246h2
,

c4 = − 1

182952h2
, c5 =

32

22869h2
.

We do not give here formula for nonhomogeneous term φ(x, y) of this scheme
and a fortiori its approximation because of their bulkiness.

5 Numerical Experiments

For conducting numerical experiments, the exact solution was taken as the func-
tion g(x, y) in boundary condition of problem (1). Difference equation was writ-
ten in every interior grid node. As a result, on the N ×N grid, we have obtained
a SLAE with (N − 1)2 equations for (N − 1)2 unknown values of solution in
interior grid nodes. The obtained SLAE was solved by orthogonal method: using
decomposition of the matrix into product of orthogonal and upper triangular
matrices. It is known that this method reduces the solution of the original sys-
tem to solving a system with triangular matrix, the condition number of which is
equal to the condition number of the original SLAE matrix. Using the 10th and
18th order schemes constructed above for determining solution in near-boundary
nodes (adjacent with nodes on region boundary) it is impossible to apply the
scheme formulae because in this case, the stencil contains points not lying in
region Ω. For solving problem on schemes with symmetric difference equations
written on symmetric 13- and 25-point stencils, different approximation of equa-
tion (1) in near-boundary nodes is required. In this work, at solving problem
by the 10th and 18th approximation order schemes, the 6th order scheme on 9-
point stencil was applied for writing difference equation in near-boundary nodes.
It does naturally not exclude a possibility of applying nonsymmetric schemes for
writing different equations in near-boundary grid nodes. Numerical experiments
on solution convergence on a sequence of refining grids with grid step tending to

High-Order Difference Schemes for Solving Poisson Equation 107

zero were conducted. In applied sequence step h of every grid, beginning from
second, was the half of step of previous grid. Numerical solution error was es-
timated in the norm ‖ E(h) ‖C= max

(x,y)∈Ω
|u(x, y) − uh(x, y)|. Convergence order

was computed using formula μ = log2
‖E(h)‖C

‖E(h/2)‖C
.

The first test solution in this work was u(x, y) = e−β(x2+y2). We can see its
graph in Fig. 2.

It represents an isolated peak with steep slopes. The larger parameter β, the
larger gradients this solution has. Here, we compare results at β = 100 and β =
1000. The corresponding right-hand side is f(x, y) = 4(β2(x2+y2)−β)e−β(x2+y2).
Computational regionΩ = [−0.5, 0.5]×[−0.5, 0.5] was taken in order to place the
peak into the region center. Numerical experiments results are shown in Table
1. For comparison, results of solving the problem using the well-known ”cross”
scheme of the 2nd approximation order are also shown in Table 1.

Fig. 2. Exact solution u(x, y) = e−β(x2+y2) with β = 100 and β = 1000

Table 1. Difference solution error E(h) on grid sequence

β = 100 β = 1000

Scheme order h ‖E(h)‖C μ ‖E(h)‖C μ

2 1/10 3.843 · 10−1 — 19.978 —

2 1/20 6.771 · 10−2 2.50 3.11 2.68

2 1/40 1.591 · 10−2 2.09 1.959 · 10−1 3.99

2 1/80 3.921 · 10−3 2.02 4.104 · 10−2 2.25

6 1/10 4.942 · 10−3 — 7.985 —

6 1/20 3.594 · 10−5 7.10 1.13 · 10−1 6.14

6 1/40 4.635 · 10−7 6.28 7.624 · 10−4 7.21

6 1/80 7.110 · 10−9 6.03 8.193 · 10−6 6.54

10 1/10 3.036 · 10−3 — 2.936 —

10 1/20 9.894 · 10−7 11.58 3.086 · 10−1 3.25

10 1/40 8.473 · 10−10 10.19 1.559 · 10−4 10.95

10 1/80 8.407 · 10−13 9.98 8.78 · 10−8 10.79

18 1/10 8.388 · 10−2 — 154283 —

18 1/20 2.844 · 10−7 18.17 307.82 8.97

18 1/40 1.826 · 10−12 17.25 1.19 · 10−3 17.98

18 1/80 2.992 · 10−12 −0.71 3.92 · 10−9 18.21

108 G.M. Drozdov and V.P. Shapeev

We can see from the table that numerical solution converges with the corre-
sponding order of the schemes approximation. At β = 1000, on grid with step
1/80 using the 18th order scheme, error 3.92 · 10−9 is achieved. And the CPU
time was 64.8 seconds, i.e., nearly one minute. While for achieving nearly the
same accuracy using the 6th order scheme it was needed to take step 1/320, and
herewith the error was 1.724 · 10−9 at the CPU time of 12306 seconds (on the
same computer), which is 3.4 hours. Applying the 2nd order scheme, it is rather
more difficult to achieve high accuracy. For example, on grid with step 1/640
with the CPU time of nearly 29 hours, only the error 6.11 · 10−4 was achieved.
Therefore, the high approximation order schemes have significant advantages
over lower order schemes at solving the problem with a given high accuracy.

The second test solution in this work was u(x, y) = G((x − a) cosϕ + (y −

b) sinϕ), where G(ξ) = 1
2 + 1√

π

ξ/
√
2β∫

0

e−x2

dx. The corresponding right-hand side

is f(x, y) = − 1√
2πβ3/2

ξe−
ξ2

2β , where ξ = (x−a) cosϕ+(y− b) sinϕ. This solution

has an interior layer with high gradients in region Ω = [0, 1] × [0, 1], when
parameter β is small, as we can see from graph in Fig. 3. The solution parameters
had the following values: a = 0.6, b = 0.3, ϕ = π/6. Two cases were considered:
β = 0.001 and β = 0.0001.

Fig. 3. Exact solution with interior layer with β = 0.001 and β = 0.0001

The results of numerical experiments are presented in Table 2. We see that
the convergence order in case of this solution is lower than the corresponding
approximation order. It happens due to the high condition number of the SLAE
corresponding to a given problem. Nevertheless, good results are obtained even
on coarse grids. It appeared that the solution obtained by the 10th order scheme
has no significant advantage in accuracy and convergence over the solution ob-
tained by the 6th order scheme. The reason is that in the case of the 10th order
scheme, we used the 6th order scheme in near-boundary nodes. But this solution
has high gradients near boundary as well as inside the computational domain. In
order to increase the convergence order of solution using the 10th order scheme,
it is required to construct additional difference formulae with higher order (more
than 6th) of equation approximation in near-boundary nodes. One of possible

High-Order Difference Schemes for Solving Poisson Equation 109

Table 2. Difference solution error E(h) on grid sequence

β = 0.001 β = 0.0001

Scheme order h ‖E(h)‖C μ ‖E(h)‖C μ

2 1/10 2.749 · 10−1 — 9.31 —

2 1/20 3.96 · 10−2 2.79 1.178 2.98

2 1/40 8.575 · 10−3 2.20 1.55 · 10−1 2.93

6 1/10 9.147 · 10−2 — 1.685 —

6 1/20 9.117 · 10−4 6.65 4.666 · 10−1 1.85

6 1/40 5.531 · 10−5 4.04 2.383 · 10−2 4.29

10 1/10 1.280 · 10−1 — 1.98 —

10 1/20 9.804 · 10−4 7.03 6.049 · 10−1 1.71

10 1/40 5.514 · 10−5 4.15 3.74 · 10−2 4.01

ways of solving this question is the construction of nonsymmetric formulae on
multi-point stencil. Such approach to solving boundary-value problem using high
order schemes for elliptic equation with Dirichlet and Neumann conditions in
region with curvilinear boundary was applied in the work [12].

6 Conclusions

For constructing new high approximation order schemes, the method of unde-
termined coefficients was applied. Using this method on multi-point stencils,
difference schemes with different approximation orders for the Poisson equation
were constructed. Here, for the first time, the 10th and 18th approximation or-
der schemes formulae are given, including formulae for nonhomogeneous term
of the 10th order scheme. CAS application allowed to simplify significantly the
derivation of schemes formulae and their verification. Numerical experiments on
a sequence of refining grids with grid step descended to zero were conducted.
It was established that on smooth solutions of the problem, numerical solution
constructed using high approximation order schemes has high convergence order
and good accuracy even on coarse grids. It was shown that in the issue of con-
structing solution of problem with a given high accuracy when computational
resources are limited, the schemes with high accuracy order have significant ad-
vantages over lower order schemes.

At the current stage of development of science and technology, it is difficult
to say, where and when it will essentially require the use of good facilities of
numerical methods with high accuracy. However, one can assume that in the
future, at developing technologies, in which economical high-precision calculation
will be required or we will need to control physical (or other) high-speed processes
by the way of numerical solution of difficult equations in real time, the numerical
methods with high accuracy order will appear irreplaceable. The construction of
such methods is the objective of computational mathematics.

110 G.M. Drozdov and V.P. Shapeev

References

1. Albensoeder, S., Kuhlmann, H.C.: Accurate three-dimensional lid-driven cavity
flow. J. Comput. Phys. 206(2), 536–558 (2005)

2. Botella, O., Peyret, R.: Benchmark spectral results on the lid-driven cavity flow.
Comput. Fluids 27(4), 421–433 (1998)

3. Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.A.: Spectral Methods in Fluid
Dynamics. Springer (1988)

4. Ganzha, V.G., Mazurik, S.I., Shapeev, V.P.: Symbolic manipulations on a com-
puter and their application to generation and investigation of difference schemes.
In: Caviness, B.F. (ed.) ISSAC 1985 and EUROCAL 1985. LNCS, vol. 204,
pp. 335–347. Springer, Heidelberg (1985)

5. Gerdt, V.P., Blinkov, Y.A., Mozzhilkin, V.V.: Grobner Bases and Genera-
tion of Difference Schemes for Partial Differential Equations. Symmetry, In-
tegrability and Geometry: Methods and Applications (SIGMA) 2, 051 (2006)
arXiv:math.RA/0605334

6. Harten, A.: High resolution schemes for hyperbolic conservation laws. J. Comput.
Phys. 49, 357–393 (1983)

7. Isaev, V.I., Shapeev, V.P.: High-Accuracy Versions of the Collocations and Least
Squares Method for the Numerical Solution of the Navier-Stokes Equations. Com-
put. Math. and Math. Phys. 50(10), 1670–1681 (2010)

8. Lee, M.K., Malaya, N., Moser, R.D.: Petascale direct numerical simulation of tur-
bulent channel flow on up to 786K cores. In: SC 2013 Proceedings of SC13: Inter-
national Conference for High Performance Computing, Networking, Storage and
Analysis, Denver, CO (2013)

9. Lele, S.K.: Compact finite difference schemes with spectral-like resolution. J. Com-
put. Phys. 102(1), 16–42 (1992)

10. Lipavskii, M.V., Tolstykh, A.I.: Tenth-order accurate multioperator scheme and its
application in direct numerical simulation. Comput. Math. and Math. Phys. 53(4),
455–468 (2013)

11. Shapeev, A.V., Lin, P.: An asymptotic fitting finite element method with exponen-
tial mesh refinement for accurate computation of corner eddies in viscous flows.
SIAM J. Sci. Comput. 31(3), 1874–1900 (2009)

12. Shapeev, A.V., Shapeev, V.P.: Difference schemes of increased order of accuracy for
solving elliptical equations in domain with curvilinear boundary. Comput. Math.
and Math. Phys. 40(2), 213–221 (2000)

13. Shapeev, V.P., Vorozhtsov, E.V.: CAS application to the construction of the collo-
cations and least residuals method for the solution of 3D Navier-Stokes equations.
In: Gerdt, V.P., Koepf, W., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2013.
LNCS, vol. 8136, pp. 381–392. Springer, Heidelberg (2013)

14. Steinberg, S.: A problem solving environment for numerical partial differential
equations. In: 6th IMACS Int. Conf. on Applications of Computer Algebra. Ab-
stracts, St.Petersburg, Russia, June 25-28, pp. 98–99 (2000)

15. Stetter, H.J.: Condition analysis of overdetermined algebraic problems. Computer
Algebra in Scientific Computing, pp. 345–365. Springer, Berlin (2000)

16. Valiullin, A.N., Shapeev, V.P., et al.: Symbolic manipulations in the methods of
mathematical physics. In: Symposium Mathematics for Computer Science, Paris,
March 16-18, pp. 431–438 (1982)

On Symbolic Solutions of Algebraic Partial

Differential Equations

Georg Grasegger1,2,�, Alberto Lastra3,��, J. Rafael Sendra3,���,
and Franz Winkler2,†

1 Doctoral Program Computational Mathematics and
2 Research Institute for Symbolic Computation, Johannes Kepler University Linz,

4040 Linz, Austria
3 Dpto. de F́ısica y Matemáticas, Universidad de Alcalá, 28871 Alcalá de Henares,

Madrid, Spain

Abstract. In this paper we present a general procedure for solving first-
order autonomous algebraic partial differential equations in two inde-
pendent variables. The method uses proper rational parametrizations of
algebraic surfaces and generalizes a similar procedure for first-order au-
tonomous ordinary differential equations. We will demonstrate in exam-
ples that, depending on certain steps in the procedure, rational, radical
or even non-algebraic solutions can be found. Solutions computed by the
procedure will depend on two arbitrary independent constants.

Keywords: Partial differential equations, algebraic surfaces, rational
parametrizations, radical parametrizations.

1 Introduction

Recently algebraic-geometric solution methods for first-order algebraic ordinary
differential equations (AODEs) were investigated. A first result on computing
solutions of AODEs using Gröbner bases was presented in [10]. Later in [3] a
degree bound of rational solutions of a given AODE is computed. From this
one might find a solution by solving algebraic equations. The starting point for
algebraic-geometric methods was an algorithm by Feng and Gao [4, 5] which
decides whether or not an autonomous AODE, F (y, y′) = 0 has a rational solu-
tion and in the affirmative case computes it. In the algorithm a proper rational

� Supported by the Austrian Science Fund (FWF): W1214-N15, project DK11.
�� Supported by the Spanish Ministerio de Economı́a y Competitividad

under the project MTM2012-31439. Member of the group ASYNACS
(Ref. CCEE2011/R34).

��� Supported by the Spanish Ministerio de Economı́a y Competitividad un-
der the project MTM2011-25816-C02-01. Member of the group ASYNACS
(Ref. CCEE2011/R34).

† Supported by the Austrian Science Fund (FWF): W1214-N15, project DK11
and by the Spanish Ministerio de Economı́a y Competitividad under the project
MTM2011-25816-C02-01.

V.P. Gerdt et al. (Eds.): CASC Workshop 2014, LNCS 8660, pp. 111–120, 2014.
c© Springer International Publishing Switzerland 2014

112 G. Grasegger et al.

parametrization of an algebraic curve is used. By means of a special property of
this parametrization the existence of a rational solution can be decided. From a
rational solution a rational general solution can be deduced.

This result was then generalized by Ngô and Winkler [14–16] to the non-
autonomous case F (x, y, y′) = 0. Here, parametrizations of surfaces play an
important role. On the basis of a proper parametrization, the algorithm builds a
so called associated system of first-order linear ODEs for which solution methods
exist. With the solution of the associated system, a rational general solution of
the differential equation is computed.

First results on higher order AODEs can be found in [7–9]. Ngô, Sendra and
Winkler [13] also classified AODEs in terms of rational solvability by considering
affine linear transformations. Classes of AODEs are investigated which contain
an autonomous equation. A generalization to birational transformations can be
found in [12].

In [6] a solution method for autonomous AODEs is presented which generalizes
the method of Feng and Gao to the computation of radical and also non-radical
solutions. Again a crucial tool is the parametrization involved in the process.
To the contrary of the previous algorithms also radical parametrizations can be
used in this method. However, this method is not complete, for if it does not
yield a solution, no conclusion on the solvability of the initial AODE can be
drawn.

In this paper we present a generalization of the procedure in [6] to algebraic
partial differential equations (APDEs). We restrict to first-order autonomous
APDEs in two variables. Solutions computed by the procedure will depend on
two arbitrary independent constants. However, the class of functions which may
appear in the solution of the procedure is only defined implicitly since the pro-
cedure depends on the solution of certain ODEs.

In Sect. 2 we will recall and introduce the necessary definitions and concepts.
Then we will present the general procedure for solving APDEs in Sect. 3 and
show some examples.

2 Preliminaries

We consider the field of rational functions IK(x, y) for some field IK of character-
istic zero. By ∂

∂x and ∂
∂y we denote the usual derivative by x and y respectively.

Sometimes we might use the abbreviations ux = ∂u
∂x and uy = ∂u

∂y . The ring of

differential polynomials is denoted as IK(x, y){u}. It consists of all polynomials
in u and its derivatives, i. e.

IK(x, y){u} = IK(x, y)[u, ux, uy, uxx, uxy, uyy, . . .] .

Let IK[x, y]{u} ⊆ IK(x, y){u} be the elements which are polynomial in the vari-
ables x and y. An algebraic partial differential equation (APDE) is given by

F (x, y, u, ux, uy, uxx, uxy, uyy, . . .) = 0

On Symbolic Solutions of Algebraic Partial Differential Equations 113

where F ∈ IK[x, y]{u}. In this paper we restrict to the first-order autonomous
case, i. e. F (u, ux, uy) = 0.

Let IK be the algebraic closure of IK, and A(IK)3 be the 3-dimensional affine
space. An algebraic surface S in A(IK)3 is a two-dimensional algebraic variety,
i.e. S is the zero set of a squarefree non-constant polynomial f ∈ IK[x, y, z], S =
{(a, b, c) ∈ A(ĪK)3 | f(a, b, c) = 0}. We call the polynomial f the defining poly-
nomial. An important aspect of algebraic surfaces is their rational parametriz-
ability. We consider an algebraic surface defined by an irreducible polynomial
f . A triple of rational functions P(s, t) = (p1(s, t), p2(s, t), p3(s, t)) is called a
rational parametrization of the surface if f(p1(s, t), p2(s, t), p3(s, t)) = 0 for all s
and t and the jacobian of P has generic rank 2. We observe that this condition is
fundamental since, otherwise, we are parametrizing a point (if the rank is 0) or
a curve on the surface (if the rank is 1). A parametrization can be considered as
a dominant map P(s, t) : IK2 → S. By abuse of notation we also call this map a
parametrization. We call a parametrization P(s, t) proper if it is a birational map
or in other words if for almost every point (a, b, c) on the surface we find exactly
one pair (s, t) such that P(s, t) = (a, b, c) or equivalently if IK(P(s, t)) = IK(s, t).

Above we have considered rational parametrizations of a surface. However,
we might want to deal with more general parametrizations. If so, we will say
that a triple of differentiable functions Q(s, t) = (q1(s, t), q2(s, t), q3(s, t)) is a
parametrization of the surface if f(Q(s, t)) is identically zero and the jacobian
of Q(s, t) has generic rank 2.

Let F (u, ux, uy) = 0 be an autonomous APDE. We consider the corresponding
algebraic surface by replacing the derivatives by independent transcendental vari-
ables, F (z, p, q) = 0. Given any differentiable function u(x, y) with F (u, ux, uy) =
0, then (u(s, t), ux(s, t), uy(s, t)) is a parametrization. We call this parametri-
zation the corresponding parametrization of the solution. We observe that the
corresponding parametrization of a solution is not necessarily a parametrization
of the associated surface. For instance, let us consider the APDE ux = 0. A
solution would be of the form u(x, y) = g(y), with g differentiable. However, this
solution generates (g(t), 0, g′(t)) that is a curve in the surface; namely the plane
p = 0. Now, consider the APDE ux = λ, with λ a nonzero constant. Hence, the
solutions are of the form u(x, y) = λx + g(y). Then, u(x, y) = λx + y gener-
ates the line (λs+ t, λ, 1) while u(x, y) = λx+ y2 generates the parametrization
(λs + t2, λ, 2t) of the associated plane p = λ. Clearly a solution of an APDE is
a function u(x, y) such that F (u, ux, uy) = 0. The examples above motivate the
following definition.

Definition 1. We say that a solution u(x, y) of an APDE is rational if u(x, y)
is a rational function over an algebraic extension of IK.
We say that a rational solution of an APDE is proper if the corresponding
parametrization is proper.

In the case of autonomous ordinary differential equations, every non-constant
solution induces a proper parametrization of the associated curve (see [4]). How-
ever, this is not true in general for autonomous APDEs. For instance, the solution

114 G. Grasegger et al.

x+ y3 of ux = 1, induces the parametrization (s+ t3, 1, 3t2) which is not proper,
although its jacobian has rank 2.

Remark 2. By the definition of a surface parametrization we know that the ja-
cobian of a proper parametrization has generic rank 2.

3 A Method for Solving First-Order Autonomous APDEs

Let F (u, ux, uy) = 0 be an algebraic partial differential equation. We consider
the surface F (z, p, q) = 0 and assume it admits a proper (rational) surface pa-
rametrization

Q(s, t) = (q1(s, t), q2(s, t), q3(s, t)) .

An algorithm for computing a proper rational parametrization of a surface can
be found for instance in [17]. Here, we will stick to rational parametrizations,
but the procedure which we present will work as well with other kinds of para-
metrizations, for instance radical ones. First results on radical parametrizations
of surfaces can be found in [18]. Assume that L(s, t) = (p1(s, t), p2(s, t), p3(s, t))
is the corresponding parametrization of a solution of the APDE. Furthermore
we assume that the parametrization Q can be expressed as

Q(s, t) = L(g(s, t))

for some invertible function g(s, t) = (g1(s, t), g2(s, t)). This assumption is mo-
tivated by the fact that in case of rational algebraic curves every non-constant
rational solution of an AODE yields a proper rational parametrization of the
associated algebraic curve and each proper rational parametrization can be ob-
tained from any other proper one by a rational transformation. However, in the
case of APDEs, not all rational solutions provide a proper parametrization, as
mentioned in the remark after Definition 1. Now, using the assumption, if we
can compute g−1 we have a solution Q(g−1(s, t)).

Let J be the jacobian matrix. Then we have

JQ(s, t) = JL(g(s, t)) · Jg(s, t) .

Taking a look at the first row we get that

∂q1
∂s

=
∂p1
∂s

(g)
∂g1
∂s

+
∂p1
∂t

(g)
∂g2
∂s

= q2(s, t)
∂g1
∂s

+ q3(s, t)
∂g2
∂s

,

∂q1
∂t

=
∂p1
∂s

(g)
∂g1
∂t

+
∂p1
∂t

(g)
∂g2
∂t

= q2(s, t)
∂g1
∂t

+ q3(s, t)
∂g2
∂t

.

(1)

This is a system of quasilinear equations in the unknown functions g1 and g2.
In case q2 or q3 is zero the problem reduces to ordinary differential equations.
Hence, from now on we assume that q2 �= 0 and q3 �= 0. First we divide by q2:

a1 =
∂g1
∂s

+ b
∂g2
∂s

,

a2 =
∂g1
∂t

+ b
∂g2
∂t

(2)

On Symbolic Solutions of Algebraic Partial Differential Equations 115

with

a1 =
∂q1
∂s

q2
, a2 =

∂q1
∂t

q2
, b =

q3
q2
. (3)

By taking derivatives we get

∂a1
∂t

=
∂2g1
∂s∂t

+
∂b

∂t

∂g2
∂s

+ b
∂2g2
∂s∂t

,

∂a2
∂s

=
∂2g1
∂t∂s

+
∂b

∂s

∂g2
∂t

+ b
∂2g2
∂t∂s

.

(4)

Subtraction of the two equations yields

∂b

∂t

∂g2
∂s

− ∂b
∂s

∂g2
∂t

=
∂a1
∂t

− ∂a2
∂s

. (5)

This is a single quasilinear differential equation which can be solved by the
method of characteristics (see for instance [19]). In case ∂b

∂t = 0 or ∂b
∂s = 0

equation (5) reduces to a simple ordinary differential equation.

Remark 3. If both derivatives of b are zero then b is a constant. Hence, the
left hand side of (5) is zero. In case the right hand side is non-zero we get a
contradiction, and hence there is no solution. In case the right hand side is zero
as well we get from (5) that

0 =
∂a1
∂t

− ∂a2
∂s

=
∂

∂t

(
∂q1
∂s

q2

)
− ∂

∂s

(
∂q1
∂t

q2

)

=
∂2q1
∂t∂sq2 − ∂q1

∂s
∂q2
∂t

q22
−

∂2q1
∂s∂tq2 − ∂q1

∂t
∂q2
∂s

q22

= −
∂q1
∂s

∂q2
∂t − ∂q1

∂t
∂q2
∂s

q22
,

hence,

0 =
∂q1
∂s

∂q2
∂t

− ∂q1
∂t

∂q2
∂s

.

Moreover, since b is constant, q2 = kq3 for some constant k. But this means that
the rank of the jacobian of Q is 1, a contradiction to Q being proper.

Therefore we assume from now on, that the derivatives of b are non-zero. Ac-
cording to the method of characteristics, we need to solve the following system
of first-order ordinary differential equations

ds(t)

dt
= −

∂b
∂t (s(t), t)
∂b
∂s (s(t), t)

,

dv(t)

dt
=

∂a1

∂t (s(t), t) − ∂a2

∂s (s(t), t)

− ∂b
∂s (s(t), t)

.

116 G. Grasegger et al.

The second equation is linear and separable but depends on the solution of the
first. The first ODE can be solved independently. Its solution s(t) = η(t, k)
will depend on an arbitrary constant k. Hence, also the solutions of the second
ODE depends on k. Finally, the function g2 we are looking for is g2(s, t) =
v(t, μ(s, t)) + ν(μ(s, t)) where μ is computed such that s = η(t, μ(s, t)) and ν is
an arbitrary function. In case we are only looking for rational solutions we can
use the algorithm of Ngô and Winkler [14–16] for solving these ODEs.

Knowing g2 we can compute g1 by using (1) which now reduces to a sep-
arable ODE in g1. The remaining task is to compute h1 and h2 such that
g(h1(s, t), h2(s, t)) = (s, t). Then q1(h1, h2) is a solution of the original PDE.

Finally the method reads as

Procedure 4. Given an autonomous APDE, F (u, ux, uy) = 0, where F is irre-
ducible and F (z, p, q) = 0 is a rational surface with a proper rational parame-
trization Q = (q1, q2, q3).

1. Compute the coefficients b and ai as in (3).

2. If ∂b
∂s = 0 and ∂b

∂t �= 0 compute g2 =
∫ ∂a1

∂t − ∂a2
∂s

∂b
∂t

ds + κ(t) and go to step 6

otherwise continue.
If ∂b

∂s = ∂b
∂t = 0 return “No proper solution”.

3. Solve the ODE ds(t)
dt = −

∂b
∂t (s(t),t)
∂b
∂s (s(t),t)

for s(t) = η(t, k) with arbitrary constant

k.

4. Solve the ODE dv(t)
dt =

∂a1
∂t (η(t,k),t)− ∂a2

∂s (η(t,k),t)

− ∂b
∂s (η(t,k),t)

by v(t) = v(t, k) =
∫ ∂a1

∂t (η(t,k),t)− ∂a2
∂s (η(t,k),t)

− ∂b
∂s (η(t,k),t)

dt+ ν(k).

5. Compute μ such that s = η(t, μ(s, t)) and then g2(s, t) = v(t, μ(s, t)).

6. Use the second equation of (2) to compute g1(s, t) = m(s) +
∫
a2 − b∂g2∂t dt.

7. Determine m(s) by using the first equation of (2).

8. Compute h1, h2 such that g(h1(s, t), h2(s, t)) = (s, t).

9. Return the solution q1(h1, h2).

Observe that the proper rational parametrization Q can be computed apply-
ing Schicho’s algorithm (see [17]). In addition, we also observe that the procedure
can be extended to the non-rational algebraic case, if one has an injective para-
metrization, in that case non-rational, of the surface defined by F (z, p, q) = 0.

In general ν will depend on a constant c2 and m on a constant c1. As a special
case of the procedure we will fix ν = c2. This choice is done for simplicity reasons
but we may sometimes refer to cases with other choices which are a subject of
further research.

Furthermore, the procedure can be considered symmetrically in step 2 for the
case that ∂b

∂t = 0 and ∂b
∂s �= 0. In such a case the rest of the procedure has to be

changed symmetrically as well. We will not go into further details.

Theorem 5. Let F (u, ux, uy) = 0 be an autonomous APDE. If Procedure 4
returns a function v(x, y) for input F , then v is a solution of F .

On Symbolic Solutions of Algebraic Partial Differential Equations 117

Proof. By the procedure we know that v(x, y) = q1(h1(x, y), h2(x, y)) with hi
such that g(h1(s, t), h2(s, t)) = (s, t). Since g is a solution of system (1) it fulfills
the assumption that u(g1, g2) = q1 for a solution u . Hence, v is a solution. We
have seen a more detailed description at the beginning of this section. ��

Remark 6. In step 3 and 4 ODEs have to be solved. Depending on the class
of functions to which the requested solution should belong, these ODEs do not
necessarily have a solution. Furthermore, an explicit inverse (step 8) does not
necessarily exist.

It will be a subject of further research, to investigate conditions on cases were
the procedure does definitely not fail.

Now, we will show that the result of Procedure 4 does not change if we post-
pone the introduction of c1 and c2 to the end of the procedure. It is easy to show
that if u(x, y) is a solution of an autonomous APDE then so is u(x + c, y + d)
for any constants c and d. From the procedure we see that in the computation
of g1 we use the derivative of g2 only (and hence c2 disappears). We can write

g2 = ḡ2 + c2 , g1 = ḡ1 + c1

for some functions ḡ1, ḡ2 which do not depend on c1 and c2. Let g = (g1, g2) and
ḡ = (ḡ1, ḡ2). In the step 8 we are looking for a function h such that g◦h = id. Now
g ◦h = ḡ ◦h+(c1, c2). Take h̄ such that ḡ ◦ h̄ = id. Then g ◦ h̄(s−c1, t−c2)) = id.
Hence, we can introduce the constants at the end.

In case the original APDE is in fact an AODE, the ODE in step 4 turns out
to be trivial and the integral in step 7 is exactly the one which appears in the
procedure for AODEs [6]. Of course then g is univariate and so is its inverse. In
this sense, this new procedure generalizes the procedure in [6]. We do not specify
Procedure 4 to handle this case.

In the following we will show some examples which can be solved by Proce-
dure 4. Note, that the examples have more solutions than the one computed below.
In Example 7 for instance, other solutions can be found by choosing different ν,
e. g. ν(x) = c2 + x2. However, the results might not be rational solutions then. In
general the procedure, as stated in this paper, will yield only one solution contain-
ing two arbitrary independent constants. Hence, it will not be a general solution
in the sense of depending on an arbitrary function (compare [11]).

We start with a simple well known APDE which has a rational solution.

Example 7 (Inviscid Burgers’ Equation [1, p. 7]). We consider the autonomous
APDE

F (u, ux, uy) = uux + uy = 0 .

Since F is of degree one in each of the derivatives, it is easy to compute a
parametrization Q =

(
− t

s , s, t
)
. We compute the coefficients

a1 =
t

s3
, a2 = − 1

s2
, b =

t

s
.

118 G. Grasegger et al.

In step 3 we find s(t) = kt and in step 4 we compute v(t) = 1
kt + ν(k). Then

μ(s, t) = s
t and hence (with ν = c2),

g2 =
1

s
+ c2 ,

g1 = − t

s2
+m(s) .

Using step 7 we find out that m(s) = c1. Computing the inverse of g we find

h1 =
1

t− c2
,

h2 =
−s+ c1

(t− c2)
2 .

Finally, we get the solution x−c1
y−c2

.

Procedure 4 can also handle more complicated APDEs.

Example 8. We consider the APDE

0 = F (u, ux, uy)

= uu4x + u3xuy − uu3xuy − u2xu2y + uu2xu
2
y + uxu

3
y − uuxu3y + uu4y .

Then

Q =

(
−

t
(
1 − t+ t2

)
1 − t+ t2 − t3 + t4

, tγ(s, t), γ(s, t)

)
,

with γ(s, t) =
t(−10+7t)(−9+t2)(−1+2t−3t2+3t4−2t5+t6)

2s(45−63t+5t2)(1−t+t2−t3+t4)2
, is a proper parametriza-

tion of the corresponding algebraic surface. This parametrization is not easy to
find. It is computed by first using parametrization by lines and then applying
a linear transformation in s. Alternatively one could use this parametrization
by lines directly. Procedure 4 will find the same solution, but the intermediate
steps need more writing space. Using the procedure with the parametrization Q
we get

g1 = s

(
7

10 − 7t
− 1

t
+

2t

−9 + t2

)
, g2 =

2s
(
45 − 63t+ 5t2

)
(−10 + 7t) (−9 + t2)

,

h1 = −
t
(
−90s3 − 63s2t+ 10st2 + 7t3

)
2s (45s2 + 63st+ 5t2)

, h2 =
−t
s
,

and finally the solution u(x, y) =
xy(x2+xy+y2)

x4+x3y+x2y2+xy3+y4 . As mentioned before,

u(x+ c1, y + c2) with constants c1 and c2 is also a solution.

The procedure presented in this paper is, however, not restricted to rational so-
lutions nor to rational parametrizations as we will see in the following examples.
We start with an example which has a radical solution.

On Symbolic Solutions of Algebraic Partial Differential Equations 119

Example 9 (Eikonal Equation [2, p. 2]). We consider the APDE

F (u, ux, uy) = u2x + u2y − 1 = 0 .

From the rational parametrization of a circle it is easy to see that

Q =

(
s,

1 − t2
1 + t2

,
2t

1 + t2

)
is a parametrization of the corresponding surface. Using the procedure we get
some rational g1 and g2 which yield

h2 =
−s+ c1 ±

√
s2 + t2 − 2sc1 + c21 − 2tc2 + c22

t− c2
,

h1 = ±
√
s2 + t2 − 2sc1 + c21 − 2tc2 + c22 .

Finally, we get the radical solution

u(x, y) = ±
√
x2 + y2 − 2xc1 + c21 − 2yc2 + c22 .

In a further example we compute an exponential solution of an APDE.

Example 10 (Convection-Reaction Equation [1, p. 7]). We consider the APDE

F (u, ux, uy) = ux + cuy − du = 0 ,

where d �= 0. We compute a parametrization Q =
(
s+ct
d , s, t

)
and the coefficients

a1 =
1

ds
, a2 =

c

ds
, b =

t

s
.

Solving the ODEs of steps 3–6 we get

g2 =
c log(t)

d
+ c2 , g1 = c1 +

log(s)

d
.

Computing the inverse of g we find

h1 = eds−dc1 , h2 = e
dt
c −dc2

c .

Finally, we get the solution ed(x−c1)+ce
d(y−c2)

c

d .

4 Conclusion

We have introduced a procedure which, in case all steps are computable, yields a
solution of the input APDE. In case one step of the procedure is not computable
(in a certain class of functions) we cannot give any answer to the question of
solvability of the APDE. We have shown examples of APDEs solvable by the
procedure. These include rational, radical and exponential solutions. The in-
vestigation of rational solutions as well as a possible extension to an arbitrary
number of variables is currently subject to further research.

120 G. Grasegger et al.

References

1. Arendt, W., Urban, K.: Partielle Differenzialgleichungen. Eine Einführung in an-
alytische und numerische Methoden. Spektrum Akademischer Verlag, Heidelberg
(2010)

2. Arnold,V.I.: Lectures onPartial Differential Equations. Springer, Heidelberg (2004)
3. Eremenko, A.: Rational solutions of first-order differential equations. Annales

Academiae Scientiarum Fennicae. Mathematica 23(1), 181–190 (1998)
4. Feng, R., Gao, X.S.: Rational General Solutions of Algebraic Ordinary Differential

Equations. In: Gutierrez, J. (ed.) Proceedings of the 2004 International Sympo-
sium on Symbolic and Algebraic Computation (ISSAC), pp. 155–162. ACM Press,
New York (2004)

5. Feng, R., Gao, X.S.: A polynomial time algorithm for finding rational general
solutions of first order autonomous ODEs. Journal of Symbolic Computation 41(7),
739–762 (2006)

6. Grasegger, G.: Radical Solutions of First Order Autonomous Algebraic Ordi-
nary Differential Equations. In: Nabeshima, K. (ed.) ISSAC 2014: Proceedings of
the 39th International Symposium on International Symposium on Symbolic and
Algebraic Computation, pp. 217–223. ACM, New York (2014)

7. Huang, Y., Ngô, L.X.C., Winkler, F.: Rational General Solutions of Trivariate
Rational Systems of Autonomous ODEs. In: Proceedings of the Fourth Interna-
tional Conference on Mathematical Aspects of Computer and Information Sciences
(MACIS 2011), pp. 93–100 (2011)

8. Huang, Y., Ngô, L.X.C.,Winkler, F.: Rational General Solutions of Trivariate Ratio-
nal Differential Systems. Mathematics in Computer Science 6(4), 361–374 (2012)

9. Huang, Y., Ngô, L.X.C., Winkler, F.: Rational General Solutions of Higher Order
Algebraic ODEs. Journal of Systems Science and Complexity 26(2), 261–280 (2013)

10. Hubert, E.: The General Solution of an Ordinary Differential Equation.
In: Lakshman, Y.N. (ed.) Proceedings of the 1996 International Symposium on
Symbolic and Algebraic Computation (ISSAC), pp. 189–195. ACM Press, New
York (1996)

11. Kamke, E.: Differentialgleichungen: Lösungsmethoden und Lösungen II, Leipzig.
Akademische Verlagsgesellschaft Geest & Portig K.-G. (1965)

12. Ngô, L.X.C., Sendra, J.R., Winkler, F.: Birational Transformations on Algebraic
Ordinary Differential Equations. Tech. Rep. 12–18, RISC Report Series, Johannes
Kepler University Linz, Austria (2012)

13. Ngô, L.X.C., Sendra, J.R., Winkler, F.: Classification of algebraic ODEs with re-
spect to rational solvability. In: Computational Algebraic and Analytic Geometry,
Contemporary Mathematics, vol. 572, pp. 193–210. American Mathematical Soci-
ety, Providence (2012)

14. Ngô, L.X.C., Winkler, F.: Rational general solutions of first order non-autonomous
parametrizable ODEs. Journal of Symbolic Computation 45(12), 1426–1441 (2010)

15. Ngô, L.X.C., Winkler, F.: Rational general solutions of parametrizable AODEs.
Publicationes Mathematicae Debrecen 79(3-4), 573–587 (2011)

16. Ngô, L.X.C., Winkler, F.: Rational general solutions of planar rational systems of
autonomous ODEs. Journal of Symbolic Computation 46(10), 1173–1186 (2011)

17. Schicho, J.: Rational Parametrization of Surfaces. Journal of Symbolic Computa-
tion 26(1), 1–29 (1998)

18. Sendra, J.R., Sevilla, D.: First steps towards radical parametrization of algebraic
surfaces. Computer Aided Geometric Design 30(4), 374–388 (2013)

19. Zwillinger, D.: Handbook of Differential Equations, 3rd edn. Academic Press, San
Diego (1998)

Eigenvalue Method with Symmetry
and Vibration Analysis of Cyclic Structures

Aurelien Grolet1, Philippe Malbos2, and Fabrice Thouverez1

1 LTDS, École centrale de Lyon,
36 avenue Guy de Collongue, 69134 ECULLY cedex, France

2 Université de de Lyon, ICJ CNRS UMR 5208, Université Claude Bernard Lyon 1,
43 boulevard du 11 novembre 1918, 69622 VILLEURBANNE cedex, France

Abstract. We present an application of the eigenvalue method with
symmetry for solving polynomial systems arising in the vibration anal-
ysis of mechanical structures with symmetry properties. The search for
solutions is conducted by the so called multiplication matrix method in
which the symmetry of the system is taken into account by introducing
a symmetry group and by working with the set of invariant polynomials
under the action of this group. Using this method, we compute the peri-
odic solutions of a simple dynamic system modeling a cyclic mechanical
structure subjected to nonlinearities.

1 Introduction

Many engineering problems can be modeled or approximated such that the de-
termination of a solution goes through the resolution of a polynomial system.
In this paper, we are interested in computing periodic solutions of nonlinear
dynamic equations. It can be shown that the Fourier coefficients of the (approx-
imated) periodic solutions can be obtained by solving multivariate polynomial
equations resulting from the application of the harmonic balance method [1, 2].
Moreover, in our applications, the dynamical system is often invariant under
some transformations (cyclic permutation, change of sign, ...) due to the pres-
ence of symmetry in the mechanical structure. This implies that the polynomial
system to be solved is also invariant under some transformations, and so does
its solutions.

Most of the time, in mechanical engineering, polynomial systems are solved
by numeric methods such as a Newton-like algorithms, which output only one
solution of the system depending on the starting point provided. Although the
Newton method is an efficient algorithm (quadratic convergence), the search for
all solutions of a polynomial system cannot be conducted in a reasonable time
using only this method. In the continuation methods framework [3], the study
of bifurcations allows to follow new branches of solution, but does not warranty
that all solutions are computed (e.g., disconnected solutions).

Homotopy methods [2, 4] are an alternative to the Newton algorithm when
searching for all solutions of a multivariate polynomial system. Basically, ho-
motopy methods rely on the continuation of the (known) roots of a starting

V.P. Gerdt et al. (Eds.): CASC Workshop 2014, LNCS 8660, pp. 121–137, 2014.
c© Springer International Publishing Switzerland 2014

122 A. Grolet, P. Malbos, and F. Thouverez

polynomial Q (easy to solve) to the (unknown) roots of a target polynomial P .
The choice of the starting polynomial is a key point on witch depends the ef-
ficiency of the method. Indeed, if the starting polynomial has to many roots
compared to P , most of the continuations will lead to divergent solutions, thus
wasting time and resources. Improvements such as the polyhedral homotopy
aims at reducing the number of divergent path by considering a starting poly-
nomial structurally close to the target polynomial [5]. However, the presence
of high combinatoric or probabilistic considerations makes the application of
the method rather difficult. Moreover, it is not clear how to take into account
symmetry properties in the polyhedral homotopy.

In this context, where numerical methods are not entirely satisfactory, com-
puter algebra appears as an attractive alternative, since there exists an efficient
method especially developed for solving symmetric polynomial systems. This
method, proposed by Gatermann [6], is called eigenvalue method with symme-
try. It is based upon the multiplication matrix method [7–9], where solutions of
the polynomial system are obtained by solving an eigenvalue problem. Moreover,
it takes into account the symmetry of the system. The method is efficient since
taking into account symmetry allow for reducing the size of the multiplication
matrix such that only one representative of each orbit of solution is computed.

In this paper, we propose a new application of the eigenvalue method with
symmetry for computing periodic solutions of nonlinear dynamic systems solved
by the harmonic balance method. It constitutes an attempt to evaluates the
capabilities of computer algebra methods in the field of mechanical engineering,
in which numerical methods are often the norm.

The paper is organized as follow. Section 2 describes systems studied in this
work. The motion’s equations are presented along with a brief recall of the
Harmonic Balance Method, and we derive the polynomial equations solved in
this study. Section 3 concentrates on polynomial systems solving. We recall the
multiplication matrix method and we describe how to take into account the
symmetry of the system. We present our resolution algorithm in this section.
Section 4 is dedicated to numerical examples and the paper ends with some
concluding remarks.

2 Dynamic System and Periodic Solutions

2.1 System of Interest

We aim at finding periodic solutions of (polynomial) nonlinear mechanical struc-
tures with special symmetry. For example, bladed disks subjected to geometric
nonlinearities represent such a structure [1]. Here, only a simple cyclic system
(which can be seen as a reduced order model of a bladed disk, where all blades
have been reduced on their first mode of vibration) will be considered. The model
consists in N Duffing oscillators linearly coupled, governed by the following mo-
tion equation:

müi + cu̇i + (k + 2kc)ui − kcui−1 − kcui+1 + knlu
3
i = fi, i = 1, . . . , N, (1)

Eigenvalue Method with Symmetry and Vibration Analysis 123

where ui(t) represents the temporal evolution of degree of freedom (dof) number
i, and fi(t) represents the temporal evolution of the excitation force acting on
dof number i. If there is no force, note that this dynamic system is invariant
under the action of the dihedral group DN (group of symmetries of a regular
polygon with N sides).

Equation (1) can be written in the following matrix form:

Mü + Cu̇ + Ku + Fnl(u) = Fex, (2)

were u(t) is the vector of dof of size N , M = mI is the mass matrix, C = cI
is the damping matrix, K = (k + 2kc)I − kcIL − kcIU is the stiffness matrix,
and Fnl(u) = knlu

3, Fex(t) = f(t) correspond to the nonlinear and excitation
forces respectively. The excitation forces will be assumed to be periodic, with
period T = 2π

ω , and we will search for periodic solutions u(t), using the harmonic
balance method described hereafter.

2.2 Harmonic Balance Method

The harmonic balance method (HBM) is a widely used method in finding approx-
imation to periodic solutions of nonlinear differential equations such as (2) [1,10].
The solutions u(t) is approximated under the form of a truncated Fourier series,
up to harmonic H , and a system of algebraic equations is derived by applying
Galerkin projections. Let us recall the main steps of the method. At first, each
component ui(t) of the periodic solution u(t) is approximated by ûi(t) under
the following form (H harmonics):

ûi(t) = x(0) +

H∑
k=1

x
(k)
i cos(kωt) + y

(k)
i sin(kωt), i = 1, . . . , N. (3)

We substitute (3) in (2) and we project the resulting equations on the truncated
Fourier basis:

1

T

∫ T

0

R(û)× 1 dt = 0,
2

T

∫ T

0

R(û)× cos(kωt) dt = 0,
2

T

∫ T

0

R(û)× sin(kωt) dt = 0,

(4)
with k = 1, . . . , H , T = 2π/ω and R(û) = M ¨̂u + C ˙̂u + Kû + Fnl(û) −
Fex(t). Equations (4) corresponds to a set of N(2H + 1) algebraic equations
with unknowns x and y.

2.3 Equations to Be Solved

In our application, Fnl(u) = knlu
3 is polynomial and (4) corresponds to a poly-

nomial system. In order to simplify the presentation and reduce the number of
variables, we will only consider a single harmonic approximation of the periodic
solution, i.e., H = 1 in (3). Moreover, as the nonlinearity is odd, no continu-
ous component will be retained, i.e., x(0) = 0 in (3). Under these hypothesis,

124 A. Grolet, P. Malbos, and F. Thouverez

(4) corresponds to a system of 2N polynomial equations which can be written
in the following form (dropping the harmonic index (k)):

α(ω)xi + δ(ω)yi − βxi−1 − βxi+1 + γxi(x
2
i + y2i) = f ci , i = 1, . . . , N,

α(ω)yi − δ(ω)xi − βyi−1 − βyi+1 + γyi(x
2
i + y2i) = f si , i = 1, . . . , N,

(5)

where f ci (resp. f si) denotes the amplitude of the excitation forces relative to the
cos(ωt) (resp. sin(ωt)) term, and with the following expression for the different
coefficients:

α(ω) = k + 2kc − ω2m, β = kc, γ =
3

4
knl, δ(ω) = ωc.

In our application, we are interested in forced and free solutions.

Forced Solutions. In the forced case (fc �= 0 or fs �= 0), the angular frequency
ω is set by the excitation forces and (5) will be solved for x and y. Depending on
the symmetry of the excitation forces, System (5) may present some invariance
properties. We will choose f ci = 1, f si = 0 for all i = 1, . . . , N so that System (5)
will be invariant under the action of the dihedral group DN .

Free Solutions. In the free case, we aims at finding solutions of an unforced,
undamped version of System (2), also called nonlinear normal modes (NNM)
[11–13]. In order to simplify we will only search for solutions where all dof vibrate
"in-phase" (monophase NNM [14]) by imposing yi = 0 for all i = 1, . . . , N , thus
resulting in the following polynomial system with N equations:

α(ω)xi − βxi−1 − βxi+1 + γx3i = 0, i = 1, . . . , N. (6)

The angular frequency ω will be set to an arbitrary value and System (6) will
be solved for x. Again (6) is invariant under the action of the dihedral group
DN = Cn × C2. The system is also invariant under change of sign, characterized
by the group C2 = {e, b | b2 = e} with b(x) = −x.

3 Solving Multivariate Polynomial Systems

In this section, we present the method used to solve symmetric polynomial sys-
tems. We describe the eigenvalue method and we show how to include symmetry
of the system in order to reduce the number of solutions as proposed in [6],
leading to the so called eigenvalue method with symmetry. Finally we propose
an algorithm to summarize the process.

3.1 Notation and Gröbner Basis

We will denote by C[x] the ring of multivariate polynomials with complex
coefficients in the variables x = (x1, . . . , xn). We will consider the graded re-
verse lexicographic order on C[x].We will denote by lm(f) and lc(f) the lead-
ing monomial and the leading coefficient of a polynomial f , we will denote by
lt(f) = lc(f)lm(f) its leading term.

Eigenvalue Method with Symmetry and Vibration Analysis 125

Given a multivariate polynomial system P (x) = [p1(x), . . . , pn(x)], with
pj ∈ C[x], we denote by I = 〈P 〉 = 〈p1, . . . , pn〉 the ideal of C[x] generated
by the polynomial system P . We denote G a Gröbner basis of I, and nf(·)
the normal form operator. The set G being a Gröbner basis, the monomials
B = {xα | xα /∈ 〈lt(G)〉} form a basis of the algebra A = C[x]/I, defined as
the quotient of C[x] by the ideal I.

If the polynomial system P (x) = 0 has only a finite number of solutions (say
D solutions), the ideal I is zero-dimensional, and it can be shown [6] that A is
of finite dimension D.

3.2 Multiplication Matrices Method

Given a polynomial f in C[x], we consider the map mf : A → A, defined by
mf (h) = fh, for any h in A. Since A is a finite-dimensional algebra the map mf

can be represented by a matrix Mf relative to the basis B. The matrix Mf is
called multiplication matrix and it is characterized by the relation f B = Mf B
(modulo I), or equivalently:

f Bi =
D∑
j=1

Mf
i,j Bj mod(I), i = 1, . . . , D. (7)

The coefficients of line i of the matrix Mf can be obtained by computing the
normal form of each product f Bi and by expressing the results as a linear
combination of elements of B.

For particular choices of f = xp, p = 1, . . . , n, it can be shown that the
eigenvalues of the multiplication matrices Mxp are related to the zeros of the
polynomial system. Indeed, substituting f = xp into (7), for any x, we have:(

Mxp − xpI
)B(x) = 0 mod(I). (8)

It follows that the vector
(
Mxp − xpI

)B(x) can therefore be expressed as a
combination of the polynomials in P . Now, let’s suppose that x∗ is a root of
P . Then pi(x∗) = 0 for all i = 1, . . . , n, and (8) shows that x∗p is an eigenvalue
of Mxp associated to the eigenvector B(x∗). Note that the eigenvector should
be normalized so that its first component equals 1 (in order to match with the
associated polynomials B1(x) = 1).

Going further, it can be shown [8] that the components of the roots are given
by the eigenvalues of Mxp , p = 1, . . . , n, associated with common eigenvectors
Bk.

We follow the method given in [4], considering only one multiplication matrix
associated with a linear combination of the variables f =

∑n
i=1 ci xi, where ci

are rational numbers chosen such that the value of f(x(k)) is different for each
solution x(k), k = 1, . . . , D. Generally, random choices for coefficients ci are
sufficient to ensure this properties almost surely [4]. The search for the roots of
system P is then simply conducted by solving the eigenvalue problem (Mf −
fI)B = 0, and by reading the solutions in the eigenvectors Bk = B(x(k)), k =
1, . . . , D.

126 A. Grolet, P. Malbos, and F. Thouverez

3.3 Introducing Symmetry

Invariant Polynomial Systems. Due to the symmetry properties of the me-
chanical structure, the polynomial systems to be solved in our applications (see
section 2.3) also possess a symmetric structure. Here we will consider that the
polynomial system to be solved is equivariant under the action of a group G,
that is P (g(x)) = g(P)(x), ∀g ∈ G, where g ∈ G is a permutation operation
defined by g(x) = [xg(1), . . . , xg(n)]. The set of invariant polynomial under G
is denoted C[x]G and defined by: C[x]G = {f ∈ C[x] | f(g(x)) = f(x), ∀g ∈ G}.
We denote by IG = I∩C[x]G the ideal invariant under the action of the group G.

Quotient Decomposition. It can be shown that C[x] can be decomposed into
a direct sum of isotypic components [6, 15], such that C[x] = V1 ⊕ V2 ⊕ . . . ⊕
VK , where the Vi’s are the isotypic components (related to the K irreducible
representations of group G [6]), and where the first component is the invariant
ring itself: V1 = C[x]G . By defining Ii = I ∩ Vi, the algebra A = C[x]/I can be
decomposed into a direct sum as follows [6]:

A = C[x]G/IG ⊕ V2/I2 ⊕ . . . ⊕ VK/IK (9)

The space C[x]G can be decomposed into the following direct sum (Hironaka
decomposition) [6]:

C[x]G = ⊕i Si C[π] = C[π] ⊕ S2C[π] ⊕ S3C[π] ⊕ · · · ⊕ SpC[π]

where π = [π1, . . . , πn] is the set of primary polynomial invariants related to
G, and S2, . . . , Sn correspond to the secondary polynomial invariants related
to G. The primary polynomial invariants π can be found by using the Reynold
projection operator [16]. In this work, we compute the primary and secondary
invariants using the invariant_ring command of Singular [17].

Using the Primary Polynomial Invariants. In the following, the primary
invariants will be used to find solutions of a symmetric polynomial system. Let’s
suppose that we can find the values of the primary invariants π(k) = π(x(k)) for
each solution x(k), then by solving the following systems:

π(x) = π(k), k = 1, . . . , DG ,

for x by a Newton-like method, one can compute an unique occurrence of solution
x(k) and the other can be generated by applying the group’s actions on x(k),
i.e., g(x(k)), ∀g ∈ G.

We will compute the values of the primary invariants π(k) for each solution
x(k) with the multiplication matrix method. However, as shown in [6], the mul-
tiplication matrices related to the primary invariants are redundant as they con-
tain the same eigenvalues several times. In a suited basis of A, it is even shown
that the multiplication matrices associated to the primary invariants are block

Eigenvalue Method with Symmetry and Vibration Analysis 127

diagonal [6, Thm. 3], with each block containing the same eigenvalues [6, Prop.
8]. Thus, only the first diagonal block (related to the subspace C[x]G/IG) is of
interest to compute the values of the primary invariants.

All that is left to do here, is to find a basis B′ of A that makes the multi-
plication matrices block diagonal. More precisely, it is sufficient to find a basis
BG = [B′

1, . . . ,B′
DG] of C[x]G/IG in agreement with the direct sum decomposi-

tion in (9).

Construction of an Adapted Basis. The goal is to find a basis BG of
C[x]G/IG (with #BG = DG) in agreement with the direct sum decomposition
in (9), in order to construct the first block of a multiplication matrix. As in
the previous section, the multiplication matrix will be related to a polynomial
f =

∑n
i=1 ci πi, where ci are rational coefficients chosen randomly.

The basis BG should only contains invariant polynomials, and their normal
forms should be sufficient to express all remainders r in the division of f BG

i by
I (i.e., r =

∑DG
j=1 M

G
i,j nf(BG

j)).
We suppose that a Gröbner basis G of I is known. Let nf the normal form

operator for G. At start, we set BG
1 = 1.

The construction of the basis then goes as follows. For BG
i in BG we compute

the normal form r = nf(f BG
i). Then, until the remainder r equals zero, we

search if there exists BG
j in BG such that lm(nf(BG

j)) = lm(r):

– if such a BG
j exists, then we divide r by nf(BG

j): r = q nf(BG
j) + h and we

save the (numeric) matrix coefficient MG
i,j = q. Finally, we affect r = h, and

search for a new divisor of lt(r).
– if not, we will create a new basis term BG

k whose leading monomial equals
lm(r) by considering the Reynold projection of lm(r), ie: BG

k = Relm(r).
However, it may happen that lm(nf(Relm(r))) �= lm(r). In that case, we
modify the Reynold projection by subtracting the high order term until
lm(nf(Relm(r))) = lm(r). This is done by searching into the basis an element
BG
j0

such that lm(nf(BG
j0

)) = lt(nf(Relm(r))) and by modifying the Reynold
projection : Relm(r) = Relm(r) − cj0BG

j0
. Once the invariant is computed, we

divide r by the new element.

This process is repeated until all products f Bi, i = 1, . . . , DG , have been
computed. The basis construction is summarized in Algorithm 1.

Algorithm 1. Computation of a basis BG of the invariant space C[x]G/I, and
construction of the multiplication matrix of the invariant variable f =

∑
cjπj

#Preliminaries
compute a Gröbner basis G of P with the grevlex order
initialize f =

∑
j cjπj , BG

1 = 1, n = 1
#Basis Computation
j = 1
while j < n+ 1 do

128 A. Grolet, P. Malbos, and F. Thouverez

compute the normal form r = nf(fBG
j)

while r �= 0 do
if lm(r) ∈ nf(BG) then

find k such that lm(r) = nf(BG
k)

reduce r : r = qBG
k + h

save Mj,k = q and update : r = h
else

compute the Reynold projection Re(x) = Relm(r)(x)
if lm(nf(Re))=lm(r) then

affect BG
n+1 = Re

else
while lm(nf(Re)) �= lm(r), reduce the Reynold projection: Re =
Re− ckBG

k

affect BG
n+1 = Re

end if
reduce the normal form r : r = qRe+ h
save Mj,n+1 = q and update : n = n+ 1, r = h

end if
end while
j = j + 1

end while
return the multiplication matrix Mf and the basis BG

The termination of the algorithm is related to the finite dimension of C[x]/I.
The fact that the algorithm actually output a basis of the invariant space is
related to the fact that the normal forms of the basis vectors have different
leading terms (see also [6]).

4 Numerical Applications

In this section, we apply the eigenvalue method with symmetry to the system
given in Section 2.3. The algorithm presented in the previous section has been
implemented with the Maple 15 software. The numerical applications will be
conducted for system with N = 2, 4 degrees of freedom. In the two cases, free and
forced analysis are conducted. Solutions for a particular frequency are computed
with the multiplication matrix method, and we give an overview of the system
dynamics by applying continuation methods [3]. Finally, an NNM analysis is
carried for 3 ≤ N ≤ 6 in order to show the decrease in the number of
solutions.

4.1 Simple Example with 2 Degrees of Freedom

As a first application, we study a system with N = 2 degrees of freedom. In this
case, (2) reduces to the following dynamic system:

mü1 + cu̇1 + (k + kc)u1 − kcu2 + knlu
3
1 = f1(t),

mü2 + cu̇2 + (k + kc)u2 − kcu1 + knlu
3
2 = f2(t).

(10)

Eigenvalue Method with Symmetry and Vibration Analysis 129

The application of the HBM with only one harmonic (ui = xi cos(ωt)+yi sin(ωt))
leads to the following system of polynomial equations:

αx1 − βx2 + δy1 + γx1(x21 + y21) = fc,
αy1 − βy2 − δx1 + γy1(x21 + y21) = fs,
αx2 − βx1 + δy2 + γx2(x22 + y22) = fc,
αy2 − βy1 − δx2 + γy2(x22 + y22) = fs,

(11)

with α = k+ kc − ω2m, β = kc, γ = 3
4knl and δ = ωc. The frequency parameter

will be set to ω = 25
10 (however the search for multiple solutions can be conducted

for any values of ω), leading to the following numerical values:

α =
−17

4
, β = 1, γ =

3

4
, δ =

1

10
, fc = 1, fs = 0. (12)

Monophase NNM Analysis. We search for monophase NNM solutions of
(11) (undamped, unforced). In this case, the system (6) reduces to the following:

αx1 − βx2 + γx31 = 0,
αx2 − βx1 + γx32 = 0.

(13)

We consider the order grevlex with x1 > x2. Since the leading term of each
equation are co-prime, the system P is already in a Gröbner basis form. We
computed a normal set and we show the algebra A = C[x]/ 〈P 〉 is of dimension
9. The system (13) is invariant under permutation of variable and under change
of sign. This invariance property corresponds to the group G = C2 × C2. All
element g ∈ G can be represented by a matrix Mg = AigBig with

A =

[
0 1
1 0

]
, B =

[
−1 0
0 −1

]
.

Using Singular, we know that the primary invariant of G are π1 = x1x2 and
π2 = 1

2 (x21 + x22). We set f = π1 + 2
3π2, and we construct the multiplication

matrix of f in an symmetry adapted basis of AG using Algorithm 1. The basis
BG and the multiplication matrix Mf are given by

BG = [1,
1

2
(x21 + x22), x1x1, x

2
1x

2
2], Mf =

⎡⎢⎢⎣
0 4

3 1 0
0 46

39
59
9

2
3

0 19
9

68
9 1

0 471
27

1187
27

68
9

⎤⎥⎥⎦ .
The computation of eigenvalues λ = f(x∗) and eigenvectors BG(x∗) of Mf

gives (after normalization of the first component):

λ =

⎡⎢⎢⎣
0

16.3333
2.4444
1.4444

⎤⎥⎥⎦ , BG(x∗) =

⎡⎢⎢⎣
1.00 1.00 1.00 1.00

0 7.00 2.83 4.33
0 7.00 −1.33 −4.33
0 49.00 1.77 18.77

⎤⎥⎥⎦ .

130 A. Grolet, P. Malbos, and F. Thouverez

Here π1 and π2 belong to the invariant basis BG (π1 = BG
3 and π2 = BG

2), so that
their values π(x∗) can directly be read into the eigenvectors BG(x∗) (at line 3
and line 2), leading to the 4 following systems of equations:

(π1(x), π2(x)) ∈ { (0, 0), (7, 7), (−1.33, 2.83), (−4.33, 4.33) } (14)

The nonlinear system in (14) are solved by a Newton Raphson method. Four
different solutions are obtained, see (15), and they are depicted on Fig.1. We
verified that those solutions are actually solutions of P (x) = 0 by computing
the values of ‖P (x∗)‖ in following table for solution quality of (13) at ω = 25

10

solution 1 2 3 4
value ‖P (x∗)‖ 0.04 0.11 0.00 0.04

relative diff. from NR sol. (%) x 0.23 0.00 0.32

To assess the quality of the real solutions, we also compared them to refined
solutions obtained with a Newton algorithm applied on P with starting points
x0 = x∗. It is seen that solutions from the eigenvalue method are indeed very
close to the actual roots of P , as their relative differences lie below 0.5%. In any
cases, a few Newton iterations should be applied to overcome the numerical error
due to numerical rounding of rational numbers in the multiplication matrix.

(x1, x2) ∈ { (0, 0), (−2.65,−2.65), (2.31,−0.58), (2.08,−2.08) }. (15)

0 1 2 3
−4

−3

−2

−1

0

1

2

3

4

dof

am
pl

itu
de

1 2
−4

−3

−2

−1

0

1

2

3

4

dof

am
pl

itu
de

1 2
−4

−3

−2

−1

0

1

2

3

4

dof

am
pl

itu
de

1 2
−4

−3

−2

−1

0

1

2

3

4

dof

am
pl

itu
de

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6

−3

−2

−1

0

1

2

3

4

am
pl

itu
de

 H
 1

frequency [Hz]

 solution 1
solution 2
solution 3
solution 4
sym. sol. 3
sym. sol. 4
sym. sol. 2
sym. sol. 3
sym. sol 3
continuation
sym. continuation

x
i
, i=1,..,2

Fig. 1. Left:Form of the real solutions of system (13) found by the invariant multi-
plication matrix method. Right: Frequency continuation of the solutions obtained at
f = 1

2π
25
10

and their symmetrics relative to the group’s operations.

The application of the group actions generates 5 other solutions. At the end
the total set of solutions contains 9 elements as indicated by the dimension

Eigenvalue Method with Symmetry and Vibration Analysis 131

of the quotient space. However, the use of symmetry decreased the size of the
eigenvalue problem from 9 to 4, leading to only 4 solutions (one for each orbit
of solutions).

In order to give an overview of the system dynamics, we use the four solutions
in (15) as starting points for a continuation procedure on the parameter ω. The
results are depicted on Fig. 1 and correspond to the monophase nonlinear normal
modes of the systems. Four types of solution can be identified: the trivial solution
(sol.1), an in-phase solution (sol. 2), an out-of-phase solution (sol. 4) and a
localized solution (sol. 3) which corresponds to a bifurcation of the out-of-phase
solution.

Forced Analysis. We now turn to the forced analysis of system (11). We
compute a Gröbner basis G with 12 elements relatively to the grevlex order
with y2 < y1 < x2 < x1. We compute dim(A) = 11, thus the system has 11
solutions. The system is invariant under the action of G = C2 = {e, a | a2 = e }
with a(x1, y1, x2, y2) = (x2, y2, x1, y1). The representation of G is chosen such

that a is represented by Ma =

[
0 I2
I2 0

]
.

The primary invariant of G are given by π1 = 1
2 (x1 + x2), π2 = 1

2 (y1 + y2),
π3 = x1x2 and π4 = y1y2; and the multiplication matrix is computed for f = π1+
π2+π3+π4. By using Algorithm 1 we compute a basis BG of AG with 7 elements.
All primary invariants are in BG except for π3. Thus, the normal form of π3 is
computed and the result is expressed in terms of elements of BG : π3 = cTBG .
After solving the eigenvalue problem, the values of π3 at the solutions point are
given by π3(x∗) = cTBG(x∗).

1 2
0

0.5

1

1.5

2

dof

am
pl

itu
de

1 2
−2

−1

0

1

2

dof

am
pl

itu
de

1 2
−1

0

1

2

3

dof

am
pl

itu
de

1 2
−2

−1

0

1

2

dof

am
pl

itu
de

1 2
−0.2

−0.1

0

0.1

0.2

dof

am
pl

itu
de

0 0.5 1
0

0.2

0.4

0.6

0.8

1

dof

am
pl

itu
de

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55

0.5

1

1.5

2

2.5

3

frequency [Hz]

am
pl

itu
de

 d
dl

 1

Solution 1
Solution 2
Solution 3
Solution 4
Solutiion 5
Sym. Sol 3
Sym. Sol 5
Continuation
Sym. continuation

x
i
, i=1,..,2

y
i
, i=1,..,2

Fig. 2. left: Form of the real solutions of system (11) found by the invariant multi-
plication matrix method. Right: Frequency continuation of the solution obtained at
f = 1

2π
25
10

and their symmetric relative to the group operation.

132 A. Grolet, P. Malbos, and F. Thouverez

The solutions of P (x) = 0 are then evaluated by solving the 7 nonlinear
systems π = BG(x∗): 7 solutions (5 real and 2 complex) are found by a Newton
algorithm, and the form of the real solutions are depicted on Fig.2.

Assessment of the solution’s quality for (11) at ω = 25
10 is given in the following

table:
solution 1 2 3 4 5

value ‖P (x∗)‖ 0.00 0.00 0.00 0.00 0.02
relative diff. from NR sol. (%) 0.03 0.02 0.00 0.00 2.80

Note that solutions from the eigenvalue method are close to the actual roots of
P , as their relative differences lie below 3%. To obtain the full set of solution, we
apply the group actions and generate 4 more solutions, leading to a total of 11
solutions (7 real and 4 complex) as indicated by the dimension of the quotient
space.

The application of the continuation procedure for the 5 real solutions from
the invariant system (Fig.2) shows that 3 solutions belong to the principale
resonance curve, and that 2 solutions belong to closed curves corresponding to a
localized motion. The application of the group action generates another closed
curve solution corresponding to the change of coordinates (u1, u2) → (u2, u1) in
the dynamic system (10). All forced solutions are positioned around the backbone
curves coming from the monophase NNM analysis.

4.2 Simple Example with 4 Degrees of Freedom

For N = 4, the application of the HBM with one harmonic on (2) leads to the
following system:

αxi − βxi+1 − βxi−1 + δyi + γxi(x
2
i + y2i) = f ci , i = 1, . . . , 4,

αyi − βyi+1 − βyi−1 − δxi + γyi(x
2
i + y2i) = f si , i = 1, . . . , 4,

(16)

with α = k+2kc −ω2m, β = kc, γ = 3
4knl and δ = ωc. In the NNM analysis, the

frequency parameter will be set to ω = 31
10 , leading to the following numerical

values:
α =

−661

100
, β = 1, γ =

3

4
, δ =

1

10
, fc = 1, fs = 0.

In the forced analysis, the angular frequency will be set by ω = 25
10 , leading to

the numerical values in (12).

Monophase NNM Analysis. For the monophase analysis the system is the
following:

αxi − βxi+1 − βxi−1γx
3
i = 0, i = 1, . . . , 4. (17)

As in the previous example, the system is already in a gröbner basis form for
the grevlex order, and we have dim(A) = 81. The invariance group is taken as
G = C4 × C2. The primary invariant of G are given by:

π1 = x1x3 + x2x4, π2 = x1x2 + x2x3 + x3x4 + x4x1,

π3 = x21 + x22 + x23 + x24, π4 = x1x2x3x4.

Eigenvalue Method with Symmetry and Vibration Analysis 133

The application of Algorithm 1 leads to the construction of a basis BG with
14 elements. Following method exposed in the previous section, 14 real solutions
are obtained by solving the invariant systems, and their forms are depicted in
Fig.3. The assessment of the solutions quality for (17) at ω = 31

10 is given in the
following table

solution 1 2 3 4 5 6 7 8 9 10 11 12 13 14
residual ‖P (x∗)‖ 0.58 0.68 0.00 0.23 0.00 0.97 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

rel. diff. from NR sol. (%) x 0.74 0.00 0.90 0.01 2.11 0.01 0.01 0.01 0.01 0.01 0.00 0.00 0.00

showing that all solutions of the invariant systems are indeed solutions of P (x) =
0. The total set of solutions is generated by applying the group action leading
to 81 solutions:

solution 1 2 3 4 5 6 7 8 9 10 11 12 13 14 total
occurence 1 2 8 2 8 8 4 8 8 8 4 4 8 8 81

0 2 4
−4

−2

0

2

4

dof

am
pl

itu
de

0 2 4
−4

−2

0

2

4

dof

am
pl

itu
de

0 2 4
−4

−2

0

2

4

dof

am
pl

itu
de

0 2 4
−4

−2

0

2

4

dof

am
pl

itu
de

0 2 4
−4

−2

0

2

4

dof
am

pl
itu

de

0 2 4
−4

−2

0

2

4

dof

am
pl

itu
de

0 2 4
−4

−2

0

2

4

dof

am
pl

itu
de

0 2 4
−4

−2

0

2

4

dof

am
pl

itu
de

0 2 4
−4

−2

0

2

4

dof

am
pl

itu
de

0 2 4
−4

−2

0

2

4

dof

am
pl

itu
de

0 2 4
−4

−2

0

2

4

dof

am
pl

itu
de

0 2 4
−4

−2

0

2

4

dof

am
pl

itu
de

0 2 4
−4

−2

0

2

4

dof

am
pl

itu
de

0 2 4
−4

−2

0

2

4

dof

am
pl

itu
de

x
i
, i=1,..,4

Fig. 3. Form of the real solutions of system (17) found by the invariant multiplication
matrix method

Forced Analysis. We now turn to the forced analysis of system (16). First,
the angular frequency parameter is set to ω = 25

10 . In this case the computation
of a Gröbner basis and a normal set for the grevlex order tells us that the
quotient space A is of dimension 147. The invariance group is taken as G =
C4 × C2represented in C8 by the following matrices:

Mr =

⎡⎢⎢⎣
0 I2 0 0
0 0 I2 0
0 0 0 I2
I2 0 0 0

⎤⎥⎥⎦ , Ms =

⎡⎢⎢⎣
I2 0 0 0
0 0 0 I2
0 0 I2 0
0 I2 0 0

⎤⎥⎥⎦ .

134 A. Grolet, P. Malbos, and F. Thouverez

0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55
0

1

2

3

4

5

frequency

am
pl

itu
de

 d
dl

 1

0.3 0.35 0.4 0.45 0.5

0.5

1

1.5

2

2.5

3

3.5

frequency

am
pl

itu
de

 d
dl

 1

0.36 0.38 0.4 0.42 0.44 0.46 0.48 0.5
0

0.5

1

1.5

2

2.5

3

frequency

am
pl

itu
de

 d
dl

 1

0.46 0.48 0.5 0.52 0.54 0.56 0.58 0.6
0.5

1

1.5

2

2.5

3

3.5

4

frequency

am
pl

itu
de

 d
dl

 1

Fig. 4. Frequency continuation of the solution obtained at f = 1
2π

31
10

and their sym-
metric relative to the group operation (only positive amplitudes of the first dof are
depicted). From top left to botom right: Mode 1 (solution 2); Mode 2 (solutions 7, 11,
12, 13, 14); Mode 3 (solutions 4, 5 ,6 ,9, 10); Disconnected solutions (solutions 3, 8).

The primary invariant of G are given by:

π1 = y1 + y2 + y3 + y4, π2 = x1 + x2 + x3 + x4, π3 = y1y3 + y2y4,
π4 = y1x3 + y3x1 + y2x4 + y4x2, π5 = x1x3 + x2x4,
π6 = y1y2 + y2y3 + y3y4 + y4y1, π7 = x1x2x3x4,
π8 = x21x

2
2 + x22x

2
3 + x23x

2
4 + x24x

2
1 + y1y2y3y4.

With Algorithm 1 we compute a basis BG with 33 elements, and the mul-
tiplication matrix associated to the polynomial f =

∑
i ciπi is also of size 33.

In this case all primary invariant are in the basis except for π7, for which we
compute its normal form and express it in term of elements of BG as π7 = cTBG .
The solutions of the eigenvalue problem then leads to 33 possible values (5 real
and 28 complex) for the primary invariants. Finally, the solutions of the 5 real
invariant systems lead to 5 real solutions of the polynomial system P (x) = 0
depicted on Fig. 5.

The application of the group’s actions on the real solutions generates only
two other solutions (i.e., the symmetric of solution 3 and 4). The frequency
continuation of the solutions is depicted on Fig. 5. Again, three solutions belong
to the principal resonance curve (corresponding to a motion shape on the first
NNM), and two solutions belong to a closed curve solution corresponding to a
motion shape on a bifurcation of the second NNM (i.e., a localized motion on
only two dof corresponding to the monophase NNM solution 11 in Fig. 3).

4.3 NNM Analysis for 3 ≤ N ≤ 6

In this last application, we consider the monophase NNM analysis of system
(2) and we compare the results of Algorithm 1 with the eigenvalue method

Eigenvalue Method with Symmetry and Vibration Analysis 135

1 2 3 4
0

0.5

1

1.5

2

dof

am
pl

itu
de

1 2 3 4
−2

−1

0

1

2

dof

am
pl

itu
de

1 2 3 4
−2

−1

0

1

2

dof

am
pl

itu
de

1 2 3 4
−1

0

1

2

3

dof
am

pl
itu

de

1 2 3 4
−0.2

−0.1

0

0.1

0.2

dof

am
pl

itu
de

0 0.5 1
0

0.2

0.4

0.6

0.8

1

dof

am
pl

itu
de

0.1 0.2 0.3 0.4 0.5 0.6

0.5

1

1.5

2

2.5

3

frequency [Hz]

am
pl

itu
de

 d
dl

 1

sol. 1
sol. 2
sol. 3
sym. sol. 3
sol. 4
sym. sol. 4
sol. 5
sym. continuation
continuation

x
i
, i=1,..,4

y
i
, i=1,..,4

Fig. 5. Left: Form of the real solutions of system (16) found by the invariant multiplica-
tion matrix method at ω = 25

10
. Right: Frequency continuation of the solution obtained

at f = 1
2π

25
10

and their symmetric relative to the group operation. The backbone curve
of NNM 1, NNM 2, NNM3 and a bifurcation of NNM 2 are also depicted.

without symmetry. The application of the harmonic balance method, leads to
the polynomial system (6). In order to illustrate the reduction in the number
of solution, Algorithm 1 is applied for N from 3 to 6. The invariance groupe is
taken as G = DN = CN ×C2, where C2 is related to the transformation x → −x.
Results are summarized in the following table:

N dim(C[x]/I) dim(C[x]G/IG) reduction ratio
(CPU time [s]) (CPU time [s])

3 27 (0.4) 6 (0.3) 22.22 %
4 81 (2.4) 14 (0.6) 17.2 %
5 243 (21.3) 26 (5.12) 10.70 %
6 729 (196.7) 68 (151.3) 9.33 %

It can be seen that taking into account symmetry decreases the number of
solutions down to 10% of the total number of solutions. This number should be
even smaller if taking into account larger groups (i.e. G = CN × C2 × C2).

From an algorithmic point of view, the methods (with or without symme-
try) share several parts: (i) Groebner basis computation and (ii) normal set
computation. In this simple exemple, the system is already in a Groebner basis
form. However, for larger systems this part may be time consuming and the two
methods equally suffer from this drawback.

From the previous table, it can be seen that the method with symmetry tends
to be a bit faster to assemble the matrix (the computation of the multiplication
matrix in the non symmetric case is done from an modified version of Algorithm
1). Since the matrix size is smaller, the resolution of the eigenvalue problem is

136 A. Grolet, P. Malbos, and F. Thouverez

faster in the method with symmetry. However, in this example, due to the small
matrix size involved (≤ 1000), the resolution costs of the method with symmetry
(eigenvalue computation + Newton methods) slightly overheads the costs of the
eigenvalue computation in the method without symmetry (for N = 6 both times
are around 5 seconds).

Finally, the overall computation costs of the two methods for the present exem-
ple are at the same order of magnitude. However, they are several advantages in
using the symmetric method. First, the solution set is much smaller and already
sorted, which greatly simplifies the analysis. Second, we recall that the two meth-
ods are subjected to rounding-off errors, and that Newton iteration are needed to
decrease this error. Since there is less solutions in the method with symmetry, the
raffined solution are obtained faster and no sorting has to be done.

A limitation of the proposed method is related to the computation cost of the
primary invariants. Indeed, the computation of primary invariants for the dihe-
dral group DN begin to be time consuming forN > 6. However, this computation
can be considered as a preliminary computation since the primary invariants can
be reused for any system having the same symmetry properties. Nevertheless,
further investigations should be carried to compute the primary invariants for
DN for large N .

5 Discussion, Conclusion

This paper presents the application of the eigenvalue method with symmetry
for solving polynomial systems arising in the vibrations study of nonlinear me-
chanical structures by the HBM. The system under consideration correspond to
N duffing oscillators, linearly coupled. The application of the HBM with one
harmonic on this system generates polynomial equations, which are invariant
under some transformations (cyclic permutation, change of sign, ...).

The application of the eigenvalue method with symmetry for solving the in-
variant polynomial system shows that this method is well adapted for this kind
of problem. Taking into account symmetry decreases the size of the multiplica-
tion matrix. Each solution corresponds to a unique orbit of solutions induced
by the group’s action. The solutions are very close to the actual solutions of the
polynomial system, even in the presence of rounding-off errors.

The best results are obtained when searching for free solutions (NNM) of the
dynamic system. In the forced case, the method is interesting when the spacial
distribution of the excitation also presents symmetry properties. In the worst
case scenario (symmetry breaking excitation) the system is not longer invariant,
and the method no longer applicable.

Further applications to larger systems seems limited by several factors. The
first drawback is related to Gröbner basis computation. For large number of
variables, it can take a great amount of time even with the grevlex ordering.
Second, it is not clear how to efficiently find primary invariants of large groups
such a DN or DN ×C2 for large N . However, the computation of the invariants is
needed only once per invariance group as they can be reused for any subsequent
computation on system having the same invariance properties.

Eigenvalue Method with Symmetry and Vibration Analysis 137

Although this method has limitations, we have to recall that numerical meth-
ods, such has homotopie, are also subjected to limitations that restrict the size of
the polynomial system to be solved. In this context, the fact that the eigenvalue
method with symmetry automatically sorts the solutions is an improvement as
it simplifies the analysis of the system.

References
1. Grolet, A., Thouverez, F.: Free and forced vibration analysis of nonlinear system

with cyclic symmetry: application to a simplified model. Journal of Sound and
Vibration 331, 2911–2928 (2012)

2. Sarrouy, E., Grolet, A., Thouverez, F.: Global and bifurcation analysis of a struc-
ture with cyclic symmetry. International Journal of Nonlinear Mechanics 46,
727–737 (2011)

3. Nayfey, A.H., Balanchandran, B.: Applied nonlinear dynamics. Wiley-Interscience
(1995)

4. Sommese, A.J., Wampler, C.W.: The numerical solution of polynomials arising in
engineering and science. World Scientific Publishing (2005)

5. Li, T.Y.: Solving polynomial systems with polyhedral homotopie. Taiwanese Jour-
nal of Mathematics 3, 251–279 (1999)

6. Corless, R.M., Gatermann, K., Kotsireas, I.: Using symmetries in the eigenvalue
method for polynomial systems. Journal of Symbolic Computation 44, 1536–1550
(2009)

7. Yokoyama, K., Noro, M., Takeshima, T.: Solutions of systems of algebraic equa-
tions and linear maps on residue class rings. Journal of Symbolic Computation 14,
399–417 (1992)

8. Moller, H.M., Tenberg, R.: Multivariate polynomial system solving using intersec-
tions of eigenspaces. Journal of Symbolic Computation 32, 513–531 (2001)

9. Auzinger, W., Stetter, H.J.: An elimination algorithm for the computation of all
zeros of a system of multivariate polynomial equations. In: Numerical Mathematics
Singapore, pp. 11–30 (1988)

10. Groll, G., Ewins, D.J.: The harmonic balance method with arc-length continuation
in rotor stator contact problems. Journal of Sound and Vibration 241(2), 223–233
(2001)

11. Kerschen, G., Peeters, M., Golinval, J.C., Vakakis, A.F.: Nonlinear normal modes,
part i: A useful framework for the structural dynamicist. Mechanical System and
Signal Processing 23, 170–194 (2009)

12. Peeters, M., Kerschen, G., Viguié, R., Sérandour, G., Golinval, J.C.: Nonlinear nor-
mal modes, part ii: toward a practical computation using continuation technique.
Mechanical System and Signal Processing 23, 195–216 (2009)

13. Vakakis, A.F.: Normal mode and localiation in nonlinear systems. Wiley-
Interscience (1996)

14. Peeters, M.: Toward a practical modal analysis of non linear vibrating structures
using nonlinear normal modes. PhD thesis, University of Liège (2007)

15. Gatermann, K., Guyard, F.: An introduction to invariant and moduli. Journal of
Symbolic Computation 28, 275–302 (1999)

16. Cox, D.A., Little, J., O’Shea, D.: Ideals, Varieties, and Algorithms: An Introduc-
tion to Computational Algebraic Geometry and Commutative Algebra, 3/e (Un-
dergraduate Texts in Mathematics). Springer-Verlag New York, Inc. (2007)

17. Decker, W., Greuel, G.-M., Pfister, G., Schönemann, H.: Singular 3-1-6 — A
computer algebra system for polynomial computations (2012),
http://www.singular.uni-kl.de

http://www.singular.uni-kl.de

Symbolic-Numerical Solution of Boundary-Value
Problems with Self-adjoint Second-Order

Differential Equation Using the Finite Element
Method with Interpolation Hermite Polynomials

Alexander A. Gusev1, Ochbadrakh Chuluunbaatar1,2, Sergue I. Vinitsky1,
Vladimir L. Derbov3, Andrzej Góźdź4, Luong Le Hai1,5,

and Vitaly A. Rostovtsev1

1 Joint Institute for Nuclear Research, Dubna, Russia,
gooseff@jinr.ru

2 National University of Mongolia, UlaanBaatar, Mongolia
3 Saratov State University, Saratov, Russia

4 Institute of Physics, Maria Curie-Sk�lodowska University, Lublin, Poland
5 Belgorod State University, Belgorod, Russia

Abstract. We present a symbolic algorithm generating finite-element
schemes with interpolating Hermite polynomials intended for solving the
boundary-value problems with self-adjoint second-order differential equa-
tion and implemented in the Maple computer algebra system. Recurrence
relations for the calculation in analytical form of the interpolating Her-
mite polynomials with nodes of arbitrary multiplicity are derived. The
integrals of interpolating Hermite polynomials are used for constructing
the stiffness and mass matrices and formulating a generalized algebraic
eigenvalue problem. The algorithm is used to generate Fortran routines
that allow solution of the generalized algebraic eigenvalue problem with
matrices of large dimension. The efficiency of the programs generated in
Maple and Fortran is demonstrated by the examples of exactly solvable
quantum-mechanical problems with continuous and piecewise continuous
potentials.

1 Introduction

The study of mathematical models that describe tunneling and channeling of
composite quantum systems through multidimensional barriers, photo-ionization
and photo-absorption in molecular, atomic, nuclear, and quantum-dimensional
semiconductor systems, requires high-accuracy efficient algorithms and programs
for solving boundary-value problems (BVPs) [7,5,8,9,13].

In this direction, using the variation-projection BVP formulation and finite
element method (FEM) with Lagrange interpolation elements [12,2,1], the
symbolic-numeric algorithms (SNAs) and programs have been elaborated [5,6,4].
This implementation of FEM using the interpolation Lagrange polynomials
(ILPs) was such that it preserved only the continuity of the solution itself in

V.P. Gerdt et al. (Eds.): CASC Workshop 2014, LNCS 8660, pp. 138–154, 2014.
c© Springer International Publishing Switzerland 2014

FEM Using Interpolation Hermite Polynomials 139

the course of its numerical approximation on a finite-element grid. However, in
the above class of problems, particularly, in quantum-dimensional semiconduc-
tor systems, the continuity should be preserved not only for the solution (wave
function) itself, but also for the probability current [2,10]. The required continu-
ity of the solution derivatives can be preserved in FEM numerical approximation
using the interpolation Hermite polynomials (IHPs) [3,11].

This motivated the aim of the present work, namely, the use of FEM with
IHPs to elaborate SNAs implemented in Maple-Fortran for the solution of the
BVPs with self-adjoint second order differential equation, and the analysis of the
approximate numerical solutions in benchmark calculations.

In this paper, we present a symbolic algorithm implemented in Maple com-
puter algebra system (CAS) that generates finite-element calculation schemes for
solving BVPs for the self-adjoint second-order differential equation using interpo-
lating Hermite polynomials. We derived recurrence relations for the calculation
of the IHPs with nodes of arbitrary multiplicity. The stiffness and mass matrices
are expressed via the integrals of products of the BVP coefficient functions, the
IHPs and their derivatives. The result is used to formulate a generalized algebraic
eigenvalue problem solved in Maple for matrices of small dimension. We use the
symbolic algorithm to generate Fortran routines that allow the solution of the
generalized algebraic eigenvalue problem with matrices of large dimension. We
demonstrate the efficiency of the programs generated in Maple and Fortran for
100 × 100 and higher-order matrices, respectively, in benchmark calculations for
exactly solvable quantum-mechanical problems with continuous and piecewise
continuous potentials.

The paper is organized as follows. In Section 2, the formulation of BVPs
and variational functional is presented. Section 3 describes the algorithm that
generates algebraic problems using the finite element method with interpolation
Hermite polynomials. In Section 4, the benchmark calculations are analysed. The
obtained results and further development of SNA are discussed in Conclusion.

2 Formulation of BVPs

We consider a self-adjoint second-order differential equation with respect to the
unknown solution Φ(z) in the region z ∈ Ωz = (zmin, zmax) [4]

(D − 2E)Φ(z) = 0, D = − 1

f1(z)

∂

∂z
f2(z)

∂

∂z
+ V (z). (1)

If no additional restrictions are explicitly specified, we assume f1(z) > 0, f2(z) >
0, and V (z) to be continuous functions that have derivatives up to the order of
κmax ≥ 1 in the domain z ∈ Ω̄z = [zmin, zmax]. In quantum mechanics, Eq.
(1) is actually the Schrödinger equation that describes a particle with the wave
function Φ(z) and the energy E.

For a discrete-spectrum problem, the eigenfunctions Φ(z) = Φm(z) ∈ H2
2 in

the Sobolev space H2
2 corresponding to the eigenvalues E1 < E2 < . . . < Em <

140 A.A. Gusev et al.

. . . are to satisfy the boundary condition of the first (I) and/or the second (II)
and/or the third (III) kind at given values of parameters R(zt)

(I) : Φm(zt) = 0, t = min and/ormax, (2)

(II) : f1(z)
dΦm(z)

dz

∣∣∣
z=zt

= 0, t = min and/ormax, (3)

(III) :
dΦm(z)

dz

∣∣∣∣
z=zt

= R(zt)Φm(zt), t = min and/ormax (4)

along with the normalization and orthogonality condition

〈Φm(z)|Φm′(z)〉 =

∫ zmax

zmin

f1(z)(Φm(z))∗Φm′(z)dz = δmm′ . (5)

The solution of the above BPVs can be reduced to the calculation of stationary
points of a variational functional [12,6]

Ξ(Φ,E, zmin, zmax) ≡
∫ zmax

zmin

Φ∗(z) (D − 2E)Φ(z)dz = Π(Φ,E, zmin, zmax)

−f2(zmax)Φ∗(zmax)R(zmax)Φ(zmax) + f2(zmin)Φ∗(zmin)R(zmin)Φ(zmin), (6)

where the symmetric functional Π(Φ,E, zmin, zmax) is expressed as

Π(Φ,E, zmin, zmax) =

∫ zmax

zmin

[
f2(z)

dΦ∗(z)

dz

dΦ(z)

dz
+ f1(z)Φ∗(z)V (z)Φ(z) (7)

−f1(z)2EΦ∗(z)Φ(z)

]
dz.

Here R(z) → ∞ and R(z) = 0 for discrete spectrum problem with BCs (I) and
BCs (II), Eqs. (2) and (3), respectively.

3 FEM Generation of Algebraic Problems

High-accuracy computational schemes for solving the BVP (1)–(4) can be derived
from the variational functional (6), (7) basing on the FEM. The general idea of
the FEM in one-dimensional space is to divide the interval [zmin, zmax] into many
small domains referred to as elements. The size of the elements can be defined
free enough to account for physical properties or qualitative behavior of the
desired solutions, such as smoothness.

The intervalΔ=[zmin, zmax] is covered by a set ofn elementsΔj =[zmin
j , zmax

j ≡
zmin
j+1] in such a way that Δ =

⋃n
j=1Δj . Thus, we obtain the grid

Ωhj(z)[zmin, zmax]={zmin = zmin
1 , zmax

j = zmin
j + hj, j = 1, . . . , n− 1, (8)

zmax
n = zmin

n + hn = zmax},

where zmin
j ≡ zmax

j−1 , j = 2, . . . , n are the mesh points, and the steps hj =

zmax
j − zmin

j are the lengths of the elements Δj .

FEM Using Interpolation Hermite Polynomials 141

3.1 Interpolation Hermite Polynomials

In each element Δj we define the equidistant sub-grid Ωhj(z)
j [zmin

j , zmax
j] =

{z(j−1)p = zmin
j , z(j−1)p+r, r = 1, . . . , p − 1, zjp = zmax

j } with the nodal points
zr ≡ z(j−1)p+r determined by the formula

z(j−1)p+r = ((p− r)zmin
j + rzmax

j)/p, r = 0, . . . , p. (9)

As a set of basis functions {Nl(z, z
min
j , zmax

j)}lmax

l=0 , lmax =
∑p

r=0 κ
max
r we will use

the IHPs {{ϕκ
r (z)}pr=0}

κmax
r −1

κ=0 in the nodes zr, r = 0, . . . , p of the grid (9). The
values of the functions ϕκ

r (z) with their derivatives up to the order (κmax
r − 1),

i.e. κ = 0, . . . , κmax
r − 1, where κmax

r is referred to as the multiplicity of the node
zr, are determined by the expressions [3]

ϕκ
r (zr′) = δrr′δκ0,

dκ
′
ϕκ
r (z)

dzκ′

∣∣∣∣
z=z

r′

= δrr′δκκ′ . (10)

To calculate the IHPs we introduce the auxiliary weight function

wr(z) =

p∏
r′=0,r′ �=r

(
z − zr′
zr − zr′

)κmax
r′
, wr(zr) = 1. (11)

The weight function derivatives can be presented as a product

dκwr(z)

dzκ
= wr(z)gκr (z),

where the factor gκr (z) is calculated by means of the recurrence relations

gκr (z) =
dgκ−1

r (z)

dz
+ g1r(z)gκ−1

r (z), (12)

with the initial conditions

g0r(z) = 1, g1r(z) ≡ 1

wr(z)

dwr(z)

dz
=

p∑
r′=0,r′ �=r

κmax
r′

z − zr′
.

We will seek for the IHPs ϕκ
r (z) in the following form:

ϕκ
r (z) = wr(z)

κmax
r −1∑
κ′=0

aκ,κ
′

r (z − zr)κ
′
. (13)

Differentiating the function (13) by z at the point of zr and using Eq. (11), we
obtain

dκ
′
ϕκ
r (z)

dzκ′

∣∣∣∣
z=zr

=

κ′∑
κ′′=0

κ′!

κ′′!(κ′ − κ′′)!g
κ′−κ′′
r (zr)aκ,κ

′′
r κ′′!. (14)

142 A.A. Gusev et al.

Hence we arrive at the expression for the coefficients aκ,κ
′

r

aκ,κ
′

r =

⎛⎝dκ′
ϕκ
r (z)

dzκ′

∣∣∣∣
z=zr

−
κ′−1∑
κ′′=0

κ′!

κ′′!(κ′ − κ′′)!g
κ′−κ′′
r (zr)aκ,κ

′′
r κ′′!

⎞⎠ /κ′!. (15)

Taking Eq. (10) into account, we finally get:

aκ,κ
′

r =

⎧⎪⎪⎨⎪⎪⎩
0, κ′ < κ,
1/κ′!, κ′ = κ,

−
κ′−1∑
κ′′=κ

1
(κ′−κ′′)!g

κ′−κ′′
r (zr)a

κ,κ′′
r , κ′ > κ.

Note that all degrees of interpolation Hermite polynomials ϕκ
r (z) do not depend

on κ and equal p′ =
∑p

r′=0 κ
max
r − 1. Below we consider only the IHPs with the

nodes of identical multiplicity κmax
r = κmax, r = 0, . . . , p. In this case, the degree

of the polynomials is equal to p′ = κmax(p+ 1) − 1. We introduce the following
notation for such polynomials:

Nκmaxr+κ(z, zmin
j , zmax

j) = ϕκ
r (z), r = 0, . . . , p, κ = 0, . . . , κmax − 1. (16)

These IHPs form a basis in the space of polynomials having the degree p′ =
κmax(p+ 1) − 1 in the element z ∈ [zmin

j , zmax
j] that have continuous derivatives

up to the order κmax − 1 at the boundary points zmin
j and zmax

j of the element
z ∈ [zmin

j , zmax
j]. The IHPs at κmax = 1, 2, 3 and p = 4 are shown in Fig. 1. It

is seen that the values of IHP Nκmaxp+κ(z, zmin
j , zmax

j) and Nκ(z, zmin
j+1, z

max
j+1) (at

r = p and r = 0) and their derivatives up to the order κmax − 1 coincide at
the mutual point zmax

j = zmin
j+1 of the adjacent elements. Moreover, the boundary

points are nodes (zeros) of multiplicity κmax of other IHPs, irrespective of the
length of elements of [zmin

j , zmax
j] and [zmin

j+1, z
max
j+1]. This allows construction of

a basis of piecewise and polynomial functions having continuous derivatives to
the order of κmax − 1 in any set Δ =

⋃n
j=1Δj = [zmin

j , zmax
j] of elements Δj =

[zmin
j , zmax

j ≡ zmin
j+1]. The Algorithm 1 of the IHP construction is presented in

Appendix A and implemented in the CAS Maple.

3.2 Generation of Algebraic Eigenvalue Problems

We consider a discrete representation of the solutions Φ(z) of the problem (1),
(5), (4) reduced by means of the FEM to the variational functional (6), (7) on
the finite-element grid,

Ωp
hj(z)

[zmin, zmax] = [z0 = zmin, zl, l = 1, . . . , np− 1, znp = zmax],

with the mesh points zl = zjp = zmax
j ≡ zmin

j+1 of the grid Ωhj(z)[zmin, zmax]
determined by Eq. (8) and the nodal points zl = z(j−1)p+r, r = 0, . . . , p of the
sub-grids Ωhj(z)

j [zmin
j , zmax

j], j = 1, . . . , n, determined by Eq. (9). The solutions

FEM Using Interpolation Hermite Polynomials 143

a b c

d e f

Fig. 1. The IHP coinciding at κmax = 1 with the ILP (a) and IHPs at κmax =2 (b,
c) and κmax =3 (d, e, f). Here p + 1 = 5 is the number of nodes in the subinterval,
Δj = [zmin

j = −1, zmax
j = 1]. The grid nodes zr are shown by vertical lines.

Φh(z) ≈ Φ(z) are sought for in the form of a finite sum over the basis of local
functions Ng

μ(z) at each nodal point z = zk of the grid Ωp
hj(z)

[zmin, zmax]:

Φh(z) =

L−1∑
μ=0

Φh
μN

g
μ(z), Φh(zl) = Φh

lκmax ,
dκΦh(z)

dzκ

∣∣∣∣
z=zl

= Φh
lκmax+κ (17)

where L = (pn+1)κmax is the number of local functions and Φh
μ at μ = lκmax+κ

are the nodal values of the κth derivatives of the function Φh(z) (including the
function Φh(z) itself for κ = 0) at the points zl.

The local functions Ng
μ(z) ≡ Ng

lκmax+κ(z) are piecewise polynomials of the
given order p′, their derivative of the order κ at the node zl equals one, and
the derivative of the order κ′ �= κ at this node equals zero, while the values of
the function Ng

μ(z) with all its derivatives up to the order (κmax − 1) equal zero

at all other nodes zl′ �= zl of the grid Ωhj(z)
, i.e., dκNl′κmax+κ′

dzκ

∣∣∣
z=zl

= δll′δκκ′ ,

l = 0, . . . , np, κ = 0, . . . , κmax − 1.
For the nodes zl of the grid that do not coincide with the mesh points zmax

j ,
i.e., at l �= jp, j = 1 . . . n− 1, the polynomial Ng

μ at μ = ((j − 1)p+ r)κmax + κ
has the form

Ng
(p(j−1)+r)κmax+κ =

{
Nκmaxr+κ(z, zmin

j , zmax
j), z ∈ Δj ;

0, z �∈ Δj ,
(18)

i.e., it is defined as the IHP Nκmaxr+κ(z, zmin
j , zmax

j) in the interval z ∈ Δj and
zero otherwise. Since the points zmin

j and zmax
j are nodes of multiplicity κmax,

such piecewise polynomial functions and their derivatives up to the order κmax−1

144 A.A. Gusev et al.

Fig. 2. The structure of matrices BL1L2 and AL1L2 for the potential V (z) = 0, the
number of elements n = 6 in the entire interval (zmin, zmax), and different values of
the multiplicity of nodes κmax and the number of subintervals p. From left to right:
(κmax, p) = (1, 6), (κmax, p) = (2, 3), (κmax, p) = (3, 2). The dimensions of matrices are
L× L, L = κmax(np+ 1): 37× 37, 38× 38, 39× 39.

are continuous in the entire intervalΔ. In Fig. 1 such IHPs are plotted by dotted,
short-dashed and dot-dashed lines.

For the nodal points of the grid zl that coincide with one of the mesh points
zmax
j belonging to two elements Δj and Δj+1, j = 1 . . . n − 1 , i.e., for l = jp,

the polynomial, whose derivative of the order κ equals one at the node zl, has
the form

Ng
pκmaxj+κ =

⎧⎨⎩
Nκmaxp+κ(z, zmin

j , zmax
j), z ∈ Δj ;

Nκ(z, zmin
j+1, z

max
j+1), z ∈ Δj+1;

0, z �∈ Δj ∪Δj+1,
(19)

In other words, it is constructed by joining the polynomialNpκmax+κ(z, zmin
j , zmax

j)

defined in the element Δj with the polynomial Nκ(z, zmin
j+1, z

max
j+1) defined in the

element Δj+1. This polynomial is also continuous with all its derivatives of the
order κmax−1 in the interval z ∈ Δ. The corresponding IHPs are plotted in Fig.
1 by solid and long-dashed lines.

The substitution of the expansion (17) into the variational functional (6), (7)
reduces the solution of the problem (1)–(5) to the solution of the generalized
algebraic eigenvalue problem with respect to the desired set of eigenvalues E
and eigenvectors Φh = {Φh

μ}L−1
μ=0 :

(Ã − 2EB)Φh = 0. (20)

Here Ã = A+Mmin−Mmax and B are symmetric L×L stiffness and mass ma-
trices, L = κmax(np+1), Mmax and Mmin are L×L matrices with zero elements
except M11 = f2(zmin)R(zmin) and ML+1−κmax,L+1−κmax = f2(zmax)R(zmax),
respectively. The Algorithm 2 that generates the local functions Ng

μ(z) de-
fined by (18), (19) and the matrices A and B is described in Appendix B and
implemented in the CAS Maple.

FEM Using Interpolation Hermite Polynomials 145

Table 1. Runge coefficients (24) for the eigenvalues (Runge Eigv) and the eigenfunction
(Runge EigF) of the first three lower-energy states calculated for schemes with different
κmax and p up to order p′ = κmax(p+1)− 1 = 8 at h = 0.125 for schemes with p′ = 7,
p′ = 8, and at h = 0.0625 for the rest of the schemes. Theoretical estimates of Runge
coefficient for the convergence of eigenvalues and eigenfunctions are 2p′ and (p′ + 1),
respectively. The execution time Th (in seconds) for the mesh step h = 1/32 is presented
in the last column.

κmax p p′ Runge Eigv 2p′ Runge EigF p′ + 1 Th

1 1 1 2.00 2.00 1.99 2 1.99 1.99 2.00 2 9.36
1 2 2 4.00 3.99 3.99 4 2.99 2.98 3.02 3 19.5
1 3 3 5.99 6.00 5.99 6 3.98 3.99 3.97 4 33.4
2 1 3 5.97 5.96 5.96 6 3.95 3.95 3.94 4 21.8
1 4 4 7.99 8.00 8.00 8 4.99 4.98 5.00 5 48.6
1 5 5 9.99 9.99 9.99 10 5.98 6.01 5.97 6 65.6
2 2 5 9.97 9.97 9.97 10 5.96 5.98 5.95 6 47.6
3 1 5 10.05 10.05 10.06 10 6.01 6.04 6.02 6 38.0
1 6 6 12.00 12.00 12.00 12 6.99 6.97 6.99 7 88.9
1 7 7 13.98 13.98 13.98 14 7.85 8.03 7.85 8 111.
2 3 7 13.88 13.87 13.87 14 7.77 7.95 7.77 8 82.3
4 1 7 13.59 13.58 13.57 14 7.61 7.57 7.59 8 59.6
1 8 8 16.13 16.00 15.99 16 9.00 8.82 9.09 9 139.
3 2 8 15.75 15.75 15.74 16 8.83 8.67 8.86 9 99.1

To solve equation (20) we have chosen the subspace iteration method [12,1]
elaborated by Bathe [1] for the solution of large symmetric banded matrix eigen-
value problems. This method uses a skyline storage mode, which stores the com-
ponents of the matrix column vectors within the nonzero band of the matrix
and, therefore, is perfectly suitable for the banded FEM matrices. The procedure
chooses a vector subspace of the full solution space and iterates upon the succes-
sive solutions in the subspace (for details, see [1]). Using the Rayleigh quotients
for the eigenpairs, the iterations are repeated until the desired set of solutions
in the iteration subspace converges to within the specified tolerance. Generally,
10–24 iterations are enough to converge the subspace to within the prescribed
tolerance. If the matrix Ã in Eq. (20) is not positive-definite, the problem (20)
is replaced with the following problem: ǍΦh = Ěh BΦh, Ǎ = Ã − αB. The
number α (the shift of the energy spectrum) is chosen such that the matrix Ǎ is
positive-definite. The eigenvector of this problem is the same, and Eh = Ěh +α.

The theoretical estimate for the H0 norm of the difference between the exact
solution Φm(z) ∈ H2

2 and the numerical one Φh
m(z) ∈ Hκmax

has the order of

|Eh
m − Em| ≤ c1 h2p

′
,

∥∥Φh
m(z) − Φm(z)

∥∥
0
≤ c2hp

′+1, (21)

where h = max1<j<n hj is the maximal step of the grid [12].

146 A.A. Gusev et al.

Fig. 3. Absolute errors σh
1 = |εexact1 − εh1 | and σh

2 = maxz∈Ωh(z) |χexact
1 (z) − χh

1 (z)|
for the ground state vs the grid step h calculated using approximation by IHPs with
different κmax and p

4 Benchmark Calculations

4.1 Modified Pöschl–Teller Potential

As an example, we consider the exactly solvable eigenvalue problem for Schrödin-
ger equation in the units h̄ = m = 1:(

− d2

dz2
+ 2V (z) − 2E

)
Φ(z) = 0, (22)

with the modified Pöschl–Teller potential on the axis z ∈ (−∞,+∞):

V (z) = −α
2

2

λ (λ− 1)

(cosh (α z))2
, (23)

where α > 0 and λ > 0 are real-value parameters. The parameters λ = 11/2 and
α = 1 were chosen such that the discrete spectrum problem for Eq. (22) with the
potential (23) had five eigenvalues 2Em = [−20.25,−12.25,−6.25,−2.25,−0.25]
with the corresponding five eigenfunctions ψm(x) known in the analytical form.

The numerical experiments using the finite-element grid Ωp
hj(z)

[zmin = −40,

zmax = 40] demonstrated strict correspondence to the theoretical estimations
(21) for eigenvalues and eigenfunctions. In particular, we calculated the Runge
coefficients

βl = log2

∣∣∣∣∣ σhl − σh/2l

σ
h/2
l − σh/4l

∣∣∣∣∣ , l = 1, 2, (24)

on three twice condensed grids with the absolute errors

σh1 = |Eexact
m − Eh

m|, σh2 = max
z∈Ωh(z)

|Φexact
m (z) − Φh

m(z)| (25)

FEM Using Interpolation Hermite Polynomials 147

Fig. 4. The solutions and their first and second derivatives for the ground state (solid
curves) and the first excited state (dashed curves) of the rectangular well potential
problem

for the eigenvalues and eigenfunctions, respectively. From Eq. (25) we obtained
the numerical estimations of the convergence order of the proposed numerical
schemes, the theoretical estimates being β1 = 2p′ and β2 = p′ + 1.

In Table 1, we show the Runge coefficients (24) for the eigenvalues (Runge
Eigv) and the eigenfunction (Runge EigF) of the first three lower-energy states
calculated for schemes with different κmax and p up to order p′ = κmax(p+1)−1 =
8. One can see that for the chosen p′ = 1 ÷ 8, the numerical estimates of Runge
coefficients lie within 2p′ ± 0.06 for p′ = 1, . . . , 6 and 2p′ ± 0.56 for p′ = 7, 8 in
the case of eigenvalues and within (p′ + 1) ± 0.2 in the case of eigenfunctions,
which strongly corresponds to the theoretical error estimates (21). In Fig. 3, we
show the dependence of absolute errors σh1 = |εexact1 − εh1 | for eigenvalues and
σh2 = maxz∈Ωh(z) |χexact1 (z) − χh1 (z)| for eigenfunctions of the ground state vs.
the grid step h calculated using approximation by IHPs with different κmax and
p. In the double logarithmic scale, the errors lie on lines with different slopes
that explicitly show the desirable order of approximation p′ = κmax(p + 1) − 1
by IHPs with different κmax and p.

For calculations, we used the program KANTBP 1.1 with the specified accu-
racy of ∼ 10−34 and the relative error tolerance of the eigenvalues ε1 = 4 ·10−34,
implemented in Intel Fortran 77 on the computer 2 x Xeon 3.2 GHz, 4 GB RAM.
The data type QUADRUPLE PRECISION provided 32 significant digits. The
running time Th for h = 1/32 = 0.03125 is presented in the last column of
Table 1.

4.2 Rectangular Well Potential

For piecewise continuous potentials (or potentials with discontinuous deriva-
tives), the approximation by IHPs does not converge to the desired solution
with increasing number of nodes. Within the FEM approach, the following tech-
nique is used. Let the potential have the form V (z) = {Vi(z), z ∈ (ζmin

i , ζmax
i)},

ζmin
i+1 = ζmax

i , where Vi(z) are (p′ + 1)-times differentiable functions. The inter-
val of the problem definition is divided into a set of subintervals [zmin

j , zmax
j]

148 A.A. Gusev et al.

Fig. 5. The difference of numerical and exact eigenfunctions Dκmax,p
swp,0 = ψκmax,p

0 (z) −
ψ0(z) (solid curves) and Dκmax,p

swp,1 = ψκmax,p
1 (z)− ψ1(z) (dashed curves) (upper panels)

and their first derivatives (lower panels) for rectangular well potential for n = 10
elements in the interval (−5, 5) and different values of the multiplicity of nodes κmax

and the number of subinterval divisions p. >From left to right: (κmax, p) = (1, 3),
(κmax, p) = (2, 1), (κmax, p) = (3, 1).

(zmax
j ≡ zmin

j+1), such that every point ζmin
i , in which the second derivative of the

solution is discontinuous, coincides with some boundary point zmin
j .

Consider, e.g., the exactly solvable discrete-spectrum problem for Eq. (22)
with the rectangular well potential 2V (z) = V0, if |z| ≤ a, and 2V (z) = 0
otherwise. At a = 1, 2V0 = −50 the discrete-spectrum problem has five eigen-
functions (see Fig. 4), expressed in the analytical form via five eigenvalues
2Em = [−48.109146,−42.474904,−33.232792,−20.714111,−5.965365].

Since the first two eigenfunctions rapidly decrease, it is sufficient to use the
finite-element grid Ωp

hj(z)
[zmin = −5, zmax = 5]. The calculation error for the

first two eigenvalues is presented in Table 2. It is seen that the scheme with
κmax = 1 and κmax = 2 having the same order of accuracy p′ = 3 and p′ = 5
(p′ = κmax(p + 1) − 1) yield nearly the same error (at n = 20, h = 1/2 the
error is about 10−2 and 4 · 10−6, respectively), while for κmax = 3, the error is
much higher (about 10−2 at n = 20, h = 1/2). In Table 2, we show the Runge
coefficients (24) for the eigenvalues of the first two lower-energy states calculated
for schemes with different κmax and p with order p′ = κmax(p + 1) − 1 = 3 and
p′ = κmax(p+1)−1 = 5. One can see that for the chosen p′ = 3, 5, the numerical
estimates of Runge coefficients lie within 2p′ ± 0.5 for schemes with κmax = 1, 2

FEM Using Interpolation Hermite Polynomials 149

Table 2. The absolute errors σh
1 (E0) and σh

1 (E1) of eigenvalues of ground and first
exited state for square well potential for a = 1 and 2V0 = −50. The Runge coefficient
(Ru) from (24) for the eigenvalues at h = 1/4, n = 40 and its theoretical estimates
(2p′) are given in last two columns.

(κmax, p) p′ σh=1
1 (E0) σ

h=1/2
1 (E0) σ

h=1/4
1 (E0) σ

h=1/8
1 (E0) σ

h=1/16
1 (E0) Ru 2p′

(1,3) 3 1.93e-02 1.39e-03 4.44e-05 8.83e-07 1.48e-08 5.65 6
(2,1) 3 5.70e-02 3.15e-03 1.00e-04 2.21e-06 4.14e-08 5.50 6
(1,5) 5 2.47e-04 1.67e-06 3.82e-09 5.26e-12 2.22e-12 10.3 10
(2,2) 5 4.01e-04 2.59e-06 6.12e-09 8.59e-12 2.20e-13 9.51 10
(3,1) 5 1.48e-02 2.66e-03 3.51e-04 4.40e-05 5.50e-06 2.99 10

(κmax, p) p′ σh=1
1 (E1) σ

h=1/2
1 (E1) σ

h=1/4
1 (E1) σ

h=1/8
1 (E1) σ

h=1/16
1 (E1) Ru 2p′

(1,3) 3 9.96e-02 4.38e-03 1.25e-04 2.40e-06 3.96e-08 5.70 6
(2,1) 3 2.92e-01 1.14e-02 3.08e-04 6.33e-06 1.14e-07 5.60 6
(1,5) 5 6.44e-04 3.75e-06 7.93e-09 1.04e-11 2.63e-12 9.99 10
(2,2) 5 9.40e-04 5.66e-06 1.27e-08 1.74e-11 2.06e-13 9.53 10
(3,1) 5 6.70e-02 1.07e-02 1.39e-03 1.74e-04 2.17e-05 3.01 10

which strongly corresponds to the theoretical error estimates (21). While the
scheme with κmax = 3, p = 1 of fifth order p′ = 5 gives Runge coefficient β1 = 3.
Maximal discrepancies arise in the vicinities of discontinuity of the potential well
(at z = ±1) because of a worse approximation of function with discontinuous
second derivative by means of functions with continuous one.

It is due to the fact that the first derivative of the solution has a discontinuity
at z = ±a displayed in Fig 4. To illustrate this fact, we display in Fig. 5 the
discrepancies of eigenfunctions and their first derivatives. It is seen that the
scheme with κmax = 2, p = 1 provides better approximation for eigenfunctions
among schemes of third order p′ = 3. The scheme of fifth order p′ = 5 with
κmax = 3, p = 1 leads to worse approximation in comparison with schemes of
third order.

5 Conclusion

We presented the SNAs for solving the BVPs with self-adjoint second order dif-
ferential equation using the FEM with interpolation Hermite polynomials. The
proposed approach preserves the property of continuity of derivatives of the de-
sired solutions. We demonstrated the efficiency of the programs generated in
Maple and Fortran for 100 × 100 and greater-order matrices, respectively, in
benchmark calculations for exactly solvable quantum-mechanical problems with
continuous and piecewise continuous potentials. The analysis of approximate
numerical solutions in benchmark calculations with smooth potentials shows

150 A.A. Gusev et al.

that the order p′ = κmax(p + 1) − 1 of the elaborated FEM schemes strongly
corresponds to the theoretical error estimates. Schemes of higher order p′ allow
high-accuracy results at larger step of the finite-element grid, provided that the
derivative of the p′th order is a smooth function. Schemes with the fixed order
p′ have similar rate convergence, the execution time being smaller for greater
κmax due to smaller dimension of matrices used in the calculations. However,
if the κth derivative of the desired solution has discontinuity points, i.e., for
potentials having a discontinuous derivative of the order κ−2, the schemes with
κmax ≥ κ operate worse, because in this case, the solution having discontinuous
κthth derivatives is approximated by functions having no such discontinuities.

In future, the elaborated calculation schemes, algorithms, and programs will
be applied to the analysis of models of molecular, atomic, and nuclear systems,
as well as to quantum-dimensional systems such as quantum dots, wires, and
wells in bulk semiconductors, and smooth irregular wave-guide structures with
piecewise continuous potentials.

The authors thank Professor V.P. Gerdt for collaboration. The work was par-
tially supported by the Russian Foundation for Basic Research (RFBR) (grants
No. 14-01-00420 and 13-01-00668) and the Bogoliubov–Infeld program.

A Algorithm 1. Generation of IHPs

Input:
zmin, zmax, (formal parameters) the boundary points of the interval;
p is the number of subintervals: p+ 1 is the number of nodes of IHPs;
κmax is the multiplicity of nodes;
f1(z) and f2(z) are coefficient functions from (1);
Output:
Nl1(z, zmin, zmax) are IHPs, l1 = 0, . . . , lmax, i.e. lmax + 1 is number of IHPs;
Al1;l2(zmin, zmax) and Bl1;l2(zmin, zmax) are auxiliary integrals;
Local:
lmax = κmax(p+ 1) − 1 is largest index of IHPs, lmax + 1 is number of IHPs;
zr are nodes in subinterval;
wr(z) are weight functions;
gκr (z) are derivatives of order κ divided by weight function;
aκ,κ

′
r are coefficients of expansion (13);

1: generation of IHPs and calculation of integrals in the interval [zmin, zmax]
1.1.: for r:=0 to p do

zr = ((p− r)zmin + rzmax)/p;
end for;

1.2.: for r:=0 to p do
1.2.1: auxiliary weight function

wr(z) =
∏p

r′=0,r′ �=r

(z−zr′
zr−zr′

)κmax

;
1.2.2: recurrence relation for calculating the function gκr (z)

g0r(z) = 1;

FEM Using Interpolation Hermite Polynomials 151

g1r(z) =
∑p

r′=0,r′ �=r
κmax

z−zr′
;

for κ:=2 to κmax − 1 do
gκr (z) =

dgκ−1
r (z)
dz + g1r(z)gκ−1

r (z);
end for;

1.2.3: recurrence relation for calculation of coefficients aκ,κ
′

r

for κ:=0 to κmax − 1 do
aκ,κr = 1/κ′!;
for κ′:=κ+ 1 to κmax − 1 do
aκ,κ

′
r = −

∑κ′−1
κ′′=κ

1
(κ′−κ′′)!g

κ′−κ′′
r (zr)aκ,κ

′′
r ;

end for;
1.2.4: calculation of IHP

Nκmaxr+κ(z, zmin, zmax) ≡ ϕκ
r (z) = wr(z)

∑κmax−1
κ′=κ aκ,κ

′
r (z − zr)κ

′
;

end for;
end for;
lmax = κmax(p+ 1) − 1;

1.3: calculation of the auxiliary integrals
for l1:=0 to lmax do

for l2:=l1 to lmax do
Al1;l2(zmin, zmax)=

∫ zmax

zmin f2(z)
dNl1

(z,zmin,zmax)

dz

dNl2
(z,zmin,zmax)

dz dz;
Bl1;l2(zmin, zmax)=

∫ zmax

zmin f1(z)Nl1(z, zmin, zmax)Nl2(z, zmin, zmax)dz;
end for;

end for;

Remarks. 1. In commonly used coordinates, the integrals in Step 1.3. are cal-
culated analytically. If f1(z) or f2(z) are such that these integrals cannot be
calculated analytically, then one can apply the expansion over the interpolation
polynomials.

2. The auxiliary integrals Al1;l2(zmin, zmax) and Bl1;l2(zmin, zmax) are sym-
metric with respect to permutations of their indexes.

B Algorithm 2: FEM Generation of Algebraic Eigenvalue
Problem

Input:
n is the number of subintervals Δj = [zmin

j , zmax
j = zmin

j + hj];
Δj = [zmin

j , zmax
j] are sets of subintervals (zmax

j ≡ zmin
j+1);

p is the number of divisions of subintervals: p+ 1 is the number of nodes of IHP;
κmax is the multiplicity of nodes;
Nl1(z, zmin, zmax) are IHP;
Al1;l2(zmin, zmax) and Bl1;l2(zmin, zmax) are auxiliary integrals from the Algo-
rithm 1;
V (z) is coefficient function from (1);

152 A.A. Gusev et al.

Output:
zl are nodes in the whole interval, l = 0, . . . , np;
Ng

l are piecewise polynomials;
AL1L2 and BL1L2 are matrices of algebraic eigenvalue problem (20);
Local:
lmax = κmax(p+ 1) − 1 where lmax + 1 is number of IHP;
L = κmax(np+ 1) is the dimension of the algebraic eigenvalue problem.

2.1. calculation of grid points
z0 = zmin

1 ;
for j := 1 to n do

for r := 1 to p− 1 do
z(j−1)p+r = ((p− r)zmin

j + rzmax
j)/p;

end for;
zjp = zmax

j ;
end for;

2.2. calculation of piecewise polynomials
for κ := 0 to κmax − 1 do
Ng

κ = {Nκ(z, zmin
1 , zmax

1), z ∈ Δ1};
for j := 1 to n do

for r := 1 to p− 1 do
Ng

((j−1)p+r)κmax+κ = {Nκmaxr+κ(z, zmin
j , zmax

j), z ∈ Δj ; 0, z �∈ Δj};
end for;
if (j < n) then
Ng

jpκmax+κ := {Nκmaxp+κ(z, zmin
j , zmax

j), z ∈ Δj ;

Nκ(z, zmin
j+1, z

max
j+1), z ∈ Δj+1; 0, z �∈ Δj ∪Δj+1};

else
Ng

npκmax+κ := {Nκmaxp+κ(z, zmin
n , zmax

n), z ∈ Δn; 0, z �∈ Δn};
end if;

end for;
end for;

2.3. Generation of matrices A and B
for j := 1 to n do

for l1 := 0 to lmax − 1 do
L1 = pκmax(j − 1) + l1 + 1;
for l2 from l1 to lmax − 1 do
L2 = pκmax(j − 1) + l2 + 1;
AL1L2 = AL1L2 +Al1;l2(zmin

j , zmax
j)

+
∫ zmax

j

zmin
j

f1(z)dzNL1(z, zmin
j , zmax

j)V (z)NL2(z, zmin
j , zmax

j);

BL1L2 = BL1L2 +Bl1;l2(zmin
j , zmax

j);
end for (j, l1, l2)

FEM Using Interpolation Hermite Polynomials 153

Remarks. 1. If the coefficients of the equation (1) are given in the tabular form,
then we use the following matrix elements in Step 1.3 of Algorithm 1 and Step
2.3 of Algorithm 2:∫ zmax

j

zmin
j

f1(z)dzNL1(z, zmin
j , zmax

j)V (z)NL2(z, zmin
j , zmax

j)

=

p∑
r=0

κmax−1∑
κ=0

V (κ)(z(j−1)p+r)Vl1 ;l2;κmaxr+κ(zmin
j , zmax

j)), (26)

where Vl1;l2;l3(zmin, zmax) are determined by integrals with IHPs

Vl1;l2;l3(zmin
j , zmax

j) =

∫ zmax
j

zmin
j

f1(z)Nl1(z, zmin
j , zmax

j)

×Nl2(z, zmin
j , zmax

j)Nl3(z, zmin
j , zmax

j)dz. (27)

The obtained expression will be exact for polynomial potentials of the degree
smaller than p′. Generally this decomposition leads to numerical eigenfunctions
and eigenvalues with the accuracy of order about p′ + 1. If the integrals in Step
1.3 of Algorithm 1 and Step 2.3 of Algorithm 2 cannot be calculated in the
analytical form, then the Gauss integration rule [1,6] with p′ +1 nodes is applied
and held the theoretical estimations (21).

2. Using the local coordinate η ∈ [−1, 1] related to the absolute coordinate z
as z = zmin

j +hj(1+η)/2, dz
dη = hj/2, one should exploit the following expansions

of the function and its first derivative

Φ̂(z) =

p∑
r=0

κmax−1∑
κ=0

Φ̂κmaxr+κNκmaxr+κ(η,−1, 1)

(
dz

dη

)κ

,

dΦ̂(z)

dz
=

p∑
r=0

κmax−1∑
κ=0

Φ̂κmaxr+κ
dNκmaxr+κ(η,−1, 1)

dη

(
dz

dη

)κ−1

.

3. The matrices AL1L2 and BL1L2 are symmetric, their dimension is L × L,
where L = κmax(np + 1). They consist of n sub-matrices with the dimension
κmax(p + 1) × κmax(p + 1). The intersections of these sub-matrices are blocks
having the dimension κmax × κmax. These blocks include elements that equal
zero in both matrices BL1L2 and AL1L2 for V (z) = 0 and become nonzero in the
matrix AL1L2 , when V (z) �= 0. The existence of such elements is a manifestation
of the IHPs symmetry. The total number of elements in all these blocks is (n(p2+
2p) + 1)(κmax)2. Examples of banded matrix structures are shown in Fig. 2.

4. To impose the BC (III) in zmin one should apply A11 =A11+f2(z
min)R(zmin),

while to impose the BC (III) in zmax one should apply AL+1−κmax,L+1−κmax =
AL+1−κmax,L+1−κmax−f2(zmax)R(zmax). To impose the BC (I) in zmin one should
drop first row and first column, while to apply the BC (I) in zmax one should
drop row and column with number L+ 1 − κmax.

154 A.A. Gusev et al.

5. For small matrix dimensions ∼ 100, the desired solution of the problem
generated at Step 2.3 is performed using the built-in procedures of the Maple
LinearAlgebra package. For large matrix dimensions ∼ 100 ÷ 1000000, the sub-
space iteration method is used, implemented in the Fortran program SSPACE
[1].

References
1. Bathe, K.J.: Finite Element Procedures in Engineering Analysis, Englewood Cliffs.

Prentice Hall, New York (1982)
2. Becker, E.B., Carey, G.F., Tinsley Oden, J.: Finite elements. An introduction,

vol. I. Prentice-Hall, Inc., Englewood Cliffs (1981)
3. Berezin, I.S., Zhidkov, N.P.: Computing Methods, vol. I. Pergamon Press, Oxford

(1965)
4. Chuluunbaatar, O., Gusev, A.A., Vinitsky, S.I., Abrashkevich, A.G.: ODPEVP:

A program for computing eigenvalues and eigenfunctions and their first deriva-
tives with respect to the parameter of the parametric self-adjoined Sturm-Liouville
problem. Comput. Phys. Commun. 180, 1358–1375 (2009)

5. Chuluunbaatar, O., Gusev, A.A., Gerdt, V.P., Kaschiev, M.S., Rostovtsev, V.A.,
Samoylov, V., Tupikova, T., Vinitsky, S.I.: A symbolic-numerical Algorithm for
solving the eigenvalue problem for a hydrogen atom in the magnetic field: cylin-
drical coordinates. In: Ganzha, V.G., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC
2007. LNCS, vol. 4770, pp. 118–133. Springer, Heidelberg (2007)

6. Chuluunbaatar, O., et al.: KANTBP: A program for computing energy levels, re-
action matrix and radial wave functions in the coupled-channel hyperspherical
adiabatic approach. Comput. Phys. Commun. 177, 649–675 (2007)

7. Cwiok, S., et al.: Single-particle energies, wave functions, quadrupole moments and
g-factors in an axially deformed Woods-Saxon potential with applications to the
two-centre-type nuclear problems. Comput. Phys. Communications 46, 379–399
(1987)

8. Gusev, A.A., Chuluunbaatar, O., Gerdt, V.P., Rostovtsev, V.A., Vinitsky, S.I.,
Derbov, V.L., Serov, V.V.: Symbolic-numeric algorithms for computer analysis
of spheroidal quantum dot models. In: Gerdt, V.P., Koepf, W., Mayr, E.W.,
Vorozhtsov, E.V. (eds.) CASC 2010. LNCS, vol. 6244, pp. 106–122. Springer,
Heidelberg (2010)

9. Gusev, A.A., Vinitsky, S.I., Chuluunbaatar, O., Gerdt, V.P., Rostovtsev, V.A.:
Symbolic-numerical algorithms to solve the quantum tunneling problem for a cou-
pled pair of ions. In: Gerdt, V.P., Koepf, W., Mayr, E.W., Vorozhtsov, E.V. (eds.)
CASC 2011. LNCS, vol. 6885, pp. 175–191. Springer, Heidelberg (2011)

10. Ramdas Ram-Mohan, L.: Finite Element and Boundary Element Aplications in
Quantum Mechanics. Oxford University Press, New York (2002)

11. Samarski, A.A., Gulin, A.V.: Numerical methods, Nauka, Moscow (1989) (in
Russian)

12. Strang, G., Fix, G.J.: An Analysis of the Finite Element Method. Prentice-Hall,
Englewood Cliffs (1973)

13. Vinitsky, S., Gusev, A., Chuluunbaatar, O., Rostovtsev, V., Le Hai, L., Derbov, V.,
Krassovitskiy, P.: Symbolic-numerical algorithm for generating cluster eigenfunc-
tions: quantum tunneling of clusters through repulsive barriers. In: Gerdt, V.P.,
Koepf, W., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2013. LNCS, vol. 8136,
pp. 427–442. Springer, Heidelberg (2013)

Sporadic Examples of Directed

Strongly Regular Graphs Obtained By
Computer Algebra Experimentation

Štefan Gyürki1,3 and Mikhail Klin2,3

1 Institute of Information Engineering, Automation and Mathematics
Faculty of Chemical and Food Technology, Slovak University of Technology

Radlinského 9, 812 37 Bratislava, Slovak Republic
stefan.gyurki@stuba.sk

2 Department of Mathematics,
Ben-Gurion University of the Negev

84105 Beer Sheva, Israel
klin@cs.bgu.ac.il

3 Institute of Mathematics and Computer Science
Matej Bel University

974 11 Banská Bystrica, Slovak Republic

Abstract. We report about the results of the application of modern
computer algebra tools for construction of directed strongly regular
graphs. The suggested techniques are based on the investigation of non-
commutative association schemes and Cayley graphs over non-Abelian
groups. We demonstrate examples of directed strongly regular graphs for
28 different parameter sets, for which the existence of a corresponding
digraph has not been known before.

1 Introduction

This paper is devoted to the computer algebra experimentation in the area of
algebraic graph theory, the part of mathematics on the edge between graph
theory, linear algebra, and group theory. The main objects of interest in algebraic
graph theory are highly symmetric graphs, where level of symmetry might be
measured both on group-theoretical and purely combinatorial levels. Two books
[1] and [11] reflect impressive progress in this part of mathematics.

Nowadays computer algebra tools, and especially GAP (Groups, Algorithms,
Programming - a System for Computational Discrete Algebra [9]), together with
a few of its share packages, become an inalienable part of modern graph theory
and combinatorics. A significant portion of striking combinatorial structures was
discovered and analyzed with the aid of a computer. The main subject of inter-
est in the presented text are directed strongly regular graphs (briefly DSRGs),
a natural generalization of a classical (in algebraic graph theory) concept from
simple to directed graphs. The concept of a DSRG was suggested and investi-
gated by A. Duval in [5]. For a while it remained unnoticed, however, during
last 15 years this class of structures is becoming more and more popular.

V.P. Gerdt et al. (Eds.): CASC Workshop 2014, LNCS 8660, pp. 155–170, 2014.
c© Springer International Publishing Switzerland 2014

156 Š. Gyürki and M. Klin

The initial concept of a strongly regular graph (briefly SRG) has a number
of relatively independent origins of interest in such diverse areas like design of
statistical experiments, finite geometries, applied permutation groups, and also
complexity theory of algorithms. Indeed, it is well-known that SRGs are usu-
ally regarded as most sophisticated structures for the problems of isomorphism
testing of graphs and determination of the automorphism group of graphs. The
main combinatorial invariant of a SRG is its parameter set, in the sense of [2].
Typically, classification of SRGs is arranged for each parameter set separately.
Similar situation is also observed for DSRGs. However, these structures appear
even more frequently. For example, while there are 36 parameter sets for SRGs
on up to 50 vertices, this number is 225 for DSRGs. On the other hand, the
central problems of the identification of DSRGs and determination of their sym-
metry are on the same level of difficulty as it appears for the classical case of
strongly regular graphs.

In this context, DSRGs provide, in comparison with SRGs much more wide
training polygons for the experts in the complexity theory which allows more
diversity (undirected versus directed) for investigated graphs.

The previous experience (earned, in particular, by M. Klin and his coau-
thors) shows that a clever use of computers helps to discover new examples of
DSRGs and after that to reach an honest theoretical generalization of the de-
tected structures. This line of activity stimulated the authors to join their efforts
in a new attempt. At this stage, we are concentrating on the association schemes
as possible origins of new DSRGs. Namely, we wish to consider any association
scheme M, for which a suitable union of classes provides a DSRG, preferably
new, moreover, with a new parameter set.

The paper is organized as follows. In Section 2, the necessary basic notions
are introduced. In Section 3, we describe our approach to the problem of finding
new directed strongly regular graphs using computer algebra experimentation. In
Section 4, the mentioned strategies are explained with enough rigorous details
and the results of different approaches are reported. In Section 5, the results
of a classical strategy using Cayley graphs are submitted. We conclude with a
discussion and summary of new graphs, being discovered.

2 Preliminaries

Below we present brief account of most significant concepts exploited in the
paper. We refer to [2] and [19] for more information.

2.1 General Concepts

A simple graph Γ is a pair (V,E), where V is a finite set of vertices, and E is
a set of 2-subsets of V which are called edges.

A directed graph (briefly digraph) Γ is a pair (V,R) where V is the set of
vertices and R is a binary relation on V , that is a subset of the set V 2 of all
ordered pairs of elements in V . The pairs in R are called directed arcs or darts.
The vertex set of Γ is denoted by V (Γ) and the dart set is denoted by R(Γ).

Sporadic Examples of Directed Strongly Regular Graphs 157

A balanced incomplete block design (BIBD) is a pair (P ,B) where P is the
point set of cardinality v, and B is a collection of b k-subsets of P (blocks) such
that each element of P is contained in exactly r blocks and any 2-subset of V is
contained in exactly λ blocks. The numbers v, b, r, k, and λ are parameters of the
BIBD. From the parameters v, k, λ the remaining two are determined uniquely,
therefore, we use just the triplet of parameters (v, k, λ) for a BIBD.

For any finite group H , the group ring ZH is defined as the set of all formal
sums of elements of H , with coefficients from Z. Let X denote a non-empty
subset of H . The element

∑
x∈X x in ZH is called a simple quantity, and it is

denoted as X. Suppose now that e /∈ X , where e is the identity element of the
group H . Then the digraph Γ = Cay(H,X) with vertex set H and dart set
{(x, y) : x, y ∈ H, yx−1 ∈ X} is called the Cayley digraph over H with respect
to X.

2.2 Strongly Regular Graphs

A graph Γ with adjacency matrix A = A(Γ) is called regular, if there exists a
positive integer k such that AJ = JA = kJ , where J is the all-one matrix. The
number k is called valency of Γ . A simple regular graph with valency k is said
to be strongly regular (SRG, for short) if there exist integers λ and μ such that
for each edge {u, v} the number of common neighbors of u and v is exactly λ;
while for each non-edge {u, v} the number of common neighbors of u and v is
equal to μ. Previous condition can be rewritten equivalently into the equation
A2 = kI + λA + μ(J − I −A) using the adjacency matrix of Γ . The quadruple
(n, k, λ, μ) is called the parameter set of an SRG Γ .

2.3 Directed Strongly Regular Graphs

A possible generalization of the notion of SRGs for directed graphs was given
by Duval [5]. While the family of SRGs has been well-studied in the algebraic
graph theory cf. [2], the directed version has not received enough attention.

A directed strongly regular graph (DSRG) with parameters (n, k, t, λ, μ) is a
regular directed graph on n vertices with valency k, such that every vertex is
incident with t undirected edges, and the number of paths of length 2 directed
from a vertex x to another vertex y is λ, if there is an arc from x to y, and μ
otherwise. In particular, a DSRG with t = k is an SRG, and a DSRG with t = 0
is a doubly regular tournament. Throughout the paper we consider only DSRGs
satisfying 0 < t < k, which are called genuine DSRGs.

The adjacency matrix A = A(Γ) of a DSRG with parameters (n, k, t, λ, μ),
satisfies AJ = JA = kJ and A2 = tI + λA+ μ(J − I −A).

Example 1. The smallest example of a DSRG is appearing on 6 vertices. Its
parameter set is (6, 2, 1, 0, 1) and it is depicted in Fig. 1.

Remark 1. In this paper, we are using for DSRG’s 5-tuple of parameters in the
order (n, k, t, λ, μ), however, in several other papers the order (n, k, μ, λ, t) is
used.

158 Š. Gyürki and M. Klin

Fig. 1. The smallest genuine DSRG

Proposition 1 ([5]). If Γ is a DSRG with parameter set (n, k, t, λ, μ) and ad-
jacency matrix A, then the complementary graph Γ̄ is a DSRG with parameter
set (n, k̄, t̄, λ̄, μ̄) with adjacency matrix Ā = J − I −A, where

k̄ = n− k + 1

t̄ = n− 2k + t− 1

λ̄ = n− 2k + μ− 2

μ̄ = n− 2k + λ.

Remark 2. Proposition 1 allows us to restrict our search for the DSRGs with
2k < n, due to complementation, and clearly a discovery of a DSRG with new
parameter set implies a discovery of a DSRG on the complementary parameter
set. As a consequence, throughout the paper we display just the parameter sets
satisfying 2k < n.

For a directed graph Γ let Γ T denote the digraph obtained by reversing all
the darts in Γ . Then Γ T is called the reverse of Γ . In other words, if A is the
adjacency matrix of Γ , then AT is the adjacency matrix of Γ T .

The following proposition was observed by Ch. Pech, and presented in [18]:

Proposition 2 ([18]). Let Γ be a DSRG. Then the graph Γ T is also a DSRG
with the same parameter set.

We say that two DSRGs Γ1 and Γ2 are equivalent, if Γ1 ∼= Γ2, or Γ1 ∼= Γ T
2 ,

or Γ1 ∼= Γ̄2, or Γ1 ∼= Γ̄ T
2 ; otherwise they are called non-equivalent. (In other

words, Γ1 is equivalent to Γ2 if and only if Γ1 is isomorphic to Γ2 or to a graph
obtained from Γ2 via reverse and complementation.) From our point of view the
interesting DSRGs are those which are non-equivalent.

The parameters n, k, t, λ, μ are not independent. Relations to be satisfied for
such parameter sets are usually called feasibility conditions. Most important and,
in a sense, basic conditions are the following (for their proof see [5]):

k(k + μ− λ) = t+ (n− 1)μ. (1)

Sporadic Examples of Directed Strongly Regular Graphs 159

There exists a positive integer d such that:

d2 = (μ− λ)2 + 4(t− μ) (2)

d | (2k − (μ− λ)(n − 1)) (3)

n− 1 ≡ 2k − (μ− λ)(n− 1)

d
(mod 2) (4)

n− 1 ≥
∣∣∣∣2k − (μ− λ)(n− 1)

d

∣∣∣∣ . (5)

Further:
0 ≤ λ < t < k
0 < μ ≤ t < k

−2(k − t− 1) ≤ μ− λ ≤ 2(k − t).
We have to mention that for a feasible parameter set it is not guaranteed

that a DSRG with that parameter set does exist. A feasible parameter set for
which at least one DSRG Γ exists is called realizable, otherwise non-realizable.
The smallest example of a non-realizable parameter set is (14, 5, 4, 1, 2), what
was shown in [18].

2.4 Coherent Configurations and Association Schemes

Under a color graph Γ we mean an ordered pair (V,R), where V is a set of
vertices and R a partition of V ×V into binary relations. The elements of R are
called colors, and the number of colors is the rank of Γ . In other words, a color
graph is an edge-colored complete directed graph with loops, whose arcs are
colored by the same color if and only if they belong to the same binary relation.

A coherent configuration is a color graph M = (Ω,R), R = {Ri | i ∈ I}, such
that the following axioms are satisfied:

(i) The diagonal relationΔΩ = {(x, x) | x ∈ Ω} is a union of relations ∪i∈I′Ri,
for a suitable subset I ′ ⊆ I.

(ii) For each i ∈ I there exists i′ ∈ I such that RT
i = Ri′ , where RT

i = {(y, x) |
(x, y) ∈ Ri} is the relation transposed to Ri.

(iii) For any i, j, k ∈ I, the number pki,j of elements z ∈ Ω such that (x, z) ∈ Ri

and (z, y) ∈ Rj is a constant depending only on i, j, k, and independent of
the choice of (x, y) ∈ Rk.

The numbers pki,j are called intersection numbers, or sometimes structure con-
stants of M. A coherent configuration M is called commutative, if for all i, j, k ∈
I we have pkij = pkji, otherwise non-commutative.

Let (G,Ω) be a permutation group. G acts naturally on Ω × Ω by (x, y)g =
(xg, yg). The orbits of this action are called 2-orbits (or orbitals) of (G,Ω), and
denoted by 2−Orb(G,Ω). It is easy to check that (Ω, 2−Orb(G,Ω)) is a coherent
configuration for every permutation group (G,Ω). The coherent configurations
which appear in this manner are called Schurian, otherwise non-Schurian.

An association scheme M = (Ω,R) is a homogeneous coherent configuration,
i.e., where the diagonal relation ΔΩ does belong to R. Hence, a very important

160 Š. Gyürki and M. Klin

source of association schemes are transitive permutation groups, since their 2-
orbits form a homogeneous coherent configuration.

Let M be a coherent configuration of rank r. To each relation Ri in M we
can assign a 0–1-matrix Ai such that (Ai)xy = 1 ⇐⇒ (x, y) ∈ Ri. Then clearly∑r

i=1Ai = J and AiAj =
∑r

k=1 p
k
ijAk. Matrices A1, . . . , Ar generate an algebra

W over C, which is called coherent algebra of rank r and degree n, and we write
W = 〈A1, . . . , Ar〉.

Let W1,W2 be two coherent algebras of order n. Then W1 ∩ W2 is again a
coherent algebra, therefore, there exists a unique minimal coherent algebra W
containing a given set {M1, . . . ,Mt} of 0–1-matrices of order n×n. This algebra
is called coherent closure of M1, . . . ,Mt and it is denoted 〈〈M1, . . . ,Mt〉〉. In
particular, to a DSRG Γ with adjacency matrix A, we can associate the coherent
closure W(Γ) = 〈〈A〉〉.

To each coherent configuration M, we can assign three groups: Aut(M),
CAut(M) and AAut(M). The (combinatorial) group of automorphisms Aut(M)
consists of the permutations φ : Ω → Ω which preserve the relations, i.e.,
Rφ

i = Ri for all Ri ∈ R. The color automorphisms preserve relations setwise,
i.e., for φ : Ω → Ω we have φ ∈ CAut(M) if and only if for all i ∈ I there exists

j ∈ I such that Rφ
i = Rj . An algebraic automorphism is a bijection ψ : R → R

which satisfies pkij = pk
ψ

iψjψ . We refer to [19] for a discussion of these concepts.
Graphs and digraphs can be regarded as binary relations, while association

schemes are collections of binary relations in the sense of our definition. There-
fore, it is natural to ask:

Question 1. Assume M is an association scheme of order n. Can we obtain a
DSRG on n vertices as a union of suitable classes in M?

It turns out that there is no standard easy way to reply to the question.
A very important necessary condition posed for the initial association scheme

M was given in [18]:

Theorem 1 ([18]). Let Γ be a genuine directed strongly regular graph. Then
the coherent closure W(Γ) is non-commutative, and its rank is at least 6.

In other words, we have to consider non-commutative association schemes of
rank at least 6, when we are searching for directed strongly regular graphs as
unions of relations in a prescribed association scheme.

Significant part of our results was achieved following the strategy of creat-
ing suitable non-commutative association schemes and taking unions of their
relations.

3 General Approach to the Computer Experimentation

3.1 Main Methodology

Assume that M = (Ω,R) is an association scheme and G = Aut(M). Let r be
the rank of M, thus, M has r − 1 classes. In many cases below, G acts tran-
sitively on Ω. Moreover, M is the Schurian scheme obtained from permutation

Sporadic Examples of Directed Strongly Regular Graphs 161

group (G,Ω), however, this restriction is not obligatory in the framework of the
described approach.

Let Γ be a putative DSRG (with order n), which is obtained via union of
suitable classes of M. Then clearly one has to inspect 2r−1 possible unions.

First evident restriction is to look simultaneously for all possible parameter
sets of DSRGs of order n; recall that this data is available at [3]. Typically, in
this project, our attention was restricted only to the open parameter sets.

At the second step, one has to consider multisets of valencies of symmetric
and antisymmetric classes in M and to find in advance which subsets of classes
of M may in principle provide a mixed graph with prescribed pair of valencies
(t, k−t), respectively. Getting such a list is a simple case of the famous knapsack
problem, however, we were using a very naive approach to provide all solutions.

In order to eliminate in further search duplicates of isomorphic graphs it might
be helpful to work with the representatives of orbits on sets of relations in the
action of the color group CAut(M). Sometimes, preliminary sorting with the aid
of the action of the algebraic group AAut(M) might be also of help. Nevertheless,
according to the gathered practical experience, in most of the cases the order of
AAut(M) is relatively small, thus, we are facing exponential complexity in cases
of schemes with relatively small valencies. Therefore, we decided to restrict our
systematic attempts just to the association schemes of rank not larger than 25.

Finally, for each selected “suspicious” union of relations from M we have to
check whether it is providing a DSRG or not. Here use of the known structure
constants of M is very crucial: indeed, instead of inspection of the adjacency
matrix A(Γ) of a putative graph Γ we arrange calculations with the tensor of
structure constants of M.

The computational scheme outlined above is, in a sense, the ideal plan of
activities, which were arranged in the course of computations. In many cases,
we preferred to use ingredients of a brute-force approach, rather than to being
involved in a more sophisticated programming. Since in many cases it was impos-
sible to execute an exhaustive search, it was substituted by an ad hoc selection
of simple “promising” subsets of candidates.

3.2 Computer Tools

We run all computations in the software GAP [9] with its share packages GRAPE
[28] together with nauty [24] for computation with graphs; an unpublished pack-
age COCO-II [27] written by S. Reichard for computations with association
schemes and coherent configurations; and the package SetOrbit [26] written by
Ch. Pech and S. Reichard, and documented in [25], for finding representatives
of orbits of group actions on sets of various size.

In addition, some ad hoc computational tricks were used from time to time,
like to exploit a simple variation of the calculation of the coherent closure of
an auxiliary graph, which is related to the putative DSRG Γ , as well as some
helpful functions for the calculations with association schemes borrowed from
the site [13].

162 Š. Gyürki and M. Klin

3.3 Sources for Association Schemes

Recall that first open parameter set for a DSRG appears for order n = 22. With
growing of n the fraction of open parameter sets is becoming more essential. This
dictated our strategy in the selection of candidates for association schemes being
considered. In what follows, we report only about successful attempts, resulted
in discovery of graphs with open parameter sets. However, as a byproduct, many
graphs with known parameter sets were also considered (their comparison with
known ones remains as one of tasks for a more systematic approach in the future).

Roughly speaking, we distinguish a few different typical origins in our search:

– use of existing catalogues of association schemes;
– inspection of groups of automorphisms of some “famous” vertex-transitive

graphs;
– consideration of incidence structures;
– investigation of Cayley graphs.

In the next section, we are paying reasonable attention to a more detailed
discussion of each of these approaches.

4 Unions of Relations in Association Schemes

Here we consider several strategies for finding non-commutative association
schemes which serve as input for searching new DSRGs.

4.1 Search Using Catalogue of Small Association Schemes

For executing our strategy it is enough to consider non-commutative associa-
tion schemes of small order at the first stage. They are systematically arranged
according to their order and rank in the catalogue of Hanaki and Miyamoto [13].

The number of new parameter sets, for which we succeed, using exactly this
approach, is 12, see Table 2 in Summary. For several parameter sets, we have
found a few non-equivalent DSRGs. Table 1 contains just the digraphs which are
mutually non-equivalent. In this Table 1, we display sufficient portion of infor-
mation for reconstructing discovered DSRGs using the catalogue of association
schemes by Hanaki and Miyamoto.

Remark 3. We noticed that in [13] “class” of association schemes is used instead
of their “rank”. Clearly, the number of classes is less by one than the rank.

From Table 1 it is easy to observe that graph nr. 13 is a (spanning) subgraph
of graphs nr. 25 and 26; while nr. 14 is a subgraph of nr. 19.

4.2 Actions of Group of Automorphisms of Graphs

Jørgensen in [17] and [15] announced the existence of a DSRG with the parameter
set (108, 10, 3, 0, 1). The author provided us the adjacency matrix of this new

Sporadic Examples of Directed Strongly Regular Graphs 163

Table 1. DSRGs from small association schemes

nr. (n, k, t, λ, μ) Union of relations AS order AS rank nr.cat

1 (30, 13, 11, 6, 5) 1, 2, 4, 6, 8 30 11 184
2 (36, 13, 7, 4, 5) 4, 5, 6, 9 36 11 49
3 (36, 13, 7, 4, 5) 1, 2, 3, 4, 8, 12, 14, 16 36 20 28
4 (36, 13, 7, 4, 5) 1, 2, 3, 4, 8, 12, 14, 17 36 20 28
5 (36, 13, 7, 4, 5) 1, 2, 3, 4, 5, 10, 13, 14 36 20 30
6 (36, 13, 7, 4, 5) 1, 2, 3, 4, 6, 8, 12, 18 36 20 40
7 (36, 13, 7, 4, 5) 1, 2, 3, 4, 6, 8, 13, 16 36 20 40
8 (36, 13, 11, 2, 6) 1, 3, 5, 7, 10 36 13 57
9 (45, 16, 8, 5, 6) 1, 3, 5, 8 45 10 18

10 (45, 16, 8, 5, 6) 2, 3, 5, 8 45 10 18
11 (50, 16, 10, 3, 6) 1, 2, 6, 9, 13 50 14 9
12 (50, 23, 13, 10, 11) 1, 2, 6, 8, 10, 12 50 14 17
13 (54, 8, 3, 2, 1) 1, 6, 8, 12 54 18 103
14 (54, 16, 12, 6, 4) 4, 5, 10, 12, 16 54 18 109
15 (54, 19, 9, 6, 7) 1, 3, 4, 6, 11, 14, 16 54 18 111
16 (54, 19, 9, 6, 7) 1, 3, 4, 6, 11, 14, 17 54 18 111
17 (54, 20, 16, 6, 8) 2, 3, 4, 5, 11, 13, 14 54 18 109
18 (54, 20, 16, 6, 8) 8, 9, 11, 13, 14 54 18 109
19 (54, 21, 17, 8, 8) 1, 2, 3, 4, 5, 10, 12, 16 54 18 109
20 (54, 21, 17, 8, 8) 1, 8, 9, 10, 12, 16 54 18 109
21 (54, 25, 14, 11, 12) 1, 2, 4, 6, 10, 12, 14, 16 54 18 106
22 (54, 25, 14, 11, 12) 1, 2, 4, 6, 10, 12, 15, 17 54 18 106
23 (54, 25, 14, 11, 12) 1, 2, 4, 6, 10, 13, 15, 16 54 18 106
24 (54, 25, 14, 11, 12) 1, 2, 4, 6, 11, 13, 15, 17 54 18 106
25 (54, 25, 14, 11, 12) 1, 2, 6, 8, 10, 12, 14, 16 54 18 103
26 (54, 25, 14, 11, 12) 1, 2, 6, 8, 10, 12, 15, 17 54 18 103
27 (54, 25, 14, 11, 12) 1, 2, 6, 8, 10, 13, 14, 17 54 18 103
28 (54, 25, 14, 11, 12) 1, 2, 6, 8, 11, 13, 14, 16 54 18 103

digraph, and we managed to explain it in terms of unions of relations in the
Schurian association scheme of the group of automorphism of the Pappus graph
in the action on the ordered triples of its vertices. For more details see [12].

This successful attempt inspired us to go ahead in a similar spirit. In fact,
we investigated actions of the group of automorphisms of several symmetric
graphs on certain orbits of various k-sets and k-tuples. Usually, due to high time
and space complexity, we took just k ∈ {2, 3, 4}. Restricting group action to
an orbit we ensure that the resulted action is transitive on it, and from this
action we create the Schurian association scheme. When it passes the test for
being non-commutative, then there is sense to execute the search for DSRGs as
unions of relations in these schemes. Once more, due to high time-complexity,
we restricted ourselves just for the cases when the rank was not greater than 25
and the size of the orbit not greater than 110. Therefore, our search is far from
being exhaustive. If one goes higher with the rank, then he could probably find
new DSRGs.

164 Š. Gyürki and M. Klin

One can find origins of this strategy in [8], Example 3.4. The authors took the
lattice graph on 9 points and investigated an action of a subgroup of its group
of automorphism on the edges. Our strategy is a slight generalization of it, since
we do not consider only the pairs of two adjacent vertices, but also actions on
any 2-sets, 3-sets, ordered pairs, ordered triplets of vertices and sometimes on
4-sets, ordered quadruples.

Using our strategy, we succeed in the following cases (the starting “famous”
graphs are available via Internet, e.g. from the home page of A. Brouwer):

– from the Petersen graph we obtained a DSRG(60, 13, 5, 2, 3);
– from the Shrikhande graph we get a DSRG(48, 10, 6, 2, 2) and (48, 13, 7, 2, 4);
– from the Heawood graph we obtained DSRG (84, 31, 17, 12, 11),

(84, 29, 19, 6, 12) and (84, 39, 27, 18, 18), see also Section 4.3;
– from the unique SRG(21, 10, 3, 6) we obtained a DSRG(105, 36, 16, 11, 13);

Explicit descriptions of these digraphs are shown in Appendix.

4.3 Actions of Group of Automorphisms of Combinatorial Designs

Let us now start from a block design D = (P ,B) with the point set P and block
set B, let I = I(D) be the Levi graph of D, that is the graph with vertex set
P ∪B and two vertices being adjacent if and only if the corresponding elements
of D are incident. Clearly, I(D) is a bipartite graph. The group Aut(I(D)) either
coincides with the group Aut(D), or it is twice larger (the latter corresponds to
the case when D is a symmetric self-dual design).

For a number of designs D, we investigated the action of the group G =
Aut(I(D)) on certain orbits of various k-subsets and k-tuples of vertices of I.
The same limitations for values of k, order and rank of related Schurian asso-
ciation scheme (like in previous section) remain valid. The execution of search
for DSRGs has been started, provided the appearing Schurian schemes were
non-commutative.

Using this strategy we succeed in the following cases:

– Considering the unique (7, 3, 1)-design is equivalent of consideration of the
Heawood graph in the previous section, since the Levi graph of the (7, 3, 1)-
design is the Heawood graph;

– from the unique (9, 3, 1)-design we get DSRGs with parameter sets
(72, 20, 14, 4, 6), (72, 21, 15, 6, 6), (72, 22, 9, 6, 7);

– from the (10, 4, 2)-design with group of automorphisms of order 720 we get
DSRGs with parameter sets (60, 26, 20, 10, 12) and (90, 28, 16, 10, 8);

– from the (15, 3, 1)-design which has group of automorphisms of order 288 we
get DSRG with parameter set (72, 26, 10, 8, 10);

– from the (15, 7, 3)-design with group of automorphisms of order 1152 we get
a DSRG with parameter set (72, 19, 11, 2, 6);

– from the (25, 4, 1)-design with group of automorphisms of order 504 we get
a DSRG with parameter set (63, 22, 10, 7, 8).

Sporadic Examples of Directed Strongly Regular Graphs 165

In all these cases, we refer to the description of block designs provided in [4].
Explicit descriptions of all digraphs constructed in this subsection are shown

in Appendix.

Example 2. Consider the unique (7, 3, 1)-design F , that is the Fano plane. In
this case, the group G of order 336 acts transitively on the vertex set of graph
I(F) of size 14. Let us consider configuration, which consists of two lines, their
intersection point and another point in one line not belonging to the other line.
Clearly, there are

(
7
2

)
· 4 = 84 possibilities to select such a configuration. It is

easy to see that both groups Aut(F) and G = Aut(I(F)) (of order 168 and 336,
respectively) act transitively on the set Ω of cardinality 84. The advantage of
the group G is that the corresponding association scheme is of rank 25, that is
on the edge of our computational possibilities. The remaining details relevant to
the precise description of the resulted DSRG(84, 31, 17, 12, 11) are in Appendix.

It is worthy to notice that the incidence graph I(F) is isomorphic to the
Heawood graph considered above. In fact, the considerations from Heawood
graph were fulfilled in advance (this took a few days of computational time)
and it was exceptionally extended up to groups of rank 30, which lead to the
discovery of DSRG(84, 29, 19, 6, 12) and (84, 39, 27, 18, 18).

Example 3. Consider the unique (9, 3, 1)-design. We identify its set of points
with the set P = {1, 2, . . . , 9} and its set of blocks with

B = {{1, 2, 3}, {1, 4, 7}, {1, 5, 9}, {1, 6, 8}, {2, 4, 9}, {2, 5, 8}, {2, 6, 7},

{3, 4, 8}, {3, 5, 7}, {3, 6, 9}, {4, 5, 6}, {7, 8, 9}}.
The full group of automorphisms of (P ,B) can be identified with the permutation
group G = 〈(1, 7, 3, 2, 6, 9, 4, 5), (4, 6, 5)(7, 8, 9)〉 of order 432 and degree 9. (Of
course, it could be also regarded as a permutation group of degree |P|+|B| = 21.)
Let us consider the action of G on the 3-set {1, 2, 4}. There are 72 = 12 ·3 ·2 pos-
sibilities (from geometric arguments) for such a selection. Denote by O the entire
set of selected configurations. The automorphism group of (P ,B) acts naturally
on O as a permutation group G̃ of degree 72, rank 16. By choosing suitable
subsets of 2-orbits of G̃, we get two non-equivalent DSRGs with parameter set
(72, 22, 9, 6, 7). For a representation of G̃ as a permutation group of degree 72
see the group called H9 in Appendix.

5 New Sporadic Examples as Cayley Digraphs

In this section, we construct some new DSRGs of order 32 and 39 as Cay-
ley digraphs. Among them, we obtain the first DSRG with parameter set
(39, 16, 12, 7, 6).

The following lemma is crucial for testing whether a Cayley digraph is DSRG.

Lemma 1 ([18],[14]). The Cayley digraph Cay(G,X) is DSRG with parameter
set (v, k, t, λ, μ) if and only if the equation X ·X = t · e+λ ·X +μ · (G− e−X)
holds in ZG.

166 Š. Gyürki and M. Klin

5.1 Cayley Digraphs on 32 Vertices

We now show how to obtain new DSRGs for parameter sets (32, 9, 6, 1, 3),
(32, 13, 9, 4, 6) and (32, 14, 10, 6, 6).

Let us take the wreath product groupH = S2 &Z4 of order 32. (Here for wreath
product we follow notation from [22], which is inherited from L.A. Kalužnin.)
Each element h ∈ H can be uniquely represented as h = (g; k1, k2), where g ∈ S2,
k1, k2 ∈ Z4. Let x be a generator of Z4, and π = (1 2) ∈ S2. In order to shorten
description we display just the triple i j l instead of (πi;xj , xl).

Let us define six subsets of H :

X1 = {002, 011, 012, 032, 033, 100, 101, 102, 103},
X2 = {010, 011, 030, 031, 033, 100, 102, 111, 113, 121, 123, 130, 132},
X3 = {010, 021, 022, 023, 030, 100, 102, 111, 113, 121, 123, 130, 132},
X4 = {002, 011, 012, 032, 033, 100, 101, 102, 103, 120, 121, 122, 123},
X5 = {001, 003, 011, 012, 032, 033, 100, 101, 102, 103, 110, 111, 112, 113},
X6 = {001, 003, 011, 012, 032, 033, 100, 101, 102, 103, 110, 112, 131, 133}.

It is a routine-work to check using Lemma 1 that the following proposition
holds:

Proposition 3. The Cayley digraph Γi = Cay(H,Xi) is a DSRG with parame-
ter set

a) (32, 9, 6, 1, 3), for i = 1;
b) (32, 13, 9, 4, 6), for i = 2, 3, 4, and
c) (32, 14, 10, 6, 6), for i = 5, 6.

According to [3], DSRGs with parameter sets mentioned in the previous propo-
sition had been constructed in [10], [23].

Using computer algebra system GAP [9] along with the computer package
GRAPE [11] in common with nauty [24] we have tested that all the digraphs con-
structed in Proposition 3 are pairwise non-equivalent and none of these DSRGs
were obtained earlier.

5.2 Cayley Digraphs on 39 Vertices

In this subsection, we construct DSRGs for all feasible parameter sets on 39
vertices. Hence, we obtain also a DSRG for the parameter set (39, 16, 12, 7, 6)
for which such a graph has not been known at the time of writing this paper.
All these graphs arise as Cayley digraphs over a metacyclic group of order 39.
For more constructions from metacyclic groups, we refer the reader to [6].

Let us take the group G presented as

G = 〈a, b : a13 = b3 = e, ba = a9b〉 ≤ AGL(1, 13)

Sporadic Examples of Directed Strongly Regular Graphs 167

and let us define eight of its subsets:

X1 = {a, a5, a8, a12, b, a2b, a4b, a3b2, a7b2, a11b2},
X2 = {a, a5, a8, a12, b, a4b, a7b, a11b, a2b2, a4b2, a8b2, a11b2},
X3 = {a, a5, a8, a12, b, a4b, a7b, a10b, a3b2, a4b2, a10b2, a11b2},
X4 = {a2, a4, a9, a11, b, a4b, a6b, a11b, a3b2, a5b2, a9b2, a11b2},
X5 = X2 ∪ {a12b, a3b2},
X6 = X4 ∪ {a2b, a7b2},
X7 = {a2, a4, a9, a11, a2b, a3b, a6b, a8b, a11b, a12b, b2, a3b2, a4b2, a6b2, a7b2, a10b2},
X8 = {a4, a5, a8, a9, b, ab, a4b, a6b, a8b, a10b, b2, a2b2, a4b2, a6b2, a8b2, a10b2}.

Proposition 4. The Cayley digraph Γi = Cay(G,Xi) is a DSRG with parame-
ter set

a) (39, 10, 6, 1, 3), for i = 1;
b) (39, 12, 4, 3, 4), for i = 2, 3, 4,
c) (39, 14, 6, 5, 5), for i = 5, 6, and
d) (39, 16, 12, 7, 6) for i = 7, 8.

Remark 4. The DSRG with parameter set (39, 10, 6, 1, 3) is isomorphic to the one
constructed in [23] and described using partial sum families. The two digraphs
with parameters (39, 16, 12, 7, 6) are non-equivalent.

Remark 5. In [16] the author states that it may happen that the so-called Krein
parameter qθθθ is always non-negative if 0 and −1 are not eigenvalues of a DSRG
Γ in consideration. The existence of a DSRG with parameters (39, 10, 6, 1, 3)
disproves it, since in this case qθθθ = −3/8 (this fact was somehow not mentioned
in [23]).

6 Conclusion and Summary

The main genre of this paper is computer algebra experimentation for the pur-
poses of algebraic graph theory. Using techniques and ideas, which were before
reflected in [6], [8], [7], [18] and [21], the author Š. Gyürki arranged a more
systematical search for DSRGs, relying on the above described strategies.

We think that the approaches outlined above carry features of methodological
innovations, though in a few cases they simply stem from careful analysis of
previous successful computations done by M. Klin et al.

Our next goal was of a definite “sporting” interest: to present examples of
new DSRGs for previously open parameter sets. Altogether we reached such a
success for 28 new parameter sets, see Table 2 below.

Of course, the foremost goal at a computer algebra experimentation (cf. [20])
is to reach a successful theoretical generalization of the obtained new results.
In the case of the sporadic examples of new DSRGs, this would mean to try to

168 Š. Gyürki and M. Klin

embed at least some of the new examples into new infinite classes of DSRGs. We
are pleased to claim that this task was successfully fulfilled in the course of our
project. In fact, already after the submission of the initial version of this paper we
succeeded to generalize the presented digraph with parameter set (32, 14, 10, 6, 6)
to the infinite series of DSRGs with parameters (2n2, 4n − 2, 2n + 2, n + 2, 6).
The corresponding paper is in preparation. Hence, we can finally claim that one
more corollary of the reported project is creation of new (striking in the eyes of
the authors) patterns of successful insight:

– to observe a short sequence of parameter sets with similar properties;
– to formulate a plausible conjecture about a possible putative infinite series

of combinatorial structures;
– to prove this conjecture on purely theoretical level, that is finally, without

the use of a computer.

Table 2 below provides a brief summary of our computer aided discoveries.

Table 2. Summary

n k t λ μ ps am constructed in n k t λ μ ps am constructed in

30 13 11 6 5 Yes 1 Section 4.1 54 19 9 6 7 Yes 2 Section 4.1
32 9 6 1 3 No 1 Section 5.1 54 20 16 6 8 Yes 2 Section 4.1
32 13 9 4 6 No 3 Section 5.1 54 21 17 8 8 Yes 2 Section 4.1
32 14 10 6 6 No 2 Section 5.1 54 25 14 11 12 Yes 8 Section 4.1
36 13 7 4 5 Yes 6 Section 4.1 60 13 5 2 3 Yes 1 Section 4.2
36 13 11 2 6 Yes 1 Section 4.1 60 26 20 10 12 Yes 2 Section 4.3
39 10 6 1 3 No 0 Section 5.2 63 22 10 7 8 Yes 1 Section 4.3
39 12 4 3 4 No 3 Section 5.2 72 19 11 2 6 Yes 1 Section 4.3
39 14 6 5 5 No 2 Section 5.2 72 20 14 4 6 Yes 1 Section 4.3
39 16 12 7 6 Yes 2 Section 5.2 72 21 15 6 6 Yes 1 Section 4.3
45 16 8 5 6 Yes 2 Section 4.1 72 22 9 6 7 Yes 2 Section 4.3
48 10 6 2 2 Yes 1 Section 4.2 72 26 10 8 10 Yes 1 Section 4.3
48 13 7 2 4 Yes 1 Section 4.2 84 29 19 6 12 Yes 1 Section 4.2
50 16 10 3 6 Yes 1 Section 4.1 84 31 17 12 11 Yes 1 Section 4.2
50 23 13 10 11 Yes 1 Section 4.1 84 39 27 18 18 Yes 2 Section 4.2
54 8 3 2 1 Yes 1 Section 4.1 90 28 16 10 8 Yes 1 Section 4.3
54 16 12 6 4 Yes 1 Section 4.1 105 36 16 11 13 Yes 1 Section 4.2

Remark 6. Abbreviations used in Table 2: ps – Is parameter set new?; am – The
amount of new constructed DSRGs.

Remark 7. A more detailed version of the paper contains also Appendix with all
details regarding constructed DSRGs. It is available on request from Š. Gyürki
and will finally appear on his home page.

Sporadic Examples of Directed Strongly Regular Graphs 169

Acknowledgements. The first author gratefully acknowledges the contribution
of the Scientific Grant Agency of the Slovak Republic under the grant 1/1005/12.

This research was also supported by the Project: Mobility - enhancing
research, science and education at the Matej Bel University, ITMS code:
26110230082, under the Operational Program Education cofinanced by the Eu-
ropean Social Fund.

We thank L. Jørgensen for generous sharing with us of his preliminary results
related to the DSRG on 108 vertices. A long-standing cooperation with Ch. Pech
and S. Reichard in the use of computer algebra tools is appreciated.

We thank the reviewers for helpful constructive remarks and suggestions.

References

1. Biggs, N.: Algebraic Graph Theory, 2nd edn. Cambridge Mathematical Library.
Cambridge University Press, Cambridge (1993); (1st ed. (1974))

2. Brouwer, A.E., Haemers, W.H.: Spectra of Graphs. Universitext. Springer,
New York (2012)

3. Brouwer, A.E., Hobart, S.: Tables of directed strongly regular graphs (April 2014),
http://homepages.cwi.nl/~aeb/

4. Colbourn, C.J., Dinitz, J.H.: The Handbook of Combinatorial Designs, 2nd edn.
Chapman & Hall/CRC, Boca Raton (2007)

5. Duval, A.M.: A directed graph version of strongly regular graphs. J. Combin. Th.
A 47, 71–100 (1988)

6. Duval, A.M., Iourinski, D.: Semidirect product constructions of directed strongly
regular graphs. J. Combin. Th. A 104, 157–167 (2003)

7. Fiedler, F., Klin, M.H., Muzychuk, M.: Small vertex-transitive directed strongly
regular graphs. Discrete Math. 255, 87–115 (2002)

8. Fiedler, F., Klin, M., Pech, C.: Directed strongly regular graphs as elements of
coherent algebras. In: Denecke, K., Vogel, H.-J. (eds.) General Algebra and Discrete
Mathematics: Proc. Conf. on General Algebra and Discrete Mathematics, Potsdam
1998, pp. 69–87. Shaker Verlag, Aachen (1999)

9. GAP – Groups, Algorithms, Programming – a System for Computational Discrete
Algebra, http://www.gap-system.org

10. Godsil, C.D., Hobart, S.A., Martin, W.J.: Representations of directed strongly
regular graphs. Europ. J. Combin. 28, 1980–1993 (2007)

11. Godsil, C.D., Royle, G.: Algebraic Graph Theory. Graduate Texts in Mathematics,
vol. 207. Springer, New York (2001)

12. Gyürki, Š., Klin, M.: On a new directed strongly regular graph on 108 vertices
constructed by Jørgensen, and graphs related to it (2013) (manuscript)

13. Hanaki, A., Miyamoto, I.: Catalogue of Small Association Schemes (2013),
http://kissme.shinshu-u.ac.jp/as/ (accessed: November 2013)

14. Hobart, S.A., Shaw, T.J.: A note on a family of directed strongly regular graphs.
Europ. J. Combin. 20, 819–820 (1999)

15. Jørgensen, L.K.: New mixed Moore graphs and directed strongly regular graphs,
http://vbn.aau.dk/files/166247351/R_2013_13.pdf

16. Jørgensen, L.K.: Non-existence of directed strongly regular graphs. Discrete
Math. 264, 111–126 (2003)

http://homepages.cwi.nl/~aeb/
http://www.gap-system.org
http://kissme.shinshu-u.ac.jp/as/
http://vbn.aau.dk/files/166247351/R_2013_13.pdf

170 Š. Gyürki and M. Klin

17. Jørgensen, L.K.: Variations and generalizations of Moore Graphs. In: The
International Workshop on Optimal Networks Topologies 2012, Bandung (2012),
Slides are available on http://people.math.aau.dk/~leif

18. Klin, M., Munemasa, A., Muzychuk, M., Zieschang, P.H.: Directed strongly regular
graphs obtained from coherent algebras. Lin. Alg. Appl. 377, 83–109 (2004)

19. Klin, M., Muzychuk, M., Pech, C., Woldar, A., Zieschang, P.H.: Association
schemes on 28 points as mergings of a half-homogeneous coherent configuration.
European J. Combin. 28(7), 1994–2025 (2007)

20. Klin, M., Pech, C., Reichard, S., Woldar, A., Ziv-Av, M.: Examples of computer
experimentation in algebraic combinatorics. Ars Math. Contemp. 3(2), 237–258
(2010)

21. Klin, M., Pech, C., Zieschang, P.H.: Flag algebras of block designs: I. Initial no-
tions, Steiner 2-designs and generalized quadrangles. Preprint, MATH-AL-10-1998,
Technische Universität Dresden (1998)

22. Klin, M., Pöschel, R., Rosenbaum, K.: Angewandte Algebra für Mathematiker
und Informatiker, Einführung in gruppentheoretisch-kombinatorische Methoden,
Berlin (Applied algebra for mathematicians and information scientists. Introduc-
tion to Group-theoretical Combinatorial Methods.) VEB Deutscher Verlag der
Wissenschaften (1988) (German)

23. Martinez, L., Araluze, A.: New tools for construction of directed strongly regular
digraphs: Difference digraphs and partial sum families. J. Combin. Th. B 100,
720–728 (2010)

24. McKay, B.D.: nauty user’s guide, ver. 1.5, Technical Report TR-CS-90-02.
Computer Science Department, Australian National Univ. (1990)

25. Pech, C., Reichard, S.: Enumerating set orbits. In: Klin, M., et al. (eds.)
Algorithmic Algebraic Combinatorics and Gröbner Bases, pp. 137–150. Springer,
Heidelberg (2009)

26. Pech, C., Reichard, S.: The SetOrbit package for GAP,
http://www.math.tu-dresden.de/~pech

27. Reichard, S.: COCO II (personal communication)
28. Soicher, L.H.: GRAPE: A system for computing with graphs and groups. Groups

and Computation, New Brunswick (1991); DIMACS Ser. Discrete Math. Theoret.
Comput. Sci. 11, pp. 287–291, Amer. Math. Soc., Providence, RI (1993)

http://people.math.aau.dk/~leif
http://www.math.tu-dresden.de/~pech

On the Parallelization of Subproduct Tree

Techniques Targeting Many-Core Architectures

Sardar Anisul Haque, Farnam Mansouri, Marc Moreno Maza

University of Western Ontario, London, Ontario, Canada
{haque.sardar,mansouri.farnam}@gmail.com, moreno@csd.uwo.ca

Abstract. We propose parallel algorithms for operations on univariate
polynomials (multi-point evaluation, interpolation) based on subproduct
tree techniques and targeting many-core GPUs. On those architectures,
we demonstrate the importance of adaptive algorithms, in particular the
combination of parallel plain arithmetic and parallel FFT-based arith-
metic. Experimental results illustrate the benefits of our algorithms.

1 Introduction

We investigate the use of Graphics Processing Units (GPUs) in the problems
of evaluating and interpolating polynomials. Many-core GPU architectures were
considered in [17] and [18] in the case of numerical computations, with the pur-
pose of obtaining better support, in terms of accuracy and running times, for
the development of polynomial system solvers.

Our motivation, in this work, is also to improve the performance of polynomial
system solvers. However, we are targeting symbolic, thus exact, computations. In
particular, we aim at providing GPU support for solvers of polynomial systems
with coefficients in finite fields, such as the one presented in [14]. This case
handles problems from cryptography and serves as a base case for the so-called
modular methods [4], since those methods reduce computations with rational
number coefficients to computations with finite field coefficients.

Finite fields allow the use of asymptotically fast algorithms for polynomial
arithmetic, based on Fast Fourier Transforms (FFTs) or, more generally, sub-
product tree techniques1, which have the advantage of providing a more general
setting than FFTs. More precisely, evaluation points do not need to be succes-
sive powers of a primitive root of unity. Evaluation and interpolation based on
subproduct tree techniques have “essentially” (up to log factors) the same al-
gebraic complexity estimates as their FFT-based counterparts. However, their
implementation is known to be challenging.

In this work, we report on the first GPU implementation (using CUDA [16]) of
subproduct tree techniques for multi-point evaluation and interpolation of uni-
variate polynomials. The parallelization of those techniques raises the following
challenges on hardware accelerators:

1 Chapter 10 of [5] and the paper [1] contain overviews of those techniques.

V.P. Gerdt et al. (Eds.): CASC Workshop 2014, LNCS 8660, pp. 171–185, 2014.
© Springer International Publishing Switzerland 2014

172 S.A. Haque, F. Mansouri, and M. Moreno Maza

1. The divide-and-conquer formulation of operations on subproduct-trees is not
sufficient to provide enough parallelism and one must also parallelize the
underlying polynomial arithmetic operations, in particular multiplication.

2. Algorithms based on FFT (such as subproduct tree techniques) are memory
bound since the ratio of work to memory access is essentially constant, which
makes those algorithms not well suited for multi-core architectures.

3. During the course of the execution of a subproduct tree operation (con-
struction, evaluation, interpolation) the degrees of the involved polynomials
vary greatly, thus so does the work load of the tasks, which makes those
algorithms complex to implement on many-core GPUs.

The contributions of this work are summarized below. We propose parallel al-
gorithms for performing subproduct tree construction, evaluation and interpola-
tion. We also report on their implementation on many-core GPUs. See Sections 3,
5 and 6, respectively. We enhance the traditional algorithms for polynomial eval-
uation and interpolation based on subproduct tree techniques, by introducing
the data-structure of a subinverse tree, which we use to implement both evalu-
ation and interpolation, see Section 4. For subproduct tree operations targeting
many-core GPUs, we demonstrate the importance of adaptive algorithms2 That
is, algorithms that adapt their behavior according to the available computing
resources. In particular, we combine parallel plain arithmetic and parallel fast
arithmetic. For the former we rely on [7] and, for the latter we extend the work
of [13]. The span and parallelism overhead of our algorithm are measured con-
sidering the many-core machine model of [8]. The paper [15] briefly discusses the
parallelization of FFT-based multi-point evaluation without considering paral-
lelism overhead, adaptive algorithms nor reporting on an implementation.

To evaluate our implementation, we measure the effective memory bandwidth
of our GPU code for parallel multi-point evaluation and interpolation on a card
with a theoretical maximum memory bandwidth of 148 GB/S, our code reaches
peaks at 64 GB/S. Since the arithmetic intensity of our algorithms is high, we
believe that this is a promising result.

All implementation of subproduct tree techniques that we are aware of are
serial only. This includes [3] for GF (2)[x], the FLINT library[9] and the Modpn

library [10]. Hence we compare our code against probably the best serial C code
(the FLINT library) for the same operations. For sufficiently large input data and
on NVIDIA Tesla C2050, our code outperforms its serial counterpart by a factor
ranging between 20 to 30. Experimental data are provided in Section 7. Our code
is freely available in source, under GPL license, as part of the project CUDA
Modular Polynomial (CUMODP) whose web site is http://www.cumodp.org.

2 Background

We refer to [16] for notions related to GPU programming. We review below
the notion of a subproduct tree and specify costs for the underlying polynomial

2 A famous example of adaptive algorithm usage was for computing 2,700 billion
decimal digits of π on a desktop computer by F. Bellard http://bellard.org/pi/.

http://www.cumodp.org
http://bellard.org/pi/

On the Parallelization of Subproduct Tree Techniques 173

arithmetic used in our implementation. Notations and hypotheses introduced in
this section are used throughout this paper. Let n = 2k for some positive integer
k and let K be a finite field. Let u0, . . . , un−1 ∈ K. Define mi = x−ui, for 0 ≤ i < n.
We assume that each ui ∈ K can be stored in one machine word.

Subproduct Tree. The subproduct tree Mn ∶= SubproductTree(u0, . . . , un−1) is
a complete binary tree of height k = log2 n. The j-th node of the i-th level of
Mn is denoted by Mi,j , where 0 ≤ i ≤ k and 0 ≤ j < 2k−i, and is defined by
Mi,j = mj⋅2i ⋅mj⋅2i+1⋯mj⋅2i+(2i−1) = ∏0≤�<2imj⋅2i+�. Each Mi,j can be defined
recursively by M0,j = mj and Mi+1,j =Mi,2j ⋅Mi,2j+1. The i-th level of Mn has
2k−i polynomials with degree of 2i. Since each element of K fits a machine word,
storing the subproduct tree Mn requires at most n log2 n + 3n − 1 words.

Algorithm 1. SubproductTree(m0, . . . ,mn−1)

Input: m0 = (x − u0), . . . ,mn−1 = (x − un−1) ∈ K[x] with ui ∈ K, n = 2k, k ∈ N.
Output: The subproduct-tree Mn.
for j = 0 to n − 1 do

M0,j =mj ;

for i = 1 to k do

for j = 0 to 2k−i − 1 do
Mi,j =Mi−1,2jMi−1,2j+1 ;

return Mn;

Multi-Point Evaluation and Interpolation. Given a univariate polynomial f ∈
K[x] of degree less than n, we define χ(f) = (f(u0), . . . , f(un−1)). The map χ
is called the multi-point evaluation map at u0, . . . , un−1. When u0, . . . , un−1 are
pairwise distinct, then it realizes an isomorphism of K-vector spaces K[x]/⟨m⟩
and Kn, where m = ∏0≤i<n(x − ui). The inverse map χ−1 can be computed via
Lagrange interpolation. Given values v0, . . . , vn−1 ∈ K, the unique polynomial
f ∈ K[x] of degree less than n which takes the value vi at the point ui for all
0 ≤ i < n is: f = ∑

n−1
i=0 visim/(x − ui) where si = ∏i≠j, 0≤j<n 1/(ui − uj).

Complexity Measures. Since we are targeting GPU implementation, our par-
allel algorithms are analyzed using an appropriate model of computation intro-
duced in [8]. The complexity measures are the work (i.e. algebraic complexity
estimate) the span (i.e. running time on infinitely many processors) and the par-
allelism overhead. This latter is the total time for transferring data between the
global memory and the local memories of the streaming multi-processors (SMs).

Plain Multiplication. The number of arithmetic operations for multiplying two
polynomials with degree less than d using the plain (schoolbook) multiplication is
Mplain(d) = 2d2−2d+1. In our GPU implementation, when d is small enough, each

174 S.A. Haque, F. Mansouri, and M. Moreno Maza

polynomial product is computed by a single thread-block and thus within the
local memory of a single SM. In this case, we use 2d+2 threads for one polynomial
multiplication. Each thread copies one coefficient from global memory to the
local memory. Each of these threads, except one, is responsible for computing
one coefficient of the output polynomial and writes that coefficient back to global
memory. So the span and parallelism overhead are d + 1 and 2U respectively,
where 1/U is the throughput measured in word per second, see [8].

FFT-Based Multiplication. The number of operations for multiplying two
polynomials with degree less than d using Cooley-Tukey’s FFT algorithms is
MFFT(d) = 9/2 d∢ log2(d

∢)+4d∢ [11]. Here d∢ = 2⌈log2 (2d−1)⌉. In our GPU imple-
mentation, which relies on Stockham FFT algorithm, this number of operations
becomes: MFFT(d) = 15d∢ log2(d

∢) + 2d∢, see [13]. The span and parallelism
overhead of our FFT-based multiplication are 15d∢ + 2d∢ and (36d∢ − 21)U
respectively.

Polynomial Division. Given a, b ∈ K[x], with deg(a) ≥ deg(b) we denote by
Remainder(a, b) the remainder in the Euclidean division of a by b. The num-
ber of arithmetic operations for computing Remainder(a, b), by plain division,
is (deg(b) + 1)(deg(a) − deg(b) + 1). In our GPU implementation, we perform
plain division for small degree polynomials, in which case a, b are stored into the
local memory of an SM. For larger polynomials, we use an FFT-based algorithm
to be discussed later. Returning to plain division, we use deg(b) + 1 threads to
implement this operation. Each thread reads one coefficient of b and at most

⌈deg(a)+1
deg(b)+1

⌉ coefficients of a from the global memory. For the output, at most

deg(b) threads write the coefficients of the remainder to the global memory. The

span and parallelism overhead are 2(deg(a) − deg(b) + 1) and (2 + ⌈
deg(a)+1
deg(b)+1

⌉)U .

Reversal of a Polynomial. For f ∈ K[x] of degree d > 0 and for e ≥ d, the
reversal of order e of f is the polynomial denoted by reve(f) and defined as
reve(f) = x

ef(1/x). In our implementation, we use one thread for each coefficient
of the input and output. So the span and overhead are 1 and 2U , respectively.

Inverse Modulo a Power of x. For f ∈ K[x], with f(0) = 1, and � ∈ N the
modular inverse of f modulo x� is denoted by Inverse(f, �) and is uniquely defined
by Inverse(f, �)f ≡ 1 mod (x�). One can compute Inverse(f, �) by Newton
iteration, see [5, Chapter 10] for details in sequential time O(MFFT(�)).

To help the reader following the complexity analysis presented in the sequel of
this paper, a Maple worksheet can be found at http://cumodp.org/links.html.
It provides estimates for space allocation, work (total of number of arithmetic
operations), span (parallel running time) and parallelism overhead for construct-
ing subproduct tree and sub-inverse tree (our proposed data structure). Recall
that the parallelism overhead measures the time for transferring data between
the device global memory and the SMs’ shared memories. The estimates that
we provide follow our CUDA implementation available at http://cumodp.org.

http://cumodp.org/links.html
http://cumodp.org

On the Parallelization of Subproduct Tree Techniques 175

3 Subproduct Tree Construction

We propose an adaptive algorithm for constructing the subproduct tree Mn ∶=
SubproductTree(u0, . . . , un−1). We fix an integer H with 1 ≤ H ≤ k. We call the
following procedure an adaptive algorithm for computing Mn with threshold H :

1. for each level h, with 1 ≤ h ≤H , nodes are computed via plain multiplication,

2. for each level h, with H + 1 ≤ h ≤ k, nodes are computed via FFT-based
multiplication.

This algorithm is adaptive in the sense that it takes into account the amount
of available resources, as well as the input data size. Indeed, as specified in
Section 2, each plain multiplication is performed by a single SM, while each
FFT-based multiplication is computed by a kernel call, thus using several SMs.
In fact, this kernel computes a number of FFT-based products concurrently.

Before analyzing this adaptive algorithm, we recall that, if the subproduct tree
Mn is computed by means of a single multiplication algorithm, with multiplica-
tion time3 M(n), Lemma 10.4 in [5] states that the total number of operations
for constructing Mn is at most M(n) log2 n operations in K. We also note that
the leading coefficient of each polynomial in Mn is one. Thus this coefficient
does not need to be stored in memory. Moreover, this allows us to multiply two
polynomials at level i, for H + 1 ≤ i ≤ k − 1, via FFTs of size 2i+1 (instead of 2i+2

with a naive approach that would ignore that leading coefficients are one).
Another implementation trick is the so-called FFT doubling. At a level H +

2 ≤ i ≤ k, for 0 ≤ j ≤ 2k−i − 1, consider how to compute Mi,j from Mi−1,2j

and Mi−1,2j+1. Since the values of Mi−1,2j and Mi−1,2j+1 at 2i−1 points have
already been computed (via FFT), it is sufficient, in order to determine Mi,j ,
to evaluate Mi−1,2j and Mi−1,2j+1 at 2i−1 additional points. To do this, we write

f ∈ {Mi−1,2j ,Mi−1,2j+1} as f = f0 + x
2i−2f1, with deg(f0) < 2i−2, and evaluate

each of f0, f1 at those 2i−1 additional points. While this trick brings savings in
terms of work, it increases memory footprint, in particular parallelism overheads.
Integrating this trick in our implementation is work in progress and, in the rest
of this paper, the theoretical and experimental results do not rely on it.

Proposition 1. The number of arithmetic operations of the adaptive algorithm
for computing Mn with threshold H is

n (
15

2
log2(n)

2
+

19

2
log2(n) + 2H −

15

2
H2 −

17

2
H −

1

2H
) .

Proposition 2. The number of machine words required for storing Mn, with
threshold H is given below

n (log2(n) −H + 5) + (−H − 2)(n +
n

2H+1
) + 2nH (1 +

1

2H+2
)

3 This notion is defined in [5, Chapter 8]

176 S.A. Haque, F. Mansouri, and M. Moreno Maza

Proposition 3. Span and overhead for constructing Mn with threshold H using
our adaptive method are spanMn

and overheadMn respectively, where

spanMn
=

15

2
(log2(n) + 1)

2
−

7

2
log2(n) + 2H+1 −

15

2
(H + 1)

2
+

9

2
H − 2

and

overheadMn = ((18 (log2(n) + 1)
2
− 35 log2(n) − 18 (H + 1)

2
+ 35H) + 2H)U.

The proof of Propositions 1, 2 and 3 are based on the hypotheses stated in
Section 2 and elementary calculations, which, to the interest of space, can be
found in our Maple worksheet at http://cumodp.org/links.html.

Propositions 1 and 3 imply that for a fixed a H , the parallelism (ratio work
to span) is in Θ(n) which is very satisfactory. We stress the fact that this result
could be achieved because both our plain and FFT-based multiplications are
parallelized. Observe also that, for a fixed n, parallelism overhead decreases as
H increases: that is, plain multiplication suffers less parallelism overheads than
FFT-based multiplication on GPUs.

It is natural to ask how to chooseH so as to minimize work and span. Elemen-
tary calculations, using our Maple worksheet suggest 6 ≤ H ≤ 7. However, in
degrees 26 and 27, parallelism overhead is too high for FFT-based multiplication
and, experimentally, the best choice appeared to be H = 8.

4 Subinverse Tree Construction

For f ∈ K[x] of degree less than n, evaluating f on the point set {u0, . . . , un−1} is
done by Algorithm 2 by calling TopDownTraverse(f, k,0,Mn, F). An array F of
length n is passed to this procedure such that F [i] receives f(ui) for 0 ≤ i ≤ n−1.
The function call Remainder(f,Mi,j) relies on plain division whenever i < H
holds, where H is the threshold of Section 3. Fast division is applied when
polynomials are large enough and, actually, can not be stored within the local
memory of a streaming multiprocessor.

Algorithm 2. TopDownTraverse(f, i, j,Mn, F)

Input: f ∈ K[x] with deg(f) < 2i , i and j are integers such that 0 ≤ i ≤ k,
0 ≤ j < 2k−i and F is an array of length n.

if i == 0 then
F [j] = f ;
return;

f0 = Remainder(f,Mi−1,2j);
f1 = Remainder(f,Mi−1,2j+1);
TopDownTraverse(f0 , i − 1,2j,Mn , F);
TopDownTraverse(f1 , i − 1,2j + 1,Mn, F);

http://cumodp.org/links.html

On the Parallelization of Subproduct Tree Techniques 177

Fast division requires computing Inverse(rev2i(Mi,j),2
i), for H ≤ i ≤ k and

0 ≤ j < 2k−i, see Chapter 9 in [5]. However, this latter calculation has, in principle,
to be done via Newton iteration. As mentioned in Section 2, this latter provides
little opportunities for concurrent execution. To overcome this performance issue,
we introduce a strategy that relies on a new data structure called subinverse tree.
In this section, we first define subinverse trees and describe their implementation.
Then, we analyze the complexity of constructing a subinverse tree.

Definition 1. For the subproduct tree Mn ∶= SubproductTree(u0, . . . , un−1), the
subinverse tree associated with Mn, denoted by InvMn, is a complete binary tree
of the same format as Mn, defined as follows. For 0 ≤ i ≤ k, for 0 ≤ j < 2k−i, the
j-th node of level i in InvMn contains the univariate polynomial InvMi,j of less
than degree 2i and defined by

InvMi,j rev2i(Mi,j) ≡ 1 mod x2
i

.

Note that we do not store the polynomials of the subinverse tree InvMn below
level H . Indeed, for those levels, we rely on plain division for the function calls
Remainder(f,Mi,j) in Algorithm 2.

Proposition 4. Let InvMn be the subinverse tree associated with the subproduct
tree Mn, with the threshold H < k. Then, the amount of space required for storing
InvMn, is (k −H)n.

The following lemma is a simple observation from which we derive Proposi-
tion 5 and, thus, the principle of subinverse tree construction.

Lemma 1. Let R be a commutative ring with identity element. Let a, b, c ∈ R[x]
be univariate polynomials such that c = a b and a(0) = b(0) = 1 hold. Let d =
deg(c) + 1. Then, we have c(0) = 1 and Inverse(c, d) mod xd can be computed
from a and b as follows: Inverse(c, d) ≡ Inverse(a, d) ⋅ Inverse(b, d) mod xd.

Proposition 5. Let InvMi,j be the jth polynomial (from left to right) of the
subinverse tree at level i, where 0 < i < k and 0 ≤ j < 2k−i. We have:

InvMi,j ≡ Inverse(rev2i−1(Mi−1,2j),2
i) ⋅ Inverse(rev2i−1(Mi−1,2j+1),2

i) mod x2
i

where InvMi,j = Inverse(rev2i(Mi,j),2
i) from Definition 1.

We observe that computing InvMi,j requires Inverse(rev2i−1(Mi−1,2j),2
i)

and Inverse(rev2i−1(Mi−1,2j+1),2
i). However, at level i − 1, the nodes

InvMi−1,2j and InvMi−1,2j+1 are Inverse(rev2i−1(Mi−1,2j),2
i−1) and

Inverse(rev2i−1(Mi−1,2j+1),2
i−1) respectively. To take advantage of this ob-

servation, we call OneStepNewtonIteration(rev2i−1(Mi−1,2j), InvMi−1,2j , i− 1) and
OneStepNewtonIteration(rev2i−1(Mi−1,2j+1), InvMi−1,2j+1, i − 1), see Algorithm 3,
so as to obtain Inverse(Mi−1,2j ,2

i) and Inverse(Mi−1,2j+1,2
i) respectively.

Algorithm 3 performs a single iteration of Newton iteration’s algorithm. Finally,
we perform one truncated polynomial multiplication, as stated in Proposition 5,

178 S.A. Haque, F. Mansouri, and M. Moreno Maza

to obtain InvMi,j . We apply this technique to compute all the polynomials of
level i of the subinverse tree, for H + 1 ≤ i ≤ k.

Since we do not store the leading coefficients of the polynomials in the sub-
product tree, our implementation relies on a modified version of Algorithm 3,
namely Algorithm 4.

Algorithm 3. OneStepNewtonIteration(f, g, i)

Input: f, g ∈ R[x] such that f(0) = 1, where deg(g) =≤ 2i and fg ≡ 1 mod x2i .

Output: g∢ ∈ R[x] such that fg∢ ≡ 1 mod x2i+1 .

g∢ = (2g − fg2) mod x2i+1 ;

return g∢;

Let f = rev2i(Mi,j) and g = InvMi,j . From Definition 1, we have fg ≡ 1modx2
i

.
Note that deg(fg) ≤ 2i+1 − 1 holds. Let e∢ = −fg + 1. Thus e∢ is a polyno-
mial of degree at most 2i+1 − 1. Moreover, from the definition of a subinverse

tree, we know its least significant 2i coefficients are zeros. Let e = e∢/x2
i

. So

deg(e) ≤ 2i − 1. In Algorithm 3, we have g∢ ≡ g mod x2
i

. We can compute
g∢ from eg and g. The advantage of working with e instead of e∢ is that
the degree of e∢ is twice the degree of e. In Algorithm 4, we compute e as

e = −rev2i(Mi,j ⋅ rev2i−1(InvMi,j) − x
2i+1−1).

Algorithm 4. EfficientOneStep(M∢

i,j,InvMi,j , i)

Input: M∢

i,j =Mi,j − x
2i , InvMi,j .

Output: g, such that g rev2i(Mi,j) ≡ 1 mod x2i+1 .
a =rev2i−1(InvMi,j);

b = a − x2i−1;

c =convolution(a,M∢

i,j ,2
i
);

d =rev2i(c + b);
e = −d;

h = e InvMi,j mod x2i ;

g = hx2i
+InvMi,j ;

return g;

The Middle product technique [6] is used in Algorithm 3 for computing c.
For a given i, with H < i ≤ k, and for 0 ≤ j < 2k−i, Algorithm 5 computes the

polynomial InvMi,j . Algorithm 5 calls Algorithm 4 twice to increase the accuracy
of InvMi−1,2j and InvMi−1,2j+1 to x2i. Then it multiplies those latter polynomials
and applies a mod operation. Algorithm 6 is the top level algorithm which creates
the subinverse tree InvMn using a bottom-up approach and calling Algorithm 5
for computing each node InvMi,j for H ≤ i ≤ k and 0 ≤ j < 2k−i.

On the Parallelization of Subproduct Tree Techniques 179

Algorithm 5. InvPolyCompute(Mn,InvM, i, j)

Input: Mn and InvM are the subproduct tree and subinverse tree respectively.

Output: c such that c rev2i(Mi,j) ≡ 1 mod x2i .

M∢

i−1,2j =Mi−1,2j − x
2i−1 ;

M∢

i−1,2j+1 =Mi−1,2j+1 − x
2i−1 ;

a = EfficientOneStep(M∢

i−1,2j ,InvMi−1,2j , i − 1) ;

b = EfficientOneStep(M∢

i−1,2j+1,InvMi−1,2j+1 , i − 1) ;

c = ab mod x2i ;
return c;

Algorithm 6. SubinverseTree(Mn,H)

Input: Mn is the subproduct tree and H ∈ N.
Output: the subinverse tree InvMn

for j = 0 . . . 2k−H − 1 do
InvMH,j = Inverse(MH,j ,deg(MH,j));

for i = (H + 1) . . . k do

for j = 0 . . . 2k−i − 1 do
InvMi,j = InvPolyCompute(Mn,InvMi,j);

return InvMn;

Propositions 6 and 7 imply that for a fixed a H , the parallelism (ratio work
to span) is in Θ(n) which is satisfactory.

Proposition 6. For the subproduct tree Mn, with threshold H, the number of
arithmetic operations for constructing the subinverse tree InvMn using Algo-
rithm 6 is:

n
⎛

⎝
10 (3 log2(n)

2
+ log2(n) − 3H2 − 7H − 4) +

16 42
H

3 ⋅ 2H
+ 2 −

1

3 ⋅ 2H
−

2

2H−2H
⎞

⎠
.

Proposition 7. For the subproduct tree Mn with threshold H, the span and
overhead of constructing the subinverse tree InvMn by Algorithm 6 are spanInvMn

and overheadInvMn
respectively, where

spanInvMn
=

75

2
log2(n)

2
−

107

2
log2(n) + 2 ⋅ 4H + 4 ⋅ 2H −

75

2
H2 −

43

2
H + 14

and

overheadInvMn = U (90 log2(n)
2
− 255 log2(n) + 2H+1 − 90H2 + 75H + 166) .

5 Polynomial Evaluation

Algorithm 2 solves the multi-point evaluation problem using subproduct tree
technique. To do so, we construct the subproduct tree Mn with threshold H

180 S.A. Haque, F. Mansouri, and M. Moreno Maza

and the corresponding subinverse tree InvMn. Then, we run Algorithm 2, which
requires polynomial division. We implement both plain and fast division. For the
latter, we rely on the subinverse tree, as described in Section 4

Proposition 8. For the subproduct tree Mn with threshold H and its corre-
sponding subinverse tree InvMn, the number of arithmetic operations of Algo-
rithm 2 is:

30n log2(n)
2
+ 106n log2(n) + n2H+1 − 30nH2 − 46nH + 74n + 16

n

2H
− 8.

In [12], the algebraic complexity estimate for performing multi-point evalua-
tion (which only considers multiplication cost and ignores other coefficient oper-
ations) is 7M(n/2) log2(n) +O(M(n)). Considering for M(n) a multiplication
time like the one based on Cooley-Tukey’s algorithm (see Section 2) the running
time estimate of [12] becomes similar to the estimate of Proposition 8. Since our
primary goal is paralllelization, we view this comparison as satisfactory. Fur-
thermore, Propositions 8 and 9 imply that for a fixed a H , the parallelism (ratio
work to span) is in Θ(n) which is satisfactory as well.

Proposition 9. Given a subproduct tree Mn with threshold H and the corre-
sponding subinverse tree InvMn, span and overhead of Algorithm 2 are spaneva
and overheadeva respectively, where

spaneva = 15 log2(n)
2
+ 23 log2(n) + 6 × 2H − 15H2 − 22H − 2

and

overheadeva = (36 log2(n)
2
+ 3 log2(n) − 36H2 + 2H)U.

6 Polynomial Interpolation

As recalled in Section 2, we rely on Lagrange interpolation. Our interpolation
procedure, inspired by the recursive algorithm in [5, Chapter 10], relies on Al-
gorithm 7 below, which proceeds in a bottom-up traversal fashion.

Algorithm 7 computes a binary tree such that the j-th node from the left
at level i is a polynomial Ii,j of degree 2i − 1, for 0 ≤ i ≤ k, 0 ≤ j ≤ 2k−i − 1.
The root Ik,0 is the desired polynomial. We use the same threshold H as for the
construction of the subproducttree tree:

1. for each node Ii,j where 1 ≤ i ≤ H and 0 ≤ j < 2k−i, we compute Ih,j using
plain multiplication.

2. for each node Ii,j , with H + 1 ≤ i ≤ k, we compute the Ii,j using FFT-based
multiplication.

In Theorem 10.10 in [5], the complexity estimate for the Linear Combination
is (M(n) +O(n)) log(n). In Proposition 10, we present a more precise estimate.

On the Parallelization of Subproduct Tree Techniques 181

Algorithm 7. LinearCombination(Mn, c0, . . . , cn−1)

Input: Precomputed subproduct tree Mn for the evaluation points u0, . . . , un−1,
and c0, . . . , cn−1 ∈ K, with n = 2k for k ∈ N

Output: ∑
0≤i<n

cim/(x − ui) ∈ K[x], where m = ∏0≤i<n(x − ui)

for j = 0 to n − 1 do
I0,j = cj ;

for i = 1 to k do

for j = 0 to 2k−i − 1 do
Ii,j =Mi−1,2jIi−1,2j+1 +Mi−1,2j+1Ii−1,2j ;

return Ik,0;

Proposition 10. For the subproduct tree Mn with threshold H, the number of
arithmetic operations Algorithm 7 is given below

15n log2(n)
2
+ 20n log2(n) + 11n + 13nH − 15nH2 + n2H+1 − n21−H .

Proposition 11. For the subproduct tree Mn with threshold H and the corre-
sponding subinverse tree InvMn, the span and overhead of Algorithm 7 are spanlc
and overheadlc respectively, where

spanlc =
15

2
log2(n)

2
+

25

2
log2(n) + 2H+1 −

15

2
H2 −

21

2
H − 2

and
overheadlc = 18 log2(n)

2
+ log2(n) − 18H2 + 4H.

Finally we use Algorithm 8 in which we first compute c0, . . . , cn−1, and then
we call Algorithm 7. Algorithm 8 is adapted from Algorithm 10.11 in [5].

Algorithm 8. FastInterpolation(u0, . . . , un−1, v0, . . . , vn−1)

Input: u0, . . . , un−1 ∈ K such that ui − uj is a unit for i ≠ j, and v0, . . . , vn−1 ∈ K,
and n = 2k for k ∈ N

Output: The unique polynomial P ∈ K[x] of degree less than n such that
P (ui) = vi for 0 ≤ i < n

Mn ∶= SubproductTree(u0, . . . , un−1);
Let m be the root of Mn;

Compute m∢(x) the derivative of m;
InvMn ∶= SubinverseTree(Mn,H);

TopDownTraverse(m∢(x), i, j,Mn , F);
return LinearCombination(Mn, v0/F [0], . . . , vn−1/F [n − 1]);

From the different propositions of this paper, it follows that, for a fixed H , the
parallelism (ratio work to span) of Algorithm 8 is in Θ(n) which is satisfactory.

182 S.A. Haque, F. Mansouri, and M. Moreno Maza

7 Experimentation

The algorithms presented in this paper have been implemented in CUDA [16]
as part of the CUMODP library. The FFT-based algorithms of this library are
described [13,14] while those based on plain arithmetic are presented in [7]. As
mentioned before, our FFT computations use Stockham algorithms which is
known to be more appropriate for many-core GPUs thah the one of Cooley-
Tukey. We focus on radix-10 FFTs [13] and rely on an optimized version of
Montgomery’s trick [12] for modular multipoint [4].

Table 1. Effective memory bandwidth
(in GB/S). The input size is n = 2k.

k Evaluation Interpolation

11 0.2554 0.3403
12 0.5596 0.7054
13 1.2947 1.6182
14 2.5838 3.1445
15 5.2702 6.3464
16 9.6193 11.4143
17 16.4358 18.7800
18 22.6172 26.7590
19 32.3230 38.7674
20 40.4644 49.0012
21 46.7343 57.0978
22 50.8830 62.4516
23 52.9413 64.2464

Table 2. Multiplication timings (in
sec.) for polynomials of size 2k: CU-
MODP vs FLINT

k CUMODP (s) FLINT (s) Ratio

11 0.0019 0.002 1.029
12 0.0032 0.003 0.917
13 0.0023 0.008 3.441
14 0.0039 0.013 3.346
15 0.0032 0.023 7.216
16 0.0065 0.045 6.942
17 0.0084 0.088 10.475
18 0.0122 0.227 18.468
19 0.0198 0.471 23.738
20 0.0266 1.011 27.581
21 0.0718 2.086 29.037
22 0.1451 4.419 30.454
23 0.3043 9.043 29.717

We run our CUDA codes on a NVIDIA Tesla M2050 GPU card and we run
the other codes on the same machine equipped with an Intel Xeon X5650 CPU
at 2.67GHz. Our test cases use random points or random polynomials with
coefficients in a prime field whose characteristic is a 30-bit prime number.

With Table 1 we evaluate the intrinsic quality of this implementation while
with Tables 2, 3 and Figures 1, 2 we provide comparative benchmark results.

One of the major factors of performance in GPU applications is of memory
bandwidth. For our implementation of multi-point evaluation and interpolation,
this factor is presented for various input sizes in the Table 1. The maximum
memory bandwidth for our GPU card is 148 GB/S. Since our code has a high
arithmetic intensity, we believe that our experimental results are promising,
while leaving room for improvement.

In Table 2, we compare two implementations of FFT-based polynomial mul-
tiplication. The first one is that the CUMODP library, presented [13]. The
second one is from the FLINT library [9]. From the experimental data, it is
clear that, our CUDA code for FFT-based multiplication outperforms its FLINT
counterpart only in size larger than 213. Thus, we need to implement another

On the Parallelization of Subproduct Tree Techniques 183

0

0.5

1

1.5

2

2.5

3
CUMODP

FLINT

2.5

2

1.5

1

0.5 11 13 15 17 19 21 23

Fig. 1. Multi-point timings (using
radix-10 log-scales on both axes): CU-
MODP vs FLINT

0

0.5

1

1.5

2

2.5

3
CUMODP

FLINT

2.5

2

1.5

1

0.5 11 13 15 17 19 21 23

Fig. 2. Interpolation timings (using
radix-10 log-scales on both axes): CU-
MODP vs FLINT

multiplication algorithm to have better performance in low-to-average degrees.
This is work in progress.

In Table 3 we compare our implementation of multi-point polynomial evalua-
tion and polynomial interpolation with that of the FLINT library. These timings
are also available in the form of plots with Figures 1 and 2 where radix-10 log-
scales are used on both axes.

We found that our implementation does not perform well until degree 215.
In degree 223, we achieve a 21 times speedup factor w.r.t. FLINT, which is a
satisfactory result. Nevertheless, we believe that by improving our multiplication
routine for polynomials of degrees 29 to 213, we would have better performance
in both polynomial evaluation and interpolation in these middle ranges.

Table 3. Multi-point evaluation and interpolation timings (in sec.) with input size 2k:
CUMODP vs FLINT

Evaluation Interpolation

k GPU (s) FLINT (s) Ratio GPU (s) FLINT (s) Ratio

11 0.1012 0.01 0.0987 0.1202 0.01 0.0831
12 0.1361 0.02 0.1468 0.1671 0.03 0.1794
13 0.1580 0.07 0.4429 0.1963 0.09 0.4584
14 0.2034 0.17 0.8354 0.2548 0.22 0.8631
15 0.2415 0.41 1.6971 0.3073 0.53 1.7242
16 0.3126 0.99 3.1666 0.4026 1.26 3.1294
17 0.4285 2.33 5.4375 0.5677 2.94 5.1780
18 0.7106 5.43 7.6404 0.9034 6.81 7.5379
19 1.0936 12.63 11.5484 1.3931 15.85 11.3768
20 1.9412 29.2 15.0420 2.4363 36.61 15.0268
21 3.6927 67.18 18.1923 4.5965 83.98 18.2702
22 7.4855 153.07 20.4486 9.2940 191.32 20.5851
23 15.796 346.44 21.9321 19.6923 432.13 21.9441

184 S.A. Haque, F. Mansouri, and M. Moreno Maza

8 Conclusion

We discussed fast multi-point evaluation and interpolation of univariate polyno-
mials over a finite field on GPU architectures. We have combined algorithmic tech-
niques like subproduct trees, subinverse trees, plain polynomial arithmetic, FFT-
based polynomial arithmetic. Up to our knowledge, this is the first report on a
parallel implementation of subproduct tree techniques. The source code of our al-
gorithms is freely available in CUMODP-Library website http://cumodp.org/.

The experimental results are promising. Room for improvement, however, still
exists, in particular for efficiently multiplying polynomials in the range of degrees
from 29 to 213. Filling this gap is work in progress.

References

[1] Bernstein, D.J.: Fast multiplication and its applications. In: Buhler, J.,
Stevenhagen, P. (eds.) Algorithmic Number Theory: Lattices, Number Fields,
Curves and Cryptography (2008)

[2] Bostan, A., Schost, É.: Polynomial evaluation and interpolation on special sets of
points. J. Complexity 21(4), 420–446 (2005)

[3] Brent, R.P., Gaudry, P., Thomé, E., Zimmermann, P.: Faster multiplication in
gf(2)[x]. In: van der Poorten, A.J., Stein, A. (eds.) ANTS-VIII 2008. LNCS,
vol. 5011, pp. 153–166. Springer, Heidelberg (2008)

[4] Dahan, X., Moreno Maza, M., Schost, É., Wu, W., Xie, Y.: Lifting techniques for
triangular decompositions. In: Proceedings of the 2005 International Symposium
on Symbolic and Algebraic Computation, ISSAC 2005, pp. 108–115. ACM, New
York (2005)

[5] Gathen, J., Gerhard, J.: Modern Computer Algebra. Cambridge University Press
(1999)

[6] Hanrot, G., Quercia, M., Zimmermann, P.: The middle product algorithm i. Appl.
Algebra Eng., Commun. Comput. 14(6), 415–438 (2004)

[7] Haque, S.A., Moreno Maza, M.: Plain polynomial arithmetic on GPU. In: J. of
Physics: Conf. Series, vol. 385, IOP Publishing (2012)

[8] Haque, S.A., Moreno Maza, M., Xie, N.: A many-core machine model for designing
algorithms with minimum parallelism overheads. CoRR, abs/1402.0264 (2014)

[9] Hart, W.B.: Fast Library for Number Theory: An Introduction. In: Fukuda, K.,
van der Hoeven, J., Joswig, M., Takayama, N. (eds.) ICMS 2010. LNCS, vol. 6327,
pp. 88–91. Springer, Heidelberg (2010)

[10] Li, X., Moreno Maza, M., Rasheed, R. and Schost, É.: The Modpn library: Bring-
ing fast polynomial arithmetic into Maple. J. Symb. Comput., 46(7), 841–858
(2011)

[11] Moreno Maza, M., Xie, Y.: Balanced dense polynomial multiplication on multi-
cores. Int. J. Found. Comput. Sci. 22(5), 1035–1055 (2011)

[12] Montgomery, P.L.: An FFT Extension of the Elliptic Curve Method of Factoriza-
tion. PhD thesis, University of California Los Angeles, USA (1992)

[13] Moreno Maza, M., Pan, W .: Fast polynomial arithmetic on a GPU. In: J. of
Physics: Conference Series, vol. 256 (2010)

[14] Moreno Maza, M., Pan, W.: Solving bivariate polynomial systems on a GPU.
In: J. of Physics: Conference Series, vol. 341 (2011)

http://cumodp.org/

On the Parallelization of Subproduct Tree Techniques 185

[15] Murao, H., Fujise, T.: Towards an efficient implementation of a fast algorithm for
multipoint polynomial evaluation and its parallel processing. In: Proc. of PASCO,
pp. 24–30. ACM (1997)

[16] Nickolls, J., Buck, I., Garland, M., Skadron, K.: Scalable parallel programming
with CUDA. Queue 6(2), 40–53 (2008)

[17] Tanaka, S., Chou, T., Yang, B.-Y., Cheng, C.-M., Sakurai, K.: Efficient parallel
evaluation of multivariate quadratic polynomials on GPUs. In: Lee, D.H., Yung,
M. (eds.) WISA 2012. LNCS, vol. 7690, pp. 28–42. Springer, Heidelberg (2012)

[18] Verschelde, J., Yoffe, G.: Evaluating polynomials in several variables and their
derivatives on a GPU computing processor. In: Proc. of the 26th International Par-
allel and Distributed Processing Symposium Workshops & PhD Forum, IPDPSW
2012, pp. 1397–1405. IEEE Computer Society (2012)

Deterministically Computing Reduction

Numbers of Polynomial Ideals

Amir Hashemi1,2, Michael Schweinfurter3, and Werner M. Seiler3

1 Department of Mathematical Sciences, Isfahan University of Technology
Isfahan, 84156-83111, Iran

2 School of Mathematics, Institute for Research in Fundamental Sciences (IPM),
Tehran, 19395-5746, Iran

Amir.Hashemi@cc.iut.ac.ir
3 Institut für Mathematik, Universität Kassel

Heinrich-Plett-Straße 40, 34132 Kassel, Germany
{michael.schweinfurter,seiler}@mathematik.uni-kassel.de

Abstract. We discuss the problem of determining reduction numbers of
a polynomial ideal I in n variables. We present two algorithms based on
parametric computations. The first one determines the absolute reduc-
tion number of I and requires computations in a polynomial ring with
(n − dimI) dimI parameters and n − dim I variables. The second one
computes via a Gröbner system the set of all reduction numbers of the
ideal I and thus in particular also its big reduction number. However, it
requires computations in a ring with ndim I parameters and n variables.

1 Introduction

One of the fundamental ideas behind Gröbner bases is the reduction of questions
about general polynomial ideals to monomial ideals. In the context of determin-
ing invariants of an ideal like projective dimension or Castelnuovo-Mumford
regularity, it is therefore interesting to know when these invariants possess the
same values for an ideal and its leading ideal. It is well-known that in many
instances the invariants of the leading ideal provide an upper bound for those of
the polynomial ideal and that in generic position, i. e. when the leading ideal is
the generic initial ideal, the values even coincide.

From an algorithmic point of view, it is not easy to work with the generic initial
ideal. While it is comparatively easy to determine it with probabilistic method,
there exists no simple test to verify that one has really obtained the generic
initial ideal. However, relaxing the conditions on the leading ideal somewhat one
can introduce generic positions which share many properties with the generic
initial ideal and which are effectively checkable with deterministic algorithms.
In [9], the authors showed that for many purposes it suffices to ensure that the
leading ideal is quasi-stable (i. e. that the given ideal possesses a Pommaret basis
[17,18]) in order to achieve that many invariants can be immediately read off the
Pommaret basis.

V.P. Gerdt et al. (Eds.): CASC Workshop 2014, LNCS 8660, pp. 186–201, 2014.
c© Springer International Publishing Switzerland 2014

Deterministically Computing Reduction Numbers of Polynomial Ideals 187

Our article [9] was mainly concerned with invariants and concepts related to
the minimal free resolution of the given ideal. In this work, we study the reduction
number, an invariant which was introduced by Northcott and Rees [15] and which
intuitively measures the complexity of computations in the associated factor
ring. It is also related to some other invariants like the degree, the arithmetic
degree and the Castelnuovo-Mumford regularity (see [3,20,22] for more details).
Independently, Conca [4] and Trung [21] proved that the reduction number of
an ideal is bounded by the one of its leading ideal (for an arbitrary term order)
and Trung [20] showed that for the generic initial ideal (for the degree reverse
lexicographic order) equality holds.

Trung [21] also presented an approach to the effective determination of various
reduction numbers. However, his method is very expensive. We will show that it
is indeed impossible to design a “simple” algorithm for reduction numbers where
we mean by “simple” an approach based solely on the analysis of leading terms.
Nevertheless, we will provide two alternative methods which we believe to be
more efficient than the one presented by Trung. Our first method is based on
directly adding the right number of sufficiently generic linear forms and yields
the absolute reduction number. Our second method determines the whole set of
possible reduction numbers (and thus in particular both the absolute and the
big reduction number) using a Gröbner system.

Throughout this article, we will use the following notations. P = �[x1, . . . , xn]
is an n-dimensional polynomial ring over some infinite field � with homogeneous
maximal ideal m. If not stated otherwise, the term order will always be the
degree reverse lexicographic order induced by xn ≺ · · · ≺ x1. We assume that
we are given a fixed homogeneous ideal I �P of dimension D and write for the
corresponding factor ring R = P/I. A non-singular matrix A = (aij) ∈ GL(n,�)
induces on P the linear change of coordinates x �→ A · x transforming the given
ideal I into a new ideal A · I � P . Finally, given a term t ∈ P , we denote by
w(t) the largest integer � such that x� | t.

The article is organised as follows. The next section collects some known
facts about reduction numbers and generic initial ideals. Section 3 introduces
some novel generalised notions of stability for monomial ideals. The following
section extends the for us crucial notion of weak D-stability to polynomial ideals
and presents a deterministic algorithm to transform any ideal into weakly D-
stable position. After these preparations, we present in Section 5 an algorithm
for computing the absolute reduction number. In the final section, we exploit
Gröbner systems to compute the set of all possible reduction numbers.

2 Reduction Numbers and the Generic Initial Ideal

We recall some basic facts about reduction numbers. There exist several equiva-
lent approaches to defining them; for our purposes the following one is
particularly convenient. Let y1, . . . , yD ∈ P1 beD linear forms defining a Noether
normalisation of R. Then the ideal J = I + 〈y1, . . . , yD〉 is called a minimal re-
duction of I and the reduction number rJ (R) with respect to J is the largest

188 A. Hashemi, M. Schweinfurter, and W.M. Seiler

non-vanishing degree in the factor ring P/J . We write for the set of all possible
reduction numbers rSet(R) = {rJ (R) | J minimal reduction of I}. The (abso-
lute) reduction number r(R) is the minimal element of rSet(R), the big reduction
number br(R) the maximal one. As already mentioned above, the former one
appeared first in the work of Northcott and Rees [15]; the latter one was much
later introduced by Vasconcelos [23].

While it is easy to construct some minimal reduction J , the obvious key
problem in computing r(R) consists of identifying a J with rJ (R) = r(R). In
the sequel, we will use the following three results. The first one characterises all
minimal reductions of a monomial ideal in Noether position. Any such ideal has
a minimal generator of the form xαn−D. The second result relates for a strongly
stable ideal (which is always in Noether position) r(R) with the exponent α.
The final result bounds for arbitrary ideals r(R) by r(P/ lt I).

Lemma 1 ([3, Lemma 5]). Let I �P be a monomial ideal such that the vari-
ables xn−D+1, . . . , xn induce a minimal reduction. Then every minimal reduction
is induced by linear forms

yi = xn−D+i +
n−D∑
j=1

aijxj , aij ∈ � . (1)

Theorem 2 ([3, Thm. 11]). Let I � P be a strongly stable monomial ideal.
Then I has a minimal generator xαn−D and we have r(R) = rJ (R) = α− 1 for
any minimal reduction J of I.

Theorem 3 ([4, Thm. 1.1], [21, Cor. 3.4]). For any ideal I � P and any
term order ≺, the inequality r(R) ≤ r(P/ lt I) holds.

Galligo [5] proved for a base field � of characteristic 0 that almost any linear
coordinate transformation leads to the same leading ideal, the generic initial
ideal gin I (for more information see [7]). Bayer and Stillman [2] extended this
result to positive characteristic. A for us important result of Trung asserts that
for the generic initial ideal the inequality in Theorem 3 becomes an equality.

Theorem 4 (Galligo, [5], [2]). There exists a nonempty Zariski open subset
U ⊆ GL(n,�) such that lt (A · I) = lt (A′ · I) for all matrices A,A′ ∈ U .

Theorem 5 ([20, Thm. 4.3]). For the degree reverse lexicographic order, we
always find r(R) = r(P/ ginI).

3 Some Generalised Notions of Stability

Stable and strongly stable ideals form two important classes of monomial ideals.
We introduce now generalisations of these concepts depending on an integer �.
In the context of determining reduction numbers, it will turn out that the case
� = D is of particular interest. Like for the classical stability notions, it is easy
to see that it always suffices, if the defining property is satisfied by the minimal
generators of the ideal.

Deterministically Computing Reduction Numbers of Polynomial Ideals 189

Definition 6. Let 0 ≤ � < n be an integer. The monomial ideal I is �-stable,
if for every term t ∈ I with w(t) ≥ n− � and every i < w(t) the term xit/xw(t)

also lies in I. For a weakly �-stable ideal I, the above condition must be satisfied
only for all i ≤ n− �. Finally, I is strongly �-stable, if for every term t ∈ I with
w(t) ≥ n − �, every j ≥ n − � with xj | t and every i < j the term xit/xj also
lies in I.

Example 7. We consider first for n = 6 the ideal

I = 〈x1, x24, x3x4, x2x4, x2x3, x22, x35, x4x25, x3x25, x2x25, x23x5, x33, x25x26,
x4x5x

2
6, x3x5x

2
6, x2x5x

2
6, x

2
3x

2
6, x5x

4
6, x4x

4
6, x3x

4
6, x2x

4
6, x

6
6〉 ,

the leading ideal of the fifth Katsura ideal. As one can easily see that hereD = 0,
it suffices to check the defining property for the generators containing x6 and it
turns out that I is 0-stable. However, I is not stable, as for example x3x4 ∈ I
but x23 /∈ I.

Consider now for n = 5 the monomial ideal

I = 〈x21, x32, x1x22, x23x22, x2x23x1, x53, x2x43, x1x43, x43x24, x2x33x24, x1x33x24,
x33x

4
4, x

2
3x2x

4
4, x1x

2
3x

4
4, x3x

2
2x

4
4, x3x2x1x

4
4, x1x2x3x

3
4x

2
5, x1x3x

6
4, x

2
2x

6
4,

x1x2x
6
4, x

2
2x

5
4x

2
5, x1x2x

5
4x

2
5, x3x

2
2x

3
4x

4
5, x1x3x

5
4x

3
5, x2x

2
3x

3
4x

5
5, x1x

2
3x

3
4x

5
5,

x1x2x
4
4x

6
5, x1x

6
4x

5
5, x

2
2x

4
4x

7
5, x2x3x

5
4x

7
5〉 .

Since here D = 2, we must check the defining property of a weaklyD-stable ideal
only for the terms containing x3, x4, x5 and one readily verifies that I is weakly
D-stable. However, it is not D-stable because t = x1x

6
4x

5
5 ∈ I but tx4/x5 /∈ I.

The generic initial ideal is always Borel-fixed, i. e. invariant under the natural
action of the Borel group [2,6]. In general, it depends on the characteristic of the
base field whether a given ideal is Borel-fixed. In characteristic zero, the Borel-
fixed ideals are precisely the strongly stable ones. We provide now the analogous
result for strong �-stability.

Definition 8. The Borel group is the subgroup B < GL(n,�) consisting of all
lower triangular invertible n× n matrices. For any integer 0 ≤ � < n, we define
the �-Borel group as the subgroup B� ≤ B consisting of all matrices A ∈ B such
that for i < n− � we have aii = 1 and aij = 0 for i �= j.

Proposition 9. Assume that char� = 0. The monomial ideal I �P is strongly
�-stable, if and only if it is invariant under the �-Borel group B�.

Proof. Assume first that I is �-stable and consider a generating set H of it. The
transformation induced by an element A = (aij) ∈ B� is of the form

xi → xi if i < n− � ,
xi → aiixi +

∑i−1
j=n−l aijxj if i ≥ n− � . (2)

190 A. Hashemi, M. Schweinfurter, and W.M. Seiler

One immediately sees that any generator t ∈ H with w(t) < n − � remains
unchanged under the action of A. If w(t) ≥ n − �, then t is transformed into a
polynomial ft = A · t. It follows again from (2) that any term in the support of
ft is obtained from t by applying a sequence of “elementary moves” of the form
s→ xjs/xk with j < k where xk | s. In this sequence we always have k ≥ n− �
and thus the strong �-stability of I implies that all appearing terms s lie in I.
Furthermore, t itself always lies in the support of ft.

Consider now the elements t of H with w(t) ≥ n − � sorted reverse lexico-
graphically. If t is the largest term among these, then w(s) < w(t) for all s �= t
appearing in the support of ft. Thus they are multiples of elements of H which
remain unchanged under the operation of A and can be eliminated. If t is the
second largest term, then the support may in addition contain multiples of the
largest term; otherwise we can apply the same argument. By iteration, we obtain
that the whole ideal remains invariant.

For the converse, we need the assumption on the characteristic. If char� = 0
(and thus no coefficient drops out when we transform a term), then we may
revert the above arguments: if I is invariant under B�, then all terms appearing
in the support of ft must lie in I and hence I is strongly �-stable. ��

In relation to our previous work [9], it is of interest to show that a D-stable
ideal is automatically quasi-stable. The proof depends on the following charac-
terisation of �-stability which is of independent interest.

Proposition 10. The monomial ideal I�P is �-stable, if and only if it satisfies
for all 0 ≤ i ≤ �

〈I, xn, . . . , xn−i+1〉 : xn−i = 〈I, xn, . . . , xn−i+1〉 : m . (3)

Proof. Assume first that I is �-stable and let t be a term such that xn−it ∈
〈I, xn, . . . , xn−i+1〉 for some i ≤ �. If w(t) > n− i, then t ∈ 〈xn, . . . , xn−i+1〉 and
nothing is to be proven. Otherwise we have xn−it ∈ I and w(xn−it) = n − i ≥
n− �. Because of the �-stability, this entails that xjt = xj(xn−it)/xn−i ∈ I for
all j ≤ n− �. Hence t〈x1, . . . , xn−i〉 ⊆ I implying tm ⊆ 〈I, xn, . . . , xn−i+1〉.

For the converse consider a term t ∈ I with w(t) = n − i ≥ n − �. Because
of (3), we have t/xn−i ∈ I : xn−i ⊆ 〈I, xn, . . . , xn−i+1〉 : m. Hence xjt/xn−i ∈
〈I, xn, . . . , xn−i+1〉 for all j ≤ n. If j ≤ n− i, then w(xjt/xn−i) ≤ n− i and thus
we must have xjt/xn−i ∈ I so that I is �-stable. ��

Corollary 11. A D-stable monomial ideal I is quasi-stable.

Proof. According to the previous proposition, (3) holds for all 0 ≤ i ≤ D. As a
preparatory step, we claim that this fact implies that for these values of i also

〈I, xn, . . . , xn−i+1〉 : x∞n−i = 〈I, xn, . . . , xn−i+1〉 : m∞ . (4)

Indeed, if the term t lies in the ideal on the left hand side, then an integer s
exists such that xsn−it ∈ 〈I, xn, . . . , xn−i+1〉 and therefore

xs−1
n−it ∈ 〈I, xn, . . . , xn−i+1〉 : xn−i = 〈I, xn, . . . , xn−i+1〉 : m .

Deterministically Computing Reduction Numbers of Polynomial Ideals 191

Applying this argument a second time yields

xs−2
n−it ∈

(
〈I, xn, . . . , xn−i+1〉 : m

)
: xn−i

=
(
〈I, xn, . . . , xn−i+1〉 : xn−i

)
: m

= 〈I, xn, . . . , xn−i+1〉 : m2 .

Thus we find by iteration that t ∈ 〈I, xn, . . . , xn−i+1〉 : ms proving the claim.
It follows that xn−i is not a zero divisor in P/(〈I, xn, . . . , xn−i+1〉 : m∞) for

all 0 ≤ i < D. Indeed, if f ∈ P satisfies xn−if ∈ 〈I, xn, . . . , xn−i+1〉 : m∞,
then an exponent s exists such that xn−ifm

s ⊆ 〈I, xn, . . . , xn−i+1〉 and hence
xs+1
n−if ∈ 〈I, xn, . . . , xn−i+1〉. But this implies f ∈ 〈I, xn, . . . , xn−i+1〉 : x∞n =

〈I, xn, . . . , xn−i+1〉 : m∞. Now the assertion follows from [18, Prop. 4.4]. ��

Example 12. Weak D-stability is not sufficient for quasi-stability, as one can see
from the ideal 〈x21, x1x3〉 where n = 3 and D = 2. One easily verifies that it is
weakly D-stable but not quasi-stable. And for the same values of n and D the
ideal 〈x31, x1x2〉 shows that the converse of Corollary 11 does not hold, as it is
quasi-stable but not (weakly) D-stable.

Remark 13. Assume that the monomial ideal I is weakly �-stable for some � and
that t = xα1

1 · · ·xαn
n ∈ I. It follows immediately from Definition 6 that any term

of the form xα1+β1

1 · · ·xαn−�+βn−�

n−� with β1+· · ·+βn−� = αn−�+1+· · ·+αn is then
also contained in I. If we introduce for 1 ≤ j ≤ � the homogeneous polynomials

gj =
∑

β
(j)
1 +···+β

(j)
n−�

=αn−�+j

a
(j)

β
(j)
1 ,...,β

(j)
n−�

x
β
(j)
1

1 · · ·xβ
(j)
n−�

n−�

with arbitrary coefficients a
(j)

β
(j)
1 ,...,β

(j)
n−�

∈ �, then it follows from the observation

above that the polynomial

ft = xα1
1 · · ·xαn−�

n−� g1 · · · g�

also lies in I. Each term in its support is of the form xα1+β1

1 · · ·xαn−�+βn−�

n−� with

βi = β
(1)
i + · · · + β

(�)
i and by construction β1 + · · · + βn−� = αn−�+1 + · · · + αn.

Proposition 14. A weakly D-stable ideal I is always in Noether position.

Proof. A D-dimensional monomial ideal is in Noether position, if and only if
for all 1 ≤ j ≤ n − D a pure power x

ej
j is contained in I. Assume first that

there exists a term t ∈ I ∩ �[xn−D+1, . . . , xn]. Then Remark 13 immediately
implies for e = deg t that xej ∈ I for all 1 ≤ j ≤ n − D and we are done. If
I ∩ �[xn−D+1, . . . , xn] = ∅, then the D-dimensional cone 1 · �[xn−D+1, . . . , xn]
lies completely in the complement of I. Assume that for some 1 ≤ j ≤ n − D
no power of xj was contained in I. Since D = dim I, it is not possible that
the complement of I contains a (D + 1)-dimensional cone. Thus we must have
I∩�[xj , xn−D+1, . . . , xn] �= ∅. But if a term t of degree e lies in this intersection,
then again by Remark 13 xej ∈ I in contradiction to our assumption. ��

192 A. Hashemi, M. Schweinfurter, and W.M. Seiler

The simple Algorithm 1 verifies whether a given monomial ideal is weakly
D-stable without a priori knowledge of the dimension D of I. For showing its
correctness, we note that if I is weakly D-stable, then the number d computed
in Line 2 equals D by Proposition 14 and by Definition 6 of weak D-stability
we never get to Line 6. If I is not weakly D-stable, then d ≥ D (this estimate
holds for any monomial ideal) and soon or later we will reach Line 6. The bit
complexity of the algorithm is polynomial in kn, as one can easily see that the
number of operations in the two for-loops is at most k2n3.

Algorithm 1. WDS-Test: Test for weak D-stability

Input: minimal basis G = {m1, . . . ,mk} of monomial ideal I � P
Output: The answer to: is I weakly D-stable?
1: e := max {deg(m1), . . . ,deg(mk)}
2: d := smallest � such that xe

i ∈ I for i = 1, . . . , n− �
3: for all xe1

1 · · ·xeh
h ∈ G with h ≥ n− d and eh > 0 do

4: for j = 1, . . . , n− d do
5: if xe1

1 · · ·xeh−1

h−1 xeh−1
h xj /∈ 〈G〉 then

6: return false
7: end if
8: end for
9: end for
10: return true

4 Weak D-Stability for Polynomial Ideals

In the previous section, we considered exclusively monomial ideals. All the no-
tions introduced in Definition 6 can be straightforwardly extended to polynomial
ideals by saying that an ideal I satisfies some form of stability, if its leading ideal
lt I satisfies this form of stability. Galligo’s Theorem 4 immediately implies that
after a generic change of coordinate A ∈ GL(n,�) the transformed ideal A · I
possesses any stability property here considered. Thus in principle a random
coordinate transformation (almost) always provides a “nice” leading ideal.

However, from a computational point of view, random transformations are
rather unpleasant, as they destroy all sparsity typically present in ideal bases.
It is therefore of great interest to see whether for some notion of stability it is
possible to design a deterministic algorithm which yields a fairly sparse trans-
formation A such that A · I has the desired stability property. In a forthcoming
work [1], we will study this question in depth and provide such an algorithm for
many important stability notions. Here, we only present a variation of this algo-
rithm for the case of weakD-stability. For lack of space, we omit the (non-trivial)
termination proof which will be given in [1].

Algorithm 2 works by performing incrementally very sparse transformations
where all variables except one remain unchanged and this one undergoes a trans-
formation of the form xi → xi + axj where j < i and a ∈ � \ {0} is a generic

Deterministically Computing Reduction Numbers of Polynomial Ideals 193

parameter. The pair (i, j) is chosen in such a way that each transformation leads
to true progress towards a weakly D-stable position, if a does not take one of
finitely many “bad” values. In practice, we always use the value a = 1. If this
accidentally represents a “bad” value, then we will automatically perform the
same transformation a second time which corresponds to a = 2. Obviously, af-
ter a finite number of iterations (which can be bounded via the degrees of the
generators), we will reach a “good” value, since � is an infinite field.

Algorithm 2. WDS-Trafo: Transformation to weakly D-stable position

Input: Gröbner basis G of homogeneous ideal I � P
Output: a linear change of coordinates Ψ such that Ψ(I) is weakly D-stable
1: D := dimI; Ψ := id
2: while ∃ g ∈ G, 1 ≤ j ≤ n−D : i = w(lt g) ≥ n−D ∧ xj lt (g)/xi /∈ 〈ltG〉 do
3: ψ := (xi �→ xi + xj); Ψ = ψ ◦ Ψ
4: G := GröbnerBasis

(
ψ(G)

)
5: end while
6: return Ψ

Algorithm 2 is not in an optimised form. In practice, if one finds more than one
suitable pair (i, j), it appears natural to perform several transformations
simultaneously, as each iteration of the while loop requires a Gröbner basis
computation. Furthermore, one should take into account that the input for these
computations is typically already fairly close to a Gröbner basis. Hence it is proba-
bly useful to apply some specialised algorithm exploiting this fact. A prototype im-
plementation of Algorithm 2 in Maple can be found athttp://amirhashemi.
iut.ac.ir/softwares.

Example 15. We consider for n = 3 the ideal I = 〈x31, x22x3, x32〉 with D = 1.
This ideal is not weakly D-stable, since x1(x22x3)/x3 /∈ I and, according to
Algorithm 2, we perform the change of coordinates ψ1 : x3 �→ x1 + x3. The
transformed ideal I1 = ψ1(I) has the leading ideal 〈x31, x1x22, x32, x22x33〉 and is
also not D-stable, since x1(x1x

2
2)/x2 /∈ lt I1. Thus in the second iteration the

while loop performs the change of coordinate ψ2 : x2 �→ x1 + x2. The leading
ideal of the transformed ideal I2 = ψ2(I1) is by chance even the generic initial
ideal gin I = 〈x31, x21x2, x1x22, x42, x21x33〉 and thus of course weakly D-stable.

5 Computing the Absolute Reduction Number

We consider first the case of a monomial ideal and extend Theorem 2 from
strongly stable ideals to weakly D-stable ones. Our proof follows closely the
arguments of the original proof by Bresinsky and Hoa [3].

Theorem 16. Let I � P be a weakly D-stable monomial ideal. Then I has a
minimal generator xαn−D and r(R) = rJ (R) = α−1 for any minimal reduction J
of I.

http://amirhashemi.iut.ac.ir/softwares
http://amirhashemi.iut.ac.ir/softwares

194 A. Hashemi, M. Schweinfurter, and W.M. Seiler

Proof. Since I is assumed to be weakly D-stable, xn−D+1, . . . , xn induce a min-
imal reduction by Proposition 14 and we can apply Lemma 1. Consider the D
linear forms yi = xn−D+i + ai,1x1 + · · · + ai,n−Dxn−D with 1 ≤ i ≤ D and
arbitrary coefficients ai,j ∈ � and set J1 = I + 〈y1, . . . , yD〉.

We claim that rJ1(R) = rJ2(R) where J2 = I + 〈xn−D+1, . . . , xn〉. It is
enough to show the identity I1 = I2 where P/J1 ' �[x1, . . . , xn−D]/I1 and
P/J2 ' �[x1, . . . , xn−D]/I2. One easily sees that I2 = I ∩ �[x1, . . . , xn−D] and
thus trivially I2 ⊆ I1. The converse inclusion I1 ⊆ I2 follows by Remark 13
which entails that for any term t = xα1

1 · · ·xαn
n ∈ I the corresponding term

t̃ = xα1
1 · · ·xαn−D

n−D

D∏
j=1

(−aj,1x1 − · · · − aj,n−Dxn−D)αn−D+j ∈ I1

also lies in I and hence in I2.
Proposition 14 also implies that I has a minimal generator of the form xαn−D

for some α ∈ �. Hence, rJ2 (R) ≥ α − 1. On the other hand, xαn−D ∈ I implies
by Remark 13 that any term xα1

1 · · ·xαn−D

n−D of degree α also belongs to I and
thus rJ2(R) ≤ α−1. Therefore rJ2 (R) = α−1 proving the second assertion. ��

We have thus identified a class of monomial ideals, the weakly D-stable ideals,
for which it is particularly simple to determine their reduction number. Given a
polynomial ideal I, we may use Algorithm 2 to render it weakly D-stable and
obtain then immediately the reduction number of its leading ideal lt I. According
to Theorem 3, this number gives us an upper bound for r(R). We introduce now
a more specialised class of ideals for which we can guarantee that I and lt I have
the same reduction number. We denote here for a monomial ideal L by degxk

L
the maximal xk-degree of a minimal generator of L.

Definition 17. Let 0 ≤ � < n be an integer. The homogeneous ideal I � P
is weakly �-minimal stable, if its leading ideal lt I is weakly �-stable and if for
any linear change of coordinates A ∈ GL(n,�) such that lt (A · I) is still weakly
�-stable, we have degxn−�

lt I ≤ degxn−�
lt (A · I).

Again it is easy to see that this is a generic notion, as any coordinate trans-
formation A with lt (A · I) = ginI leads to a weakly �-minimal stable position.

Example 18. Consider for n = 3 the ideal I = 〈x1x3, x1x2 + x22, x
2
1〉 introduced

by Green [7]. One finds that the leading ideal ltI = 〈x21, x1x2, x1x3, x32, x22x3〉
is even strongly stable and thus of course weakly D-stable (with D = 1 here).
However, I is not weakly D-minimal stable, as gin(I) = 〈x21, x1x2, x22, x1x23〉 and
thus has a lower degree in x2.

Example 19. We consider for n = 4 the ideal

I = 〈x1x4 − x2x3, x32 − x1x23, x22x4 − x31〉 ;

Deterministically Computing Reduction Numbers of Polynomial Ideals 195

it represents the special case a = 2, b = 3 of [3, Example 15]. Here D = 2 and
the ideal I is not weakly D-stable. The following linear change of coordinates
Ψ : x2 �→ x1 + x2, x3 �→ x1 + x3 transforms I into a weakly D-stable (in fact,
even strongly stable) ideal I1 with leading ideal

lt I1 = 〈x21, x1x22, x32, x1x2x23, x1x33, x22x33, x2x43〉 .

Note that although this leading ideal is different from

ginI = 〈x21, x1x22, x32, x1x2x23, x22x23, x1x43, x2x43〉 ,

both ideals have the same minimal generator x32. Thus I1 is weakly D-minimal
stable and we see that in this example the set of transformations leading to
weakly D-minimal position is strictly larger than the one leading to the generic
initial ideal.

Theorem 20. Let I�P be a weakly D-minimal stable homogeneous ideal. Then
lt I has a minimal generator xαn−D and r(R) = r(P/ lt I) = α− 1.

Proof. Since lt I is weakly D-stable, it possesses by Proposition 14 a minimal
generator xαn−D and thus r(P/ lt I) = α− 1 by Proposition 16. As I is assumed
to be weakly D-minimal stable, xαn−D must also be a minimal generator of ginI
and hence r(R) = r(P/ gin I) = α− 1 by Theorem 5. ��

Unfortunately, Theorem 20 is mainly of theoretical interest, as we are not
able to provide a simple deterministic algorithm for the construction of a change
of coordinates leading to be weakly D-minimal stable position. We present now
Algorithm 3 for the computation of r(R). Instead of a coordinate transformation,
it is based on a parametric computation. The main point will be to keep the
number of parameters as small as possible.

Algorithm 3. RedNum: (Absolute) Reduction Number

Input: Gröbner basis G of a homogeneous ideal I � P
Output: the absolute reduction number r(R)
1: D := dimI
2: G̃ := G with xn−D+i replaced by −

∑n−D
j=1 aijxj for all i > 0

3: Ĩ := 〈G̃〉P̃
4: H := PommaretBasis (Ĩ)
5: return degH− 1

The algorithm simply adds D linear forms yi of the special form (1). The
occuring coefficients aij are then considered as undetermined parameters. Re-

placing in the ideal I every variable xn−D+i with i > 0 by −
∑n−D

j=1 aijxj , we ob-

tain a new homogeneous ideal Ĩ in the polynomial ring P̃ = �(aij)[x1, . . . , xn−D]

196 A. Hashemi, M. Schweinfurter, and W.M. Seiler

over the field of rational functions in the D(n−D) parameters aij and compute
its Pommaret basis (see [17,18] and references therein).

Theorem 21. Algorithm 3 correctly determines r(R).

Proof. We consider first the addition ofD generic linear forms zi =
∑n

j=1 bijxj to

the ideal I. This leads to an ideal Î in the polynomial ring P̂ = �(bij)[x1, . . . , xn]
depending on Dn parameters and n variables. It follows from the classical proof
of the existence of a Noether normalisation (see e. g. [8, Thm. 3.4.1]) over an
infinite field that Î is a zero-dimensional ideal (which thus possesses a finite
Pommaret basis).

We now claim that the absolute reduction number r(R) is one less than the
Castelnuovo-Mumford regularity reg Î. According to [18, Cor. 9.5], reg Î is given
by the degree of the Pommaret basis of Î, so that this claim implies that r(R)
can be read off the Pommaret basis of Î. The correctness of the claim follows
from a simple genericity argument.

We build recursively �(bij)-linear generating systems of the vector spaces Îq

for all degrees q = 1, 2, . . . by taking all elements of H of degree q and adding
all products of elements of the previous generating system multiplied with a
variable xj . We collect the coefficients of the obtained generators in a matrix.
Entering generic values for the parameters bij leads to the maximal possible rank
of this matrix and thus to the lowest possible dimension of the complement of
the degree q component of the corresponding specialisation of Î. The absolute
reduction number is the largest value of q for which we cannot achieve a zero-
dimensional complement. Hence a generic choice of the parameters leads to the
correct value of the absolute reduction number r(R). Since computing over �(bij)
corresponds to the generic branch of the parametric computation and since for
a zero-dimensional ideal reg Î is the lowest degree q where Îq = P̂q, we conclude
that our claim is correct.

Now consider the (D × n)-matrix (bij): if the determinant of the submatrix
composed of the last D column does not vanish, then by a Gaussian elimination
we obtain a set of linear forms yi in the “reduced” triangular form (1) leading
to the same ideal Î. As the intersection of two Zariski open sets is again Zariski
open, this observation proves that generically also the reduced ansatz (1) used
in our algorithm yields the correct absolute reduction number. Because of the
special form of this ansatz, we may solve the linear forms for the variables xn−D+i

and then perform the computations in the polynomial ring P̃ depending only on
D(n−D) parameters and n−D variables. ��

Remark 22. Since the Algorithms 2 and 3 are based on Gröbner or Pommaret
bases and the worst case complexity of computing Gröbner bases is doubly ex-
ponential in the number of variables (as shown by Mayr and Meyer [12]), we
conclude that the complexity of these algorithms is also doubly exponential in
the number of variables.

Deterministically Computing Reduction Numbers of Polynomial Ideals 197

Example 23. For n = 4, the homogenised Weispfenning94 ideal I��[x1, . . . , x4]
is generated by the polynomials

f1 = x42 + x1x
2
2x3 + x21x

2
4 − 2x1x2x

2
4 + x22x

2
4 + x23x

2
4 ,

f2 = x1x
4
2 + x2x

4
3 − 2x21x2x

2
4 − 3x54 ,

f3 = −x31x22 + x1x2x
3
3 + x42x4 + x1x

2
2x3x4 − 2x1x2x

3
4 .

Here D = 2 and we replace x4 by −(a4,1x1+a4,2x2) and x3 by −(a3,1x1+a3,2x2)

in I to obtain the new ideal Ĩ � �(a3,1, a3,2, a4,1, a4,2)[x1, x2]. We compute a

Pommaret basis H of Ĩ and get as leading terms

ltH =
{
x41, x

3
1x

2
2, x

2
1x

3
2, x1x

5
2, x

6
2

}
.

Therefore r(R) = 6 − 1 = 5.

Our second example proves that there cannot exist a “simple” algorithm for
computing the (absolute) reduction number. By “simple” we mean that the
algorithm uses exclusively information obtained from the leading terms (like for
instance Algorithm 2 to transform into weakly D-stable position).

Example 24. We consider again Example 18 of Green. It follows immediately
from the above presented bases that here r(R) = 1 < 2 = r(P/ lt I). Following
Algorithm 3, we replace x3 by −(a1x1 + a2x2) in order to obtain the ideal Ĩ.
Then we compute a Pommaret basis H of Ĩ and get for the leading terms

ltH =
{
x21, x1x2, x

2
2

}
.

Hence our algorithm yields the correct result r(R) = 1. Since L = lt I is in fact
even strongly stable, we conclude that ginL = L. Hence the leading terms of
the generators of I cannot contain any information on how to transform I into
a position such that the transformed ideal and its leading ideal share the same
reduction number.

6 Big Reduction Numbers and Gröbner Systems

We present now an approach that is able to determine the whole reduction
number set rSet(R) and thus in particular both the absolute and the big re-
duction number. Our method is based on the theory of Gröbner systems, a
notion introduced by Weispfenning [24] who also provided a first algorithm for
computing such systems. Subsequently, improvements and alternatives were pre-
sented by many authors [10,11,13,14,16]. Our calculations were done using a
Maple implementation of the DisPGB algorithm of Montes which is available
at http://amirhashemi.iut.ac.ir/softwares.

In the sequel, we denote by P̃ = P [a] = �[a,x] a parametric polynomial
ring where a = a1, . . . , am represents the parameters and x = x1, . . . , xn the
variables. Let ≺x (resp. ≺a) be a term order for the power products of the
variables xi (resp. the parameters ai). Then we introduce the block elimination
term order ≺x,a in the usual manner: for all α, γ ∈ �

n
0 and all β, δ ∈ �

m
0 , we

define aδxγ ≺x,a aβxα, if either xγ ≺x xα or xγ = xα and aδ ≺a aβ .

http://amirhashemi.iut.ac.ir/softwares

198 A. Hashemi, M. Schweinfurter, and W.M. Seiler

Definition 25. A finite set of triples
{

(G̃i, Ni,Wi)
}�
i=1

with finite sets G̃i ⊂ P̃
and Ni,Wi ⊂ Q = �[a] is a Gröbner system for a parametric ideal Ĩ � P̃
with respect to the block order ≺x,a, if for every index 1 ≤ i ≤ � and every
specialisation homomorphism σ : Q → � such that

(i) ∀g ∈ Ni : σ(g) = 0 , (ii) ∀h ∈Wi : σ(h) �= 0 (5)

σ(G̃i) is a Gröbner basis of σ(Ĩ)�P with respect to the order ≺x and if for any
point a ∈ �m an index 1 ≤ i ≤ � exists such that a ∈ V(Ni) \ V(Wi).

Thus a Gröbner systems yields a Gröbner basis for all possible values of the
parameters a. Weispfenning [24, Theorem 2.7] proved that every parametric
ideal I�S possesses a Gröbner system, but in general the system is not unique.
Basically every algorithm (in particular the DisPGB algorithm used by us)
produces Gröbner systems such that given one specific triple (G̃i, Ni,Wi) all
specialisations σ satisfying (5) yield the same leading terms ltσ(Gi) so that we
can speak of a monomial ideal Li � P determined by the conditions (Ni,Wi).
In the sequel, we will always assume that a Gröbner system with this property
is used. As a simple corollary, we find then that the reduction number set of
an ideal I � P is always finite. Our proof also yields an explicit method for
computing it.

Theorem 26. Let I�P be a homogeneous ideal. Then its reduction number set
rSet(R) is finite.

Proof. By definition, any minimal reduction of I is induced by D linear forms

yi =

n∑
j=1

ai,jxj , i = 1, . . . , D (6)

with ai,j ∈ � and minimality is equivalent to J = I + 〈y1, . . . , yD〉 being a
zero-dimensional ideal. Considering the coefficients ai,j as parameters, we may

identify J with a parametric ideal Ĩ � P̃ . Let
{

(G̃i, Ni,Wi)
}�
i=1

be a Gröbner

system for Ĩ. Without loss of generality, we may assume that for the first s triples
the associated monomial ideals Li are zero-dimensional, whereas all other triples
lead to monomial ideals of positive dimension. Hence precisely the parameter
values satisfying one of the conditions (Ni,Wi) with 1 ≤ i ≤ s define minimal
reductions. If di is the highest degree such that (Li)di �= Pdi , then it follows that
rSet(R) = {d1, . . . , ds}. ��

Remark 27. Any Gröbner system for a parametric ideal Ĩ contains one generic
branch where the set Ni of equations is empty. Obviously, the corresponding
leading ideal Li must be the generic initial ideal gin I and we have di = r(R).
This observation immediately yields an alternative proof of [21, Cor. 2.2]: for
almost all minimal reductions J we find rJ (R) = r(R).

Deterministically Computing Reduction Numbers of Polynomial Ideals 199

Example 28. Let us consider again Green’s Example 18 where D = 1. Hence
we set Ĩ = 〈x21, x1x3, x22 + x1x2, a1x1 + a2x2 + a3x3〉. The Gröbner system for Ĩ
consists of 4 triples. For simplicity, we present in the following list for each branch
as first entry only the corresponding leading ideal Li; the other two entries are
the equations Ni and the inequations Wi, respectively.

{x1, x22, x23, x2x3} {} {a1, a2, a1 − a2}
{x1, x22, x23, x2x3} {a1 − a2} {a2}
{x1, x22, x23} {a2} {a1}
{x2, x21, x23, x1x3} {a1} {}

We observe that all four branches lead to zero-dimensional leading ideals and
their reduction numbers are 1, 1, 2, 1, respectively. Therefore, rSet(R) = {1, 2}
and br(R) = 2.

Remark 29. For comparison, we briefly outline Trung’s constructive character-
isation [21] of the big reduction number of an ideal. He also takes D linear
forms (6) with undetermined coefficients ai,j and proceeds with the ideal J =
I + 〈y1, . . . , yD〉 � P (note that he does not work in the parametric polynomial
ring P̃). Then he introduces the matrix Md of the coefficients of the generators
in a �-linear basis of Jd (which are elements in Q). Let Vd be the variety of the
ideal generated in Q by all the minors of Md of the size of the number of terms
of degree d. Then, br(R) is the largest d such that Vd �= Vd+1 [21, Cor. 2.3].

Note, however, that a priori it is unclear how to detect that one has obtained
the largest d with this property. Thus his approach becomes truely algorith-
mic only by combining it with another result of his, namely that br(R) + 1 is
bounded by the Castelnuovo-Mumford regularity reg(I) [19, Prop. 3.2]. Now one
can check all degrees d until reg(I)—which has to be computed first—and then
finally decide on the value of br(R). While the computation of a Gröbner system
is surely a rather expensive operation, we strongly believe that it is much more
efficient that the determination and subsequent analysis of large determinantal
ideals. Furthermore, our approach yields directly all possible values for the re-
duction number, whereas Trung must consider one determinantal ideal after the
other (of increasing size).

Finally, we note that Trung [21] proved that br(R) ≤ br(P/ lt I) if R is
Cohen-Macaulay. He also claimed that generally one cannot compare br(R) and
br(P/ lt I). However, he did not provide a concrete example where the above
inequality is violated—which we will do now.

Example 30. Consider for n = 3 the ideal

I = 〈x21x2 + x1x
2
2, x

3
2 + x22x3, x1x

5
3, x

2
2x

5
3, x

2
1x3 + x1x2x3, x

3
1 − x1x22〉 .

The given generators form already a Gröbner basis and thus D = 1. lt I is quasi-
stable and, using Pommaret bases, one easily shows that the depth of R is 0 and
R is not Cohen-Macaulay. With J = I + 〈x1 + x2 + x3〉, a simple computation
yields that lt J = 〈x1, x2x23, x22x3, x32, x73〉 and thus br(R) ≥ rJ (R) = 6. For

200 A. Hashemi, M. Schweinfurter, and W.M. Seiler

showing that br(R) = 6, we set Ĩ = I + 〈a1x1 + a2x2 + a3x3〉� P̃ . The Gröbner
system of this ideal shows that the reduction numbers of the zero-dimensional
branches are 3, 5, 6, respectively, and therefore br(R) = 6. On the other hand,
lt I = 〈x21x3, x32, x21x2, x31, x1x53, x22x53〉. We set Ĩ1 = lt I + 〈a1x1 + a2xs + a3x3〉,
and compute its Gröbner system. Only three branches are zero-dimensional and
they all have as reduction number 3. This shows that br(P/ lt I) = 3 < br(R).

Acknowledgements. The first author greatly appreciates financial support by
DAAD (German Academic Exchange Service) for a stay at Universität Kassel
in summer 2013. He also would like to thank his coauthors for the invitation,
hospitality, and support. The research of the first author was in part supported
by a grant from IPM (No. 92550420).

References

1. Albert, M., Hashemi, A., Pytlik, P., Schweinfurter, M., Seiler, W.: Effective
genericity for polynomial ideals (in preparation, 2014)

2. Bayer, D., Stillman, M.: A theorem on refining division orders by the reverse lexi-
cographic orders. Duke J. Math. 55, 321–328 (1987)

3. Bresinsky, H., Hoa, L.: On the reduction number of some graded algebras. Proc.
Amer. Math. Soc. 127, 1257–1263 (1999)

4. Conca, A.: Reduction numbers and initial ideals. Proc. Amer. Math. Soc. 131,
1015–1020 (2002)

5. Galligo, A.: A propos du théorème de préparation de Weierstrass. In: Norguet, F.
(ed.) Fonctions de Plusieurs Variables Complexes. Lecture Notes in Mathematics,
vol. 409, pp. 543–579. Springer, Berlin (1974)

6. Galligo, A.: Théorème de division et stabilité en géometrie analytique locale. Ann.
Inst. Fourier 29(2), 107–184 (1979)

7. Green, M.: Generic initial ideals. In: Elias, J., Giral, J., Miró-Roig, R., Zarzuela, S.
(eds.) Six Lectures on Commutative Algebra. Progress in Mathematics, vol. 166,
pp. 119–186. Birkhäuser, Basel (1998)

8. Greuel, G.M., Pfister, G.: A Singular Introduction to Commutative Algebra, 2nd
edn. Springer, Berlin (2008)

9. Hashemi, A., Schweinfurter, M., Seiler, W.: Quasi-stability versus genericity. In:
Gerdt, V.P., Koepf, W., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2012. LNCS,
vol. 7442, pp. 172–184. Springer, Heidelberg (2012)

10. Kapur, D., Sun, Y., Wang, D.: A new algorithm for computing comprehensive
Gröbner systems. In: Koepf, W. (ed.) Proc. ISSAC 2010, pp. 29–36. ACM Press
(2010)

11. Kapur, D., Sun, Y., Wang, D.: An efficient algorithm for computing a comprehen-
sive Gröbner system of a parametric polynomial system. J. Symb. Comput. 49,
27–44 (2013)

12. Mayr, E., Meyer, A.: The complexity of the word problems for commutative semi-
groups and polynomial ideals. Adv. Math. 46, 305–329 (1982)

13. Montes, A.: A new algorithm for discussing Gröbner bases with parameters. J.
Symb. Comput. 33, 183–208 (2002)

14. Montes, A., Wibmer, M.: Gröbner bases for polynomial systems with parameters.
J. Symb. Comput. 45, 1391–1425 (2010)

Deterministically Computing Reduction Numbers of Polynomial Ideals 201

15. Northcott, D., Rees, D.: Reduction of ideals in local rings. Cambridge Philos.
Soc. 50, 145–158 (1954)

16. Sato, Y., Suzuki, A.: A simple algorithm to compute comprehensive Gröbner bases
using Gröbner bases. In: Dumas, J.-G (ed.) Proc. ISSAC 2006, pp. 326–331. ACM
Press (2006)

17. Seiler, W.: A combinatorial approach to involution and δ-regularity I: Involutive
bases in polynomial algebras of solvable type. Appl. Alg. Eng. Comm. Comp. 20,
207–259 (2009)

18. Seiler, W.: A combinatorial approach to involution and δ-regularity II: Structure
analysis of polynomial modules with Pommaret bases. Appl. Alg. Eng. Comm.
Comp. 20, 261–338 (2009)

19. Trung, N.: Reduction exponent and degree bounds for the defining equations of a
graded ring. Proc. Amer. Math. Soc. 101, 229–236 (1987)

20. Trung, N.: Gröbner bases, local cohomology and reduction number. Proc. Amer.
Math. Soc. 129, 9–18 (2001)

21. Trung, N.: Constructive characterization of the reduction numbers. Compos.
Math. 137, 99–113 (2003)

22. Vasconcelos, W.: The reduction number of an algebra. Compos. Math. 106, 189–197
(1996)

23. Vasconcelos, W.: Reduction numbers of ideals. J. Alg. 216, 652–664 (1999)
24. Weispfenning, V.: Comprehensive Gröbner bases. J. Symb. Comp. 14, 1–29 (1992)

A Note on Global Newton Iteration Over

Archimedean and Non-Archimedean Fields

Jonathan D. Hauenstein1,�, Victor Y. Pan2,��, and Agnes Szanto1,� � �

1 North Carolina State University
2 Lehman College - City University of New York

Abstract. In this paper, we study iterative methods on the coefficients
of the rational univariate representation (RUR) of a given algebraic set,
called a global Newton iterations. We compare two natural approaches to
define locally quadratically convergent iterations: the first one involves
Newton iteration applied to the approximate roots individually and then
interpolation to find the RUR of these approximate roots; the second one
considers the coefficients in the exact RUR as zeroes of a high dimensional
map defined by polynomial reduction and applies Newton iteration on
this map. We prove that over fields with a p-adic valuation these two ap-
proaches give the same iteration function. However, over fields equipped
with the usual Archimedean absolute value they are not equivalent. In the
latter case, we give explicitly the iteration function for both approaches.
Finally, we analyze the parallel complexity of the different versions of
the global Newton iteration, compare them, and demonstrate that they
can be efficiently computed. The motivation for this study comes from
the certification of approximate roots of overdetermined and singular
polynomial systems via the recovery of an exact RUR from approximate
numerical data.

1 Introduction

Let F1, . . . , Fn ∈ K[x1, . . . , xn] be polynomials with coefficients from a field K,
J := 〈F1, . . . , Fn〉 the ideal they generate, and assume that J is zero dimensional
and radical. We consider two cases for the coefficient field K:

Non-Archimedean Case: Let R be a principal ideal domain, K its field of
fractions, and p an irreducible element in R. Then we can equip K with the
p-adic valuation, which defines a non-Archimedean metric on vector spaces
over K.

Archimedean Case: In this case, K is a subfield of C and it is equipped
with the usual absolute value. Then, the usual Euclidean norm defines an
Archimedean metric on vector spaces over K.

� Research was partly supported by NSF grant DMS-1262428 and DARPA Young
Faculty Award.

�� Research was partly supported by NSF grant CCF-1116736.
� � � Research partly supported by NSF grant CCF-1217557.

V.P. Gerdt et al. (Eds.): CASC Workshop 2014, LNCS 8660, pp. 202–217, 2014.
c© Springer International Publishing Switzerland 2014

A Note on Global Newton Iteration 203

The objective of this paper is to study iterative methods on the coefficients of
the rational univariate representation (RUR) of a component of J , and compare
them in the Archimedean and the non-Archimedean cases. The RUR of a compo-
nent of J , originally defined in [32], is a simple representation of a subset of the
common roots of F1, . . . , Fn, expressing the coordinates of these common roots
as Lagrange interpolants at nodes which are given as the roots of a univariate
polynomial (see definition below).

We study two natural approaches for iterations that are locally quadratically
convergent to an exact RUR of a component of J , based on Newton’s method:

– To update an RUR, apply the usual n×n Newton iteration to each common
root of the old RUR, and compute the updated RUR which defines these
updated roots. In this approach we assume inductively that the common
roots of the iterated RUR’s are known exactly.

– Consider the map that takes an RUR and returns the reduced form of the
input polynomials F1, . . . , Fn modulo the RUR. Since an exact RUR of a
component of J is a zero of this map, we apply Newton’s method to this map.

Note that in the p-adic case the first iteration was studied in [14], where they
gave the iteration function explicitly and analyzed its complexity in terms of
straight-line programs, while the second approach was proposed in [37], without
giving the iteration explicitly.

The main results of this paper are as follows. First, we prove that the above
two approaches give the same iteration function in the p-adic valuation. Next, we
show that in the Archimedean case the two iterations are not equivalent. In this
case, we give the explicit iteration functions for both approaches, and show that
they are also different from the iteration function presented in [14]. We illustrate
the methods on an example involving mobility of spacial mechanisms. Finally,
we analyze the parallel complexity of both approaches in the Archimedean case:
for the first approach we use n×n Newton iterations independently for each root
and an efficient parallel Vandermonde linear solver for Lagrange interpolation,
while for the second approach we utilize a new efficient version of the algorithms
of [30] to solve Toeplitz-like linear systems that uses a more efficient displacement
representation with factor circulant matrices defined in [31, Example 4.4.2] rather
than triangular Toeplitz matrices.

Note that because of the page restrictions of this submission, we could not
include in this version most of the proofs and the detail of the algorithms used
in our complexity bounds. A full version of this paper is uploaded on the archive
server arxiv.org [17].

1.1 Related Work

The motivation to study numerical approximations of RUR’s come from a work
in progress in [2] to certify approximate roots of overdetermined and singular
polynomial systems over Q. For well-constrained non-singular systems, Smale’s
α-theory (see [6, Chapters 8 and 14]) gives a tool for the certification of ap-
proximate roots, as was explored and implemented in alphaCertified [18].

204 J.D. Hauenstein, V. Pan, and A. Szanto

However, alphaCertified does not straightforwardly extend to overdetermined
or singular systems: in [18] they propose to use universal lower bounds for the
minimum of positive polynomials on a disk, such as in [22], but they conclude
that such bounds are “too small to be practical”. To overcome this difficulty, in
[2] it is proposed to iteratively compute the exact RUR of a rational component
from approximations of the roots, and then use the machinery of [18] to certify
approximate roots of this RUR. While [2] is devoted to considerations about
the global behavior of the iteration, this paper considers different choices of the
iteration function and their parallel complexity.

The iterative algorithms that are in the core of this paper are the Archimedean
adaptations of what is known as “global Newton iteration” or “multivariate Hensel
lifting” or “Newton-Hensel lifting” in the computer algebra literature, where it is
defined for the non-Archimedean case. . Various versions of Newton-Hensel lifting
were applied in many applications within computer algebra, including univariate
polynomial factorization [41,27], multivariate polynomial factorization [8,15,23],
gcd of sparse multivariate polynomials [24], lexicographic and general Gröbner ba-
sis computation of zero dimensional algebraic sets [37,40], geometric resolution of
equi-dimensional algebraic sets [12,13,19,14], Chow forms [21], and sparse inter-
polation [3]. As mentioned above, the most related to this paper are the [37,14].

Computing numerical approximation to symbolic objects in the Archimedean
metric is not new either. There is a significant literature studying such hybrid
symbolic-numeric algorithms, and without trying to give a complete bibliogra-
phy, the following summarizes the papers that are the closest to our work.

Closest to our approach is the literature on finding the vanishing ideal of a
finite point set given with limited precision. In [7] they give an algorithm such
that given one approximate zero of a polynomial system, finds the RUR of the
irreducible component containing the corresponding exact roots in randomized
polynomial time. The algorithm in [7] applies the univariate results of [25] using
lattice basis reduction. The main point of our approach in this paper and in [2]
is that we assume to know all approximate roots of a rational component, so in
this case we can compute the exact RUR much more efficiently, and in parallel.

The papers [7,35,29,1,20,9,10] use a more general approach than the one here,
by computing border bases for a given set of approximate roots, which avoids
defining a random primitive element as is done for RURs used in this paper.
For general polynomial systems numerical computation of Gröbner bases was
proposed for example in [33,34,28,36]. The focus of these papers is to find nu-
merically stable support for the bases, which we assume to be given here by the
primitive element.

2 Preliminaries

Let us start with recalling the notion of Roullier’s Rational Univariate Repre-
sentation (RUR), originally defined in [32]. Instead of defining the RUR of an
ideal J , here we only define the RUR of a component of J , which is a weaker
notion. We follow here the notation in [2].

A Note on Global Newton Iteration 205

Let K be a field. Given F = (F1, . . . , Fn) ∈ K[x1, . . . , xn] for some n, and
assume that the ideal J := 〈F1, . . . , Fn〉 is radical and zero dimensional. Then
the factor ring K[x1, . . . , xn]/J is a finite dimensional vector space over K, and
we denote

δ := dimK K[x1, . . . , xn]/J .
Furthermore, for almost all (λ1, . . . , λn) ∈ Kn (except a Zariski closed subset),
the linear combination

u(x1, . . . , xn) := λ1x1 + · · · + λnxn

is a primitive element of J , i.e. the powers 1, u, u2, . . . , uδ−1 form a linear basis
for K[x1, . . . , xn]/J (c.f. [32]).

In the algorithms that follow, we compute an RUR that may not generate the
ideal J , nevertheless the polynomials F1, . . . , Fn vanish modulo the RUR. In this
case, the RUR will define a component of J . We have the following definition:

Definition 1. Let J = 〈F1, . . . , Fn〉 ⊂ K[x1, . . . , xn] be as above. Let λ1x1 +
· · · + λnxn be a primitive element of J . We call the polynomials

λ1x1 + · · · + λnxn − T, q(T), v1(T), . . . , vn(T) (1)

a Rational Univariate Representation (RUR) of a component of J if it satisfies
the following properties:

– q(T) ∈ K[T] is a monic polynomial of degree d ≤ δ,
– gcdT (q(T), q′(T)) = 1 where q′(T) = ∂q(T)

∂T ,
– v1(T), . . . , vn(T) ∈ K[T] are all degree at most d− 1 and satisfy

λ1v1(T) + · · · + λnvn(T) = T,

– for all i = 1, . . . , n we have

Fi(v1(T), . . . , vn(T)) ≡ 0 mod q(T).

Next, let us recall the relationship between the RUR of a component of J
and its (exact) roots. Let

V (J) = {ξ1, . . . , ξδ} ⊂ Cn

be the set of common roots of J . Denote ξi = (ξi,1, . . . , ξi,n) for i = 1, . . . , δ.
Then for any n-tuple (λ1, . . . λn) ∈ Kn such that for i, j = 1, . . . , δ

λ1ξi,1 + · · · + λnξi,n �= λ1ξj,1 + · · · + λnξj,n if i �= j,

u = λ1x1 + · · · + λnxn is a primitive element for J . Since all roots of J are
distinct, such primitive element exist, and can be computed from the roots
{ξ1, . . . , ξδ}, or using randomization. Fix such (λ1, . . . λn) ∈ Kn. For d ≤ δ
let {ξ1, . . . , ξd} be a subset of V (J) and define

μi := λ1ξi,1 + · · · + λnξi,n, i = 1, . . . d. (2)

206 J.D. Hauenstein, V. Pan, and A. Szanto

The RUR of the component of J corresponding to the subset {ξ1, . . . , ξd}⊂ V (J)
is defined by

q(T) :=

d∏
i=1

(T − μi), (3)

and for each j = 1, . . . , n, the polynomial vj(T) is the unique Lagrange inter-
polant of degree at most d− 1 satisfying

vj(μi) = ξi,j for i = 1, . . . , d. (4)

Note that if J is defined by polynomials over K then the polynomials in the
RUR of J have coefficients in K. Since this may not be true for all subsets of
V (J), we call a subset {ξ1, . . . , ξd} ⊂ V (J) a rational component of J if the
corresponding RUR has also coefficients in K.

3 Global Newton Iteration

In this section we describe iterative methods that improves the accuracy of the
coefficients of the RUR of a component of J . We use a similar approach as in
[14, Sec 4], but instead of a coefficient ring with the p-adic absolute value, we
make adaptations to a coefficient field K ⊆ C equipped with the usual absolute
value. We start with recalling the definitions given in [14, Sec 4].

3.1 Non-Archimedean Global Newton iteration

First, we briefly describe the global Newton iteration defined in [14, Sec 4].
There the coefficient domain is the ring Q[t] and the non-Archimedean metric
is defined by the irreducible element t ∈ Q[t]. They consider a square system
F = (F1, . . . , Fn) with Fi ∈ Q[t][x1, . . . , xn]. Let

u(x1, . . . , xn) = λ1x1 + · · · + λnxn = T

be a random primitive element for J = 〈F1, . . . , Fn〉. Furthermore, define

I := 〈tk〉 for some k.

In [14, Sec 4] they assume that some initial approximate RUR is given for a
component of J :

q(T), v(T) := (v1(T), . . . , vn(T)) ∈ Q[t][T],

satisfying the following assumptions.

Assumption 2. Let F , u =
∑n

i=1 λixi, I, q(T) and v(T) be as above. Then

1. q(T) is monic and has degree d,
2. vi(T) has degree at most d− 1,

A Note on Global Newton Iteration 207

3. F (v(T)) ≡ 0 mod q(T) mod I
4. λ1v1(T) + · · ·+ λnvn(T) = T mod I ,

5. JF (v(T)) :=
[
∂Fi
∂xj

(v(T))
]n
i,j=1

is invertible modulo q(T) and I .

They define the following updates:

Definition 3. Assume that F , J , u =
∑n

i=1 λixi, I, q(T) and v(T) satisfy
Assumption 2. Then in [14, Section 4] they define

w(T) := v(T)−
(
JF (v(T))−1F (v(T))mod q(T)

)
mod I2,

Δ(T) :=

n∑
i=1

λiwi(T)− T mod I2,

V (T) := w(T)−
(
Δ(T) · ∂w(T)

∂T
mod q(T)

)
mod I2,

Q(T) := q(T)−
(
Δ(T) · ∂q(T)

∂T
mod q(T)

)
mod I2.

In [14, Section 4] they prove the following:

Proposition 4. Assume that F , u, q(T), v(T) and I satisfy Assumption 2 and
let w(T), Δ(T), V (T), Q(T) be as in Definition 3. Then

(i) v(T) ≡ w(T) ≡ V (T), q(T) ≡ Q(T) and Δ(T) ≡ 0 mod I
(ii) F (w(T)) ≡ 0 mod q(T) mod I2,

(iii) 〈q(T), U − T −Δ(T), x1 − w1(T), . . . , xn − wn(T)〉 = 〈Q(U), T − U −Δ(U), x1 −
V1(U), . . . , xn − Vn(U)〉 mod I2,

(iv) F (V (T)) ≡ 0 mod Q(T) mod I2,
(v) λ1V1(T) + · · · + λnVn(T) = T mod I2.

3.2 First Construction

Our first variation of Definition 3 will have the property that it agrees to the
approximate RUR obtained from the approximate roots via Lagrange interpo-
lation as was described in the Preliminaries. We give our definition over some
general coefficient ring R, but later we will use R = K ⊂ C, or Q[t]/I2. We need
the following assumptions:

Assumption 5. Let F = (F1, . . . , Fn), u = λ1x1+ · · ·+λnxn, q(T) and v(T) =
(v1(T), . . . , vn(T)) polynomials over some Euclidean domain R as above. We
assume that

1. q(T) is monic and has degree d,
2. vi(T) has degree at most d− 1,

3. ∂q(T)
∂T

is invertible modulo q(T),
4. λ1v1(T) + · · ·+ λnvn(T) = T ,

5. JF (v(T)) :=
[
∂Fi
∂xj

(v(T))
]n
i,j=1

is invertible modulo q(T).

208 J.D. Hauenstein, V. Pan, and A. Szanto

Our first construction for the update is defined as follows:

Definition 6. Assume that F , u =
∑n

i=1 λixi, q(T) and v(T) satisfy Assump-
tion 5. Then we define

w(T) := v(T)−
(
JF (v(T))−1F (v(T)) mod q(T)

)
,

Δ(T) :=

n∑
i=1

λiwi(T)− T so far the same as in Definition 3, (5)

Ṽ (T +Δ(T)) := w(T) mod q(T), (6)

ΔQ̃(T +Δ(T)) := −(T +Δ(T))d mod q(T) (7)

Q̃(T) := ΔQ̃(T) + T d (8)

Note that in Definition 6 we define Ṽ (T +Δ(T)) and not Ṽ (T), but the coeffi-
cients of Ṽi(T) can be obtained as solutions of linear systems. Similarly for the
coefficients of ΔQ̃(T). In the next proposition we examine these linear systems
and give conditions on the existence and uniqueness of their solutions.

Proposition 7. The coefficients of the polynomials Ṽi(T) in (6) for i = 1, . . . , n,
and the coefficients of the polynomial ΔQ̃(T) = Q̃(T)−T d in (7) are the solutions
of d×d linear systems with a common coefficient matrix that has columns which
are the coefficient vectors of

(T +Δ(T))j mod q(T) for j = 0, . . . , d− 1.

This coefficient matrix is non-singular if and only if u is a primitive element for
the ideal 〈q(T), x1 − w1(T), . . . , xn − wn(T)〉.

Proof. See [17] for the proof. ��

The following proposition compares Definitions 3 and 6 in cases when the
coefficient ring is R = Q[t]/I2 for I = 〈tk〉 for some k > 0.

Proposition 8. Assume that the conditions of Assumption 2 are satisfied and
that u is a primitive element for 〈q(T), x1−w1(T), . . . , xn−wn(T)〉 as in Propo-
sition 7. Let V (T) and Q(T) be as in Definition 3 and Ṽ (T) and Q̃(T) be as in
Definition 6 for R = Q[t]/I2. Then V (T) ≡ Ṽ (T) and Q(T) ≡ Q̃(T) mod I2.

Proof. See [17] for the proof. ��

The next proposition connects the updated RUR defined in Definition 6 to
the ones obtained by applying one step of Newton iteration on the approximate
roots, as promised in the Introduction:

Proposition 9. Let F = (F1, . . . , Fn) ⊂ K[x1, . . . , xn] as above. Assume that
the polynomials u = λ1x1 + · · · + λnxn, q(T), v(T) := (v1(T), . . . , vn(T))
satisfy Assumption 5. Let z1, . . . , zd ∈ K

n
be the exact roots of 〈q(T), x1 −

v1(T), . . . , xn−vn(T)〉∩K[x1, . . . , xn], where K is the algebraic closure of K. Let

z̃i := zi − JF (zi)
−1F (zi) i = 1, . . . , d

A Note on Global Newton Iteration 209

be one step of Newton iteration on these roots. Assume that u(z̃i) �= u(z̃j) for

i �= j. Then Q̃(T), Ṽ1(T), . . . , Ṽn(T) defined in Definition 6 is the exact RUR of
{z̃1, . . . , z̃d}, with

∑n
i=1 λiṼi(T) = T.

Proof. See [17] for the proof. ��

3.3 Second Construction

Our second variation of Definition 3 will have the property that it can be in-
terpreted as an (n + 1)d dimensional Newton iteration as follows. Given F =
(F1, . . . , Fn) and u =

∑n
i=1 λixi in R[x1, . . . , xn] as before, we define the map

Φ : R(n+1)d → R(n+1)d

as the map of the coefficient vectors of the following degree d− 1 polynomials:

Φ :

⎡
⎢⎢⎢⎣

v1(T)
...

vn(T)
Δq(T)

⎤
⎥⎥⎥⎦ �→

⎡
⎢⎢⎢⎣
F1(v(T))mod q(T)

...
Fn(v(T))mod q(T)∑n

i=1 λivi(T)− T

⎤
⎥⎥⎥⎦ , (9)

where
Δq(T) := q(T) − T d.

If u, q(T), v1(T), . . . , vn(T) is an exact RUR of a component of 〈F 〉 then

Φ (v1(T), . . . , vn(T), Δq(T)) = 0.

So one can apply the (n+ 1)d dimensional Newton iteration to locally converge
to the coefficient vector of an exact RUR which is a zero of Φ. Note that below
we will consider the map Φ as a map between

Φ : (R[T]/〈q(T)〉)n+1 → (R[T]/〈q(T)〉)n+1
,

and note that (R[T]/〈q(T)〉)n+1 and R(n+1)d are isomorphic as vectors spaces
when R = K a field. Moreover, as we will see below, the Newton iteration for Φ
respects the algebra structure of (R[T]/〈q(T)〉)n+1

as well.
The first lemma gives the Jacobian matrix of Φ.

Lemma 10. Let F = (F1, . . . , Fn), u, q(T), v(T) and Φ be as above. For i =
1, . . . , n define mi(T) and ri(T) as the quotient and remainder in the division
with remainder:

Fi(v(T)) = mi(T)q(T) + ri(T). (10)

Then the Jacobian matrix of Φ defined in (9) and considered as a map on

(R[T]/〈q(T)〉)n+1
is given by

JΦ(v(T),Δq(T)) :=

n 1
−m1(T)

JF (v(T))
... n

−mn(T)
λ1 · · · λn 0 1

mod q(T). (11)

210 J.D. Hauenstein, V. Pan, and A. Szanto

Proof. See [17] for the proof. ��
Next, we give explicitly the iteration function corresponding to the Newton

iteration on Φ, using polynomial arithmetic modulo q(T). We need the following:

Assumption 11. Let F , u =
∑n

i=1 λixi, q(T) and v(T) polynomials over some
Euclidean domain R as above. In addition to the five conditions of Assumption 5,
we also assume that

6. JΦ := JΦ(v(T),Δq(T)) defined in (11) is invertible modulo q(T).

Definition 12. Let F , u =
∑n

i=1 λixi, q(T) and v(T) polynomials over R sat-
isfying Assumption 11. Then we define

w(T) := v(T)−
(
JF (v(T))−1F (v(T)) mod q(T)

)
,

Δ(T) :=
n∑

i=1

λiwi(T)− T same as in Definitions 3 and 6, (12)

r(T) := F (v(T)) mod q(T) (13)

U(T) :=
∂v(T)

∂T
−

(
JF (v(T))−1 ∂r(T)

∂T
mod q(T)

)
, (14)

Λ(T) :=
n∑

i=1

λiUi(T) that we will show to be invertible mod q(T) (15)

V̄ (T) := w(T)−
(
Δ(T)

Λ(T)
U(T) mod q(T)

)
, (16)

Q̄(T) := q(T)−
(
Δ(T)

Λ(T)

∂q(T)

∂T
mod q(T)

)
. (17)

Remark 13. Note that if R = Q[t] and I = 〈tk〉 for some k ≥ 1 then

Δ(T)

Λ(T)
≡ Δ(T) and U(T) ≡ ∂w(T)

∂T
mod q(T) mod I2,

thus our second construction is equivalent to the one in Definition 3. However,
when our coefficient ring R is a field K ⊂ C, the polynomials in U(T) are not
the partial derivatives of the ones in w(T), so Definition 12 defines a different
iteration from the one in Definition 3. Moreover, in general V̄ (T+Δ(T)) �≡ w(T)
mod q(T), this construction also differ from Definition 6.

The next proposition shows that V̄ (T) and Q̄(T) from Definition 12 are the
Newton iterates for the function Φ.

Proposition 14. Let F , u, q(T), v(T) and Φ be such that Assumption 11 holds.
Then Λ(T) defined in (15) is invertible modulo q(T), and thus V̄ (T) and Q̄(T)
are well defined in Definition 12. Furthermore[

V̄ (T)

Q̄(T)− T d

]
=

[
v(T)

q(T)− T d

]
− J−1

Φ ·
[

F (v(T))∑n
i=1 λivi(T)− T

]
mod q(T), (18)

where the vector on the right hand side is Φ(v(T), q(T) − T d). Finally, we also
have that

∑n
i=1 λiV̄i(T) = T.

Proof. See [17] for the proof. ��

A Note on Global Newton Iteration 211

4 Example: A Cubic-Centered 12-Bar Linkage

To illustrate the application of these techniques, we compute an RUR for a
rational component of a square system to prove that it solves an overdetermined
system of equations arising from a 12-bar spherical linkage. The overdetermined
polynomial system G consists of 17 quadratic and 2 linear polynomials in 18
variables for the linkage first described in [39], which is presented in [38, Fig. 3].
The trivial rotation of the cube is removed by placing the center of the cube
at the origin and fixing two adjacent vertices, say P7 and P8, at (−1, 1,−1)
and (−1,−1,−1), respectively. The 18 variables are the coordinates of the six
remaining vertices of the cube, say P1, . . . , P6 with Pi = (Pix, Piy, Piz). The 17
quadratic conditions force these free vertices to maintain their relative distances:

‖Pi − Pj‖2 − 4 = 0, (i, j) ∈
{
(1, 2), (3, 4), (5, 6), (1, 5), (2, 6), (3, 7),

(4, 8), (1, 3), (2, 4), (5, 7), (6, 8)

}

‖Pi‖2 − 3 = 0, i = 1, . . . , 6.

The irreducible components of these 17 quadratic polynomials was first de-
scribed in [16, Table 1]. This decomposition shows that there is a unique irre-
ducible surface S of degree 16, which is the current focus of study. In particular,
the rational component is the 16 points arising from the intersection of S with
the codimension two linear space defined by:

P3x + P4x + P2z = 0,
P5x − P6x + P3y + P3z + 1 = 0.

In order to compute an RUR for this rational component, we consider the
square polynomial system F consisting of these two linear equations and 16
quadratic equations obtained by adding the last quadratic above, i.e., ‖P6‖2 − 3,
to the other sixteen. Starting with a witness set for S, we used Bertini [4]
to compute numerical approximations of the 16 points of interest. From these
points, we observe that the variable P6z is distinct, so we take the primitive
element u(P1, . . . , P6) = P6z = T. Next, we produce an initial guess for the monic
univariate polynomial q(T) of degree 16. Since q(T) naturally has small integer
coefficients, this polynomial was computed exactly:

q(T) = T
16

+ 20T
15

+ 210T
14

+ 1230T
13

+ 4212T
12

+ 4677T
11 − 6886T

10 − 21389T
9

+ 58242T
8

−45269T7 − 6118T6 + 58968T5 − 103014T4 + 119847T3 − 91281T2 + 40466T − 8291.

We produced an initial guess for the univariate polynomials v(T) of degree at
most 15 via Lagrange interpolation using the computed numerical approxima-
tions. These are polynomials with rational coefficients having at most 5 digit
numerators and denominators, which are presented in [17].

We refined the approximate RUR using Algorithm 15, and in 3 iterations (in
roughly 1 second) we found the exact RUR. In the v(T) polynomials of the exact

212 J.D. Hauenstein, V. Pan, and A. Szanto

RUR the numerators and denominators of the coefficients have at most 28 digits,
for example (the full description of the exact RUR can be found in [17]):

α = 1/3204471773221369279790658525

v3x(T) = α(−2881129493593630865610329T 15 − 56469358709164889119641644T 14

− 578442048083015317390422659T 13 − 3227775460749576025678391459T 12

− 9909894946587188228883719582T 11 − 3578358749346900975113448620T 10

+ 44260151084205755500190960589T 9 + 84731577601881128711018565420T 8

− 199491165378780802464515305188T 7 + 95723229838339681423971314578T 6

+ 75787130941751596487093105995T 5 − 182548470032615020420523374937T 4

+ 292959497003500175534452099849T 3 − 329643042476857281605069314889T 2

+ 196674125364601362085119810025T − 47452126308845628915580789974)

We checked F (v(T)) ≡ 0 mod q(T) and G(v(T)) ≡ 0 mod q(T) using exact
arithmetics, meaning that we found an exact rational component of our zero
dimensional overdetermined system.

5 Parallel Complexity

In this section, we study two parallel algorithms for our two constructions in
Definitions 6 and 12, and analyze their parallel complexity. We express our com-
plexity results as functions of the number of variables n and the number of
roots d. In many applications, the number of roots d is large, possibly being
an exponential function of n. Our goal is to demonstrate that we can efficiently
distribute our computations to polynomially many processors in n and d so that
the parallel computational time is polynomial in log(d) and n.

We present our analysis using the PRAM (Parallel Random Access Machine)
arithmetic model of parallel computing [26], in which we more conveniently ex-
pose our complexity estimates, but we also cover them in terms of basic opera-
tions (like FFT), which are efficient under any reasonable model. OA(t, p) will
denote the simultaneous upper bounds O(t) on the parallel arithmetic time, and
O(p) on the number of processors involved.

5.1 Parallel Complexity of the First Construction from the Roots

By Proposition 9 the iterates of Definition 6 are the same as the Lagrange inter-
polants of the approximate roots obtained from one step local Newton iteration.
We assume here that the coordinates of the approximate roots are given as
floating point complex numbers, thus our base field is K := Q(i). Below we give
estimates on the parallel complexity of the following simple algorithm:

Algorithm 15. Computation of RUR from roots.

Input: A primitive element u = λ1x1 + . . . + λnxn and approximate roots
z1, . . . , zd ∈ Kn. We assume that the corresponding RUR u, q(T),v(T) sat-
isfies Assumption 5 (but need not to be given explicitly).

Output: The updated RUR Q̃(T), Ṽ (T) defined in Definition 6, and its com-
mon roots z̃1, . . . , z̃d ∈ Kn.

A Note on Global Newton Iteration 213

Computations:

1. Compute z̃i := zi − JF (zi)
−1F (zi) i = 1, . . . , d

2. Compute Q̃(T) :=
∏d

i=1(T − u(z̃i))

3. Interpolate the polynomials Ṽ1(T), . . . , Ṽn(T) such that Ṽj(u(z̃i)) = z̃i,j
for i = 1, . . . , d and j = 1, . . . n.

We get the following complexity bounds for Algorithm 15:

Proposition 16. Given u =
∑n

i=1 λixi, and z1, . . . , zd ∈ Kn satisfying the

assumptions of Algorithm 15. Then we can compute the polynomials Q̃(T), Ṽ (T)
of Definition 6 and the corresponding approximate roots z̃1, . . . , z̃d ∈ Kn of F
in two stages with respective costs

OA(log2(n), nω+1) and OA(log2(d) log∗(nd), nd/ log∗(d)).

Here 2 ≤ ω ≤ 2.373 is the exponent of matrix multiplication and log∗(d) is the
usual iterated logarithm function.

Proof. See [17] for the proof.

5.2 Parallel Complexity of the Second Construction Using Modular
Arithmetics

In this subsection, we analyze the parallel complexity of the iteration defined in
Definition 12.

The bottleneck of the iteration defined in Definition 12 is the computation
of the two modular inverses mod q(T), especially if d = deg q(T) is large in
comparison to n. We use Toeplitz-like linear solvers to compute modular inverses.
In the full version of this paper [17] we describe an algorithm for the solution
of a general Toeplitz-like linear system of equations, which refines and modifies
the algorithm of [30] by using more efficient displacement representation with
factor circulant matrices (see [31, Example 4.4.2]) rather than triangular Toeplitz
matrices. Here we give a brief summary of the results without presenting the
details.

To compute p−1(T) mod q(T) for some p(T) ∈ K[T] of degree at most d− 1,
relative prime to q, it is sufficient to compute polynomials s and t of degree at
most d−1 and d−2 respectively, such that sp+ tq = 1. If we define the Sylvester
matrix S := Sylv(p, q), then the coefficients of s and t comprise the vector S−1e
where e is the coefficient vector of 1. We use the following algorithm to compute
S−1e (see [30] or [17] for more details):

Algorithm 17. Structured LIN·SOLVE.

Input: S an m×m nonsingular matrix and e a vector of size m.
Output: the vector S−1e.

214 J.D. Hauenstein, V. Pan, and A. Szanto

Computations:

1. Let A := I−λS be the matrix polynomial, with I the identity matrix and
λ a parameter, and compute the displacement generators of A (see [17])

2. Compute the displacement generators of A−1mod λm and A−1e mod λm

using Parametrized Newton’s iteration as follows:
(a) Let X0 := I and p := (log2(m)).

(b) For i = 1, . . . , p compute Xi := Xi−1(2I −AXi−1)mod λ2
i

.
(c) Output A−1 ≡ Xp mod λm and A−1e ≡ Xpe mod λm.

3. Compute the traces of the matrices Si, i = 1, 2, . . . ,m− 1, as the coeffi-
cients of the trace of the matrix A−1mod λm.

4. Compute the coefficients c0, . . . , cn−1 of the characteristic polynomial∑m
j=0 ciλ

i = det(λI − S).

5. Note that c0 �= 0, write cn = 1, and compute and output vector S−1e =
−
∑m

i=1(ci/c0)S
i−1e.

The next proposition gives the parallel complexity of the computation of mod-
ular inverses using Algorithm 17:

Proposition 18. Let q(T) ∈ K(T) be degree d and p(T) ∈ K(T) be degree
at most d − 1 that is relatively prime to q(T). Then we can compute p−1(T)
mod q(T) in parallel complexity OA(log2(d), d2/log(d)).

Proof. In [17] we prove that for an m×m matrix S of displacement rank r using
the circulant representation of [31, Example 4.4.2], all matrices appearing in
Algorithm 17 have circulant displacement rank at most r+1, and the asymptotic
computational cost is dominated by the cost of the (log(m)) iterations within
Step 2. Under this displacement representation, the ith step of Step 2(b) is
equivalent to multiplying O(r2) bivariate polynomials of degree less than 2m
in one variable and of degree at most 2i in the other. These multiplications
can be reduced essentially to performing O(log(m)) two-dimensional discrete
Fourier transforms at at most m2 knots. Under the arithmetic PRAM model the
above computations require at most O(log2(m)) time using O(r2m2/ log(m))
arithmetic processors (cf. [5, ch.4]). If S = Sylv(p, q) then m ≤ 2d− 1 and the
displacement rank of S is at most 2, using either the factor circulant or the
triangular Toeplitz model. This proves the claim. ��

Besides modular inverses, the computation of the polynomials in Defini-
tion 12 is dominated by the computation of the adjoint of the polynomial
matrix JF (v(T)) modulo q(T). We can assume that all polynomials in the
polynomial arithmetics involved as well as our input polynomials in F have
degree at most 2d. Then, according to [5, page 311], the parallel complex-
ity of division with remainder using degrees at most 2d and d polynomials is
OA(log(d) log∗(d), d/ log∗(d)). Moreover, using [5, page 319], we can compute
the adjoint (and the inverse) of an n × n scalar matrix in OA(log2(n), nω+1).
Thus the adjoint of JF (v(T)) modulo q(T) can be computed in

OA(log(d) log2(n) log∗(d), nω+1d/ log∗(d)).

A Note on Global Newton Iteration 215

Combining all the above, we get the following proposition. The most signifi-
cant difference between its complexity bounds and the ones in Proposition 16 is
the extra d factor in the required number of processors.

Proposition 19. Assume that we are given F , u, q(T) and v(T) satisfying As-
sumption 11. Assume further that the polynomials in F have degree at most 2d.
Then we can compute the polynomials Q̄(T), V̄ (T) = (V̄1(T), . . . , V̄n(T)) of Def-
inition 12 with the cost OA(log2(n) log2(d) log∗(d), nω+1d2/ log∗(d)).

References

1. Abbott, J., Fassino, C., Torrente, M.-L.: Stable border bases for ideals of points.
J. Symbolic Comput. 43(12), 883–894 (2008)

2. Akoglu, T.A., Hauenstein, J.D., Szanto, A.: Certifying solutions to overdetermined
and singular polynomial systems over Q. (2013) (manuscript)

3. Avendaño, M., Krick, T., Pacetti, A.: Newton-Hensel interpolation lifting. Found.
Comput. Math. 6(1), 81–120 (2006)

4. Bates, D.J., Hauenstein, J.D., Sommese, A.J., Wampler, C.W.: Bertini: software
for numerical algebraic geometry, bertini.nd.edu

5. Bini, D., Pan, V.Y.: Polynomial and matrix computations. Progress in Theoretical
Computer Science, vol. 1. Birkhäuser Boston Inc., Boston (1994)

6. Blum, L., Cucker, F., Shub, M., Smale, S.: Complexity and real computation.
Springer, New York (1998)

7. Castro, D., Pardo, L.M., Hägele, K., Morais, J.E.: Kronecker’s and Newton’s ap-
proaches to solving: a first comparison. J. Complexity 17(1), 212–303 (2001)

8. Chistov, A.L.: An algorithm of polynomial complexity for factoring polynomials,
and determination of the components of a variety in a subexponential time. Zap.
Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 137, 124–188 (1984)

9. Fassino, C.: Almost vanishing polynomials for sets of limited precision points. J.
Symbolic Comput. 45(1), 19–37 (2010)

10. Fassino, C., Torrente, M.-L.: Simple varieties for limited precision points. Theoret.
Comput. Sci. 479, 174–186 (2013)

11. Ferguson, H.R.P., Bailey, D.H., Arno, S.: Analysis of PSLQ, an integer relation
finding algorithm. Math. Comp. 68(225), 351–369 (1999)

12. Giusti, M., Heintz, J., Hägele, K., Morais, J.E., Pardo, L.M., Montaña, J.L.: Lower
bounds for Diophantine approximations. J. Pure Appl. Algebra 117/118, 277–317
(1997)

13. Giusti, M., Heintz, J., Morais, J.E., Morgenstern, J., Pardo, L.M.: Straight-line
programs in geometric elimination theory. J. Pure Appl. Algebra 124, 101–146
(1998)

14. Giusti, M., Lecerf, G., Salvy, B.: A Gröbner free alternative for polynomial system
solving. J. Complexity 17(1), 154–211 (2001)

15. Grigorév, D.Y.: Factoring polynomials over a finite field and solution of systems
of algebraic equations. Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov
(LOMI) 137, 20–79 (1984)

16. Hauenstein, J.D.: Numerically computing real points on algebraic sets. Acta Appl.
Math. 125(1), 105–119 (2013)

bertini.nd.edu

216 J.D. Hauenstein, V. Pan, and A. Szanto

17. Hauenstein, J.D., Pan, V.Y., Szanto, A.: Global Newton Iteration over
Archimedean and non-Archimedean Fields - Full Version. arXiv:1404.5525

18. Hauenstein, J.D., Sottile, F.: Algorithm 921: alphaCertified: certifying solutions to
polynomial systems. ACM Trans. Math. Software 38(4), Art. ID 28, 20 (2012)

19. Heintz, J., Krick, T., Puddu, S., Sabia, J., Waissbein, A.: Deformation techniques
for efficient polynomial equation solving. J. Complexity 16(1), 70–109 (2000)

20. Heldt, D., Kreuzer, M., Pokutta, S., Poulisse, H.: Approximate computation of
zero-dimensional polynomial ideals. J. Symbolic Comput. 44(11), 1566–1591 (2009)

21. Jeronimo, G., Krick, T., Sabia, J., Sombra, M.: The computational complexity of
the Chow form. Found. Comput. Math. 4(1), 41–117 (2004)

22. Jeronimo, G., Perrucci, D.: On the minimum of a positive polynomial over the
standard simplex. J. Symbolic Comput. 45(4), 434–442 (2010)

23. Kaltofen, E.: Polynomial-time reductions from multivariate to bi- and univariate
integral polynomial factorization. SIAM J. Comput. 14(2), 469–489 (1985)

24. Kaltofen, E.: Sparse Hensel lifting. In: Caviness, B.F. (ed.) GI-Fachtagung 1973.
LNCS, vol. 204, pp. 4–17. Springer, Berlin (1985)

25. Kannan, R., Lenstra, A.K., Lovász, L.: Polynomial factorization and nonrandom-
ness of bits of algebraic and some transcendental numbers. Math. Comp. 50(181),
235–250 (1988)

26. Karp, R., Ramachandran, V.: Parallel algorithms for shared-memory machines. In:
Handbook of Theoretical Computer Science, vol. A, pp. 869–941. Elsevier (1990)

27. Lenstra, A.K., Lenstra Jr., H.W., Lovász, L.: Factoring polynomials with rational
coefficients. Math. Ann. 261(4), 515–534 (1982)

28. Lichtblau, D.: Exact computation using approximate Gröbner bases. available in
the Wolfram electronic library

29. Mourrain, B., Trébuchet, P.: Stable normal forms for polynomial system solving.
Theoret. Comput. Sci. 409(2), 229–240 (2008)

30. Pan, V.Y.: Parametrization of Newton’s iteration for computations with structured
matrices and applications. Comput. Math. Appl. 24(3), 61–75 (1992)

31. Pan, V.Y.: Structured Matrices and Polynomials: Unified Superfast Algorithms.
Birkhäuser/Springer, Boston/New York (2001)

32. Rouillier, F.: Solving zero-dimensional systems through the rational univariate
representation. Journal of Applicable Algebra in Engineering, Communication and
Computing 9(5), 433–461 (1999)

33. Shirayanagi, K.: An algorithm to compute floating point Groebner bases. In: Math-
ematical Computation with Maple V: Ideas and Applications, Ann Arbor, MI,
pp. 95–106. Birkhäuser Boston, Boston (1993)

34. Shirayanagi, K.: Floating point Gröbner bases. Math. Comput. Simulation 42(4-
6), 509–528 (1996); Symbolic Computation, New Trends and Developments (Lille,
1993)

35. Stetter, H.J.: Numerical polynomial algebra. Society for Industrial and Applied
Mathematics (SIAM), Philadelphia (2004)

36. Traverso, C., Zanoni, A.: Numerical stability and stabilization of Groebner basis
computation. In: Proceedings of the 2002 International Symposium on Symbolic
and Algebraic Computation, pp. 262–269 (electronic). ACM, New York (2002)

37. Trinks, W.: On improving approximate results of buchberger’s algorithm by new-
ton’s method. In: Caviness, B. (ed.) ISSAC 1985 and EUROCAL 1985. LNCS,
vol. 204, pp. 608–612. Springer, Heidelberg (1985)

A Note on Global Newton Iteration 217

38. Wampler, C.W., Hauenstein, J.D., Sommese, A.J.: Mechanism mobility and a local
dimension test. Mech. Mach. Theory 46(9), 1193–1206 (2011)

39. Wampler, C.W., Larson, B., Edrman, A.: A new mobility formula for spatial mech-
anisms. In: Proc. DETC/Mechanisms & Robotics Conf., September 4-7 (2007)

40. Winkler, F.: A p-adic approach to the computation of Gröbner bases. J. Symbolic
Comput. 6(2-3), 287–304 (1988)

41. Zassenhaus, H.: On Hensel factorization. I. J. Number Theory 1, 291–311 (1969)

Invariant Manifolds in the Classic and

Generalized Goryachev–Chaplygin Problem

Valentin Irtegov and Tatyana Titorenko

Institute for System Dynamics and Control Theory SB RAS,
134, Lermontov str., Irkutsk, 664033, Russia

irteg@icc.ru

Abstract. With the aid of computer algebra methods, we have con-
ducted qualitative analysis of the phase space for the classic and gen-
eralized Goryachev–Chaplygin problem. In particular, we have found a
series of new invariant manifolds of various dimension which possess some
extremal property. Motions on a one-dimensional invariant manifold have
been investigated. It was shown that these motions are asymptotically
stable on this manifold, and one of equilibrium points on the manifold is
a limit point for these motions.

Keywords: the Goryachev–Chaplygin problem, computer algebra,
invariant manifolds, stability.

1 Introduction

In recent decades, when new methods for investigation of integrable systems of
finite and infinite dimension have been developed (see, e.g., [9], [8] and references
therein), an interest was resumed in the integrable problems of classic mechanics
which are often a source of new ideas, analysis methods, and concrete applica-
tions. For example, the integrable problems of rigid body dynamics can be a
base for constructing the integrable vector fields on sphere and ellipsoid [1]. In
this way, one can obtain new interesting results even in the classic problems.

The topic of the present paper is qualitative analysis of the differential equa-
tions of motion for the classic and generalized Goryachev–Chaplygin problem
with the aid of computer algebra (CA) tools. It is known, when initial data are
arbitrary, the classic problem of motion of a rigid body with a fixed point in
constant gravity field is integrated in quadratures in the Euler, Lagrange, and
Kowalewski cases only. Under some restrictions imposed on initial data, new in-
tegrable systems appear, among which there exists the case found by Goryachev
and Chaplygin [2], [4]. It takes place at the zeroth level of area integral.

The Goryachev–Chaplygin problem was studied in many works, only a small
part of them is devoted to analysis of invariant manifolds (IMs), i.e., sets of
nonzero-dimension composed of trajectories of motion equations. Finding and
investigating IMs in the initial phase space of the problem, as a rule, requires
bulky computations. In this work, we applied computer algebra system “Mathe-
matica” as computing tool. We used a procedure for obtaining IMs together with

V.P. Gerdt et al. (Eds.): CASC Workshop 2014, LNCS 8660, pp. 218–229, 2014.
c© Springer International Publishing Switzerland 2014

Classic and Generalized Goryachev–Chaplygin Problem 219

the first integrals of vector fields on these IMs [5]. The procedure is reduced to
solving the stationary equations for a family of first integrals of the problem with
respect to some part of phase variables and some part of parameters occurring
in this family. Considering the first integrals, found in such a way, as IMs of a
higher level, we can write down the equations of motion on these IMs and already
solve the problem of finding IMs for these equations. The higher level IMs keep
the property of invariance after “lifting up” them into the initial phase space.
Using the above approach, we have found IMs for the classic and generalized
Goryachev–Chaplygin problem, which are not described in the literature, and
investigated their qualitative properties.

2 Formulation of the Problem

Let us consider the differential equations of the generalized Goryachev–Chaplygin
problem:

Ṁ1 = (3M3 + λ)M2 − aγ2
γ33
, γ̇1 = (4M3 + λ)γ2 −M2γ3,

Ṁ2 = −(3M3 + λ)M1 + μγ3 +
aγ1
γ33
, γ̇2 = −(4M3 + λ)γ1 +M1γ3,

Ṁ3 = −μγ2, γ̇3 = M2γ1 −M1γ2. (1)

When λ = 0, a = 0, equations (1) describe the Goryachev–Chaplygin top, and
the Goryachev–Chaplygin gyrostat when λ �= 0, a = 0. In these cases, variables
Mi (i = 1, 2, 3) are interpreted as the components of the kinetic moment vector,
and γi (i = 1, 2, 3) as the direction cosines of the upward vertical; λ is the
gyrostatic parameter, the parameter μ is proportional to the coordinate of the
center of mass.

The case λ �= 0, a �= 0 corresponds to the generalized Goryachev–Chaplygin
gyrostat. Some quantum analogue for this case has been constructed [6], and
some quantum mechanical interpretation for the parameter a has been given
therein.

The above equations have the following first integrals

2H = M2
1 +M2

2 + 4M2
3 + 2λM3 + 2μγ1 +

a

γ23
= 2h, (2)

V1 =M1γ1 +M2γ2 +M3γ3 = 0, (3)

V2 = γ21 + γ22 + γ23 = 1, (4)

F = (M3 +
λ

2
)(M2

1 +M2
2 +

a

γ23
) − μM1γ3 = c2. (5)

Note that the additional integral F for system (1) exists when the constant of
the integral V1 is equal to zero.

The goal of our work is to analyze the structure of the phase space of system
(1), in particular, to find IMs, which possess some extremal properties, and to
analyze them basing on these extremal properties. The class of such IMs is of
interest by possibility to apply the 2nd Lyapunov method for the investigation
of their stability.

220 V. Irtegov and T. Titorenko

3 Finding Invariant Manifolds

3.1 The Invariant Manifolds of the Generalized Goryachev–
Chaplygin Problem

For qualitative analysis of the problem, in particular, for finding IMs of equations
(1), we will use the Routh–Lyapunov method [7] and some of its extensions [5].
According to this method, the IMs of equations (1) can be obtained by solving
the conditional extremum problem for the first integrals of these equations. For
this purpose, a linear or nonlinear combination of the first integrals (a family
of the first integrals) is constructed, and the necessary extremum conditions for
this family with respect to phase variables are written. As a result, the problem
of finding IMs for the differential equations is reduced to an algebraic problem.

Following the method chosen, we take the linear combination of first integrals
(2)–(5)

K = λ0H − λ1V1 − 1

2
λ2V2 − λ3F, (6)

and write down the necessary conditions for the integralK to have an extremum
with respect to phase variables Mi, γi (i = 1, 2, 3):

∂K/∂M1 = λ0M1 − λ1γ1 − λ3 (M1 (2M3 + λ) − μγ3) = 0,

∂K/∂M2 = λ0M2 − λ1γ2 − λ3M2 (2M3 + λ) = 0,

∂K/∂M3 = λ0 (4M3 + λ) − λ1γ3 − λ3(M2
1 +M2

2 +
a

γ23
) = 0,

∂K/∂γ1 = λ0 μ− λ2γ1 − λ1M1 = 0, ∂K/∂γ2 = −λ2γ2 − λ1M2 = 0,

∂K/∂γ3 = λ3 (
a (2M3 + λ)

γ33
+ μM1) − γ3λ2 − λ1M3 − aλ0

γ33
= 0. (7)

Stationary equations (7) are a system of rational equations with parameters
λi, λ, μ, a. We add expression (3) (the equation of connection) to these equations
and, further, we will solve the problem of conditional extremum for the integral
K.

The solutions of system (3), (7) in the case when its equations are dependent
allow one to define the IMs of differential equations (1) which correspond to the
family of the first integrals K. The dependence conditions of these equations can
be obtained, e.g., as the conditions of vanishing system Jacobian. In some cases,
it is more convenient to obtain both the desired dependence conditions and the
IMs themselves by solving the stationary equations for a family of first integrals
with respect to some part of phase variables and some part of family parameters.
It is suitable, e.g., for the Goryachev–Chaplygin problem. There exist constraints
on the constants of the first integrals and system (3), (7) is overdetermined.

We have transformed system (3), (7) into a polynomial one, and for the re-
sulting system we have constructed a Gröbner basis (with “Mathematica” func-
tion GroebnerBasis), taking as unknowns γ1, γ2,M2, λ0, λ1, λ2. The lexicographic

Classic and Generalized Goryachev–Chaplygin Problem 221

monomial ordering γ2 > γ1 > M2 > λ2 > λ1 > λ0 was used. The basis polyno-
mials in the form of polynomial equations write

−γ23λ30 + (M3 + λ)γ23λ3λ
2
0 + ((2M3 + λ)γ23M3 + a)λ23λ0 − (a (2M3 + λ)

+μ γ33M1)λ
3
3 = 0, γ3λ3λ1 + (λ0 − λ3(2M3 + λ))λ0 = 0,

−γ43λ3λ2 + (aλ3 − γ23λ0M3)(λ3(2M3 + λ) − λ0) + μ γ33λ
2
3M1 = 0, (8)

−γ23λ23M2
2 + (λ20 − λ23M2

1 + 2λ0λ3M3)γ23 − aλ23 = 0,

−(a (2M3 + λ) + μγ33M1)λ23M1γ3γ1 + a(λ20 − λ23M2
1 + λ0λ3M3) γ23

+(λ0 + λ3M3)(λ0M1 − λ3M1(2M3 + λ) + μγ3λ3) γ43M1 − a2λ23 = 0,

−(a (2M3 + λ) + μ γ33M1)λ
2
3γ2 + [(λ0 + λ3M3)(λ0 − λ3(λ+ 2M3)) γ23

−aλ23] γ3M2 = 0. (9)

Under the values of λ0, λ1, λ2

λ0 =
1

3
λ3(M3 + λ) − 21/3λ23 [(M3 + λ)2 γ23 + 3((2M3 + λ) γ23M3 + a)]

3 σ1

− σ1
3 21/3 γ23

, (10)

λ1 = −λ0ρ1
γ3λ3

, λ2 =
μλ23γ

3
3M1 − (aλ3 − λ0γ23M3)ρ1

λ3γ43
, (11)

found from equations (8), equations (9) define the family of IMs of codimension
3 (λ3 is the family parameter) of the initial differential equations. Here ρ1 =
λ0−λ3(2M3+λ), σ1 = γ3λ3 [(27μγ33M1− (5M3+2λ)((M3 + λ)(4M3 + λ) γ23 −
9a)) γ3+

√
χ1]1/3.

It should be noted that excessive solutions can appear because of a transfor-
mation of the system of rational equations (3), (7) into a polynomial system.
Hence, we need to verify all solutions obtained. For this purpose, we shall apply
the IM definition: the derivative of IM expressions calculated due to the corre-
sponding equations of motion must vanish on these expressions. In the case in
question, it is more convenient to do the verification with the aid of maps of
some atlas [3] on the elements of this IMs family, e.g., map 1

γ1 =
−a2λ23 + aγ23(λ20−λ23M2

1 +λ0λ3M3) + (λ3M3 + λ0)[ρ1M1 + μ γ3λ3] γ43M1

(a (2M3 + λ) + μ γ33M1)λ23γ3M1
,

γ2 =
[a λ23 − γ23(λ3M3 + λ0)ρ1] ρ2

(a (2M3 + λ) + μγ33M1)λ33
, M2 = − ρ2

γ3λ3
(12)

and map 2

γ1 =
−a2λ23 + aγ23(λ20−λ23M2

1 +λ0λ3M3) + (λ3M3 + λ0)[ρ1M1 + μ γ3λ3] γ43M1

(a (2M3 + λ) + μ γ33M1)λ23γ3M1
,

γ2 = − [a λ23 − γ23(λ3M3 + λ0)ρ1] ρ2
(a (2M3 + λ) + μγ33M1)λ33

, M2 =
ρ2
γ3λ3

. (13)

222 V. Irtegov and T. Titorenko

The maps were obtained from equations (9) by solving them with respect to
variables γ1, γ2,M2. Here ρ2=

√
γ23(λ20 − λ23M2

1 + 2λ0λ3M3) − aλ23, χ1 =[(5M3+
2λ)((M3+λ)(4M3+λ) γ23−9a) γ3−27μ γ43M1]2−4[γ23(7M2

3+5λM3+λ
2)+3a]3. For

brevity, the expression for λ0 (10) is not substituted into the above formulae.
The vector field on the elements of the family of IMs (9) in map 1 writes

Ṁ1 = −
[3M3 + λ

γ3λ3
+
a(aλ23 − γ23(λ3M3 + λ0)ρ1)

(a(λ + 2M3) + μ γ33M1) γ33λ
3
3

]
ρ2,

Ṁ3 = − (μ ρ1 [aλ23 − γ23(λ3M3 + λ0)] ρ2
λ33(a(2M3 + λ) + μ γ33M1)

,

γ̇3 = − [(λ3M3 + λ0) aγ23λ0 + (λ3M3 + λ0)μ γ53λ3M1 − a2λ23] ρ2
(a(2M3 + λ) + μγ33M1) γ23λ

3
3M1

. (14)

These equations were derived from equations (1) by eliminating variables γ1, γ2,
M2 from them with the aid of (12).

The expressions λ0 (10), λ2 (11) are the first integrals of differential equations
(14). According to first integral definition, it can be verified by direct differenti-
ation of these expressions by virtue of system (14).

The equations of the vector field on the elements of the family of IMs (9)
in map 2 differ from equations (14) by signs before right-hand expressions: the
minus sign should be instead of the plus sign, and vice versa. The relations λ0
(10), λ2 (11) are also the first integrals of these equations.

In order to take into account a constraint imposed on the constant of the
integral V2, it is sufficient to add this integral to equations (9). The resulting
equations will define the family of IMs of codimension 4 for equations (1).

3.2 The Invariant Manifolds of the Classic Goryachev–Chaplygin
Problem

Let us consider the problem of finding IMs for the motion equations of the
Goryachev–Chaplygin gyrostat (when a = 0). In this case, stationary equations
(7) become polynomial ones that considerably simplifies the problem.

Now we add the integral V2 to equations (3) and (7). For the resulting system
under the condition a = 0, we construct a Gröbner basis, taking as unknowns
M1,M2, γ1, γ3, λ0, λ1, λ2. The lexicographic monomial ordering M1 > M2 >
γ3 > γ1 > λ2 > λ1 > λ0 is used.

The basis polynomials are factorized, and they can be written in the form of
2 polynomial systems as follows.

The 1st subsystem:

λ0 = 0, λ1 = 0, λ2 = 0, (15)

M1 = 0, M2 = 0, γ3 = 0, γ21 + γ22 = 1. (16)

Classic and Generalized Goryachev–Chaplygin Problem 223

The 2nd subsystem:

λ20 − λ0λ3 (M3 + λ) − λ23 [(2M3 + λ)M3 + μ (γ1 + 1)] = 0,

λ21 + μλ3 (λ0M3 − λ3[(2M3 + λ)M3 + μ (γ1 + 1)]) = 0, λ2 + μλ0 = 0, (17)

μλ3 γ
2
2 + μλ3 γ1 (γ1 + 1) + (λ3 (2M3 + λ) − λ0)M3 = 0,

μ λ3 γ3 + λ1 = 0, μ λ23M1 − λ1 (λ3M3 + λ0) = 0,

−μλ23 (γ1 + 1)M2 + λ1 (λ3M3 + λ0) γ2 = 0. (18)

An analysis of the 1st subsystem has shown that equations (16) define IM of
codimension 4 of the initial differential equations (where a = 0). The latter is
verified by the IM definition. This IM possesses the extremal property: it delivers
a stationary value to the integral F .

¿From a mechanical viewpoint, equations (16) describe pendulum-like oscilla-
tions of the gyrostat around a motionless axis of dynamic symmetry occupying
a horizontal position. Indeed, the vector field on the IM writes

Ṁ3 = −μ
√

1 − γ22 , γ̇2 = (4M3 + λ)
√

1 − γ22 . (19)

These equations were derived from equations (1) by eliminating variables γ1, γ3,
M1,M2 from them with the aid of (16). Equations (19) written in the Euler
angles have the form: ϕ̈+ μ cosϕ = 0, 3ϕ̇+ λ = 0.

An analysis of the 2nd subsystem has shown that under the values of λ0, λ1, λ2

λ0 =
λ3
2

(M3 + λ+
√

(3M3 + λ)2 + 4μ (γ1 + 1)), λ2 = −μλ0,

λ1 =
√
μλ3

√
λ3 [(2M3 + λ)M3 + μ(γ1 + 1)] − λ0M3, (20)

found from equations (17), equations (18) define the family of IMs of codimension
4 of differential equations (1) (where a = 0). The latter is also verified by the IM
definition with the aid of maps of some atlas on the elements of this IMs family,
e.g., map 1

M1=
(λ3M3 + λ0) $1

√
μλ

3/2
3

, M2=
(λ3M3 + λ0) $1 $2
μλ23 (γ1 + 1)

, γ2 =
$2√
μλ3

, γ3 =− $1√
μλ3

(21)

and map 2

M1=
(λ3M3 + λ0) $1

√
μλ

3/2
3

, M2=− (λ3M3 + λ0) $1 $2
μλ23 (γ1 + 1)

, γ2=− $2√
μλ3

, γ3 =− $1√
μλ3

.

These maps were derived from equations (18) by solving them with respect to
variables M1, M2, γ2, γ3. Here $1 =

√
λ3 ((2M3 + λ)M3 + μ (γ1 + 1)) − λ0M3,

$2 =
√
λ0M3 − λ3 [M3(2M3 + λ) + μ (γ1 + 1) γ1]. Likewise above, for brevity,

the expression for λ0 was not substituted into the above formulae.

224 V. Irtegov and T. Titorenko

The vector field on the elements of the family of IMs (18) in map 1 writes

γ̇1 =
$2

μ3/2 λ
5/2
3 (γ1 + 1)

[
M3 (λ3M3 + λ0) (λ3 (2M3 + λ) − λ0)

+μλ3 (γ1 + 1) (λ3 (5M3 + λ) + λ0)
]
, Ṁ3 = −

√
μ $2√
λ3
. (22)

Expressions λ0, λ2 (20) are the first integrals of differential equations (22).
The equations of the vector field on the elements of the family of IMs (18) in

map 2 differ from equations (22) by signs before right-handed expressions: the
minus sign should be instead of the plus sign, and vice versa. The relations λ0,
λ2 are also the first integrals of these equations.

So, we can assert.

Assertion 1. Solving the stationary equations of a family of first integrals with
respect to some part of phase variables and some part of parameters occurring
in this family allows one to obtain, as solutions of these equations, the equations
of IMs for the initial equations of motion and the expressions for the parameters
in the form of functions of phase variables. These functions are the first integrals
of vector fields on the found IMs.

For the vector fields on the IMs we can again state the problem of finding
IMs. Such IMs we will call second-level IMs.

3.3 Second-Level Invariant Manifolds

Now, let us consider the problem of obtaining the IMs for differential equations
(14). These equations have first integrals λ0 (10), λ2 (11).

Within the Routh–Lyapunov method, any first integral defines a family of
IMs of codimension-one for the corresponding differential equations. These IMs
possess the extremal property since any first integral provides a stationary value
to its square. Therefore, all the techniques for obtaining first integrals (including
partial first integrals) can be regarded as procedures for finding IMs for a given
system.

¿From aforesaid it follows that the integrals λ0 (10), λ2 (11) define the families
of IMs for equations (14), i.e., they are second-level IMs.

The IMs found in such a way are stable in the Lyapunov sense. Consider, e.g.,
the family of IMs λ0 (10). We introduce the deviation

y =
1

3
λ3(M3 + λ) − 21/3λ23 [(M3 + λ)2 γ23 + 3((2M3 + λ) γ23M3 + a)]

3 σ1

− σ1
3 21/3 γ23

− λ0

of the perturbed motion from the unperturbed value of λ0.
Considering y2 as a Lyapunov’s function, we can conclude on stability of the

elements of the IMs family in question.

Classic and Generalized Goryachev–Chaplygin Problem 225

Second-level IMs can be “lifted up” into the initial phase space by a standard
technique. To this end, in the case under consideration, we add equations (9) to
equation (10) (or (11)). Next, we should add equation (4) to the latter equations
in order to take into account the constraint imposed on the constant of the
integral V2. The resulting equations will define the family of one-dimensional
IMs for equations (1) that is verified by the IM definition.

Analogously we can obtain IMs for differential equations (22). First integrals
λ0, λ2 (20) will be the families of IMs for these equations. In this case, to “lift
up” these families into the initial phase space, it is sufficient to add equations
(18) to expression λ0 (or λ2). The resulting equations define the family of one-
dimensional IMs for equations (1) (where a = 0) that is also verified by the IM
definition. The equations of the given IMs family are presented below.

λ3
2

(M3 + λ+
√

(3M3 + λ)2 + 4μ (γ1 + 1)) = λ̃0,

μ λ3 γ
2
2 + μλ3 γ1 (γ1 + 1) + (λ3 (2M3 + λ) − λ0)M3 = 0,

μ λ3 γ3 + λ1 = 0, μ λ23M1 − λ1 (λ3M3 + λ0) = 0,

−μλ23 (γ1 + 1)M2 + λ1 (λ3M3 + λ0) γ2 = 0.

This family in one of maps written on its elements has the form

M1 =

√
λ̂0 (λ3M3 + λ̂0)

√
λ̂0 − λ3(2M3 + λ)

√
μλ23

, M2 =

√
λ̂0 $3√
μλ23

,

γ1 =
(λ3M3 + λ̂0) (λ̂0 − λ3(2M3 + λ))

μλ23
− 1, γ2 =

√
λ̂0 − λ3 (2M3 + λ) $3

μλ23
,

γ3 = −

√
λ̂0

√
λ̂0 − λ3 (2M3 + λ)

√
μλ3

.

Here $3 =

√
μλ23 (2λ3M3 + λ̂0) − (λ3M3 + λ̂0)2(λ̂0 − λ3(2M3 + λ)),

λ̂0, λ3 are the family parameters.

4 About Motions on the Invariant Manifolds
and Their Stability

Besides the problem of finding the IMs for equations (1), we used CA tools for a
parametric analysis of these IMs and investigation of their stability. The analysis
of the found IMs families for various values of parameters λi, λ, μ allowed us to
isolate a one-dimensional IM, motions on which are asymptotically stable, and
one of equilibrium points on the manifold is a limit point for these motions.

226 V. Irtegov and T. Titorenko

Let us consider one of the above families of IMs written in one of its maps:

γ1 =
λ2 [2aλ0λ

2
3 − λ2λ23 γ43 + λ20(λλ3 − 3λ0) γ23]

2μλ40
+
μλ0
λ2
, γ2 =

ρ̂

λ0
,

M1 =
λ2 [−2aλ0λ

2
3 + λ2λ

2
3 γ

4
3 + λ20 (3λ0 − λλ3) γ23]

2μλ30λ3 γ3
, M2 = − ρ̂

λ3 γ3
,

M3 =
1

2

(λ2λ3γ23
λ20

+
λ0
λ3

− λ
)
. (23)

Here

ρ̂=

√
(2λ30−λλ20λ3+λ2λ23γ

2
3) γ23

λ0
+
λ22 [2aλ0λ23−λ2λ23γ43+λ20(λλ3−3λ0) γ23]2

4μ2 λ̃60
−aλ23,

λ0, λ2, λ3 are the family parameters.
When a = 0, 3λ2 = 16μ, equations (23) define the family of IMs for the

motion equations of the Goryachev–Chaplygin gyrostat. Further, we shall show
that under some restrictions imposed on parameters λi there exist asymptotically
stable motions on the elements of the given IMs family.

When λ̃0 = −λλ3/6, λ̃2 = λ3 λ3/32, the above equations have the form

γ1 = −27 γ43
8

+
9 γ23

2
− 1, γ2 = −2

√
2 (1 − 9

8
γ23)3/2 γ3,

M1 =
3λ

4

(
1 − 3

4
γ23

)
γ3, M2 = −

√
2λ

3
(1 − 9

8
γ23)3/2,

M3 =
λ

4

(9

4
γ23 − 7

3

)
, (24)

and represent a submanifold of IMs family (23). The differential equation of the
vector field on this IM writes

γ̇3 =

√
2λ

3
(1 − 9

8
γ23)3/2, (25)

and it can be integrated in elementary functions

γ3(t) =
2
√

2 (λ t− 48C1)

3
√

4 + (λ t− 48C1)2
. (26)

Here C1 is a constant of integration.
Next, we set γ3(t0) = γ03 in (26) and find C1 as the function of γ03 :

C1 =
λ t0
48

− γ03

16
√

2

√
1 − 9/8 γ03

2
.

Taking into account the latter relation, we have

γ3(t, γ03) =
2
√

2 (3 γ03 +
√

2λ

√
1 − 9/8γ03

2
(t− t0))

3

√
8 (1 − 9/8γ03

2
) +

(
3γ03 +

√
2λ

√
1 − 9/8γ03

2
(t− t0)

)2 . (27)

Classic and Generalized Goryachev–Chaplygin Problem 227

One can see from (27) that functions γ3(t, γ03) take real values when |γ03 | ≤
2
√

2/3. Thus, the motions on IM (24) are described by functions (27).
Let us investigate some properties of the functions under the above constraint

on γ03 .
We conclude from (25) that there exist two equilibrium points on IM (24)

γ03 = −2
√

2

3
, γ03 =

2
√

2

3
. (28)

With the aid of the “Mathematica” function “Limit”, it is not difficult to
show that all solutions originating within interval |γ03 | < 2

√
2/3 approach the

2nd equilibrium point of (28) when t→ ∞, i.e.

lim
t→∞

γ3(t, γ03) =
2
√

2

3
.

Next, we consider solution (27) as unperturbed one, and the solution

γ̃3(t, γ03)=
2
√

2 [3 (γ03 + δ)+
√

2λ

√
1 − 9/8 (γ03 + δ)

2
(t− t0)]

3

√
8 (1−9/8 (γ03+δ)

2
)+[3 (γ03+δ)+

√
2λ

√
1−9/8 (γ03+δ)

2
(t−t0)]2

,

as perturbed one. Here |γ03 + δ| ≤ 2
√

2/3, and δ is the arbitrary constant which
characterizes a perturbation of the initial data γ03 .

As the limit of expression Δ = γ̃3(t, γ03) − γ3(t, γ03) is equal to zero as t→ ∞,
and the derivative

γ̇3(t, γ03) =
8
√

2λ (8 − 9γ03
2
)3/2

[3 (λ(t− t0)(λ(t − t0)(8 − 9γ03
2
) + 12γ03

√
8 − 9γ03

2
) + 32]3/2

of function (27) is a positive monotonically decreasing function ∀ t ≥ t0 and
|γ03 | ≤ 2

√
2/3 then all solutions originating within the interval under considera-

tion, as well as equilibrium point γ03 = 2
√

2/3, are asymptotically stable.

4.1 About Stationary Solutions and Their Stability

Equilibrium points (28) correspond to the following solutions

γ1 =
1

3
, γ2 = 0, γ3 = − 4

3
√

2
, M1 = − λ

3
√

2
, M2 = 0, M3 = − λ

12
; (29)

γ1 =
1

3
, γ2 = 0, γ3 =

4

3
√

2
, M1 =

λ

3
√

2
, M2 = 0, M3 = − λ

12
(30)

of differential equations (1) (where a = 0) in the initial phase space. We further
investigate some properties of these solutions.

228 V. Irtegov and T. Titorenko

Solutions (29), (30) possess the extremal property: they deliver a station-
ary value to the integral K when a = 0, λ0 = −λλ3/6, λ2 = λ3 λ3/32, λ1 =√

2λ2 λ3/8 and a = 0, λ0 = −λλ3/6, λ2 = λ3 λ3/32, λ1 = −
√

2λ2 λ3/8, respec-
tively. Indeed, substitute expressions (29) (or (30)) and the values of the param-
eters corresponding to them, into stationary equations (7). The latter equations
vanish.

The solutions in question are degenerate because the Jacobian of system (7)
vanishes for these solutions. Mechanically, they define the permanent rotations
of the gyrostat around the upward vertical when an axis of rotation in the body
does not coincide with the principal inertia axes of the body.

Using integral K (6), we can investigate solutions (29), (30) for stability. For
the equations of perturbed motion, the integral K in the vicinity of solution (29)
will be

ΔK = −λ3
[λ3z21

64
+
λ3z22
64

+
λ3z23
64

+

√
2λ2z1z4

8
− 3λ2z3z4

16
+

1

2
λz24 +

√
2λ2z2z5

8

+
1

2
λz25 +

√
2λ2z3z6

8
−

√
2

3
λz4z6 +

1

3
λz26 + (z24 + z25)z6

]
. (31)

Here z1=γ1 − 1/3, z2=γ2, z3=γ3 + 4/(3
√

2), z4 =M1 +λ/(3
√

2), z5=M2, z6=
M3 + λ/12 are the deviations of perturbed motion from unperturbed one.

On the linear manifold

δH =
3λ2

16
z1 − λz4

3
√

2
+

2

3
(λ+ 3)z6 = 0,

δV1 = −1

3

(λz1√
2

+
λz3
4

− z4 +
4z6√

2

)
= 0, δV2 =

2

3
(z1 − 2

√
2 z3) = 0

the ΔK writes

2ΔK̃ = −λλ3
(27λ2 z21

32
+ ξ2

)
,

where ξ =
√

2λ z2/8 + z5.
Since the above quadratic form is sign-definite for the variables appearing in

it when λ3 �= 0 and λ �= 0, these conditions are sufficient for the stability of
solution (29) with respect to variables z1, z3, z4, z6, ξ. So, in the given case, we
have proved stability with respect to a part of variables [10]. Analogous result
has been obtained for solution (30).

5 Conclusion

With the aid of CA tools, we have conducted some analysis of the structure of
the phase space for the classic and generalized Goryachev–Chaplygin problem.
In particular, new families of IMs of various dimension have been found for
these problems. Some of the IMs possess the extremal property: they deliver a
stationary value to the problem first integrals.

Classic and Generalized Goryachev–Chaplygin Problem 229

A parametric analysis of the obtained IMs families allowed us to isolate a
one-dimensional IM, on which there exist asymptotically stable motions, and
one of equilibrium points on the manifold is a limit point for these motions. The
equilibrium points on the IM correspond to permanent rotations in the initial
phase space. The sufficient conditions of stability with respect to a part of the
phase variables have been derived for the latter motions.

The presented results show that the approach used in this work for finding
and for analysing IMs in combination with CA methods, in particular, Gröbner
bases, allows one to solve such problems effectively.

The work was supported by the Presidium of the Russian Academy of Scien-
ces, basic research program No. 17.1. This work was also partially financed by
Grant Department of the President of the Russian Federation for the state sup-
port of leading scientific schools (grant No. 5007.2014.9).

References

1. Bolsinov, A.V., Kozlov, V.V., Fomenko, A.T.: The Maupertuis principle and
geodesic flows on the sphere arising from integrable cases in the dynamics of a
rigid body. Russian Math. Surveys. 50(3), 473–501 (1995)

2. Chaplygin, S.A.: A new particular solution of the problem of the rotation of a
heavy rigid body about a fixed point. Trudy Otd. Fiz. Nauk Obshch. Lyubitelei
Yestestvoznaniya 12(1), 1–4 (1904)

3. Godbillon, C.: Géometrie Différentielle et Mécanique Analytique, Collection
Méthodes Hermann, Paris (1969)

4. Goryachev, D.N.: The motion of a heavy rigid body about a fixed point in the
case when A=B=4C. Mat. Sbornik Kruzhka Lyubitelei Mat. Nauk. 21(3), 431–438
(1900)

5. Irtegov, V.D., Titorenko, T.N.: The invariant manifolds of systems with first
integrals. J. Appl. Math. Mech. 73(4), 379–384 (2009)

6. Komarov, I.V., Kuznetsov, V.B.: The generalized Goryachev Chaplygin gyrostat
in quantum mechanics. Differential Geometry, Lie Groups and Mechanics. Trans.
of LOMI scientifc seminar USSR Acad. of Sciences 9, 134–141 (1987)

7. Lyapunov, A.M.: On Permanent Helical Motions of a Rigid Body in Fluid.
Collected Works, vol. 1. USSR Acad. Sci., Moscow–Leningrad (1954)

8. Oden, M.: Rotating Tops: A Course of Integrable Systems. Udmurtiya univ.,
Izhevsk (1999)

9. Reyman, A.G., Semenov-Tian-Shansky, M.A.: Integrable Systems (Theoretic-
group Approach). Institute of Computer Science, Izhevsk (2003)

10. Rumyantsev, V.V., Oziraner, A.S.: Motion Stability and Stabilization with Respect
to Part of Variables. Nauka, Moscow (1987)

Coherence and Large-Scale Pattern Formation

in Coupled Logistic-Map Lattices via Computer
Algebra Systems

Maciej Janowicz and Arkadiusz Or�lowski

Katedra Informatyki, Szko�la G�lówna Gospodarstwa Wiejskiego w Warszawie
ul. Nowoursynowska 159, 02-776 Warszawa, Poland
{maciej janowicz,arkadiusz orlowski}@sggw.pl

Abstract. Three quantitative measures of the spatiotemporal behavior
of the coupled map lattices: reduced density matrix, reduced wave func-
tion, and an analog of particle number, have been introduced. Making ex-
tensive use of two computer algebra systems (Maxima and Mathematica)
various properties of the above mentioned parameters have been thor-
oughly studied. Their behavior suggests that the logistic coupled-map
lattices approach the states which resemble the condensed states of sys-
tems of Bose particles. In addition, pattern formation in two-dimensional
coupled map lattices based on the logistic mapping has been investigated
with respect to the non-linear parameter, the diffusion constant and ini-
tial as well as boundary conditions.

Keywords: coupled logistic-map lattices, Bose–Einstein condensation,
pattern formation, computer algebra systems.

1 Introduction

Coupled map lattices (CMLs) [3,8] have long become a useful tool to investigate
spatiotemporal behavior of extended and possibly chaotic dynamical systems
[12,24,15,13]. It is so even though the most standard CML, that based on the
coupling of logistic maps, is physically not particularly appealing as it is fairly
remote from any model of natural phenomena. Other, more complicated CMLs,
have found interesting applications in physical modeling. One should mention
here CMLs developed to describe the Rayleigh–Benard convection [26], dynamics
of boiling [25,4], formation and dynamics of clouds [27], crystal growth processes,
and hydrodynamics of two-dimensional flows [14].

The most important characteristic quantities employed to study various types
of CMLs include co-moving Lyapunov spectra, mutual information flow, spa-
tiotemporal power spectra, Kolmogorov–Sinai entropy density, pattern entropy
[14]. More recently, the detrended fluctuation analysis, structure function anal-
ysis, local dimensions, embedding dimension, and recurrence analysis have also
been introduced for CMLs [17].

The purpose of this paper is to analyze the interesting features of the above-
mentioned most standard coupled map lattices which resemble the characteristics

V.P. Gerdt et al. (Eds.): CASC Workshop 2014, LNCS 8660, pp. 230–241, 2014.
c© Springer International Publishing Switzerland 2014

Coupled Logistic-Map Lattices and Computer Algebra Systems 231

of the condensates of Bose particles as well as those associated with formation of
patterns in two spatial dimensions. In particular, we investigate the formation
of such patterns for relatively short times; their dependence on two parameters
which define CML as well as the initial conditions is found numerically. Thus,
the present work is very much in the spirit of classical papers [15,13,14]. We
believe, however, that the subject is very far from being exhausted as it is quite
easy to find interesting patterns not discovered in the above works. More im-
portantly, we combine searching for interesting patterns with the introduction
of three additional quantities with the help of which one can characterize the
dynamics and statistical properties of CMLs. These are the reduced density ma-
trix, the reduced wave function, and a quantity which is an analog of the number
of particles. This is motivated, in part, by what we feel is the need to slightly
deemphasize the connection of CMLs with finite-dimensional dynamical systems,
and make their analysis similar to that of classical field theory, especially the
Gross–Pitaevskii equation which is used in the physics of Bose–Einstein conden-
sation [2,16]. Application of the classical field-theoretical methods in the physics
of condensates have been described, e.g., in [5,6,22].

Many interesting patterns emerge in the system while it still exhibits a tran-
sient behavior as can be seen, e.g., in the plots of the “number of particles”. We
have not attempted here to reach the regime of stationary dynamics in each case.
The problem for which times such a stationary regime becomes established is
beyond the scope of this work. We are content with the transient regime as long
as something interesting about the coherence properties and about the patterns
can be observed. Let us notice that remarkable results on the transient behavior
of extended systems with chaotic behavior have been obtained, e.g., in [23,9].

In addition, we observe that the condensate-like behavior has been reported in
other systems which are not connected with many Bose particles. Of particular
interest are the developments in the theory of complex networks [1,21]. Here,
however, we explore the condensate-like behavior in the coupled map lattices.

The main body of this work is organized as follows. The mathematical model
as well as the basic definitions of reduced density matrix and reduced wave
function are introduced in Section 2. Section 3 provides a justification of our
claim that the coupled map lattices based on logistic map exhibit properties
which appear to be analogous to those of the Bose–Einstein condensates (BEC).
The description of numerical results concerning pattern formation are contained
in Section 4, while Section 5 comprises a few concluding remarks.

In performing the presented investigations we used extensively two computer
algebra systems, namely Maxima and Mathematica. They provided excellent
tools for both numerical simulations and graphical presentations. Due to the
user-friendly environment as well as computational power they allowed to over-
come the burden of testing many important special cases. They helped also to
organize an enormous and complex set of interesting worth-to-study possibili-
ties into a relatively coherent picture still staying in touch with quite nontrivial
physical ideas that motivated this study.

232 M. Janowicz and A. Or�lowski

2 The Model

Let us consider the classical field ψ(x, y, t) defined on a two-dimensional spatial
lattice. Its evolution in (dimensionless, discrete) time t is given by the following
equation:

ψ(x, y, t+ 1) = (1 − 4d)f(ψ(x, y, t)) + d [f(ψ(x+ 1, y, t)) + f(ψ(x− 1, y, t))

+ f(ψ(x, y + 1, t)) + f(ψ(x, y − 1, t))] (1)

where the function f is given by:

f(ψ) = cψ(1 − ψ), (2)

and the parameters c and d are constant. The set of values taken by ψ is the
closed interval [0, 1]. From the physical point of view the above diffusive model
is rather bizarre, containing a field-dependent diffusion. There is no conserved
quantity here which could play the role of energy or the number of excitations.

In the following the coefficient d will be called the “diffusion constant”, and
the coefficient c - the “non-linear parameter”. It is assumed that ψ satisfies either
the periodic boundary or Dirichlet (with ψ = 0) conditions on the borders of
simulation box. The size of that box is N × N . All our simulations have been
performed with N = 256.

Let ψ̃ be the two-dimensional discrete Fourier transform of ψ,

ψ̃(m,n) =

N−1∑
x=0

N−1∑
y=0

e2πimx/Ne2πiny/Nψ(x, y), (3)

Thus, ψ̃ may be interpreted as the momentum representation of the field ψ.
Below we investigate the relation between a CML described by Eq.(1) and a

Bose–Einstein condensate. Therefore, let us invoke the basic characteristics of
the latter which are so important that they actually form a part of its modern
definition. These are [18,28]: (1) the presence of off-diagonal long-range order
(ODLRO) and (2) The presence of one eigenvalue of the one-particle reduced
density matrix which is much larger than all other eigenvalues.

Let us notice that the property (2) corresponds to the well-known intuitive
definition of the Bose–Einstein condensate. Namely, taking into account that
the one-particle reduced density matrix ρ(1) has the following decomposition in
terms of eigenvalues λj and eigenvectors |φj〉:

ρ(1) =
∑
j

λj |φj〉〈φj |

we realize that if one of the eigenvalues is much larger than the rest, then the
majority or at least a substantial fraction of particles is in the same single-particle
quantum state.

Coupled Logistic-Map Lattices and Computer Algebra Systems 233

In addition, for an idealized system of Bose particles with periodic boundary
conditions and without external potential, the following signature of condensa-
tion is also to be noticed: (3) The population of the zero-momentum mode is
much larger than population of all other modes.

The properties (1) and (2) acquire quantitative meaning only if the one-
particle reduced density matrix is defined. However, as our model is purely clas-
sical, the definition of that density matrix is not self-evident. Here we make use
of the classical-field approach to the theory of Bose–Einstein condensation [6,11]
and define the quantities:

ρ̄(x, x′) = 〈
N−1∑
y=0

ψ(x, y)ψ(x′, y)〉t, (4)

and
ρ(x, x′) = ρ̄(x, x′)/

∑
x

ρ̄(x, x). (5)

We shall call the quantity ρ(x, x′) the reduced density matrix of CML. The above
definition in terms of an averaged quadratic form made of ψ seems quite natural,
especially because ρ is a real symmetric, positive-definite matrix with the trace
equal to 1. The sharp brackets 〈. . .〉t denote the time averaging:

〈(. . .)〉t =
1

Ts

T∑
t=T−Ts

(. . .),

where T is the total simulation time and Ts is the averaging time. In our numer-
ical experiments, T has been equal to 3000, and Ts has been chosen to be equal
to 300.

We can provide the quantitative meaning to the concept of off-diagonal long-
range order (ODLRO) by saying that it is present in the system if

ρ(x1 + x, x1 − x)

does not go to zero with increasing x [28]. If this is the case, the system possesses
the basic property (1) of Bose–Einstein condensates.

LetW be the largest eigenvalue of ρ. We will say that CML is in a “condensed
state” if W is significantly larger that all other eigenvalues of ρ. If this is the
case, the system possesses property (2) of the Bose–Einstein condensates. The
corresponding eigenvector, F (x), will be called the reduced wave function of the
(condensed part of) coupled map lattice.

One thing which still requires explanation is that the above definition of the
reduced density matrix involves not only temporal, but also spatial averaging
over y. This is performed just for technical convenience, namely, to avoid dealing
with too large matrices. Strictly speaking, we are allowed to assess the presence
or absence of ODLRO only in one (x) direction. But that direction is arbitrary, as
we might equally well consider averaging over x without any qualitative change
in the results.

234 M. Janowicz and A. Or�lowski

In the classical field theory the quantity ψ̃�ψ̃ represents the particle density
in momentum space; in the corresponding quantum theory, upon the raising
of ψ, ψ� to the status of operators, ψ̃�ψ̃ would be called the particle number
operator. Analogously, we introduce the number P which – just for the purpose
of the present article – will be called the “particle number”, and is defined as:

P =

N/2−1∑
m=−N/2

N/2−1∑
n=−N/2

|ψ̃(m,n)|2. (6)

All the above definitions are modelled after the corresponding definitions in
the non-relativistic classical field theory.

3 Similarity to Bose-Condensed Systems

We have performed our numerical experiment with six values of the non-linear
parameter c (3.5+0.1·i, i = 0, 1, ..., 5), twenty five values of the diffusion constant
d (0.01 · j, j = 1, 2, .., 25), four different initial conditions, and two different
boundary conditions. The boundary conditions have been chosen as periodic
ones, the latter with ψ = 0 at all boundaries. To save some space, the tables below
contain the results for d being multiples of 0.05, but the results for other d do not
differ qualitatively from those reported below. The following initial conditions
have been investigated. The first – type (A) – initial conditions are such that
ψ(x, y, t) is “excited” only at a single point at t = 0: ψ(N/2, N/2, 0) = 0.5,
and ψ(x, y, 0) is equal to zero at all other (x, y). Type (B) initial conditions
are such that ψ(x, y, t) has initially two non-vanishing values: ψ(N/4, N/4, 0) =
ψ(3N/4, 3N/4, 0) = 0.5. By type (C) initial conditions we mean those with
ψ(x, y, 0) being a Gaussian function, ψ(x, y, 0) = 0.5 exp(−0.01((x − N/2)2 +
(y−N/2)2)). In type (D) initial conditions, the Gaussian has been replaced with
a sine function, ψ(x, y, 0) = 0.5 sin(10x/(N − 1). How the largest eigenvalue of
the time-averaged reduced density matrix depends on c and d for various types
of initial conditions is presented in Tables 1-4.

There are several interesting observations which can be made in connection
with Tables 1–4. Firstly, with exception of the case d = 0.25 and arbitrary c
for type (A) initial conditions, the system exhibits one eigenvalue of the reduced

Table 1. Largest eigenvalue of the reduced density matrix. Periodic boundary condi-
tions and type (A) initial conditions.

d\c 3.5 3.6 3.7 3.8 3.9 4.0

0.05 0.920 0.909 0.905 0.908 0.905 0.902
0.10 0.929 0.911 0.905 0.914 0.904 0.902
0.15 0.948 0.917 0.929 0.945 0.907 0.904
0.20 0.999 0.996 0.986 0.912 0.908 0.905
0.25 0.499 0.496 0.493 0.483 0.454 0.453

Coupled Logistic-Map Lattices and Computer Algebra Systems 235

Table 2. Largest eigenvalue of the reduced density matrix. Periodic boundary condi-
tions and type (B) initial conditions.

d\c 3.5 3.6 3.7 3.8 3.9 4.0

0.05 0.921 0.909 0.906 0.909 0.905 0.902
0.10 0.940 0.918 0.902 0.923 0.904 0.902
0.15 0.945 0.910 0.914 0.954 0.907 0.904
0.20 0.912 0.911 0.898 0.899 0.908 0.905
0.25 0.457 0.457 0.459 0.481 0.455 0.453

Table 3. Largest eigenvalue of the reduced density matrix. Periodic boundary condi-
tions and type (C) initial conditions.

d\c 3.5 3.6 3.7 3.8 3.9 4.0

0.05 0.925 0.911 0.909 0.907 0.902 0.902
0.10 0.938 0.920 0.901 0.906 0.904 0.902
0.15 0.953 0.928 0.910 0.915 0.906 0.905
0.20 0.923 0.913 0.923 0.893 0.907 0.905
0.25 0.910 0.903 0.888 0.909 0.906 0.904

Table 4. Largest eigenvalue of the reduced density matrix. Periodic boundary condi-
tions and type (D) initial conditions.

d\c 3.5 3.6 3.7 3.8 3.9 4.0

0.05 0.927 0.913 0.901 0.899 0.893 0.858
0.10 0.934 0.924 0.911 0.904 0.896 0.887
0.15 0.940 0.934 0.919 0.918 0.901 0.882
0.20 0.940 0.932 0.925 0.924 0.902 0.881
0.25 0.934 0.931 0.925 0.921 0.919 0.880

density matrix which is much larger than all other eigenvalues for all other values
of c and d and both types of initial conditions. This is one of the most important
features of the Bose-condensed matter, as explained in Section 2. Our system
clearly has the property (2) of BEC. Secondly, for the case d = 0.25 and types
(A) and (B) initial conditions, the largest eigenvalue is slightly lower than 0.5.
We have checked that, for each c, there are two almost equal eigenvalues which
are much larger than all other eigenvalues. The presence of two such eigenvalues
of the reduced density matrix also has its analog in the physics of Bose–Einstein
condensation; it is characteristic for the so-called quasi-condensates [19,20,11].
Further, it seems there are certain regularities in the c and d dependence of
the maximal eigenvalue. In most (but not all) cases, the value of W appears
to decrease with growing c for given d. In all cases except of d = 0.25, W has
had the largest value for c equal to 3.5, that is, below the threshold of chaos for
a single logistic map. Let us recall that the value 3.56995... corresponds to the

236 M. Janowicz and A. Or�lowski

onset of chaos for a single map as it is at the end of period-doubling bifurcations,
see, e.g., [7].

4 Large-Scale Pattern Formation

We have observed the following general rules in the process of pattern formation
in our system. Firstly, the patterns are incomparably better developed (much
better visible) for any “structured” initial conditions (like those considered in
this work) than in the case of random initial conditions. The initial inhomo-
geneities (or “seeds”) serve the building of large structures much better than
fully random conditions, which is fairly intuitive. The patterns are best devel-
oped for smaller values of the non-linear parameter and intermediate values of
the diffusion constant.

Fig. 1. Grayscale shaded contour graphics representing the values of the field ψ after
3000 time steps for d = 0.05, periodic boundary conditions, and three values of c for
type (A) initial conditions; (a)c = 3.5, (b)c = 3.6, (c)c = 3.7. Brighter regions are those
with higher values of ψ.

Fig. 2. Grayscale shaded contour graphics representing the values of the field ψ after
3000 time steps for d = 0.25, periodic boundary conditions and three values of c and
type (A) initial conditions; (a) c = 3.8, (b) c = 3.9, (c) c = 4.0. Brighter regions are
those with higher values of ψ

Coupled Logistic-Map Lattices and Computer Algebra Systems 237

In Figs. 1–6, we show shaded-contour plots representing the values of the field
ψ(x, y) after 3000 time steps for periodic boundary conditions and types (A-
C) initial conditions. There are no figures for type (D) (sinusoidal) boundary
conditions because they are quite uninteresting, displaying merely the stripes
corresponding to the sinusoidal initial “excitation”.

Naturally, the large structures visible in Figs. 1–6 reflect, to some extent, the
symmetry of the simulation box. More interesting observation is that the change
from periodic (c = 3.5) to chaotic (c = 3.6) regime – as defined for individual
maps – does not lead, in the case of very slow diffusion, to any spectacular change
of the pattern.

The most characteristic feature of the fast-diffusion (i.e., large d) case is the
disappearance of the large-scale structures for any type of initial conditions.
However, somewhat more pronounced grainy structures reappear for c = 3.9.

Fig. 3. Grayscale shaded contour graphics representing the values of the field ψ after
3000 time steps for d = 0.05, periodic boundary conditions, three values of c, type (B)
initial conditions; (a) c = 3.5, (b) c = 3.6, (c) c = 3.7. Brighter regions are those with
higher values of ψ

Fig. 4. Grayscale shaded contour graphics representing the values of the field ψ after
3000 time steps for d = 0.25, periodic boundary conditions, three values of c and type
(B) initial conditions; (a) c = 3.8, (b) c = 3.9, (c) c = 4.0. Brighter regions are those
with higher values of ψ

238 M. Janowicz and A. Or�lowski

Fig. 5. Grayscale shaded contour graphics representing the values of the field ψ after
3000 time steps for d = 0.05, periodic boundary conditions, three values of c, type (C)
initial conditions; (a) c = 3.5, (b) c = 3.6, (c) c = 3.7. Brighter regions are those with
higher values of ψ

Fig. 6. Grayscale shaded contour graphics representing the values of the field ψ after
3000 time steps for d = 0.25, periodic boundary conditions, three values of c and type
(C) initial conditions; (a) c = 3.8, (b) c = 3.9, (c) c = 4.0. Brighter regions are those
with higher values of ψ

5 Concluding Remarks

Perhaps the most interesting of the various features of the considered system of
coupled map lattices is that it appears to be “condensed” if the most standard
measures of the classical field theory of Bose condensates are applied. That is, for
a majority of parameter values we have observed that a gap between the largest
eigenvalue of the reduced density matrix and the rest has been developed. Only
for d = 0.25 we have observed not a single, but rather two eigenvalues which
are much larger than all remaining ones. The latter fact might be of indepen-
dent interest, as it seems to correspond with the so-called “quasi-condensates”.
Secondly, the prominent characteristic of the system is the presence of large-
scale patterns for smaller values of the “diffusion constant” d, d ≤ 0.2 and
not too large values of the non-linear parameter, c ≤ 3.8. Thirdly, a very strong

Coupled Logistic-Map Lattices and Computer Algebra Systems 239

dependence of both the presence and qualitative features of the patterns on the
initial conditions is to be noticed. The latter fact should be a warning against
restricting oneself to one type of initial conditions - namely, the purely random
ones - which is very often met in the literature. The most interesting facts can
be overlooked this way. Interestingly, the strong dependence of patterns on the
initial conditions takes place even in the non-chaotic regime of the parameter
c. Fourthly, for very slow diffusion (d = 0.05) we have found that the “number
of particles” - defined in a natural way - is an approximate constant of motion
for sufficiently large times (because the period-2 oscillations have very small
amplitude). If the system exhibits period-2 or period-4 oscillations, the number
of particle fluctuates around two (or four) values, as if there were two (four)
different systems.

We have, in addition, performed similar numerical experiments with another
version of the logistic map, reaching similar conclusions [10]. The same statement
seems to be valid in the case of standard (rather than logistic) map employed
as a basis for the coupled map lattice. However, we have only very preliminary
results in that case.

Finally, we would like to observe that the domination of zeroth mode in the
momentum space suggests that a kind of Bogoliubov approximation could be
applicable. This might lead to an efficient analytical approach to the dynamics
of CML.

We plan to develop further our attempt of using classical field-theoretical
concepts in coupled map lattices. Work is in progress of their using in the case
of three-dimensional CMLs based on logistic maps as well as other physically
more appealing discrete systems.

This paper benefits a lot from extensive use of various features and possibilities
offered by two important representatives of computer algebra systems: Maxima
and Mathematica. Both of them have turned out to become comprehensive en-
vironments for symbolic, numerical and graphical work. It is their numerical and
graphical capabilities which have been especially important in this work.

We would also like to mention that preliminary results exist for a quantum
version of coupled logistic maps. In the calculation of quantum expectation values
of operators defined in terms of ψ and its conjugate momentum the capabilities
of Mathematica and Maxima pertaining to the operations with patterns, large
amounts of symbols, and functional programming, become critical. We would
like, however, to report those results elsewhere, when they become mature.

Acknowledgments. One of us (MJ) is grateful to Mariusz Gajda and Emilia
Witkowska for offering several helpful discussions.

References

1. Bianconi, G., Barabasi, A.-L.: Bose–Einstein condensation in complex networks.
Phys. Rev. Lett. 86, 5632–5635 (2001)

2. Dalfovo, F., Giorgini, S., Pitaevskii, L.P., Stringari, S.: Theory of Bose–Einstein
condensation in trapped gases. Rev. Mod. Phys. 71, 463–512 (1999)

240 M. Janowicz and A. Or�lowski

3. Chazottes, J.R., Fernandez, B.: Dynamics of Coupled Map Lattices and Related
Spatially Extended Systems. Springer, New York (2005)

4. Ghoshdastidar, P.S., Chakraborty, I.: A coupled map lattice model of flow boiling
in a horizontal tube. J. Heat Transfer 129, 1737–1741 (2007)

5. Góral, K., Gajda, M., Rz ↪ażewski, K.: Multi-mode description of an interacting
Bose–Einstein condensate. Opt. Express 8, 92–98 (2001)

6. Góral, K., Gajda, M., Rz ↪ażewski, K.: Thermodynamics of an interacting trapped
Bose–Einstein gas in the classical field approximation. Phys. Rev. A 66, 051602(R)
(4 pages) (2002)

7. Hale, J., Koçak, H.: Dynamics and Bifurcations. Springer, Berlin (1991)
8. Ilachinski, A.: Cellular Automata. A Discrete Universe. World Scientific, Singapore

(2001)
9. Janosi, I.M., Flepp, L., Tel, T.: Exploring transient chaos in an NMR-laser

experiment. Phys. Rev. Lett. 73, 529–532 (1994)
10. Janowicz, M., Or�lowski, A.: Coherence properties of coupled chaotic map lattices.

Acta Phys. Polon. A 120, A-114–A-118 (2011)
11. Kadio, D., Gajda, M., Rz ↪ażewski, K.: Phase fluctuations of a Bose–Einstein

condensate in low-dimensional geometry. Phys. Rev. A 72, 013607 (9 pages) (2005)
12. Kaneko, K.: Period-doubling of kink-antikink patterns, quasi-periodicity in

antiferro-like structures and spatial intermittency in coupled map lattices – To-
ward a prelude to a “Field Theory of Chaos”. Prog. Theor. Phys. 72, 480–486
(1984)

13. Kaneko, K.: Pattern dynamics in spatiotemporal chaos. Physica D 34, 1–41 (1989)
14. Kaneko, K.: Simulating physics with coupled map lattices – Pattern dynamics,

information flow, and thermodynamics of spatiotemporal chaos. In: Kawasaki, K.,
Onuki, A., Suzuki, M. (eds.) Pattern Dynamics, Information Flow, and Thermo-
dynamics of Spatiotemporal Chaos, pp. 1–52. World Scientific, Singapore (1990)

15. Kapral, R.: Pattern formation in two-dimensional arrays of coupled, discrete-time
Oscillators. Phys. Rev. A 31, 3868–3879 (1985)

16. Leggett, A.: Bose–Einstein condensation in the alkali gases: some fundamental
concepts. Rev. Mod. Phys. 73, 307–356 (2001)

17. Muruganandam, P., Francisco, F., de Menezes, M., Ferreira, F.F.: Low dimen-
sional behavior in three-dimensional coupled map lattices. Chaos, Solitons and
Fractals 41, 997–1004 (2009)

18. Penrose, O., Onsager, L.: Bose–Einstein condensation and liquid helium. Phys.
Rev. 104, 576–584 (1956)

19. Petrov, D.S., Shlyapnikov, G.V., Walraven, J.T.M.: Regimes of quantum degener-
acy in trapped 1D gases. Phys. Rev. Lett. 85, 3745–3749 (2000)

20. Petrov, D.S., Shlyapnikov, G.V., Walraven, J.T.M.: Phase-fluctuating 3D Bose–
Einstein condensates in elongated traps. Phys. Rev. Lett. 87, 050404 (4 pages)
(2001)

21. Reka, A., Barabasi, A.-L.: Statistical mechanics of complex networks. Rev. Mod.
Phys. 74, 47–97 (2002)

22. Schmidt, H., Góral, K., Floegel, F., Gajda, M., Rz ↪ażewski, K.: Probing the classical
field approximation – thermodynamics and decaying vortices. J. Opt. B: Quantum
Semiclassical Opt. 5, S96 (2003)

23. Sinha, S.: Transient 1/f Noise. Phys. Rev. E 53, 4509–4513 (1996)
24. Waller, I., Kapral, R.: Spatial and temporal structure in systems of coupled

nonlinear oscillators. Phys. Rev. A 30, 2047–2055 (1984)

Coupled Logistic-Map Lattices and Computer Algebra Systems 241

25. Yanagita, T.: Coupled map lattice model for boiling. Phys. Lett. A 165, 405–408
(1992)

26. Yanagita, T., Kaneko, K.: Rayleigh–Benard convection: Pattern, chaos, spatiotem-
poral chaos and turbulence. Physica D 82, 288–313 (1995)

27. Yanagita, T., Kaneko, K.: Modeling and characterization of cloud dynamics. Phys.
Rev. Lett. 78, 4297–4300 (1997)

28. Yang, C.N.: Concept of off-diagonal long-range order and the quantum phases of
liquid He and of superconductors. Rev. Mod. Phys. 34, 694–704 (1962)

On the Computation of the Determinant

of a Generalized Vandermonde Matrix

Takuya Kitamoto

Faculty of Education, Yamaguchi University
kitamoto@yamaguchi-u.ac.jp

Abstract. “Vandermonde” matrix is a matrix whose (i, j)th entry is in
the form of xj

i . The matrix has a lot of applications in many fields such as
signal processing and polynomial interpolations. This paper generalizes
the matrix, and let its (i, j) entry be fj(xi) where fj(x) is a polynomial
of x. We present an efficient algorithm to compute the determinant of the
generalized Vandermonde matrix. The algorithm is composed of two sub-
algorithms: the one that depends on given polynomials fj(x) and the one
that does not. The latter algorithm (the one does not depend on fj(x))
can be performed beforehand, and the former (the one that depends on
fj(x)) is mainly composed of the computation of determinants of numeri-
cal matrices. Determinants of the generalized Vandermonde matrices can
be used, for example, to compute the optimal H∞ and H2 norm of a sys-
tem achievable by a static feedback controller (for details, see [18],[19]).

1 Introduction

Vandermonde matrix, named after Alexandre-Thóphile Vandermonde, is a ma-
trix with the form ⎡⎢⎢⎢⎣

1 x1 · · · xn−1
1

1 x2 · · · xn−1
2

...
...

...
...

1 xn · · · xn−1
n

⎤⎥⎥⎥⎦ .
The matrix is well-known in linear algebra, and cited in every standard textbook
with various applications, such as FFT in signal processing ([1],p.183), polyno-
mial interpolations ([2],p.114) and so on. The matrix is also known to have close
relationships with Frobenius formula in representation theory ([3]). The deter-
minant of the matrix is known to be

∏
i<j(xi − xj), and efficient algorithms to

compute its inverse is being investigated ([20]).
This paper first generalizes the Vandermonde matrix, and presents an efficient

algorithm to compute the determinant of the generalized Vandermonde matrix.
In references [4] - [6], some generalizations of the matrix in the form of⎡⎢⎢⎢⎣

xk1
1 xk2

1 · · · xkn
1

xk1
2 xk2

2 · · · xkn
2

...
...

...
...

xk1
n xk2

n · · · xkn
n

⎤⎥⎥⎥⎦ ,
V.P. Gerdt et al. (Eds.): CASC Workshop 2014, LNCS 8660, pp. 242–255, 2014.
c© Springer International Publishing Switzerland 2014

Computation of the Determinant of a Generalized Vandermonde Matrix 243

are considered, where ki are integers satisfying 0 ≤ k1 ≤ · · · ≤ kn. This paper
considers further generalization, and let its (i, j)th entry to be a polynomial
fj(xi), not monomial of xi. This paper proposes an efficient algorithm to compute
the determinant of the generalized Vandermonde matrix.

Computations of the determinant of a matrix has a long history, and a lot of
research and efficient algorithms has been reported (see, for example, [7] - [10]).
Among them, many papers and researches focused on the determinant compu-
tation of a polynomial matrix (for example, [11] - [13]), and its implementations
has been reported (for example, [14] - [17]).

Although we can apply these algorithms to the generalized Vandermonde
matrix, we focus on a special form of the generalized Vandermonde matrix in
the paper, and present an algorithm that exploits the structure.

Applications of such generalized Vandermonde matrix appear in the refer-
ences [18],[19], where the determinant of the matrix is required to compute the
solution of algebraic Riccati equation (in the references, algorithms to compute
the optimal H2, H∞ norm are proposed). When the size n of the matrix is large,
it is practically difficult to compute the determinant, and an efficient algorithm
to compute the determinant is required. The algorithm in this paper can be
applied to solve such problem.

This paper is composed as follows: In Section 2, we give notations. Then, in
Section 3, we present an algorithm to compute the determinant of the generalized
Vandermonde matrix, which is the main contribution of the paper. In Section 4,
we analyze the computational complexities of our algorithm, and give a bound
of the complexities. In Section 5, we present the result of numerical experiments,
and lastly, in Section 6, we conclude.

2 Notations

The following notations are applied in the paper:

N : The set of natural numbers
R : The set of real numbers
Z : The set of integers
Kn : n-dimensional vector with its elements in K

[r1, · · · , rn] : n-dimensional vector with elements r1, · · · , rn
{ r1, · · · , rn } : Set with elements r1, · · · , rn.
|A| : The number of elements of set A

kCl : Binomial coefficient, i.e., k!
l!(k−l)! .

degx(f(x)) : The degree of polynomial f(x) with respect to x.
tdegx(f(x1, · · · , xn)) : The total degree of polynomial f(x) with respect to

xj (j = 1, · · · , n), i.e.,
∑n

j=1 degxj
(f(x1, · · · , xn)).

To simplify the notation, we denote n-dimensional vector by lower case bold
letter, e.g., e and i denote vector

e = [e1, · · · , en] , i = [i1, · · · , in] .

244 T. Kitamoto

By si (i = 1, · · · , n), we denote elementary symmetric polynomials of total degree
i, i.e.,

s1 = x1 + · · · + xn, · · · , sn = x1 · · ·xn.

3 Computation of the Determinant

3.1 Problem Formulation

Let fj(x) ∈ R[x] (j = 1, · · · , n) be

fj(x)
def
= w0,j + w1,jx+ · · · + wuj ,jx

uj (wi,j ∈ R) (1)

and consider the following matrix M :

M =

⎡⎢⎢⎢⎣
f1(x1) f2(x1) · · · fn(x1)
f1(x2) f2(x2) · · · fn(x2)

...
...

...
...

f1(xn) f2(xn) · · · fn(xn)

⎤⎥⎥⎥⎦ (2)

In the following, we denote the maximum of uj (∈ Z) in (1) by ū, i.e. ū =
maxr=1,···,n ur. We also denote n-dimensional vector [w̄i,1, · · · , w̄i,n] (0 ≤ i ≤
ū) by wi, where w̄i,j is defined by

w̄i,j =

{
wi,j , when i ≤ uj ,
0, otherwise.

(3)

Note that with the above wi, matrix M can be written as

M =

⎡⎢⎢⎢⎣
w̄0,1 + w̄1,1x1 + · · · + w̄ū,1x

ū
1 · · · w̄0,n + w̄1,nx1 + · · · + w̄ū,nx

ū
1

w̄0,1 + w̄1,1x2 + · · · + w̄ū,1x
ū
2 · · · w̄0,n + w̄1,nx2 + · · · + w̄ū,nx

ū
2

...
...

...
w̄0,1 + w̄1,1xn + · · · + w̄ū,1x

ū
n · · · w̄0,n + w̄1,nxn + · · · + w̄ū,nx

ū
n

⎤⎥⎥⎥⎦

=

⎡⎢⎢⎢⎣
[w̄0,1, · · · , w̄0,n] + [w̄1,1, · · · , w̄1,n]x1 + · · · + [w̄ū,1, · · · , w̄ū,n]xū1
[w̄0,1, · · · , w̄0,n] + [w̄1,1, · · · , w̄1,n]x2 + · · · + [w̄ū,1, · · · , w̄ū,n]xū2

...
[w̄0,1, · · · , w̄0,n] + [w̄1,1, · · · , w̄1,n]xn + · · · + [w̄ū,1, · · · , w̄ū,n]xūn

⎤⎥⎥⎥⎦

=

⎡⎢⎢⎢⎣
w0 + w1x1 + · · · + wūx

ū
1

w0 + w1x2 + · · · + wūx
ū
2

...
w0 + w1xn + · · · + wūx

ū
n

⎤⎥⎥⎥⎦ . (4)

When fj(x) = xj−1, matrix M in (2) is the Vandermonde matrix, and the
matrix can be viewed as a generalization of the Vandermonde matrix. From the

Computation of the Determinant of a Generalized Vandermonde Matrix 245

form of matrix M , it is easy to see that Det(M) is an alternating polynomial in
xi (i = 1, · · · , n), and Det(M) can be written as

Det(M) = g(x1, · · · , xn)
∏
i>j

(xi − xj), (5)

where g(x1, · · · , xn) is a symmetric polynomial in xi (i = 1, · · · , n). This implies
that there exists a polynomial h(s1, · · · , sn) in s1, · · · , sn satisfying

h(s1, · · · , sn) = g(x1, · · · , xn) =
Det(M)∏

i>j(xi − xj)
. (6)

Given g(x1, · · · , xn), Det(M) can be easily computed with (5), and we present
an algorithm to compute h(s1, · · · , sn) in (6).

3.2 Algorithm

Given degree uj ∈ Z of polynomial fj(x) in (1), let Ψ be the set of vectors
defined by

Ψ
def
=

⎧⎨⎩ [i1, · · · , in] ∈ Zn | 0 ≤ i1 < · · · < in ≤ ū,
n∑

j=1

ij ≤
n∑

j=1

uj

⎫⎬⎭ (7)

(recall that ū = maxj=1,···,n uj). For each element i (= [i1, · · · , in]) of Ψ , we
define Δ(i) as the set composed of vector j (= [j1, · · · , jn]) that is a permuta-
tion of [i1, · · · , in], i.e.,

Δ(i) def
= { [j1, · · · , jn] ∈ Zn | {j1, · · · , jn} = {i1, · · · , in}} . (8)

We denote the permutation symbol of (j1, · · · , jn) by σ(j1, · · · , jn), i.e.,

σ(j1, · · · , jn)
def
= (−1)τ(j1,···,jn), (9)

where τ(j1, · · · , jn) denotes the number of permutation inversions in permutation
(j1, · · · , jn). For example, when n = 2, ū = 2, we have Ψ = {[0, 1], [0, 2], [1, 2]}.
For i = [1, 2], Δ(i) is given by Δ(i) = {[1, 2], [2, 1]}, and for each j ∈ Δ(i), σ(j) is
given as σ([1, 2]) = 1, σ([2, 1]) = −1.

Our algorithm is based on the following two theorems:

Theorem 1. Given a matrix M in the form of (2), let Ψ be the set in (7). For
each element i = [i1, · · · , in] of Ψ , let p(i)(x1, · · · , xn) be the polynomial in
x1, · · · , xn defined by

p(i)(x1, · · · , xn)
def
=

∑
[j1, ···, jn]∈Δ(i)

σ(j1, · · · , jn)xj11 · · ·xjnn , (10)

246 T. Kitamoto

where Δ(i) and σ(j1, · · · , jn) are functions defined by (8) and (9), respectively.
Let n× n matrix W(i) be defined by

W(i) def
=

⎡⎢⎢⎢⎣
wi1

wi2
...

win

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
w̄i1,1 w̄i1,2 · · · w̄i1,n

w̄i2,1 w̄i2,2 · · · w̄i2,n

...
...

...
...

w̄in,1 w̄in,2 · · · w̄in,n

⎤⎥⎥⎥⎦ , (11)

and let φ(i) be its determinant, i.e.,

φ(i)
def
= Det(W(i)), (12)

where w̄i,j are real numbers defined by (3). Then, we have

Det(M) =
∑
i∈Ψ

φ(i)p(i)(x1, · · · , xn). (13)

Proof .
From (4), matrix M can be written as

M =

⎡⎢⎢⎢⎣
w0 + w1x1 + · · · + wūx

ū
1

w0 + w1x2 + · · · + wūx
ū
2

...
w0 + w1xn + · · · + wūx

ū
n

⎤⎥⎥⎥⎦ . (14)

From the properties of the determinant, we see that

Det(M) = Det

⎛⎜⎜⎜⎝
⎡⎢⎢⎢⎣
w0 + w1x1 + · · · + wū−1x

ū−1
1

w0 + w1x2 + · · · + wūx
ū
2

...
w0 + w1xn + · · · + wūx

ū
n

⎤⎥⎥⎥⎦
⎞⎟⎟⎟⎠+

Det

⎛⎜⎜⎜⎝
⎡⎢⎢⎢⎣

wū

w0 + w1x2 + · · · + wūx
ū
2

...
w0 + w1xn + · · · + wūx

ū
n

⎤⎥⎥⎥⎦
⎞⎟⎟⎟⎠xū1 .

Using the above formula repeatedly, we obtain

Det(M) =
∑

j1,···,jn∈{0,···,ū}
Det

⎛⎜⎝
⎡⎢⎣wj1

...
wjn

⎤⎥⎦
⎞⎟⎠xj11 · · ·xjnn

=
∑

j1,···,jn∈{0,···,ū}
φ(j)xj11 · · ·xjnn (15)

Computation of the Determinant of a Generalized Vandermonde Matrix 247

where j = [j1, · · · , jn]. If jk = jl for some k, l ∈ {1, · · · , n} (k �= l), then matrix
W(j) in (11) is singular and φ(j) = 0. Thus, (15) can be written as

Det(M) =
∑

j1,···,jn∈{0,···,ū}, jk �=jl(k �=l)

φ(j)xj11 · · ·xjnn . (16)

Given integers j1, · · · , jn satisfying jk ∈ {0, · · · , ū} (k = 1, · · · , n), jk �= jl (k �= l),
let i = [i1, · · · , in] be the permutation of [j1, · · · , jn] satisfying 0 ≤ i1 <
· · · < in ≤ ū. From the properties of the determinant, we obtain

φ(j) = σ(j1, · · · , jn)φ(i). (17)

Substituting (17) into (16), we see that

Det(M) =
∑

j1,···,jn∈{0,···,ū}, jk �=jl(k �=l)

(
φ(i)σ(j1, · · · , jn)xj11 · · ·xjnn

)
.

Collecting the above summation with respect to φ(i), we obtain

Det(M) =
∑
i∈Ψ̂

φ(i)p(i)(x1, · · · , xn), (18)

where Ψ̂ is defined by

Ψ̂ = { [i1, · · · , in] ∈ Zn | 0 ≤ i1 < · · · < in ≤ ū} . (19)

Now, let i = [i1, · · · , in] be an element of Ψ̂ . We will show that(
n∑

r=1

ir >

n∑
r=1

ur

)
⇒ φ(i)p(i)(x1, · · · , xn) = 0. (20)

Suppose on the contrary that there exists element i of Ψ̂ such that(
n∑

r=1

ir >

n∑
r=1

ur

)
and

(
φ(i)p(i)(x1, · · · , xn) �= 0

)
. (21)

Since we have tdegx
(
φ(i)p(i)(x1, · · · , xn)

)
=
∑n

r=1 ir, inequality(
φ(i)p(i)(x1, · · · , xn) �= 0

)
implies

tdegx (Right-hand side of (18)) ≥
n∑

r=1

ir. (22)

On the other hand, from the form of matrix M and the property of the deter-
minant, we see that

tdegx (Det(M)) ≤
∑

r=1,···,n
tdegx (fr(x)) =

∑
r=1,···,n

ur (23)

248 T. Kitamoto

which implies

tdegx (Left-hand side of (18)) ≤
n∑

r=1

ur. (24)

Inequalities (22) and (24) imply that (
∑n

r=1 ir ≤
∑n

r=1 ur), which clearly con-
tradicts (21). Hence, (20) is proved. Therefore, (18) can be written as

Det(M) =
∑
i∈Ψ̂

φ(i)p(i)(x1, · · · , xn)

=
∑

i∈Ψ̂ ,
∑n

r=1 ir≤
∑n

r=1 ur

φ(i)p(i)(x1, · · · , xn)

=
∑
i∈Ψ

φ(i)p(i)(x1, · · · , xn), (25)

which proves the theorem.

Theorem 2. Polynomial p(i)(x1, · · · , xn) in (10) is an alternating polynomial
in x1, · · · , xn and can be written as

p(i)(x1, · · · , xn) =

⎛⎝∏
i>j

(xi − xj)

⎞⎠∑
e

γ(i,e)se11 · · · senn (γ(i,e) ∈ R). (26)

Proof
It is enough to show that

p(i)(x1, · · · , xk, · · · , xl, · · · , xn) = −p(i)(x1, · · · , xl, · · · , xk, · · · , xn) (k �= l).(27)

To simplify the notation, we assume that k = 1, l = 2 and show that

p(i)(x1, x2, x3, · · · , xn) = −p(i)(x2, x1, x3, · · · , xn). (28)

From the definition (8) of of Δ(i), we see

[j1, j2, j3, · · · , jn] ∈ Δ(i) ⇔ [j2, j1, j3, · · · , jn] ∈ Δ(i). (29)

Thus, p(i)(x1, · · · , xn) can be written as

p(i)(x1, · · · , xn) =
∑

j∈Δ(i)

σ(j1, · · · , jn)xj11 · · ·xjnn

=
∑

j∈Δ(i), j1<j2

{
σ(j1, j2, j3, · · · , jn)xj11 x

j2
2 x

j3
3 · · ·xjnn +

σ(j2, j1, j3, · · · , jn)xj21 x
j1
2 x

j3
3 · · ·xjnn

}
=

∑
j∈Δ(i), j1<j2

{
σ(j1, j2, j3, · · · , jn)

(
xj11 x

j2
2 − xj21 x

j1
2

)
xj33 · · ·xjnn

}
,

Computation of the Determinant of a Generalized Vandermonde Matrix 249

from which (28) is clear. This completes the proof.

From the above two theorems, we see that h(s1, · · · , sn) can be written as

h(s1, · · · , sn) =
Det(M)∏

i>j(xi − xj)

=
∑
i∈Ψ

φ(i)

(∑
e

γ(i,e)se11 · · · senn

)
. (30)

Note that p(i)(x1, · · · , xn) in (10) is independent of W(i), hence fj(x). This

implies that
(∑

e γ
(i,e)se11 · · · senn

)
= p(i)(x1,···,xn)∏

i>j(xi−xj)
in (30) is also independent of

fj(x). Thus, this part can be computed beforehand, and once we have computed
it for sufficiently many i and put it into a table, we need not to compute it again.
The computation of the part can be performed, for example, by the following
algorithm with Groebner basis:

Algorithm 1. Computation of
(∑

e γ
(i,e)se11 · · · senn

)
Input : i ∈ Zn

Output :
∑

e γ
(i,e)se11 · · · senn

(
= p(i)(x1,···,xn)∏

i>j(xi−xj)

)
〈1〉 Let ξ(x1, . . . , xn) = p(i)(x1,···,xn)∏

i<j(xi−xj)
.

〈2〉 Compute Groebner basis of a set of polynomials

{z − ξ(x1, · · · , xn), x1 + · · · + xn − s1, · · · , x1 · · ·xn − sn}

with lexicographic ordering x1, · · · , xn * z, s1, · · · , sn and express
ξ(x1, . . . , xn) as a polynomial in s1, · · · , sn.

Having computed
∑

e γ
(i,e)se11 · · · senn for sufficiently many i with Algorithm 1,

we can use the following algorithm to compute h(s1, · · · , sn).

Algorithm 2. Computation of h(s1, · · · , sn)

Input : fj(x) = w0,j + · · · + wuj ,jx
uj (j = 1, · · · , n)

Output : h(s1, · · · , sn) =
∑

i∈Ψ φ
(i) ×

(∑
e γ

(i,e)se11 · · · senn
)

〈1〉 Compute Ψ in (7).
〈2〉 Compute φ(i) for each i in Ψ .
〈3〉 Output

∑
i∈Ψ φ

(i)
(∑

e γ
(i,e)se11 · · · senn

)
.

3.3 Numerical Example

Let n = 2 and

f1(x) = 1 − x+ 2x2 + x3, f2(x) = 2 − 3x− x2 + 2x3. (31)

We will compute h(s1, s2) with Algorithm 2.

250 T. Kitamoto

〈1〉 Since we have u1 = u2 = ū = 3, Ψ is given by

Ψ = { [0, 1], [0, 2], [0, 3], [1, 2], [1, 3], [2, 3] }. (32)

For each i in (32),
∑

e γ
(i,e)se11 · · · senn computed by Algorithm 1 is given by

1, s1, s
2
1 − s2, s2, s1s2, s22,

respectively.
〈2〉 φ(i) for each i in Ψ is given by

φ([0,1]) =

∣∣∣∣ w̄0,1 w̄0,2

w̄1,1 w̄1,2

∣∣∣∣ =

∣∣∣∣w0,1 w0,2

w1,1 w1,2

∣∣∣∣ =

∣∣∣∣ 1 2
−1 −3

∣∣∣∣ = −1,

φ([0,2]) =

∣∣∣∣ w̄0,1 w̄0,2

w̄2,1 w̄2,2

∣∣∣∣ =

∣∣∣∣w0,1 w0,2

w2,1 w2,2

∣∣∣∣ =

∣∣∣∣1 2
2 −1

∣∣∣∣ = −5,

φ([0,3]) =

∣∣∣∣ w̄0,1 w̄0,2

w̄3,1 w̄3,2

∣∣∣∣ =

∣∣∣∣w0,1 w0,2

w3,1 w3,2

∣∣∣∣ =

∣∣∣∣1 2
1 2

∣∣∣∣ = 0,

φ([1,2]) =

∣∣∣∣ w̄1,1 w̄1,2

w̄2,1 w̄2,2

∣∣∣∣ =

∣∣∣∣w1,1 w1,2

w2,1 w2,2

∣∣∣∣ =

∣∣∣∣−1 −3
2 −1

∣∣∣∣ = 7,

φ([1,3]) =

∣∣∣∣ w̄1,1 w̄1,2

w̄3,1 w̄3,2

∣∣∣∣ =

∣∣∣∣w1,1 w1,2

w3,1 w3,2

∣∣∣∣ =

∣∣∣∣−1 −3
1 2

∣∣∣∣ = 1,

φ([2,3]) =

∣∣∣∣ w̄2,1 w̄2,2

w̄3,1 w̄3,2

∣∣∣∣ =

∣∣∣∣w2,1 w2,2

w3,1 w3,2

∣∣∣∣ =

∣∣∣∣2 −1
1 2

∣∣∣∣ = 5.

〈3〉 h(s1, · · · , sn) is computed to be

h(s1, · · · , sn) = (−1) · 1 + (−5)s1 + 0(s21 − s2) + 7s2 + 1 · s1s2 + 5s22

= −1 − 5s1 + 7s2 + s1s2 + 5s22

= −1 − 5x1 − 5x2 + 7x1x2 + x21x2 + x1x
2
2 + 5x21x

2
2.

As you can see from the above example, in general, h(s1, · · · , sn) expressed as a
polynomial in s1, · · · , sn has less terms than h(s1, · · · , sn) expressed in x1, · · · , xn.
In other words, h(s1, · · · , sn) in s1, · · · , sn is more sparse than h(s1, · · · , sn) in
x1, · · · , xn, which contributes the efficiency of Algorithm 2. The gap increases
as n and ū increase. For example, when n = 5 and ū = 6, h(s1, · · · , sn) in
s1, · · · , sn has at most 21 terms, while h(s1, · · · , sn) in x1, · · · , xn has 243 terms
in general.

3.4 Conditions for Det(M) = 0

In this subsection, we present the following simple criteria for Det(M) = 0.

Theorem 3. Given a matrix M in the form of (2), suppose that

ū < n− 1, (33)

where ū = maxj=1,···,n uj. Then, we have Det(M) = 0.

Computation of the Determinant of a Generalized Vandermonde Matrix 251

Proof . From (13), it is enough to show that set Ψ defined by (7) has no elements.
Suppose on the contrary that there exists an element i = [i1, · · · , in] of Ψ .
Then, from (7), we see 0 ≤ i1 < i2 < · · · < in ≤ ū, which implies that

n− 1 ≤ in ≤ ū. (34)

The above inequality clearly contradicts (33). This completes the proof.

4 Complexity Analysis

This section discusses the computational complexities of Algorithm 2. Com-
putational complexities in steps 〈1〉 and 〈3〉 of Algorithm 2 are negligible, and
we only have to analyze the complexity of step 〈2〉, where we compute the de-
terminant of an n × n numerical matrix |Ψ | times. Hence, the computational
complexity c(n,u) of step 〈2〉 is given by

c(n,u) = d(n)|Ψ |, (35)

where d(n) is the complexity required to compute the determinant of an n × n
numerical matrix. From the definition (7) of Ψ , it is easy to see that Ψ can be
written as

Ψ = Ψ1 ∩ Ψ2, (36)

where Ψ1 and Ψ2 are the set defined by

Ψ1
def
= { [i1, · · · , in] ∈ Zn | 0 ≤ i1 < · · · < in ≤ ū} , (37)

Ψ2
def
=

⎧⎨⎩ [i1, · · · , in] ∈ Zn |
n∑

j=1

ij ≤
n∑

j=1

uj

⎫⎬⎭ . (38)

From (37), we have |Ψ1| = ū+1Cn. This and (36) imply that

|Ψ | ≤ |Ψ1| = ū+1Cn. (39)

For the equality of (39), we have the following lemma:

Lemma 1. We have |Ψ | = |Ψ1| if and only if

nū− n(n− 1)

2
≤

n∑
j=1

uj . (40)

Proof .
Since |Ψ | = |Ψ1| ⇔ Ψ1 ⊆ Ψ2, it is enough to show

nū− n(n− 1)

2
≤

n∑
j=1

uj ⇔ Ψ1 ⊆ Ψ2. (41)

252 T. Kitamoto

Proof for ⇒ of (41)
Suppose

nū− n(n− 1)

2
≤

n∑
j=1

uj , (42)

and let i ∈ Zn be an element of Ψ1. From (37), we see ij ≤ ū − n + j, which
implies

n∑
j=1

ij ≤
n∑

j=1

(ū− n+ j) = nū− n(n− 1)

2
. (43)

This and (42) imply
∑n

j=1 ij ≤
∑n

j=1 uj, hence i ∈ Ψ2. Therefore Ψ1 ⊆ Ψ2, and
⇒ of (41) is proved.
Proof for ⇐ of (41)
Suppose Ψ1 ⊆ Ψ2, and let i = [ū− n+ 1, · · · , ū − 1, ū] (∈ Zn). Since i ∈ Ψ1,
we obtain i ∈ Ψ2, which implies

n∑
j=1

uj ≥
n∑

j=1

ij =

n∑
j=1

(ū− n+ j) = nū− n(n− 1)

2
.

Therefore, ⇐ of (41) is proved. This completes the proof.

The above lemma and (39) imply the following theorem:

Theorem 4. The computational complexity c(n,u) of step 〈2〉 in Algorithm
2 satisfies

c(n,u) ≤ d(n) (ū+1Cn) (44)

where equality holds if and only if condition (40) is satisfied.

Roughly speaking, equality condition (40) is satisfied when uj (the degree
of fj(x)) (j = 1, · · · , n) are not so different (for example when the degree of
fj(x) are the same i.e., ū = u1 = · · · = un). In such cases, (44) gives the exact
computational complexity.

With the fraction-free Gaussian elimination method, the complexity d(n) in
terms of ring operations is given by d(n) = O(n3), which implies that

c(n,u) = O

(
n3(ū + 1)!

n!(ū− n+ 1)!

)
when condition (40) is satisfied. We note that algorithms for the determinant
computation with better computational complexity (d(n) = O(n2.698)) have al-
ready reported (for details, refer to [7],[8]), and we can apply the algorithms to
compute φ(i) in step 〈2〉. However, such asymptotically fast algorithms will be
effective only for a large n, (say n > 100), and it would not help to improve the
efficiency of our algorithm (our algorithm is impractical for such a large n).

Computation of the Determinant of a Generalized Vandermonde Matrix 253

Table 1. Computation time (in milli seconds)

n\ū 3 4 5 6 7 8

3 1.26 3.1 5.28 10.3 38.38 45.24
4 1.26 2.76 8.14 20.86 44.94 91.44
5 × 2.82 5.32 15.92 43.04 108.62
6 × × 2.74 8.14 23.74 68.04
7 × × × 4.98 10.9 35.28
8 × × × × 8.42 19.02
9 × × × × × 14.04

Table 2. Computation time (in milli seconds)

n\ū 3 4 5 6 7 8

3 0.64 0. 0.94 2.52 9.38 9.36
4 5.3 6.84 13.76 17.48 25.58 36.22
5 × 27.16 34.62 49.6 71.48 103.58
6 × × 139.78 100.5 141.02 207.5
7 × × × 220.58 278.9 388.4
8 × × × × 682.64 876.12
9 × × × × × 3325.7

5 Numerical Experiments

We performed numerical experiments to confirm the efficiency of Algorithm 2.
We performed the experiments on the machine with Core i7-2640M 2.80 GHz
processor and 8 Gbyte memory, using computer algebra system Mathematica
7.0.

In the experiments, fj(x) = α0,j +α1,jx+ · · ·+αū,jxū (j = 1, · · · , n) in (1) are
randomly generated with the conditions (αi,j ∈ Z, |αi,j | ≤ 10), and h(s1, · · · , sn)
are computed with Algorithm 2. More concretely, coefficients αi,j were ran-
domly generated with Mathematica command Random[Integer,-10,10]. Com-
putations of φ(i) (the determinant of numerical matrix W(i)) in step 〈2〉 of
Algorithm 2 are performed by Mathematica built-in function Det (according
to [21], Det uses modular methods and row reduction, constructing a result using
the Chinese remainder theorem).

Table 1 shows the computation time (average of 10 trials) where uj = ū (j =
1, · · · , n) (ū is a given natural number). Each row shows the time where n (the
size of the matrix) is fixed and ū (the degree of the polynomial) is changed
between 3 ∼ 8, and each column shows the time where ū is fixed and n is
changed between 3 ∼ 9. Symbol × denotes the case where Det(M) = 0 from

Theorem 3. It is clear from Table 1 that when n is fixed, the computation time
grows as ū increases. On the other hand, when ū is fixed, the computation time
may not grow as n increases. The reason for this is as follows: When we increase

254 T. Kitamoto

n, although the size of matrix M increase, |Ψ | (the number of elements of set Ψ)
decreases, which can decrease total computational complexities. For example,
ū = n− 1, we have |Ψ | = 1 (in this case, Det(M) is a constant number).

Table 2 shows the computation time to compute h(s1, · · · , sn) with Mathe-
matica built-in command Det i.e., we computed the determinant of matrix M
with Mathematica command Det[M]. Comparing Table 1 and 2, we see that
when n ≥ 5, the computation time of Table 1 is better than that of Table 2
with just one exception (the case with n = 5, ū = 8). This indicates that our
algorithm is advantageous when the size of given matrix is large.

6 Conclusion

In this paper, we generalize the Vandermonde matrix and proposed an effi-
cient algorithm to compute the determinant of the generalized Vandermonde
matrix. Proposed algorithm is composed of two sub-algorithm, Algorithm 1
(fj(x) independent algorithm) and Algorithm 2 (fj(x) dependent algorithm).
Algorithm 1 can be performed independently of input polynomials fj(x), and
once we have performed the algorithm for sufficiently many i ∈ Zn, the algo-
rithm need not to be performed any more. Algorithm 2 is mainly composed
of the computations of the determinant of numerical matrices, and can be per-
formed efficiently. We analyze the computational complexity of Algorithm 2,
and present a bound of the complexity that gives us the exact complexity in
many cases.

Acknowledgment. This work was supported by JSPS Grant-in-Aid for Scien-
tific Research (C) KAKENHI 23540139. The author is grateful to anonymous
reviewers for the comments on the paper which certainly lead to improve quality
and clarity of the paper.

References

1. Golub, G.H., Loan, C.F.V.: Matrix Computations. Johns Hopkins Univ. Johns
Hopkins Univ. Press (1986)

2. Hoffman, K.M., Kunze, R.: Linear Algebra, 2nd edn. Prentice Hall, Englewood
Cliffs (1971)

3. Vinberg, E.B.: Frobenius formula. Encyclopaedia of Mathematics (2014),
http://eom.springer.de/f/f041780.htm (accessed April 12, 2014)

4. Rowland, T.: Generalized vandermonde matrix. Wolfram MathWorld,
http://mathworld.wolfram.com/GeneralizedVandermondeMatrix.html

(accessed April 12, 2014)
5. Kalman, D.: The generalized Vandermonde matrix. Mathematics Magazine 57(1),

15–21 (1984)
6. Gohberg, I., Kaashoek, M.A., Lerer, L., Rodman, L.: Common multiples and

common divisors of matrix polynomials, II. Vandermonde and resultant matrices.
Linear and Multilinear Algebra 12(3), 159–203 (1982)

http://eom.springer.de/f/f041780.htm
http://mathworld.wolfram.com/GeneralizedVandermondeMatrix.html

Computation of the Determinant of a Generalized Vandermonde Matrix 255

7. Kaltofen, E., Villard, G.: On the complexity of computing determinants. In: Proc.
of Fifth Asian Symposium on Computer Mathematics, ASCM 2001, Matsuyama,
Japan, pp. 13–27 (2001)

8. Kaltofen, E., Villard, G.: On the complexity of computing determinants. Compu-
tational Complexity 30(3-4), 91–130 (2004)

9. Krattenthaler, C.: Advanced determinant calculus, Séminaire Lotharingien
Combin. 42, B42q (1999)

10. Krattenthaler, C.: Advanced determinant calculus: a complement. Linear Algebra
Appl. 411, 68–166 (2005)

11. Gentleman, W.M., Johnson, S.C.: Analysis of Algorithms, A Case Study: Determi-
nants of Matrices with Polynomial Entries. Journal ACM Transactions on Mathe-
matical Software 2(3), 232–241 (1976)

12. Horrowitz, E., Sahni, S.: On Computing the Exact Determinant of Matrices with
Polynomial Entries. Journal of the ACM 22(1), 33–50 (1975)

13. Sasaki, T., Murao, H.: Efficient Gaussian Elimination Method for Symbolic
Determinants and Linear Systems. Journal ACM Transactions on Mathematical
Software 8(3), 277–289 (1982)

14. Michael, T.: McClellan. A Comparison of Algorithms for the Exact Solution of
Linear Equations. Journal ACM Transactions on Mathematical Software 3(2),
147–158 (1977)

15. Martin, L.: Griss. An efficient sparse minor expansion algorithm. In: Proc. of ACM
1976, pp. 429–434 (1976)

16. Marco, A., Martinez, J.: Parallel computation of determinants of matrices with
polynomial entries. Journal of Symbolic Computation 37(6), 749–760 (2004)

17. Timothy, S., Freeman, G.M.: Imirzian, Erich Kaltofen and Lakshman Yagati. Dag-
wood: a system for manipulating polynomials given by straight-line programs.
ACM Transactions on Mathematical Software 14(3), 218–240 (1988)

18. Kitamoto, T., Yamaguchi, T.: The optimal H∞ norm of a parametric system
achievable using a static feedback controller. The IEICE Trans. Funda. E90-A(11),
2496–2509 (2007)

19. Kitamoto, T., Yamaguchi, T.: On the parametric LQ control problem. The IEICE
Trans. Funda. J91-A(3), 349–359 (2008)

20. Neagoe, V.: Inversion of the van der monde matrix. IEEE Signal Processing
Letters 3(4), 119–120 (1996)

21. MATHEMATICA TUTORIAL, Some Notes on Internal Implementation, Exact
Numerical Linear Algebra,
http://reference.wolfram.com/mathematica/tutorial/

SomeNotesOnInternalImplementation.en.html (accessed May 31, 2014)

http://reference.wolfram.com/mathematica/tutorial/SomeNotesOnInternalImplementation.en.html
http://reference.wolfram.com/mathematica/tutorial/SomeNotesOnInternalImplementation.en.html

Towards Conflict-Driven Learning for Virtual

Substitution

Konstantin Korovin1, Marek Košta2, and Thomas Sturm2

1 The University of Manchester, UK
korovin@cs.man.ac.uk

2 Max-Planck-Institut für Informatik, 66123 Saarbrücken, Germany
{mkosta,sturm}@mpi-inf.mpg.de

Abstract. We consider satisfiability modulo theory-solving for linear
real arithmetic. Inspired by related work for the Fourier–Motzkin method,
we combine virtual substitution with learning strategies. For the first time,
we present virtual substitution—including our learning strategies—as a
formal calculus. We prove soundness and completeness for that calcu-
lus. Some standard linear programming benchmarks computed with an
experimental implementation of our calculus show that the integration
of learning techniques into virtual substitution gives rise to considerable
speedups. Our implementation is open-source and freely available.

1 Introduction

Recently there has been considerable progress in real satisfiability modulo theory-
solving (SMT) triggered by the idea to adopt from Boolean satisfiability-solving
(SAT) conflict analysis and learning techniques [6,13,9,10,7,12,1,2]. On the other
hand, during the past twenty years there has been a number of successful applica-
tions of real quantifier elimination methods, of which real SMT-solving is a special
case [5,18,19,17,20,21,16].

Unfortunately, the SMT-solving community and the symbolic computation
community working on quantifier elimination have been quite disconnected. The
underlying frameworks are not really compatible, which makes it hard to even
recognize that ideas from the respective other side are valuable. We would like to
contribute to closing this gap by presenting as a calculus in the style of abstract
DPLL [15] a special case of one successful approach to real quantifier elimination,
viz. virtual substitution. In this paper we restrict ourselves to feasibility checking
for systems of linear constraints. On that basis, we integrate conflict analysis and
learning techniques in the spirit of the SMT ideas mentioned above.

Applying a very general technique like real quantifier elimination to that very
special fragment can not compete with dedicated simplex-based methods. How-
ever, our approach has a considerable potential for generalizations, in particular
to non-linear real arithmetic.

The plan of the paper is as follows: Section 2 provides a quick introduction
into the concept of virtual substitution for readers not familiar with that theory.
In Section 3 we formalize virtual substitution for the special case considered

V.P. Gerdt et al. (Eds.): CASC Workshop 2014, LNCS 8660, pp. 256–270, 2014.
c© Springer International Publishing Switzerland 2014

Towards Conflict-Driven Learning for Virtual Substitution 257

here as a basic calculus where learning is only used to avoid cycles. This basic
calculus essentially corresponds to a straightforward recursive implementation
of the method. In Section 4 we proceed to an enhanced calculus featuring a
learning technique based on linear algebra. Technically, that enhanced calculus
is obtained by exchanging only one rule in the basic calculus so that soundness,
completeness, and complexity results for the basic calculus can be mostly reused.
Finally, in Section 5 we discuss computational experiments, comment on related
work, and mention possible future work.

2 A Quick Introduction to Virtual Substitution

We consider formulas over the language L = (0, 1,+,−,≥) with the usual seman-
tics over the real numbers. Given a quantifier-free L-formula Q an elimination
set for Q and x is a finite nonempty set E of abstract elimination terms such
that

R |= ∃x[Q] ←→
∨
e∈E

Q[x // e].

Here we are using a virtual substitution [x // e], which is defined to map atomic
formulas to quantifier-free formulas rather than terms to terms. In practice, this
is combined with powerful simplification techniques for intermediate and final
results.

In this paper we consider the special case where E contains only linear elim-
ination terms of the form t/b, where t is an L-term and b ∈ N \ {0}. Then
virtual substitution can be defined as formally substituting t/b for x in a suit-
able extension language of L containing division and rewriting the result as an
L-formula by dropping the positive denominator b. Although it is one of the
principal strengths of virtual substitution methods that they can inherently deal
with arbitrary Boolean combinations, we restrict ourselves here to conjunctions
of atomic formulas as input.

Lemma 1. Consider a formula F = I1 ≥ 0 ∧ · · · ∧ In ≥ 0. Let x be a variable
occurring in F . Then an elimination set E for F and x can be computed as fol-
lows: Turn each inequality in F that contains x into an equation. Then formally
solve the equation with respect to x, and add the solution to E. �	
As an example consider

F = −2x1 − x2 + 5 ≥ 0 ∧ x1 + x2 + 5 ≥ 0 ∧ −x1 + x2 + 3 ≥ 0.

By Lemma 1, an elimination set for F and x1 is given by

E = {(−x2 + 5)/2,−x2 − 5, x2 + 3}.

∃x1[F] ←→ F [x1 //(−x2 + 5)/2] ∨ F [x1 //−x2 − 5] ∨ F [x1 // x2 + 3]

= (0 ≥ 0 ∧ x2 + 15 ≥ 0 ∧ 3x2 + 1 ≥ 0) ∨
(x2 + 15 ≥ 0 ∧ 0 ≥ 0 ∧ 2x2 + 8 ≥ 0) ∨
(−3x2 − 1 ≥ 0 ∧ 2x2 + 8 ≥ 0 ∧ 0 ≥ 0)

←→ x2 + 4 ≥ 0.

258 K. Korovin, M. Košta, and T. Sturm

In practice, there are many optimizations, which lead to smaller elimination sets.
For instance, when there are both lower and upper bounds on the considered
variable, only one of these has to be taken into account, i.e., in our example
E = {−x2 − 5} would actually be sufficient. For our calculi to be presented in
the next sections, we are exclusively going to use the elimination sets according
to Lemma 1. It is going to be crucial that each elimination term originates from
exactly one constraint.

Consider the elimination of several variables, say, ∃x2∃x1F . Eliminating x1

as above we obtain ∃x2

∨
e∈E F [x1 // e]. Before eliminating x2 we can move ∃x2

inside the disjunction and eliminate x2 independently within each disjunct, which
our calculi are implicitly going to do. This idea reduces the asymptotic worst-
case complexity of the procedure from doubly exponential to singly exponential
deterministic time in the input word length [22]. Recall that the Fourier–Motzkin
method [14], in contrast, is doubly exponential [3, Section 4-4], [23], and that
the simplex method is singly exponential in the worst-case as well [8], although
it is known to perform much better than this bound on practical input.

For a more thorough introduction into the virtual substitution framework, we
refer the reader to [11,5].

3 A Basic Calculus

In this section we introduce a conflict-driven calculus for deciding satisfiability
of systems

F = I1 ≥ 0 ∧ · · · ∧ In ≥ 0

of linear inequalities. By var(F) we denote the finite set of variables occurring in
F . Without loss of generality we assume that var(F) �= ∅. Our calculus is based
on the virtual substitution method, which we combine with conflict analysis and
learning. In this section we are going to present a basic version with a primitive
concept of learning, which leads to exhaustive enumeration of all test terms in
the sense of [22,11]. That calculus will serve as a basis for an enhanced calculus
with stronger learning techniques, which we are going to present in the next
section.

3.1 States

The states of our calculus are either (sat), ⊥ (unsat), or triplets (F, S, L). F
is the input system, which will not be modified by any calculus rule.

S is a stack 〈(x1, ν1), . . . , (xk, νk)〉, growing to the right. Given a stack S =
〈(x1, ν1), . . . , (xk, νk)〉, we denote 〈(x1, ν1), . . . , (xk+1, νk+1)〉 by S |(xk+1, νk+1).
For i ∈ {1, . . . , k − 1}, νi is a pair (ti, Ji), where Ji ∈ {I1, . . . , In} and

ti = −1

b

(∑
x∈V

axx + a0
)

is derived from Ji[x1 // t1] . . . [xi−1 // ti−1], which equals
∑

x∈V axx+bxi+a0 ≥ 0
with V = var(F)\{x1, . . . , xi}. In other words, ti is the formal solution of Ji = 0

Towards Conflict-Driven Learning for Virtual Substitution 259

with respect to xi subject to choices for x1, . . . , xi−1 based on S. We call ti an
elimination term. Since for given 〈(x1, ν1), . . . , (xi−1, νi−1)〉 the elimination term
ti is uniquely determined by Ji and xi, we allow ourselves the convenient notation
xi ← ti (Ji) instead of (xi, (Ji, xi)). The last stack element νk is either a pair as
described above, or “?” or “⊥.” In the last two cases, we also write xi ← ? and
xi ← ⊥, respectively.

Finally, we have a set L of lemmas, each of which is a disjunction of negated
equations

∑
x∈var(F) axx �= 0, where ax ∈ Z.

For a given system F of linear inequalities, the initial state of our calculus is
(F, 〈〉, ∅).

3.2 Rules

Before discussing the rules of our calculus we need some definitions. A quantifier-
free formula Q is trivially inconsistent if it is ground and equivalent to “false.”

Let Q be a quantifier-free formula. Given S = 〈x1 ← t1 (J1), . . . , xk ← tk (Jk)〉
we define the successive—in contrast to simultaneous—virtual substitution of S
into Q as

Q/S = Q[x1 // t1] . . . [xk // tk].

Here [xi // ti] denotes the virtual substitution of ti for xi in the sense of [22,11].
While virtual substitution in general maps atomic formulas to quantifier-free
formulas, it is easy to see that for our linear inequalities one generally obtains
atomic formulas. Specifically, for � ∈ {=, >,≥, �=} we have

(c1x1 + J � 0)
[
x1 // b

−1K
]

= (c1K + bJ � 0),

where J = c2x2 + · · · + cmxm, K = a2x2 + · · · + amxm, ci, ai ∈ Z, and b ∈
N \ {0}. Our definition naturally generalizes to sets of quantifier-free formulas,
in particular to L. Furthermore, we observe that the very special situation of
our linear constraints allows to define virtual substitution even for terms:

(c1x1 + J)
[
x1 // b

−1K
]

= c1K + bJ.

Note that this differs from the standard definition of term substitution by drop-
ping a positive integer denominator b.

Our first two rules decide for the next variable to be eliminated and assign to
it one possible elimination term, respectively:

Decide :

(F, S, L) � (F, S |xk+1 ← ?, L)

where S does not contain “?” or “⊥”

if F/S is not trivially inconsistent, and xk+1 ∈ var(F/S).

Substitute :

(F, S |xk ← ?, L) � (F, S |xk ← eterm(F, S, L, xk), L)

260 K. Korovin, M. Košta, and T. Sturm

Given F , S, and x ∈ var(F/S), we denote the elimination set described in
Lemma 1 by E(F/S, x). Recall that every elimination originates from a single
constraint. For our purposes here we are going to assume that E(F/S) actu-
ally contains pairs (t, J), where t is an elimination term originating from J/S.
Formally we write:

R |= ∃x[F/S] ←→
∨

(t,J)∈E(F/S,x)

F/S |x ← t (J). (1)

We call an elimination term (t, J) L-admissible, if L/(S |x ← t (J)) is not triv-
ially inconsistent. The elimination term function eterm(F, S, L, x) enumerates
all L-admissible elements of E(F/S, x). In the end it returns “⊥.”

The following two rules handle the situation that our trial substitutions have
led to an inconsistency. We learn just enough not to repeat our unlucky decisions
in the future. Afterwards, we successively remove elements from the top of S until
F/S is not trivially inconsistent anymore.

Leaf Conflict :(
F, S, L

)
�

(
F, S, L ∪

{∨k
i=1 Ji �= 0

})
where S = 〈x1 ← t1 (J1), . . . , xk ← tk (Jk)〉, k ≥ 1

if F/S is trivially inconsistent, and L/S is not trivially inconsistent.

Leaf Backtrack :

(F, S |xi ← ti (Ji) | . . . |xk ← tk (Jk), L) � (F, S |xi ← ?, L)

if L/S |xi ← ti (Ji) is triv. inconsistent, and L/S is not triv. inconsistent.

It is not hard to see that based on our limited learning in Leaf Conflict we
leaf-backtrack exactly one step. This is going to be improved with our enhanced
calculus in the next section.

The following two rules are concerned with the situation that the enumeration
of some elimination set E(F/S, xk) has ended with eterm delivering “⊥” in
Substitute. Similarly to Leaf Conflict we learn in Inner Conflict not
to return to the particular subproblem to eliminate xk from F/S. Afterwards,
Inner Backtrack can backtrack exactly one step:

Inner Conflict :(
F, S |xk ← ⊥, L

)
�

(
F, S |xk ← ⊥, L ∪

{∨k−1
i=1 Ji �= 0

})
where S = 〈x1 ← t1 (J1), . . . , xk−1 ← tk−1 (Jk−1)〉

if L/S is not trivially inconsistent.

Inner Backtrack :

(F, S |xk−1 ← tk−1 (Jk−1) |xk ← ⊥, L) � (F, S |xk−1 ← ?, L)

if L/S |xk−1 ← tk−1 (Jk−1) is trivially inconsistent.

Towards Conflict-Driven Learning for Virtual Substitution 261

Finally, we fail when the elimination set for the first-chosen variable is ex-
hausted. We succeed when F/S becomes ground and equivalent to “true:”

Fail :

(F, 〈x1 ← ⊥〉, L) � ⊥

Succeed :

(F, S, L) �
if var(F/S) = ∅, and F/S is equivalent to “true.”

To conclude the discussion of our basic calculus we would like to point out
that it is deterministic in the following sense: Every reachable state (F, S, L)
matches the premise of exactly one of the rules.

3.3 Soundness

Lemma 2 (Invariants of the Calculus). Consider

(F, 〈〉, ∅) �n (F, S′ |xk ← νk, L
′),

where S′ = 〈x1 ← t1 (J1), . . . , xk−1 ← tk−1 (Jk−1)〉.

(i) If νk = (tk, Jk), then for all l ∈ {1, . . . , k} the following holds:

R |= ∃[F/〈x1 ← t1 (J1), . . . , xl ← tl (Jl)〉] ←→ ∃
[
F ∧

∧l
i=1 Ji = 0

]
.

(ii) For νk = ? or νk = ⊥ the equivalence in (i) holds for all l ∈ {1, . . . , k− 1}.

Proof. We simultaneously prove (i) and (ii) by induction on n.
The stack of the initial state is empty, and since

∧
∅ is defined as “true,” we

obtain R |= ∃[F] ←→ ∃[F]. This proves both (i) and (ii) for n = 0.
Consider now (F, 〈〉, ∅) �n (F, S, L) � (F, S′ |xk ← νk, L

′). Assume that both
(i) and (ii) hold for (F, S, L). We show by case distinction on the rule applied in
the last derivation step that (F, S′ |xk ← νk, L

′) satisfies both (i) and (ii).
Decide yields S′ = S, and νk = ? so that we are in case (ii), which holds by

the induction hypothesis.
With Substitute we have S = S′ |xk ← ? and either νk = (tk, Jk) or νk = ⊥.

In the first case we see that

R |= ∃
[[
F/S′]/〈xk ← tk (Jk)〉

]
←→ ∃

[[
F ∧

∧k−1
i=1 Ji = 0

]
∧ Jk = 0

]
.

In the second case we can directly apply the induction hypothesis.
Leaf Conflict and Inner Conflict both yield S′ |xk ← νk = S, and we

apply the induction hypothesis.
With Leaf Backtrack and Inner Backtrack we obtain S = S′T for

some possibly empty stack T . Furthermore, νk = ?, i.e., we are in case (ii). The
fact that S′ is a prefix of S allows us to apply the induction hypothesis.

Finally, Fail and Succeed do not match our considered derivation. �	

262 K. Korovin, M. Košta, and T. Sturm

Lemma 3. Consider (F, 〈〉, ∅) �n (F, S′, L′). Then the following hold:

(i) R |= F −→
∧
L′.

(ii) If S′ = S′
1 |xk ← ⊥, then R |= ¬∃[F/S′

1], i.e., F/S′
1 is unsatisfiable.

Proof. To start with, we remark that Fail and Succeed rules do not match our
situation. We simultaneously prove (i) and (ii) by induction on n.

(i) For n = 0, since
∧
∅ is defined as “true,” we obtain R |= F −→

∧
∅.

Consider now (F, 〈〉, ∅) �n (F, S, L) � (F, S′, L′) and assume that both (i) and
(ii) hold for n.

With Decide, Leaf Backtrack, Inner Backtrack, or Substitute we
have L′ = L.

With Leaf Conflict we have S′ = S = 〈x1 ← t1 (J1), . . . , xk ← tk (Jk)〉
for k ≥ 1. By definition of the rule, we know that F/S′ is trivially inconsistent,

in particular F/S′ is unsatisfiable. Lemma 2(i) implies that F ∧
∧k

i=1 Ji = 0 is
unsatisfiable. We equivalently transform

R |= ¬∃
[
F ∧

k∧
i=1

Ji = 0

]
←→ ∀

[
F −→

k∨
i=1

Ji �= 0

]
,

i.e., F implies also the lemma newly learned in Leaf Conflict.
With Inner Conflict we have S′ = S = S′

1 |xk ← ⊥, where S′
1 = 〈x1 ←

t1 (J1), . . . , xk−1 ← tk−1 (Jk−1)〉. By the induction hypothesis for (ii), F/S′
1 is

unsatisfiable. By Lemma 2(ii) it follows that also F∧
∧k−1

i=1 Ji = 0 is unsatisfiable,
and we proceed in analogy to the previous case.

(ii) For n = 0, we observe that the stack of the initial state is empty. Again,
consider (F, 〈〉, ∅) �n (F, S, L) � (F, S′, L′) and assume that both (i) and (ii)
hold for n.

With Decide, Leaf Backtrack, Inner Backtrack, or Leaf Conflict

the top element of S′ is not of the form xk ← ⊥.
With Substitute assume that S′ = S′

1 |xk ← ⊥. According to (1), we know
that

R |= ∃xk[F/S′
1] ←→

∨
(tk,Jk)∈E(F/S′

1,xk)

F/S′
1 |xk ← tk (Jk).

On the other hand, by (i), R |= F −→
∧
L, in particular

R |= [F/S′
1 |xk ← tk (Jk)] −→

∧
L/S′

1 |xk ← tk (Jk).

Inspection of Substitute shows that eterm(F, S′
1, L, xk) = ⊥, which means

that L/S′
1 |xk ← tk (Jk) is equivalent to “false” for all (tk, Jk) ∈ E(F/S′

1, xk).
Together R |= ∃xk[F/S′

1] −→ false, i.e., F/S′
1 is unsatisfiable.

With Inner Conflict we have S′ = S, and we can directly apply the induc-
tion hypothesis. �	

Towards Conflict-Driven Learning for Virtual Substitution 263

Theorem 4 (Soundness)

(i) If (F, 〈〉, ∅) �∗ ⊥, then F is unsatisfiable.
(ii) If (F, 〈〉, ∅) �∗ , then F is satisfiable.

Proof (i) Since ⊥ is reachable only by Fail we are in the following situation:

(F, 〈〉, ∅) �∗ (F, 〈x1 ← ⊥〉, L) � ⊥.

Now choose S′
1 = 〈〉 in Lemma 3(ii).

(ii) Since is reachable only by Succeed we are in a situation:

(F, 〈〉, ∅) �∗ (F, S, L) � ,

where S = 〈x1 ← t1 (J1), . . . , xk ← tk (Jk)〉, and F/S does not contain variables
and is equivalent to “true.” Denote by Ei the set E(F/〈x1 ← t1 (J1), . . . , xi−1 ←
ti−1 (Ji−1)〉, xi). According to (1), it is easy to see that ∃x1 . . . ∃xkF is equivalent
to ∨

(sk,Mk)∈Ek

· · ·
∨

(s1,M1)∈E1

F/〈x1 ← s1 (M1), . . . , xk ← sk (Mk)〉.

Furthermore, in exactly one of the above disjuncts we have (s1,M1) = (t1, J1),
. . . , (sk,Mk) = (tk, Jk), i.e., our stack S is substituted into F . Since F/S is
equivalent to “true,” the entire disjunction is equivalent to “true.” Hence, F is
satisfiable. �	

3.4 Completeness

Our goal is to assign to each state S = (F, S, L) of a derivation with our calculus
a weight (n, k, h, l) ∈ N4, which lexicographically decreases with each derivation
step. For the definition of the weight we proceed in three stages:

1. The input constraints F in a given state S determine a finite abstract F -tree
T . Each node of T is either a variable node containing a variable chosen by
Decide or a term node containing an elimination term or the unique root
node, which is considered a term node, as well.

2. Using L in S, each term node is labeled either active or inactive. Using S in
S exactly one node of T is selected. If the selected node is a variable node,
then it is additionally labeled “?” or “⊥.”

3. From the labeled tree T we can finally determine a weight for our state S.

We are now going to make precise these three steps. In the following we denote
by τi the elimination term (ti, Ji). Firstly, T is uniquely described by giving
for each node N the path from the unique root node to N : The empty path
() describes the root node. Given a path (x1, τ1, . . . , xk, τk) to a term node, we
obtain a variable node (x1, τ1, . . . , xk, τk, xk+1) for each variable xk+1 occurring
in F/〈x1 ← τ1, . . . , xk ← τk〉. Given a path (x1, τ1, . . . , xk, τk, xk+1) to a variable
node, we obtain a term node with path (x1, τ1, . . . , xk, τk, xk+1, τk+1) for each
elimination term τk+1 ∈ E(F/〈x1 ← τ1, . . . , xk ← τk〉, xk+1).

264 K. Korovin, M. Košta, and T. Sturm

Secondly, a term node (x1, τ1, . . . , xk, τk) is inactive if L/〈x1 ← τ1, . . . , xk ←
τk〉 is trivially inconsistent; otherwise it is active. The selected node essentially
corresponds to the stack S: If S = 〈x1 ← τ1, . . . , xk ← ?〉 or S = 〈x1 ←
τ1, . . . , xk ← ⊥〉, then we select the variable node (x1, τ1, . . . , xk−1, τk−1, xk)
and label it “?” or “⊥,” respectively. If S = 〈x1 ← τ1, . . . , xk ← τk〉, then we
select the term node (x1, τ1, . . . , xk, τk).

Finally, the weight of T is (n, k, h, l) ∈ N4, where

– n is the number of active nodes,
– k is the number of inactive nodes on the path from the root to the selected

node,
– h is the depth of T minus the length of the path from the root to the selected

node,
– l = 1 if the selected node is labeled “?,” otherwise l = 0.

Lemma 5. Consider states (F, S, L) and (F, S′, L′) with weights (n, k, h, l) and
(n′, k′, h′, l′), respectively:

(F, S, L) � (F, S′, L′) =⇒ (n, k, h, l) >lex (n′, k′, h′, l′).

Proof. Decide yields n = n′, k = k′, h > h′, l < l′. Substitute depends on
the return value of eterm; in either case n = n′, k = k′, h ≥ h′, l > l′. Leaf
Conflict and Inner Conflict yield n > n′, k = k′, h = h′, l = l′. Leaf

Backtrack and Inner Backtrack yield n = n′, k > k′, h < h′, l < l′.
Finally, notice that Fail and Succeed cannot produce (F, S′, L′). �	

At this point it is clear that our calculus performs only sound derivations and
always terminates. For our main result we have to make sure that for all reachable
states different from “⊥” and “” there is always at least one calculus rule
applicable. We had already mentioned in Subsection 3.2 that in fact exactly one
rule is applicable. For the sake of completeness, we state this formally once more.

Lemma 6. Consider (F, 〈〉, ∅) �∗ (F, S, L). There is one and only calculus rule
and at least one state S such that (F, S, L) � S. �	

Theorem 7 (Completeness). Given a system F of linear inequalities, every
derivation beginning in the initial state (F, 〈〉, ∅) terminates either in state “⊥”
or in state “.”

Proof. By Lemma 5 every derivation starting in the initial state terminates.
Assume for a contradiction that the final state is neither “⊥” nor “,” then
Lemma 6 admits another derivation step, a contradiction. �	

3.5 Complexity

From earlier complexity results on the virtual substitution method [22] it is clear
that there is a singly exponential upper bound on the worst-case complexity of

Towards Conflict-Driven Learning for Virtual Substitution 265

the calculus bounding the number of substitutions as well as the overall number
of derivation steps. This complexity bound persists when extending the approach
to strict inequalities, which is straightforward. It is noteworthy that this bound
is one exponential step smaller than the known lower bound for the Fourier–
Motzkin method.

4 An Enhanced Calculus

Recall from Subsection 3.2 our definition of virtual substitution into terms, which
differs from regular substitution by eliminating positive denominators. Similar
to regular substitution, that virtual substitution can be expressed via linear
combinations:

Lemma 8. Consider a stack S = 〈x1 ← t1 (J1), . . . , xk ← tk (Jk)〉 and a linear
term K. Then one can compute α1, . . . , αk ∈ Q, b ∈ N \ {0} such that

K/S = b

k∑
i=1

αiJi + bK. (2)

Proof. Let K ′ = K[x1/t1] . . . [xk/tk] be the result of regular substitution of stack
S into K. It is clear that there exist α1, . . . , αk ∈ Q such that K ′ = K +∑k

i=1 αiJi. On the other hand, there exists b ∈ N \ {0} such that K/S = bK ′. It

follows that (2) has a solution. Compute b := K/S
K′ . Using this fixed b consider

f = 0, where f is the recursive polynomial

bK + b
k∑

i=1

αiJi −K/S ∈ Z[α1, . . . , αk][var(F)].

Solve the linear system p1 = 0, . . . , p|var(F)| = 0, q = 0, where p1, . . . , p|var(F)| ∈
Z[α1, . . . , αk] are the coefficients of the variables in f , and q ∈ Z[α1, . . . , αk] is
the constant term of f . �	

We call (K ≥ 0) ∈ F a conflicting inequality with respect to S if (K ≥ 0)/S is
trivially inconsistent.

Lemma 9. Consider a state (F, S, L), where S = 〈x1 ← t1 (J1), . . . , xk ←
tk (Jk)〉, and let (K ≥ 0) ∈ F be a conflicting inequality with respect to S.
Compute α1, . . . , αk ∈ Q as in Lemma 8. Then

R |= F −→
k∨

i=1
αi<0

Ji �= 0.

Proof. Assume that F holds. Using the fact that K ≥ 0 is a conflicting inequality
with respect to S and Lemma 8 we can compute α1, . . . , αk ∈ Q such that

−1 = sgn(K/S) = sgn

(
k∑

i=1

αiJi + K

)
= sgn

⎛⎝ k∑
i=1

αi≥0

αiJi +
k∑

i=1
αi<0

αiJi + K

⎞⎠ .

266 K. Korovin, M. Košta, and T. Sturm

On the other hand, it is clear that F implies non-negative linear combinations
of its constraints, i.e.,

∑k
i=1,αi≥0 αiJi + K ≥ 0. Assume for a contradiction

that
∧k

i=1,αi<0 Ji = 0, which implies
∑k

i=1,αi<0 αiJi ≥ 0. This leads to the

contradiction
∑k

i=1,αi<0 αiJi +
∑k

i=1,αi≥0 αiJi + K ≥ 0. �	

Given a conflicting inequality (K ≥ 0) ∈ F with respect to some stack S,
the following new rule uses a function lincomb computing α1, . . . , αk ∈ Q as in
Lemma 8 in order to learn the corresponding disjunction from Lemma 9:

Analyze Conflict :(
F, S, L

)
�

(
F, S, L ∪

{∨k
i=1,αi<0 Ji �= 0

})
where S = 〈x1 ← t1 (J1), . . . , xk ← tk (Jk)〉
and (α1, . . . , αk) = lincomb(S,K ≥ 0).

if F contains a conflicting inequality K ≥ 0 with respect to S.

Our enhanced calculus replaces Leaf Conflict in favor of Analyze

Conflict. Since for any choice of α1, . . . , αk ∈ Q we have

R |=
k∨

i=1
αi<0

Ji �= 0 −→
k∨

i=1

Ji �= 0,

the lemmas learned now are at least as strong as the ones learned with the basic
calculus.

It is quite clear that one could even learn the stronger lemma
∨

αi<0 Ji > 0.
However, computational experiments indicate that this does not perform signif-
icantly better than the version described above.

4.1 Soundness

Inspection of Lemma 2 and its proof shows that that lemma remains valid also
for Analyze Conflict instead of Leaf Conflict. From Lemma 9 it immedi-
ately follows that Lemma 3(i) remains valid. Finally, Lemma 3(ii) remains valid,
because as with Leaf Conflict the premise of the assertion is false. On these
grounds the Soundness Theorem 4 for the basic calculus remains valid for our
enhanced calculus.

4.2 Completeness

For the termination of our enhanced calculus, we construct weights for the states
in the same way as in Subsection 3.4. Then Lemma 5 remains valid. For proving
this we have to supplement that in the case of an application of our new Analyze

Conflict rule we obtain n > n′, k = k′, h = h′, l = l′. Finally, Lemma 6 remains
valid. On these grounds, the Completeness Theorem 7 remains valid.

Towards Conflict-Driven Learning for Virtual Substitution 267

4.3 Complexity

It is clear that the single exponential upper worst-case bound on the time com-
plexity discussed for the basic calculus in Subsection 3.5 holds also for the en-
hanced calculus. It is open whether there is a polynomial upper bound, but we
do not believe so.

5 Computational Experiments and Conclusions

We have implemented both calculi in the Reduce package Redlog [4]. Both Red-
log and Reduce are freely available on SourceForge.1

In our implementation we use the selection of either upper or lower bounds,
which we have briefly discussed after the example in Section 2. This is supple-
mented with the virtual substitution of either ∞ or −∞, respectively. From a
learning point of view, these substitutions can be essentially ignored. Thus, on
the practical side, we are already a bit closer to the virtual substitution than in
our theory developed here.

For getting an impression of the performance of our enhanced calculus in con-
trast to the basic calculus we have computed some of the smaller examples from
Netlib:2 afiro (28 constraints, 32 variables), blend (75 constrains, 83 variables),
kb2 (44 constrains, 41 variables), sc50a (51 constrains, 48 variables), sc50b (51
constrains, 48 variables), sc105 (106 constrains, 103 variables). In addition, we
have computed kmc, a Klee–Minty cube of dimension 50 [8].

The results are collected in Table 1. The columns “basic” and “enhanced” refer
to our respective calculi. The columns “rlqe” refer to Redlog’s implementation
of quantifier elimination by virtual substitution, which accepts way more general
input than our examples considered here. For each example we give the number
of performed substitutions and the computation times for the various methods.

All our examples are originally linear optimization problems, while in their
present form our calculi are limited to feasibility. Under “original” in Table 1
we collect data for the original constraint sets ignoring the target functions.
All these examples are in fact feasible so that there is a certain risk that we
accidentally find feasible points very early.

This observation motivates the additional computation of two variants for
each of these examples: As a first variant, we add a constraint c ≤ �m�, where
c is the objective function and m ∈ Q \ Z is its known minimum subject to
the constraints. The idea is that this makes the problem “just feasible.” The
corresponding results are collected in Table 1 under “feasible.” Similarly, we add
c ≤ �m� to render the problem infeasible but “almost feasible.” The correspond-
ing results are collected in Table 1 under “infeasible.”

We observe that the number of substitutions performed with the enhanced
calculus is in many cases orders of magnitude smaller than the number of sub-
stitutions performed by the basic calculus. The computation times with the

1 http://reduce-algebra.sourceforge.net/
2 http://www.netlib.org/lp/data/

http://reduce-algebra.sourceforge.net/
http://www.netlib.org/lp/data/

268 K. Korovin, M. Košta, and T. Sturm

T
a
b
le

1
.
N
et
li
b
ex

a
m
p
le
s
co
m
p
u
te
d
b
y
o
u
r
im

p
le
m
en

ta
ti
o
n
.
F
o
r
ea
ch

ex
a
m
p
le

th
e
fi
rs
t
li
n
e
g
iv
es

th
e
n
u
m
b
er

o
f
p
er
fo
rm

ed
su
b
st
it
u
ti
o
n
s,

a
n
d
th
e
se
co
n
d

li
n
e
g
iv
es

th
e
C
P
U

ru
n
n
in
g
ti
m
es
.
A
ll
co
m
p
u
ta
ti
o
n
s
h
av

e
b
ee
n
p
er
fo
rm

ed
o
n
a
2
.4

G
H
z
In
te
l
X
eo
n
E
5
-4
6
4
0
ru
n
n
in
g

D
eb

ia
n
L
in
u
x
6
4
b
it
.

o
ri
g
in
a
l

fe
a
si
b
le

in
fe
a
si
b
le

b
a
si
c

en
h
a
n
ce
d

rl
q
e

b
a
si
c

en
h
a
n
ce
d

rl
q
e

b
a
si
c

en
h
a
n
ce
d

rl
q
e

a
fi
ro

3
3
3
,3
5
5

1
3
6

2
6
7

9
0
9
,3
1
5

1
8
3

5
4
6

3
4
,3
8
2
,7
4
2

1
8
3

5
7
4

1
4
s

5
2
m
s

4
2
m
s

3
7
s

7
0
m
s

8
6
m
s

2
3
m
in

7
0
m
s

9
2
m
s

b
le
n
d

8
3

8
3

1
,5
9
2

n
/
a

n
/
a

n
/
a

n
/
a

n
/
a

n
/
a

1
0
3
m
s

1
0
3
m
s

7
0
6
m
s

>
8
h

>
8
h

>
8
h

>
8
h

>
8
h

>
8
h

k
b
2

4
3

4
3

6
,9
6
5

n
/
a

n
/
a

n
/
a

n
/
a

n
/
a

n
/
a

1
7
m
s

1
9
m
s

7
s

>
8
h

>
8
h

>
8
h

>
8
h

>
8
h

>
8
h

k
m
c

5
0

5
0

5
0

5
0

5
0

5
0

5
0

5
0

4
8

1
8
m
s

1
9
m
s

1
8
m
s

1
8
m
s

1
8
m
s

1
8
m
s

1
9
m
s

2
0
m
s

1
8
m
s

sc
5
0
a

8
6

7
0

7
,5
3
5

1
6
6
,8
9
4

6
0
0

2
4
,7
0
0

1
5
,0
6
4
,0
0
9

5
6
8

5
6
,6
6
8

1
6
m
s

4
9
m
s

2
s

7
s

6
7
3
m
s

7
s

1
0
m
in

5
9
4
m
s

1
7
s

sc
5
0
b

4
8

4
8

1
,5
6
1

4
9

4
9

6
0
2

2
1
6
,9
5
2

4
9

2
,2
2
3

1
4
m
s

1
4
m
s

3
5
3
m
s

1
4
m
s

1
6
m
s

1
6
1
m
s

1
3
s

1
8
m
s

5
4
5
m
s

sc
1
0
5

n
/
a

4
,4
5
0

1
,7
8
5
,2
2
6

n
/
a

6
,7
0
1

n
/
a

n
/
a

5
,4
2
7

n
/
a

>
8
h

3
9
s

2
1
m
in

>
8
h

1
m
in

>
8
h

>
8
h

4
4
s

>
8
h

Towards Conflict-Driven Learning for Virtual Substitution 269

enhanced calculus are often dramatically shorter and never significantly longer.
The few slightly longer computation times can be explained by an overhead
caused by solving systems of linear equations for finding the αi in Analyze

Conflict.
Although our calculus can not directly compete with simplex-based methods

for solving systems of linear inequalities, it gives significant improvements over
basic virtual substitution. Since virtual substitution can handle parameters and
quantifier alternations [22,11], we believe our calculus has a great potential in
such extensions.

Concerning the general approach and the role of possible parameters, virtual
substitution is somewhat similar to the Fourier–Motzkin method. However, recall
from Subsection 3.5 that the worst case time complexity for our approach is one
exponential step better than that of the Fourier–Motzkin method.

We are confident that generalization of our calculi to strict inequalities and
negated equations is quite straightforward. We think that the treatment of con-
junctive systems of polynomial inequalities of arbitrary degrees is a challenging
but realistic next step. From a theoretical point of view, generalization of virtual
substitution to arbitrary degrees is well-understood [24]. From a practical point
of view, there are robust implementations in Redlog for degree two, which have
been successfully applied to numerous problems from science and engineering
during the past twenty years [5,18,19,17,20,21,16].

Acknowledgments. This research was supported in part by the German Tran-
sregional Collaborative Research Center SFB/TR 14 AVACS and by the
ANR/DFG project SMArT. The project arose out of discussions at Dagstuhl
Seminar 13411, Deduction and Arithmetic, held in October 2013.

References

1. Abraham, E., Loup, U., Corzilius, F., Sturm, T.: A lazy SMT-solver for a non-linear
subset of real algebra. In: Proceedings of the SMT 2010 (2010)

2. Corzilius, F., Ábrahám, E.: Virtual substitution for SMT-solving. In: Owe, O.,
Steffen, M., Telle, J.A. (eds.) FCT 2011. LNCS, vol. 6914, pp. 360–371. Springer,
Heidelberg (2011)

3. Dantzig, G.B.: Linear Programming and Extensions. Princeton University Press
(1963)

4. Dolzmann, A., Sturm, T.: Redlog: Computer algebra meets computer logic. ACM
SIGSAM Bulletin 31(2), 2–9 (1997)

5. Dolzmann, A., Sturm, T., Weispfenning, V.: Real quantifier elimination in practice.
In: Algorithmic Algebra and Number Theory, pp. 221–247. Springer (1998)

6. Fränzle, M., Herde, C., Teige, T., Ratschan, S., Schubert, T.: Efficient solving of
large non-linear arithmetic constraint systems with complex Boolean structure.
JSAT 1, 209–236 (2007)

7. Jovanović, D., de Moura, L.: Solving non-linear arithmetic. In: Gramlich, B., Miller,
D., Sattler, U. (eds.) IJCAR 2012. LNCS (LNAI), vol. 7364, pp. 339–354. Springer,
Heidelberg (2012)

270 K. Korovin, M. Košta, and T. Sturm

8. Klee, V., Minty, G.: How good is the simplex algorithm? In: Proceedings of the
Third Symposium on Inequalities, pp. 159–175. Academic Press (1972)

9. Korovin, K., Tsiskaridze, N., Voronkov, A.: Conflict resolution. In: Gent, I.P. (ed.)
CP 2009. LNCS, vol. 5732, pp. 509–523. Springer, Heidelberg (2009)

10. Korovin, K., Voronkov, A.: Solving systems of linear inequalities by bound propaga-
tion. In: Bjørner, N., Sofronie-Stokkermans, V. (eds.) CADE 2011. LNCS, vol. 6803,
pp. 369–383. Springer, Heidelberg (2011)

11. Loos, R., Weispfenning, V.: Applying linear quantifier elimination. The Computer
Journal 36(5), 450–462 (1993)

12. Loup, U., Scheibler, K., Corzilius, F., Ábrahám, E., Becker, B.: A symbiosis of inter-
val constraint propagation and cylindrical algebraic decomposition. In: Bonacina,
M.P. (ed.) CADE 2013. LNCS, vol. 7898, pp. 193–207. Springer, Heidelberg (2013)

13. McMillan, K.L., Kuehlmann, A., Sagiv, M.: Generalizing DPLL to richer logics. In:
Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 462–476. Springer,
Heidelberg (2009)

14. Motzkin, T.S.: Beiträge zur Theorie der linearen Ungleichungen. Doctoral disser-
tation, Universität Zürich (1936)

15. Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Solving SAT and SAT modulo theories:
From an abstract Davis–Putnam–Logemann–Loveland procedure to DPLL(T).
Journal of the ACM 53(6), 937–977 (2006)

16. Platzer, A., Quesel, J.D., Rümmer, P.: Real world verification. In: Schmidt, R.A.
(ed.) CADE 2009. LNCS, vol. 5663, pp. 485–501. Springer, Heidelberg (2009)

17. Sofronie-Stokkermans, V.: Hierarchical and modular reasoning in complex theories:
The case of local theory extensions. In: Konev, B., Wolter, F. (eds.) FroCos 2007.
LNCS (LNAI), vol. 4720, pp. 47–71. Springer, Heidelberg (2007)

18. Sturm, T.: Real Quantifier Elimination in Geometry. Doctoral dissertation, Uni-
versität Passau, Germany (1999)

19. Sturm, T., Tiwari, A.: Verification and synthesis using real quantifier elimination.
In: Proceedings of the ISSAC 2011, pp. 329–336. ACM Press (2011)

20. Sturm, T., Weber, A., Abdel-Rahman, E.O., El Kahoui, M.: Investigating algebraic
and logical algorithms to solve Hopf bifurcation problems in algebraic biology.
Math. Comput. Sci. 2(3), 493–515 (2009)

21. Weber, A., Sturm, T., Abdel-Rahman, E.O.: Algorithmic global criteria for exclud-
ing oscillations. Bull. Math. Biol. 73(4), 899–916 (2011)

22. Weispfenning, V.: The complexity of linear problems in fields. J. Symb.
Comput. 5(1&2), 3–27 (1988)

23. Weispfenning, V.: Parametric linear and quadratic optimization by elimination.
Technical Report MIP-9404, Universität Passau, Germany (1994)

24. Weispfenning, V.: Quantifier elimination for real algebra—the quadratic case and
beyond. Appl. Algebr. Eng. Comm. 8(2), 85–101 (1997)

Sharpness in Trajectory Estimation for Planar

Four-points Piecewise-Quadratic Interpolation

Ryszard Kozera1, Lyle Noakes2, and Piotr Szmielew1,3

1 Warsaw University of Life Sciences - SGGW
Faculty of Applied Informatics and Mathematics
Nowoursynowska str. 159, 02-776 Warsaw, Poland

2 Department of Mathematics and Statistics
The University of Western Australia

35 Stirling Highway, Crawley W.A. 6009, Perth, Australia
3 University of Warsaw
Institute of Philosophy

Krakowskie Przedmiecie str. 3, 00-927 Warsaw, Poland
{ryszard kozera,piotr_szmielew}@sggw.pl,

lyle.noakes@maths.uwa.edu.au

Abstract. This paper discusses the problem of fitting non-parametric
planar data Qm = {qi}mi=0 with four-points piecewise-quadratic inter-
polant to estimate an unknown convex curve γ in Euclidean space E2

sampled more-or-less uniformly. The derivation of the interpolant in-
volves non-trivial algebraic and symbolic computations. As it turns out,
exclusive symbolic computations with Wolfram Mathematica 9 are
unable to explicitly construct the interpolant in question. The alterna-
tive solution involves human and computer interaction. The theoreti-
cal asymptotic analysis concerning this interpolation scheme as already
demonstrated yields quartic orders of convergence for trajectory esti-
mation. This paper verifies in affirmative the sharpness of the above
asymptotics via numerical tests and independently via analytic proof
based on symbolic computations. Finally, we prove the necessity of ad-
mitting more-or-less uniformity and strict convexity to attain at least
quartic order of convergence for trajectory approximation. In case of vi-
olating strict convexity of γ we propose a corrected interpolant Q̄ which
preserves quartic order of convergence.

1 Introduction

The sampled ordered planar data points Qm = {qi}mi=0 with γ(ti) = qi ∈ E2

define parametric data ({ti}mi=0, Qm). Here curve γ : [0, T] → E2 with t0 = 0
and tm = T . On the other hand Qm represents the non-parametric data if
{ti}mi=0 are not given. Under such condition the unknown knots {ti}mi=0 must be
first somehow approximated by properly guessed {t̂i}mi=0. The latter permits to

apply specific interpolation scheme γ̂ : [0, T̂] → E2, with t̂0 = 0 and t̂m = T̂ .
Note that in order to compare γ with γ̂ a reparameterization ψ : [0, T] → [0, T̂]
needs to be also determined.

V.P. Gerdt et al. (Eds.): CASC Workshop 2014, LNCS 8660, pp. 271–285, 2014.
c© Springer International Publishing Switzerland 2014

272 R. Kozera, L. Noakes, and P. Szmielew

It is also required that ti < ti+1 and qi �= qi+1, qi �= qi+2, qi �= qi+3. In
addition, the curve γ is assumed to be regular (i.e. γ′ �= 0) and strictly convex
of class C4.

In order to estimate the unknown curve γ with an arbitrary interpolant γ̌ :
[0, T] → E2 it is necessary to assume that knots {ti}mi=0 ∈ V m

G , i.e., that the
following admissibility condition is satisfied:

Vm
G = {{ti}mi=1 : lim

m→∞
δm = 0, where δm = max

0≤i≤m−1
(ti+1 − ti)}. (1)

From now on, unless required, subscript m in δm is omitted. This paper dis-
cusses one particular subfamily Vm

mol ⊂ Vm
G , namely the so-called more-or-less

uniform samplings (see, e.g., [1] or [2]) defined as:

κδ ≤ ti+1 − ti ≤ δ, (2)

where κ ∈ (0, 1] (κ depends here on sampling), for all i ∈ [0,m] and m arbitrary.
Specific examples for interpolating real life reduced data in computer graph-

ics (light-source motion estimation or image rendering), computer vision (image
segmentation or video compression), geometry (trajectory, curvature of area es-
timation) or in engineering and physics (fast particles’ motion estimation) can
be found among all in [3], [4] and [5].

2 Problem Formulation and Motivation

We introduce now a formal definition of convergence orders (for n = 2).

Definition 1. Consider the family Fδ : [0, T] → E2 (in our case Fδ = (γ̂ ◦ ψ −
γ)(t)). We say that Fδ = O(δη) if ‖Fδ‖= O(δη) (where ‖·‖ denotes the Euclidean
norm). The latter can be reformulated to: ∃K>0∃δ0‖Fδ‖≤ Kδη, for all δ ∈ (0, δ0)
and t ∈ [0, T].

The following result is established in [1] (see also [6]):

Theorem 1. Let regular γ ∈ C4 be strictly convex and be sampled more-or-less
uniformly (i.e., {ti}mi=0 ∈ V m

mol) with ti unknown. Then there is a piecewise-

quadratic Q : [0, T̂] → E2 calculable in terms of Qm, the sequence of guessed
knots {t̂i}mi=0 and a piecewise-C∞ reparameterization ψ : [0, T] → [0, T̂] with

Q ◦ ψ = γ +O(δ4), (3)

where ψ is a reparameterization [7] defined as piecewise-cubic Lagrange inter-
polant. Note that according to previous notation we choose particular γ̂ = Q.

Recall that a regular curve γ in E2 is strictly convex when either ∀t∈[0,T](K(t) >
0) or ∀t∈[0,T](K(t) < 0), where

K(t) =
det(γ′(t), γ′′(t))

‖γ′(t)‖3 , (4)

Sharpness in Trajectory Estimation 273

is the curvature. Then since [0, T] is compact and K(t) ∈ C0, the curvature K(t)
is in fact separated from 0.

Note that quartic order for length estimation d(Q) − d(γ) = O(δ4) (proved
in [1]) is experimentally verified to be sharp in [1], [8], [9]. However, the sharp-
ness tests have been so-far not conducted for the trajectory estimation which
asymptotics is determined by formula (3).

This paper will numerically and analytically (via symbolic computations) con-
firm the sharpness of (3). Recall, that by sharpness we understand the existence
of at least one curve γ ∈ C4 (strictly convex and regular) specifically sampled
according to more-or-less uniformity (2) which yields exactly quartic order of
convergence in trajectory approximation.

In addition, the numerical tests performed in this paper justify the necessity
of admitting strict convexity and more-or-less uniformity in Th. 1. Namely, if
either curve γ is not sampled more-or-less uniformly or is not convex (with no
inflection points) there is a considerable deceleration in asymptotic order (3)
including undesirable effect of divergence. Even worse, if inflection points are
admitted the four-point quadratic interpolant discussed in this paper cannot be
constructed, thus rendering the entire scheme useless.

Finally, for non-convex curves a new interpolant Q̄ (see Section 4) is proposed.
More specifically in the neighborhood of inflection points the original interpolant
Q is substituted by cumulative chord piecewise-cubics which preserve sharply
quartic order of convergence in trajectory estimation (see [10]). Experiments
confirm that Q̄ ◦ ψ = γ +O(δ4) holds.

The next section introduces the construction of discussed herein four-point
quadratic interpolant Q (with the aid of symbolic calculation).

2.1 Quadratics Interpolating Planar Quadruples of Points

Consider Qm sampled more-or-less uniformly and suppose that m is a posi-
tive integer multiple of 3. For a given quadruple of sampling points Qi,4

m =
(qi, qi+1, qi+2, qi+3), define the quadratic Qi : [0, βi] → E2

Qi(s) = ai0 + ai1s+ ai2s
2 (5)

satisfying

Qi(0) = qi, Qi(1) = qi+1, Qi(αi) = qi+2, Qi(βi) = qi+3, (6)

where 0 ≤ i ≤ m − 3, ai0, a
i
1, a

i
2 ∈ E2 and 1 < αi < βi. For simplicity the

subscripts in αi, βi, a
i
0, a

i
1 and ai2, unless necessary, are omitted.

Evidently as a0 = qi and a2 = qi+1 − a0 − a1 equations (5) and (6) give two
vector equations (both in E2):

a1α+ (p1 − a1)α2 = pα and a1β + (p1 − a1)β2 = pβ, (7)

where (p1, pα, pβ) = (qi+1 − qi, qi+2 − qi, qi+3 − qi).
Consequently (7) represents four quadratic scalar equations with four scalar

unknowns a11, a12, α and β (here a1 = (a11, a12)). First both t̂i+2 = α and

274 R. Kozera, L. Noakes, and P. Szmielew

t̂i+3 = β estimating the unknown parameters ti+3 and ti+4 are found. Note that
we may safely assume (as done in (6)) that t̂i = 0 and t̂i+1 = 1 which can be
achieved upon a simple normalization step. In order to compute α and β let us
introduce the following:

c = −det(pα, pβ), d = −det(pβ , p1)/c, e = −det(pα, p1)/c,

where c, d, e �= 0 by strict convexity. Define next:

ρ1 =
√
e(1 + d− e)/d and ρ2 =

√
d(1 + d− e)/e, (8)

with real roots in (8) again by strict convexity.
The following lemma is proved by symbolic computations (see [1] or [9]):

Lemma 1. If γ is a planar curve of class C3 (strictly convex) and is sampled
more-or-less uniformly, then system (7) has two solutions in (α, β):

α± =
(1 ± ρ1)

e− d and β± =
(1 ± ρ2)

e− d ,

provided ρ1, ρ2 are real and e− d �= 0. Moreover for (α±, β±) we have:

a1 =
pα± − α2±p1
α± − α2±

and a2 =
α±p1 − pα±

α± − α2±
.

It can be shown (see [1] or [8]) that more-or-less uniformity and convexity assures
ρ1, ρ2 ∈ R, c, d, e �= 0, e �= d and 1 < α+ < β+.

We will now outline the proof of Lemma 1 with the aid of symbolic calculations
performed in Mathematica.

Solving (7) gives two equations with the constraints on a1:

a1 = (α2p1 − pα)/((−1 + α)α),

a1 = (β2p1 − pβ)/((−1 + β)β).

Next substituting a1 into (7) gives:

β
(
α2p1 − αβp1 + (β − 1)pα

)
(α − 1)α

= pβ .

Furthermore we have:

pβ =
β
(
α2p1 − αβp1 + (β − 1)pα

)
(α− 1)α

,

pβ(α− 1)α = β(α2p1 − αβp1 + (β − 1)pα),

pβ(α− 1)α = βα2p1 − αβ2p1 + (β2 − β)pα,

αβ(αp1 − βp1) = (β − β2)pα + pβ(α2 − α),

αβ(α − β)p1 = (β − β2)pα − pβ(α− α2). (9)

Sharpness in Trajectory Estimation 275

For two vectors pα = (pα1, pα2), pβ = (pβ1, pβ2) consider their respective orthog-
onal counterparts: p⊥α = (−pα2, pα1), p⊥β = (−pβ2, pβ1). Taking the dot product

〈·, ·〉 of (9) first with p⊥β and then with p⊥α results in:

αβ(α − β)〈p1, p⊥β 〉 = (β − β2)〈pα, p⊥β 〉,
αβ(α − β)〈p1, p⊥α 〉 = −(α− α2)〈pβ , p⊥α 〉.

(10)

Since by strict convexity span{p⊥β , p⊥α} = E2 holds asymptotically, formulas (9)
and (10) are equivalent. Furthermore

α(α− β)〈p1, p⊥β 〉
〈pα, p⊥β 〉

= 1 − β and
β(α − β)〈p1, p⊥α 〉

−〈pβ , p⊥α 〉 = α− 1.

Consequently the latter yields:

c = −〈pβ, p⊥α 〉 = 〈pα, p⊥β 〉, (11)

which in turn renders:

d =
−〈p1, p⊥β 〉

c
=

−〈p1, p⊥β 〉
〈pα, p⊥β 〉

and e =
−〈p1, p⊥α 〉

c
=

〈p1, p⊥α 〉
〈pβ , p⊥α 〉 . (12)

Combining (10) with (11) and (12) yields two scalar equations in α and β:

α(α − β)d = β − 1,

β(α− β)e = α− 1.
(13)

Applying Mathematica (to compute α and β) to (13) subject to the constraint:

1 < α < β (14)

results in endless calculations with no explicit formulas for α and β. Both Solve
and Simplify functions give the following three pairs of possible solutions:

(α = 1, β = 1) ,(
α = −

√
de(d− e+ 1) + d

d(d− e) , β =

√
de(d− e+ 1) + e

e(e− d)

)
,(

α =

√
de(d− e+ 1) − d
d(d − e) , β =

e−
√
de(d− e+ 1)

e(e− d)

)
.

The first pair is obviously discarded (due to (14)). On the other hand only
the second pair α, β satisfies constraint (14). Therefore our interpolation scheme
defined by (5), (6) and (14) is explicitly determined.

In the next section we will numerically and independently symbolically verify
the sharpness of Th. 1 and prove the need for strict convexity and more-or-less
uniformity (2).

276 R. Kozera, L. Noakes, and P. Szmielew

3 Experiments

Our tests are performed in Mathematica 9.0.1 using Intel Core2Duo 2.4 GHz
processor with 16 GiB of RAM and on PL-Grid infrastructure [11].

Since T = Σm
i=1(ti+1−ti) ≤ mδ the following holdsm−η = O(δη), for arbitrary

η > 0 mentioned in Definition 1 (see also [13]). Therefore, for the verification
of any asymptotics expressed in terms of O(δη) it is sufficient to examine the
claims of Th. 1 in terms of O(1/mη) asymptotics.

Recall that for a parametric smooth planar curve γ : [0, T] → E2 (with [0, T]
compact) and m varying between mmin ≤ m ≤ mmax the i-th component of the
error for γ estimation by Qi is defined as follows:

Ei
m = sup

t∈[ti,ti+2]

‖(Qi ◦ ψi)(t) − γ(t)‖= max
t∈[ti,ti+2]

‖(Qi ◦ ψi)(t) − γ(t)‖. (15)

The maximal value Em for each m = 3k is found by using Mathematica nu-
merical optimization function: NMaximize [12]. From the set of absolute errors
{Em}m=mmax

m=mmin
the numerical estimate of η is calculated using a linear regression

applied to the collection of points (log(m),− log(Em)) (where mmin ≤ m ≤
mmax). The Mathematica’s built-in function LinearModelFit renders the esti-
mated coefficient η from the computed regression line y(x) = ηx+ b.

3.1 Curves and Sampling

In this subsection, testing curves and more-or-uniform samplings are introduced.

a) Curves: The first example refers to the specific curves used in our experi-
mentation.

Example 1. (i) Define strictly convex (here with K(t) < 0 - see (4)) two planar
curves: first a semicircle

γsc(t) = (cos(π(1 − t)), sin(π(1 − t))) ⊂ E2, for t ∈ [0, 1],

and then a planar spiral (see Fig. 1)

γspl(t) = ((6π − t) cos(t), (6π − t) sin(t)) ⊂ E2, for t ∈ [0, 5π].

(ii) Let us now introduce two non-strictly convex curves. First we consider
the curve without inflection point (4) (i.e., with K(t) ≥ 0) γpol4(t) = (t, t4)
for t ∈ [−1, 1] (see Fig. 2a), where K(0) = 0 and K(t) > 0 for t �= 0. Then
one admits the curve with inflection points (i.e., with K(t) varying its signs)
γpol3(t) = (t, t3) over [−1, 1]. The curve γpol has visibly inflection point at t = 0
(plotted in Fig. 2b). Note that γpol4 and γpol3 have different domain range than
[0, T]. This, however, can be easily achieved by simple affine mapping.

Sharpness in Trajectory Estimation 277

�15 �10 �5 5 10 15

�10

�5

5

10

15

Fig. 1. A strictly convex spiral γspl

�1.0 �0.5 0.5 1.0

0.2

0.4

0.6

0.8

1.0

(a)

�1.0 �0.5 0.5 1.0

�1.0

�0.5

0.5

1.0

(b)

Fig. 2. Non-strictly convex curves: a) γpol4 b) γpol3, without or with inflection points
��

b) Samplings: The next example includes different more-or-less uniform sam-
plings.

Example 2. Both curves from Example 1i sampled uniformly, i.e., with ti = iT
m

presented in Fig. 3. The uniform sampling is evidently more-or-less uniform with
κ = 1 (see (2)).

278 R. Kozera, L. Noakes, and P. Szmielew

�1.0 �0.5 0.5 1.0

0.2

0.4

0.6

0.8

1.0

(a)

�15 �10 �5 5 10 15

�10

�5

5

10

15

(b)

Fig. 3. Strictly convex curves: a) γsc and b) γspl sampled uniformly with m = 21
��

Example 3. (i) Our tests use different more-or-less uniform samplings. The first
one is defined as follows:

ti =
i

m
+

(−1)i+1

3m
, (16)

with κ = 1
5 in (2). Both curves determined in Example 1i sampled according to

(16) (modulo rescaling if needed) are presented in Fig. 4.

�1.0 �0.5 0.5 1.0

0.2

0.4

0.6

0.8

1.0

(a)

�15 �10 �5 5 10 15

�10

�5

5

10

15

(b)

Fig. 4. Curves a) γsc b) γspl sampled according to (16) with m = 21

(ii) Another more-or-less uniform sampling applied in our experiments is:

ti =

⎧⎪⎨⎪⎩
i
m , if i is even,
i
m + 1

2m if i = 4k + 1,
i
m − 1

2m if i = 4k + 3,

(17)

with κ = 1
3 in (2). Similarly both curves γsc, γspl sampled according to (17) are

presented in Fig. 5.

Sharpness in Trajectory Estimation 279

�1.0 �0.5 0.5 1.0

0.2

0.4

0.6

0.8

1.0

(a)

�15 �10 �5 5 10 15

�10

�5

5

10

15

(b)

Fig. 5. Curves a) γsc b) γspl sampled according to (17) with m = 21
��

3.2 Analytical Construction of Interpolant

The construction of interpolant Qi for each consecutive quadruple of points
(qi, qi+1, qi+2, qi+3) is explicitly determined by Lemma 1. However, the symbolic
computational burden increases heavily with m getting larger. Even for small m
this issue is noticeable as indicated below.

�1.0 �0.5 0.5 1.0

0.2

0.4

0.6

0.8

1.0

Fig. 6. γsc interpolated using 4-points quadratic with uniform sampling and m = 3

Case m = 3: We construct now the interpolant Q0 based on single quadru-
ple of interpolation knots {ti}m=3

i=0 generated from uniform sampling
(
0, 13 ,

2
3 , 1

)
.

The corresponding sampling points (q0, q1, q2, q3) obtained from the curve γsc

are
(

(−1, 0) ,
(
− 1

2 ,
√
3
2

)
,
(

1
2 ,

√
3
2

)
, (1, 0)

)
and Q0

3,sc(s) =
(

s−2
2 ,

4s−s2

2
√
3

)
with s ∈

[0, 4]. The derivation of the interpolant Q0
3,sc in Mathematica takes around

0.000191s.

Case m = 6: Consider now interpolation scheme (5), (6) based on two four-
point segments. The corresponding uniform knots are

(
0, 16 ,

1
3 ,

1
2 ,

2
3 ,

5
6 , 1

)
. The

respective interpolation points are:(
(−1, 0) ,

(
−

√
3

2
,

1

2

)
,

(
−1

2
,

√
3

2

)
, (0, 1) ,

(
1

2
,

√
3

2

)
,

(√
3

2
,

1

2

)
, (1, 0)

)
.

280 R. Kozera, L. Noakes, and P. Szmielew

The interpolants Q0
6,sc, Q

3
6,sc : [0, 2 + 2√

3
] → E2 are determined by:

Q̂0
6,sc(s) = (−1 + 0.0490381s+ 0.0849365s2, 0.584936s− 0.0849365s2),

Q̂3
6,sc(s) = (0.584936s− 0.0849365s2, 1 − 0.0490381s− 0.0849365s2),

evaluated over [0, 3.1547].

�1.0 �0.5 0.5 1.0

0.2

0.4

0.6

0.8

1.0

Fig. 7. γsc interpolated using 4-points quadratic with uniform sampling and m = 6

3.3 Sharpness of Th. 1 via Symbolic Computation

The sharpness of trajectory estimation from Th. 1 is proved now analytically
with the aid of symbolic computations.

Proof. Define part of the circle γc : [0, 1] → E2, where γc(t) = (cos(t), sin(t))
(which is a strictly convex curve). For sharpness it suffices to consider only
one segment I0 = [0, 3δ̄]. In doing so let t0 = 0, t1 = δ̄, t2 = 3

2 δ̄ and t3 =
3δ̄. Over all of the remaining segments the distribution of sampling is similar.
Note that here δ = 3

2 δ̄ (see (1)) and more-or-less uniformity (2) holds with

κ = 1
3 . We examine now f0(t) = (Q̂0

m,c ◦ ψ0)(t) − γc(t) over I0, where ψ0 :

[0, 3δ̄] → [0, β] is a cubic satisfying ψ0(0) = 0, ψ0(δ̄) = 1, ψ0(32 δ̄) = α and
ψ0(3δ̄) = β. The exact asymptotics of supt∈[0,3δ̄] f0(t) = maxt∈[0,3δ̄] f0(t) needs
to be determined. To prove sharpness of (3) it is sufficient to justify it over at
least one subinterval i.e. over [0, δ̄],

[
δ̄, 32 δ̄

]
or
[
3
2 δ̄, 3δ̄

]
, respectively. We prove

more by selecting all of them. Moreover, for the latter it is also sufficient to
choose special points t̄ from each subinterval, selected here as t̄ = ti+ti+1

2 , with
i = 0, 1, 2. The function f0 symbolically reduced with the aid of Mathematica’s
Simplify and Taylor expansion Series yields

f0

(
δ̄

2

)
=

(
−5δ̄4

64
+O

(
δ̄6
)
,−43δ̄5

384
+O

(
δ̄6
))
, over

[
0, δ̄

]
,

f0

(
5̄δ

4

)
=

(
35δ̄4

2048
+O

(
δ̄6
)
,

581δ̄5

24576
+O

(
δ̄6
))
, over

[
δ̄, 3δ̄/2

]
,

f0

(
9δ̄

4

)
=

(
−405δ̄4

2048
+O

(
δ̄6
)
,−2133δ̄5

8192
+O

(
δ̄6
))
, over

[
3δ̄/2, 3δ̄

]
.

Evidently as δ = 3
2 δ̄ the latter result on each segment [0, δ̄],

[
δ̄, 32 δ̄

]
and

[
3
2 δ̄, 3δ̄

]
independently proves sharpness of Th. 1 by symbolic computation. ��

Sharpness in Trajectory Estimation 281

3.4 Sharpness of Th. 1 via Numerical Computations

The numerical tests applied to the curves and samplings introduced in subsection
3.1 are presented in Table 1 (recall that η is introduced in Definition 1). They all
confirm numerically the sharpness of asymptotics estimate established by Th. 1.
The tests are conducted with the aid of (15), for m ∈ {99, . . . , 120}.

Table 1.

Curve Sampling By Th. 1 η = 4

γspl uniform 4.039

γsc uniform 4.037

γspl (16) 3.995

γsc (16) 4.037

γspl (17) 4.021

γsc (17) 4.037

The next subsection justifies the necessity of imposing constraints such as
more-or-less uniformity and strict convexity stipulated by Th. 1.

3.5 Counterexamples

The first example illustrates the impact of more-or-less uniformity assumption
in Th. 1 on the convergence rate from (3).

Example 4. (i) Consider the following sampling (see e.g. [9]):

t0 = 0, ti =
(
√
m− 1) (i − 1)

(m− 1)
√
m

+
1√
m

(for i ∈ {1, 2, . . . ,m}). (18)

Since t1 − t0 = 1/
√
m = δ and ti+1 − ti = 1

(1+
√
m)

√
m

= δ · 1
1+

√
m

there is no

κ satisfying (2), as limm→∞
1

1+
√
m

= 0. Thus sampling (18) is not more-or-less

uniform. On the other hand as here δ = 1/
√
m this sampling is still admissible

(1). The plot of interpolation points sampled according to (18) is presented in
Fig. 8, for m = 21 and γsc and γspl.

Linear regression applied to either γspl or γsc (for m ∈ {99, 102, . . . , 120})
sampled according to (18) yields the following asymptotic estimates for trajec-
tory approximation with four-point quadratic scheme (5):

ηspl = 2.2676 and ηsc = 2.1613. (19)

The computed estimates from (19) indicate significant deceleration in asymp-
totics determined by (3).

(ii) We admit now another non-more-or-less uniform sampling:

t0 = 0, t1 =
1

2m
− 1

m2
, t2 =

1

2m
, ti =

i

m
(for i ∈ {3, 4, . . . ,m}). (20)

282 R. Kozera, L. Noakes, and P. Szmielew

�1.0 �0.5 0.5 1.0

0.2

0.4

0.6

0.8

1.0

(a)

�15 �10 �5 5 10 15

�10

�5

5

10

15

(b)

Fig. 8. Curves a) γsc and b) γspl sampled according to (18) with m = 21

Linear regression applied to either γspl or γsc (for m ∈ {99, 102, . . . , 120})
sampled according to (20) yields the following non-decelerated asymptotic esti-
mates for trajectory approximation with four-point quadratic (5):

ηspl = 4.047, and ηsc = 4.049. (21)

This time both computed estimates from (21) comply with the asymptotics
established by Th. 1.

Visibly for some non-more-or-less uniform samplings there is a duality in
either reaching or breaking quartic convergence order.

��
The next example discusses the necessity of strict convexity in Th. 1.

Example 5. (i) First we admit the curve γpol4 (see Example 1ii) without in-
flection point. Though our interpolant (5) is still constructable, Table 2 shows
either a significant slowdown in convergence rate from (3) or admits a possible
divergence (in case of computed estimates negative). This is related to the fact
that K(t) is not separated from zero.

Table 2.

Curve Sampling η

γpol4 uniform −2.484

γpol4 (16) −5.512

γpol4 (17) 0.4642

(ii) Consider now γpol3 (see Example 1ii) in the two-side neighborhood of
inflection point t = 0. This time the interpolation scheme (5) may not even be
constructable. Indeed for sampling t0 = −1/m, t1 = 0, t2 = 1/m and t3 = 2/m
both vectors p1 and pα (see (7)) are always co-linear thus yielding e = 0 which
makes formula (8) incomputable.

��

Sharpness in Trajectory Estimation 283

p1

�0.2 �0.1 0.1 0.2

�0.015

�0.010

�0.005

0.005

0.010

0.015

(a)

pΑ

�0.2 �0.1 0.1 0.2

�0.015

�0.010

�0.005

0.005

0.010

0.015

(b)

p1

pΑ

�0.2 �0.1 0.1 0.2

�0.015

�0.010

�0.005

0.005

0.010

0.015

(c)

Fig. 9. Colinear (see c)) vectors a) p1 and b) pα on curve γpol

4 Four-Points Quadratics with Inflection Points

Recall cumulative chord cubic γ̂i3 (see [10]) defined over each consecutive quadru-
ple of points (qi, qi+1, qi+2, qi+3) for t̂ ∈ [t̂i, t̂i+3]:

γ̂i3(t̂) = γ̂i3[t̂i] + γ̂i3[t̂i, t̂i+1](t̂− t̂i) + γ̂i3[t̂i, t̂i+1, t̂i+2](t̂− t̂i)(t̂− t̂i+1)

+γ̂i3[t̂i, t̂i+1, t̂i+2, t̂i+3](t̂− t̂i)(t̂− t̂i+1)(t̂− t̂i+2),

where f [x0, x1, . . . , xk] denote respective divided differences (see e.g. [7]). Here:

t̂i = 0,

t̂i+1 = ‖qi+1 − qi‖,
t̂i+2 = ‖qi+2 − qi+1‖+t̂i+1,

t̂i+3 = ‖qi+3 − qi+2‖+t̂i+2.

Cumulative chord cubics γ̂3 (a sum-track of γ̂i3) approximate trajectory of γ at
least to order four which matches the same orders as if {ti}mi=0 are given (see [10]).
Recall that the unknown curvature K(t) for applying the interpolant Q needs to
be separated from zero. However, the proof of Th. 1 (see [1]) shows that curvature
KQ(t̂) = det(Q′(t̂), Q′′(t̂))/‖Q′(t̂)‖3 (computed from reduced data) is separated
from zero for more-or-less uniformly sampled regular curve γ. Therefore, taking
into account the latter we can set up an arbitrary zero curvature buffer zones ε0 >
0. Namely we apply interpolant Q if |KQ(t̂)|> ε0 and otherwise cumulative chord
piecewise γ̂i3 which is not constrained by inflection points. Such new corrected
interpolation scheme is denoted by Q̄ε0 (we omit subscript ε0).

Table 3 contains the results for asymptotic estimates in trajectory approxi-
mation by using corrected interpolant Q̄. Note that ω used in the last column
header represents the ratio of Q-segments against all segments.

284 R. Kozera, L. Noakes, and P. Szmielew

Table 3.

Curve Sampling ε0 m η ω

γpol3 uniform 1 99 ≤ m ≤ 120 4.138 18.18% ≤ ω ≤ 20.00%

γpol3 (16) 1 99 ≤ m ≤ 120 4.098 18.18% ≤ ω ≤ 20.00%

γpol3 (17) 1 99 ≤ m ≤ 120 4.104 18.18% ≤ ω ≤ 20.00%

γpol3 uniform 0.1 2001 ≤ m ≤ 2541 3.960 49.03% ≤ ω ≤ 49.11%

γpol3 (16) 0.1 999 ≤ m ≤ 1041 4.114 48.95% ≤ ω ≤ 48.99%

γpol3 (17) 0.1 2001 ≤ m ≤ 2541 3.936 49.11% ≤ ω ≤ 49.18%

5 Conclusion

In this paper, we confirm numerically and analytically (via symbolic computa-
tions) the sharpness of Th. 1. The symbolic computation is also used to construct
four-point quadratic interpolant Q.

Additionally, the necessity of admitting more-or-less uniformity is also discussed.
Our experiments clearly demonstrate that certain non-more-or-less uniform sam-
plings yield decelerated quartic convergence rates in trajectory estimation upon
using (5). On the other hand, as shown, there are some non-more-or-less uniform
samplings which still preserve quartic order of convergence established by Th. 1. It
remains an open question for which non-more-or-less uniform samplings the above
duality holds. In case of slower rates, another question for examining real deceler-
ated asymptotics arises.

Lastly the assumption of strict convexity in Th. 1 is also addressed. First, the
tests on non-strictly convex curves (with inflection points excluded) render ei-
ther significant slowdown or divergence in convergence rate (3). However, when
inflection points are admitted four-point quadratic interpolant Q may not be
constructable. Thus, to alleviate this deficiency we propose a new interpolation
scheme Q̄ insensitive to inflection points. Equally as both Q and γ̂3 over each re-
spective segment yield quartic order of trajectory estimation the new interpolant
Q̄ preserves the same asymptotics. The latter is also confirmed here experimen-
tally. We anticipate advantage in using Q over applying γ̂3 for estimating the
curvatures.

More discussion on applications (including real data examples - see [3]) and
theory of non-reduced data interpolation can be found in [2], [9], [4], [14], [15]
or [16]. In particular different parameterizations {t̂}mi=0 of the unknown interpo-
lation knots {t}mi=0 are discussed, e.g., in [5], [6], [17] or [18].

Acknowledgement. This research was supported in part by PL-Grid Infras-
tructure [11].

Sharpness in Trajectory Estimation 285

References

1. Noakes, L., Kozera, R.: More-or-less-uniform sampling and lengths of curves.
Quarterly of Applied Mathematics 3(61), 475–484 (2003)

2. Kozera, R., Noakes, L.: Piecewise-quadratics and exponential parameterization for
reduced data. Applied Mathematics and Computation 221, 620–638 (2013)

3. Janik, M., Kozera, R., Kozio�l, P.: Reduced data for curve modeling - applications in
graphics, computer vision and physics. Advances in Science and Technology 7(18),
28–35 (2013)

4. Piegl, L., Tiller, W.: The NURBS Book. Springer, Heidelberg (1997)
5. Kvasov, B.I.: Methods of Shape-Preserving Spline Approximation. World Scientific

Publishing Company, Singapore (2000)
6. Mørken, K., Scherer, K.: A general framework for high-accuracy parametric

interpolation. Mathematics of Computation 66(217), 237–260 (1997)
7. De Boor, C.: A Practical Guide to Splines. Springer, Heidelberg (2001)
8. Noakes, L., Kozera, R.: Interpolating sporadic data. In: Heyden, A., Sparr,

G., Nielsen, M., Johansen, P. (eds.) ECCV 2002, Part II. LNCS, vol. 2351,
pp. 613–625. Springer, Heidelberg (2002)

9. Kozera, R.: Curve modeling via interpolation based on multidimensional reduced
data. Studia Informatica 25(4B-61), 1–140 (2004)

10. Noakes, L., Kozera, R.: Cumulative Chord Piecewise Quadratics and Piecewise
Cubics. Geometric Properties for Incomplete Data. In: Klette, R., Kozera, R.,
Noakes, L. (eds.) Computational Imaging and Vision, pp. 59–76. Springer (2006)

11. PL-Grid Infrastructure, http://www.plgrid.pl/en
12. Wolfram Mathematica 9, Documentation Center,

http://reference.wolfram.com/mathematica/guide/Mathematica.html

13. Kozera, R., Noakes, L., Szmielew, P.: Trajectory estimation for Exponential Pa-
rameterization and Different Samplings. In: Saeed, K., Chaki, R., Cortesi, A.,
Wierzchoń, S. (eds.) CISIM 2013. LNCS, vol. 8104, pp. 430–441. Springer,
Heidelberg (2013)

14. Kozera, R., Noakes, L., Szmielew, P.: Length Estimation for Exponential Param-
eterization and ε-Uniform Samplings. In: Huang, F., Sugimoto, A. (eds.) PSIVT
2013 Workshops. LNCS, vol. 8334, pp. 33–46. Springer, Heidelberg (2014)

15. Farin, G.: Curves and Surfaces for Computer Aided Geometric Design, 3rd edn.
Academic Press, San Diego (1993)

16. Epstein, M.P.: On the influence of parameterization in parametric interpolation.
SIAM J. Numer. Anal. 13, 261–268 (1976)

17. Koci, L.M., Simoncelli, A.C., Della Vecchia, B.: Blending parameterization of poly-
nomial and spline interpolants, Facta Universitatis (NIŠ). Series Mathematics and
Informatics 5, 95–107 (1990)

18. Lee, E.T.Y.: Choosing nodes in parametric curve interpolation. Computer-Aided
Design 21(6), 363–370 (1987)

http://www.plgrid.pl/en
http://reference.wolfram.com/mathematica/guide/Mathematica.html

Scheme for Numerical Investigation of Movable

Singularities of the Complex Valued Solutions
of Ordinary Differential Equations

Rados�law Antoni Kycia

University of Warsaw
Faculty of Mathematics, Informatics and Mechanics

Banacha 2, Warsaw, 02-097, Poland
rkycia@mimuw.edu.pl

Abstract. We present structure of integration scheme suitable for ordi-
nary differential equations in some bounded region of the complex plane.
The program which bases on these ideas can help to obtain qualitative in-
formation about the structure of singularities of solutions in the complex
plane. It was tested on two representative examples.

Keywords: movable singularities, ordinary differential equations, nu-
merical integration.

1 Introduction

Explicit integration of ordinary differential equations (ODEs) by means of ele-
mentary functions is generally impossible, even for simple equations. Therefore,
approximate methods for constructing solutions like the expansion in a conver-
gent power series are usually used. These power series have generally some finite
radius of convergence in the complex plane due to the existence of singularities
at the boundary of their balls of convergence.

ODEs have two types of singularities [I, Hi, D]. First type is called a fixed
singularity. They are the singularities of the coefficients of the equation. This
property makes that they are easy to localize. Second type of singularities is
connected with the solutions of equations. The positions of theses singularities
in the complex plane change as the initial data or the parameters of the equation
varies, and therefore, they are called movable singularities. Usually, the solution
is not known in a closed form, consequently, there is no knowledge of functional
dependence of the solution on the initial data or the parameters of the equation.
As a result, there is no general method to determine the positions of these
singularities. The existence of movable singularities is the property of nonlinear
equations, i.e., linear equations have only fixed singularities [I, Hi, D].

The simplest example of the equation that possesses this type of a singularity
is

dy(x)

dx
+ y(x)2 = 0, (1)

V.P. Gerdt et al. (Eds.): CASC Workshop 2014, LNCS 8660, pp. 286–301, 2014.
c© Springer International Publishing Switzerland 2014

Numerical Investigation of Movable Singularities 287

which has the solution

y(x) =
−1

x− C , (2)

where C is determined by the initial data. The pole of the solution is located at
the point x = C and changes its position when C is varied.

Not only the existence but often the type of a singularity (pole, branch point,
essential singularity) is important because it has profound implication on the
global structure of solutions [C, G]. Painlevé formulated very restrictive defini-
tion of the solution of ODE [C], namely, it must be unambiguous mapping of the
Riemann sphere onto itself, i.e., a single-valued function. To make multivalued
prescription for a function the method of uniformization can be used. This can
be done in two ways, either by defining the cuts on the complex plane which
cannot be crossed if a given function would have to stay single-valued or by using
equivalent approach that focuses on the definition of an appropriate Riemann
surface [AF]. Success in applying uniformization relies on the ability to provide
correct definition of cuts. Loosely speaking, one has to know how and where to
place them in the complex plane. For the solutions which possess movable branch
points there is no method to make them single-valued, and therefore, they are
not ’solutions’ in the sense of Painlevé. Such singularities which are obstacles to
the uniformization procedure are called critical points. As a conclusion, the well-
behaved solutions are such that they possess only poles as movable singularities.
This feature of solutions is called the Painlevé property. There is also even more
important issue — connection between the Painlevé property and the existence
of algebraic first integrals [G]. These two subjects show that the knowledge of
the location and the types of movable singularities is important as well as any
tool that could provide some information about them.

Some hints about the location of movable singularities can be obtained using
numerical methods. There are many approaches to this subject. If there is no need
to know the location of singularities then the method which bases on numerical
calculation of the coefficients of the local expansion of a solution and then estima-
tion of the value of the radius of convergence of the series that defines this solu-
tion is used [AF, MA]. The method gives the distance from the expansion point
to the nearest singularity, however, without any hint about the direction to this
singularity. Sometimes the Padé approximation is applied to the truncated series
solution [PTWF, FW]. This approximation allows one to make the analytic con-
tinuation of the solution from the real line to the complex plane. The zeros of the
denominator of the approximation suggest where singularities are located. There
is, however, a problem with interpretation of these results because of the fact that
the zeros of numerator and denominator usually not cancel out exactly due to a
small discrepancy between their positions in the complex plane which is a peculiar
property of the Padé approximation. This behavior can produce artificial singu-
larities. The simplest, the most obvious and direct method of finding singularities
is to integrate the equation from the point at which the initial data are prescribed
along some path in the complex plane and end when some condition which sug-
gests the vicinity of a singularity, e.g., large norm of the solution, is met or when
integration procedure leaves the domain in which the solution has to be analysed.

288 R.A. Kycia

If the paths are dense enough in the examined region then this method can visual-
ize the structure of singularities and hopefully helps to formulate some quantitative
predictions. Sometimes using additional knowledge of the properties of the equa-
tion the methods described above can be combined to obtain efficient algorithm,
see [FW] and the references therein.

Our aim is moderate – we want to describe structure and provide simple
implementation of the program and library in C++ and Mathematica language
[MATHEMATICA] which can be used to obtain qualitative information about
the structure of singularities of the solutions of general ODEs in some domains
in the complex plane using method of integration along paths that fill ’densely’
this domain. The results obtained by the use of this program can help to develop
intuition about the nature of solutions and indicate the way of how to approach
the problem from the qualitative point of view, see [N, WS].

In the next section, we provide detailed definition of the problem and the
method of solution using object-oriented approach in C++ language. Then in
the following section, we will describe some results that can be obtained using
the program. These examples will be used to test our program. Finally we discuss
issues connected with further development of the software: parallelization, the
use of additional numerical integration schemes and singularity detection meth-
ods. At the end we describe main points of implementation of the algorithm in
Mathematica which will lead us to the reformulation of the problem in terms of
functional programming.

2 The Definition of the Problem and Its Solution

We consider ODEs which can be written in the form of (usually nonautonomous)
systems of first order differential equations

dy(x)

dx
= f (y;x), y(x) : x ∈ C → Cn. (3)

Function f is a vector of complex valued functions. To impose uniqueness of the
solution it is usually assumed that f fulfils the Lipschitz condition with respect to
y [Hi], however, this condition can be relaxed if one is interested in more general
cases. The number n is called the rank of ODE. In order to define this problem
properly initial conditions (IC) have to be provided. Their formulation will be
discussed below. We ask about the nature of the solutions in the complex plane
with emphasis on the location and structure of possible movable singularities.
We start to present the way of obtaining algorithmic solution of this problem by
describing the structure of C++ library which allows us to integrate (3).

The basic data types used in the program are complex numbers and vectors
of complex numbers which are defined by

typedef complex< double > cmplx;

typedef vector < cmplx > cvector;

Numerical Investigation of Movable Singularities 289

The most obvious implementation of the equation bases on the function derivs()
that calculates the vector of the RHS of (3) and has to be supplied by the user,
see Chap. 17 of [PTWF]. This function is wrapped in the class which is shown
in Fig. 1.

Equation

+derivs(x:cmplx,y:cvector): cvector

+getRank(): int

Fig. 1. The class Equation contains the method derivs(...), which calculates the RHS
of (3) and the method getRank() that returns the rank of the equation. Both methods
have to be supplied by the user.

The next part of properly defined initial value problem for ODEs are appro-
priate initial conditions (IC). They allow to start integration from the point x0
at which y(x0) = y0, where y0 is a constant vector. Sometimes, numerical inte-
gration cannot start from the point where IC were prescribed, e.g., due to the
existence of a fixed singularity there. In these cases, some shift of IC to a new
regular point has to be performed. This is usually achieved by the use of the
local analytic expansion (if it exists) around this point. If a truncated Taylor
series is used for this shift, then some control of the truncation error should be
imposed. Then the starting point of integration can be chosen in a punctured
disc with some small radius and the center at the expansion point. From this
point of view, we can distinguish two cases:

– Initial conditions are defined at the fixed point x0: y(x0) = y0.
– Initial conditions are defined in a punctured disc around x0, i.e., at every x:

0 < |x0 − x| < ε, for some small positive real ε.

This functionality is realized in the library by the method initialize(cmplx x0,
Equation * eq), see Fig. 2. Only one set of global initial conditions should

Initializer

+initialize(x0:cmplx,eq:Equation *): cvector

Fig. 2. Initializer class contains the method initialize(...), which calculates IC at x0.
The method has to be supplied by the user.

be imposed. All the other conditions at different points can be obtained by
propagation of the global IC along some paths that do not cross singularities.
This approach guarantees that all initial conditions will be consistent.

Numerical integration of ODE in the complex plane is performed along some
path. To exclude pathological situations it is assumed that the path is a smooth

290 R.A. Kycia

piecewise curve that can be approximated by line segments of the given length
h > 0, the more accurate the smaller is the value of h. Using numerical methods
we will be integrating the equation along these line segments that build an
approximation of the path.

The interface that realizes functionality of the line-segment curve is similar
to the iterator design pattern [GHJV]. It also works similar to the stream that
returns position of the next line joint. The details are given in Fig. 3. The class
Path is an abstract class that defines interface for all types of paths. The class
that implements this interface has to define the method that returns the first
point of the path: getBeginning(), the method which can be used to check if there
is the next element of the path: hasNext() and the method that returns this next
element: getNext(). First type of two implemented paths is a semiline path built
with a segments of the length h, which is realized by the class SemilinePath. It
defines the path x(t) = xbegin + (t + shift) · eiφ, where xbegin is a complex
point that defines the beginning point of the path, the real parameter t defines
the position on the path, and shift is an offset of t. getBeginning() returns
x(0) and kth call of getNext() returns x(tk), where tk = tk−1 + h, t0 = 0 and
k ∈ N>0. The class SpiralPath implements a spiral path according to the formula
x(t) = (xbegin+ (at+ b)ei·dir·t)eiφ. As before, xbegin is a starting point in the
complex plane, a, b are real parameters of the spiral, dir is a real parameter that
determines the direction of wrapping of the spiral, and φ is some fixed angle of
rotation of the spiral around xbegin.

We are interested in curves that cover ’densely’ some domain in the complex
plane. These curves have to have the same starting point at which initial condi-
tions are specified. Therefore, it is natural to restrict our attention to the simply
connected areas. Some additional restriction on the shape of the area has to
be imposed if specific types of curves are used, e.g., for semilines, the domain
has to be a star-shaped region, i.e., every point from the area can be connected
with the central point x0 along a segment line. The template class SimplyCon-
nectedDomain parameterized by the variable pathType aggregates all paths of
the given type along which integration will be performed. Before the integration
procedure starts the object of this class has to be filled with paths using fill()
method. Then ith path can be extracted by the method getPath(i). The number
of paths stored in the object can be obtained using getNPaths() method. The
class can also return paths sequentially by the use of the method getNextPath().
The method hasNext() can be used to check if there is a next path.

The class Domain defines the domain of integration. In this version of the
program, it defines rectangular region in the complex plane with zleft as the
upper left corner and zright as the lower right corner. These parameters have
to be passed to the constructor of this class. The test if the point z is in the
domain can be done with the help of isInDomain(z) method, which returns true
if z is in the domain or false otherwise. Domain class can easily be altered to
realize different shapes of the region of integration.

Numerical Investigation of Movable Singularities 291

Path

+getBeggining(): cmplx const

+hasNext(): bool const

+getNext(): cmplx const

SemilinePath

+getBeggining(): cmplx const

+hasNext(): bool const

+getNext(): cmplx const

+SemilinePath(xbegin:cmplx,phi:double,h:double,

 shift:double=0.0)

SimplyConnectedDomain

+fill(path:PathType *)

+getPath(i:unsigned long int): pathType * const

+getNPaths(): unsigned long int const

+hasNext(): bool const

+getNextPath(): pathType*

 pathType:class

Domain

+isInDomain(z:cmplx): bool const

+Domain(zleft:cmplx,zright:cmplx)

SpiralPath

+getBeggining(): cmplx const

+hasNext(): bool const

+getNext(): cmplx const

+SpiralPath(xbegin:cmplx,phi:double,h:double,

 a:double=1.0,b:double=0.0,dir:double=1.0)

Fig. 3. The figure presents all the classes that define the topology of the region of
integration

The last part of the library is a numerical integrator. It has to posses the
following features:

– Stepper capability — every step defined by the complex number h can be
divided into small steps, and integration along these steps can be indepen-
dently but sequentially performed. The method of division can be regulated
by the accuracy requirements and/or the constraints on the time of compu-
tation, see Chap. 17.2.3 of [PTWF].

– Monitor capability — approach to a possible singularity should be detected.
There are various methods. The simplest approach which is used in our
implementation is the test if the norm ||y||∞ = maxi∈{1,...,n}{|y1|, . . . , |yn|}
of the solution y is greater than a fixed large number.

The general scheme of integrator/stepping method is presented in Fig. 4. It is
based on general ideas outlined in Chap. 17 of [PTWF]. The Stepper interface
defines three methods that every class that realizes this interface (perform inte-
gration along a line segment) have to implement. The method makeStep() tries
to make the step from x to x+ h with initial data y using internal integrator. It
returns logical true if the step was successful or false if proximity of a singularity
was detected – in current implementation, it is tested if the norm of the solution
is greater than the value defined in the variable solAbsMax. The position x
at which integration stopped can be obtained by calling getCurrentX() method
and the vector of values of y(x) at this position using getCurrentY() method.
Currently, this interface is implemented by the stepper FixedRK4Stepper which
divides the step h into small steps of length hmax and makes fixed step in-
tegration along these small segments using classical fourth-order Runge–Kutta
method [Bu]. New stepping algorithms will be implemented in the next versions
of the library.

The solution along a segment path is stored as the STL C++ vector of tuples
{x,y(x)}, therefore, the solution in the domain is the collection of these solu-
tions along different paths. The classes that store solution along one path and
along all paths are presented in Fig. 5. PathSolution class was designed to store
intermediate values x and y(x) during integration along the path. The current

292 R.A. Kycia

Stepper

+Stepper(eq:Equation *,solAbsMax:double)

+makeStep(x:cmplx,y:cvector,h:cmplx): bool

+getCurrentX(): cmplx const

+getCurrentY(): cmplx const

FixedRK4Stepper

+FixedRK4Stepper(eq:Equation *,solAbsMax:double,

 hmin:double,hmax:double)

+makeStep(x:cmplx,y:cvector,h:cmplx): bool

+getCurrentX(): cmplx const

+getCurrentY(): cmplx const

Fig. 4. The structure of the module that performs ODE integration

position x on the path and corresponding value of the solution y(x) can be saved
in internal structure of the object of the class using fill() method. The class can
also save the results into file - method saveToFile(). When integration along a
single path is finished it is convenient to aggregate the objects of PathSolution
in the object of the class DomainSolution. This object can store and write all
paths into the file. When memory constraints are not a problem then collecting
all the results and then saving them to disk when integration is finished is a
faster approach than saving to disk every solution along a path right after it is
generated.

PathSolution

+fill(x:cmplx,y:cvector)

+saveToFile(filename:string)

DomainSolution

+fill(ps:PathSolution *)

+saveToFile(filename:string)

Fig. 5. The structure of the classes that store the solution

The final module of the program is the class that ’maps’ initial-value problem
– the equation with IC – to the solution along a path using the selected method
of numerical integration inside prescribed domain. The structure of this class is
presented in Fig. 6. Mapper class have to be initialized by Equation object, IC
object, Domain constraints, and the object of the class which realizes Stepper
interface. Method makeStep() propagates initial conditions along a path and
returns pointer to the object of PathSolution that stores the solution along the
path.

Mapper

+Mapper(equation:Equation *,IC:Initializer *,

 domain:Domain *,stepper:Stepper *)

+mapPath(path:Path *): PathSolution *

Fig. 6. Mapper class realize integration of ODE with IC along path. It stops integration
when the conditions that suggest singularity proximity are fulfilled.

The general scheme of generating of the solution of ODE in the complex plane
is represented by the following pseudo-code which is almost literally implemented
in the program:

Numerical Investigation of Movable Singularities 293

Initialize Mapper using Equation, Initializer, Domain, and

specific stepper;

Prepare paths and store them in SimplyConnectedDomain object;

Initialize DomainSolution object;

For every path in SimplyConnectedDomain object:

{ Integrate IC along path using Mapper object;

Store resulting PathSolution object in DomainSolution object; }

{ Integrate IC along path using Mapper object;

Store resulting PathSolution object in DomainSolution object; }

Save data stored in DomainSolution to disk;

Generally, the computing time depends linearly on the number of paths. Some
speed-up can be achieved by parallelization. This issue will be discussed later.

The run of the program generates the text file which stores the values of x and
corresponding values of y(x). Assuming that the paths cover densely the area,
interpolation can be used to construct an approximate solution from these data.
In current implementation1, the set of gnuplot scripts [GNUPLOT] was created
to visualize the solution. These scripts prepare various plots of the solution and
save them to disk. They allow gnuplot to interpret the data from the text file
generated by the program. They can also be run using GNU make [GNUMAKE]
program. All commands start from ’make ’ and then the option follows, e.g, ’make
run’. Below there is the list of options:

– run – compile and run the program. Should be executed before generating
plots.

– run-full – compile and run the program and then generate plot.
– absPlot, absContourPlot,abs2ContourPlot – every option creates a plot of

the absolute value of the solution in the complex plane and saves it to disk.
– phasePlot, phaseContourPlot, phase2ContourPlot – every option creates a

plot of the phase of the solution in the complex plane and saves it to disk.
– absPhasePlot – create the plot of the modulus of a solution with with color

map that reflects the phase of the solution and save it to disk. The idea of
this plot is based on [WS].

– areaOfConvergence – create the plot of the paths of integration in the com-
plex plane and save it to disk.

– animate – create an animated gif file and open it in a default browser.
– Generate-doc – generate documentation from the code in html and TeX

formats using Doxygen [DOXYGEN].
– clean – clean the directory from compilation and output files.

The program can be compiled and run on every operating system, however, the
set of scripts which automatize compilation, plotting and generation of docu-
mentation are specific to the Linux operating systems. Nevertheless, they can
be altered to run under other operating systems.

In the next section, we will provide two examples of application of this
program.

1 The program is available online at [KW].

294 R.A. Kycia

3 Examples

In this section, we describe the application of the program to real-world prob-
lems. The structure of singularities (or lack thereof) of selected equations is well
known, and, therefore, they can serve as test problems and as examples of the
use of the program.

The simple fixed step size classical (fourth-order) Runge–Kutta method [Bu]
was used as a first-order approximation to a more detailed study of the struc-
ture of singularities using more sophisticated integration methods. There is no
obstacles in using adaptive time stepping by step doubling approach or in us-
ing embedded schemes, however, we only wanted to present the success of this
approach. The simple Runge–Kutta method is a good first choice for such kind
of problems as it was expressed in Chap. 17.3 of [PTWF]: ’That method does
an excellent job of feeling its way through rocky or discontinuous terrain. It is
also an excellent choice for a quick-and-dirty, low accuracy solution of a set of
equations.’ Therefore, as a method for qualitative analysis this method seems to
be suitable.

The first example will be the Emden–Fowler equation.

3.1 The Emden–Fowler Equation

The equation has the following form

d2y(x)

dx2
+
α

x

dy(x)

dx
+ xny(x)p = 0, (4)

where α > 1 is a real number and n > −2, p > 1 are integer constants. The
equation has many applications [D], e.g., for n = 2, it is the famous Lane–Emden
equation used in astrophysics [Hu]. The equation has fixed singularities at x = 0
and x = ∞.

There exists an analytic solution (convergent power series) for initial data
y(0) = c, y′(0) = 0, where c is an arbitrary complex constant. It is defined in
a punctured disc with the center at x = 0 even though it is singular point of
the equation. This solution can be derived by introducing formal ansatz y(x) =∑∞

k=0 akx
k into (4). Then the unique recurrence for the ak coefficients can be

obtained [Hu, KF]. The series has the following form

y(x) = c− cp

(n+ 2)(n+ 1 + α)
xn+2 +O(xn+3), (5)

where n is the parameter from (4). It can be proved that the series is convergent
[KF]. However, it occurs that the series has finite radius of convergence due to
the existence of movable singularities located at the rays connecting the origin
with all n+ 2 roots of −1, for details see [KF].

In numerical approach, integration cannot start from the singularity at x = 0,
therefore, initial data have to be shifted slightly away from the origin by the use
of (5) for x such that 0 < |x| < ε for small ε that is much less that the radius of

Numerical Investigation of Movable Singularities 295

convergence of (5). The series can be truncated at arbitrary term if the accuracy
is not important or it can be summed until prescribed accuracy is obtained.
This truncated series has to be coded into Initializer::initialize() method. The
equation has to be written in the form of a first-order system, which we give
here for the reader’s convenience (′ = d

dx){
u′(x) = v(x)
v′(x) = −α

x v(x) − xnu(x)p,
(6)

where new variable v(x) was introduced. This system has to be coded into
Equation::derivs() method, and the rank of the equation in Equation::SetRank()
method should be set to 2. The range of the domain of integration, number of
paths, initial point of paths, and integration step also should be adjusted to the
problem by editing main.cxx file. Then the command ’make run-full’ produces
the following results. Figure 7 presents the absolute value of the solution for
n = 1. Similar pictures for other values of n can be found in [KF]. Movable sin-
gularities in the figure are located on the semilines connecting the origin with all
three roots of (−1)1/3. One can note that there are cuts (discontinuity in phase)
that emanate from the singularities. The same assertion can be obtained using
spiral paths instead of semilines. The equation (4) does not possess the Painlevé
property, and the singularities are critical points, i.e., they are not poles.

Fig. 7. Figure presents a plot of the modulus of the solution with colors that indicate
the phase of it. It was plotted with points that sample the solution equidistantly along
the paths of integration with distance between them h = 0.01. It is the solution of (4)
with α = 2, p = 5, n = 1 and with IC around x = 0 given by (5) with c = 1.5. The
integration was performed along 5000 semilines that emanate from the origin and are
parameterized by the polar angle from [0; 2π) equidistantly. The starting point x0 for
the lines fulfils |x0| = 10−4. Animations are available online at [KW].

296 R.A. Kycia

3.2 Electrochemical Reaction Equation

In this example, the analysis of linear equation will be shown. The equation

y′′(x) − (s+ x+
1

4
x4)y(x) = 0, (7)

where s is a real parameter assumed hereafter as a positive number, was obtained
in [Bi] as an intermediate step in analysis of electrochemical reactions in transient
experiments at channel and tubular electrodes. Similar equation was studied by
Edward Charles Titchmarsch, see Chap. 5 of [Hi].

As it was mentioned above, the linear equation has no movable singulari-
ties, however, it will be shown that the output of the program can generate
singularity-like results if not correctly interpreted.

The equation has the analytic solution around x = 0 in the form

y(x) =
∑∞

k=0 akx
k

a0, a1 arbitrary
a2 = − s

2a0
a3 = − 1

6 (sa1 + a0)
. . .

(8)

The asymptotics at small x, i.e., the solution of the equation y′′(x)−(s+x)y(x) =
0 is a combination of the Airy functions [OLBC]

y0(x) = A1AiryAi(x+ s) +A2AiryBi(x+ s), (9)

where A1 and A2 are determined by the initial conditions.
For large values of x, the asymptotic equation y′′(x) − 1

4x
4y(x) = 0 has the

solution expressible by the modified Bessel functions [OLBC]

y∞(x) = B1

√
xBesselI1/6

(
x3

6

)
+B2

√
xBesselI−1/6

(
x3

6

)
, (10)

where B1 and B2 are also arbitrary constants. Using the asymptotics of the
Bessel functions [OLBC] it can easily be shown that the dominant term for

|x| → ∞ behaves as
exp(x3

6)√
x

, i.e., its modulus grows exponentially fast except

of six directions in the complex plane. However, the solution is singular only at
infinity. This can give a false imagination that there are only specific directions
along which the solution is bounded, and other directions give singularity of a
solution at some finite distance from the origin. It is due to the fact that the
modulus of the solution grows fast, and the method used to indicate possible
singularity in the program checks only if the modulus of the solution is bounded
by some large but finite number. To remove this ambiguity in interpretation the
better algorithm of indication of the existence of singularities is needed as it will
be discussed in the next section.

Numerical Investigation of Movable Singularities 297

Figure 8 presents the solution. Comparing this figure with Fig. 5.3 of [Hi] it
is evident that the perturbation of the Titchmarsch equation by adding x to the
coefficient of y(x) is irrelevant, i.e., the leading term x4 as |x| → ∞ is dominant.
Without x term (7) is invariant under reflection x→ −x – this broken symmetry
of the plot of the solution can be noticed from Fig. 8.

-15

-10

-5

 0

 5

 10

 15

-15 -10 -5 0 5 10 15

Im

Re

integration paths

Fig. 8. Left figure presents the solution of (7) with IC around x = 0 given by (8)
with y(0) = 1, y′(0) = 0. The right figure shows the paths along which integration
was performed. The paths are line segments that emanate from the origin. The ending
point of the path is located at the point at which the absolute value of the solution
crossed the prescribed bound ||y||∞ ≤ 105. The structure and values of parameters of
the paths are the same as in the previous examples. Animations are available online at
[KW].

For further examples, we refer the reader to the papers [K] and [KF] where
the program was used as a tool that helps to resolve the structure of movable
singularities of specific ODEs.

In the next section, generalization and improvement of the method will be
proposed.

4 General Discussion and Prospects for Future

This section contains description of the ways of how to generalize the program
and prospect for future development of it.

The first issue is the parallelization. The sequential methods of numerical
integration like the Runge–Kutta methods that use the result of the previous step
to derive the next one are almost impossible to parallelize. However, when one
considers integration along paths then every integration is independent from one
another, therefore, the easiest and the most obvious solution is to create a pool

298 R.A. Kycia

SimplyConnectedDomain

Mapper Mapper Mapper Mapper

DomainSolution

save PathSolution

get Path

Fig. 9. Parallelization of the method

of threads that will do the same task as Mapper class – they generate solution
along the paths. This approach is described in Fig. 9. Threads which realize
Mapper functionality get the paths from SimplyConnectedDomain object. When
integration along a path is finished then the solution along the path is saved in
DomainSolution object. The access to the set of paths and saving solution have
to be implemented as critical sections. This functionality was implemented and
tested. The parallel version of the program is available online at [KW].

The next issue is related to the development of more efficient integration
procedures, which can localize the positions of singularities with the precision
higher than classical fourth-order Runge–Kutta method or any other standard
method. In ideal situation, if during the integration along a path, the solution
starts to become ’singular’ then the method should try to determine the type
of a singularity and handle it appropriately. One of the approach would be
fitting some polynomial or logarithmic function to the solution along the path
to determine the rate of divergence. In another approach, the singularity could
be encircled by the path. When one turn around the singular point is performed
then the jump in the solution is tested to see whether there is a branch point or
a pole.

Finally, the issue of implementation of the algorithm using functional language
approach can be considered as well. The building blocks of the method are quite
general and can be encountered in many similar problems that require numerical
integration of ODEs along a path. We can translate these concepts from an
object-oriented approach to a functional one [ASuSu]:

– AreaQ – it is a predicate which determines if a point is in some area;
– Path – it is a function that returns points of a path;
– SolveAlongPath – it solves an equation with IC along a path and stops when

appropriate condition that detects possible proximity of a singularity is met;

Numerical Investigation of Movable Singularities 299

– DomainSolution – it is a higher order function which maps paths onto so-
lutions using given integrator, equation, initial conditions, and area con-
straints;

– ShowDomainSolution – it plots the solution in a domain.

Using these ideas, the set of simple functions for Mathematica [MATHEMATICA]
Computer Algebra System was created. The notebook with this library and exam-
ples of use can be downloaded from [KW]. The library in Mathematica is shorter
and more compact than in C++. It is based on the following idea. If a path is given
by an analytic prescription p(t), e.g., line or spiral path, where t is a parameter
along the path, then (3) can be pulled back on the path x = p(t), which gives{

dy
dt = p′(t)f (x(t),y(t))

x′(t) = p′(t),
(11)

where ′ = d
dt and where the last equation for the path was added. This trans-

formation of the equation is automatically performed in our implementation.
The system (11) with corresponding initial conditions can now be integrated
with respect to t using Mathematica numerical ODE solver. For more details see
notebook on [KW].

Implementation in the Mathematica language also explains how the algorithm
can be rewritten in other languages which support functional approach like LISP,
Scheme, MathML or Haskell to mention a few of them.

5 Conclusions

It was shown how general idea of obtaining qualitative information about the
structure of the solutions of equations in the complex plane by integrating nu-
merically equations along paths can be implemented in efficient way using an
object-oriented approach. Then it was explained on some real-world examples
how the program/library can be used. The examples served as a validation of
the method and illustrate some difficulties in using this approach. They also
show that this method is simple and powerful first approach in examination of
the structure of movable singularities of ODEs. It was also discussed how the
method can be augmented and improved. Implementation of the algorithm for
Mathematica Computer Algebra System was also described.

Acknowledgment. RK is supported by the Warsaw Center of Mathematics and
Computer Science from the funds of the Polish Leading National Research Centre
(KNOW). Some sections were developed thanks to support of Polish National Sci-
ence Centre grant UMO-2011/01/M/ST2/04126.The author is grateful to Galina
Filipuk(MIM UW, PL), Tadeusz Chmaj(IFJ, PL) and Rod Halburd(UCL, UK)
for enlightening discussions. The author also thanks the Referees for a number of
helpful suggestions for improvement in the article.

300 R.A. Kycia

References

[ASuSu] Abelson, H., Sussman, G.J., Sussman, J.: Structure and Interpre-
tation of Computer Programs, 2nd edn. MIT Press and McGraw-
Hill (1996)

[AF] Ablowitz, M.J., Fokas, A.S.: Complex Variables: Introduction and
Applications, 2nd edn. Cambridge University Press (2003)

[Bi] Bieniasz, L.K.: Automatic solution of the Singh and Dutt integral
equations for channel or tubular electrodes, by the adaptive Huber
method. J. Electroanal. Chem. 693, 95–104 (2013)

[Bu] Butcher, J.C.: Numerical Methods for Ordinary Differential Equa-
tions, 2nd edn. John Wiley & Sons, Inc. (2008)

[C] Conte, R. (ed.): The Painlevé Property. One Century Later. CRM
Series in Mathematical Physics. Springer (1999)

[D] Davis, H.T.: Introduction to Nonlinear Differential and Integral
Equations. Dover Publications (2010)

[DOXYGEN] DoxygenWeb page, http://www.stack.nl/%7edimitri/doxygen/

[FW] Fornberga, B., Weideman, J.A.C.: A numerical methodology for
the Painlevé equations. J. Comput. Phys. 230, 5957–5973 (2011)

[GHJV] Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns:
Elements of Reusable Object-oriented Software, 1st edn. Addison–
Wesley Professional (1994)

[GNUPLOT] GNUPlot Web page, http://gnuplot.info/

[G] Goriely, A.: Integrability and Nonintegrability of Dynamical Sys-
tems. Advanced Series on Nonlinear Dynamics. World Scientific
(2001)

[Hi] Hille, E.: Ordinary Differential Equations in the Complex Domain.
Dover Publications (1997)

[Hu] Hunter, C.: Series solutions for polytropes and the isothermal
sphere. Mon. Not. R. Astron. Soc. 328, 839–847 (2001)

[I] Ince, E.L.: Ordinary Differential Equations. Dover New York
(1956)

[KF] Kycia, R.A., Filipuk, G.: On the singularities of the Emden-Fowler
type equations. In: Proc. ISAAC 2013 Conference (2013) (to ap-
pear)

[K] Kycia, R.A.: On movable singularities of self-similar solutions of
semilinear wave equations. In: Proc. from the Conference, “On
Formal and Analytic Solutions of Differential and Difference Equa-
tions II”, vol. 97, pp. 59–72. Banach Center Publ. (2012)

[KW] Kycia, R.A.: Web page, http://www.mimuw.edu.pl/%7erkycia/

[MATHEMATICA] Wolfram Mathematica Web page,
http://www.wolfram.com/mathematica/

[GNUMAKE] GNU make project Web page,
https://www.gnu.org/software/make/

[MA] Mohan, C., Al-Bayaty, A.R.: Power series solutions of the Lane–
Emden equation. Astophysics and Space Science 73, 227–239
(1980)

[N] Needham, T.: Visual Complex Analysis. Oxford University Press
(1999)

http://www.stack.nl/%7edimitri/doxygen/
http://gnuplot.info/
http://www.mimuw.edu.pl/%7erkycia/
http://www.wolfram.com/mathematica/
https://www.gnu.org/software/make/

Numerical Investigation of Movable Singularities 301

[OLBC] Olver, F.W.J., Lozier, D.W., Boisvert, R.F., Clark, C.W.: NIST
Handbook of Mathematical Functions. Cambridge University
Press (2010)

[PTWF] Press, W.H., Teukolsky, S.A., Wetterling, W.T., Flannery, B.P.:
Numerical Recipes: The Art of Scientific Computing, 3rd edn.
Cambridge University Press (2007)

[WS] Wegert, E., Semmler, G.: Phase plots of complex functions: A jour-
ney in illustration. Notices Amer. Math. Soc. 58, 768–780 (2011)

Generalized Mass-Action Systems

and Positive Solutions of Polynomial Equations
with Real and Symbolic Exponents

(Invited Talk)

Stefan Müller and Georg Regensburger

Johann Radon Institute for Computational and Applied Mathematics (RICAM),
Austrian Academy of Sciences, Linz, Austria

{stefan.mueller,georg.regensburger}@ricam.oeaw.ac.at

Abstract. Dynamical systems arising from chemical reaction networks
with mass action kinetics are the subject of chemical reaction network
theory (CRNT). In particular, this theory provides statements about
uniqueness, existence, and stability of positive steady states for all rate
constants and initial conditions. In terms of the corresponding polyno-
mial equations, the results guarantee uniqueness and existence of positive
solutions for all positive parameters.

We address a recent extension of CRNT, called generalized mass-
action systems, where reaction rates are allowed to be power-laws in the
concentrations. In particular, the (real) kinetic orders can differ from the
(integer) stoichiometric coefficients. As with mass-action kinetics, com-
plex balancing equilibria are determined by the graph Laplacian of the
underlying network and can be characterized by binomial equations and
parametrized by monomials. In algebraic terms, we focus on a construc-
tive characterization of positive solutions of polynomial equations with
real and symbolic exponents.

Uniqueness and existence for all rate constants and initial conditions
additionally depend on sign vectors of the stoichiometric and kinetic-
order subspaces. This leads to a generalization of Birch’s theorem, which
is robust with respect to certain perturbations in the exponents. In this
context, we discuss the occurrence of multiple complex balancing equi-
libria.

We illustrate our results by a running example and provide a MAPLE
worksheet with implementations of all algorithmic methods.

Keywords: Chemical reaction network theory, generalized mass-action
systems, generalized polynomial equations, symbolic exponents, positive
solutions, binomial equations, Birch’s theorem, oriented matroids, mul-
tistationarity.

1 Introduction

In this work, we focus on dynamical systems arising from (bio-)chemical reac-
tion networks with generalized mass-action kinetics and positive solutions of the
corresponding systems of generalized polynomial equations.

V.P. Gerdt et al. (Eds.): CASC Workshop 2014, LNCS 8660, pp. 302–323, 2014.
c© Springer International Publishing Switzerland 2014

Polynomial Equations with Real and Symbolic Exponents 303

In chemical reaction network theory, as initiated by Horn, Jackson, and Fein-
berg in the 1970s [15,33,32], several fundamental results are based on the as-
sumption of mass action kinetics (MAK). Consider the reaction

1 A + 1 B → C (1)

involving the reactant species A, B and the product C, where we explicitly state
the stoichiometric coefficients of the reactants. The left- and right-hand sides of
a reaction, in this case A+B and C, are called (stoichiometric) complexes. Let

[A] = [A](t)

denote the concentration of species A at time t, and analogously for B and C.
Assuming MAK, the rate at which the reaction occurs is given by

v = k [A]1[B]1

with rate constant k > 0. In other words, the reaction rate is a monomial in the
reactant concentrations [A] and [B] with the stoichiometric coefficients as expo-
nents. Within a network involving additional species and reactions, the above
reaction contributes to the dynamics of the species concentrations as

d

dt

⎛⎜⎜⎜⎜⎜⎝
[A]
[B]
[C]
[D]
...

⎞⎟⎟⎟⎟⎟⎠ = k [A][B]

⎛⎜⎜⎜⎜⎜⎝
−1
−1
1
0
...

⎞⎟⎟⎟⎟⎟⎠+ · · ·

In many applications, the reaction network is given, but the values of the rate
constants are unknown. Surprisingly, there are results on existence, uniqueness,
and stability of steady states that do not depend on the rate constants. See, for
example, the lecture notes [16] and the surveys [17,19,30].

However, the validity of MAK is limited; it only holds for elementary reactions
in homogeneous and dilute solutions. For biochemical reaction networks in in-
tracellular environments, the rate law has to be modified. In previous work [40],
we allowed generalized mass-action kinetics (GMAK) where reaction rates are
power-laws in the concentrations. In particular, the exponents need not coincide
with the stoichiometric coefficients and need not be integers. For example, the
rate at which reaction (1) occurs may be given by

v = k [A]a[B]b

with kinetic orders a, b > 0. Formally, we specify the rate of a reaction by
associating (here indicated by dots) with the reactant complex a kinetic complex,
which determines the exponents in the generalized monomial:

A + B → C
...

aA + bB

304 S. Müller and G. Regensburger

Before we give the definition of generalized mass action systems, we introduce
a running example, which will be used to motivate and illustrate general state-
ments. Throughout the paper, we focus on algorithmic aspects of the theoretical
results. Additionally, we provide a MAPLE worksheet1 with implementations of
all algorithms applied to the running example. For other applications of com-
puter algebra to chemical reaction networks, we refer to [7,14,36,45].

Notation. We denote the strictly positive real numbers by R>. We define ex ∈
Rn

> for x ∈ Rn component-wise, that is, (ex)i = exi ; analogously, ln(x) ∈ Rn for
x ∈ Rn

> and x−1 ∈ Rn for x ∈ Rn with xi �= 0. For x, y ∈ Rn, we denote the
component-wise (or Hadamard) product by x ◦ y ∈ Rn, that is, (x ◦ y)i = xiyi;
for x ∈ Rn

> and y ∈ Rn, we define xy ∈ R> as
∏n

i=1 x
yi

i .
Given a matrix B ∈ Rn×m, we denote by b1, . . . , bm its column vectors and

by b1, . . . , bn its row vectors. For x ∈ Rn
>, we define xB ∈ Rm

> as

(xB)j = xb
j

=

n∏
i=1

x
bij
i

for j = 1, . . . ,m. As a consequence,

ln(xB) = BT lnx.

Finally, we identify a matrix B ∈ Rn×m with the corresponding linear map
B : Rm → Rn and write im(B) and ker(B) for the respective vector subspaces.

2 Running Example

We consider a reaction network based on the weighted directed graph

1
k12 �� 2
k21

��

k23

��

4
k45 �� 5
k54

��

3

k31

����������

(2)

with 5 vertices, 6 edges and corresponding positive weights. Clearly, the edges
represent reactions and the weights are rate constants. We assume that the
network contains 4 species A, B, C, D and associate with each vertex a (stoi-
chiometric) complex, that is, a formal sum of species:

A + B �� C��

��

A �� D��

2A

����������

1 The worksheet is available at http://gregensburger.com/software/GMAK.zip.

http://gregensburger.com/software/GMAK.zip

Polynomial Equations with Real and Symbolic Exponents 305

In order to specify the reaction rates, e.g., v12 = k12[A]
1
2 [B]

3
2 , we additionally

associate a kinetic complex with each source vertex:

1
2A + 3

2B �� C��

��

A �� D��

3A

�����������

Writing

x = (x1, x2, x3, x4)T

for the concentrations of species A, B, C, D, the dynamics of the generalized
mass action system is given by

d

dt

⎛⎜⎜⎝
x1
x2
x3
x4

⎞⎟⎟⎠ =

⎛⎜⎜⎝
−1 1 2 −1 −1 1
−1 1 0 1 0 0
1 −1 −1 0 0 0
0 0 0 0 1 −1

⎞⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎝
k12 (x1)

1
2 (x2)

3
2

k21 x3
k23 x3
k31 (x1)3

k45 x1
k54 x4

⎞⎟⎟⎟⎟⎟⎟⎠ = N v(x), (3)

where we fix an order on the edges, E =
(
(1, 2), (2, 1), (2, 3), (3, 1), (4, 5), (5, 4)

)
,

and introduce the stoichiometric matrix N and the vector of reaction rates v(x).
We further decompose the system. Writing the stoichiometric and kinetic

complexes as column vectors of the matrices

Y =

⎛⎜⎜⎝
1 0 2 1 0
1 0 0 0 0
0 1 0 0 0
0 0 0 0 1

⎞⎟⎟⎠ and Ỹ =

⎛⎜⎜⎝
1
2 0 3 1 0
3
2 0 0 0 0
0 1 0 0 0
0 0 0 0 1

⎞⎟⎟⎠
and using the incidence matrix of the graph (2),

IE =

⎛⎜⎜⎜⎜⎝
−1 1 0 1 0 0
1 −1 −1 0 0 0
0 0 1 −1 0 0
0 0 0 0 −1 1
0 0 0 0 1 −1

⎞⎟⎟⎟⎟⎠ ,

we can write the stoichiometric matrix as

N = Y IE .

The vector of reaction rates v(x) can also be decomposed by introducing a di-
agonal matrix

Δk = diag(k12, k21, k23, k31, k45, k54)

306 S. Müller and G. Regensburger

containing the rate constants, a matrix indicating the source vertex of each
reaction,

Is =

⎛⎜⎜⎜⎜⎝
1 0 0 0 0 0
0 1 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎞⎟⎟⎟⎟⎠ ,
and the vector of monomials determined by the kinetic complexes,

xỸ =

⎛⎜⎜⎜⎜⎝
(x1)

1
2 (x2)

3
2

x3
(x1)3

x1
x4

⎞⎟⎟⎟⎟⎠ .

Then,

v(x) = Δk I
T
s x

Ỹ ,

and we can write
dx

dt
= N v(x) = Y IE Δk I

T
s x

Ỹ .

Note that the matrix

Ak = IE Δk I
T
s =

⎛⎜⎜⎜⎜⎝
−k12 k21 k31 0 0
k12 −(k21 + k23) 0 0 0
0 k23 −k31 0 0
0 0 0 −k45 k54
0 0 0 k45 −k54

⎞⎟⎟⎟⎟⎠ (4)

depends only on the weighted digraph, while Y and xỸ are determined by the
stoichiometric and kinetic complexes. The resulting decomposition

dx

dt
= Y Ak x

Ỹ

is due to [33], where Ak is called kinetic matrix and the stoichiometric and
kinetic complexes are equal, that is, Y = Ỹ . The interpretation of Ak as a
weighted graph Laplacian was introduced in [24] and used in [12,47,31,37,34], in
particular, in connection with the matrix-tree theorem.

3 Generalized Mass Action Systems

We consider directed graphs G = (V,E) given by a finite set of vertices

V = {1, . . . ,m}

Polynomial Equations with Real and Symbolic Exponents 307

and a finite set of edges E ⊆ V × V . We often denote an edge e = (i, j) ∈ E by
i→ j to emphasize that it is directed from the source i to the target j. Further,
we write

Vs = {i | i→ j ∈ E}

for the set of source vertices that appear as a source of some edge.

Definition 1. A generalized chemical reaction network (G, y, ỹ) is given by a
digraph G = (V,E) without self-loops, and two functions

y : V → Rn and ỹ : Vs → Rn

assigning to each vertex a (stoichiometric) complex and to each source a kinetic
complex.

We note that this definition differs from [40]. On the one hand, kinetic complexes
were assigned also to non-source vertices, on the other hand, all (stoichiometric)
complexes had to be different, and analogously the kinetic complexes.

Definition 2. A generalized mass action system (Gk, y, ỹ) is a generalized
chemical reaction network (G, y, ỹ), where edges (i, j) ∈ E are labeled with rate
constants kij ∈ R>.

The contribution of reaction i→ j ∈ E to the dynamics of the species concen-
trations x ∈ Rn is proportional to the reaction vector y(j)−y(i) ∈ Rn. Assuming
generalized mass action kinetics, the rate of the reaction is determined by the
source kinetic complex ỹ(i) and the positive rate constant kij :

vi→j(x) = kij x
ỹ(i).

The ordinary differential equation associated with a generalized mass action
system is defined as

dx

dt
=

∑
i→j∈E

kij x
ỹ(i)

(
y(j) − y(i)

)
.

The change over time lies in the stoichiometric subspace

S = span{y(j) − y(i) ∈ Rn | i→ j ∈ E},

which suggests the definition of a (positive) stoichiometric compatibility class
(c′ + S) ∩ Rn

> with c′ ∈ Rn
>.

In case every vertex is a source, that is, Vs = V , we introduce also the kinetic-
order subspace

S̃ = span{ỹ(j) − ỹ(i) ∈ Rn | i→ j ∈ E}.

In order to decompose the right-hand side of the ODE system, we define the
matrices Y ∈ Rn×m as yj = y(j) and Ỹ ∈ Rn×m as ỹj = ỹ(j) for j ∈ Vs and
ỹj = 0 otherwise (see also the remark below). Further, we introduce the weighted

308 S. Müller and G. Regensburger

graph Laplacian Ak ∈ Rm×m: (Ak)ij = kji if j → i ∈ E, (Ak)ii = −
∑

i→j∈E kij ,
and (Ak)ij = 0 otherwise. We obtain:

dx

dt
= Y Ak x

Ỹ .

Note that ỹj can be chosen arbitrarily for j /∈ Vs, since in this case (Ak)j = 0

and hence (Ak)jxỹ
j

= 0.

Steady states of the ODE satisfying x ∈ Rn
> and Ak x

Ỹ = 0 are called complex
balancing equilibria. We denote the corresponding set by

Zk = {x ∈ Rn
> | Ak x

Ỹ = 0}.

Finally, the (stoichiometric) deficiency is defined as

δ = m− l − s,

where m is the number of vertices, l is the number of connected components,
and s = dimS is the dimension of the stoichiometric subspace.

Using S = im(Y IE), where IE is the incidence matrix of the graph (for a
fixed order on E), we obtain the equivalent definition

δ = dim(ker(Y) ∩ im(IE)),

see for example [34]. Further, note that im(Ak) ⊆ im(IE). Now, if δ = 0, then
ker(Y) ∩ im(Ak) ⊆ ker(Y) ∩ im(IE) = {0}, and there are no x ∈ Rn

> such that

Y Ak x
Ỹ = 0, but Ak x

Ỹ �= 0. In other words, if δ = 0, there are no steady states
other than complex balancing equilibria.

4 Graph Laplacian

A basis for the kernel of Ak in (4) is given by

(k31 k21 + k31 k23, k12 k31, k23 k12, 0, 0)T and (0, 0, 0, k54, k45)T .

Obviously, the support of the vectors coincides with the connected components of
the graph. In general, this holds for the strongly connected components without
outgoing edges.

Let Gk = (V,E, k) be a weighted digraph without self-loops and Ak its graph
Laplacian. Further, let l be the number of connected components (aka linkage
classes) and T1, . . . , Tt ⊆ V be the sets of vertices within the strongly con-
nected components without outgoing edges (aka terminal strong linkage classes).
Clearly, t ≥ l. A fundamental result of CRNT [21] states that there exist linearly
independent χ1, . . . , χt ∈ Rn

≥, where χλμ > 0 if μ ∈ Tλ and χλμ = 0 otherwise,

such that ker(Ak) = span{χ1, . . . , χt}.
In fact, the non-zero entries in the basis vectors can be computed using the

matrix-tree theorem:
χλμ = Kμ, λ ∈ {1, . . . , t}

Polynomial Equations with Real and Symbolic Exponents 309

with tree constants

Kμ =
∑
T ∈Sμ

∏
i→j∈T

kij , μ ∈ {1, . . . ,m},

where Sμ is the set of directed spanning trees (for the respective strongly con-
nected component without outgoing edges) rooted at vertex μ; see [31,37,34].
We refer to [8] for further details and references on the graph Laplacian and a
combinatorial proof of the matrix-tree theorem following [49].

If there exists ψ ∈ Rm
> with Ak ψ = 0, then every vertex resides in a strongly

connected component without outgoing edges, that is, every connected compo-
nent is strongly connected. In this case, the underlying unweighted digraph is
called weakly reversible. Now, let (G, y, ỹ) be a generalized chemical reaction net-
work. If there exist rate constants k such that the generalized mass action system

(Gk, y, ỹ) admits a complex balancing equilibrium x ∈ Rn
>, that is, Ak x

Ỹ = 0,
then G is weakly reversible.

5 Binomial Equations for Complex Balancing Equilibria

For a weakly reversible digraph, we know from the previous section that a basis
for ker(Ak), parametrized by the weights, is given in terms of the l connected
components and the m tree constants.

In our example, where l = 2 and m = 5, basis vectors of ker(Ak) are given by

(K1,K2,K3, 0, 0)T and (0, 0, 0,K4,K5)T

with tree constants

(K1,K2,K3,K4,K5) = (k31 k21 + k31 k23, k12 k31, k23 k12, k54, k45).

Due to their special structure, we immediately find “binomial” basis vectors
for the orthogonal complement ker(Ak)⊥,

(−K2,K1, 0, 0, 0)T , (0,−K3,K2, 0, 0)T , and (0, 0, 0,−K5,K4)T ,

which are again determined by the connected components and tree constants.
These vectors form a basis since they are linearly independent and

dim ker(Ak)⊥ = m− dim ker(Ak) = m− l = 5 − 2 = 3.

In our example, a complex balancing equilibrium x ∈ R4
> with ψ = xỸ and hence

Ak ψ = 0, can equivalently be described as a positive solution of the binomial
equations ⎛⎝−K2 K1 0 0 0

0 −K3 K2 0 0
0 0 0 −K5 K4

⎞⎠ψ = 0.

310 S. Müller and G. Regensburger

In other words, ψ ∈ ker(Ak) is equivalent to ψ ⊥ ker(Ak)⊥ or a basis thereof.

Explicitly, we have ψ = xỸ = ((x1)
1
2 (x2)

3
2 , x3, (x1)3, x1, x4)T and

K1 x3 −K2 (x1)
1
2 (x2)

3
2 = 0, K2 (x1)3 −K3 x3 = 0, K4 x4 −K5 x1 = 0. (5)

Clearly, these considerations generalize to arbitrary weakly reversible digraphs:
Based on the (strongly) connected components, we can characterize complex bal-
ancing equilibria by m− l binomial equations with tree constants as coefficients.

Proposition 1. Let Ak be the graph Laplacian of a weakly reversible digraph
with positive weights and m vertices ordered within l connected components,

Lλ = (iλμ)μ=1,...,mλ
for λ = 1, . . . , l, where

∑l
λ=1mλ = m.

Let Ỹ ∈ Rn×m and
Zk = {x ∈ Rn

> | Ak x
Ỹ = 0}.

Then,

Zk = {x ∈ Rn
> | Ki x

ỹj −Kj x
ỹi

= 0, (i, j) ∈ E}

where
E = {(iλμ, i

λ
μ+1) | λ = 1, . . . , l; μ = 1, . . . ,mλ − 1}.

Note that the actual binomial equations depend on the order of the vertices
within the connected components, but the zero set does not.

6 Binomial Equations with Real and Symbolic Exponents

In this section, we collect basic facts about positive real solutions of binomial
equations with real exponents. We present the results in full generality, in partic-
ular, not restricted to complex balancing equilibria, and emphasize algorithmic
aspects. Moreover, by reducing computations to linear algebra, we outline the
treatment of symbolic exponents.

In an algebraic perspective, one usually considers solutions of binomial equa-
tions with integer exponents. We refer to [13] for an introduction including algo-
rithmic aspects and an extensive list of references. An algorithm with polynomial
complexity for computing solutions with non-zero or positive coordinates of para-
metric binomial systems is presented in [29]. For recent algorithmic methods for
binomial equations and monomial parametrizations, see [1]. Toric geometry and
computer algebra was introduced to the study of mass action systems in [25,27,26]
and further developed in [12]. So-called toric steady states are solutions of binomial
equations arising from polynomial dynamical systems [42].

In chemical reaction networks, it is natural to consider real exponents: kinetic
orders, measured by experiments, need not be integers. Also in S-systems [46,48],
defined by binomial power-laws, the exponents are real numbers identified from
data. We note that binomial equations are implicit in the original works on
chemical reaction networks [33,32].

Polynomial Equations with Real and Symbolic Exponents 311

In the following, we consider binomial equations

αi x
ai − βi xb

i

= 0 for i = 1, . . . , r

for x ∈ Rn
>, where ai, bi ∈ Rn and αi, βi ∈ R>. Clearly, x is a solution iff

xa
i−bi =

βi
αi

for i = 1, . . . , r.

By introducing the exponent matrix M ∈ Rn×r, whose ith column is the vector
ai − bi, and the vectors α, β ∈ Rr

> with entries αi and βi, respectively, we can
rewrite the above equation system as

xM =
β

α
.

More generally, we are interested for which γ ∈ Rr
> the equations

xM = γ

have a positive solution. Taking the logarithm, we obtain the equivalent linear
equations

MT lnx = ln γ, (6)

which reduces the problem to linear algebra.
In the rest of this section, we fix a matrix M ∈ Rn×r and write

ZM,γ = {x ∈ Rn
> | xM = γ}

for the set of all positive solutions with right-hand side γ ∈ Rr
>.

Proposition 2. The following statements hold:

ZM,γ �= ∅ for all γ ∈ Rr
> iff ker(M) = {0}.

If ker(M) �= {0}, then

ZM,γ �= ∅ for γ ∈ Rr
> iff γC = 1,

where C ∈ Rr×p with im(C) = ker(M) and ker(C) = {0}.

Proof. Using (6), xM = γ is equivalent to

ln γ ∈ im(MT) = ker(M)⊥.

Hence, ZM,γ �= ∅ for all γ ∈ Rr
> iff ker(M) = {0}. If ker(M) �= {0}, then

ln γ ∈ ker(M)⊥ = im(C)⊥ ⇔ CT ln γ = 0 ⇔ γC = 1.

��

312 S. Müller and G. Regensburger

Computing an explicit positive solution x∗ ∈ ZM,γ (if it exists) in terms of
γ is equivalent to computing a particular solution for the linear equations (6).
For this, we use an arbitrary generalized inverse H of MT , that is, a matrix
H ∈ Rn×r such that

MTHMT =MT .

We refer to [4] for details on generalized inverses.

Proposition 3. Let γ ∈ Rr
> such that ln γ ∈ im(MT). Let H ∈ Rn×r be a

generalized inverse of MT . Then,

x∗ = γH
T

∈ ZM,γ .

Proof. By assumption, ln γ = MT z for some z ∈ Rn. Then,

MT lnx∗ = MTH ln γ = MTHMT z =MT z = ln γ

and hence x∗ ∈ ZM,γ as claimed. ��
Given one positive solution x∗ ∈ ZM,γ , we have a generalized monomial

parametrization for the set of all positive solutions.

Proposition 4. Let x∗ ∈ ZM,γ. Then,

ZM,γ = {x∗ ◦ ev | v ∈ im(M)⊥}.
If im(M)⊥ �= {0}, then

ZM,γ = {x∗ ◦ ξB
T

| ξ ∈ R
q
>},

where B ∈ Rn×q with im(B) = im(M)⊥ and ker(B) = {0}.

Proof. The first equality follows from (6): x ∈ ZM,γ iff v = lnx − lnx∗ ∈
ker(MT) = im(M)⊥, that is, x = x∗ ◦ ev with v ∈ im(M)⊥.

Since the columns of B form a basis for im(M)⊥, we can write v ∈ im(M)⊥

uniquely as v = B t for some t ∈ Rq. By introducing ξ = et ∈ R
q
>, we obtain

(ev)i = evi = e
∑

j bij tj =
∏

j ξ
bij
j = ξbi = (ξB

T

)i,

that is, ev = ξB
T

. ��
Note that the conditions for the existence of positive solutions and the

parametrization of all positive solutions, respectively, depend only on the vector
subspaces ker(M) and im(M)⊥ = ker(MT).

Summing up, we have seen that computing positive solutions for binomial
equations reduces to linear algebra involving the exponent matrix M . The ma-
trices C, H and B from Propositions 2, 3, and 4 can be computed effectively if
M ∈ Qn×r and C, B can be chosen to have only integer entries.

Moreover, the linear algebra approach to binomial equations allows to deal
algorithmically with indeterminate (symbolic) exponents. We can use computer
algebra methods for matrices with symbolic entries like Turing factoring (gen-
eralized PLU decomposition) [10] and its implementation [11]. Based on these
methods, we can compute explicit monomial parametrizations with symbolic
exponents for generic entries and investigate conditions for special cases. See
Section 8 for an example.

Polynomial Equations with Real and Symbolic Exponents 313

7 Kinetic Deficiency

Applying the results from the previous section, we rewrite the binomial equa-
tions (5) from our example,

K1 x3 −K2 (x1)
1
2 (x2)

3
2 = 0, K2 (x1)3 −K3 x3 = 0, K4 x4 −K5 x1 = 0,

as

xM = κk,

where

M =

⎛⎜⎜⎝
− 1

2 3 −1
− 3

2 0 0
1 −1 0
0 0 1

⎞⎟⎟⎠ (7)

and
κk = (K2/K1,K3/K2,K5/K4)

T ,

which depends on the weights k via the tree constants K.
Recall that the binomial equations depend on the basis vectors for ker(Ak)⊥

which are determined by the relation E = {(1, 2), (2, 3), (4, 5)}. To specify the
resulting exponent matrix M and the right-hand side κk, we have fixed an order
on the relation. By abuse of notation, we write

E = ((1, 2), (2, 3), (4, 5)).

Hence, M = Ỹ IE with

IE =

⎛⎜⎜⎜⎜⎝
−1 0 0
1 −1 0
0 1 0
0 0 −1
0 0 1

⎞⎟⎟⎟⎟⎠ . (8)

In general, for a weakly reversible digraph with m vertices and l connected
components, let E be a relation as in Proposition 1 with fixed order. We denote
by IE ∈ Rm×(m−l) the matrix with columns

ej − ei for (i, j) ∈ E ,

where ei denotes the ith standard basis vector in Rm. Clearly, the columns of IE
are linearly independent and hence dim im(IE) = m− l. To rewrite the binomial
equations in Proposition 1, we define the exponent matrix M ∈ Rn×(m−l) as

M = Ỹ IE ,

the right-hand side κk ∈ Rm−l
> as

(κk)(i,j) = Kj/Ki for (i, j) ∈ E , (9)

314 S. Müller and G. Regensburger

and obtain
Zk = {x ∈ Rn

> | xM = κk}.
We note that the actual matrix M depends on E , but im(M) does not. This can
be seen using the following fact.

Proposition 5. Let G = (V,E) be a digraph with m vertices and l connected
components. Let IE ∈ Rm×|E| denote its incidence matrix (for fixed order on
E), and let IE ∈ Rm×(m−l) be as defined above. Then,

im(IE) = im(IE).

Proof. From graph theory (see for example [35]) and the argument above, we
know that dim im(IE) = dim im(IE) = m− l. It remains to show that im(IE) ⊆
im(IE). We consider the column ej−ei of IE corresponding to the edge (i, j) ∈ E.
Clearly, i and j are in the same connected component Lλ, in particular, i = iλμ(i)
and j = iλμ(j), where we assume μ(i) < μ(j). Then,

ej − ei =
∑

μ=μ(i),...,μ(j)−1

ei
λ
μ+1 − ei

λ
μ ,

where ei
λ
μ+1 − eiλμ are columns of IE corresponding to pairs (iλμ, i

λ
μ+1) in E . ��

Now, we see that im(M) equals the kinetic-order subspace S̃:

im(M) = im(Ỹ IE) = im(Ỹ IE) = S̃.

Finally, we recall that the number of independent conditions on κk for the
existence of a positive solution of xM = κk is given by dim ker(M), cf. Proposi-
tion 2. Observing M ∈ Rn×(m−l), we obtain

dim ker(M) = m− l − dim im(M) = m− l − dim S̃. (10)

Hence, for a digraph with m vertices and l connected components, we define
the kinetic deficiency as

δ̃ = m− l − s̃,
where s̃ = dim S̃ denotes the dimension of the kinetic-order subspace.

8 Computing Complex Balancing Equilibria

Combining the results from the previous sections, we obtain the following con-
structive characterization of complex balancing equilibria in terms of quotients
of tree constants.

Theorem 1. Let Ak be the graph Laplacian of a weakly reversible digraph with
positive weights, m vertices, and l connected components. Let Ỹ ∈ Rn×m be
the matrix of kinetic complexes, s̃ = dim S̃ the dimension of the kinetic-order

Polynomial Equations with Real and Symbolic Exponents 315

subspace, and δ̃ = m − l − s̃ the kinetic deficiency. Further, let M ∈ Rn×(m−l)

and κk ∈ Rm−l
> such that

Zk = {x ∈ Rn
> | Ak x

Ỹ = 0} = {x ∈ Rn
> | xM = κk}.

Then, the following statements hold:

(a) Zk �= ∅ for all k iff δ̃ = 0.

(b) If δ̃ > 0, then
Zk �= ∅ iff (κk)C = 1,

where C ∈ R(m−l)×δ̃ with im(C) = ker(M) and ker(C) = {0}.

(c) If Zk �= ∅, then

x∗ = (κk)H
T ∈ Zk,

where H ∈ Rn×(m−l) is a generalized inverse of MT .

(d) If x∗ ∈ Zk and s̃ < n, then

Zk = {x∗ ◦ ξB
T

| ξ ∈ Rn−s̃
> },

where B ∈ Rn×(n−s̃) with im(B) = S̃⊥ and ker(B) = {0}.

Proof. By Propositions 2, 3, and 4. In fact, it remains to prove one implication
in (a). Assume Zk �= ∅ for all k, that is, there exists a solution to xM = κk for
all k. By Lemma 1 below, for all γ ∈ Rm−l

> , there exists k such that κk = γ.
Hence, there exists a solution to xM = γ for all γ. Using (10) and Proposition 2,
we obtain δ̃ = dim ker(M) = 0. ��

Lemma 1. Let Ak be the graph Laplacian of a weakly reversible digraph with
positive weights, m vertices, and l connected components, and let κk ∈ Rm−l

> be
the vector of quotients of tree constants defined in (9). For all γ ∈ Rm−l

> , there
exists k such that κk = γ.

Proof. First, we show that every positive vector ψ ∈ Rm
> solves Ak ψ = 0 for

some weights k. Indeed, for given k, the vector of tree constants K ∈ Rm
> solves

AkK = 0, and by choosing k∗ij = kij
Ki

ψi
, one obtains

(Ak∗ ψ)i =

m∑
j=1

(Ak∗)ij ψj =
∑

j→i∈E

k∗ji ψj −
∑

i→j∈E

k∗ij ψi

=
∑

j→i∈E

kjiKj −
∑

i→j∈E

kij Ki =

m∑
j=1

(Ak)ij Kj = (AkK)i = 0

for all i = 1, . . . ,m, that is, Ak∗ ψ = 0.
Let E be a relation as in Proposition 1 with the obvious order. Using basis

vectors of ker(Ak) having tree constants as entries, we find that

ψj

ψi
=
Kj

Ki
= (κk)(i,j) for all (i, j) ∈ E .

316 S. Müller and G. Regensburger

By choosing the entries of ψ ∈ Rm
> in the obvious order, every γ ∈ Rm−l

> can be
attained by κk for some k. ��

Remark 1. Theorem 1 is constructive in the following sense:

– To test if the digraph G is weakly reversible, we compute the connected and
the strongly connected components and check whether they are equal.

– The tree constants are computed in terms of the weights k, using (fraction-
free) Gaussian elimination on the sub-matrices of Ak determined by the
(strongly) connected components.

– Given the kinetic complexes Ỹ ∈ Qn×m and the (strongly) connected compo-
nents of the digraph, we compute a matrix M and a vector κk as introduced
in Section 7.

– All matrices involved are computed by linear algebra from the exponent
matrix M . This can also be done algorithmically if the kinetic complexes
Ỹ and hence M contain indeterminate (symbolic) entries; see the end of
Section 6.

In our example, δ̃ = 5 − 2 − 3 = 0 and a monomial parametrization of all
complex balancing equilibria is given by(

(κ3)−1, (κ1)−
2
3 (κ2)−

2
3 (κ3)−

5
3 , κ−1

2 (κ3)−3, 1
)T

◦ (ξ3, ξ5, ξ9, ξ3)T ,

where

κ ≡ κk =

(
k12

k21 + k23
,
k23
k31
,
k45
k54

)T

and ξ ∈ R>.
To conclude, we associate with each vertex of the graph a kinetic complex pos-

sibly containing symbolic coefficients, thereby specifying monomials with sym-
bolic exponents:

aA + bB �� C��

��

A �� D��

cA

�����������

(11)

In this setting, a monomial parametrization with symbolic exponents of all
complex balancing equilibria is given by(

(κ3)−1, (κ1)−
1
b (κ2)−

1
b (κ3)

a−c
b , (κ2)−1 (κ3)−c, 1

)T
◦ (ξb, ξc−a, ξbc, ξb)T ,

which is valid for non-zero a, b, c ∈ R.

9 Generalized Birch’s Theorem

Since the dynamics of generalized mass-action systems is confined to cosets of
the stoichiometric subspace, we are interested in uniqueness and existence of
complex balancing equilibria in every positive stoichiometric compatibility class.

Polynomial Equations with Real and Symbolic Exponents 317

Let Gk be a weakly reversible digraph with positive weights, m vertices and
l connected components. For fixed rate constants k, a complex balancing equi-

librium x∗ ∈ Rn
> of the mass-action system (Gk, y, ỹ) solves Ak xỸ = 0, where

Ak ∈ Rm×m is the graph Laplacian and Ỹ ∈ Rn×m is the matrix of kinetic com-
plexes. Equivalently, it solves xM = κk, where the columns of M ∈ Rn×(m−l)

are differences of kinetic complexes and the entries of κk ∈ Rm−l
> are quotients

of the tree constants K, which depend on the weights k. In other words,

Zk = {x ∈ Rn
> | Ak x

Ỹ = 0}
= {x ∈ Rn

> | xM = κk}.

Given a complex balancing equilibrium x∗ ∈ Rn
>, we further know that

Zk = {x∗ ◦ ev | v ∈ im(M)⊥}

= {x∗ ◦ ξB
T

| ξ ∈ Rd̃
>},

where the second equality holds if im(M)⊥ �= {0} and B ∈ Rn×d̃ is defined as
im(B) = im(M)⊥ and ker(B) = {0}.

For simplicity, we write W̃ = BT ∈ Rd̃×n such that S̃ = im(M) = im(B)⊥ =
im(W̃T)⊥ = ker(W̃). Analogously, we introduce a matrix W ∈ Rd×n with full
rank d such that S = ker(W).

If the intersection of the set of complex balancing equilibria with some com-
patibility class,

Zk ∩ (x′ + S),

is non-empty, then there exist ξ ∈ Rd̃
> and u ∈ S such that

x∗ ◦ ξW̃ = x′ + u.

Multiplication by W yields

W (x∗ ◦ ξW̃) = W x′

such that existence and uniqueness of complex balancing equilibria in every
stoichiometric compatibility class are equivalent to surjectivity and injectivity
of the generalized polynomial map

fx∗ : Rd̃
> → C◦ ⊆ Rd (12)

ξ �→W (x∗ ◦ ξW̃) =

n∑
i=1

x∗i ξ
w̃i

wi,

where C◦ is the interior of the polyhedral cone

C =
{
Wx′ ∈ Rd | x′ ∈ Rn

≥
}

=

{
n∑

i=1

x′i w
i ∈ Rd | x′ ∈ Rn

≥

}
.

318 S. Müller and G. Regensburger

In mass-action systems, where S = S̃ and hence W = W̃ , one version [23]
of Birch’s theorem [5] states that fx∗ is a real analytic isomorphism of Rd

> onto
C◦ for all x∗ ∈ Rn

>. We refer to [28, Sect. 5] for a recent overview on the use of
Birch’s theorem in CRNT and to [41] for the version used in algebraic statistics.
Interestingly, Martin W. Birch’s seminal paper on maximum likelihood methods
for log-linear models was part of a PhD thesis at the University of Glasgow that
was never submitted [22].

Recently, we have generalized Birch’s theorem to W �= W̃ , cf. [40, Proposi-
tion 3.9]. To formulate the result, we define the sign vector σ(x) ∈ {−, 0,+}n
of a vector x ∈ Rn by applying the sign function component-wise, and we write
σ(S) = {σ(x) | x ∈ S} for a subset S ⊆ Rn.

Theorem 2. Let W ∈ Rd×n, W̃ ∈ Rd̃×n and S = ker(W), S̃ = ker(W̃). If
σ(S) = σ(S̃) and (+, . . . ,+)T ∈ σ(S⊥), then the generalized polynomial map

fx∗ in (12) is a real analytic isomorphism of Rd̃
> onto C◦ for all x∗ ∈ Rn

>.

If δ̃ = 0, there exists a complex balancing equilibrium for all rate constants k,
by Theorem 1. If further the generalized polynomial map fx∗ is surjective and
injective for all x∗, then, by Theorem 2, there exists a unique steady state in
every positive stoichiometric compatibility class for all k.

To illustrate the result, we consider the minimal (weakly) reversible weighted
digraph

1
k12

�
k21

2,

and associate with each vertex a (stoichiometric) complex

A + B � C

as well as a kinetic complex
aA + bB � C,

where a, b > 0. We find S = im(−1,−1, 1)T and S̃ = im(−a,−b, 1)T and choose

W =

(
1 0 1
0 1 1

)
and W̃ =

(
1 0 a
0 1 b

)
such that S = ker(W) and S̃ = ker(W̃). Clearly, our generalization of Birch’s
theorem applies since

σ(S) =

⎧⎨⎩
⎛⎝−

−
+

⎞⎠ ,
⎛⎝+

+
−

⎞⎠ ,
⎛⎝0

0
0

⎞⎠⎫⎬⎭ = σ(S̃)

and (1, 1, 2)T ∈ S⊥. Hence, there exists a unique solution ξ ∈ R2
> for the system

of generalized polynomial equations

x∗1 ξ1

(
1
0

)
+ x∗2 ξ2

(
0
1

)
+ x∗3 (ξ1)a (ξ2)b

(
1
1

)
=

(
y1
y2

)

Polynomial Equations with Real and Symbolic Exponents 319

for all right-hand-sides y ∈ C◦ = R2
>, all parameters x∗ ∈ R3

>, and all exponents
a, b > 0. Note that Birch’s theorem guarantees the existence of a unique solution
only for a = b = 1.

In terms of the generalized mass-action system above, we have the following
result: Since δ̃ = 2 − 1 − 1 = 0, there exists a unique complex balancing equilib-
rium in every positive stoichiometric compatibility class for all k12, k21 > 0 and
all kinetic orders a, b > 0. Since δ = 2 − 1 − 1 = 0, there are no other steady
states.

10 Sign Vectors and Oriented Matroids

The characterization of surjectivity and injectivity of generalized polynomial
maps involves sign vectors of real linear subspaces, which are basic examples of
oriented matroids. (Whereas a matroid abstracts the notion of linear indepen-
dence, an oriented matroid additionally captures orientation.)

The theory of oriented matroids provides a common framework to study com-
binatorial properties of various geometric objects, including point configurations,
hyperplane arrangements, convex polyhedra, and directed graphs. See [2], [50,
Chapters 6 and 7], and [44] for an introduction and overview, and [6] for a
comprehensive study.

There are several sets of sign vectors associated with a linear subspace which
satisfy the axiom systems for (co-)vectors, (co-)circuits, or chirotopes of oriented
matroids. (In fact, there are non-realizable oriented matroids that do not arise
from linear subspaces.)

For algorithmic purposes, the characterization of oriented matroids in terms
of basis orientations is most useful. The chirotope of a matrix W ∈ Rd×n (with
rank d) is defined as the map

χW : {1, . . . , n}d → {−, 0,+}
(i1, . . . , id) �→ sign(det(wi1 , . . . , wid)),

which records for each d-tuple of vectors whether it forms a positively oriented
basis of Rd, a negatively oriented basis, or not a basis. Hence, chirotopes can
be used to test algorithmically if the sign vectors of two subspaces are equal by
comparing determinants of maximal minors.

More generally, the realization space of matrices defining the same oriented
matroid as W ∈ Rd×n (with rank d) is described by the semi-algebraic set

R(W) = {A ∈ Rd×n | sign(det(ai1 , . . . , aid)) =

sign(det(wi1 , . . . , wid)), 1 ≤ i1 < · · · < id ≤ n}.

Mnëv’s universality theorem [38] theorem states that already for oriented ma-
troids with rank d = 3, the realization space can be “arbitrarily complicated”;
see [6] for a precise statement and [3] for semi-algebraic sets and algorithms.

Concerning software, the C++ package TOPCOM [43] allows to compute effi-
ciently chirotopes with rational arithmetic and generate all cocircuits (covectors

http://www.rambau.wm.uni-bayreuth.de/TOPCOM

320 S. Müller and G. Regensburger

with minimal support). There is also an interface to the open source computer
algebra system SAGE.

In our running example, we have S̃ = im(Ỹ IE) = im(M) with M as in (7).
Analogously, S = im(Y IE) = im(N) with

N =

⎛⎜⎜⎝
−1 2 −1
−1 0 0
1 −1 0
0 0 1

⎞⎟⎟⎠ . (13)

To check the sign vector condition σ(S) = σ(S̃), we compare the chirotopes of
N T and MT . Computing the signs of the four maximal minors of N T , we see
that its chirotope is given by

χNT (1, 2, 3) = −, χNT (1, 2, 4) = +, χNT (1, 3, 4) = −, χNT (2, 3, 4) = +.

Analogously, we compute the chirotope of MT and verify χNT = χMT . Clearly,
the other sign vector condition (+, . . . ,+)T ∈ σ(S⊥) also holds, for example,
(1, 1, 2, 1)T ∈ S⊥.

Since δ̃ = 0, we know from Theorems 1 and 2 that there exists a unique com-
plex balancing equilibrium in every positive stoichiometric compatibility class
for all rate constants k. Moreover, since δ = 5 − 2 − 3 = 0, we know that there
are no steady states other than complex balancing equilibria for the ODE (3).

In the setting of symbolic exponents (11), the exponent matrix amounts to

M =

⎛⎜⎜⎝
−a c −1
−b 0 0
1 −1 0
0 0 1

⎞⎟⎟⎠ (14)

and the chirotope of MT (in the same order as above) is given by

− sign(b), sign(b c), sign(a− c), sign(b)

for a, b, c �= 0. Hence, there exists a unique steady state in every positive stoichio-
metric compatibility class for all rate constants and all exponents with a, b, c > 0
and a < c.

11 Multistationarity

A (generalized) chemical reaction network (G, y, ỹ) has the capacity for multi-
stationarity if there exist rate constants k such that the generalized mass action
system (Gk, y, ỹ) admits more than one steady state in some stoichiometric com-
patibility class.

In mass-action systems, every stoichiometric compatibility class contains at
most one complex balancing equilibrium. However, in generalized mass action
systems, multiple steady states of this type are possible [40, Proposition 3.2].

http://www.sagemath.org/

Polynomial Equations with Real and Symbolic Exponents 321

Proposition 6. Let (G, y, ỹ) be a generalized chemical reaction network. If G
is weakly reversible and σ(S) ∩ σ(S̃⊥) �= {0}, then (G, y, ỹ) has the capacity for
multiple complex balancing equilibria.

Analogously, multiple toric steady states are possible (for networks with mass-
action kinetics) if the sign vectors of two subspaces intersect non-trivially [9,42].
For deficiency one networks (with mass-action kinetics), the capacity for multi-
stationarity is also characterized by sign conditions [18,20].

For precluding multistationarity, injectivity of the right-hand side of the dy-
namical system on cosets of the stoichiometric subspace is sufficient. In [39],
we characterize injectivity of generalized polynomial maps on cosets of the sto-
ichiometric subspace in terms of sign vectors. There, we also give a survey on
injectivity criteria and discuss algorithms to check sign vector conditions.

For the last time, we return to our example, in particular, to the setting of
symbolic kinetic complexes. Considering the matrix M in (14), a matrix B with
im(B) = im(M)⊥ = S̃⊥ is given by

B = (b, c− a, b c, b)T

for a, b, c �= 0. Hence, for a, b, c > 0 and a > c, we have (+,−,+,+)T ∈ σ(S̃⊥).
On the other hand, considering the matrix N in (13) with im(N) = S, we also

have (+,−,+,+)T ∈ σ(S), and hence σ(S) ∩ σ(S̃⊥) �= {0}. By Proposition 6,
if the inequalities a, b, c > 0 and a > c hold, then there exist rate constants k
that admit more than one complex balancing equilibrium in some stoichiometric
compatibility class.

References

1. Adrovic, D., Verschelde, J.: A polyhedral method to compute all affine solu-
tion sets of sparse polynomial systems (2013), http://arxiv.org/abs/1310.4128,
arXiv:1310.4128 [cs.SC]

2. Bachem, A., Kern, W.: Linear programming duality. Springer, Berlin (1992)
3. Basu, S., Pollack, R., Roy, M.F.: Algorithms in real algebraic geometry, 2nd edn.

Springer, Berlin (2006)
4. Ben-Israel, A., Greville, T.N.E.: Generalized inverses, 2nd edn. Springer, New York

(2003)
5. Birch, M.W.: Maximum likelihood in three-way contingency tables. J. Roy. Statist.

Soc. Ser. B 25, 220–233 (1963)
6. Björner, A., Las Vergnas, M., Sturmfels, B., White, N., Ziegler, G.M.: Oriented

matroids, 2nd edn. Cambridge University Press, Cambridge (1999)
7. Boulier, F., Lemaire, F., Petitot, M., Sedoglavic, A.: Chemical reaction systems,

computer algebra and systems biology. In: Gerdt, V.P., Koepf, W., Mayr, E.W.,
Vorozhtsov, E.V. (eds.) CASC 2011. LNCS, vol. 6885, pp. 73–87. Springer, Heidel-
berg (2011)

8. Brualdi, R.A., Ryser, H.J.: Combinatorial matrix theory. Cambridge University
Press, Cambridge (1991)

9. Conradi, C., Flockerzi, D., Raisch, J.: Multistationarity in the activation of a
MAPK: parametrizing the relevant region in parameter space. Math. Biosci. 211,
105–131 (2008)

http://arxiv.org/abs/1310.4128

322 S. Müller and G. Regensburger

10. Corless, R.M., Jeffrey, D.J.: The turing factorization of a rectangular matrix.
SIGSAM Bull. 31, 20–30 (1997)

11. Corless, R.M., Jeffrey, D.J.: Linear Algebra in Maple. In: CRC Handbook of Linear
Algebra, 2nd edn. Chapman and Hall/CRC (2013)

12. Craciun, G., Dickenstein, A., Shiu, A., Sturmfels, B.: Toric dynamical systems. J.
Symbolic Comput. 44, 1551–1565 (2009)

13. Dickenstein, A.: A world of binomials. In: Foundations of Computational Mathe-
matics, Hong Kong, pp. 42–67. Cambridge Univ. Press, Cambridge (2009)

14. Errami, H., Seiler, W.M., Eiswirth, M., Weber, A.: Computing Hopf bifurcations
in chemical reaction networks using reaction coordinates. In: Gerdt, V.P., Koepf,
W., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2012. LNCS, vol. 7442, pp. 84–97.
Springer, Heidelberg (2012)

15. Feinberg, M.: Complex balancing in general kinetic systems. Arch. Rational Mech.
Anal. 49, 187–194 (1972)

16. Feinberg, M.: Lectures on chemical reaction networks (1979),
http://crnt.engineering.osu.edu/LecturesOnReactionNetworks

17. Feinberg, M.: Chemical reaction network structure and the stability of complex
isothermal reactors–I. The deficiency zero and deficiency one theorems. Chem.
Eng. Sci. 42, 2229–2268 (1987)

18. Feinberg, M.: Chemical reaction network structure and the stability of complex
isothermal reactors–II. Multiple steady states for networks of deficiency one. Chem.
Eng. Sci. 43, 1–25 (1988)

19. Feinberg, M.: The existence and uniqueness of steady states for a class of chemical
reaction networks. Arch. Rational Mech. Anal. 132, 311–370 (1995)

20. Feinberg, M.: Multiple steady states for chemical reaction networks of deficiency
one. Arch. Rational Mech. Anal. 132, 371–406 (1995)

21. Feinberg, M., Horn, F.J.M.: Chemical mechanism structure and the coincidence
of the stoichiometric and kinetic subspaces. Arch. Rational Mech. Anal. 66, 83–97
(1977)

22. Fienberg, S.E.: Introduction to Birch (1963) Maximum likelihood in three-way
contingency tables. In: Kotz, S., Johnson, N.L. (eds.) Breakthroughs in statistics,
vol. II, pp. 453–461. Springer, New York (1992)

23. Fulton, W.: Introduction to toric varieties. Princeton University Press, Princeton
(1993)

24. Gatermann, K., Wolfrum, M.: Bernstein’s second theorem and Viro’s method for
sparse polynomial systems in chemistry. Adv. in Appl. Math. 34, 252–294 (2005)

25. Gatermann, K.: Counting stable solutions of sparse polynomial systems in chem-
istry. In: Symbolic Computation: Solving Equations in Algebra, Geometry, and
Engineering, pp. 53–69. Amer. Math. Soc., Providence (2001)

26. Gatermann, K., Eiswirth, M., Sensse, A.: Toric ideals and graph theory to analyze
Hopf bifurcations in mass action systems. J. Symbolic Comput. 40, 1361–1382
(2005)

27. Gatermann, K., Huber, B.: A family of sparse polynomial systems arising in chem-
ical reaction systems. J. Symbolic Comput. 33, 275–305 (2002)

28. Gopalkrishnan, M., Miller, E., Shiu, A.: A Geometric Approach to the Global
Attractor Conjecture. SIAM J. Appl. Dyn. Syst. 13, 758–797 (2014)

29. Grigoriev, D., Weber, A.: Complexity of solving systems with few independent
monomials and applications to mass-action kinetics. In: Gerdt, V.P., Koepf, W.,
Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2012. LNCS, vol. 7442, pp. 143–154.
Springer, Heidelberg (2012)

http://crnt.engineering.osu.edu/LecturesOnReactionNetworks

Polynomial Equations with Real and Symbolic Exponents 323

30. Gunawardena, J.: Chemical reaction network theory for in-silico biologists (2003),
http://vcp.med.harvard.edu/papers/crnt.pdf

31. Gunawardena, J.: A linear framework for time-scale separation in nonlinear bio-
chemical systems. PLoS ONE 7, e36321 (2012)

32. Horn, F.: Necessary and sufficient conditions for complex balancing in chemical
kinetics. Arch. Rational Mech. Anal. 49, 172–186 (1972)

33. Horn, F., Jackson, R.: General mass action kinetics. Arch. Rational Mech. Anal. 47,
81–116 (1972)

34. Johnston, M.D.: Translated Chemical Reaction Networks. Bull. Math. Biol. 76,
1081–1116 (2014)

35. Jungnickel, D.: Graphs, networks and algorithms, 4th edn. Springer, Heidelberg
(2013)

36. Lemaire, F., Ürgüplü, A.: MABSys: Modeling and analysis of biological systems.
In: Horimoto, K., Nakatsui, M., Popov, N. (eds.) ANB 2010. LNCS, vol. 6479,
pp. 57–75. Springer, Heidelberg (2012)

37. Mirzaev, I., Gunawardena, J.: Laplacian dynamics on general graphs. Bull. Math.
Biol. 75, 2118–2149 (2013)

38. Mnëv, N.E.: The universality theorems on the classification problem of configura-
tion varieties and convex polytopes varieties. In: Topology and geometry—Rohlin
Seminar. Lecture Notes in Math., vol. 1346, pp. 527–543. Springer, Berlin (1988)

39. Müller, S., Feliu, E., Regensburger, G., Conradi, C., Shiu, A., Dickenstein, A.:
Sign conditions for injectivity of generalized polynomial maps with applications
to chemical reaction networks and real algebraic geometry (2013) (submitted),
http://arxiv.org/abs/1311.5493, arXiv:1311.5493 [math.AG]

40. Müller, S., Regensburger, G.: Generalized mass action systems: Complex balancing
equilibria and sign vectors of the stoichiometric and kinetic-order subspaces. SIAM
J. Appl. Math. 72, 1926–1947 (2012)

41. Pachter, L., Sturmfels, B.: Statistics. In: Algebraic statistics for computational
biology, pp. 3–42. Cambridge Univ. Press, New York (2005)

42. Pérez Millán, M., Dickenstein, A., Shiu, A., Conradi, C.: Chemical reaction systems
with toric steady states. Bull. Math. Biol. 74, 1027–1065 (2012)

43. Rambau, J.: TOPCOM: triangulations of point configurations and oriented ma-
troids. In: Mathematical Software (Beijing 2002), pp. 330–340. World Sci. Publ,
River Edge (2002)

44. Richter-Gebert, J., Ziegler, G.M.: Oriented matroids. In: Handbook of Discrete
and Computational Geometry, pp. 111–132. CRC, Boca Raton (1997)

45. Samal, S.S., Errami, H., Weber, A.: PoCaB: A software infrastructure to explore
algebraic methods for bio-chemical reaction networks. In: Gerdt, V.P., Koepf, W.,
Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2012. LNCS, vol. 7442, pp. 294–307.
Springer, Heidelberg (2012)

46. Savageau, M.A.: Biochemical systems analysis: II. The steady state solutions for
an n-pool system using a power-law approximation. J. Theor. Biol. 25, 370–379
(1969)

47. Thomson, M., Gunawardena, J.: The rational parameterisation theorem for multi-
site post-translational modification systems. J. Theoret. Biol. 261, 626–636 (2009)

48. Voit, E.O.: Biochemical systems theory: A review. In: ISRN Biomath. 2013, 897658
(2013)

49. Zeilberger, D.: A combinatorial approach to matrix algebra. Discrete Math. 56,
61–72 (1985)

50. Ziegler, G.M.: Lectures on polytopes. Springer, New York (1995)

http://vcp.med.harvard.edu/papers/crnt.pdf
http://arxiv.org/abs/1311.5493

Lie Symmetry Analysis for Cosserat Rods

Dominik L. Michels1, Dmitry A. Lyakhov2, Vladimir P. Gerdt3,
Gerrit A. Sobottka4, and Andreas G. Weber4

1 Department of Computing and Mathematical Sciences,
California Institute of Technology, 1200 E. California Blvd., MC 305-16, Pasadena,

CA 91125-2100, USA
dominik@caltech.edu

2 Radiation Gaseous Dynamics Lab, A. V. Luikov Heat and Mass Transfer Institute
of the National Academy of Sciences of Belarus, P. Brovka St 15,

220072 Minsk, Belarus
lyakhovda@bsu.by

3 Group of Algebraic and Quantum Computations,
Joint Institute for Nuclear Research, Joliot-Curie 6, 141980 Dubna,

Moscow Region, Russia
gerdt@jinr.ru

4 Multimedia, Simulation and Virtual Reality Group,
Institute of Computer Science II, University of Bonn, Friedrich-Ebert-Allee 144,

53113 Bonn, Germany
{sobottka,weber}@cs.uni-bonn.de

Abstract. We consider a subsystem of the Special Cosserat Theory of
Rods and construct an explicit form of its solution that depends on three
arbitrary functions in (s, t) and three arbitrary function in t. Assuming
analyticity of the arbitrary functions in a domain under consideration,
we prove that the obtained solution is analytic and general. The Spe-
cial Cosserat Theory of Rods describes the dynamic equilibrium of 1-
dimensional continua, i.e. slender structures like fibers, by means of a
system of partial differential equations.

Keywords: Cosserat Rods, General Solution, Janet Basis, Kirchhoff
Rods, Lie Symmetry Method.

1 Introduction

The Lie symmetry analysis of differential equations has become a powerful and
universal approach to obtain group-invariant solutions and to perform their clas-
sification (cf. [10] and references therein). Sophus Lie himself considered groups
of point and contact transformations to integrate systems of partial differential
equations (PDEs). His key idea was to obtain first infinitesimal generators of one-
parameter symmetry subgroups and then to construct the full symmetry group.
The study of symmetries of differential equations allows one to gain insight into
the structure of the problem they describe. In particular, the existence of Lie
symmetries means that one can find a decomposition of the differential equation
system into a transformed system of reduced order and a set of integrators that

V.P. Gerdt et al. (Eds.): CASC Workshop 2014, LNCS 8660, pp. 324–334, 2014.
c© Springer International Publishing Switzerland 2014

Lie Symmetry Analysis for Cosserat Rods 325

in turn can be applied to develop more efficient numerical integration schemes
for the governing differential equations.

In our contribution we focus on an equation subsystem of the Special Cosserat
Theory of Rods (cf. [1]), a system of coupled partial differential equations, that
govern the spatiotemporal evolution of the physical process of deformation of an
one-dimensional continuum, the Cosserat rod (e.g. a fiber). In paper [15] the Lie
symmetry analysis was applied to study symmetric properties of DNA modelled
as a super-long elastic round rod. As a result, nontrivial infinitesimal symmetries
of the dynamical Hamiltonian equations of the rod were detected and the related
conserved quantities were derived. We consider here another model of the rod and
apply the Lie symmetries to the subsystem of the governing system of partial
differential equations. With assistance of computer algebra the Lie symmetry
approach allowed us to construct a closed form of general analytical solution to
the subsystem under consideration. Our motivation to do this research is based
on the fact that the deformation modes of a Cosserat rod like bending, twisting,
shearing, and extension typically evolve on different time scales which renders
the problem inherently stiff (cf. [7]) and demands for appropriate methods for the
numerical treatment of the governing PDE system. Knowledge of its structural
properties can directly lead to more efficient solution methods.

1.1 Specific Contributions

We use computer algebra systems (specifically MAPLE, which provides sophis-
ticated packages for the analysis of Lie symmetries in PDEs) in order to find
Lie symmetries for proper systems and define the conditions under which they
exist. In this regard our specific contributions are as follows.

0 We study a subsystem of the Special Cosserat Theory of Rods (cf. [1]) of the
form

∂tκ(s, t) = ∂sω(s, t) + ω(s, t) × κ(s, t),

by performing a Lie group analysis.
0 We construct an explicit form of the solution of the subsystem that depends

on three arbitrary functions in (s, t) and three arbitrary functions in t.
0 We prove that the obtained solution is analytic and general.

2 Special Cosserat Theory of Rods

In this section we give a recap of the Special Cosserat Theory of Rods. Fibers can
approximately be considered as one-dimensional continua that undergo bending,
twisting, shearing, and longitudinal dilation deformation. Following [1], we con-
sider the Euclidian 3-space E3 to be the abtract 3-dimensional inner product
space. Its elements are denoted by lower-case, boldface, italic symbols. Let R3

be the set of triples of real numbers. Its elements are denoted by lower-case,
boldface, sans-serif letters.

326 D.L. Michels et al.

r(s, t)r(s, t)d1d1

d2d2
d3d3

xx yy

zz

s = 0s = 0 s = ls = l

Fig. 1. The vector set {dk} forms a right-handed orthonormal basis at each point of
the centerline. The directors d1 and d2 span the local material cross-section, whereas
d3 is perpendicular to the material cross-section. Note that in the presence of shear
deformations d3 is not tangent to the centerline of the fiber.

The motion of a special Cosserat Rod is given by

(s, t) �→ (r(s, t),d1(s, t),d2(s, t)) , (1)

where r(s, t) is the centerline of the rod. It is furnished with a set of so-
called orthonormal directors {d1(s, t),d2(s, t),d3(s, t)}. {dk} is a right-handed
orthonormal basis in E3, with d3 := d1 × d2. The directors d1 and d2 span
the cross-section plane, see Fig. (1). The deformation of the rod is obtained
if its motion defined by Eq. (1) is related to some reference configuration
{r◦(s, t),d◦

1(s, t),d◦
2(s, t)}.

Further, there exist vector-valued functions κ and ω such that the directors
evolve according to the kinematic relations

∂sdk = κ × dk,

∂tdk = ω × dk,

where κ is the Darboux and ω the twist vector. Their components are given
with respect to the orthonormal basis, i.e. κ =

∑3
k=1 κkdk and ω =

∑3
k=1 ωkdk.

The linear strains of the rod are given byν =
∑3

k=1 νkdk = ∂sr and the velocity
of a cross-section material plane by υ = ∂tr. The triples (κ1, κ2, κ3), (ω1, ω2, ω3),
(ν1, ν2, ν3), and (υ1, υ2, υ3) are denoted by κ, ω, ν, and υ respectively. In partic-
ular, κ := (κ1, κ2, κ3) and ν := (ν1, ν2, ν3) are the strain variables that uniquely
determine the motion of the rod described by Eq. (1) at every instant in time t (ex-
cept for a rigid body motion). Their components have a physical meaning: they
describe the bending of the rod with respect to the two major axes of the cross
section (κ1,κ2), the torsion (κ3), shear (ν1,ν2) and extension (ν3). Moreover, since
∂t∂sdk = ∂s∂tdk we obtain the compatibility equation

∂tκ = ∂sω + ω × κ.

In the same sense we have
∂tν = ∂sυ.

Lie Symmetry Analysis for Cosserat Rods 327

2.1 Equations of Motion

The equations of motion for the rod read

∂sn + f = ρA∂tυ + ρ (I1∂ttd1 + I2∂ttd2) ,

∂sm + ν × n + l = ρ (I1d1 + I2d2) × ∂tυ + ∂t (ρJω) ,

where n =
∑3

k=1 nkdk and m =
∑3

k=1mkdk are the internal stresses and f
and l are the external forces and torques acting on the rod, $ the linear density.
I1 and I2 are the first mass moments of inertia of cross section per unit length
and J is the inertia tensor of cross section per unit length. Further, we define
n := (n1, n2, n3) and m := (m1,m2,m3). The shear forces are given by n1 and
n2, the tension by n ·ν/ ‖ν‖, bending moments by m1 and m2, and the twisting
moment by m3.

2.2 Constitutive Relations

In order to relate the internal stresses n and m to the kinematic quantities ν
and κ we introduce constitutive equations of the form

n(s, t) = n̂ (κ(s, t),ν(s, t), s) ,

m(s, t) = m̂ (κ(s, t),ν(s, t), s) .

For fixed s, the common domain V(s) of these constitutive functions is a subset
of (κ,ν) describing orientation preserving deformations. V(s) consists at least
of all (κ,ν) that satisfy ν3 = ν · d3 > 0.

The rod is called hyper-elastic, if there exists a strain-energy-function W :
{(κ,ν ∈ V)} → R such that

n̂ (κ,ν, s) = ∂W (κ,ν, s) /∂ν,

m̂ (κ,ν, s) = ∂W (κ,ν, s) /∂κ.

The rod is called viscoelastic of strain-rate type of complexity 1 if there exist
functions such that

n(s, t) = n̂ (κ(s, t),ν(s, t), ∂tκ(s, t), ∂tν(s, t), s) , (2)
m(s, t) = m̂ (κ(s, t),ν(s, t), ∂tκ(s, t), ∂tν(s, t), s) . (3)

For ∂tκ(s, t) = 0 and ∂tν(s, t) = 0, Eq. (2) and Eq. (3) become the so called
equilibrium response functions and describe elastic behavior.

2.3 Material Laws

The constitutive laws for elastic material behavior become

n̂(s, t) = (GA (ν1 − ν◦1) , GA (ν2 − ν◦2) , EA (ν3 − ν◦3)) ,

328 D.L. Michels et al.

with the initial strain vector field ν◦(s), Young’s modulus E, cross-section area
A, and

m̂(s, t) = (EbI1 (κ1 − κ◦1) , EbI2 (κ2 − κ◦2) , GI3 (κ3 − κ◦3)) ,

with the initial bending and torsion vector field κ◦(s), Young’s modulus Eb of
bending, and shear modulus G. The area moments of inertia are again denoted
by I1 and I2, the polar moment of inertia with I3.

Since bending stiffnesses EbI1, EbI2, and torsional stiffness GbI3 change with
the fourth power of the fiber diameter they are usually orders of magnitude
smaller than the tensile stiffness EA and shearing stiffness GA. This renders
the problem of fiber simulation based on the Special Theory of Cosserat Rods
inherently “stiff”.

Kirchhoff Rods. We allude to the fact that in the classical theory of Kirchhoff
the rod can undergo neither shear nor extension. This is accommodated by
setting the linear strains to ν := (ν1, ν2, ν3) = (0, 0, 1), (local coordinates).
Geometrically this means, that the angle between the director d3 and the tangent
to the centerline, ∂sr, always remains zero (no shear) and that the tangent to
the centerline always has unit length (no elongation).

2.4 System of Governing Equations

The full system of partial differential equations governing the deformation of an
elastic rod is thus given by the following first order system,

∂tdk = ω × dk, (4)
∂tκ = ∂sω + ω × κ, (5)
∂tν = ∂sυ,

∂t (ρJω) = ∂s (m̂k(κ,ν)dk) + ν × n̂k(κ,ν)dk,

ρA∂tυ = ∂s (n̂k(κ,ν)dk) .

If (n̂, m̂) satisfy the monotonicity condition, i.e. the matrix[
∂m̂/∂κ ∂m̂/∂ν
∂n̂/∂κ ∂n̂/∂ν

]
,

is positive-definite, then this system is hyperbolic. It can be written in the form
of a conservation law

∂tΦ(ζ) = ∂sΨ(ζ) +Θ(ζ),

with ζ = (dk,κ,ν,ω,υ). This system can be decoupled from the Kinematic
Eq. (4) by decomposing it with respect to the basis {dk} which yields

∂tκ = ∂sω + ω × κ, (6)
∂tν = ∂sυ + κ × υ − ω × ν,

∂t (ρJω) = ∂sm̂ + κ × m̂ + ν × n̂− ω × (ρJω) ,

ρA∂tυ = ∂sn̂ + κ × n̂− ω × (ρAυ) . (7)

Lie Symmetry Analysis for Cosserat Rods 329

If external forces (e.g. gravity) are to be considered as well, they have to be
added to the right-hand side of Eq. (7) after transforming them into the local
basis. For this purpose the Kinematic Eq. (4) has to be solved additionally.

3 Lie Symmetry Analysis

3.1 Problem Setting

As a first step in the direction of a better understanding of the Cosserat rod we
begin our study with a subsystem of the Special Cosserat Theory of Rods. Pre-
cisely, we apply the classical symmetry method invented by Sophus Lie (cf. [10])
to the equation system given by Eq. (6),

F = 0, F := ∂sω − ∂tκ + ω × κ, (8)

which corresponds to Eq. (5) or Eq. (6).

3.2 Infinitesimal Criterion of Invariance

We apply the classical Lie-point symmetry method [10] to the quasi-linear first-
order PDE system Eq. (8) in two independent variables s, t and six dependent
variables that are the components of the vectors ω and κ.

A transformation of Eq. (8)

s′ = s′(s, t,ω(s, t),κ(s, t)), ω′ = ω′(s, t,ω(s, t),κ(s, t)),

t′ = t′(s, t,ω(s, t),κ(s, t)), κ′ = κ′(s, t,ω(s, t),κ(s, t)),
(9)

that maps solutions to solutions is called Lie(-point) symmetry of Eq. (8). The
vector field

X := ξ1∂s + ξ2∂t +

3∑
i=1

(
θi∂ωi + ϑi∂κi

)
, (10)

is an infinitesimal generator of a one-parameter (x ∈ R) Lie group of point
transformations if its flow exp(xX) is a Lie(-point) symmetry. The coefficients
ξ1, ξ2, θi, ϑj (i, j = 1, 2, 3) in Eq. (10) are functions in independent and dependent
variables, and below we shall use the vector notation θ := {θ1, θ2, θ3}, ϑ :=
{ϑ1, ϑ2, ϑ3}.

The equality
X(pr)F |F=0= 0, (11)

is the infinitesimal criterion of invariance of Eq. (8) under a one-parameter Lie
group of point transformations. Here X(pr) stands for the prolonged infinitesimal
symmetry generator that, in addition to those in Eq. (10), contains extra terms
caused by the presence of the first-order partial derivatives in Eq. (8). These extra
terms are easily computed taking certain derivatives of the coefficient functions
in the generator. The subscript in Eq. (11) indicates that equality X(pr)F = 0
must hold under condition F = 0. Equality Eq. (11) implies an overdetermined

330 D.L. Michels et al.

determining system of linear PDEs for the coefficient functions of generator
Eq. (10). Since the equations in Eq. (8) are quasi-linear and solved with respect
to partial derivatives, generation of their determining equations is algorithmically
straightforward.

3.3 Solving Determining Equations

To obtain the determining equations we use the Maple package Desolv [6] and
its routine gendef. It outputs 42 first-order PDEs. Generally, a reliable and pow-
erful algorithmic way to solve a system determining equations is its transforma-
tion to a canonical involutive form or to a Gröbner basis form and then solving
such canonical system (cf. [8]). The package Desolv has the built-in routine
icde that implements the Standard Form algorithm [12] for completion to invo-
lution. We prefer, however, completion to a Janet basis, the canonical involutive
form based on Janet division (cf. [13] for theory of involution for algebraic and
differential systems and references therein) and respectively, the Maple package
Janet [5] that computes a Janet basis for a differential ideal generated by linear
differential polynomials. We have two arguments in favor of this preference: (i)
according to our benchmarking, package Janet is substantially faster than the
routine icde in Desolv; (ii) given a linear system of PDEs in the Janet involutive
form and a set of its analytic solutions one can algorithmically check whether
this set contains all analytic solutions (cf. [9,13]).

The involutive form of determining equations for Eq. (11) computed by pack-
age Janet contains 86 linear PDEs. To solve these equations we applied the
routine pdsolv of the package Desolv that exploits a number of heuristic algo-
rithms for integration of linear PDEs including some advanced algorithms [14]
oriented to integration of overdetermined systems of polynomially-nonlinear dif-
ferential equations. It outputs a solution that depends on five arbitrary functions
in the independent variables s, t. Two of these functions are unnecessary for us
and can be omitted since they appear in the solution as shifts in the independent
variables in accordance to the fact that the equations in Eq. (8) are autonomous.
Taking this into account, the obtained solution can be presented as

ξ1 = ξ2 = 0, θ = Âω + ∂tp, ϑ = Âκ + ∂sp, (12)

where

Â(s, t) =

⎡⎣ 0 −c(s, t) b(s, t)
c(s, t) 0 −a(s, t)

−b(s, t) a(s, t) 0

⎤⎦ , p(s, t) :=

⎡⎣a(s, t)b(s, t)
c(s, t)

⎤⎦ , (13)

and a(s, t), b(s, t), c(s, t) are arbitrary smooth functions. Hereafter, we shall as-
sume analyticity of these functions.

3.4 Lie Group of Point Symmetry Transformations

The routine pdesolv of Desolv may not always find all solutions of the input
differential system. For our purpose, however, the arbitrariness given by Eq. (12)

Lie Symmetry Analysis for Cosserat Rods 331

and Eq. (13) is sufficient for the construction of a general solution to Eq. (8).
It is essential that the routine outputs a solution with maximally possible arbi-
trariness in the number of arbitrary functions depending on the both indepen-
dent variables (s, t). This fact can be detected from the structure of differential
dimensional polynomial [9]. It is easily computed by the routine DifferentialSys-
temDimensionPolynomial of the Maple package DifferentialThomas [3] that
takes the Janet basis form of the determining system as an input. In the case
being considered the differential dimensional polynomial is given by

5

2
l2 +

21

2
l + 11 = 5

(
l + 2

l

)
+ 3

(
l + 1

l

)
+ 3.

The first term of this expression shows that the general analytic solution contains
5 arbitrary functions in 2 variables. If one applies the built-in Maple command
pdsolve, then its output solution set also contains 5 arbitrary functions in two
variables. However, this solution depends nonlocally (via some integrals) on the
arbitrary functions, and is rather cumbersome.

Having obtained the structure Eq. (12) and Eq. (13) of the infinitesimal sym-
metry generator Eq. (10), we compute now the one-parameter Lie-point symme-
try group of transformations Eq. (9) it generates. The symmetry group is given
as solution (Lie’s first fundamental theorem [10]) of the following system of two
trivially solvable scalar ordinary differential equations

dxs
′ = 0, s′(0) = s =⇒ s′ = s,

dxt
′ = 0, t′(0) = t =⇒ t′ = t,

and two vector ones

dxω
′ = Âω′ + ∂tp , ω′(0) = ω, (14)

dxκ
′ = Âκ′ + ∂sp , κ′(0) = κ. (15)

Solution to Eq. (14) and Eq. (15) is computable with the Maple command dsolve.
But the output of this command is awkward and it is not easy to obtain in
compact form. Such compact form solution can be obtained by hand computation
as follows.

It is not difficult to see (cf. [4]), that Eq. (14) is satisfied by the expression

ω′ = exp(xÂ)ω + exp(xÂ)

∫ x

0

exp(−yÂ) dy ∂tp . (16)

Since this system satisfies the conditions of the classical existence and uniqueness
theorem for systems of ordinary differential equations [11], it follows that Eq. (16)
is the solution to Eq. (14).

Furthermore, application of the Cayley-Hamilton theorem [2] to the matrix
Â in Eq. (13) gives

Â
3

= −p2Â, p := |p| =
√
a2(s, t) + b2(s, t) + c2(s, t). (17)

332 D.L. Michels et al.

By means of relation Eq. (17) expression Eq. (16) is transformed to

ω′ =

(
Î +

sin (p x) Â

p
+

(1 − cos (p x)) Â
2

p2

)
ω+

+

(
p xÂ

2
+ p3 xÎ − sin (p x) Â

2 − cos (p x) pÂ + pÂ

p3

)
∂tp , (18)

where Î is the 3 × 3 identity matrix. Formulae Eq. (13) and Eq. (18) show that
without loss of generality the arbitrary vector p and matrix Â for x �= 0 can be
rescaled to absorb the group parameter x. It is equivalent to putting x := 1. In
so doing, transformation Eq. (18) can be rewritten in terms of arbitrary vector-
function p as follows,

ω′ = ω − sin(p)

p
p× ω +

1 − cos(p)

p2
(
p (pω) − p2ω

)
+ ∂tp+

+
p− sin(p)

p3
(
p (p ∂tp) − p2 ∂tp

)
− 1 − cos(p)

p2
p× ∂tp . (19)

Respectively, solution to Eq. (15) reads

κ′ = κ − sin(p)

p
p × κ +

1 − cos(p)

p2
(
p (pκ) − p2 κ

)
+ ∂sp+

+
p− sin(p)

p3
(
p (p ∂sp) − p2 ∂sp

)
− 1 − cos(p)

p2
p × ∂sp . (20)

Thus, transformations Eq. (19) and Eq. (20) are Lie-point symmetries of
Eq. (8) for an arbitrary vector p in Eq. (13). We also verified directly with
Maple that if ω,κ are solutions to Eq. (8), then ω′,κ′ are also solutions for any
vector-function p.

3.5 General Solution

Consider now the special case of transformations Eq. (19) and Eq. (20) when

ω := f(t), f(t) = {f1(t), f2(t), f3(t)}, κ := 0, (21)

where f1(t), f2(t), f3(t) are arbitrary analytic functions, and denote the image
of Eq. (21) under the transformations by ω and κ:

ω =f (t) − sin(p)

p
p× f(t) +

1 − cos(p)

p2
(
p (pf (t)) − p2 f(t)

)
+ ∂tp+

+
p− sin(p)

p3
(
p (p ∂tp) − p2 ∂tp

)
− 1 − cos(p)

p2
p × ∂tp ,

κ =∂sp +
p− sin(p)

p3
(
p (p ∂sp) − p2 ∂sp

)
− 1 − cos(p)

p2
p × ∂sp .

(22)

Now we can formulate and prove the main theoretical result of the present
paper.

Lie Symmetry Analysis for Cosserat Rods 333

Proposition 1. The vector-functions ω and κ expressed by formulae Eq. (22)
in terms of the matrix- and vector-functions Eq. (13), Eq. (21) whose components
are arbitrary analytic functions provide a solution to equations Eq. (8) that is
general.

Proof. Obviously, Eq. (21) is a solution. It follows that expressions Eq. (22) make
up a solution. We show first that one can choose arbitrary functions a(s, t), b(s, t),
and c(s, t) to obtain any vector-function κ as the left-hand side of the second
equality in Eq. (22). The partial derivatives ∂sa, ∂sb, ∂sc of a, b, c with respect
to s appear linearly in Eq. (22). Direct computation with Maple of the Jaco-
bian matrix Jκ(∂sa, ∂sb, ∂sc) and its determinant gives the following compact
expression:

det (Jκ(∂sa, ∂sb, ∂sc)) =
2(cos(p) − 1)

p2
.

It is clear that one can always choose the initial values a(0, t), b(0, t), and c(0, t)
of the arbitrary functions to provide nonzero values of the Jacobian determinant,
and hence to solve locally the last vector equality in Eq. (22) with respect to
∂sa, ∂sb, ∂sc. Thereby, the equation can be brought into a first-order differential
system solved with respect to the partial derivative and with analytic right-hand
sides. Then, by the classical Cauchy-Kovalevskaya theorem (cf. [13]) the initial
value (Cauchy) problem for the solved system has a unique analytic solution.

We now turn our attention to the first equation in Eq. (22) and show that
having decided upon a(s, t), b(s, t), and c(s, t), one can choose functions f1(t),
f2(t), and f3(t) to obtain arbitrary analytic ω1(0, t), ω2(0, t), and ω3(0, t). The
part of Eq. (22) linear in f(t) is identically equal to exp(Â)f(t) (cf. Eq. (16)).
Since the matrix Â given by Eq. (13) is skew-symmetric, det(exp(Â)) = 1 and
Eq. (22) is solvable with respect to the analytic vector-function f(t). It implies
that the system Eq. (8), being in normal or Cauchy-Kovalevskaya form, admits
unique analytic solutions for ω1(s, t), ω2(s, t), and ω3(s, t). �

4 Conclusion and Future Work

In this contribution, we have studied a subsystem of the Special Cosserat The-
ory of Rods by performing a Lie group analysis. To be more specific, by ap-
plying modern computer algebra methods, algorithms, and software we have
constructed an explicit form of solution to Eq. (8) that depends on three arbi-
trary functions in (s, t) and three arbitrary functions in t. Assuming analyticity
of the arbitrary functions in a domain under consideration, we have proved that
the obtained solution is analytic and general. This is a step towards generat-
ing detailed knowledge about the structure of the PDE system that governs the
spatiotemporal evolution of the Cosserat rod.

In our future work these results will be used to develop algorithms based on
combinations of numerical and analytical treatments of the governing equations to
overcome the typical problems resulting from the system’s stiffness. This approach
would allow for larger step sizes compared to purenumerical solvers and at the same
time combines efficiency and accuracy without sacrificing one for another.

334 D.L. Michels et al.

Acknowledgements. The contribution of the third author (V.P.G.) was par-
tially supported by the grant 13-01-00668 from the Russian Foundation for Ba-
sic Research. We thank Markus Lange-Hegermann and Paul Mueller for useful
remarks. The authors are grateful to the reviewers’ valuable comments that im-
proved the manuscript.

References

1. Antman, S.S.: Nonlinear Problems of Elasticity. Appl. Math. Sci., vol. 107.
Springer, New York (1995)

2. Atiyah, M.F., MacDonald, I.G.: Introduction to Commutative Algebra. Addison-
Wesley Pub. Co., London (1969)

3. Bächler, T., Gerdt, V.P., Lange-Hegermann, M., Robertz, D.: Algorithmic Thomas
Decomposition of algebraic and differential systems. J. Symb. Comput. 47,
1233–1266 (2012)

4. Bellman, R.: Introduction to Matrix Analysis, 2nd edn. Society for Industrial and
Applied Mathematics, Philadelphia (1997)

5. Blinkov, Y.A., Cid, C.F., Gerdt, V.P., Plesken, W., Robertz, D.: The Maple package
Janet: II. Linear partial differential equations. In: Ganzha, V.G., Mayr, E.W.,
Vorozhtsov, E.V. (eds.) Proceedings of the 6th Workshop on Computer Algebra in
Scientific Computing / CASC 2003, Institut für Informatik, Technische Universität
München, Garching, pp. 41–54 (2003)

6. Carminati, J., Vu, K.: Symbolic Computation and Differential Equations: Lie
Symmetries. J. Symb. Comput. 29, 95–116 (2000)

7. Curtiss, C.F., Hirschfelder, J.O.: Integration of Stiff Equations. Proceedings of the
National Academy of Sciences of the United States of America 38(3), 235–243
(1952)

8. Hereman, W.: Review of symbolic software for Lie symmetry analysis. In: Ibragi-
mov, N.H. (ed.) CRS Handbook of Lie Group Analysis of Differential Equations,
ch. 13. New Trends in Theoretical Developments and Computational Methods,
vol. 3, pp. 367–413. CRS Press, Boca Raton (1996)

9. Lange-Hegermann, M.: The Differential Dimension Polynomial for Chatacterizable
Differential Ideals. arXiv:1401.5959 (2014)

10. Oliveri, F.: Lie Symmetries of Differential Eqautions: Classical Results and Recent
Contributions. Symmetry 2, 658–706 (2010)

11. Pontryagin, L.S.: Ordinary Differential Equations. Addison-Wesley Pub. Co., Lon-
don (1962)

12. Reid, G.: Algorithms for reducing a system of PDEs to standard form, determining
the dimension of its solution space and calculating its Taylor series solution. Eur.
J. Appl. Math. 2, 293–318 (1991)

13. Seiler, W.M.: Involution - The Formal Theory of Differential Equations and Its
Application in Computer Algebra. Algorithms and Computation in Mathematics,
vol. 24. Springer, Heidelberg (2010)

14. Wolf, T.: The Symbolic Integration of Exact PDEs. J. Symb. Comput. 30, 619–629
(2000)

15. Zhao, W.-J., Weng, Y.-Q., Fu, J.-L.: Lie Symmetries and Conserved Quantities for
Super-Long Elastic Slender Rod. Chinese Phys. Lett. 24, 2773–2776 (2007)

Real Polynomial Root-Finding by Means

of Matrix and Polynomial Iterations

Victor Y. Pan

Departments of Mathematics and Computer Science
Lehman College and the Graduate Center of the City University of New York

Bronx, NY 10468 USA
victor.pan@lehman.cuny.edu

http://comet.lehman.cuny.edu/vpan/

Abstract. Frequently one seeks approximation to all r real roots of
a polynomial of degree n with real coefficients, which also has nonreal
roots. We split a polynomial into two factors, one of which has degree
r and has r real roots. We approximate them at a low cost, and then
decrease the arithmetic time of the known algorithms for this popular
problem by roughly a factor of n/k, if k iterations prepare splitting. k is
a small integer unless some nonreal roots lie close to the real axis, but
even if there nonreal roots near the real axis, we substantially accelerate
the known algorithms. We also propose a dual algorithm, operating with
the associated structured matrices. At the price of minor increase of the
arithmetic time, it facilitates numerical implementation. Our analysis
and tests demonstrate the efficiency of our approach.

Keywords: polynomials, real roots, matrices, matrix sign iteration,
companion matrix, real eigenvalues, Frobenius algebra, square root it-
eration, root squaring.

1 Introduction

In some applications, e.g., to algebraic and geometric optimization, one seeks
real roots of a univariate polynomial

p(x) =

n∑
i=0

pix
i = pn

n∏
j=1

(x − xj), pn �= 0, (1)

of degree n that has real coefficients, r real roots x1, . . . , xr, and s = (n − r)/2
pairs of nonreal complex conjugate roots xr+1, . . . , xn (typically r 1 n). This
is a well studied subject (see [13, Chapter 15], [21], [25], and the bibliography
therein), but we propose new efficient algorithms by extending and combining
the techniques of [23] and [20]. We combine the two known low cost steps, recalled
in Section 2, that is, splitting a polynomial into two factors whose two sets of
roots are isolated from one another, and real root-finding when all n roots of the
input polynomial are real. Namely, our iterative processes split out the factor

V.P. Gerdt et al. (Eds.): CASC Workshop 2014, LNCS 8660, pp. 335–349, 2014.
c© Springer International Publishing Switzerland 2014

http://comet.lehman.cuny.edu/vpan/

336 V.Y. Pan

s(x) =
∏r

j=1(x−xj) of degree r that shares with the input polynomial p(x) all its
real roots, and as soon as this factor has been computed, we readily approximate
its r roots at a low computational cost. As a result, we yield the solution at the
arithmetic cost O(kn log(n)), provided that k iterations prepare splitting of the
factor. Our iterative algorithms converge exponentially fast (with quadratic or
cubic rates), and so k = O(b+d), assuming the tolerance 2−b to the errors of the
output approximation and the minimal distance 2−d of the nonreal roots from
the real axis. Usually this bound on k is not large, except for the inputs having
nonreal roots that lie very close to the real axis. In Remark 4, we discuss some
techniques for handling even such harder inputs. According to our preliminary
considerations (cf., e.g., Remark 8) and the test results, our algorithms can be
implemented with a reasonably bounded precision of computing, but we leave
the formal study of this subject and of the Boolean complexity of our algorithms
as a challenge for further research.

We devise dual iterations with polynomials generated from the input polyno-
mial p(x) of (1) and with matrices generated from the companion matrix of this
polynomial. In the latter case, we seek real eigenvalues of this matrix, extend the
matrix sign classical iteration toward this goal, and employ the known results and
techniques in this well developed area. Dealing with matrices one can engage ef-
ficient packages of subroutines available for numerical matrix computations with
the IEEE standard double precision. The highly structured companion matrix
generates the Frobenius matrix algebra, in which one can perform FFT-based
computations in nearly linear time, that is, as fast as the similar operations with
polynomials. In some cases, we take advantage of combining the power of op-
erating with matrices and polynomials (see Remark 13). Finding their deeper
synergistic combinations is another natural research challenge.

We present a number of promising algorithms. Algorithms 2 and 5 have the
lowest estimated arithmetic costO(kn log(n)), which increases toO(kn log2(n))+
c(n, r) for Algorithms 3 and 4. Here c(n, r) is the overhead due to randomization
for Algorithm 3 and to computing approximate polynomial GCDs for Algorithm
4. We include these algorithms since they use some promising techniques and
since Algorithm 3 showed superior numerical stability in our tests.

We engage, extend, and combine the number of efficient methods available
for complex polynomial root-finding, particularly the ones of [23] and [20], but
we also propose new techniques and employ some old methods in novel and
nontrivial ways. E.g., our Algorithm 2 streamlines and substantially modifies
[23, Algorithm 9.1] by avoiding the stage of root-squaring and the application of
the Cayley map, and similar comments apply to our adjustment of the matrix
sign classical iteration to real eigen-solving. Most of the techniques of Algorithm
3 are implicit in [20, Section 5], but we specify the algorithm in some detail,
include initial scaling, substantially modify the recovery of the eigenvalues, and
combine it with Algorithm 2. Algorithms 4 and 5 are new, in spite of some links to
Algorithms 2 and 3 and hence to [20, Section 5] and [23, Section 9]. Our interplay
with matrix and polynomial computations to the benefit of both subjects (this
idea can be traced back to [14] and [2]) as well as our exploitation of the complex

Root-Finding by Means of Matrix and Polynomial Iterations 337

plane geometry and of various transforms of the variable can be of independent
interest. Our simple recipe for real root-finding by means of combining the root
radii algorithm with Newton’s iteration in Algorithm 1 works for a large class
of inputs, and even the extension of our approach to the approximation of real
eigenvalues of a real matrix can be of some potential interest.

Hereafter “ops” stands for “arithmetic operations”, “lc(p)” stands for “the
leading coefficient of p(x)”. D(X, r) = {x : |x − X | ≤ r} and C(X, r) = {x :
|x −X | = r} denote a disc and a circle on the complex plane, respectively. We
write ||

∑
i vix

i||q = (
∑

i |vi|q)1/q for q = 1, 2 and ||
∑

i vix
i||∞ = maxi |vi|. A

function is in Õ(f(bc)) if it is in O(f(bc)) up to polylogarithmic factors in b and c.
agcd(u, v) denotes the approximate greatest common divisor of two polynomials
u(x) and v(x) (see [1] on definitions and algorithms).

2 Basic Results for Polynomials

Next we present some building blocks for our root-finders. Besides the two cited
results, used as the main blocks of our algorithms (that is, inexpensive splitting
of a polynomial into two factors and fast real root-finding for a polynomial that
has only real roots) we recall scaling, shifting, inverting and squaring the roots,
their mapping from the real axis or from a real line interval into a fixed circle
and back, and the approximation of the absolute values of all roots |x1|, . . . , |xn|.
All these operations can be performed at a low arithmetic cost as well.

Theorem 1. (Root Radii Approximation, cf. [24], [13, Section 15.4], [5].) As-
sume a polynomial p(x) of (1) and two scalars c > 0 and d. Define the n root
radii rj = |xkj | for j = 1, . . . , n and r1 ≥ r2 ≥ · · · ≥ rn, so that all roots lie in
the disc D(0, r1). Then approximations r̃j such that r̃j ≤ rj ≤ (1 + c/nd)r̃j for
j = 1, . . . , n can be computed by using O(n log2(n)) ops.

Theorem 2. (Root Inversion, Shift and Scaling, cf. [17].) Given a polynomial
p(x) of (1) and two scalars a and b, we can compute the coefficients of the
polynomial q(x) = p(ax+ b) by using O(n log(n)) ops. We need only 2n− 1 ops
if b = 0. Reversing a polynomial inverts all its roots, involving no ops, because
prev(x) = xnp(1/x) =

∑n
i=0 pix

n−i = pn
∏n

j=1(1 − xxj).

By combining Theorems 1 and 2 we can move the roots of a polynomial into a
fixed disc, e.g., D(0, 1) = {x : |x| ≤ 1}.

Theorem 3. (Root Squaring, cf. [10].) (i) Assume a monic polynomial p(x) of
(1), pn = 1. Then the map q(x) = (−1)np(

√
x)p(−

√
x) squares the roots, that

is, q(x) =
∏n

j=1(x−x2j), and (ii) one can evaluate p(x) at the k-th roots of unity
for k > 2n and then interpolate to q(x) by using O(n log(n)) ops.

Theorem 4. (The Cayley Maps, cf. [9].) The maps y = (x−
√

−1)/(x+
√

−1)
and x =

√
−1(y+1)/(y−1) send the real axis {x : x is real} into the unit circle

C(0, 1) = {x : |x| = 1}, and vice versa.

338 V.Y. Pan

Theorem 5. (Möbius Map.) (i) The maps y = 1
2 (x+1/x) and x = y±

√
y2 − 1

send the unit circle C(0, 1) into the real line interval [−1, 1] = {y : 2y = 0, −1 ≤
y ≤ 1}, and vice versa. (ii) Write y = 1

2 (x + 1/x) and yj = 1
2 (xj + 1/xj),

j = 1, . . . , n. Then q(y) = p(x)p(1/x) = qn
∏n

j=1(y − yj) (cf. [3, eq. (14)]).
(iii) Given a polynomial p(x) of (1) one can interpolate to the polynomial q(y) =
p(x)p(1/x) = qn

∏n
j=1(y − yj) by using O(n log(n)) ops.

Proof. Follow [3, Section 2]. Apply the algorithms of [16] to interpolate to the
polynomial q(y) from its values at the Chebyshev knots at the cost O(n log(n)).

Theorem 6. (Error Bounds of the Möbius Iteration.) Fix a complex x = x(0)

and define the iterations

x(h+1) =
1

2
(x(h) + (x(h))−1) and γ =

√
−1 for h = 0, 1, . . . , (2)

x(h+1) =
1

2
(x(h) − (x(h))−1) and γ = 1 for h = 0, 1, . . . (3)

If x(0)γ is real, then x(h)γ are real for all h. Otherwise |x(h) − sign(x)
√

−1/γ| ≤
2τ2h

1−τ2h
for τ = |x−sign(x)

x+sign(x) | and h = 0, 1, . . .

Proof. Under (2), for γ =
√

−1, the bound is from [3, page 500]). It is readily
extended to the case of (3), for γ = 1.

Theorem 7. (Root-finding Where All Roots Are Real). The modified Laguerre
algorithm of [8] converges to all roots of a polynomial p(x) of (1) right from the
start with superlinear convergence rate and uses O(n) ops per iteration. Conse-
quently the algorithm approximates all n roots within ε = 1/2b by using O(log(b))
iteration loops, performing Õ(n log(b)) ops overall. This cost bound is optimal
and is also supported by the alternative algorithms of [6] and [4].

Algorithm 1. (Real Root-finding via Root Radii Approximation.)
1. Compute approximations r̃1, . . . , r̃n to the root radii of a polynomial p(x)

of (1) (see Theorem 1). (This defines 2n candidates points ±r̃1, . . . ,±r̃n for the
approximation of the r real roots x1, . . . , xr.)

2. Evaluate the polynomial at these 2n points, at a low arithmetic and Boolean
cost, to exclude a number of extraneous candidates.

3. Apply Newton’s iteration x(h+1) = x(h) − p(x(h))/p′(x(h)), h = 0, 1, . . .
concurrently at the remaining candidate points. (Its single concurrent step or
a few steps, performed at a low arithmetic and Boolean cost (cf. [22]), should
exclude the other extraneous candidates and refine the remaining approximations
to the real roots, as long as these roots are well isolated from the nonreal roots.)

Theorem 8. (Splitting a Polynomial into Two Factors Over a Circle, cf. [24]
or [13, Chapter 15].) Suppose a polynomial t(x) of degree n has r roots in the
disc D(0, ρ) and n − r roots outside the disc D(0, R) for R/ρ ≥ 1 + 1/n. Let
ε = 1/2b for b ≥ n. Then we can compute two polynomials f̃ and g̃ such that

Root-Finding by Means of Matrix and Polynomial Iterations 339

||p − f̃ g̃||q ≤ ε||p||q for q = 1, 2 or ∞, the polynomial f̃ of degree r has r roots
inside the circle C(0, 1), and the polynomial g̃ of degree n − r has n − r roots
outside the circle. The algorithm performs O((log2(n)+log(b))n log(n)) ops (that
is, O(n log3(n)) ops for log(b) = O(log2(n))), with a precision of O(b) bits.

Remark 1. (Increasing Isolation by Means of Repeated Squaring.) Let the as-
sumptions of Theorem 8 hold, except that R/ρ = 1 + c/nd < 1 + 1/n, for two
positive constants c and d. Then the map of Theorem 3 squares the ratio R/ρ. So
d = O(log(n)) applications of this map (using O(n log2(n)) ops overall) increase
the ratio above 1 + 1/n, which supports the application of Theorem 8.

3 Root-Finding as Eigen-Solving and Basic Results for
Matrix Computations

3.1 Companion Matrix, Its Maps, and Maps of Its Eigenvalues

Cp =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 −p0/pn
1

. . . −p1/pn

. . .
. . .

...
. . . 0 −pn−2/pn

1 −pn−1/pn

⎞⎟⎟⎟⎟⎟⎟⎟⎠
denotes the companion matrix of a polynomial p(x) of (1). p(x) = cCp(x) =
det(xIn −Cp) is its characteristic polynomial. Its roots form the spectrum of Cp,
and so our problem can be restated as the problem of real eigen-solving for the
companion matrix Cp. Next we recall that operations with this matrix are as
inexpensive as with polynomials and restate the maps for the variable x of the
polynomials in terms of maps of the matrix Cp, playing the role of this variable.

Theorem 9. (The Cost of Computations in the Frobenius Matrix Algebra, cf.
[7].) The companion matrix Cp ∈ Cn×n of a polynomial p(x) of (1) generates
the Frobenius matrix algebra Ap. One needs O(n) ops for addition, O(n log(n))
ops for multiplication, and O(n log2(n)) ops for inversion in this algebra. One
needs O(n log(n)) ops to multiply a matrix in this algebra by a vector.

3.2 Some Fundamental Matrix Computations

To study the eigen-solving for Cp, next we recall some fundamentals of ma-
trix computations. In the next subsection we focus on the basic properties of
eigenvalues and eigenspaces of matrices, that we use in our algorithms.
MT = (mji)

n,m
i,j=1 is the transpose of a matrix M = (mij)

m,n
i,j=1. MH is its

Hermitian transpose. I = In = (e1 | e2 | . . . | en) is the n × n identity ma-
trix whose columns are the n coordinate vectors e1, e2, . . . , en. diag(bj)

s
j=1 =

diag(b1, . . . , bs) is the s× s diagonal matrix with the diagonal entries b1, . . . , bs.

340 V.Y. Pan

A matrix Q is unitary if QHQ = I or QQH = I. Let (Q,R) = (Q(M), R(M))
for an m× n matrix M of rank n denote a unique pair of unitary m× n matrix
Q and upper triangular n × n matrix R such that M = QR and all diagonal
entries of the matrix R are positive [9, Theorem 5.2.2].
M+ is the Moore–Penrose pseudo inverse of M [9, Section 5.5.4]. An n ×m

matrix X =M (I) is a left (resp. right) inverse of anm×n matrixM if XM = In
(resp. if MY = Im). M (I) = M+ for a matrix M of full rank. M (I) = MH for
an orthogonal matrix M . M (I) =M−1 for a nonsingular matrix M .

R(M) is the range of a matrix M , that is the linear space generated by its
columns. A matrix of full column rank is a matrix basis of its range.

3.3 Eigenspaces and Eigenvalues

Definition 1. S is the invariant subspace of a square matrix M if MS = {Mv :
v ∈ S} ⊆ S. A scalar λ is an eigenvalue of a matrix M associated with an
eigenvector v if Mv = λv. All eigenvectors associated with an eigenvalue λ of
M form an eigenspace S(M,λ), which is an invariant space. Its dimension d is
the geometric multiplicity of λ. The eigenvalue is simple if d = 1. The set Λ(M)
of all eigenvalues of the matrix M is called its spectrum.

Our next goal is to limit eigen-solving for the matrix Cp to the study of
its invariant space of dimension r associated with the r real eigenvalues. The
following theorem is basic for this step.

Theorem 10. (Decreasing the Eigenproblem Size to the Dimension of an In-
variant Space, cf. [26, Section 2.1].) Let U ∈ Cn×r, R(U) = U , and M ∈ Cn×n.
Then U is an invariant space of M if and only if there exists a matrix L ∈ Ck×k

such that MU = UL or equivalently L = U (I)MU . The matrix L is unique (that
is independent of the choice of the left inverse U (I)) if U is a matrix basis for
the space U . Hence MUv = λUv if Lv = λv, Λ(L) ⊆ Λ(M), and if U is an
orthogonal matrix, then L = UHMU .

To facilitate the computation of the desired invariant space of Cp, we reduce
the task to the case of an appropriate matrix function, for which the solution
is simpler, but we still solve our problem, because, by virtue of the following
theorem, a matrix function shares its invariant spaces with the matrix Cp.

Theorem 11. (Reduction of the Eigenproblem for a Matrix to That for a Ma-
trix Function.) Suppose M is a square matrix, a rational function f(λ) is defined
on its spectrum, and Mv = λv. Then (i) f(M)v = f(λ)v. (ii) Let U be the
eigenspace of the matrix f(M) associated with its eigenvalue μ. Then this is an
invariant space of the matrix M generated by its eigenspaces associated with all
its eigenvalues λ such that f(λ) = μ. (iii) The space U is associated with a single
eigenvalue of M if μ is a simple eigenvalue of f(M).

We readily verify part (i), which implies parts (ii) and (iii).
Suppose we have computed a matrix basis U ∈ Cn×r for an invariant space U

of a matrix function f(M) of an n× n matrix M . By virtue of Theorem 11 this

Root-Finding by Means of Matrix and Polynomial Iterations 341

is a matrix basis of an invariant space of the matrix M . We can first compute a
left inverse U (I) or the orthogonalization Q = Q(U) and then approximate the
eigenvalues of M associated with this eigenspace as the eigenvalues of the r × r
matrix L = U (I)MU = QHMQ (cf. Theorem 10). Empirically the QR algorithm
uses O(r3) ops at the latter stage.

Given an approximation μ̃ to a simple eigenvalue of a matrix function f(M),
we can compute an approximation ũ to an eigenvector u of the matrix f(M)
associated with this eigenvalue, recall from Theorem 11 that this is also an eigen-
vector of the matrix M , associated with its simple eigenvalue, and approximate

this eigenvalue by the Rayleigh Quotient ũTMũ
ũT ũ .

3.4 Some Maps in the Frobenius Matrix Algebra

For a polynomial p(x) of (1) and a rational function f(x) defined on the set
{xi}ni=1 of its roots, the rational matrix function f(Cp) has spectrum Λ(f(Cp)) =
{f(xi)}ni=1, by virtue of Theorem 11. In particular, the maps

Cp → C−1
p , Cp → aCp + bI, Cp → C2

p , Cp →
Cp + C−1

p

2
, and Cp →

Cp − C−1
p

2

induce the maps of the eigenvalues of the matrix Cp, and thus induce the maps
of the roots of the characteristic polynomial p(x) given by the equations

y = 1/x, y = ax+ b, y = x2, y = 0.5(x+ 1/x), and y = 0.5(x− 1/x),

respectively. By using the reduction modulo p(x), define the five dual maps

y = (1/x) mod p(x), y = ax+ b mod p(x), y = x2 mod p(x),

y = 0.5(x+ 1/x) mod p(x), and y = 0.5(x− 1/x) mod p(x),

where y = y(x) denote polynomials. Apply the two latter maps recursively,
to define two iterations with polynomials modulo p(x) as follows, y0 = x,
yh+1 = 0.5(yh + 1/yh) mod p(x) (cf. (3)) and y0 = x, yh+1 = 0.5(yh − 1/yh)
mod p(x), h = 0, 1, More generally, define the iteration y0 = x, yh+1 = ayh+
b/yh mod p(x), h = 0, 1, . . . , for any pair of scalars a and b. Here yh = yh(x) are
the characteristic polynomials of the matricesM0 = Cp, Mh+1 = 0.5(Mh±M−1

h)
and M0 = Cp, Mh+1 = aMh + bM−1

h , h = 0, 1, . . . , respectively.

4 Real Root-Finders

4.1 Möbius Iteration

Theorem 6 implies that right from the start of iteration (3) the values x(h)

converge to ±
√

−1 exponentially fast unless the initial value x(0) is real, in
which case all iterates x(h) are real. It follows that right from the start the values
y(h) = (x(h))2 + 1 converge to 0 exponentially fast unless x(0) is real, in which

342 V.Y. Pan

case all values y(h) are real and exceed 1. Write qh(y) =
∏n

j=1(y − (x
(h)
j)2 − 1)

for h = 1, 2, . . . and uh(y) =
∏r

j=1(y− (x
(h)
j)2−1). The roots of the polynomials

qh(y) and uh(y) are the images of all roots and of the real roots of the polynomial
p(x) of (1), respectively, produced by the composition of the maps (3) and y(h) =
(x(h))2+1. Therefore qh(y) ≈ y2suh(y) for large integers h where the polynomial
uh(y) has degree r and has exactly r real roots, all of them exceeding 1. Hence for
sufficiently large integers h, we can closely approximate the polynomial y2suh(y)
simply by the sum of the r + 1 leading terms of the polynomial qh(y). To verify
that the 2s trailing coefficients nearly vanish, we need just 2s comparisons. The
above argument shows correctness of the following algorithm.

Algorithm 2. Möbius iteration for real root-finding.
Input: two integers n and r, 0 < r < n, and the coefficients of a polynomial
p(x) of equation (1) where p(0) �= 0.
Output: approximations to the real roots x1, . . . , xr of p(x).
Initialization: Write p0(x) = p(−x

√
−1).

Computations:

1. Recursively compute the polynomials ph+1(y) = ph(x)ph(1/x) for y = (x +
1/x)/2 and h = 0, 1, . . . (Part (ii) of Theorem 5 and Theorem 6 define the
images of the real and nonreal roots of the polynomial p(x) for all h.)

2. Periodically, at some selected Stages k, compute the polynomials

th(y) = (−1)nqk(
√
y + 1)qh(−

√
y + 1)

where qk(z) = pk(z)/lc(pk) (cf. Theorems 2 and 3). When the integer k
becomes large enough, so that 2s trailing coefficients of the polynomial qk(x)
nearly vanish, approximate the factor vk(x) of the polynomial tk(x) that has
r real roots on the ray {x : x ≤ −1} (see above).

3. Apply one of the algorithms of [6], [4], and [8] (cf. Theorem 7) to approximate
the r roots z1, . . . , zr of the polynomial vk(x).

4. Extend the descending process from [15], [18] and [3] to recover approxi-
mations to the r roots −xi

√
−1, i = 1, . . . , r, of the polynomial p0(x) =

p(−x
√

−1). First approximate 2r candidates for r roots of the polynomial
qk(y) lying on the imaginary axis and select r of them on which the polyno-
mial qk(y) nearly vanishes. Similarly define from these r roots 2r candidates
for approximating the r roots of pk−1(x) lying on the imaginary axis. Recur-
sively descend down to the r roots of p0(x) lying on the imaginary axis. This
process is not ambiguous because only r roots of the polynomial ph(x) lie on
that axis for each h, by virtue of Theorem 6.

5. Having approximated the r roots −xi
√

−1, i = 1, . . . , r, output the approxi-
mations to the real roots x1, . . . , xr of the polynomial p(x).

Like lifting Stage 1, descending Stage 4 involves order of kn log(n) ops, which
also bounds the overall cost of performing the algorithm.

Remark 2. (Countering Degeneracy.) If p(0) = p0 = · · · = pm = 0 �= pm+1, then
we should output the real root x0 = 0 of multiplicity m and apply the algorithm

Root-Finding by Means of Matrix and Polynomial Iterations 343

to the polynomial p(x)/xm to approximate the other real roots. Alternatively
we can apply the algorithm to the polynomial q(x) = p(x− s) for a shift value s
such that q(0) �= 0. With probability 1, this holds for Gaussian random variable
s, but alternatively we can approximate the root radii of the polynomial p(x)
(cf. Theorem 1) to find a shift scalar s such that q(x) has no roots near 0 as well.

Remark 3. (Saving the Recursive Steps of Stage 1.) We would decrease the pa-
rameter k of the cost estimate, if we approximate the factor vk(x) of the poly-
nomial tk(x) for a smaller integer k. Theorem 8 enables us to do this (at a
reasonable cost) if its assumptions are satisfied for t(x) = tk(x). We can verify
if the assumptions hold by applying the root radii algorithm of Theorem 1. For
a fixed k this requires O(n log2(n)) ops), so even the verification for all integers
k in the range is not costly, unless the integer k is large, but we can periodically
test just selected integers k, by applying binary search.

Remark 4. (Handling the Nearly Real Roots.) The integer parameter k and the
overall cost of performing the algorithm are large if 2−d = minn

j=r+1 |2(xj)|
is small. To counter this deficiency, we can split out a factor vk,+(x) of the
polynomial p(x) having a degree r+ > r and having r+ real and nearly real roots
such that the other nonreal roots lie sufficiently far from the real axis. Indeed
our convergence analysis and the techniques for splitting out the factor vk(x)
can be readily extended to splitting out the factor vk,+(x). Having this factor
approximated, we can tentatively apply to it the modified Laguerre algorithm
of [8], expecting fast convergence to the r+ roots of the polynomial vk,+(x) if all
its roots lie on or sufficiently close to the real axis.

Remark 5. (The Number of Real Roots.) We assume that we are given the num-
ber r of the real roots (e.g., computed by means of non-costly techniques of
computer algebra if the roots are distinct and simple), but we can compute this
number as by-product of Stage 2, and similarly for our other algorithms. More-
over with a proper try-and-test policy we can apply our algorithm for at most
2 + 2(log(r)) tentative choices of integers k in the range [0, 2k − 1] to detect r.

Remark 6. The known upper bounds on the condition numbers of the roots of
the computed polynomials pk(y) grow exponentially as k grows large (cf. [3,
Section 3]). So, unless these bounds are overly pessimistic, Algorithm 2 is prone
to numerical stability problems already for moderately large integers k.

4.2 Adjusted Matrix Sign Iteration

To avoid the latter potential deficiency, we replace the polynomial iteration at
Stages 1 and 2 by the dual matrix sign classical iteration

Zh = 0.5(Zh + Z−1
h) for h = 0, 1, . . . (4)

It maps the eigenvalues of the matrix Z0 according to (2). Therefore, by virtue
of part (ii) of Theorem 5, Stage 1 of Algorithm 2 maps the characteristic poly-
nomials of the above matrices Zh. Unlike the case of the latter map, working

344 V.Y. Pan

with matrices enables two minor implications: (i) we recover the desired real
eigenvalues of the matrix Cp by means of our recipes of Section 3, without re-
cursive descending, and (ii) we avoid scaling by

√
−1 and just slightly modify

the iteration to keep the computations in the field of real numbers.

Algorithm 3. Matrix sign iterations modified for real eigen-solving.
Input and Output as in Algorithm 2, except that FAILURE can be output
with a probability close to 0.
Computations:

1. Write Y0 = Cp and recursively compute the matrices

Yh+1 = 0.5(Yh − Y −1
h) for h = 0, 1, (5)

(For sufficiently large integers h, the 2s eigenvalues of the matrix Yh lie
near the points ±

√
−1, whereas the r other eigenvalues are real, by virtue of

Theorem 6.)
2. Fix a sufficiently large integer k and compute the matrix Y = Y 2

k + In.
The map Y0 = Cp → Y sends all nonreal eigenvalues of Cp to a small
neighborhood of the origin 0 and sends all real eigenvalues of Cp into the ray
{x : x ≥ 1}.

3. Apply the randomized algorithms of [12] to compute the numerical rank of
the matrix Y . Suppose it equals r. (Otherwise go back to Stage 1.) Gener-
ate a standard Gaussian random n× r matrix G and compute the matrices
H = Y Q(G) and Q = Q(H). (The analysis of preprocessing with Gaussian
random multipliers in [12, Section 4], [19, Section 5.3] shows that, with a
probability close to 1, the columns of the matrix Q closely approximate an
orthogonal basis of the invariant space of the matrix Y associated with its r
absolutely largest eigenvalues, which are the images of the real eigenvalues
of the matrix Cp. Having this approximation is equivalent to having a small
upper bound on the residual norm ||Y −QQHY || [12], [19].) Verify the latter
bound. In the unlikely case where the verification is failed, output FAILURE
and stop the computations.

4. Otherwise compute and output approximations to the r eigenvalues of the
r×r matrix L = QHCpQ. They approximate the real roots of the polynomial
p(x). (Indeed, by virtue of Theorem 11, Q is a matrix basis for the invariant
space of the matrix Cp associated with its r real eigenvalues. Therefore, by
virtue of Theorem 10, the matrices Cp and L share these eigenvalues.)

Stages 1 and 2 involve O(kn log2(n)) ops by virtue of Theorem 9. This exceeds
the estimate for Algorithm 2 by a factor of log(n). Stage 3 adds O(nr2) ops and
the cost arn of generating n × r standard Gaussian random matrix. The cost
bounds are O(nr2) at Stage 4 and O((kn log2(n) + nr2) + arn overall.

Remark 7. (Counting Real Eigenvalues.) If the number of real eigenvalues is not
given, we can apply binary search to compute it as the numerical rank of the
matrices Y 2

k + I when this rank stabilizes.

Root-Finding by Means of Matrix and Polynomial Iterations 345

Remark 8. (Avoiding Numerical Problems.) The images of nonreal eigenvalues
of the matrix Cp converge to ±

√
−1 in the recursive process of the algorithm.

So the process involves ill conditioned matrices if and only if the images of some
real eigenvalues of Cp lie close to 0. We can detect that this has occurred if it is
hard to invert the matrix Yh of (5) or by computing the smallest singular value
of that matrix (e.g., by applying the Lanczos efficient, cf. [9, Proposition 9.1.4]).
As soon as we detect an ill conditioned matrix Yh, we would shift it (and hence
shift its eigenvalues) by adding the matrix sI for a reasonably small real scalar
s, which we can select by applying Theorem 1, heuristic, or randomization.

Remark 9. (Acceleration by Using Random Circulant Multiplier.) We can de-
crease the cost of performing Stage 3 to an+r +O(n log(n)) by replacing an n×r
standard Gaussian random multiplier by the product ΩCP where Ω and C are
n×n matrices, Ω is the matrix of the discrete Fourier transform, C is a random
circulant matrix, and P is an n× l random permutation matrix, for a sufficiently
large l of order r log(r). (See [12, Section 11], [19, Section 6] for the analysis and
for supporting probability and cost estimates. They are only slightly less favor-
able than in the case of a Gaussian random multiplier.) The overall arithmetic
cost bound would change into O(kn log2(n) + nr2) + ar+n.

Remark 10. (Acceleration by Means of Scaling.) We can dramatically accelerate
the initial convergence of Algorithm 3 by applying determinantal scaling (cf.
[11]), that is, by computing the matrix Y1 as follows, Y1 = 0.5(νY0 − (νY0)−1)

for ν = 1/| det(Y0)|1/n = |p(k)n /p
(k)
0 |, Y0 = Cp(k) , and p(k)(x) =

∑n
i=0 p

(k)
i x

i.

Remark 11. (Hybrid Matrix and Polynomial Algorithms.) Can we modify Al-
gorithm 3 to keep its advantages but to decrease the computational cost of its
Stage 1 to the level kn log(n) of Algorithm 2? Yes, if all or almost all nonreal
roots of the polynomial p(x) lie not too far from the points ±

√
−1, namely in the

discs D(±
√

−1, 1/2). Indeed in this case both iterations Yh+1 = 0.5(Y 3
h + 3Yh)

and Yh+1 = −0.125(3Y 5
h + 10Y 3

h + 15Yh) for h = 0, 1, . . . use O(n log(n)) ops
per loop. Right from the start they send the nonreal roots lying in these discs to
the two points ±

√
−1 with quadratic and cubic convergence rates, respectively

(extend the proof of [3, Proposition 4.1]), while keeping the real roots real. This
suggests the following policy. Heuristically or by applying Theorem 1 choose a
proper integer h and run Algorithm 2 until all or almost all nonreal roots of
p(x) are moved into the discs D(±

√
−1, 1/2). Then apply one of the two latter

inversion-free variants of Algorithm 3 to the polynomial qh(x) produced by Al-
gorithm 2. Descend from the output roots to the real roots of the polynomial
p(x). The hybrid algorithm combines the benefits of both Algorithms 2 and 3
when the above integer h is not large.

4.3 Adjusted Modular Square Root Iteration

The polynomial version of Algorithm 3 is known as the square root iteration. It
mimics Algorithm 3, but replaces all rational functions in the matrix Cp by the

346 V.Y. Pan

same rational functions in the variable x, and then reduces all these functions
modulo the input polynomial p(x). The reduction does not affect the values of
the functions at the roots of p(x), and so these values are precisely the eigenvalues
of the rational matrix functions involved in Algorithm 3.

Algorithm 4. Square root modular iteration modified for real root-finding.
Input and Output as in Algorithm 2.
Computations:

1. Write y0 = x and Y0 = Cp and (cf. (5)) compute the polynomials

yh+1 = (yh − y−1
h)/2 mod p(x). (6)

2. Periodically, for selected integers k, compute the polynomials tk = y2k + 1
mod p(x) and gk(x) = agcd(p, tk).

3. If deg(gk)) = n− r = 2s, compute the polynomial vk ≈ p(x)/gk(x) of degree
r. Otherwise continue the iteration of Stage 1.

4. Apply one of the algorithms of [6], [4], and [8] (cf. Theorem 7) to approximate
the r roots y1, . . . , yr of the polynomial vk. Output these approximations.

By virtue of our comments preceding this algorithm, the values of the polyno-
mials tk at the roots of p(x) equal to the images of the eigenvalues of the matrix
Cp in Algorithm 3. Hence the values of the polynomials tk at the nonreal roots
converge to 0 as k → ∞, whereas their values at the real roots stay far from
0. Therefore, for sufficiently large integers k, agcd(p, tk) turn into the polyno-
mial

∏n
j=r+1(x − xj). This implies correctness of the algorithm. Its asymptotic

computational cost is O(kn log2(n)) plus the cost of computing agcd(p, tk) and
choosing the integer k (see our next remark).

Remark 12. Compared to Algorithm 3, the latter algorithm reduces real root-
finding essentially to the computation of agcd(p, tk), but the complexity of this
computation is not easy to estimate [1]. Moreover, the following example exhibits
serious problems of numerical stability for this algorithm and apparently for the
similar algorithms of [7] and [3]. Consider the case where r = 0. Then the
polynomial t(x) has degree at most n− 1, and its values at the n nonreal roots
of the polynomial p(x) are close to 0. This can only occur if ||tk|| ≈ 0.

Remark 13. We can concurrently perform Stages 1 of both Algorithms 3 and 4.
The information about numerical rank at Stage 3 of Algorithm 3 can be a guiding
rule for the choice of the integer parameter k and computing the polynomials
tk, gk and vk of Algorithm 4. Having the polynomial vk available, Algorithm 4
produces the approximations to the real roots more readily than Algorithm 3
does this at its Stage 4.

5 Cayley Map and Root-Squaring

The following algorithm is somewhat similar to Algorithm 2, but employs re-
peated squaring of the roots instead of mapping them into their square roots.

Root-Finding by Means of Matrix and Polynomial Iterations 347

Algorithm 5. Real root-finding by means of repeated squaring.
Assume a polynomial p(x) of (1) with p(0) �= ±

√
−1 and proceed as follows.

1. Compute the polynomial q(x) = p((x +
√

−1)(x −
√

−1)−1) =
∑n

i=0 qix
i.

(This is the Cayley map, cf. Theorem 4. It moves the real axis, in particular, the
real roots of p(x), onto the unit circle C(0, 1).)

2. Write q0(x) = q(x)/qn, choose a sufficiently large integer k, and apply
the k squaring steps of Theorem 3, qh+1(x) = (−1)nqh(

√
x)qh(−

√
x) for h =

1, . . . , k − 1. (These steps keep the images of the real roots of p(x) on the circle
C(0, 1) for any k, while sending the images of every other root of p(x) toward
either the origin or the infinity.)

3. For a sufficiently large integer k, the polynomial qk(x) approximates the
polynomial xsuk(x) where the polynomial uk(x) =

∑r
i=0 uix

i has all its roots
lying on the unit circle C(0, 1). Extract the approximation to this polynomial
uk(x) from the coefficients of the polynomial qk(x).

4. Compute the polynomial vk(x) =
√

−1(uk(x) + 1)(uk(x) − 1)−1. (This is
the inverse Cayley map. It sends the images of the real roots of the polynomial
p(x) from the unit circle C(0, 1) back to the real line.)

6. Apply one of the algorithms of [6], [4], and [8] to approximate the r real
roots z1, . . . , zr of the polynomial vk(x) (cf. Theorem 7).

7. Apply the Cayley map wj = (zj +
√

−1)(zj −
√

−1)−1 for j = 1, . . . , r to
extend Stage 6 to approximating the r roots w1, . . . , wr of the polynomials uk(x)
and yk(x) = xsuk(x) lying on the unit circle C(0, 1).

8. Apply the descending process (similar to the ones of [15], [18], and of our

Algorithm 2) to approximate the r roots x
(h)
1 , . . . , x

(h)
r of the polynomials qh(x)

lying on the unit circle C(0, 1) for h = k − 1, . . . , 0.

9. Apply the inverse Cayley map to approximate the r real roots xj = (x
(0)
j +

√
−1)(x

(0)
j −

√
−1)−1 of the polynomials p(x).

Our analysis of Algorithm 2 (including its complexity estimates and the com-
ments and recipes in Remarks 2–6) can be extended to Algorithm 5. The straight-
forward matrix version of this numerical algorithm, however, fails because high
matrix powers have small numerical rank. Indeed their columns lie near the in-
variant space associated with the absolutely largest eigenvalues, and as a rule,
this space has a small dimension. A more tricky modification, based on binomial
factorization, promises to produce a working matrix iteration. We postpone its
presentation.

6 Numerical Tests

Two series of numerical tests have been performed in the Graduate Center of
the City University of New York by Ivan Retamoso and Liang Zhao. In both
series, they tested Algorithm 3, without using the techniques of Remark 3, that
is, in much weakened form. Still the test results are quite encouraging.

In the first series of tests, Algorithm 3 has been applied to one of the Mignotte
benchmark polynomials, namely to p(x) = xn + (100x − 1)3. It is known that

348 V.Y. Pan

this polynomial has three ill conditioned roots clustered about 0.01 and has n−3
well conditioned roots. In the tests, Algorithm 3 has output the roots within the
error less than 10−6 by using 9 iterations for n = 32 and n = 64 and by using
11 iterations for n = 128 and n = 256.

In the second series of tests they randomly generated polynomials p(x) of
degree n = 50, 100, 150, 200, 250 as the product p(x) = f1(x)f2(x). They gen-
erated the polynomials f1(x) and f2(x) where f1(x) =

∏r
j=1(x − xj), f2(x) =∑n−r

i=0 aix
i, and xi and aj were i.i.d. standard Gaussian random variables, for

j = 1, . . . , r, i = 0, . . . , n − r, and r = 4, 8, 12, 16. Hence the polynomial
p(x) = f1(x)f2(x) had at least r real roots. Then Algorithm 3 (performed with
double precision) was applied to 100 randomly generated polynomials p(x) for
each pair of n and r, and the output data were recorded, namely, the numbers
of iterations and the maximum difference of the output values of the roots from
their values produced by MATLAB root-finding function ”roots()”. The test
results were similar to the case of the Mignotte polynomials (see the Journal
version of the paper).

Acknowledgement. I am grateful to NSF, for the support under Grant CCF
1116736, and to the reviewers, for their thoughtful and valuable comments.

References

1. Bini, D.A., Boito, P.: A fast algorithm for approximate polynomial GCD based on
structured matrix computations. In: Operator Theory: Advances and Applications,
vol. 199, pp. 155–173. Birkhäuser Verlag, Basel (2010)

2. Bini, D., Pan, V.Y.: Polynomial and Matrix Computations. Fundamental Algo-
rithms, vol. 1. Birkhäuser, Boston (1994)

3. Bini, D., Pan, V.Y.: Graeffe’s, Chebyshev, and Cardinal’s processes for splitting a
polynomial into factors. J. Complexity 12, 492–511 (1996)

4. Bini, D., Pan, V.Y.: Computing matrix eigenvalues and polynomial zeros where
the output is real. SIAM J. on Computing 27(4), 1099–1115 (1998); (Also in Proc.
of SODA 1991)

5. Bini, D.A., Robol, L.: Solving secular and polynomial equations: A multiprecision
algorithm. J. Computational and Applied Mathematics (in press)

6. Ben-Or, M., Tiwari, P.: Simple algorithms for approximating all roots of a poly-
nomial with real roots. J. Complexity 6(4), 417–442 (1990)

7. Cardinal, J.P.: On two iterative methods for approximating the roots of a polyno-
mial. Lectures in Applied Mathematics 32, 165–188 (1996)

8. Du, Q., Jin, M., Li, T.Y., Zeng, Z.: The quasi-Laguerre iteration. Math.
Comput. 66(217), 345–361 (1997)

9. Golub, G.H., Van Loan, C.F.: Matrix Computations, 3rd edn. The Johns Hopkins
University Press, Baltimore (1996)

10. Householder, A.S.: Dandelin, Lobachevskii, or Graeffe. Amer. Math. Monthly 66,
464–466 (1959)

11. Higham, N.J.: Functions of Matrices. SIAM, Philadelphia (2008)
12. Halko, N., Martinsson, P.G., Tropp, J.A.: Finding structure with randomness: prob-

abilistic algorithms for constructing approximate matrix decompositions. SIAM
Review 53(2), 217–288 (2011)

Root-Finding by Means of Matrix and Polynomial Iterations 349

13. McNamee, J.M., Pan, V.Y.: Numerical Methods for Roots of Polynomials, Part 2,
XXII + 718 pages. Elsevier (2013)

14. Pan, V.Y.: Complexity of computations with matrices and polynomials. SIAM
Review 34(2), 225–262 (1992)

15. Pan, V.Y.: Optimal (up to polylog factors) sequential and parallel algorithms for
approximating complex polynomial zeros. In: Proc. 27th Ann. ACM Symp. on
Theory of Computing, pp. 741–750. ACM Press, New York (1995)

16. Pan, V.Y.: New fast algorithms for polynomial interpolation and evaluation on the
Chebyshev node set. Computers Math. Appls. 35(3), 125–129 (1998)

17. Pan, V.Y.: Structured Matrices and Polynomials: Unified Superfast Algorithms,
Birkhäuser, Boston. Springer, New York (2001)

18. Pan, V.Y.: Univariate polynomials: nearly optimal algorithms for factorization and
rootfinding. J. Symb. Computations 33(5), 253–267 (2002); Proc. version in ISSAC
2001, pp. 253–267, ACM Press, New York (2001)

19. Pan, V.Y., Qian, G., Yan, X.: Supporting GENP and Low-rank Approximation
with Random Multipliers. Technical Report TR 2014008, PhD Program in Com-
puter Science. Graduate Center, CUNY (2014),
http://www.cs.gc.cuny.edu/tr/techreport.php?id=472

20. Pan, V.Y., Qian, G., Zheng, A.: Real and complex polynomial root-finding
via eigen-solving and randomization. In: Gerdt, V.P., Koepf, W., Mayr, E.W.,
Vorozhtsov, E.V. (eds.) CASC 2012. LNCS, vol. 7442, pp. 283–293. Springer, Hei-
delberg (2012)

21. Pan, V.Y., Tsigaridas, E.P.: On the Boolean Complexity of the Real Root Refine-
ment. Tech. Report, INRIA (2013), http://hal.inria.fr/hal-00960896; Proc.
version in: M. Kauers (ed.) Proc. Intern. Symposium on Symbolic and Algebraic
Computation (ISSAC 2013), pp. 299–306, Boston, MA, June 2013. ACM Press,
New York (2013)

22. Pan, V.Y., Tsigaridas, E.P.: Nearly optimal computations with structured matrices.
In: SNC 2014. ACM Press, New York (2014); Also April 18, 2014, arXiv:1404.4768
[math.NA] and, http://hal.inria.fr/hal-00980591

23. Pan, V.Y., Zheng, A.: New progress in real and complex Ppolynomial root-finding.
Computers Math. Applics. 61(5), 1305–1334 (2011)

24. Schönhage, A.: The Fundamental Theorem of Algebra in Terms of Computational
Complexity. Math. Department, Univ. Tübingen, Germany (1982)

25. Sagraloff, M., Mehlhorn, K.: Computing Real Roots of Real Polynomials, CoRR,
abstract 1308.4088 (2013)

26. Watkins, D.S.: The Matrix Eigenvalue Problem: GR and Krylov Subspace
Methods. SIAM, Philadelphia (2007)

http://www.cs.gc.cuny.edu/tr/techreport.php?id=472
http://hal.inria.fr/hal-00960896
http://hal.inria.fr/hal-00980591

On Testing Uniqueness of Analytic Solutions

of PDE with Boundary Conditions

Sergey V. Paramonov�

Moscow State University, Moscow 119991, Russia
s.v.paramonov@yandex.ru

Abstract. We consider linear partial differential equations with poly-
nomial coefficients and prove algorithmic undecidability of the following
problem: to test whether a given equation of considered form has no
more than one solution that is analytic on a domain and that satisfies
some fixed boundary conditions. It is assumed that a polynomial which
vanishes at each point of the domain boundary is known.

1 Introduction

We will consider linear differential operators of the form

L =
∑
n∈S

an(x1, . . . , xm)Dn1
1 . . .Dnm

m , (1)

where S is a finite subset of Zm
�0, x1, . . . , xm are independent variables, an ∈

Z[x1, . . . , xm], Di = ∂
∂xi

. The set of such operators will be denoted by Z[D, x].
Also we will use the following notation (here S is also a finite subset of Zm

�0):

δi = xi
∂

∂xi
,

Z[D] = {
∑
n∈S

anD
n1
1 . . .Dnm

m , an ∈ Z},

Z[δ] = {
∑
n∈S

anδ
n1
1 . . . δnm

m , an ∈ Z}.

Note that Z[D] ⊂ Z[D, x] and Z[δ] ⊂ Z[D, x].
Consider the problems of testing the existence of solutions in the form of

polynomials, rational functions, formal Laurent and power series for an equation
L(f) = 0, L ∈ Z[D, x]. It was studied in [1,6,7], where algorithmic undecidability
of these problems was proved (Laurent series for several variables are considered
in the form defined in [2], [3]). In the earlier paper of Denef and Lipshitz [4], the
same problem was considered for inhomogeneous equations of form L(f) = 1.
Proofs are based on the following facts (their proofs can be found, for example,
in [4]):

� Supported by RFBR grant 13-01-00182-a.

V.P. Gerdt et al. (Eds.): CASC Workshop 2014, LNCS 8660, pp. 350–356, 2014.
c© Springer International Publishing Switzerland 2014

On Testing Uniqueness of Analytic Solutions of PDE 351

1◦. The problem of testing existence of a solution in the form of monomial
xn1
1 . . . x

nm
m for a given equation L(f) = 0, where L ∈ Z[δ], is equivalent to the

problem of testing the existence of an integer solution for an arbitrary Diophan-
tine equation (and hence is undecidable — see [5]).

2◦. If the equation L(f) = 0, where L ∈ Z[δ], has a non-zero solution that is
the formal sum of monomials f =

∑
n∈Zm

anx
n1
1 . . . x

nm
m then it also has a monomial

solution xn1
1 . . . x

nm
m , n ∈ Zm.

In this paper, we consider the problem of testing the existence of non-zero
analytic solutions satisfying zero boundary conditions for a given linear differ-
ential equation L(f) = 0, L ∈ Z[D, x], and prove algorithmic undecidability of
this problem.

2 Problem ZC

Let K be the field C of complex numbers or the field R of real numbers, U be an
open domain in Km, and U be the closure of U . If f(x1, . . . , xm) is a function
defined on U then set

f(x1, . . . , xm) =

{
f(x1, . . . , xm), if (x1, . . . , xm) ∈ U,
0, if (x1, . . . , xm) ∈ U \ U,

The function f(x1, . . . , xm) is defined on U .
For α ∈ Zm

�0, we denote by fα(x1, . . . , xm) the partial derivative of the func-
tion f(x1, . . . , xm):

fα(x1, . . . , xm) =
∂|α|f(x1, . . . , xm)

∂α1x1 . . . ∂αmxm
,

where |α| = α1 + · · · + αm.
Assume that (0, . . . , 0) ∈ U ; we say that U is compatible with a non-zero

polynomial q(x1, . . . , xm) ∈ Z[x1, . . . , xm] if q(x1, . . . , xm) = 0 at any point
of the boundary of U . For example, the open m-dimensional ball of radius 1
with the center at the origin is compatible with the polynomial q(x1, . . . , xm) =
x21+· · ·+x2m−1, and the open square in R2 having the vertices (−1,−1), (−1, 1),
(1,−1), (1, 1) is compatible with the polynomial q(x1, x2) = (x1+1)(x2+1)(x1−
1)(x2 − 1).

Let A be a finite subset of Zm
�0. We say that a function f(x1, . . . , xm) satisfies

zero boundary conditions with orders α ∈ A on U , if for any α ∈ A the function
fα(x1, . . . , xm) is continuous in U .

Let U be a domain compatible with q(x1, . . . , xm) ∈ Z[x1, . . . , xm] and con-
taining (0, . . . , 0). We consider the following problem:

Problem ZC (zero condition). For given:

1) m ∈ Z>0 (the number of independent variables),
2) a non-empty finite set A ⊂ Zm

�0,

352 S.V. Paramonov

3) a non-zero polynomial q(x1, . . . , xm) ∈ Z[x1, . . . , xm] and, maybe, some ad-
ditional information about U ,

4) a differential operator L ∈ Z[D, x],

we study the algorithmic decidability of the existence of a non-zero solution
f(x1, . . . , xm) of the equation L(f) = 0 such that

(a) f(x1, . . . , xm) is analytic on U ,
(b) fα(x1, . . . , xm) is continuous on U for any α ∈ A.

(Function fα(x1, . . . , xm) is continuous on U by the analyticity of f(x1, . . . , xm),
and thus, the additional continuity of fα(x1, . . . , xm) on the boundary of the
domain is required.)

Domain U may not be uniquely determined by q(x1, . . . , xm). We do not
specify exactly how the algorithm obtains the information about the U because
below it does not matter for us.

In the examples given below, we can see that a non-zero analytic solution
satisfying the zero boundary conditions exists in some cases and does not exist
in some other cases.

Example 1. Let m ∈ Z>0, U be the ball of radius 1 in Rm with the center at the
origin, q(x1, . . . , xm) = x21 + · · ·+ x2m − 1, A = {(0, . . . , 0)}, L = D2

1 + · · · +D2
m.

Then we obtain the Dirichlet problem:

∂2y(x1, . . . , xm)

∂x21
+ · · · +

∂2y(x1, . . . , xm)

∂x2m
= 0

y(x1, . . . , xm)|x2
1+···+x2

m=1 = 0.

It is well known that this problem with zero boundary conditions has no non-zero
solutions. Thus the answer is “no”.

Example 2. Let m = 2, U be the halfplane in R2 bounded by line x1 = 1 and
containing the origin, q(x1, x2) = x1 − 1, A = {(0, 0), (1, 1)} and

L = D2
1 − x1D1 − (x1 + x2)D1D2 + 2 = 0.

We obtain the following problem: for the equation

∂2y(x1, x2)

∂x21
− x1

∂y(x1, x2)

∂x1
− (x1 + x2)

∂2y(x1, x2)

∂x1∂x2
+ 2y(x1, x2) = 0

test existence of a non-zero solution that is analytic in U and satisfies the con-
ditions

y(x1, x2)|x1=1 = 0,
∂2y(x1, x2)

∂x1∂x2
|x1=1 = 0.

The answer is “yes”, since y(x1, x2) = x21 − 1 is a solution.

On Testing Uniqueness of Analytic Solutions of PDE 353

3 Undecidability of Problem ZC

To prove that problem ZC is algorithmically undecidable, we establish first the
following lemma:

Lemma 1. Let m ∈ Z>0, A be a finite subset Zm
�0 and U be a domain in

Km compatible with the polynomial q(x1, . . . , xm) ∈ Z[x1, . . . , xm]. Then the
Diophantine equation

C(n1, . . . , nm) = 0, C ∈ Z[n1, . . . , nm] (2)

has a solution (z1, . . . , zm) ∈ Zm if and only if there exists a vector (u1, . . . , um),
ui = ±1, such that the differential equation L(f) = 0 with

L = C(u1δ1, . . . , umδm)
1

qs+1(x1, . . . , xm)
, s = max{|α| : α ∈ A},

has a non-zero solution which is analytic on U and satisfies zero boundary con-
ditions with orders α ∈ A.

Proof. First we prove that the existence of a solution for Eqn. (2) implies the
existence of the vector (u1, . . . , um). Let the equation C(n1, . . . , nm) = 0 have a
solution (z1, . . . , zm) ∈ Zm. Set

ui =

{
1, if zi � 0,

−1, if zi < 0.

If T (n1, . . . , nm)=C(u1n1, . . . , umnm), then T (δ1, . . . , δm)=C(u1δ1, . . . , umδm).
The Diophantine equation T (n1, . . . , nm) = 0 has a solution (u1z1, . . . , umzm) ∈
Zm
�0, therefore, the differential equation T (δ1, . . . , δm)(y) = 0 has monomial

solution y(x1, . . . , xm) = xu1z1
1 . . . xumzm

m (see [1]). Hence if

L = T (δ1, . . . , δm)
1

qs+1(x1, . . . , xm)
= C(u1δ1, . . . , umδm)

1

qs+1(x1, . . . , xm)
,

then the equation L(f) = 0 has the solution

f(x1, . . . , xm) = xu1z1
1 . . . xumzm

m qs+1(x1, . . . , xm),

that is analytic in U (because it is polynomial) and satisfies zero boundary
conditions with orders α ∈ A (because all its partial derivatives up to order
s = max{|α| : α ∈ A} contain the factor q(x1, . . . , xm) and, therefore, vanish on
the boundary of U).

Now we prove that the existence of vector (u1, . . . , um), ui = ±1, implies the
existence of a suitable solution of equation (2). Assume that there exists such
vector (u1, . . . , um), ui = ±1 that if

L = C(u1δ1, . . . , umδm)
1

qs+1(x1, . . . , xm)
, s = max{|α| : α ∈ A},

354 S.V. Paramonov

then the differential equation L(f) = 0 has non-zero solution f(x1, . . . , xm) that
is analytic on U . Since (0, . . . , 0) ∈ U , f(x1, . . . , xm) has a power series expansion
at zero: f(x1, . . . , xm) =

∑
n∈Zm

�0

anx
n1
1 . . . x

nm
m .

Consider the function g(x1, . . . , xm) = f(x1,...,xm)
qs+1(x1,...,xm) . The quotient of two for-

mal power series (in our case, the second power series is a polynomial) can be
represented as formal Laurent series. There are different definitions of Laurent
series of several variables (see [2], [7]); we can use, for example, the iterative ap-
proach: g(x1, . . . , xm) ∈ K((x1)) . . . ((xm)). So g(x1, . . . , xm) can be represented
as a non-zero sum of the monomials g(x1, . . . , xm) =

∑
n∈Zm

bnx
n1
1 . . . x

nm
m . Note

that g(x1, . . . , xm) is a solution of the equation

T (δ1, . . . , δm)(y) = 0, T (δ1, . . . , δm) = C(u1δ1, . . . , umδm).

Using the statement 2◦ from the introduction, we can see that this equa-
tion also has some monomial solution y(x1, . . . , xm) = xz11 . . . x

zm
m , where

(z1, . . . , zm) ∈ Zm. Hence the equation T (n1, . . . , nm) = 0 has an integer so-
lution (z1, . . . , zm) (see [1]). And since T (n1, . . . , nm) = C(u1n1, . . . , umnm), the
equation C(n1, . . . , nm) = 0 has integer solution (u1z1, . . . , umzm). �

Theorem 1. Problem ZC is algorithmically undecidable.

Proof. Suppose that there exists an algorithm solving problem ZC. Then
we show how one can test whether an arbitrary Diophantine equation
C(n1, . . . , nm) = 0 has an integer solution using this algorithm.

Let C ∈ Z[n1, . . . , nm] and U be the open m-dimensional ball of radius 1 with
the center at the origin, q(x1, . . . , xm) = x21 +x22 + · · ·+x2m−1, A = {(0, . . . , 0)}.
By Lemma 1, the equation C(n1, . . . , nm) = 0 has an integer solution if and only
if for some (u1, . . . , um), ui = ±1, the equation

C(u1δ1, . . . , umδm)
1

q(x1, . . . , xm)
(y) = 0 (3)

has a non-zero solution y, that is analytic on U and satisfies zero boundary
conditions with orders α ∈ A. We can try 2m possible vectors (u1, . . . , um) and
for each of them reduce equation (3) to the form L(y) = 0 (L ∈ Z[D, x]). For
each of these equations we test existence of an analytic solutions satisfying corre-
sponding boundary conditions. In this way we establish the presence or absence
of integer solutions of the equation C(n1, . . . , nm) = 0. However, the problem
of recognition of the existence of integer solutions for an arbitrary Diophantine
equation is algorithmically undecidable (Davis–Putnam–Robinson–Matiyasevich
theorem, see [5]), and, therefore, problem ZC is also algorithmically undecidable.
�

Remark 1. In Item 3 of the formulation of problem ZC, additional informa-
tion related to the domain U is mentioned. Our proof of Theorem 1 shows that
problem ZC is algorithmically undecidable regardless of this possible additional
information.

On Testing Uniqueness of Analytic Solutions of PDE 355

4 Undecidability of Problem ZC with Fixed Order
of Equation and Number of Variables

In the proof of statement 1◦ from the introduction, on which the proof of Theo-
rem 1 is based, a mapping of Diophantine equations to differential equations, in
which the order of equation and the number of variables stay the same, is con-
structed. Currently it is proved that there is no algorithm of testing existence
of integer solutions for Diophantine equations of degree greater than or equal to
four and also for Diophantine equations with eleven or more variables (see [8],
[9]).

Remark 2. Currently, for the third-degree equation and equations with from
two to ten variables, the undecidability of this problem is neither proved nor dis-
proved. Note that for first- and second-degree equations this problem is decidable
— see [8].

Returning in this regard to the problem of ZC, we can present a stronger
version of Theorem 1 for some cases:

Theorem 2. (i) If for a natural number n the problem of testing existence of
integer solutions for nth degree Diophantine equations is algorithmically unde-
cidable, then problem ZC with fixed order n of the differential operator L is also
algorithmically undecidable.

(ii) If for a natural number m, the problem of testing existence of integer
solutions for Diophantine equations in m variables is algorithmically undecidable,
then problem ZC with fixed number of variables m, a polynomial q(x1, . . . , xm)
and a domain U compatible with it, is also algorithmically undecidable.

Proof. The proof of this statements is analogous to the proof of Theorem 1.
Let A = {(0, . . . , 0)}.

(i) By Lemma 1, the nth degree Diophantine equation C(z1, . . . , zm) = 0 has
an integer solution if and only if for some (u1, . . . , um), ui = ±1, the nth order
differential equation

C(u1δ1, . . . , umδm)
1

q(x1, . . . , xm)
(y) = 0

has a non-zero solution y, that is analytic on some domain U containing 0 and
satisfies zero boundary conditions with orders α ∈ A in this domain. Therefore,
assuming the existence of an algorithm for solving the problem ZC with differ-
ential equations of order n, we obtain a contradiction because we can recognize
the existence of solutions of an arbitrary nth degree Diophantine equation using
this algorithm, but by the statement, this problem is algorithmically unsolvable.

(ii) The proof is analogous to the proof of (i). Instead of Diophantine and
differential equations of degree/order n we consider Diophantine and differential
equations with m variables, respectively. �

356 S.V. Paramonov

5 Uniqueness of Analytic Solutions

Problem ZC is connected with the question of uniqueness of analytic solutions
for the case of inhomogeneous equation with non-zero boundary conditions: let
there be given the domain U and the equation L(f(x1, . . . , xm)) = b(x1, . . . , xm),
L ∈ Z[D, x] with the set of boundary conditions of the form

fα(x1, . . . , xm)|(x1,...,xm)∈U\U = μ(x1, . . . , xm), α ∈ Zm
�0

(here the right-hand μ(x1, . . . , xm) depends on α) and assume that some analytic
solution satisfying these conditions is found. This solution is unique if and only if
the answer to the question of problem ZC for the homogeneous equation L(f) = 0
with zero boundary conditions is negative (i.e., there is no non-zero solution).
Hence the problem of testing uniqueness of analytic solutions, as well as the
problem ZC, is algorithmically undecidable.

Acknowledgements. The author is grateful to his scientific adviser S. A.
Abramov for the problem statement, attention to this study, and helpful sugges-
tions.

References

1. Abramov, S.A., Petkovšek, M.: On polynomial solutions of linear partial differential
and (q-)difference equations. In: Gerdt, V.P., Koepf, W., Mayr, E.W., Vorozhtsov,
E.V. (eds.) CASC 2012. LNCS, vol. 7442, pp. 1–11. Springer, Heidelberg (2012)

2. Aparicio Monforte, A., Kauers, M.: Formal Laurent Series in Several Variables.
Expositiones Mathematicae, pp. 350–367 (2012)

3. Aroca, F., Cano, J.M., Richard-Jung, F.: Power series solutions for non-linear
PDE’s. In: Proc. ISSAC 2003, pp. 15–22. ACM Press (2003)

4. Denef, J., Lipshitz, L.: Power series solutions of algebraic differential equations.
Math. Ann. 267, 213–238 (1984)

5. Matiyasevich, Y.V.: Hilbert’s Tenth Problem. MIT Press, Cambrige (1993)
6. Paramonov, S.V.: On rational solutions of linear partial differential or difference

equations. Programming and Computer Software (2), 57–60 (2013)
7. Paramonov, S.V.: Checking existence of solutions of partial differential equations in

the fields of Laurent series. Programming and Computer Software (2), 58–62 (2014)
8. Pheidas, T., Zahidi, K.: Undecidability of existential theories of rings and fields: A

survey. Contemporary Mathematics 270, 49–106 (2000)
9. Zhi-Wei, S.: Reduction of unknowns in Diophantine representations. Science China

Mathematics 35(3), 257–269 (1992)

Continuous Problems:

Optimality, Complexity, Tractability
(Invited Talk)

Leszek Plaskota

Institute of Applied Mathematics and Mechanics, University of Warsaw
Banacha 2, 02-097 Warsaw, Poland

Abstract. Information-based complexity (IBC) is a branch of computa-
tional complexity that studies continuous problems for which available
information is partial, noisy, and priced. We present basic ideas of IBC
and give some important results on optimal algorithms, complexity, and
tractability of such problems. The focus is on numerical integration of
univariate and multivariate functions.

1 Introduction

Since a digital computer is able to store and manipulate with finitely many real
numbers, most computational problems of continuous mathematics can only be
solved approximately using incomplete information. A branch of computational
mathematics that studies the inherent difficulty of continuous problems for which
available information is partial, noisy, and priced, is called information-based
complexity (IBC in short). IBC emerged some 35 years ago as a consequence of
the need for a mathematical theory to study aspects of computations related to
continuous problems. Since then IBC developed in different directions, see, e.g.,
the monographs [36] [34] [18] [35] [38] [13] [25] [30].

Examples of computational problems of continuous mathematics include, e.g.,
numerical integration, function approximation, different optimization problems,
or differential/integral equations. IBC seeks for algorithms that solve such prob-
lems not only efficiently but also optimally. The minimal cost of solving the
problem within ε is its ε-complexity. The complexity depends on the setting. For
instance, we may have the worst case setting with respect to a given function
class, the average case setting with respect to a given probability measure, or
Monte Carlo setting where one allows randomized algorithms. In the asymptotic
setting, which is often considered in numerical analysis, one studies how the suc-
cessive approximations converge to the true solution for each individual function
from a class as the computational cost increases to infinity.

Problems that are defined on functions of many or even infinitely many vari-
ables play an important role in IBC. In physical or chemical applications, the
number of variables can be millions. Such problems often suffer from the curse
of dimensionality. This means that the ε-complexity grows exponentially fast
as the number d of variables increases to ∞. For a long time, this notion had

V.P. Gerdt et al. (Eds.): CASC Workshop 2014, LNCS 8660, pp. 357–372, 2014.
c© Springer International Publishing Switzerland 2014

358 L. Plaskota

been used informally. A systematic theoretical study of multivariate problems
started only some 20 years ago when tractability was formally defined for contin-
uous problems [39]. How to deal with the curse or, if possible, how to vanquish
the curse, is a fundamental theoretical and practical question of contemporary
computational mathematics. Some important questions have been answered only
recently. The three volume monograph [20] [21] [22] is the present state of the
art of this subject.

The purpose of this short survey is to present basic ideas of IBC and give some
sample, but important results on optimal algorithms, complexity, and tractabil-
ity that were obtained within this theory. The focus is on the worst case and
randomized settings for the numerical integration which is one of the most im-
portant problems of numerical analysis, see e.g., [3] [32] for an account of various
standard quadrature formulas.

Although adaptive quadrature formulas are frequently used in numerical or
symbolic packages, see, e.g., [6], their behavior has not been satisfactorily ex-
plained. A common knowledge is that adaptive quadratures do well for rapidly
varying functions. We show that IBC provides theoretical tools for answering
this question; namely, we identify classes of piecewise smooth functions for which
adaption helps a lot. Note that functions of this kind regularly appear in appli-
cations. Examples are shock computations or image representation.

Multivariate integration is one of the problems for which the curse of dimen-
sionality frequently occurs in the worst case setting for many function classes. For
a long time, switching to (non-deterministic) Monte Carlo methods seemed to be
the only rescue. Only recently, it turned out that the (deterministic) quasi-Monte
Carlo methods are able to break the curse as well for some classes of functions.
This was first discovered empirically based on some finance applications [23],
and then confirmed by theoretical studies in the IBC framework, see again [21]
for a summary on this topic.

The basic ingredients of IBC such as the solution operator, information and
algorithm are presented in Section 2. In Section 3 we discuss two fundamental
questions of IBC, which are: existence of optimal linear algorithms, and when
adaptive information is better than nonadaptive information. Section 4 is de-
voted to numerical integration in one variable. We show that for globally smooth
functions adaption does not help, while for piecewise smooth functions it does
help. Next we consider multivariate integration and show the curse of dimen-
sionality for r-smooth functions in the worst case setting. Then we vanquish the
curse by either switching to the randomized setting or changing the function
space. In the latter case, we show a strong relation to discrepancy.

2 Basics of IBC

Many computational problems can be viewed as approximation of the values of
an operator

S : F → G,

where F is a linear space and G is a normed space with a norm ‖ · ‖. We
usually think of F as a space of functions f : D → R where the domain D is a

Continuous Problems: Optimality, Complexity, Tractability 359

measurable subset of Rd. Examples include, e.g., zero finding, optimization, or
function approximation. In this paper, we mainly consider numerical integration,
in which case F is a linear space of integrable functions, G = R, and S = Int is
defined as

Int(f) =

∫
D

f(x) dx. (1)

Note that numerical integration is a special case of a problem represented by a
linear functional on F .

We assume that our prior knowledge about f is that

f ∈ F0
where F0 is a subset of F . For instance, if F is equipped with a norm then F0
can be the unit ball of F . During the computational process we can gain more
information y = [y1, y2, . . . , yn] ∈ Rn about f by computation/observation of
some linear functionals at f . For instance, if F is a function space then such
information can be given by values yi = f(xi) at finitely many points xi of
the domain. If F is equipped with an inner product 〈·, ·〉F , then we may have
yi = 〈f, ξi〉F for some ξi ∈ F . In general, we distinguish nonadaptive and adaptive
information. Nonadaptive information about f is given as

yi = Li(f), 1 ≤ i ≤ n,

where Li are linear functionals from a class Λ of admissible functionals. In adap-
tive information, the successive functionals Li are selected based on the infor-
mation collected earlier. That is,

y1 = L1(f),

y2 = L2(f ; y1),

· · ·
yn = Ln(f ; y1, y2, . . . , yn−1).

We stress that, in adaptive information, the number n = n(y) of information
pieces can also be chosen adaptively. That is, in each step we make a decision
whether we have enough information or want more information about f . In any
case, y = N(f) where

N : F → Y

is an information operator and Y is the set of all its possible values. Clearly, if
information is nonadaptive then N : F → Rn is a linear mapping.

Having computed information y about f , an approximation to S(f) is pro-
vided by an algorithm ϕ which is any mapping

ϕ : Y → G.

(At this point we make a rather idealistic assumption that ϕ can be an arbitrary
mapping.) Thus S is approximated by a composition

A = ϕ ◦N

that maps F to G.

360 L. Plaskota

Since information is usually not a one-to-one operator, we have to deal with an
inevitable error of approximation. The error of an algorithm ϕ using information
N can be measured in different ways, depending on the setting. In the worst case
setting considered in this paper we have

ewor(ϕ,N) = sup
f∈F0

‖S(f) − ϕ(N(f))‖.

This is the most conservative choice; if the error is at most ε then we are sure
that ‖S(f) − ϕ(N(f))‖ ≤ ε for each individual function f ∈ F0.

Our aim is to approximate S within the error ε using as little functional
evaluations as possible. Denoting by card(N) the maximum length n = n(y) of
information y = N(f) for f ∈ F0, we define the (worst case) ε-complexity of our
problem as

compwor(F0, ε) = min {n : ∃N ∃ϕ s.t. card(N) ≤ n, ewor(ϕ,N) ≤ ε }.

Remark 1. The quantity compwor(F0, ε) is often called information ε-complexity.
For many problems the information cost card(N) dominates the combinatory
cost of ϕ. Therefore, for simplicity, we only consider the information cost.

3 Some General Results

For given information N : F → Y , an algorithm ϕ∗ is called optimal if it mini-
mizes the error with respect to all possible algorithms using N , i.e.,

ewor(ϕ∗, N) = inf
ϕ:Y→G

ewor(ϕ,N).

In the worst case setting, there is a nice interpretation of optimal algorithms
and their errors. Indeed, observe that the error of ϕ can be equivalently written
as

ewor(ϕ,N) = sup
y∈Y

(
sup

g∈B(y)

‖g − ϕ(y)‖
)

where B(y) = {S(f) : f ∈ F0, N(f) = y} ⊂ G is the set of all possible solutions
corresponding to information y. Hence the minimal error that can be achieved
by algorithms that use information N is the maximal (Chebyshev) radius of all
the sets B(y) for y ∈ Y . Recall that the radius r(B) of a set B ⊂ G is defined
as the minimal radius of a ball containing B,

r(B) = inf
g1∈G

sup
g2∈B

‖g2 − g1‖.

Hence, if each B(y) has a center cy ∈ G, i.e., r(B(y)) = supg2∈B(y) ‖g2 − cy‖,
then ϕ(y) = cy is an optimal algorithm. For this reason, the minimal error is
called the radius of information, and denoted rwor(N).

As a simple illustration, consider uniform approximation in the class F0 of
functions f : [0, 1] → R satisfying the Lipschitz condition,

|f(x) − f(y)| ≤ |x− y| for all 0 ≤ x, y ≤ 1.

Continuous Problems: Optimality, Complexity, Tractability 361

That is, S(f) = f and G = C([0, 1]). Suppose the information operator is given
as

N(f) = [f(x1), f(x2), . . . , f(xn)]

where 0 ≤ x1 < x2 < · · · ≤ xn ≤ 1. Then, for given information y = [y1, . . . , yn]
about f , the center of B(y) is cy = (f− + f+)/2, where f−, f+ are the lower
and upper envelopes,

f−(x) = min
1≤i≤n

yi + |x− xi|, f+(x) = max
1≤i≤n

yi − |x− xi|.

Moreover,

rwor(N) = max{x1, (1 − xn), (xi − xi−1)/2, 2 ≤ i ≤ n}.

Note that in this case the piecewise linear approximation,

ϕ(y) =

⎧⎨⎩
y1, 0 ≤ x ≤ x1,

yi−1

(
x−xi

xi−1−xi

)
+ yi

(x−xi−1

xi−xi−1

)
, xi−1 < x ≤ xi, 2 ≤ i ≤ n,

yn, xn < x ≤ 1,

is also an optimal algorithm.

From the point of view of computational practice it is important to know
whether the optimal algorithms have a relatively simple structure, e.g., are linear
or affine. This question can be successfully answered when the problem S is a
linear functional, e.g., S = Int. Note that the widely used quadratures

Qn(f) =

n∑
i=1

aif(xi) (2)

with fixed nodes xi are linear algorithms.

Theorem 1 (see [31] [33]). Suppose that S is a linear functional and infor-
mation N is a linear mapping. If the set F0 is convex then there exists an affine
algorithm that is optimal. If, in addition, F0 is symmetric about the zero then
the optimal affine algorithm is linear.

The importance of this theorem is clear. It says that the search for optimal
algorithms can be restricted to affine (or linear) algorithms whose combinatory
cost is proportional to card(N).

We add that Theorem 1 does not hold in general if S is linear, but not a
functional. It does hold however when, e.g., S is a linear operator with domain
F being a Hilbert space, and F0 is the unit ball, see, e.g., [35, Sect. 5.5].

In the proof of Theorem 1 one uses the following convenient formula for the
radius of linear information N with respect to convex classes F0; namely,

rwor(N) = sup
h∈bal(F0)∩ker(N)

S(h) (3)

362 L. Plaskota

where bal(F0) = { (f1 − f2)/2 : f1, f2 ∈ F0 }. This formula also plays a crucial
role in the proof of the following result on the power of nonadaptive information.

Suppose that F0 is convex and symmetric about an f∗ ∈ F , i.e., if f ∈ F0
then 2f∗ − f ∈ F0. For a given adaptive information Nada that uses functionals
Li(·; y1, . . . , yi−1) we set y∗ = Nada(f∗) and define nonadaptive information
Nnon as

Nnon(f) = [L1(f), L2(f ; y∗1), L3(f ; y∗1 , y
∗
2), . . . , Ln(f ; y∗1 , . . . , y

∗
n−1)]

with n = n(y∗). This means that for the choice of Lk we ‘pretend’ that we
earlier saw y∗i = Li(f

∗; y∗1 , . . . , y
∗
i−1) instead of yi = Li(f ; y∗1 , . . . , y

∗
i−1) for i =

1, 2, . . . , k − 1.

Theorem 2 (see [2]). We have

rwor(Nnon) ≤ rwor(Nada).

Thus adaption does not help for approximating linear functionals S over convex
and symmetric classes F0.

Indeed, in this case the formula (3) reads

rwor(Nnon) = sup{S(f) : f ∈ F0, Nnon(f) = y∗} − S(f∗),

which is the radius of the set of solutions S(f) for f ∈ F0 with Nnon(f) = y∗.
By the definition of Nnon, this coincides with the set of solutions for f ∈ F0 with
Nada(f) = y∗. Hence rwor(Nada) cannot be smaller than rwor(Nnon).

Theorem 2 generalizes to the case of linear operators S, where adaptive in-
formation can be at most twice better than nonadaptive information, see, e.g.,
[35, Sect. 5.2]

Remark 2. Theorems 1 and 2 have their counterparts in the average case setting
with respect to Gaussian measures, and generalizations to the case of noisy
information, see, e.g., [37] [5] [19], and the monographs [35] [25].

4 Univariate Integration

In this section, we consider the problem of numerical integration (1) of univariate
functions. We assume that the class Λ of permissible information functionals
consists of function evaluations, i.e., L ∈ Λ iff there is t ∈ D such that L(f) =
f(t) ∀f ∈ F .

4.1 Smooth Functions

Suppose that F is the space of r times continuously differentiable functions
f : [0, 1] → R equipped with the norm

‖f‖r = max
(
‖f‖∞, ‖f (r)‖∞

)
,

Continuous Problems: Optimality, Complexity, Tractability 363

where ‖g‖∞ = max0≤x≤1 |g(x)|, and F0 = Wr is the unit ball of F . Since the
assumptions of Theorems 1 and 2 are satisfied, adaption does not help in the
worst case setting, and quadratures (2) are optimal algorithms. For the class
Wr, optimal quadratures are in general known up to constant factors.

Theorem 3 (see [36] [18]). There are ar and Ar such that

ar ε
−1/r ≤ compwor(Wr, ε) ≤ Ar ε

−1/r, 0 < ε < 1.

The upper complexity bound is attained by composite quadratures that are based
on simple rules of order r and equidistant sampling.

To give a flavor of IBC proof techniques, we show the lower bound. To that
end, we use the well known adversary argument. Suppose that an algorithm ϕ
uses nonadaptive information N(f) = [f(x1), . . . , f(xn)] with 0 ≤ x1 < . . . <
xn ≤ 1. In addition, we set x0 = xn − 1 and xn+1 = 1 + x1. Then we choose
Ψ : R → R to be any r times continuously differentiable function satisfying
Ψ |[0,1] ∈Wr, Ψ(x) = 0 for x /∈ (0, 1), and Int(Ψ) = a > 0, and define

f =

n∑
i=0

ψi, where ψi(x) = hri Ψ((x − xi)/hi), hi = xi+1 − xi.

We have ±f ∈ Wr and N(±f) = 0. Hence Int(f) and Int(−f) are approximated
by the same number ϕ(0), and the error of ϕ is at least

(Int(f) − Int(−f))/2 = Int(f) = a

n∑
i=1

hr+1
i ≥ a n−r.

Since adaption does not help, compwor(Wr, ε) ≥ (a/ε)1/r, as claimed.

Theorem 3 can be a bit surprising since adaptive quadratures are quite popular
in computational practice and are regularly used in symbolic and numerical
packages such as Mathematica or Matlab. As an example, consider the probably
most popular standard adaptive Simpson quadrature ASQ, first published in
algorithm form in [12]. It can be conveniently written as a recursive function.

0 functionASQ(a, b, f, ε);
1 Q1 := Simpson(a, b, f);
2 Q2 := Simpson

(
a, a+b

2 , f
)

+ Simpson

(
a+b
2 , b, f

)
;

3 if |Q1 −Q2| ≤ 15 ε then return Q2 else
4 return ASQ

(
a, a+b

2 , f,
ε
2

)
+ ASQ

(
a+b
2 , b, f,

ε
2

)
Here a and b are the end-points of the interval and ε is the error demand.

A rough justification of ASQ is as follows. Let Ii(f) be the integral of f in
the ith subinterval of length hi, and Q1

i (f), Q2
i (f) be the three- and five-point

Simpson rules for this interval. Then Ii(f) − Q1
i (f) = −h5i f (4)(ξi)/2880 and

364 L. Plaskota

Ii(f) −Q2
i (f) = −(hi/2)5f (4)(ηi)/2880 for some ξi, ηi in the subinterval. Hence

for ‘small’ hi we should have

Q1
i (f) −Q2

i (f) = (Ii(f) −Q2
i (f)) − (Ii(f) −Q1

i (f)) ≈ 15 (Ii(f) −Q2
i (f)),

and the overall error of approximating
∫ 1

0 f(x) dx should be bounded as

∑
i

|Ii(f) −Q2
i (f)| ≈ 1

15

∑
i

|Q1
i (f) −Q2

i (f)| ≤
∑
i

ε hi = ε.

ASQ is supposed to work well for functions f ∈ C4([0, 1]). However, it fails

in many cases. If, for instance, f(x) =
∏4

i=0(x − i/4)2 then ASQ returns zero
independently of how small ε is. It is generally a difficult problem to identify
a class F0 of functions for which ASQ gives a correct answer using fewer func-
tion evaluations than the usual nonadaptive composite Simpson rule, see, e.g.,
[14] [15]. However, some results can be shown when analyzing the asymptotic
behavior of the error for each individual f , see [26].

Specifically, assume in addition to f ∈ C4([0, 1]) that f (4) does not change
sign, say,

f (4)(x) ≥ 0 ∀x. (4)

Then, for sufficiently small ε (depending on f) adaptive Simpson quadrature
returns an ε-approximation at cost proportional to (ε LASQ(f))−1/4 where

LASQ(f) =
(∫ 1

0

(
f (4)(x))1/4 dx

)4
.

This should be compared with the corresponding result for the (nonadaptive)
composite Simpson rule using equidistant sampling, where the ε-approximation
is asymptotically attained at cost proportional to (ε LNSQ(f))−1/4 with

LNSQ(f) =

∫ 1

0

f (4)(x) dx.

Thus in both cases the cost of obtaining an ε-approximation increases at the
same rate ε−1/4, as ε → 0. However, we always have LASQ(f) ≤ LNSQ(f),
and the ratio LNSQ(f)/LASQ(f) can be arbitrarily large for functions f in our
class. For such functions the adaptive quadrature is asymptotically much better
than the nonadaptive quadrature. The superiority of adaptive quadratures is
even more striking when f (4) has an end-point singularity, e.g., f(x) =

√
x and

[a, b] = [0, 1]. Then LASQ(f) < ∞ while LNSQ(f) = ∞, and the nonadaptive
procedure even loses the rate ε−1/4.

Those asymptotic results may suggest that adaption can help in the worst
case setting if we narrow the class Wr to, say, functions with nonnegative rth
derivative. This is however not the case as such class is still convex and symmetric
(about f∗(x) = 1

2x
r/r!) and Theorem 2 applies.

Continuous Problems: Optimality, Complexity, Tractability 365

Remark 3. It turns out that the adaptive subdivision strategy used by ASQ is
not optimal for functions satisfying (4). The best strategy relies on keeping the
local error in each subinterval at the same level. This strategy produces a sub-
division such that the resulting composite Simpson quadrature asymptotically
returns an ε-approximation at cost proportional to (ε LOSQ(f))−1/4 where

LOSQ(f) =
(∫ 1

0

(f (4)(x))1/5 dx
)5
,

see again [26] for details.

More examples of function classes for which adaption does help can be found
in [19].

4.2 Singular Functions

Adaptive quadratures tend to sample denser in regions where the underlying
function rapidly changes. Extreme examples of such functions are functions with
singularities. Then we are able to rigorously show that adaptive quadratures are
much superior to nonadaptive quadratures even in the worst case setting.

We consider a class Ŵr of functions f : [0, 1] → R that are r-smooth and

periodic except for one unknown singular point. Specifically, f ∈ Ŵr iff there
are s = sf ∈ [0, 1) and a function g = gf ∈ Wr such that

f(x) =

{
gf(x − sf + 1), 0 ≤ x < sf ,
gf(x − sf), sf ≤ x ≤ 1.

Hence f ∈ Ŵr can be viewed as a function g ∈ Wr with the argument shifted
by sf . Note that the class Ŵr is symmetric about zero, but not convex. We have
the following theorem.

Theorem 4 (see [27]). Let r ≥ 2.

(i) For any nonadaptive quadrature Qnon
n that uses n function evaluations we

have
ewor(Qnon

n) ≥ (n+ 1)−1.

(ii) There are adaptive quadratures Qada
n , each using no more than n function

evaluations, for which
ewor(Qada

n) ≤ Cr n
−r,

with some Cr independent of n.

The proof of (i) uses the already known adversary argument. That is, suppose
that Qnon

n uses points 0 ≤ x1 < x2 < · · · < xn < 1. We select k such that
xk+1 −xk ≥ 1/n (where xn+1 = 1 +x1) and set h = xk+1 −xk − δ with ‘small’ δ
and c = 2/(1+h). Finally, we define two functions, f generated by gf (x) = cx−1

and sf = xk + δ, and f̃ generated by gf̃(x) = c(x + h) − 1 and sf̃ = xk+1 (or

366 L. Plaskota

sf̃ = x1 if k = n). The functions f and f̃ share the same information, and
therefore their integrals are approximated by the same value. Hence the error is
at least

|Int(f) − Int(f̃)|/2 = h(1 − ch/2) = h/(1 + h).

Since h can be arbitrarily close to 1/n, (i) follows.

The construction of the adaptive quadrature Qada
n is quite simple. An adap-

tive mechanism is here used to detect the singularity. Specifically, for an ini-
tial uniform grid ti = ih (with h ≈ 1/n) we compute the divided differences
di = f [ti, ti+1, . . . , ti+r] corresponding to all r + 1 successive points. Then simi-
lar procedure is repeated in the subinterval [ti∗ , ti∗+r], where i∗ = arg maxi |di|,
but with the mesh-size h/2. After such r log2(1/h) bisection-like steps we ob-
tain a critical subinterval [u, v] of length hr+1. Finally, in [u, v] the integral is
approximated by zero, while outside the usual composite quadrature of order r
is applied using the original grid of size h.

It is clear that the error of Qada
n is of order hr if the singular point sf is in

(u, v]. The correctness of Qada
n in case sf /∈ [u, v] is justified by the following

theoretical argument. Denote the discontinuity jumps of f and its derivatives by

Δ
(j)
f = f (j)(s+f) − f (j)(s−f) = g

(j)
f (0) − g(j)f (1), 0 ≤ j ≤ r − 1.

Lemma 1 (see [29]). There exists Mr with the following property.

Suppose f ∈ Ŵr with sf ∈ (tk, tk+1]. If

|f [ti, ti+1, . . . , ti+r]| ≤ B for all k + 1 − r ≤ i ≤ k,

then

|Δ(j)
f | ≤ Mr

(
B +

1

r!
‖f (r)‖∞

)
hr−j, 0 ≤ j ≤ r − 1.

Now, if sf /∈ (u, v] then all the divided differences |di| ≤ ‖f (r)‖∞/r!, and by

Lemma 1 the jumps |Δ(j)
f | ≤ 2Mr

r! ‖f (r)‖∞hr−j. It follows that this is enough
for the error to be of order hr even when the singularity is ignored and the
composite rule with the mesh-size h is applied.

Summarizing this subsection we can say that singularities do not hurt. The
worst case ε-complexity in the class Ŵr is still of order ε−1/r. However, one has
to use adaptive methods to obtain the best error convergence.

Remark 4. Let us narrow the class Ŵr to continuous functions, i.e., assume that

gf (0) = gf(1) (or Δ
(0)
f = 0). It turns out that then for any regularity r ≥ 2

one can obtain the worst case error of order n−2 using nonadaptive quadratures.
Hence adaption does not help for r = 2. For r ≥ 3 adaptive quadratures are
better; however, the optimal quadratures are rather ‘quasi-adaptive’ since they
use only about r adaptive points, independently of n, see [28] for details.

Continuous Problems: Optimality, Complexity, Tractability 367

5 Multivariate Integration and Tractability

We now switch to d-variate integration,

Intd(f) =

∫
[0,1]d

f(x1, x2, . . . , xd) dx1 dx2 . . . dxd.

As before, we assume that Λ consists of function evaluations.

The problem is analyzed from the point of view of tractability. Roughly speak-
ing, a problem is tractable if it can be solved in ‘reasonable’ time with respect
to d and the inverse of ε. Formally we have different notions of tractability. For
instance, a problem is polynomially tractable iff there are nonnegative p, q, and
C such that

compwor(F0, ε) ≤ C d q ε−p for all d and ε ∈ (0, 1).

If, in addition, q = 0 then the problem is strongly polynomially tractable. We say
that a problem suffers from the curse of dimensionality iff there are positive c,
ε0, and γ such that

compwor(F0, ε) ≥ c (1 + γ)d for all ε ≤ ε0 and infinitely many d.

See [20] for other notions of tractability.

5.1 Smooth Functions

Consider the following generalization of the class of univariate functions of Sub-
section 4.1 to a class of d-variate functions. The space F consists of functions
f : [0, 1]d → R for which all the partial derivatives of order r exist and are
continuous. The norm in F is

‖f‖d,r = max
(
‖f‖∞, ‖Dαf‖∞, |α| = r

)
,

where α = (α1, . . . , αd), |α| =
∑d

i=1 αi, and

Dαf =
∂|α|f

∂xα1
1 · · · ∂xαd

d

.

Finally, the class F0 = Wd,r is the unit ball of F . Note that W1,r = Wr. Since
the error of the zero algorithms is 1, we also have that compwor(Wd,r, ε) = 0 for
all d and ε ≥ 1.

Theorem 5 (see [1] [18]). There are ad,r and Ad,r such that for all d and
0 < ε < 1

ad,r ε
−d/r ≤ compwor(Wd,r, ε) ≤ Ad,r ε

−d/r.

The optimal quadratures are tensor products of univariate composite quadratures
of order r.

368 L. Plaskota

Observe that this result is devastating for large d. For instance, if d = 102

(which is not too large in applications) and r = 2 then even for a moderate value
of ε = 10−2 we have ε−d/r = 10100, and the problem is practically unsolvable.

Since the exponent d/r at 1/ε in Theorem 5 can be arbitrarily large, the
multivariate integration in the classWd,r is not polynomially tractable. However,
based on that theorem, we cannot claim the curse of dimensionality as we do not
know how ad,r and Ad,r depend on d. The problem had been open for many years.
The curse was shown in [33] for r = 1, and only recently in [10] for arbitrary r.

Theorem 6 (see [10]). We have

compwor(Wd,r, ε) ≥ cr (1 − ε) d d/(2r+3) for all d and ε ∈ (0, 1),

where cr ∈ (0, 1] depends only on r. Thus the multivariate integration in the
class Wd,r suffers from the curse of dimensionality with the super exponential
lower bound in d.

Does Theorem 6 mean that it is practically impossible to integrate d-variate
functions with large d? Not quite; we can break the curse by either switching
from the worst case to another setting, or by changing the function class F0.

5.2 Monte Carlo

In this subsection we consider the randomized (Monte Carlo) setting in which
the information and/or algorithms are chosen at random. Formally, we have a
family of (deterministic) information operators and algorithms {(Nω, ϕω)ω∈Ω}
parameterized by a random variable ω ∈ Ω. In the computational process ω is
randomly chosen and then the approximation ϕω(Nω(f)) to S(f) is produced.
Obviously, information Nω can be adaptive or nonadaptive. In the randomized
setting, the error is defined as

erand
(
(ϕω, Nω)ω∈Ω

)
= sup

f∈F0

√
E | Intd(f) − ϕω(Nω(f)) |2

where E is the expectation with respect to ω. An example is provided by the
standard Monte Carlo method [16],

MCd,n(f) =
1

n

n∑
i=1

f(ti)

where ti are independent and uniformly distributed random variables from [0, 1]d.

It is well known that

E | Intd(f) − MCd,n(f) |2 =
σ2(f)

n
, σ2(f) = Intd(f2) − (Intdf)2.

Thus for the classWd,r we have erand(MCn) ≤ n−1/2, which immediately implies

comprand(Wd,r, ε) ≤ ε−2

Continuous Problems: Optimality, Complexity, Tractability 369

and strong polynomial tractability with the exponent p = 2.

It is worthwhile to mention that for fixed d the exponent at 1/ε can be slightly
improved. Indeed, we have the following result.

Theorem 7 (see [1] [18] [7]). There are a′d,r and A′
d,r such that

a′d,r ε
−2/(1+2r/d) ≤ comprand(Wd,r, ε) ≤ A′

d,r ε
−2/(1+2r/d), 0 < ε < 1.

We add that the bound of Theorem 7 is achieved by a variant of variance
reduction given as

MC∗
d,n(f) = Int(Ad,nf) + MCd,n(f −Ad,nf)

where Ad,nf is the d-tensor product of piecewise polynomial interpolation of
order r for univariate functions.

Observe that Theorem 7 implies that p = 2 is the best exponent of the strong
polynomial tractability.

Remark 5. Since the methods MCd,n and MC∗
d,n use nonadaptive information

and linear algorithms, adaption does not help for integration in the randomized
setting with respect to the classWd,r. It is however not known whether Theorems
1 and 2 hold true in general in the randomized setting for convex and symmetric
classes F0.

5.3 Quasi-Monte Carlo

Quasi-Monte Carlo methods are deterministic counterparts of the (randomized)
Monte Carlo MCd,n. These are methods of the form

QMCn(f) =
1

n

n∑
i=1

f(ti),

where the points ti are chosen deterministically. We assume that f belongs to
the space F of functions f : [0, 1]d → R that are once continuously differentiable
with respect to each variable, and f(x1, . . . , xd) = 0 whenever at least one xi is
1. The norm in F is given as

‖f‖�d = ‖D(1,...,1)f‖∞ = sup
x∈[0,1]d

∣∣∣ ∂df

∂x1 · · · ∂xd
(x)

∣∣∣.
Let F0 = W �

d be the unit ball of F .
The error of QMCd,n in the classW �

d is closely related to the notion of discrep-
ancy. This is a quantitative measure of the uniformity of the distribution of points
in the unit cube. Formally, the (star) discrepancy of a point set {ti}ni=1 ⊂ [0, 1]d

is defined as

disc�(t1, t2, . . . , tn) = sup
x∈[0,1]d

∣∣∣Vol([0, x)) − 1

n

n∑
i=1

1[0,x)(ti)
∣∣∣.

Here [0, x) = [0, x1) × · · · × [0, xd) is the d-dimensional rectangle anchored at 0.

370 L. Plaskota

From the well known Hlavka and Zaremba’s identity [9] [40] it follows that

| Intd(f) − QMCd,n(f) | ≤ disc�(t1, . . . , tn) ‖f‖�d, ∀ f ∈W �
d .

This implies that the worst case error of QMCd,n in the class W �
d is completely

determined by the discrepancy of the points used,

ewor(QMCd,n) = disc�(t1, t2, . . . , tn).

How to select the points {ti}ni=1 to minimize the discrepancy is a well known
open problem. The best known bound

disc�(t1, t2, . . . , tn) ≤ cd
(lnn)d−1

n

is provided, e.g., by Hammersley points or digital nets, see the monographs [17]
[4]. It had long been believed that the presence of the factor (lnn)d−1 in the error
formula of disc� makes the quasi-Monte Carlo methods applicable only for small
dimensions d. However, numerical experiments [24] [23] done in the mid-1990s
for some finance problems showed applicability of quasi-Monte Carlo even for
d = 360. Since then this method has been successfully used to solve many other
high dimensional problems. A couple of years later the polynomial tractability
of quasi-Monte Carlo was shown using rigorous arguments.

Theorem 8 (see [11]). There are points {t∗i }ni=1 such that

disc�(t∗1, t
∗
2, . . . , t

∗
n) ≤ C d1/2 n−1/2,

for some absolute constant C.

The proof uses, in particular, deep results from the theory of empirical pro-
cesses, and is not constructive. Taking the inverse of the star discrepancy we
conclude that the integration problem is in the class W �

d polynomially tractable,

compwor(W �
d , ε) ≤ C2 d ε−2.

We add that there is also known a lower bound compwor(W �
d , ε) ≥ c d ε−1 show-

ing that we do not have strong polynomial tractability, see [8].

Acknowledgments. This research was supported by the National Science Cen-
tre, Poland, based on the decision DEC-2013/09/B/ST1/04275.

References

1. Bakhvalov, N.S.: On the approximate computation of multiple integrals. Vestnik
MGU 4, 3–18 (1959) (in Russian)

2. Bakhvalov, N.S.: On the optimality of linear methods for operator approximation
in convex classes. Comput. Math. Math. Phys. 11, 244–249 (1971)

Continuous Problems: Optimality, Complexity, Tractability 371

3. Davis, P.J., Rabinowitz, P.: Methods of Numerical Integration, 2nd edn. Academic
Press, Orlando (1984)

4. Dick, J., Pillichshammer, F.: Digital Nets and Sequences: Discrepancy Theory and
Quasi-Monte Carlo Integration. Cambridge University Press, Cambridge (2010)

5. Donoho, D.L.: Statistical estimation and optimal recovery. Annals of Statistics 22,
238–270 (1994)

6. Gander, W., Gautschi, W.: Adaptive quadrature - revisited. BIT 40, 84–101 (2000)
7. Heinrich, S.: Random approximation in numerical analysis. In: Berstadt, et al.

(eds.) Proc. of the Functional Analysis Conf., Essen 1991, pp. 123–171. Marcel
Dekker, New York (1993)

8. Hinrichs, A.: Covering numbers, Vapnik-Cervonenkis classes and bounds for the
star discrepancy. J. Complexity 20, 477–483 (2004)

9. Hlavka, E.: Über die Diskrepanz mehrdimensionaler Folgen mod 1. Math. Z. 77,
273–284

10. Hinrichs, A., Novak, E., Ullrich, M., Woźniakowski, H.: The curse of dimensionality
for numerical integration of smooth functions. Math. Comp.,
http://dx.doi.org/10.1090/S0025-5718-2014-02855-X

11. Heinrich, S., Novak, E., Wasilkowski, G.W., Woźniakowski, H.: The inverse of the
star discrepancy depends linearly on the dimension. Acta Arith 96, 279–302 (2001)

12. McKeeman, W.M.: Algorithm 145: Adaptive numerical integration by Simpson’s
rule. Commun. ACM 5, 604 (1962)

13. Kowalski, M., Sikorski, K., Stenger, F.: Selected Topics in Approximation and
Computation. Oxford University Press, New York (1995)

14. Lyness, J.N.: Notes on the adaptive Simpson quadrature routine. J. Assoc. Comput.
Mach. 16, 483–495 (1969)

15. Malcolm, M.A., Simpson, R.B.: Local versus global strategies for adaptive quadra-
ture. ACM Trans. Math. Software 1, 129–146 (1975)

16. Metropolis, N., Ulam, S.: The Monte Carlo method. J. Amer. Statist. Assoc. 44,
335–341 (1949)

17. Niederreiter, H.: Random Number Generation and Quasi-Monte Carlo Methods.
In: CBMS-NSF Regional Conf. Ser. in Appl. Math., vol. 63, SIAM, Philadelphia
(1994)

18. Novak, E.: Deterministic and Stochastic Error Bounds in Numerical Analysis. Lec-
ture Notes in Math., vol. 1349. Springer, Berlin (1988)

19. Novak, E.: On the power of adaption. J. Complexity 12, 199–237 (1996)
20. Novak, E., Woźniakowski, H.: Tractability of Multivariate Problems. Volume I:

Linear Information. EMS Tracts in Math. 6 (2008)
21. Novak, E., Woźniakowski, H.: Tractability of Multivariate Problems. Volume II:

Standard Information for Functionals. EMS Tracts in Math. 12 (2010)
22. Novak, E., Woźniakowski, H.: Tractability of Multivariate Problems. Volume III:

Standard Information for Operators. EMS Tracts in Math. 18 (2012)
23. Papageorgiou, A.F., Traub, J.F.: Faster evaluation of multidimensional integrals.

Comp. Phys. 11, 574–578 (1997)
24. Paskov, S., Traub, J.F.: Faster valuation of financial derivatives. J. Portfolio Man-

agement 22, 113–120 (1995)
25. Plaskota, L.: Noisy Information and Computational Complexity. Cambridge

University Press, Cambridge (1996)
26. Plaskota, L.: Automatic integration using asymptotically optimal adaptive

Simpson quadrature (submitted)
27. Plaskota, L., Wasilkowski, G.W.: Adaption allows efficient integration of functions

with unknown singularities. Numerische Math. 102, 123–144 (2005)

http://dx.doi.org/10.1090/S0025-5718-2014-02855-X

372 L. Plaskota

28. Plaskota, L., Wasilkowski, G.W.: Uniform approximation of piecewise r-smooth
and globally continuous functions. SIAM J. Numer. Analysis 47, 762–785 (2009)

29. Plaskota, L., Wasilkowski, G.W., Zhao, Y.: The power of adaption for approximat-
ing functions with singularities. Math. Comp. 77, 2309–2338 (2008)

30. Ritter, K.: Average Case Analysis of Numerical Problems. Lecture Notes in Math.,
vol. 1733. Springer, Berlin (2000)

31. Smolyak, S.A.: On optimal recovery of functions and functionals of them, PhD
thesis, Moscow State Univ. (1965) (in Russian)

32. Sobolev, S.L., Vaskevich, V.L.: The Theory of Cubature Formulas. Kluwer
Academic Publishers, Dordrecht (1997)

33. Sukharev, A.G.: On the existence of optimal affine methods for approximating
linear functionals. J. Complexity 2, 317–322 (1986)

34. Traub, J.F., Wasilkowski, G.W., Woźniakowski, H.: Information, Uncertainty,
Complexity. Addison-Wesley, Reading (1983)

35. Traub, J.F., Wasilkowski, G.W., Woźniakowski, H.: Information-Based Complexity.
Academic Press, New York (1988)

36. Traub, J.F., Woźniakowski, H.: A General Theory of Optimal Algorithms. Aca-
demic Press, New York (1980)

37. Wasilkowski, G.W.: Information of varying cardinality. J. Complexity 2, 204–228
(1986)

38. Werschulz, A.G.: The Computational Complexity of Differential and Integral Equa-
tions: an Information-Based Approach. Oxford University Press, New York (1991)

39. Woźniakowski, H.: Tractability and strong tractability of linear multivariate
problems. J. Complexity 10, 96–128 (1994)

40. Zaremba, K.S.: Some applications of multidimensional integration by parts. Ann.
Polon. Math. 21, 85–96 (1968)

On Integrability of Evolutionary Equations

in the Restricted Three-Body Problem
with Variable Masses

Alexander N. Prokopenya1,2, Mukhtar Zh. Minglibayev3,4,
and Baglan A. Beketauov3

1 Warsaw University of Life Sciences – SGGW
Nowoursynowska str. 159, 02-776 Warsaw, Poland

alexander prokopenya@sggw.pl
2 Collegium Mazovia Innovative Higher School
Sokolowska str. 161, 08-110 Siedlce, Poland

3 Al-Farabi Kazakh National University
al-Farabi ave. 71, Almaty, 050038 Kazakhstan

minglibayev@mail.ru
4 Fessenkov Astrophysical Institute

Observatoriya 23, Almaty, 050020 Kazakhstan
Beketauov Baglan@mail.ru

Abstract. The satellite version of the restricted three-body problem
formulated on the basis of classical Gylden–Meshcherskii problem is con-
sidered. Motion of the point P2 of infinitesimal mass about the point P0

is described in the first approximation in terms of the osculating elements
of the aperiodic quasi-conical motion, and an influence of the point P1

gravity on this motion is analyzed. Long-term evolution of the orbital
elements is determined by the differential equations written in the Hill
approximation and averaged over the mean anomalies of points P1 and
P2. Integrability of the evolutionary equations is analyzed, and the laws
of mass variation have been found for which the evolutionary equations
are integrable. All relevant symbolic calculations and visualizations are
done with the computer algebra system Mathematica.

1 Introduction

The restricted three-body problem is a well-known model of celestial mechanics,
having a lot of applications (see [9]). In the simplest case, it is assumed that two
massive points P0, P1 move in the Keplerian orbits about their common center
of mass, while the third point P2 of negligible mass does not influence on their
motion and moves in the gravitational field generated by P0, P1. This problem is
not integrable, and so the perturbation theory is usually applied to the analysis of
the point P2 motion, and quite cumbersome symbolic calculations are involved.
As a general solution of the two-body problem is known, one can consider in the
first approximation that the point P2 moves around the point P0, for example,
as a satellite and its Keplerian orbit is disturbed by the gravity of point P1.
Such a model has been used successfully in the study of satellite motion in the

V.P. Gerdt et al. (Eds.): CASC Workshop 2014, LNCS 8660, pp. 373–387, 2014.
c© Springer International Publishing Switzerland 2014

374 A.N. Prokopenya, M.Zh. Minglibayev, and B.A. Beketauov

system Earth–Moon or Sun–planet [4,5]. It was shown that doubly averaged
equations of motion determining the evolution of satellite orbit may become
integrable. The corresponding general solution may be found in analytic form,
and it enables investigation of main qualitative features of the orbit parameters
(see, for example, [10]).

If masses of points P0 and P1 vary with time as it takes place in case of a
binary star, losing the mass due to the corpuscular and photon radiation, the
problem becomes much more complicated because a general solution of the cor-
responding two-body problem cannot be found in an analytical form (see [2,1,6]).
Actually, using the relative coordinate system with origin at point P0, one can
write equation of the point P1 motion in the form

d2R1

dt2
= −G(m0(t) +m1(t))

R1

R3
1

, (1)

where R1 is a radius-vector of point P1, R1 = |R1|, and G is the constant of
gravitation. Equation (1) is known as the classical Gylden–Meshcherskii problem
(see [2]), and its general solution can be found in symbolic form only for special
cases. In the present paper, we assume that the massesm0(t) andm1(t) of points
P0 and P1, respectively, vary isotropically with different rates, but their total
mass reduces according to the joint Meshcherskii law

m00 +m10

m0(t) +m1(t)
=
√
At2 + 2Bt+ C ≡ v(t), (2)

where m00 = m0(t0), m10 = m1(t0), t0 is an initial instant of time, and param-
eters A,B,C are chosen in a way to satisfy the condition v(t0) = 1 and v(t)
to be an increasing function for t > t0. Then equation (1) is reduced to ordi-
nary equation of Keplerian motion for constant masses by means of variables
transformation (see [2])

R1(t) = v(t)R(τ) ,
dt

v2(t)
= dτ , (3)

where R(τ) = (X,Y, Z) is a new radius-vector, and τ is a new independent
variable (new ”time”). A uniform motion in a circle of radius a1 situated in the
coordinate plane XOY is a particular case of Keplerian motion and is given by

X(τ) = a1 cosM1(τ), Y (τ) = a1 sinM1(τ), Z(τ) = 0, (4)

where M1(τ) = ω1τ , and angular velocity ω1 is

ω1 =

(
AC −B2 +

K

a31

)1/2

, K = G(m00 +m10) .

Assuming that motion of point P1 is determined by equations (3)-(4), we con-
sider here the satellite version of the restricted three-body problem when the
point P2 moves around point P0, being perturbed by the gravity of point P1.

On Integrability of Evolutionary Equations 375

We use the Hill approximation [3], when a distance between points P0 and P1
is considered to be much greater than distance between P0 and P2. The main
purpose of this paper is to find a class of functions m0(t), m1(t), for which the
evolutionary equations, describing the secular perturbations of point P2 trajec-
tory, become integrable, and to obtain the corresponding solutions in analytic
form. The relevant cumbersome symbolic calculation and visualization of the
results are done with the computer algebra system Mathematica [11].

The paper is organized as follows. In section 2, we obtain the equations of point
P2 motion in the framework of the Hill approximation, considering an aperiodic
motion on quasi-conical section as the unperturbed motion. Doubly averaging
the equations of motion, we obtain the differential equations determining the
long-term evolution of the orbital parameters. Then we look in section 3 for
the solutions of the evolutionary equations in analytic form and analyze the
conditions under which such solutions exist and describe a quasi-elliptic motion
of point P2. Finally, in section 4 we determine the mass variation laws for which
a general solution of the evolutionary equations can be found in analytical form.
And we conclude in section 5.

2 Evolutionary Equations

Assume that position of point P2 in the relative coordinate system with origin
at point P0 is given by the radius-vector R2. Then equations of its motion are
given by (see [6])

d2R2

dt2
= −Gm0(t)

R2

R3
2

−Gm1(t)
R1

R3
1

+Gm1(t)
R1 − R2

R3
12

, (5)

where R2 = |R2|, R12 = |R1 −R2|. Applying the scale transformation of spatial
coordinates and time defined in (3), we reduce equation (5) to the form

d2r

dτ2
= −(AC −B2)r −Gm0(t)v(t)

r

r3
+Gm1(t)v(t)

(
R − r

Δ3
12

− R

R3

)
, (6)

where r(τ) = R2(t)/v(t) is a new radius-vector of point P2, and Δ12 = |R− r|.
Note that massesm0(t) andm1(t) in (6) are arbitrary non-increasing functions

satisfying the condition (2). It is convenient to represent them in the form

mj(t) =
mj0

v(t)γj(τ)
, (j = 0, 1) , (7)

where the functions γj(τ) are constrained by the condition

m00

γ0(τ)
+
m10

γ1(τ)
= m00 +m10 , (8)

that follows from (2). Then equation (6) takes the form

d2r

dτ2
= −(AC −B2)r − Gm00

γ0(τ)

r

r3
+
Gm10

γ1(τ)

(
R − r

Δ3
12

− R

R3

)
. (9)

376 A.N. Prokopenya, M.Zh. Minglibayev, and B.A. Beketauov

In case of γ0 = 1, when each of the masses m0 and m1 decreases with time
according to the joint Meshcherskii law (see (2), (7)–(8)), equation (9) reduces to
the restricted three-body problem with constant masses. Note that appearance
of a linear term (AC − B2)r in the right-hand side of (9) does not destroy its
integrability for m1 = 0, although it can be integrated only in quadratures. So
it is convenient to analyse the corresponding evolutionary equations under an
assumption that in the first approximation, point P2 moves around point P0 on
Keplerian orbit but its orbital parameters are disturbed by the gravity of point
P1 and by additional force being a linear function of r. One can show that the
differential equations determining evolution of the orbital parameters can then
be integrated in analytic form.

To analyse a general case and to find other functions γ0(τ) for which the
evolutionary equations are integrable, one can apply similar approach, exploiting
integrability of the differential equation

d2r

dτ2
=
γ̈0
γ0

r − Gm00

γ0(τ)

r

r3
, (10)

where γ̈0 ≡ d2γ0/dτ2. Note that γ0(τ) in (10) is an arbitrary twice continuously
differentiable function and this equation determines an aperiodic motion of a
point on quasi-conical section (see [6,8]). The corresponding solution r = (x, y, z)
can be represented in the form

x = γ0a((cosE − e)(cosω cosΩ − sinω sinΩ cos i) −
−
√

1 − e2(sinω cosΩ sinE + cosω sinΩ sinE cos i)) ,

y = γ0a((cosE − e)(cosω sinΩ + sinω cosΩ cos i) − (11)

−
√

1 − e2(sinω sinΩ sinE − cosω cosΩ sinE cos i)) ,

z = γ0a((cosE − e) sinω sin i+
√

1 − e2 cosω sinE sin i) ,

where the constants a, e, i, Ω, ω are the analogues of orbital elements known
from the classical two-body problem with constant masses (see, for example, [7]),
and the eccentric anomaly E is determined by the equation

E − e sinE = M =

√
K0

a3/2
(Φ(τ) − Φ(τ0)) . (12)

The function Φ(τ) in (12) is given by

Φ(τ) =

∫ τ

τ0

dτ

γ20(τ)
, K0 = Gm00 .

In case of γ0 = 1 equation (10) reduces to a pure Keplerian problem with con-
stant masses when the variableM becomes a linear function of time known as the
mean anomaly and the constant τ0 is the time of perihelion passage (see [6,7]).
Note that orbital parameters a, e, i, Ω, ω, and τ0 are determined from the initial
conditions of motion, and expressions (11), (12) determine an exact solution of

On Integrability of Evolutionary Equations 377

the two-body problem (10) for any given function γ0(τ) satisfying the conditions
above.

As equation (9) does not contain a linear term being proportional to the
second derivative of the function γ0, one can add and subtract the corresponding
term and rewrite the equation in the form

d2r

dτ2
=
γ̈0
γ0

r−Gm00

γ0(τ)

r

r3
−
[
(AC −B2)r +

γ̈0
γ0

r − Gm10

γ1(τ)

(
R − r

Δ3
12

− R

R3

)]
. (13)

Then its solution can be sought in the form (11) under the condition that the
orbital parameters are functions of time. Such approach is known as a method of
variation of constants and is widely used in the theory of differential equations.

To derive the differential equations determining the time evolution of orbital
parameters in the simplest form, it is convenient to rewrite equation (13) in the
Hamiltonian form and to change to the special set of canonical variables known
as Delaunay’s variables (see [6,8]). Three pairs of the corresponding canonical
conjugate coordinates and momenta (l, L), (g,G) and (h,H) are related to the
analogues of the Keplerian orbital elements as

l =M, L =
√
K0a, g = ω, G = L

√
1 − e2, h = Ω, H = G cos i . (14)

The Hamiltonian function in the Delaunay variables may be written in the form

H = − K2
0

2γ20L
2

+
1

2

(
AC −B2 +

γ̈0
γ0

)
(x2 + y2 + z2) − V, (15)

where the function V is given by

V =
K1

γ1(τ)

(
1

Δ12
− xX + yY + zZ

R3

)
, K1 = Gm10 ,

and components of vectors R and r are given by (4) and (11), respectively.
Assuming further the ratio of the distances r and R to be small (r/R << 1),

one can expand the function V into a power series in terms of r/R and keep
only the main term of the expansion in the Hamiltonian (15). It means that we
consider the problem in the Hill approximation [3]. Then the Hamiltonian takes
the form

H = − K2
0

2γ20L
2

+
1

2

(
AC −B2 +

γ̈0
γ0

+
K1

γ1a31

)
(x2 + y2 + z2) −

− 3K1

2γ1a31

(
x2 cos2M1 + y2 sin2M1 + xy sin(2M1)

)
. (16)

As we are interested in the secular evolution of the point P2 orbit under an
influence of massive point P1, one may disregard the short-period perturbations
of orbital elements by means of averaging of the Hamiltonian (16) over the mean
anomalies of points P1 and P2 (see [5]). The averaged Hamiltonian is determined
as (see (12))

H̄ =
1

4π2

∫ 2π

0

∫ 2π

0

HdMdM1 =
1

4π2

∫ 2π

0

∫ 2π

0

H(1 − e cosE)dEdM1,

378 A.N. Prokopenya, M.Zh. Minglibayev, and B.A. Beketauov

and is given by

H̄ = − K2
0

2γ20L
2

+
γ20L

4

4K2
0

(
AC −B2 +

γ̈0
γ0

+
K1

γ1a31

)(
5 − 3G2

L2

)
− (17)

− 3K1γ
2
0L

4

16γ1a31K
2
0

(
2 +

2H2

G2
+

(
1 − G

2

L2

)(
3 +

3H2

G2
+ 5 cos(2g)

(
1 − H

2

G2

)))
,

where the relationships (14) have been taken into account.
Obviously, the averaged Hamiltonian (17) does not depend on the mean

anomaly M ≡ l and so its canonical conjugate variable L is constant. The first
term in the right-hand side of expression (17), depending only on L, influences
on the time evolution of mean anomalyM but doesn’t influence on other orbital
parameters of point P2. Therefore, if the rest terms of the Hamiltonian (17)
contained the same multiplier γ20/γ1, depending on time, it would be possible
to reduce the differential equations, determining the secular evolution of orbital
parameters g, h, G, H , to the autonomous case by means of the scale transfor-
mation of time. We shall show later that such autonomous differential equations
may be integrated. So let us consider a class of functions γ0(τ) satisfying the
condition

γ̈0
γ0

+AC −B2 = −α K1

γ1a31
, (18)

where α is a parameter. Then the Hamiltonian (17) can be rewritten as

H̄ = − K2
0

2γ20L
2

+
K1γ

2
0L

4

4γ1a31K
2
0

[
(1 − α)

(
5 − 3G2

L2

)
− 3

2

(
1 +

H2

G2

)
−

− 3

4

(
1 − G

2

L2

)(
3 +

3H2

G2
+ 5 cos(2g)

(
1 − H

2

G2

))]
. (19)

Differential equations for orbital parameters g, h, G, H are obtained in the
standard Hamiltonian form as

dg

dτ
=
∂H̄
∂G

,
dG

dτ
= −∂H̄

∂g
,
dh

dτ
=
∂H̄
∂H

,
dH

dτ
= −∂H̄

∂h
. (20)

Substituting expression (19) into (20) and taking into account (14), after quite
standard symbolic calculations we obtain differential equations determining the
secular evolution of the orbital parameters in the form

dz

dn
= 20z

√
1 − z sin2 i sin(2ω) , (21)

di

dn
= − 10z√

1 − z
sin i cos i sin(2ω) , (22)

On Integrability of Evolutionary Equations 379

dω

dn
=

4√
1 − z

(
5 cos2 i sin2 ω + (1 − z)(2α+ 2 − 5 sin2 ω)

)
, (23)

dΩ

dn
= − 4 cos i√

1 − z
(
1 − z + 5z sin2 ω

)
, (24)

where z = e2, and n is a new dimensionless independent variable determined by
the equation

dn =
3K1γ

2
0(τ)a2

16γ1(τ)a31
√
K0a

dτ . (25)

Note that the system of differential equations (21)-(24) looks similarly to the
corresponding equations describing evolution of satellites of Uranus (see [10]).
But due to dependence of the points masses on time equation (23) contains
additional term 2α(1−z) in the parentheses in the right-hand side and additional
parameter α. Therefore, the system behaviour and its analysis should be more
complicated, although it can be investigated in a similar way as in [10].

3 Integration of the Evolutionary Equations

Direct symbolic calculation shows that the system of three equations (21)-(23)
has two independent integrals of motion

(1 − z) cos2 i = c1 = const, (26)

z

(
2

5
N − sin2 i sin2 ω)

)
= c2 = const, (27)

whereN = 1+α is a new parameter. This enables us to eliminate two variables in
the system (21)-(23) and to reduce it to an ordinary differential equation with
respect to the function z(n) that can be integrated. As determination of the
function Ω(n) reduces then to simple integrating the right-hand side of equation
(24) we focus here on analysis of system (21), (26), (27) and will discuss solving
the equations (22), (23) only if the corresponding solutions cannot be obtained
from the integrals (26), (27).

Note that in case of quasi-elliptic motion of point P2 eccentricity of its orbit
should be less than 1 or 0 ≤ z < 1. Hence, the first integral c1 must belong
to the interval 0 ≤ c1 ≤ 1. Consequently, for given c1, expression (26) restricts
possible values of z to the interval 0 ≤ z ≤ 1 − c1. Eliminating the variable i in
the system (26)-(27), we obtain

sin2 ω =
(1 − z)(2Nz − 5c2)

5z(1 − z − c1)
. (28)

Then the condition 0 ≤ sin2 ω ≤ 1 gives two inequalities

2Nz − 5c2 ≥ 0 , (5 − 2N)z2 − z(5 − 2N − 5c1 − 5c2) − 5c2 ≤ 0 . (29)

380 A.N. Prokopenya, M.Zh. Minglibayev, and B.A. Beketauov

Applying the Mathematica built-in function Reduce to the system (29) com-
bined with inequalities 0 ≤ z ≤ 1 − c1, 0 ≤ c1 ≤ 1 and separating the results
with the function LogicalExpand, one can get a long list of different solutions,
determining possible values of the integral c2 and the variable z, corresponding
to quasi-elliptic motion of point P2. Depending on the value of parameter N ,
one can separate three different cases which are considered below.

3.1 Case N = 5
2

In this case, the system (29) reduces to the following inequalities

0 ≤ c2 ≤ z ≤ c2
c1 + c2

, c1 + c2 ≤ 1 , 0 ≤ c1 ≤ 1 . (30)

Therefore, the domain of possible values of the integrals c1, c2 in the plane Oc1c2
is a triangle bounded by the lines c1 = 0, c2 = 0, c1 + c2 = 1.

Using expressions (26), (28), we eliminate the variables i and ω in (21) and
obtain the following differential equation

dz

dn
= 40sgn(sin(2ω0))

√
(z − c2)(c2 − z(c1 + c2)) , (31)

where the function sgn(x) determines a sign of sin(2ω0) at the initial instant of
time (ω0 = ω(t0)). This equation is easily integrated, and its solution is given by

z = c2 +
c2(1 − c1 − c2)

c1 + c2
sin2

(
20sgn(sin(2ω0))

√
c1 + c2n+ ϕ0

)
, (32)

where

ϕ0 = arcsin

√
(z0 − c2)(c1 + c2)

c2(1 − c1 − c2)
, z0 = z(0) .

Expression (32) shows that z(n) is an oscillating function, and its values belong
to the interval (30). The function i(n) = arccos

√
c1/(1 − z) also oscillates, and

an interval of its values is determined by inequality

c1
1 − c2

≤ cos2 i ≤ c1 + c2 .

One can readily check that the function ω(n) increases with time because its
derivative (see (23)) is positive under the conditions (30), while its values are
determined by the expression (28).

One should note that in case of c2 = 0 there exists additional stationary
solution of equation (21) that cannot be obtained as a limit case of (32). Actually,
an equality c2 = 0 takes place either in case of z = 0 or in case of sin2 i = 1 and
sin2 ω = 1 (see (27)). The second case implies c1 = 0, and the corresponding
solution is given by

0 ≤ z = const < 1 , i =
π

2
, ω =

π

2
or ω =

3π

2
. (33)

Solution (33) describes motion of point P2 on elliptic orbit in a plane that
is perpendicular to the orbital plane of point P1. Note that in case of constant
masses, such motion always results in collision of points P0 and P2 (see [4]).

On Integrability of Evolutionary Equations 381

3.2 Case N > 5
2

Analysis of inequalities (29) shows that the domain of possible values of the
integrals c1 and c2 in the plane Oc1c2 is a triangle determined by inequalities

c1 ≥ 0 , c2 ≥ 0 , c1 ≤ 1 − 5c2
2N

. (34)

On its boundary c2 = 0, equations (21), (22) have only a stationary solution
z = 0, cos2 i = c1, while equation (23) takes the form

dω

dn
= 4

(
2N − 5(1 − c1) sin2 ω

)
,

and is integrated in terms of elementary functions, the result is easily found with
the Mathematica built-in function DSolve, for example.

On the other border c1 = 1 − 5c2/(2N), inequalities (29) can be written in
the form

z − 5c2
2N

≥ 0 , 2N − z(2N − 5) ≤ 0 .

One can readily see that inside of the interval z ∈ [0, 1] there is only one point
z = 5c2/(2N) satisfying these inequalities. Therefore, equations (21) and (22)
have only a stationary solution z = 5c2/(2N) = 1 − c1, cos2 i = 1, and equation
(23), taking the form

dω

dn
=

4
√
c1

(
2Nc1 + 5(1 − c1) sin2 ω)

)
,

is again integrable in terms of elementary functions.
On the third border c1 = 0, when 0 ≤ c2 < 2N/5 and cos2 i = 0, inequalities

(29) can be written in the form

z − 5c2
2N

≥ 0 , (1 − z) (5c2 − z(2N − 5)) ≥ 0 . (35)

Therefore, the variable z belongs to the interval

5c2
2N

≤ z < 5c2
2N − 5

< 1 ,

for 0 ≤ c2 < 2N/5 − 1, and
5c2
2N

≤ z ≤ 1 ,

for 2N/5 − 1 ≤ c2 < 2N/5. In this case, solution of equation (21) becomes more
complicated, although it may be integrated in terms of elliptic functions. As the
method applied is similar to the case when values of the integrals c1, c2 belong
to the domain inside of the triangle (34) in the plane Oc1c2, let us consider such
general case.

382 A.N. Prokopenya, M.Zh. Minglibayev, and B.A. Beketauov

Using expressions (26), (28) and eliminating the variables i and ω in equation
(21), one can rewrite it in the form

dz

dn
= 8sgn(sin(2ω0))

√
Q(z) , (36)

where the third-degree polynomial Q(z) is given by

Q(z) = (2Nz − 5c2)(5c2 + z(5 − 2N − 5c1 − 5c2) − z2(5 − 2N)) , (37)

and it is assumed that the variable z takes only such values, for which Q(z) ≥ 0.
Solving the equation Q(z) = 0, we obtain in general three different roots

z1,2 =
1

2

⎡⎣1 +
5(c1 + c2)

2N − 5
±
((

1 +
5(c1 + c2)

2N − 5

)2

− 20c2
2N − 5

)1/2
⎤⎦ ,

z3 =
5c2
2N

. (38)

Analysis of expressions (37), (38) shows that inside of the domain (34) two
roots z2, z3 of polynomial Q(z) belong to the interval [0, 1], and Q(z) ≥ 0 if
z3 ≤ z ≤ z2 < 1, while the third root z1 ≥ 1. Then Q(z) may be represented in
the form

Q(z) = 2N(2N − 5)(z1 − z)(z2 − z)(z − z3)

and equation (36) may be integrated in the elliptic quadrature. Its solution is

8 sgn(sin(2ω0))
√

2N(2N − 5) n =

∫ z

z0

dz√
(z1 − z)(z2 − z)(z − z3)

. (39)

An integral in the right-hand side of (39) is calculated in terms of the elliptic
functions and the solution may be represented as

z(u) = z3 + (z2 − z3)sn2u , (40)

where

u = 4sgn(sin(2ω0))
√

2N(2N − 5)(z1 − z3)n+ u0 , u0 = F (ϕ0, κ
2) ,

κ2 =
z2 − z3
z1 − z3

< 1 , sin2 ϕ0 =
z0 − z3
z2 − z3

, z0 = z(0) .

Here snu and F (ϕ0, κ
2) are the Jacobi elliptic sine and the incomplete elliptic

integral of the first kind, respectively.

On Integrability of Evolutionary Equations 383

1

0

1
2N

51
2N

5

2N

5

c1

c2

c1 1
5 c2

2N

Fig. 1. Domain of possible values of the integrals c1, c2 for 0 ≤ N < 5/2

3.3 Case N < 5
2

In case of N ≥ 0 possible values of integrals c1, c2 must belong to the domain
shown in Fig. 1, which are bounded by the lines

c1 = 0 , c2 = 0 , c1 = 1 − 5c2
2N

, (41)

and the curve

c1 = 1 − c2 − 2N

5
− 2

√
(−c2)

(
1 − 2N

5

)
. (42)

On the line c2 = 0, polynomial Q(z) has three roots, namely, z1 = 1 −
c1/(1 − 2N/5) and z2,3 = 0. The root z1 is negative for 1 − 2N/5 < c1 ≤ 1 (the
corresponding points are shown in Fig. 1 as a dashed bold line), and equation
(21) has the only solution z = 0. But for 0 ≤ c1 < 1−2N/5, the root z1 becomes
smaller than 1, and the polynomial (37), taking a form

Q(z) = 2Nz2(5 − 2N − 5c1 − z(5 − 2N)) , (43)

is non-negative for 0 ≤ z ≤ z1.
Substituting the polynomial (43) into equation (36), one can readily see that

the differential equation is integrated in terms of elementary functions and its
solution is determined by the equation

ln

√
a−

√
a− bz

√
a+

√
a− bz

= 8
√

10Na sgn(sin(2ω0))n+B0 , (44)

where

B0 = ln

√
a−

√
a− bz0√

a+
√
a− bz0

, a = 1 − c1 − 2N/5 , b = 1 − 2N/5 .

384 A.N. Prokopenya, M.Zh. Minglibayev, and B.A. Beketauov

1

0

1

1 � 2 N �5

�
4 N

2

25 � 10 N

�1�
2 N

5

2N�5

c1

c2

Fig. 2. Domain of possible values of the integrals c1, c2 for N ≤ 0

On the line c1 = 1 − 5c2/(2N), polynomial Q(z) takes the form

Q(z) = (2Nz − 5c2)2
(
z

(
1 − 5

2N

)
− 1

)
,

and has three zeros

z1 =
1

1 − 5
2N

, z2,3 =
5c2
2N
.

For N ≥ 0 we have c2 > 0 (see Fig. 1), and the root z1 is negative, so equation
(21) has only a stationary solution z = z2,3 = 1−c1. But for N < 0, when the line
c1 = 1−5c2/(2N) touches the curve (42) (see Fig. 2) and parameters c1, c2 must
satisfy the conditions 0 ≤ c1 ≤ 1/(1−2N/5), 2N/5 ≤ c2 ≤ −4N2/(25−10N), we
obtain 0 < z1 ≤ z2,3 ≤ 1 and polynomial (37) is non-negative for z ∈ [z1, z2,3].
Then equation (36) is integrated in terms of elementary functions similar to the
previous case (see (43), (44)).

On the curve (42), the polynomial Q(z) takes the form

Q(z) = 2N(5 − 2N)

(
z − 5c2

2N

)(
z −

√
(−c2)

1 − 2N/5

)2

,

where we have taken into account that c2 < 0 and N < 5/2. The corresponding
roots are given by

z1,2 =

√
(−c2)

1 − 2N/5
, z3 =

5c2
2N

.

One can readily check that for 0 ≤ N < 5/2, we have 0 ≤ z1,2 ≤ 1, z3 < 0
and, hence, equation (21) has only a stationary solution z = z1,2. This solution
remains also for N < 0 and −1 + 2N/5 ≤ c2 < 2N/5 when the root z3 becomes
greater than 1. But for N < 0 and 2N/5 ≤ c2 < −4N2/(25 − 10N) we obtain

1

1 − 5/(2N)
< z1,2 < z3 ≤ 1 .

On Integrability of Evolutionary Equations 385

Polynomial Q(z) is non-negative for z ∈ [z1,2, z3], and equation (21) is integrated
in terms of elementary functions similarly to the cases above.

On the last boundary c1 = 0, we have cos2 i = 0, and polynomial Q(z) taking
the form

Q(z) = (2Nz − 5c2)(1 − z)(5c2 + z(5 − 2N)) ,

has three different roots

z1 = 1, z2 =
5c2

2N − 5
, z3 =

5c2
2N

.

If 0 ≤ N < 5/2 and c2 ≥ 0 then these roots satisfy the inequalities

z2 ≤ 0 ≤ z3 ≤ z1 = 1 ,

and the polynomial Q(z) ≥ 0 for z ∈ [z3, z1]. If c2 becomes negative then we
obtain

z3 ≤ 0 ≤ z2 ≤ z1 = 1 ,

and Q(z) ≥ 0 for z ∈ [z2, z1]. Finally, for N < 0 and (−1 + 2N/5) ≤ c2 ≤ 2N/5
the corresponding inequalities become

0 ≤ z2 ≤ z1 = 1 ≤ z3 ,

and again Q(z) ≥ 0 for z ∈ [z2, z1]. In all three cases one of the roots is outside
the interval [0, 1] and two other roots zj , zk are inside it, while Q(z) ≥ 0 for
z ∈ [zj, zk]. Then equation (36) is integrated in elliptic quadratures and its
solution looks similarly to the expression (39).

Analysis of expressions (38) shows that at the internal points of the domains
shown in Fig. 1, 2, we have similar situation, when three roots of the polynomial
Q(z) are different and only two of them belong to the interval [0, 1]. In all such
cases, equation (21) is reduced to the form (36), and the result of its integration
is expressed in terms of the elliptic functions with some permutation of the roots
z1, z2, z3.

4 Mass Variations

As we have seen above, the evolutionary equations are integrable in terms of
elementary and elliptic functions if the functions γ0(τ), γ1(τ) satisfy equation
(18). Taking into account condition (8), we can rewrite (18) in the form

d2γ0
dτ2

+

(
AC −B2 + α

K

a31

)
γ0(τ) = α

K0

a31
. (45)

One can readily see that equation (45) is integrable, and its solution satisfying
the condition γ0(0) = 1 is given by

γ0(τ) = α
K0

σ2a31
+

(
1 − α K0

σ2a31

)
cos(στ) + Φ sin(στ) , (46)

386 A.N. Prokopenya, M.Zh. Minglibayev, and B.A. Beketauov

where Φ is an arbitrary constant, and

σ2 = AC −B2 + α
K

a31
.

Taking into account equation (8), one can represent differential equation (25),
determining the variable n, in the form

dn

dτ
=

3a3/2

16a31K
1/2
0

(Kγ20(τ) −K0γ0(τ)) ,

where the function γ0(τ) is given by (46). Obviously, this equation is easily inte-
grated, and an explicit expression for the function n(τ) together with different
explicit and implicit solutions z(n) found in previous section gives a complete
solution of the evolutionary equations in the considered restricted three-body
problem with variable masses.

5 Conclusion

We have considered the satellite version of the restricted three-body problem
formulated on the basis of the classical Gylden–Meshcherskii problem. We have
obtained the evolutionary equations of the massless point P2, describing a long-
term evolution of its orbital elements, in the Hill approximation, and investigated
their integrability. It was shown that the evolutionary equations are integrable
in terms of the elementary and elliptic functions if masses of points P0, P1 vary
isotropically with different rates determined by the expressions (2), (8), (46).
Solutions of these equations describe quasi-elliptic motion of the point P2 if initial
conditions of motion are chosen in such a way that two integrals of motion c1,
c2 belong to the domains shown in Fig. 1, 2. All relevant symbolic calculations
and visualizations are done with the computer algebra system Mathematica.

Acknowledgement. This work was supported in part by the grant 0688/GF
of the scientific-technical programs and projects of the Committee of Science of
the Republic of Kazakhstan, 2012–2014.

References

1. Bekov, A.A., Omarov, T.B.: The theory of orbits in non-stationary stellar systems.
Astronomy and Astrophysics Transactions 22, 145–153 (2003)

2. Berkovič, L.M.: Gylden–Meščerski problem. Celestial Mechanics 24, 407–429 (1981)
3. Hill, G.W.: Researches in the lunar theory. American J. Mathematics 1, 129–147

(1878)
4. Lidov, M.L.: The evolution of orbits of artificial satellites of planets under the

action of gravitational perturbations of external bodies. Planetary and Space
Science 9(10), 719–759 (1962)

On Integrability of Evolutionary Equations 387

5. Lidov, M.L., Vashkov’yak, M.A.: On quasi-satellite orbits in a restricted elliptic
three-body problem. Astronomy Letters 20(5), 676–690 (1994)

6. Minglibayev, M.Z.: Dinamika gravitiruyushchikh tel s peremennymi massami i
razmerami (Dymanics of Gravitating Bodies of Variable Masses and Sizes). LAP
Lambert Academic Publ. (2012)

7. Morbidelli, A.: Modern Celestial Mechanics. Aspects of Solar System Dynamics.
Taylor & Francis Inc., New York (2002)

8. Prokopenya, A.N., Minglibayev, M.Z., Mayemerova, G.M.: Symbolic calculations
in studying the problem of three bodies with variable masses. Programming and
Computer Software 40(2), 79–85 (2014)

9. Szebehely, V.: Theory of orbits. The restricted problem of three bodies. Academic
Press, New York (1967)

10. Vashkov’yak, M.A.: Evolution of orbits of distant satellites of Uranus. Astronomy
Letters 25(7), 476–481 (1999)

11. Wolfram, S.: The Mathematica Book, 4th edn. Wolfram Media/Cambridge
University Press (1999)

Factoring Sparse Bivariate Polynomials
Using the Priority Queue

Fatima K. Abu Salem1,�, Khalil El-Harake1, and Karl Gemayel2

1 Computer Science Department, American University of Beirut, Lebanon
{fatima.abusalem,kme07}@aub.edu.lb

2 School of Computational Science and Engineering,
Georgia Institute of Technology, U.S.,

karl@gatech.edu

Abstract. We revisit the polytope method for factoring sparse
bivariate polynomials over finite fields, and address the bottleneck aris-
ing from solving the Hensel lifting equations using the sparse distributed
polynomial representation. We revise the analysis when polynomials are
represented as such, which reveals how performing the polynomial mul-
tiplications and ensuing additions in separate (serialised) phases causes
the Hensel lifting phase to suffer from poor work, space, and I/O com-
plexity, and hinges on the size of the intermediary output, as size is
defined in the sparse distributed representation. We propose to overlap
all polynomial arithmetic in one Hensel lifting step using a MAX priority
queue. The overlapping approach adapts not only to the growth in the
degree of the input polynomial but also to irregularities in the sparsity
of intermediary output. It also results in evading expression swell and re-
ducing the overall work and space complexity by an order of magnitude.
When the priority queue is implemented as a cache-oblivious data struc-
ture, the overlapping approach achieves an order of magnitude improve-
ment in I/O over the serialised approach, even when the latter is using
cache efficient structures to assist in polynomial multiplications and ad-
ditions. We present empirical results for the polytope method using a
max-heap implementation of the global priority queue, which demon-
strate extremely superior performance, and specifically against Magma,
for sufficiently sparse input polynomials of very high degrees.

Keywords: Algorithms and Data Structures, Performance evaluation,
Data Locality, Bivariate Polynomial Factorisation, Hensel Lifting,
Newton Polytope.

1 Introduction

We address the fundamental problem of factoring polynomials over finite fields,
which is integral to many routines in algebra and number theory. In many

� This work is supported by the Lebanese National Council on Scientific Research and
the University Research Board of the American University of Beirut.

V.P. Gerdt et al. (Eds.): CASC Workshop 2014, LNCS 8660, pp. 388–402, 2014.
c© Springer International Publishing Switzerland 2014

Factoring Sparse Bivariate Polynomials Using the Priority Queue 389

instances, the multivariate case is reduced to bivariate polynomial factorisa-
tion. Several leading factoring algorithms rely on Hensel lifting techniques that
deliver fast algorithms in practice, but these algorithms of a “classical” flavour
are designed for generic input [6,10]. To date, we do not know of an efficient algo-
rithm dedicated for factoring sparse polynomials. The polytope method of [1] is
based on ideas from polyhedral geometry and is intended to factor sparse poly-
nomials more efficiently, by exploiting the structure of sufficiently sparse input
polynomials whose polytopes consist of a few edges. However, the inner workings
of Hensel lifting remain oblivious to fluctuations in the sparsity of intermediary
polynomial output, which is a consequence of analysing and designing algorithms
in the dense model for polynomial representation. In contrast, the input size in
the sparse distributed representation consists of the number of non-zero terms
of the input polynomial rather than its degree, which captures the fluctuations
in sparsity throughout the factorisation process. More significantly, we note that
deriving the cost analysis using this representation is more consistent for the pur-
pose of standard benchmarking: Magma, Maple, Mathematica, and Singular, all
use the sparse distributed polynomial representation by default.

Our contribution is a thorough analysis in the sparse distributed model, fol-
lowed by a “data-structure”-centric improvement, for the Hensel lifting phase,
given sparse bivariate polynomials over finite fields. The implications extend to
any factoring algorithm that employs some form of Hensel lifting, and not only
to the polytope method, despite that we emphasise the latter method when
the input polynomial is sparse. In Section 3, we use the sparse distributed rep-
resentation to transform the analysis of the costs associated with the Hensel
lifting phase when the polynomial multiplications followed by addition of result-
ing products are performed in separate (serialised) phases, like in [1,6,10]. We
derive that the asymptotic performance in work, space, and I/O is critically af-
fected not only by the degree of the input polynomial, but also by the following
factors: (i) the sparsity of each polynomial multiplication, and (ii) the sparsity of
the resulting polynomial products to be merged into a final summand. We fur-
ther show that even with advanced additive (merging) data structures like the
cache aware tournament tree or the cache oblivious k-merger, the asymptotic
performance of the serialised version in all three metrics is still poor. In Section
4, we re-engineer the Hensel lifting phase by overlapping all arithmetic using
a MAX priority queue, which generalises the approach of [12,14] for a single
polynomial multiplication. The analysis of this approach is examined using two
implementations of the priority queue, consisting of a generic max-heap as well
as a cache-oblivious data structure. We derive orders of magnitude reduction
in work, space, and I/O when the overlapping approach is examined against all
possible enhancements of the serialised version. Whereas the serialised approach
is not able to fully exploit a cache-efficient data structure, our approach now
becomes entirely cache-oblivious when a cache-oblivious priority queue is used.
In Section 5, we report on our benchmarks. A modest implementation of the
polytope method using the overlapping approach concludes significantly faster
than with the serialised version. We use this observation to validate that the

390 F.K. Abu Salem, K. El-Harake, and K. Gemayel

polytope method can now handle sparse polynomials significantly better, as it is
no longer affected by the fluctuating sparsity of intermediary polynomial prod-
ucts. Our modest implementation also outperforms as Magma, up to polynomial
degrees equal to 60000. More notably, Magma fails to process input instances of
degrees 10, 000 and higher.

2 Background

As a preamble, we follow the exposition in [12,14] to describe the sparse dis-
tributed representation, and simplify it further to suit univariate polynomials:

Definition 1. Let w(x) ∈ F[x] denote a univariate polynomial with coefficients
from F, and let #w denote the number of non-zero terms of w(x). A sparse
distributed representation of w(x) is obtained by writing w(x) =

∑#w
i=1 wi such

that wi = aiXi, where ai �= 0, and X1 > . . . > X#w according to some monomial
ordering. We refer to each Xi as a monomial and aiXi as a term.

When choosing the lexicographical monomial ordering in the univariate case, we
get a natural mapping to an order on exponents.

For a thorough review of various factoring algorithms that use Hensel Lifting
techniques, we refer the reader to [18,19,20,21]. Recent methods that have a
classical flavour appear in [6,10], and are not dedicated for sparse input. In [1] a
method that generalises Hensel lifting is able to exploit a relationship between
the input polynomial and its Newton polytope. The method has a “practical”
flavour and is able to efficiently factor sparse input polynomials whose Newton
polytopes contain only a few vertices, which tend to have a few Minkowski
decompositions.

Thereafter we consider bivariate polynomials whose polytopes in the plane
are referred to as polygons. Both the classical and polytope methods work by
specialising one of the two variables of f by setting the other remaining variable
to zero. The resulting univariate polynomials are factored and their factors lifted
up to a suitable level using a form of Hensel lifting. Below, we summarise the
workings of the two classes of algorithms in [1,10].

2.1 Classical Hensel Lifting

Let F denote a finite field of characteristic p, and consider a polynomial f ∈
F[x, y] with total degree n. We wish to obtain a polynomial factorisation of f
into two factors g and h such that f = gh and g, h ∈ F[x, y]. Let r = deg g
and s = deg h. Write f =

∑n
k=0 fky

k where fk ∈ F[x] and deg(fk) = n − k,
and determine g =

∑r
k=0 gky

k or h =
∑s

k=0 hky
k by revealing the univariate

polynomials {gk}rk=0 or {hk}sk=0. To begin with, we require all boundary uni-
variate factorisations f0 = g0h0 where g0 and h0 are coprime. Assume w.l.o.g.
that r ≤ s, and so 1 ≤ r ≤ .n/2/. Starting from a given pair (g0, h0), and for

Factoring Sparse Bivariate Polynomials Using the Priority Queue 391

k = 1, . . . , r, the two polynomials gk and hk are determined using the following
Hensel lifting equation:

g0hk + h0gk = fk −
k−1∑
i=1

gihk−i. (1)

When deg(gk) ≤ r − k the pair (gk, hk) is unique and one can continue lifting.
If the lifting concludes with the r’th step one returns whether g =

∑r
k=0 gky

k

divides f . Performing Hensel lifting using at least one boundary factorisation
returns a monic factor g of f . This version for bivariate factorisation is one of
several fastest generic algorithms that use Hensel lifting. It possesses exponential
run-time in the worst-case if one has to eventually attempt all boundary factori-
sations. However, the method is known to be fast in practice. Indeed, the average
case run-time is shown to be O(n4) using standard polynomial arithmetic [10].
Bostan et al.’s fast factoring algorithm in [6] is based on multi-moduli compu-
tation for univariate polynomials used in the Hensel lifting phase and achieves
an Õ(nω+1) running time algorithm, where ω denotes the matrix multiplication
exponent (2 ≤ ω ≤ 3). All of the work estimates given above are derived using
the dense model for polynomial representation

2.2 Factoring Bivariate Polynomials Using Polygons

Consider all integer pairs (α, β) such that xαyβ is a non-zero monomial of f .
Then the set of all such pairs constitutes the support vector of f . The Newton
(integral) polygon N(f) is defined to be the convex hull in Z2 of all points in
the support vector of f . One identifies suitable subsets {Δi} of edges belonging
to N(f), and specialises terms of f along each edge δ(i)j ∈ Δi, by setting one of
the variables of f to be zero. Those specialisations are derived from the nonzero
terms of f whose exponents make up integral points falling on each δ(i)j , and
we label them as f δj0 . The polytope method requires that for at least one Δi,
the associated edge polynomials f δj0 are squarefree, for all δj ∈ Δi. One can
then begin lifting using the boundary factorisations of f δj0 = g

δj
0 h

δj
0 , for all

δj ∈ Δi. As in above, given one boundary factorisation, one can then determine
the associated {gk}’s and {hk}’s that satisfy the Hensel lifting equation

g
δj
0 h

δj
k + h

δj
0 g

δj
k = f

δj
k −

k−1∑
j=1

g
δj
j h

δj
k−j (2)

for k = 1, . . . ,min(deg(g0), deg(h0)). By the proper transformations, the bound-
ary specialisations and all the ensuing polynomials are treated as Laurent poly-
nomials in one variable. For any coprime edges factorisation of f relative to Δi,
there exists at most one full factorisation of f which extends it. Note that the
standard Hensel lifting is a special instance of the polytope method, in the case
when N(f) consists of the triangle (0, n), (n, 0), and (0, 0). Here, the lifting is
initiated from the horizontal side defined by (0, 0) and (n, 0).

392 F.K. Abu Salem, K. El-Harake, and K. Gemayel

In addition to promising to perform well in practice given sparse input poly-
nomials, this algorithm has the added advantage that it can help factor families
of polynomials which possess the same Newton polygon. Still, the work com-
plexity required by one full lifting round is given by O(n4) assuming standard
polynomial arithmetic, and the dense model for polynomial representation.

In [2], the polytope method is implemented using a sparse polynomial repre-
sentation, and the work and space become dependent on the number t of non-zero
terms comprising the input polynomial. Particularly, for t < d3/4 and using fast
polynomial arithmetic over finite fields, the adaptation in [2] reduces the amount
of work per one full step of Hensel lifting to O(tλn2 + t2λdL(n)+ t4λn), for some
1/2 ≤ λ < 1, and L(n) = logn log logn. However, a downside of the approach in
[2] is that it imposes strict assumptions on the number of non-zero terms arising
in the intermediary polynomials produced during the Hensel lifting phase, and
finally on the number of non-zero terms belonging to the output factors. The
present work digresses significantly from these assumptions.

3 Revised Analysis in Sparse Distributed Represenation

In this section we revise the analysis of the main Hensel lifting Eq. (1) or its
extension to polygons in Eq. (2), when polynomials are in sparse distributed
representation.

In our work analysis we exclude the cost to perform coefficient arithmetic in
the base field, and report only on monomial comparisons based on their degrees.
This is because the cost to perform coefficient arithmetic is independent of the
sparsity of the input or intermediary output. Our assessment of the space com-
plexity targets the “working space”, which corresponds to the amount of memory
required to process the intermediary output. This exposes the amount of expres-
sion swell, and directly affects the work complexity, as opposed to the space
required to store the input or output. To assess the I/O complexity, we proceed
in line with existing models of computation [3,13]. We reason about a two-level
memory hierarchy, featuring a primary and a secondary level of memory. Those
two levels can be cache versus internal memory, or internal memory versus ex-
ternal memory. Thereafter, we shall distinguish them using the terms in-core
versus out-of-core memory. In-core memory is of size M , and is organised using
cache lines (disk blocks), respectively, each consisting of B consecutive words.
All words in a single line are transferred together between in-core and out-of-core
memory in one round (I/O operation) referred to as a cache miss (disk block
transfer). Given a one-dimensional layout of n records in memory, the number
of I/O’s required to read them consecutively into in-core memory as Θ(n/B).

A single instance of Equations (1) or (2) has the input and output require-
ments stated below, and all previous treatments of Hensel lifting assume more
or less the following serial flow of computation where Step 4 begins after Steps
1-3 have concluded:

Factoring Sparse Bivariate Polynomials Using the Priority Queue 393

Require: An integer k ∈ {1, . . . , r}. Two sets of univariate polynomials over F,
{gi}k−1

i=1 , {hj}k−1
j=1 , in sparse, distributed representation.

Ensure: The polynomial Sk =
∑k−1

i=1 gi ·hj , where j = k−i, deg(gi) ≤ i−r, deg(hj) ≤
j − s, and deg(Sk) ≤ n− k.

Algorithm 1. Local-Iterative

1: for i = 1 to k − 1 do
2: Compute pi ← gi · hj .
3: end for
4: Compute Sk =

∑k−1
i=1 pi.

As in [14,15,16], reasoning in the sparse distributed representation produces
worst-case versus best case polynomial multiplication, depending on the struc-
ture of the output. In the worst case, a given multiplication gi · hj is sparse as
it yields a product with Θ(#gi · #hj) non-zero terms, an incidence of a memory
bound computation. At best, the multiplication is dense as it yields a product
with Θ(#gi + #hj) terms. When the product has significantly fewer terms due
to cancelation of terms, the operation is said to suffer from expression swell.

When the input polynomial f is sparse, the polynomial multiplications in
Hensel lifting are also highly likely to be sparse, and consequently memory
bound. Fast polynomial arithmetic here no longer pays off, as actual perfor-
mance becomes heavily dependent on locality [9]. A MAX-heap implementa-
tion performs the least number of monomial comparisons required for sparse
multiplications in the sparse distributed representation [12,14,15,16]. Whilst a
Max-heap is more tied to the physical implementation, the abstract structure
intended is effectively a priority queue, all of whose available implementations
achieve O(logN) work to perform Insert or Extract-max. In the rest of this pa-
per, let CM,B(N) denote the number of I/O’s required to perform an Insert or
Extract-max onto a priority queue. We then have CM,B(N) = O(logN) when the
queue is implemented as a binary heap. This improves to O

(
1
B logN

)
using, say,

the cache oblivious bucket heap [8], and optimally to O
(

1
B logM/B(N)

)
, using

the cache oblivious funnel heap [7] or Arge heap [4]. Since the I/O complexity
depends on both M and B, we will thereafter simply write C(N), and observe
that C(ab) = C(a)+C(b) for any physical implementation of the priority queue.

Step 4 above is an instance of merging, which can be handled using
(a) iterated merging or (b) multi-way merging. We elaborate on each of these
options and formalise our results in Prop. 1.

Proposition 1. Assume the sparse distributed representation for polynomials.
In the worst case analysis when each polynomial multiplication gihj is sparse,

394 F.K. Abu Salem, K. El-Harake, and K. Gemayel

Alg. 1 using a MAX priority queue for each iteration in Step 2 and additive
merging for Step 4 requires the following costs:

– a. iterated merging:
• Work: O

(
kḡh̄(k + log ḡ)

)
• Space: O(kḡh̄)
• I/O: O

(
kḡh̄[C(ḡ) + k

B]
)

– b. multi-way merging:
• i. k ∈ Θ(M/B):

∗ Work: O
(
kḡh̄ log(kḡ)

)
∗ Space: O(kḡh̄)
∗ I/O: O

(
kḡh̄[C(ḡ) + 1

B]
)

• ii. k 3M/B:
∗ Work: O

(
kḡh̄[log ḡ + log k logM/B k]

)
∗ Space: O(kḡh̄)

∗ I/O: O
(
kḡh̄[C(ḡ) + 1

B logM/B k]
)

Proof. Given a polynomial pair (gi, hj), assume w.l.o.g. that #gi < #hj . In all
of the following, let g = max{#gi}. Also, Let p̄ = max{#pi}k−1

i=1 . Then p denotes
the largest number of nonzero terms appearing in any one polynomial product.
Steps 1-3: A sparse polynomial multiplication gi · hj using the methods of
[12,14,15,16] will require a queue with size O(min(#gi,#hj)) = O(ḡ). To con-
clude a single multiplication, the queue will process O(#gi#hj) elements. This
brings the work and I/O costs to O(#gi#hj log(min(#gi,#hj)) = O(ḡh̄ log(ḡ)
monomial comparisons and O(#gi#hj C(min(#gi,#hj)) = O(ḡh̄ Cḡ) I/O’s. Ac-
cumulating the costs for all iterations of Step 2, we have that Steps 1-3 require

O
(
kḡh̄ log(ḡ)

)
work, O (ḡ) space, and O

(
kḡh̄ C(ḡ)

)
I/O’s (3)

Step 4: In this step all products {pi = gihj}k−1
i=1 , j = k − i, are merged into

the final summand Sk. In the worst case analysis, each pair of products pi and
pj , when merged, yields a summand with #pi + #pj non-zero terms rather than
max(#pi,#pj). Accumulating, we may derive #Sk =

∑
i #pi = O(kp̄).

(a) Using iterated merging:
The intermediary sum is constantly experiencing growth. Each polynomial

product is read consecutively into memory. The working space corresponds to
the amount of space required to store all polynomial products. Accumulating
the expression swell we get that the total costs required to conclude Step 4 are:

O(k2p̄) work, O(kp̄) space, and O
(
k2
p̄

B

)
I/O’s (4)

Here, the work and I/O costs for merging are respectively factors of O(k/logk)
and O(k/logM/Bk) more than optimal (e.g. see [3]). One addresses this poor
performance using multi-way merging strategies.

Factoring Sparse Bivariate Polynomials Using the Priority Queue 395

(b) Using multi-way merging:
Binary merging à la Mergesort is work efficient provided the number of streams

to be merged is a power of 2, and all streams contain roughly the same number
of elements to be merged. In our application, the number of streams is about
k ∈ {1, . . . , n/2} and when the intemediary polynomials are sparse the resulting
products gjhj are far from having roughly the same number of non-zero elements.
The conditions to achieve efficient binary merging thus do not hold.

When k = Θ(M/B), one can achieve work and I/O efficient multi-way merg-
ing by running a sequence of Insert and Extract-max operations on a complete
(tournament) binary tree that is kept in-core (See [11], Ch. 14). Given k − 1
polynomial products to be merged, the tournament tree consists of k− 1 leaves,
and thus the size of the tournament tree is Θ(k). Each of the input streams pi is
read consecutively in blocks Bi of size B. All blocks {Bi}k−1

i=1 will reside in-core
together with the binary tree. This approach produces the merged output using
optimal work, as each term entering the tournament tree is compared against an-
other Θ(log k) number of times, and there are O(kp̄) such terms. It also achieves
optimal I/O since each term from pi is read from out-of-core to in-core memory
only once, bringing the total cost to read a single polynomial product into the
tournament tree to O(p̄/B). The space to store the tournament tree is Θ(k),
dominated by O(kp̄), the space required to store all the polynomial products in
Step 4. Summarising, when k ∈ Θ(M/B), Step 4 requires:

O(kp̄ log k) work, O(kp̄) space, and O
(
k
p̄

B

)
I/O’s (5)

The condition k ∈ Θ(M/B), however, is not a realistic assumption. For a suf-
ficiently large input degree n, there will exist k0 ∈ N where k 3 M/B for
all k ≥ k0. In this case, one can no longer fit all blocks {Bi}k−1

i=1 in core with
the tournament tree, causing the I/O performance to degenerate. To reclaim
the benefits of this merging structure, one has to re-arrange all the {pi}’s into
groups consisting of Θ(M/B) streams each. All streams in any one group can
now be merged efficiently using a tournament tree. One recurses if the number of
groups is not small enough, and the base case is reached when there are Θ(M/B)
streams to be merged. The number of recursive steps required is Θ(logM/B k).
The total costs required to conclude Step 4 when k 3M/B are now:

O(kp̄ log k logM/B k) work, O(kp̄) space, and O
(
k
p̄

B
logM/B k

)
I/O’s

(6)
Both work and I/O are a factor of Θ(logM/B k) more than when k ∈ Θ(M/B).
Although a cache oblivious merger with optimal work and I/O exists (see the
k-merger of [13], for example), these costs are defined in the amortised sense, and
optimal performance is attained only when the streams to be merged have an
equal number of nonzero terms. This clearly is not the case for our application.

We summarise all of the cases and indicate the equations that are needed
to accumulate their respective costs as claimed in the proposition above. Ad-
ditionally, we also use that p̄ = Θ(ḡh̄), since in the worst case analysis each
polynomial multiplication gihj is sparse.

396 F.K. Abu Salem, K. El-Harake, and K. Gemayel

– a. iterated merging (Equations 3 and 4)
– b. multi-way merging:

• i. k ∈ Θ(M/B) (Equations 3 and 5)
• ii. k 3M/B (Equations 3 and 6)

Qualitative Assessment: From the analytical perspective in Prop. 1 we de-
duce the following qualitative assessment of the bottlenecks associated with each
lifting step:

1. In addition to each Hensel lifting step being susceptible to the sparsity of
each given multiplication, merging all the polynomial products to compute
Sk is also memory bound. Particularly, an intermediary result St =

∑t
i=1 pi

during iterated merging may be denser than all its summands. Consequently,
the working space is now O(kḡh̄), which in turn causes the work and I/O
performance of iterated merging to deteriorate asymptotically.

2. Whilst attempting to manage expression swell, multi-way merging is not
guaranteed to attain the lower bounds unless k ∈ Θ(M/B). Given that k is
the iteration index in the Hensel lifting process, we have k ∈ O(n), where n
is the degree of the input polynomial. Efficiency of multi-way merging thus
hinges on extremely unrealistic assumptions on k.

3. To evade the unrealistic assumptions on k, regrouping polynomial products
recursively to benefit from multi-way merging is a cache aware process, that
needs to be tuned for each level of the memory hierarchy, and during each
lifting step. The fact that there could be O(n) lifting steps makes this process
extremely prohibitive from a design and implementation perspective.

4. Also, the work of recursive multi-way merging when k3M/B is O(logM/B k)
factor more than optimal.

5. Using a cache oblivious merger to handle the polynomial additions will not
attain optimal I/O for merging, as the amortised cost of invoking a k-merger
cannot be achieved unless all polynomial products to be merged have the
same number of non-zero terms.

4 Overlapping Computations Using a Priority Queue

Consider again the sequence {(gi, hj)}k−1
i=1 , j = k − i, in the ring F[x]. The

polynomials gi and hj are in sparse distributed representation and we accordingly
express each as a sum of non-zero terms appearing in decreasingly sorted order.
Write gi =

∑#gi
u=1 g

(i)
u , hj =

∑#hj

w=1 h
(j)
w such that g(i)u = a

(i)
u X

(i)
u , h(j)w = b

(j)
w Y

(j)
w .

As before, assume w.l.o.g., that for each pair (gi, hj), we have #gi < #hj .
To overlap all computations required to produce Sk =

∑k−1
i=1 gihj , expand Sk

as
∑k−1

i=1

(∑#gi
u=1 g

(i)
u

)
hj . With this expansion we can now perform a merge on

the outer and inner sums simultaneously. For this, we instantiate Q, a MAX
priority queue whose elements are structures of the form (XY,g,h). Here, XY
denotes a monomial product using two terms from some pair (gi, hj), and g and
h denote pointers to those two terms in gi and hj respectively. The priority key

Factoring Sparse Bivariate Polynomials Using the Priority Queue 397

of each element is determined by the rank of the corresponding monomial under
the assumed monomial ordering. For example, the maximal element in the queue
corresponds to the monomial with highest rank.

We initialise Q using monomials from all the polynomial pairs {(gi, hj)}k−1
i=1

of highest rank. For a given pair in the list, we perform the product of all
monomials of gi, given by {gu}#gi

u=1, by the first monomial of hj , given by h(j)1 .
We then proceed iteratively as follows. We extract the maximal element residing
in the queue corresponding to a monomial product X(i)

u Y
(j)
w for some i and j. We

perform the coefficient arithmetic needed to produce a term corresponding to this
monomial, and accumulate the result into Sk. We repeat until no more monomial
products of this particular rank reside in the queue. For each monomial product
X

(i)
u Y

(j)
w extracted in this iteration, we insert its successor element X(i)

u Y
(j)
w+1, if

Y
(j)
w+1 exists. We repeat until no more monomials can be inserted. The process is

a generalisation of the single polynomial multiplication algorithm of [12,14] to
the case of Hensel lifting. We summarise it below:

Algorithm 2. Global Priority Queue

1: for i = 1, . . . , k − 1, and j = k − i do
2: for u = 1, . . . ,#gi do
3: Build a Max-priority queue Q using the elements {{(X(i)

u Y
(j)
1 ,g(i),h(j))}}

4: end for
5: end for
6: Set t ← 1.
7: repeat
8: Let the maximal element be denoted by (XY,g,h). Let α denote the rank of

XY under the assumed monomial ordering.
9: Set t ← t+ 1, at ← 0, and Sk ← atRt.

10: Call Extract-max on Q.
11: Set Rt ← XY , and perform the coefficient arithmetic required to produce at

by reading the coefficients of terms pointed to by g and h.
12: Update Sk ← Sk + atRt.
13: while the maximal element in Q has rank equal to α do
14: Repeat Steps 10–12 above
15: end while
16: For each queue element (X

(i)
u Y

(j)
w , g(i),h(j)) extracted in Step 10 above, if

w < #hj , insert into Q the successor element corresponding to the monomial
X

(i)
u Y

(j)
w+1, and update the pointer h(j) accordingly.

17: until no monomials can be inserted into Q.
18: Return Sk.

Alg. 2 is correct as a result of the following loop invariant:

Proposition 2. Let αr denote the rank of the r’th monomial appearing in the
distributed representation of Sk sorted in decreasing monomial order. At the end
of the r’th iteration, Sk is the sum of all terms having rank between α1 and αr.

398 F.K. Abu Salem, K. El-Harake, and K. Gemayel

Proof. We proceed by induction on r. In the first iteration, Q is initialised using
the monomials {X(i)

1 Y
(j)
1 }k−1

i=1 , j = k−i, taken from all the products {gi ·hj}k−1
i=1 .

Following the sparse distributed representation, each monomial X(i)
1 Y

(j)
1 has

maximal rank in the representation of the corresponding polynomial product
(gihj) it was derived from. As a result, the monomials returned via the sequence
of Extract-max issued during the first iteration have rank higher than that of
any other monomial still residing in or not yet inserted into the queue. This
rank constitutes α1. Now suppose that the loop invariant holds for the first r
iterations. At the beginning of the r + 1’st iteration, each successor monomial
recently inserted into the queue has rank lower than αr (the rank of the monomi-
als extracted in the previous iteration). The same holds for monomials already
residing in the queue. As a result, the monomials returned via the sequence of
Extract-max issued during the r + 1’st iteration have rank lower than αr but
higher than that of any other monomial still residing in or not yet inserted into
the queue. This rank constitutes αr+1.

Proposition 3. Assume the sparse distributed representation for polynomials.
In the worst case analysis when each polynomial multiplication gihj is sparse,
Alg. 2 requires

O(kḡh̄ log(kḡ)) work, O(kḡ) space, and O
(
kḡh̄[C(k) + C(ḡ)]

)
I/O’s. (7)

Proof. The structure Q will have at most
∑k−1

i=1 #gi ⊆ O(kḡ) elements. The
queue will process

∑k−1
i=1 #gi#hj ⊆ O(kḡh̄) elements using a sequence of In-

sert and Extract-max operations. The work to process all those elements is
O((kḡh̄) log(kḡ)) monomial comparisons. We now assess the I/O complexity. Ini-
tially, we initialise Q using all monomials from {gi}k−1

i=1 , which are read into the
queue only once and also consecutively. This requires Θ

(
k#gi

B

)
I/O’s. There-

after, for each iteration of the loop where a batch of successor elements are
inserted, accessing monomials of all the {hj}’s may each incur a random access.
Since the total number of insertions to Q is O(kḡh̄), it follows that the I/O
required to read the input monomials is also O(kḡh̄), and the I/O required to
process each of these elements into and out of Q is O(kḡh̄ C(kḡ)), where the
latter cost dominates. This concludes our proof.

Corollary 1. Assume the sparse distributed representation for polynomials. In
the worst case analysis when each polynomial multiplication gihj is sparse:

– (i) Alg. 2 achieves orders of magnitude reduction in space, work, and I/O,
over Alg. 1 using iterated merging.

– (ii) When k 3 M/B, Alg. 2 achieves order of magnitude reduction in both
space and work over Alg. 1 using multi-way merging. Additionally, if the
queues in both algorithms are implemented using a cache oblivious structure
with optimal I/O, Alg. 2 achieves the same I/O complexity whilst having the
advantage of eliminating all cache aware aspects of Hensel lifting and making
it entirely cache oblivious.

Factoring Sparse Bivariate Polynomials Using the Priority Queue 399

– (iii) When k ∈ Θ(M/B), Alg. 2 achieves order of magnitude reduction in
space over Alg. 1 using multi-way merging, whilst maintaining the same work
complexity. Additionally, if the queues in both algorithms are implemented
using a cache oblivious data structure with optimal I/O, Alg. 2 achieves the
same I/O complexity whilst having the advantage of eliminating all cache
aware aspects of Hensel lifting and making it entirely cache oblivious.

Proof. (i) Compare work and space showing in rows 1 and 2 of the table below.
For the I/O complexity, since C(k) ∈ O(log k), we get that C(k) = O

(
k
B

)
for

sufficiently large values of k that satisfy k
B = Ω(log k). For existing values ofB on

modern machines this condition is extremely realistic, especially that k ∈ O(n).
(ii) Compare the work and space costs showing in rows 1 and 3 of the table be-

low. For the I/O complexity, assume that the priority queues in both algorithms
are implemented using a cache oblivious data structure with optimal I/O. Then
C(k) = O(1

B logM/B k), which renders the I/O complexity of both algorithms to
be of equal order.

(iii) Compare work and space showing in rows 1 and 4 of the table below.
For the I/O complexity, as in (ii) above we get that C(k) = O(1

B logM/B k). But
k ∈ Θ(M/B), and so C(k) = O(1

B), which renders the I/O complexity of both
algorithms to be of equal order.

Table 1. Overlapping (Alg. 2) versus Serialised (Alg. 1) Approach

Work Space I/O
Alg. 2 O(kḡh̄ log(kḡ)) O(kḡ) O

(
kḡh̄[C(k) + C(ḡ)]

)
Alg. 1

iterated merging
O

(
kḡh̄(k + log ḡ)

)
O(kḡh̄) O

(
kḡh̄[C(ḡ) + k

B]
)

Alg. 1
multi-way merging k�M/B

O
(
kḡh̄[log ḡ+log k logM/B k]

)
O(kḡh̄) O

(
kḡh̄[C(ḡ)+ 1

B logM/B k]
)

Alg. 1
multi-way merging k∈Θ(M/B)

O(kḡh̄ log(kḡ)) O(kḡh̄) O
(
kḡh̄[C(ḡ) + 1

B]
)

Qualitative Assessment

1. The serialised approach was seen whereas the overlapping approach now
becomes entirely cache-oblivious when a cache-oblivious priority queue is
used.

2. The overlapping approach is no longer susceptible to expression swell arising
due to growth in the intermediary polynomial products: particularly, the
working space grows only with the index of the Hensel lifting step and the
number of non-zero terms belonging to the shorter of each pair (gi, hj).

3. As a result, we have now eliminated superfluous work and I/O, which man-
ifests itself in the asymptotic reductions observed in Corollary 1. We do so
independently of the Hensel lifting iteration index k, and of fluctuations in
the sparsity of the intermediary polynomial products. Since k ∈ O(n), this
feature of the overlapping approach becomes significant at large scale.

400 F.K. Abu Salem, K. El-Harake, and K. Gemayel

4. The only instance in which the overlapping approach achieves the same work
and I/O complexity as the serialised approach is when k ∈ Θ(M/B). But
even then, the overlapping approach now (i) achieves order of magnitude less
working space and (ii) is cache-oblivious as opposed to cache-aware, which
offers portability across different machines.

5 Experimental Results

We focus on the adaptation of the polytope method in [2] to have it use:

1. Alg. 2 with the global priority queue implemented as a MAX binary heap
and polynomials encoded in the sparse distributed representation.

2. Alg. 1 employing local priority queues for the polynomial multiplications,
where the queues are also implemented as MAX binary heaps. This is fol-
lowed by iterated merging over the polynomial products.

These implementations are in C++ and compiled using g++ version
4.4.6 20120305 with optimization level -O3. We compare both these implemen-
tations against Magma’s built-in function for factoring bivariate polynomials,
which relies on the standard algorithms in [5,17]. Our input suite consists of
random bivariate polynomials over F3 that all turn out to factor into two irre-
ducibles. In several instances, we specifically generate random polynomials whose
Newton polygon consist of the triangle (0, n), (n, 0), and (0, 0), as in rows 1 –
7 below. Here, lifting is initiated from the horizontal edge. In rows 8-10, the
Newton polygon of the input polynomial is allowed to have an arbitrary number
of edges, and lifting is attempted across dominating sets of edges (see [1]).

We ran the experiments on an Intel(R) Xeon(R) CPU E5645 with 43GB of
RAM, 12MB in L3 cache, and 256KB in L2 cache. We present sample results
in the table below for extremely sparse bivariate polynomials. The parameter n
denotes the total degree of the input polynomial, and t denotes the total num-
ber of its non-zero terms. The parameter F corresponds to the total number
of boundary factorisations attempted before the two irreducible factors are pro-
duced. The timings below correspond to wall clock time in seconds. The gap in
performance between the overlapping approach and the serialised one becomes
severe starting n = 10, 000. Looking at the 7’th row below we see that the seri-
alised version took over 92 hours. Thus, starting from the 8’th row onwards we
dispense with the serialised approach.

Our interpretations of the results are as follows. The version of the polytope
method which uses the overlapping approach is almost always significantly faster
than when using the serialised version with iterated merging. This confirms our
results from Prop. 7. More significantly, despite that the Newton polygons in
rows 1-6 have only three edges, this is not seen to be reflecting positively on
the performance of the polytope method when using iterated merging. This
confirms our earlier remark that the polytope method, even when the polygon
has a few edges, would remain susceptible to fluctuation in the sparsity of the
intermediary polynomials, unless one undertakes suitable approaches to address
expression swell.

Factoring Sparse Bivariate Polynomials Using the Priority Queue 401

The version of the polytope method which uses the overlapping approach is
also significantly faster than the built-in Magma function for bivariate polyno-
mial factorisation. Starting from rows 7 onwards, Magma is no longer able to
factor the input polynomials and runs out of memory. The fact that we are out-
performing Magma in all of these instances can be attributed to the following
facts. The polytope method is suited for sparse polynomials and with the over-
lapping approach can now handle them better, by achieving an order of magni-
tude less working space than all generic forms of Hensel lifting implementations,
including Magma built-in functions.

Finally, and aside from the comparison against Alg. 1 or Magma, we emphasise
the aspect of our implementation which allows its run-time to decrease signifi-
cantly starting from row 7 onwards. In those rows, the degrees are substantially
increasing but the polynomials are also becoming substantially sparser, which
confirms that the polytope method will now adapt very favourably to sparse
polynomials.

n t F Alg. 2-Binary Heap Alg. 1-iterated merging Magma
1. 100 ≈ 103 1 0.002 0.02 0.03
2. 1000 ≈ 3×105 1 2.8′′ 0.06′′ 0.04′′

3. 2000 ≈ 106 1 4.2′′ 226.6′′ 127.2′′

4. 4000 ≈ 2×102 8 32′′ 2, 700′′ 1, 085′′

5. 5000 ≈ 2×102 5 64′′ 2, 160′′ 739′′

6. 6000 ≈ 8×102 3 810′′ 15, 457′′ 2, 728′′

7. 10000 ≈ 3×105 7 17 hrs 19′ 15′′ 92 hours Segmentation Fault
8. 10000 ≈ 6×10 1 4 hrs 27′ 42′′ . . . Segmentation Fault
9. 15000 ≈ 2×10 1 8 hrs 6′ 44′′ . . . Segmentation Fault
10. 20, 000 ≈ 2×10 1 31, 569 . . . Segmentation Fault

6 Conclusion

We presented an engineering of the polytope factoring method which made it
possible to efficiently process sparse bivariate polynomials. For significant im-
provements to be attained by algorithms that are dedicated for sparse input,
one must revise the classical analysis using insight from the sparse distributed
representation. After one has gathered enough understanding of the performance
under sparsity considerations, one must invest in advanced data structures and
to optimise on the flow of computation for the benefit of data locality. We believe
this direction of work has a far reaching practical impact as demonstrated in our
empirical results.

Acknowledgments. We thank the Lebanese National Council for Scientific
Research and the University Research Board – American University of Beirut
for supporting this work.

402 F.K. Abu Salem, K. El-Harake, and K. Gemayel

References

1. Abu Salem, F.K., Gao, S., Lauder, A.G.B.: Factoring polynomials via polytopes.
In: Proc. of ISSAC, pp. 4–11 (2004)

2. Abu Salem, F.K.: An efficient sparse adaptation of the polytope method over Fp

and a record-high binary bivariate factorisation. J. Symb. Comp. 43(5), 311–341
(2008)

3. Aggarwal, A., Vitter, J.: The input/output complexity of sorting and related
problems. Communications of the ACM 31(9), 1116–1127 (1988)

4. Arge, L., Bender, M.A., Demaine, E.D., Holland-Minkley, B., Munro, J.I.: Cache-
oblivious priority queue and graph algorithm applications. In: Proc. of STOC,
pp. 268–276 (2002)

5. Bernardin, L., Monagan, M.B.: Efficient multivariate factorization over finite fields.
In: Mora, T., Mattson, H. (eds.) AAECC. LNCS, vol. 1255, pp. 15–28. Springer,
Heidelberg (1997)

6. Bostan, A., Lecerf, G., Salvy, B., Schost, E., Wiebelt, B.: Complexity issues in
bivariate polynomial factorization. In: Proc. of ISSAC, pp. 42–49 (2004)

7. Brodal, G.S., Fagerberg, R.: Funnel heap - a cache oblivious priority queue. In:
Bose, P., Morin, P. (eds.) ISAAC 2002. LNCS, vol. 2518, pp. 219–228. Springer,
Heidelberg (2002)

8. Brodal, G.S., Fagerberg, R., Meyer, U., Zeh, N.: Cache-oblivious data structures
and algorithms for undirected breadth-first search and shortest paths. In: Hagerup,
T., Katajainen, J. (eds.) SWAT 2004. LNCS, vol. 3111, pp. 480–492. Springer,
Heidelberg (2004)

9. Fateman, R.: Comparing the speed of programs for sparse polynomial multiplica-
tion. ACM SIGSAM Bulletin 37(1), 4–15 (2003)

10. Gao, S., Lauder, A.G.B.: Hensel lifting and bivariate polynomial factorisation over
finite fields. Math. Comp. 71, 1663–1676 (2002)

11. Goodrich, M., Tamassia, R.: Algorithm Design. John Wiley and Sons (2002)
12. Johnson, S.C.: Sparse polynomial arithmetic. ACM SIGSAM Bulletin 8, 63–71

(1974)
13. Frigo, H.P.M., Leiserson, C.E., Ramachandran, S.: Cache-oblivious algorithms. In:

Proc. of FOCS, pp. 285–297 (1999)
14. Monagan, M., Pearce, R.: Polynomial division using dynamic arrays, heaps, and

packed exponent vectors. In: Ganzha, V.G., Mayr, E.W., Vorozhtsov, E.V. (eds.)
CASC 2007. LNCS, vol. 4770, pp. 295–315. Springer, Heidelberg (2007)

15. Monagan, M., Pearce, R.: Parallel sparse polynomial multiplication using heaps.
In: Proc. ISSAC, pp. 263–269 (2009)

16. Monagan, M., Pearce, R.: Sparse polynomial pseudo division using a heap. J. Symb.
Comp. 46(7), 807–822 (2011)

17. Von Hoeij, M.: Factoring polynomials and the knapsack problem. J. Number
Theory 95(2), 167–189 (2002)

18. Von zur Gathen, J., Gerhard, J.: Modern Computer Algebra. Cambridge University
Press (1999)

19. Wan, D.Q.: Factoring multivariate polynomials over large finite fields. Math.
Comp. 54, 755–770 (1990)

20. Wang, P., Rothschild, L.: Factoring multivariate polynomials over the integers.
Math. Comp. 29, 935–950 (1975)

21. Zassenhaus, H.: On Hensel factorization I. J. Number Theory 1, 291–311 (1969)

Solving Parametric Sparse Linear Systems

by Local Blocking�

Tateaki Sasaki1, Daiju Inaba2, and Fujio Kako3

1 University of Tsukuba,
Tsukuba-city, Ibaraki 305-8571, Japan

sasaki@math.tsukuba.ac.jp
2 Japanese Association of Mathematics Certification,

Ueno 5-1-1, Tokyo 110-0005, Japan
d.inaba@su-gaku.net

3 Dept. Info. Comp. Sci., Nara Women’s University,
Nara-city, Nara 630-8506, Japan

kako@ics.nara-wu.ac.jp

Abstract. In solving parametric sparse linear systems, we want 1) to
know relations on parametric coefficients which change the system largely,
2) to express the parametric solution in a concise form suitable for the-
oretical and numerical analysis, and 3) to find simplified systems which
show characteristic features of the system. The block triangularization is
a standard technique in solving the sparse linear systems. In this paper, we
attack the above problems by introducing a concept of local blocks. The
conventional block corresponds to a strongly connectedmaximal subgraph
of the associated directed graph for the coefficient matrix, and our local
blocks correspond to strongly connected non-maximal subgraphs. By de-
termining local blocks in a nested way and solving subsystems from low
to higher ones, we replace sub-expressions by solver parameters system-
atically, obtaining the solution in a concise form. Furthermore, we show
an idea to form simple systems which show characteristic features of the
whole system.

Keywords: parametric sparse linear system, application-oriented
method, block triangularization, local blocks, strongly connected sub-
graph.

1 Introduction

The parametric sparse linear systems (PSLSs) are very important in many ap-
plication fields. For example, when performing simulation of a machine or a
plant, a system of parametric linear equations is given as a theoretical model
of the machine or the plant, where most equations contain only several terms
[1]. In [6], the leading author and Yamaguchi investigated parametric linear

� Work supported in part by Japan Society for the Promotion of Science under Grants
23500003.

V.P. Gerdt et al. (Eds.): CASC Workshop 2014, LNCS 8660, pp. 403–418, 2014.
c© Springer International Publishing Switzerland 2014

404 T. Sasaki, D. Inaba, and F. Kako

systems from the viewpoint of reducing floating-point errors but they did not
consider the sparseness. We consider the sparseness seriously in this paper.
Let the given system be Ax = c, where A ∈ K[p]l

′×l, c ∈ K[p]l
′
, with K a

number field of characteristic 0 and p a set of parameters; p = {a, b, . . . , g} in
this paper.

A standard method for solving sparse linear systems is the block triangular-
ization (BTon) of the matrix A [4]. This method is popularly used in numerical
computation, and it is applicable to parametric linear systems, too, because the
BTon is nothing but to reorder the rows and columns. In the PSLS solving,
however, we have other problems which we do not encounter in numeric sys-
tems. In the parametric linear systems, not only solvability but also solving way
and the solution may change if parameters satisfy some relations, and we want
to know such relations, as in the comprehensive Gröbner basis computation[8].
Much more important desires in application fields are, a) the solver expresses
the solution in a concise form because the solution expressed in expanded ratio-
nal function is often very large, and b) solving method is such that it extracts
characteristic features of the system. Such characteristic features will be useful
in determining optimal parameter values. In order to satisfy these desires, we
must develop a new application-oriented method.

A fast algorithm of the BTon is based on the graph theory; the graph theo-
retical treatment of BTon is not only useful but also quite simple. An essential
point is that each square block corresponds to a “strongly connected maximal
subgraph” of an “associated directed graph” GA of matrix A. In this paper, we
propose a concept of “local block”. LetB be a square block obtained by the BTon
of A and let GB be its associated directed graph. Each local block of B corre-
sponds to a strongly connected non-maximal subgraph of GB. Let L1, . . . , Lk be
local blocks of B; some of them may be contained in others. Each local block Li

corresponds to a PSLS w.r.t. local variables xi, where its solution is expressed in
terms of other variables x′

i. We will show that we can solve the system Bx = c
by solving local systems successively.

In Sect. 2, we give toy examples to explain our method and show a simplified
characteristic system (to be abbreviated to characteristic system below). In Sect.
3, we overview the BTon and the graph theory briefly. In Sect. 4, we introduce
concepts of tightly-coupled graph and local block. Furthermore, we present an
algorithm for computing strongly connected subgraphs corresponding to local
blocks; this is the heart of this paper. In Sect. 5, we analyze the local blocking
theoretically and prove that the PSLS can be solved by utilizing local blocks.
We also explain how we form characteristic systems and how we replace sub-
expressions by solver parameters. In Sect. 6, we explain our method by applying
it to a simple parametric sparse linear system.

Solving Parametric Sparse Linear Systems by Local Blocking 405

2 Toy Examples and Degenerating Factor

We explain our method by toy examples. The first one is as follows; below by
Eqi we denote the i-th equation.

Example-1 :

⎛⎜⎜⎜⎜⎝
a b 0 0 0
−b 2a 0 0 1
0 0 c d 0
0 0 d 2c 2
0 f 0 g 3

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝
x1
x2
x3
x4
x5

⎞⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
3
2
1

−1
−2

⎞⎟⎟⎟⎟⎠ . (2.1)

Let D1 and D2 be the following determinants.

D1 =

∣∣∣∣ a b
−b 2a

∣∣∣∣ , D2 =

∣∣∣∣ c dd 2c

∣∣∣∣ . (2.2)

We first solve Eq1 and Eq2 of (2.1) w.r.t. x1 and x2, obtaining

x1 = (6a− 2b+ bx5)/D1, x2 = (2a+ 3b− ax5)/D1. (2.3)

We also solve Eq3 and Eq4 of (2.1) w.r.t. x3 and x4, obtaining

x3 = (2c+ d+ 2dx5)/D2, x4 = −(c+ d+ 2cx5)/D2. (2.4)

Substituting these “local solutions” into Eq5, we obtain

x5 =
−2D1D2 + g(c+ d)D1 − f(2a+ 3b)D2

3D1D2 − 2cgD1 − afD2
. (2.5)

Once x5 is determined, x1, . . . , x4 are determined easily from (2.3) and (2.4).
Let A1 be the coefficient matrix in (2.1), then we have

det(A1) = 3D1D2 − 2cgD1 − afD2. (2.6)

The local solution in (2.3) (or (2.4)) shows that something will happen if D1 = 0
(or D2 = 0). In this case, the local solution in (2.3) is inadequate, so we consider
(2.1) again. The system {Eq1, Eq2} with a �= 0 is equivalent to

{ax1 + bx2 = 3, D1x2 = 3b+ 2a− ax5} (so long as a �= 0).

Hence, if D1 = 0 then x5 = (2a+3b)/a. Substituting this into (2.4), we obtain
x3 and x4, but x1 and x2 are not changed except that the denominator becomes
aD2. Thus, if D1 = 0 then the corresponding local system and some solution are
“degenerated”.

Definition 1 (degenerating factor). The local system such as {Eq1,Eq2} in
Example-1 can be expressed as Si : Lixi = L′

ix
′
i + ci, where Li is an ni×ni

matrix and xi and x′
i have no common variable. Considering Si to be a linear

system w.r.t. xi, we call det(Li) a degenerating factor of Si.

406 T. Sasaki, D. Inaba, and F. Kako

By changing Example-1 a little bit, the system becomes very instructive.

Example-2 :

⎛⎜⎜⎜⎜⎝
a b 0 e 0
−b 2a 0 0 0
0 0 c d 0
0 0 d 2c 2
0 f 0 0 3

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝
x1
x2
x3
x4
x5

⎞⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
3
2
1

−1
−2

⎞⎟⎟⎟⎟⎠ . (2.7)

As in Example-1, we replace {Eq1, Eq2} and {Eq3, Eq4} by

{D1x2 + bex4 = 2a+ 3b, −bx1 + 2ax2 = 2}, (2.8)

{cx3 + dx4 = 1, D2x4 + 2cx5 = −c− d}, (2.9)

respectively. Consider the following simplified system:

{D1x2 + bex4 = 2a+ 3b, D2x4 + 2cx5 = −c− d, Eq5}. (2.10)

After solving this system, we can determine x1 and x3. We can regard (2.10) as
a simplified system which manifests a characteristic feature of the whole system.

3 An Overview of Block Triangularization

By the BTon, the matrix A is split into three types of blocks (we explain the
case of upper-triangular decomposition): the top-left block is of horizontal type
(H-type) because the number of columns is larger than that of rows, the central
k blocks (k ≥ 1) are square matrices (S-type), and the bottom right block is
of vertical type (V-type) because the number of columns is smaller than that of
rows. The underdeterminedness and the overdeterminedness of the linear system
are represented by H-type part and V-type part, respectively. In the linear system
solving, the equations in each block are solved independently from those in other
blocks, from the lowest block to upper. Let the i-th block contains variables
xli , . . . , xli+1−1. Once equations in the i-th block are solved, we substitute the
solutions of these variables into upper equations.

The fast algorithm of the BTon is based on the graph theory. A graph G
is composed of vertices {v1, v2, . . . , vn} and edges connecting two vertices. If an
edge connecting vi and vj is undirected then we express it as (vi, vj). If an edge is
directed from vi to vj then we express it either as (vi→vj) or as (vj←vi). A path
is a sequence of edges connected sequentially; by (v1, v2, . . . , vk) we denote a path
which passes vertices v1,v2,. . . ,vk in this order. In PSLS solving, we divide the
vertices into E-vertices {E1, E2, . . . , El′} and X-vertices {x1, x2, . . . , xl}, where
Ei denotes the i-th equation and xj denotes the j-th variable. Given an equation
Ei: ai,j1xj1 + · · · + ai,jsxjs = ci, we connect the E-vertex Ei with X-vertices
xj1 , . . . , xjs by s edges, obtaining a bipartite graph G for matrix A.

An important concept on bipartite graph is “maximum matching”. In the
context of BTon, the maximum matching is to maximize the number of nonzero
diagonal elements of the given matrix A by changing the order of equations

Solving Parametric Sparse Linear Systems by Local Blocking 407

(or, by changing the variable order). After determining a maximum matching,
the algorithm of BTon performs the so-called “coarse decomposition” [3,5]. By
this, A is decomposed into three matrices AH, AS and AV of H-type, S-type and
V-type, respectively. This decomposition and further fine decomposition of AH

and AV are called Dulmage-Mendelsohn decomposition [3]. From now on, we
assume that A is an l×l S-type matrix having l nonzero diagonal elements.

The final step of BTon is rather technical. First, the undirected bipartite
graph is converted to a directed graph by changing each edge to be directed from
the X-vertex to the E-vertex and shrinking each pair of matched vertices into a
single vertex; we call the resulting directed graph associated directed graph of A.
Then, the directed graph is decomposed into “strongly connected components”.
A directed graph G is called strongly connected if every vertex of G is reachable
from any other. A subgraph G of a directed graph is called a strongly connected
component (SCC) if G is strongly connected and is maximal in that no edge or
vertex outside of G can be included in G without breaking its property of being
strongly connected. By assumption on the matching of E-vertices and X-vertices,
we express the i-th shrunken vertex by a rectangular box containing i in it.

Figure 1 illustrates the correspondence between the matrix B and the associ-
ated directed graph GB; each edge in associated directed graph corresponds to
a non-diagonal element.

⎛
⎜⎜⎝

b11 b12 b13

b21 b22 b23

b31 b32 b33

⎞
⎟⎟⎠ ⇐⇒

x1

•
x2

•
x3

•

E1

•
E2

•
E3

•

�
�
�
���

�
�
�
�
�
���

�
�
�
���

�
�
�
���

�
�
�
�
�
��	

�
�
�
���

b12

b13

b21 b23

b31

b32

⇐⇒

1

2

3

b21�

b31

�
b31

�b12

b32�
�b23

�
b13

b13

Fig. 1. Correspondence between matrix and shrunken graph

We note that the solvability of the system depends on the values of parameters.
On the other hand, the BTon is independent of the parameter values. So, we
introduce the following concept.

Definition 2 (formally solvable). Let S : Bx = c be a linear system w.r.t.
x, where B ∈ K[p]m×m and c ∈ K[p]m. We say S is formally solvable w.r.t. x
if it is solvable for the generic values of the parameters.

Theorem 1. Let B be an m×m matrix over K[p], and let G be an associated
directed graph of B. If G is strongly connected then the linear system S : Bx = c,
with c ∈ K[p]m, is formally solvable w.r.t. x.

Proof The theorem is obvious for m = 1, so we assume that m ≥ 2. Let
P = (vi1 , . . . , vin , vi1) be a cyclic path of G. Walking on P is translated into

408 T. Sasaki, D. Inaba, and F. Kako

visiting terms of the linear system as bi1i1xi1 → bi2i1xi1 → · · · → bininxin →
bi1inxin → bi1i1xi1 . Thus, we see that each variable xi (i ∈ {i1, . . . , in}) appears
at least in two equations of S and that each equation of S contains at least
two nonzero terms. Hence, we can perform the elimination of all the variables
appearing in S formally. �

4 Local Blocking of a Block of BT Matrix

By the BTon, solving the given system Ax = c is reduced to solving each sub-
system Bixi = ci successively, where Bi is an mi×mi block. In this section, we
consider the subsystem solving by expressing the subsystem as Bx = c. Note
that the associated directed graph GB for B is strongly connected; although
there may be many edges connecting equations in Bi with those in Bi−1, . . . , B1

in the bipartite graph for A, such edges are removed in GB.

4.1 Definitions

Definition 3 (SCsubG, shrinking to big-vertex). Let G be a strongly con-
nected subgraph (SCsubG) of GB , hence G does not contain any edge which is
connected with a vertex outside of G. Shrinking of G is to replace G by a ver-
tex V (we call it a big-vertex). G may contain big-vertices. In order to avoid
confusion, we say the vertex given initially input-vertex.

If V contains a vertex v explicitly then we say that v is contained in V . If V is
contained in big-vertex V̄ then we say that v is recursively contained in V̄ .

Definition 4 (tightly-coupled). We say that two vertices are tightly- coupled
if they are connected by two edges of opposite directions. We call a subgraph G a
tightly-coupled subgraph (TCsubG) if, in G, each vertex is coupled tightly with
some other one and is maximal in that no vertex of G is coupled tightly with any
vertex which is not contained in G.

Definition 5 (local block). Let L be a submatrix of B, with L �= B, and GB

and GL be associated directed graphs of B and L, respectively. L is called a local
block of B if i) GL is a TCsubG of GB, or ii) GL is an SCsubG of GB, where
GL may contain TCsubGs or smaller SCsubGs as big-vertices. We call forming
L local blocking of B.

Remark 1. The minimality is not imposed on the local block, hence the local
blocks are not uniquely defined. Even the tightly-coupled graph is not uniquely de-
termined from the equations, as Fig. 2 shows; employing the maximum matching
{(x1 :E2), (x2 :E3), (x3 :E4), (x4 :E1)}, we obtain a tightly-coupled subgraph. This
is due to that the maximum matching is not unique.

Solving Parametric Sparse Linear Systems by Local Blocking 409

⎛
⎜⎜⎝

b11 b14
b21 b22
b31 b32 b33

b42 b43 b44

⎞
⎟⎟⎠ ⇐⇒

x1
•

x2
•

x3
•

x4
•

E1

•
E2

•
E3

•
E4

•

�
�
��

�
�
�
��

�
�
��

�
�
�
��

�
�
��

�������

⇐⇒
1 2 3 4� � ��

�

�
�

�

Fig. 2. Illustration of non-uniqueness of tightly-coupled graph

Let GL be an SCsubG of GB, containing input-vertices vi1 , . . . , vin recursively,
so GL corresponds to n equations Eqi1 , . . . ,Eqin . If GL contains a big-vertex V
then GL−V will be often not strongly connected, hence the system corresponding
to GL−V alone is often not formally solvable. Even in such cases, we have the
following corollary which is based on the fact that the solvability is independent
of the order of eliminations. This is the reason why we search for SCsubGs in
the followings.

Corollary 1 (corollary of Theorem 1). Let GL be the associated directed
graph of the local block L. Even if GL contains big-vertices, the local system
corresponding to GL is formally solvable. Computationally, it is better to solve
the local systems corresponding to big-vertices of GL earlier.

4.2 Terminology for Graph Handling

The graph GA with l vertices {v1, v2, . . . , vl} is often input by an adjacency list.
Let Adj be an array of size l. For any vi (i ∈ {1, . . . , l}), if GA has si outgoing
edges (vi→vj1), . . . , (vi→vjsi), then Adj[vi] = (vj1 , . . . , vjsi).

The depth-first search (DFS) is a method of visiting all the vertices system-
atically. First, choose the initial vertex to visit, let it be v1 (one may choose any
vertex). Suppose Adj[v1] = (vi1 , . . . , vis) then DFS visits vi1 by walking the edge
(v1→ vi1), and erases vi1 from Adj[v1]. Suppose Adj[vi1] = (vj1 , . . . , vjt) then
DFS visits vj1 by walking the edge (vi1→vj1), and erases vj1 from Adj[vj1], and
so on. If all the vertices vj1 , . . . , vjt are visited, DFS returns to v1 and visits the
vertex vi2 ; see Fig. 3 below.

Let the DFS walk an edge (v→w) of a directed graph. If DFS has not visited
w yet then (v→w) is called a forward edge. If w has been visited by DFS then
(v→w) is called a back edge. When the DFS walked the back edge, it returns to
the vertex v immediately after erasing w from Adj[v]. The SCsubG of a directed
graph is characterized by that, for any two different vertices u and v, there is a
cyclic path passing u and v, and if the edges are classified into forward and back
edges by the DFS then the cycle contains at least one back edge. So, the back
edge is very important in investigating graphs.

The DFS-subtree (often called a branch) of a directed graph, starting from
a vertex b, is a subgraph the vertices of which are visited by the DFS until it
comes back to b without walking any possible back edge (v→b).

410 T. Sasaki, D. Inaba, and F. Kako

The dfsnum is a sequential natural number starting from 1, given for each
vertex of a directed graph: if a vertex v is visited i-th by the DFS, then the dfs-
num of v is i. In constructing the famous SCC decomposition algorithm, Tarjan
introduced a concept of lowlink which is given to each vertex v of a directed
graph [7,2]. The lowlink(v) is the smallest of dfsnums of vertices reachable from
v by passing any number of forward edges and lastly one or zero back edge; if
there is no such back edge then lowlink(v) := dfsnum(vi). That lowlink(v) =
dfsnum(u) means that there is a path from v to u.

1

2 8

3 5 9

4 6 7

LL=1

LL=1
LL=8

LL=1 LL=3 LL=8

LL=1 LL=3 LL=7

��� ���

��� ��� ���

��� ��� ��� ���

�
�

�

�
�

The DFS-tree for the adjacency list:
Adj = [(2, 8), (3, 5), (2, 4), (1), (6, 7),

(6, 7), (3), (), (9), (8)], where
the vertex number is the same as dfsnum
in this figure.

Fig. 3. Illustration of DFS, dfsnums and lowlinks

4.3 Computing SCsubGs Satisfying Some Restrictions

Our problem is, given an SCC GB consisting of m vertices, how to compute
SCsubGs contained in the SCC efficiently. We will find SCsubGs by finding cyclic
paths in the DFS-tree. We have first considered to utilize Tarjan’s lowlinks. Let
P = (u, . . . , v, w) be a path walked by DFS, with (v→ w) a back edge. Using
lowlinks and adjacency list, we can find cyclic paths (u, . . . , v, w, . . . , u) by a
simple procedure, although some cyclic path may be long because lowlink(v) is
often much smaller than dfsnum(v). However, in this method, we will obtain
so many SCsubGs most of them will be unused. Therefore, we considered the
second method to be explained below.

When we find a new SCsubG, we shrink it into a big-vertex immediately. By
this, we can reduce the number of cyclic pahts to be checked greatly.

First of all, we restrict the required SCsubGs rather arbitrarily, as follows: the
reason is to obtain only SCsubGs which are useful for PSLS solving.

Restriction-1. Each TCsubG must be the lowest-level unseparable SCsubG.
Restriction-2. Because of Corollary 1, each SCsubG must contain at least

one input-vertex. Any input-vertex can be contained only in one big-vertex.
Restriction-3. It is desirable that the big-vertex consists of as neighboring

input-vertices as possible. (This restriction is vague, so we will specify it
concretely later.)

Solving Parametric Sparse Linear Systems by Local Blocking 411

We explain these restrictions by Fig. 3, showing big-vertices by brackets.
When the DFS visits the vertex 1 the second time, we obtain two new SC-
subGs, cyclic paths (1, 2, 3, 4, 1) and (1, [2, 3, 2], 4, 1), but the former is aban-
doned because of Restriction-1. When the DFS visits the vertex 3 the second
time, we obtain two new SCsubGs, cyclic paths ([2, 3, 2], 5, 6, [2, 3, 2]) and
([1, [2, 3, 2], 4, 1], 5, 6, [1, [2, 3, 2], 4, 1]) but Restriction-3 favors the former. With-
out these restrictions, one will obtain many useless SCsubGs.

Theorem 2. Let T be a DFS-tree of a strongly connected graph, and S be a
subtree of T . When the DFS has just finished visiting S, let T ′ be the maximal
subtree of T being unvisited by the DFS. Then, T−T ′ is strongly connected.

Proof. As an induction hypothesis, we assume that the lemma is valid before
the DFS visits S, and we consider visiting of S. If the lemma is valid then every
vertex of S has an edge going to a vertex in T−T ′. Suppose the lemma is invalid,
hence S contains a vertex v which has no edge going to a vertex in T−T ′. By
definition of DFS, this fact is not changed if the DFS visits T ′, hence v is not
strongly connected in T . This contradicts that T is strongly connected. �

We prepare a stack StkV to stack (big-)vertices. When the DFS visits a vertex
v with StkV = (u, . . .), we stack v into StkV hence StkV becomes (v, u, . . .).

First, we consider forming TCsubGs. Each time the DFS visits an unvisited
vertex v, we check whether v is tightly-coupled with an unvisited vertex, and if
so then we form the TCsubG by a procedure; see 4.4.

Next, we consider non tightly-coupled SCsubGs. We consider that the DFS
has walked to vertex b which is the head of subtree S, and it begins to walk
S. Following Theorem 2, we set Assumption-A) all the vertices in T−T ′−S
have been contained in big-vertices (this is assured below in subcase C33). Each
time we meet a back-edge (v→w), we backtrack StkV and search for a possible
cyclic path P = (w→ · · · → v→ w) or a path Q = (u→ · · · → v→ w) which
may become a part of a possible cyclic path when w is contained in a big-vertex.
Note that w is known but u is unknown.

We have three cases: C1) w is not contained in any big-vertex, C2) u and w
are contained in a big-vertex V , C3) u and w are contained in big-vertices Vu
and Vw, respectively, where Vu �= Vw; needless to say, we detect cases C2 and C3
by the backtracking of StkV. In case C1, by Assumption-A, w must be in the
path which the DFS is now walking. So, if the path P has an input-vertex then
form a new SCsubG by P , else continue the DFS. In case C2, if Q contains an
input-vertex then we form a new SCsubG composed of V and Q, else Q must
contain a big-vertex so we enlarge V by including Q. When the DFS has visited
all of S, we will do as in subcase C33 below.

In case C3, we have three subcases; see Fig. 4 below. C31) Vu and Vw are
contained in a big-vertex VW (VW may be Vu or Vw), C32) Vu and Vw are

412 T. Sasaki, D. Inaba, and F. Kako

contained in VU and VW , respectively, where VU and VW are different but have
a common part (VU may be Vu and/or VW may be Vw), C33) Vu and Vw have
no common part.

VW

Vw Vu

V
w

Q
u

�

•

�
•

VW VU

Vw Vu

w
Q

u

•

�
•

•a
• •b

Vw Vu

w
Q

u

���
������

���
�

���
���

•

�
•

Fig. 4. Illustration of subcases C31(left), C32(middle) and C33(right)

Our main problem is how to satisfy Restriction-3. We specify Restriction-3
concretely as follows (one may relax the restriction to check more possibilities).

Restriction-3’. As VU and VW we consider only SCsubGs which contain Vu
and Vw , respectively, and no recursively contain.

With this specification, we are rather easy to form SCsubGs satisfying
Restriction-3’ for subcases C31 and C32.

In subcase C31, if Vw (resp. Vu) contains Vu (resp. Vw) then enlarge Vw (resp.
Vu) by including Q into Vw (resp. Vu), else if VW contains both Vu and Vw and no
more big-vertex then enlarge VW by connecting Vu and Vw by Q, else there must
be a path Q′ which starts from Vw and goes to Vu hence form a new SCsubG
composed of Vu, Vw and Q′; the new SCsubG is contained in VW . In subcase
C32, if Vw �= VW and Vu = VU (VW and Vu share a big-vertex) then enlarge
VW by including Vu and Q, else if Vw = VW and Vu �= VU then enlarge VU by
including Vw and Q, else if Q has an input-vertex then form a new SCsubG
composed of VU , VW and Q; the new SCsubG contains VW and VU .

In subcase C33, by Assumption-A we see that Vw and Vu are contained in
subtrees T−T ′−S and S, respectively. Checking the inclusion relation will be
pretty complicated. However, Theorem 2 makes the situation extremely simple.

Because of Restriction-3’, StkV will often contain a sequence of input-vertices
and/or big-vertices which are connected with T−S−T ′ but not shrunk into big-
vertices; let S′ be the sequence. Theorem 2 tells that T−T ′ is strongly connected,
so we treat T−T ′ as a comprehensive SCsubG without violating Restriction-3’.
In the implementation, we do not generate comprehensive SCsubG but process
S′ as follows.

How to treat S′. If S′ contains no input-vertex then do nothing, else, by
virtue of Corollary 1, regard S′ as an SCsubG and solve the local system
corresponding to S′ just after solving all the local systems constructed before
S′. We call a graph for S′ complementary subgraph (ComplG).

Solving Parametric Sparse Linear Systems by Local Blocking 413

4.4 Implementation

First, we note that the number of SCsubGs including TSsubGs is not greater
than m, because each of them contains at least one input-vertex.

In the following procedures, by nil and ’id we denote the empty list and the
identifier of the name id, respectively. The DFS staying at vertex v visits the
next vertex by procedure visit(v,Adj) as follows: if Adj[v] �= nil then it returns
the leftmost vertex of Adj[v] and deletes the vertex from Adj[v], else return nil.
We prepare an array New of size m. Initially, New[v] = ’new for every v, and
when the DFS visits vertex u then we set New[u] := ’old.

We prepared two procedures for TCsubG. chkTCpair(v,Adj) checks whether
a vertex v is tightly-coupled with some vertex, say w, and if so then returns w
by deleting v (resp., w) from Adj[w] (resp., Adj[v]). getTCvtxs(v,w,. . .) finds a
set of vertices contained in the TCsubG starting from the tightly-coupled pair
(v, w) and returns a set of vertices contained. Note that v and/or w may be
coupled tightly with two or more vertices.

Procedure getTCvtxs(v, w, Adj,New,stk) ==

%% called just after chkTCpair(v,Adj)
%% where, New[v] = ’old, stk = (v).

begin local u;
New[w] := ’old; stack w into stk;
while (u := chkTCpair(w,Adj)) �= nil do

stk := getTCvtxs(w,u,Adj,New,stk);
loop: if Adj[v] = nil then return stk;

while (w := chkTCpair(v,Adj)) �= nil do
stk := getTCvtxs(v,w,Adj,New,stk);

go to loop; end.

Below, by Bvtx[k] (Tvtx[k] for the TCsubG) we denote the big-vertex
formed k-th. In computing SCsubGs as described in 4.3, we need to know
in which SCsubG a given vertex is contained and in which SCsubGs a given
SCsubG is contained. In order to answer these questions quickly, we prepare
arrays SCG, inBig and BinBig, all of size m. The SCG is for saving the
SCsubG (= a sequence of vertices and big-vertices): SCG[i] := [SCsubG formed
i-th]. The inBig tells us in which big-vertex the input-vertex v is contained:
inBig[v] := k if v is contained in Bvtx[k]. The BinBig tells us in which
big-vertex Bvtx[k] is contained: BinBig[k] := a list of indices of big-vertices
which contain Bvtx[k]; we save only such big-vertices which are two-level up-
per. These arrays as well as current maximum index of Bvtx/Tvtx are stored in
SCGs.

414 T. Sasaki, D. Inaba, and F. Kako

The main procedure for finding SCsubGs is findSCsubG:

Procedure findSCsubG(v,Adj,New,StkV,SCGs) ==

%% a procedure which calls this initially is necessary.
begin local w,u, vtxs;

w := chkTCpair(v,Adj);
if w = nil then goto SCG;

TCG: vtxs := formTCsubG(v, w, Adj, New,SCGs,StkV);
for each u in vtxs do

StkV := findSCsubG(u,Adj,New,StkV,SCGs);
SCG: if (w := visit(v, Adj)) = nil then goto rtn;

if New(w) = ’old then goto bakT;
New(w) := ’old;
StkV := findSCsubG(w,Adj,New,StkV,SCGs);
goto SCG;

bakT: btrackStkV(v, w, StkV,SCGs);
goto SCG;

rtn: StkV := formComplG(v,StkV,SCGs);
return StkV; end.

Here, formTCsubG forms a TCsubG, saves information into SCGs, stacks the
corresponding big-vertex into StkV, and returns a list of vertices outgoing from
the TCsubG; btrackStkV backtracks StkV and performs complicated jobs de-
scribed in 4.3; formComplG forms a complementary SCsubG, if any, by back-
tracking StkV to vertex v or wrapped vertex (v Bvtx[∗]); for “wrapped vertex”,
see below.

In the implementation, we encounter a problem. Suppose vertices vk1 and
vk2 are outgoing from Bvtx[k]. If we stack these (big-)vertices into StkV as
(· · · , vk2 , · · · , vk1 , Bvtx[k], · · ·), it is not easy to recognize that vk2 is connected
with Bvtx[k]. Even more difficult case is that Bvtx[k] is contained in Bvtx[k′]
then the StkV will be (· · · , vk2 , · · · , vk1 , Bvtx[k′], · · ·). Our idea to solve this
problem is to wrap vki and vkj as (vki Bvtx[k]) and (vkj Bvtx[k]), respectively,
and stack them instead of vki and vkj .

5 Solving PSLSs by Local Blocking

In this section, we consider solving Bx = c by local blocking, where B is an
m×m matrix

(
bij
)
, with diagonal elements b11, . . . , bmm corresponding to the

vertices v1, . . . , vm of GB. Let Li be the i-th local block of B, composed of i1-th,
. . . , in-th rows of B. The corresponding local system can be expressed as

Lixi = L′
ix

′
i + ci, xi = t(xi1 , . . . , xin), x′

i = t(ci′1 , . . . , ci′m−n
),

where Li ∈ K[p]n×n, L′
i ∈ K[p]n×(m−n), ∀i′j �∈ {i1, . . . , in}.

(5.1)

Definition 6 (Blocked Variable, Unblocked Variable). Let Li, xi, x
′
i, L

′
i

and ci be defined as in (5.1). We call each variable in xi and x′
i blocked variable

and unblocked variable, respectively, of Li.

Solving Parametric Sparse Linear Systems by Local Blocking 415

Let GL be an SCsubG, corresponding to the local block Li. The local system
in (5.1) is formally solvable w.r.t. blocked variables of Li and the solution is
expressed in terms of unblocked variables. However,GL may contain big-vertices.
In such cases, we solve the local systems corresponding to the big-vertices first,
and solve the remaining system last, as we mentioned in Corollary 1.

Theorem 3. The system Bx = c is formally solvable even if det(Li) = 0,
provided det(B) �= 0.

Proof First, we see that L′
i �= 0, because if L′

i = 0 then GL becomes an SCC
of GB, contradicting that GB is an SCC. Second, the row rank of augmented
matrix (Li | L′

i) is n, because if the rank is less than n then we have det(B) = 0.
Thus, we obtain the theorem. �

5.1 Forming Characteristic Systems

The DFS method is very simple and useful, but it has a serious drawback: the
result depends strongly on the initial setting of adjacency list. On the other hand,
the characteristic system should be settled by considering global structure of the
PSLS. Furthermore, user’s professional knowledge is indispensable to determine
the characteristic system. In order to cope with these demands, we introduce a
concept of “global vertex”.

Definition 7 (global vertex). The user can specify some vertices global. Let
vg be a global vertex which corresponds to variable xg. Each equation containing
a diagonal term bggxg is treated to be in a characteristic system.

Actually, we determine a characteristic system as follows.

First, choose a global vertex as the vertex which the DFS visits first.
Then, modify the adjacency list so that a cyclic path obtained first by the DFS

contains the global vertices naturally.

5.2 Actual Method for PSLS Solving

Summarizing, we solve PSLS as follows.

1. Before PSLS solving, determine a characteristic system with the help of
users, but solve the system last.

2. First, solve all the tightly-coupled systems, because the variables correspond-
ing to input-vertices of a TCsubG seem to be correlated strongly.

3. Then, solve other local systems in the order that systems in subtree visited
earlier are solved earlier. In each SCsubG, solve the local systems corre-
sponding to lower-level big-blocks earlier.

4. In solving local systems successively, replace sub-expressions appearing in
the solutions systematically by the rules given below.

416 T. Sasaki, D. Inaba, and F. Kako

5. Output the determinant D of each local systems as a degenerating factor,
but do not solve the local system for D = 0. Such a computation is quite
heavy because the solving way branches quite often. One had better compute
degenerated solutions only when such a solution is actually required.

The rules for sub-expression replacement are as follows.

Rule-1. In each local system, replace the determinant of coefficient matrix by
solver parameter D[i], where the index i show that D[i] is generated i-th.

Rule-2. Let the local system to be solved be⎧⎪⎪⎨⎪⎪⎩
bj1,i1xi1 + · · · + bj1,inxin = cj1 + bj1,i′1xi′1 + · · · + bj1,i′n′x

′
n′ ,

... · · ·
...

...
...

... · · ·
...

bjn,i1xi1 + · · · + bjn,inxin = cjn + bjn,i′1xi′1 + · · · + bjn,i′n′x
′
n′ ,

Then, we express the solution of xik (1 ≤ k ≤ n) as

xik =
C[k] + C̃[k, i′i1]xi′1 + · · · + C̃[k, i′in′]xi′n′

D
,

where C and C̃ are solver parameters; if a sub-expression is a monomial then
we do not perform the replacement.

Rule-3. After substituting local solutions for unblocked variables of another
local system, we express the system by replacing sub-expressions: the result-
ing system is such that coefficients bj,i, bj,i′ , cj (j1 ≤ j ≤ jn; i1 ≤ i ≤
in; i′1 ≤ i′ ≤ i′n′) are replaced by Bj,i, Bj,i′ , Cj , respectively (for simplicity,
we employed the same suffixes as above).

6 Application to a Simple PSLS

We explain our method by applying it to a simple PSLS Bx = c, where B and
c are as follows. The associated directed graph GB for B is a little modification
of the graph in Fig. 3 in 4.2: we added two back-edges (7→4) and (9→7).

B =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Eq1 b11 b14
Eq2 b21 b22 b23
Eq3 b32 b33 b36
Eq4 b43 b44 b47
Eq5 b52 b55
Eq6 b65 b66
Eq7 b75 b77 b79
Eq8 b81 b88 b89
Eq9 b98 b99

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, c =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c1
c2
c3
c4
c5
c6
c7
c8
c9

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

We first show how SCsubGs are found by the adjacency list which is obtained
by modifying Adj given in Fig. 3 as Adj[7] := (4) and Adj[9] := (7, 8). We show
how StkV changes as the DFS walks each edge.

Solving Parametric Sparse Linear Systems by Local Blocking 417

1. DFS(1→2): StkV = (2 1).
2. DFS(2→3): Tvtx[1] := (2 3), StkV = (Tvtx[1] 1).
3. DFS(3→4): StkV := (4 (3 Tvtx[1]) Tvtx[1] 1).
4. back(4→1): Bvtx[2] := (1 Tvtx[1] 4), StkV = (Bvtx[2]).
5. DFS(2→5): StkV = (5 (2 Tvtx[1]) Bvtx[2]).
6. DFS(5→6): StkV = (6 5 (2 Tvtx[1]) Bvtx[2]).
7. back(6→3): Bvtx[3] := (5 6 Tvtx[1]), StkV = (Bvtx[3] Bvtx[2]).
8. DFS(5→7): StkV = (7 (5 Bvtx[3]) Bvtx[3] Bvtx[2]).
9. back(7→4): Bvtx[4] := (Bvtx[3] 7 Bvtx[3]), StkV = (Bvtx[4]).

10. DFS(1→8): StkV = (8 (1 Bvtx[2]) Bvtx[4]),
11. DFS(8→9): Tvtx[5] := (8 9), StkV = (Tvtx[5] (1 Bvtx[2]) Bvtx[4]).
12. back(9→7): StkV = (Tvtx[5] Bvtx[4]).

Next, we consider a characteristic system Schar. Specifying vertices 1, 9, 7, 4
to be global, we obtain Schar := {Eq1, Eq4, Eq7}, as shown in Fig. 5.

1

3.2.5.64 8.9

7

�
�
���

�
�
���

�
�
���

 !

By modifying the Adj specified above
as Adj[1] := (8, 2), the DFS walks a
cyclic path (1, 9, 7, 4, 1) first, and the
path gives the Schar.

Fig. 5. Characteristic system obtained by global vertices 1, 9, 7, 4.

Finally, we show how sub-expressions are replaced by solver parameters. We
note that Cramer’s formula gives us xi = Ni/D, 1 ≤ i ≤ 9, where D,N1, N2, N3,
N4, N5, N6, N7, N8, N9 contain 15, 44, 28, 37, 47, 29, 34, 51, 34, 31 terms, respec-
tively. Let S23, S89 and S2356 be local systems corresponding to Tvtx[1], Tvtx[5],
Bvtx[3], respectively. We first solve S23 and S89, by putting

D23 := b22b33 − b23b32, D89 := b88b99 − b89b98.

S23 :

{
b22x2 + b23x3 = c2 − b21x1,
b32x2 + b33x3 = c3 − b36x6.

⇒
{
x2 = (C2 − b33b21x1 + b36b23x6)/D23,
x3 = (C3 + b32b21x1 − b36b22x6)/D23,

S89 :

{
b88x8 + b89x9 = c8 − b81x1,
b98x8 + b99x9 = c9,

⇒
{
x8 = (C8 − b99b81x1)/D89,
x9 = (C9 + b98b81x1)/D89,

where C2 := b33c2 − b23c3, C3 := −b32c2 + b22c3, C8 := b99c8 − b89c9, and
C9 := −b98c8 + b88c9. Here, we obtain degenerating factors D23 and D89.

We next solve S2356 which is composed of Eq5 and Eq6:

S2356 :

{
D23b55x5 + b52b36b23x6 = −C2b52 +D23c5 + b52b33b21x1,

b65x5 + b66x6 = c6,

⇒
{
x5 = (C5 + b66b52b33b21x1)/D56,
x6 = (C6 − b65b52b33b21x1)/D56,

418 T. Sasaki, D. Inaba, and F. Kako

where C5 := −C2b66b52 +D23b66c5 − b52b36b23c6, C6 := C2b65b52 −D23b65c5 +
D23b55c6, and D56 := D23b66b55−b65b52b36b23. Thus, once x1 is determined, one
can determine x8, x9, x5, x6, x2, x3 readily. The degenerating factor obtained
here is D56. By substituting local solutions of x3, x5, x9 into Eq4 and Eq7, Schar
becomes ⎧⎨⎩ b11x1 + b14x4 = c1,

B41x1 +D56D23b44x4 +D56D23b47x7 = C4,
B71x1 + D89D56b77x7 = C7,

x1 =

∣∣∣∣∣∣
c1 b14 0
C4 D56D23b44 D56D23b47
C7 0 D89D56b77

∣∣∣∣∣∣ /D147, etc.,

D147 =

∣∣∣∣∣∣
b11 b14 0
B41 D56D23b44 D56D23b47
B71 0 D89D56b77

∣∣∣∣∣∣ .
7 Concluding Remarks and Acknowledgment

We have tested our algorithm only by small systems so far, and we are won-
dering about the effectiveness of the current version to big systems. In handling
big systems, capabilities of handling modular systems will be necessary. Fur-
thermore, we must treat linear equations containing derivatives w.r.t. the time.
Recently, we have found a simple method of forming SCsubGs, in which the SCC
algorithm is used recursively, and which seems to be applicable to big systems.

We thank Mr. T. Yamaguchi of Maplesoft for guiding us to industrial com-
putations.

References

1. Cellier, F.E., Kofman, E.: Differential Algebraic Equations. In: Continuous System
Simulation, ch. 7. Springer (2006)

2. Duff, I.S., Reid, J.K.: An implementation of Tarjan’s algorithm for the block trian-
gularization of a matrix. ACM Trans. Math. Soft. 4, 137–147 (1978)

3. Dulmage, A.C., Mendelsohn, N.S.: Coverings of bipartite graph. Canad. J. Math. 10,
517–534 (1958); A structure theorem of bipartite graphs of finite exterior dimension.
Trans. Roy. Soc. Canad. Sec. III 53, 1–13 (1959)

4. Murota, K.: Matrices and Matroids for Systems Analysis. Springer, Berlin (2000)
5. Pothen, A., Fan, C.-J.: Computing the block triangular form of a sparse matrix.

ACM Trans. Math. Soft. 16, 303–324 (1990)
6. Sasaki, T., Yamaguchi, T.: On Algebraic Preprocessing of Floating-point DAEs for

Numerical Model Simulation. In: Proceedings of SYNASC 2013 (Symbolic Numeric
Algorithms on Scientific Computing), SYNASC 2012, West University of Timisoara,
Romania, pp. 81–88. IEEE (2013)

7. Tarjan, R.E.: Depth-first search and linear graph algorithms. SIAM J. Computing 1,
146–160 (1972)

8. Weispfenning, V.: Comprehensive Gröbner bases. J. Symb. Comp. 14, 1–29 (1992)

Analytical Calculations in Maple to Implement

the Method of Adiabatic Modes for Modelling
Smoothly Irregular Integrated Optical

Waveguide Structures

Leonid A. Sevastyanov1,2, Anton L. Sevastyanov2,
and Anastasiya A. Tyutyunnik2

1 Joint Institute for Nuclear Research,143500, Dubna MR, Russia
2 Peoples Friendship University of Russia, 117198 Moscow, Russia
{leonid.sevast,alsevastyanov,nastya.tyutyunnik}@gmail.com

Abstract. This paper presents analytical calculations in CAS Maple.
The calculations are used for the method of adiabatic waveguide modes,
applied in mathematical modeling of smoothly irregular integrated-op-
tical waveguides. Such structures drew researchers’ attention at the end
of the 20th century, when several models were proposed to describe the
coherent laser radiation in such structures. But these models could not
adequately characterize the phenomena of depolarization and hybridiza-
tion of guided modes.

The proposed model of adiabatic waveguide modes, on the contrary,
describes these experimentally observed phenomena, but on the other
hand, we have more complicated analytical expressions. So we have de-
veloped a special program in Maple to computerize analytical calcula-
tions. The program is presented in this work.

Keywords: integrated optics, waveguide modes, adiabatic waveguide
modes, thin-film waveguide Luneburg lens, numerical modeling, analyt-
ical calculations.

PACS: 02.30.Mv, 02.60.Cb, 02.60.Lj, 03.50.De, 03.65.-w, 42.25.-p, 42.25.Gy,
42.50.-p, 42.82.-m, 02.30.Hq , 02.30.Jr, 02.60.-x, 02.60.Cb, 02.70.-c

1 Introduction

The new scientific and technical direction emerged and developed successfully
in the 60es of the 20th century (the department of Radiophysics, PFUR, was
one of the pioneer groups [2]). The first and simplest models of monochromatic
polarized light propagation in fiber and planar optical waveguides were proposed
and investigated, some custom-made and serial samples of the first integrated-
optical products mentioned in [6] were made.

Some custom-made samples of irregular integrated-optical waveguides have
revealed the inadequacy of existing models. Consequently, integrated optical

V.P. Gerdt et al. (Eds.): CASC Workshop 2014, LNCS 8660, pp. 419–431, 2014.
c© Springer International Publishing Switzerland 2014

420 L.A. Sevastyanov, A.L. Sevastyanov, and A.A. Tyutyunnik

waveguide components and devices designed on the base of these models, were
very imperfect. Despite this, some of the samples were run in series of both ele-
ments and products including thin-film waveguide lenses and spectrum analyzers
on board the U.S. aircraft [6].

In order to improve mass production technologies of integrated optical prod-
ucts, some attempts were made to improve mathematical models of irregular
waveguides: — a method of expansion in the small parameter (smooth irregu-
larity), a coupled-wave method, a cross-sections, incomplete Galerkin method.
However, they did not describe the phenomena of hybridization and the de-
polarization of the propagating light observed in the experimental studies of
fabricated samples of integrated optical waveguides.

One of the founders of integrated optics as scientific and technical direction,
Professor LN Deryugin (the head of the Department of Radiophysics, the PFUR)
set the task to develop an adequate model of the propagation of laser radiation
in smoothly irregular integrated optical waveguides. A corresponding model was
created by a scientific team of the JINR, GPI and PFUR researchers headed
by L.A. Sevastiyanov, A.A. Egorov, and A.L. Sevastiyanov, the description and
examples of using this model are published in [1,5,4,3,7].

Within the model the key position is given to the following:

a description of the eigenvalues and eigenmodes of an integrated optical
waveguide;
a description of propagating in an integrated optical waveguide radiation
excited by an external source.

The first task is successfully solved by the team, the second one has arisen on
the agenda.

Here we should emphasize a significant “complexity” of the analytical ex-
pressions for the base units of the method of adiabatic waveguide modes com-
pared to the corresponding values in the previous methods. In those methods,
the analogues of the second problem could be solved by analytical calculations
performed manually. In the case of the method of adiabatic waveguide modes
(MAWM) needed to solve the second task, analytic calculations are more com-
plex and cumbersome. It is not possible to conduct them manually; one of ways
out is to perform these calculations in one of the CASs. We have chosen Maple.

In this paper, we present our first results in the way of analytical calculations
to solve the second task. Namely, we describe the analytical calculation of the
quantities involved in the formation of MAWM, more over the analytical cal-
culations needed to solve the first problem. In spite of the fact we performed
these calculations manually to simulate a number of samples of integrated opti-
cal waveguide elements, for modeling and designing future production models it
would be necessary to perform the calculations for a large number of waveguide
devices with different design solutions. These analytical calculations require au-
tomation. This work focuses on the automation of analytical calculations needed
to solve the first task.

Analytical Calculations in Maple to Implement the Method 421

2 The Concept of the Method of Adiabatic Waveguide
Modes

The electromagnetic field propagating in a smoothly irregular multilayer inte-
grated optical waveguide (see Fig. 1) of laser radiation is described by Maxwell’s
equations, boundary equations at interfaces, and constitutive equations. In our
case, the scalar Maxwell’s equations follow from the vector ones:

rotH̃ =
1

c

∂D

∂t
, rotẼ = −1

c

∂B

∂t
, (1)

and the boundary conditions for the normal components follow from the bound-
ary conditions for the tangential components [8]. Constitutive equations in this
case are assumed linear and isotropic: D = ε Ẽ, B = μ H̃ where ε - permittivity
of the medium; μ - permeability of the medium. Tangential boundary conditions
at the interface of two media inside the waveguide can be written as

H̃τ
∣∣∣
1

= H̃τ
∣∣∣
2
, Ẽτ

∣∣∣
1

= Ẽτ
∣∣∣
2
. (2)

At an infinite distance from the waveguide the tangential components of the
electromagnetic field satisfy the asymptotic conditions:∥∥∥Ẽτ

∥∥∥∣∣∣
x→±∞

< +∞,
∥∥∥H̃τ

∥∥∥∣∣∣
x→±∞

< +∞. (3)

In the most typical cases, the electrodynamical task is formulated as follows:
a certain eigenmode with unit amplitude falls on the irregular region connecting

Fig. 1. Cross section of the integrated optical structure formed by regular three-layer
waveguide (left panel) and a smoothly irregular four-layer waveguide (on the right side
of the figure). Three-layer waveguide is formed by 1-3 media and four-layer by 1-4
media. Also shown are the profiles of 2-directed lower TM modes as well as the real
parts of two lower weakly deformed waveguide quasi-TM modes.

422 L.A. Sevastyanov, A.L. Sevastyanov, and A.A. Tyutyunnik

two different regular waveguide regions. We need to calculate the amplitude of
all the modes that diverge at both sides of the irregular region. This is a direct
task. Set of all complex amplitudes is called a scattering matrix of the irregular
region. Of particular interest is the inverse problem: the choice of the waveguide
parameters, providing, for example, the lowest conversion losses at the given fre-
quency band. The method of adiabatic waveguide modes is based on the fact that
waveguide modes (classic and generalized) oscillate rapidly in the direction Ox
and change slowly in the directions Oy and Oz. Therefore, the waveguide modes
of smoothly irregular waveguides are constructed at first by averaging over the
variable x. The resulting averaged solutions E (y, z) and H (y, z) are proportional

to functions exp {−iϕ (y, z)}
/√

β (y, z), where β (y, z) =
√
β2y (y, z) + β2z (y, z),

βy (y, z) = ∂ϕ/∂y, βz (y, z) = ∂ϕ/∂z. “The asymptotic expansion” of the aver-
aged solutions on the fast variable (analogue of the asymptotic expansion in [8])
is sought in the form:

Ẽ (x, y, z, t) = E (x; y, z) exp {iωt∓ iϕ (y, z)}
/√

β (y, z), (4)

H̃ (x, y, z, t) = H (x; y, z) exp {iωt∓ iϕ (y, z)}
/√

β (y, z) (5)

Constructed by the method of “partial separation of variables” the expression
for the adiabatic waveguide modes allows to solve on its basis both direct and
inverse problems of numerical modeling of smoothly irregular integrated-optical
waveguides.

Expressions (4) - (5) are substituted into Maxwell’s equations (1) and after
that we obtain with additional derivations the equations for the components
Ez (x) and Hz (x) (parametrically dependent on variables y, z), and compu-
tational formulas for the components Ex (x), Hy (x) and Hx (x), Ey (x) (also
parametrically dependent on the variables y, z). The expressions obtained for
vertical field distributions of adiabatic modes show (and performed numerical
studies [1,5,4,3,7] confirm) that in the course of propagation through the waveg-
uide irregular region these modes are subject to depolarization, so that all six of
their components are non-zero, thus, they become hybrid modes. Remind that
the expansion of fields by regular waveguide modes in the method of compari-
son waveguides contains contributions from the TE and TM modes, its separate
summations (both discrete and continuous). At the same time, the expansion

of fields Fβ =
(
Eβ ,Hβ

)T
in the method of adiabatic waveguide modes already

contain ”linked” terms of hybrid modes with coefficients C±
β (y, z):

Fβ(x, y, z, t) =

∫
dp(β)C±

β (y, z)Fβ(x; y, z) exp (iωt∓ iφβ(y, z))/
√
β(y, z) (6)

Here the integral is taken over the spectral set {β} for non-self-adjoint operator
[8], which has a more complex structure in comparison with a real spectrum of
a regular planar waveguide. In expansion (6), a finite set of complex points β =
βn = Reβn+iImβn, n = 1, ...N with point measures δ (β − βn) dβ, corresponding
to the set of root eigenvectors is present.

Analytical Calculations in Maple to Implement the Method 423

3 Basic Equations for an Analysis of Adiabatic
Waveguide Modes

Substituting (4) and (5) into Maxwell equations (1) leads after a series of ma-
nipulations to the following relations for the dependence of the fast variable
E (x;β (y, z)), H (x;β (y, z)). For the longitudinal components Ez (x;β (y, z)),
Hz (x;β (y, z)), we get the system of ordinary differential equations of the sec-
ond order:

d2Eβ
z

dx2
+ χ2βE

β
z = −pβy

(
χβz
)2 ∂
∂y

((
χβz
)−2

)
Eβ

z

− 1

iε

[(
χβz
)2
pβz
∂

∂y

((
χβz
)−2

)] dHβ
z

dx
, (7)

d2Hβ
z

dx2
+ χ2βH

β
z = −pβy

(
χβz
)2 ∂
∂y

((
χβz
)−2

)
Hβ

z

+
1

iμ

[(
χβz
)2
pβz
∂

∂y

((
χβz
)−2

)] dEβ
z

dx
. (8)

For the transverse and vertical components of the field Ex (x;β (y, z)),
Ey (x;β (y, z)), Hx (x;β (y, z)), Hy (x;β (y, z)), we obtain the expressions
through the longitudinal components Ez (x;β (y, z)), Hz (x;β (y, z)) and their
derivatives:

(
χβz
)2
Hβ

y =

(
pβyp

β
z +

∂pβz
∂y

)
Hβ

z − iεdE
β
z

dx
,
(
χβz
)2
Hβ

x = pβz
dHβ

z

dx
+ iεpβyE

β
z , (9)

(
χβz
)2
Eβ

y = iμ
dHβ

z

dx
+

(
pβyp

β
z +

∂pβz
∂y

)
Eβ

z ,
(
χβz
)2
Eβ

x = pβz
dEβ

z

dx
− iμpβyHβ

z .(10)

Here β (y, z) is to be determined for the spectral parameter β ∈ {β}, which does
no longer refer to a single polarization TE or TM, but relates to a hybrid of
mixed polarization. In (7) - (10) we use the notation:(

χβz
)2

= εμ+ pβz p
β
z + ∂pβz

/
∂z, χ2β =

(
χβz
)2

+ pβyp
β
y + ∂pβy

/
∂y,

pβy = −iβy − (2β)
−1
∂β/∂y, pβz = −iβz − (2β)

−1
∂β/∂z.

After substituting the expressions (4) and (5) for the mode fields Ẽβ (x, y, z),
H̃β (x, y, z) in the boundary conditions (2) - (3) reduced boundary conditions
for vector functions of one (fast) variable on the layer interfaces are obtained

Eτ |1 = Eτ |2, Hτ |1 = Hτ |2, (11)

and conditions at infinity are obtained:

‖Eτ‖|x→±∞ < +∞, ‖Hτ‖|x→±∞ < +∞. (12)

424 L.A. Sevastyanov, A.L. Sevastyanov, and A.A. Tyutyunnik

Thus, the task for partial differential equations is reduced to a simpler task
aimed at solving an ODE system for coupled oscillators with the exact boundary
conditions reduced from the exact original boundary conditions for Maxwell’s
equations. In general, the electromagnetic field is given by the decomposition
(6) as a linear combination of guided and radiation modes, the substitution of
an electromagnetic field into boundary conditions (2) – (3) leads to the general
case of boundary conditions (11)–(12) for the desired vertical distributions of the
mode fields E (x;β (y, z)), H (x;β (y, z)) with unknown coefficients C±

β (y, z).
For vertical distributions of the electromagnetic field of adiabatic modes, the

task is aimed at finding (for each fixed value of the horizontal coordinates y, z)
solutions (depending on the argument x) of the system of differential equations
(7) – (10) satisfying the boundary conditions (11) – (12).

Formulas (7) – (12) were used to solve the vector problem of the electro-
dynamic guided modes propagation in a three-dimensional integrated optical
multilayer waveguide in [1,5,4,3,7]. In all these publications, we solve the task of
the propagation and transformation of one adiabatic waveguide mode.

4 Implementation of the Method of Adiabatic Waveguide
Modes to Describe the Eigenvalue and Eigenmode

As a result of the implementation of our method for the solution of the electro-
dynamic problem it splits into three autonomous subproblems:

– The task of solving a nonlinear equation relating the phase ϕ (y, z) and its
derivatives ∂ϕ/∂y =βy and ∂ϕ/∂z =βz to the waveguide layer thickness pro-
file h (y, z) and its derivatives ∂h/∂y and ∂h/∂z generalizing the dispersion
relation for a regular waveguide.

– The task of solving the second-order ordinary differential equations for the
amplitudes Ez (x) and Hz (x) parametrically dependent on horizontal vari-
ables (y, z), the right-hand sides of which define the interaction between
them.

– The task of numerical integration of the factor exp

{
−i

y,z∫
y0,z0

(βydy + βzdz)

}
entering the expressions for the electromagnetic fields along the two-dimen-

sional rays given by equations d
ds

(
β dy

ds

)
= ∂β

∂y ,
d
ds

(
β dz

ds

)
= ∂β

∂z , ds
2 = dy2 +

dz2.

The equations for the amplitudes Ez (x) and Hz (x) are the equations for cou-
pled oscillators the right side frequencies of which are close to the frequencies
of the oscillators. The direct calculation of the frequency shifts in papers [1,5]
showed that the zero-approximations of frequency are real and equal for TEn−
and TMn− modes with the same numbers n = 1, 2, ...N , but additives of the
first order are various and imaginary.
A new algorithmic method proposed for modeling quasi-guided modes of
smoothly irregular integrated optical waveguides allowed in [4,3] to synthesize

Analytical Calculations in Maple to Implement the Method 425

thin-film generalized Luneburg waveguide lens (TGWL) and compare the results
with those of Southwell [9], the most consistent in the synthesis of a Luneberg
TGWL with limited aperture. The comparison showed that Southwell’s results
correspond to the model of comparison waveguides, which is less accurate than
zero approximation of the adiabatic modes model.

Theoretical and numerical investigations carried out in our papers led to
the understanding of the correct and closed formulation of the direct and in-
verse problems of waveguide propagation of polarized light in integrated optical
waveguides with desired functional properties, such as an ideal amplitude-phase
Fourier transformation, the transformation of one type of waveguide modes into
another type of waveguide modes, irregular integrated-optical sensors on the
base of leaky modes and others.

Most integrated optical devices satisfy the following condition: δ = max |∇β|
β .

This condition allows us to use a series in the small parameter.

5 Analytical Calculations for the First Problem

We obtain the following ordinary differential equations for transverse compo-
nents of electromagnetic field from the zero-order approximation of the asymp-
totic series in the small parameter:

d2Ẽ
(0)
y

dx2
+
(
εμ− β2

)
Ẽ(0)

y = 0,
d2H̃

(0)
y

dx2
+
(
εμ− β2

)
H̃(0)

y = 0 (13)

We obtain the following relations for the other components of the field:

H̃0
z =

i(
εμ− βy2

) (εdẼ0
y

dx
+ iβyβzH̃

0
y

)
(14)

Ẽ0
x =

−i(
εμ− βy2

) (βy dẼ0
y

dx
+ iμβzH̃

0
y

)
(15)

H̃0
x =

−i(
εμ− βy2

) (βy dH̃0
y

dx
− iεβzẼ0

y

)
(16)

Ẽ0
z =

−i(
εμ− βy2

) (μdH̃0
y

dx
− iβyβzẼ0

y

)
(17)

Let us consider the solution of the first problem for the integrated optical object:
thin-film generalized waveguide lens Luneburg (TGWL) (see Fig. 2.). If β > nj
general solution (13) for each dielectric layer can be represented as

Ẽj
y = A+

j e
γjx +A−

j e
−γjx (18)

H̃j
y = B+

j e
γjx +B−

j e
−γjx. (19)

If
(
n2j − β2

)
> 0, that is β < nj , the solution (13) can be represented as:

Ẽj
y = A+

j e
iχjx +A−

j e
−iχjx (20)

H̃j
y = B+

j e
iχjx +B−

j e
−iχjx. (21)

426 L.A. Sevastyanov, A.L. Sevastyanov, and A.A. Tyutyunnik

Fig. 2. A 4-layer smoothly irregular waveguide

Having obtained the solution for each dielectric layer we can now get the bound-
ary conditions in an analytical form.

The boundary conditions are represented as the equality of the tangential
components of the electromagnetic field at the interface of dielectric media.
In the case of plane regular boundaries in the coordinate system connected with
the main waveguide layer the tangential components are Ey, Ez , Hy , Hz . If
the interface of dielectric media is not regular, the expressions for the tangential
components are related to the geometry of the boundary through the derivatives
∂h/∂y , ∂h/∂z. We consider the case with an irregular boundary of the additional
waveguide layer. In this case the boundary conditions are written using the ex-
pressions for the tangential component of the electric and magnetic fields.

Eτ
y =

∂h
∂yEx +

[
1 +

(
∂h
∂z

)2]
Ey − ∂h

∂y
∂h
∂zEz

1 +
(

∂h
∂y

)2
+
(
∂h
∂z

)2 ,

Eτ
z =

∂h
∂zEx − ∂h

∂y
∂h
∂zEy +

[
1 +

(
∂h
∂y

)2]
Ez

1 +
(

∂h
∂y

)2
+
(
∂h
∂z

)2 ,

Analytical Calculations in Maple to Implement the Method 427

Hτ
y =

∂h
∂yHx +

[
1 +

(
∂h
∂z

)2]
Hy − ∂h

∂y
∂h
∂zHz

1 +
(

∂h
∂y

)2
+
(
∂h
∂z

)2 ,

Hτ
z =

∂h
∂zHx − ∂h

∂y
∂h
∂zHy +

[
1 +

(
∂h
∂y

)2]
Hz

1 +
(

∂h
∂y

)2
+
(
∂h
∂z

)2 .

We have decided to use CAS Maple to obtain analytical expression for the given
problem. At first we obtain the tangential components of the electric and mag-
netic fields in an explicit form as functions of the variable x. For example, for
the substrate layer these expressions are represented as follows

We use the following expressions to obtain analytical form for the tangential
components of the electric and magnetic fields on an irregular interface dielec-
tric media:

The equations corresponding to the equality of the tangential components at the
interface of the dielectric medium are obtained using the following commands:

428 L.A. Sevastyanov, A.L. Sevastyanov, and A.A. Tyutyunnik

As we obtained the equations, which correspond to the boundary conditions, we
can form the matrix from the equations:

The indeterminate vector consists from amplitudes of electric and magnetic
fields.

We have a 16× 16 matrix for a four-dimensional integrated-optical structure.
Increasing the number of dielectric layers, we increase the dimension of the sys-
tem of linear algebraic equations and corresponding expressions become more
cumbersome. We consider it is necessary to carry out such calculations using
computer algebra systems. So it is necessary to computerize the obtaining of
analytical expressions.

We cite the fragment of the matrix as an example below: the first eight rows
and eight columns:

6 Calculation of the Adiabatic Waveguide Modes
in the Delphi Package

The aim of our study is designing irregular integrated optical structures with
the assigned properties. As an example we consider a fairly complex object —
thin-film generalized waveguide lens of Luneburg. In the framework of the model
under consideration the greatest difficulty is presented by obtaining an analyti-
cal expression for the boundary conditions. These conditions are written down
for the electric and magnetic fields at the boundaries of the interface of the
homogeneous dielectric layers of the object under consideration. Their number
and structure are directly related to the geometric structure of the object being
designed.

With the help of the Maple package we managed to obtain the symbolic
expressions to record the exact boundary conditions for the task under consid-
eration. Our challenge is to find the solutions of equations (13) - (17) for the
components of the electric and magnetic field along the Ox axis. Considering

Analytical Calculations in Maple to Implement the Method 429

the type of solutions, there are two main parameters that determine the solu-
tion. These are the phase retardation coefficient β and the amplitude coefficients
themselves (A,B)

T
for the components of the electric and magnetic fields. The

task of obtaining the solution is divided into two stages: obtaining β and obtain-
ing amplitude coefficients. The system of linear algebraic equations obtained on
the basis of boundary conditions is homogeneous. The condition for solvability of
such system is the condition of its determinant equaling zero. This condition is
expressed as follows FDisp (β, βy, βz;h, ∂h/∂y, ∂h/∂z;ns, nf , nl, nc, d) = 0. Min-
imizing the corresponding functional allows us to obtain β (y, z) distribution.

Fig. 3. Dispersion dependencies for the real and imaginary parts of β

Having obtained β, we can calculate all the elements of the resulting matrix.
To calculate the amplitude coefficients it is necessary to solve the linear alge-
braic equations obtained earlier. In the framework of the Delphi package, we
implemented stable algorithm for solving homogeneous linear algebraic equa-
tions. This algorithm is based on the minimization of Tikhonov’s functional:∥∥∥M̂ (βm) (A,B)

T
∥∥∥2 + α

∥∥∥(A,B)
T − (A0,B0)

T
∥∥∥2 −→ min,

here (A0,B0)
T

means the amplitude coefficients of the electromagnetic field at
the preceding point of the trajectory of the adiabatic waveguide mode propaga-
tion in the simulated object. Having phase retardation coefficient and amplitude
coefficients at our disposal, we can calculate the electrical and magnetic field at
any point of the object under consideration with a high degree of accuracy.

7 Conclusion

This paper touches upon the issue of scientific and technical directions of inte-
grated optics. The topical areas urgency is confirmed by numerous works of both

430 L.A. Sevastyanov, A.L. Sevastyanov, and A.A. Tyutyunnik

Fig. 4. Dependence of field component Ez on x at the nearby points on the trajectory.
Fields are given in relative measurement units, x are given in micrometers.

theoretical and practical character. As part of this direction we have considered
integrated-optical layered waveguides (waveguide structures). These structures
are widely used in various areas from aircraft equipment to ultra-sensitive detec-
tors. Designing such devices requires a precise description of propagating elec-
tromagnetic radiation parameters dependence on the physical parameters of the
waveguide structure. When modelling the propagation of guided modes through
integrated-optical waveguide structures two different tasks can be solved. The
first one is related to the eigenvalues and eigenvectors problems. In the second
task, the solution is sought as a linear combination of eigenvectors. In both cases,
the direct tasks are solved.

In this work, we have considered smoothly irregular integrated-optical waveg-
uides having a layered structure with irregular boundaries between isotropic
media layers. Such a feature leads to a number of physical phenomena, such as
the phenomena of depolarization and hybridization of waveguide modes while
propagating through irregular regions. The account of these phenomena in mod-
elling integrated optical waveguide structures is crucial for the design of devices
based on them. This work is devoted to the application of analytical calculations
in the implementation of the method of adiabatic waveguide modes in modelling
smoothly irregular integrated-optical waveguides.

Moreover, analytical expressions for boundary conditions should be obtained
on every boundary for each certain integral-optical device. It allows to reach
a description (of sufficient quality) of such effects. A special algorithm for the
automation of this process has been developed in an environment of computer
algebra Maple. As the result of this algorithm, the analytical expressions were
obtained and then converted into the Delphi code for further numeral calcula-
tions.

Analytical Calculations in Maple to Implement the Method 431

References

1. Ayryan, E.A., Egorov, A.A., Sevastyanov, L.A., Lovetskiy, K.P., Sevastyanov, A.L.:
Mathematical modeling of irregular integrated optical waveguides. In: Adam, G.,
Buša, J., Hnatič, M. (eds.) MMCP 2011. LNCS, vol. 7125, pp. 136–147. Springer,
Heidelberg (2012)

2. Deryugin, L.N., Marchuk, A.N., Sotin, V.E.: Properties of planar asymmetric di-
electric waveguides on a substrate of dielectric. Izv. Vuzov, Radioelectronics 10(2),
134–142 (1967) (in Russian)

3. Egorov, A.A., Lovetskiy, K.P., Sevastianov, A.L., Sevastianov, L.A.: Simulation
of guided modes (eigenmodes) and synthesis of a thin-film generalised waveguide
Luneburg lens in the zero-order vector approximation. Quantum Electronics 40(9),
830–836 (2010)

4. Egorov, A.A., Sevastyanov, A.L., Ayrjan, E.A., Lovetskiy, K.P., Sevastianov, L.A.:
Zero approximation of vector model for smoothly-irregular optical waveguide.
Matem. Mod. 22(8), 42–54 (2010)

5. Egorov, A.A., Sevast’yanov, L.A.: Structure of modes of a smoothly irregu-
lar integrated-optical four-layer three-dimensional waveguide. Quantum Electron-
ics 39(6), 566–574 (2009)

6. Hansperger, R.G.: Integrated Optics: Theory and Technology. Springer (1991)
7. Sevastianov, L.A., Egorov, A.A.: The theoretical analysis of waveguide propaga-

tion of electromagnetic waves in dielectric smoothly-irregular integrated structures.
Optics and Spectroscopy 105(4), 576–584 (2008)

8. Sevastianov, L.A., Egorov, A.A., Sevastyanov, A.L.: Method of adiabatic modes
in studying problems of smoothly irregular open waveguide structures. Physics of
Atomic Nuclei. 76(2), 224–239 (2013)

9. Southwell, W.H.: Inhomogeneous optical waveguide lens analysis. JOSA 67(8),
1004–1009 (1977)

CAS Application to the Construction

of the Collocations and Least Residuals Method
for the Solution of the Burgers and Korteweg–de

Vries–Burgers Equations�

Vasily P. Shapeev and Evgenii V. Vorozhtsov

Khristianovich Institute of Theoretical and Applied Mechanics,
Russian Academy of Sciences, Novosibirsk 630090, Russia

{shapeev,vorozh}@itam.nsc.ru

Abstract. In the present work, the computer algebra system (CAS) is
applied for constructing a new version of the analytic-numerical method
of collocations and least residuals (CLR) for solving the Burgers equa-
tion and the Korteweg–de Vries–Burgers equation. The CAS is employed
at all stages from writing, deriving, and verifying the formulas of the
method to their translation into arithmetic operators of the Fortran lan-
guage. The verification of derived formulas of the method has been done
on the test problem solutions. Comparisons of the results of numerical
computations by the new CLR method with the exact solutions of test
problems show a high accuracy of the developed method.

Keywords: Computer algebra system, Korteweg–de Vries–Burgers
equation, derivation of the formulas of the analytic-numerical algorithm,
interface between CAS and Fortran, computer code verification.

1 Introduction

As was shown previously by different researchers, in particular, in the works
[14, 19, 20, 24, 38–43], the CASs provide the efficient means for the development
and investigation of new numerical algorithms.

The method of collocations and least squares (CLS) was originally developed
for the numerical solution of stationary problems of fluid dynamics. In the work
[39], this method was applied for the numerical solution of the Stokes equations
of viscous incompressible fluid. The CLS method was extended in [38] for the
case of the numerical solution of two-dimensional Navier–Stokes equations of
viscous incompressible fluid, and a square computational grid was used in the
plane of two spatial coordinates. The CLS method was generalized in [19, 20]
for the case of rectangular grid cells in the two-dimensional case. The versions
of the CLS method with the accuracy orders from 2 to 8 were developed in [20],

� The work was partially supported by the Russian Foundation for Basic research
(grant No. 13-01-00277).

V.P. Gerdt et al. (Eds.): CASC Workshop 2014, LNCS 8660, pp. 432–446, 2014.
c© Springer International Publishing Switzerland 2014

Collocations and Least Residuals Method for the Solution 433

and the capabilities of the method were checked on the solution of a well-known
benchmark problem of the viscous incompressible fluid flow in a two-dimensional
lid-driven cavity for the Reynolds number Re = 1000. The accuracy of the so-
lution obtained by the CLS method of the sixth accuracy order was shown to
be at the level of the best known results. The CLS method was extended in [41]
for the case of three spatial variables, and the solution increments were found in
the process of iterations. A modification of the CLR method was presented in
[42], which was termed the “method of collocations and least rsiduals” (CLR).

The CLR method is a projection grid method. It searches for the solution
in each cell of the difference grid in the form of a linear combination of basis
elements of some functional space. The space of polynomials is mainly used as
this space due to certain convenience. The CLR method differs from other nu-
merical methods in that it reduces the numerical solution of the problem to the
solution of an overdetermined system of linear algebraic equations (SLAE). The
solution of the latter is found from the requirement of the minimization of the
functional of the residual of problem equations on its numerical solution. Such a
combination of the method of collocations with a “strong” requirement for the
discrete problem solution leads to an improvement of its properties (smooth-
ness, accuracy) as compared to the solutions obtained by a simple method of
collocations. The CLR method in fact possesses also other improved properties
in comparison with the method of collocations. In particular, the minimization
of the functional of the numerical solution residual contributes to a suppression
(damping) of various disturbances arising in the process of problem solution and
accelerates its convergence at the iterative technique of its construction.

A version of the algorithm for convergence acceleration based on the well-
known Krylov’s subspaces was used in [43] at the solution of problems by the
CLR method. This has enabled a reduction of the iterations number at prob-
lems solution by the factors from 11 to 17 in comparison with the case when the
Krylov’s subspaces were not applied. In the works [42, 43], the numerical solu-
tions of the problem of a steady flow in a cubic lid-driven cavity were compared
with the known most accurate results of solving this benchmark problem. It
has turned out that the numerical solution of this problem by the CLR method
agrees very well with the known high-accuracy solutions.

Along with the stationary problems there are in fluid dynamics many unsteady
applied problems that is the problems in which the solutions depend not only on
spatial variables but also on time. In this connection, it is of practical interest to
generalize the CLR method for the case of solving the unsteady Navier–Stokes
equations of the viscous incompressible fluid.

The Burgers equation [7] involves a nonlinear convective term and a viscosity
term. In this sense, it has the features common with the unsteady Navier–Stokes
equations. In this connection, the new numerical methods of solving the unsteady
Navier–Stokes equations are often tested on a simpler mathematical model —
the Burgers equation — in order to better understand such properties as the ac-
curacy and stability. A typical difficulty at the numerical solution of the Burgers
equation is the consideration of the case of a very small viscosity.

434 V.P. Shapeev and E.V. Vorozhtsov

Various numerical methods were developed until now for the numerical so-
lution of the Burgers’ equation. These are, in particular, automatic differenti-
ation method [5], Galerkin finite element method [12], cubic B-splines colloca-
tion method [2, 11, 33], spectral collocation method [22, 23], sinc differential
quadrature method [25], polynomial based differential quadrature method [27],
quartic B-splines differential quadrature method [26], quartic B-splines colloca-
tion method [37], quartic B-splines finite element method [1, 34, 36], fourth-
order finite difference method [16], factorized diagonal Padé approximation [4],
non-polynomial spline approach [35], explicit and exact-explicit finite difference
methods [29], least-squares B-spline finite element method [30], reproducing ker-
nel function method [44], fourth-order compact finite difference scheme [32], cu-
bic B-spline quasi-interpolation method [21], wavelet-Taylor Galerkin method
[28].

The Korteweg–de Vries–Burgers (KdVB) equation differs from the Burgers
equation by the presence of a term involving the third derivative. The KdVB
equation is applied for the mathematical description of wave processes in bubbly
fluids [24, 31], for modelling weak plasma shocks propagation perpendicularly
to a magnetic field [15], and for describing shallow water waves on viscous fluid
[18].

We now enumerate several methods, which are applied for the numerical so-
lution of the KdVB equation: finite difference methods [6, 24], B-spline finite
element method [3], quintic spline method [13], spectral collocation method [10],
finite Fourier transform technique [8].

In the present work, a symbolic-numeric CLR method is described for solving
the Burgers equation and the KdVB equation. The symbolic stage has been
implemented with the aid of CAS Mathematica. The accuracy of the new method
has been investigated by the examples of computations of several test initial- and
boundary-value problems for the above equations.

2 Description of the CLR Method

2.1 Statements of Problems

Consider the Burgers equation [7]

∂U

∂t
+ U

∂U

∂x
= ν

∂2U

∂x2
(1)

and the Korteweg–de Vries–Burgers equation [24]

∂U

∂t
+ U

∂U

∂x
− 1

Re

∂2U

∂x2
+

1

D2
σ

∂3U

∂x3
= 0, (2)

where x is the spatial coordinate, t is the time, ν is the viscosity coefficient,
ν = const > 0, Re is the Reynolds number, Dσ is the dispersion. Equations (1)

Collocations and Least Residuals Method for the Solution 435

and (2) are solved in the interval 0 ≤ x ≤ X (X > 0) under the following initial
and boundary conditions:

U(x, t0) = U0(x), 0 ≤ x ≤ X, (3)

U(0, t) = g1(t), U(X, t) = g2(t), t ≥ t0, (4)

where U0(x), g1(t), g2(t) are the given functions, t0 is a given initial moment
of time (for example, t0 = 0). In the case of the solution of equation (2), the
condition ∂U(X, t)/∂x = 0 was posed in addition to conditions (3) and (4).

2.2 Local Coordinates and Basis Functions

Let us formulate a “discrete” problem approximating the original differential
initial- and boundary-value problem. In the CLR method, a computational grid
is generated in the interval [0, X]. In the present work, a uniform computational
grid is used, in which the length of each cell along the x-axis amounts to 2h. For
writing the formulas of the CLR method it is convenient to introduce in each
cell the local coordinate y by the formula

y = (x− xci)/h, i = 1, . . . , I, (5)

where xci is the value of the x-coordinate at the geometric center of the ith cell, I
is the number of grid cells in the interval [0, X], I ≥ 1. By virtue of definition (5),
the local y-coordinate varies in the interval y ∈ [−1, 1]. Introduce the notation
u(y, t) = U(hy+xci, t). After this substitution of the variable, equations (1) and
(2) take the following form:

∂u

∂t
+

1

h
u
∂u

∂y
=
ν

h2
∂2u

∂y2
, (6)

∂u

∂t
+

1

h
u
∂u

∂y
− 1

Reh2
∂2u

∂y2
+

1

D2
σh

3

∂3u

∂y3
= 0. (7)

� � � � � �

xi xi+1

tn

tn+1

︸ ︷︷ ︸
h

︸ ︷︷ ︸
h

Fig. 1. Positions of collocation points

The solution of each of equations (6) and (7) is advanced in time with a
variable step τn, where n is the time layer number, n = 0, 1, Let us assume
that the solution of equation (6) or (7) is known at the moment of time tn.
Let us construct the formulas of the method for computing the solution at the

436 V.P. Shapeev and E.V. Vorozhtsov

moment of time tn+1 = tn + τn. By analogy with [41, 42] we introduce Nc

collocation points in each cell of the grid on the x-axis, where Nc is specified by
the user, Nc ≥ 1. Figure 1 shows the positions of collocation points for the case
when Nc = 6. Let Δy be the distance between the collocation points, and let
y1, . . . , yNc be the local coordinates of collocation points in the ith cell. Then
y1 = −1 + Δy

2 , yj+1 = yj + Δy, j = 1, . . . , Nc − 1. At such a technique for
specifying the yj coordinates the collocation point yNc−1 in the (i− 1)th cell lies
from the collocation point y1 in the ith cell at the distance Δy.

A specific form of each collocation equation depends on the technique of the
approximation of differential equation (6) or (7) in time as well as on the tech-
nique of the linearization of the nonlinear term of the equation to be solved. At
first consider the approximation of the Burgers equation (1) at the jth colloca-
tion point of the ith cell by the following implicit method:

un+1,s+1
i,j − uni,j + τn

[
α

(
1

h
un+1,s
i,j

∂un+1,s+1
i,j

∂y
− ν

h2
∂2un+1,s+1

i,j

∂y2

)
+ (1 − α) ×(

1

h
uni,j
∂uni,j
∂y

− ν

h2
∂2uni,j
∂y2

)]
= τn [αfi,j(yj , tn+1) + (1 − α)fi,j(yj , tn)] , (8)

where α is the weight parameter. At α = 1, equation (8) gives the implicit
Euler method, and at α = 1

2 , (8) coincides with the Crank–Nicholson method
[9]; i = 1, . . . , I; j = 1, . . . , Nc; n = 0, 1, . . ., s is the iteration number for the
iterations in nonlinearity, s = 0, 1, . . .; un+1,0

i,j = uni,j , fi,j(y, t) is a given right-
hand side, it is generally different from zero if the convective term is linearized
after Newton.

Represent the approximate solution in the ith cell on the x-axis in the form
of a linear combination of basis functions ϕl

un+1,s+1
i =

4∑
l=1

bn+1,s+1
i,l ϕl(y) (9)

with indeterminate coefficients, which will be found from the discrete problem
solution and will determine the numerical solution. We have used the following
basis functions:

ϕ1 = 1, ϕ2 = y, ϕ3 = y2, ϕ4 = y3. (10)

That is the solution in each cell is represented in the form of a third-degree
polynomial in y.

2.3 Derivation of the Overdetermined System of Collocation
Equations and Matching Conditions

Substituting the yj coordinates of collocation points in equation (8), we obtain
Nc collocation equations in each cell:

4∑
m=1

ai,j,mb
n+1,s+1
i,m = fn+1,s

i,j , i = 1, . . . , I, j = 1, . . . , Nc. (11)

Collocations and Least Residuals Method for the Solution 437

They are linear algebraic equations for determining the coefficients in the solu-
tion representation (9).

Along with collocation equations (11) we use at the boundaries of each cell the
conditions of matching the solution therein with the solution in two neighboring
cells. We have applied the matching conditions of two kinds. The first kind is
the matching of solutions:

u+ = u−. (12)

On the left-hand side of this equality, one takes the solution in a cell under con-
sideration, and on the right-hand side, one takes the solution in the neighboring
cell. For example, if we consider the right boundary xi+1 of the ith cell, then
the value of the local coordinate y = 1 at this boundary; and for the (i + 1)th
cell, the point x = xi+1 is the left boundary, therefore, we will have y = −1 at
the same point in representation (9).

The second kind of the matching condition is the matching of the first solution
derivative:

du+

dy
=
du−

dy
. (13)

One can restrict oneself only to the matching conditions (12) for solutions and
avoid the inclusion of the matching condition (13) in the algebraic system for
determining the coefficients bn+1,s+1

i,l . The computational experiments have, how-
ever, shown that the inclusion of conditions (13) increases substantially the ac-
curacy of numerical solutions obtained by the CLR method; furthermore, the
convergence of iterations in nonlinearity accelerates considerably.

If the cell boundary coincides with one of the computational region boundaries
x = 0 or x = X , then the boundary conditions are used instead of the matching
conditions at this boundary. For example, we assume un+1,s+1 = g1(tn+1) at
point x = 0 according to (4).

Uniting the collocation equations (11) and the matching conditions (12), (13)
into a single algebraic system, we obtain a linear algebraic system, the number
of the equations of which in each cell is equal to Nc + 4. Because Nc ≥ 1,
it is clear that the system is overdetermined, that is the number of unknowns
bn+1,s+1
i,1 , . . . , bn+1,s+1

i,4 is less than the number of equations.
The process of the computation at the time level tn+1 proceeds in the direction

of the increasing numbers i. Therefore, one employs in the right-hand sides of
matching conditions at the right boundary of each cell the solution obtained at
the sth iteration in nonlinearity. The overdetermined system (11),(12),(13) was
solved in each cell with respect to four unknowns bn+1,s+1

i,l , l = 1, . . . , 4 by an
orthogonal method of QR expansion, where the Givens rotation matrix or the
Householder matrix of reflections was taken as the matrix Q. The advantage of
this method over the least-squares method was discussed previously in [42] and
in more detail in [43]. The essence of this advantage lies in the fact that the
application of the QR expansion for solving the SLAE does not deteriorate the
condition number of the original system in contrast to the case of the application
of the least-squares method.

438 V.P. Shapeev and E.V. Vorozhtsov

2.4 Application of CAS for Generating the Fortran Subroutines
of the Numerical Solution of the Problem

The use of CASs, which implement without difficulties the transformations of
expressions in symbolic form, enables one to avoid many errors, which usually
arise at an attempt to derive the big formulas “manually”. In the given work,
a program was written in the language of system Mathematica, with the aid
of which all basic computational formulas of the CLR method versions were
obtained and then tested. In the following, we briefly describe the main steps of
the work of this program and present its corresponding fragments.

Step 1. The specification of expressions for basis functions ϕl according to (10).
Here is the fragment of the Mathematica program, in which the basis functions
are specified:

fi[[1]] = 1; fi[[2]] = y; fi[[3]] = y^2; fi[[4]] = y^3;

Step 2. Solution expansion in the given basis ϕl:

u = Sum[a[[m]]*fi[[m]], {m, 4}];

Here a[[m]] is the coefficient of the expansion in basis, it is assumed known at
the foregoing sth iteration. The solution at the next iteration, which is to be
found, is specified similarly:

u1 = Sum[b[[i]]*fi[[i]], {i, 4}];

Here b[[i]] are the expansion coefficients, which are to be found by the CLR
method.

Step 3. Symbolic computation of the left- and right-hand sides of the colloca-
tion equation (8):

lapu1 = D[u1, {y, 2}]; convuu1 = u*D[u1, y];

equ1 = u1 - ujn + dt*(convuu1/h - anu*lapu1/h^2)- f);

equ1 = Expand[equ1];

Here anu
def
= ν, dt

def
= τn, ujn

def
= unj .

Step 4. Computation of the collocation equation coefficients and their storing
in the external file colloc.txt.

SetDirectory["D:\\papers\\CASC"];

eNS1 = Table[0, {4}];

Do[e11 = Coefficient[equ1, b[[m]]]; eNS1[[m]] = e11, {m, 4}];

"!! Collocation equation at the given y-point" >> colloc.txt;

Do[eq = " AR(j,"; eq = eq <> ToString[m] <> ") = ";

e11 = FullSimplify[eNS1[[m]]]; e1f = FortranForm[e11];

eq<>ToString[e1f] >>> colloc.txt, {m, 4}];

Here AR(j,m) is the element of the matrix of the overdetermined system, which
stands at the intersection of the jth row and the mth column, j = 1, . . . , Nc,
m = 1, . . . , 4.

Step 5. The verification of the correctness of computing the entries AR(j,m),
m = 1,2,3,4. To this end, a sum of the products of the above entries and the
corresponding expansion coefficients b1,...,b4 is composed. This sum is then
compared with the original equation equ1 obtained at Step 3.

Collocations and Least Residuals Method for the Solution 439

Step 6. Symbolic computations of matching conditions (12) on the faces y=
-1, y = 1 of a computational grid cell and their storing in the Fortran form in th
external file match.txt. Let us illustrate this step by the example of considering
the case when the face y= 1 lies at the right boundary of the computational
region, and we use in the right-hand side of the matching condition the solution
value in accordance with the boundary condition:

matNS1 = Table[0, {4}];

Do[e11 = Coefficient[u1, b[[m]]]; matNS1[[m]] = Simplify[e11], {m, 4}];

Do[eq = " AR(j,"; eq = eq <> ToString[m] <> ") = ";

e11 = matNS1[[m]]; e1f = FortranForm[e11];

eq <> ToString[e1f] >>> match.txt, {m, 4}];

" BR(i) = g2(t)" >>> match.txt;

Here g2 is the notation for the function g2 in the boundary condition; BR(i) is
the right-hand side of the matching equation. The matching conditions (13) are
calculated similarly in symbolic form and are written in the Fortran form into
the same external file match.txt.

The result of the work of the Fortran code is a piecewise-polynomial solution
in the form of a polynomial in the variable y with numerical coefficients, which
is individual for each cell. The polynomial can be differentiated and integrated
exactly without using the approximate numerical procedures, which introduce
the extra errors in the results of these operations.

The CAS is used again for plotting the numerical solution graphs and their
analysis. Such an interface between the CAS and the language of the numerical
solution of problems enables the mathematician to avoid many errors at all stages
of the work, reduces the necessary stress of his efforts, which is related to the
required increased attention, and the amount of the routine work, and speeds it
up on the whole.

3 Results of Numerical Computations

We have considered the following three smooth test solutions of equation (1):

U(x, t) = t+ x3; (14)

U(x, t) = t2 + x4; (15)

U(x, t) = exp(t+ x). (16)

Since these solutions do not satisfy equation (1), we have solved instead of (1)
the following equation with a nonzero right-hand side f(x, t):

∂U

∂t
+ U

∂U

∂x
− ν ∂

2U

∂x2
= f(x, t). (17)

The right-hand sides f(x, t) corresponding to functions (14),(15), and (16) are
as follows:

f(x, t) = 1 + 3x2(t+ x3) − 6νx;

f(x, t) = 2t+ 4x3(t2 + x4) − 12νx2;

f(x, t) = et+x(1 − ν + et+x).

440 V.P. Shapeev and E.V. Vorozhtsov

The initial conditions were specified at t = 0. To this end, the value t = 0 was
assumed in (14)–(16). For example, the initial function U0(x) corresponding to
solution (14) has the form U0(x) = x3. The boundary conditions were specified
similarly also from the exact solution so that U(0, t) = t, U(X, t) = t +X3 in
the case of the test solution (14).

The time step τn was specified at the numerical solution of the Burgers equa-
tion with regard for the following limitations caused by the requirement of the
numerical solution stability.

1◦. The limitation due to the convective term approximation [14]:

max
j

|unj | ·
τn
2h

≤ κ1. (18)

Here κ1 is the Courant number, a typical stability condition for explicit difference
schemes has the form 0 < κ1 ≤ 1.

2◦. A typical form of the stability condition of explicit difference schemes for
the diffusion equation ut = νuxx has the following form [14]:

ντn
4h2

≤ κ2, (19)

where 0 < κ2 < 1. One can unite formulas (18) and (19) into a single one as
follows:

τn =
2hκ1

maxj |unj |
+

4h2κ2
ν

. (20)

If one sets in (20) κ1 �= 0, κ2 = 0, then one obtains that τn = O(h). If κ1 = 0,
κ2 �= 0, then τn = O(h2). Besides (20), we used in our computations also the
formula

τn = 4h3κ3/ν, (21)

where κ3 > 0. That is in this case τn = O(h3).
The condition δbn+1 < ε was used as a criterion for termination of iterations

in nonlinearity, where

δbn+1 = max
i

(
max
1≤l≤4

∣∣∣bn+1,s+1
i,l − bn+1,s

i,l

∣∣∣) , (22)

ε is a small positive user-specified number. In all computations presented below,
the value ε = 10−14 was specified.

The error of the method on a specific uniform grid was computed with the
use of a grid analog of the L2 space norm:

δun =

{
1

X

I∑
i=1

[uni − uex(xi, tn)]
2 · 2h

} 1
2

, (23)

where uex(x, t) is the exact solution.

Collocations and Least Residuals Method for the Solution 441

Table 1. The errors δu1, δu2, δu3 and the convergence orders p1, p2, p3 on a sequence
of grids, ν = 0.1, X = 2.0, κ1 = 1.0, κ2 = 0 in (20), Nc = 6

I δu1 δu2 δu3 p1 p2 p3
20 0.356E–13 0.247E–2 0.166E–2

40 0.514E–13 0.118E–2 0.823E–3 1.07 1.01

80 0.168E–12 0.575E–3 0.411E–3 1.04 1.00

160 0.145E–11 0.284E–3 0.206E–3 1.02 1.00

The convergence order p of the CLR method was computed as in [41, 42] by
the formula

p =
log[δu(hm−1)] − log(δu(hm)]

log(hm−1) − log(hm)
,

where hm, m = 2, 3, . . ., are some values of step h such that hm−1 �= hm.

Table 2. The errors δu1, δu2, δu3 and the convergence orders p1, p2, p3 on a sequence
of grids, ν = 0.1, X = 2.0, κ1 = 0, κ2 = 0.16 in (20), Nc = 6

I δu1 δu2 δu3 p1 p2 p3
20 0.296E–13 0.591E–2 0.420E–2

40 0.601E–13 0.149E–2 0.118E–2 1.99 1.83

80 0.934E–13 0.375E–3 0.305E–3 1.99 1.95

160 0.447E–12 0.938E–4 0.769E–4 2.00 1.99

Table 3. The errors δu1, δu2, δu3 and the convergence orders p1, p2, p3 on a sequence
of grids, ν = 0.1, X = 2.0, κ3 = 2 in (21), Nc = 5

I δu1 δu2 δu3 p1 p2 p3
20 0.329E–13 0.368E–2 0.276E–2

40 0.500E–13 0.465E–3 0.378E–3 2.98 2.87

80 0.216E–13 0.587E–4 0.477E–4 2.99 2.99

160 0.237E–11 0.745E–5 0.595E–5 2.98 3.00

Denote by δu1, δu2, and δu3 the errors (23) obtained under the initial and
boundary values corresponding to functions (14), (15), and (16). These errors
were computed at the moment of time t = 1.0 and are presented in Tables
1, 2, and 3 for the case when α = 1 in (8). The computations were done on
three different grid sequences when the grid steps tend to zero according to the
laws: τ = O(h) in the first sequence (see Table 1), the results for τ = O(h2)
and τ = O(h3) in the second and third sequences are presented, respectively,
in Tables 2 and 3. From an analysis of the convergence of the solution error we

442 V.P. Shapeev and E.V. Vorozhtsov

1
2

3

4

x

0.5 1.0 1.5 2.0

�1.0

�0.5

0.5

1.0

Fig. 2. Numerical solution of the Burgers
equation by the CLR method: (− − −)
initial profile at t = 0; solid lines – nu-
merical solutions at the moments of time
t = 0.25 (curve 1), 0.5 (curve 2), 0.65
(curve 3), and 1.0 (curve 4)

draw the unambiguous conclusion that the error magnitude has the first order
of smallness O(τ) in the time variable and the third order of smallness O(h3) in
the spatial variable. Consequently, there are in the approximation error of the
equation no terms of the first and second orders of smallness with respect to a
small quantity h. The value κ2 for computations with τ = O(h2) was chosen in
such a way that the size of the step τ0 for the computation at the first time step
on the grid of 20 cells be approximately equal to the step τ0 obtained at the
computations with τ = O(h) at κ1 = 1.0.

Table 4. Crank–Nicholson scheme combined with the CLR method. The errors
δu1, δu2, δu3 and the convergence orders p1, p2, p3 on a sequence of grids, ν = 0.1,
X = 2.0, κ1 = 1.0, κ2 = 0 in (20), Nc = 6.

I δu1 δu2 δu3 p1 p2 p3
20 0.918E–14 0.112E–4 0.860E–5

40 0.121E–13 0.572E–5 0.103E–5 0.97 3.06

80 0.400E–13 0.335E–5 0.618E–7 0.77 4.06

Table 4, which is similar to Table 1, presents some computational results
for the case of the Crank–Nicholson scheme (α = 0.5 in (8)). As was to be
expected, the obtained solution errors are much less in the case of the CLR
method combined with the Crank–Nicholson scheme (which has the second order
of accuracy in time) than in the case of the implicit Euler method. This shows
that the numerical method built here with the aid of a CAS is promising for its
further extensions and applications.

As follows from Tables 1–4, the test solution (14) proved to be a proper
function of the discrete problem. The machine accuracy of the solution was
reached on it. It has served here for the verification of the formulas of the method.

The capabilities of the developed method were also checked on the solution of
the well-known benchmark problem for equation (1) under the initial condition
u0(x) = cos(πx/2), 0 ≤ x ≤ 2. In the case of ν = 0 equation (1) is hyperbolic,
and it has the characteristics at each (t, x) point of the solution domain — the
straight lines with the slope dx/dt = u. In the exact solution, the constant value
of u is transferred along each characteristic, which was on it at t = 0. Under
the initial data indicated above, all characteristics in the left half of the com-
putational region have the inclination angle with a positive tangent value, and

Collocations and Least Residuals Method for the Solution 443

x

u

1

2

3

0 5 10 15 20
0.0

0.2

0.4

0.6

0.8

1.0

1.2

Fig. 3. Numerical solution of the KdVB equation by the CLR method, ν = 10−8

(Re= 108), Dσ = 10 in (2): (− − −) initial profile at t = 0; solid lines – numerical
solutions at the moments of time t = 10.98 (curve 1), 21.17 (curve 2), 39.2 (curve 3)

all characteristics in the right half have an inclination with a negative tangent
value because u0 > 0 at x < 1 and u0 < 0 at x > 1. In the left half at t = 0, a
point with a smaller value of x has a higher initial value u0 > 0 at it, and the
inclination of the characteristic to the x-axis is smaller. As a result of such a
solution behavior, the graph of quantity u(x) at t = const moves with increas-
ing t as a wave towards the point x = 1, and in the right half, a wave with a
negative value of u moves towards this point. In the limit as t→ ∞ the solution
has the form of a step with a jump of the u value equal to 2. The idea of Hopf
[17] was implemented in the present work with the use of the developed method
that the generalized solutions of hyperbolic equations represent the limits of so-
lutions with the same boundary conditions of the parabolic equations with the
terms modelling the viscosity. In the given case, the discontinuous solution of
equation (1) at ν = 0 is a limit of the solution of the parabolic equation as
ν → 0. According to this idea, numerical experiments were done for different
values of ν as ν → 0. The numerical results obtained for the values ν ≤ 10−5

were visually indistinguishable on the graphs. The difference in tabular numer-
ical solution values for the values ν ≤ 10−14 was below 10−12. In addition, the
numerical algorithm worked and produced the needed result also at ν = 0 that
is the method proposed here is applicable for the solution of both the parabolic
Burgers equation and the hyperbolic Burgers equation without viscosity.

Figure 2 shows the graphs of the solution of equation (1) at different mo-
ments of time t and ν = 0. The computation was done by the pseudo-unsteady
method. Thus, the Hopf’s idea was implemented in numerical experiment with
a high accuracy. Note that in the constructed numerical solution, the step was
“smeared” only over three cells, and the solution is monotone that is there are no
oscillations. Most existing numerical methods do not satisfy simultaneously the
contradictory requirements of the absence of oscillations and a small thickness
of the shock smearing zone.

The developed method was also applied to the KdVB equation (2) to solve the
well-known problem of the modelling of the interaction of two solitons having

444 V.P. Shapeev and E.V. Vorozhtsov

different amplitudes [24]. This problem was computed as experiment at different
values of ν: 10−4, 10−5, 10−6, 10−7, and 10−8. Note that in all cases, a sufficiently
steep leading front of the soliton with a higher amplitude is observed, and there
are no oscillations in its profile.

We present in Fig. 3 the results obtained at different moments of time only
for the case of ν = 10−8, which presents difficulties for many numerical methods.
One can see that in the location of the interaction of two solitons as well as in
its neighborhood, there are no oscillations of the numerical solution, which are
typical of the modelling of solitons dynamics by difference methods.

4 Conclusions

The CAS was applied in the present work for constructing a new version of the
numerical solution of boundary-value problems for the Burgers and KdVB equa-
tions. The CAS has enabled us to derive the formulas of the method, to verify
them and to write considerable parts of the program for solving the problem in
the Fortran language during a relatively short time. The program parts gener-
ated by the CAS included the formulas for the entries of a SLAE matrix of the
discrete problem approximating the differential problem and finding the solution
in the form of a third-degree polynomial in spatial variable. In addition, the CAS
was used here for a rapid plotting of many graphs of intermediate values of the
problem solution to control the correctness of the Fortran computer code with
the aid of tests. A convenient interface implemented for this purpose between
the CAS and Fortran has enabled a rapid debugging of errors in the process of
writing the computer code, facilitated greatly the work of the mathematician
both at the stage of the derivation of the formulas of the method and at the
stage of the algorithm improvement and the development of the computer code
in the Fortran language.

References

1. Aksan, E.N.: Quadratic B-spline finite element method for numerical solution of
the Burgers’ equation. Appl. Math. Comput. 174, 884–896 (2006)

2. Ali, A.H.A., Gardner, G.A., Gardner, L.R.T.: A collocation solution for Burg-
ers’ equation using cubic B-spline finite elements. Comput. Methods Appl. Mech.
Eng. 100, 325–337 (1992)

3. Ali, A.H.A., Gardner, L.R.T., Gardner, G.: Numerical studies of the Korteweg–
de Vries–Burgers equation using B-spline finite elements. J. Math. Phys. Sci. 27,
37–53 (1993)

4. Altiparmak, K.: Numerical solution of Burgers’ equation with factorized diagonal
Padé approximation. Int. J. Numer. Methods Heat Fluid Flow 21(3), 310–319
(2011)

5. Asaithambi, A.: Numerical solution of the Burgers’ equation by automatic differ-
entiation. Appl. Math. Comput. 216, 2700–2708 (2010)

6. Berezin, Y.A.: Modeling of Nonlinear Wave Processes. Nauka, Novosibirsk (1982)
(in Russian)

Collocations and Least Residuals Method for the Solution 445

7. Burgers, J.M.: A mathematical model illustrating the theory of turbulence. In:
Mises, R., von Kármán, T. (eds.) Advances in Applied Mechanics, pp. 171–199.
Academic Press, New York (1948)

8. Canosa, J., Gazdag, J.: The Korteweg–de Vries–Burgers’ equation. J. Comput.
Phys. 23, 393–403 (1977)

9. Crank, J., Nicholson, P.: A practical method for numerical evaluation of solutions of
partial differential equations of the heat-conduction type. Proc. Cambridge Philo-
sophical Soc. 43(50), 50–67 (1947)

10. Darvishi, M.T., Khani, F., Kheybari, S.: A numerical solution of the KdV–Burgers’
equation by spectral collocation method and Darvishi preconditionings. Int. J.
Contemp. Math. Sciences 2(22), 1085–1095 (2007)

11. Dăg, I., Irk, D., Sahin, A.: B-Spline collocation methods for numerical solutions of
the Burgers’ equation. Math. Probl. Eng. 5, 521–538 (2005)

12. Dogan, A.A.: Galerkin, Finite element approach to Burgers’ equation. Appl. Math.
Comput. 157, 331–346 (2004)

13. El Sayed, T., El Danaf, A.: Numerical solution of the Korteweg–de Vries Burgers
equation by using quintic spline method. Studia Univ. “Babeş-Bolyai”, Mathemat-
ica 47(2), 41–54 (2002)

14. Ganzha, V.G., Vorozhtsov, E.V.: Numerical Solutions for Partial Differential Equa-
tions: Problem Solving Using Mathematica. CRC Press, Boca Raton (1996)

15. Grad, H., Hu, P.N.: Unified shock profile in plasma. Phys. Fluids 10, 2596–2602
(1967)

16. Hassanien, I.A., Salama, A.A., Hosham, H.A.: Fourth-order finite difference
method for solving Burgers’ equation. Appl. Math. Comput. 170, 781–800 (2005)

17. Hopf, E.: The partial differential equation ut + uux = μuxx. Comm. Pure Appl.
Math. 3, 201–230 (1950)

18. Johnson, R.S.: Shallow water waves in a viscous fluid – the undular bore. Phys.
Fluids 15, 1693–1699 (1970)

19. Isaev, V.I., Shapeev, V.P.: Development of the collocations and least squares
method. Proc. Inst. Math. Mech. 261(suppl. 1), 87–106 (2008)

20. Isaev, V.I., Shapeev, V.P.: High-accuracy versions of the collocations and least
squares method for the numerical solution of the Navier–Stokes equations. Com-
putat. Math. and Math. Phys. 50, 1670–1681 (2010)

21. Jiang, Z., Wang, R.: An improved numerical solution of Burgers’ equation by cubic
B-spline Quasi-interpolation. J. Inform. Comput. Sci. 7(5), 1013–1021 (2010)

22. Khalifa, A.K., Noor, K.I., Aslam Noor, M.A.: Some numerical methods for solving
Burgers equation. Int. J. Phys. Sci. 6(7), 1702–1710 (2011)

23. Khater, A.H., Temsah, R.S., Hassan, M.M.: A Chebyshev spectral colloca-
tion method for solving Burgers’ type equations. J. Comput. Appl. Math. 222,
333–350 (2008)

24. Kiselev, S.P., Vorozhtsov, E.V., Fomin, V.M.: Foundations of Fluid Mechanics with
Applications: Problem Solving Using Mathematica. Birkhäuser, Boston (1999)

25. Korkmaz, A.: Shock wave simulations using Sinc Differential Quadrature Method.
Int. J. Comput. Aided Eng. Software 28(6), 654–674 (2011)

26. Korkmaz, A., Aksoy, A.M., Dăg, I.: Quartic B-spline Differential Quadrature
Method. Int. J. Nonlinear Sci. 11(4), 403–411 (2011)

27. Korkmaz, A., Dăg, I.: Polynomial based differential quadrature method for
numerical solution of nonlinear Burgers’ equation. J. Franklin Inst. (2011),
doi:10.1016/j.jfranklin.2011.09.008.

28. Kumar, B.V.R., Mehra, M.: Wavelet-Taylor Galerkin method for the Burgers equa-
tion. BIT Numer. Math. 45, 543–560 (2005)

446 V.P. Shapeev and E.V. Vorozhtsov

29. Kutulay, S., Bahadir, A.R., Özdes, A.: Numerical solution of the one-dimensional
Burgers’ equation: explicit and exact-explicit finite difference methods. J. Comput.
Appl. Math. 103, 251–261 (1999)

30. Kutulay, S., Esen, A., Dag, I.: Numerical solutions of the Burgers’ equation by
the least-squares quadratic B-spline finite element method. J. Comput. Appl.
Math. 167, 21–33 (2004)

31. Kuznetsov, V.V., Nakoryakov, V.E., Pokusaev, B.G., Shreiber, I.R.: Propagation
of perturbations in a gas-liquid mixture. J. Fluid Mech. 85(1), 85–96 (1978)

32. Liao, W.: An implicit fourth-order compact finite difference scheme for one-
dimensional Burgers’ equation. Appl. Math. Comput. 206, 755–764 (2008)

33. Mittal, R.C., Jain, R.K.: Numerical solutions of nonlinear Burgers’ equation with
modified cubic B-splines collocation method. Appl. Math. Comput. 218, 7839–7855
(2012)

34. Özis, T., Esen, A., Kutluay, S.: Numerical solution of Burgers’ equation by
quadratic B-spline finite elements. Appl. Math. Comput. 165, 237–249 (2005)

35. Ramadan, M.A., El-Danaf, T.S., Abd Alaal, F.E.I.: Application of the non-
polynomial spline approach to the solution of the Burgers equation. Open Appl.
Math. J. 1, 15–20 (2007)

36. Raslan, K.R.: A collocation solution for Burgers equation using quadratic B-spline
finite elements. Int. J. Comput. Math. 80(7), 931–938 (2003)

37. Saka, B., Dag, I.: Quartic B-spline collocation method to the numerical solutions
of the Burgers’ equation. Chaos Solitons Fractals 32, 1125–1137 (2007)

38. Semin, L., Shapeev, V.: Constructing the numerical method for Navier–Stokes
equations using computer algebra system. In: Ganzha, V.G., Mayr, E.W.,
Vorozhtsov, E.V. (eds.) CASC 2005. LNCS, vol. 3718, pp. 367–378. Springer,
Heidelberg (2005)

39. Semin, L.G., Sleptsov, A.G., Shapeev, V.P.: Collocation and least-squares method
for Stokes equations. Computat. Technologies 1(2), 90–98 (1996) (in Russian)

40. Shapeev, V.P., Isaev, V.I., Idimeshev, S.V.: The collocations and least squares
method: application to numerical solution of the Navier-Stokes equations. In: CD-
ROM Proceedings of the 6th ECCOMAS, Vienna Univ. of Tech. (September 2012)
ISBN: 978-3-9502481-9-7

41. Shapeev, V.P., Vorozhtsov, E.V.: Symbolic-numeric implementation of the method
of collocations and least squares for 3D Navier–Stokes equations. In: Gerdt, V.P.,
Koepf, W., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2012. LNCS, vol. 7442,
pp. 321–333. Springer, Heidelberg (2012)

42. Shapeev, V.P., Vorozhtsov, E.V.: CAS application to the construction of the collo-
cations and least residuals method for the solution of 3D Navier–Stokes equations.
In: Gerdt, V.P., Koepf, W., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2013.
LNCS, vol. 8136, pp. 381–392. Springer, Heidelberg (2013)

43. Shapeev, V.P., Vorozhtsov, E.V., Isaev, V.I., Idimeshev, S.V.: The method of col-
locations and least residuals for three-dimensional Navier-Stokes equations. Com-
putational Methods and Programming 14, 306–322 (2013) (in Russian)

44. Xie, S.-S., Heo, S., Kim, S., Woo, G., Yi, S.: Numerical solution of one-dimensional
Burgers’ equation using reproducing kernel function. J. Comput. Appl. Math. 214,
417–434 (2008)

An Algorithm for Computing the Truncated

Annihilating Ideals for an Algebraic Local
Cohomology Class

Takafumi Shibuta1,� and Shinichi Tajima2

1 Institute of Mathematics for Industry, Kyushu University
shibuta@imi.kyushu-u.ac.jp

2 Graduate School of Pure and Applied Sciences, University of Tsukuba
tajima@math.tsukuba.ac.jp

Abstract. Let σ be an algebraic local cohomology class, and k a nat-
ural number. The purpose of this paper is to present an algorithm for
computing the right D-ideal Ann(k)(σ) generated by linear differential
operators annihilating σ and of order less than or equal to k. This algo-
rithm is based on Matlis duality theorem, and is applicable to the case
where σ has parameters in its coefficients. Our main interest is where
algebraic local cohomology classes σ is a generator of the dual space of
the Milnor algebra of a hypersurface isolated singularity.

1 Introduction

Let X = Cn be the complex n-space with the coordinate x = (x1, . . . , xn). We
use multi-index notation xα = xα1

1 · · ·xαn
n , |α| = α1+ · · ·+αn. We denote by OX

the sheaf of holomorphic functions on X , and by DX the sheaf of linear partial
differential operators whose coefficients are holomorphic. Let f : (Cn, O) →
(C, 0) be a germ of holomorphic function at the originO ∈ Cn defining an isolated
singularity at the origin. We denote by Jf the Jacobian ideal 〈 ∂f

∂x1
, . . . , ∂f

∂xn
〉 ⊂

OX,O of f . An important topological invariant of the germ of {f(x) = 0} at
O is the Milnor number μf which is the C-dimension of the Milnor algebra
OX,O/Jf . In [9,10], the the second author and Nakamura defined a new analytic

invariant μ
[k]
f of f for k ∈ Z≥0 in terms of linear partial differential operators.

where μ
[0]
f coincides with the Milnor number μf . We will recall the definition of

μ
[k]
f . Let Wf = {ψ ∈ Hn

[O](Ω
n
X) | ψg = 0, ∀g ∈ Jf}. Then Wf is generated by

a single element, say ωf . As the local cohomology module Hn
[O](Ω

n
X) is a right

DX,O-module, we can define the truncated annihilating ideals for ωf

Ann(k)DX,O
(ωf) := {P ∈ DX,O | ωfP = 0, ord(P) ≤ k}

� The first author was supported by Grant-in-Aid for Young Scientists (B) 25800029

V.P. Gerdt et al. (Eds.): CASC Workshop 2014, LNCS 8660, pp. 447–459, 2014.
c© Springer International Publishing Switzerland 2014

448 T. Shibuta and S. Tajima

for k ∈ Z≥0 with are right DX,O-ideals. The invariant μ
[k]
f is defined to be

μ
[k]
f = dimC HomDX,O

(
DX,O

Ann(k)DX,O
(ωf)

,Hn
[O](Ω

n
X)

)

which is the C-dimension of the solution space of the holonomic system

Ann(k)DX,O
(ωf) attached to Hn

[O](Ω
n
X). Since the choice of a generator ωf is unique

up to multiplication by an invertible element of OX,O, the isomorphism class of

the right DX,O-module
DX,O

Ann
(k)
DX,O

(ωf)
is independent from choice of a generator

ωf , and thus so is μ
[k]
f . Furthermore, it is known that μ

[k]
f is actually an analytic

invariant for f [10].

In [8], it is proved that the μ
[1]
f = 1 if and only if f is quasi-homogeneous,

and in [7], it is also observed that if f is in an exceptional family of unimodal
singularities,

μ
[1]
f = dimC OX,O/Jf − dimC OX,O/(f,Jf) + 1

and μ
[2]
f = 1.

We consider the following problem. Let U ⊂ Cr an Zariski open set, and

F : (Cn × Cr, O × U) → (C, 0)

(z, a) �→ fa(x) = F (x, a)

a germ of holomorphic function such that for any a ∈ U , fa : (Cn, O) → (C, 0)
defines isolated singularity at the origin. Then, compute the stratification of the

parameter space U according to μ
[k]
fa

. Let γ : [0, 1] → U be a C1 curve on U ,
and consider the deformation fγ(t), 0 ≤ t ≤ 1. If the Milnor’s number of fγ(t)
at the origin does not change in this family, this deformation called μ-constant
deformation. Lê–Ramanujan [4] proved that μ-constant deformation is topolog-

ically trivial in case of n �= 3. We are interested in how μ
[k]
fγ(t)

changes along

μ-constant deformation. Our problem is the computation of the stratification of

the parameter space U by the value of μ
[k]
fa

.

For this purpose, we will present an algorithm for computing Ann(k)DX,O
(ωf)

which is applicable to the parametric case. One may compute Ann(k)DX,O
(ωfa)

by computing a Göbner basis of AnnDX,O(ωfa) with respect to a certain term
order with parametric method as in [12]. There is an implementation of compre-
hensive Gröbner bases for Weyl algebra by Nabeshima [6]. However, Calculating
a Gröbner basis is a very time-consuming process (see [3]), and in many cases
the computation is not feasible with the current implementation. Our algorithm

construct a system of generators of Ann(k)DX,O
(ωf) for k = 0, 1, 2, . . . iteratively.

Even in case where it is hard to compute them for large k, it is worth computing
them only for small k.

An Algorithm for Computing the Truncated Annihilating Ideals 449

2 Preliminaries

We will briefly recall some basic definitions and facts that we will used through-
out this paper. See [1] and [2] for details.

2.1 Local Cohomology Modules

Let DX be the sheaf of linear differential operators onX . We denote by Hn
[O](Ω

n
X)

the algebraic local cohomology group supported at the origin O of the sheaf Ωn
X

of holomorphic n-forms on X . We denote by ÔX,O the mX,O-adic completion of

OX,O where mX,O is the unique maximal ideal of OX,O. We note that ÔX,O is
isomorphic to the formal power series ring C�x1, . . . , xn�. The local cohomology
module Hn

[O](Ω
n
X) has a relative Čech cohomology representation

Hn
[O](Ω

n
X) ∼= C[x−1

1 , . . . , x
−1
n]

dx

x1 · · ·xn
,

where dx = dx1 ∧ · · · ∧ dxn, and has an ÔX,O-module structure defined by

xα · dx
xβ+1

=

{
dx

xβ−α+1 if β − α ∈ Zn
≥0,

0 otherwise.

Furthermore, Hn
[O](Ω

n
X) admits a right DX,O-module structure given by

(gdx)P = (P ∗g)dx

for gdx ∈ Hn
[O](Ω

n
X) and P ∈ DX,O where P ∗ is the formal adjoint operator of

P . As dx
x1···xn

1
α! (

∂
∂x)α = dx

xα , Hn
[O](ΩX) is generated by dx

x1···xn
as a right DX,O-

module. Furthermore, Hn
[O](ΩX) is a simple right DX,O-module since for any

0 �= ξ ∈ Hn
[O](ΩX), there exists h ∈ OX,O such that hξ = dx

x1···xn
. We set

Wf = HomOX,O (OX,O/Jf ,Hn
[O](Ω

n
X)) = {ψ ∈ Hn

[O](Ω
n
X) | ψg = 0, ∀g ∈ Jf}.

As f has isolated singularity at the origin, OX,O/Jf is a complete intersection
Artinian local ring, and thus Wf is of finite length and generated by a single
element as an OX,O-module ([1] Proposition 3.2.12). We fix a generator ωf of
Wf . We can consider annihilators of ωf in DX,O

AnnDX,O (ωf) = {P ∈ DX,O | ωfP = 0}.

This ideal is a right ideal of DX,O. Since DX,O/AnnDX,O (ωf) ∼= DX,Oωf =
Hn

[O](ΩX) is a simple DX,O-module, AnnDX,O (ωf) is a holonomic ideal.

2.2 Matlis Duality

Our algorithm is based of Matlis duality theorem. Here, we give a brief review
of Matlis duality. Let R be a Noetherian complete local ring, and E = ER the
injective hull of the residue field of R. We denote by �R(M) = �(M) the length

of an R-module M . We note that in case of R = ÔX,O, �(M) = dimCM and
EOX,O is isomorphic to Hn

[O](Ω
n
X) ([1] Proposition 3.5.4).

450 T. Shibuta and S. Tajima

Definition 1. For an R-module M , we write M∨ := HomR(M,E). The functor
(−)∨ = HomR(−, E) is called the Matlis duality functor.

For an R-module homomorphism ϕ : M → N , ϕ∨ denotes the natural homo-
morphism N∨ → M∨. Since E is injective, the Matlis dual functor is an exact
contravariant functor. Thus the following holds.

Lemma 1. (M/Ker)∨ ∼= Imageϕ∨.

Now, we recall the Matlis duality theorem.

Theorem 1 (Matlis [5]). Let M be a Noetherian R-module, and N an Ar-
tinian R-module. Then the following hold.

1. R∨ ∼= E, and E∨ ∼= R.
2. M∨ is Artinian, and N∨ is Noetherian.
3. There are natural isomorphism M∨∨ ∼= M and N∨∨ ∼= N .

If M is of finite length, then �(M) = �(M∨). We note that an R-module M
is Noetherian if and only if M is finitely generated. Any Noetherian R-module
can be expressed by as a quotient module of a free R-module, and any Artinian
R-module can be expressed as a submodule of a direct sum of copies of E. Let
F = R⊕r be a free R-module of rank r. For an R-submodule M ⊂ F , we may
regard (F/M)∨ as a submodule of E⊕r since (F/M)∨ ⊂ F∨ = E⊕r. On the
other hand, for an R-submodule V ⊂ E⊕r, we may regard V ∨ as a quotient
module F/M of F for some M ⊂ F . Let 〈·, ·〉 : F × F∨ → E be the natural
pairing map and M ⊂ F an R-submodule. By Theorem 1, for m ∈ F , m is
contained in M if and only if 〈m, η〉 = 0 for any η ∈ (F/M)∨. In case where

R = ÔX,O, this pairing is

Ô⊕r
X,O × Hn

[O](Ω
n
X)⊕r → Hn

[O](Ω
n
X)(

(g1, . . . , gr)
T , (η1, . . . , ηr)

)
�→

r∑
i=1

giηi.

2.3 Standard Basis

Here, we recall the theory of standard basis of modules. A total order ≺ on
the set of monomial {xα | α ∈ Zn

≥0} of x = (x1, . . . , xn) if a local order is the
following conditions hold:

– For any α ∈ Zn
≥0, xα ≺ 1.

– For any α, β, γ ∈ Zn
≥0, xα ≺ xβ implies xα+γ ≺ xβ+γ .

For any set of monomials Λ, and a local order ≺, there exists the maximal
element Λ with respect to ≺. Thus, for g(x) =

∑
α∈Zn

≥0
cαx

α ∈ OX,O (cα ∈ C),

we can define the leading term LT≺(g) := max≺{xα | cα �= 0} of g with respect
to ≺.

An Algorithm for Computing the Truncated Annihilating Ideals 451

Let F = O⊕r
X,O be a free OX,O-module of rank r with basis e1, . . . , er, and fix

a local order ≺. A total order ≺F on the set of monomials {xαei | α ∈ Zn
≥0, 1 ≤

i ≤ r} of F is a local order on F if the following conditions hold:

– For any α, β ∈ Zn
≥0, and 1 ≤ i ≤ r, xα ≺ xβ implies xαei ≺F x

βei
– For any α, β, γ ∈ Zn

≥0, and 1 ≤ i, j ≤ r, xαei ≺F x
βej implies xα+γei ≺F

xβ+γej.

Any set of monomials of F admits a maximal element with respect to ≺F , and
thus we can define the leading monomial LT≺F (m) of m ∈ F similarly. For an
OX,O-submodule M ⊂ F , C[x]-submodule of the free C[x]-module

LT≺F (M) := 〈LT≺F (m) | m ∈M〉C[x] ⊂ C[x]⊕r

is called the initial module of M with respect to ≺F . A monomials not con-
tained in LT≺F (M) is called a standard monomial of M with respect to ≺F . A
subset {m1, . . . ,ms} of M is called a standard basis of M with respect to ≺F if
LT≺F (M) is generated by LT≺F (m1), . . . ,LT≺F (ms).

3 The Invariant μ
[k]
f

Let {FkDX,O}k∈Z≥0
be the order filtration on DX,O, that is,

FkDX,O =
{∑

gα

(∂
∂x

)α ∣∣ gα ∈ OX,O, |α| ≤ k
}
.

Let Ann(k)DX,O
(ωf) be the right DX,O-ideal generated by FkDX,O ∩AnnDX,O(ωf)

for k ∈ Z≥0. We call Ann(k)DX,O
(ωf), k = 0, 1, 2, . . . the truncated annihilat-

ing ideals of ωf . For any k, it holds that Ann(k)DX,O
(ωf) ⊂ Ann(k+1)

DX,O
(ωf), and

Ann(k)DX,O
(ωf) = AnnDX,O (ωf) for sufficiently large k since DX,O is Noetherian.

As Ann(0)DX,O
(ωf) is generated by zero-dimensional ideal Jf , Ann(k)DX,O

(ωf) is
holonomic for all k.

Definition 2.

μ
[k]
f := dimC HomDX,O

(
DX,O

Ann(k)DX,O
(ωf)

,Hn
[O](Ω

n
X)

)

In [10] it is proved that this definition is independent from the choice of a

generator ωf and μ
[k]
f is an analytic invariant for f . By definition, we have

μ
[0]
f ≥ μ[1]f ≥ μ[2]f ≥ · · · . As Ann(0)DX,O

(ωf) = JfDX,O, μ
[0]
f coincides with the Mil-

nor number μf of f , and μ
[k]
f = 1 for k satisfying Ann(k)DX,O

(ωf) = AnnDX,O(ωf).

In [8], it is proved that the μ
[1]
f = 1 if and only if f is quasi-homogeneous, and

452 T. Shibuta and S. Tajima

in [7], it is also observed that if f is in an exceptional family of unimodal singu-
larities,

μ
[1]
f = dimC OX,O/Jf − dimC OX,O/(f,Jf) + 1

and μ
[2]
f = 1. An efficient method for computing a C-basis ofWf and the standard

basis of Jf using Grothendieck duality theorem is given in an efficient algorithm
in [11]. Generalizing this method, we will present an algorithm for computing

Ann(k)DX,O
(ωf). For k ∈ Z≥0, let Fk = O⊕(n+k

k)
X,O be a free OX,O-module which is

isomorphic to FkDX,O as a right OX,O-module, and we define

N (k)(ωf) :=
{

(gα(x))α∈Zn
≥0

,|α|≤k

∣∣∣ ∑
α∈Zn

≥0
,|α|≤k

(∂
∂x

)α
gα(x) ∈ Ann(k)DX,O

(ωf)
}

an OX,O-submodule of Fk. We will present an algorithm for computing a stan-
dard basis of N (k)(ωf) by using Matlis duality theorem.

4 Matlis Dual and Standard Basis

Let M ⊂ F be an OX,O-submodule of a free OX,O-module F = O⊕r
X,O such that

�(F/M) < ∞, and fix a local order ≺F on F . Then, we can regard F/M as an

ÔX,O-module. In this case, we can compute a standard basis of M using a basis
of (F/M)∨ as a C-vector space.

In this paper, we call { dx
xα+1e

∨
i | α ∈ Zn

≥0, 1 ≤ i ≤ r} the set of monomials of

F∨ = E⊕r = Hn
[O](Ω

n
X)⊕r. We define a total oder ≺∨

F on the set of monomials

of Hn
[O](Ω

n
X)⊕r corresponding to ≺F as follows:

dx

xα+1
e∨i ≺∨

F

dx

xβ+1
e∨j

def⇐⇒ xαei *F x
βej .

We call ≺∨
F the term order on Hn

[O](Ω
n
X)⊕r corresponding to ≺F . For

η =
∑

α∈Zn
≥0

,1≤i≤r

cα,i
dx

xα+1
e∨i , cα,i ∈ C,

we set

LT≺∨
F

(η) = max
≺∨

F

{ dx

xα+1
e∨i | cα,i �= 0

}
By definition, for m ∈ F and η ∈ F∨, LT≺F (〈m, η〉) = 〈LT≺F (m),LT≺∨

F
(η)〉 if

〈LT≺F (m),LT≺∨
F

(η)〉 �= 0.

We say that a subset {v1, . . . , vn} ⊂ Hn
[O](Ω

n
X)⊕r is reduced with respect to

≺∨
F if for any i, LT≺∨

F
(vi) does not appear in vj , j �= i, with non-zero coefficient.

Let η1, . . . , η� be the reduced C-basis of (F/M)∨ with respect to ≺∨
F where

� = �(F/M), and write

ηj =
dx

xβj+1
e∨ij +

∑
α∈Z≥0,1≤i≤r

c
(j)
α,i

dx

xα+1
e∨i ,

An Algorithm for Computing the Truncated Annihilating Ideals 453

with LT≺∨
F

(ηj) = dx

xβj+1 e
∨
ij

. Since η1, . . . , η� is reduced with respect to ≺∨
F , the

term LT≺∨
F

(ηj) does not appear in ηj′ for j′ �= j.

Proposition 1. Let the situation as above. Then the following hold.

(1) {xβjeij | 1 ≤ j ≤ �} is the set of standard monomial of M with respect to
≺F .

(2) If xαei ∈ LT≺F (M), then xαei −
∑�

j=1 c
(j)
α,ix

βjeij ∈M .

Proof. (1) Since 〈xβjeij ,LT≺∨
F

(ηj)〉 = 1
x1···xn

�= 0, it follows that for any element

m ∈ F with LT≺F (m) = xβjeij , it holds that 〈m, ηj〉 �= 0. As ηj ∈ (F/M)∨,
this shows that there exists no element m ∈ M such that LT≺F (m) = xβjeij .
Thus xβjeij is a standard monomial. Since the set of standard monomials of M
forms a C-basis of F/M , the number of standard monomials is � = dimC F/M .
Therefore, we conclude the assertion.

(2) Since the set of standard monomials of M forms a C-basis of F/M , there

exists c(j) ∈ C, 1 ≤ j ≤ �, such that xαei−
∑�

j=1 c
(j)xβjeij ∈M . The coefficient

of 1
x1···xn

of 〈xαei −
∑�

j=1 c
(j)xβjeij , ηj〉 is c

(j)
α,i − c(j), which should be zero. ��

It is easy to compute LT≺F (M) from the set of standard monomials. Thus
Proposition 4 give a method to compute a standard basis of M with respect
to ≺ from a C-basis of (F/M)∨.

5 Algorithm for Computing N (k)(ωf)

We will present a method for computing a system of generators of N (k)(ωf).

Recall that for k ∈ Z≥0, Fk = O⊕(n+k
k)

X,O is a free OX,O-module, and

N (k)(ωf) =
{

(gα(x))α∈Zn
≥0

,|α|≤k

∣∣∣ ∑
α∈Zn

≥0
,|α|≤k

(∂
∂x

)α
gα(x) ∈ Ann(k)DX,O

(ωf)
}

a submodule Fk. By definition, (Fk/N (k)(ωf))∨ is generated by a single element
(ωf ·

(
∂
∂x

)α
)α∈Zn

≥0
,|α|≤k, and thus �(Fk/N (k)(ωf)) <∞.

From now on, we fix a local order ≺ on OX,O. We also fix a generator ωf of
Wf corresponding to ≺ as follow.

Definition 3. Let ωf be the element in the reduced C-basis of Wf whose leading
term is maximal with respect to ≺∨.

The element ωf is actually a generator of Wf since mX,O · ωf �∈ Wf by the
maximality of the leading term of ωf ,

We denote by [P,Q] the commutator PQ−QP of P,Q ∈ DX,O. The follow-
ing result provides a constructive method for computing the standard bases of
N (k)(ωf).

454 T. Shibuta and S. Tajima

Theorem 2 ([9] Proposition 10). Let P ∈ FkDX,O be a linear partial differ-
ential operator of order k. Then the following are equivalent.

(i) There exists h ∈ OX,O such that P + h ∈ Ann(k)DX,O
(ωf).

(ii) For any g ∈ Jf , [P, g] ∈ Ann(k−1)
DX,O

(ωf).

(iii) For any 1 ≤ i ≤ n, [P, ∂f
∂xi

] ∈ Ann(k−1)
DX,O

(ωf).

For k ≥ 1, let F ′
k = O⊕(n+k

k)−1

X,O , and pr : Fk → F ′
k the projection omitting the

component corresponding to order zero part. Then

pr(N (k)(ωf)) =
{

(fα(X))|α|≤k,α�=0 | ∃f0 ∈ OX,O,
∑

(fα(X))|α|≤k ∈ N (k)(ωf)
}

We fix a local order ≺F ′
k

on F ′
k.

5.1 In the Case of k = 1

In the case of k = 0, N (0)(ωf) = Jf , and an algorithm for computing the reduced
C-basis of (OX,O/Jf)∨ = Wf and the standard basis of Jf is given in [9,11]. We
will consider the case k = 1 when a C-basis of (OX,O/Jf)∨ = Wf is given. We
note that

pr(N (1)(ωf)) =

{(a1, . . . , an)T∈ O⊕n
X,O | ∃h ∈ OX,O,

∂

∂x1
a1+ · · · +

∂

∂x1
an+h∈Ann(1)DX,O

(ωf)}

By Theorem 2, (a1, . . . , an)T ∈ pr(N (1)(ωf)) if and only if⎛⎜⎜⎜⎜⎜⎝
∂2f
∂x2

1

∂2f
∂x1∂x2

. . . ∂2f
∂x1∂xn

∂2f
∂x2∂x1

∂2f
∂x2

2
. . . ∂2f

∂x2∂xn

...
...

. . .
...

∂2f
∂xn∂x1

∂2f
∂xn∂x2

. . . ∂2f
∂x2

n

⎞⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎝
a1
a2
...
an

⎞⎟⎟⎟⎠ ∈ (N (0)(ωf))⊕n = J ⊕n
f . (1)

The matrix appearing in the left-hand side is called Hessian matrix Hf of f .
Therefore,

pr(N (1)(ωf)) = Ker(O⊕n
X,O

Hf−−→ (OX,O/Jf)⊕n).

Since (OX,O/Jf)∨ =Wf ,

(O⊕n
X,O/pr(N (1)(ωf)))∨ = {(η1, . . . , ηn) ·Hf | (η1, . . . , ηn) ∈ W⊕n

f }

by Lemma 1. Since we a C-basis of Wf is given, one can compute a C-basis of
(O⊕n

X,O/pr(N (1)(ωf)))∨. Thus the standard basis of pr(N (1)(ωf)) is computable

by using Proposition 4. For each element (a1, · · · , an)T of the standard basis of
pr(N (1)(ωf)), we can find h ∈ OX,O such that ωf(∂

∂x1
a1 + · · · + ∂

∂xn
an) = hωf

An Algorithm for Computing the Truncated Annihilating Ideals 455

by Theorem 2. Then N (1)(ωf) is generated by elements of form (a1, . . . , an, h)T

and (0, . . . , 0, ∂f
∂xi

)T , 1 ≤ i ≤ n.

We can also compute the C-basis of (On+1
X,O/N (1)(ωf))∨ as follows. Let η1,

. . . , ηt and h1ωf , . . . , hμωf be C-bases of (O⊕n
X,O/pr(N (1)(ωf)))∨ andWf respec-

tively. Then

{(ηi, 0) | 1 ≤ i ≤ t} ∪
{(

(ωf

(∂
∂x

)α
hi)|α|≤k

)
| 1 ≤ i ≤ μ

}
is a C-basis of (On+1

X,O/N (1)(ωf))∨.

5.2 In the Case of k ≥ 2

For the case of k ≥ 2, by describing the condition of Theorem 2 (3) in terms of
matrix similarly to (1), we can compute a system of generators of N (k)(ωf). For
1 ≤ k, 1 ≤ i ≤ n, and g = (gα)|α|≤k ∈ Fk, the condition[∑

|α|≤k

(∂
∂x

)α
gα,

∂f

∂xi

]
∈ Ann(k−1)

DX,O
(ωf)

can be express as

M
(k)
i · g ∈ N (k−1)(ωf)

for some
(
n+k−1
k−1

)
×
((

n+k
k

)
− 1

)
matrix M

(k)
i . For example, if k = 1,

M
(1)
i =

(∂2f

∂x1∂xi
,
∂2f

∂x2∂xi
, · · · , ∂2f

∂xn∂xi

)
,

and if n = 2 and k = 2, since[
∂2

∂x21
a+

∂2

∂x1∂x2
b+

∂2

∂x22
c+

∂

∂x1
d+

∂

∂x2
e,
∂f

∂x1

]
=

∂

∂x1

(
2
∂2f

∂x21
a+

∂2f

∂x1∂x2
b
)

+
∂

∂x2

(∂2f
∂x21

b+ 2
∂2f

∂x1∂x2
c
)

−∂
3f

∂x31
a− ∂3f

∂x21∂x2
b− ∂3f

∂x1∂x22
c+

∂2f

∂x21
d+

∂2f

∂x1∂x2
e,

we have

M

(
2
)

1 =

⎛⎜⎜⎝
2∂2f
∂x2

1

∂2f
∂x1∂x2

0 0 0

0 ∂2f
∂x2

1
2 ∂2f
∂x1∂x2

0 0

−∂3f
∂x3

1
− ∂3f

∂x2
1∂x2

− ∂3f
∂x1∂x2

2

∂2f
∂x2

1

∂2f
∂x1∂x2

⎞⎟⎟⎠ ,
and by computing [∂2

∂x2
1
a+ ∂2

∂x1∂x2
b+ ∂2

∂x2
2
c+ ∂

∂x1
d+ ∂

∂x2
e, ∂f

∂x2
], we have

M
(2)
2 =

⎛⎜⎜⎝
2 ∂2f
∂x1∂x2

∂2f
∂x2

2
0 0 0

0 ∂2f
∂x1∂x2

2∂2f
∂x2

2
0 0

− ∂3f
∂x2

1∂x2
− ∂3f

∂x1∂x2
2

−∂3f
∂x3

2

∂2f
∂x1∂x2

∂2f
∂x2

2

⎞⎟⎟⎠ .

456 T. Shibuta and S. Tajima

Since

pr(N (k)(ωf)) = {g = (gα)|α|≤k |M (k)
i · g ∈ N (k−1)(ωf)}

=

n⋂
i=1

Ker(F ′
k

Mi(k)−−−−→ Fk−1/N (k−1)(ωf))

Thus we conclude that

(F ′
k/pr(N (k)(ωf)))∨ =

n∑
i=1

{η ·M (k)
i | η ∈ (Fk−1/N (k−1)(ωf))∨}.

5.3 Algorithm

Combining all, we obtain the following algorithm.

Algorithm 1. Input: k ≥ 1, a C-basis η1, . . . , ηt of (Fk−1/N (k−1)(ωf))∨, and
a C-basis h1ωf , . . . , hμωf of Wf .
Output: A system of generators G of N (k)(ωf), and a C-basis B of
(Fk/N (k)(ωf))∨.

1: Compute matrices M
(k)
i , 1 ≤ i ≤ n.

2: Let V :=
⋃n

i=1{ηj · M (k)
i | 1 ≤ i ≤ n, 1 ≤ j ≤ t} which is a C-basis of

(F ′
k/pr(N (k)(ωf)))∨.

3: Compute the reduced C-basis ξ1, . . . , ξs of (F ′
k/pr(N (k)(ωf)))∨ from V with

respect to ≺∨
F ′

k
by using Gaussian elimination method.

4: By using Proposition 4, compute the standard basis S = {g(1), . . . , g(p)} of
pr(N (k)(ωf)) with respect to ≺F ′

k
.

5: For each g(j) = (g
(j)
α)|α|≤k,α�=0, compute g

(j)
0 ∈ OX,O such that

ωf
∑

α

(
∂
∂x

)α
gα = g

(j)
0 ωf .

6: Return G := {(g
(j)
α)|α|≤k | 1 ≤ j ≤ p} ∪ {(0, . . . , 0, ∂f

∂xi
)T | 1 ≤ i ≤ n}, and

B = {(ξ1, 0), . . . , (ξs, 0)} ∪ {(ωf
(

∂
∂x

)α
hj)|α|≤k | 1 ≤ j ≤ μ}.

The method presented in this paper is applicable when f has parameters in its
coefficients.

6 The Size of the Matrix Appearing in Algorithm 1

The main part of our algorithm is the Gaussian elimination step. The complexity
of Gaussian elimination method depends on the size of the input matrix. In
this section, we give an estimation on the size of the matrix induced by V in
Algorithm 1, which we denote by MV .

Let Δk := dimC(Fk/N (k)(ωf)) and let Nk be the number of terms appearing

in elements of the module
∑

|α|≤k OX,O · ωf
(

∂
∂x

)α
. Then size of MV is at most

nΔk−1 ×Nk−1(
(
n+k
n

)
− 1).

An Algorithm for Computing the Truncated Annihilating Ideals 457

First, we estimate Δk which coincides with the C-dimension of its Matlis
dual. As (Fk/N (k)(ωf))∨ is generated by a single element (ωf

(
∂
∂x

)α
)α∈Zn

≥0
,|α|≤k

as OX,O module, we have

Δk = dimC OX,O/AnnOX,O

(
ωf

(∂
∂x

)α)
|α|≤k

= dimC OX,O/
⋂

|α|≤k

AnnOX,O ωf

(∂
∂x

)α
.

Write

ωf =
∑

α∈Z≥0

cαdx

xα+1
,

where cα ∈ C, and we set

δ = max{|α| | cα �= 0}.

Then it is easy to show that mδ
X,O ·ωf = 0 and m

δ+|α|
X,O ·ωf

(
∂
∂x

)α
= 0 for α ∈ Zn

≥0.

Thus Δk ≤ dimC OX,O/m
δ+k
X,O =

(
n+δ+k−1

n

)
.

Next, we will estimate Nk. For any dx
xβ+1 appearing in an element of the module∑

|α|≤k OX,O · ωf
(

∂
∂x

)α
, since mδ+k

X,O annihilates dx
xβ+1 , it holds that |β| ≤ δ + k.

Thus Nk ≤
(
n+δ+k−1

n

)
.

Therefore, the size of MV is at most n
(
n+δ+k−2

n

)
×
(
n+δ+k−2

n

)
(
(
n+k
n

)
− 1). If

the number of variables n is fixed, this is of polynomial order in δ and k.

7 Example

Let

ft(x, y) = x4 + y7 + tx2y5 + xy6

with t a parameter. The Milnor number of ft is 18 for all t ∈ C. Let ≺ be the
anti-graded lexicographic order on C{x, y}, that is,

xayb ≺ xcyd if a+ b > c+ d, or if a+ b = c+ d and b < d.

We take ωft as in Definition 3. Then N (1)(ωft) is generated by the union of the

following set and {(0, 0, ∂ft∂x)T , (0, 0, ∂ft∂y)T }.

1. If t = 0,
{(0, −2058yx − 2401y2 , (972y3 + 10290)x + 1134y4 + 14406y)T ,

(0, 686yx2 , (−432y3 − 4116)x2 + 126y4x + 735y5)T ,

(0, 98x3, 18y3x2 − 21y4x)T ,

(−84035yx, −6174x2 + 28812yx, −1944y2x2 + (−7938y3 − 100842)x − 6615y4 + 252105y)T ,

(−24010x2 , 2058x2 − 9604yx, 648y2x2 + (2646y3 + 129654)x + 2205y4)T ,

(−1715y5 ,−686x2 − 4802yx, 864y2x2 + (1638y3 + 28812)x + 735y4)T }.

458 T. Shibuta and S. Tajima

2. If t �= 0, 3
7
, 36
35
, 36
119

,
{(0, (−24010t2 +6174t)x2 +(−115248t +37044)yx +(−100842t +43218)y2 , (−8575t4 − 131565t3 +82404t2 −

12636t)y2x2 + ((18865t3 − 204183t2 + 117936t − 17496)y3 + 605052t − 185220)x + (−12005t3 − 219177t2 +

134946t − 20412)y4 + (605052t − 259308)y)T ,

(0, −686yx2 , ((1225t2 − 1953t + 432)y3 + 4116)x2 + (−196t − 126)y4x + (1715t − 735)y5)T ,

(0, 98x3, (−77t + 18)y3x2 + (49t − 21)y4x)T ,

((−7058940t+3025260)yx, (1680700t2 −1166886t+222264)x2 +(2924418t−1037232)yx, (600250t4 +25725t3+

586089t2−428652t+69984)y2x2+((−1320550t3 +4164363t2−2087694t+285768)y3 −11495988t+3630312)x+

(840350t3 + 2485035t2 − 1620675t + 238140)y4 + (21176820t − 9075780)y)T ,

(48020x2 ,−4116x2 + 19208yx, (11025t2 + 1134t − 1296)y2x2 + ((18228t − 5292)y3 − 259308)x + (15435t −

4410)y4)T ,

((12005t − 5145)y5 , −2058x2 − 14406yx, (−3675t2 − 6993t + 2592)y2x2 + ((8575t2 − 23226t + 4914)y3 +

86436)x + (−15435t + 2205)y4)T }.

3. If t = 36
35
,

{(0, 185220x2 + 792330yx + 588245y2 , 763992y2x2 + (891324y3 − 4249770)x + 1230390y4 − 3529470y)T ,

(0, −3430yx2 , (−1404y3 + 20580)x2 − 1638y4x + 5145y5)T ,

(0, 490x3,−306y3x2 + 147y4x)T ,

(2941225yx, −555660x2 − 1368570yx, −659016y2x2 + (−768852y3 + 5690370)x − 1468530y4 − 8823675y)T ,

(−120050x2 , 10290x2 − 48020yx, −28836y2x2 + (−33642y3 + 648270)x − 28665y4)T ,

(−12005y5 , 3430x2 + 24010yx, 14148y2x2 + (16506y3 − 144060)x + 22785y4)T }.
4. If t = 36

119
,

{(0, 10705716x2 − 70776678yx − 412863955y2 ,−145800y2x2 + (−578340y3 + 70776678)x − 674730y4 +

2477183730y)T ,

(0, −198254yx2 , (−13500y3 + 1189524)x2 − 53550y4x − 62475y5)T ,

(0, 1666x3,−90y3x2 − 105y4x)T ,

(−412863955yx, −10705716x2+70776678yx, 145800y2x2+(578340y3−70776678)x+674730y4+1238591865y)T,

(−6938890x2 , 594762x2 − 2775556yx, −8100y2x2 + (−32130y3 + 37470006)x − 37485y4)T ,

(−145775y5 ,−198254x2 − 1387778yx, 13500y2x2 + (−127890y3 + 8326668)x − 237405y4)T }.
5. If t = 3

7
,

{(0, −686x2 − 4802yx, −360y2x2 + (−1155y3 + 28812)x − 1470y4)T ,

(0, −33614y3 , (405y3 + 4116)x2 + (1575y4 − 28812y)x + 2205y5 + 201684y2)T ,

(0, 98x3,−15y3x2)T ,

(−184473632x, 19765032x − 46118408y, (60750y4 − 926100y)x2 + (70875y5 − 2593080y2)x − 3025260y3 +

830131344)T ,

(672280y4 , 941192x+6588344y, (−4050y4 +61740y)x2 +(−4725y5 +576240y2)x+1008420y3 −39530064)T }.

Conclusion. In this paper, we give an algorithm for computing truncated annihi-
lating ideals for an algebraic local cohomology class. It is easy to generalize our
algorithm to the case where the function f contains parameters in coefficient.
Our algorithm presents a new computational method for studying μ-constant
deformations.

References

1. Bruns, W., Herzog, J.: Cohen-Macaulay rings. University Press, Cambridge (1993)
2. Greuel, G.-M., Pfister, G.: A Singular Introduction to Commutative Algebra.

Springer, Berlin (2002); With contributions by Olaf Bachmann, Christoph Lossen
and Hans Schonemann, With 1 CD-ROM (Windows, Macintosh, and UNIX)

An Algorithm for Computing the Truncated Annihilating Ideals 459

3. Grigorév, D.Y., Chistov, A.L.: Complexity of the standard basis of a D-module.
Algebra i Analiz 20(5), 41–82 (2008) (Russian. Russian summary)

4. Lê, D.T., Ramanujan, C.P.: The invariance of Milnor’s number implies the invari-
ance of the topological type. Amer. J. Math. 98, 67–78 (1976)

5. Matlis, E.: Injective modules over Noetherian rings. Pacific J. Math. 8, 511–528
(1958)

6. Nabeshima, K.: PGB: A Package for Computing Parametric Gröbner Bases and
Related Objects. In: Conference posters of ISSAC 2007, pp. 104–105 (2007)

7. Nakamura, Y., Tajima, S.: Unimodal singularities and differential operators,
Séminaires et Congrès 10, Sociétés Mathématiques de France, pp. 191–208 (2005)

8. Tajima, S., Nakamura, Y.: Algebraic local cohomology classes attached to quasi-
homogeneous isolated hypersurface singularities. Publ. Res. Inst. Math. Sci. 41,
1–10 (2005)

9. Tajima, S., Nakamura, Y.: Annihilating ideals for an algebraic local cohomology
class. Journal of Symbolic Computation 44, 435–448 (2009)

10. Tajima, S., Nakamura, Y.: Algebraic local cohomology classes attached to unimodal
singularities. Publ. Res. Inst. Math. Sci. 48(2), 21–43 (2012)

11. Tajima, S., Nakamura, Y., Nabeshima, K.: Standard bases and algebraic local
cohomology for zero dimensional ideals. Advanced Studies in Pure Mathematics 56,
341–361 (2009)

12. Weispfenning, V.: Comprehensive Gröbner bases. J. Symbolic Computation 14,
1–29 (1991)

Applications of the Newton Index

to the Construction of Irreducible Polynomials

Doru Ştefănescu

University of Bucharest, Romania
stef@rms.unibuc.ro

Abstract. We use properties of the Newton index associated to a poly-
nomial with coefficients in a discrete valuation domain for generating
classes of irreducible polynomials. We obtain factorization properties
similar to the case of bivariate polynomials and we give new applications
to the construction of families of irreducible polynomials over various dis-
crete valuation domains. The examples are obtained using the package
gp-pari.

1 Introduction

The construction of classes of irreducible polynomials is based on some few irre-
ducibility criteria or is the result of factorization algorithms. One of the devices
used for obtaining irreducibility criteria is to associate properly to a polynomial
a Newton polygon and to deduce from the properties of the polygon useful in-
formation concerning the irreducibility. This was done by G. Dumas [10] in his
extension of the irreducibility criteria of T. Schönemann [16] and G. Eisenstein
[11]. In fact Dumas considered the product of two univariate polynomials F1
and F2 with integer coefficients and studied the relations among the slopes of
the Newton polygons of the polynomials F1, F2 and their product F = F1F2.

The Newton polygon method was subsequently used by various authors for
the study of the irreducibily of the polynomials. Recently such results were
obtained by A. Bishnoi–S. K. Khanduja–K. Sudesh [3], C. N. Bonciocat [7], C.
N. Bonciocat–Y. Bugeaud–M. Cipu–M. Mignotte [8], D. Ştefănescu [17], [18] and
S. H. Weintraub [20].

The Newton polygon was initially defined for bivariate polynomials. Another
approach is to associate a Newton polygon to a univariate polynomial with the
coefficients in a discrete valuation domain. However, the irreducibility criterion
of G. Dumas [10] makes use of Newton polygons of univariate polynomials over
the integers and of the valuation defined by powers of a prime p . This result
was improved by O. Ore [13]. This idea was used by many authors, recently the
irreducibility over valued fields was considered by A. Bishnoi–S. K. Khanduja–
K. Sudesh [3], A. I. Bonciocat–C. N. Bonciocat [4], [5], C. N. Bonciocat [6], [9],
and A. Zaharescu [19]. On the other hand, the Newton polygon was used by L.
Panaitopol–D. Ştefănescu [14] for obtaining irreducibility criteria for bivariate

V.P. Gerdt et al. (Eds.): CASC Workshop 2014, LNCS 8660, pp. 460–471, 2014.
c© Springer International Publishing Switzerland 2014

Applications of the Newton Index 461

polynomials. The Newton polyhedra were considered by A. Lipkovski [12] for
the study of absolute irreducibility of multivariate polynomials.

In this paper we consider properties of the Newton index for obtaining infor-
mation on the factorization of a univariate polynomial with the coefficients in a
discrete valuation field. A related method was first used by the author in [17], in
the case of bivariate polynomials. However, the results cannot be applied directly
to polynomials with coefficients in a valuation domain, so we restate Theorem 1
from [17] in this context, as Theorem 1. The Theorem 2 gives more information
on the factorization of a general univariate polynomial over a discrete valua-
tion domain. These results will be used for generating families of irreducible
polynomials. In particular, we construct new classes of univariate irreducible
polynomials over the integers and over fields of formal power series. Other appli-
cations are given to bivariate irreducible polynomials over algebraically closed
fields of characteristic zero.

2 On the Newton Index

We consider a univariate polynomial F (X) =
∑d

i=0 aiX
d−i with coefficients in

a discrete valuation domain (A, v). We remind that the Newton polygon N(F)

of the polynomial F (X) =
∑d

i=0 aiX
d−i is the lower convex hull of the set

{(d− i, v(ai)) ; ai �= 0} . The slopes of the Newton polygon are the slopes of some
line segment. We note that the slope of the line joining the points (d, v(a0)) and

(d − i, v(ai)) is
v(a0) − v(ai)

i
. The Newton index e(F) of the polynomial F is

the largest slope e(F) of these lines. More precisely,

e(F) = max
1≤i≤d

v(a0) − v(ai)
i

.

G. Dumas [10] studied the relationship between the Newton indices of two
polynomials and the index of their product. He considered the case of univariate
integer polynomials with the valuation defined by powers of a prime p . If F1
and F2 are such polynomials, he established that the Newton polygon of the
product F1F2 can be obtained by translating the edges of the polygons N(F1)
and N(F2) in such a way that they compose a convex polygonal path with the
slopes of the edges ordered increasingly. The proof of Dumas is based only on
properties of the Newton polygons and it remains true for the case of arbitrary
discrete valuations. From the result of Dumas we obtain:

Proposition 1. If F1 , F2 ∈ A[X] \A then

e(F1F2) = max (e(F1), e(F2)) .

In the case of bivariate polynomials Proposition 1 gives a relation between
the degree indices of two polynomials and the degree index of their product. We
remind that, in [17], to a bivariate polynomial F (X,Y) =

∑d
i=0 Pi(X)Y d−i we

associated the degree-index

PY (F) = max
1≤i≤d

deg(Pi) − deg(P0)

i
.

462 D. Stefănescu

It was used for obtaining irreducibility criteria for bivariate generalized difference
polynomials and their extensions by L. Panaitopol–D. Ştefănescu [14]. Among
other generalizations of irreducibility tests on generalized difference polynomials
we mention those of G. Angermüller [1], S. Bhatia–S. K. Khanduja [2], and A.
Bishnoi–S. K. Khanduja–K. Sudesh [3], D. Ştefănescu [17] and [18].

The oldest polynomial irreducibility criterion that applies to a general family
of polynomials was obtained by T. Schönemann [16] in 1846. A particular case
is Eisenstein’s criterion [11] published in 1850. G. Dumas [10] noted that Eisen-
stein’s criterion is related to properties of the Newton polygon and obtained a
generalization of the Schönemann–Eisenstein criterion. We remind its valuation
approach:

Lemma 1 (G. Dumas, 1906). Let F (X) =
∑d

i=0 aiX
d−i ∈ A[X] be a poly-

nomial over a discrete valuation domain A, with the valuation field (K, v). If the
following conditions

i) v(a0) = 0 ,

ii) v(ad)
d < v(ai)

i for all i ∈ {1, 2, . . . , d− 1},

iii) gcd(v(ad), d) = 1,

are satisfied, the polynomial F (X) is irreducible in K[X].

Remark 1. The condition ii) in Lemma 1 means that the Newton index of the
polynomial F is e(F) = −v(ad)/d .

Remark 2. We consider now a generalized difference polynomial F (X,Y) ∈
k[X,Y] , where k is a field,

F (X,Y) = cY d +
d∑

i=1

Pi(X)Y d−i ,

with c ∈ k \ {0}, ∈ N∗, Pi(X) ∈ k[X] and

deg(Pi)

i
<

deg(Pd)

d
for all i, 1 ≤ i ≤ d− 1 . (1)

Putting, for a polynomial P ∈ k[X] , v(P) = − deg(P), we observe that
k[X,Y] can be organized as a discrete valuation domain. The relation (1) be-
comes exactly the condition ii) from Theorem 1. Because v(c) = 0 the Theorem
of Dumas 1 states that the generalized difference polynomial F (X,Y) is irre-
ducible if (deg(Pd), d) = 1 . This proves a result established, using a different
method, by G. Angermüller in [1].

We will look at factorization properties of univariate polynomials over a dis-
crete valuation domain for which the hypotheses in Theorem 1 are not satisfied.

3 Factorization Conditions

Let (A, v) be a discrete valuation domain and F (X) =
∑d

i=0 aiX
d−i ∈ A[X] .

We will consider the case in which the Newton index could be attained for an
index s �= d and for which v(a0) could be nonzero.

Applications of the Newton Index 463

Theorem 1. Let (A, v) be a discrete valuation domain, and let

F (X) = a0X
d + a1X

d−1 + · · · + ad−1X + ad ∈ A[X] ,

with a0ad �= 0 and d ≥ 2 . We assume that there exists an index s ∈ {1, 2, . . . , d}
such that

(a)
v(a0) − v(as)

s
>
v(a0) − v(ai)

i
for i ∈ {1, 2, ..., d}, i �= s ,

(b)
v(a0) − v(as)

s
− v(a0) − v(ad)

d
=

1

ds
,

(c) gcd(v(a0) − v(as), s) = 1 .

Then the polynomial F is either irreducible in A[X], or has a factor whose degree
is a multiple of s.

Proof. The proof follows the same lines as that of Theorem 5 in [18], using valu-
ations instead of degrees. We suppose that there exists a nontrivial factorization
F = F1F2 in A[X] . We have d = deg(F) and we put

d1 = deg(F1) , d2 = deg(F2) .

We suppose that

F1(X) =

d1∑
i=0

a1iX
d1−i , F2(X) =

d2∑
i=0

a2iX
d2−i .

We observe that ad = a1d1a2d2 and, a0 = a10a20 .
Then we put

c = v(a0) − v(as) , m = v(a0) − v(ad) .

m1 = v(a10) − v(a1d1) , m2 = v(a20) − v(a2d2) .

We observe that
d = d1 + d2 , m = m1 +m2 .

¿From the condition (b) we obtain

cd− sm = 1 . (2)

By Proposition 1 we have e(F) = max{e(F1), e(F2)} and, by the hypothesis (a),
it follows that

c

s
=
v(a0) − v(as)

s
= e(F) ≥ e(F1) ≥ v(a10) − v(a1d1)

d1
=
m1

d1
,

which gives
c

s
− m1

d1
≥ 0 ,

464 D. Stefănescu

so

cd1 − sm1 ≥ 0 .

Because e(F) ≥ e(F2) we also have

cd2 − sm2 ≥ 0 .

But we have

1 = cd− sm = (cd1 − sm1) + (cd2 − sm2) ,

so one of the positive integers cd1 − sm1 and cd2 − sm2 must be 0 .

Suppose, for example, that we have cd − sm1 = 0 . So cd = sm1 . But, by the
condition (c), the integers c and s are coprime. Therefore, s must divide d . If
cd − sm2 = 0 we obtain that s must divide m2. So, if the polynomial F is
reducible, the degree of one of its divisors must be a multiple of s . ��

Corollary 1. In the conditions of Theorem 1, if d ≥ 3 and s > d/2, then the
polynomial F is either irreducible, or has a divisor of degree s.

Proof. By Theorem 1 the polynomial F is irreducible or it has a factor of degree
a multiple of s . If F would have a factor of degree ks, with k ≥ 2, then we would
obtain

d > ks > k
d

2
≥ d ,

a contradiction. Therefore, k = 1 or F is irreducible. ��
If the difference between the numbers in the left-hand side in condition (b)

in Theorem 1 is larger than 1
ds we can also say something about the possible

divisors of F . More precisely, we have the following result:

Theorem 2. Let (A, v) be a discrete valuation domain, and let

F (X) = a0X
d + a1X

d−1 + · · · + ad−1X + ad ∈ A[X] ,

with a0ad �= 0 and d ≥ 2 . We assume that there exists an index s ∈ {1, 2, . . . , d}
such that

(a)
v(a0) − v(as)

s
>
v(a0) − v(ai)

i
for i ∈ {1, 2, ..., d}, i �= s;

(b)
v(a0) − v(as)

s
− v(a0) − v(ad)

d
=
u

ds
, with u ≥ 2 ;

(c) gcd(v(a0) − v(as), s) = 1 .

Then one of the following conditions is satisfied:

i. The polynomial F is irreducible in A[X] .

ii. The polynomial F has a divisor whose degree is a multiple of s .

iii. The polynomial F admits a factorization F = F1F2 and s divides β d1 −
αd2, for some α , β ∈ {1, 2, . . . , u− 1} , where d1 = deg(F1) , d2 = deg(F2) .

Applications of the Newton Index 465

Proof. We use the same notation as in the proof of Theorem 1. We obtain the
relation

cd− sm = u . (3)

We have cd1 − sm1 ≥ 0 , cd2 − sm2 ≥ 0 and

(cd1 − sm1) + (cd2 − sm2) = u . (4)

We look to the possible values of cd1 − sm1.
If cd1 − sm1 = 0 as in Theorem 1 we deduce that the degree of a divisor of

the polynomial F must be divisible by s .
If cd1 − sm1 = 1 we have cd2 − sm2 = u− 1 and we obtain

c (d2 − (u − 1)d1)) = (m2 − (u− 1)m1) ,

therefore s divides d2 − (u− 1)d1 .

In general, we suppose that

cd1 − sm1 = α ,
cd2 − sm2 = β ,

(5)

with α+ β = u .

From the relations (5) we obtain

c(β d1 − αd2) = s(β m1 − αm2) .

But s and c are coprime, so s should divide β d1 − αd2. Therefore, the case iii
is satisfied. ��

4 Applications

We consider univariate polynomials over particular discrete valuation domains
(the p–adic numbers, the integers, the formal power series) and bivariate poly-
nomials with coefficients in an algebraically closed field of characteristic zero.

Theorems and 1 and 2 are suitable for constructing families of irreducible
polynomials over A[X] , where A = (A, v) is a discrete valuation domain. Given
a nonconstant polynomial F (X) = a0X

d + a1X
d−1 + · · · + ad−1X + ad ∈ A[X] ,

with a0ad �= 0 , d ≥ 2 the method is summarized in the following steps:

– Compute the valuations v(a0), v(a1), . . . , v(ad) .
– Compute the Newton index e(F) = max1≤i≤d {(v(a0) − v(ai)) /i} and the

index s for which e(F) = (v(a0) − v(as)) /s .
– Compute gcd (v(a0) − v(as)) .
– If gcd (v(a0) − v(as)) �= 1, the irreducibility of the polynomial cannot be

tested by this method.
– If s = d we conclude that F is irreducible by the argument in the Theorem

of Dumas.

466 D. Stefănescu

– If s �= d we compute u such that

e(F) − v(a0) − v(ad)

d
=
u

sd
.

– If u �∈ {1, 2, . . . , d− 1} , the irreducibility cannot be tested by this method.
– If u = 1 we apply Theorem 1.
– If u ∈ {2, . . . , d− 1} we apply Theorem 2.

Using the package gp-pari we computed the Newton indices and we found
couples of numbers (s, u) that satisfy the hypotheses in Theorems 1 or 2.

4.1 Univariate Polynomials over p–adic Numbers

Let r ∈ Zp be a p–adic number, r = pn
∑∞

i=0 aip
i , ai ∈ {0, 1, . . . , p−1} , a0 �= 0 ..

We define a discrete valuation by v(r) = n.

Example 1. Let F (X) = Xd + aX2 + bX + c ∈ Zp[X] . Suppose that d ≥ 2 and
v(a) = d , v(b) = d− 2 , v(c) = d− 1 . We have

v(1) − v(a)
d− 2

=
−d
d− 2

< 0 ,

v(1) − v(b)
d− 1

=
1

d− 1
− 1 ,

v(1) − v(c)
d

=
1

d
− 1 .

It follows that e(F) = v(1)−v(b)
d−1 and

e(F) − v(1) − v(c)
d

=
1

d(d− 1)
.

We have s = d− 1 and, by Theorem 1, we conclude that F is either irreducible,
or has a factor of degree d − 1, and hence also a linear factor. Therefore, if F
has no p–adic roots it is irreducible over Zp[X] .

4.2 Univariate Polynomials over Formal Power Series

Let k be an algebraically closed field of characteristic zero. If f(X) =
∑∞

i=0 aiX
i

is a formal power series from k[[X]] we put v(f) = ord(f) := mini{i; ai �= 0} .

Example 2. Let F (Y) = XY d + f(X)Y d−1 + g(X)Y 2 + Y + h(x) ∈ k[[X]][Y] ,
with d ≥ 3 ,

f(X) = Xd +Xd+1 + . . .+Xd+n + . . .) ,
g(X) = Xd−2 +Xd−1 +Xd ,
h(X) = Xd+1(1 −X +X2 −X3 + · · ·) .

Applications of the Newton Index 467

We have v(X)−v(f)
1 = 1−d , v(X)−v(g)

d−2 = 3−d
d−2 , v(X)−v(1)

d−1 = 1
d−1 , v(1)−v(h)

d = −1 .

Therefore, e(F) = v(1)−v(1)
d−1 = 1

d−1 and we have s = d−1 . We have by Theorem 1
that F is either irreducible in K[X,Y], or has a factor whose degree is a multiple
of d− 1. Hence F is either irreducible, or has a linear factor.

4.3 Univariate Polynomials over the Integers

We suppose that F (X) ∈ Z[X] \ Z and we consider the valuation given by the
power with respect to a prime ≥ 2 .

Example 3. Let F (X) = (p2 + p+ 1)Xd +X3 + pd−2(p+ 1)X + pd , with d ≥ 4
and p a prime. We have

v(a0) = 0 , v(ad−3) = 0 , v(ad−1) = d− 2 , v(ad) = d .

e(F) = max

{
−d+ 2

d− 1
,−1

}
=

−d+ 2

d− 1
=
v(a0) − v(ad−1)

d− 1
,

so we can apply Theorem 1. We have s = d − 1 and gcd (v(a0) − v(ad−1), s) =
gcd(d− 2, d− 1) = 1 .

Therefore, the polynomial F is irreducible or has a divisor of degree s = d−1 .
In this case, it should have also a linear divisor, so an integer root. Such roots
should be of the form −pt , with t ∈ {0, 1, . . . , pd}, and this can be checked for
particular values of d and t .

4.4 Bivariate Polynomials

Let k be an algebraically closed field of characteristic zero and suppose that F is
a bivariate polynomial from k[X,Y] . We suppose that it has the representation

F (X,Y) = P0(X)Y d + P1(X)Y d−1 + . . .+ Pd−1(X)Y + Pd(X) ,

where Pi ∈ k[X] , P0 �= 0 .
For P ∈ k[X] we put v(P) = − deg(P), and this defines a discrete valuation

on A := k[X] . Because

v(P0) − v(Pi) = deg(Pi) − deg(P0)

the Newton index of the polynomial F (X,Y) ∈ A[Y] becomes

e(F) = max
1≤i≤d

{
deg(Pi) − deg(P0)

i

}
,

which is exactly the degree index considered bu L. Panaitopol–D. Ştefănescu
in [14]. The results within Section 3 have, therefore, polynomial approaches. For
example, by Theorem 1 we obtain:

468 D. Stefănescu

Corollary 2 (D. Ştefănescu [18]). Let k be an algebraically closed field of
characteristic zero and let

F (X,Y) = P0(X)Y d + P1(X)Y d−1 + . . .+ Pd−1(X)Y + Pd(X) , P0 Pd �= 0 .

If there exists an index s ∈ {1, 2, . . . , d} such that the following conditions are
satisfied

(a)
deg(Pi) − deg(P0)

i
<

deg(Ps) − deg(P0)

s
for i ∈ {1, 2, ..., d}, i �= s;

(b)
deg(Ps) − deg(P0)

s
− deg(Pd) − deg(P0)

d
=

1

ds
.

(c) gcd(deg(Ps) − deg(P0), s) = 1

the polynomial F is either irreducible in A[X], or has a factor whose degree is a
multiple of s.

Example 4. Let F (X,Y) = XmY d + XY d−1 + XY d−2 + Y 2 + p(X)Y + q(X)
with deg(p) = deg(q) = m+ 1 , m ≥ 1 , d ≥ 5 and q(0) �= 0 . We have

deg(P1) − deg(P0)

1
=

1 −m
1

,

deg(P2) − deg(P0)

1
=

1 −m
2

,

deg(Pd−2) − deg(P0)

d− 2
=

−2

d− 3
,

deg(Pd−1) − deg(P0)

d− 1
=

1

d− 1
,

deg(Pd) − deg(P0)

d
=

1

d
.

We then apply Theorem 1 and obtain that the polynomial F is either irreducible
or it has a divisor of degree d− 1 with respect to Y . Therefore, F is irreducible
or has a linear divisor with respect to Y .

Example 5. Let F (X,Y) = (X3 + 1)Y d +X2Y d−1 + (Xd−2 +X+ 1)Y 3 −XY +
Xd+1 + 1 . We have

deg(P1) − deg(P0)

1
=

0 − 3

1
= −3 ,

deg(Pd−3) − deg(P0)

d− 3
=
d− 2

d− 3
> 1 ,

deg(Pd−1) − deg(P0)

d− 1
=

1 − 3

d− 1
= − 2

d− 1
,

deg(Pd) − deg(P0)

d
=

4 − 3

d
=

1

d
.

Applications of the Newton Index 469

It follows that the Newton index is e(F) = d−2
d−3 . We have s = d−3 , (d−2, d−3) =

1 and

deg(Pd−3) − deg(P0)

d− 3
− deg(Pd) − deg(P0)

d
=
d− 2

d− 3
− d+ 1

d
=

3

d(d− 3)
.

So we can apply Theorem 2. We have the following possibilities.

i. The polynomial F is irreducible in k[X,Y] .

ii. The polynomial F has a divisor whose degree with respect to Y is a multiple
of d− 3 . Therefore, there exists a divisor of degree 3 with respect to Y .

iii. There exists a nontrivial factorization F = F1F2 such that d − 3 divides
β d1 − αd2 , where d1 = deg(F1), d2 = deg(F2) and α, β ∈ {1, 2, 3} . If we look
at the proofs of Theorems 1 and 2 we can compute α and β .

In fact, from the relations

cd1 − sm1 = 1 ,
cd2 − sm2 = 2

we obtain c(d2 − 2d1) = s(m2 − 2m1) , so s must divide d2 − 2d1 .

For our example we deduce that d2−2d1 must be divisible by 3 . For particular
values of d this condition is not satisfied. For example, for d = 5, we have
(d2, d1) ∈ {(1, 4), (2, 3), (3, 2), (4, 1)}, so the cases to be considered are

1 − 2 · 4 = −7 ,
2 − 2 · 3 = −4 ,
3 − 2 · 2 = −1 ,
4 − 2 · 1 = 2 ,

and none of them is a multiple of 3 .

Example 6. Let F (X,Y) = p(X)Y d + Y d−1 + q(X)Y 2 + r(X) , with deg(p) =
m ≥ 1, deg(q) = d+m− 1, deg(r) = d+m+ 1, d ≥ 5 . We have

deg(P1) − deg(P0)

1
=

0 −m
1

= −m,

deg(Pd−2) − deg(P0)

d− 2
=
d+m− 1 −m

d− 2
= −d− 1

d− 2
,

deg(Pd) − deg(P0)

d
=
d+m− 2 −m

d
=
d+ 1

d
.

We obtain e(F) = d−1
d−2 and d− 1 and d− 2 are coprime. On the other hand,

e(F) − deg(r)

d
=
d− 1

d− 2
− d+ 1

d
=

2

d(d− 2)

470 D. Stefănescu

and we can apply Theorem 2. There are three possible cases:

i. The polynomial F is irreducible in k[X,Y] .

ii. The polynomial F has a divisor whose degree with respect to Y is a multiple
of d− 2 . So this divisor is od degree d− 2 with respect to Y . Therefore F could
have a quadratic divisor with respect to Y .

iii. There exists a factorization F = F1F2 and the difference of their degrees is
a multiple of d−2. If we suppose 1 ≤ d1 ≤ d2 ≤ d−1 we obtain 0 ≤ d2−d1 ≤ d−2 .
It follows that we have

d1 = d2 or d2 − d1 = d− 2 .

The last condition is satisfied only if d1 = 1 and d2 = d− 1 .

We conclude that the polynomial F is irreducible if it does not have quadratic
divisors with respect to Y and satisfies one of the two conditions:

a. Its degree d is odd.

b. It does not have linear divisors with respect to Y .

5 Conclusion

In this paper we proposed a method for the construction of univariate irreducible
polynomials over discrete valuation domains. We proved that our approach ex-
tends basic results on the irreducibility of univariate polynomials over the inte-
gers and on bivariate polynomials over an algebraically closed field. The method
has applications also to polynomials in other discrete valuation domains. It re-
quires the computation of families of numbers that satisfy some conditions. The
use of computer packages allows us to obtain new classes of irreducible polyno-
mials.

Future work will be done for applying these techniques for the construction
of multivariate irreducible polynomials.

Acknowledgement. The author is grateful to the anonymous referees for valu-
able comments and suggestions.

References

1. Angermüller, G.: A generalization of Ehrenfeucht’s irreducibility criterion. J.
Number Theory 36, 80–84 (1990)

2. Bhatia, S., Khanduja, S.K.: Difference polynomials and their generalizations. Math-
ematika 48, 293–299 (2001)

3. Bishnoi, A., Khanduja, S.K., Sudesh, K.: Some extensions and applications of
the Eisenstein irreducibility criterion. Developments in Mathematics 18, 189–197
(2010)

4. Bonciocat, A.I., Bonciocat, N.C.: Some classes of irreducible polynomials. Acta
Arith. 123, 349–360 (2006)

Applications of the Newton Index 471

5. Bonciocat, N.C.: A Capelli type theorem for multiplicative convolutions of
polynomials. Math. Nachr. 281, 1240–1253 (2008)

6. Bonciocat, N.C.: On an irreducibility criterion of Perron for multivariate
polynomials. Bull. Math. Soc. Sci. Math. Roumanie 53(101), 213–217 (2010)

7. Bonciocat, N.C.: Schönemann-Eisenstein-Dumas-type irreducibility conditions
that use arbitrarily many prime numbers. arXiv:1304.0874v1

8. Bonciocat, N.C., Bugeaud, Y., Cipu, M., Mignotte, M.: Irreducibility criteria for
sums of two relatively prime polynomials. Int. J. Number Theory 9, 1529–1539
(2013)

9. Bonciocat, N.C., Zaharescu, A.: Irreducible multivariate polynomials obtained from
polynomials in fewer variables. J. Pure Appl. Algebra 212, 2338–2343 (2008)

10. Dumas, G.: Sur quelques cas d’irréducibilité des polynômes à coefficients rationnels.
Journal de Math. Pures et Appl. 12, 191–258 (1906)

11. Eisenstein, G.: Über die Irreductibilität und einige andere Eigenschaften der Gle-
ichung, von welcher die Theilung der ganzen Lemniscate abhängt. J. Reine Angew.
Math. 39, 160–182 (1850)

12. Lipkovski, A.: Newton Polyhedra and Irreducibility. Math. Z. 199, 119–128 (1988)
13. Ore, O.: Zur Theorie der Eisensteinschen Gleichungen. Math. Z. 20, 267–279 (1924)
14. Panaitopol, L.D., Ştefănescu, D.: On the generalized difference polynomials. Pacific

J. Math. 143, 341–348 (1990)
15. Rubel, L.A., Schinzel, A., Tverberg, H.: On difference polynomials and hereditary

irreducible polynomials. J. Number Theory 12, 230–235 (1980)
16. Schönemann, T.: Von denjenigen Moduln, welche Potenzen von Primzahlen sind.

J. Reine Angew. Math. 32, 93–105 (1846)
17. Ştefănescu, D.: Construction of classes of irreducible bivariate polynomials. In:

Gerdt, V.P., Koepf, W., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2013. LNCS,
vol. 8136, pp. 393–400. Springer, Heidelberg (2013)

18. Ştefănescu, D.: On the irreducibility of bivariate polynomials. Bull. Math. Soc. Sci.
Math. Roumanie 56(104), 377–384 (2013)

19. Zaharescu, A.: Residual transcendental extentions of valuations, irreducible
polynomials and trace series over p–adic fields. Bull. Math. Soc. Sci. Math.
Roumanie 56(104), 125–131 (2013)

20. Weintraub, S.H.: A mild generalization of Eisenstein’s criterion. Proc. Amer. Math.
Soc. 141, 1159–1160 (2013)

Symbolic-Numeric Algorithm for Solving

the Problem of Quantum Tunneling of a
Diatomic Molecule through Repulsive Barriers

Sergue Vinitsky1, Alexander Gusev1, Ochbadrakh Chuluunbaatar1,2,
Luong Le Hai1,3, Andrzej Góźdź4, Vladimir L. Derbov5,

and Pavel Krassovitskiy6

1 Joint Institute for Nuclear Research, Dubna, Moscow Region, Russia
vinitsky@theor.jinr.ru

2 National University of Mongolia, UlaanBaatar, Mongolia
3 Belgorod State University, Belgorod, Russia

4 Institute of Physics, Maria Curie-Sk�lodowska University, Lublin, Poland
5 Saratov State University, Saratov, Russia

6 Institute of Nuclear Physics, Almaty, Kazakhstan

Abstract. Symbolic-numeric algorithm for solving the boundary-value
problems that describe the model of quantum tunneling of a diatomic
molecule through repulsive barriers is described. Two boundary-value
problems (BVPs) in Cartesian and polar coordinates are formulated and
reduced to 1D BVPs for different systems of coupled second-order dif-
ferential equations (SCSODEs) that contain potential matrix elements
with different asymptotic behavior. A symbolic algorithm implemented
in CAS Maple to calculate the required asymptotic behavior of adiabatic
basis, the potential matrix elements, and the fundamental solutions of the
SCSODEs is elaborated. Comparative analysis of the potential matrix el-
ements calculated in the Cartesian and polar coordinates is presented.
Benchmark calculations of quantum tunneling of a diatomic molecule
with the nuclei coupled by Morse potential through Gaussian barriers
below dissociation threshold are carried out in Cartesian and polar co-
ordinates using the finite element method, and the results are discussed.

Keywords: Symbolic-numeric algorithm, quantum tunneling problem,
diatomic molecule, repulsive barriers, boundary-value problem, adiabatic
representation, asymptotic solutions, finite element method.

1 Introduction

The study of tunneling of coupled particles through repulsive barriers [11] has
revealed the effect of resonance quantum transparency: when the cluster size
is comparable with the spatial width of the barrier, there are mechanisms that
lead to greater transparency of the barrier. These mechanisms are related to
the formation of the barrier resonances, provided that the potential energy of
the composite system has local minima giving rise to metastable states of the
moving cluster [10]. Currently this effect and its possible applications are a

V.P. Gerdt et al. (Eds.): CASC Workshop 2014, LNCS 8660, pp. 472–490, 2014.
c© Springer International Publishing Switzerland 2014

Quantum Tunneling of a Diatomic Molecule 473

subject of extensive study in relation with different quantum-physical problems,
e.g., quantum diffusion of molecules [12], exciton resonance passage through
a quantum heterostructure barrier [8], resonant formation of molecules from
individual atoms [13], controlling the direction of diffusion in solids [1], and
tunnelling of ions and clusters through repulsive barriers [7,6]. For the analysis
of these effects, it is useful to develop model approaches based on approximations
providing a realistic description of interactions between the atoms in the molecule
as well as with the barriers, and to elaborate symbolic-numeric algorithms and
software.

In this paper, we formulate and study the model of a diatomic molecule with
the nuclei coupled via the effective Morse potential that penetrates through a
Gaussian repulsive barrier, using Galerkin and Kantorovich expansion of the
desired solution in Cartesian and polar coordinates, respectively. We formulate
two boundary-value problems (BVP) and use different sets of basis functions to
reduce the original problem to 1D BVPs for different systems of coupled second-
order differential equations (SCSODEs) that contain potential matrix elements
with different asymptotic behavior. In the first case, the potential matrix ele-
ments decrease exponentially, and in the second case, they decrease as inverse
powers of the independent variable. In the second case, we must calculate the
asymptotic behavior of the potential matrix elements to solve the boundary
value problem. For this goal, we develop symbolic algorithms implemented in
CAS Maple to calculate the required asymptotic behavior of the potential ma-
trix elements as well as the fundamental solutions of SCSODEs. We present a
comparative analysis of the potential matrix elements calculated in the Cartesian
and polar coordinates, which are used to solve the quantum tunneling problem
below the dissociation threshold. The necessity for two statements of the prob-
lem follows from the important practical applications of further self-consistent
study of the system above the dissociation threshold, which is convenient in po-
lar coordinates. The effect of quantum transparency, i.e., the resonance behavior
of the transmission coefficient versus the energy of the molecule is analyzed.

The paper is organized as follows. In Sections 2 and 3, we formulate and solve
the BVPs in Cartesian and polar coordinates. In Section 4, the leading terms
of the asymptotic expressions of effective potentials and fundamental solutions
are calculated using the elaborated algorithms in CAS Maple. In Section 5, we
analyze the solution of the quantum tunneling problem below the dissociation
threshold. In Conclusion, the prospects of future studies are discussed.

2 Model I. Quantum Tunneling in Cartesian Coordinates

We consider a 2D model of two identical particles with the mass m coupled by
the pair potential Ṽ (x2−x1) and interacting with the external barrier potentials
Ṽ b(x1) and Ṽ b(x2). Using the change of variables x = x2 − x1, y = x2 + x1,

474 S. Vinitsky et al.

Fig. 1. Gaussian-type barrier V b(xi) = D̂ exp
(
−x2

i
2σ

)
, at D̂ =

236.510003758401Å−2 = (m/h̄2)Ṽ0 = (m/h̄2)D, Ṽ0 = D = 1280K,
σ = 5.23 · 10−2Å2, and the two-particle interaction potential, V M (x) =
D̂{exp[−2(x− x̂eq)ρ̂]− 2 exp[−(x− x̂eq)ρ̂]}, x̂eq = 2.47Å, ρ̂ = 2.96812423381643Å−1

y ∈ (−∞,∞), x ∈ (−∞,∞), we arrive at the Schrödinger equation for the wave
function Ψ(x, y) in the s-wave approximation(

− h̄
2

m

1

f1(y)

∂

∂y
f2(y)

∂

∂y
− h̄

2

m

1

f3(x)

∂

∂x
f4(x)

∂

∂x
+ Ṽ (x, y) − Ẽ

)
Ψ(y, x) = 0.(1)

where h̄ is the Planck constant, Ẽ is the total energy of the system, and the
potential function V (x, y) is defined by the formula

Ṽ (x, y) = ṼM (x) + Ṽ b(x1) + Ṽ b(x2). (2)

The equation describing the molecular subsystem has the form(
− h̄

2

m

1

f3(x)

∂

∂x
f4(x)

∂

∂x
+ ṼM (x) − ε̃

)
φ(x) = 0. (3)

The molecular subsystem is assumed to possess the continuous energy spectrum
with the eigenvalues ε̃ ≥ 0 and eigenfunctions φε̃(x) and the discrete energy spec-
trum, consisting of the finite number n of bound states with the eigenfunctions
φj(x) and the eigenvalues ε̃j = −|ε̃j |, j = 1, n.

The asymptotic boundary conditions imposed on the solution for the 2D model
in the s-wave approximation Ψ(y, x) = {Ψj(y, x)}No

j=1 in the asymptotic region
Ωas

j = {(x, y)||x|/|y| 1 1} with the direction v =→ can be written in the obvious
form

Ψj(y → −∞, x) → φj(x)
exp(ıpjy)√
pjf2(y)

+

No∑
l=1

φl(x)
exp(−ıply)√
plf2(y)

Rlj ,

Ψj(y → +∞, x) →
No∑
l=1

φl(x)
exp(ıply)√
plf2(y)

Tlj , (4)

Ψj(y, x→ ±∞) → 0,

Quantum Tunneling of a Diatomic Molecule 475

Fig. 2. Sections of the total potential energy V (y;x) = V M (y;x) + V b(y;x) at y =
2.2, 2.3, 2.4, 2.6, 2.8, 3, 3.5, 4 (curves are noted by 1,...,8). The wave functions φj(r) of
the bound states j = 1, 5 (solid lines) and pseudostates j = 6, ..., 12 (dashed lines)
(corresponding energy eigenvalues given in K). The matrix elements Vjj(y) (solid lines)
and Vj1(y) (dashed lines) (in Å−2)

where f1(y) = f2(y) = 1, Rlj(Ẽ) and Tlj(Ẽ) are the reflection and transmission
amplitudes, No ≤ n is the number of open channels, pi is the wave number,

pi =
√

(m/h̄2)(Ẽ − ε̃i) > 0, below dissociation threshold Ẽ < 0 , φj(x) and

εj < 0 at j = 1, n are the eigenfunctions and eigenvalues of the BVP for Eq. (3).
The solution of Eq. (1) is sought for in the form of Galerkin expansion

Ψio(y, x) =

jmax∑
j=1

φj(x)χjio (y). (5)

Here χjio (y) are unknown functions and the orthonormalized basis functions
φj(x) in the interval 0 ≤ x ≤ xmax are defined as eigenfunctions of the BVP for
the equation (

− 1

f3(x)

∂

∂x
f4(x)

∂

∂x
+ VM (x) − εj

)
φj(x) = 0, (6)

476 S. Vinitsky et al.

with the boundary and orthonormalization conditions

φj(0) = φj(xmax) = 0,

∫ xmax

0

f3(x)drφi(x)φj(x) = δij , (7)

where f3(x) = f4(x) = 1, V (x) = (m/h̄2)Ṽ (x), εj = (m/h̄2)ε̃j . The desired
set of numerical solutions of this BVP is calculated with the given accuracy by
means of the program ODPEVP [4]. Hence, we calculate the set of n bound states
having the eigenfunctions φj(x) and the eigenvalues εj , j = 1, n and the desired
set of pseudostates with the eigenfunctions φj(x) and the eigenvalues εj ≥ 0,
j = n+1, jmax. The latter approximate the set of continuum eigensolutions ε ≥ 0
of the BVP for Eq. (3).

The set of closed-channel Galerkin equations has the form[
− 1

f1(y)

∂

∂y
f2(y)

∂

∂y
+ εi − E

]
χiio(y) +

jmax∑
j=1

V b
ij(y)χjio (y) = 0. (8)

Thus, the scattering problem (1)–(3) with the asymptotic boundary condi-
tions (4) is reduced to the boundary-value problem for the set of close-coupling
equations in the Galerkin form (8) for f1(y) = f2(y) = 1 with the boundary
conditions at y = ymin and y = ymax [6]:

dF (y)

dy

∣∣∣∣
y=yt

= R(yt)F (yt), t = min,max, (9)

where R(ymin) and R(ymax) are jmax × jmax symmetric matrix function of E,
F (y) = {χio(y)}No

io=1 = {{χjio(y)}jmax

j=1 }No

io=1 is the required jmax × No matrix
solution at the number of open channels No = max

E≥εj
j ≤ jmax. These matrices

and the sought-forNo×No matrices of the reflection and transmission amplitudes
R and T are calculated using the third version of the program KANTBP [3].

In Eq. (8), the effective potentials Vij(y) are expressed by the integrals

V b
ij(y) =

∫ xmax

0

f1(x)dxφi(x)(V b(
x+ y

2
) + V b(

x− y
2

))φj(x). (10)

For example, let us take the parameters of the molecule Be2, namely, the reduced
mass μ = m/2 = 4.506Da, the average distance between the nuclei 2.47Å, the
frequency of molecular vibrations expressed in temperature units h̄ω = 398.72K,
the ground state of molecule 1Σ+

u , the wave number of the order of 277.124cm−1

for the observable excited-to-ground state transitions (we use the relation 1K =
0.69503476 cm−1 from [5]). These values were used to determine the parameters
of the Morse potential ṼM (x) and VM (x) = (m/h̄2)ṼM (x) of Eqs. (3) and (6)

ṼM (x) = D{exp[−2(x− x̂eq)ρ̂] − 2 exp[−(x− x̂eq)ρ̂]}, (11)

where D is the depth of the interaction potential well and ρ̂ describes the poten-
tial well width. The values of D and ρ̂ are determined from the discrete spectrum

Quantum Tunneling of a Diatomic Molecule 477

of the BVP (6)–(7) which is approximated by the known discrete spectrum of
Eq. (3)

ε̃j = −D
[
1 − ς(j − 1/2)

]2
, j = 1, ..., n =

[
ς−1+

1

2

]
. (12)

The discrete spectrum eigenfunctions φj(x) of the BVP (6)–(7) are approximated

by the solutions φ̃j(ζ) of equation (3) in the new variable ζ:

d2φ̃j(ζ)

dζ2
+

1

ζ

dφ̃j(ζ)

dζ
+

(
−1

4
+
j + sj − 1/2

ζ
−
s2j
ζ2

)
φ̃j(ζ) = 0,

where sj =
√−εj/ρ̂ =

√
D̂/ρ̂ − j + 1/2 and ζ = 2

√
D̂ exp[−(x − x̂eq)ρ̂]/ρ̂, at

ζ ∈ (0,+∞) corresponding to the extended interval x ∈ (−∞,+∞) and have
the form

φ̃j(ζ)=Nj exp(−ζ
2

)ζsj 1F1(1−j, 2sj+1, ζ), N2
j =

ρ̂Γ (2sj+j)

(j−1)!Γ (2sj)Γ (2sj+1)
. (13)

Having the average size of the molecule and the separation between the energy
levels taken into account, one can parameterize the molecular potential to fit the
observable quantities, namely, D = 1280K, x̂eq = 2.47Å, ρ̂ = 2.968Å−1 is deter-

mined from the condition (ε̃2 − ε̃1)/(2πh̄c) = 277.124 cm−1, ς = ρ̂h̄√
mD

= 0.193

is the dimensionless constant of the problem, and D̂ = (
√
mD
h̄)2 = (ρ̂/0.193)2 =

(2.968Å−1/0.193)2 = 236.5Å−2. In accordance with (12), the ground state en-
ergy of the molecule Be2 is equal to −ε̃1 = −1044.88K.

The set of pseudostates with the eigenfunctions φj(x) and the eigenvalues
εj ≥ 0, j = n+1, jmax, approximated by the set of continuous spectrum solutions

φ̃k(ζ) with fixed k =
√
ε > 0 that satisfy Eq. (3) written in the new variable ζ,

i.e., the equation

d2φ̃k(ζ)

dζ2
+

1

ζ

dφ̃k(ζ)

dζ
+

(
−1

4
+

√
D̂/ρ̂

ζ
+
s2k
ζ2

)
φ̃k(ζ) = 0.

At fixed sk = k
ρ̂ , these solutions take the form

φ̃k(ζ) =
Nk exp(−ζ/2)

2i
(exp(iw)ζ−ik/ρ̂

1F1(−
√
D

ρ̂
+

1

2
− ik
ρ̂
, 1 − 2ik

ρ̂
, ζ)

− exp(−iw)ζik/ρ̂1F1(−
√
D

ρ̂
+

1

2
+
ik

ρ̂
, 1 +

2ik

ρ̂
, ζ)), (14)

w = arg(Γ (1 +
2ik

ρ̂
)) + arg(Γ (−

√
D

ρ̂
+

1

2
− ik
ρ̂

))).

Asymptotically φ̃ask (x→ ∞) = sin(kx+δ(k)), δ(k) = −kxeq−sk ln(2
√
D̂/ρ̂)+w

corresponds to the scattering phase.

478 S. Vinitsky et al.

Fig. 3. Sections of the total potential energy V (ρ;ϕ) = V M (ρ;ϕ) + V b(ρ;ϕ) in polar
coordinates at ρ = 2.2, 2.3, 2.4, 2.6, 2.8, 3, 5, 10 (curves are noted by 1,...,8). Straight
lines are energy levels at ρ = 10.

Since the bond in the molecule Be2 is of the Van der Waals type, one can
consider each constituent atom independently interacting with the external bar-
rier potential. The latter should be chosen to have the height and the width
typical of barriers in a real crystal lattice. Moreover, this potential should be a
smooth function having the second derivative to apply high-accuracy numerical
methods, like the Numerov method or the finite element method, for solving the
BVP for the systems of second-order ordinary differential equations. We choose
the repulsive barrier potential to be Gaussian:

Ṽ b(xi) = Ṽ0 exp

(
− x

2
i

2σ

)
, V b(xi) =

m

h̄2
Ṽ b(xi) = D̂ exp

(
− x

2
i

2σ

)
. (15)

Here the parameters Ṽ0 = 1280K, D̂ = 236.510003758401Å−2 = (m/h̄2)Ṽ0,
σ = 5.23 · 10−2Å2 are determined by the model requirement that the width of
the repulsive potential at the kinetic energy equal to that of the ground state is
1Å, so that the average distance 2.47Å between the atoms of Be is smaller than
the distance 2.56Å between Cu atoms in the plane (111) of the crystal lattice
cell. The potential barrier height Ṽ0 of the order of 200 meV was estimated
following the experimental observation of quantum diffusion of hydrogen atoms
[9]. Fig. 1 illustrates the Gaussian and Morse potentials.

Figure 2 presents the sections of the total potential energy, the calculated
eigenfunctions of the BVP (6) and the effective potentials Vij(y) of Eq. (10)
calculated using these functions. Note that the wave functions φj(x) and the
eigenvalues εj(x) of the bound states j = 1, 5 (solid lines) approximate the known
analytical ones of the BVP for Eq. (3) with the Morse potential (11) with four
and seven significant digits, respectively. The states are localized in the well,

Quantum Tunneling of a Diatomic Molecule 479

Fig. 4. Even and odd eigenfunctions of the parametric eigenvalue problem for the fast
subsystem at ρ = 3 and ρ = 10 (corresponding energy eigenvalues given in K)

while the pseudostates j = 6, ..., 12 are approximated with the same accuracy
and localized outside the well. The matrix elements between the bound states
are localized in the vicinity of the barriers and the matrix elements between the
pseudostates are localized beyond the barriers. The matrix elements between the
bound states and pseudostates are small. The solution of the BVP (6), (7) was
performed on the finite-element grids Ωx = {0(Nelem = 800)12}, with Nelem

fourth-order Lagrange elements p = 4 between the nodes, using the program
ODPEVP [4].

3 Model II. Quantum Tunneling in Polar Coordinates

Using the change of variables x = ρ sinϕ, y = ρ cosϕ, we can rewrite Eq. (1)
in polar coordinates (ρ, ϕ) Ωρ,ϕ = (ρ ∈ (0,∞), ϕ ∈ [0, π]) in the dimensionless
form (

−1

ρ

d

dρ
ρ
d

dρ
− 1

ρ2
∂2

∂ϕ2
+ V (ρ, ϕ) − E

)
Ψ(ρ, ϕ) = 0, (16)

480 S. Vinitsky et al.

where the potential function V (ρ, ϕ) = VM (ρ, ϕ) + V b(ρ, ϕ) is defined by the
formula in term of potentials (11) and (15)

VM (ρ, ϕ)=V (ρ sinϕ), V b(ρ, ϕ)=V b(ρ
sin(ϕ+π/4)√

2
)+V b(ρ

sin(ϕ−π/4)√
2

).(17)

Sections of the potential function V (ρ, ϕ) at a set of slow variable values ρ
are shown in Fig. 3. One can see that at large ρ, the width of the potential
wells decreases as ρ increases. Therefore, at large ρ, the potential of two-center
problem, symmetric with respect to ϕ = π/2, transforms into two one-center
Morse potentials.

The asymptotic boundary conditions imposed on the solution for the 2D model
in the s-wave approximation Ψ(ρ, ϕ) = {Ψj(ρ, ϕ)}No

j=1 in the asymptotic region
Ωas

j = {(ϕ, ρ)|ϕ/ρ1 1} can be written in the obvious form

Ψ(ρ, ϕ, ϕ0) =

No∑
io=1

Ψjio (ρ, φ)φio (−ϕ0; ρ→ +∞) (18)

Ψio(ρ→ +∞, ϕ) →
√

2

π

No∑
j=1

φj(ϕ; ρ)
[
χ∗jio(ρ)δjio − χjio (ρ)Sjio (E)

]
, (19)

Ψio(ρ, φ→ 0) → 0, Ψio(ρ, φ→ π) → 0, χjio(ρ) =
exp(ı(pjρ− π

4))

2
√
pjρ

,

where the angle ϕ0 determines the direction of the incident wave propagation,
in particular, ϕ0 = 0 corresponds to v =→ and ϕ0 = π corresponds to v =←.
Sjio (E) are the elements of the No × No S-matrix, No is the number of open

channels, pi is the wave number, pi =
√

(m/h̄2)(Ẽ − ε̃i(ρ→ +∞)) > 0, below

the dissociation threshold Ẽ < 0 , φi(ϕ, ρ → +∞) =
√
ρφi(x), and εi(ρ →

∞)/ρ2 = ε
(0)
i < 0 are the eigenfunctions localized in the asymptotic region Ωas

j ,
and the eigenvalues of the BVP for Eq. (21).

The solution of Eq. (16) is sought for in the form of Kantorovich expansion

Ψio(ρ, ϕ) =

jmax∑
j=1

φj(ϕ; ρ)χjio (ρ). (20)

Here χjio (ρ) are unknown functions and the orthonormalized basis functions
φj(ϕ; ρ) in the interval ϕ ∈ [0, π] are defined as eigenfunctions of the BVP for
the equation(

− ∂2

∂ϕ2
+ ρ2(VM (ρ sinϕ) + V b(ρ, φ)) − εj(ρ)

)
φj(ϕ; ρ) = 0, (21)

with orthonormalization conditions∫ π

0

dϕφi(ϕ; ρ)φj(ϕ; ρ) = δij . (22)

Quantum Tunneling of a Diatomic Molecule 481

Fig. 5. Potential curves εj(ρ) and even diagonal effective potentials Hjj(ρ) and V b
jj(ρ)

vs ρ (Å)

The solution of the BVPs (21), (22) was performed on the finite-element grids
Ωϕ = {ϕ1(Nelem = 800)π/2}, if ϕ3 = (8+ϕxeq)/(ϕρ) > π/4,Ωϕ = {ϕ1(Nelem =
300)ϕ2(Nelem = 60)ϕ4(Nelem = 40)ϕ5(Nelem = 100)π/2} with Nelem fourth-
order Lagrange elements p = 4 between the nodes, using the program ODPEVP
[4]. Here angles ϕ1 = (−3 + ϕxeq)/(ϕρ) and ϕ2 = (4 + ϕxeq)/(ϕρ) are marked
left and right bounds of well (17) and angles ϕ4 = π/4 − 4

√
σ/ρ and ϕ5 =

π/4 + 4
√
σ/ρ are marked left and right bounds of potential barrier (17).

First, let us put V b(ρ, ϕ) = 0 in Eq. (21). In this case, we calculate the set of
n bound states having the eigenfunctions φj(ϕ; ρ) and the eigenvalues εj(ρ) < 0
at j,= 1, 2, ..., n, and the desired set of pseudostates with the eigenfunctions
φj(ϕ; ρ) and the eigenvalues εj(ρ) ≥ 0 at j = n+ 1, ..., jmax. The latter approxi-
mate the set of continuum eigensolutions ε(ρ) ≥ 0 of the BVP for Eq. (3). The
eigenvalues have the following asymptotes: εj(ρ→ ∞)/ρ2 = εj at j,= 1, 2, ..., n
and εj(ρ→ ∞)/ρ2 = (j − n)2/ρ2 +O(1/ρ3) at j = n+ 1, ..., jmax.

The eigenfunctions φj(ϕ; ρ), j = 1, 20 are shown in Fig. 4 at ρ = 3 and ρ = 10.
Taking the above symmetry V (ϕ, ρ) = V (π−ϕ, ρ) of the potential into account,
the eigenfunctions are separated into two subsets, namely, the even φσ=1

j (ϕ; ρ)

and odd φσ=−1
j (ϕ; ρ) ones. The linear combinations

φ→←
j (ϕ; ρ) = (φσ=1

j (ϕ; ρ) ± φσ=−1
j (ϕ; ρ))/

√
2

482 S. Vinitsky et al.

Fig. 6. Even effective potentials Qij(ρ) vs ρ (Å)

Fig. 7. Even effective potentials Hij(ρ) vs ρ (Å)

at large ρ have maxima in the vicinity of ϕ = 0 and ϕ = π, respectively, such
that they correspond to the functions presented in Fig. 2. Taking this property
into account, we arrive at the expressions [2]

Ť = (−Š+1 + Š−1)/2, Ř = (−Š+1 − Š−1)/2, (23)

which relate the even Š+1 and odd Š−1 elements of the matrix Š = eıπ/4Seıπ/4

from Eq. (19) to the transmission Ť and reflection Ř amplitudes from Eq. (4).
The set of closed-channel Kantorovich self-adjoint equations has the form[

−1

ρ

d

dρ
ρ
d

dρ
+
εi(ρ)

ρ2
− E

]
χiio (ρ) +

jmax∑
j=1

Wij(ρ)χjio (ρ) = 0. (24)

where the potential matrix operator Wij(ρ) has the form

Wij(ρ) = V b
ij(ρ) +Hji(ρ) +

1

ρ

d

dρ
ρQji(ρ) +Qji(ρ)

d

dρ
. (25)

Quantum Tunneling of a Diatomic Molecule 483

Fig. 8. Even effective potentials Vij(ρ) vs ρ (Å)

The potential curves εj(ρ) (see Fig. 5) and the effective potentials Qij(ρ) =
−Qji(ρ), Hij(ρ) = Hji(ρ) and V b

ij(ρ) (see Figs. 6–8) are determined by the
integrals calculated using the program ODPEVP

Qij(ρ) = −
∫ π

0

dϕφi(ϕ; ρ)
dφj(ϕ; ρ)

dρ
,Hij(ρ) =

∫ π

0

dϕ
dφi(ϕ; ρ)

dρ

dφj(ϕ; ρ)

dρ
,(26)

V b
ij(ρ) =

∫ π

0

dϕφi(ϕ; ρ)(V b(ρ
sin(ϕ + π/4)√

2
) + V b(ρ

sin(ϕ− π/4)√
2

))φj(ϕ; ρ).

If we take the potential V b(ρ, φ) in Eq. (21) into account by using the matrix
elements V b

ij(ρ) from Eq.(26), then we put V b
ij(ρ) = 0 in Eq.(25). Thus, the

scattering problem for Eq. (16) with the asymptotic boundary conditions (19)
is reduced to the boundary-value problem for the set of close-coupling equations
in the Kantorovich form (18) with the boundary conditions at ρ = ρmin and
ρ = ρmax [6]:

dF (ρ)

dρ

∣∣∣∣
ρ=ρt

= (R(ρt) + Q(ρt))F (ρt), t = min,max, (27)

where R(ρ) is an unknown jmax × jmax symmetric matrix function, F (ρ) =
{χio(ρ)}No

io=1 = {{χjio(ρ)}jmax

j=1 }No

io=1 is the required jmax × No matrix solution,
and No is the number of open channels, No = max

E≥εj
j ≤ jmax, calculated using

the program KANTBP 3.0 [3].

4 Asymptotic Form of Effective Potentials and Solutions

Algorithm 1. At large ρ, the width of the potential well is decreasing with
increasing ρ (see Fig. 3). This allows linearization of the argument ρ sinϕ−x̂eq →
ρ(ϕ−arcsin(x̂eq/ρ)) at |x−x̂eq|/ρ1 1 in the expression of the potential function
VM (ρ sinϕ) and reformulation of Eq. (21) on the interval ϕ = (0, π)(

− ∂2

∂ϕ2
+ ρ2VM (ρ(ϕ − arcsin(x̂eq/ρ))) − εj(ρ)

)
φj(ϕ; ρ) = 0. (28)

484 S. Vinitsky et al.

Table 1. The calculated coefficients Q
(1)
ij H

(2)
ij of expansions (31) (up rows) and cor-

responding numerical values Qij and Hij at ρ = 100(down rows)

Q
(1)
ij

Qij 1 2 3 4 5

1 0 55.852657 –20.662584 9.913235 –4.888752
0 0.55 863277 –0.20 664572 0.09 914008 –0.04 891971

2 –55.852657 0 66.253422 –30.004416 14.557626
–0.55 863277 0 0.66 270932 –0.30 010937 0.14 568965

3 20.662584 –66.253422 0 62.290358 –28.724086
0.20 664572 –0.66 270932 0 0.62 317875 –0.28 751980

4 –9.913235 30.004416 62.290358 0 43.265811
–0.09 914008 0.30 010937 0.62 317875 0 0.43 320993

5 4.888752 –14.557626 28.724086 –43.265811 0
0.04 891971 –0.14 568966 0.28 751983 –0.43 321006 0

H
(2)
ij

Hij 1 2 3 4 5

1 692.635 –364.132 –462.085 397.196 –240.775
0.0692 859 –0.0364 209 –0.0462 371 0.0397 441 –0.0241 084

2 –364.132 1718.621 –873.970 –219.292 253.669
–0.0364 209 0.1719 273 –0.0874 195 –0.0219 721 0.0254 209

3 –462.085 –873.970 2210.843 –1250.672 244.905
–0.0462 371 –0.0874 195 0.2211 927 –0.1251 191 0.0244 755

4 397.196 –219.292 –1250.672 2088.603 –1167.908
0.0397 441 –0.0219 721 –0.1251 191 0.2090 243 –0.1169 414

5 –240.775 253.669 244.905 –1167.908 1209.648
–0.0241 084 0.0254 209 0.0244 755 –0.1169 414 0.1212 568

This equation coincides with Eq. (6), (11), taking the notations

D̂ → D̂ρ2, ρ̂→ ρ̂ρ, x̂eq → arcsin(x̂eq/ρ) (29)

into account.
As a result, we obtain the approximate eigenvalues εj(ρ) that depend on ρ as

a parameter, expressed as

εj(ρ)=ρ2ε
(0)
j , ε

(0)
j =−D̂

[
1−
ρ̂(j − 1

2)√
D̂

]2
, j = 1, ..., n =

[√
D̂

ρ̂
+

1

2

]
. (30)

These eigenvalues demonstrate correct asymptotic behavior ε̃j(ρ)/ρ
2 = ε̃j de-

scribing the lower part of the discrete spectrum of problem (3). In the consid-
ered case, they correspond to the first five (n = 5) eigenvalues ε̃1, ..., ε̃5. The
corresponding eigenfunctions φj(ϕ; ρ) at j = 1, ..., n, parametrically depending

Quantum Tunneling of a Diatomic Molecule 485

on the slow variable ρ via the new independent variable ζ = ζ(ϕ; ρ) =

2ρ
√
D̂ exp[−ρ̂ρ(ϕ− arcsin(x̂eq/ρ))]/ρ̂, ζ ∈ [0,+∞) have the form

φ̃j(ζ; ρ)=Nj(ρ) exp(−ζ
2

)ζsj 1F1(1−j, 2sj+1, ζ),

N2
j (ρ) =

ρρ̂Γ (2sj+j)

(j−1)!Γ (2sj)Γ (2sj+1)
,

where sj =
√
D̂/ρ̂ − j + 1/2 is a positive parameter. In the considered case,

the wave function outside the well at |x − x̂eq |/ρ 3 1 is exponentially decreas-

ing. This makes it possible to integrate the product of functions ψ̃j(ζ(ϕ; ρ); ρ)

and/or ∂ψ̃j(ζ(ϕ; ρ); ρ)/∂ρ|φ=const by ζ in the interval ζ ∈ (0,+∞). The calcu-
lated eigenfunctions with ρ = 10 for j = 1, ..., 5 shown in Fig. 4 qualitatively
agree with the bound states in Fig. 2. The matrix elements between the states
of the lower part of the discrete spectrum i, j = 1, ..., n = 5 with the eigenvalues

εj(ρ)/ρ
2 = ε

(0)
j are expanded in inverse powers of ρ:

Qij(ρ) =

kmax∑
k=1

Q
(2k−1)
ij

ρ2k−1
, Hij(ρ) =

kmax∑
k=1

H
(2k)
ij

ρ2k
, Vij(ρ) = O(exp(−ρ)), (31)

and calculated up to the desired order kmax in CAS MAPLE. As an example, the

calculated coefficients Q
(1)
ij and H

(2)
ij of expansions (31) are presented in Table 1.

For comparison, the numerical values of matrix elements Qij and Hij at ρ = 100
are also given in Table 1. One can see that with the first nonzero coefficients of
these expansions, one gets the numerical approximation of the matrix elements
with three significant digits.

For the states i, j = n+1, ..., jmax with the eigenvalues εj(ρ→ ∞) = (j−n)2+
O(1/ρ) = ε(2) + O(1/ρ) = k2 + O(1/ρ) corresponding to pseudo states of the
BVP (6), (7) we consider the approximation by the eigenfunctions of continuous
spectrum (see Eq. (14) with the notations (29)) reduced to the finite interval
ϕ ∈ (0, π/2) by means of the procedure implemented in CAS MAPLE. The
energy spectrum of even and odd states is evaluated basing on the conditions

dφ̃k(ϕ; ρ)

dϕ

∣∣
ϕ=π/2

= 0 and φ̃k(π/2; ρ) = 0

for even and odd states, respectively. The calculated eigenfunctions at ρ = 10
for i = 6, ..., 10 are in quantitative agreement with the numerical ones shown in
Fig. 4 and in qualitative agreement with pseudo-states displayed in Fig. 2. Thus,
the basis eigenfunctions of Galerkin expansion (5) correspond to the asymptotic
ones for Kantorovich expansion (20) at large values of the parameter ρ.

The diagonal and nondiagonal barrier matrix elements Vij(ρ) shown in Figs.
5 and 8 should be compared with the corresponding ones displayed in Fig. 2.
From this comparison, one can see that the matrix elements Vij(ρ) from (26)
between discrete-spectrum states of BVP (21), (22) and the matrix elements

486 S. Vinitsky et al.

Vij(y) from (10) between a discrete spectrum state and a pseudo-state (6), (7)
demonstrate qualitatively similar behavior in the coordinates y and ρ. Since
ρ =

√
x2 + y2 > y, the potentials Vij(ρ) are delocalized with respect to Vij(y).

Due to slowly decreasing kinematic behavior of the potentials Qij(ρ) and Hij(ρ)
as ρ−1 and ρ−2, respectively, compared to the exponentially decreasing Vij(y),
one should take into account the leading terms of their asymptotic expressions
in solving the BVP (24)-(26) generated by the Kantorovich expansion (18) in
the calculation of scattering with five open channels.

Algorithm 2. Evaluation of the Asymptotic Solutions

Input. We calculate the asymptotic solution of the set of N ODEs at high values
of the independent variable ρ3 1[

−1

ρ

d

dρ
ρ
d

dρ
+
εi(ρ)

ρ2
+ Hii(ρ) − 2E

]
χii′(ρ) (32)

=

N∑
j=1,j �=i

[
−Qij(ρ)

d

dρ
− 1

ρ

d

dρ
ρQij(ρ) − Hij(ρ)

]
χji′ (ρ).

The coefficients of Eqs. (32), where Hij = V b
ij +Hij are presented in the form

of the inverse power series (31). In particular, εi(ρ)/ρ
2 = ε

(0)
i + ε

(2)
i /ρ

2.

Step 1. We construct the solution of Eqs. (32) in the form:

χji′ (ρ) =

(
φji′ (ρ) + ψji′ (ρ)

d

dρ

)
Ri′(ρ), (33)

where φji′ (ρ) and ψji′ (ρ) are unknown functions, Ri′(ρ) is a known function.
We choose Ri′(ρ) as solutions of the auxiliary problem treated like an etalon
equation: [

−1

ρ

d

dρ
ρ
d

dρ
+
Z

(2)
i′

ρ2
− p2i′

]
Ri′(ρ) = 0, (34)

where Z
(2)
i′ = ε

(2)
i′ .

Step 2. At this step, we compute the coefficients φi′ (ρ) and ψi′(ρ) of the ex-
pansion (33) in the form of truncated expansion in inverse powers of ρ

(φ
(k′<0)
ji′ =ψ

(k′<0)
ji′ =0):

φji′ (ρ) = φ
(0)
ji′ +

kmax∑
k′=1

φ
(k′)
ji′

ρk′ , ψji′ (ρ) = ψ
(0)
ji′ +

kmax∑
k′=1

ψ
(k′)
ji′

ρk′ . (35)

After the substitution of Eqs.(33)–(35) into Eq. (32) with the use of Eq.(34), we
arrive at the set of recurrence relations at k′ ≤ kmax:(

ε
(0)
i − 2E + p2i′

)
φ
(k′)
ii′ − 2p2i′(k

′ − 1)ψ
(k′−1)
ii′ = −f (k

′)
ii′ , (36)(

ε
(0)
i − 2E + p2i′

)
ψ
(k′)
ii′ + 2(k′ − 1)φ

(k′−1)
ii′ = −g(k

′)
ii′ ,

Quantum Tunneling of a Diatomic Molecule 487

where the right-hand sides f
(k)
ii′ and g

(k)
ii′ are defined by the relations

f
(k′)
ii′ = (−(k′ − 2)2 − Z(2)

i′)φ
(k′−2)
ii′ +

k′∑
k=2

H(k)
ii φ

(k′−k)
ii′

+Z
(2)
i′ (2k′ − 4)ψ

(k′−3)
ii′ +

k′∑
k=1

N∑
j=1,j �=i

(
2Q

(k)
ij Z

(2)
i′ ψ

(k′−k−2)
ji′

−2p2i′Q
(k)
ij ψ

(k′−k)
ji′ +Q

(k)
ij (−2k′ + k + 3)φ

(k′−k−1)
ji′ + H(k)

ij φ
(k′−k)
ji′

)
; (37)

g
(k)
ii′ = (−(k′ − 1)2 − Z(2)

i′)ψ
(k′−2)
ii′ +

k′∑
k=2

H(k)
ii ψ

(k′−k)
ii′

+

N∑
j=1,j �=i

k′∑
k=1

(
2Q

(k)
ij φ

(k′−k)
ji′ −Q(k)

ij (2k′ − 1 − k)ψ
(k′−k−1)
ji′ + H(k)

ij ψ
(k′−k)
ji′

)

with the initial conditions p2i′ = 2E − ε(0)i′ , φ
(0)
ii′ = δii′ , ψ

(0)
ii′ = 0.

Step 3. Here we calculate the coefficients φ
(k′)
ii′ and ψ

(k′)
ii′ using the step-by-step

procedure of solving Eqs. (36) for 2E �= ε(0)i′ , i �= i′ and k′ = 2, . . . , kmax:

φ
(k′)
ii′ =

[
ε
(0)
i − ε(0)i′

]−1 [
−f (k

′)
ii′ + 2p2i′(k

′ − 1)ψ
(k′−1)
ii′

]
,

ψ
(k′)
ii′ =

[
ε
(0)
i − ε(0)i′

]−1 [
−g(k

′)
ii′ − 2(k′ − 1)φ

(k′−1)
ii′

]
,

φ
(k′−1)
i′i′ = − [2(k′ − 1)]

−1
g
(k)
i′i′ , (38)

ψ
(k′−1)
i′i′ =

[
2(k′ − 1)

(
2E − ε(0)i′

)]−1

f
(k)
i′i′ .

The above described algorithm was implemented in MAPLE and FORTRAN to

calculate the desired φ
(k′)
ii′ and ψ

(k′)
ii′ in the output up to needed order of kmax.

The choice of appropriate values ρmin and ρmax for the constructed expansions
of the linearly independent solutions for pio > 0 is controlled by the fulfilment
of the Wronskian condition to the prescribed precision εWr:

Wr(Q(ρ);χ∗(ρ),χ(ρ)) =
2ı

π
Ioo, (39)

W (Q,χ∗,χ) ≡ ρ
(
χ∗T

(
dχ

dρ
− Qχ

)
− χT

(
dχ∗

dρ
− Qχ∗

))
.

5 Analysis of Quantum Tunneling Problem

The solutions of the BVPs (8)–(15) and (24)–(27) were performed on the finite-
element grids Ωy = {−12(Nelem = 120)12} and Ωρ = {0(Nelem = 1200)120},
respectively, with Nelem fourth-order Lagrange elements p = 4 between the

488 S. Vinitsky et al.

Fig. 9. The total probability of penetration from the first channels with the energies
E1 = −1044.879649, E2 = −646.1570935, E3 = −342.7919791, E4 = −134.7843058,
E5 = −22.13407384 (in K) to all five open channels simulated by the Galerkin and
Kantorovich expansions

nodes using the program KANTBP 3.0. The expansion of the desirable solution
(5) over such orthogonal basis at (jmax = 15) with only ten closed channels taken
into account allows the calculation of approximate solutions of the original 2D
problem (1) at E < 0 with the required accuracy. Fig. 9 shows the resonance
behavior of the total penetration probability with the transition from the first
channels having the energies E1 = −1044.879649, E2 = −646.1570935, E3 =
−342.7919791, E4 = −134.7843058, E5 = −22.13407384 (in K) to all five open
channels, simulated using the Galerkin expansion (5) as well as the Katorovich
one (18). The total transmission probability is seen to demonstrate the resonance
behavior, i.e., effect of quantum transparency. Some peaks are high and narrow,
and the positions of peaks corresponding to transitions from different bound
states are similar.

As the energy of the initial excited state increases, the transmission peaks
demonstrate a shift towards higher energies, the set of peak positions keeping
approximately the same as for the transitions from the ground state and the
peaks just replacing each other. For example, the left epure shows that the
positions of the 13th and 14th peaks for transitions from the first state coincide
with the positions of the 1st and 2nd peaks for the transitions from the second
state, while the right epure shows that the positions of the 25th and 26th peaks
for transitions from the first state coincide with the positions of the 13th and
14th peaks for transitions from the second state and with the positions of the
1st and 2nd peaks for the transitions from the third state.

As one can see from Fig. 2, the diagonal matrix elements of the potential
V b
jj(y) have the shapes of double barriers, and the nondiagonal matrix elements

Quantum Tunneling of a Diatomic Molecule 489

V b
ij(y) are by more than four times smaller than V b

jj(ρ) and V b
ij(ρ) in Figs. 5 and

8. It means that the position of peaks corresponds to the real part of energy of
the metastable states embedded in the continuum, which are mainly localized
between double barriers.

6 Conclusions

We have demonstrated efficiency of symbolic-numeric algorithms for solving the
boundary-value problems that describe the quantum tunneling of diatomic low-
dimensional model systems, coupled via realistic molecular potentials, through
repulsive barriers below a dissociation threshold. We presented a comparative
analysis of the potential matrix elements and solutions with different asymptotic
behavior calculated in the Cartesian and polar coordinates. The necessity for
two statements of the problem follows from the important practical applications
of further self-consistent study of the system above the dissociation threshold,
which is convenient in polar coordinates. The effect of quantum transparency in
resonance tunneling of diatomic molecules through repulsive potential barriers
was revealed that produced by metastable states imbedded in continuum. The
proposed models and elaborated symbolic-numerical algorithms, the quantum
transparency effect itself, and the developed software can find further appli-
cations in barrier heavy-ion reactions and molecular quantum diffusion. The
authors thank Prof. F.M. Penkov for collaboration. The work was supported
partially by grants RFBR 14-01-00420 and 13-01-00668 and 0602/GF MES RK.

References

1. Bondar, D.I., Liu, W.-K., Ivanov, M.Y.: Enhancement and suppression of tunneling
by controlling symmetries of a potential barrier. Phys. Rev. A 82, 052112–1–9
(2010)

2. Chuluunbaatar, O., Gusev, A.A., Derbov, V.L., Kaschiev, M.S., Melnikov, L.A.,
Serov, V.V., Vinitsky, S.I.: Calculation of a hydrogen atom photoionization in a
strong magnetic field by using the angular oblate spheroidal functions. J. Phys.
A 40, 11485–11524 (2007)

3. Chuluunbaatar, O., Gusev, A.A., Vinitsky, S.I., Abrashkevich, A.G.: KANTBP
2.0: New version of a program for computing energy levels, reaction matrix and
radial wave functions in the coupled-channel hyperspherical adiabatic approach.
Comput. Phys. Commun. 179, 685–693 (2008)

4. Chuluunbaatar, O., Gusev, A.A., Vinitsky, S.I., Abrashkevich, A.G.: ODPEVP:
A program for computing eigenvalues and eigenfunctions and their first deriva-
tives with respect to the parameter of the parametric self-adjoined Sturm-Liouville
problem. Comput. Phys. Commun. 180, 1358–1375 (2009)

5. Fundamental Physical Constants, http://physics.nist.gov/constants
6. Gusev, A.A., Vinitsky, S.I., Chuluunbaatar, O., Gerdt, V.P., Rostovtsev, V.A.:

Symbolic-numerical algorithms to solve the quantum tunneling problem for a cou-
pled pair of ions. In: Gerdt, V.P., Koepf, W., Mayr, E.W., Vorozhtsov, E.V. (eds.)
CASC 2011. LNCS, vol. 6885, pp. 175–191. Springer, Heidelberg (2011)

http://physics.nist.gov/constants

490 S. Vinitsky et al.

7. Vinitsky, S., Gusev, A., Chuluunbaatar, O., Rostovtsev, V., Le Hai, L., Derbov, V.,
Krassovitskiy, P.: Symbolic-numerical algorithm for generating cluster eigenfunc-
tions: tunneling of clusters through repulsive barriers. In: Gerdt, V.P., Koepf, W.,
Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2013. LNCS, vol. 8136, pp. 427–442.
Springer, Heidelberg (2013)

8. Kavka, J.J., Shegelski, M.R.A., Hong, W.P.: Tunneling and reflection of an exciton
incident upon a quantum heterostructure barrier. J. Phys.: Condens. Matter. 24,
365802–1–13 (2012)

9. Lauhon, L.J., Ho, W.: Direct observation of the quantum tunneling of single hydro-
gen atoms with a scanning tunneling microscope. Phys. Rev. Lett. 85, 4566–4569
(2000)

10. Pen’kov, F.M.: Metastable states of a coupled pair on a repulsive barrier. Phys.
Rev. A 62, 044701–1–4 (2000)

11. Pen’kov, F.M.: Quantum transmittance of barriers for composite particles.
JETP 91, 698–705 (2000)

12. Pijper, E., Fasolino, A.: Quantum surface diffusion of vibrationally excited molec-
ular dimers. J. Chem. Phys. 126, 014708–1–10 (2007)

13. Shegelski, M.R.A., Hnybida, J., Vogt, R.: Formation of a molecule by atoms inci-
dent upon an external potential. Phys. Rev. A. 78, 062703–1–5 (2007)

Enumeration of Schur Rings Over Small Groups

Matan Ziv-Av

Ben-Gurion University of the Negev
matan@svgalib.org

Abstract. By optimizing the algorithms used in COCO and COCO-II,
we enumerated all Schur rings over the groups of orders up to 63. A few
statistical views of results with respect to Schur property, amount and
type of generators and primitivity are presented.

Discussion of the details of the old algorithms and the improvements
we implemented in order to achieve those results is included. We compare
the results to similar computerized efforts (Hanaki and Miyamoto, Pech
and Reichard, Heinze), as well as to theoretical classifications of Schur
groups.

The computer based results may assist the theoretical efforts to clas-
sify all Schur groups, over abelian and non-abelian groups.

1 Introduction

Schur rings (S-rings for short) were introduced and investigated by I. Schur as a
purely group theoretical concept. With the advances in algebraic graph theory,
especially in the study of association schemes, which may be considered as a
generalization of S-rings, those rings are now also used in combinatorial context.

In this paper we report on the results of a computerized enumeration of S-rings
over all groups of orders up to 63.

We discuss the algorithmic improvements, as well as implementation details,
that allowed this project to go further than similar projects.

The complete list of S-rings is available as a computer file. We present a few
statistical views of this generated data, dividing the groups and the rings above
them by such properties as Schurian, primitive, coherently generated.

In addition, we compare our results with the results of other computerized
enumeration projects whose subject matter intersect this project.

We also view the enumeration results in light of recent (and a few older)
theoretical results which are part of the effort to classify S-rings.

2 Preliminaries

Schur rings were introduced by I. Schur in 1933 ([13]), and were later developed
by H. Wielandt ([15]).

Recall that the group ring C[H] consists of all formal linear combinations of
elements of the group H with coefficients from the field C.

V.P. Gerdt et al. (Eds.): CASC Workshop 2014, LNCS 8660, pp. 491–500, 2014.
c© Springer International Publishing Switzerland 2014

492 M. Ziv-Av

A Schur ring over the group H is a subring A of the group ring C[H] such
that there exists a partition P of H satisfying:

1. P is a basis of A (as a vector space over C).
2. {e} ∈ P , where e is the identity element of H .
3. X−1 ∈ P for all X ∈ P .

Here, for a subset X of H we define X−1 = {g−1|g ∈ X} and X =
∑

x∈X 1 · x,
while for a set of subsets T we define T = {X|X ∈ T }.

Let (G,Ω) be a permutation group and H a regular subgroup of G. Then
Ω may be identified with H . The stabilizer Ge of the identity element e ∈ H
defines an S-ring over H (see [15]). We denote this S-ring by V (G,H).

An S-ring A is called Schurian if it is equal to V (G,H) for a suitable overgroup
(G,H) of a regular group (H,H). A group H is called a Schur group if all S-rings
over H are Schurian. Schur [13] conjectured that all groups are Schur groups,
or in other words, all S-rings are Schurian. The first examples of non-Schurian
S-rings were presented by Wielandt together with the history of their discovery
in [15].

Let H be a group and S a subset of H . The Cayley graph Cay(H,S) = (H,R)
is a graph with vertex set H and with arc set R = {〈x, sx〉|x ∈ H, s ∈ S}. A
Cayley graph Cay(H,S) is undirected if S = S−1 and is connected if H = 〈S〉.

A color graph is a pair (Ω,R), where R = {Ri|i ∈ I} is a partition of Ω2.
Let (X,R = {R1, . . . , Rr}) be a color graph such that:

CC1 ∀i ∈ [1, r]∃i′ ∈ [1, r]R′
i = Ri′ , where R′

i = {(y, x)|(x, y) ∈ Ri};

CC2 ∃I ′ ⊆ [1, r]
⋃
i∈I′

Ri = Δ, where Δ = {(x, x)|x ∈ X};

CC3 ∀i, j, k ∈ [1, r]∀(x, y) ∈ Rk|{z ∈ X |(x, z) ∈ Ri ∧ (z, y) ∈ Rj}| = pkij ,

then m = (X,R) is called a coherent configuration. The relations in R are called
basic relations of m. If R = {R0, . . . , Rr} are the basic relations of a coherent
configuration m, then the graphs Γi = (X,Ri) are called basic graphs of m, and
their adjacency matrices Ai = A(Γi) are called basic matrices of m.

If c1 and c2 are coherent configuration over the same set X , such that each
basic relation of c1 is a union of basic relations of c2, then c1 is a merging (or
fusion) of c2.

An association scheme is a coherent configuration with Δ as a basic relation.
Let A be an S-ring over group H , A = {T0, T1, . . . , Ts}, where T0 = {e},

T1, . . . , Ts are the basic sets of A. It follows from the definitions that Ti · Tj =∑s
k=0 p

k
ijTk for suitable non-negative integers pkij , 0 ≤ i, j, k ≤ s. The num-

bers pkij are called structure constants of A. We also associate with A the color
graph m = (H,Ri), where for 0 ≤ i ≤ s, Ri is the arc set of the Cayley graph
Cay(H,Ti). This color graph is an association scheme. In particular, an associ-
ation scheme that has this form is called a translation association scheme. We
say that the rank of m is equal to s+ 1. An AS is called symmetric if each basic
relation is symmetric. It is called commutative if pkij = pkji for all i, j, k ∈ [1, r].
It is called primitive if all basic graphs (except for the one that only has loops)
are connected.

Enumeration of Schur Rings Over Small Groups 493

The structure constants of the AS (also called intersection numbers) coincide
with the structure constants of the corresponding S-ring.

Enumeration of the S-rings over a given group is a special case of the enumer-
ation of mergings of an AS and even more generally of a coherent configuration.

The coherent closure of a graph Γ = (V,E), see [7] for details, is the smallest
rank coherent configuration m that E is a union of basic relations of m. Similarly
the coherent closure of a color graph c is the smallest rank coherent configuration
m that each basic relation of c is a union of relations of m.

For a given coherent configuration c we can also consider the closure of a
partition of the relations of c. This is the closure of the color graph generated
from c by uniting the basic relations in each cell of the partition. The coherent
closure of such a partition is necessarily a merging of c.

The Weisfeiler-Leman algorithm [14] is an efficient (polynomial time) algo-
rithm for the calculation of the coherent closure of a graph, or equivalently, of
a partition of basic relations of a given coherent configuration. The algorithm
works by repeatedly calculating products of elements of a putative coherent con-
figuration and splitting the scheme further according to the result. When it is
not split any more, the result is indeed a coherent configuration.

If an association scheme is the coherent closure of a graph (necessarily a union
of basic graphs of the scheme), we say that it is generated by this graph, and
the scheme is called coherently cyclic. If the arc set of the generating graph is
a basic relation, then we say that the scheme is strictly coherently cyclic. If the
basic graphs of a strictly coherently cyclic association scheme m are the distance
graphs of its generating graph Γ , then m is called a metric association scheme,
while Γ is called a distance regular graph [1].

3 Description of the Algorithms

A naive algorithm for enumerating the mergings of an association scheme consists
of simple consideration of all partitions of its index set, and checking which of
those are coherent mergings.

A major improvement for this algorithm was introduced in COCO [3]. Instead
of considering all sets of basic relations, only good sets are considered. A good
set is a set that is not split by a single step of the WL algorithm. In other words,
a set of indexes {i1, . . . , ik} is good if the coefficient of each Aij in the product

(Ai1 + · · · +Aik)
2

is the same. Then, instead of considering all partitions, only
partitions into good sets need to be considered.

Another approach uses the WL algorithm for the enumeration. Starting with
the trivial partition into two sets, we split each cell of a given partition in every
possible way into two good sets, and calculate the coherent closure of this par-
tition. If the closure is a new merging, we add it to the list, and run the same
steps on this new merging.

COCO-II initiative (due to C. Pech and S. Reichard, see [7]) improves further
on this by running the complete WL algorithm for each good set, making sure
it is indeed a basic set of a merging.

494 M. Ziv-Av

Each of the two algorithms has two stages: the first is the enumeration of
good sets, and the second is the search of partitions made from those good sets.

We optimized the first stage of the COCO-II algorithm by considering all
candidate sets in an order such that the difference between two consecutive
sets is in at most one element. This allows us to calculate the squares of the
form (Ai1 + · · · +Aik)

2
more efficiently, by requiring only O(k) multiplications,

instead of O(k2).
We optimized the second stage by stopping the WL stabilization when we can

be sure that no new scheme will result, or when we can be sure that if a new
scheme results, this scheme will also result in another, faster way.

As implementation details, we note that COCO is written in C, while COCO-
II is written in GAP ([4]. The advantage of GAP is its easy handling of groups,
allowing for some reduction in the number of calculations needed by considering
orbits of some types of automorphism groups. The disadvantage is that as an
interpreter language it is relatively slow for some basic operations.

We implemented the first stage of the calculation (the search for good sets)
in C, and the second stage in GAP. In addition, since the second stage includes
repeated WL stabilizations of the same partitions, as well as multiplications of
the same sets, we cache results of multiplications and stabilizations.

3.1 The Algorithm for the Symmetric Step of the First Stage

The basic candidates for symmetric good sets are either symmetric relations
of the coherent configuration, or unions of an anti-symmetric relation with its
transpose. Every set of basic candidates is a candidate for a good set, therefore
for n basic candidates we have 2n candidates.

If we pre-calculate a new tensor, we save a bit on calculations. We save further
by pre-calculating all products of the form (Bi+Bj)Bk, thus saving a bit of time
when calculating products of the form (Bi1 + · · · +Bik)Bj .

Calculating the next set in a sequence that ensures the symmetric differ-
ence is a singleton is equivalent to calculating a Hamiltonian cycle in the n-
dimensional cube. Indeed, the n-dimensional cube is a graph with subsets of a

Data: Tensor of structure constants of a coherent configuration
Result: Symmetric good sets
calculate 3-dimensional symmetrized tensor
start with the empty set
while not at last set do

calculate next set
calculate square of next set
if square does not split set and set is not split by WL stabilization then

Output set
end

end

Algorithm 1. Enumeration of symmetric good sets

Enumeration of Schur Rings Over Small Groups 495

set of size n as vertices, and edge connecting two sets if their symmetric difference
is of size one.

As was mentioned above, when calculating the square, we reduce the number
of calculations needed by utilizing the square of the previous set, and the identity(

Bi1 + · · · +Bik+1

)2
= (Bi1 + · · · +Bik)2 + (Bi1 + · · · +Bik)Bik+1

+

+Bik+1
(Bi1 + · · · +Bik) +B2

ik+1

The WL stabilization is not completed in case the tested set is split, since we
only need to know if it is split.

3.2 The Algorithm for the Anti-symmetric Step of the First Stage

Here the basic candidates are the anti-symmetric relations. For every pair of an
anti-symmetric relation and its transpose we have three options: taking none
of them, taking one, or taking the other. Therefore for n pairs, we have 3n

candidates.
We implement a simple depth-first search in a ternary search tree, which again

allows us to reduce the calculations needed for calculating the squares.

calculate 3-dimensional tensor
prepare list of pairs of anti-symmetric relations
DFS(empty set, 0, 0)

Function DFS() is
Data: a set, the square of the set and a position in the list of

anti-symmetric relations
if beyond end of list then

return
else

add relation to set
calculate square
if square does not split set and set is not split by WL stabilization then

Output set
end
DFS(new set, new square, next position)
add transpose relation to original set
calculate square
if square does not split set and set is not split by WL stabilization then

Output set
end
DFS(new set, new square, next position)
DFS(original set, original square, next position)

end

end

Algorithm 2. Enumeration of anti-symmetric good sets

496 M. Ziv-Av

3.3 Performance Comparison with COCO-II

COCO-II takes 942 seconds to calculate S-rings over all the 88 groups of orders
between 5 and 31. Our program takes 158 seconds, running about six times
faster.

For the four groups of order 44, COCO-II took 18:48, 24:34, 9:47 and 6:56
hours, while our program took 26:32, 48:57 258:12 and 18:21 minutes (the times
are on different, but comparable systems), running about 10 times faster.

For the larger groups we ran the new program in parallel on a few systems,
and we did not measure exact times.

COCO-II takes about one month to calculate all S-rings over the group A5 of
order 60, while our program takes about 20 hours (less than 1 hour on 30 CPU
cores).
AGL1(8) of order 56 took about two months with COCO-II, and about 30

hours with our programs.
Based on these, we extrapolated COCO-II to take about four years for the

non-abelian group of order 55. Our program took about 500 hour (about 5 hours
on 100 CPU cores).

For those larger groups, the new program runs from 25 to 70 times faster.

4 Computer Results

The results consist of enumeration of all S-rings over the groups of order up to
63.

The total numbers of S-rings over groups of each order, up to isomorphism
(as association schemes) are presented in Table 1. Considering isomorphism as
association schemes means that two S-rings over different groups (necessarily of
the same order) may be isomorphic. In the third column is the number of non-
Schurian S-rings for each order. The number in the fourth column is the number
of strictly coherently cyclic S-rings for each order.

The number of non-Schur groups of each order appears in Table 2. Only orders
for which non-Schurian S-rings exist are listed. The groups are also divided into
abelian and non-abelian groups.

Primitive S-rings are of a special interest. Of the discovered S-rings, there are
135 primitive S-rings of rank at least 3 and not prime order. Among them, 88 are
rank 3 symmetric S-rings, that is, they correspond to primitive strongly regular
graphs. Two are rank 3 anti-symmetric S-rings (corresponding to doubly regular
tournaments), both of order 27.

The remaining 45 primitive S-rings over 15 different groups of orders 16, 21,
25, 27, 49, 55, 56 and 60 have ranks from 4 to 13.

There are 9 non-Schurian primitive S-rings. One of them is over the group
ZZ4 ×ZZ4 and has rank 4. Another is over the group ZZ2 ×D8 also having rank
4. The other 7 S-rings are over ZZ7 × ZZ7, with ranks 4 and 5.

Enumeration of Schur Rings Over Small Groups 497

Table 1. Number of S-rings for each order (nS-non Schurian, scc-strictly coherently
cyclic)

Ord # nS scc

3 2 0 2

4 4 0 3

5 3 0 3

6 8 0 7

7 4 0 4

8 21 0 11

9 12 0 8

10 11 0 10

11 4 0 4

12 58 0 29

13 6 0 6

14 16 0 14

15 21 0 17

16 204 9 39

17 5 0 5

Ord # nS scc

18 91 1 33

19 6 0 6

20 83 0 39

21 32 0 25

22 16 0 14

23 4 0 4

24 654 23 110

25 36 4 18

26 22 0 21

27 123 1 45

28 111 0 48

29 6 0 6

30 185 0 68

31 8 0 8

32 4212 553 159

Ord # nS scc

33 27 0 21

34 17 0 16

35 41 0 29

36 1259 73 168

37 9 0 9

38 23 1 21

39 44 0 33

40 936 31 154

41 8 0 8

42 293 3 108

43 8 0 8

44 107 0 44

45 245 0 71

46 16 1 14

47 4 0 4

Ord # nS scc

48 16426 3309 485

49 93 35 32

50 237 27 70

51 35 0 27

52 169 2 77

53 6 0 6

54 2020 276 186

55 48 0 35

56 1271 46 198

57 43 1 32

58 21 0 20

59 4 0 4

60 2780 47 341

61 12 0 12

62 32 1 30

63 385 10 119

Table 2. Number of non-Schur groups of each order

Ord nA+nS nA+S A+nS A+S total

16 7 2 2 3 14

18 2 1 0 2 5

24 11 1 0 3 15

25 0 0 1 1 2

27 2 0 0 3 5

32 1 43 4 3 51

36 1 9 1 3 14

38 1 0 0 1 2

40 10 1 0 3 14

42 5 0 0 1 6

Ord nA+nS nA+S A+nS A+S total

46 1 0 0 1 2

48 47 0 3 2 52

49 0 0 1 1 2

50 2 1 1 1 5

52 2 1 0 2 5

54 11 1 0 3 15

56 10 0 0 3 13

57 1 0 0 1 2

60 9 2 0 2 13

62 1 0 0 1 2

63 1 1 0 2 4

A group H is called a B-group if there exists no non-trivial primitive S-ring
over H . Table 3 lists the non-B-groups of order up to 63 (ignoring groups of
prime order). The number in the column headed by # is the number of the
group in the small groups library of GAP.

498 M. Ziv-Av

Table 3. non-B-groups of order up to 63

Ord # Structure

9 2 E9

16 2 C4 x C4

16 3 (C4 x C2) : C2

16 4 C4 : C4

16 6 C8 : C2

16 8 QD16

16 10 C4 x C2 x C2

16 11 C2 x D8

16 14 E16

21 1 C7 : C3

25 2 E25

27 3 (C3 x C3) : C3

27 4 C9 : C3

27 5 E27

Ord # Structure

36 6 C3 x (C3 : C4)

36 9 (C3 x C3) : C4

36 10 S3 x S3

36 11 C3 x A4

36 12 C6 x S3

36 13 C2 x ((C3 x C3) : C2)

36 14 E36

49 2 E49

55 1 C11 : C5

56 11 AGL1(8)

57 1 C19 : C3

60 5 A5

60 6 C3 x (C5 : C4)

60 7 C15 : C4

60 9 C5 x A4

5 Comparison with Other Calculations and with
Theoretical Results

Hanaki and Miyamoto [5] enumerated all association schemes of order up to 34.
This includes all S-rings. Pech and Reichard [11] enumerated all S-rings over
groups of order up to 47. Our results coincide with both of those.

In [8] we presented the results of computer enumeration of S-rings over A5

and AGL1(8) in more details.
Muzychuk [10] classified (on a theoretical level) all primitive S-rings over A5,

showing exactly two such S-rings exist. Our enumeration agrees with his results.
If an abelian group which is neither cyclic nor elementary abelian is Schur

then it is in one of nine families [2]:

– ZZ2 × ZZ2k , ZZ2p × ZZ2k , E4 × ZZpk , E4 × ZZpq, E16 × ZZp

– ZZ3 × ZZ3k , ZZ6 × ZZ3k , E9 × ZZq, E9 × ZZ2q.

(p, q are distinct primes, p �= 2, k ≥ 1).
In addition, any group of the form E4 × ZZp (p an odd prime) is Schur.
Our enumeration shows that every group of order up to 63 which is in one of

those nine families is a Schur group.
There are fewer theoretical results for non-abelian groups. One such result

states that for a prime p > 11 such that p ∼= 3 (mod 4) there exists a non-
Schurian S-ring of rank 4 over the dihedral group of order 2p [12].

Our enumeration shows that for all primes p ≤ 31, the only non-Schurian
S-rings over D2p are the ones above.

Enumeration of Schur Rings Over Small Groups 499

For a groupH , a subsetD ⊆ H is a (v, k, λ, μ)-partial difference set ifDD−1 =
k{e} + λD \ {e} + μ(H \D) \ {e}.

The existence of such a nontrivial set over a group G is equivalent to existence
of a primitive rank 3 symmetric S-ring over G.

In [6] there is a list of small groups over which a partial difference set exists.
Our results agree with the results in [6].

6 Concluding Remarks

While computer assisted proofs are generally accepted in Mathematics, errors
in calculations may happen, even when the algorithm itself is correct. For that
reason it is always better to have two different implementations of the algorithm,
or two different algorithms, agreeing on the results (Lam principle [9]). In that
light, since our implementation is completely different from COCO-II, then the
enumeration of S-rings over groups of order up to 47 can be considered safe, but
for groups of orders 48 to 63, we still have only the results of a single program.

For the groups of order 64 (especially for E64) an innovative approach is
necessary, as the current algorithms cannot finish the calculations in a reasonable
time.

While we presented some statistical information for the discovered S-rings,
more can be computed, such as the number of coherently cyclic S-rings and the
number of metric S-rings.

In Table 1 we counted isomorphism classes of association schemes. We can
also consider the isomorphism classes in more details, counting the number of
association schemes in each class. Other interesting information is the num-
ber of Cayley isomorphism classes inside each isomorphism class of association
schemes. Here, a Cayley isomorphism is an isomorphism that takes into account
the underlying group

The reader is invited to download the list of all S-rings (in GAP format) at
[16].

Acknowledgments. I would like to thank M. Klin, for initiation of this enu-
meration project, and for the help he provided with the preparation of this text.

I also acknowledge C. Pech and S. Reichard for their work on COCO-II, and
for letting me use of preliminary versions of this package.

I thank the anonymous reviewers for their comments which helped me to
improve this text.

References

1. Brouwer, A.E., Cohen, A.M., Neumaier, A.: Distance Regular Graphs. Springer,
Berlin (1989)

2. Evdokimov, S., Kovács, I., Ponomarenko, I.: On schurity of finite abelian groups.
arXiv:1309.0989

500 M. Ziv-Av

3. Faradžev, I.A., Klin, M.H.: Computer package for computations with coherent
configurations. In: Proc. ISSAC 1991, pp. 219–223. ACM Press, Bonn (1991)

4. http://www.gap-system.org

5. Classification of association schemes with small vertices,
http://math.shinshu-u.ac.jp/~hanaki/as/

6. Heinze, A.: Applications of Schur Rings in Algebraic Combinatorics: Graphs, Par-
tial Difference Sets and Cyclotomic Schemes. Ph.D thesis. Department of Mathe-
matics, Carl von Ossietzky University of Oldenburg, Germany (2001)

7. Klin, M., Muzychuk, M., Ziv-Av, M.: Higmanian rank-5 association schemes on 40
points. Michigan Math. J. 58(1), 255–284 (2009)

8. Klin, M., Ziv-Av, M.: Enumeration of Schur Rings over the Group A5. In:
Gerdt, V.P., Koepf, W., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2013. LNCS,
vol. 8136, pp. 219–230. Springer, Heidelberg (2013)

9. Lam, C.W.H.: The Search for a Finite Projective Plane of Order 10. American
Mathematical Monthly 98(4), 305–318 (1991)

10. Muzychuk, M.E.: Structure of primitive S-rings over group A5. In: VIII All-Union
Symposium on Group Theory, Kiev, pp. 83–84 (1982)

11. Pech, C., Reichard, S.: m Enumerating Set Orbits. In: Klin, M., et al. (eds.) Algo-
rithmic Algebraic Combinatorics and Gröbner Bases, pp. 31–65. Springer, Heidel-
berg (2009)

12. Ponomarenko, I., Vasil’ev, A.: On non-abelian Schur groups,
http://math.nsc.ru/~vasand/Papers_eng/NaScRing.pdf

13. Schur, I.: Zur Theorie der einfach transitiven Permutationsgruppen. Sitzungsber.
Preuss. Akad. Wiss., Phys.-Math. Kl., 598–623 (1933)

14. Weisfeiler, B.J., Leman, A.A.: A reduction of a graph to a canonical form and an
algebra arising during this reduction. Nauchno - Technicheskaja Informatsia 9(Seria
2), 12–16 (1968) (Russian)

15. Wielandt, H.: Finite Permutation Groups. Acad. Press, New York (1964)
16. http://my.svgalib.org/s-rings/wschur.tar.gz

http://www.gap-system.org
http://math.shinshu-u.ac.jp/~hanaki/as/
http://math.nsc.ru/~vasand/Papers_eng/NaScRing.pdf
http://my.svgalib.org/s-rings/wschur.tar.gz

Author Index

Abramov, Sergei A. 1

Barkatou, Moulay A. 1
Beketauov, Baglan A. 373
Berghammer, Rudolf 13
Boulier, François 28
Bradford, Russell 44

Caravantes, Jorge 59
Chen, Changbo 44
Cheng, Jin-San 74
Chuluunbaatar, Ochbadrakh 138, 472
Costin, Iulia 85

Davenport, James H. 44
Derbov, Vladimir L. 138, 472
Drozdov, Grigoriy M. 99

El-Harake, Khalil 388
England, Matthew 44

Fioravanti, Mario 59

Gemayel, Karl 388
Gerdt, Vladimir P. 324
Gonzalez–Vega, Laureano 59
Góźdź, Andrzej 138, 472
Grasegger, Georg 111
Grolet, Aurelien 121
Gusev, Alexander A. 138, 472
Gyürki, Štefan 155

Hai, Luong Le 138, 472
Haque, Sardar Anisul 171
Hashemi, Amir 186
Hauenstein, Jonathan D. 202

Inaba, Daiju 403
Irtegov, Valentin 218

Janowicz, Maciej 230
Jin, Kai 74

Kako, Fujio 403
Kitamoto, Takuya 242

Klin, Mikhail 155
Korovin, Konstantin 256
Korporal, Anja 28
Košta, Marek 256
Kozera, Ryszard 271
Krassovitskiy, Pavel 472
Kycia, Rados�law Antoni 286

Lastra, Alberto 111
Lemaire, François 28
Lyakhov, Dmitry A. 324

Malbos, Philippe 121
Mansouri, Farnam 171
Michels, Dominik L. 324
Minglibayev, Mukhtar Zh. 373
Moreno Maza, Marc 44, 171
Müller, Stefan 302

Necula, Ioana 59
Noakes, Lyle 271

Or�lowski, Arkadiusz 230

Pan, Victor Y. 202, 335
Paramonov, Sergey V. 350
Perruquetti, Wilfrid 28
Plaskota, Leszek 357
Poteaux, Adrien 28
Prokopenya, Alexander N. 373

Regensburger, Georg 302
Rostovtsev, Vitaly A. 138

Salem, Fatima K. Abu 388
Sasaki, Tateaki 403
Schweinfurter, Michael 186
Seiler, Werner M. 186
Sendra, J. Rafael 111
Sevastyanov, Anton L. 419
Sevastyanov, Leonid A. 419
Shapeev, Vasily P. 99, 432
Shibuta, Takafumi 447
Sobottka, Gerrit A. 324
Ştefănescu, Doru 460

502 Author Index

Sturm, Thomas 256

Szanto, Agnes 202

Szmielew, Piotr 271

Tajima, Shinichi 447

Thouverez, Fabrice 121

Titorenko, Tatyana 218

Toader, Gheorghe 85

Tyutyunnik, Anastasiya A. 419

Ushirobira, Rosane 28

Vinitsky, Sergue I. 138, 472
Vorozhtsov, Evgenii V. 432

Weber, Andreas G. 324
Wilson, David 44
Winkler, Franz 111

Ziv-Av, Matan 491

	Preface
	Organization
	Table of Contents
	Computable Infinite Power Series in the Roleof Coefficients of Linear Differential Systems
	1 Introduction
	2 Preliminaries
	2.1 Differential Universal and Adequate Field Extensions
	2.2 Universal Differential Extension of Formal Laurent Series Field
	2.3 Row Frontal Matrix and Row Order

	3 WhenK Is a Constructive Field
	3.1 The Dimension of the Solution Space of a Given Full Rank System
	3.2 Recognizing the Unimodularity of an Operator and Computing the Inverse Operator

	4 When the Zero Testing Problem in K Is Undecidable
	5 Computable Power Series
	5.1 Semi-constructive Fields
	5.2 Systems with Computable Power Series Coefficients
	5.3 On Formal Exponential-Logarithmic Solutions

	References

	Relation Algebra, RelView, and Plurality Voting
	1 Introduction
	2 Relation-Algebraic Preliminaries
	3 Relation-Algebraic Models of Plurality Voting
	4 Relation-Algebraic Solution of Hard Control Problems
	5 Implementation in RelView
	6 Assessment of the Approach and Concluding Remarks
	References

	An Algorithm for Converting NonlinearDifferential Equations to Integral Equationswith an Application to Parameter Estimationfrom Noisy Data
	1 A Parameter Estimation Method
	1.1 Problem Formulation
	1.2 The Input-Output Equations
	1.3 Method, Implementation and Results

	2 Basic Notions of Differential Algebra
	3 Improvements of the integrate Algorithm
	4 Two Algorithms for Computing Integral Equations
	5 Conclusion
	References

	Truth Table Invariant Cylindrical AlgebraicDecomposition by Regular Chains
	1 Introduction
	1.1 Background on CAD
	1.2 Truth Table Invariant CAD
	1.3 CAD by Regular Chains
	1.4 Contribution and Outline

	2 Algorithm
	2.1 Constructing a Complex Cylindrical Tree
	2.2 Illustrating the Computational Flow
	2.3 Refining to a TTICAD

	3 Comparison with Prior Work
	3.1 Comparing with Sign-invariant CAD by Regular Chains
	3.2 Comparing with TTICAD by Projection and Lifting

	4 Experimental Results
	5 Conclusions and Further Work
	References

	Computing the Topology of an Arrangementof Implicit and Parametric CurvesGiven by Values
	1 Introduction
	2 Preliminaries
	2.1 The Bezoutian
	2.2 Generalized Eigenvalue Problem Associated to a Matrix Polynomial

	3 Arrangements of Real Algebraic Plane Curves
	3.1 Arrangements of Implicit Curves
	3.2 Arrangements of Parametric Curves
	3.3 Example

	4 Conclusions and Ongoing Work
	References

	Finding a Deterministic Generic Positionfor an Algebraic Space Curve
	1 Introduction
	2 Definitions and Theoretical Results
	3 The Algorithms for Finding a (Weak) Generic Position of an Algebraic Space Curve
	4 Conclusion
	References

	Optimal Estimations of Seiffert-Type Means BySome Special Gini Means
	1 Introduction
	2 Estimations by Lehmer Means
	3 Estimations by Other Special Gini Means
	4 Applications
	References

	CAS Application to the Constructionof High-Order Difference Schemes for SolvingPoisson Equation
	1 Introduction
	2 Problem Statement and Description of the Method
	3 CAS Application
	4 Schemes Formulae
	5 NumericalExperiments
	6 Conclusions
	References

	On Symbolic Solutions of Algebraic PartialDifferential Equations
	1 Introduction
	2 Preliminaries
	3 A Method for Solving First-Order Autonomous APDEs
	4 Conclusion
	References

	Eigenvalue Method with Symmetry and Vibration Analysis of Cyclic Structures
	1 Introduction
	2 Dynamic System and Periodic Solutions
	2.1 System of Interest
	2.2 Harmonic Balance Method
	2.3 Equations to Be Solved

	3 Solving Multivariate Polynomial Systems
	3.1 Notation and Gröbner Basis
	3.2 Multiplication Matrices Method
	3.3 Introducing Symmetry

	4 Numerical Applications
	4.1 Simple Example with 2 Degrees of Freedom
	4.2 Simple Example with 4 Degrees of Freedom
	4.3 NNM Analysis for 3≤ N ≤ 6

	5 Discussion, Conclusion
	References

	Symbolic-Numerical Solution of Boundary-Value Problems with Self-adjoint Second-Order Differential Equation Using the Finite Element Method with Interpolation Hermite Polynomials
	1 Introduction
	2 Formulation of BVPs
	3 FEM Generation of Algebraic Problems
	3.1 Interpolation Hermite Polynomials
	3.2 Generation of Algebraic Eigenvalue Problems

	4 Benchmark Calculations
	4.1 Modified P¨oschl–Teller Potential
	4.2 Rectangular Well Potential

	5 Conclusion
	A Algorithm 1. Generation of IHPs
	B Algorithm 2: FEM Generation of Algebraic Eigenvalue Problem
	References

	Sporadic Examples of DirectedStrongly Regular Graphs Obtained ByComputer Algebra Experimentation
	1 Introduction
	2 Preliminaries
	2.1 General Concepts
	2.2 Strongly Regular Graphs
	2.3 Directed Strongly Regular Graphs
	2.4 Coherent Configurations and Association Schemes

	3 General Approach to the Computer Experimentation
	3.1 Main Methodology
	3.2 Computer Tools
	3.3 Sources for Association Schemes

	4 Unions of Relations in Association Schemes
	4.1 Search Using Catalogue of Small Association Schemes
	4.2 Actions of Group of Automorphisms of Graphs
	4.3 Actions of Group of Automorphisms of Combinatorial Designs

	5 New Sporadic Examples as Cayley Digraphs
	5.1 Cayley Digraphs on 32 Vertices
	5.2 Cayley Digraphs on 39 Vertices

	6 Conclusion and Summary
	References

	On the Parallelization of Subproduct TreeTechniques Targeting Many-Core Architectures
	1 Introduction
	2 Background
	3 Subproduct Tree Construction
	4 Subinverse Tree Construction
	5 Polynomial Evaluation
	6 Polynomial Interpolation
	7 Experimentation
	8 Conclusion
	References

	Deterministically Computing ReductionNumbers of Polynomial Ideals
	1 Introduction
	2 Reduction Numbers and the Generic Initial Ideal
	3 Some Generalised Notions of Stability
	4 WeakD-Stability for Polynomial Ideals
	5 Computing the Absolute Reduction Number
	6 Big Reduction Numbers and Gr¨obner Systems
	References

	A Note on Global Newton Iteration OverArchimedean and Non-Archimedean Fields
	1 Introduction
	1.1 Related Work

	2 Preliminaries
	3 Global Newton Iteration
	3.1 Non-Archimedean Global Newton iteration
	3.2 First Construction
	3.3 Second Construction

	4 Example: A Cubic-Centered 12-Bar Linkage
	5 Parallel Complexity
	5.1 Parallel Complexity of the First Construction from the Roots
	5.2 Parallel Complexity of the Second Construction Using Modular Arithmetics

	References

	Invariant Manifolds in the Classic andGeneralized Goryachev–Chaplygin Problem
	1 Introduction
	2 Formulation of the Problem
	3 Finding Invariant Manifolds
	3.1 The Invariant Manifolds of the Generalized Goryachev– Chaplygin Problem
	3.2 The Invariant Manifolds of the Classic Goryachev–Chaplygin Problem
	3.3 Second-Level Invariant Manifolds

	4 About Motions on the Invariant Manifolds and Their Stability
	4.1 About Stationary Solutions and Their Stability

	5 Conclusion
	References

	Coherence and Large-Scale Pattern Formationin Coupled Logistic-Map Lattices via ComputerAlgebra Systems
	1 Introduction
	2 The Model
	3 Similarity to Bose-Condensed Systems
	4 Large-Scale Pattern Formation
	5 Concluding Remarks
	References

	On the Computation of the Determinantof a Generalized Vandermonde Matrix
	1 Introduction
	2 Notations
	3 Computation of the Determinant
	3.1 Problem Formulation
	3.2 Algorithm
	3.3 Numerical Example
	3.4 Conditions for Det(M)=0

	4 Complexity Analysis
	5 NumericalExperiments
	6 Conclusion
	References

	Towards Conflict-Driven Learning for Virtual Substitution
	Introduction
	A Quick Introduction to Virtual Substitution
	A Basic Calculus
	States
	Rules
	Soundness
	Completeness
	Complexity

	An Enhanced Calculus
	Soundness
	Completeness
	Complexity

	Computational Experiments and Conclusions

	Sharpness in Trajectory Estimation for PlanarFour-points Piecewise-Quadratic Interpolation
	1 Introduction
	2 Problem Formulation and Motivation
	2.1 Quadratics Interpolating Planar Quadruples of Points

	3 Experiments
	3.1 Curves and Sampling
	3.2 Analytical Construction of Interpolant
	3.3 Sharpness of Th. 1 via Symbolic Computation
	3.4 Sharpness of Th. 1 via Numerical Computations
	3.5 Counterexamples

	4 Four-Points Quadratics with Inflection Points
	5 Conclusion
	References

	Scheme for Numerical Investigation of MovableSingularities of the Complex Valued Solutionsof Ordinary Differential Equations
	1 Introduction
	2 The Definition of the Problem and Its Solution
	3 Examples
	3.1 The Emden–Fowler Equation
	3.2 Electrochemical Reaction Equation

	4 General Discussion and Prospects for Future
	5 Conclusions
	References

	Generalized Mass-Action Systemsand Positive Solutions of Polynomial Equationswith Real and Symbolic Exponents(Invited Talk)
	1 Introduction
	2 Running Example
	3 Generalized Mass Action Systems
	4 Graph Laplacian
	5 Binomial Equations for Complex Balancing Equilibria
	6 Binomial Equations with Real and Symbolic Exponents
	7 Kinetic Deficiency
	8 Computing Complex Balancing Equilibria
	9 Generalized Birch’s Theorem
	10 Sign Vectors and Oriented Matroids
	11 Multistationarity
	References

	Lie Symmetry Analysis for Cosserat Rods
	1 Introduction
	1.1 Specific Contributions

	2 Special Cosserat Theory of Rods
	2.1 Equations of Motion
	2.2 Constitutive Relations
	2.3 Material Laws
	2.4 System of Governing Equations

	3 Lie Symmetry Analysis
	3.1 Problem Setting
	3.2 Infinitesimal Criterion of Invariance
	3.3 Solving Determining Equations
	3.4 Lie Group of Point Symmetry Transformations
	3.5 General Solution

	4 Conclusion and Future Work
	References

	Real Polynomial Root-Finding by Meansof Matrix and Polynomial Iterations
	1 Introduction
	2 Basic Results for Polynomials
	3 Root-Finding as Eigen-Solving and Basic Results for Matrix Computations
	3.1 Companion Matrix, Its Maps, and Maps of Its Eigenvalues
	3.2 Some Fundamental Matrix Computations
	3.3 Eigenspaces and Eigenvalues
	3.4 Some Maps in the Frobenius Matrix Algebra

	4 Real Root-Finders
	4.1 M¨obius Iteration
	4.2 Adjusted Matrix Sign Iteration
	4.3 Adjusted Modular Square Root Iteration

	5 Cayley Map and Root-Squaring
	6 NumericalTests
	References

	On Testing Uniqueness of Analytic Solutionsof PDE with Boundary Conditions
	1 Introduction
	2 ProblemZC
	3 Undecidability of Problem ZC
	4 Undecidability of Problem ZC with Fixed Order of Equation and Number of Variables
	5 Uniqueness of Analytic Solutions
	References

	Continuous Problems:Optimality, Complexity, Tractability(Invited Talk)
	1 Introduction
	2 Basics ofIBC
	3 Some General Results
	4 Univariate Integration
	4.1 Smooth Functions
	4.2 Singular Functions

	5 Multivariate Integration and Tractability
	5.1 Smooth Functions
	5.2 Monte Carlo
	5.3 Quasi-Monte Carlo

	References

	On Integrability of Evolutionary Equationsin the Restricted Three-Body Problemwith Variable Masses
	1 Introduction
	2 Evolutionary Equations
	3 Integration of the Evolutionary Equations
	3.1 Case N = 5/2
	3.2 Case N > 5/2
	3.3 Case < 5/2

	4 Mass Variations
	5 Conclusion
	References

	Factoring Sparse Bivariate Polynomials Using the Priority Queue
	1 Introduction
	2 Background
	2.1 Classical Hensel Lifting
	2.2 Factoring Bivariate Polynomials Using Polygons

	3 Revised Analysis in Sparse Distributed Represenation
	4 Overlapping Computations Using a Priority Queue
	5 Experimental Results
	6 Conclusion
	References

	Solving Parametric Sparse Linear Systemsby Local Blocking
	1 Introduction
	2 Toy Examples and Degenerating Factor
	3 An Overview of Block Triangularization
	4 Local Blocking of a Block of BT Matrix
	4.1 Definitions
	4.2 Terminology for Graph Handling
	4.3 Computing SCsubGs Satisfying Some Restrictions
	4.4 Implementation

	5 Solving PSLSs by Local Blocking
	5.1 Forming Characteristic Systems
	5.2 Actual Method for PSLS Solving

	6 Application to a Simple PSLS
	7 Concluding Remarks and Acknowledgment
	References

	Analytical Calculations in Maple to Implementthe Method of Adiabatic Modes for ModellingSmoothly Irregular Integrated OpticalWaveguide Structures
	1 Introduction
	2 The Concept of the Method of Adiabatic Waveguide Modes
	3 Basic Equations for an Analysis of Adiabatic Waveguide Modes
	4 Implementation of the Method of Adiabatic Waveguide Modes to Describe the Eigenvalue and Eigenmode
	5 Analytical Calculations for the First Problem
	6 Calculation of the Adiabatic Waveguide Modes in the Delphi Package
	7 Conclusion
	References

	CAS Application to the Constructionof the Collocations and Least Residuals Methodfor the Solution of the Burgers and Korteweg–deVries–Burgers Equations
	1 Introduction
	2 Description of the CLR Method
	2.1 Statements of Problems
	2.2 Local Coordinates and Basis Functions
	2.3 Derivation of the Overdetermined System of Collocation Equations and Matching Conditions
	2.4 Application of CAS for Generating the Fortran Subroutines of the Numerical Solution of the Problem

	3 Results of Numerical Computations
	4 Conclusions
	References

	An Algorithm for Computing the TruncatedAnnihilating Ideals for an Algebraic LocalCohomology Class
	1 Introduction
	2 Preliminaries
	2.1 Local Cohomology Modules
	2.2 Matlis Duality
	2.3 Standard Basis

	3 TheInvariantμ
	4 Matlis Dual and Standard Basis
	5 Algorithm for Computing
	5.1 In the Case of k=1
	5.2 In the Case of k ≥ 2
	5.3 Algorithm

	6 The Size of the Matrix Appearing in Algorithm 1
	7 Example
	References

	Applications of the Newton Indexto the Construction of Irreducible Polynomials
	1 Introduction
	2 On the Newton Index
	3 Factorization Conditions
	4 Applications
	4.1 Univariate Polynomials over p–adic Numbers
	4.2 Univariate Polynomials over Formal Power Series
	4.3 Univariate Polynomials over the Integers
	4.4 Bivariate Polynomials

	5 Conclusion
	References

	Symbolic-Numeric Algorithm for Solvingthe Problem of Quantum Tunneling of aDiatomic Molecule through Repulsive Barriers
	1 Introduction
	2 Model I. Quantum Tunneling in Cartesian Coordinates
	3 Model II. Quantum Tunneling in Polar Coordinates
	4 Asymptotic Form of Effective Potentials and Solutions
	Algorithm 2. Evaluation of the Asymptotic Solutions
	5 Analysis of Quantum Tunneling Problem
	6 Conclusions
	References

	Enumeration of Schur Rings Over Small Groups
	1 Introduction
	2 Preliminaries
	3 Description of the Algorithms
	3.1 The Algorithm for the Symmetric Step of the First Stage
	3.2 The Algorithm for the Anti-symmetric Step of the First Stage
	3.3 Performance Comparison with COCO-II

	4 Computer Results
	5 Comparison with Other Calculations and with Theoretical Results
	6 Concluding Remarks
	References

	Author Index

