
The Power of Proofs: New Algorithms

for Timed Automata Model Checking�

Peter Fontana and Rance Cleaveland

Department of Computer Science,
University of Maryland, College Park, MD 20742, USA

Abstract. This paper presents the first model-checking algorithm for an
expressive modal mu-calculus over timed automata, Lrel,af

ν,μ , and reports
performance results for an implementation. This mu-calculus contains
extended time-modality operators and can express all of TCTL. Our
algorithmic approach uses an “on-the-fly” strategy based on proof search
as a means of ensuring high performance for both positive and negative
answers to model-checking questions. In particular, a set of proof rules
for solving model-checking problems are given and proved sound and
complete; our algorithm then model-checks a property by constructing a
proof (or showing none exists) using these rules. One noteworthy aspect
of our technique is that we show that verification performance can be
improved with derived rules, whose correctness can be inferred from the
more primitive rules on which they are based. In this paper, we give the
basic proof rules underlying our method, describe derived proof rules to
improve performance, and we compare our implementation to UPPAAL.

1 Introduction

Timed automata are used to model real-time systems in which time is contin-
uous and timing constraints may refer to elapsed time between system events
[4]. The timed automata model provides a balance between expressiveness and
tractability: a variety of different real-time systems can be captured in the for-
malism, and various properties, including safety (reachability) and liveness, can
also be decided automatically for a given automaton [1, 2, 3].

To specify these properties, different logics have been devised. One popular
logic, Timed Computation Tree Logic (TCTL) [3], extends the untimed Compu-
tation Tree Logic (CTL) [9] by adding time constraints to the modal operators.
Other researchers explored timed extensions to the modal mu-calculus [12]. One
such extension, called Tμ [18] extends the untimed modal mu-calculus with a
single-step operator. Another extension, which we refer to as Lν,μ [21, 26, 27],
extends the modal mu-calculus with separate time and action modal operators.
This logic is sufficient for expressing some basic safety and liveness properties.
However, it cannot express all of TCTL [14]. To address this, Lν,μ was extended
with relativization operators by [7]; we denote this logic as Lrelν,μ. These additional

� Research supported by NSF grant CCF-0926194. The Appendix to this paper is
available as a supplement on arXiv [16].

A. Legay and M. Bozga (Eds.): FORMATS 2014, LNCS 8711, pp. 115–129, 2014.
c© Springer International Publishing Switzerland 2014

116 P. Fontana and R. Cleaveland

operators make the logic expressive enough to express all of TCTL [14]. (Bouyer
et al. [7] included only greatest fixpoints, yielding Lν , which they referred to as
Lc; the least fixpoints in Lrelν,μ not in Lrelν add expressive power [14].)

Over the model of timed automata, the model checking problem for Lν,μ is
EXPTIME-complete [1]. Bouyer et al. [7] show that formulas using the relativiza-
tion operators can be model-checked in EXPTIME. Hence, model checking Lrelν,μ
over timed automata is EXPTIME-complete. The same model-checking problem
for TCTL over timed automata is PSPACE-complete [3].

While timed logics were being studied, tools and implementation algorithms
were developed as well. Much of the development focused on handling subsets
of properties specified in TCTL. A widely-used tool, UPPAAL [6], supports a
fragment of TCTL, which includes many safety and liveness properties; other
tools, including KRONOS [25], Synthia [20], and RED/REDLIB [23], have also
been developed, some of which are able to model-check all of TCTL. Additionally,
some tools were developed for timed modal-mu calculi. Two tools that can model
check fragments of a timed mu-calculus include CMC [19], which can handle Lν ,
and CWB-RT [13, 26, 27], which can check safety properties written in Lν .

The contributions of this paper include the first algorithm, and an imple-
mentation, to model check Lrel,af

ν,μ . By definition, Lrel,af
ν,μ consists of the so-called

alternation-free formulas of Lrelν,μ and is thus a superset of Lrelν . Assuming non-

zeno and timelock-free automata, Lrel,af
ν,μ is strong enough to express all of TCTL

[14]. Our implementation extends the tool CWB-RT [13, 26, 27]. Implementation
details of the model checker are discussed in Section 5; in Section 6, we give a
demonstration of some models and properties that can be model checked by our
tool as well as a performance comparison to UPPAAL.

CWB-RT is a proof-searchmodel checker: it verifies properties by constructing
a proof using a set of proof rules. These proof rules decompose the given goal
(does the automaton satisfy a formula) into (smaller) subgoals. These proof
search methods were used for the untimed modal mu-calculus in [10], explored
in [21], and extended to the timed setting in [26, 27] in order to produce a fast
on-the-fly model checker that can model check timed automata incrementally.
The generated proofs not only give additional correctness information but also
can be used as a mechanism to improve model-checking performance. We develop
the additional proof rules to check the relativized operators, extending the proof
rules used in [26, 27]. The additional rules are discussed in Section 3.

Furthermore, through select derived proof rules, we can enhance performance.
These derived rules, together with a judicious use ofmemoization, yield dramatic
performance improvements. We discuss the derived proof rules in Section 4.

2 Background

2.1 Timed Automata

This section defines the syntax of timed automata and sketches their semantics.
The interested reader is referred to [2, 15] for a fuller account. To begin with,
timed automata rely on clock constraints.

The Power of Proofs: New Algorithms for Timed Automata Model Checking 117

Definition 1 (Clock constraint cc ∈ Φ(CX)). Given a nonempty finite set
of clocks CX = {x1, x2, . . . , xn} and d ∈ Z

≥0 (a non-negative integer), a clock
constraint cc may be constructed using the following grammar:

cc ::= xi < d | xi ≤ d | xi > d | xi ≥ d | cc ∧ cc

Φ(CX) is the set of all possible clock constraints over CX. We also use the
following abbreviations: true (tt) for x1 ≥ 0, false (ff) for x1 < 0, and xi = d
for xi ≤ d ∧ xi ≥ d.

Timed automata may now be defined as follows.

Definition 2 (Timed automaton). A timed automaton is a tuple
(L, l0, Σ, CX, I, E), where:

– L is the finite set of locations.
– l0 ∈ L is the initial location.
– Σ is the finite set of action symbols.
– CX = {x1, x2, . . . , xn} is the nonempty finite set of clocks.
– I : L −→ Φ(CX) maps each location l to a clock constraint, I(l), referred to

as the invariant of l.
– E ⊆ L×Σ×Φ(CX)×2CX×L is the set of edges. In an edge e = (l, a, cc, λ, l′)

from l to l′ with action a, cc ∈ Φ(CX) is the guard of e, and λ represents
the set of clocks to reset to 0.

The semantics of timed automata rely on clock valuations, which are functions
ν : CX −→ R

≥0 (R≥0 is the set of non-negative real numbers); intuitively, ν(xi)
is the current time value of clock xi. A timed automaton begins execution in
its initial location with the initial clock valuation ν0 assigning 0 to every clock.
When the automaton is in a given clock location l with current clock valuation ν,
two types of transitions can occur: time advances and action executions. During
a time advance, the location stays the same and the clock valuation ν advances
δ ∈ R

≥0 units to the valuation ν + δ, where ν + δ is defined as (ν + δ)(xi) =
ν(xi)+δ. For a time advance to be allowed, for all 0 ≤ δ′ ≤ δ, ν+δ′ must satisfy
the invariant of location l. Due to convexity of clock constraints, it suffices to
ensure that both ν and ν + δ satisfy I(l). An action execution of action a can
occur when ν satisfies the guard for an edge leading from l to l′, the edge is
labeled by action a, and , the invariant of l′ is satisfied after the clocks are reset
as specified in the edge. In this case the location changes to l′ and the clocks in λ
are reset to 0. These intuitions can be formalized as a labeled transition system
whose states consist of locations paired with clock valuations, each state notated
as (l, ν). A timed run of the automaton is a sequence of transitions starting from
the initial location and ν0. On occasion, we also augment each timed automaton
with a set of atomic propositions AP and a labeling function M : L −→ 2AP

where M(l) is the subset of propositions in AP that location l satisfies.

118 P. Fontana and R. Cleaveland

0: far

2: in
x1 < 15

1: near
x1 < 4

in, x1 = 4, x1 := 0

approach, x1 := 0

exit, x1 > 1

Fig. 1. Timed automaton of a train

Example 1 (Train timed automaton). The timed automaton in Figure 1 models
a train component of the GRC (Generalized Railroad Crossing) protocol [17].
There are three locations: 0: far (initial), 1: near, and 2: in; and one clock x1. Σ
has the actions approach, in, and exit. Here, location 1: near has the invariant
x1 ≤ 4 while 0: far has the vacuous invariant tt. The edge (1: near, in, x1 =
4, {x1},2: in) has action in, guard x1 = 4, and resets x1 to 0.

A sample timed run of this timed automaton is: (0: far, x1 = 0)
5−→ (0: far,

x1 = 5)
approach−→ (1: near, x1 = 0)

4−→ (1: near, x1 = 4)
in−→ (2: in, x1 = 0)

3−→
(2: in, x1 = 3)

2−→ (2: in, x1 = 5)
exit−→ (0: far, x1 = 5) . . .

2.2 Timed Logic Lrel
ν,μ and Modal Equation Systems (MES)

The following definition of Lrelν,μ uses the modal-equation system (MES) format
used in [11] for untimed systems and in [26, 27] for Lν,μ.

Definition 3 (Lν,μ, L
rel
ν,μ basic formula syntax). Let CX = {x1, x2, . . .} and

CXf = {z, z1, . . .} be disjoint sets of clocks. Then the syntax of a Lν,μ basic
formulas is given by the following grammar:

ψ ::=p | ¬p | tt | ff | cc | Y | ψ ∧ ψ | ψ ∨ ψ | 〈a〉(ψ)
| [a](ψ) | ∃(ψ) | ∀(ψ) | z.(ψ)

Here, p ∈ AP is an atomic proposition, cc ∈ Φ(CX) is a clock constraint over
clock set CX, Y ∈ V ar is a propositional variable (V ar is the set of propositional
variables), and a ∈ Σ is an action. In formula z.ψ z is a clock in CXf ; the z.
operator is often referred to as freeze quantification.

The relativized timed modal-mu calculus Lrelν,μ syntax replaces ∃(ψ) and ∀(ψ)
with ∃ψ1(ψ2) and ∀ψ1(ψ2), where each ψ1 and ψ2 are basic formulas in Lrelν,μ.

What follows is a sketch of the semantics; [7, 14] contains a formal definition.
Formulas are interpreted with respect to states (i.e. (location, clock valuation)
pairs) of a timed automaton whose clock set is CX and labeling function is M ,
and an environment θ associating each propositional variable Y with a set of
states. A state (l, ν) satisfies an atomic proposition p if and only if p is in the set
M(l). A state satisfies Y if and only if (l, ν) ∈ θ(Y). 〈a〉(ψ) holds in a state if,
after executing action a, ψ is true of the state after the action transition; [a](ψ)

The Power of Proofs: New Algorithms for Timed Automata Model Checking 119

means after all action transitions involving a, ψ holds in the target state; ∃(ψ)
holds of a state if after some time advance of δ ≥ 0, ψ holds in the new state,
while ∀(ψ) is satisfied in a state if for all possible time advances of δ ≥ 0, ψ is
true in the resulting states. Formula z.(ψ) holds in a state if, after introducing a
new clock z (z is not a clock of the timed automaton) and setting it to 0 without
altering other clocks, ψ is true. The formula ∃ψ1(ψ2) means, “there exists a time
advance where ψ2 is true and ψ1 is true for all times up to, but not including,
that advance”, and ∀ψ1(ψ2) means, “either ψ2 is true for all time advances or
ψ1 releases ψ2 from being true after some time advance.”

We also introduce two derived operators: [−](ψ) for
∧
a∈ΣTA

[a](ψ) (for all
next actions) and 〈−〉(ψ) for ∨a∈ΣTA

〈a〉(ψ) (there exists a next action). It may
be seen that ∃(ψ) is equivalent to ∃tt(ψ), and ∀(ψ) to ∀ff(ψ).
Lrelν,μ MESs are mutually recursive systems of equations whose right-hand sides

are basic formulas as specified above. The formal definition follows.

Definition 4 (Lrelν,μ MES syntax). Let X1, X2, . . . , Xv be propositional vari-

ables, and let ψ1, . . . ψv all be Lrelν,μ basic formulae. Then a Lrelν,μ modal equa-
tion system (MES) is an ordered system of equations as follows, where each
equation is labeled with a parity (μ for least fixpoint, ν for greatest fixpoint):

X1
μ/ν
= ψ1, X2

μ/ν
= ψ2, . . . , Xv

μ/ν
= ψv.

In our MES, we will assume that all variables are bound (every variable in
the right of the equation appears as some left-hand variable).

The formal definition of the semantics of MESs may be found in [26, 27]; we
recount the highlights here. Given a timed automaton and atomic-proposition
interpretation M , a basic Lrelν,μ formula may be seen as a function mapping sets
of timed-automaton states (corresponding to the meaning of the propositional
variables to the formula) to a single set of states (the states that make the
formula true, given the input sets just referred to). The set of subsets of timed-
automaton states ordered by set inclusion form a complete lattice; it turns out
that the functions over this lattice definable by basic formulae are monotonic
over this lattice, meaning they have unique greatest and least fixpoints. This
fact is the lynch-pin of the formal semantics of MESs. Specifically, given MES

X1
μ/ν
= ψ1, . . . , Xv

μ/ν
= ψv, we may construct a function that, given a set of states

for X1, returns the set of states satisfying ψ1, where the values for X2, . . . , Xv

have been computed recursively. This function is monotonic, and therefore has a
unique least and greatest fixpoint. If the parity for X1 is μ, then the set of states
satisfying X1 is the least fixpoint of this function, while if the parity is ν then the
set of states satisfying X1 is the greatest fixpoint. By convention, the meaning
of a MES is the set of states associated with X1, the first left-hand-side in the
sequence of equations. However, in the MES, each variable Xi can be interpreted
as its own subformula; this interpretation will prove useful constructing proofs
that a state satisfies a MES.

Given timed automaton TA, atomic-proposition interpretation function M ,
and propositional variable environment θ, we use �ψ�TA,M,θ to denote the set of

120 P. Fontana and R. Cleaveland

states satisfying ψ. For an MES M of form X1
μ/ν
= ψ1 . . . Xv

μ/ν
= ψv, we write

�M�TA,M,θ, or equivalently �X1�TA,M,θ when there is no confusion, for the set
of states satisfying the MES.

To handle the clocks used in freeze quantification (z.(ψ)), we extend the timed
automaton’s states (l, ν) to extended states (l, ν, νf) using the additional valua-
tion component νf : CXf −→ R

≥0. This formalism comes from [7]. When clear
from context, we will refer to an extended state as (l, ν) and omit the explicit
notation of νf .

In this paper we only consider MESs that are alternation-free. Intuitively, an
MES is alternation free if there is no mutual recursion involving variables of
different parities. For more information on the notion, see [12]. We denote the
alternation-free fragment of Lrelν,μ as Lrel,af

ν,μ . By definition, Lrel,af
ν,μ is a superset

of Lrelν because any formula with an alternation must have at least one greatest
fixpoint and at least one least fixpoint. The alternation-free restriction is not
prohibitive because for any timelock-free nonzeno timed automaton (see [8]), we
can express any TCTL formula into a Lrel,af

ν,μ MES [14].

Example 2 (Specifying properties with MES). Again consider the timed automa-
ton in Figure 1 of Example 1. Two Lrel,af

ν,μ specifications we can ask are:

X1
ν
= ¬broke ∧ ∀([−](X1)) (1)

X1
ν
= ¬far ∨

(
∀([−](X1)) ∧ ∃(z.(∀(z < 1)))

)
(2)

Equation 1 says “it is always the case the the train is not broken,” and equation
2 says “it is inevitable that a train is not far.”

3 Checking Lrel ,af
ν,μ Properties: A Proof-Based Approach

The Lrel,af
ν,μ model-checking problem for timed automata may be specified as

follows: given timed automaton TA = (L, l0, ΣTA, CX, I, E), atomic-proposition
interpretation function M , and Lrel,af

ν,μ formula ψ with initial environment θ,
determine if the initial state of TA satisfies ψ, i.e.: is (l, ν) ∈ �ψ�TA,M,θ. This
section describes the proof-based approach that we use to solve such problems.

Our model-checking technique relies on the construction of proofs that are
intended to establish the truth of judgments, or sequents, of the form (l, cc)
 ψ,
where l ∈ L is a location, cc ∈ Φ(CX ∪ CXf) is a clock constraint, and ψ is
a Lrel,af

ν,μ formula. Note that cc includes clocks from the timed automaton as
well as any clocks used in freeze quantifications. Note that semantically, a clock
constraint cc can be viewed as the set of valuations cc = {ν | ν |= cc}; likewise,
we can encode a valuation ν as the clock constraint ccν = x1 = ν(x1) ∧ . . . ∧
xn = ν(xn). A proof rule contains a finite number of hypothesis sequents and a
conclusion sequent and may be written as follows.

Premise 1 . . . Premise n (Rule Name)
Conclusion

The Power of Proofs: New Algorithms for Timed Automata Model Checking 121

The intended reading of such a rule is that if each premise is valid, then so is
the conclusion. Some proof rules, axioms, have no premises and thus assert the
truth the validity of their conclusion. Given a collection of rules, our verifier
builds a proof by chaining these proof rules together. A proof is valid if the
proof rules are applied properly, meaning that the premise of the previous rule
is the conclusion of the next rule. The proof rules are designed to be sound and
complete, meaning: (l, ν) ∈ �ψ�TA,M,θ if and only if there is a valid proof for
(l, ccν)
 ψ. The proof-construction process proceeds in an “on-the-fly” manner:
rules whose conclusion matches the sequent to be proved are applied to this goal
sequent, yielding new sequents that must be proved. This procedure is applied
recursively, and systematically, until either a proof is found, or none can be.

3.1 Proof Rules for Laf
ν,μ Over Timed Automata

The proof-based approach in this paper is inspired by a generic proof framework
in [26, 27] based on a general theory called Predicate Equation Systems (PES).
PES involved fixpoint equations over first-order predicates and used the proof-
search to establish the validity of a PES. For practical reasons, one generally
wishes to avoid the construction of the PES explicitly; this paper adopts this
point of view, and the proof rules that it presents thus involve explicit mention of
timed-automata notions, including location and edge. A selection of proof rules
derived from [26, 27] is given in Figure 2. The remaining rules are in Appendix
A of the supplement [16]. Several comments are in order.

1. Each rule is intended to relate a conclusion sequent involving a formula with
a specific outermost operator to premise sequents involving the maximal
subformula(e) of this formula. The name of the rule is based on this operator.

2. The premises also involve the use of functions succ and pred. Intuitively,
succ((l, cc)) represents all states that are time successors of any state whose
location component is l and whose clock valuation satisfies cc,
while pred((l, cc)) are the time predecessors of these same states. These op-
erators may be computed symbolically; that is, for any (l, cc) there is a cc′

such that (l, cc′) is equivalent to succ((l, cc)).
3. Some of the rules involve placeholders, which are (potentially) unions of clock

constraints, given as (subscripted versions of) φ. Given a specific placeholder,
the premise sequent (l, cc), φ is semantically equivalent to (l, cc ∧ φ); how-
ever, for notational and implementation ease, the placeholder φ is tracked
separately from the clock constraint cc.

More discussion of placeholders is in order. Intuitively, placeholders encode a
set of clock valuations that will make a sequent valid, and which will be com-
puted once the proof is complete. In practice, we are interested in computing
the largest such set. To understand their use in practice, consider the operator
∃. To check ∃, we need to find some time advance δ such that ψ is satisfied
after δ time units. Rather than non-deterministically guessing δ, we use a place-
holder φs in the left premise in rule ∃t1 to encode all the time valuations that

122 P. Fontana and R. Cleaveland

(l1, cc ∧ g1) � ψ[λ1 := 0] . . . (ln, cc ∧ gn) � ψ[λn := 0]
([a]Act), cond[a](l, cc) � [a](ψ)

cond[a]:
⋃
i{(gi, λi, li)} = {(l′, g′, λ′) | (l, a, g′, λ′, l′) ∈ E}

(l, cc), φs � ψ1 (l, cc),¬φs � ψ2
(∨c)

(l, cc) � ψ1 ∨ ψ2

succ((l, cc)) � ψ
(∀t1)

(l, cc) � ∀(ψ)

succ((l, cc)), φs � ψ succ((l, cc), φ∀) � succ((l, cc)) ∧ φs
(∀t2)

(l, cc), φ∀ � ∀(ψ)

succ((l, cc)), φs � ψ (l, cc) � pred(φs)
(∃t1)

(l, cc) � ∃(ψ)
succ((l, cc)), φs � ψ φ∃ � pred(φs)

(∃t2)
(l, cc), φ∃ � ∃(ψ)

Fig. 2. Select proof rules from [26, 27] adapted for timed automata and MES

ensure satisfaction of ψ. The right premise then checks that the placeholder φs
is some δ-unit time elapse from (l, cc). The placeholder allows us to delay the
non-deterministic guess of the value of φs until it is no longer required to guess.
Additionally, for performance reasons, we use new placeholders to handle time
advance operators for sequents with placeholders. An example may be found in
Rule ∃t2, where a new placeholder φ∃ is introduced in the right premise. While
useful for performance, this choice results in subtle implementation complexities,
which we discuss in Section 5.3.

Constructing Proofs. Given sequents and proof rules, proofs now may be
constructed in a goal-directed fashion. A sequent is proven by applying a proof
rule whose conclusion matches the form of that sequent, yielding as subgoals
the corresponding premises of that rule. These subgoals may then recursively be
proved. If a sequent may be proved using a rule with no premises, then the proof
is complete; similarly, if a sequent is encountered a second time (because of loops
in the timed automaton and recursion in an MES), then the second occurrence
is also a leaf. Details may be found in [26, 27]. If the recurrent leaf involves an
MES variable with parity μ, then the leaf is unsuccessful; if it involves a variable
with parity ν, it is successful. A proof is valid if all its leaves are successful.

Example 3. To illustrate the proof rules, consider the timed automaton in Figure
1. Suppose we wish to prove the sequent (2 : in, x1 ≤ 3)
 [exit](0 : far).
Utilizing the first proof rule in Figure 2, we get the proof:

(0 : far, 1 ≤ x1 ≤ 3)
 0 : far

(2 : in, x1 ≤ 3)
 [exit](0 : far)

In this rule, we intersect the clock constraint with the guard x1 ≥ 1 (if x1 < 1,
then there are no possible actions so the formula is true), make the destination
location the new sequent, and ask if the destination satisfies the formula. Since
the location is 0 : far, the proof is complete.

The Power of Proofs: New Algorithms for Timed Automata Model Checking 123

(l, cc), φs1 � ψ1 (l, cc), φs2 � ψ2 (l, cc) � φs1 ∨ φs2
(∨s)

(l, cc) � ψ1 ∨ ψ2

(l, cc), φs1 � ψ1 (l, cc), φs2 � ψ2 (l, cc), φ∨ � φs1 ∨ φs2
(∨s2)

(l, cc), φ∨ � ψ1 ∨ ψ2

succ((l, cc)), φs � ψ2 succ((l, cc)), pred<(φs) � ψ1 (l, cc) � pred(φs)
(∃r1)

(l, cc) � ∃ψ1(ψ2)

succ((l, cc)), φs′ � ψ2 succ((l, cc)), pred<(φs′) � ψ1 (l, cc), φs � pred(φs′)
(∃r2)

(l, cc), φs � ∃ψ1(ψ2)

Fig. 3. Proof Rules for ∨ and ∃φ1(φ2)

3.2 New Proof Rules for the Relativized Operators of Lrel,af
ν,μ

We now introduce rules for handling the relativized time-passage modalities
in Lrel,af

ν,μ . Figure 3 gives the rules for the operator ∃ψ1(ψ2). For the ∀ψ1(ψ2)
operator, we use the derivation given in Lemma 1.

Here is an explanation of the proof rule ∃r1; the proof rule ∃r2 is similar. The
idea is for the placeholder φs to encode the δ time advance needed for ψ1 to be
true. The proof-rule premises enforce that this placeholder has three properties:

1. Left premise: This premise checks that after the time advance taken by φs,
ψ2 is satisfied.

2. Middle premise: This premise checks that until all δ time-units have elapsed,
that ψ1 is indeed true. The pred<(φs) encodes the times before φs.

3. Right premise: This premise checks that φs encodes some range of time
elapses δ, ensuring that the state can elapse to valuations in φs.

To implement this rule, we check the premises in left-to-right order. Some sub-
tleties involving the middle premise are discussed in Section 5.3.

Now we give the claims ensuring the correctness of these new proof rules.
Their proofs are in Appendix B of the supplement [16]. This first lemma is a
corrected version of a similar lemma in [7].

Lemma 1. ∀φ1(φ2) is logically equivalent to ∀(φ2) ∨ ∃φ2(φ1 ∧ φ2).

Theorem 1 (Soundness and Completeness). The additional Lrel,af
ν,μ proof

rules are sound and complete: for any Lrel,af
ν,μ formula ψ and any state (l, ν),

(l, ν) ∈ �ψ�M,TA,θ if and only if (l, ccν)
 ψ.

4 Optimizing Performance via Derived Proof Rules

To simplify reasoning about soundness and completeness, sets of proof rules are
often kept small and simple. However, we can improve the performance or proof

124 P. Fontana and R. Cleaveland

search by having the computer work with derived proof rules. We describe two
such situations where we use derived proof rules. We discuss a third situation,
invariants, in Appendix C.2 of the supplement [16].

Optimizing ∨. For performance reasons we replace a rule for ∨ in [26, 27]. Those
papers use the proof rule ∨c given in Figure 2. We instead use the proof rule ∨s,
which we give in Figure 3. By pushing fresh placeholders for both branches, we
avoid computing the complementation operator, which often results in forming
a placeholder involving a union of clock constraints.

Optimizing ∀ψ1(ψ2). Recall the derived formula for ∀ψ1(ψ2) from Lemma 1:
∀ψ1(ψ2) is equivalent to ∀(ψ2) ∨ ∃ψ2(ψ1 ∧ ψ2). This formula requires ψ2 to be
checked three times. However, by modifying the proof rule, we notice that we
can perform the checking of ψ2 only once. First, we rewrite ∃ψ2(ψ1 ∧ ψ2) as
∃≤,ψ2(ψ1), pushing the boundary case into the left subformula. Second, the key
is to compute the largest placeholder that satisfies ψ2, to remember those states
(memoize), and then to reason with this placeholder (and its time predecessor)
to find the placeholders needed to satisfy the two branches of the derived for-
mula. This reasoning allows the tool to reason with the subformula ψ2 only once,
reusing the obtained information. The derived proof rules are in Figure 4. The
first two handle the simpler cases when either ψ2 is always true (or when ψ1 is
always false) or ψ1 is immediately true (such as when ψ1 is an atomic proposi-
tion); the third rule (∀ro3) is the more complex case. The proof rules involving
placeholders are similar. Their derivations as well as their proofs of soundness
and completeness are in Appendix C.1 of the supplement [16].

(l, cc) � ∀(ψ2)
(∀ro1)

(l, cc) � ∀ψ1(ψ2)

(l, cc) � ψ1 ∧ ψ2
(∀ro2)

(l, cc) � ∀ψ1(ψ2)

succ((l, cc)), φs1 � ψ1

succ((l, cc)), φs2 � ψ2

succ((l, cc)), pred(φs1) � succ((l, cc)), φs2

φ∃ � pred(φs1)
succ((l, cc), φ∀) � succ((l, cc)) ∧ φs2

(l, cc) � φ∃ ∨ φ∀
(∀ro3)

(l, cc) � ∀ψ1(ψ2)

Fig. 4. Derived proof rules for ∀ψ1(ψ2)

5 Implementation Details

5.1 Addressing Non-convexity: Zone Unions

For a subset of properties including safety properties, clock zones, or convex
sets of clock valuations, are used to make the model-checking as coarse-grained
as possible. However, as shown in [24], certain automata with certain formulas
require non-convex sets of clock valuations (unions of clock zones) to be model-
checked correctly. For simplicity, we use a list of Difference Bound Matrices

The Power of Proofs: New Algorithms for Timed Automata Model Checking 125

(DBMs) to implement unions of clock zones. Other more complex data structures
have been developed which include the Clock Difference Diagram (CDD) [5] and
Clock Restriction Diagram (CRD) [22].

5.2 Addressing Performance: Simpler PES Formulas

When writing safety and liveness properties, we can use the formulas from [14].
However, in the common case where there are no nested temporal operators and
the formula does not involve clock constraints, we can simplify the formulations
considerably. In these cases, the subformula is a conjunction and disjunction of
atomic propositions, and is represented by p or q. Here are some simplifications:

AG [p] ≡ Y
ν
= p ∧ ∀([−](Y)) (3)

AF [p] ≡ Y
μ
= p ∨

(
∀([−](Y)) ∧ ∃(z.(∀(z < 1)))

)
(4)

EF [p] ≡ Y
μ
= p ∨ ∃(〈−〉(Y)) (5)

EG [p] ≡ Y
ν
= p ∧

(
∃(〈−〉(Y)) ∨ ∀(z.(∃(z ≥ 1)))

)
(6)

The correctness proofs for these simplified formulations are in Appendix C.3 of
the supplement [16].

The TCTL operators here are: AG [p] (always p), AF [p] (inevitably p), EG [p]
(there exists a path where always p), and EF [p] (possibly p). One noticeable
feature is that these simplified liveness properties do not require relativization.
Another noticeable feature is that the ∨ can be simplified to not use placeholders;
consequently, AG [p] and AF [p] do not require placeholders. Additionally, our
tool directly computes ∃(z.(∀(z < 1))), time can elapse forever without an action
transition, and its dual, ∀(z.(∃(z ≥ 1))).

5.3 Placeholder Implementation Complexities

Consider the two placeholder premises in the ∀(ψ) and ∃ψ1(ψ2) proof rules in
Figures 2 and 3. The placeholder sequents are given here:

succ((l, cc), φ∀)
 succ((l, cc)) ∧ φs and succ((l, cc)), pred<(φs)
 ψ1 (7)

In soundness and completeness proofs, we use soundness to give us a place-
holder to show that the formula holds, and with completeness, we argue that
some placeholder exists. Given the complexities of the formulas, the tool needs to
find the largest such placeholder. The rules are designed for the tool to implement
them in a left-to-right fashion, where placeholders are tightened by right-hand
rules. However, as the placeholders are tightened, we need to make sure that the
tightened placeholder still satisfies the left-hand premise. For instance, consider
the second of the above placeholders. As we tighten the placeholder to satisfy
ψ1, we need to check that this placeholder is the predecessor< of the placeholder
that satisfies ψ2. These checks take extra algorithmic work.

126 P. Fontana and R. Cleaveland

6 Performance Evaluation

We present the results of an experimental evaluation of our method that demon-
strates the types of timed automata and specifications the system can model
check. Furthermore, on the subset of specifications that UPPAAL supports, we
compare our tool’s time performance to their tools’s time performance.

6.1 Methods: Evaluation Design

In our case study, we use four different models: Carrier Sense, Multiple Ac-
cess with Collision Detection (CSMA); Fischer’s Mutual Exclusion (FISCHER);
Generalized Railroad Crossing (GRC); and Leader election (LEADER). For
more information on these models, see Appendix D.1 of the supplement [16]
or [17, 26, 27].

For each model, we start at 4 processes and scale the model up by adding more
processes (up to 8 processes). For each model we model-checked one valid safety
(always) specification (as), one invalid safety specification (bs), one valid liveness
(inevitably) specification (al), and one invalid liveness specification (bl). Each of
these cases involves only one temporal operator: ψ1 involves conjunctions and
disjunctions of atomic propositions and clock constraints. In addition we tested
4 additional specifications on each property (M1, M2, M3, and M4), some of
which are the leads to property p � q. Out of these specifications, at least
one (usually M4) is a property with no known equivalent TCTL formula. The
specifications checked are listed in Appendix D.2 of the supplement [16]. The
experiments were run on an Intel Mac with 8GB ram and a quad-core 2 GHz
Intel Core i7 processor running OS 10.7. Times were measured with the UNIX
utility time.

6.2 Data and Results

The data is provided in Tables 1 and 2. Table 1 contains the remaining specifi-
cations that are not supported by UPPAAL. Table 2 contains the examples that

Table 1. Examples that UPPAAL does not support. All times are in seconds (s).

File PES4 PES5 PES6 PES7 PES8

CSMA-as 0.29 4.62 139.16 6696.08 TO

CSMA-M3 0.01 0.03 0.14 0.80 3.99

CSMA-M4 0.01 0.03 0.14 0.71 3.66

FISCHER-M3 0.14 2.51 79.17 TO TOsm

FISCHER-M4 0.00 0.00 0.00 2.04 2.42

GRC-M2 0.01 0.01 0.01 0.02 0.03

GRC-M4 0.00 0.00 0.01 0.02 0.01

GRC-M4ap 0.00 0.00 0.01 0.01 0.01

LEADER-M1 0.00 0.00 0.00 0.01 0.01

LEADER-M3 0.01 0.08 2.12 79.05 4242.97

LEADER-M4 0.00 0.00 0.04 0.03 0.01

The Power of Proofs: New Algorithms for Timed Automata Model Checking 127

Table 2. Time performance in seconds (s) on examples comparing PES and UPPAAL

File PES4 UPP4 PES5 UPP5 PES6 UPP6 PES7 UPP7 PES8 UPP8

CSMA-al 0.01 1.45 0.03 0.24 0.13 0.25 0.72 0.26 3.65 0.26

CSMA-bl 0.01 0.26 0.03 0.27 0.13 0.27 0.73 0.28 3.53 0.33

CSMA-bs 0.01 0.33 0.05 0.27 0.22 0.27 1.14 1.33 5.09 4.66

CSMA-M1 0.01 0.29 0.03 0.27 0.14 0.28 0.73 0.27 3.69 0.27

CSMA-M2 0.33 0.35 5.21 7.00 154.56 1194.74 TO TO TOsm TOsm

FISCHER-al 0.00 0.51 0.00 0.27 0.00 0.28 0.00 0.40 0.00 0.27

FISCHER-as 0.07 0.27 0.51 0.28 13.44 0.67 864.04 0.96 TO 4.26

FISCHER-bl 0.00 0.26 0.00 0.26 0.00 0.28 0.00 0.34 0.00 0.26

FISCHER-bs 0.04 0.28 0.01 0.27 0.02 0.32 0.39 0.47 0.39 0.90

FISCHER-M1 0.00 0.26 0.00 0.26 0.00 0.28 0.00 0.28 0.00 0.25

FISCHER-M2 0.00 0.26 0.00 0.26 0.00 0.27 0.00 0.30 0.03 0.28

GRC-al 0.00 0.27 0.01 0.28 0.47 0.59 0.07 0.44 0.08 5.45

GRC-as 53.09 0.36 TO 7.11 TOsm 940.51 TOsm 3433.14 TOsm TO

GRC-bl 0.00 0.27 0.00 0.27 0.01 0.27 0.01 0.61 0.01 0.66

GRC-bs 0.11 0.41 1.91 0.41 433.59 1.76 O/M 16.19 O/M 52.03

GRC-M1 0.01 0.27 0.04 0.27 0.01 0.29 0.05 0.35 0.03 0.32

GRC-M3 0.00 0.27 0.00 0.31 0.01 0.56 0.04 1.23 0.01 3.85

LEADER-al 0.00 0.28 0.01 0.33 0.17 4.30 5.80 747.82 573.84 TO

LEADER-as 0.00 0.27 0.01 0.27 0.22 0.33 6.23 0.86 649.52 8.21

LEADER-bl 0.00 0.28 0.00 0.27 0.01 0.28 0.17 0.32 4.25 0.29

LEADER-bs 0.00 0.27 0.00 0.28 0.01 0.28 0.03 4.99 0.40 1.57

LEADER-M2 0.00 0.28 0.02 0.31 0.38 3.05 13.53 504.89 1570.37 TO

are supported both by our tool (PES) and by UPPAAL (UPP), with the num-
ber indicating the number of processes used in the model. We use the following
abbreviations: TO (timeout: the example took longer than 2 hours), TOsm (the
example timed out with fewer process), and O/M (out of memory). Since our
tool supports a superset of the specifications that UPPAAL can support, there
are specifications that our tool supports that UPPAAL does not. A scatter plot
of the data in Table 2 is given in Appendix D.3 of the supplement [16].

6.3 Analysis and Discussion

After analyzing the data, we may draw three conclusions. First, on the examples
that both our PES tool and UPPAAL support, we see that UPPAAL’s perfor-
mance is generally faster than ours, although, our tool performs faster on some
examples. Additionally, while our tool does time out more often than UPPAAL
does, most examples are verified quickly by both tools. Second, our tool can rea-
sonably efficiently verify specifications that UPPAAL cannot. Third, for these
examples, the performance bottleneck seems to be safety properties. Even with
the additional complexity of supporting the more complicated specifications (in
both tables), liveness was often verified more quickly than safety properties. Here
is one possible explanation: while the verifier must check the entire state space
for a valid safety property, often only a subset of the state space must be checked
for a liveness property.

128 P. Fontana and R. Cleaveland

7 Conclusion

We provide the first implementation of a Lrel,af
ν,μ timed automata model checker.

Additionally, this model checker is on-the-fly, allowing for verification to explore
both the timed automaton and the Lrel,af

ν,μ formula incrementally. To support
the full fragment of this logic, we extended the proof-rule framework of [26, 27]
to support the relativization operators, and we optimize the tool’s performance
using derived proof rules. We also provided simpler Lrel,af

ν,μ formulas for com-
mon safety and liveness formulas. While these may seem to be straightforward
extensions, the rules and the extensions were designed to be straightforward,
designing the proof rules to be both easy to implement efficiently.

We then compared our tool to UPPAAL. While UPPAAL seems to perform
faster more often, our tool is competitive for many of those examples, including
liveness formulas. Additionally, our tool was able to quickly verify specifications
that UPPAAL does not currently support.

Future work is to both further optimize the performance of our tool and to
augment our tool to provide more information than just a yes or no answer.
Potential information includes providing answers to these questions: Was the
formula true because the premise of an implication was always false? Was the
formula true because certain states were never reached?

Acknowledgements. We thank Dezhuang Zhang for providing the code base
[26] and for his insights.

References

[1] Aceto, L., Laroussinie, F.: Is your model checker on time? on the complexity of
model checking for timed modal logics. Journal of Logic and Algebraic Program-
ming 52-53, 7–51 (2002)

[2] Alur, R.: Timed Automata. In: Halbwachs, N., Peled, D.A. (eds.) CAV 1999.
LNCS, vol. 1633, pp. 8–22. Springer, Heidelberg (1999)

[3] Alur, R., Courcoubetis, C., Dill, D.: Model-checking in dense real-time. Informa-
tion and Computation 104(1), 2–34 (1993)

[4] Alur, R., Dill, D.L.: A theory of timed automata. Theoretical Computer Sci-
ence 126(2), 183–235 (1994)

[5] Behrmann, G., Larsen, K.G., Pearson, J., Weise, C., Yi, W.: Efficient Timed
Reachability Analysis Using Clock Difference Diagrams. In: Halbwachs, N., Peled,
D.A. (eds.) CAV 1999. LNCS, vol. 1633, pp. 341–353. Springer, Heidelberg (1999)

[6] Behrmann, G., David, A., Larsen, K.G.: A tutorial on uppaal. In: Bernardo,
M., Corradini, F. (eds.) SFM-RT 2004. LNCS, vol. 3185, pp. 200–236. Springer,
Heidelberg (2004)

[7] Bouyer, P., Cassez, F., Laroussinie, F.: Timed modal logics for real-time systems.
Journal of Logic, Language and Information 20(2), 169–203 (2011)

[8] Bowman, H., Gomez, R.: How to stop time stopping. Formal Aspects of Comput-
ing 18(4), 459–493 (2006)

[9] Clarke, E.M., Emerson, E.A., Sistla, A.P.: Automatic verification of finite-state
concurrent systems using temporal logic specifications. TOPLAS 8(2), 244–263
(1986)

The Power of Proofs: New Algorithms for Timed Automata Model Checking 129

[10] Cleaveland, R.: Tableau-Based Model Checking in the Propositional Mu-Calculus.
Acta Informatica 27(9), 725–747 (1990)

[11] Cleaveland, R., Steffen, B.: A Linear-Time Model-Checking Algorithm for the
Alternation-Free Modal Mu-Calculus. Formal Methods in System Design 2(2),
121–147 (1993)

[12] Emerson, E.A., Lei, C.L.: Efficient Model Checking in Fragments of the Proposi-
tional Mu-Calculus. In: LICS 1986, pp. 267–278. IEEE Computer Society (1986)

[13] Fontana, P., Cleaveland, R.: Data Structure Choices for On-the-Fly Model Check-
ing of Real-Time Systems. In: DIFTS 2011, pp. 13–21 (2011)

[14] Fontana, P., Cleaveland, R.: Expressiveness results for timed modal-mu calculi
(2014) (in Preparation Preprint available upon request)

[15] Fontana, P., Cleaveland, R.: A menagerie of timed automata. ACM Computing
Surveys 46(3), 40:1–40:56 (2014)

[16] Fontana, P., Cleaveland, R.: The power of proofs: New algorithms for timed au-
tomata model checking (appendix). arXiv.org (2014)

[17] Heitmeyer, C., Lynch, N.: The generalized railroad crossing: a case study in formal
verification of real-time systems. In: RTSS 1994, pp. 120–131 (December 1994)

[18] Henzinger, T., Nicollin, X., Sifakis, J., Yovine, S.: Symbolic model checking for
real-time systems. Information and Computation 111(2), 193–244 (1994)

[19] Laroussinie, F., Larsen, K.G.: CMC: A tool for compositional model-checking of
real-time systems. In: Budkowski, S., Cavalli, A., Najm, E. (eds.) Formal Descrip-
tion Techniques and Protocol Specification, Testing and Verification. IFIP, pp.
439–456. Springer, US (1998)

[20] Peter, H.J., Ehlers, R., Mattmüller, R.: Synthia: Verification and synthesis for
timed automata. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS,
vol. 6806, pp. 649–655. Springer, Heidelberg (2011)

[21] Sokolsky, O.V., Smolka, S.A.: Local model checking for real-time systems. In:
Wolper, P. (ed.) CAV 1995. LNCS, vol. 939, pp. 211–224. Springer, Heidelberg
(1995)

[22] Wang, F.: Efficient verification of timed automata with BDD-like data structures.
STTT 6(1), 77–97 (2004)

[23] Wang, F.: Redlib for the formal verification of embedded systems. In: ISoLA 2006,
pp. 341–346. IEEE Computer Society, Piscataway (2006)

[24] Wang, F., Huang, G.D., Yu, F.: TCTL inevitability analysis of dense-time systems:
From theory to engineering. IEEE Transactions on Software Engineering 32(7),
510–526 (2006)

[25] Yovine, S.: KRONOS: a verification tool for real-time systems. STTT 1(1), 123–
133 (1997)

[26] Zhang, D., Cleaveland, W.R.: Fast generic model-checking for data-based systems.
In: Wang, F. (ed.) FORTE 2005. LNCS, vol. 3731, pp. 83–97. Springer, Heidelberg
(2005)

[27] Zhang, D., Cleaveland, R.: Fast on-the-fly parametric real-time model checking.
In: RTSS 2005, pp. 157–166. IEEE Computer Society, Washington, DC (2005)

	The Power of Proofs: New Algorithms
for Timed Automata Model Checking

	1 Introduction
	2 Background
	2.1 Timed Automata
	2.2 Timed Logic Lrel
ν,μ and Modal Equation Systems (MES)

	3 Checking Lrel ,af
ν,μ Properties: A Proof-Based Approach

	3.1 Proof Rules for Laf
ν,μ Over Timed Automata

	3.2 New Proof Rules for the Relativized Operators of Lrel ,af
ν,μ

	4 Optimizing Performance via Derived Proof Rules
	5 Implementation Details
	5.1 Addressing Non-convexity: Zone Unions
	5.2 Addressing Performance: Simpler PES Formulas
	5.3 Placeholder Implementation Complexities

	6 Performance Evaluation
	6.1 Methods: Evaluation Design
	6.2 Data and Results
	6.3 Analysis and Discussion

	7 Conclusion
	References

