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Abstract. We present a novel approach to learn logical formulae characterising
the emergent behaviour of a dynamical system from system observations. At a
high level, the approach starts by devising a data-driven statistical abstraction of
the system. We then propose general optimisation strategies for selecting formu-
lae with high satisfaction probability, either within a discrete set of formulae of
bounded complexity, or a parametric family of formulae. We illustrate and ap-
ply the methodology on two real world case studies: characterising the dynamics
of a biological circadian oscillator, and discriminating different types of cardiac
malfunction from electro-cardiogram data. Our results demonstrate that this ap-
proach provides a statistically principled and generally usable tool to logically
characterise dynamical systems in terms of temporal logic formulae.

1 Introduction

Dynamical systems are among the most widely used modelling frameworks, with im-
portant applications in all domains of science and engineering. Much of the attraction
of dynamical systems modelling lies in the availability of effective simulation tools,
enabling predictive modelling, and in the possibility of encoding complex behaviours
through the interaction of multiple, simple components. This leads naturally to the no-
tion of emergent properties, i.e. properties of the system trajectories which are a non-
trivial consequence of the local interaction rules of the system components. Emergent
properties of deterministic dynamical systems can often be easily verified through sim-
ulations. Quantitatively identifying the emergent properties of a stochastic system, in-
stead, is a much harder problem.

In the simplest scenario, one assumes that a mathematical model of the system of
interest is already available (e.g. as a continuous time Markov chain, or a stochastic dif-
ferential equation), generally thanks to the availability of domain expertise. This prob-
lem is often termed mining requirements: this is an active field of research, with many
recent contributions extending its scalability and applicability [18,27]. This approach
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is predicated on two premises: first, a trustworthy model of the system must be avail-
able, and, secondly, efficient model checking algorithms must be available for the class
of properties/models under consideration. These two conditions are often onerous in
many scientific applications, where models can be both complex and highly uncertain.
However, data generation is becoming increasingly cheap for many complex systems,
raising the possibility that emergent properties may be formally identified from data.

This problem, although clearly of considerable practical relevance, has received
comparatively little attention in the literature. Early work by [10] proposed a greedy
algorithm to identify formulae with high support directly from data, with the ultimate
aim of unravelling the logical structure underpinning observed dynamics in systems
biology. More recently, Asarin et al. in [4] proposed a geometric construction to iden-
tify the formula (within a specified parametric family) which fitted observations best.
In both cases, the methods work directly with the raw data, and are hence potentially
vulnerable to noise in the data. Furthermore, both sets of authors remark that the identi-
fiability of formulae is severely limited by the quantity of data available, which hampers
the applicability of the methods in many practical circumstances.

Here, we aim to address both identifiability and robustness problems by taking an
alternative, statistical approach, which brings back a model-based perspective to the
data-driven approach. We consider a variation of the property learning problem, where
we observe trajectories from two distinct processes and the aim is to identify properties
that best discriminate between two observed processes, i.e. are satisfied with high prob-
ability by trajectories from one process and with low probability by trajectories from the
second. At the core of our method is a statistical abstraction, a flexible, data driven sta-
tistical model which provides a compact representation of the dynamics of the system.
The choice of the statistical model is performed using statistical model selection tech-
niques, combining domain expertise with data driven methods; in this paper, we will
illustrate our approach on two contrasting applications: a systems biology application
where considerable prior knowledge permits the use of a rather restricted and complex
family of candidate models, and a biomedical application where such knowledge is un-
available, and hence we use a more black box model. Once a suitable model is selected,
the satisfaction probability of a formula can be evaluated quantitatively (using a model
checking tool), enabling rational selection of formulae with high support or that best
discriminate two models obtained from two datasets. This property learning problem
can be further broken down into two subproblems: learning the structure of the formula,
and learning parameters involved in the formula. These optimisation problems can be
tackled in many ways: here, we use a local search algorithm for structure learning, and
a recently proposed, provably convergent algorithm [25] for learning the parameters of
the formula. Figure 1 illustrates schematically the modular structure of our approach.

The rest of the paper is organised as it follows: in the next section we give an
overview of the proposed approach, reviewing the relevant statistical and logical con-
cepts. We then present results on the two case studies, briefly describing the procedure
through which the statistical model was devised in each case, and illustrating the capa-
bilities of the approach to infer non-trivial properties from the data. We conclude the
paper by discussing the implications of our contribution, both from the practical and the
methodological aspect.
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Fig. 1. Schematic workflow of our approach: starting from data, a suitable statistical model is
chosen (within a family of models) via Bayesian learning methods. That enables us to evaluate
the probability of formulae in a suitable logic, which can then be maximised as a function of the
formula structure or formula parameters

2 Problem Statement and Methodology

The property synthesis problem can have many flavours. One can be interested in find-
ing the properties that best characterise a single set of observations, or find properties
that discriminate between a good and a bad set of observed scenarios. The examples
discussed in this paper fall into this second class, but a similar machinery can be used
for finding properties with high support. The discrimination problem is the following:

Given two sets of signals/time traces (the good and the bad set), find a temporal logic
formula that best discriminates between them, i.e. such that it is satisfied with high
probability by the good set and with low probability by the bad one.

Essentially, this problem can be seen as a temporal logic version of a classification
problem, in which we look for temporal patterns separating two sets of observed signals.

At a high level, our approach is made up of two distinct modules: a model selection
step, where a suitable statistical model is learnt from the data, and a property synthesis
step, where we perform learning of formulae with high discriminating power. The ad-
vantage of the statistical generalisation performed in the first phase, which distinguishes
our approach from other related work (see also Section 4) is that it offers a statistically
sound treatment of noise and the ability of generating simulated data, avoiding the data
shortage problem in the second phase.

In this section we describe the methods we use for performing these steps in this
paper, as well as providing some background on the specific logic we will use to encode
emergent properties. We emphasize however that, while we believe the choices we made
in performing the two steps are state-of-the-art, the concept of our approach is entirely
modular, so that any other model selection/optimisation method could be employed
towards the same goal.

2.1 Statistical Modelling of Data: Learning and Model Selection

Our statistical methodologies will be embedded within the probabilistic machine learn-
ing framework [8]. Let x denote the state variables associated with our system, and let
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x̂1, . . . , x̂N denote observations of the system at times 0 ≤ t1, . . . , tN ≤ T . Our statistical
models will then take the form of joint probability distributions

p(x̂1, . . . , x̂N ,x0:T ,µ0:T |Θ) = p(x̂1, . . . , x̂N |x0:T ,Θ) p(x0:T ,µ0:T |Θ)

where µ represent a set of auxiliary latent variables and the index 0 : T denotes the
whole trajectory of the respective stochastic process within the bounded time interval
[0,T ]. In general, we will assume that the prior dynamics of the system (specified by
p(x0:T ,µ0:T |Θ)) are Markovian, and that the observation noise is independent and iden-
tically distributed at different time points. Additionally, the models are parametrised by
a family of parameters Θ which may enter both the noise model (probability of the ob-
servations given the true state of the system x) and the prior dynamics p(x0:T ,µ0:T |Θ).
The introduction of the latent variables can be justified in several ways: in some cases,
the latent variables represent physically relevant unobserved quantities (e.g., promoter
occupancy state as in Section 3.1); otherwise, they may be a convenient device to rep-
resent a more rich dynamics in a compact way (as in the heart modelling example in
Section 3.2). We stress that Hidden Markov Models, Continuous-Time Markov Chains,
(Stochastic) Differential Equations and Hybrid Systems all fall into the class of models
considered here.

The general principle for learning in probabilistic models is based on the concept of
evidence maximisation, whereby one seeks to determine the value of parameters Θ that
maximises the evidence or marginal likelihood

p(x̂1, . . . , x̂N |Θ) =
∫

dµ0:T dx0:T p(x̂1, . . . , x̂N ,x0:T ,µ0:T |Θ)

where the integral sign is used generically to denote marginalisation (it is replaced by
a sum in the case of discrete variables). In general, the marginalisation procedure is
computationally problematic, and much research in machine learning is devoted to find
efficient marginalisation algorithms for specific classes of models.

The evidence at the optimal value of the parameters provides a measure of the good-
ness of fit of a model to a data set. However, models with different numbers of param-
eters will not necessarily be comparable in terms of evidence: richer models with more
parameters tend to have higher evidence. One therefore needs to penalise the complex-
ity of the model. There exist several information criteria which combine the maximum
value of the likelihood with a penalty on the number of parameters. Here we use the
Akaike Information Criterion (AIC) [1], which penalises the likelihood by subtracting a
term containing the logarithm of the number of parameters. Explicitly, the AIC score is
defined as

AIC = 2k− 2logL

where k is the number of parameters of the model, and L is the optimised value of the
marginal likelihood. This simple score can be shown to approach asymptotically, in the
large sample limit, the information lost by using the model as a proxy for the (unknown)
data generating process. Therefore minimisation of the AIC score across a finite number
of models is often used as a criterion for model selection.
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2.2 Learning Properties

The second module of our approach consists of algorithms for optimising the probabil-
ity of a formula being true within a discrete set of parametric formulae. This difficult
hybrid optimisation problem is naturally broken down in a discrete and a continuous op-
timisation problem, which can be interleaved. Before describing the algorithms we use,
we briefly review the logic we consider, the Metric Interval Temporal Logic (MITL).

Metric Interval Temporal Logic. Temporal logic [22] provides a very elegant frame-
work to specify in a compact and formal way an emergent behaviour in terms of time-
dependent events. Among the myriads of temporal logic extensions available, Metric
Interval Temporal Logic [3] (MITL) is very suitable to characterise properties of (real-
valued) signals evolving in continuous time. The syntax of MITL is as follows.

Definition 1 (MITL syntax). The syntax of MITL is given by

ϕ :=�|q | ¬ϕ |ϕ1∧ϕ2 |X[a,b]ϕ |ϕ1 U[a,b] ϕ2,

where � is a true formula (⊥= ¬� is false), q is an atomic proposition which is either
true or false in each state x (we denote with L(x) the set of atomic propositions true
in x), conjunction and negation are the standard boolean connectives, [a,b] is a dense-
time interval with 0 ≤ a < b, X[a,b] is the next operator and U[a,b] is the until operator.

The (bounded) until operator ϕ1 U[a,b] ϕ2 requires ϕ1 to hold from now until, in a
time between a and b time units, ϕ2 becomes true, while the (bounded) next opera-
tor X[a,b]ϕ requires ϕ to hold in the next state, to be reached between a and b units of
time. The eventually operator F[a,b] and the always operator G[a,b] can be defined as
usual: F[a,b]ϕ := �U[a,b)ϕ, G[a,b]ϕ := ¬F[a,b]¬ϕ. More precisely, MITL can be given a
semantics based on boolean signals, which are functions of time to {�,⊥}. Boolean
signals corresponding to atomic propositions are obtained from a (real-valued) input
signal x(t) by point-wise lifting: q(t):=q ∈ L(x(t). The extension of MITL that deals
with real-valued signals is known as Signal Temporal Logic, see [19] for further details
on the logic and the monitoring algorithm.

MITL is a logic that is interpreted over traces, and a formula ϕ identifies the sub-
set of traces that satisfy it, {x |= ϕ}. A stochastic model M , however, is a probability
distribution on the space of traces, and as such we can measure how much M satisfies
ϕ by computing the probability p(ϕ|M ) = ProbM {x |= ϕ}. This probability is notori-
ously difficult to calculate analytically even for simple models [11], hence, we resort to
Monte Carlo methods, applying statistical model checking (SMC) [15] to estimate the
probability of a MITL formula in a generative model.

Discrimination Function. In order to set up a proper learning problem, we need to
consider a score function to optimise, encoding the criterion to discriminate between
two models. Here we choose a simple score function, namely the log odds ratio between
the satisfaction probabilities. More precisely, let M1 and M2 be the two models learnt



28 E. Bartocci, L. Bortolussi, and G. Sanguinetti

from the two datasets and ϕ a candidate MITL formula. The log odds ratio score Rϕ is
defined as

Rϕ = log
p(ϕ1 | M1)

p(ϕ2 | M2)
, (2.1)

and it is maximised when the probability of the first model is close to one and the
probability in the second model is close to zero.

Structure Learning. Identifying the structure of a MITL formula which is satisfied
with high probability by the model is a difficult combinatorial optimisation problem.
Combinatorial optimisation algorithms exist but we are aware of few theoretical con-
vergence guarantees. In this paper we do not tackle the problem in its full generality, but
we set up a greedy search scheme which requires some basic knowledge of the domain
at hand.

More specifically, we assume to have a fixed set of basic template formulae T . First,
we search exhaustively in T by optimising the continuous parameters of each ϕ ∈ T ,
and thus computing its best score (i.e the log odds ratio). Then, we rank the formulae
in T and select the subset of higher score. If in this way we find a few good candidate
formulae, we proceed to the second phase, otherwise we enlarge the set T , and try
again. The choice of the thresholds to select good candidates is delicate and problem
dependent. In the second phase, we take the best formulae Tbest and combine them
using some predefined combination rules (for instance, boolean combinations), and run
again the continuous optimisation on the parameters, ranking again the formulae and
selecting those with highest score. As the set Tbest is expected to be small, we will
be searching exhaustively a reasonably small set of formulae. At this stage, we expect
this greedy optimisation to have found some good formula. If not, we can proceed to
combine together the best formulae of this second round, possibly with another set of
combinators, or reconsider the choice of the basic templates T .

Parameter Learning. We now turn to the issue of tuning the parameters of (a set of)
formulae to maximise their satisfaction probability. More specifically, we assume that
we have a MITL formula ϕθ which depends on some continuous parameters θ. We aim
to maximise its discriminative power Rϕ(θ) defined in equation (2.1). Naturally, this
quantity is an intractable function of the formula parameters; its value at a finite set of
parameters can be noisily estimated using an SMC procedure. The problem is therefore
to identify the maximum of an intractable function with as few (approximate) func-
tion evaluations as possible. This problem is closely related to the central problem of
reinforcement learning of determining the optimal policy of an agent with as little ex-
ploration of the space of actions as possible. We therefore adopt a provably convergent
stochastic optimisation algorithm, the GP-UCB algorithm [25], to solve the problem of
continuous optimisation of formula parameters. Intuitively, the algorithm interpolates
the noisy observations using a stochastic process (a procedure called emulation in statis-
tics) and uses the uncertainty in this fit to determine regions where the true maximum
can lie. This algorithm has already been used in a formal modelling scenario in [9].
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TOC1

CCA1 X

(a) Repressilator-like gene net-
work of the O. Tauri circadian
clock [21]

(b) O. Tauri circadian clock: average.

Fig. 2. The repressilator-like model of the O.Tauri circadian clock (left) is a cyclic negative-
feedback loop composed of three repressor genes: TOC1, CCA1, and an unknown gene X . The
comparison of the average evolution (right) of the circadian clock for the 12h light/12h dark
model (blue solid line) and the 24h light model (red dashed line) shows that light plays a crucial
role in stabilising the oscillatory period. Parameters of the simulation are as in [21].

3 Results

3.1 Logical Characterisation of a Biological Oscillator

Our first case study is the circadian clock in Ostreococcus Tauri, a simple unicellu-
lar alga often used as a minimal plant model organism [21]. The circadian clock is an
important regulator of the metabolism of the plant and is controlled by the mutually
repressive interaction of three genes, TOC1, CCA1 and one expressing a not yet char-
acterized protein (denoted as X here), see Fig. 2 left for a scheme of the genetic circuit.
Gene repression of the TOC1 gene is further modulated by light, which plays the role
of an external input and acts as a stabiliser of the oscillatory pattern.

In this example, a parametrised statistical model was already learned from data
in [21]. The stochastic hybrid models we consider couple Stochastic Differential Equa-
tions (SDEs) for protein dynamics with a two-state model of gene promoter, which can
be either free or bound to the repressor. In the latter case, the protein expression is
reduced. More precisely, the protein dynamics is given by the SDE

dXi = (Aiµi + bi−λiXi)dt +σdW,

where µi denotes the state of the promoter gene i (with µi = 1 denoting the repressed
state and µi = 0 the active state), bi is the basal production rate, Ai < 0 reduces it in
case of repression, and λi is the degradation rate. The dynamics of the promoter is a
two-state Markov chain with switch rates given by

fbind,i(X) = kpi exp(keiXj), funbind,i(X) = ku,

i.e. with constant unbinding rate and with binding rate depending on the repressor con-
centration. To model the influence of light on the protein TOC1, we modify the binding
and unbinding rates of its regulatory protein X as follows:
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Table 1. Statistics for six runs of the optimization of parameter θ ∈ [0.05,0.35]. The algorithm
was initialised by sampling the function (2.1) 16 times from 100 simulation runs of each mode,
and terminated with less than 4 additional samples on average. The variability of the results is
due to the noisy nature of the function evaluation.

Av. θ Av. log odds ratio Av. sat. prob. 12L-12D Av. sat. prob. 24L
0.148 4.295 0.83 0.008

Range θ Range log odds ratio Range sat. prob. 12L-12D Range sat. prob. 24L
[0.138, 0.157] [3.689, 4.522] [0.77, 0.87] [0.004, 0.012]

(a) O. Tauri circadian clock: single trace. (b) Log odd ratio: emulation function

Fig. 3. Left: Single trace of TOC1 protein evolution for the O. Tauri model, with parameters as in
[21]. Right: Emulated log odds ratio as a function of the threshold θ of MITL Formula 3.2 (blue
solid line) and 95% error bounds (black dashed lines). The green points are the estimated values
of the function.

fbind,TOC1(X) = (1− γ)
(
kpi exp(kei Xj)

)
+ γ · kb

light (t), funbind,i(X) = (1− γ)ku + γ · ku
light (t),

where γ is set to 0.20 and the values of kb/u
light(t) depend on the light conditions.

As an example of our property learning procedure, we seek a temporal logic formula
which discriminates system trajectories between the following two conditions: the sys-
tem is entrained, i.e. is receiving a 12h light/12h dark input signal (12L-12D), or it is
being kept in constant light (24L). These conditions are encountered by O. tauri at high
latitudes, and it is a scientifically important question how clock regulation can with-
stand such extreme environmental changes. In this example, we will fix a template and
limit ourselves to learn parameters with the Bayesian continuous optimisation scheme
discussed in Section 2. The key difference between the 12L-12D model and the 24L
model is that oscillations in the 12L - 12D regime should maintain phase coherence
with the input. This is indeed true, as can be seen from Figure 2(b), where we show the
average of 500 trajectories. Detecting phase coherence on single trajectories is however
a much tougher proposition, as subtle phase shifts can be easily masked by irregularities
due to the intrinsic stochasticity of the processes, see Figure 3(a).

We therefore use the approach of [12], converting the signal from the time domain to
the frequency domain using the Short Time Fourier Transform (STFT) [2]. This tech-
nique is generally employed to analyse non-stationary signals, whose statistic charac-
teristics vary with time. STFT consists of reading the samples of the signals using fixed
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window of time where to apply the standard Fourier transform. The result is a spectro-
gram where is possible to observe for each region of time the characteristic frequencies
of the signal. Since we know the oscillation frequency ωo of the 12L-12D model, by
fixing a time window of To = 10/ωo, we expect to find a peak in the STFT at frequency
ωo in the 12L-12D model, but not in the 24L model. Using the STFT (with rectangular
window), we can require this peak to persist for a certain amount of time T , leading to
the formula

ϕFFT,θ = G[0,T ]( f (ω0, ·)≥ θ), (3.2)

where f (ω0, t) is the absolute value of the STFT at frequency ωo for the window of
length To starting at time t, and T is fixed to 1000. The goal therefore becomes to find
the best discriminating θ. In Table 1, we report the results of 6 runs of the optimiza-
tion algorithm, searching for the best θ ∈ [0.05,0.35], while the functional dependency
of log odds ratio on θ, as emulated by the Bayesian optimisation procedure, is shown
in Figure 3(b). We find an optimal value (the median from the 6 runs) of 0.1492, cor-
responding to a satisfaction probability in the 12L-12D model of approximatively 0.84
and a satisfaction probability in the 24L model of approximatively 0.01, confirming that
this formula has a good discriminatory power.

3.2 Logical Discrimination of Cardiac Arrhythmias

Basic cardiac physiology - Arrhythmias are electrophysiological cardiac malfunctions
which cause significant mortality and morbidity. The most common, non-invasive diag-
nostic tool to monitor the heart’s electrophysiological function is the electrocardiogram
(ECG). An ECG machine is able to record the electrical activity of the heart through a
set of electrodes (called ECG leads) placed by the physician on the chest wall and limbs
of the patient. As Figure 4 b) illustrates, in a healthy patient the ECG signal consists
of three main consecutive waves: the P wave corresponding to the depolarization and
the consequent contraction of the atria, the QRS complex representing the rapid depo-
larization and contraction of the ventricles and the T wave identifying the recovery or
depolarization of the ventricles.

ECG signals are interpreted by physicians through a hierarchy of annotations. The
fundamental unit in the ECG is the heartbeat (or, simply, beat) defined as the interval
between two consecutive R peaks. The beats are annotated using a symbol characteriz-
ing the type of beat observed (some of them shown in Figure 4 a-d). Beats are usually
machine annotated through pattern recognition algorithms such as support vector ma-
chines. In this work, we will use directly an annotated version of the ECG signals as a
sequence of beat symbols with associated beat durations.
A higher level annotation of ECG data is given by the rhythms, sequences of beats
exhibiting a coherent pattern. Figure 5 a) shows an example of an ECG pattern for
a normal sinus rhythm. Even in this case some abnormal heartbeats (such as a pre-
mature ventricular contraction in Figure 5 d)) can sporadically occur without medical
significance. We present here initial results on annotated ECG data from the MIT-BIH
Arrhythmia Database [20]. We restricted our attention to a subset of possible rhythms
which were more prevalent in the data: bigeminy, trigeminy, ventricular tachycardia and
the normal rhythm. These signals are predominantly composed of V and N symbols,
often with a similar frequency, hence discrimination is more challenging.
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Fig. 4. a) ECG pattern for two normal beats; b-c) Left /Right bundle branch block is an abnormal
beat where one ventricle is delayed and contracts later than the other; d) Premature ventricular
contraction is characterized by a premature wider QRS complex, not preceded by a P wave and
followed by an usually large T wave with an opposite concavity than in the normal beat.

d) VENTRICULAR TRIGEMINY 
 

a) NORMAL RHYTHM 

b) VENTRICULAR TACHICARDIA  

0.76 0.53 1.31 0.93 

0.41 0.23 0.40 0.38 0.35 0.30 0.45 0.38 

N 
1.31 1.27 0.61 1.20 

c) VENTRICULAR BIGEMINY 

0.52 0.51  1.30 0.55 

1.29 0.94 0.50 1.29 1.02 0.56 1.33 0.98 

0.56 
V N N V N N V 

in sec. 
N V V N V 

N N V N N V N N 
in sec. 

V V V V V V V V 

Fig. 5. Some ECG patterns: a) normal sinus rhythm; b) ventricular tachycardia, b) ventricular
bigeminy, c) ventricular trigeminy. On the top of each signal is reported the annotation for each
beat and its duration in seconds, while on the bottom is reproduced the electrical signal. The ECG
data was obtained from the MIT-BIH Arrhythmia Database [20]

Statistical modelling - Due to the discrete time nature of the signal, we selected Hidden
Markov Models (HMMs) as a class of statistical models that could provide a suitable
statistical abstraction of the data. HMMs [23] are a workhorse of statistics and signal
processing and have been previously employed in the context of formal modelling of
heart function in [6]. Briefly, an HMM is a tuple H = 〈S,A,O,B,π〉 containing a finite
set S of states, a transition probability matrix A, a set O of observation symbols, an
observation probability distribution B, and an initial state distribution π. In our case, we
have hybrid observations consisting of pairs os,ot where os is the emitted symbol (type
of beat) and ot the beat duration (in seconds). We therefore assume the observation
probability to factorise as a product of a discrete probability on the beat types and a
Gaussian on the observation times. HMM models were learnt using the Baum-Welch
algorithm [23] and selected using the AIC score defined in Section 2.
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Summary of experimental procedure - Due to space restrictions, we present results on
a single patient (patient 233); other patients yielded similar results. Code to recreate the
experimental results is available for academic use from the authors upon request. The
experimental procedure can be summarised as follows

– For each rhythm, we learn HMM models with 2 to 6 states, and select the one with
best AIC score. We learn the model simultaneously on all segments annotated as a
certain rhythm (e.g. bigeminy).

– For each pair of abnormal/ normal rhythm, we learn template formulae starting
from the basic set of formulae T2, corresponding to possible patterns of length 2
of symbols V and N: T2 = {FG≤T ϕNN ,FG≤T ϕNV ,FG≤T ϕVN ,FG≤T ϕVV}, where
ϕY Z = Y ∧ (X[0,bY ](Z ∧ X[0,bZ ](�))) and we optimise the continuous parameters
(T,bN ,bV ) to obtain the maximum discriminative power 1.

– If after the optimisation phase no highly supported formula was found, i.e. a for-
mula with high log-odd ratio of abnormal versus normal signal and high satisfaction
probability, we rerun the procedure increasing the pattern length of one (hence, first
for T3, then T4, and so on).

– We then selected the most supported formulae of Tk to further combine them, as dis-
cussed in the previous section. We run the continuous optimisation also for these
formulae, and chose the ones having both high log-odd ratio and satisfaction prob-
ability for the abnormal rhythm.

We now present results on discrimination of the three abnormal rhythms in more detail.

Bigeminy - Learning formula templates for the discrimination of bigeminy against nor-
mal heart behaviour proceeded as follows: in the first optimisation run, the two formulae
with highest log-odd ratio where FG≤T ϕNV and FG≤T ϕVN , scoring more than 5, with
a satisfaction probability in bigeminy of about 0.8.

The other two formulae, instead, have a log-odd ratio zero or less. Hence, we selected
these two formulae for the second phase of the discrete search, obtaining FG≤T (ϕNV ∨
ϕVN) as the only candidate for the second round. This formula clearly codes for the
pattern VN repeated many times (for as long as T units of time). Running the contin-
uous optimisation, we find a log-odd ratio of 4.08, which is lower than in the previous
case, but it corresponds to a satisfaction probability of 0.9994 in the abnormal rhythm,
and a probability of 0.016 in the normal one, corresponding to a sensitivity of > 99%
and a specificity of approximately 98%. Hence, this formula turns to have a good dis-
criminative power, and its relatively low log-odd ratio depends on its high sensitivity
to small values of the denominator. The upper bound of time T is optimally set to 3.8,
close to the maximum of 4. Upper bounds on beat duration are also close to their max-
imum. Note that the alternation of V and N is precisely what characterises bigeminy:
our method learned the correct pattern used by physicians, and additionally quantitated
the time such a pattern persists for.

1 We search in the following space: maximal duration of symbols is constrained between 0 and
2.5 seconds, while the lower bound was set to zero. The total duration T varies between 0
and an upper bound depending on the signal, equal to 4 for bigeminy, 7 for trigeminy, 2 for
tachycardia. We generate signals of fifteen seconds. The choice of bounds for T is consistent
with the duration of raw signals in the training set.
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Table 2. Average log-odd ratio and satisfaction probability of abnormal and normal signals for
the best discriminating formulae learned from patient 223, as tested on other three patients (per
type of abnormality). The fourth row reports the number of signals in the training set to learn each
model of the abnormal signals in patient 223. The formulae learnt were tested on patients: 119,
213, and 233 for bigeminy; 119, 201,208 for trigeminy; 213, 215, 233 for ventricular tachycardia.
The fifth row shows the number of signals considered in the testing set per type of abnormality.

Bigeminy Trigeminy V. Tachycardia
Av. log-odd ratio 3.32 2.99 7.68

Av. prob. abnormal 0.99 0.99 0.99
Av. prob. normal 0.06 0.08 0.0005

Learning Set (num. of signals) 7 3 7
Testing Set (num. of signals) 84 75 10

Trigeminy - To discriminate trigeminy vs normal rhythm, we proceeded analogously
as for bigeminy, starting with the same set T2 of formulae. In this case, however, no for-
mula of length 2 was found to have a high support in discriminating trigeminy (less
than 3.5), hence we considered basic templates corresponding to patterns of length
3. The analysis in this case gave high log-odd ratio (4 or greater) to three formulae:
FG≤T ϕV NN , FG≤T ϕNV N , and FG≤T ϕNNV , with for a small duration T for all three
cases. We then took all possible combination of at least two of those formula using
disjunction, and found the most discriminating formula (log-odd ratio 7.8, satisfaction
probability for trigeminy 0.9968, and for normal signal of 0.004) to be FG≤T (ϕV NN ∨
ϕNV N ∨ ϕNNV ), corresponding to the pattern VNN repeating in time for approxima-
tively T = 4.25 seconds. Again in this case, the method found the hallmark pattern of
trigeminy and additionally quantified its persistent behaviour. We also tested that this
formula works well in discriminating trigeminy versus bigeminy (log-odd ratio of 8.5).

Ventricular tachycardia - This case turned out to be the simplest one. A good discrim-
inating formula was found already in the set T2, corresponding to the pattern VV . In
particular, the continuous optimisation returned a log-odd ratio of 2.9, corresponding
to a satisfaction probability in the abnormal rhythm of 0.9998 and of 0.05 in the nor-
mal rhythm, with the global validity time T set approximatively to 1.25 seconds. This
corresponds to tachycardia being characterised by a stretch of about 3 to 4 V beats.

Discrimination on other patients - So far, we considered discriminative power as ap-
plied to the same patient on which the models were learnt. We now consider the much
harder task of assessing whether estimated formulae remain discriminative when also
applied to other patients’ ECG data. We considered three other patients for each arrhyth-
mia, and obtained an high discriminative power, as reported in Table 2. We also tested
the formulae on raw signals taken from the database2, obtaining the following results, in
terms of satisfaction probability: 0.954 for bigeminy versus 0.038 for normal rhythms
(on the same patients); and 0.918 for trigeminy versus 0.287 for normal rhythms. The
high satisfaction probability on normal rhythms for this last case is almost entirely

2 22 signals for bigeminy of length at least 4.5, 49 for trigeminy of length at least 5, and about
80 for normal rhythms. We did not treat tachycardia because there were too few signals.
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explained by the presence, in the extended data set, of several patients with slow heart
beats. The relatively low duration of the pattern learnt on the training patient, 4.25s, can
be matched in the slow beat patients by patterns consisting of a single V preceded and
followed by two Ns, which are very common in normal rhythm. Increasing the time
bound to 7s reduced the satisfaction probability in normal rhythms to 0.014, while the
satisfaction probability for trigeminy remained stable to 0.906.

4 Related Work

Mining temporal logic specifications from data is an emerging field of computer aided
verification [4,10,18,14,27,28]. Generally, this task is predicated on the availability of a
fully specified and deterministic model, enabling a quantitative evaluation of the prob-
ability that a certain formula will hold. This enables the deployment of optimisation
based machine learning techniques, such as decision trees [14] or stochastic optimi-
sation methods [28,27]. Learning temporal logic specifications directly from observed
traces of the system is considerably more challenging. In general, solving the full struc-
ture and parameter learning problem is infeasible, due to the intractability resulting
from a hybrid combinatorial/continuous optimisation problem. Heuristic search ap-
proaches have been proposed in [10]; while these may prove effective in specific mod-
elling problems, they generally do not offer theoretical guarantees, and can be prone to
over-fitting/vulnerable to noise. Geometric approaches such as the one proposed in [4]
rest on solid mathematical foundations but can also be vulnerable to noise, and require
potentially very large amounts of data to permit identification. While preparing this
manuscript, we became aware of a work of imminent publication [17] which employs a
notion of robustness of satisfiability of a formula to guide an optimisation based mining
procedure. While this approach can be applied also in a model-free scenario, empirical
estimation of the robustness of a formula may require the observation of a large number
of traces of the system; for example, one of the case studies in [17] used 600 indepen-
dent realisations of the system, a number that far exceeds the experimental capabilities
in many applications such as systems biology.

Our strategy of constructing a statistical model of data ameliorates this issue, at the
price of an increased complexity of the mining problem, which we tackle by combining
statistical modelling ideas from machine learning with formal verification methods. In
this respect, our work is related to a number of other recent attempts to deploy machine
learning tools within a verification context [7,26,16]. Similar ideas to the ones used in
this paper have been deployed on the parameter synthesis problem in [9,5], where the
GP-UCB algorithm was used to identify the parameters of a model which maximised
the satisfaction/robustness of a formula. Statistical abstractions draw their roots in the
emulation field in statistics: within the context of dynamical systems, emulation has
been recently used in [13] to model compactly the interface between subsystems of
complex gene regulatory networks.

5 Conclusions

Modern science is increasingly becoming data intensive, with vast amounts of data be-
ing produced across disciplines as diverse as economics, physics and biology. Marrying
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formal computational modelling with statistical, data-modelling techniques is there-
fore a pressing priority to advance the applicability of computational thinking to real
world problems. In this paper, we exploit concepts from formal modelling and machine
learning to develop methodologies which can identify temporal logic formulae which
discriminate different stochastic processes based on observations. While we aim to be
guided by the data, our approach is not entirely data driven: approaches which rely di-
rectly on induction from data, such as [10,4], often need very long time series, which are
not available in many applications such as systems biology. Rather, we use a statistical
abstraction, i.e. a family of stochastic models, to represent the data, and use machine
learning methods to select an optimal model based on the data. This procedure brings
back a model based perspective, with considerable advantages in terms of interpretabil-
ity of the underlying dynamics. Furthermore, it enables us to deploy advanced machine
learning methods to statistically optimise the temporal logic formulae we are seeking.

While we believe our machine learning perspective brings some distinctive novel
ideas to the problem, several major avenues remain open for further research. Our
approach focussed primarily on parametrising temporal logic formulae, rather than de-
termining also a template for the formula structure. This combinatorial optimisation
problem is intrinsically computationally hard, and may require directly imposing re-
strictions on the logic as in [17]. Scaling our approach to high dimensional spaces of
parameters could also be problematic, as Bayesian optimisation methods severely suffer
from the curse of dimensionality. In this respect, sparse approximation may be bene-
ficial [24] but are so far untested in a Bayesian optimisation context. Finally, our ex-
perimental section demonstrated the applicability of our approach to a potentially wide
class of problems. We hope this may lead to more focussed interdisciplinary studies in
emerging application fields such as synthetic biology.
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