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Abstract. State-space explosion is a major obstacle in verification of
time-critical distributed systems. An important factor with a negative
influence on the tractability of the analysis is the size of constants that
clocks are compared to. This problem is particularly accented in ex-
plicit state-space exploration techniques. We suggest an approximation
method for reducing the size of constants present in the model. The
proposed method is developed for Timed-Arc Petri Nets and creates an
under-approximation or an over-approximation of the model behaviour.
The verification of approximated Petri net models can be considerably
faster but it does not in general guarantee conclusive answers. We im-
plement the algorithms within the open-source model checker TAPAAL
and demonstrate on a number of experiments that our approximation
techniques often result in a significant speed-up of the verification.

1 Introduction

Formal verification of time-dependent systems has been an active area of re-
search for the last two decades or so. There are two prominent models that
involve timing: timed automata (TA) [1] and different time extensions of Petri
nets like Time Petri Nets (TPN) [22] and Timed-Arc Petri Nets (TAPN) [5,15].
Both symbolic1 and explicit time-representation techniques have been devel-
oped for these models. For TA and TPN, it is well known [4,25] that the explicit
(discrete-time) semantics coincide up to reachability with the continuous (real-
time) semantics on time models with closed (non-strict) clock guards. A similar
result can be proved also for TAPNs. The state-space exploration techniques for
continuous semantics usually rely on symbolic zone-based abstractions (using
the DBM data structure [12]). On the other hand, the discrete state-spaces can
be searched in a direct manner where the clock values are remembered explicitly.
The explicit approach can successfully compete with the symbolic one, as long
as the constants in clock guards are reasonably small [6,19,17,3,16]. As the sizes
of constants grow, the models become increasingly more difficult to verify, in
particularly in case of explicit verification techniques.

1 Referring here to a symbolic way to represent clock values and not to symbolic
techniques based on decision diagrams.
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As a motivating example, consider a design of a task scheduling algorithm for
an embedded system where timing constraints are obtained from real physical
measurements given in nanoseconds. Here a worst-case and best-case execution
time of a certain task can be in the interval from 117 to 185 nanoseconds, while
having the period of 10000 nanoseconds (the timing is taken from the model of
a LEGO Mindstorm scheduling algorithm [14] created by software engineering
students at Aalborg University). If a model of the task scheduling algorithm is
populated with a larger number of components at this precision level, checking
for the schedulability becomes quickly intractable. However, we may instead of
the measured values approximate that the task duration is between 1 to 2 time
units with the period of 100 units, abstracting away the precise timing and
hence extending the task execution window. In case we succeed to verify that
the system is schedulable under this abstraction (as it is the case for the LEGO
scheduler), the schedulability of the original system is established as well.

Our contribution is a methodology that allows us to perform automatically
such abstractions. The technique is demonstrated on the model of timed-arc
Petri nets. The main idea is that time intervals of the form [a, b], where a ≤ b
are nonnegative integers, can be divided by a given approximation constant r
and become [�a/r�, �b/r�] in case of over-approximation and [�a/r�, �b/r�] in
case of under-approximation. By doing this, the constants used in the net are
reduced, resulting possibly in large (even exponential) savings in verification time
and memory. However, over-approximated nets allow for more behaviour while
the under-approximated ones contain less behaviour and this may result in in-
conclusive verification answers. We discuss the correctness of the approximation
techniques in the continuous as well as discrete semantics and both for the reach-
ability and liveness properties. The approximation algorithms are implemented
in a publicly available, open-source model checker TAPAAL [10], including a
suitable GUI support, and we demonstrate its applicability on a number of case
studies, ranging from academic examples to real-world inspired scenarios. For
example in the LEGO case study [14], it takes 3366 seconds (more than 56 min-
utes) to verify that all tasks meet their deadlines, while if we over-approximate
the intervals by dividing them with r = 10 it takes 36 seconds and with r = 50
only 7 seconds, still providing conclusive answers.

Related Work. Abstraction techniques like over-approximation [9] and under-
approximation [21,24] have been studied in the past, including a counter-example
guided abstraction methodology [8] where spurious counter-examples are used to
refine the current approximation. Our approach is inspired by these techniques
but focuses exclusively on the refinement of timing information and efficient fea-
sibility analysis of the generated traces. State equations [23] and linear program-
ming are often used to over-approximate the reachable space-space of untimed
Petri nets. This technique is efficient, however, the timing information is com-
pletely disregarded, resulting often in inconclusive answers for timed nets. The
authors in [13] suggest an algorithm for under- and over-approximations of timed
safety automata by approximating the union operation on zones. Our method
is not based on zones and it is targeted instead towards explicit state-space
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Fig. 1. Producer/consumer running example (intervals [0,∞] are not drawn)

exploration techniques where it can be combined with some recently intro-
duced techniques and data structures like PTrie and Time Darts [16]. Finally,
a time-relaxing method for a network of automata where events have interval-
durations is described in [2]. The work proposes a pseudo-polynomial algorithm
that enlarges delay intervals so that constants can be divided by a large greatest-
common divisor (gcd). However, the division by gcd is, perhaps surprisingly, not
a sound operation for liveness properties in the discrete semantics as we show in
Section 3.2. Also, the method in [2] assumes that the network of automata satisfy
the language intersection property (the language of the network is equal to the
intersection of languages of the individual components). Our model of timed-arc
Petri nets is more general as it supports also urgency, age invariants and in-
hibitor arcs (the language intersection property is not preserved anymore) and
our approximation algorithm is simpler (with polynomial running time) and at
the same time the experiments document a promising performance. Last but not
least, another contribution of our work is the integration of the approximation
algorithms into the tool TAPAAL.

2 Definitions

We start by informally introducing timed-arc Petri nets using a running example
in Figure 1. The net consists of eight places (circles) and six transitions (rect-
angles) and models a simple producer/consumer system where produced items
are loaded on a truck, transported to an off-load storage and later processed by
the consumer, while at the same time the truck returns to the producer site.
The producer, consumer and the truck are represented by three tokens in the
depicted marking, all having the initial age 0. In the initial marking the transi-
tion load is not enabled because its input places do not contain tokens of ages
that fit into the time intervals on the input arcs of the transition (by agreement
we will not draw intervals of the form [0,∞] that do not restrict the ages of
tokens in any way). However, if we wait for between 12 to 48 hours (longer de-
lay than 48 hours is not allowed due to the age invariant ≤ 48 associated with
the place producing), the transition load can fire. The firing consumes the two
tokens from the input places and produces two fresh tokens of age 0 into the
places producing and drivingWithLoad. Now after another 18 to 20 hours the
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track arrives (by firing the transition arrived) to its destination. As the pair of
arcs (with diamond-shaped tips) connected with the transition arrived are the
so-called transport arcs, the token from dirivingWithLoad is transported into
the place waitingToOffload and its age is preserved. Similarly once the tran-
sition offload is fired, the age of the token moved into the place storage now
represents the total time the product was in transfer. Note that the transition
offload has a special dot in the middle, meaning that it is urgent and once it
is enabled, time cannot progress any more (though the transition does not have
priority over other enabled transitions in the net). Moreover, offload cannot fire
as long as there is a token in the place storage due to the inhibitor arc with a
circle-shaped tip. Finally, the truck starts its journey back to the producer and
the product can be consumed by the consumer. In case that the total amount
of time the product was in transport exceeds 50 hours, it cannot be consumed
any more and can only be thrown away while marking the place garbagePlace.
The model can also contain weighted arcs (not depicted in our figure) that will
consume/produce multiple tokens along the same arc.

We now proceed with a formal definition of timed-arc Petri nets (TAPN). Let
N0 = N∪ {0}, N∞

0 = N0 ∪{∞} and R
≥0 = {x ∈ R | x ≥ 0}. We define the set of

well-formed time intervals as I def
= {[a, b] | a ∈ N0, b ∈ N

∞
0 , a ≤ b} and a subset

of I used in invariants as I inv = {[0, b] | b ∈ N
∞
0 }.

Definition 1. ATAPN is a tupleN = (P, T, TUrgent, IA,OA, g, w,Type, I)where

– P is a finite set of places,
– T is a finite set of transition such that P ∩ T = ∅,
– TUrgent is a finite set of urgent transitions such that TUrgent ⊆ T ,
– IA ⊆ P × T is a finite set of input arcs,
– OA ⊆ T × P is a finite set of output arcs,
– g : IA → I is a time constraint function assigning guards to input arcs,
– w : IA ∪OA → N is a function assigning weights to input and output arcs,
– Type : IA∪OA → Types is a type function assigning a type to all arcs, where

Types = {Normal , Inhib} ∪ {Transportj | j ∈ N} such that

• if Type(a) = Inhib then a ∈ IA,
• if Type((p, t)) = Transportj for some (p, t) ∈ IA then there is exactly
one (t, p′) ∈ OA such that Type((t, p′)) = Transportj and w((p, t)) =
w((t, p′)),

• if Type((t, p′)) = Transportj for some (t, p′) ∈ OA then there is ex-
actly one (p, t) ∈ IA such that Type((p, t)) = Transportj and w((p, t)) =
w((t, p′)),

– I : P → Iinv is a function assigning age invariants to places.

The preset of input places of a transition t ∈ T is defined as •t = {p ∈ P |
(p, t) ∈ IA,Type((p, t)) �= Inhib}. Similarly, the postset of output places of t
is defined as t• = {p ∈ P | (t, p) ∈ OA}. Let B(R≥0) be the set of all finite
multisets over R≥0. A marking M on N is a function M : P → B(R≥0) where
for every place p ∈ P and every token x ∈ M(p) we have x ∈ I(p).
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We use the notation (p, x) to denote a token at a place p of the age x ∈ R
≥0.

We write M = {(p1, x1), (p2, x2), . . . , (pn, xn)} for a marking with n tokens of
ages xi located in places pi. A marked TAPN (N,M0) is a TAPN N together
with its initial marking M0 with all tokens of age 0.

We say that a transition t ∈ T is enabled in a marking M by the multisets

of tokens In = {(p, x1
p), (p, x

2
p), . . . , (p, x

w((p,t))
p ) | p ∈ •t} ⊆ M and Out =

{(p′, x1
p′), (p′, x2

p′ ), . . . , (p′, xw((p′,t))
p′ ) | p′ ∈ t•} if

1. for all input arcs except inhibitor arcs, the tokens from In satisfy the age
guards of the arcs, i.e.
∀(p, t) ∈ IA.Type((p, t)) �= Inhib ⇒ xi

p ∈ g((p, t)) for 1 ≤ i ≤ w((p, t))
2. for any inhibitor arc pointing from a place p to the transition t, the number

of tokens in p satisfying the guard is smaller than the weight of the arc, i.e.
∀(p, t) ∈ IA.Type((p, t)) = Inhib ⇒ |{x ∈ M(p) | x ∈ g((p, t))}| < w((p, t))

3. for all input and output arcs that constitute a transport arc, the age of the
input token must be equal to the age of the output token and satisfy the
invariant of the output place, i.e.
∀(p, t) ∈ IA.∀(t, p′) ∈ OA.Type((p, t)) = Type((t, p′)) = Transportj ⇒ (xi

p =

xi
p′ ∧ xi

p′ ∈ I(p′)) for 1 ≤ i ≤ w((p, t))
4. for all output arcs that are not part of a transport arc, the age of the output

token is 0, i.e.
∀(t, p′) ∈ OA.Type((t, p′) = Normal ⇒ xi

p′ = 0 for 1 ≤ i ≤ w((p, t)).

A TAPN N defines a timed transition system where states are markings and
the transitions are as follows.

– If t ∈ T is enabled in a marking M by the multisets of tokens In and Out
then t can fire and produce the marking M ′ = (M�In)�Out where � is the
multiset sum operator and � is the multiset difference operator; we write

M
t−→ M ′ for this switch transition.

– A time delay d ∈ R
≥0 is allowed in M if (x+ d) ∈ I(p) for all p ∈ P and all

x ∈ M(p) and there does not exist any t ∈ TUrgent and any d′, 0 ≤ d′ < d,
such that t becomes enabled after the time delay d′ (by delaying d time units
no token violates any of the age invariants and the delay can at most last
until the first urgent transition becomes enabled). By delaying d time units
in M we reach the marking M ′ defined as M ′(p) = {x+ d | x ∈ M(p)} for

all p ∈ P ; we write M
d−→ M ′ for this delay transition.

We have just defined a continuous semantics of TAPNs where the possible
time delays are from the domain of nonnegative real numbers. By restricting the
delays only to nonnegative integers, we get the discrete semantics of TAPNs.

We write M −→ M ′ if either M
d−→ M ′ or M

t−→ M ′ for some delay d or

a transition firing t. We write M
d,t−−→ M ′ if there is a marking M ′′ such that

M
d−→ M ′′ and M ′′ t−→ M ′. A maximum run of a net N from the initial marking

M0 is any infinite alternating sequence M0
d0,t0−−−→ M1

d1,t1−−−→ M2
d2,t2−−−→ · · · or
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a finite alternating sequence M0
d0,t0−−−→ M1

d1,t1−−−→ M2
d2,t2−−−→ · · · dn−1,tn−1−−−−−−−→ Mn

where either (i) for any delay d ≥ 0 there is a marking Md such that Mn
d−→ Md

or (ii) there is a delay d ≥ 0 such that Mn
d−→ Md and Md does not allow any

further nonzero delay and Md does not enable any transition.
Let ϕ be a boolean combination of atomic predicates of the form p �� n

where p ∈ P , ��∈ {=, <,>,≤,≥} and n ∈ N0 (such predicates compare the
number of tokens in a place p against the constant n), and the predicate deadlock.
The satisfability of a formula ϕ in a marking M is defined by M |= p �� n if
|M(p)| �� n, and M |= deadlock if there is no delay d and no transition t such

that M
d,t−−→ M ′. The extension to boolean operators is obvious. A formula ϕ is

deadlock-free if it does not contain any proposition deadlock.
We can now define the reachability (EF ) and liveness (EG) questions, as

supported by the tool TAPAAL, for a given marked TAPN (N,M0).

Definition 2 (Reachability). We write (N,M0) |= EF ϕ if there is a compu-
tation M0 →∗ M such that M |= ϕ.

Definition 3 (Liveness). We write (N,M0) |= EG ϕ if there is a maximum
run such that all markings M on this run satisfy M |= ϕ.

If M0 is clear from the context, we write only N |= EF ϕ or N |= EG ϕ. The
dual operators AG ϕ ≡ ¬EF¬ϕ and AF ϕ ≡ ¬EG¬ϕ are defined as expected.

Remark 1. If a query EFϕ is satisfied, the evidence for this fact is a finite run
ending in a marking satisfying ϕ. The witness for the formula EGϕ is a maximum
run invariantly satisfying ϕ. The maximum run is either finite (ending in a
marking where we can delay forever or in a marking where no transition firing
and no delay is possible) or infinite. If such an infinite run exists then there is
also one that has a lasso shape (see e.g [3]) so that the sequence of the transition
firings is of the form t1t2 . . . (t� . . . tn)

ω.

3 Interval Abstractions

Verification of reachability and liveness queries is a computationally hard prob-
lem because the size of the reachable state-space can be exponential compared
to the size of the analyzed net. For timed systems, there are two sources of this
exponential explosion. The first one is that Petri nets allow to model parallel
activities that can have exponentially many different interleavings. The second
degree of explosion stems from the addition of timing aspects. In this section,
we shall see how the explosion caused by the timing constraints can be greatly
reduced while still providing conclusive answers in many concrete scenarios. We
suggest two approximation methods, one creating an over-approximation and
the other one an under-approximation. Both methods rely on a given approxi-
mation constant r that determines the ratio by which the constants in the net
are scaled. As constants in a net must be integers, we need to round the scaled
values. For over-approximation, we enlarge the available intervals in the net,
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while for under-approximation we shrink them. A special care has to be given to
inhibitor arcs as they inhibit behaviour. Hence for over-approximation we need
to shrink the intervals on inhibitor arcs while for under-approximation we do
the opposite.

Definition 4 (Interval abstraction by over-approximation). Let N =
(P, T, TUrgent , IA,OA, g, w,Type, I) be a TAPN, let M0 be its initial marking
and let r be a positive natural number (approximation constant). The over-
approximation algorithm on an input (N,M0) outputs a marked net (Nover

r ,M0)
where Nover

r = (P, T, TUrgent , IA
′,OA, g′, w′,Type ′, I ′) such that

– IA′ = IA � {(p, t) ∈ IA | Type((p, t)) = Inhib, �a
r � > � b

r � where [a, b] =
g((p, t))}

– g′((p, t)) =
{
[�a

r �, � b
r �] if g((p, t)) = [a, b] and Type((p, t)) �= Inhib

[�a
r �, � b

r �] if g((p, t)) = [a, b] and Type((p, t)) = Inhib

for all (p, t) ∈ IA′,
– w′(x, y) = w(x, y) and Type ′(x, y) = Type(x, y) for all (x, y) ∈ IA′ ∪OA,

– I ′(p) = [0, � b
r �] where [0, b] = I(p) for all p ∈ P .

The over-approximation clearly runs in polynomial time. Note that the over-
approximation may remove some inhibitor arcs in case that the resulting interval
is empty (meaning that the lower-bound is larger than the upper-bound).

Definition 5 (Interval abstraction by under-approximation). Let N =
(P, T, TUrgent , IA,OA, g, w,Type, I) be a TAPN, let M0 be its initial marking
and let r be a positive natural number (approximation constant). The under-
approximation algorithm on an input (N,M0) outputs a marked net (Nunder

r ,M0)
where Nunder

r = (P, T ′, T ′
Urgent , IA

′,OA′, g′, w′,Type ′, I ′). Let X = {(p, t) ∈ IA |
Type((p, t)) �= Inhib, �a

r � > � b
r � where [a, b] = g((p, t))}. Then

– T ′ = T � {t ∈ T | (p, t) ∈ X for some p ∈ P},
– T ′

Urgent = TUrgent � {t ∈ T | (p, t) ∈ X for some p ∈ P},
– IA′ = IA�X

– OA′ = OA� {(t, p) ∈ OA | t ∈ T � T ′},
– g′((p, t)) =

{[�a
r �, � b

r �
]
if g((p, t)) = [a, b] and Type((p, t)) �= Inhib[�a

r �, � b
r �
]
if g((p, t)) = [a, b] and Type((p, t)) = Inhib

for all (p, t) ∈ IA′,
– w′(x, y) = w(x, y) and Type ′(x, y) = Type(x, y) for all (x, y) ∈ IA′ ∪OA′,
– I ′(p) = [0, � b

r �] where [0, b] = I(p) for all p ∈ P .

The under-approximation clearly runs in polynomial time. Observe that the con-
struction of under-approximated net slightly differs from the over-approximated
net. In particular, if an arc of a transition is removed because of an empty in-
terval, then it is necessary to remove also the connected transition as otherwise
the net might achieve more behaviour.
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Fig. 2. Urgent transitions with timed input arcs

3.1 Approximation Correctness for Reachability

In order to argue about the correctness of the over-approximation for reachability
queries, we wish to prove that if N |= EF ϕ then also Nover

r |= EF ϕ for any
r ≥ 1. For under-approximation, the implication should be the other way round.
The correctness clearly does not hold if the formula ϕ contains any deadlock
proposition as the approximations can both create new deadlocks and remove
some existing ones. Moreover, the situation is a slightly more complicated than it
may look, as urgent transitions with time-guarded input arcs may also influence
the answer to reachability queries as demonstrated in Figure 2. This is caused
by the fact that once the interval on an urgent transitions is approximated, it
may disable a time delay that was possible in the original net. Hence for example
the net N in Figure 2a can mark the place p1 while this is not possible in the
over-approximated net Nover

2 because once the token of age 1 arrives to the place
p3, no time delay is allowed due to the urgency of t2. This means that t1 is never
enabled in the over-approximated net. A similar situation can be observed also
for the under-approximated net in Figure 2b.

We can now prove that the approximations are correct for any deadlock-
free reachability objective, assuming that urgent transitions have only trivial
guards on incoming arcs2. The following correctness theorem holds both for the
continuous as well as the discrete semantics.

Theorem 1. Let N = (P, T, TUrgent , IA,OA, g, w,Type, I) such that g((p, t)) =
[0,∞] for all t ∈ TUrgent and let ϕ be a deadlock-free formula. If N |= EF ϕ then
Nover

r |= EF ϕ for any r ≥ 1. If Nunder
r |= EF ϕ for some r ≥ 1 then N |= EF ϕ.

3.2 Approximation Correctness for Liveness

Let us first notice that we cannot expect to prove under-approximation correct-
ness for liveness queries as under-approximation can introduce additional dead-
locks that can create non-existent maximum runs. For example, consider the net

2 This restriction on urgent transitions also guarantees that DBM-based algorithms
can be used in the TAPAAL continuous engine [11].
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Fig. 3. Problem with over-approximation and under-approximation for liveness

N in Figure 3a that does not satisfy the query EG p0=1 as any maximum run is
forced to fire the transition t. On the other hand, the under-approximated net
for r = 2 in Figure 3b clearly satisfies the query.

A less expected message is that the same problem is present also for the
over-approximation as relaxing the net behaviour can remove some existing
deadlocks. Consider the TAPN in Figure 3c that satisfies EG done=0 by the
maximum run delay 1, init, delay 1 that actually only uses integer delays. The
over-approximated net for r = 3 in Figure 3d cannot deadlock in a similar situa-
tion as before as any maximum run will necessarily place a token into the place
done (both in discrete and continuous semantics). Hence Nover

3 �|= EG done=0.
For the discrete semantics we get already for r = 2 (greatest common divisor of
all constants in the net) that Nover

2 �|= EG done=0.
To sum up, even though the over- and under-approximations are correct

for reachability objectives, the correctness does not hold any more for liveness
queries. Nevertheless, in the next section we show that we can still efficiently
verify whether the maximal runs for EG queries in the approximated models are
valid maximal runs also in the original ones.

4 Trace Validation

The aim of this section is to define the so-called trace net. A trace net guides the
state-space search in the original net based on a given sequence of transitions
(trace). The use of a trace net is to efficiently verify whether a trace proposed by
a net approximation is executable in the original net or not (for each trace we
construct a different trace net). Assume now a fixed untimed trace of the form
trace = t1t2 . . . tn or trace = t1t2 . . . (t� . . . tn)

ω where ti ∈ T for all i, 1 ≤ i ≤ n.
By #(t) we denote the number of occurrences of the transition t in trace (for
an infinite trace only it its finite prefix t1 . . . tn). By #i(t), where 1 ≤ i ≤ n, we
denote the number of occurrences of t in the prefix t1 . . . ti of trace.
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For the given TAPN N , we shall
now construct a TAPN N trace that re-
stricts the behaviour of the net N so
that transitions can be executed only
in the order that follows the sequence
trace (without imposing any concrete
time delays), while at the same time
making sure that along any compu-
tation in N trace the proposition dead-
lock evaluates equivalently as it would
in the original net N .

We shall modify the net N and its
initial marking M0 via the following
steps until we get N trace and the ini-
tial marking M trace

0 . The construction is depicted in Figure 4. In what follows,
by a simple arc we mean a normal input or output arc of weight one; simple
input arcs have the guard [0,∞].

– For each transition t ∈ T we create #(t) additional copies of t, denoted by
t1, t2, . . . , t#(t), such that every new copy tj , 1 ≤ j ≤ #(t), has an identical
preset and postset as t (the same input and output places connected with
arcs of the same type and with the same weight and containing the same
time intervals as guards). The new copies of t are urgent if and only if t
is urgent. Clearly adding these transitions does not have any effect on the
behaviour of the net.

– We add new places p1, p2, . . . , pn and a place pn+1 such that if trace is
finite the pn+1 is a newly added place and if trace is infinite (of the form
t1t2 . . . (t� . . . tn)

ω) then pn+1 = p�. The added places have the age invariant
[0,∞]. There will be always exactly one token in the places p1, . . . , pn+1,
such that if the place pi is marked then the only transition that can fire is
some copy of ti. In the marking M trace

0 the place p1 contains one token and
the places p2, . . . , pn+1 are empty.

– For each i, 1 ≤ i ≤ n, we add two simple arcs (pi, t
#i(ti)
i ) and (t

#i(ti)
i , pi+1).

In other words, the places pi and pi+1 are connected via the next available
copy of the transition ti so that each copy is used only once in the sequence
(note that the same transition can appear several times in trace). This con-
struction imposes an order in which transitions can be fired, following step
by step the sequence of transitions in trace. On the other hand, the modified
net has a full freedom in choosing time delays as in the original net.

– Finally we add a place pblock , initially marked with a token, together with
a pair of simple arcs (pblock , t

j
i ) and (tji , pblock) for each copy tji of every

transition ti. We also add a simple arc (pblock , ti) for every original transition
ti in trace. The purpose of pblock is to allow to deviate for one step from the
transition sequence in trace so that every transition enabled in the original
net N is enabled also in N trace . However, once this step is taken (via firing
some of the original transitions ti), the token from pblock is consumed (and
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pick an approximation constant r ≥ 1

Nover
r |= EFϕ

N trace |= EF (ϕ ∧ pblock = 1) Is ϕ deadlock-free?

Not satisfiedSatisfied

Inconclusive
(repeat with smaller r)

false, r > 1true, r > 1, trace

false

truetrue

false

true, r = 1 false, r = 1

(a) Over-approximation flow diagram for EFϕ

pick an approximation constant r ≥ 1

Nunder
r |= EFϕ

Is ϕ deadlock-free?N trace |= EF (ϕ ∧ pblock = 1)

Not satisfiedSatisfied

Inconclusive
(repeat with smaller r)

true, r > 1
trace

false, r > 1

true

false

trace

true

false

true, r = 1

false, r = 1

(b) Under-approximation flow diagram for EFϕ

Fig. 5. Flow diagrams for over- and under-approximation reachability queries

the whole net N trace terminates). This is to make sure that all enabled
transitions in N are enabled also in N trace in order to preserve the validity
of the proposition deadlock .

Theorem 2. Let N be a TAPN and let ϕ be a formula (possibly containing the
proposition deadlock ). If N trace ,M trace

0 |= EF (ϕ ∧ pblock = 1) then N,M0 |=
EF ϕ. If N trace ,M trace

0 |= EG (ϕ ∧ pblock = 1) then N,M0 |= EG ϕ.

Finally, we present the refinement process for approximation of reachability
queries in Figure 5. The diagrams for liveness only differ in the point that a trace
has to be always verified even for the under-approximation and in case a trace is
not discovered in the approximated net, the answer is always inconclusive. The
correctness of the flow diagrams follows from Theorem 1 and 2.
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5 Evaluation

We discuss the case studies of Patient Monitoring System (PMS) [7] where the
patient’s pulse rate and oxygen saturation level is monitored and abnormal sit-
uations should be detected within given deadlines (constants scaled up to 250
seconds), Business Activity with Participant Completion (BAwPC) [18]—a web-
service protocol from WS-BA where we verify its safety (avoidance of invalid
states) using the fact that the original protocol is flawed while its enhanced
variant is safe [18], Train Level Crossing (TLC)—a standard benchmark case
study where trains are crossing a road and traffic lights should be controlled
correctly, Producer and Consumer Synchronization (PCS)—our running exam-
ple scaled by introducing more producers and consumers and Plate Spinning
Problem (PSP) [20] where jugglers try to keep a number of plates spinning in-
definitely. The greatest common divisor in all models is 1.

The approximations were implemented in the model checker TAPAAL avail-
able at http://www.tapaal.net/. The experiments, run on a Macbook Pro
2.7GHz Intel Core i7, were terminated once the memory usage exceeded 4GB
(OOM) or the verification took longer than 5 minutes (�). In the summary table
we report on the running time using TAPAAL’s discrete verification engine [16]
and the column labelled with r = 1 corresponds to verification where no approxi-
mation is used. The rows marked with “no trace” correspond to EF or EG queries
that are not satisfied (and hence no trace is returned). Only over-approximation
is used here as under-approximation cannot reach conclusive results in this case.
The rows marked with “trace” are satisfied EF and EG queries returning a trace
that is verified by the trace net3. An inconclusive answer is prefixed by a ques-
tion mark. We also note for each row whether we used depth-first search (DFS)
or breadth-first search (BFS) when exploring the approximated nets.

In case of singleton intervals on arcs, under-approximation will remove such
arcs (including the connected transitions). This may quickly result in a net where
too many transitions are missing and the verification answers become inconclu-
sive. Our experiments show that if we instead keep the arcs with singleton inter-
vals (divided by the approximation constant r and rounded down), then we are
likely to get more conclusive answers. Of course, we are not creating an under-
approximation any more. However, this is not an issue as for liveness queries the
trace returned by under-approximation must be always verified by the trace net
(see Section 3.2) and we can do the same also for the reachability queries. Our
experimental data use the variant of under-approximation described above.

The experiments show that both approximations frequently provide conclusive
answers and significantly speedup the verification process. The general trend is
that increasing the approximation constant r improves the verification times up
to a certain point after which the improvements are not that significant and
finally may result in inconclusive answers (like in PSP) or a timeout (in case of

3 For the PMS case-study only under-approximation is reported as over-approximation
was returning inconclusive answers; the size scaling in PMS is also different for the
satisfied and unsatisfied query in order to provide measurable data.

http://www.tapaal.net/
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Patient Monitoring System (PMS) — Reachability

Size r=1 r=2 r=3 r=5 r=7 r=10
n
o
tr
a
ce

ov
er
-

a
p
p
ro
x
.

B
F
S

1 � 57.1 s 18.8 s 11.7 s 4.1 s 0.7 s
2 � 102.3 s 25.4 s 38.6 s 5.6 s 0.8 s
3 � 231.9 s 40.7 s 65.4 s 8.2 s 1.1 s
4 � � 67.4 s 135.0 s 56.0 s 1.5 s

tr
a
ce

u
n
d
er
-

a
p
p
ro
x
.

B
F
S

1 39.3 s 5.0 s ? 2.1 s 1.2 s ? 0.5 s 0.5 s
2 242.5 s 21.9 s ? 4.5 s 2.2 s ? 0.7 s 1.2 s
3 � 39.7 s ? 3.9 s 3.2 s ? 0.9 s 1.4 s
4 � 50.4 s ? 4.7 s 4.2 s ? 1.3 s 0.8 s

Business Activity Protocol (BAwPC) — Reachability

Size r=1 r=2 r=4 r=6 r=10 r=15

n
o
tr
a
ce

ov
er
-

a
p
p
ro
x
.

D
F
S

1 � 88.6 s 16.4 s 7.8 s 3.1 s 2.3 s
2 � � 93.0 s 38.3 s 13.6 s 9.5 s
3 � � � 136.5 s 41.1 s 31.7 s
4 � � � � 110.5 s 88.0 s

tr
a
ce

ov
er
-

a
p
p
ro
x
.

D
F
S

1 1.3 s 0.4 s 0.2 s 0.1 s 0.2 s 0.2 s
2 155.9 s 24.5 s 4.9 s 2.6 s 0.2 s 0.2 s
3 � � 114.6 s 42.5 s 0.3 s 0.3 s
4 � � � � 0.4 s 0.3 s

tr
a
ce

u
n
d
er
-

a
p
p
ro
x
.

D
F
S

1 0.4 s 0.2 s 0.1 s 0.1 s 0.1 s
2 17.5 s 2.8 s 1.3 s 0.2 s 0.1 s
3 � 51.1 s 14.6 s 0.2 s 0.2 s
4 � � 116.6 s 0.3 s 0.3 s

Train Level Crossing (TLC) — Reachability

Size r=1 r=2 r=3 r=5 r=7 r=9

n
o
tr
a
ce

ov
er
-

a
p
p
ro
x
.

B
F
S

1 5.7 s 0.8 s 0.3 s 0.1 s 0.1 s 0.0 s
2 � 21.4 s 5.0 s 1.0 s 0.3 s 0.2 s
3 � � 96.2 s 10.0 s 2.4 s 1.1 s
4 � � � 80.7 s 14.4 s 5.4 s

tr
a
ce

ov
er
-

a
p
p
ro
x
.

B
F
S

1 4.1 s 1.9 s 1.6 s 1.4 s 1.4 s 1.4 s
2 9.9 s 2.8 s 2.0 s 1.6 s 1.6 s 1.6 s
3 12.0 s 3.0 s 2.1 s 1.6 s 1.6 s 1.6 s
4 11.9 s 3.0 s 2.1 s 1.7 s 1.6 s 1.6 s

tr
a
ce

u
n
d
er
-

a
p
p
ro
x
.

B
F
S

1 0.9 s 0.6 s ? 0.1 s 1.3 s 0.5 s
2 1.9 s 1.0 s ? 0.7 s 1.5 s 0.5 s
3 2.0 s 0.9 s ? 6.2 s 1.5 s 0.5 s
4 2.0 s 0.9 s ? 50.4 s 1.5 s 0.5 s

Producer and Consumer Synchronization (PCS) — Liveness

Size r=1 r=2 r=3 r=4 r=5 r=6

tr
a
ce

ov
er
-

a
p
p
ro
x
.

D
F
S

1 0.8 s 1.0 s 1.0 s � ? 171.1 s �
2 10.9 s 6.8 s 6.4 s � � �
3 126.0 s 30.4 s 27.5 s � � �
4 � 162.2 s 142.9 s � � �

tr
a
ce

u
n
d
er
-

a
p
p
ro
x
.

D
F
S

1 1.0 s 0.3 s 0.2 s 0.7 s 0.3 s
2 6.7 s 1.2 s 1.1 s 4.2 s 1.0 s
3 30.2 s 7.6 s 7.3 s 22.9 s 6.7 s
4 157.2 s 47.1 s 50.3 s 120.3 s 43.4 s

Plate Spinning Problem (PSP) — Liveness

Size r=1 r=2 r=3 r=4 r=5 r=6

tr
a
ce

ov
er
-

a
p
p
ro
x
.

D
F
S

1 12.4 s 0.6 s 0.3 s 0.3 s 0.3 s ? 0.1 s
2 41.3 s 1.5 s 0.4 s 0.4 s 0.4 s ? 0.1 s
3 100.3 s 3.2 s 0.7 s 0.7 s 0.7 s ? 0.1 s
4 213.2 s 6.3 s 1.1 s 1.1 s 1.1 s ? 0.1 s

tr
a
ce

u
n
d
er
-

a
p
p
ro
x
.

D
F
S

1 1.7 s 0.5 s 0.6 s � 0.3 s
2 5.5 s 1.5 s 1.5 s 0.4 s 0.4 s
3 12.8 s 3.2 s 3.2 s 2.2 s 0.7 s
4 26.8 s 6.3 s 6.2 s 1.2 s 1.1 s
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an over-approximation that suddenly allows too much behaviour like in PCS).
Occasionally, inconclusive answers may appear for relatively small r values (like
for PMS where r = 3 and r = 7) due to an unfortunate rounding of guards that
produces infeasible traces.

As already mentioned, the reported experiments rely on the discrete-time
engine. We also investigated how the approximation methods behaved in case
of a continuous TAPAAL engine that performs a zone-based exploration (using
DBM data structure). The general observation in most of such experiments is
that the approximations do not significantly influence the verification times that
usually differ by a constant factor only. This is caused by the fact that the
continuous engine performs a symbolic exploration that is not that affected by
the size of the constants like during the explicit exploration. The comparison of
discrete vs. continuous verification is not in the scope of this paper and we refer
to [6,19,16] for further discussion.

6 Conclusion

We provided a simple, yet efficient method for discrete-time verification of timed-
arc Petri net. The approximation algorithms were implemented in the tool
TAPAAL and the experiments document a high practical applicability, in partic-
ular for nets where the timing constraints are robust, meaning that small changes
in the guard intervals do not change the validity of the properties in question.
As a result, the designers of formal models do not have to consider so carefully
the size of constants in their models anymore; in many cases the constants can
be automatically lowered while still providing conclusive answers.
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