
Non-convex Invariants and Urgency Conditions

on Linear Hybrid Automata

Stefano Minopoli and Goran Frehse

VERIMAG, Centre Équation - 2, avenue de Vignate, 38610 GIÉRES, France
{stefano.minopoli,goran.frehse}@imag.fr

Abstract. Linear hybrid automata (LHAs) are of particular interest
to formal verification because sets of successor states can be computed
exactly, which is not the case in general for more complex dynamics.
Enhanced with urgency, LHA can be used to model complex systems
from a variety of application domains in a modular fashion. Existing
algorithms are limited to convex invariants and urgency conditions that
consist of a single constraint. Such restrictions can be a major limitation
when the LHA is intended to serve as an abstraction of a model with
urgent transitions. This includes deterministic modeling languages such
as Matlab-Simulink, Modelica, and Ptolemy, since all their transitions are
urgent. The goal of this paper is to remove these limitations, making LHA
more directly and easily applicable in practice. We propose an algorithm
for successor computation with non-convex invariants and closed, linear
urgency conditions. The algorithm is implemented in the open-source
tool PHAVer, and illustrated with an example.

1 Introduction

Linear Hybrid Automata (LHA) are discrete automata enhanced with real-
valued variables and linear constraints [12]. Despite their syntactical simplicity,
they admit a rich variety of behaviors. In LHA, the evolution of the variables
over time is governed by differential inclusions, called flows, which can be simple
intervals such as ẋ ∈ [1, 2], or more complex linear constraints over the deriva-
tives such as the conservation law ẋ+ ẏ = 0. Changes of the discrete state admit
arbitrary linear updates of the variables. For example, LHA can model discrete-
time affine systems, a widely used class of control systems, by using discrete
updates of the form x+ = Ax+ b.
Linear Hybrid Automata belong to the very few classes of hybrid systems

for which set-based successor computations can be carried out exactly [1]. This
makes them prime candidates for formal verification. LHA can serve as abstrac-
tions of systems that require not only timed behavior but quantitative infor-
mation, e.g., to capture accumulation effects. The LHA abstraction can then
be verified using model checkers such as HyTech [11] or PHAVer [9]. If the ab-
straction is conservative, verifying it implies that the real system satisfies the

A. Legay and M. Bozga (Eds.): FORMATS 2014, LNCS 8711, pp. 176–190, 2014.
c© Springer International Publishing Switzerland 2014



Non-convex Invariants and Urgency Conditions on Linear Hybrid Automata 177

specification; if the abstraction is an approximation that is not entirely conser-
vative, its verification helps to find bugs and identify pertinent test cases.
In model-based design, the basis for building LHA abstractions is often an

existing model, given in formats like Matlab-Simulink [14] or Modelica [15],
which are the de-facto standard in many industries. Like the academic formalism
Ptolemy [7], the semantics of these models are deterministic. In particular, a
discrete transition is taken as soon as it is enabled, which is also referred to as
urgent or as-soon-as-possible (ASAP) semantics. This can pose a problem when
trying to build a corresponding LHA model, since LHA transitions do not force
the system to change state when they are enabled. In particular, if the derivatives
of the system happen to be zero when the guard is enabled, the system may
remain forever at that state. One way to circumvent this problem is to add a clock
to the controller model and periodically test (with a self-loop transition) whether
the constraint is satisfied or not. This is a formally correct and conservative
way to model such a system, and it even corresponds quite closely to actual
behavior of process controllers, which periodically sample the sensors and set
actuators. But it can tremendously increase the computational complexity of
the verification task: the clock ticks introduce discrete state changes at a rate
much higher than the time constants of the system, multiplying the number
of sets of states that need to be computed. Another way is to build a LHA
with extra locations whose invariants depend on the geometry of the urgency
and flow conditions. But this requires several operations on polyhedra and one
needs to disregard the reachable states in the extra locations. Our approach is
to add urgency conditions to the LHA formalism and use a corresponding post-
operator. Declaring certain states of the controller as urgent prevents time from
elapsing, and one can now construct an LHA abstraction (or approximation) of
deterministic transitions.
Existing algorithms for set-based successor computations of LHA require ur-

gency conditions to either be independent of the continuous variables [11] or
consist of a single constraint [9], which can be quite restrictive in practice. In
this paper, we propose an algorithm to compute successor states for arbitrary,
non-convex, closed urgency conditions. To be able to do so, we also propose an
algorithm for computing successor states for general non-convex invariants, for
which so far no algorithm is available. Related work is discussed in more detail
for non-convex invariants in Sect. 2.3 and for urgency in Sect. 3.4.
The proposed algorithms are implemented in the open-source tool PHAVer on

the SpaceEx tool platform [8]. The tool as well as all examples from this paper
are available for download at spaceex.imag.fr. Detailed proofs are available in
a technical report [16].
In the next section, we recall the basics on LHA and then propose our post

operator for non-convex invariants. In Sect. 3, we propose our post operator for
urgency conditions and make the connection to urgent transitions. The compu-
tation of reachable states with these operators is illustrated by an example in
Sect. 4.

spaceex.imag.fr


178 S. Minopoli and G. Frehse

2 Linear Hybrid Automata with Non-convex Invariants

In this section, we give the syntax and the semantics description of a particular
case of Linear Hybrid Automata (LHA), where it is possible to define, for each
location, a non-convex invariant.

2.1 Definition and Semantics

We first need to define some notation. A convex polyhedron is a subset of Rn

that is the intersection of a finite number of strict and non-strict affine half-
spaces. A polyhedron is a subset of Rn that is the union of a finite number of
convex polyhedra. For clarity, we write ̂P if P is convex. The topological closure
of P is denoted by cl(P ). Given an ordered set X = {x1, . . . , xn} of variables,
a valuation is a function v : X → R. Let Val(X) denote the set of valuations
over X . There is an obvious bijection between Val(X) and R

n, allowing us
to extend the notion of (convex) polyhedron to sets of valuations. We denote
by CPoly(X) (resp., Poly(X)) the set of convex polyhedra (resp., polyhedra)
on X . We use Ẋ to denote the set {ẋ1, . . . , ẋn} of dotted variables, used to
represent the first derivatives, and X ′ to denote the set {x′

1, . . . , x
′
n} of primed

variables, used to represent the new values of variables after a discrete transition.
Arithmetic operations on valuations are defined in the straightforward way. An
activity over X is a function f : R≥0 → Val(X) that is continuous on its domain
and differentiable except for a finite set of points. Let Acts(X) denote the set
of activities over X . The derivative ḟ of an activity f is defined in the standard
way and it is a partial function ḟ : R≥0 → Val(Ẋ).

A Linear Hybrid Automaton is a tuple H = (Loc, X,Lab,Edg ,Flow , Inv , Init)
with

– a finite set Loc of locations ; a finite set X = {x1, . . . , xn} of real-valued
variables ; a state is a pair 〈l, v〉 of a location l and a valuation v ∈ Val(X);
a finite set of labels Lab;

– a finite set Edg of discrete transitions that describes instantaneous changes
of locations, in the course of which variables may change their value. Each
transition (l, α, η, l′) ∈ Edg consists of a source location l, a target location
l′, a label α ∈ Lab, and a jump relation η ∈ Poly(X ∪X ′), that specifies how
the variables may change their value during the transition. The guard is the
projection of η on X ;

– a mapping Flow : Loc → CPoly(Ẋ) attributes to each location a set of
valuations over the first derivatives of the variables, which determines how
variables can change over time;

– a mapping Inv : Loc → Poly(X), called the invariant ;
– a mapping Init : Loc → Poly(X), contained in the invariant, defining the

initial states of the automaton.

The set of states of H is S = Loc × Val(X). Moreover, we use the shorthand
notations InvS =

⋃

l∈Loc{l} × Inv(l) and InitS =
⋃

l∈Loc{l} × Init(l). Given a



Non-convex Invariants and Urgency Conditions on Linear Hybrid Automata 179

set of states A and a location �, we denote by A�� the projection of A on �, i.e.
A��= {v ∈ Val(X) | 〈�, v〉 ∈ A}.

Semantics. The behavior of a LHA is based on two types of steps: discrete steps
correspond to the Edg component, and produce an instantaneous change in both
the location and the variable valuation; timed steps describe the change of the
variables over time in accordance with the Flow component.
Given a state s = 〈l, v〉, we set loc(s) = l and val(s) = v. An activity f ∈

Acts(X) is called admissible from s if (i) f(0) = v and (ii) for all δ ≥ 0, if ḟ(δ)
is defined then ḟ(δ) ∈ Flow (l). An activity is linear if there exists a constant
slope c ∈ Flow (l) such that, for all δ ≥ 0, ḟ(δ) = c. We denote by Adm(s) the
set of activities that are admissible from s.

Runs. Given two states s, s′, and a transition e ∈ Edg , there is a discrete step
s

e−→ s′ with source s and target s′ iff (i) s, s′ ∈ InvS , (ii) e = (loc(s), α, η, loc(s′)),
and (iii) (val (s), val(s′)[X ′/X ]) ∈ η, where val(s′)[X ′/X ] is the valuation in
Val(X ′) obtained from s′ by renaming each variable in X with the corresponding
primed variable in X ′. Whenever condition (iii) holds, we say that e is enabled

in s. There is a timed step s
δ,f−−→ s′ with duration δ ∈ R

≥0 and activity f ∈
Adm(s) iff (i) s ∈ InvS , (ii) for all 0 < δ′ ≤ δ, (〈l, f(δ′)〉) ∈ InvS , and (iii)
s′ = 〈loc(s), f(δ)〉. Given a state s ∈ S and a hybrid automaton H with initial
set of states Init , s is said to be reachable in H if there exists a finite run

r = s0
δ0,f0−−−→ s′0

e0−→ s1
δ1,f1−−−→ s′1

e1−→ s2 · · · sn, such that s0 ∈ Init and sn = s. We
denote the set of reachable states by Reach(H).
Classically, the algorithm that computes the set Reach(H) is a fixed-point

procedure, over all the locations l ∈ Loc, based on the continuous post operator
and on the discrete post operator : given a set of states S′ ⊆ S, the first one
operator is used to compute the set of states reachable from S′ by following an
admissible trajectory, while the second one operator is used to compute the set
of states reachable from S′ via discrete transitions. Notice that the computation
of the discrete post operator is not affected by the nature of the invariants, so
we focus on the continuous post operator. The formal definitions are as follows:

Definition 1 (Post operators). Given an hybrid automaton H, a location � ∈
Loc, a set of valuations P, I ⊆ Inv(�), the continuous post operator Post�(P, I)
contains the set of all valuations v ∈ Val(X) reachable from some u ∈ P without
leaving I:

Post�(P, I) =
{

v ∈ val(X)
∣

∣ ∃u ∈ P, f ∈ Adm(〈l, u〉) and δ ≥ 0 :

∀0 < δ′ ≤ δ, f(δ′) ∈ I and f(δ) = v
}

. (1)

The discrete post operator Postε(P ) contains the set of all valuations v ∈
Val(X) reachable from some u ∈ P by taking the discrete transition ε = (�, η, �′):

Postε(P ) =
{

v ∈ val(X)
∣

∣∃u ∈ P, (u, v[X ′/X ]) ∈ η and v ∈ Inv(�′)
}

.



180 S. Minopoli and G. Frehse

From these operators on valuations we obtain the continuous and discrete post
operators for a set of states S by iterating over all locations and transitions:

Post c(S) =
⋃

�∈Loc

{�} × Post�(S ��, Inv(�)), Postd(S) =
⋃

(�,α,η,�′)∈Edg

{�′} × Postε(S ��).

Note that definition (1) is valid regardless whether I is convex or not. It differs
slightly from the classic definition in that we do not require that P ⊆ I. This
trick is used in the next section to apply the operator iteratively to convex
partitions of a non-convex invariant. In this case, I is a convex subset of the
invariant but P is not necessarily a subset of I. For the sake of clarity, we will
denote by Post�(P, I) the continuous post operator when I is convex and by
ncPost �(P, I) when I is non-convex.
The reachable states Reach(H) are computed as the smallest fixed point of

the sequence S0 = Postc(InitS), and Sk+1 = Sk ∪ Post c(Postd(Sk)).

2.2 Computing the Continuous Post Operator with Nonconvex
Invariants

In this section, after recalling how the continuous post operator is computed
when the invariant is a convex polyhedron, we give a sound and complete proce-
dure that, given a non-convex invariant I and an initial set of valuations P ⊆ I,
computes the continuous post operator ncPost �(P, I). Given a linear hybrid au-
tomaton H , it is well known that the continuous post operator, on a location
l ∈ Loc, a convex invariant I = Inv(�), a flow F = Flow (�) and a set of initial
valuations P ⊆ Inv(�), is given by:

Post�(P, I) = (P↗F ) ∩ I, (2)

where P↗F are valuations on straight line trajectories starting in P with con-
stant derivative ẋ = c for any c ∈ F :

P↗F= {x′ | x ∈ P, c ∈ F, t ∈ R
≥0, x′ = x+ ct}. (3)

The operator (3) is straightforward to compute for polyhedral sets, and is avail-
able in computational geometry libraries such as the Parma Polyhedra Library
(PPL) [2].
Before giving the fixed point characterization of ncPost �, we need to introduce

some extra notation (some of them similar to operators defined in [6]). Given
polyhedra A and B, their boundary is

bndry(A,B) =
(

cl(A) ∩B
) ∪ (

A ∩ cl(B)
)

. (4)

Clearly, bndry(A,B) is nonempty only if A and B are adjacent to one another
or they overlap; otherwise, it is empty.

Definition 2 (Potential entry). Given a location � and convex polyhedra A
and B, the potential entry region from A to B denotes the set of points on the



Non-convex Invariants and Urgency Conditions on Linear Hybrid Automata 181

A B

F = Flow(l)

(a) Case 1: the flow al-
lows to reach B from
bndry(A,B).

A B

F = Flow(l)

(b) Case 2: the flow does
not allow to reach B from
bndry(A,B).

A

F = Flow(l)

B

(c) Case 3: the flow does
not allow to reach B from
bndry(A,B).

Fig. 1. The computation of potential entry from A to B involves computing the bound-
ary of A and B, and identifying states reachable on that boundary

boundary between A and B that may reach B by following some linear activity
in location �, while always remaining in A ∪B:

pentry�(A,B) =
{

p ∈ bndry(A,B) | ∃q ∈ A, δ ≥ 0 and c ∈ Flow (�) :

p = q + δ · c and for all 0 ≤ δ′ < δ, q + δ′ · c ∈ A
}

. (5)

We call the above set the “potential” entry because it may happen that, even
though pentry�(A,B) is not empty, the system is not able to reach valuations
in B starting from a valuation in A (see Example 1, Fig. 1(c)). The following
Lemma gives us a way to effectively compute the potential entry region.

Lemma 1. Given a location � and convex polyhedra A and B, let F = Flow (�),
the potential entry region from A to B can be computed by:

pentry�(A,B) = bndry(A,B) ∩ A↗F .

From Lemma 1 follows the following Corollary:

Corollary 1. If A ⊆ B, then A ⊆ pentry�(A,B) ⊆ cl(A).

Example 1. Figure 1 shows two convex polyhedra A and B whose boundary is
non empty (A and B are adjacent), where flow is represented by an arrow. Con-
sidering Figure 1(a), it is easy to check that the flow allows to reach valuations on
the boundary between A and B starting from a valuation belongs to A, and then
pentry�(A,B) �= ∅. Considering instead the case depicted in Figure 1(b) (same as
the previous one except for the flow), there is no way to reach valuations belong
to bndry(A,B) starting from a valuation u ∈ A, and then pentry�(A,B) = ∅.
Figure 1(c) shows a case where the polyhedron B is not closed and then by fol-
lowing the flow, the system can never reach B, even if the starting valuation is
on the top border of A. Notice that, even if B is not reachable from A, we have
that pentry�(A,B) �= ∅: this clearifies why we denote this set as “potential”.

Now we are ready to give a way to correctly compute the continuous post
operator when the invariants could be non-convex. Given a LHA H and let l ∈



182 S. Minopoli and G. Frehse

Loc, I = Inv(�), F = Flow (�) and P ⊆ I. The idea is to build incrementally the
sets of reachable valuations by considering each time a single convex component
̂I ′ ∈ [[I]] instead of considering the entire invariant I. The procedure starts by

finding, for all ̂I ′ ∈ [[I]] and ̂P ′ ∈ [[P ]], the potential entry from ̂P ′ to ̂I ′.
Once obtained the set pentry�( ̂P

′, ̂I ′), the procedure computes the classical

continuous post operator on pentry�( ̂P
′, ̂I ′) and ̂I ′. The procedure is applied

recursively by building the sequence W0 ⊆ W1 ⊆ . . .Wi−1 = Wi of the sets of
the reachable valuations, with W0 = P , and ends when no new valuation can be
added to a set. When this happens, we have that ncPost �(P, I) = Wi.
The formal relationship between the fixed-point procedure described above

and the computation of the continuous post operator, when the invariant is
non-convex, is given by the following theorem:

Theorem 1. Given a location � ∈ Loc and sets P ⊆ Inv(�), I = Inv(�),
ncPost �(P, I) is the smallest fixed point of the sequence W0 = P ,

Wk =
⋃

̂W ′∈[[Wk−1]]

⋃

̂I′∈[[I]]

Post�(pentry�(̂W
′, ̂I ′), ̂I ′).

Moreover, the above sequence reaches the fixed point in at most n =
∣

∣[[I]]
∣

∣ steps,
that is Wn+1 = Wn.

Notice that the role of pentry�(
̂W ′, ̂I ′) is crucial in order to compute all and

only those valuations that can be reached in ̂I ′ by always remaining in the global
invariant I. This condition can not be ensured by applying the post operator
directly on ̂W ′ instead of pentry�(

̂W ′, ̂I ′) (see Section 2.3 in [16] for more details).
We prove Theorem 1 by induction on the number of the convex components of

the invariant in which the system remains during a run. We define this number
as follows. Given a polyhedron I and two valuations u and v, assuming that v is
reachable from u via an admissible activity that always remains in I (i.e. always
avoids I), we denote by d(u, v, I) the minimum number of convex polyhedra
in [[I]] in which the system must remain in order to reach v from u via any
admissible activity f :

d(u, v, I) = min{n > 0 | ∃f ∈ Adm(〈�, u〉), δ ≥ 0, ̂I1, . . . ̂In ∈ [[I]] :

f(δ) = v and ∀0 ≤ δ′ ≤ δ ∃j ∈ {1, . . . , n} : f(δ′) ∈ ̂Ij}.

When there is no activity that can reach v from u avoiding I, we write d(u, v, I) =
∞. Hence either d(u, v, I) ≤ ∣

∣[[I]]
∣

∣ or d(u, v, I) = ∞. For the induction proof, we
define a version of ncPost � that takes into account only valuations v such that the
system, in order to reach v, always remains in a fixed number of convex polyhedra
in the invariant. Given a location � and sets P, I ⊆ Inv(�) and i ≤ |[[I]]|,

ncPost �(P, I, i) =
{

v ∈ ncPost �(P, I)|∃u ∈ P : d(u, v, I) ≤ i
}

.

Note that for all i ≤ j, ncPost �(P, I, i) ⊆ ncPost �(P, I, j).



Non-convex Invariants and Urgency Conditions on Linear Hybrid Automata 183

We exploit the following, fundamental property of LHA: if there is an activity
that goes from u to v inside the invariant, there is also a sequence of linear
activities that does the same. Moreover, each linear activity is contained within
one convex polyhedron of [[I]] and hence the connecting points between any two
consecutive linear activities lie on the boundary between two polyhedra in [[I]].
The following formalization is a reformulation of Lemma 2.2 in [18] given as
Lemma 5 in [6]:

Lemma 2. [6] Let u and v be valuations, and I a polyhedron. If d(u, v, I) = i <
∞, then there is a sequence of linear activities f1, . . . , fi, delays δ0, . . . , δi, and
convex polyhedra ̂I1, . . . , ̂Ii ∈ [[I]] such that (i) f1 ∈ Adm(〈l, u〉), (ii) fi−1(δi−1) =

v, (iii) for all j < i it holds fj(δj) ∈ bndry(̂Ij , ̂Ij+1) and fj+1 ∈ Adm(〈l, fj(δj)〉),
and (iv) for all j ≤ i and 0 < δ′ < δj it holds fj(δ

′) ∈ ̂Ij .

For lack of space, we only give a proof sketch of Theorem 1. The complete
proof can be found in the appendix and in [16].

Proof of Theorem 1. (Sketch) Let n =
∣

∣[[I]]
∣

∣, first notice that for two
valuation u and v, where u, v ∈ ncPost �(P, I), by definition of post operator
d(u, v, I) ≤ ∣

∣[[I]]
∣

∣. Then trivially holds that ncPost �(P, I) = ncPost �(P, I, n).
We show by induction that for all locations �, polyhedra P, I ⊆ Inv(�), and i ≥

1, ncPost �(P, I, i) = Wi. The base case is straightforward, since it corresponds
to a convex invariant.
We first discuss ncPost �(P, I, i) ⊆ Wi. Consider a run that goes from some

u ∈ W1 through some u′ ∈ Wi−1 to some v ∈ ncPost �(P, I, i). We need to show
that v ∈ Wi. Let Îi−1 be the i−1th invariant visited on the run. If u′ ∈ Îi−1, the
proof is straightforward, since all reachable states in Îi−1 are inWi−1. Otherwise,
u′ ∈ Îi. With Lemma 2, there is some u∗ ∈ Îi−1 such that a straight line activity
can be extended from u∗ to u′. These states are contained in the potential entry
set, and by definition also in Wi.
To show Wi ⊆ ncPost �(P, I, i), we need to show that Wi does not contain

more states than ncPost �(P, I, i). Using case distinctions similar to the previous
paragraph, we can show that Wi consists of states reachable using the convex
post operator inside a convex invariant, plus the boundary states reachable by
straight line trajectories. From Lemma 2, it follows that these boundary states
are also in ncPost �(P, I, i), which concludes the proof. �

2.3 Related Work

In [13], the author shows a different approach in order to tackle non-convex
invariants. The proposed algorithm to compute the reachable set is built only for
closed convex invariants, but this is not a restriction because (closed) non-convex
invariants can be modeled by splitting locations. This means that starting from
an automatonA with non-convex invariants, it is necessary to build an equivalent
automaton B whose locations have only convex invariants: this is done by taking,
for each location of A, the exact convex coveringQ of the corresponding invariant



184 S. Minopoli and G. Frehse

and then, for each convex component ̂Q ∈ Q, by adding a location to B whose
associated (convex and closed) invariant is ̂Q. Therefore, this approach does not
work with non-closed invariants and needs a postprocessing phase in order to
build the automaton B. Our approach tries to overcome these limitations: the
reachability analysis is directly done by using the ncPost � operator, allowing the
usage of non-closed invariants and avoiding the hidden process of building a new
automaton.

3 Linear Hybrid Automata with Urgency

In this section, we extend LHA by allowing the possibility to attach to each loca-
tion a so-called urgency condition. The urgency condition impedes time elapse,
i.e., no continuous activities continue from a valuation that satisfies the condi-
tion. As we will see later, there is a connection between urgency conditions on
locations and urgent semantics on transitions.

3.1 Definition and Semantics

We denote by SPoly(X) the subset of RX that can be obtained by finite dis-
junction of closed convex polyhedra. A Linear Hybrid Automaton with Urgency
(LHAU) H = (Loc, X,Lab, Edg ,Flow , Inv ,Urg, Init) consists of a LHA defined
in Sect. 2 and a mapping Urg : Loc → SPoly(X), called urgency condition. To
designate the urgent states, we use the shorthand UrgS =

⋃

l∈Loc{�} ×Urg(�).

Urgent transitions. In our definition, the urgency condition is defined for each
location. An alternative approach, popular mainly because of its syntactical
simplicity, is to designate each discrete transition as urgent or not. This is also
referred to as as-soon-as-possible (ASAP) transitions. Urgent transitions can
easily be translated to an urgency condition: Let EdgU ⊆ Edg be the set of
urgent transitions. Then the equivalent urgency condition is the union of the
outgoing guards, Urg(�) = {u | ∃(�, η, �′) ∈ EdgU : (u, v) ∈ η}.

Semantics. The urgency conditions affect only the timed steps, while the defi-
nition of discrete step remains the same as for LHA. Given a state s = 〈l, v〉, we
define loc(s) = l and val(s) = v. In order to give the semantics of timed-steps
for LHAU we define, for an activity f ∈ Adm(s), the Switching Time of f in
l, denoted by SwitchT (f, U), as the value δ ≥ 0 such that, for all 0 ≤ δ′ < δ,
f(δ′) /∈ U and f(δ) ∈ U . When for all δ ≥ 0 it holds that f(δ) /∈ U , we write
SwitchT (f, U) = ∞. Informally, the switching time of an activity f in the loca-
tion l specifies the maximum amount of time δ such that the system, by following
the activity f , is allowed to remain in the location l.

Given two states s, s′, there is a timed step s
δ,f−−→ s′ with duration δ ∈ R

≥0

and activity f ∈ Adm(s) iff (i) there exists the timed step s
δ,f−−→ s′ in the LHA

without urgency conditions, and (ii) δ ≤ SwitchT (f,Urg(loc(s))).



Non-convex Invariants and Urgency Conditions on Linear Hybrid Automata 185

Parallel Composition. We give a brief formal definition of parallel composition
with urgency for the case where both automata range over the same variables.
The key here is that the urgency condition of the composition is the union of
the urgency conditions of the operands.

Definition 3 (Parallel composition). Given linear hybrid automata with ur-
gency H1, H2 with Hi = (Loci, X,Labi,Edg i,Flow i, Inv i, Urgi, Init i), their par-
allel composition is the LHAU H = (Loc1×Loc2, X,Lab1∪Lab2, Edg ,Flow , Inv,
Urg, Init), written as H = H1‖H2, where

– ((l1, l2), α, η, (l
′
2, l

′
2)) ∈ Edg iff

• α ∈ Lab1 ∩ Lab2, for i = 1, 2, (li, α, ηi, l
′
i) ∈ Edg i, with η = η1 ∩ η2, or

• α /∈ Lab1, l
′
2 = l2, and (l1, α, η, l

′
1) ∈ Edg1, or

• α /∈ Lab2, l
′
1 = l1, and (l2, α, η, l

′
2) ∈ Edg2 ;

– Flow (l1, l2) = Flow 1(l1) ∩ Flow 2(l2); Inv(l1, l2) = Inv1(l1) ∩ Inv2(l2);
– Urg(l1, l2) = Urg1(l1) ∪Urg2(l2); Init(l1, l2) = Init1(l1) ∩ Init2(l2).

3.2 Reachability

The discrete post operator for the class of LHAU is trivially the same of the
classical one, while the continuous one, that we call Urgent Continuous Post
Operator, changes due to the extra condition induced by the operator SwitchT :

Definition 4 (Urgent continous post). Given a linear hybrid automaton
with urgency H, a location � ∈ Loc, and a set of valuations P ⊆ Inv(�), let I =
Inv(�), and U = Urg(�). The urgent continuous post operator UPost(P, I, U)
is defined as:

UPost(P, I, U) =
{

v ∈ val(X)
∣

∣

∣ ∃u ∈ P, f ∈ Adm(〈�, u〉), δ ≥ 0 :

f(δ) = v, for all 0 < δ′ ≤ δ, f(δ′) ∈ I, and δ ≤ SwitchT (f, U)
}

.

3.3 Computing the Urgent Continuous Post Operator

We now derive a construction of the urgent post operator, starting with the post
operator for non-convex invariants and adding the states that are missing.
The urgent post operator has to compute the valuations that are reachable

from some set P without passing through states in the urgent set U . This includes
the states that are reachable within the complement of U , so ncPost �(P ∩U, I ∩
U) is an underapproximation of UPost �(P, I, U). In the following, let Vnc =
ncPost �(P ∩ U,U) and VU = UPost �(P, I, U). The set Vnc trivially does not
contain valuations that belong to U (since Ū is used in the invariant), while VU

also contains those valuations that touch U for the first time on a run. As shown
in the examples of Figure 2, the system is allowed to remain on the boundary
of an invariant for any time as the invariant is satisfied, while the system can
not remain on the boundary of an urgency condition. In the instant the urgency



186 S. Minopoli and G. Frehse

U U

P

Flow(l)

(a) VU contains P ∩ U .

U

P

Flow(l)

(b) VU contains the reachable boundary

Fig. 2. The urgent post states VU = UPost�(P, I, U) can be obtained from Vnc =
ncPost�(P ∩ U, I ∩ U) plus the part (identified by the thick lines) of the boundary
between Vnc and U that can be reached from Vnc. The dashed lines identify the non-
closed borders.

condition is met, the system can not evolve any more, i.e., it is forced either to
stop the evolution of the continuous variables or to jump in another location.
The thick lines in Figure 2(a) and Figure 2(b) identify the valuations on the
boundary between Vnc and U that can be reached from Vnc, and therefore they
belong to VU .
In summary, we can compute VU as the union of P , Vnc and the set of the

valuations that belong to the boundary between Vnc and U from where it is pos-
sible to reach U by following some admissible activity. The latter set is obtained
by using the potential entry operator. This is formalized as follows:

Theorem 2. Given a location � ∈ Loc and a set P ⊆ Inv(�), let I = Inv(�), U =

Urg(�), Vnc = ncPost �(P∩U, I∩U), and B =
⋃

̂A′∈[[Vnc]]

⋃

̂U ′∈[[U ]] pentry�( ̂A
′, ̂U ′∩

I). Then UPost �(P, I, U) = P ∪ Vnc ∪B.

3.4 Related Work

A general class of hybrid automata with urgency conditions is described in [17],
but without giving the computation of the continuous post operator for urgency.
In that work, the Time Can Progress (tcp) predicate specifies, for each location
the maximum sojourn time, which may depend on the values of the variables
when entering the location. This corresponds to the complement of our urgency
condition. Notice that the semantics in [17] require the tcp to be satisfied when
the location is entered. In our framework we relax this constraint by allowing to
enter a location even if its urgency condition is already satisfied: in this case, the
system must exit the location instantaneously. A similar urgency condition is
described in the Computational Interchange Format for Hybrid Systems (CIF)
(see [4]). For a more detailed and formal discussion of urgency, see [10] and
references therein.

Urgent locations. In the classic LHA model checker HyTech, a transition can
be designated as urgent by adding the keyword ASAP [13]. But this is restricted
to transitions without guard constraints [11,13], which is equivalent to having



Non-convex Invariants and Urgency Conditions on Linear Hybrid Automata 187

urgent locations, i.e., locations in which time progress is not allowed. The real-
time verification tool UPPAAL [5] similarly features urgent locations and urgent
channels (synchronization labels) that can be used only on transitions without
guard constraints. Urgent locations are semantically equivalent to adding an
extra variable t, with dynamics ṫ = 1, that is set to zero when the location is
entered and by attaching the invariant t = 0 to the location. In previous versions
of our model checker PHAVer, transitions could be designated as urgent, but
only if the guard consists of a single constraint, locally as well as in the composed
model [9]. This restriction was imposed because it suffices to be able to compute
the urgent post using the standard post operator for convex invariants.

Almost ASAP. In [19] the authors propose a relaxed semantics on asap transition
in the context of the timed automaton, for the so called almost asap by delay
δ. In practice, they define the guard enlargement, that means that transitions
can be taken also with δ time delay. The rationale behind this approach is that
no hardware can guarantee that a transition will always be taken in the exact
moment as defined in theory. We could define a similar approach, not only on
clock variables, in a simple but opposite way: it is enough to define the urgency
condition by narrowing all the constraints by a quantity that is equal to the
maximum variation of the variable in the time δ.

4 Example: Batch Reactor

To showcase the algorithm an its implementation, we present a modular model
of a batch-reactor system, which is a variation of the case study in [3]. It shall
illustrate that non-urgent transitions as well as urgent transitions with more
than one guard constraint arise naturally.
The batch reactor is comprised of a reactor R1 and two buffer tanks B2,B3

connected by pipes. The reactor is used to create a product that is then made
available to a consumer in the two buffer tanks, see the schematic in Fig. 3(a).
A controller measures the fill levels in the reactor and the buffers, and opens
and closes valves connecting the reactor to the buffers in order to produce and
deliver the product to the consumer. The specification is to verify that neither
buffer ever becomes empty, and that none of the tanks overflows.
We now present the LHA models. The controller automaton is shown in

Fig. 3(d). The opening and closing of valves is modeled by synchronization la-
bels. In the production step, the reactor is filled with educts (raw materials)
coming from the outside. Details on the filling and reaction process itself are
omitted since they are irrelevant to this example, but it does take a certain
amount of time and produces an uncertain amount of product. This is modeled
by the fact that the controller ends the filling process when the reactor level
x1 ∈ [x1 ,full , x1 ,max ], which is accomplished with the invariant x1 ≤ x1 ,max and
a non-urgent transition with label close in and guard condition x1 ≥ x1 ,full .
When the product is ready, the controller decides whether to fill buffer B2,
buffer B3, or wait. The controller decides which buffer to fill using the following
simple criteria:



188 S. Minopoli and G. Frehse

max

full

Reactor 1

Buffer 2 Buffer 3

max

min

contr

contr contr

x1

x2
x3

(a) Schematic of the Batch-Reactor
System

filling
x ≥ 0

f min ≤ x′ ≤ f max

constant
x ≥ 0
x′ == 0

draining1 draining2
x ≥ 0 x ≥ 0

−d max ≤ x′ ≤ −d min −d max ≤ x′ ≤ −d min

draining1 empty draining2 empty
x == 0 x == 0
x′ == 0 x′ == 0

error

open in

open in

close1 out close2 out

close in

close2 outclose1 out

close in
open2 out

close1 out close2 out

open1 outclose in close in

open1 out open2 out

open2 outopen1 out

open in

open in

open2 in open1 in

close2 outclose1 out

(b) Automaton Model of the Reactor

filling
x ≥ 0

f min ≤ x′ ≤ f max

draining
x ≥ 0

−d max ≤ x′ ≤ −d min

filling empty
x == 0

x′ + x in′ == 0

open in close in

draining empty
x == 0
x′ == 0

open in

close in

open inclose in

close in

open in

(c) Automaton Model of the Buffers

start producing

waitingfilling2

close12 close13

filling3

open in

close in

producing
x1 ≤ x1 max

x1 ≥ x1 full
x1 == 0 x1 == 0

open12 open13

open13
open12
x2 ≤ x2 min

x3 ≤ x3 min &
x2 > x2 min

x3 > x3 min &
x2 ≤ x2 max & x2 ≤ x3

x2 > x2 min &
x3 ≤ x3 max & x2 > x3

(d) Automaton Model of the Controller

Fig. 3. Batch Reactor System: Schematic and Automata Models

– To avoid overflow, never start filling a buffer above a given maximum level.
– To avoid empty buffers, fill a buffer below a given minimum level.
– If the above is met, fill the buffer with the lower level.
– To be deterministic, prioritize B2.

All transitions for filling buffers B2 and B3 are urgent. The if-then-else structure
of the criteria leads to guards with more than one constraint, some of which
are strict inequalities. Thanks to the urgency, the controller model requires no
clocks or while-loops.
The reactor automaton is shown in Fig. 3(b). The locations of the reactor corre-

spond to the different combinations of open and closed valves. The model is sim-
plified using the assumptions that the reactormust not be filled and drained at the
same time (a common requirement in chemical engineering), and that only one of
the buffers is filled at any given time. An error location is included so that viola-
tions of these assumptions can be detected. The transitions are not set as urgent in
this automaton; the urgency in the composed system results from the controller.
The buffers are modeled each as an instantiation of the automaton shown in

Fig 3(c). The outflow of the buffers is determined by the consumer, and therefore
only known within the bounds (there is no valve to control outflow). The inflow



Non-convex Invariants and Urgency Conditions on Linear Hybrid Automata 189

0 100 200 300 400
0

100

200

300

400

x2

x
3

(a) reachable buffer levels x2 and x3 for
safe parameter values

0 100 200 300 400
0

100

200

300

400

x2

x
3

(b) decreasing the min. reactor outflow by
5% eventually leads to an empty buffer B3

Fig. 4. The evolution of the continuous variables of the batch reactor example, starting
from location start producing with initial values x1 = 0, x2 = 100 and x2 = 100

is determined is equal to the outflow of the reactor. This leads to the dynamics
ẋi = [−di,max ,−di,min ]− ẋ1. Note that ẋ1 is negative when the buffer is filling,
so ẋi is augmented by −ẋ1 in this dynamics. Again, the transitions are not set
as urgent; the urgency in the composed system results from the controller.
The specification was verified using SpaceEx/PHAVer (an implementation of

the PHAVer reachability algorithm built on the SpaceEx platform). The inflow
and outflow rates were set nondeterministically to be within intervals; the models
incl. parameter values are available at spaceex.imag.fr. The computation of
the complete reachable states shown in Fig. 4(a) takes 3.0 s and 24 MB of mem-
ory on a standard laptop. Finding the fixed point takes a total of 178 continuous
post operations. Buffer 3 goes empty if the lower bound on the reactor outflow
is reduced by 5%. The fixed point is found in 1153 post operations, which takes
18.7 s and consumes 24 MB of memory.

5 Conclusions

Linear Hybrid Automata stand out in the hybrid systems domain because sets of
successor states can be carried out exactly. Available algorithms require convex
invariants and single-constraint urgency conditions. In this paper, we propose al-
gorithms that can handle non-convex invariants and (closed) non-convex urgency
conditions.The practical impact is that this extension canbe used in order tomodel
systems in which transitions have to be taken as soon as possible. This is a common
feature in several commercial tools used as de-facto standard in industry (for exam-
ple in the automotive context) such as Matlab/Simulink orModelica.We formally
proved the correctness and the termination of the proposed procedures, which are
based on two operators: the first one is the classical continuous post operator for
convex sets Post� and the other one (defined here) is the so-called potential entry

spaceex.imag.fr


190 S. Minopoli and G. Frehse

operator pentry�. To the best of our knowledge, the proposed solutions represent
the first sound and complete procedures for the task in the literature.

References

1. Alur, R., Henzinger, T., Ho, P.H.: Automatic symbolic verification of embedded
systems. IEEE Trans. Softw. Eng. 22, 181–201 (1996)

2. Bagnara, R., Hill, P.M., Zaffanella, E.: The Parma Polyhedra Library: Toward a
complete set of numerical abstractions for the analysis and verification of hardware
and software systems. Science of Computer Programming 72(1-2), 3–21 (2008)

3. Bauer, N., Kowalewski, S., Sand, G., Löhl, T.: A case study: Multi product batch
plant for the demonstration of control and scheduling problems. In: Engell, S.,
Kowalewski, S., Zaytoon, J. (eds.) ADPM 2000, pp. 383–388. Shaker (2000)

4. van Beek, D.A., Reniers, M.A., Schiffelers, R.R.H., Rooda, J.E.: Foundations of a
compositional interchange format for hybrid systems. In: Bemporad, A., Bicchi, A.,
Buttazzo, G. (eds.) HSCC 2007. LNCS, vol. 4416, pp. 587–600. Springer, Heidelberg
(2007)

5. Behrmann, G., David, A., Larsen, K.G.: A tutorial on uppaal. In: Bernardo, M.,
Corradini, F. (eds.) SFM-RT 2004. LNCS, vol. 3185, pp. 200–236. Springer, Hei-
delberg (2004)

6. Benerecetti, M., Faella, M., Minopoli, S.: Automatic synthesis of switching con-
trollers for linear hybrid systems: Safety control. TCS 493, 116–138 (2012)

7. Buck, J.T., Ha, S., Lee, E.A., Messerschmitt, D.G.: Ptolemy: A framework for
simulating and prototyping heterogeneous systems. Ablex Publishing Corp. (1994)

8. Frehse, G., Le Guernic, C., Donzé, A., Cotton, S., Ray, R., Lebeltel, O., Ripado, R.,
Girard, A., Dang, T., Maler, O.: SpaceEx: Scalable verification of hybrid systems.
In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 379–395.
Springer, Heidelberg (2011)

9. Frehse, G.: PHAVer: algorithmic verification of hybrid systems past HyTech.
STTT 10(3), 263–279 (2008)

10. Gebremichael, B., Vaandrager, F.: Specifying urgency in timed i/o automata. In:
SEFM 2005, pp. 64–74. IEEE Computer Society (2005)

11. Henzinger, T.A., Ho, P.H., Wong-Toi, H.: Hytech: the next generation. In: Proc.
IEEE Real-Time Systems Symposium, p. 56. IEEE Computer Society (1995)

12. Henzinger, T.: The theory of hybrid automata. In: 11th IEEE Symp. Logic in
Comp. Sci., pp. 278–292 (1996)

13. Ho, P.H.: Automatic Analysis of Hybrid Systems. Ph.D. thesis, Cornell University,
technical Report CSD-TR95-1536 (August 1995)

14. MathWorks: Mathworks simulink: Simulation et model-based design (Mar 2014),
http://www.mathworks.fr/products/simulink

15. Mattsson, S.E., Elmqvist, H., Otter, M.: Physical system modeling with Modelica.
Control Engineering Practice 6(4), 501–510 (1998)

16. Minopoli, S., Frehse, G.: Non-convex invariants and urgency conditions on linear
hybrid automata. Tech. Rep. TR-2014-4, Verimag (April 2014)

17. Nicollin, X., Olivero, A., Sifakis, J., Yovine, S.: An approach to the description and
analysis of hybrid systems. In: Grossman, R.L., Ravn, A.P., Rischel, H., Nerode, A.
(eds.)HS 1991 andHS1992.LNCS, vol. 736, pp. 149–178. Springer,Heidelberg (1993)

18. Wong-Toi, H.: The synthesis of controllers for linear hybrid automata. In: IEEE
Conf. Decision and Control, pp. 4607–4612. IEEE (1997)

19. De Wulf, M., Doyen, L., Raskin, J.-F.: Almost ASAP semantics: From timed models
to timed implementations. In: Alur, R., Pappas, G.J. (eds.) HSCC 2004. LNCS,
vol. 2993, pp. 296–310. Springer, Heidelberg (2004)

http://www.mathworks.fr/products/simulink

	Non-convex Invariants and Urgency Conditionson Linear Hybrid Automata
	1 Introduction
	2 Linear Hybrid Automata with Non-convex Invariants
	2.1 Definition and Semantics
	2.2 Computing the Continuous Post Operator with Nonconvex Invariants
	2.3 Related Work

	3 Linear Hybrid Automata with Urgency
	3.1 Definition and Semantics
	3.2 Reachability
	3.3 Computing the Urgent Continuous Post Operator
	3.4 Related Work

	4 Example: Batch Reactor
	5 Conclusions
	References




