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Abstract. In this paper we solve the problem of finding a trajectory
that shows that a given hybrid dynamical system with deterministic
evolution leaves a given set of states considered to be safe. The algo-
rithm combines local with global search for achieving both efficiency and
global convergence. In local search, it exploits derivatives for efficient
computation. Unlike other methods for falsification of hybrid systems
with deterministic evolution, we do not restrict our search to trajec-
tories of a certain bounded length but search for error trajectories of
arbitrary length.

1 Introduction

In this paper we provide an algorithm that solves the problem of unbounded
safety falsification of hybrid systems with deterministic evolution. This means
that, given a hybrid system with deterministic evolution, and a set of initial and
a set of unsafe states, we search for a trajectory of arbitrary length starting in
an initial state and ending in an unsafe state.

Existing methods for falsification of hybrid systems with deterministic evolu-
tion roughly fall into the following two categories:

– Local search [1,26]: Such methods use local optimization to incrementally
bring a starting trajectory closer to an error trajectory, ideally based on
information on the derivative of the objective function. The advantage of
local search is its relative efficiency. The disadvantage is that for convergence
it needs to be started close enough to an error trajectory. At the very least
it needs to start from a sequence of modes that contains an error trajectory.
However, the number of sequences of modes grows exponentially with the
length of the sequence which makes the search for starting trajectories for
local search a difficult problem.

– Black-box global search [19,2]: Such methods search for error trajectories
globally, but use black-box optimization techniques [13,24] that do not ex-
plicitly exploit the structure specific to hybrid systems (partially continuous
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behavior, unbounded time variable). This extends their applicability (e.g.,
to Simulink models), but this may also result in loss of efficiency and restrict
search to trajectories up to a given user-provided length. Of course it is pos-
sible to repeatedly restart such methods with higher upper bounds on the
trajectory length, but every restart loses the information computed before.

The contribution of this paper is an algorithm that combines the scalability of
local search with global convergence for error trajectories of unbounded length.
Moreover, the resulting algorithm is reasonably simple and easy to analyze and
implement. Note however, that efficiency is not primary goal of this paper— since
the generic structure of the resulting algorithm allows the simple incorporation
more sophisticated global search techniques [13,17]. Of course, one can use local
search from any result of an algorithm based on black-box global search, but
this has the following drawbacks:

– It is not clear how to handle the unbounded time variable.
– Black-box global search does not explicitly exploit the structure of hybrid

systems.
– Black-box global search does not exploit the fact that it is combined with

a local search method and hence may both duplicate some of the efforts
of local search and fail to steer its search to good starting points for local
search.

Our approach is based on a standard technique in global optimization for
combining local with global search, so called two-phase methods [25]. But we
adapt those methods to the situation that we have here: A direct application
of two-phase methods would use a search space that is spanned by variables of
two kinds: the initial point of trajectories, and the trajectory length (wrt. time).
However, trajectory length is special, since it is unbounded, and since comput-
ing a trajectory of the given length from a given initial point also computes all
trajectories from that initial point with shorter length. Moreover, hybrid sys-
tems combine continuous with discrete behavior and local search can exploit
derivatives for searching the continuous part of the states space, but no such
derivatives are available for discrete search which is another obstacle to the di-
rect application of two-phase methods.

Hence, our approach modifies two-phase methods in such a way that—instead
of treating trajectory length as a problem variable—they build trajectories in-
crementally from trajectory segments, and use derivative based continuous local
search to glue together those segments based on continuous search (the litera-
ture on numerical algorithms for solving boundary value problems calls such an
approach “multiple shooting” [3,26]).

The structure of the paper is as follows: In the next section we precisely define
the problem and introduce some basic definitions. In Section 3 we introduce
the main algorithm. In Section 4 we present an improved, more incremental
version of the algorithm. In Section 5 we describe how to do local search for error
trajectories. In Section 6 we provide some termination proofs for the algorithm.
In Section 7 we present computational experiments. In Section 8 we describe
related work, and in Section 9 we conclude the paper.
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2 Problem Formulation

In this section we introduce notation and key concepts which we use, and present
the problem we try to solve.

Definition 1. A hybrid dynamical system is a quintuple H = (Q,Ω, F,G,R),
where

– Q is a finite set whose elements we call modes;
– Ω ⊆ Q× R

n (the state space of the hybrid system);
– F assigns to each mode q ∈ Q a system of differential equations Fq(t, x, ẋ) =

0, where (q, x) ∈ Ω and t ∈ R
≥0 is time;

– G ⊆ Ω (the set of guards);
– R : Ω �→ Ω (the reset function).

For a given q ∈ Q, we will sometimes denote by Xq the set {x | (q, x) ∈ Ω}.
Definition 2. A trajectory of a hybrid dynamical system H is a sequence of
the form ((q1, x1), (q2, x2), . . . , (qk, xk)), where qi ∈ Q and xi : [0, ti] �→ Xq

is a continuous trajectory of the system of differential equations given by Fqi ,
i = 1, . . . , k. For all i ∈ {1, . . . , k − 1}, for all t ∈ [0, ti), not G(qi, xi(t)), but
for the trajectory endpoints G(qi, xi(ti)). Moreover, the starting points of subse-
quent trajectories are determined by the reset function, that is, R ((qi, xi(ti))) =
(qi+1, xi+1(0)).

We call ti ∈ R
≥0 the length of xi. Moreover, we denote by (qi, x

s
i ) ∈ Ω the

starting point of a trajectory (qi, xi) and (qi, x
e
i ) ∈ Ω its endpoint.

Now we are ready to formulate the problem of falsification of hybrid dynamical
systems.

Problem 1. Let H be a hybrid dynamical system and Init ⊂ Ω, Unsafe ⊂ Ω
be two sets. The set Init is called the set of initial states and the set Unsafe
is called the set of unsafe states. The problem of falsification of H is to find
any trajectory ((q1, x1), (q2, x2), . . . , (qk, xk)) of H such that (q1, x

s
1) ∈ Init and

(qk, x
e
k) ∈ Unsafe. Such a trajectory is called an error trajectory of H .

3 Algorithm

We now present the main algorithm. Throughout this section we will assume
a given hybrid system H with set of initial states Init and set of unsafe states
Unsafe.

Informally, we intend to transform Problem 1 into the minimization of a cost
function. A value of this cost function will measure how far or close a sequence
of points in Ω is to an error trajectory. We will minimize this cost function until
we find an error trajectory.
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The algorithm will maintain a finite set of points P ⊆ Ω on which it will
analyze the behavior of the given hybrid system H . We call sequences of ele-
ments from P paths. The algorithm will do this analysis by starting numerical
simulations from points in P . Such a simulation will conclude that there is a
trajectory from the starting point p of a simulation to the endpoint p′. This will
be stored in a relation→ on P that will relate all those points p, p′ in P for which
simulation showed that there is a trajectory from p to p′ according to H . If there
is a path from an initial point to an unsafe point according to the relation →,
we are done. However, since this is difficult to achieve, we allow paths of points
in P for which subsequent points are not in →. In order to measure how far such
a path is from being a trajectory we will now introduce a distance measure for
points in P :

Definition 3. Given a finite set of states P ⊆ Ω and a relation →⊆ P ×P , the
distance d((q, x), (q′, x′)), of states (q, x) and (q′, x′) in P , is

– 0, if (q, x) → (q′, x′), otherwise
– ‖x− x′‖, if q = q′, and
– ∞, otherwise.

Here, the symbol ‖ · ‖ denotes the Euclidean norm. Note that our distance func-
tion is not symmetrical because of the relation → that, in general, is not sym-
metrical which corresponds to the intuition that the existence of a trajectory
from p to p′ does not imply the existence of a trajectory from p′ to p.

We measure the difficulty of getting from an initial state of H to a given state
(q, x), and from a given state (q, x) to an unsafe state as follows:

Definition 4. For a state (q, x) ∈ P we put dI ((q, x)) ≡ infu∈Init d (u, (q, x))
and dU ((q, x)) ≡ infu∈Unsafe d ((q, x), u).

Now we model how close a path is to yielding an error trajectory, as follows:

Definition 5. The cost of a path (p1, . . . , pn) is given by c(p1, . . . , pn) = dI(p1)+∑n−1
i=1 d(pi, pi+1) + dU (pn).

Notice that we have an error trajectory of H if the cost c(p1, . . . , pn) is equal to
zero. In practice, we are satisfied if the distances dI(p1) and dU (pn) are zero

and
∑n−1

i=1 d(pi, pi+1) < ε for some small threshold ε.
Now we can formulate our method for falsification of hybrid dynamical sys-

tems. In a similar way as two-phase methods [25] the algorithm iterates between
two phases for exploring the state space of a given hybrid dynamical system.

The first phase is local optimization. For a given path of finite cost from P
we compute another path with lower cost. In this phase we employ standard
techniques for continuous optimization and use gradient information based on
sensitivity analysis of hybrid dynamical systems [14]. If we find a local minimum
which yields an error trajectory, we are finished. However, if the minimal cost is
greater than a given threshold ε, we need to proceed to phase two and explore
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the state space further. The reader can find more details on the first phase in
Section 5.

The second phase is called global exploration. If local optimization in the
first phase does not produce an error trajectory, we add additional states to
the set P . There are many options for adding new states such as a random
sampling, states resulting from forward and backward simulation from existing
states, states suggested by more sophisticated global search techniques [13,17],
and even states given by a designer of the system. The complete Algorithm 1
follows:

Input: a set of states P ⊆ Ω and a relation →⊆ P × P s.t.
– p → p′ implies that there is a trajectory from p to p′ in H
– there is a path of points in P that has finite cost with respect to →

Output: an error trajectory

while local optimization of the path with minimal cost does not yield an
error trajectory do

add a new state r ∈ Ω to the set P
for some p ∈ P do

simulate forward from p for some time to a new state p′

→ := → ∪{(p, p′)}
end
for some p ∈ P do

simulate backward from p for some time to a new state p′

→ := → ∪{(p′, p)}
end

end

Algorithm 1: Combined Global and Local Search for the Falsification

The second requirement on the input (existence of a path of finite cost) allows
us to use derivative based continuous local optimization from the beginning. For
fulfilling this requirement, we observe that paths can only have infinite cost due
to sub-sequent states in different modes that are not connected by the relation
→. We can make this more precise by the following property:

Property 1. Assume a set P ⊆ Ω and →⊆ P × P . Let →Q⊆ P × P be such
that (q, x) →Q (q′, x′) iff q = q′ or (q, x) → (q′, x′), and let →∗

Q be the transitive
closure of →Q. If P contains at least one initial state p and one unsafe state p′

such that p →∗
Q p′, then there is a path of points in P that has finite cost with

respect to →.

The necessary elements of → can be easily formed by pairs (p, p′) such that
G(p) and p′ = R(p). For example, for each pair of modes (q, q′) for which there
are x and x′ s.t. G(q, x) and (q′, x′) = R(q, x) we could add such (q, x) and
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(q′, x′). If H has an error trajectory then this fulfills the assumptions of the
above property resulting in a path of finite cost.

The algorithm stops when we find a path whose cost is lower than some
threshold ε. A concrete implementation might add another stopping criterion, for
example stating a maximum number of states in P in order to ensure termination
for inputs that do not feature any error trajectory.

4 Algorithmic Details

4.1 Computation of the Path of Minimal Cost

We make the following observation: In Algorithm 1, one can view the problem of
computation of a path of minimal cost as a problem on weighted directed graphs:
The vertices of the graph are formed by the elements of the set P and there is
an edge from p ∈ P to p′ ∈ P iff the distance d(p, p′) is finite. The weight of this
edge is given by this value d(p, p′). Now the path of minimal cost is the shortest
path in this graph from an initial to an unsafe state. This is a classical problem
in algorithm theory with solutions such as the Floyd-Warshall algorithm.

Examining the situation more closely, we observe that our problem is neither
of the all-pair shortest path, nor of the single-source shortest path kind. Instead,
the paths have to start in a certain given set (call it S for source) and end in
another given set (call it G for goal). This can be reduced to a problem with
single vertices instead of sets by introducing two new, auxiliary vertices s and g
such that s has an edge of zero cost to each element of S and such that there is
an edge of zero cost from each element of G to g.

Now we are left with a single-source single-goal shortest path problem (also
called point-to-point shortest path). Of course, such problems can be solved
by algorithms solving the single-source shortest path problem, for example, by
Dijkstra’s algorithm [9]. But there are also specialized algorithms, for example,
algorithm based on a bi-directional [22,4] application of Dijkstra’s algorithm.

4.2 Heuristics

The algorithm can be instantiated with many heuristics resulting in special ver-
sions of Algorithm 1, for example:

– Forward version: only add initial points and only do forward simulation
– Backward version: only add unsafe points and only do backward simulation
– Complete random search version: never prolong existing simulations, only

simulation from newly added points.

The algorithm also leaves open the length of the employed simulations. A
simple possibility is to fix a certain length at the beginning and stick to it
throughout computation.

Note that simulation might run into problems, for example due to Zeno be-
havior, or due to the fact that it leaves the state space of the given hybrid
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system. In this case we simply ignore the result of simulation and continue with
the algorithm. See also more on this at the end of Section 5.

It is also possible to use information from verification tools here. Especially,
one can restrict the choice of points to an abstraction computed by a verification
tool [10,23].

4.3 Paths of Minimal Cost

We will now investigate the form of paths of minimal cost. For a given hybrid
system H we assume the following.

1. The sets {x | (q, x) ∈ Init} and {x | (q, x) ∈ Unsafe} are closed and convex.
2. For all q ∈ Q the set {x | (q, x) ∈ Ω} is convex.
3. For p, p′ ∈ P , p → p′ implies there is a trajectory from p to p′ in H .
4. There is at least one path of finite cost in P with respect to → .

Lemma 1. Let H be a given hybrid system and P be a set of states such that
assumptions 1.–4 hold. Let (p1, . . . , pn) be the path of minimal cost. Let r be a
state such that r �= pi, i = 1, . . . , n, and neither r → pi nor pi → r for any
i ∈ {1, . . . , n}. Then the cost of a path which is formed by either including state
r in (p1, . . . , pn) or substituting r for any pi’s, i ∈ {1, . . . , n}, in (p1, . . . , pn) is
greater or equal to c(p1, . . . , pn).

The reader can find the proof of Lemma 1 in the extended version of the paper.
The consequence of this lemma can be stated like this: Assuming 1.–4. the value
of c(p1, . . . , pn), where (p1, . . . , pn) is the path of minimal cost, does not depend
on states p ∈ P which are in no relation to other states in the path wrt. →. In
other words, for a state pi, i = 1, . . . , n, which is in no relation with other states
in a path, we have c(p1, . . . , pi, . . . , pn) = c(p1, . . . , pi−1, pi+1, . . . , pn).

This is important for finding paths of lower cost. Whenever we add a new
state r in Algorithm 1 we should simulate either forward in time or backward in
time to create a pair of states in a relation →. Solitary states do not affect the
resulting value of the cost function.

Lemma 2. Let H be a given hybrid system and P be a set of states such that
assumptions 1.–4 hold. Let (p1, . . . , pn), pi ∈ P , be the path of minimal cost.
Let pj, j = 2, . . . , n − 1, be a state such that pj−1 → pj and pj → pj+1. Then
d(pj−1, pj+1) = 0. �
Proof. Due to transitivity of the relation →, we have pj−1 → pj+1 which gives
us d(pj−1, pj+1) = 0.

Lemma 2 presents us with a choice for the application of local optimization. If
a path contains such a triplet (pj−1, pj, pj+1), we may either work with them as
two separate hybrid trajectories or we may consider a hybrid trajectory which is
formed by their connection, thus removing the intermediate state from a path.
On the other hand, we also have the option to split a hybrid trajectory into
shorter hybrid trajectories before passing it to the local optimizer.
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In the first approach we work with shorter trajectories however the resulting
optimization problem has higher dimension. The latter case may, on the other
hand, cause problems because it is less numerical stable [3]. The choice depends
on the system of differential equations that governs the evolution of hybrid sys-
tem H .

5 Local Optimization

In Algorithm 1, after we form a path (p1, . . . , pn) of finite cost we try to find
another path of smaller cost using local search. Therefore, we solve the minimiza-
tion problem in which we seek new states p̂1, . . . , p̂n which yield a path of lower
cost than (p1, . . . , pn). Eventually, such a path of minimal cost may correspond
to an error trajectory of a hybrid system.

The efficiency of such local search can be improved by exploiting the gradient
of the cost c(p1, . . . , pn). In this section we will develop explicit formulae for the
gradient of the cost function which will allow us to use efficient off-the-shelf tools
for gradient-based numerical optimization to minimize the cost function.

Without loss of generality, we will assume that for all i ∈ {1, . . . , n}, pi → pi+1

iff i is odd. This can be easily achieved, since, due to Lemma 1 if there are solitary
states that we can remove them from (p1, . . . , pn) without changing the value of
the cost function.

Note that in contrast to early work [26], in cases where pi → pi+1, pi and pi+1

are not restricted to be in the same mode. Moreover, points are not restricted
to reside in guards of the hybrid system.

We now give explicit formulae for computation of the gradient of the cost
function c(p1, . . . , pn). Let us start with the definition of the length of a trajectory
((q1, x1), . . . , (qk, xk)) and its sensitivity to the change of its initial state (q1, x

s
1)

which is essential for evaluation of the gradient of the cost c(p1, . . . , pn).

Definition 6. The length of a trajectory ((q1, x1), . . . , (qk, xk)) is defined to be

the sum tf =
∑k

i=1 ti, where ti is the length of xi for i = 1, . . . , k.

Definition 7. We define a function M : R × Ω �→ Ω such that for a state
(q, x) ∈ Ω and t ∈ [0, tf ] we have M(t, (q, x)) = (q′, x′), where (q′, x′) is the
end-state of the trajectory of length t whose initial state is (q, x). In cases where
a reset happens at time t (which results in the trajectory of length t being non-
unique), we choose the unique point before the reset.

Definition 8. The sensitivity of a trajectory ((q1, x1), . . . , (qk, xk)) of H to the
initial state (q1, x

s
1) is a function S : R≥0 �→ R

n×n such that

S(t) ≡ ∂M(t, (q, xs
1))

∂xs
1

, t ∈ [0, tf ].

With this sensitivity function we can measure how the states on a hybrid tra-
jectory are affected when we change its initial state. An important observation
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is that S(0) is the identity matrix. However, for hybrid systems, the function
M need not be differentiable everywhere, and so the sensitivity is not defined
everywhere. Computation of the sensitivity function is subtle [14]. In the sequel
let us use the following notation: For any state (q, x) ∈ Ω, we denote by (q, x)
its continuous part x.

For our path (p1, . . . , pn), for certain ti, i = 1, 3, . . . , n−1, we haveM(t1, p1) =
p2, M(t3, p3) = p4, . . . , M(tn−1, pn−1) = pn. Local search adjusts the position
of the initial state of each trajectory together with its length such that the cost
is minimized. It uses the gradient of the cost with respect to pi and lengths
ti for i < n odd. Therefore the gradient is given by the partial derivatives
∂c
∂pi

(p1, . . . , pn) and
∂c
∂ti

(p1, . . . , pn), i < n odd.
We will illustrate the whole process of computing the gradient of the cost

function for one particular definition of distances dI , d(·, ·) and dU that avoids
solving another minimization problem stemming from Definition 4. Hence, we
put dI(p1) and dU (pn) to be weighted norms to some fixed states in Init, and
Unsafe respectively. This amounts to the sets Init and Unsafe being ellipsoids.
We denote by u ∈ Ω and v ∈ Ω the centres of these ellipsoids and by EI , EU

symmetric positive definite matrices which characterize the size and shape of
sets Init and Unsafe.

Then we consider the cost of the following special form: c(p1, . . . , pn) =

dI(p1) +
∑n−2

i=1 d(pi, pi+1) + dU (pn) = ‖p1 − u‖2EI
+

∑n−2
i even ‖pi − pi+1‖2 +

‖pn − v‖2EU
. When we use the function M : R × Ω �→ Ω from Definition 7,

then the cost becomes dependent on pi and ti, i = 1, 3, 5, . . . , n − 1, and
c(p1, p3, . . . , pn−1, t1, t3, . . . , tn−1) = ‖p1−u‖2EI

+
∑n−2

i even ‖M(ti−1, pi−1)−pi+1‖2
+ ‖M(tn−1, pn−1)− v‖2EU

.
We can compute the gradient of the cost c(p1, p3, . . . , pn−1, t1, t3, . . . , tn−1)

which consists of the following partial derivatives

∂c

∂p1
= 2[p1 − u]TEI + 2

[
M(t1, p1)− p3

]T ∂M

∂p1
(t1, p1)

and for odd i with 1 < i < n− 1 we have

∂c

∂pi
= −2

[
M(ti−2, pi−2)− pi

]T
+ 2

[
M(ti, pi)− pi+2

]T ∂M

∂pi
(ti, pi)

with the last term

∂c

∂pn−1
= 2

[
M(tn−1, pn−1)− v

]T
EU

∂M

∂pn−1

(tn−1, pn−1)

− 2
[
M(tn−2, pn−2)− pn−1

]T
.

For odd i < n− 1 we put

∂c

∂ti
= 2[M(ti, pi)− pi+1]

T ∂M

∂ti
(ti, pi)
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and the last term is

∂c

∂tn−1
= 2

[
M(tn−1, pn−1)− v

]T
EU

∂M

∂tn−1
(tn−1, pn−1) .

In addition we may introduce weights into the cost function to scale the problem.
Now we can use numerical optimization algorithms with the cost function

c and its gradient to do local search for paths of minimal cost. If started close
enough to an error trajectory, and if the hybrid system is sufficiently well-behaved
around the error trajectory, such local search will converge (usually quickly).
However, if this is not the case, local search may fail, due to various reasons:

– It may run in a local minimum that is not an error trajectory.
– There may be problems due to the fact that the sensitivity is not every-

where continuously differentiable. This corresponds to the situation where a
trajectory is tangential to the boundary of a guard [14].

– Well-known problems with simulation [18] of hybrid systems might arise. For
example, the simulation might run into Zeno behavior, or the ODE solver is
unable to start close to the boundary of a guard.

– Optimization may result in trajectories that leave the state space of the
hybrid system.

In all such cases, we simply terminate local optimization and continue with
the global phase of the main algorithm.

6 Termination Proof

We assume a hybrid system H with the following properties:

– The state space of H is compact.
– There exists an error trajectory E with final point in the interior of the

set of unsafe points, and an ε > 0 such that starting local search from any
sequence of hybrid trajectories with cost not bigger than ε converges to an
error trajectory.

– There exists a tube around E such that trajectories starting in this tube
depend continuously on their initial value (note that for ODEs this can be
ensured by Lipschitz continuous right-hand sides).

Moreover, we will study a variant of the algorithm with the following
properties:

– The algorithm does at least one forward simulation in each cycle, always of
length (in time) T .

– The algorithm chooses the starting point for its simulations randomly using
a distribution that is non-zero on the whole state space.

– If a simulation hits an unsafe state, it finishes (so, in such cases, the length
of the simulation may be shorter than T ).
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– The simulations are exact, that is, we ignore rounding and discretization
errors of ODE solvers.

Note that the assumptions are asymmetrical wrt. time and set of initial vs.
unsafe states. This is necessary since simulations have to be done in a certain
direction, and since convergence requires simulations to be stopped if reaching
an unsafe state.

While it is obvious that such an algorithm will densely fill the state space of
the hybrid system with initial values of simulation, it is not obvious that this
will eventually result in a path of small enough cost, since—from a given initial
value—the trajectories follow the dynamics of the hybrid system H . Still, we
have:

Theorem 1. Under the assumption above, the algorithm finds an error trajec-
tory with probability 1.

The reader can find proofs of Theorems 1 and 2 in the extended version of the
paper. Clearly one can easily get a dual version of the theorem and proof by
turning around the time axis, switching initial and unsafe states etc.

Only slightly changing the proof, one can prove the following non-probabilistic
version of the theorem:

Theorem 2. Take the same assumptions as the previous theorem with the ex-
ception of choice of starting points of simulations. Instead of a choice according
to some probability distribution, assume a choice of those starting points that
fulfills the following property: For each ε > 0, there is an integer k such that for
every ε-ball with center in the state space contains a simulation starting point
that the algorithm has chosen in the first k iterations. Then algorithm always
finds an error trajectory.

7 Computational Experiments

Recall that one of the main goals of our method was to handle the absence of an
a-priori upper bound on the length of error trajectories. In order to study the
cost of having to work without this information we compare our approach (that
we will call “unbounded method”) with another approach that also combines
global with local search, but that does simulations of fixed length (we will call it
“bounded method”). The bounded method will also use derivative-based local
optimization, but for initializing local optimization it randomly generates initial
states in the mode containing I and simulates for the time interval [0, T ]. When-
ever the resulting trajectory reaches the mode containing the set of unsafe states
U , we take it as a starting trajectory for local search for an error trajectory. If we
obtain an error trajectory then we stop. Otherwise we proceed until we generate
a certain number of trajectories (we will denote this number by M).

Note that any method that inspects the given hybrid system only up to a
fixed time bound T , if T is too small, it will not find any error trajectory at
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all. The bounded method that we use here, for T too small, may never reach a
mode containing U , preventing it from finding any error trajectory. Moreover,
examples for which trajectories leading to the mode containing U lead over a
very small guard, become arbitrarily difficult for the bounded method. So we can
already conclude now—without running any experiments—that the unbounded
method is superior in certain cases.

Still we do some experiments with a widely known benchmark, the Navigation
benchmark with 16 modes [12]. We consider the linear dynamics ẋ = Ax −
Bu(i, j), with A and B as usual for the navigation benchmark, and

u(i, j) =

⎡

⎣
sin

(
π C(i,j)

4

)

cos
(

π C(i,j)
4

)

⎤

⎦ , C =

⎡

⎢
⎢
⎣

4 3 3 4
4 4 4 4
4 6 6 4
1 0 7 6

⎤

⎥
⎥
⎦ .

Assume the sets of initial and unsafe states to be ellipsoids such that their

principal axes have length 0.2, 0.2, 2 and 2, however, I is centred at
[
0.5 3.5 0 0

]T

and U is centred at
[
3.5 1.5 0 0

]T
. Our objective is to find any trajectory which

starts in set I and reaches set U .
For our experiments we use an instantiation of the unbounded method that

fulfills the requirement of starting with a set P that has a path of finite cost
as follows: We initialize the set P by putting a point on each boundary of two
neighboring modes, simulating forward and backward from each such point (0.05
time units in each direction), and adding the endpoints to the set P .

In the main algorithm, we add a random state to each mode (with velocities
x3 and x4 ranging from −1 to 1) and then we simulate forward and backward
in time from such a state (0.5 time units in each direction). The extremities of
the resulting error trajectory (its initial and end states) are stored in P and
used for obtaining a path of the minimal cost for local search. If local search
returns an error trajectory, then we stop. As in the bounded method we restrict
computation, but this time, to add up to M states to the set P .

In all our experiments we do local search using the Scilab function for gradient-
based numerical optimization, computing the gradient as described in Section 5.
We weighted each distance between two consecutive segments by the weight
ω = 500 in order to prefer the continuity of resulting trajectories. We use the
Scilab function rand for generating random states. For reducing dependence of
the result on the random number generator, we always carry out 100 exper-
iments, initializing the random number generator with a different seed (con-
cretely, rand(“seed”, i), where i = 1, . . . 100). In all our experiments we use the
value 500 for the constant M . The results are listed in Tab. 1. The column “suc-
cessful falsification” lists the number of experiments (from 100) for which the
method found an error trajectory. The column ”average total simulation time”
is the average of the length of all simulation done during a given experiment,
but only for those experiments that succeeded in finding an error trajectory.

The choices T = 10 and T = 20 that we used are big enough, so the bounded
method does find error trajectories, but still the success rate is lower than with
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Table 1. Computation Results

successful falsification average total simulation time

unbounded method 99 1937
bounded method, T = 10 85 1260
bounded method, T = 20 89 2935

the unbounded method, that does not need any bound T at all. In those cases
where the bounded method actually finds an error trajectory, if the choice of T
is small but large enough to reach a mode containing U , it needs less simula-
tion than the unbounded method. But very quickly, when not choosing T small
enough, also the cost of simulations increases beyond the unbounded method.

To sum up, the unbounded method significantly increases the chance of finding
an error trajectory, and moreover, it also decreases the amount of simulation
needed for that, except for cases where a very good bound on the error trajectory
length is available.

8 Related Work

Our algorithm can be viewed as an adaptation of the Best Start two-phase
method for global optimization [25] to our context.

The falsification problem can also be viewed as a boundary value problem
which is a classical topic in numerical mathematics [3]. However, classical numer-
ical methods assume a fixed final time, whereas we search for error trajectories
of arbitrary length. Moreover, classical methods for boundary values problems
are restricted to purely continuous systems and the formulation of boundary
conditions as equalities.

Zuthsi and co-authors [26] present a method for falsification of hybrid systems
that also uses multiple shooting based local search. However, the method assumes
a given upper bound on the length of the error trajectory the method searches for.
Moreover, their local search method always follows a given sequence of modes
and transitions. They propose to search for such a sequence using tools that
compute abstractions of hybrid systems, or by random search. The form of the
used trajectory segments is more restricted than in our method since trajectory
segments always stay in one mode, and end in the guard leading to another
mode.

Abbas and co-authors [1] show how to use local search for falsification of
hybrid systems with affine dynamics. They propose to start the method from
the result of global search algorithms [19].

The usage of abstractions for guiding local search for error trajectories has
been proposed earlier [23], in combination with the usage of derivative-free al-
gorithms for local search.

There is more related work for systems that—different from our case—allow
input or have non-deterministic dynamics. In the completely discrete case this
amounts to finding shortest paths in graphs [4]. We use shortest path algorithms
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as a sub-algorithm to find starting points for local search. Similar problems are
studied in more structured domains by the field of planning [16], and in formal
verification by directed model checking [11].

In the continuous case, the classical field studying algorithm for finding paths
of dynamical systems that are in some sense optimal (e.g., as short as possible),
is optimal control [5,6]. In recent years, also the field of planning has started
to study continuous dynamical systems [16, Chapter IV: Planning Under Differ-
ential Constraints] from a different perspective. More recently, such techniques
have also been applied to hybrid systems [7,8,20,21]. Planning-based techniques
search globally, and do not require an upper bound on trajectory length, but
they do not incorporate derivative-based local search. The only exception that
we are aware of [15] uses optimal control to the result of planning in a purely
sequential way, without any iteration between the two phases.

9 Conclusion

We presented an algorithm for the falsification of hybrid system that combines
scalability due to local search with convergence due to global search. In future
work, we will improve the algorithm in analogy to advanced two-phase meth-
ods [25], such as clustering methods that exploit the regions of attraction to
local optima of the used local search technique.
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