
The Modeling and Analysis

of Mixed-Criticality Systems

Extended Abstract

Sanjoy Baruah�

Department of Computer Science,
The University of North Carolina

Chapel Hill, NC 27599, USA
baruah@cs.unc.edu

Abstract. Methodologies that are currently widely used in the design
and implementation of safety-critical real-time application systems are
primarily focused on ensuring correctness. This, in conjunction with the
trend towards implementing such systems using COTS components, may
lead to very poor utilization of the implementation platform resources
during run-time. Mixed-criticality implementations have been proposed
as one means of achieving more efficient resource utilization upon such
platforms. The real-time scheduling community has been developing a
theory of mixed-criticality scheduling that seeks to solve resource alloca-
tion problems for mixed-criticality systems. There is a need for the formal
methods and analysis community to work on developing methodologies
for the design and analysis of mixed-criticality systems; such method-
ologies, in conjunction with the work on mixed-criticality scheduling
currently being done in the real-time scheduling community, has the po-
tential to significantly enhance our ability to design and implement large,
complex, real-time systems in a manner that is both provably correct and
resource-efficient.

Correctness and Efficiency Considerations

The discipline of real-time computing has its origins in the application domains
of defense, space, and aviation. These are all highly safety-critical domains that
place a great premium on correctness, since the consequences of incorrect system
behavior is potentially very severe. Furthermore, early systems in these applica-
tion domains had limited computational capabilities upon which to implement
the desired functionalities. Early real-time systems were therefore required to
both be correct , and have resource-efficient implementations .

In the early years of the discipline, these twin goals of correctness and ef-
ficiency were achieved by keeping things very simple: safety-critical computer
systems were restricted to being very simple, responsible for very simple, highly

� Supported in part by NSF grants CNS 1016954, CNS 1115284, and CNS 1218693;
and ARO grant W911NF-09-1-0535.

A. Legay and M. Bozga (Eds.): FORMATS 2014, LNCS 8711, pp. 1–6, 2014.
c© Springer International Publishing Switzerland 2014



2 S. Baruah

repetitive, functionalities. They were typically implemented as carefully hand-
crafted code executing upon very simple and predictable processors. Run-time
behavior was therefore very predictable, and hence correctness could be demon-
strated in a fairly straightforward manner.

Choosing Correctness Over Efficiency

However, things soon became far more complicated. The requirements placed
upon safety-critical computer systems increased significantly in size and com-
plexity, and continue to increase at a very rapid pace. This meant that safety-
critical systems could no longer be implemented upon simple and predictable
processors; instead, advanced modern processors that offer far greater compu-
tational capabilities but exhibit less predictable run-time behavior increasingly
came to be used in implementing even highly safety-critical real-time systems.
As a consequence of this increase in the complexity and diversity of real-time
application system requirements and implementation platforms, it soon became
impossible for a single system developer, or a small group of developers, to
keep all details in mind while reasoning about a system design and implementa-
tion. Instead, it became necessary to introduce abstractions that would highlight
the relevant aspects of a system’s behavior while concealing the less important
aspects.

In devising these abstractions, the real-time systems research community was
deeply influenced by the increasingly central role that computer systems are
coming to play in the control of safety-critical devices and systems. The increas-
ing criticality of these systems, coupled with their increasing complexity and
diversity, meant that correctness was becoming both more important, and more
difficult to achieve. In contrast, ensuring efficiency of implementation became
less important as Moore’s Law, compounded over decades, made it possible to
provide larger amounts of computing capabilities at relatively low cost.

Given this state of affairs — correctness becoming increasingly both more im-
portant and more difficult to achieve, and efficiency mattering less — the real-
time systems community made the rational decision to focus on abstractions that
facilitate the correct construction of systems, letting efficiency considerations re-
cede to the background. An important advance here was the introduction of the
synchrony assumption [2], which separated functional and temporal correctness
concerns by introducing the concept of logical time. Time considerations were
re-integrated into a functionally correct design by the use of abstractions and
mechanisms such as logical execution time, timed automata, etc. These abstrac-
tions, which are sometimes collectively referred to by the umbrella term model-
based design for timed systems, have proved extremely popular; supported by
powerful tools and rigorous proof and design formalisms, such model-based de-
sign methodologies are widely used today in developing systems in safety-critical
industrial domains such as automotive, aviation, etc.

But it is important to realize that the end-product of the process of design-
ing a system using these model-based design methodologies is a model of the
system, not its physical realization upon an implementation platform. We do



The Modeling and Analysis of Mixed-Criticality Systems 3

not currently know how to implement such models upon modern advanced plat-
forms in a resource-efficient manner; instead, current practice is to use ad hoc
techniques to obtain an implementation of a model that is developed using a
model-based design process (and thereby rigorously proved to be correct), with-
out worrying too much about efficiency, compensating for this lack of efficiency
by an over-provisioning of computational and other resources upon the imple-
mentation platform.

The Problem of Modern Platforms

As safety-critical systems became ever more complex and computationally de-
manding, it became necessary to implement them upon the most advanced com-
puting platforms available. Due to cost and related reasons, such platforms are
increasingly coming to be built using commercial off-the-shelf (COTS) processors
and other components. COTS processors are generally developed with the ob-
jective of providing improved “typical” or average-case performance rather than
better worst-case guarantees; they therefore incorporate advanced architectural
features such as multi-level cache memories, deep pipelining, speculative out-of-
order execution, etc., that do indeed significantly improve average performance
but also lead to very large variances in run-time behavior. For example, it is
known [1] that the simple operation of adding two integer variables and storing
the result in a third may take from as few as 3 to as many as 321 cycles on the
Motorola PowerPC-755 (by contrast, the earlier Motorola 68K processor, which
was state-of-the art in the 1990’s, always executes this operation in exactly 20
cycles). In order to predict the precise behavior that will be experienced by a
particular process during run-time, extensive knowledge of the run-time situa-
tion –the inputs to the process at run-time; the states of the other processes
that are executing concurrently; etc.– must be known; since such knowledge
is not usually obtainable during system design time, the run-time behavior is
unpredictable beforehand.

The Move towards Mixed-Criticality Systems

Summarizing the points made above:

– Safety-critical system requirements have become vastly more complex, and
more computation-intensive.

– They must therefore be implemented upon advanced modern computing
platforms, which offer increased computing capabilities but are unpredictable
and exhibit great variance between average-case and worst-case behavior.

– Given the extremely safety-critical nature of the applications, though, their
correctness must nevertheless be validated to extremely high levels of
assurance.

Since the systems are so complex and the implementation platforms so unpre-
dictable, system correctness at the desired high levels of assurance is guaranteed



4 S. Baruah

during the system design process by tremendous over-provisioning of computa-
tional and other platform resources during system design time. However, the very
conservative assumptions that must be made during validation in order to ensure
correctness at the desired levels of assurance are highly unlikely to occur during
the typical run; hence, much of the over-provisioned resources are unlikely to ac-
tually be used during run-time. As a consequence, such system implementations
will see extremely low resource utilization during run-time. SWaP concerns (the
Size, and Weight of the implementation platform, and the Power, or rather, the
energy, that is consumed by it) make such resource under-utilization increas-
ingly unacceptable. One approach towards improving run-time resource usage is
by moving towardsmixed-criticality implementations, in which the highly safety-
critical functionalities are implemented upon the same platform as less critical
functionalities. This approach has proved very popular in safety-critical appli-
cation domains, as is evident in industry-driven initiatives such as Integrated
Modular Avionics (IMA) [4] in aerospace and AUTOSAR1 in the automotive
industry. Informally speaking, the idea is that the resources that are provisioned
to highly critical functionalities during design time, but are likely to remain un-
used by these functionalities at run-time, can be “re-claimed” and used to make
performance guarantees, albeit at lower levels of assurance, to the less critical
functionalities.

Mixed-Criticality Scheduling Theory

The recently emergent field of mixed-criticality scheduling theory (see, e.g., [3] for
a current survey) is concerned with the study of resource-allocation, scheduling,
and synchronization in such mixed-criticality systems. Two related but distinct
approaches have been widely investigated: one focused primarily on run-time
robustness, and the other on verification.

Run-time robustness is a form of fault tolerance that allows graceful degradation
to occur in a manner that is mindful of criticality levels: informally speaking, in
the event that all functionalities implemented upon a shared platform cannot be
serviced satisfactorily the goal is to ensure that less critical functionalities are
denied their requested levels of service before more critical functionalities are.
Approaches in mixed-criticality scheduling theory that seek to ensure such run-
time robustness are centered upon identifying, during run-time, when cumulative
resource demand exceeds the available supply, and triggering a mode change [6]
when this happens. Real-time scheduling theory has a rich history of results
towards obtaining resource-efficient implementations of mode changes (see [5]
for a survey); these techniques may be adapted to ensure run-time robust mixed-
criticality systems.

Static verification of mixed-criticality systems is closely related to the problem
of certification in safety-critical application domains. The accelerating trend in
safety-critical application domains such as automotive and avionics systems to-
wards computerized control of an ever-increasing range of functionalities, both

1 AUTomotive Open System ARchitecture — see www.autosar.org

www.autosar.org


The Modeling and Analysis of Mixed-Criticality Systems 5

safety-critical and non-critical, means that even in highly safety-critical systems,
typically only a relatively small fraction of the overall system is actually of crit-
ical functionality and needs to be certified. In order to certify a system as being
correct, the certification authority (CA) may mandate that certain assumptions
be made about the worst-case behavior of the system during run-time. CA’s
tend to be very conservative, and hence it is often the case that the assumptions
required by the CA are far more pessimistic than those the system designer
would typically use during the system design process if certification was not
required. However, while the CA is only concerned with the correctness of the
safety-critical part of the system the system designer wishes to ensure that the
entire system is correct, including the non-critical parts. Vestal [7] first identified
the challenge of obtaining certification for integrated system implementations in
which different functionalities need to have their correctness validated to different
levels of assurance, while simultaneously ensuring efficient resource-utilization.
The real-time scheduling community has since produced a vast amount of work
that builds upon Vestal’s seminal idea; see [3] for a survey.

A Need for Participation by the FORMATS Community

These advances in mixed-criticality scheduling theory point to a promising ap-
proach towards reintegrating efficiency considerations into the design and im-
plementation of provably correct safety-critical real-time application systems.
However, much of this work is based upon relatively low-level and simple work-
load models, such as collections of independent jobs, or systems represented as a
finite collection of recurrent (e.g., periodic and sporadic) tasks. Prior experience
has shown that such simple models are inadequate for building truly complex
systems – more powerful models, at higher levels of abstraction and possessing
greater expressive power, are needed. The development of such models, along
with accompanying design methodologies, proof formalisms, and tool support,
is one of the prime strengths of the formal methods and modeling community.
There is therefore a pressing need for the formal methods and modeling com-
munity to take a close look at mixed-criticality systems, to develop more pow-
erful models for representing such systems, and to extend the mixed-criticality
scheduling theories to become applicable to these more advanced models. It is
my belief that such work is best conducted in co-ordinated, cooperative efforts
between the formal methods and the real-time scheduling communities.

Acknowledgements. The ideas discussed in this extended abstract are based
upon discussions with a number of colleagues and research collaborators, Alan
Burns in particular. Others include (in alphabetical order) Jim Anderson, Saddek
Bensalem, Vincenzo Bonifaci, Pontus Ekberg, Gerhard Fohler, Laurent George,
Nan Guan, Alberto Marchetti-Spaccamela, Joseph Sifakis, Leen Stougie, Lothar
Thiele, Steve Vestal, and Wang Yi.



6 S. Baruah

References

1. Slide-show: Introduction to aiT, http://www.absint.com/ait/slides/4.htm

(accessed on June 23, 2014)
2. Benveniste, A., Berry, G.: The synchronous approach to reactive and real-time sys-

tems. Proceedings of the IEEE 79(9), 1270–1282 (1991)
3. Burns, A., Davis, R.: Mixed-criticality systems: A review (2013),

http://www-users.cs.york.ac.uk/~burns/review.pdf

4. Prisaznuk, P.J.: Integrated modular avionics. In: Proceedings of the IEEE 1992
National Aerospace and Electronics Conference (NAECON 1992), vol. 1, pp. 39–45
(May 1992)

5. Real, J., Crespo, A.: Mode change protocols for real-time systems: A survey and a
new proposal. Real-Time Syst. 26(2), 161–197 (2004)

6. Sha, L., Rajkumar, R., Lehoczky, J., Ramamritham, K.: Mode change protocols for
priority-driven preemptive scheduling. Real-Time Systems 1, 243–264 (1988)

7. Vestal, S.: Preemptive scheduling of multi-criticality systems with varying degrees
of execution time assurance. In: Proceedings of the Real-Time Systems Symposium,
pp. 239–243. IEEE Computer Society Press, Tucson (2007)

http://www.absint.com/ait/slides/4.htm
http://www-users.cs.york.ac.uk/~burns/review.pdf

	The Modeling and Analysisof Mixed-Criticality Systems
	References




