
Axel Legay
Marius Bozga (Eds.)

 123

LN
CS

 8
71

1

12th International Conference, FORMATS 2014
Florence, Italy, September 8–10, 2014
Proceedings

Formal Modeling
and Analysis
of Timed Systems

Lecture Notes in Computer Science 8711
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Axel Legay Marius Bozga (Eds.)

Formal Modeling
and Analysis
of Timed Systems
12th International Conference, FORMATS 2014
Florence, Italy, September 8-10, 2014
Proceedings

13

Volume Editors

Axel Legay
Inria, Bâtiment C
Campus Universitaire de Beaulieu
35042 Rennes Cedex, France
E-mail: axel.legay@inria.fr

Marius Bozga
VERIMAG, Distributed and Complex Systems Group
Centre Equation, 2 Avenue de Vignate
38610 Gieres, France
E-mail: marius.bozga@imag.fr

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-319-10511-6 e-ISBN 978-3-319-10512-3
DOI 10.1007/978-3-319-10512-3
Springer Cham Heidelberg New York Dordrecht London

Library of Congress Control Number: 2014946204

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

© Springer International Publishing Switzerland 2014

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication
or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location,
in ist current version, and permission for use must always be obtained from Springer. Permissions for use
may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution
under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

This volume contains the proceedings of the 2014 International Conference on
Formal Modeling and Analysis of Timed Systems (FORMATS 2014), held in
Florence, Italy, during September 8–10, 2014.

FORMATS 2014 was the 12th of a series dedicated to the advancement of
modeling and analysis techniques for timed systems. This year, FORMATS was
part of FLORENCE 2014 – a one-week scientific event with conferences and
workshops in the areas of formal and quantitative analysis of systems.

FORMATS 2014 attracted 36 submissions in response to the call for pa-
pers. Each submission was assigned to at least three members of the Program
Committee. The Program Committee discussed the submissions electronically,
judging them on their perceived importance, originality, clarity, and appropriate-
ness to the expected audience. The Program Committee selected 16 papers for
presentation, leading to an acceptance rate of 44%.

Complementing the contributed papers, the program of FORMATS 2014
included an invited lecture by Sanjoy Baruah on the “Modeling and Analysis of
Mixed-Criticality Systems.”

The chairs would like to thank the authors for submitting their papers to
FORMATS 2014. We are grateful to the reviewers who contributed to nearly
140 informed and detailed reports and discussions during the electronic Pro-
gram Committee meeting. We also sincerely thank the Steering Committee for
their advice. Finally, we would like to thank the organizers of FLORENCE 2014
for taking care of both the local organization and the website for FORMATS.
FORMATS 2014 was sponsored by Verimag and Inria.

June 2014 Axel Legay
Marius Bozga

Organization

Program Committee

Parosh Aziz Abdulla Uppsala University, Sweden
Erika Abraham RWTH Aachen University, Germany
Eugene Asarin LIAFA, University Paris Diderot, France
Luca Bortolussi University of Trieste, Italy
Marius Bozga Verimag/CNRS, Grenoble, France
Alexandre David CISS/Aalborg University, Denmark
Alexandre Donzé UC Berkeley, USA
Georgios Fainekos Arizona State University, USA
Goran Frehse Université Joseph Fourier Grenoble 1, Verimag,

France
Martin Fränzle Carl von Ossietzky Universität Oldenburg,

Germany
Gilles Geeraerts Université Libre de Bruxelles, Belgium
Marcin Jurdzinski University of Warwick, UK
Joost-Pieter Katoen RWTH Aachen University, Germany
Kai Lampka Uppsala University, Sweden
Laurent Fribourg LSV/CNRS, Paris, France
Axel Legay IRISA/Inria, Rennes, France

Didier Lime École Centrale de Nantes, France
Nicolas Markey LSV, CNRS ENS Cachan, France
Thiagarajan P.S. National University of Singapore
David Parker University of Birmingham, UK
Ocan Sankur ENS Cachan, France
Ana Sokolova University of Salzburg, Austria
Oleg Sokolsky University of Pennsylvania, USA
Louis-Marie Traonouez Inria Rennes, France
Ashutosh Trivedi Indian Institute of Technology, Bombay, India
Frits Vaandrager Radboud University Nijmegen,

The Netherlands
Enrico Vicario Università di Firenze, Italy
Sergio Yovine CONICET, Argentina

Additional Reviewers

Abdullah, Syed Md. Jakaria
Akshay, S.
Bartocci, Ezio
Berthomieu, Bernard

Bogomolov, Sergiy
Bouyer, Patricia
Casagrande, Alberto
Chatain, Thomas

VIII Organization

Chen, Sanjian
Chen, Xin
Craciunas, Silviu
Desai, Ankush
Doyen, Laurent
Dreossi, Tommaso
Eggers, Andreas
Estiévenart, Morgane
Feng, Lu
Guha, Shibashis
Haddad, Serge
Hagemann, Willem
Helms, Domenik
Jansen, Nils
Jonsson, Bengt
King, Andrew
Lampka, Kai
Lippautz, Michael
Martos-Salgado, Maŕıa

Massart, Thierry
Nellen, Johanna
Ouaknine, Joel
Paulevé, Löıc
Piazza, Carla
Rezine, Othmane
Rodriguez, Cesar
Roux, Olivier H.
Ruemmer, Philipp
S., Krishna
Sangnier, Arnaud
Schupp, Stefan
Sharma, Arpit
Stainer, Amelie
Stigge, Martin
Swaminathan, Mani
Wojtczak, Dominik
Yu, Huafeng

Table of Contents

The Modeling and Analysis of Mixed-Criticality Systems
(Extended Abstract) . 1

Sanjoy Baruah

Modeling Bitcoin Contracts by Timed Automata . 7
Marcin Andrychowicz, Stefan Dziembowski, Daniel Malinowski,
and �Lukasz Mazurek

Data-Driven Statistical Learning of Temporal Logic Properties 23
Ezio Bartocci, Luca Bortolussi, and Guido Sanguinetti

Finding Best and Worst Case Execution Times of Systems Using
Difference-Bound Matrices . 38

Omar Al-Bataineh, Mark Reynolds, and Tim French

Delay-Dependent Partial Order Reduction Technique for Time
Petri Nets . 53

Hanifa Boucheneb, Kamel Barkaoui, and Karim Weslati

On MITL and Alternating Timed Automata over Infinite Words 69
Thomas Brihaye, Morgane Estiévenart, and Gilles Geeraerts

Time Petri Nets with Dynamic Firing Dates:
Semantics and Applications . 85

Bernard Berthomieu, Silvano Dal Zilio, �Lukasz Fronc,
and François Vernadat

Verification and Performance Evaluation of Timed Game Strategies 100
Alexandre David, Huixing Fang, Kim Guldstrand Larsen,
and Zhengkui Zhang

The Power of Proofs: New Algorithms for Timed Automata Model
Checking . 115

Peter Fontana and Rance Cleaveland

Anonymized Reachability of Hybrid Automata Networks 130
Taylor T. Johnson and Sayan Mitra

Combined Global and Local Search for the Falsification
of Hybrid Systems . 146

Jan Kuřátko and Stefan Ratschan

X Table of Contents

Weak Singular Hybrid Automata . 161
Shankara Narayanan Krishna, Umang Mathur, and Ashutosh Trivedi

Non-convex Invariants and Urgency Conditions on Linear Hybrid
Automata . 176

Stefano Minopoli and Goran Frehse

Time-Bounded Reachability for Initialized Hybrid Automata with
Linear Differential Inclusions and Rectangular Constraints 191

Nima Roohi and Mahesh Viswanathan

Virtual Integration of Real-Time Systems Based on Resource
Segregation Abstraction . 206

Ingo Stierand, Philipp Reinkemeier, and Purandar Bhaduri

Timed Pattern Matching . 222
Dogan Ulus, Thomas Ferrère, Eugene Asarin, and Oded Maler

Interval Abstraction Refinement for Model Checking
of Timed-Arc Petri Nets . 237

Sine Viesmose Birch, Thomas Stig Jacobsen, Jacob Jon Jensen,
Christoffer Moesgaard, Niels Nørgaard Samuelsen, and Jǐŕı Srba

Author Index . 253

The Modeling and Analysis

of Mixed-Criticality Systems

Extended Abstract

Sanjoy Baruah�

Department of Computer Science,
The University of North Carolina

Chapel Hill, NC 27599, USA
baruah@cs.unc.edu

Abstract. Methodologies that are currently widely used in the design
and implementation of safety-critical real-time application systems are
primarily focused on ensuring correctness. This, in conjunction with the
trend towards implementing such systems using COTS components, may
lead to very poor utilization of the implementation platform resources
during run-time. Mixed-criticality implementations have been proposed
as one means of achieving more efficient resource utilization upon such
platforms. The real-time scheduling community has been developing a
theory of mixed-criticality scheduling that seeks to solve resource alloca-
tion problems for mixed-criticality systems. There is a need for the formal
methods and analysis community to work on developing methodologies
for the design and analysis of mixed-criticality systems; such method-
ologies, in conjunction with the work on mixed-criticality scheduling
currently being done in the real-time scheduling community, has the po-
tential to significantly enhance our ability to design and implement large,
complex, real-time systems in a manner that is both provably correct and
resource-efficient.

Correctness and Efficiency Considerations

The discipline of real-time computing has its origins in the application domains
of defense, space, and aviation. These are all highly safety-critical domains that
place a great premium on correctness, since the consequences of incorrect system
behavior is potentially very severe. Furthermore, early systems in these applica-
tion domains had limited computational capabilities upon which to implement
the desired functionalities. Early real-time systems were therefore required to
both be correct , and have resource-efficient implementations .

In the early years of the discipline, these twin goals of correctness and ef-
ficiency were achieved by keeping things very simple: safety-critical computer
systems were restricted to being very simple, responsible for very simple, highly

� Supported in part by NSF grants CNS 1016954, CNS 1115284, and CNS 1218693;
and ARO grant W911NF-09-1-0535.

A. Legay and M. Bozga (Eds.): FORMATS 2014, LNCS 8711, pp. 1–6, 2014.
c© Springer International Publishing Switzerland 2014

2 S. Baruah

repetitive, functionalities. They were typically implemented as carefully hand-
crafted code executing upon very simple and predictable processors. Run-time
behavior was therefore very predictable, and hence correctness could be demon-
strated in a fairly straightforward manner.

Choosing Correctness Over Efficiency

However, things soon became far more complicated. The requirements placed
upon safety-critical computer systems increased significantly in size and com-
plexity, and continue to increase at a very rapid pace. This meant that safety-
critical systems could no longer be implemented upon simple and predictable
processors; instead, advanced modern processors that offer far greater compu-
tational capabilities but exhibit less predictable run-time behavior increasingly
came to be used in implementing even highly safety-critical real-time systems.
As a consequence of this increase in the complexity and diversity of real-time
application system requirements and implementation platforms, it soon became
impossible for a single system developer, or a small group of developers, to
keep all details in mind while reasoning about a system design and implementa-
tion. Instead, it became necessary to introduce abstractions that would highlight
the relevant aspects of a system’s behavior while concealing the less important
aspects.

In devising these abstractions, the real-time systems research community was
deeply influenced by the increasingly central role that computer systems are
coming to play in the control of safety-critical devices and systems. The increas-
ing criticality of these systems, coupled with their increasing complexity and
diversity, meant that correctness was becoming both more important, and more
difficult to achieve. In contrast, ensuring efficiency of implementation became
less important as Moore’s Law, compounded over decades, made it possible to
provide larger amounts of computing capabilities at relatively low cost.

Given this state of affairs — correctness becoming increasingly both more im-
portant and more difficult to achieve, and efficiency mattering less — the real-
time systems community made the rational decision to focus on abstractions that
facilitate the correct construction of systems, letting efficiency considerations re-
cede to the background. An important advance here was the introduction of the
synchrony assumption [2], which separated functional and temporal correctness
concerns by introducing the concept of logical time. Time considerations were
re-integrated into a functionally correct design by the use of abstractions and
mechanisms such as logical execution time, timed automata, etc. These abstrac-
tions, which are sometimes collectively referred to by the umbrella term model-
based design for timed systems, have proved extremely popular; supported by
powerful tools and rigorous proof and design formalisms, such model-based de-
sign methodologies are widely used today in developing systems in safety-critical
industrial domains such as automotive, aviation, etc.

But it is important to realize that the end-product of the process of design-
ing a system using these model-based design methodologies is a model of the
system, not its physical realization upon an implementation platform. We do

The Modeling and Analysis of Mixed-Criticality Systems 3

not currently know how to implement such models upon modern advanced plat-
forms in a resource-efficient manner; instead, current practice is to use ad hoc
techniques to obtain an implementation of a model that is developed using a
model-based design process (and thereby rigorously proved to be correct), with-
out worrying too much about efficiency, compensating for this lack of efficiency
by an over-provisioning of computational and other resources upon the imple-
mentation platform.

The Problem of Modern Platforms

As safety-critical systems became ever more complex and computationally de-
manding, it became necessary to implement them upon the most advanced com-
puting platforms available. Due to cost and related reasons, such platforms are
increasingly coming to be built using commercial off-the-shelf (COTS) processors
and other components. COTS processors are generally developed with the ob-
jective of providing improved “typical” or average-case performance rather than
better worst-case guarantees; they therefore incorporate advanced architectural
features such as multi-level cache memories, deep pipelining, speculative out-of-
order execution, etc., that do indeed significantly improve average performance
but also lead to very large variances in run-time behavior. For example, it is
known [1] that the simple operation of adding two integer variables and storing
the result in a third may take from as few as 3 to as many as 321 cycles on the
Motorola PowerPC-755 (by contrast, the earlier Motorola 68K processor, which
was state-of-the art in the 1990’s, always executes this operation in exactly 20
cycles). In order to predict the precise behavior that will be experienced by a
particular process during run-time, extensive knowledge of the run-time situa-
tion –the inputs to the process at run-time; the states of the other processes
that are executing concurrently; etc.– must be known; since such knowledge
is not usually obtainable during system design time, the run-time behavior is
unpredictable beforehand.

The Move towards Mixed-Criticality Systems

Summarizing the points made above:

– Safety-critical system requirements have become vastly more complex, and
more computation-intensive.

– They must therefore be implemented upon advanced modern computing
platforms, which offer increased computing capabilities but are unpredictable
and exhibit great variance between average-case and worst-case behavior.

– Given the extremely safety-critical nature of the applications, though, their
correctness must nevertheless be validated to extremely high levels of
assurance.

Since the systems are so complex and the implementation platforms so unpre-
dictable, system correctness at the desired high levels of assurance is guaranteed

4 S. Baruah

during the system design process by tremendous over-provisioning of computa-
tional and other platform resources during system design time. However, the very
conservative assumptions that must be made during validation in order to ensure
correctness at the desired levels of assurance are highly unlikely to occur during
the typical run; hence, much of the over-provisioned resources are unlikely to ac-
tually be used during run-time. As a consequence, such system implementations
will see extremely low resource utilization during run-time. SWaP concerns (the
Size, and Weight of the implementation platform, and the Power, or rather, the
energy, that is consumed by it) make such resource under-utilization increas-
ingly unacceptable. One approach towards improving run-time resource usage is
by moving towards mixed-criticality implementations, in which the highly safety-
critical functionalities are implemented upon the same platform as less critical
functionalities. This approach has proved very popular in safety-critical appli-
cation domains, as is evident in industry-driven initiatives such as Integrated
Modular Avionics (IMA) [4] in aerospace and AUTOSAR1 in the automotive
industry. Informally speaking, the idea is that the resources that are provisioned
to highly critical functionalities during design time, but are likely to remain un-
used by these functionalities at run-time, can be “re-claimed” and used to make
performance guarantees, albeit at lower levels of assurance, to the less critical
functionalities.

Mixed-Criticality Scheduling Theory

The recently emergent field of mixed-criticality scheduling theory (see, e.g., [3] for
a current survey) is concerned with the study of resource-allocation, scheduling,
and synchronization in such mixed-criticality systems. Two related but distinct
approaches have been widely investigated: one focused primarily on run-time
robustness, and the other on verification.

Run-time robustness is a form of fault tolerance that allows graceful degradation
to occur in a manner that is mindful of criticality levels: informally speaking, in
the event that all functionalities implemented upon a shared platform cannot be
serviced satisfactorily the goal is to ensure that less critical functionalities are
denied their requested levels of service before more critical functionalities are.
Approaches in mixed-criticality scheduling theory that seek to ensure such run-
time robustness are centered upon identifying, during run-time, when cumulative
resource demand exceeds the available supply, and triggering a mode change [6]
when this happens. Real-time scheduling theory has a rich history of results
towards obtaining resource-efficient implementations of mode changes (see [5]
for a survey); these techniques may be adapted to ensure run-time robust mixed-
criticality systems.

Static verification of mixed-criticality systems is closely related to the problem
of certification in safety-critical application domains. The accelerating trend in
safety-critical application domains such as automotive and avionics systems to-
wards computerized control of an ever-increasing range of functionalities, both

1 AUTomotive Open System ARchitecture — see www.autosar.org

www.autosar.org

The Modeling and Analysis of Mixed-Criticality Systems 5

safety-critical and non-critical, means that even in highly safety-critical systems,
typically only a relatively small fraction of the overall system is actually of crit-
ical functionality and needs to be certified. In order to certify a system as being
correct, the certification authority (CA) may mandate that certain assumptions
be made about the worst-case behavior of the system during run-time. CA’s
tend to be very conservative, and hence it is often the case that the assumptions
required by the CA are far more pessimistic than those the system designer
would typically use during the system design process if certification was not
required. However, while the CA is only concerned with the correctness of the
safety-critical part of the system the system designer wishes to ensure that the
entire system is correct, including the non-critical parts. Vestal [7] first identified
the challenge of obtaining certification for integrated system implementations in
which different functionalities need to have their correctness validated to different
levels of assurance, while simultaneously ensuring efficient resource-utilization.
The real-time scheduling community has since produced a vast amount of work
that builds upon Vestal’s seminal idea; see [3] for a survey.

A Need for Participation by the FORMATS Community

These advances in mixed-criticality scheduling theory point to a promising ap-
proach towards reintegrating efficiency considerations into the design and im-
plementation of provably correct safety-critical real-time application systems.
However, much of this work is based upon relatively low-level and simple work-
load models, such as collections of independent jobs, or systems represented as a
finite collection of recurrent (e.g., periodic and sporadic) tasks. Prior experience
has shown that such simple models are inadequate for building truly complex
systems – more powerful models, at higher levels of abstraction and possessing
greater expressive power, are needed. The development of such models, along
with accompanying design methodologies, proof formalisms, and tool support,
is one of the prime strengths of the formal methods and modeling community.
There is therefore a pressing need for the formal methods and modeling com-
munity to take a close look at mixed-criticality systems, to develop more pow-
erful models for representing such systems, and to extend the mixed-criticality
scheduling theories to become applicable to these more advanced models. It is
my belief that such work is best conducted in co-ordinated, cooperative efforts
between the formal methods and the real-time scheduling communities.

Acknowledgements. The ideas discussed in this extended abstract are based
upon discussions with a number of colleagues and research collaborators, Alan
Burns in particular. Others include (in alphabetical order) Jim Anderson, Saddek
Bensalem, Vincenzo Bonifaci, Pontus Ekberg, Gerhard Fohler, Laurent George,
Nan Guan, Alberto Marchetti-Spaccamela, Joseph Sifakis, Leen Stougie, Lothar
Thiele, Steve Vestal, and Wang Yi.

6 S. Baruah

References

1. Slide-show: Introduction to aiT, http://www.absint.com/ait/slides/4.htm

(accessed on June 23, 2014)
2. Benveniste, A., Berry, G.: The synchronous approach to reactive and real-time sys-

tems. Proceedings of the IEEE 79(9), 1270–1282 (1991)
3. Burns, A., Davis, R.: Mixed-criticality systems: A review (2013),

http://www-users.cs.york.ac.uk/~burns/review.pdf

4. Prisaznuk, P.J.: Integrated modular avionics. In: Proceedings of the IEEE 1992
National Aerospace and Electronics Conference (NAECON 1992), vol. 1, pp. 39–45
(May 1992)

5. Real, J., Crespo, A.: Mode change protocols for real-time systems: A survey and a
new proposal. Real-Time Syst. 26(2), 161–197 (2004)

6. Sha, L., Rajkumar, R., Lehoczky, J., Ramamritham, K.: Mode change protocols for
priority-driven preemptive scheduling. Real-Time Systems 1, 243–264 (1988)

7. Vestal, S.: Preemptive scheduling of multi-criticality systems with varying degrees
of execution time assurance. In: Proceedings of the Real-Time Systems Symposium,
pp. 239–243. IEEE Computer Society Press, Tucson (2007)

http://www.absint.com/ait/slides/4.htm
http://www-users.cs.york.ac.uk/~burns/review.pdf

Modeling Bitcoin Contracts by Timed Automata�

Marcin Andrychowicz, Stefan Dziembowski��,
Daniel Malinowski, and Łukasz Mazurek

University of Warsaw
Cryptology and Data Security Group, Poland

www.crypto.edu.pl

Abstract. Bitcoin is a peer-to-peer cryptographic currency system. Since its in-
troduction in 2008, Bitcoin has gained noticeable popularity, mostly due to its
following properties: (1) the transaction fees are very low, and (2) it is not con-
trolled by any central authority, which in particular means that nobody can “print”
the money to generate inflation. Moreover, the transaction syntax allows to create
the so-called contracts, where a number of mutually-distrusting parties engage in
a protocol to jointly perform some financial task, and the fairness of this process
is guaranteed by the properties of Bitcoin. Although the Bitcoin contracts have
several potential applications in the digital economy, so far they have not been
widely used in real life. This is partly due to the fact that they are cumbersome to
create and analyze, and hence risky to use.

In this paper we propose to remedy this problem by using the methods
originally developed for the computer-aided analysis for hardware and software
systems, in particular those based on the timed automata. More concretely, we
propose a framework for modeling the Bitcoin contracts using the timed automata
in the UPPAAL model checker. Our method is general and can be used to model
several contracts. As a proof-of-concept we use this framework to model some
of the Bitcoin contracts from our recent previous work. We then automatically
verify their security in UPPAAL, finding (and correcting) some subtle errors that
were difficult to spot by the manual analysis. We hope that our work can draw the
attention of the researchers working on formal modeling to the problem of the
Bitcoin contract verification, and spark off more research on this topic.

1 Introduction

Bitcoin is a digital currency system introduced in 2008 by an anonymous developer
using a pseudonym “Satoshi Nakamoto” [22]. Despite of its mysterious origins, Bitcoin
became the first cryptographic currency that got widely adopted — as of January 2014
the Bitcoin capitalization is over e 7 bln. The enormous success of Bitcoin was also
widely covered by the media (see e.g. [15,5,24,20,21]) and even attracted the attention
of several governing bodies and legislatures, including the US Senate [20]. Bitcoin owes
its popularity mostly to the fact that it has no central authority, the transaction fees are
very low, and the amount of coins in the circulation is restricted, which in particular

� This work was supported by the WELCOME/2010-4/2 grant founded within the framework of
the EU Innovative Economy (National Cohesion Strategy) Operational Programme.

�� On leave from the Sapienza University of Rome.

A. Legay and M. Bozga (Eds.): FORMATS 2014, LNCS 8711, pp. 7–22, 2014.
c© Springer International Publishing Switzerland 2014

www.crypto.edu.pl

8 M. Andrychowicz et al.

means that nobody can “print” money to generate inflation. The financial transactions
between the participants are published on a public ledger maintained jointly by the users
of the system.

One of the very interesting, but slightly less known, features of the Bitcoin is the
fact that it allows for more complicated “transactions” than the simple money transfers
between the participants: very informally, in Bitcoin it is possible to “deposit” some
amount of money in such a way that it can be claimed only under certain conditions.
These conditions are written in the form of the Bitcoin scripts and in particular may
involve some timing constrains. This property allows to create the so-called contracts
[26], where a number of mutually-distrusting parties engage in a Bitcoin-based protocol
to jointly perform some task. The security of the protocol is guaranteed purely by the
properties of the Bitcoin, and no additional trust assumptions are needed. This Bitcoin
feature can have several applications in the digital economy, like creating the assurance
contracts, the escrow and dispute mediation, the rapid micropayments [26], the multi-
party lotteries [8]. It can also be used to add some extra properties to Bitcoin, like the
certification of the users [16], or creating the secure “mixers” whose goal is to enhance
the anonymity of the transactions [18]. Their potential has even been noticed by the
media (see, e.g., a recent enthusiastic article on the CNN Money [21]).

In our opinion, one of the obstacles that may prevent this feature from being widely
used by the Bitcoin community is the fact that the contracts are tricky to write and
understand. This may actually be the reason why, despite of so many potential applica-
tions, they have not been widely used in real life. As experienced by ourselves [6,7,8],
developing such contracts is hard for the following reasons. Firstly, it’s easy to make
subtle mistakes in the scripts. Secondly, the protocols that involve several parties and
the timing constraints are naturally hard to analyze by hand. Since mistakes in the con-
tracts can be exploited by the malicious parties for their own financial gain, it is natural
that users are currently reluctant to use this feature of Bitcoin.

In this paper we propose an approach that can help designing secure Bitcoin con-
tracts. Our idea is to use the methods originally developed for the computer-aided anal-
ysis for hardware and software systems, in particular the timed automata [1,2]. They
seem to be the right tool for this purpose due to the fact that the protocols used in the
Bitcoin contracts typically have a finite number of states and depend on the notion of
time. This time-dependence is actually two-fold, as (1) it takes some time for the Bit-
coin transactions to be confirmed (1 hour, say), and (2) the Bitcoin transactions can
come with a “time lock” which specifies the time when a transaction becomes valid.

Our Contribution. We propose a framework for modeling the Bitcoin contracts using
timed automata in the UPPAAL model checker [9,17] (this is described in Sec. 2). Our
method is general and can be used to model a wide class of contracts. As a proof-
of-concept, in Sec. 3 we use this framework to model two Bitcoin contracts from our
previous work [8,6]. This is done manually, but our method is quite generic and can
potentially be automatized. In particular, most of the code in our implementation does
not depend on the protocol being verified, but describes the properties of Bitcoin system.
To model a new contract it is enough to specify the transactions used in the contract,
the knowledge of the parties at the beginning of the protocol and the protocol followed

Modeling Bitcoin Contracts by Timed Automata 9

by the parties. We then automatically verify the security of our contracts in UPPAAL (in
Sec. 3.1). The UPPAAL code for the contracts modeled and verified by us is available at
the web page http://crypto.edu.pl/uppaal-btc.zip.

Future Work. We hope that our work can draw the attention of the researchers work-
ing on formal modeling to the problem of the Bitcoin contracts verification, and spark
off more research on this topic. What seems especially interesting is to try to fully au-
tomatize this process. One attractive option is to think of the following workflow: (1) a
designer of a Bitcoin contract describes it in UPPAAL (or, possibly, in some extension
of it), (2) he verifies the security of this idealized description using UPPAAL, and (3) if
the idealized description verifies correctly, then he uses the system to “compile” it into a
real Bitcoin implementation that can be deployed in the wild. Another option would be
to construct a special tool for designing the Bitcoin contracts, that would produce two
outputs: (a) a code in the UPPAAL language (for verification) and (b) a real-life Bitcoin
implementation.

Of course, in both cases one would need to formally show the soundness of this
process (in particular: that the “compiled” code maintains the properties of the idealized
description). Hence, this project would probably require both non-trivial theoretical and
engineering work.

Preliminaries. Timed automata were introduced by Alur and Dill [1,2]. There exist
other model checkers based on this theory, like Kronos [29] and Times [4]. It would be
interesting to try to implement our ideas also in them. Other formal models that involve
the notion of the real time include the timed Petri nets [10], the timed CSP [25], the
timed process algebras [28,23], and the timed propositional temporal logic [3]. One can
try to model the Bitcoin contracts also using these formalisms. For the lack of space,
a short introduction to UPPAAL was moved to Appendix (see the full version of the
paper1). The reader may also consult [9,17] for more information on this system.

We assume reader’s familiarity with the public-key cryptography, in particular with
the signature schemes (an introduction to this concept can be found e.g. in [19,12]). We
will frequently denote the key pairs using the capital letters (e.g. A), and refer to the
private key and the public key of A by: A.sk and A.pk , respectively. We will also use
the following convention: if A = (A.sk , A.pk) then sigA(m) denotes a signature on a
message m computed with A.sk and verA(m,σ) denotes the result (true or false) of
the verification of a signature σ on message m with respect to the public key A.pk . We
will use the “B” symbol to denote the Bitcoin currency unit.

1.1 A Short Description of Bitcoin

Since we want the exposition to be self-contained, we start with a short description of
Bitcoin, focusing only on the most relevant parts. For the lack of space we do not de-
scribe how the coins are created, how the transaction fees are charged, and how the Bit-
coin “ledger” is maintained. A more detailed description of Bitcoin is available on the
Bitcoin wiki site [11]. The reader may also consult the original Nakamoto’s paper [22].

1 The full version of this paper is available at http://arxiv.org/abs/1405.1861

http://crypto.edu.pl/uppaal-btc.zip
http://arxiv.org/abs/1405.1861

10 M. Andrychowicz et al.

Introduction. In general one of the main challenges when designing a digital currency
is the potential double spending: if coins are just strings of bits then the owner of a
coin can spend it multiple times. Clearly this risk could be avoided if the users have
access to a trusted ledger with the list of all the transactions. In this case a transaction
would be considered valid only if it is posted on the board. For example suppose the
transactions are of a form: “user X transfers to user Y the money that he got in some
previous transaction Tp”, signed by the userX. In this case each user can verify if money
from transaction Tp has not been already spent by X. The main difficulty in designing
the fully-distributed peer-to-peer currency systems is to devise a system where the users
jointly maintain the ledger in such a way that it cannot be manipulated by an adversary
and it is publicly-accessible.

In Bitcoin this problem is solved by a cryptographic tool called proofs-of-work [14].
We will not go into the details of how this is done, since it is not relevant to this work.
Let us only say that the system works securely as long as no adversary controls more
computing power than the combined computing power of all the other participants of the
protocol2. The Bitcoin participants that contribute their computing power to the system
are called the miners. Bitcoin contains a system of incentives to become a miner. For
the lack of space we do not describe it here.

Technically, the ledger is implemented as a chain of blocks, hence it is also called a
“block chain”. When a transaction is posted on the block chain, it can take some time
before it appears on it, and even some more time before the user can be sure that this
transaction will not be cancelled. However, it is safe to assume that there exists an upper
bound on this waiting time (1-2 hours, say). We will denote this time by MAX_LATENCY.

As already highlighted in the introduction, the format of the Bitcoin transactions
is in fact quite complex. Since it is of a special interest for us, we describe it now
in more detail. The Bitcoin currency system consists of addresses and transactions
between them. An address is simply a public key pk 3. Normally every such key has a
corresponding private key sk known only to one user, which is an owner of this address.
The private key is used for signing the transactions, and the public key is used for
verifying the signatures. Each user of the system needs to know at least one private key
of some address, but this is simple to achieve, since the pairs (sk , pk) can be easily
generated offline.

Simplified Version. We first describe a simplified version of the system and then show
how to extend it to obtain the description of the real Bitcoin. Let A = (A.sk , A.pk) be a
key pair. In our simplified view a transaction describing the fact that an amount v (called
the value of a transaction) is transferred from an address A.pk to an address B.pk has
the following form Tx = (y,B.pk , v, sigA(y,B.pk , v)), where y is an index of a previ-
ous transaction Ty . We say that B.pk is the recipient of Tx, and that the transaction Ty

2 It is currently estimated [24] that the combined computing power of the Bitcoin participants is
around 64 exaFLOPS, which exceeds by factor over 200 the total computing power of world’s
top 500 supercomputers, hence the cost of purchasing the equipment that would be needed to
break this system is huge.

3 Technically an address is a cryptographic hash of pk . In our informal description we decided
to assume that it is simply pk . This is done only to keep the exposition as simple as possible,
as it improves the readability of the transaction scripts later in the paper.

Modeling Bitcoin Contracts by Timed Automata 11

is an input of the transaction Tx, or that it is redeemed by this transaction (or redeemed
by the address B.pk). More precisely, the meaning of Tx is that the amount v of money
transferred to A.pk in transaction Ty is transferred further to B.pk . The transaction is
valid only if (1) A.pk was a recipient of the transaction Ty, (2) the value of Ty was at
least v (the difference between the value of Ty and v is called the transaction fee), (3)
the transaction Ty has not been redeemed earlier, and (4) the signature of A is correct.
Clearly all of these conditions can be verified publicly.

The first important generalization of this simplified system is that a transaction can
have several “inputs” meaning that it can accumulate money from several past trans-
actions Ty1 , . . . , Ty�

. Let A1, . . . , A� be the respective key pairs of the recipients of
those transactions. Then a multiple-input transaction has the following form: Tx =
(y1, . . . , y�, B.pk , v, sigA1

(y1, B.pk , v), . . . , sigA�
(y�, B.pk , v)), and the result of it is

that B.pk gets the amount v, provided it is at most equal to the sum of the values
of transactions Ty1, . . . , Ty�

. This happens only if none of these transactions has been
redeemed before, and all the signatures are valid.

Moreover, each transaction can have a time lock t that tells at what time in the future
the transaction becomes valid. The lock-time t can refer either to a measure called the
“block index” or to the real physical time. In this paper we only consider the latter type
of time-locks. In this case we have Tx = (y1, . . . , y�, B.pk , v, t, sigA1

(y1, B.pk , v, t),
. . . , sigA�

(y�, B.pk , v, t)). Such a transaction becomes valid only if time t is reached
and if none of the transactions Ty1 , . . . , Ty�

has been redeemed by that time (otherwise
it is discarded). Each transaction can also have several outputs, which is a way to divide
money between several users and to divide transactions with large value into smaller
portions. We ignore this fact in our description since we will not use it in our protocols.

More Detailed Version. The real Bitcoin system is significantly more sophisticated
than what is described above. First of all, there are some syntactic differences, the most
important being that each transaction Tx is identified not by its index, but by its hash
H(Tx). Hence, from now on we will assume that x = H(Tx).

The main difference is, however, that in the real Bitcoin the users have much more
flexibility in defining the condition on how the transaction Tx can be redeemed.
Consider for a moment the simplest transactions where there is just one input and no
time-locks. Recall that in the simplified system described above, in order to redeem a
transaction, its recipient A.pk had to produce another transaction Tx signed with his
private key A.sk . In the real Bitcoin this is generalized as follows: each transaction Ty

comes with a description of a function (output-script) πy whose output is Boolean. The
transaction Tx redeeming the transaction Ty is valid if πy evaluates to true on input
Tx. Of course, one example of πy is a function that treats Tx as a pair (a message mx,
a signature σx), and checks if σx is a valid signature on mx with respect to the public
key A.pk . However, much more general functions πy are possible. Going further into
details, a transaction looks as follows: Tx = (y, πx, v, σx), where [Tx] = (y, πx, v) is
called the body4 of Tx and σx is a “witness” that is used to make the script πy evaluate to

4 In the original Bitcoin documentation this is called “simplified Tx”. Following our earlier
work [8,6,7] we chosen to rename it to “body” since we find the original terminology slightly
misleading.

12 M. Andrychowicz et al.

true on Tx (in the simplest case σx is a signature on [Tx]). The scripts are written in the
Bitcoin scripting language [27], which is stack-based and similar to the Forth program-
ming language. It is on purpose not Turing-complete (there are no loops in it), since
the scripts need to evaluate in (short) finite time. It provides basic arithmetical opera-
tions on numbers, operations on stack, if-then-else statements and some cryptographic
functions like calculating hash function or verifying a signature.

Tx(in: Ty1 , Ty2)

in-script: σ1 in-script: σ2

out-script(arg): πx(arg)
val: v B
tlock: t

Ty1 Ty2

v1 B v2 B

v B

Fig. 1. A graphical representation of a transaction Tx =
(y1, y2, πx, v, t, σ1, σ2)

The generalization to the
multiple-input transactions with
time-locks is straightforward: a
transaction has a form: Tx =
(y1, . . . , y�, πx, v, t, σ1, . . . , σ�),
where the body [Tx] is equal
to (y1, . . . , y�, πx, v, t), and it is
valid if (1) time t is reached,
(2) every πi([Tx], σi) evaluates
to true, where each πi is the out-
put script of the transaction Tyi ,
and (3) none of these transac-
tions has been redeemed before. We will present the transactions as boxes. The re-
deeming of transactions will be indicated with arrows (the arrows will be labelled with
the transaction values). An example of a graphical representation of a transaction is
depicted in Fig. 1.

The transactions where the input script is a signature, and the output script is a verifi-
cation algorithm are the most common type of transactions. We will call them standard
transactions. Currently some miners accept only such transactions, due to the fact that
writing more advanced scripts is hard and error-prone, and anyway the vast majority
of users does not use such advanced features of Bitcoin. Fortunately, there exist other
miners that do accept the non-standard (also called strange) transactions, one example
being a big mining pool5 called Eligius (that mines a new block on average once per
hour). We also believe that in the future accepting the general transaction will become
standard, maybe at a cost of a slightly increased fee. Actually, popularizing the Bitcoin
contracts, by making them safer to use, is one of the goals of this work.

2 Modeling the Bitcoin

To reason formally about the security of the contracts we need to describe the attack
model that corresponds to the Bitcoin system. The model used in [8,6] was inspired
by the approach used in the complexity-based cryptography. This way of modeling
protocols, although very powerful, is not well-suited for the automatic verification of
cryptographic protocols. In this section we present the approach used in this paper,
based on timed-automata, using the syntax of the UPPAAL model checker.

In our model each party executing the protocol is modeled as a timed automaton with
a structure assigned to it that describes the party’s knowledge. States in the automaton

5 Mining pools are coalitions of miners that perform their work jointly and share the profits.

Modeling Bitcoin Contracts by Timed Automata 13

describe which part of the protocol the party is performing. The transitions in the au-
tomaton contain conditions, which have to be satisfied for a transition to be taken and
actions, which are performed whenever a transition is taken.

The communication between the parties may be modeled in a number of various
ways. It is possible to use synchronization on channels offered by UPPAAL and shared
variables representing data being sent between the parties. In all protocols verified by
us, the only messages exchanged by the parties were signatures. We decided to model
the communication indirectly using shared variables — each party keeps the set of
known signatures, and whenever a sender wants to send a signature, he simply adds it
to the recipient’s set.

The central decision that needs to be made is how to model the knowledge of the hon-
est parties and the adversary. Our representation of knowledge is symbolic and based
on Dolev-Yao model [13], and hence we assume that the cryptographic primitives are
perfectly secure. In our case it means, for example, that it is not possible to forge a
signature without the knowledge of the corresponding private key, and this knowledge
can be modeled in a “binary” way: either an adversary knows the key, or not. The hash
functions will be modeled as random oracles, which in particular implies that they are
collision-resilient and hard to invert. We also assume that there exists a secure and au-
thenticated channel between the parties, which can be easily achieved using the public
key cryptography. Moreover, we assume that there is a fixed set of variables denot-
ing the private/public pairs of Bitcoin keys. A Bitcoin protocol can also involve secret
strings known only to some parties. We assume that there is a fixed set of variables
denoting such strings. For each private key and each secret string there is a subset of
parties, which know them, but all public keys and hashes of all secret strings are known
to all the parties (if this is not the case then they can be broadcast by parties knowing
them).

A block chain is modelled using a shared variable (denoted bc) keeping the status of
all transactions and a special automaton, which is responsible for maintaining the state
of bc (e.g. confirming transactions).

In the following sections we describe our model in more details.

2.1 The Keys, the Secret Strings, and the Signatures

typedef struct {
Key key;
TxId tx_num;
Nonce input_nonce;
} Signature;

Fig. 2. The signatures type

We assume that the number of the key pairs in the protocol
is known in advance and constant. Therefore, key pairs
will be simply referred by consecutive natural numbers
(type Key is defined as an integer from a given range).
Secret strings are modelled in the same way. As already
mentioned we assume that all public keys and hashes of
all secrets are known to all parties.

Moreover, we need to model the signatures over trans-
actions (one reason is that they are exchanged by the parties in some protocols). They
are modelled by structures containing a transaction being signed, the key used to com-
pute a signature and an input_nonce, which is related to the issue of transaction mal-
leability and described in Appendix Malleability of transactions in the full version of
this paper.

14 M. Andrychowicz et al.

2.2 The Transactions

We assume that all transactions that can be created by the honest parties during the
execution of the protocol comes from a set, which is known in advance and of size
T . Additionally, the adversary can create his own transactions. As explained later (see
Sec. 2.4 below) we can upper-bound the number of adversarial transactions by T . Hence
the total upper bound on the number of transactions is 2T .

typedef struct {
TxId num;
TxId input;
int value;
int timelock;
bool timelock_passed;

Status status;
Nonce nonce;
bool reveals_secret;

Secret secret_revealed;
OutputScript out_script;
} Tx;

Fig. 3. The transactions type

For simplicity we refer to the transactions
using fixed identifiers instead of their hashes.
We can do this because we know all the transac-
tions, which can be broadcast in advance (com-
pare Sec.2.4 for further discussion). A single-
input and single-output transaction is a variable
of a record type Tx defined in Fig. 3. The num

field is the identifier of the transaction, and the
input field is the identifier of its input trans-
action. The value field denotes the value of
the transaction (in B). The timelock field in-
dicates the time lock of the transaction, and the
timelock_passed is a boolean field indicat-
ing whether the timelock has passed.

The status field is of a type Status that
contains following values: UNSENT (indicating
that transaction has not yet been sent to the block chain), SENT (the transaction has been
sent to the block chain and is waiting to be confirmed), CONFIRMED (the transaction
is confirmed on the block chain, but not spent), SPENT (the transaction is confirmed
and spent), and CANCELLED (the transaction was sent to the block chain, but while it
was waiting for being included in the block chain its input was redeemed by another
transaction).

The out_script denotes the output script. In case the transaction is standard it
simply contains a public key of the recipient of the transaction. Otherwise, it refers to a
hard-coded function which implements the output script of this transaction (see Sec. 2.5
for more details).

The inputs scripts are modelled only indirectly (the fields reveals_secret and
secret_revealed). More precisely, we only keep information about which secrets
are included in the input script.

The above structure can be easily extended to handle multiple inputs and outputs.

2.3 The Parties

The parties are modelled by timed automata describing protocols they follow. States in
the automata describe which part of the protocol the party is performing. The transitions
in the automata contain conditions, which have to be satisfied for a transition to be taken
and actions, which are performed whenever a transition is taken. An example of such
automaton appears in Fig. 7. and is described in more details in Appendix UPPAAL

syntax in the full version of the paper. The adversary is modelled by a special automaton
described in Sec. 2.4.

Modeling Bitcoin Contracts by Timed Automata 15

typedef struct {
bool know_key[KEYS_NUM];
bool know_secret[SECRETS_NUM];

int[0,KNOWN_
SIGNATURES_SIZE] known_signatures_size;

Signature known_signatures
[KNOWN_SIGNATURES_SIZE];

} Party;

Fig. 4. The parties type

Moreover, we need to model
the knowledge of the parties
(both the honest users and the
adversary) in order to be able
to decide whether they can per-
form a specific action in a par-
ticular situation (e.g. compute the
input script for a given transac-
tion). Therefore for each party,
we define a structure describing
its knowledge. More technically:
this knowledge is modelled by a
record type Party defined in Fig. 4.

The boolean tables know_key[KEYS_NUM] and know_secret[SECRETS_NUM]
describe the sets of keys and secrets (respectively) known to the party: know_key[i] =
true if and only if the party knows the i-th secret key, and know_secret[i] = true if
and only if the party knows the i-th secret string. The integer known_signatures_size
describes the number of the additional signatures known to the party (i.e. received from
other parties during the protocol), and the array known_signatures contains these
signatures.

2.4 The Adversary

The real-life Bitcoin adversary can create an arbitrary number of transactions with arbi-
trary output scripts, so it is clear that we need to somehow limit his possibilities, so that
the space of possible states is finite and of a reasonable size. We show that without loss
of generality we can consider only scenarios in which an adversary sends to the block
chain transactions only from a finite set depending only on the protocol.

The knowledge of an adversary is modeled in the similar way to honest parties, but
we do not specify the protocol that he follows. Instead, we use a generic automaton,
which (almost) does not depend on the protocol being verified and allows to send to the
block chain any transaction at any time assuming some conditions are met, e.g. that the
transaction is valid and that the adversary is able to create its input script.

We observe that the transactions made by the adversary can influence the execution
of the protocol only in two ways: either (1) the transaction is identical to the transaction
from the protocol being verified or (2) the transaction redeems one of the transactions
from the protocol. The reason for above is that honest parties only look for transactions
of the specific form (as in the protocol being executed), so the only thing an adversary
can do to influence this process is to create a transaction, which looks like one of these
transactions or redeem one of these. Notice that we do not have to consider transactions
with multiple inputs redeeming more than one of the protocol’s transactions, because
there is always an interleaving in which the adversary achieves the same result using
a number of transactions with single inputs. The output scripts in the transactions of
type (2) do not matter, so we may assume that an adversary always sends them to one
particular key known only to him.

16 M. Andrychowicz et al.

Therefore, without loss of generality we consider only the transactions, which ap-
pear in the protocol being verified or transactions redeeming one of these transactions.
Hence, the total number of transactions, which are modeled in our system is twice as
big as the number of transactions in the original protocol.

The adversary is then a party, that can send an arbitrary transaction from this set if
only he is able to do so (e.g. he is able to evaluate the input script and the transaction’s
input is confirmed, but not spent). If the only actions of the honest parties is to post
transactions on the block chain, then one can assume that this is also the only thing that
the adversary does. In this case his automaton, denoted Adversary is very simple: it
contains one state and one loop, that simply tries to send an arbitrary transaction from
the mentioned set. This is depicted in Fig. 5 (for a moment ignore the left loop).

<cond> me.know_key[C_KEY] and
<cond> parties[BOB].known_signatures_size == 0

<action> broadcast_signature(create_signature_tx(C_KEY, bc[FUSE]))
<select> i : TxId
<action> try_to_send(me, bc[i])

Fig. 5. The automaton for the Adversary

In some protocols the parties besides of posting the transactions on the block chain,
also exchange messages with each other. This can be exploited by the adversary, and
hence we need to take care of this in our model. This is done by adding more actions
in the Adversary automaton. In our framework, this is done manually. For example in
the protocol that we analyze in Sec. 3 Alice sends a signature on the Fuse transaction.
This is reflected by the left loop in the Adversary automaton in Fig. 5, which should
be read as follows: if the adversary is able to create a signature on the Fuse transaction
and Bob did not receive it yet, then he can send it to Bob.

Of course, our protocols need to be analyzed always “from the point of view of an
honest Alice” (assuming Bob is controlled by the adversary) and “from the point of
view of an honest Bob” (assuming Alice is controlled by the adversary). Therefore, for
each party we choose whether to use the automaton describing the protocol executed
by the parties or the already mentioned special automaton for an adversary.

2.5 The Block Chain and the Notion of Time

In Bitcoin whenever a party wants to post a transaction on the block chain she broad-
casts it over a peer-to-peer network. In our model this is captured as follows. We model
the block chain as a shared structure denoted bc containing the information about
the status of all the transactions and a timed automaton denoted BlockChainAgent

(see Fig. 6), which is responsible for maintaining the state of bc. One of the duties
of BlockChainAgent is ensuring that the transactions which were broadcast are con-
firmed within appropriate time frames.

In order to post a transaction t on the block chain, a party p first runs the try_to_
send(Party p, Tx t) function, which broadcasts the transaction if it is legal. In par-
ticular, the can_send function checks if (a) the transaction has not been already sent,
(b) all its inputs are confirmed and unredeemed and (c) a given party p can create the

Modeling Bitcoin Contracts by Timed Automata 17

corresponding input script. The only non-trivial part is (c) in case of non-standard trans-
actions, as this check is protocol-dependent. Therefore, the exact condition on when the
party p can create the appropriate input script, has to be extracted manually from the
description of the protocol. If all these tests succeed, then the function communicates
the fact of broadcasting the transaction using the shared structure bc.

<state> forall(i : TxId) (is_waiting(bc[i]) imply bc_clock[i] < MAX_LATENCY)
<state> and
<state> forall(i : TxId) ((not bc[i].timelock_passed) imply time <= bc[i].timelock)

<select> i : TxId
<cond> time == bc[i].timelock and (not bc[i].timelock_passed)

<action> bc[i].timelock_passed = true

<action> init_bc()

<select> i : TxId, n : Nonce
<cond> is_waiting(bc[i])

<action> try_to_confirm(bc[i], n)

Fig. 6. The BlockChainAgent automaton

Once a transaction t has been broadcast, the BlockChainAgent automaton attempts
to include it in the block chain (lower loop in Fig. 6). The BlockChainAgent automa-
ton also enforces that every transaction gets included into the block chain in less than
MAX_LATENCY time, which is a constant that is defined in the system. This is done by
the invariant on the right state in Fig. 6 that guarantees that every transaction is waiting
for confirmation less than MAX_LATENCY.

Eavesdropping on the Network. The other issue with the block chain is that the peers
in the network can see transactions before they are confirmed. Therefore if a transaction
t contains (e.g. in its input script) a secret string x then an adversary can learn the
value of x before t is confirmed and for example use it to create a different transaction
redeeming the input of t (a similar scenario is possible for a two-party lottery protocol
from [8], which is only secure in a “private channel model”). To take such possibilities
into account, broadcasting a transaction results in disclosure of the secret string x, what
in our model corresponds to setting appropriate knowledge flags for all parties.

Malleability of Transactions. BlockChainAgent automaton is also responsible for
choosing the nonces, which imitate the attacks involving the malleability of transac-
tions. This is described in details in Appendix Malleability of transactions in the full
version of the paper.

18 M. Andrychowicz et al.

3 Modeling the Bitcoin-Based Timed Commitment Scheme
from [8]

In this section we describe the “contract-dependent” part of our model. Our method of
modeling and verifying Bitcoin contracts as timed automata is generic and can be ap-
plied to a large class of Bitcoin contracts (and even possibly automatized as described
in the paragraph “Future work” on page 9). However, it is easier to describe it using a
concrete example. As a proof-of-concept we constructed the automata corresponding to
a very simple contract called the “Bitcoin-based timed commitment scheme” from [8].
For the lack of space we only sketch informally what the protocol is supposed to do.
In the protocol one of the parties (called Alice) commits herself to a secret string s. A
key difference between this protocol and classic commitment schemes is that Alice is
forced to open the commitment (i.e. reveal the string s) until some agreed moment of
time (denoted PROT_TIMELOCK) or pay 1B to Bob. The full description can be found in
Appendix Bitcoin-based timed commitment scheme in the full version of the paper. Al-
though the verification of correctness is quite straightforward in this case, we would like
to stress that our method is applicable to more complicated contracts, like the NewSCS
protocol from [8] (see Section 3.2), for which the correctness is much less obvious.

3.1 The Results of the Verification

Before running the verification procedure in UPPAAL it is necessary to choose, which
parties are honest and which are malicious.

In UPPAAL it is done by selecting an automaton following the protocol or the ma-
licious automaton for an adversary described in Sec. 2.4 for each of the parties. We
started with verification of the security from the point of view of honest Bob. To this
end we used an honest automaton for Bob (see Fig. 7) and an adversary automaton
described before for Alice (see Fig. 5).

<state> accepted

<state> failure

<state> time <= MAX_LATENCY<state> time <= MAX_LATENCY

<cond> can_send(me, bc[FUSE])

<sync> urg_chan?
<action> try_to_send(me, bc[FUSE])

<cond> can_create_input_script(me, bc[FUSE])
<sync> urg_chan?

<cond> time == MAX_LATENCY

<cond> bc[COMMIT].status == CONFIRMED
<sync> urg_chan?

<cond> time == MAX_LATENCY

Fig. 7. The automaton for an honest Bob in timed-commitment scheme

Modeling Bitcoin Contracts by Timed Automata 19

The property that we checked is the following:

A[] (time >= PROT_TIMELOCK+MAX_LATENCY) imply
(hold_bitcoins(parties[BOB]) == 1 or parties[BOB].know_secret[0]

or BobTA.failure),

which, informally means: “after time PROT_TIMELOCK+ MAX_LATENCY one of the fol-
lowing cases takes place: either (a) Bob earned 1B, or (b) Bob knows the committed
secret, or (c) Bob rejected the commitment in the commitment phase”. This is exactly
the security property claimed in [8], and hence the verification confirmed our belief that
the protocol is secure. We verified the security from the point of view of Alice in the
similar way.

<action> try_to_send(me, bc[OPEN])

<cond> timer_passed[0]
<sync> urg_chan?

<cond> timer_passed[0]
<sync> urg_chan?

<cond> timer_passed[0]
<sync> urg_chan?

<sync> urg_chan?
<action> broadcast_signature(create_signature_tx(C_KEY, bc[FUSE]))

<cond> bc[COMMIT].status == CONFIRMED
<sync> urg_chan?<action> try_to_send(me, bc[COMMIT])

Fig. 8. The automaton for an honest Alice in timed-commitment scheme

The property we verified means that Alice does not lose any bitcoins in the execution
of the protocol (even if Bob is malicious).

As a test we also run the verification procedure on the following two statements:

A[] (time >= PROT_TIMELOCK) imply (parties[BOB].know_secret[0])
A[] (time >= PROT_TIMELOCK) imply (hold_bitcoins(parties[ALICE]) == 1).

The first one states that after time PROT_TIMELOCKBob knows the secret (which can be
not true, if Alice refused to send it). The second one states that after time PROT_TIME-
LOCK Alice holds 1 B (which occurs only if Alice is honest, but not in general). The
UPPAAL model checker confirmed that these properties are violated if one of the par-
ties is malicious, but hold if both parties follow the protocol (i.e. when honest automata
are used for both parties). Moreover, UPPAAL provides diagnostic traces, which are
interleavings of events leading to the violation of the property being tested. They al-
low to immediately figure out, why the given property is violated and turned out to be
extremely helpful in debugging the automata.

3.2 The NewSCS Protocol from [8]

We also modeled and verified the Simultaneous Commitment Scheme (NewSCS) pro-
tocol from [8], which is relatively complicated as it contains 18 transactions. To under-
stand it fully the reader should probably look in the [8], but as reference we included
the description of these contracts in Appendix Simultaneous commitment scheme in the

20 M. Andrychowicz et al.

full version of the paper. Informally speaking, the NewSCS scheme is a protocol that
allows two parties, Alice and Bob, to simultaneously commit to their secrets (sA and
sB , respectively) in such a way that each commitment is valid only if the other commit-
ment was done correctly. Using UPPAAL we automatically verified the following three
conditions, which are exactly the security statements claimed in [6]:

– After the execution of the protocol by two honest parties, they both know both
secrets and hold the same amount of coins as at the beginning of the protocol,
which in UPPAAL syntax was formalized as:

A[] (time >= PROT_TIMELOCK+MAX_LATENCY) imply
(parties[ALICE].know_secret[SB_SEC] and parties[BOB].know_secret[SA_SEC]
and hold_bitcoins(parties[ALICE]) == 2
and hold_bitcoins(parties[BOB]) == 2)

(here SA_SEC and SB_SEC denote the secrets of Alice and Bob, respectively, and 2

is the value of the deposit).
– An honest Bob cannot lose any coins as a result of the protocol, no matter how the

dishonest Alice behaves:

2) A[] (time >= PROT_TIMELOCK) imply hold_bitcoins(parties[BOB]) >= 2

– If an honest Bob did not learn Alice’s secret then he gained Alice’s deposit as a
result of the execution.

3) A[] ((time >= PROT_TIMELOCK+2*MAX_LATENCY) imply
((parties[ALICE].know_secret[SB_SEC]

and !parties[BOB].know_secret[SA_SEC])
imply hold_bitcoins(parties[BOB]) >= 3))

The analogous guarantees hold for Alice, when Bob is malicious. The verification
of each of the mentioned properties took less than a minute on a dual-core 2.4 GHz
notebook. We confirmed that the protocol NewSCS is correct, but there are some im-
plementation details, which are easy to miss and our first implementation (as an automa-
ton) turned out to contain a bug, which was immediately found due to the verification
process and diagnostic traces provided by UPPAAL. Moreover UPPAAL turned out to
be very helpful in determining the exact time threshold for the time locks, for example
we confirmed that the time at which the parties should abort the protocol claimed in [7]
(t− 3MAX_LATENCY) is strict.

These experiments confirmed that the computer aided verification and in particu-
lar UPPAAL provides a very good tool for verifying Bitcoin contracts, especially since
it is rather difficult to assess the correctness of Bitcoin contracts by hand, due to the
distributed nature of the block chain and a huge number of possible interleavings.
Therefore, we hope that our paper would encourage designers of complex Bitcoin con-
tracts to make use of computer aided verification for checking the correctness of their
constructions.

References

1. Alur, R., Dill, D.L.: Automata for modeling real-time systems. In: Paterson, M. (ed.) ICALP
1990. LNCS, vol. 443, pp. 322–335. Springer, Heidelberg (1990)

2. Alur, R., Dill, D.L.: A theory of timed automata. Theoretical Computer Science (1994)
3. Alur, R., Henzinger, T.A.: A really temporal logic. Journal of the ACM (1994)

Modeling Bitcoin Contracts by Timed Automata 21

4. Amnell, T., Fersman, E., Mokrushin, L., Pettersson, P., Yi, W.: TIMES - A tool for modelling
and implementation of embedded systems. In: Katoen, J.-P., Stevens, P. (eds.) TACAS 2002.
LNCS, vol. 2280, p. 460. Springer, Heidelberg (2002)

5. Andreessen, M.: Why Bitcoin Matters. The New York Times (January 2013),
http://dealbook.nytimes.com/2014/01/21/why-bitcoin-matters/ (accessed on
January 26, 2014)

6. Andrychowicz, M., Dziembowski, S., Malinowski, D., Mazurek, Ł.: Fair two-party com-
putations via the bitcoin deposits. Cryptology ePrint Archive, Report 2013/837 (2013),
http://eprint.iacr.org/2013/837 , accepted to the 1st Workshop on Bitcoin Research

7. Andrychowicz, M., Dziembowski, S., Malinowski, D., Mazurek, Ł.: How to deal with mal-
leability of Bitcoin transactions. ArXiv e-prints (December 2013)

8. Andrychowicz, M., Dziembowski, S., Malinowski, D., Mazurek, Ł.: Se-
cure Multiparty Computations on Bitcoin. Cryptology ePrint Archive (2013),
http://eprint.iacr.org/2013/784 , accepted to the 35th IEEE Symposium on
Security and Privacy, Oakland (2014)

9. Behrmann, G., David, A., Larsen, K.G.: A tutorial on uppaal 4.0 (2006)
10. Berthomieu, B., Diaz, M.: Modeling and verification of time dependent systems using time

Petri nets. IEEE Trans. Softw. Eng. 17(3), 259–273 (1991)
11. Bitcoin. Wiki, http://en.bitcoin.it/wiki/
12. Delfs, H., Knebl, H.: Introduction to Cryptography: Principles and Applications. Information

Security and Cryptography. Springer (2007)
13. Dolev, D., Yao, A.C.: On the security of public key protocols. IEEE Transactions on Theory

(1983)
14. Dwork, C., Naor, M.: Pricing via processing or combatting junk mail. In: Brickell, E.F. (ed.)

CRYPTO 1992. LNCS, vol. 740, pp. 139–147. Springer, Heidelberg (1993)
15. The Economist. The Economist explains: How does Bitcoin work? (April 2013),
http://www.economist.com/blogs/economist-explains/2013/04/
economist-explains-how-does-bitcoin-work (accessed on January 26, 2014)

16. Ateniese, G., et al.: Certified bitcoins. Cryptology ePrint Archive, Report 2014/076
17. Bengtsson, J., Larsen, K., Larsson, F., Pettersson, P., Yi, W.: UPPAAL - a tool suite for

automatic verification of real-time systems. In: Alur, R., Sontag, E.D., Henzinger, T.A. (eds.)
HS 1995. LNCS, vol. 1066, pp. 232–243. Springer, Heidelberg (1996)

18. Barber, S., Boyen, X., Shi, E., Uzun, E.: Bitter to better — how to make bitcoin a better
currency. In: Keromytis, A.D. (ed.) FC 2012. LNCS, vol. 7397, pp. 399–414. Springer, Hei-
delberg (2012)

19. Katz, J., Lindell, Y.: Introduction to Modern Cryptography. Chapman & Hall/Crc Cryptog-
raphy and Network Security Series. Chapman & Hall/CRC (2007)

20. Lee, T.B.: Here’s how Bitcoin charmed Washington,
http://www.washingtonpost.com/blogs/the-switch/wp/2013/11/21/
heres-how-bitcoin-charmed-washington (accessed on January 26, 2014)

21. Morris, D.Z.: Bitcoin is not just digital currency. It’s Napster for finance. CNN Money
(January 2014), http://finance.fortune.cnn.com/2014/01/21/bitcoin-platform
(accessed on January 26, 2014)

22. Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system (2008)
23. Nicollin, X., Sifakis, J.: The algebra of timed processes, atp: Theory and application. Inf.

Comput. 114(1), 131–178 (1994)
24. Cohen, R.: Global Bitcoin Computing Power Now 256 Times Faster Than Top 500 Su-

percomputers, Combined! Forbes, http://www.forbes.com/sites/reuvencohen/
2013/11/28/global-bitcoin-computing-power-now-256-times-faster
-than-top-500-supercomputers-combined/

http://dealbook.nytimes.com/2014/01/21/why-bitcoin-matters/
http://eprint.iacr.org/2013/837
http://eprint.iacr.org/2013/784
http://en.bitcoin.it/wiki/
http://www.economist.com/blogs/economist-explains/2013/04/economist-explains-how-does-bitcoin-work
http://www.economist.com/blogs/economist-explains/2013/04/economist-explains-how-does-bitcoin-work
http://www.washingtonpost.com/blogs/the-switch/wp/2013/11/21/heres-how-bitcoin-charmed-washington
http://www.washingtonpost.com/blogs/the-switch/wp/2013/11/21/heres-how-bitcoin-charmed-washington
http://finance.fortune.cnn.com/2014/01/21/bitcoin-platform
http://www.forbes.com/sites/reuvencohen/2013/11/28/global-bitcoin-computing-power-now-256-times-faster-than-top-500-supercomputers-combined/
http://www.forbes.com/sites/reuvencohen/2013/11/28/global-bitcoin-computing-power-now-256-times-faster-than-top-500-supercomputers-combined/
http://www.forbes.com/sites/reuvencohen/2013/11/28/global-bitcoin-computing-power-now-256-times-faster-than-top-500-supercomputers-combined/

22 M. Andrychowicz et al.

25. Reed, G.M., Roscoe, A.W.: A timed model for communicating sequential processes. Theor.
Comput. Sci. 58(1-3), 249–261 (1988)

26. Bitcoin wiki. Contracts, http://en.bitcoin.it/wiki/Contracts (accessed on January
26, 2014)

27. Bitcoin wiki. Script, https://en.bitcoin.it/wiki/Script (accessed on January 26,
2014)

28. Yi, W.: CCS + time = an interleaving model for real time systems. In: Leach Albert, J.,
Monien, B., Rodríguez-Artalejo, M. (eds.) ICALP 1991. LNCS, vol. 510, pp. 217–228.
Springer, Heidelberg (1991)

29. Yovine, S.: Kronos: a verification tool for real-time systems. Journal on Software Tools for
Technology Transfer 1 (October 1997)

http://en.bitcoin.it/wiki/Contracts
https://en.bitcoin.it/wiki/Script

Data-Driven Statistical Learning
of Temporal Logic Properties�

Ezio Bartocci1, Luca Bortolussi2,3, and Guido Sanguinetti4,5

1 Faculty of Informatics, Vienna University of Technology, Austria
2 DMG, University of Trieste, Italy

3 CNR/ISTI, Pisa, Italy
4 School of Informatics, University of Edinburgh, UK

5 SynthSys, Centre for Synthetic and Systems Biology, University of Edinburgh, UK

Abstract. We present a novel approach to learn logical formulae characterising
the emergent behaviour of a dynamical system from system observations. At a
high level, the approach starts by devising a data-driven statistical abstraction of
the system. We then propose general optimisation strategies for selecting formu-
lae with high satisfaction probability, either within a discrete set of formulae of
bounded complexity, or a parametric family of formulae. We illustrate and ap-
ply the methodology on two real world case studies: characterising the dynamics
of a biological circadian oscillator, and discriminating different types of cardiac
malfunction from electro-cardiogram data. Our results demonstrate that this ap-
proach provides a statistically principled and generally usable tool to logically
characterise dynamical systems in terms of temporal logic formulae.

1 Introduction

Dynamical systems are among the most widely used modelling frameworks, with im-
portant applications in all domains of science and engineering. Much of the attraction
of dynamical systems modelling lies in the availability of effective simulation tools,
enabling predictive modelling, and in the possibility of encoding complex behaviours
through the interaction of multiple, simple components. This leads naturally to the no-
tion of emergent properties, i.e. properties of the system trajectories which are a non-
trivial consequence of the local interaction rules of the system components. Emergent
properties of deterministic dynamical systems can often be easily verified through sim-
ulations. Quantitatively identifying the emergent properties of a stochastic system, in-
stead, is a much harder problem.

In the simplest scenario, one assumes that a mathematical model of the system of
interest is already available (e.g. as a continuous time Markov chain, or a stochastic dif-
ferential equation), generally thanks to the availability of domain expertise. This prob-
lem is often termed mining requirements: this is an active field of research, with many
recent contributions extending its scalability and applicability [18,27]. This approach

� L.B. acknowledges partial support from the EU-FET project QUANTICOL (nr. 600708) and
by FRA-UniTS. G.S. acknowledges support from the ERC under grant MLCS306999. E.B.
acknowledges the support of the Austrian FFG project HARMONIA (nr. 845631).

A. Legay and M. Bozga (Eds.): FORMATS 2014, LNCS 8711, pp. 23–37, 2014.
c© Springer International Publishing Switzerland 2014

24 E. Bartocci, L. Bortolussi, and G. Sanguinetti

is predicated on two premises: first, a trustworthy model of the system must be avail-
able, and, secondly, efficient model checking algorithms must be available for the class
of properties/models under consideration. These two conditions are often onerous in
many scientific applications, where models can be both complex and highly uncertain.
However, data generation is becoming increasingly cheap for many complex systems,
raising the possibility that emergent properties may be formally identified from data.

This problem, although clearly of considerable practical relevance, has received
comparatively little attention in the literature. Early work by [10] proposed a greedy
algorithm to identify formulae with high support directly from data, with the ultimate
aim of unravelling the logical structure underpinning observed dynamics in systems
biology. More recently, Asarin et al. in [4] proposed a geometric construction to iden-
tify the formula (within a specified parametric family) which fitted observations best.
In both cases, the methods work directly with the raw data, and are hence potentially
vulnerable to noise in the data. Furthermore, both sets of authors remark that the identi-
fiability of formulae is severely limited by the quantity of data available, which hampers
the applicability of the methods in many practical circumstances.

Here, we aim to address both identifiability and robustness problems by taking an
alternative, statistical approach, which brings back a model-based perspective to the
data-driven approach. We consider a variation of the property learning problem, where
we observe trajectories from two distinct processes and the aim is to identify properties
that best discriminate between two observed processes, i.e. are satisfied with high prob-
ability by trajectories from one process and with low probability by trajectories from the
second. At the core of our method is a statistical abstraction, a flexible, data driven sta-
tistical model which provides a compact representation of the dynamics of the system.
The choice of the statistical model is performed using statistical model selection tech-
niques, combining domain expertise with data driven methods; in this paper, we will
illustrate our approach on two contrasting applications: a systems biology application
where considerable prior knowledge permits the use of a rather restricted and complex
family of candidate models, and a biomedical application where such knowledge is un-
available, and hence we use a more black box model. Once a suitable model is selected,
the satisfaction probability of a formula can be evaluated quantitatively (using a model
checking tool), enabling rational selection of formulae with high support or that best
discriminate two models obtained from two datasets. This property learning problem
can be further broken down into two subproblems: learning the structure of the formula,
and learning parameters involved in the formula. These optimisation problems can be
tackled in many ways: here, we use a local search algorithm for structure learning, and
a recently proposed, provably convergent algorithm [25] for learning the parameters of
the formula. Figure 1 illustrates schematically the modular structure of our approach.

The rest of the paper is organised as it follows: in the next section we give an
overview of the proposed approach, reviewing the relevant statistical and logical con-
cepts. We then present results on the two case studies, briefly describing the procedure
through which the statistical model was devised in each case, and illustrating the capa-
bilities of the approach to infer non-trivial properties from the data. We conclude the
paper by discussing the implications of our contribution, both from the practical and the
methodological aspect.

Data-Driven Statistical Learning of Temporal Logic Properties 25

Fig. 1. Schematic workflow of our approach: starting from data, a suitable statistical model is
chosen (within a family of models) via Bayesian learning methods. That enables us to evaluate
the probability of formulae in a suitable logic, which can then be maximised as a function of the
formula structure or formula parameters

2 Problem Statement and Methodology

The property synthesis problem can have many flavours. One can be interested in find-
ing the properties that best characterise a single set of observations, or find properties
that discriminate between a good and a bad set of observed scenarios. The examples
discussed in this paper fall into this second class, but a similar machinery can be used
for finding properties with high support. The discrimination problem is the following:

Given two sets of signals/time traces (the good and the bad set), find a temporal logic
formula that best discriminates between them, i.e. such that it is satisfied with high
probability by the good set and with low probability by the bad one.

Essentially, this problem can be seen as a temporal logic version of a classification
problem, in which we look for temporal patterns separating two sets of observed signals.

At a high level, our approach is made up of two distinct modules: a model selection
step, where a suitable statistical model is learnt from the data, and a property synthesis
step, where we perform learning of formulae with high discriminating power. The ad-
vantage of the statistical generalisation performed in the first phase, which distinguishes
our approach from other related work (see also Section 4) is that it offers a statistically
sound treatment of noise and the ability of generating simulated data, avoiding the data
shortage problem in the second phase.

In this section we describe the methods we use for performing these steps in this
paper, as well as providing some background on the specific logic we will use to encode
emergent properties. We emphasize however that, while we believe the choices we made
in performing the two steps are state-of-the-art, the concept of our approach is entirely
modular, so that any other model selection/optimisation method could be employed
towards the same goal.

2.1 Statistical Modelling of Data: Learning and Model Selection

Our statistical methodologies will be embedded within the probabilistic machine learn-
ing framework [8]. Let x denote the state variables associated with our system, and let

26 E. Bartocci, L. Bortolussi, and G. Sanguinetti

x̂1, . . . , x̂N denote observations of the system at times 0 ≤ t1, . . . , tN ≤ T . Our statistical
models will then take the form of joint probability distributions

p(x̂1, . . . , x̂N ,x0:T ,µ0:T |Θ) = p(x̂1, . . . , x̂N |x0:T ,Θ) p(x0:T ,µ0:T |Θ)

where µ represent a set of auxiliary latent variables and the index 0 : T denotes the
whole trajectory of the respective stochastic process within the bounded time interval
[0,T]. In general, we will assume that the prior dynamics of the system (specified by
p(x0:T ,µ0:T |Θ)) are Markovian, and that the observation noise is independent and iden-
tically distributed at different time points. Additionally, the models are parametrised by
a family of parameters Θ which may enter both the noise model (probability of the ob-
servations given the true state of the system x) and the prior dynamics p(x0:T ,µ0:T |Θ).
The introduction of the latent variables can be justified in several ways: in some cases,
the latent variables represent physically relevant unobserved quantities (e.g., promoter
occupancy state as in Section 3.1); otherwise, they may be a convenient device to rep-
resent a more rich dynamics in a compact way (as in the heart modelling example in
Section 3.2). We stress that Hidden Markov Models, Continuous-Time Markov Chains,
(Stochastic) Differential Equations and Hybrid Systems all fall into the class of models
considered here.

The general principle for learning in probabilistic models is based on the concept of
evidence maximisation, whereby one seeks to determine the value of parameters Θ that
maximises the evidence or marginal likelihood

p(x̂1, . . . , x̂N |Θ) =
∫

dµ0:T dx0:T p(x̂1, . . . , x̂N ,x0:T ,µ0:T |Θ)

where the integral sign is used generically to denote marginalisation (it is replaced by
a sum in the case of discrete variables). In general, the marginalisation procedure is
computationally problematic, and much research in machine learning is devoted to find
efficient marginalisation algorithms for specific classes of models.

The evidence at the optimal value of the parameters provides a measure of the good-
ness of fit of a model to a data set. However, models with different numbers of param-
eters will not necessarily be comparable in terms of evidence: richer models with more
parameters tend to have higher evidence. One therefore needs to penalise the complex-
ity of the model. There exist several information criteria which combine the maximum
value of the likelihood with a penalty on the number of parameters. Here we use the
Akaike Information Criterion (AIC) [1], which penalises the likelihood by subtracting a
term containing the logarithm of the number of parameters. Explicitly, the AIC score is
defined as

AIC = 2k− 2logL

where k is the number of parameters of the model, and L is the optimised value of the
marginal likelihood. This simple score can be shown to approach asymptotically, in the
large sample limit, the information lost by using the model as a proxy for the (unknown)
data generating process. Therefore minimisation of the AIC score across a finite number
of models is often used as a criterion for model selection.

Data-Driven Statistical Learning of Temporal Logic Properties 27

2.2 Learning Properties

The second module of our approach consists of algorithms for optimising the probabil-
ity of a formula being true within a discrete set of parametric formulae. This difficult
hybrid optimisation problem is naturally broken down in a discrete and a continuous op-
timisation problem, which can be interleaved. Before describing the algorithms we use,
we briefly review the logic we consider, the Metric Interval Temporal Logic (MITL).

Metric Interval Temporal Logic. Temporal logic [22] provides a very elegant frame-
work to specify in a compact and formal way an emergent behaviour in terms of time-
dependent events. Among the myriads of temporal logic extensions available, Metric
Interval Temporal Logic [3] (MITL) is very suitable to characterise properties of (real-
valued) signals evolving in continuous time. The syntax of MITL is as follows.

Definition 1 (MITL syntax). The syntax of MITL is given by

ϕ :=�|q | ¬ϕ |ϕ1∧ϕ2 |X[a,b]ϕ |ϕ1 U[a,b] ϕ2,

where � is a true formula (⊥= ¬� is false), q is an atomic proposition which is either
true or false in each state x (we denote with L(x) the set of atomic propositions true
in x), conjunction and negation are the standard boolean connectives, [a,b] is a dense-
time interval with 0 ≤ a < b, X[a,b] is the next operator and U[a,b] is the until operator.

The (bounded) until operator ϕ1 U[a,b] ϕ2 requires ϕ1 to hold from now until, in a
time between a and b time units, ϕ2 becomes true, while the (bounded) next opera-
tor X[a,b]ϕ requires ϕ to hold in the next state, to be reached between a and b units of
time. The eventually operator F[a,b] and the always operator G[a,b] can be defined as
usual: F[a,b]ϕ := �U[a,b)ϕ, G[a,b]ϕ := ¬F[a,b]¬ϕ. More precisely, MITL can be given a
semantics based on boolean signals, which are functions of time to {�,⊥}. Boolean
signals corresponding to atomic propositions are obtained from a (real-valued) input
signal x(t) by point-wise lifting: q(t):=q ∈ L(x(t). The extension of MITL that deals
with real-valued signals is known as Signal Temporal Logic, see [19] for further details
on the logic and the monitoring algorithm.

MITL is a logic that is interpreted over traces, and a formula ϕ identifies the sub-
set of traces that satisfy it, {x |= ϕ}. A stochastic model M , however, is a probability
distribution on the space of traces, and as such we can measure how much M satisfies
ϕ by computing the probability p(ϕ|M) = ProbM {x |= ϕ}. This probability is notori-
ously difficult to calculate analytically even for simple models [11], hence, we resort to
Monte Carlo methods, applying statistical model checking (SMC) [15] to estimate the
probability of a MITL formula in a generative model.

Discrimination Function. In order to set up a proper learning problem, we need to
consider a score function to optimise, encoding the criterion to discriminate between
two models. Here we choose a simple score function, namely the log odds ratio between
the satisfaction probabilities. More precisely, let M1 and M2 be the two models learnt

28 E. Bartocci, L. Bortolussi, and G. Sanguinetti

from the two datasets and ϕ a candidate MITL formula. The log odds ratio score Rϕ is
defined as

Rϕ = log
p(ϕ1 | M1)

p(ϕ2 | M2)
, (2.1)

and it is maximised when the probability of the first model is close to one and the
probability in the second model is close to zero.

Structure Learning. Identifying the structure of a MITL formula which is satisfied
with high probability by the model is a difficult combinatorial optimisation problem.
Combinatorial optimisation algorithms exist but we are aware of few theoretical con-
vergence guarantees. In this paper we do not tackle the problem in its full generality, but
we set up a greedy search scheme which requires some basic knowledge of the domain
at hand.

More specifically, we assume to have a fixed set of basic template formulae T . First,
we search exhaustively in T by optimising the continuous parameters of each ϕ ∈ T ,
and thus computing its best score (i.e the log odds ratio). Then, we rank the formulae
in T and select the subset of higher score. If in this way we find a few good candidate
formulae, we proceed to the second phase, otherwise we enlarge the set T , and try
again. The choice of the thresholds to select good candidates is delicate and problem
dependent. In the second phase, we take the best formulae Tbest and combine them
using some predefined combination rules (for instance, boolean combinations), and run
again the continuous optimisation on the parameters, ranking again the formulae and
selecting those with highest score. As the set Tbest is expected to be small, we will
be searching exhaustively a reasonably small set of formulae. At this stage, we expect
this greedy optimisation to have found some good formula. If not, we can proceed to
combine together the best formulae of this second round, possibly with another set of
combinators, or reconsider the choice of the basic templates T .

Parameter Learning. We now turn to the issue of tuning the parameters of (a set of)
formulae to maximise their satisfaction probability. More specifically, we assume that
we have a MITL formula ϕθ which depends on some continuous parameters θ. We aim
to maximise its discriminative power Rϕ(θ) defined in equation (2.1). Naturally, this
quantity is an intractable function of the formula parameters; its value at a finite set of
parameters can be noisily estimated using an SMC procedure. The problem is therefore
to identify the maximum of an intractable function with as few (approximate) func-
tion evaluations as possible. This problem is closely related to the central problem of
reinforcement learning of determining the optimal policy of an agent with as little ex-
ploration of the space of actions as possible. We therefore adopt a provably convergent
stochastic optimisation algorithm, the GP-UCB algorithm [25], to solve the problem of
continuous optimisation of formula parameters. Intuitively, the algorithm interpolates
the noisy observations using a stochastic process (a procedure called emulation in statis-
tics) and uses the uncertainty in this fit to determine regions where the true maximum
can lie. This algorithm has already been used in a formal modelling scenario in [9].

Data-Driven Statistical Learning of Temporal Logic Properties 29

TOC1

CCA1 X

(a) Repressilator-like gene net-
work of the O. Tauri circadian
clock [21]

(b) O. Tauri circadian clock: average.

Fig. 2. The repressilator-like model of the O.Tauri circadian clock (left) is a cyclic negative-
feedback loop composed of three repressor genes: TOC1, CCA1, and an unknown gene X . The
comparison of the average evolution (right) of the circadian clock for the 12h light/12h dark
model (blue solid line) and the 24h light model (red dashed line) shows that light plays a crucial
role in stabilising the oscillatory period. Parameters of the simulation are as in [21].

3 Results

3.1 Logical Characterisation of a Biological Oscillator

Our first case study is the circadian clock in Ostreococcus Tauri, a simple unicellu-
lar alga often used as a minimal plant model organism [21]. The circadian clock is an
important regulator of the metabolism of the plant and is controlled by the mutually
repressive interaction of three genes, TOC1, CCA1 and one expressing a not yet char-
acterized protein (denoted as X here), see Fig. 2 left for a scheme of the genetic circuit.
Gene repression of the TOC1 gene is further modulated by light, which plays the role
of an external input and acts as a stabiliser of the oscillatory pattern.

In this example, a parametrised statistical model was already learned from data
in [21]. The stochastic hybrid models we consider couple Stochastic Differential Equa-
tions (SDEs) for protein dynamics with a two-state model of gene promoter, which can
be either free or bound to the repressor. In the latter case, the protein expression is
reduced. More precisely, the protein dynamics is given by the SDE

dXi = (Aiµi + bi−λiXi)dt +σdW,

where µi denotes the state of the promoter gene i (with µi = 1 denoting the repressed
state and µi = 0 the active state), bi is the basal production rate, Ai < 0 reduces it in
case of repression, and λi is the degradation rate. The dynamics of the promoter is a
two-state Markov chain with switch rates given by

fbind,i(X) = kpi exp(keiXj), funbind,i(X) = ku,

i.e. with constant unbinding rate and with binding rate depending on the repressor con-
centration. To model the influence of light on the protein TOC1, we modify the binding
and unbinding rates of its regulatory protein X as follows:

30 E. Bartocci, L. Bortolussi, and G. Sanguinetti

Table 1. Statistics for six runs of the optimization of parameter θ ∈ [0.05,0.35]. The algorithm
was initialised by sampling the function (2.1) 16 times from 100 simulation runs of each mode,
and terminated with less than 4 additional samples on average. The variability of the results is
due to the noisy nature of the function evaluation.

Av. θ Av. log odds ratio Av. sat. prob. 12L-12D Av. sat. prob. 24L
0.148 4.295 0.83 0.008

Range θ Range log odds ratio Range sat. prob. 12L-12D Range sat. prob. 24L
[0.138, 0.157] [3.689, 4.522] [0.77, 0.87] [0.004, 0.012]

(a) O. Tauri circadian clock: single trace. (b) Log odd ratio: emulation function

Fig. 3. Left: Single trace of TOC1 protein evolution for the O. Tauri model, with parameters as in
[21]. Right: Emulated log odds ratio as a function of the threshold θ of MITL Formula 3.2 (blue
solid line) and 95% error bounds (black dashed lines). The green points are the estimated values
of the function.

fbind,TOC1(X) = (1− γ)
(
kpi exp(kei Xj)

)
+ γ · kb

light (t), funbind,i(X) = (1− γ)ku + γ · ku
light (t),

where γ is set to 0.20 and the values of kb/u
light(t) depend on the light conditions.

As an example of our property learning procedure, we seek a temporal logic formula
which discriminates system trajectories between the following two conditions: the sys-
tem is entrained, i.e. is receiving a 12h light/12h dark input signal (12L-12D), or it is
being kept in constant light (24L). These conditions are encountered by O. tauri at high
latitudes, and it is a scientifically important question how clock regulation can with-
stand such extreme environmental changes. In this example, we will fix a template and
limit ourselves to learn parameters with the Bayesian continuous optimisation scheme
discussed in Section 2. The key difference between the 12L-12D model and the 24L
model is that oscillations in the 12L - 12D regime should maintain phase coherence
with the input. This is indeed true, as can be seen from Figure 2(b), where we show the
average of 500 trajectories. Detecting phase coherence on single trajectories is however
a much tougher proposition, as subtle phase shifts can be easily masked by irregularities
due to the intrinsic stochasticity of the processes, see Figure 3(a).

We therefore use the approach of [12], converting the signal from the time domain to
the frequency domain using the Short Time Fourier Transform (STFT) [2]. This tech-
nique is generally employed to analyse non-stationary signals, whose statistic charac-
teristics vary with time. STFT consists of reading the samples of the signals using fixed

Data-Driven Statistical Learning of Temporal Logic Properties 31

window of time where to apply the standard Fourier transform. The result is a spectro-
gram where is possible to observe for each region of time the characteristic frequencies
of the signal. Since we know the oscillation frequency ωo of the 12L-12D model, by
fixing a time window of To = 10/ωo, we expect to find a peak in the STFT at frequency
ωo in the 12L-12D model, but not in the 24L model. Using the STFT (with rectangular
window), we can require this peak to persist for a certain amount of time T , leading to
the formula

ϕFFT,θ = G[0,T](f (ω0, ·)≥ θ), (3.2)

where f (ω0, t) is the absolute value of the STFT at frequency ωo for the window of
length To starting at time t, and T is fixed to 1000. The goal therefore becomes to find
the best discriminating θ. In Table 1, we report the results of 6 runs of the optimiza-
tion algorithm, searching for the best θ ∈ [0.05,0.35], while the functional dependency
of log odds ratio on θ, as emulated by the Bayesian optimisation procedure, is shown
in Figure 3(b). We find an optimal value (the median from the 6 runs) of 0.1492, cor-
responding to a satisfaction probability in the 12L-12D model of approximatively 0.84
and a satisfaction probability in the 24L model of approximatively 0.01, confirming that
this formula has a good discriminatory power.

3.2 Logical Discrimination of Cardiac Arrhythmias

Basic cardiac physiology - Arrhythmias are electrophysiological cardiac malfunctions
which cause significant mortality and morbidity. The most common, non-invasive diag-
nostic tool to monitor the heart’s electrophysiological function is the electrocardiogram
(ECG). An ECG machine is able to record the electrical activity of the heart through a
set of electrodes (called ECG leads) placed by the physician on the chest wall and limbs
of the patient. As Figure 4 b) illustrates, in a healthy patient the ECG signal consists
of three main consecutive waves: the P wave corresponding to the depolarization and
the consequent contraction of the atria, the QRS complex representing the rapid depo-
larization and contraction of the ventricles and the T wave identifying the recovery or
depolarization of the ventricles.

ECG signals are interpreted by physicians through a hierarchy of annotations. The
fundamental unit in the ECG is the heartbeat (or, simply, beat) defined as the interval
between two consecutive R peaks. The beats are annotated using a symbol characteriz-
ing the type of beat observed (some of them shown in Figure 4 a-d). Beats are usually
machine annotated through pattern recognition algorithms such as support vector ma-
chines. In this work, we will use directly an annotated version of the ECG signals as a
sequence of beat symbols with associated beat durations.
A higher level annotation of ECG data is given by the rhythms, sequences of beats
exhibiting a coherent pattern. Figure 5 a) shows an example of an ECG pattern for
a normal sinus rhythm. Even in this case some abnormal heartbeats (such as a pre-
mature ventricular contraction in Figure 5 d)) can sporadically occur without medical
significance. We present here initial results on annotated ECG data from the MIT-BIH
Arrhythmia Database [20]. We restricted our attention to a subset of possible rhythms
which were more prevalent in the data: bigeminy, trigeminy, ventricular tachycardia and
the normal rhythm. These signals are predominantly composed of V and N symbols,
often with a similar frequency, hence discrimination is more challenging.

32 E. Bartocci, L. Bortolussi, and G. Sanguinetti

R

P
Q

S

T

R

Q
S

P T

Normal
Beat

(beat N)

R

Q S

P

T

Left bundle
branch block

(beat L)

b)

T

R

T

Premature
Ventricular
Contraction

(beat V)

d)

R

Q
S

P
T

Right bundle
branch block

(beat R)

c) a)

Fig. 4. a) ECG pattern for two normal beats; b-c) Left /Right bundle branch block is an abnormal
beat where one ventricle is delayed and contracts later than the other; d) Premature ventricular
contraction is characterized by a premature wider QRS complex, not preceded by a P wave and
followed by an usually large T wave with an opposite concavity than in the normal beat.

d) VENTRICULAR TRIGEMINY

a) NORMAL RHYTHM

b) VENTRICULAR TACHICARDIA

0.76 0.53 1.31 0.93

0.41 0.23 0.40 0.38 0.35 0.30 0.45 0.38

N
1.31 1.27 0.61 1.20

c) VENTRICULAR BIGEMINY

0.52 0.51 1.30 0.55

1.29 0.94 0.50 1.29 1.02 0.56 1.33 0.98

0.56
V N N V N N V

in sec.
N V V N V

N N V N N V N N
in sec.

V V V V V V V V

Fig. 5. Some ECG patterns: a) normal sinus rhythm; b) ventricular tachycardia, b) ventricular
bigeminy, c) ventricular trigeminy. On the top of each signal is reported the annotation for each
beat and its duration in seconds, while on the bottom is reproduced the electrical signal. The ECG
data was obtained from the MIT-BIH Arrhythmia Database [20]

Statistical modelling - Due to the discrete time nature of the signal, we selected Hidden
Markov Models (HMMs) as a class of statistical models that could provide a suitable
statistical abstraction of the data. HMMs [23] are a workhorse of statistics and signal
processing and have been previously employed in the context of formal modelling of
heart function in [6]. Briefly, an HMM is a tuple H = 〈S,A,O,B,π〉 containing a finite
set S of states, a transition probability matrix A, a set O of observation symbols, an
observation probability distribution B, and an initial state distribution π. In our case, we
have hybrid observations consisting of pairs os,ot where os is the emitted symbol (type
of beat) and ot the beat duration (in seconds). We therefore assume the observation
probability to factorise as a product of a discrete probability on the beat types and a
Gaussian on the observation times. HMM models were learnt using the Baum-Welch
algorithm [23] and selected using the AIC score defined in Section 2.

Data-Driven Statistical Learning of Temporal Logic Properties 33

Summary of experimental procedure - Due to space restrictions, we present results on
a single patient (patient 233); other patients yielded similar results. Code to recreate the
experimental results is available for academic use from the authors upon request. The
experimental procedure can be summarised as follows

– For each rhythm, we learn HMM models with 2 to 6 states, and select the one with
best AIC score. We learn the model simultaneously on all segments annotated as a
certain rhythm (e.g. bigeminy).

– For each pair of abnormal/ normal rhythm, we learn template formulae starting
from the basic set of formulae T2, corresponding to possible patterns of length 2
of symbols V and N: T2 = {FG≤T ϕNN ,FG≤T ϕNV ,FG≤T ϕVN ,FG≤T ϕVV}, where
ϕY Z = Y ∧ (X[0,bY](Z ∧ X[0,bZ](�))) and we optimise the continuous parameters
(T,bN ,bV) to obtain the maximum discriminative power 1.

– If after the optimisation phase no highly supported formula was found, i.e. a for-
mula with high log-odd ratio of abnormal versus normal signal and high satisfaction
probability, we rerun the procedure increasing the pattern length of one (hence, first
for T3, then T4, and so on).

– We then selected the most supported formulae of Tk to further combine them, as dis-
cussed in the previous section. We run the continuous optimisation also for these
formulae, and chose the ones having both high log-odd ratio and satisfaction prob-
ability for the abnormal rhythm.

We now present results on discrimination of the three abnormal rhythms in more detail.

Bigeminy - Learning formula templates for the discrimination of bigeminy against nor-
mal heart behaviour proceeded as follows: in the first optimisation run, the two formulae
with highest log-odd ratio where FG≤T ϕNV and FG≤T ϕVN , scoring more than 5, with
a satisfaction probability in bigeminy of about 0.8.

The other two formulae, instead, have a log-odd ratio zero or less. Hence, we selected
these two formulae for the second phase of the discrete search, obtaining FG≤T (ϕNV ∨
ϕVN) as the only candidate for the second round. This formula clearly codes for the
pattern VN repeated many times (for as long as T units of time). Running the contin-
uous optimisation, we find a log-odd ratio of 4.08, which is lower than in the previous
case, but it corresponds to a satisfaction probability of 0.9994 in the abnormal rhythm,
and a probability of 0.016 in the normal one, corresponding to a sensitivity of > 99%
and a specificity of approximately 98%. Hence, this formula turns to have a good dis-
criminative power, and its relatively low log-odd ratio depends on its high sensitivity
to small values of the denominator. The upper bound of time T is optimally set to 3.8,
close to the maximum of 4. Upper bounds on beat duration are also close to their max-
imum. Note that the alternation of V and N is precisely what characterises bigeminy:
our method learned the correct pattern used by physicians, and additionally quantitated
the time such a pattern persists for.

1 We search in the following space: maximal duration of symbols is constrained between 0 and
2.5 seconds, while the lower bound was set to zero. The total duration T varies between 0
and an upper bound depending on the signal, equal to 4 for bigeminy, 7 for trigeminy, 2 for
tachycardia. We generate signals of fifteen seconds. The choice of bounds for T is consistent
with the duration of raw signals in the training set.

34 E. Bartocci, L. Bortolussi, and G. Sanguinetti

Table 2. Average log-odd ratio and satisfaction probability of abnormal and normal signals for
the best discriminating formulae learned from patient 223, as tested on other three patients (per
type of abnormality). The fourth row reports the number of signals in the training set to learn each
model of the abnormal signals in patient 223. The formulae learnt were tested on patients: 119,
213, and 233 for bigeminy; 119, 201,208 for trigeminy; 213, 215, 233 for ventricular tachycardia.
The fifth row shows the number of signals considered in the testing set per type of abnormality.

Bigeminy Trigeminy V. Tachycardia
Av. log-odd ratio 3.32 2.99 7.68

Av. prob. abnormal 0.99 0.99 0.99
Av. prob. normal 0.06 0.08 0.0005

Learning Set (num. of signals) 7 3 7
Testing Set (num. of signals) 84 75 10

Trigeminy - To discriminate trigeminy vs normal rhythm, we proceeded analogously
as for bigeminy, starting with the same set T2 of formulae. In this case, however, no for-
mula of length 2 was found to have a high support in discriminating trigeminy (less
than 3.5), hence we considered basic templates corresponding to patterns of length
3. The analysis in this case gave high log-odd ratio (4 or greater) to three formulae:
FG≤T ϕV NN , FG≤T ϕNV N , and FG≤T ϕNNV , with for a small duration T for all three
cases. We then took all possible combination of at least two of those formula using
disjunction, and found the most discriminating formula (log-odd ratio 7.8, satisfaction
probability for trigeminy 0.9968, and for normal signal of 0.004) to be FG≤T (ϕV NN ∨
ϕNV N ∨ ϕNNV), corresponding to the pattern VNN repeating in time for approxima-
tively T = 4.25 seconds. Again in this case, the method found the hallmark pattern of
trigeminy and additionally quantified its persistent behaviour. We also tested that this
formula works well in discriminating trigeminy versus bigeminy (log-odd ratio of 8.5).

Ventricular tachycardia - This case turned out to be the simplest one. A good discrim-
inating formula was found already in the set T2, corresponding to the pattern VV . In
particular, the continuous optimisation returned a log-odd ratio of 2.9, corresponding
to a satisfaction probability in the abnormal rhythm of 0.9998 and of 0.05 in the nor-
mal rhythm, with the global validity time T set approximatively to 1.25 seconds. This
corresponds to tachycardia being characterised by a stretch of about 3 to 4 V beats.

Discrimination on other patients - So far, we considered discriminative power as ap-
plied to the same patient on which the models were learnt. We now consider the much
harder task of assessing whether estimated formulae remain discriminative when also
applied to other patients’ ECG data. We considered three other patients for each arrhyth-
mia, and obtained an high discriminative power, as reported in Table 2. We also tested
the formulae on raw signals taken from the database2, obtaining the following results, in
terms of satisfaction probability: 0.954 for bigeminy versus 0.038 for normal rhythms
(on the same patients); and 0.918 for trigeminy versus 0.287 for normal rhythms. The
high satisfaction probability on normal rhythms for this last case is almost entirely

2 22 signals for bigeminy of length at least 4.5, 49 for trigeminy of length at least 5, and about
80 for normal rhythms. We did not treat tachycardia because there were too few signals.

Data-Driven Statistical Learning of Temporal Logic Properties 35

explained by the presence, in the extended data set, of several patients with slow heart
beats. The relatively low duration of the pattern learnt on the training patient, 4.25s, can
be matched in the slow beat patients by patterns consisting of a single V preceded and
followed by two Ns, which are very common in normal rhythm. Increasing the time
bound to 7s reduced the satisfaction probability in normal rhythms to 0.014, while the
satisfaction probability for trigeminy remained stable to 0.906.

4 Related Work

Mining temporal logic specifications from data is an emerging field of computer aided
verification [4,10,18,14,27,28]. Generally, this task is predicated on the availability of a
fully specified and deterministic model, enabling a quantitative evaluation of the prob-
ability that a certain formula will hold. This enables the deployment of optimisation
based machine learning techniques, such as decision trees [14] or stochastic optimi-
sation methods [28,27]. Learning temporal logic specifications directly from observed
traces of the system is considerably more challenging. In general, solving the full struc-
ture and parameter learning problem is infeasible, due to the intractability resulting
from a hybrid combinatorial/continuous optimisation problem. Heuristic search ap-
proaches have been proposed in [10]; while these may prove effective in specific mod-
elling problems, they generally do not offer theoretical guarantees, and can be prone to
over-fitting/vulnerable to noise. Geometric approaches such as the one proposed in [4]
rest on solid mathematical foundations but can also be vulnerable to noise, and require
potentially very large amounts of data to permit identification. While preparing this
manuscript, we became aware of a work of imminent publication [17] which employs a
notion of robustness of satisfiability of a formula to guide an optimisation based mining
procedure. While this approach can be applied also in a model-free scenario, empirical
estimation of the robustness of a formula may require the observation of a large number
of traces of the system; for example, one of the case studies in [17] used 600 indepen-
dent realisations of the system, a number that far exceeds the experimental capabilities
in many applications such as systems biology.

Our strategy of constructing a statistical model of data ameliorates this issue, at the
price of an increased complexity of the mining problem, which we tackle by combining
statistical modelling ideas from machine learning with formal verification methods. In
this respect, our work is related to a number of other recent attempts to deploy machine
learning tools within a verification context [7,26,16]. Similar ideas to the ones used in
this paper have been deployed on the parameter synthesis problem in [9,5], where the
GP-UCB algorithm was used to identify the parameters of a model which maximised
the satisfaction/robustness of a formula. Statistical abstractions draw their roots in the
emulation field in statistics: within the context of dynamical systems, emulation has
been recently used in [13] to model compactly the interface between subsystems of
complex gene regulatory networks.

5 Conclusions

Modern science is increasingly becoming data intensive, with vast amounts of data be-
ing produced across disciplines as diverse as economics, physics and biology. Marrying

36 E. Bartocci, L. Bortolussi, and G. Sanguinetti

formal computational modelling with statistical, data-modelling techniques is there-
fore a pressing priority to advance the applicability of computational thinking to real
world problems. In this paper, we exploit concepts from formal modelling and machine
learning to develop methodologies which can identify temporal logic formulae which
discriminate different stochastic processes based on observations. While we aim to be
guided by the data, our approach is not entirely data driven: approaches which rely di-
rectly on induction from data, such as [10,4], often need very long time series, which are
not available in many applications such as systems biology. Rather, we use a statistical
abstraction, i.e. a family of stochastic models, to represent the data, and use machine
learning methods to select an optimal model based on the data. This procedure brings
back a model based perspective, with considerable advantages in terms of interpretabil-
ity of the underlying dynamics. Furthermore, it enables us to deploy advanced machine
learning methods to statistically optimise the temporal logic formulae we are seeking.

While we believe our machine learning perspective brings some distinctive novel
ideas to the problem, several major avenues remain open for further research. Our
approach focussed primarily on parametrising temporal logic formulae, rather than de-
termining also a template for the formula structure. This combinatorial optimisation
problem is intrinsically computationally hard, and may require directly imposing re-
strictions on the logic as in [17]. Scaling our approach to high dimensional spaces of
parameters could also be problematic, as Bayesian optimisation methods severely suffer
from the curse of dimensionality. In this respect, sparse approximation may be bene-
ficial [24] but are so far untested in a Bayesian optimisation context. Finally, our ex-
perimental section demonstrated the applicability of our approach to a potentially wide
class of problems. We hope this may lead to more focussed interdisciplinary studies in
emerging application fields such as synthetic biology.

References

1. Akaike, H.: A new look at the statistical model identification. IEEE Trans. Aut. Control 19(6),
716–723 (1974)

2. Allen, J.B.: Short term spectral analysis, synthesis, and modification by discrete fourier trans-
form. IEEE Transactions on Acoustics, Speech, and Signal Processing 3, 235–238

3. Alur, R., Feder, T., Henzinger, T.A.: The benefits of relaxing punctuality. J. ACM 43(1),
116–146 (1996)

4. Asarin, E., Donzé, A., Maler, O., Nickovic, D.: Parametric Identification of Temporal Prop-
erties. In: Khurshid, S., Sen, K. (eds.) RV 2011. LNCS, vol. 7186, pp. 147–160. Springer,
Heidelberg (2012)

5. Bartocci, E., Bortolussi, L., Nenzi, L., Sanguinetti, G.: On the robustness of temporal prop-
erties for stochastic models. In: Proc. of HSB 2013, pp. 3–19 (2013)

6. Bartocci, E., Corradini, F., Di Berardini, M.R., Smolka, S.A., Grosu, R.: Modeling and sim-
ulation of cardiac tissue using hybrid I/O automata. Theor. Comput. Sci. 410(33-34), 3149–
3165 (2009)

7. Bartocci, E., Grosu, R., Karmarkar, A., Smolka, S.A., Stoller, S.D., Zadok, E., Seyster, J.:
Adaptive runtime verification. In: Qadeer, S., Tasiran, S. (eds.) RV 2012. LNCS, vol. 7687,
pp. 168–182. Springer, Heidelberg (2013)

8. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer (2006)
9. Bortolussi, L., Sanguinetti, G.: Learning and Designing Stochastic Processes from Logical

Constraints. In: Joshi, K., Siegle, M., Stoelinga, M., D’Argenio, P.R. (eds.) QEST 2013.
LNCS, vol. 8054, pp. 89–105. Springer, Heidelberg (2013)

Data-Driven Statistical Learning of Temporal Logic Properties 37

10. Calzone, L., Chabrier-Rivier, N., Fages, F., Soliman, S.: Machine learning biochemical net-
works from temporal logic properties. In: Priami, C., Plotkin, G. (eds.) Trans. on Comp. Sys.
Bio. VI. LNCS (LNBI), vol. 4220, pp. 68–94. Springer, Heidelberg (2006)

11. Chen, T., Diciolla, M., Kwiatkowska, M., Mereacre, A.: Time-bounded verification of
CTMCs against real-time specifications. In: Fahrenberg, U., Tripakis, S. (eds.) FORMATS
2011. LNCS, vol. 6919, pp. 26–42. Springer, Heidelberg (2011)

12. Donzé, A., Maler, O., Bartocci, E., Nickovic, D., Grosu, R., Smolka, S.A.: On temporal logic
and signal processing. In: Chakraborty, S., Mukund, M. (eds.) ATVA 2012. LNCS, vol. 7561,
pp. 92–106. Springer, Heidelberg (2012)

13. Georgoulas, A., Clark, A., Ocone, A., Gilmore, S., Sanguinetti, G.: A subsystems approach
for parameter estimation of ode models of hybrid systems. In: Proc. of HSB 2012. EPTCS,
vol. 92 (2012)

14. Grosu, R., Smolka, S.A., Corradini, F., Wasilewska, A., Entcheva, E., Bartocci, E.: Learning
and detecting emergent behavior in networks of cardiac myocytes. Commun. ACM 52(3),
97–105 (2009)

15. Jha, S.K., Clarke, E.M., Langmead, C.J., Legay, A., Platzer, A., Zuliani, P.: A Bayesian
approach to model checking biological systems. In: Degano, P., Gorrieri, R. (eds.) CMSB
2009. LNCS, vol. 5688, pp. 218–234. Springer, Heidelberg (2009)

16. Kalajdzic, K., Bartocci, E., Smolka, S.A., Stoller, S.D., Grosu, R.: Runtime Verification with
Particle Filtering. In: Legay, A., Bensalem, S. (eds.) RV 2013. LNCS, vol. 8174, pp. 149–
166. Springer, Heidelberg (2013)

17. Kong, Z., Jones, A., Ayala, A.M., Gol, E.A., Belta, C.: Temporal Logic Inference for Classi-
fication and Prediction from Data. In: Proc. of HSCC 2014, pp. 273–282. ACM (2014)

18. Lee, C., Chen, F., Roşu, G.: Mining parametric specifications. In: Proc. of ICSE 2011, pp.
591–600. ACM (2011)

19. Maler, O., Nickovic, D.: Monitoring temporal properties of continuous signals. In: Lakhnech,
Y., Yovine, S. (eds.) FORMATS/FTRTFT 2004. LNCS, vol. 3253, pp. 152–166. Springer,
Heidelberg (2004)

20. Moody, G.B., Mark, R.G.: The impact of the MIT-BIH arrhythmia database. IEEE Eng. Med.
Biol. Mag. 20(3), 45–50 (2001)

21. Ocone, A., Millar, A.J., Sanguinetti, G.: Hybrid regulatory models: a statistically tractable
approach to model regulatory network dynamics. Bioinformatics 29(7), 910–916 (2013)

22. Pnueli, A.: The temporal logic of programs. In: IEEE Annual Symposium on Foundations of
Computer Science, pp. 46–57 (1977)

23. Rabiner, L.R.: A tutorial on hidden Markov models and selected applications in speech recog-
nition. Proceedings of the IEEE 77(2), 257–286 (1989)

24. Rasmussen, C.E., Williams, C.K.I.: Gaussian Processes for Machine Learning. MIT Press
(2006)

25. Srinivas, N., Krause, A., Kakade, S.M., Seeger, M.W.: Information-theoretic regret bounds
for gaussian process optimization in the bandit setting. IEEE Transactions on Information
Theory 58(5), 3250–3265 (2012)

26. Stoller, S.D., Bartocci, E., Seyster, J., Grosu, R., Havelund, K., Smolka, S.A., Zadok, E.:
Runtime Verification with State Estimation. In: Khurshid, S., Sen, K. (eds.) RV 2011. LNCS,
vol. 7186, pp. 193–207. Springer, Heidelberg (2012)

27. Xiaoqing, J., Donzé, A., Deshmukh, J.V., Seshia, S.A.: Mining Requirements from Closed-
loop Control Models. In: Proc. of HSCC 2013, pp. 43–52. ACM (2013)

28. Yang, H., Hoxha, B., Fainekos, G.: Querying Parametric Temporal Logic Properties on Em-
bedded Systems. In: Nielsen, B., Weise, C. (eds.) ICTSS 2012. LNCS, vol. 7641, pp. 136–
151. Springer, Heidelberg (2012)

Finding Best and Worst Case Execution Times

of Systems Using Difference-Bound Matrices

Omar Al-Bataineh, Mark Reynolds, and Tim French

The University of Western Australia, Perth, Australia

Abstract. The paper provides a solution to the fundamental problems
of computing the shortest and the longest time taken by a run of a
timed automaton from an initial state to a final state. It does so using
the difference-bound matrix data structure to represent zones, which is a
state-of-the-art heuristic to improve performance over the classical (and
somewhat brute-force) region graph abstraction. The solution provided
here is conceptually a marked improvement over some earlier work on the
problems [16,9], in which repeated guesses (guided by binary search) and
multiple model checking queries were effectively but inelegantly and less
efficiently used; here only one run of the zone construction is sufficient to
yield the answers. The paper then reports on a prototype implementation
of the algorithms using Difference Bound Matrices (DBMs), and presents
the results of its application on a realistic automatic manufacturing plant.

1 Introduction

Real-time systems are systems that designed to run applications and programs
with very precise timing and a high degree of reliability. These systems can be
said to be failed if they can not guarantee response within strict time constraints.
The success of a real-time system depends on whether all the scheduled tasks can
be guaranteed to complete their executions before their deadlines. Usually, best-
case execution time (BCET) and worst-case execution time (WCET) are used for
schedulability analysis of real-time systems. Recently, there has been a consider-
able interest in using formal methods and, in particular (timed automata) model
checking [8] for computing BCET and WCET since it gives precise answers to
these questions in an automatic way [16,4].

As a first contribution of this paper, we give an efficient zone-based algorithms
for computing BCET and WCET using Difference Bound Matrices (DBMs).
Similar to [7,18,15] the solution goes by adding an extra global clock that acts
as an observer and then computing the zone graph of the automaton, by means of
a standard forward analysis using DBMs. One of the outcomes of the analysis is
that the correctness of the computation of BCET and WCET depends mainly on
the way we normalise (abstract) the zones in the resulting zone graph. It is well-
known that normalisation is a necessary step in order to guarantee termination in
timed automata [17,5]. However, the standard approaches for analysing a timed
automaton that depend on computing the zone graph of the automaton while
normalising zones at each step of the successor computation [5], will give abstract

A. Legay and M. Bozga (Eds.): FORMATS 2014, LNCS 8711, pp. 38–52, 2014.
c© Springer International Publishing Switzerland 2014

Finding Best and Worst Case Execution Times of Systems 39

zones and hence result in abstract values of the execution times. Therefore, the
direct application of these approaches is inconvenient for the analysis of WCET.

To get precise and accurate values of execution times we choose to work with
search trees whose nodes are unapproximated or real zones. The algorithms
follow a new paradigm where zones are not abstracted, hence preserving the value
of extra clock. Instead, abstraction is used to detect when a zone has already
been explored, that is, when two non-abstracted zones have the same abstraction.
When a final state is reached, the constraints on the extra clock in the zone yield
expected BCET and WCET values. The proposed algorithms can successfully
handle acyclic TA and TA containing cycles given that the automaton under
analysis has no run of infinite length. Note that even on a TA without cycles,
a WCET of infinity is still possible if not every reachable location is guarded
by an invariant containing an upper bound on some clock. We then report on
a prototype implementation of the algorithms using the model checker opaal
[10] and present the results of its application by computing the BCET/WCET
of a realistic automatic manufacturing plant taken from [11] when analysing
it under different configurations. We show that the proposed algorithms can
outperform the conventional binary search approach used in [16,9] by several
orders of magnitude.

Related Work. It is claimed in [19] that model checking is inadequate for WCET
analysis. However, in [16] Metzner has shown that model checking can be used
efficiently for WCET analysis. He used model checking to improve WCET anal-
yses for hardware with caching. The work in [9] has used model checking to
measure WCET of real-world, modern processors with good performance. How-
ever, in these works, the user needs to verify repeatedly temporal formulas while
guessing values for the WCET and using model checking to determine whether
the right value has been found.

Closest to our work is [3] which uses a variant of timed automata called “priced
timed automata” and the DBM data structure to compute the minimum cost
of reaching a goal state in the model. A priced timed automata can associate
costs with locations, where the costs are multiplied by the amount of time spent
in a location. An automata may be designed so that the total cost corresponds
to the execution time, and thus this approach may be used to calculate the
best case execution time problem. The optimisation algorithm uses a similar
approach to Dijkstra’s algorithm to search the state space, and the state space
is optimised via partial normalisation. In our work we provide a robust approach
that maintains real zones, and can be applied to solve both the best and worst
case execution time problems.

2 Preliminaries

2.1 Timed Automata

Timed automata are an extension of the classical finite state automata with
clock variables to model timing aspects [1]. Let X be a set of clock variables,

40 O. Al-Bataineh, M. Reynolds, and T. French

the clock interpretation v for the set X is a mapping from X to R+ where R+

denotes the set of nonnegative real numbers.

Definition 1. A timed automaton A is a tuple (Σ,L, L0, LF , X, I, E), where

– Σ is a finite set of actions.

– L is a finite set of locations.

– L0 ⊆ L is a finite set of initial or starting locations.

– LF ⊆ L is a finite set of final locations.

– X is a finite set of clocks.

– I : L → C(X) is a mapping from locations to clock constraints, called the
location invariant.

– E ⊆ L×L×Σ×2X×Φ(X) is a finite set of transitions. An edge (l, l
′
, a, λ, σ)

represents a transition from location l to location l
′

after performing action
a. The set λ ⊆ X gives the clocks to be reset with this transition, and σ is a
clock constraint over X.

Note that we assume that the automaton can not perform actions after
reaching its corresponding final locations. The semantics of a timed automa-
ton (Σ,L, L0, LF , X, I, E) is defined by associating a transition systems with it.
With each transition a clock constraint called a guard is associated and with each
location a clock constraint called its invariant is associated. Since transitions are
instantaneous, time can elapse in a location. A state of a timed automaton is of
the form (li, vi) which consists of two different parts, the current location and
the current values of all clocks. The initial states are of the form (l0 ∈ L0, v0)
where the valuation v0(x) = 0 for all x ∈ X .

Definition 2. Transitions of an automaton may include clock resets and guards
which give conditions on the interval in which a transition can be executed and
whose syntax is:

φ ::= t ≺ c | φ1 ∧ φ2

where t ∈ X, c ∈ N, and ≺∈ {<,≤,=, >,≥}.
There are two types of transitions in timed automata:

1. delay transitions that model the elapse of time while staying at some location:

for a state (l, v) and a real-valued time increment δ ≥ 0, (l, v)
δ−→ (l, v+ δ) if

for all v′ with v ≤ v′ ≤ v + δ, the invariant I(l) holds.

2. action transitions that execute an edge of the automata: for a state (l, v) and

a transition (l, l
′
, a, λ, σ) such that v |= σ, (l, v)

a−→ (l
′
, v[λ := 0]).

So for an automaton to move from a location to another a delay transition

followed by an action transition must be performed. We write this as
di−→ ai−→.

A timed action is a pair (t, a) where a ∈ Σ is an action performed by an
automaton A after t ∈ R+ time units since A has been started.

Finding Best and Worst Case Execution Times of Systems 41

Definition 3. A run of a timed automaton A = (Σ,L, L0, LF , X, I, E) with an
initial state (l0, v0) over a timed trace ζ = (t1, a1), ..., (an, tn) is a sequence of
transitions of the form.

〈l0, v0〉 d1−→ a1−→ 〈l1, v1〉 d2−→ a2−→ 〈l2, v2〉, ..., dn−→ an−−→ 〈ln, vn〉

satisfying the condition ti = ti−1 + di for all i ≥ 1 and that l0 ∈ L0, ln ∈ LF ,
and li �∈ LF for all i < n.

Since the locations of an automaton are decorated with a delay-quantity and
that transitions between locations are instantaneous, the delay of a timed exe-
cution is simply the sum of the delays spent in the visited locations. Recall that
the amount of time that can be spent in a certain location is described by means
of invariants on a number of clock variables.

Definition 4. (Delay of a run.) Let r = 〈l0, v0〉
d1−→ a1−→ 〈l1, v1〉 ...

dn−→ an−−→
〈ln, vn〉 be a timed run in the set of runs R. The delay of r, delay(r), is the
sum

∑n
i=1 di. Hence, the problem of computing the BCET and WCET of A can

be formalized as follows.

BCET (A) = inf
∀r∈R

(delay(r))

WCET (A) = sup
∀r∈R

(delay(r))

2.2 The Zone Approach

In the original work of Alur and Dill [1], they proposed an abstraction tech-
nique by which an infinite timed transition system (i.e. timed automata) can
be converted into an equivalent finitely symbolic transition system called region
graph where reachability is decidable. However, it has been shown that the re-
gion automaton is highly inefficient to be used for implementing practical tools.
Instead, most real-time model checking tools like UPPAAL, Kronos and RED
apply abstractions based on so-called zones, which is much more practical and
efficient for model checking real-time systems. In a zone graph [12], zones are
used to denote symbolic states. A state is a pair (l, Z), where l is a location in
the TA model and Z is a clock zone that represents sets of clock valuations at
l. Formally a clock zone is a conjunction of inequalities that compare either a
clock value or the difference between two clock values to an integer. In order to
have a unified form for clock zones we introduce a reference clock x0 to the set
of clocks X in the analysed model that is always zero. The general form of a
clock zone can be described by the following formula.

(x0 = 0) ∧
∧

0≤i�=j≤n

((xi − xj) ≺ ci,j)

where xi, xj ∈ X , ci,j bounds the difference between them, and ≺∈ {≤, <}.
Considering a timed automaton A = (Σ,L, L0, LF , X, I, E), with a transition

42 O. Al-Bataineh, M. Reynolds, and T. French

e = (l, a, ψ, λ, l
′
) in E we can construct an abstract zone graph Z(A) such that

states of Z(A) are zones of A. The clock zone succ(Z, e) will denote the set of
clock valuations Z

′
for which the state (l

′
, Z

′
) can be reached from the state (l, Z)

by letting time elapse and by executing the transition e. The pair (l
′
, succ(Z, e))

will represent the set of successors of (l, Z) under the transition e. Since every
constraint used in the invariant of an automaton location or in the guard of a
transition is a clock zone, we can use zones for various state reachability analysis
algorithms for timed automata.

The most important property of zones is that they can be represented as
matrices. Several algorithms based on the notion of zones are implemented using
the difference bound matrices (DBMs), which is the most commonly used data
structure for the representation of zones.

2.3 The Difference Bound Matrices

ADBM [12] is a two-dimensional matrix that records the difference upper bounds
between clock pairs up to a certain constant. In order to have a unified form for
clock constraints in DBM we introduce a reference clock x0 with the constant
value 0 (X = X ∪{x0}). The matrix is indexed by the clocks in X together with
the special clock x0. The element in a DBM D is of the form (Di,j ,≺) where
Di,j bounds the difference between xi − xj , and ≺∈ {≤, <}. Each row in the
matrix represents the bound difference between the value of the clock xi and all
the other clocks in the zone, thus a zone can be represented by at most |X |2
atomic constraints. The first column in the matrix encodes the upper bounds
of the clocks since the constraints in that column are of the form xi − x0 ≺ c.
On the other hand, the first row in the matrix encodes the lower bounds of the
clocks where the constraints on that row are of the form x0 − xi ≺ c.

Since entries of DBM represent bound differences between the values of the
clocks in the model, it is possible sometimes to derive some constraints using the
other constraints. For example, the sum of the upper bounds on the difference
xi − xj and xj − xk is an upper bound on the difference xi − xk. That is,
Di,k ≺ Di,j +Dj,k. This observation can be used to tighten the DBM.

Deriving the tightest constraint on a pair of clocks in a DBM is equivalent to
finding the shortest path between their nodes in the graph interpretation of the
zone. Therefore, most model checking tools for timed automata use the Floyd-
Warshall algorithm [13] to compute the canonical form of DBMs. In fact, canon-
ical forms make easier some operations over DBMs like the test for inclusion
between zones. For example, when comparing whether two zones are equivalent
we need to verify whether the corresponding canonical DBMs of these zones are
identical. It is interesting to mention that for zone-based timed automata model
checking, termination is ensured by normalising all zones with respect to a max-
imum constant k. That is, if the clock is never compared to a constant greater
than k, then the value of the clock will have no impact on the computation of
the automaton A once it exceeds k [5].

Finding Best and Worst Case Execution Times of Systems 43

Definition 5. Let Z be a zone represented by a DBM in a canonical form D =
(Di,j ,≺i,j)i,j=0,..n and k be a clock ceiling. We can compute the k-normalization

of the DBM D
′
= (D

′
i,j ,≺

′
i,j)i,j=0,..n as follows:

(D
′
i,j ;≺

′
i,j) =

⎧⎪⎨⎪⎩
(∞, <) if Di,j > k,

(-k, <) if Di,j < −k,

(Di,j ,≺i,j) otherwise.

However, in the last few years, there has been a considerable development in the
normalization procedure [5,2,14] for the purpose of providing coarser abstrac-
tions of TA. It is well-known that for diagonal-free TA (i.e. a class of TA in
which the test of the form (x− y ≺ c) is disallowed) if we take αA associating to
each clock xi the maximal constant c such that x ≺ c appears in some guard of
A (i.e. α = (maxx)x∈X), then the resulting abstract graph preserves the reach-
ability properties [5]. However, since these approaches normalise the zones at
each step of the successor computation, they will give abstract zones and hence
result in abstract values of the execution times. To solve the problem we choose
to maintain real zones when computing the zone graph and use normalization
just for inclusion checking as described in the following section.

3 Zone-Based Algorithms For Calculating BCET and
WCET

An algorithmic solution to the BCET/WCET problem can be given by adding
an additional global clock (let us call it xi) to the automaton under analysis that
acts as an observer in the sense that xi does not participate in the invariants or
guards of the automaton. Then one computes the zone graph of the automaton
(involving xi), by means of a standard forward analysis using DBMs. To get the
BCET and WCET, the algorithm needs to look at the value of the constraints
(D0,i,≺0,i) and (Di,0,≺i,0) respectively in the DBM D obtained in the final
states, where ≺∈ {<,≤} and i is the index of the global clock xi.

3.1 The Zone-Based Algorithms

Before discussing how one can solve the BCET/WCET problems it is necessary
first to summarise how the zone graph of a given automaton can be constructed
using the new paradigm. LetD be a DBM in canonical form.We want to compute
the successor of D w.r.t to a transition e = (l, l

′
, a, λ, φ). can be obtained using

a number of elementary DBM operations which can be described as follows.

1. Intersect D with the invariant of location l to find the set of possible clock
assignments for the current state.

2. Canonize the resulting DBM and check the consistency of the matrix.
3. Let an arbitrary amount of time elapse on all clocks. In a DBM this means

all elements Di,0 are set to ∞.

44 O. Al-Bataineh, M. Reynolds, and T. French

4. Take the intersection with the invariant of location l again to find the set of
possible clock assignments that still satisfy the invariant.

5. Take the intersection with the guard φ to find the clock assignments that
are accepted by the transition.

6. Canonize the resulting DBM and check the consistency of the matrix.
7. Set all the clocks in λ that are reset by the transition to 0.
8. Take the intersection with the location invariant of the target location l

′
.

9. Canonize the resulting zone at the target location l
′
and check the consis-

tency of the matrix.

Combining all of the above steps into one formula, we obtain

succ(D, e) = canon(canon((canon(D ∧ I(l))⇑ ∧ I(l)) ∧ φ)[λ := 0])) ∧ I(l
′
))

where canon represents a canonization function that takes as input a DBM and
returns a canonized matrix in the sense that each atomic constraint in the matrix
is in the tightest form, I(l) is the invariant at location l, and ⇑ denotes the elapse
of time operation. Note that intersection does not preserve canonical form [5],
so we should canonize (D ∧ I(l)) before opening the zone up using the elapse
of time operation. Similarly, we should canonize ((canon(D ∧ I(l))⇑ ∧ I(l)) ∧ φ)
before resetting any clock (if any). Since after executing the transition e all
the clocks in the automaton have to advance at the same rate. Recall that
when opening a zone up the upper bound of the clocks are set to ∞, and when
resetting a particular clock the lower and upper bounds of that clock are set to
0. So canonization is indeed necessary at steps 2 and 6. The resulting zone at
step 7 needs to be intersected with the clock invariant at the target location l

′

and canonizing afterwards. This is necessary in order to ensure that the guard
φ and the reset operation ([λ := 0]) implies invariant at the target location,
as the transition to l

′
would be disabled otherwise, and one could erroneously

reach a final state with such a transition, resulting in a wrong WCET or BCET.
After applying the guard and the target invariant, the matrix must be checked
for consistency. Checking the consistency of a DBM is done by computing the
canonical form and then checking the diagonal for negative entries.

The algorithms depicted in Figures 1 and 2 represent respectively the zone-
based algorithms for calculating the BCET and WCET of real-time distributed
systems. The algorithms takes as input an automaton M for the system to
be analysed. The algorithm consists of three basic steps, computing the state
space of the automaton M, searching for the set of final states in M, and then
performing some operations on that set in order to determine the minimum and
the maximum value that the additional clock xi can reach at that set of states.
Each node in the computed tree is of the form (li, Zi) where li is a location
in the automaton and Zi is the corresponding unapproximated zone. It uses
two data structures WAIT and PASSED to store symbolic states waiting to be
examined, and the states that are already examined, respectively. The WAIT set
is instantiated with the initial symbolic state (l0, Z0). The global variable BCET
holds the currently best known shortest execution time of reaching the final
location; initially it is ∞. Similarly, the global variable WCET holds the currently

Finding Best and Worst Case Execution Times of Systems 45

best known longest execution time of reaching the final location; initially it is
0. The global clock xi keeps track of the execution time of the system. In each
iteration of the while loop, the algorithm selects a symbolic state from WAIT,
checking if the state is a final state. If the state does not evolve to any new state
then we consider it as a final state of some branch in the graph. If the state
s = (li, Zi) is a final state we update the best known BCET to the lower bound of
xi at Zi if it is smaller than the current value of BCET. On the other hand, if the
state is not a final state and the lower bound of the clock xi in the successors of
that state is less than the intermediate BCET, we add these successors to WAIT
and continue to the next iteration. Note that the algorithm computes the state
space of M step by step using the operation posta(li, Zi) which computes the
successors of the given symbolic state (li, Zi). The operation lowerBound(Z, xi)
returns the lower bound of the clock xi in the zone Z which is equivalent to the
value of (−D0,xi) in the corresponding DBM. The operation upperBound(Z, xi)
returns the upper bound of the clock xi in the zone Z which is equivalent to the
value of (Dxi,0) in the corresponding DBM.

It is worth mentioning here that we treat BCET and WCET differently when
computing them. Since the computation of BCET can be improved during the
analysis. That is, during the state space exploration, if a non-final state has a lower
bound greater than the intermediateBCET, this state does not need to be explored
any further and hence we do not add its successors to the WAIT list. On the other
hand, if the WCET algorithm encounters a reachable state with unconstrained
location then the search can stop immediately since the WCET will be infinity.

Input: (M)
Output: BCET := ∞
clock xi
PASSED := ∅, WAIT := {(l0, Z0)}
while WAIT �= ∅
select (l, Z) from WAIT

//Check if (l, Z) is a final node on some branch of the tree
if for all a ∈ Σ posta((l, Z)) = ∅ then
if lowerBound(Z, xi) < BCET then BCET := lowerBound(Z, xi)
add (l, Z) to PASSED
for all (l

′
, Z

′
) such that (l, Z)� (l

′
, Z

′
) do

// check if lower bound of xi in the new zone is less than the best known BCET.
if lowerBound(Z

′
, xi) < BCET

if (Z
′ \ UC) �⊆ closureα(Z

′′ \ UC) for all (l
′
, Z

′′
) ∈ PASSED

then add (l
′
, Z

′
) to WAIT

return BCET

Algorithm 1. Zone-base algorithm for Computing Best-Case Execution Time

Efficient inclusion testing. The test of the form Z ⊆ closureα(Z
′
) used in the

proposed algorithm, where closureα(Z
′
) is the region closure of a set of valua-

46 O. Al-Bataineh, M. Reynolds, and T. French

Input: (A)
Output: WCET := 0
clock xi
PASSED := ∅, WAIT := {(l0, Z0)}
while WAIT �= ∅
select (l, Z) from WAIT

//Check if (l, Z) is a final node on some branch of the tree
if for all a ∈ Σ posta((l, Z)) = ∅ then
if upperBound(Z, xi) > WCET then WCET := upperBound(Z, xi)
add (l, Z) to PASSED
for all (l

′
, Z

′
) such that (l, Z)� (l

′
, Z

′
) do

// if the location of the new state is not guarded with an invariant
if upperBound(Z

′
, x) = ∞ then {WCET := ∞;WAIT := ∅; break}

// Check inclusion between zones
if (Z

′ \ UC) �⊆ closureα(Z
′′ \ UC) for all (l

′
, Z

′′
) ∈ PASSED

then add (l
′
, Z

′
) to WAIT

return WCET

Algorithm 2. Zone-base algorithm for Computing Worst-Case Execution Time

tions Z
′
, is the key difference with respect to the other standard algorithms for

TA that make use the tests of the form Approxα(Z) ⊆ Approxα(Z
′
). The idea

is that instead of considering nodes (l, Approxα(Z)) with set of approximated
valuations Approxα(Z), one considers a union of the parts (regions) of RX

>=0

that intersect Z. The closure by regions of a zone Z with respect to a set of
regions R is defined as the smallest set of regions from R that have a non-empty
intersection with Z (i.e. closureR(Z) = {m ∈ R | Z∩m �= ∅}) [6]. It is important
to note that Approxα(Z) is different than closureα(Z): Approxα(Z) is an ap-
proximation of a zone which can be computed using the standard normalization
procedures like k-normalization and hence it is a convex whereas closureα(Z) is
a region closure of a zone and hence it can be non-convex [6]. As observed in [14]
to decide whether a region R intersects a zone Z it is enough to verify that the
projection on every pair of variables is nonempty (see proposition 1). The proofs
given in [6,14] have shown that the inclusion test Z ⊆ closureα(Z

′
) is sound

for some operator α and is as efficient as the test Approxα(Z) ⊆ Approxα(Z
′
),

and hence the overall complexity for inclusion checking is still O(|X |2), where
|X | is the number of clocks. The advantages of this are twofold: (1) it allows
us to maintain real zones which is necessary for the correctness of our analysis,
and (2) it guarantees the correct termination of the search without increas-
ing the computational complexity. Note also that the algorithm for checking
Z ⊆ closureα(Z

′
) neither need to represent nor to compute the closure which

may not be a zone (see Theorem 1). Before adding a new state (l, Z) to WAIT
we check if (Z \ UC) ⊆ closureα(Z

′ \ UC) for any state (l, Z
′
) ∈ WAIT since

when (Z \ UC) ⊆ closureα(Z
′ \ UC) then all states reachable from (l, Z) are

also reachable from (l, Z
′
), and thus we only need to explore (l, Z

′
), where the

Finding Best and Worst Case Execution Times of Systems 47

set UC represents the set of constraints in the zones involving the extra clocks
xi. Note that it is necessary to check inclusion between zones with respect only
to the automaton clocks.

Definition 6. Suppose we have a bound function that assigns to each clock xi
in A a bound αx ∈ N. A region [1] with respect to α is the set of valuations
specified as follows:

1. for each clock x ∈ X, one constraint from the set: {x = c | c = 0, ..., αx} ∪
{c− 1 < x < c | c = 1, ..., αx} ∪ {x > αx}

2. for each pair of clocks x, y having interval constraints: c − 1 < x < c and
d − 1 < y < d, it is specified if fract(x) is less than, equal or greater than
fract(y).

Proposition 1. [14] Let R be a region and Z be a zone. The intersection R∩Z
is empty iff there exist variables x, y such that Zyx +Rxy ≤ (<, 0).

where Rxy is the weight of the edge x
≺xyDxy−−−−−→ y in the canonical distance graph

representing R. Similarly for Zxy.

Theorem 1. [14] Let Z,Z
′

be zones in canonical form. Then Z �⊆ closureα(Z
′
)

iff there exists variables x, y, both different than x0, such that one of the following
conditions holds:

1. Z
′
0,x < Z0,x and Z

′
0,x ≤ (αx,≤), or

2. Z
′
x,0 < Zx,0 and Z

′
x,0 ≥ (−αx,≤), or

3. Zx,0 ≥ (−αx,≤) and Z
′
x,y < Zx,y and Z

′
x,y ≤ (αy,≤) + �Zx,0�.

where �Zx,0� is the integral part of the entry Zx,0 in the zone Z and αx is the
corresponding normalization constant of the clock x. Recall that the entry Zx,0

has the form (�Zx,0�,≺x,0). However, to implement the inclusion test given in
Theorem 1 two operations on bounds are needed: comparison and addition. We
define that (n,≺1) < (m,≺2) if n < m and (n,<) < (n,≤). Further we define
addition as n +∞ = ∞, (n,≤) + (m,≤) = (n +m,≤), and (n,<) + (m,≺) =
(n+m,<).

Theorem 2. The zone-based Algorithms 1and 2 compute correctly the minimum
and maximum execution times of an automaton A and guarantee termination.

Note that the algorithm computes the transitive closure of � step by step
using the operation posta(li, Zi) (while normalization is disabled) until it reaches
the final state of the explored path and then checks whether the lower-bound
value of the clock xi is smaller than the best known value of BCET, therefore the
algorithm guarantees to return with a correct answer. Termination is ensured
since there are finitely many sets of the form closureαA(Z). Also the algorithm
is guaranteed to terminate because � is finite since the algorithm is working on
a finite structure.

48 O. Al-Bataineh, M. Reynolds, and T. French

We now turn to discuss the complexity of the DBM-based algorithms. In
Table 1 we summarise the necessary DBM operations used by the algorithms
with their complexity. All required operations can be implemented on DBMs
with satisfactory efficiency. Given the time complexity of each DBM operation
performed by the algorithms we end up with a polynomial time complexity of
the form given in Theorem 3, where d is the number of states in the WAIT list
that have the same discrete part with the new generated state that results from
executing the operation posta(li, Zi), we use this for the inclusion test operation.
Note that the value of d is bounded by the number of generated zones (|Z|) of
the automaton under analysis.

Table 1. Complexity of BCET/WCET algorithms in terms of DBM operations

DBM-operation Complexity

Inclusion test (i.e. Z ⊆ closureα(Z
′
)) O(|X|2)

Consistency test O(|X|2)
Constraint satisfaction O(|X|2)
Delay O(|X|)
Resetting Clocks O(|X|)
Constraint intersection O(|X|2)
Canonization O(|X|3)
Clock-lower/upper bound test O(1)

Theorem 3. The BCET/WCET zone-based algorithms have a polynomial time
complexity of O((|X |3 + d.|X |2).|E|.|Z|).

4 Implementation

In this section we briefly summarise our prototype implementation of the model
checking algorithms given in Section 3.1. The prototype implementation has
been developed using the opaal tool [10] which has been designed to rapidly
prototype new model checking algorithms. The opaal tool is implemented in
Python and is a standalone model checking engine. Models are specified using the
UPPAAL XML format. The main step in the implementation of the algorithms
is the representation of sets of symbolic state and the operations required on
them. We use the open source UPPAAL DBM library for the internal symbolic
representation of time zones in the algorithms.

5 Case Studies

We consider here a simple realistic automatic manufacturing plant taken from
Daws and Yovine [11]. We first give an informal description of the case study
then we give the timed automata model of the entire system in UPPAAL, and
finally report on the results obtained from running the BCET/WCET algorithms
on the case study when considering it under different configurations.

Finding Best and Worst Case Execution Times of Systems 49

The manufacturing plant that we consider consists of a conveyor belt that
moves from left to right, a processing or service station, and two robots that
move boxes between the station and the belt. The first robot called D-Robot
takes a box from the station and put it on the left end of the belt. The second
robot called G-Robot picks the box from the right end of the belt and transfers it
to the station to be processed. We are then interested in verifying the minimum
and maximum amount of time a box can take to be processed when considering
the manufacturing plant under different configurations.

The timed automaton for the D-Robot is given in Figure 1. Initially, the robot
waits until a box is ready indicated by the synchronisation label s-ready. Next,
it picks the box up, turns right and puts the box on the moving belt. It then
turns left and returns to its initial position.

x<=2

x <=2

x<=6x<=6

x:=0
x:=0, d_put:= true

x :=0, d_pick:= truex:=0

s_ready?

x:=0

2<=x && x <=6

1<=x && x<=2

1<=x && x<=2

5<=x && x<=6

D_wait

D_put

D_turn_L D_turn_R

D_pick

Fig. 1. The D-Robot template

x<=2

x<=8

x<=10

x:=0, g_put := true

x:=0

x:=0

s_empty?

x:=0, g_pick := true

middle!

x:=0

x:=0

8<=x && x<=10

1<=x&& x<=2

G_Turn_R

3<=x && x<=8

6<=x && x<=10

x<=10

G_waitG_put

G_pick
G_inspect

G_Turn_L

Fig. 2. The G-Robot template

The timed automaton for the G-Robot is given in Figure 2. This robot waits
at the inspection point at the right end of the belt until a box passes this point.
The G-Robot must pick up the box before it falls off the end of the belt. Next, it
turns right, waits for the station to finish processing the previous box and then
puts the box at the station. Finally, it turns left back to the inspection point.
Note that picking the box up by the robot, turning left or right takes time which
depends mainly on the speed of the robot.

The timed automaton for the processing station is given in Figure 4. The
station is initially empty. Once a box arrives at the station it takes around 8-
10 time units to be processed. The box is then ready to be picked up by the
D-Robot.

The timed automaton for the box is given in Figure 3. The box initially moves
from the left end of the belt to the inspection point. It takes between 133-134
time units for the box to reach the inspection point from the left end of the belt.
Then it will be picked up by the G-Robot.

Using the zone-based algorithms we could analyse the manufacturing system
up to 9 processes (automata) (6 boxes, G-Robot, D-Robot, and a service station).
All experiments are conducted on a PC with 32-bit Redhat Linux 7.3 with Intel
(R) core CPU at 2.66 GHz and with 4 GB RAM. In Table 2 we verify the perfor-
mance of the system under the following time constraints: the time required for
the box to reach the inspection point is within [133, 134], and the time required

50 O. Al-Bataineh, M. Reynolds, and T. French

x<=134 B_inspect
x<=51

B_Move

B_On_G
x:=0

middle?

x:=0

x:=0

g_put

g_pick

133<=x && x<=134

d_pick

d_put

B_On_S

Processed

B_On_D

Fig. 3. The Box template

s_empty! x<=10

x:=0 x:=0, s_busy:= true

s_ready!
x:=0

x:=0 x:=0
8<=x && x<=10

g_put == true

d_pick == true

S_Empty

S_Ready

S_Busy

Fig. 4. The processing station template

Table 2. The BCET/WCET of the manufacturing system for different number of
boxes where the two robots move at different speeds

No. of processesRun-time/Memory (BCET)Run-time/Memory (WCET)BCETWCET

4 0.011s/33,042KB 0.015s/38,072KB 158 171

6 0.435s/39,470KB 0.922s/45,860KB 158 185

9 55s/469,463KB 72s/524,096KB 158 215

14 205s/469,463KB 280s/524,096KB 158 325

Table 3. The BCET/WCET of the manufacturing system for different number of
boxes where the two robots move at the same speed

No. of processesRun-time/Memory (BCET)Run-time/Memory (WCET)BCETWCET

4 0.01s/33,042KB 0.015s/38,072KB 149 153

6 0.435s/39,470KB 0.922s/45,860KB 149 174

9 55s/469,463KB 70s/524,096KB 149 204

14 205s/469,463KB 280s/524,096KB 149 255

to process a box at the station is within [8, 10]. In this configuration, we assume
that the D-Robot is faster than the G-Robot in the sense that the D-Robot can
turn left and right and pick up and put boxes faster than the G-Robot as shown
in Figures 1 and 2. As we expect when we increase the number of boxes in the
model the value of WCET varies which implies that the number of boxes in the
model impacts directly the WCET. However, it is not the case for the BCET
since the value of BCET does not depend on the number of boxes in the model.
The reason why the BCET does not change as we increase the number of boxes
is because in the best case scenario the box will be processed immediately once
it arrives the service station so that there will not be any queuing delay.

In Table 3 we verify the system under the same settings used in Table 2 except
that we increase the speed of the two robots and assume that both robots move
at the same speed. In this configuration the time the robot takes to pick the box
up or to put it down is within [1, 2] time units, and the time it takes to turn left
or right is within [2, 6] time units. As shown in Table 3 the performance of the

Finding Best and Worst Case Execution Times of Systems 51

system under this configuration has been improved where the values of BCET
and WCET decreased under this configuration.

We now compare the performance of our approach with the classical binary
search approach used in [16,9] in which the user needs to repeatedly verify some
parametrised temporal formulas until they hold. For example, one can use the
temporal formula AG(xi ≤ p) to verify the upper bound for termination of the
models, where AG are temporal operators that mean for each reachable state
in the model the value of the extra clock xi can not exceed the bound p. Using
the binary search approach we could analyse the manufacturing system up to
9 processes (6 boxes, G-Robot, D-Robot, and a service station). As shown in
Table 4 the binary search approach is quite competitive to our approach when
considering small instances of the system. However, when considering instances
with large number of processes the proposed approach outperforms the binary
search approach by several order of magnitude, enabling models involving large
number of processes to be model checked efficiently.

Table 4. The BCET/WCET of the manufacturing system using binary search ap-
proach for different number of boxes where the two robots move at different speeds

No. of processesRun-time/Memory (BCET)Run-time/Memory (WCET)BCETWCET

4 0.031s/58,05KB 0.055s/65,82KB 158 171

6 0.635s/256,47KB 2.922s/465,96KB 158 185

9 285s/896,463KB 425s/1026,096KB 158 215

6 Conclusion

In this work we proposed algorithms for determining the best and worst case “ex-
ecution time” in timed automata by modifying the underlying model-checking
algorithm, rather than analyzing those times by augmenting the models with
clock variables and querying those. The proposed algorithms can successfully
handle acyclic TA and TA containing cycles given that the automaton under
analysis has no run of infinite length. The algorithms avoid the extra computa-
tions and the extra canonization steps that may be needed if normalization is
applied at each step of the successor computation. For future work we intend to
extend the algorithms to be able to correctly handle arbitrary timed automata.

References

1. Alur, R., Dill, D.: A theory of timed automata. TCS, 183–235 (1994)
2. Behrmann, G., Bouyer, P., Larsen, K.G., Radek, P.: Lower and upper bounds in

zone-based abstractions of timed automata. Int. J. Softw. Tools Technol. Transf.,
204–215 (2006)

3. Behrmann, G., Fehnker, A., Hune, T., Larsen, K.G., Pettersson, P., Romijn, J.:
Efficient Guiding Towards Cost-Optimality in UPPAAL. In: Margaria, T., Yi, W.
(eds.) TACAS 2001. LNCS, vol. 2031, pp. 174–188. Springer, Heidelberg (2001)

52 O. Al-Bataineh, M. Reynolds, and T. French

4. Behrmann, G., Larsen, K.G., Rasmussen, J.I.: Beyond liveness: Efficient parameter
synthesis for time bounded liveness. In: Pettersson, P., Yi, W. (eds.) FORMATS
2005. LNCS, vol. 3829, pp. 81–94. Springer, Heidelberg (2005)

5. Bengtsson, J.E., Yi, W.: Timed automata: Semantics, algorithms and tools. In:
Desel, J., Reisig, W., Rozenberg, G. (eds.) ACPN 2003. LNCS, vol. 3098, pp. 87–
124. Springer, Heidelberg (2004)

6. Bouyer, P.: Forward analysis of updatable timed automata. Form. Methods Syst.
Des. 24, 281–320 (2004)

7. Bryans, J., Bowman, H., Derrick, J.: Model checking stochastic automata. ACM
Transactions on Computational Logic (TOCL) 4(4), 452–492 (2003)

8. Clarke, E.M., Grumberg, O., Peled, D.: Model checking. MIT Press (2001)
9. Dalsgaard, A.E., Olesen, M.C., Toft, M., Hansen, R.R., Larsen, K.G.: METAMOC:

Modular Execution Time Analysis using Model Checking. In: WCET 2010, pp.
113–123 (2010)

10. Dalsgaard, A.E., Hansen, R.R., Jørgensen, K.Y., Larsen, K.G., Olesen, M.C.,
Olsen, P., Srba, J.: opaal: A lattice model checker. In: Bobaru, M., Havelund,
K., Holzmann, G.J., Joshi, R. (eds.) NFM 2011. LNCS, vol. 6617, pp. 487–493.
Springer, Heidelberg (2011)

11. Daws, C., Yovine, S.: Two examples of verification of multirate timed automata
with kronos. In: Proceedings of the 16th IEEE Real-Time Systems Symposium,
RTSS 1995. IEEE Computer Society (1995)

12. Dill, D.L.: Timing assumptions and verification of finite-state concurrent systems.
In: Proceedings of the International Workshop on Automatic Verification Methods
for Finite State Systems, pp. 197–212. Springer-Verlag New York, Inc. (1990)

13. Floyd, R.W.: Algorithm 97: Shortest path. Communications of the ACM (1962)
14. Herbreteau, F., Kini, D., Srivathsan, B., Walukiewicz, I.: Using non-convex ap-

proximations for efficient analysis of timed automata. In: FSTTCS (2011)
15. Horváth, A., Paolieri, M., Ridi, L., Vicario, E.: Transient analysis of non-markovian

models using stochastic state classes. Performance Evaluation 69(7), 315–335
(2012)

16. Metzner, A.: Why model checking can improve WCET analysis. In: Alur, R., Peled,
D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 334–347. Springer, Heidelberg (2004)

17. Rokicki, T.G.: Representing and Modeling Digital Circuits. PhD thesis, Stanford
University (1993)

18. Traonouez, L.-M., Lime, D., Roux, O.H.: Parametric model-checking of time petri
nets with stopwatches using the state-class graph. In: Cassez, F., Jard, C. (eds.)
FORMATS 2008. LNCS, vol. 5215, pp. 280–294. Springer, Heidelberg (2008)

19. Wilhelm, R.: Why AI + ILP is good for WCET, but MC is not, nor ILP alone. In:
Steffen, B., Levi, G. (eds.) VMCAI 2004. LNCS, vol. 2937, pp. 309–322. Springer,
Heidelberg (2004)

Delay-Dependent Partial Order Reduction Technique
for Time Petri Nets

Hanifa Boucheneb1,2, Kamel Barkaoui2, and Karim Weslati1

1 Laboratoire VeriForm, Department of Computer Engineering and Software Engineering,
École Polytechnique de Montréal,

P.O. Box 6079, Station Centre-ville, Montréal, Québec, H3C 3A7, Canada
hanifa.boucheneb@polymtl.ca

2 Laboratoire CEDRIC, Conservatoire National des Arts et Métiers,
192 rue Saint Martin, Paris Cedex 03, France

kamel.barkaoui@cnam.fr

Abstract. Partial order reduction techniques aim at coping with the state explo-
sion problem by reducing, while preserving the properties of interest, the number
of transitions to be fired from each state of the model. For (time) Petri nets, the se-
lection of these transitions is, generally, based on the structure of the (underlying)
Petri net and its current marking. This paper proposes a partial order reduction
technique for time Petri nets (TPN in short), where the selection procedure takes
into account the structure, including the firing intervals, and the current state (i.e.,
the current marking and the firing delays of the enabled transitions). We show that
our technique preserves non-equivalent firing sequences of the TPN. Therefore,
its extension to deal with LTL−X properties is straightforward, using the well
established methods based on the stuttering equivalent sequences.

1 Introduction

A time Petri net (TPN in short) is a Petri net, where each transition is labelled with
an interval specifying, relatively to its enabling date, its minimal and maximal firing
delays. Time Petri nets are definitely established as a powerful formalism for formal
verification of real time systems. The verification techniques, such as reachability anal-
ysis, are based on the so-called state space abstraction, where states reachable by the
same firing sequence, but at different dates, are grouped in the same set and consid-
ered modulo some relation of equivalence (abstract states, state classes or state zones)
[5,7,10,8,25]. However, for highly concurrent systems, these verification techniques
face a severe problem of state space explosion. To alleviate this problem, partial or-
der approaches are proposed in the literature for time Petri nets such as: partial order
unfolding [12,13,23] and partial order reduction [14,20,19,24,26]. The idea of the un-
folding techniques is to translate a TPN model into an acyclic Petri net with firing time
constraints, respecting the partial order of the originate model. The available unfolding
techniques are however limited to 1-safe TPNs1. The common characteristics of the
partial order reduction methods is that they explore a subset of firing sequences (rep-
resentative firing sequences) from each (abstract) state. These subsets are sufficient to
verify the properties of interest.

1 A 1-safe time Petri net is a 1-bounded time Petri net (i.e., each place can contain at most one
token).

A. Legay and M. Bozga (Eds.): FORMATS 2014, LNCS 8711, pp. 53–68, 2014.
c© Springer International Publishing Switzerland 2014

54 H. Boucheneb, K. Barkaoui, and K. Weslati

Among the TPN state space abstractions in the literature, we consider the Contracted
State Class Graph (CSCG in short) [10] and investigate partial order reduction tech-
niques, which preserve non-equivalent firing sequences of the TPN (i.e., there is no
maximal firing sequence2 in the TPN with no equivalent sequence3 in the reduced space
and vice-versa). Since the CSCG preserves markings and firing sequences of the TPN,
the purpose is to select a subset of firable transitions to be explored from each state
class, so as to cover all and only all non-equivalent firing sequences of the CSCG.

In almost all partial order reduction techniques, the selection procedure of represen-
tative transitions is based on an independence relation over transitions. Intuitively, two
transitions are independent, if they can neither disable nor enable each other and their
firings in both orders lead to the same state. If a transition is selected to be fired from
a state, then all its dependent and firable transitions are selected too. Various sufficient
conditions, guaranteeing an effective selection of an over-approximation of dependent
transitions, are proposed in the literature such as persistent sets [14], ample sets [19,20]
and stubborn sets [24]. However, in the context of the TPN state space abstractions such
as the CSCG, the different interleavings of the same set of transitions lead, in general,
to different abstract states and then the relation of independency is difficult to meet.
To overcome this limitation, two main techniques are used in the literature: the local
time semantics [3,15,18] and Partially Ordered Sets (POSETs) of transitions or events
[1,16,17,26].

The local time semantics approaches suppose that the model consists of a set of
components, each one is represented by a timed model (timed automaton, TPN, etc.)
and has, in addition to its clocks, a reference clock. The reference clocks evolve asyn-
chronously and are synchronized when needed (i.e., when an action of synchronization
is executed). Such approaches need additional clocks and the differences between ref-
erence clocks may diverge leading to an infinite state space [17].

The partial order reduction approaches based on POSETs aim to force the indepen-
dency relation by fixing partially the firing order of transitions or events [1,16,17,26].
The idea is to compute, by exploring one sequence of transitions, the convex hull of
abstract states reachable by some of its equivalent sequences. However, unlike timed
automata [22], for TPNs, including 1-safe TPNs, this convex hull is not necessarily the
union of the abstract states reached by equivalent sequences of transitions [6]. In [26],
to deal with this issue, the authors use the notion of truth parents and compute the union
of abstract states reachable by equivalent sequences obtained by permuting some inde-
pendent transitions (in the sense of stubborn sets). The notion of truth parent involves
to keep, in each abstract state, in addition to time constraints of the enabled transi-
tions, those of their parents. All the different possible parents of the enabled transitions
are considered when computing successors of abstract states, as the firing delay of a
transition is relative to the firing date of its parent. Moreover, the selection procedure
of independent transitions takes into account neither the static nor the dynamic timing
information of the model. In [16], the authors have defined a state space abstraction

2 A maximal firing sequence is either infinite or finite ending up in a deadlock state (i.e., a state
with no enabled transitions).

3 Two sequences ω and ω′ are equivalent (denoted ω ≡ ω′) iff ω′ can be obtained from ω by
successive permutations of its transitions. By convention, it holds that ω ≡ ω′.

Delay-Dependent Partial Order Reduction Technique for Time Petri Nets 55

where the firing order constraints between non-related transitions4 are totally ignored
when computing successors. The subset of transitions explored from each abstract state
is a persistent set [16]. However, the state space abstraction proposed in [16] preserve
neither markings nor the firing sequences of the TPN. The counterexample is given by
the TPN at Fig.1.a.

In this paper, we propose a partial order reduction technique based on POSETs and
whose selection procedure of representative transitions takes into account the static
and dynamic firing intervals of transitions. We show that the resulting reduced graph
preserves non-equivalent sequences of the TPN. So, the extension of the verification
approach proposed here to LTL−X

5 properties over markings could be achieved as
shown in [24].

The rest of the paper is organized as follows. Section 2 is devoted to TPN, its seman-
tics and its CSCG. Section 3 defines the notions of partial order successor and reduced
state class graph. Section 4 is devoted to our reduced state class graph and the proof
that it preserves the non-equivalent firing sequences of the TPN. Section 5 reports some
experimental results. Finally, the conclusion is presented in Section 6.

2 Time Petri Nets

2.1 Definition and Semantics

Let P be a nonempty set. A multi-set over P is a function M : P −→ N, N being the
set of natural numbers, defined also by the formal sum:

∑
p∈P

M(p) • p 6.

We denote PMS and 0 the set of all multi-sets over P and the empty multi-set, re-
spectively. Let M1 ∈ PMS , M2 ∈ PMS and ≺∈ {≤,=, <,>,≥}. Operations on
multi-sets are defined as usual:

1) ∀p ∈ P, p ∈ M1 iff M1(p) > 0; 2) M1 + M2 =
∑
p∈P

(M1(p) + M2(p)) • p;

3) M1 ≺ M2 iff ∀p ∈ P,M1(p) ≺ M2(p); 4) M1 �≺ M2 iff not (M1 ≺ M2);
5) M1 ×M2 =

∑
p∈P

Min(M1(p),M2(p)) • p;

If the multi-sets M1 and M2 are s.t. M1 ≤ M2, then M2 − M1 is the multi-set defined by:∑
p∈P

(M2(p)−M1(p)) • p.

Let Q+ and R+ be the sets of non-negative rational and real numbers, respectively,
and INTX = {[a, b]|(a, b) ∈ X× (X ∪ {∞})}, for X ∈ {Q+,R+}, the set of intervals
whose lower and upper bounds are in X and X ∪ {∞}, respectively.

Definition 1. A time Petri net is a tuple N = (P, T, pre, post,M0, Is) where P and T
are finite and nonempty sets of places and transitions s.t. P ∩ T = ∅; pre and post are
the backward and forward incidence functions (pre, post : T −→ PMS); M0 ∈ PMS

is the initial marking; Is is the static firing function (Is : T → INTQ+). ↓ Is(t) and
↑ Is(t) denote the lower and upper bounds of the static firing interval of transition t.

4 Transitions are non-related if no one is enabled by the others.
5 LTL−X properties are LTL properties where the next operator X is forbidden.
6 The symbol • is an optional separator between elements of M and their occurrence numbers.

56 H. Boucheneb, K. Barkaoui, and K. Weslati

For t ∈ T , Adj(t) = {t′ ∈ T | (pre(t) + post(t)) × (pre(t′) + post(t′)) �= 0}
denotes the set of transitions connected with t via some place (adjacent transitions).

Several semantics are proposed in the literature for the TPN model [4,9,11]. An
overview and a classification of the TPN semantics can be found in [9]. They differ
mainly in the interpretation of the notion of newly enabled transition, the characteriza-
tion of states and the server policy. The notion of newly enabled transitions may refer
to the intermediate markings (markings resulting from the consumption of tokens) or
the markings before or after firings (intermediate or atomic firing semantics) [4]. The
timing information is either associated with transitions represented by clocks or delays
(threshold semantics) or tokens represented by clocks giving their ages (age seman-
tics) [11]. The service policy specifies whether several enabling instances of the same
transition may be handled simultaneously (multiple-server semantics) or not (single-
server semantics). We consider here the classical and widely used semantics (i.e., the
threshold, intermediate and single-server semantics).

Each marking of N is a multi-set over P . Let M be a marking of N and t ∈ T
a transition. The transition t is enabled at marking M , denoted M [t> iff all required
tokens for firing t are present in M , i.e., M ≥ pre(t). In case t is enabled at M , its
firing leads to the marking M ′ = M − pre(t) + post(t). The notation M [t>M ′ means
that t is enabled at M and M ′ is the marking reached from M by t. We denote by
En(M) the set of transitions enabled at M , i.e., En(M) = {t ∈ T |M ≥ pre(t)}.

For t ∈ En(M), we denote by CF (M, t) the set of transitions enabled at M but in
conflict with t, i.e., CF (M, t) = {t′ ∈ En(M) | t′ = t ∨M �≥ pre(t) + pre(t′)}.

For any sequence t1t2...tn ∈ T+, the usual notation M [t1t2...tn> means that there
are markings M1, ...,Mn so that M1 = M and Mi[ti>Mi+1, for i ∈ [1, n − 1] and
Mn[tn>. The notation M [t1t2...tn>M ′ gives, in addition, the marking reached by the
sequence.

Let M ′ be the successor marking of M by t. We denote by Nw(M, t) the set of
transitions newly enabled at the marking M ′ reached from M by firing t. Formally,
Nw(M, t) contains t, if t is enabled at M ′, and also all transitions enabled at the mark-
ing M ′ but not enabled at the intermediate marking M − pre(t), i.e.,
Nw(M, t) = {t′ ∈ En(M ′) | t′ = t ∨ M − pre(t) �≥ pre(t′)}.

Starting from the initial marking M0, the marking of N evolves by firing transitions
at irregular intervals of time. When a transition t is newly enabled, its firing interval is
set to its static firing interval. Bounds of its interval decrease synchronously with time
until it is fired or disabled by a conflicting firing. Transition t is firable, if the lower
bound of its firing interval reaches 0. It must fire immediately, without any additional
delay, when the upper bound of its firing interval reaches 0, unless it is disabled by
another firing. The firing of a transition takes no time but leads to a new marking.

Syntactically, in the context of N , a state is defined as a pair s = (M, I), where M
is a marking and I is a firing interval function (I: En(M) → INTR+). The initial state
of N is s0 = (M0, I0), where I0(t) = Is(t), for all t ∈ En(M0).

Let S = {(M, I) |M ∈ PMS∧I: En(M) → INTR+} be the set of all syntactically
correct states, s = (M, I) and s′ = (M ′, I ′) two states of S, dh ∈ R+ a nonnegative
real number, t ∈ T a transition and → the transition relation defined by:

Delay-Dependent Partial Order Reduction Technique for Time Petri Nets 57

• s
dh→ s′ (s′ is also denoted s+ dh) iff the state s′ is reachable from state s by dh time

units, i.e., ∀t ∈ En(M), dh ≤ ↑ I(t),M ′ = M and
∀t′ ∈ En(M ′), I ′(t′) = [Max(0, ↓ I(t′)− dh), ↑ I(t′)− dh].

• s
t→ s′ iff t is immediately firable from s and its firing leads to s′, i.e.,

t ∈ En(M), ↓ I(t) = 0, M ′ = M − pre(t) + post(t), and

∀t′ ∈ En(M ′), I ′(t′) =

{
Is(t′) if t′ ∈ Nw(M, t)

I(t′) otherwise.
The semantics of N is defined by the transition system (S,→, s0), where S ⊆ S is

the set of all states reachable from s0 by
∗→ (the reflexive and transitive closure of →).

A run in (S,→, s0), starting from a state s1 of S, is a maximal sequence ρ = s1
dh1→

s1 + dh1
t1→ s2

dh2→ s2 + dh2
t2→ s3.... By convention, for any state si, relation si

0→ si
holds. Sequences dh1t1dh2t2... and t1t2... are called the timed trace and firing sequence
(untimed trace) of ρ, respectively. The total elapsed time during the run ρ, denoted
time(ρ), is

∑
i=1,|ρ|

dhi, where |ρ| is the length of the firing sequence of ρ.

An infinite run ρ is diverging if time(ρ) = ∞, otherwise it is said to be zeno. Runs
of N are all runs of the initial state s0. A TPN model is said to be non-zeno if all its
runs are non-zeno. We consider here only non-zeno TPNs. This restriction ensures that
each enabled transition will eventually become firable in the future, unless it is disabled
by a conflicting transition. The timed language of N is the set of its timed traces. A
marking M is reachable in N iff ∃s ∈ S s.t. the marking of s is M .

2.2 Contracted State Class Graph

Let N = (P, T, pre, post,M0, Is) be a TPN. Several state space abstractions have
been proposed in the literature for N : the State Class Graph (SCG) [5], the Contracted
State Class Graph (CSCG) [10], the Geometric Region Graph (GRG) [25], the Strong
State Class Graph (SSCG) [5], the Zone Based Graph (ZBG) [7] and the Atomic State
Class Graphs (ASCGs) [5,8,25]. In such abstractions, all states grouped in the same
node share the same marking and the union of their time domains is represented by a
consistent conjunction of atomic constraints7. From the practical point of view, every
conjunction of atomic constraints is represented by means of a Difference Bound Matrix
(DBM) [2]. Although the same nonempty domain may be encoded by different conjunc-
tion of atomic constraints, their DBMs have a canonical form. The canonical form of
a DBM is the representation with tightest bounds on all differences between variables,
computed by propagating the effect of each entry through the DBM. Two conjunctions
of atomic constraints are equivalent (i.e., represent the same domain) iff their DBMs
have the same canonical form. Canonical forms make operations over formulas much
simpler [2].

Among these abstractions, we consider the CSCG. The CSCG is the quotient graph
of the SCG [5] w.r.t. some relation of equivalence over state classes of the SCG [10].
Intuitively, this relation groups together all state classes, which have the same marking

7 An atomic constraint is a constraint of the form x ≺ c,−x ≺ c or x − y ≺ c, where x, y are
real-valued variables, ≺∈ {<,=,≤,≥, >} and c ∈ Q ∪ {∞,−∞} is a rational number.

58 H. Boucheneb, K. Barkaoui, and K. Weslati

and triangular constraints8, but not necessarily the same simple atomic constraints9. The
CSCG and SCG have the same reachable markings and firing sequences [10]. In other
words, the CSCG preserves markings and firing sequences of the SCG, which, in turn,
preserves markings and firing sequences of N [5]. The CSCG of N is finite iff N is
bounded (i.e. has a finite number of reachable markings).

Syntactically, a CSCG state class is defined as a pair α = (M,F), where M is a
marking and F is a consistent conjunction of triangular atomic constraints over firing
delays of transitions enabled at M . The formula F characterizes the union of firing
time domains of all states within α. By convention, F = true if the number of en-
abled transitions at M is less than 2 (i.e., there is no triangular atomic constraint in
F). A state s′ = (M ′, I ′) belongs to α iff M = M ′ and its firing time domain (i.e.,∧
t∈En(M′)

↓ I ′(t) ≤ t ≤ ↑ I ′(t)) is included in the firing time domain of α (i.e., F).

The CSCG initial state class is α0 = (M0, F0), where

F0 =
∧

t,t′∈En(M0) s.t. t�=t′
t− t′ ≤ ↑ Is(t)− ↓ Is(t′),

t and t′ being real-valued variables representing firing delays of transitions t and t′,
respectively. It keeps only the triangular atomic constraints of the SCG initial state
class.

Let CS be the set of all syntactically correct CSCG state classes and succ a successor
function from CS × T to CS ∪ {∅} defined by: ∀α ∈ CS , ∀tf ∈ T,

– succ(α, tf) �= ∅ (i.e., tf is firable from α) iff tf ∈ En(M) and the following
formula is consistent (its domain is not empty): F ∧ (

∧
t∈En(M)

tf − t ≤ 0).

Intuitively, this formula, called the firing condition of tf from α, means that tf is
firable from α before all other transitions enabled at M . In other words, there is at
least a valuation of firing delays in F s.t. tf has the smallest firing delay.

– If succ(α, tf) �= ∅ then succ(α, tf) = (M ′, F ′), where:
M ′ = M − pre(tf) + post(tf) and F ′ is computed in three steps:
1) Set F ′ to F ∧

∧
t∈En(M)

tf − t ≤ 0 ∧
∧

t′∈Nw(M,tf)

↓ Is(t′) ≤ t′f − tf ≤↑ Is(t′)

(Variables t′f for t′ ∈ Nw(M, tf) are new variables introduced for representing
the firing delays of the newly enabled transitions. The notation t′f allows to deal
with the situation where t′ is enabled before firing tf and newly enabled by tf (i.e.
t′ ∈ CF (M, tf) ∩ Nw(M, tf)). The new instance of t′ is temporally represented
by t′f , in this step);
2) Put F ′ in canonical form10 and eliminate all transitions of CF (M, tf);
3) Rename each t′f into t′.

Let α = (M,F) ∈ CS . We denote by Fr(α) = {t ∈ T | succ(α, t) �= ∅} the set
of transitions firable from α. The function succ is extended to sequences of transitions
as follows: ∀ω ∈ T ∗, succ(α, ω) = succ(succ(α, ω1), ω2), where ω = ω1ω2 and, by

8 A triangular atomic constraint is an atomic constraint of the form x− y ≺ c.
9 A triangular atomic constraint is an atomic constraint of the form x ≺ c or −x ≺ c.

10 The canonical form of F ′ is the formula corresponding to the canonical form of its DBM.

Delay-Dependent Partial Order Reduction Technique for Time Petri Nets 59

convention, succ(α, ε) = α, ε being the empty sequence. We denote by ||ω|| ⊆ T the
set of transitions appearing in ω.

The CSCG of N is the structure C = (C, succ, α0), where α0 is the initial CSCG
state class of N and C is the set of state classes accessible from α0 by applying repeat-
edly the successor function succ, i.e., C = {α ∈ CS |∃ω ∈ T ∗, α = succ(α0, ω) �= ∅}.
A sequence ω ∈ T+ is a firing sequence of C iff succ(α0, ω) �= ∅.

p1 p2

p3 p4

t1[1, 2] t2[1, 1]

t3[2, 2] t4[1, 1]

• •

p1 p2

p3 p4

t1[2, 2] t2[1, 3]

t3[2, 2] t4[1, 1]

• •

a) TPN1 b) TPN2

Fig. 1. Two simple TPNs

Example 1. Consider the model TPN2 at Fig.1.b. Its CSCG initial state class is:
α0 = (p1 + p2,−1 ≤ t1 − t2 ≤ 1). There are two enabled transitions t1 and t2, which
are also firable from α0, since their firing conditions −1 ≤ t1 − t2 ≤ 1 ∧ t1 ≤ t2 and
−1 ≤ t1 − t2 ≤ 1 ∧ t2 ≤ t1 are consistent. For instance, let us compute the successor
of α0 by t1. The firing of t1 leads to the state class α1 = (p2+p3,−2 ≤ t2− t3 ≤ −1).
Its marking is computed as usual. Its formula is computed in three steps:

1) Set the formula to the firing condition of t1 from α0 augmented with time constraints
of transition t3 newly enabled by t1: −1 ≤ t1 − t2 ≤ 1 ∧ t1 ≤ t2 ∧ t13 − t1 = 2;
2) Put the formula in canonical form and eliminate t1: −2 ≤ t2 − t13 ≤ −1;
3) Rename t13 in t3: −2 ≤ t2 − t3 ≤ −1.

Following the same procedure, we obtain succ(α, t1t2) = (p3 + p4, 0 ≤ t3 − t4 ≤ 1)
and succ(α, t2t1) = (p3 + p4, 1 ≤ t3 − t4 ≤ 2).

3 Partial Order Reduction Based on POSETs

3.1 Partial Order Successors and Reduced State Class Graphs

The idea of partial order successors is to relax the firing condition of a transition by
eliminating some firing order constraints when computing successors of state classes.
The aim is to handle concisely the equivalent sequences of transitions, obtained by per-
muting some independent transitions (i.e., partially ordered sets of transitions). As a
result, the union of state classes reached by all these sequences is computed by explor-
ing only one of them.

60 H. Boucheneb, K. Barkaoui, and K. Weslati

Definition 2. Let α = (M,F) be a state class of CS , tf ∈ T a transition and X ⊆
T a subset of transitions. The partial order successor of α by tf w.r.t. X , denoted
succX(α, tf), is either equal ∅ or a state class of CS defined by:

succX(α, tf) �= ∅ iff X ⊆ En(M) ∧ succ(α, tf) �= ∅.

If succX(α, tf) �= ∅ then the state classα′ = succX(α, tf) is computed as succ(α, tf),
except that the firing condition, used in step 1, is replaced with: F ∧

∧
t∈X

tf ≤ t.

Formally, If succX(α, tf) �= ∅ then succX(α, tf) = (M ′, F ′), where
M ′ = M − pre(tf) + post(tf) and F ′ is computed in three steps:
1) Set F ′ to F ∧

∧
t∈X

tf ≤ t ∧
∧

t′∈Nw(M,tf)

↓ Is(t′) ≤ t′f − tf ≤↑ Is(t′);

2) Put F ′ in canonical form and eliminate all transitions of CF (M, tf);
3) Rename each t′f in t′.
The formula used in step 1, called the processing formula of succX(α, tf), does not
impose any firing order between tf and transitions of En(M)−X . Therefore, it holds
that ∀tf ∈ T, succ(α, tf) ⊆ succX(α, tf) and succEn(M)(α, tf) = succ(α, tf).

Example 2. Consider the model TPN2 at Fig.1.b and its initial state class
α0 = (p1 + p2,−1 ≤ t1 − t2 ≤ 1). Transitions t1 and t2 are both enabled and firable
from α0. Therefore, succ{t1}(α0, t1) �= ∅ and succ{t2}(α0, t2) �= ∅. For instance,
succ{t1}(α0, t1) is the state class α′

1 = (M ′
1, F

′
1), where M1 = p2 + p3 and F ′

1 is
computed in three steps:
1) Set F ′

1 to −1 ≤ t1 − t2 ≤ 1 ∧ tn3 − t1 = 2;
2) Put the formula in canonical form and eliminate t1: −3 ≤ t2 − tn3 ≤ −1;
3) Rename tn3 in t3: −3 ≤ t2 − t3 ≤ −1.
The partial order successor of α′

1 by t2 w.r.t. {t2} is α′
2 = (p3 + p4, 0 ≤ t3 − t4 ≤ 2),

where its formula F ′
2 is computed in three steps:

1) Set F ′
2 to −3 ≤ t2 − t3 ≤ −1 ∧ tn4 − t2 = 1;

2) Put the formula in canonical form and eliminate t1: 0 ≤ t3 − tn4 ≤ 2;
3) Rename tn4 in t4: 0 ≤ t3 − t4 ≤ 2.
Note that succ{t2}(succ{t1}(α0, t1), t2) = succ(α0, t1t2)∪ succ(α0, t2t1). Therefore,
succ(succ{t2}(succ{t1}(α0, t1), t2), t3) gives the union of state classes reached by se-
quences t1t2t3 and t2t1t3. The union of these sequences can be represented by the
partially ordered set ({t1, t2, t3}, t1 ≤ t3 ∧ t2 ≤ t3).

We provide, in the following, some relationships between successors and partial or-
der successors of state classes, which will be helpful to establish a partial order reduc-
tion technique and prove that it preserves the non-equivalent firing sequences of the
TPN. Let us first define the notion of effect-independent transitions used in our partial
order reduction technique (instead of the notion of truth parent [26]).

Definition 3. Let α = (M,F) ∈ CS be a state class, ti ∈ Fr(α) and tj ∈ Fr(α) two
transitions firable from α. Let Mi and Mj be the successor markings of M by ti and tj ,
respectively. Transitions ti and tj are effect-independent in α, denoted ti||αtj iff their
effects are independent of their firing order, i.e.,

Delay-Dependent Partial Order Reduction Technique for Time Petri Nets 61

CF (M, ti) = CF (Mj , ti) ∧ CF (M, tj) = CF (Mi, tj) ∧
Nw(M, ti) = Nw(Mj , ti) ∧ Nw(M, tj) = Nw(Mi, tj).

Note that the relation ||α is symmetric (i.e., ti||αtj iff tj ||αti).

Lemma 1. Let α = (M,F) ∈ CS , ti ∈ Fr(α), Mi the successor marking of M by ti,
and X ⊆ En(M) s.t. CF (M, ti) ⊆ X .
(i) ∀tj ∈ X ∩ En(Mi), succ(succX(α, ti), tj) = succ(α, titj) and
(ii) ∀tj ∈ Fr(α) −X, s.t. X ∩ CF (M, tj) = ∅ ∧ ti||αtj ,
succ(succX(α, ti), tj) = succ(α, titj) ∪ succX(succ(α, tj), ti)

Proof. The transition ti is firable from α. Then, succ(α, ti) �= ∅ and succX (α, ti) �= ∅.
(i) The processing formula of succ(succX (α, ti), tj), denoted φ, is:

(F ∧
∧
t∈X

ti ≤ t ∧
∧

t′∈Nw(M,ti)

↓ Is(t′) ≤ ti − ti ≤↑ Is(t′)) ∧

(
∧

t∈En(Mi)−Nw(M,ti)

tj ≤ t∧
∧

t′∈Nw(M,ti)

tj ≤ t′i∧
∧

t′∈Nw(Mi,tj)

↓ Is(t′) ≤ t′j−tj ≤↑ Is(t′)).

By assumption, tj ∈ X ∩ En(Mi). There are two cases: tj ∈ X ∩ Nw(M, ti) (i.e., tj is
newly enabled at Mi) and tj ∈ (En(M) − CF (M, ti)) ∩ X (i.e., tj is not newly enabled at
Mi but belongs to X). In both cases, it holds that (φ ∧ ti ≤ tj) ≡ φ. By definition, En(Mi) =
(En(M) − CF (M, ti)) + Nw(M, ti). Therefore, the following constraints of φ: ti ≤ tj ∧
tj ≤ t, for t ∈ En(M) − CF(M, ti) imply ti ≤ t for t ∈ En(M) − CF (M, ti). Adding
these redundant constraints to φ does not affect its domain. Since CF (M, ti) ⊆ X , En(M) =
(En(M) ∩X) ∪ (En(M)−CF (M, ti)) and then φ is equivalent to:

(F ∧
∧

t∈En(M)

ti ≤ t ∧
∧

t′∈Nw(M,ti)

↓ Is(t′) ≤ t′i − ti ≤↑ Is(t′))∧

(
∧

t∈En(Mi)−Nw(M,ti)

tj ≤ t∧
∧

t′∈Nw(M,ti)

tj ≤ t′i∧
∧

t′∈Nw(Mi,tj)

↓ Is(t′) ≤ t′j−tj ≤↑ Is(t′)).

Therefore, succ(succX(α, ti), tj) = succ(α, titj).
(ii) By assumption, ti ∈ Fr(α), tj ∈ Fr(α)−X and CF(M, ti) ⊆ X . Then, succ(α, titj) �= ∅
and succ(α, titj) ⊆ succ(succX(α, ti), tj) �= ∅. Consider now the processing formula above φ
of succ(succX (α, ti), tj). It holds that φ ≡ ((φ∧ ti ≤ tj)∨ (φ∧ tj ≤ ti)). Following the same
steps as in (i), we show that (φ ∧ ti ≤ tj) is equivalent to the firing condition of succ(α, titj).
For (φ ∧ tj ≤ ti), by definition, En(Mi) = (En(M) − CF (M, ti)) + Nw(M, ti) and, by
assumption, X ∩ CF (M, tj) = ∅. Therefore, the following constraints of φ: tj ≤ ti ∧ ti ≤ t,
for t ∈ X imply tj ≤ t for t ∈ X . Adding these redundant constraints to φ ∧ tj ≤ ti does not
affect its domain. Since CF (M, ti) ⊆ X ⊆ En(M), En(M) = (En(M)−CF(M, ti))∪X ,
we can state that φ ∧ tj ≤ ti is equivalent to:

(F ∧
∧
t∈X

ti ≤ t ∧
∧

t′∈Nw(M,ti)

↓ Is(t′) ≤ t′i − ti ≤↑ Is(t′))∧

(
∧

t∈En(M)

tj ≤ t ∧
∧

t′∈Nw(Mi,tj)

↓ Is(t′) ≤ t′j − tj ≤↑ Is(t′)).

Let Mj be the successor marking of M by tj . By assumption, ti ||α tj and X ⊆ (En(M) −
CF (M, tj)). It follows that X ⊆ En(Mj) and then φ ∧ tj ≤ ti is equivalent to the processing
formula of succX(succ(α, tj), ti). Consequently, succ(succX (α, ti), tj) = succ(α, titj) ∪
succX(succ(α, tj), ti). ��

62 H. Boucheneb, K. Barkaoui, and K. Weslati

Intuitively, given a selection procedure (over state classes) of the representative tran-
sitions, a reduced state class graph based on POSETs is generated by first computing
the partial order successors of the initial state class, by its selected transitions w.r.t.
themselves, and then repeating the procedure for each computed but not processed state
class.

Definition 4. Let C = (C, succ, α0) be the CSCG of a TPN N and G a function from
CS to 2T called a partial order generator. The reduced state class graph (RSCG for
short) generated byG is the tupleR=(G, CG, succG, α0), where CG={α|α0

∗−→G α}
is the set of reachable state classes in R and

∗−→G is the reflexive and transitive closure
of the transition relation −→G defined by: ∀α, α′ ∈ CS , ∀tf ∈ T,

α
tf−→G α′ iff tf ∈ G(α) ∧ succ(α, tf) �= ∅ ∧ α′ = succG(α)(α, tf).

Let α ∈ CG and ω = t1t2...tn be a sequence of transitions. We write α
ω−→G αn iff

∃α1, α2, ..., αn ∈ CG s.t. α
t1−→G α1

t2−→G α2...
tn−→G αn, with αn = succG(α, ω).

The RSCG R preserves the non-equivalent sequences of the CSCG C iff for each
maximal sequence of R, there is an equivalent sequence in C and vice-versa.

4 RSCG Preserving Non-equivalent Sequences of N
We propose, in the following, a partial order generator G and show that it results in a
RSCG preserving non-equivalent sequences of the CSCG. The proposed generator takes
into account the structure of the TPN, including the static firing intervals of transitions,
the marking and the firing domain of the current state class. The timing information
derived from the structure of the TPN is captured in a matrix called the delay lower
bound matrix.

4.1 Delay Lower Bound Matrix of N
According to the TPN semantics, when a transition tj is fired, the conflicting transitions
are disabled and new transitions may be enabled. The firing delay interval of each newly
enabled transition ti refers to its enabling date (i.e., the firing date of tj). The lower
bound of the firing delay of transition ti relatively to the firing date of tj is ↓ Is(ti). We
define the delay lower bound matrix L as a square matrix over the set of transitions T ,
where: ∀ti, tj ∈ T,

lij =

{
0 if ti = tj

↓ Is(ti) if ti �= tj ∧ pre(ti)× post(tj) �= 0

∞ otherwise.
We denote by L̄ the canonical form of L obtained by applying the Floyd-Warshall’s
shortest path algorithm. This algorithm converges, as the lower bounds of the static
firing intervals are non-negative finite rational numbers. Intuitively, l̄ij is a lower bound
of the firing delay of the transition ti, relatively to the firing date of the transition tj , for
the case where ti is not enabled when tj is fired. Note that l̄ij = ∞ means that there is
no path connecting tj to ti and then ti cannot be enabled directly or indirectly by tj .

Delay-Dependent Partial Order Reduction Technique for Time Petri Nets 63

Table 1. Firing delay lower bound matrix of the TPN1 at Fig.1.a and its canonical form

L t1 t2 t3 t4

t1 0 ∞ ∞ 1
t2 ∞ 0 ∞ 2
t3 1 ∞ 0 ∞
t4 2 2 ∞ 0

L̄ t1 t2 t3 t4

t1 0 2 ∞ 1
t2 2 0 ∞ 1
t3 2 4 0 3
t4 1 1 ∞ 0

Example 3. Table 1 reports the matricesL and L̄ of the TPN at Fig.1.a. For instance, the
value 2 of l̄21 is a lower bound of the firing delay of t2, relatively to the firing date of t1,
in case t2 is not enabled when t1 is fired. It corresponds to the potential situation where
t1 enables t4, which, in turn, enables t2 (i.e., l̄21 = l24 + l41 = ↓ Is(t2) + ↓ Is(t4)).
Note that a lower bound of the enabling delay of t2 relatively to the firing date of t1, in
case t2 is not enabled when t1 is fired, is l̄21 − ↓ Is(t2) = 1.

4.2 Computing a Partial Order Generator G

Several algorithms have been proposed in the literature to compute partial order gen-
erator G for the RSCG preserving different kinds of properties such as deadlocks and
LTL−X properties. In general, these algorithms infer G from the static structure of the
model, without taking into account the timing information. We propose here an algo-
rithm for computing G inspired from the stubborn sets method [24,26], but does not
use the notion of truth parent [26]. It uses instead the notion of effect-independent tran-
sitions and the (static and dynamic) timing information of the model. For each state
class, the idea is to select a firable transition and recursively select all enabled transi-
tions which may affect directly/indirectly the effects of the selected ones, until reaching
a fix point. Formally, let α = (M,F) be a state class, D the canonical form of F (i.e.,
dij = Max(ti − tj |F), for ti, tj ∈ En(M)). The set G(α) is the smallest set of tran-
sitions of En(M), which satisfies all the following conditions:
C0: Fr(α) �= ∅ ⇔ G(α) ∩ Fr(α) �= ∅.
C1: ∀ti ∈ G(α),CF (M, ti) ⊆ G(α).
C2: ∀ti ∈ G(α), ∀tj ∈ En(M),

∀tk ∈ Adj(ti)− En(M), l̄kj− ↓ Is(tk) ≤ dij ⇒ tj ∈ G(α),
C3: ∀ti ∈ G(α), ∀tj ∈ Fr(α), not(ti ||α tj) ⇒ tj ∈ G(α) and
C4: ∀ti ∈ G(α), ∀tj ∈ En(M), ti /∈ Fr(α) ∧ tj ∈ Fr(α) ⇒ tj ∈ G(α).
We denote by SC the conjunction C0 ∧ C1 ∧ C2 ∧ C3 ∧ C4. Intuitively, C0 ensures
that G(α) is empty only for deadlock state classes. Condition C1 means that there is no
transition outside G(α) in conflict, in M , with a transition of G(α). Therefore, the fir-
ing of any transition outside G(α) will not disable any transition of G(α). Condition C2
ensures that during the enabledness of any transition ti of G(α), no transition tj outside
G(α) may enable directly/indirectly a transition which is adjacent to ti. Conditions C2
and C3 implies that the effect of ti will not be affected by firing any transition outside
G(α). They ensure that succG handles all equivalent sequences resulting from permut-
ing transitions of G(α) with other firable transitions [6]. Condition C4 states that there
is no transition tj outside G(α), which must be fired before some transition of G(α).

64 H. Boucheneb, K. Barkaoui, and K. Weslati

4.3 Does G Preserve the Non-equivalent Firing Sequences of N ?

The proof that G preserves the non-equivalent firing sequences of N is stated in Theo-
rem 1. It is based on some useful conditions established in Lemma 2.

Lemma 2. Let α = (M,F) be a state class. Then:
G(α) |= SC ⇒ ∀ω ∈ (T −G(α))+,

succ(α, ω) �= ∅ ⇒ ∀ti ∈ G(α), (i) succ(α, ωti) �= ∅ ∧ (ii) succ(α, tiω) �= ∅.

Proof. By assumption succ(α, ω) �= ∅. Since the first transition of ω is firable from α and does
not belong to G(α), then C0 of SC implies that G(α) �= ∅; C4 of SC imposes that ti is firable
from α; C1 of SC states that CF (M, ti) ⊆ G(α).
(i): Suppose that for some ti ∈ G(α), succ(α, ωti) = ∅. As ti ∈ Fr(α) and CF (M, ti) ⊆
G(α), this assumption implies that there are at least two transitions tj and tk in ||ω|| s.t. tj is
enabled and not conflict with ti in M (i.e., tj ∈ En(M)−CF (M, ti)), and tk is enabled directly
or indirectly by tj but in conflict with ti, which implies that tk ∈ Adj(ti)− En(M). The delay
between the firing date of tj and the enabling date of tk can at least be equal to L̄kj− ↓ Is(tk).
From the fact that tj /∈ G(α) and tk ∈ Adj(ti)− En(M), by construction of G(α) (i.e., C2 of
SC), it holds that L̄kj− ↓ Is(tk) > dij . By definition, dij is the maximal delay between the firing
dates of transitions tj and ti (i.e., maximal value of ti − tj in the firing domain of α). Therefore,
L̄kj− ↓ Is(tk) > dij implies that, after firing tj , ti will reach its maximal firing delay before
that tk becomes enabled and then succ(α, ω) = ∅, which contradicts the assumption. Therefore,
succ(α, ω) �= ∅ ⇒ succ(α, ωti) �= ∅.
(ii): Conditions C1, C2 and C3 of SC imply that the firing of transitions of ω does not affect the
effect of ti. Let ω = t1...tn , n ≥ 1. The effect of ti from α and succ(α, t1) is the same. Since
from M , sequences t1ti and tit1 lead to the same marking, it follows that t1 and ti are effect-
independent in α. Sequences t1ti and tit1 are then both firable from α. We repeat recursively the
same process on succ(α, t1) and the first transition of t2...tn until processing all transitions of
ω. Therefore, ti is effect-independent of all transitions of ω and then succ(α, tiω) �= ∅. ��
Theorem 1. Let N be a TPN with no unbounded static firing intervals. Then:
G |= SC ⇒ the RSCG preserves non-equivalent sequences of the CSCG.

Proof. Let M be a marking and ω a firing sequence of M (i.e., M [ω >). The sequence ω of M
is maximal iff it is infinite or leads to a deadlock marking. Let Ω(M) be a set of maximal firing
sequences of M . To prove that the RSCG preserves the non-equivalent firing sequences of the
CSCG, it suffices to show that: ∀α = (M,F) ∈ CS,
(i) ∀ω ∈ Ω(M), succ(α, ω) �= ∅ ⇒ ∃ω′ ∈ T+, ω ≡ ω′ ∧ succG(α, ω

′) �= ∅ and
(ii) ∀ω ∈ Ω(M), succG(α, ω) �= ∅ ⇒ ∃ω′ ∈ T+, ω ≡ ω′ ∧ succ(α, ω′) �= ∅.
(i) : By assumption, ω is a maximal sequence of M and succ(α, ω) �= ∅. Then, Fr(α) �= ∅.
According to C0 of SC, G(α) �= ∅. From the fact the TPN has no unbounded intervals, the non-
zenoness, assumed here, guarantees that each enabled transition will eventually fire in the future,
unless it is disabled by another firing. Transitions outside G(α) cannot disable any transition of
G(α). We can then state that ω contains at least a transition of G(α), i.e., ∃tf ∈ G(α),∃ω1 ∈
(T − G(α))∗, ∃ω2 ∈ T ∗, s.t. ω = ω1tfω2. According to Lemma 2, succ(α, ω1) �= ∅ ⇒
succ(α, ω1tf) �= ∅ ∧ succ(α, tfω1) �= ∅. Since succ(α, tfω1) ⊆ succ(succG(α)(α, tf), ω1),
it follows that succ(succG(α)(α, tf), ω1ω2) �= ∅.
Let α1 = succG(α)(α, tf) = (M1, F1). The sequence ω1ω2 is a maximal sequence of M1.
We repeat the same process on α1 and ω1ω2 until reaching a deadlock or a state class already
processed. Therefore, ∃ω′ ∈ T+, ω′ ≡ ω ∧ succG(α, ω′) �= ∅.
(ii) : 1) For ω = t1, by definition, succG(α)(α, t1) �= ∅ iff succ(α, t1) �= ∅.

Delay-Dependent Partial Order Reduction Technique for Time Petri Nets 65

2) For ω = t1t2, succG(α)(α, t1t2) �= ∅ iff succ(succG(α)(α, t1), t2) �= ∅. If t2 ∈ G(α) or
t2 /∈ Fr(α), according to Lemma 1, succ(succG(α)(α, t1), t2) = succ(α, t1t2) �= ∅. Other-
wise, from C3 of SC and Lemma 1, it follows that t1||αt2, sequences t1t2 and t2t1 are firable
from α, and succ(succG(α)(α, t1) = succ(α, t1t2) ∪ succG(α)(succ(α, t2), t1).
3) For ω = t1...tn, with n > 2, succG(α, ω) �= ∅ iff succ(succG(α, t1...tn−1), tn) �= ∅.
Let αn−1 = succG(α, t1...tn−2). If tn ∈ G(αn−1) or tn /∈ Fr(αn−1), according to Lemma
1, succ(succG(α, t1...tn−1), tn) = succ(succG(α, t1...tn−2), tn−1tn). Otherwise, using C3
of SC and Lemma 1, we state that tn−1||αtn, sequences tn−1tn and tntn−1 are firable from
succG(α, t1...tn−2), and succ(succG(α, t1...tn−1), tn) =
succ(succG(α, t1...tn−2), tn−1tn) ∪ succG(α(succ(succG(α, t1...tn−2), tn), tn−1).
Now, it suffices to repeat the same development process until reaching terms where succ is di-
rectly applied on α. Each time two adjacent transitions are permuted, they are firable in both
order and effect-independent. Therefore, succG(α, ω) �= ∅ ⇒ ∃ω′ ≡ ω, succ(α, ω′) �= ∅. ��

For a TPN with unbounded firing intervals, the non-zenoness, assumed here, guaran-
tees that each enabled transition will become firable in the future, unless it is disabled
by another firing. However, the firing of a transition, with an unbounded static firing
interval, may be delayed indefinitely to lead in the reduced graph to some cycle such
that the transition is firable from all state classes of the cycle but does not belong to
their G (unfair sequence). The fairness criterion (we must not indefinitely neglect some
transition) is not guaranteed by SC. To deal with the fairness criterion, G has to sat-
isfy, in addition to SC, the Cycle closing condition, i.e., for every cycle in the reduced
state class graph, there is at least one state class s.t. its G is equal to its set of firable
transitions (fully expanded node) considered in [20] to address the same problem. With
this additional condition, Theorem 1 is also valid for TPNs with unbounded static firing
intervals.

Table 2. Some experimental results

TPN RSCG RSCG’ CSCG TPN RSCG RSCG’ CSCG
SH (1) SH (3)

NSC 230 888 1011 NSC 1524 71591 79231
NCSC 303 1494 1816 NCSC 2030 228182 265362

CPU (s) 0 0 0 CPU (s) 0 690 976
HC (2) HC (3)

NSC 236 398 889 NSC 1294 4165 10654
NCSC 306 560 2021 NCSC 1842 7864 35554

CPU (s) 0 0 0 CPU (s) 0 2 8
HC (4) HC (5)

NSC 10447 39822 102265 NSC 59468 ? > 151090 ? > 140823
NCSC 15284 100749 446242 NCSC 93614 > 494987 > 579023

CPU (s) 15 202 2221 CPU (s) 367 > 3600 > 3600

FMS(2) FMS(3)
NSC 3434 7791 7824 NSC 6839 29164 29235

NCSC 4862 20908 21254 NCSC 9496 86485 90017
CPU (s) 1 2 2 CPU (s) 4 77 71

FMS(4) FMS(5)
NSC 31330 107307 117316 NSC 68506 ? > 197144 ? > 187677

NCSC 45337 330480 396066 NCSC 99816 > 551688 > 583206
CPU (s) 60 1248 1908 CPU (s) 270 > 3600 > 3600

Is of HC Is of FMS
t1[1, 2] tp1[3, 3]
t2[2, 3] tp2[3, 3]
t3[3, 3] tp3[3, 3]
t4[1, 1] tm1[1, 1]
t5[1, 2] tm2[1, 1]
t6[1, 2] tp3m2[1, 2]
t7[3, 3] tp3s[1, 2]
t8[2, 2] tp1m1[2, 2]
t9[1, 1] tp2m2[1, 1]
t10[1, 1] tp1e[1, 1]
t11[1, 2] tp1j[1, 1]
t12[2, 3] tp2j[2, 2]
t13[1, 1] tp2e[1, 1]
t14[1, 1] tp1s[1, 2]
t15[1, 1] tp12[1, 2]
t16[1, 2] tp2s[1, 1]
t17[1, 1] tm3[1, 1]
t18[1, 4] tp12m3[2, 2]

tp12s[1, 2]
tx[2, 2]

66 H. Boucheneb, K. Barkaoui, and K. Weslati

5 Experimental Results

We have tested our partial order technique on several small TPNs, the model of de-
pendent task scheduling taken from [21]11 and the extension with static firing intervals
of two models taken from the MCC (Model Checking Contest) held within Petri Nets
201312: HouseConstruction (HC in short) and FMS (see Table 2 for their static firing
intervals). Table 2 reports the number of state classes (NSC), the number of computed
state classes (NCSC) and the CPU time in seconds of the RSCG, RSCG’ and CSCG
for SH , HC and FMS . The graph RSCG’ is a variant of the RSCG, where C2 of SC is
replaced with C2’: ∀ti ∈ G(α), ∀tj ∈ En(M), ∀tk ∈ Adj(ti)− En(M), l̄kj �= ∞ ⇒
tj ∈ G(α). Intuitively, C2’ means that G(α) includes all enabled transitions which may
enable directly / indirectly any transition adjacent to some transition of G(α). In other
words, unlike C2, C2’ does not consider the firing delays of transitions. An interroga-
tion mark indicates a situation where the computation has not been completed after 1
hour. Note that for a state class α, G(α) is computed by choosing randomly a firable
transition tf from Fr(α), setting G(α) to CF (M, tf), and then applying recursively,
C1, C2, C3 and C4 until a fix point is reached. Its size is dependent on the first selected
transition. The model HC (n) is a free-choice and connected TPN13, n being the initial
marking of the source place p1. The model FMS (n) is a strongly-connected TPN14,
n being the initial marking of places p1, p2 and p3. For all tested models, the RSCG
shows a significant reduction in time and number of computed state classes, compared
to the CSCG and the RSCG’. The gain (in time and space) of the RSCG’ over the CSCG
is much more significant for the connected TPN (HC (n)) than the strongly-connected
TPN (FMS (n)). The reason is that in strongly-connected TPNs, every transition is
reachable from any other one and then C2′ will always hold. Furthermore, we obtain
further reduction, when we increase the marking, as it results in increasing the number
of concurrent enabled transitions.

6 Conclusion

In this paper, we have considered the TPN model and proposed, using its CSCG, a
partial order reduction technique, which preserves non-equivalent firing sequences of
the TPN. Our technique is inspired from the stubborn sets [24,26] but takes into account
the (static and dynamic) timing information of the model. For the tested models, the
proposed technique allows a significant gain in time and space, in comparison with its
”untimed” version and the CSCG.

11 The model is referred here as SH(n), n being the number of tokens in place pstart.
12 http://mcc.lip6.fr
13 A free-choiceTPN is a TPN, where for every transition t, pre(t) and post(t) are sets of places,

and the sets of input places of any pair of transitions are either equal or disjoint. In a strongly-
connected TPN, there is a directed path between every two nodes (places or transitions).

14 In a connected TPN, there is a undirected path between every two nodes.

Delay-Dependent Partial Order Reduction Technique for Time Petri Nets 67

References

1. Belluomini, W., Myers, C.J.: Timed state space exploration using POSETs. IEEE Transac-
tions on Computer-Aided Design of Integrated Circuits 19(5), 501–520 (2000)

2. Bengtsson, J.: Clocks, DBMs and States in Timed Systems. PhD thesis, Dept. of Information
Technology, Uppsala University (2002)

3. Bengtsson, J.E., Jonsson, B., Lilius, J., Yi, W.: Partial order reductions for timed systems.
In: Sangiorgi, D., de Simone, R. (eds.) CONCUR 1998. LNCS, vol. 1466, pp. 485–500.
Springer, Heidelberg (1998)

4. Bérard, B., Cassez, F., Haddad, S., Lime, D., Roux, O.H.: The expressive power of time Petri
nets. Theoretical Computer Science 474, 1–20 (2013)

5. Berthomieu, B., Vernadat, F.: State class constructions for branching analysis of time Petri
nets. In: Garavel, H., Hatcliff, J. (eds.) TACAS 2003. LNCS, vol. 2619, pp. 442–457.
Springer, Heidelberg (2003)

6. Boucheneb, H., Barkaoui, K.: Reducing interleaving semantics redundancy in reachabil-
ity analysis of time Petri nets. ACM Transactions on Embedded Computing Systems
(TECS) 12(1), 259–273 (2013)

7. Boucheneb, H., Gardey, G., Roux, O.H.: TCTL model checking of time Petri nets. Logic and
Computation 19(6), 1509–1540 (2009)

8. Boucheneb, H., Hadjidj, R.: CTL* model checking for time Petri nets. Theoretical Computer
Science TCS 353(1-3), 208–227 (2006)

9. Boucheneb, H., Lime, D., Roux, O.H.: On multi-enabledness in time Petri nets. In: Colom, J.-
M., Desel, J. (eds.) PETRI NETS 2013. LNCS, vol. 7927, pp. 130–149. Springer, Heidelberg
(2013)

10. Boucheneb, H., Rakkay, H.: A more efficient time Petri net state space abstraction useful to
model checking timed linear properties. Fundamenta Informaticae 88(4), 469–495 (2008)

11. Boyer, M., Diaz, M.: Multiple-enabledness of transitions in time Petri nets. In: 9th IEEE
International Workshop on Petri Nets and Performance Models, pp. 219–228 (2001)

12. Chatain, T., Jard, C.: Complete finite prefixes of symbolic unfoldings of safe time Petri nets.
In: Donatelli, S., Thiagarajan, P.S. (eds.) ICATPN 2006. LNCS, vol. 4024, pp. 125–145.
Springer, Heidelberg (2006)

13. Delfieu, D., Sogbohossou, M., Traonouez, L.M., Revol, S.: Parameterized study of a time
Petri net. In: Cybernetics and Information Technologies, Systems and Applications: CITSA,
pp. 89–90 (2007)

14. Godefroid, P.: Partial-Order Methods for the Verification of Concurrent Systems. LNCS,
vol. 1032, pp. 1–142. Springer, Heidelberg (1996)

15. Håkansson, J., Pettersson, P.: Partial order reduction for verification of real-time components.
In: Raskin, J.-F., Thiagarajan, P.S. (eds.) FORMATS 2007. LNCS, vol. 4763, pp. 211–226.
Springer, Heidelberg (2007)

16. Lilius, J.: Efficient state space search for time Petri nets. In: MFCS Workshop on Concur-
rency - Algorithms and Tools. ENTCS, vol. 8, pp. 113–133 (1998)

17. Lugiez, D., Niebert, P., Zennou, S.: A partial order semantics approach to the clock explosion
problem of timed automata. Theoretical Computer Science TCS 345(1), 27–59 (2005)

18. Minea, M.: Partial order reduction for model checking of timed automata. In: Baeten, J.C.M.,
Mauw, S. (eds.) CONCUR 1999. LNCS, vol. 1664, pp. 431–446. Springer, Heidelberg (1999)

19. Peled, D.: All from one, one for all: on model checking using representatives. In: Courcou-
betis, C. (ed.) CAV 1993. LNCS, vol. 697, pp. 409–423. Springer, Heidelberg (1993)

20. Peled, D., Wilke, T.: Stutter invariant temporal properties are expressible without the next-
time operator. Information Processing Letters 63(5), 243–246 (1997)

68 H. Boucheneb, K. Barkaoui, and K. Weslati

21. Romulo, F., Raimundo, B., Paulo, M.: Analysis of real-time scheduling problems by single
step and maximal step semantics for time petri net models. In: 3rd Brazilian Symposium on
Computing Systems Engineering (SBESC), pp. 107–112 (2013)

22. Ben Salah, R., Bozga, M., Maler, O.: On interleaving in timed automata. In: Baier, C.,
Hermanns, H. (eds.) CONCUR 2006. LNCS, vol. 4137, pp. 465–476. Springer, Heidelberg
(2006)

23. Semenov, A., Yakovlev, A.: Verification of asynchronous circuits using time Petri net unfold-
ing. In: 33rd Annual Conference on Design Automation (DAC), pp. 59–62 (1996)

24. Valmari, A., Hansen, H.: Can stubborn sets be optimal? In: Lilius, J., Penczek, W. (eds.)
PETRI NETS 2010. LNCS, vol. 6128, pp. 43–62. Springer, Heidelberg (2010)

25. Yoneda, T., Ryuba, H.: CTL model checking of time Petri nets using geometric regions.
EICE Trans. Inf. & Syst. E99-D(3), 297–306 (1998)

26. Yoneda, T., Schlingloff, B.H.: Efficient verification of parallel real-time systems. Formal
Methods in System Design 11(2), 187–215 (1997)

On MITL and Alternating Timed Automata

over Infinite Words�

Thomas Brihaye1, Morgane Estiévenart1,��, and Gilles Geeraerts2,���

1 Université de Mons, Belgium
2 Université libre de Bruxelles, Belgium

Abstract. One clock alternating timed automata (OCATA) have been
introduced as natural extension of (one clock) timed automata to express
the semantics of MTL [15]. In this paper, we consider the application of
OCATA to the problems of model-checking and satisfiability for MITL
(a syntactic fragment of MTL), interpreted over infinite words. Our ap-
proach is based on the interval semantics (recently introduced in [5] in
the case of finite words) extended to infinite words. We propose region-
based and zone-based algorithms, based on this semantics, for MITL
model-checking and satisfiability. We report on the performance of a
prototype tool implementing those algorithms.

1 Introduction

Model-checking [7] is today one of the most prominent and successful techniques
to establish automatically the correctness of a computer system. The system
designer provides a model-checker with a model of the system and a formal
property that the system must respect. The model-checker either proves that
the system respects the property, or outputs an error trace that can be used
for debugging. For their implementation, many model-checkers rely on the so-
called automata-based approach, where the behaviours of the system and the
set of bad behaviours are represented by the languages L(B) and L(A¬ϕ) of
Büchi automata B and A¬ϕ respectively. Then, the model-checker performs
automata-based manipulations to check whether L(B) ∩ L(A¬ϕ) = ∅. While
Büchi automata are adequate for modeling systems, properties are more easily
expressed by means of logical sentences. The linear temporal logic (LTL for
short) is arguably one of the most studied logic to express such requirements.
Algorithms to turn an LTL formula ϕ into a Büchi automaton Aϕ recognising
the same language are well-known, thereby enabling its use in model-checkers.

Yet, this classical theory is not adequate for reasoning about real-time prop-
erties of systems, because Büchi automata and LTL can only express sequence of
events, but have no notion of (time) distance between those events. Introduced
by Alur and Dill in 1994 [1], timed automata (an extension of Büchi automata

� The research leading to these results has received funding from the European
Union Seventh Framework Programme (FP7/2007-2013) under Grant Agreement
n◦601148 (CASSTING).

�� This author has been supported by a FRIA scholarship.
��� Supported by a ‘Crédit aux chercheurs’ number 1808881 of the F.R.S./FNRS.

A. Legay and M. Bozga (Eds.): FORMATS 2014, LNCS 8711, pp. 69–84, 2014.
c© Springer International Publishing Switzerland 2014

70 T. Brihaye, M. Estiévenart, and G. Geeraerts

with clocks, i.e. real variables that evolve synchronously) are today the best
accepted model for those real-time systems. Symmetrically, several logics have
been introduced to specify real-time properties of systems. Among them, MITL
(a syntactic fragment of MTL [11]) is particularly appealing, because it com-
bines expressiveness [3] and tractability (MTL is mostly undecidable [3], while
model-checking and satisfiability are ExpSpace-c in MITL). A comprehensive
and efficient automata-based framework to support MITL model-checking (and
other problems such as satisfiability) is thus highly desirable. In a recent work
[5] we made a first step towards this goal in the restricted case of finite words
semantics. We rely on one-clock alternating timed automata (OCATA for short),
in order to avoid the direct, yet involved, translation from MITL to timed au-
tomata first introduced in [3]. The translation from MITL to OCATA – which
has been introduced by Ouaknine and Worrell in the general case of MTL [15] –
is straightforward. However, the main difficulty with alternating timed automata
is that they cannot, in general, be converted into an equivalent timed automaton,
even in the one-clock case. Indeed, a run of an alternating automaton can be
understood as several copies of the same automaton running in parallel on the
same word. Unfortunately, the clock values of all the copies are not always syn-
chronised, and one cannot bound, a priori, the number of different clock values
that one must track along the run. Hence, contrary to the untimed word case,
subset construction techniques cannot be directly applied to turn an OCATA
into a timed automaton (with finitely many clocks).

Our solution [5] amounts to considering an alternative semantics for OCATA,
that we call the interval semantics, where clock valuations are not punctual
values but intervals with real endpoints. One of the features of this semantic
is that several clock values can be grouped into intervals, thanks to a so-called
approximation function. For instance, consider a configuration of an OCATA
with three copies of the automaton currently in the same location �, and with
clock values 0.42, 1.2 and 5.7 respectively. It can be approximated by a single
interval [0.42, 5.7], meaning: ‘there are two copies with clock values 0.42 and
5.7, and there are potentially several copies with clock values in the interval
[0.42, 5.7]’. This technique allows to reduce the number of variables needed to
track the clock values of the OCATA. While this grouping yields an under-
approximation of the accepted language, we have showed [5] that, in the case of
finite words, and for an OCATA Aϕ obtained from an MITL formula ϕ, one can
always define an approximation function s.t. the language of Aϕ is preserved and
the number of intervals along all runs is bounded by a constant M(ϕ) depending
on the formula. Using classical subset construction and tracking the endpoints
of each interval by means of a pair of clocks, we can then translate the OCATA
into a Büchi TA accepting the same language.

In the present work, we continue this line of research and demonstrate that
our techniques carry on to the infinite words case. Achieving this result is
not straightforward because OCATA on infinite words have not been stud-
ied as deeply as in the finite words case, probably because infinite words lan-
guage emptiness of OCATA is decidable only on restricted subclasses [15,17].

On MITL and Alternating Timed Automata over Infinite Words 71

Hence, to reach our goal, we make several technical contributions regarding
infinite words OCATA, that might be of interest outside this work. First, in
Section 3 we adapt the interval semantics of [5] to the infinite words case. Then,
in Section 4, we introduce tree-like OCATA (TOCATA for short), a subclass of
OCATA that exhibit some structure akin to a tree (in the same spirit as the Weak
and Very Weak Alternating Automata [12,10]). For every MTL formula ϕ, we
show that the OCATA Aϕ obtained by the Ouaknine and Worrell construction
[15] recognises the language of ϕ (a property that had never been established in
the case of infinite words, as far as we know1), is in fact a TOCATA. This shows
in particular that TOCATA are semantically different from the ‘weak OCATA’
introduced in [17] (where ‘weak’ refers to weak accepting conditions), and whose
emptiness problem is decidable. We prove specific properties of TOCATA that
are important in our constructions (for instance, TOCATA on infinite words
can be easily complemented), and we adapt the classical Miyano and Hayashi
construction [14] to obtain a procedure to translate any TOCATA Aϕ obtained
from an MITL formula into an equivalent timed Büchi automaton Bϕ. Equipped
with these theoretical results, we propose in Section 6 algorithms to solve the
satisfiability and model-checking problems of MITL. We define region-based and
zone-based [2] versions of our algorithms. Our algorithms work on-the-fly in the
sense that they work directly on the structure of the OCATA Aϕ (whose size
is linear in the size of ϕ), and avoid building Bϕ beforehand (which is, in the
worst case, exponential in the size of ϕ). Finally in Section 6, we present proto-
type tools implementing those algorithms. To the best of our knowledge, these
are the first tools solving those problems for the full MITL. We report on and
compare their performance against a benchmark of MITL formulas whose sizes
are parametrised. While still preliminary, the results are encouraging. Missing
proofs can be found in the full version of this paper [6].

2 Preliminaries

Basic notions. Let R, R+ and N denote the sets of real, non-negative real and
natural numbers respectively. We call interval a convex subset of R. We rely
on the classical notation 〈a, b〉 for intervals, where 〈 is (or [, 〉 is) or], a ∈ R
and b ∈ R ∪ {+∞}. For an interval I = 〈a, b〉, we let inf(I) = a be the infimum
of I, sup(I) = b be its supremum (a and b are called the endpoints of I) and
|I| = sup(I)− inf(I) be its length. We note I(R) the set of all intervals. We note
I(R+) (resp. I(N+∞)) the set of all intervals whose endpoints are in R+ (resp.
in N ∪ {+∞}). Let I ∈ I(R) and t ∈ R, we note I + t for {i+ t ∈ R | i ∈ I}.

Let Σ be a finite alphabet. An infinite word on a set S is an infinite sequence
s = s1s2s3 . . . of elements in S. An infinite time sequence τ̄ = τ1τ2τ3 . . . is an
infinite word on R+ s.t. ∀i ∈ N, τi ≤ τi+1. An infinite timed word over Σ is a pair
θ = (σ̄, τ̄) where σ̄ is an infinite word over Σ, τ̄ an infinite time sequence. We
also note θ as (σ1, τ1)(σ2, τ2)(σ3, τ3) We denote by TΣω the set of all infinite
timed words. A timed language is a (possibly infinite) set of infinite timed words.

1 Even in [15] where the authors consider a fragment of MTL over infinite words, but
consider only safety properties that are reduced to questions on finite words.

72 T. Brihaye, M. Estiévenart, and G. Geeraerts

�� �♦

b a, b

b
x ∈ [1, 2]

a x := 0 0 1 2 3 time

aa ab b

Fig. 1. (left) OCATA Aϕ with ϕ = ��(a ⇒ ♦[1,2]b). (right) The grouping of clocks.

Metric Interval Temporal Logic. Given a finite alphabetΣ, the formulas of MITL
are defined by the following grammar, where σ ∈ Σ, I ∈ I(N+∞) is non-singular:

ϕ := � | σ | ϕ1 ∧ ϕ2 | ¬ϕ | ϕ1UIϕ2.

We adopt the following shortcuts: ♦Iϕ stands for �UIϕ, ��Iϕ for ¬♦I¬ϕ, ϕ1ŨIϕ2

for ¬(¬ϕ1UI¬ϕ2), ��ϕ for ��[0,∞)ϕ and ♦ϕ for ♦[0,∞)ϕ. Given an MITL formula
ϕ, we note Sub(ϕ) the set of all subformulas of ϕ.We let |ϕ| denote the size of
ϕ, defined as the number of U and Ũ modalities it contains. Given an infinite
timed word θ = (σ̄, τ̄) over Σ, a position i ∈ N0 and an MITL formula ϕ, we
write (θ, i) |= ϕ when θ satisfies ϕ from position i. This satisfaction relation
is defined in the usual way (see appendix [6]), let us only recall the semantics
of the Until (which is non strict in our setting): (θ, i) |= ϕ1UIϕ2 iff ∃j ≥ i:
(θ, i) |= ϕ2, τj − τi ∈ I ∧ ∀i ≤ k < j: (θ, k) |= ϕ1. We say that θ satisfies ϕ,
written θ |= ϕ, iff (θ, 1) |= ϕ. We note �ϕ� the timed language {θ | θ |= ϕ}.
Observe that we can transform any MITL formula in an equivalent negative
normal form formula (i.e., negation can only be present on letters σ ∈ Σ) using
the operators: ∧,∨,¬, UI and ŨI .

Alternating timed automata. One-clock alternating timed automata (OCATA
for short) have been introduced by Ouaknine and Worrell to define the language
of MTL formulas [16]. We will rely on OCATA to build our automata based
framework for MITL. Let Γ (L) be a set of formulas of the form �, or ⊥, or
γ1 ∨ γ2 or γ1 ∧ γ2 or � or x �� c or x.γ, with c ∈ N, �� ∈ {<,≤, >,≥},
� ∈ L. We call x �� c a clock constraint. Then, a one-clock alternating timed
automaton (OCATA) [16] is a tuple A = (Σ,L, �0, F, δ) where Σ is a finite
alphabet, L is a finite set of locations, �0 is the initial location, F ⊆ L is a set
of accepting locations, δ : L × Σ → Γ (L) is the transition function. Intuitively,
disjunctions in δ(�) model non-determinism, conjunctions model the creation of
several automaton copies running in parallel (that must all accept for the word to
be accepted) and x.γ means that the clock x is reset when taking the transition.

Example 1. Fig. 1 (left) shows an OCATA Aϕ =
{
Σ, {��, �♦}, ��, {��}, δ

}
, over

the alphabet Σ = {a, b}, and with transition function: δ(��, a) = �� ∧ x.�♦,
δ(��, b) = ��, δ(�♦, a) = �♦ and δ(�♦, b) = �♦ ∨ (x ≥ 1 ∧ x ≤ 2). We depict a
conjunctive transition such as δ(��, a) = �� ∧ x.�♦ by an arrow splitting in two
branches connected to �� and �♦ (they might have different resets: the reset of
clock x is depicted by x := 0). Intuitively, when reading an a from �� with clock

On MITL and Alternating Timed Automata over Infinite Words 73

value v, the automaton starts two copies of itself, the former in location ��, with
clock value v, the latter in location �♦ with clock value 0. Both copies should
accept the suffix for the word to be accepted. The edge labeled by b, x ∈ [1, 2]
from �♦ has no target location: it depicts the fact that, when the automaton has
a copy in location �♦ with a clock valuation in [1, 2], the copy accepts all further
suffixes and can thus be removed from the automaton.

3 The Intervals Semantics for OCATA on Infinite Words

In this section, we adapt to infinite timed words the intervals semantics intro-
duced in [5]. In this semantics, configurations are sets of states (�, I), where � is
a location of the OCATA and I is an interval (while in the standard semantics
states are pairs (�, v), where v is the valuation of the clock). Intuitively, a state
(�, I) is an abstraction of a set of states of the form (�, v) with v ∈ I.

Formally, a state of an OCATA A = (Σ,L, �0, F, δ) is a pair (�, I) where
� ∈ L and I ∈ I(R+). We note S = L× I(R+) the state space of A. When I =
[v, v] (sometimes denoted I = {v}), we shorten (�, I) by (�, v). A configuration
of an OCATA A is a (possibly empty) finite set of states of A in which all
intervals associated with a same location are disjoint. In the rest of the paper,
we sometimes see a configuration C as a function from L to 2I(R

+) s.t. for all
� ∈ L: C(�) = {I | (�, I) ∈ C}. We note Config (A) the set of all configurations
of A. The initial configuration of A is {(�0, 0)}. For a configuration C and a
delay t ∈ R+, we note C + t the configuration {(�, I + t) | (�, I) ∈ C}. Let E
be a finite set of intervals from I(R+). We let ‖E‖ = |{[a, a] ∈ E}|+ 2 × |{I ∈
E | inf(I) �= sup(I)}| denote the number of individual clocks we need to encode
all the information present in E, using one clock to track singular intervals, and
two clocks to retain inf(I) and sup(I) respectively for non-singular intervals I.
For a configuration C, we let ‖C‖ =

∑
�∈L ‖C(�)‖.

Interval semantics. Let M ∈ Config (A) be a configuration of an OCATA A,
and I ∈ I(R+). We define the satisfaction relation ”|=I” on Γ (L) as:

M |=I �
M |=I γ1 ∧ γ2 iff M |=I γ1 and M |=I γ2
M |=I γ1 ∨ γ2 iff M |=I γ1 or M |=I γ2

M |=I � iff (�, I) ∈ M
M |=I x �� c iff ∀x ∈ I, x �� c
M |=I x.γ iff M |=[0,0] γ

We say that a configuration M is a minimal model of the formula γ ∈ Γ (L) wrt
I ∈ I(R+) iff M |=I γ and there is no M ′ � M such that M ′ |=I γ. Intuitively,
for � ∈ L, σ ∈ Σ and I ∈ I(R+), a minimal model of δ(�, σ) wrt I represents a
(minimal) configuration the automaton can reach from state (�, I) by reading σ.
Observe that the definition ofM |=I x �� c only allows to take a transition δ(�, σ)
from state (�, I) if all the values in I satisfy the clock constraint x �� c of δ(�, σ).
We denote Succ((�, I), σ) = {M | M is a minimal model of δ(�, σ) wrt I}. We
lift the definition of Succ to configurations C as follows: Succ(C, σ) is the set of
all configurations C′ of the form ∪s∈CMs, where, for all s ∈ C: Ms ∈ Succ(s, σ).
That is, each C′ ∈ Succ(C, σ) is obtained by choosing one minimal model Ms in
Succ(s, σ) for each s ∈ C, and taking the union of all those Ms.

74 T. Brihaye, M. Estiévenart, and G. Geeraerts

Example 2. Let us consider again the OCATA of Fig. 1 (left), and let us compute
the minimal models of δ(�♦, b) = �♦ ∨ (x ≥ 1 ∧ x ≤ 2) wrt to [1.5, 2]. A minimal
model of �♦ wrt [1.5, 2] is M1 = {(�♦, [1.5, 2])}. A minimal model of (x ≥ 1∧x ≤
2) is M2 = ∅ since all values in [1.5, 2] satisfy (x ≥ 1∧ x ≤ 2). As M2 ⊆ M1, M2

is the unique minimal model of δ(�♦, b) wrt [1.5, 2]: Succ((�♦, [1.5, 2]), b) = {M2}.

Approximation functions. Let us now recall the notion of approximation func-
tions that associate with each configuration C, a set of configurations that ap-
proximates C and contains less states than C. Formally, for an OCATA A, an
approximation function is a function f : Config (A) !→ 2Config(A) s.t. for all con-
figurations C, for all C′ ∈ f(C), for all locations � ∈ L: (i) (i) ‖C′(�)‖ ≤ ‖C(�)‖;
(ii) for all I ∈ C(�), there exists J ∈ C′(�) s.t. I ⊆ J ; and (iii) for all J ∈ C′(�),
there are I1, I2 ∈ C(�) s.t. inf(J) = inf(I1) and sup(J) = sup(I2). We note
APPA the set of approximation functions for A. We lift all approximation func-
tions f to sets C of configurations in the usual way: f(C) = ∪C∈Cf(C). In the
rest of the paper we will rely mainly on approximation functions that enable
to bound the number of clock copies in all configurations along all runs of an
OCATA A. Let k ∈ N, we say that f ∈ APPA is a k-bounded approximation
function iff for all C ∈ Config (A), for all C′ ∈ f(C): ‖C′‖ ≤ k.

f -Runs of OCATA. We can now define formally the notion of run of an OCATA
in the interval semantics. This notion will be parametrised by an approximation
function f , that will be used to reduce the number of states present in each con-
figuration along the run. Each new configuration in the run is thus obtained in
three steps: letting time elapse, performing a discrete step, and applying the ap-
proximation function. Formally, let A be an OCATA of state space S, f ∈ APPA
be an approximation function and θ = (σ1, τ1)(σ2, τ2) . . . (σi, τi) . . . be an infi-
nite timed word. Let us note ti = τi − τi−1 for all i ≥ 1, assuming τ0 = 0. An
f -run of A on θ is an infinite sequence C0, C1, . . . , Ci, . . . of configurations s.t.:
C0 = {(�0, 0)} and for all i ≥ 1: Ci ∈ f(Succ(Ci−1 + ti, σi)). Observe that for
all pairs of configurations C, C′ s.t. C′ ∈ f(Succ(C + t, σ)) for some f , t and σ,
each s ∈ C can be associated with a unique set dest(C,C′, s) ⊆ C′ containing
all the ‘successors’ of s in C′ and obtained as follows. Let C ∈ Succ(C + t, σ) be
s.t. C′ ∈ f(C). Thus, by definition, C = ∪s∈CMs, where each Ms ∈ Succ(s, σ)
is the minimal model that has been chosen for s when computing Succ(C, σ).
Then, dest(C,C′, s) = {(�′, J) ∈ C′ | (�′, I) ∈ Ms and I ⊆ J}. Remark that
dest(C,C′, s) is well-defined because intervals are assumed to be disjoint in con-
figurations. The function dest allows to define a DAG representation of runs,
as is usual with alternating automata. We regard a run π = C0, C1, . . . , Ci, . . .
as a rooted DAG Gπ = (V,→), whose vertices V correspond to the states of
the OCATA (vertices at depth i correspond to Ci), and whose set of edges →
expresses the OCATA transitions. Formally, V = ∪i≥0Vi, where for all i ≥ 0:
Vi = {(s, i) | s ∈ Ci} is the set of all vertices of depth i. The root of Gπ is
((�0, 0), 0). Finally, (s1, i1) → (s2, i2) iff i2 = i1 + 1 and s2 ∈ dest(Ci−1, Ci, s1).
From now on, we will mainly rely on the DAG characterisation of f -runs.

On MITL and Alternating Timed Automata over Infinite Words 75

π (��,0)

(��,0.1)

(�♦,0)

(��,0.2)

(�♦,0)

(�♦,0.1)

(��,1.9)

(�♦,0)

(�♦,1.7)

(�♦,1.8)

(��,2)

(�♦,0.1)

(��,3) . . .

π′ (��,0)
(��,0.1)

(�♦,0)

(��,0.2)

(�♦,[0,0.1])

(��,1.9)

(�♦,[0,1.8])

(��,2)

(�♦,[0.1,1.9])

(��,3)

(�♦,[2.1,2.9])

. . .

. . .

π′′ (��,0)

(��,0.1)

(�♦,0)

(��,0.2)

(�♦,[0,0.1])

(��,1.9)

(�♦,0)

(�♦,[1.7,1.8])

(��,2)

(�♦,0.1)

(��,3) . . .

Fig. 2. Several OCATA run prefixes

Example 3. Fig. 2 displays three DAG representation of run prefixes of Aϕ

(Fig. 1), on the word (a, 0.1)(a, 0.2)(a, 1.9)(b, 2)(b, 3) . . . (grey boxes highlight
the successive configurations). π only is an Id-run and shows why the number
of clock copies cannot be bounded in general: if Aϕ reads n a’s between instants
0 and 1, n copies of the clock are created in location �♦.

f -language of OCATA. We can now define the accepted language of an OCATA,
parametrised by an approximation function f . A branch of an f -run G is a (finite
or) infinite path in Gπ. We note Branω(G) the set of all infinite branches of Gπ

and, for a branch β, we note Infty(β) the set of locations occurring infinitely
often along β. An f -run is accepting iff ∀β ∈ Branω(G), Infty(β) ∩ F �= ∅ (i.e.
we consider Büchi acceptance condition). We say that an infinite timed word θ
is f -accepted by A iff there exists an accepting f -run of A on θ. We note Lω

f (A)
the language of all infinite timed words f -accepted by A. We close the section
by observing that a standard semantics for OCATA (where clock valuations are
punctual values instead of intervals) is a particular case of the interval semantics,
obtained by using the approximation function Id s.t. Id(C) = {C} for all C. We
denote by Lω(A) the language Lω

Id(A). Then, the following proposition shows
the impact of approximation functions on the accepted language of the OCATA:
they can only lead to under-approximations of Lω(A).

Proposition 4. For all OCATA A, for all f ∈ APPA: Lω
f (A) ⊆ Lω(A).

Proof (Idea). In Id-runs, all clock values are punctual, while in f -runs, clock
values can be non-punctual intervals. Consider a set (�, v1), . . . , (�, vn) of states
in location � and with punctual values v1 ≤ . . . ≤ vn, and consider its approxi-
mation s = (�[v1, vn]). Then, if a σ-labeled transition is firable from s, it is also
firable from all (�, vi). The converse is not true: there might be a set of σ-labeled
transitions that are firable from each (�, vi), but no σ-labeled transition firable
from s, because all clock values in I must satisfy the transition guard. ��

76 T. Brihaye, M. Estiévenart, and G. Geeraerts

4 TOCATA: A Class of OCATA for MITL

In this section, we introduce the class of tree-like OCATA (TOCATA for short),
and show that, when applying, to an MITL formula ϕ, the construction defined
by Ouaknine and Worrell [16] in the setting of MTL interpreted on finite words,
one obtains a TOCATA that accepts the infinite words language of φ. To prove
this result, we rely on the specific properties of TOCATA (in particular, we show
that their acceptance condition can be made simpler than in the general case).
Then, we show that there is a family of bounded approximation functions f�

ϕ,
s.t., for every MITL formula ϕ, Lω

f�
ϕ
(Aϕ) = Lω(Aϕ). This result will be crucial

to the definition of our on-the-fly model-checking algorithm in Section 5. We
also exploit it to define a natural procedure that builds, for all MITL formula
ϕ, a Büchi timed automaton Bϕ accepting �ϕ�.

From MITL to OCATA. We begin by recalling the syntactic translation from
MTL (a superset of MITL) to OCATA, as defined by Ouaknine and Worrell
[16]. Observe that it has been defined in the setting of finite words, hence we
will need to prove that it is still correct in the infinite words setting. Let ϕ be
an MITL formula (in negative normal form). We let Aϕ = (Σ,L, �0, F, δ) where:
L is the set containing the initial copy of ϕ, noted ‘ϕinit’, and all the formulas
of Sub(ϕ) whose outermost connective is ‘U ’ or ‘Ũ ’; �0 = ϕinit; F is the set of
the elements of L of the form ϕ1ŨIϕ2. Finally δ is defined by induction on the
structure of ϕ:

– δ(ϕinit, σ) = x.δ(ϕ,σ)
– δ(ϕ1 ∨ ϕ2, σ) = δ(ϕ1, σ) ∨ δ(ϕ2, σ); δ(ϕ1 ∧ ϕ2, σ) = δ(ϕ1, σ) ∧ δ(ϕ2, σ)
– δ(ϕ1UIϕ2, σ) = (x.δ(ϕ2, σ) ∧ x ∈ I) ∨ (x.δ(ϕ1, σ) ∧ ϕ1UIϕ2 ∧ x ≤ sup(I))
– δ(ϕ1ŨIϕ2, σ) = (x.δ(ϕ2, σ) ∨ x /∈ I) ∧ (x.δ(ϕ1, σ) ∨ ϕ1ŨIϕ2 ∨ x > sup(I))

– ∀σ1, σ2 ∈ Σ: δ(σ1, σ2) =

{
true if σ1=σ2

false if σ1 �= σ2
and δ(¬σ1, σ2) =

{
false if σ1=σ2

true if σ1 �= σ2

– ∀σ ∈ Σ: δ(�, σ) = � and δ(⊥, σ) = ⊥.

Example 5. As an example, consider again the OCATA Aϕ in Fig. 1. It accepts
exactly

�
�(a ⇒ ♦[1,2]b)

�
. It has been obtained by means of the above construc-

tion (trivial guards such as x ≤ +∞, and the state ϕinit have been omitted).

Tree-like OCATA. Let us now define a strict subclass of OCATA that captures
all the infinite words language of MTL formulas, but whose acceptance condi-
tion can be made simpler. An OCATA A = (Σ,L, �0, F, δ) is a TOCATA iff
there exists a partition L1, L2, . . . , Lm of L and a partial order � on the sets
L1, L2, . . . , Lm s.t.: (i) each Li contains either only accepting states or no ac-
cepting states: ∀1 ≤ i ≤ m either Li ⊆ F or Li∩F = ∅; and (ii) the partial order
� is compatible with the transition relation and yields the ‘tree-like’ structure
of the automaton in the following sense: � is s.t. Lj � Li iff ∃σ ∈ Σ, � ∈ Li

and �′ ∈ Lj such that �′ is present in δ(�, σ). In particular, OCATA built from
MTL formulas, such as Aϕ in Fig. 1, are TOCATA. Since MTL is a superset of
MITL, this proposition is true in particular for MITL formulas:

On MITL and Alternating Timed Automata over Infinite Words 77

Proposition 6. For every MTL formula ϕ, Aϕ is a TOCATA.

Proof. Let L = {�1, �2, . . . , �m} be the locations of Aϕ. We consider the partition
{�1}, {�2}, . . . , {�m} of L and the order � s.t. {�j} � {�i} iff �j is a subformula
of �i. It is easy to check that they satisfy the definition of TOCATA. ��

Properties of TOCATA. Let us now discuss two peculiar properties of TOCATA
that are not enjoyed by OCATA. The first one is concerned with the acceptance
condition. In the general case, a run of an OCATA is accepting iff all its branches
visit accepting states infinitely often. Thanks to the partition characterising a
TOCATA, this condition can be made simpler: a run is now accepting iff each
branch eventually visits accepting states only, because it reaches a partition of
the locations that are all accepting.

Proposition 7. An Id-run Gπ of a TOCATA A with set of accepting locations
F is accepting iff ∀β = β0β1 . . . βi . . . ∈ Branω(Gπ), ∃nβ ∈ N s.t. ∀i > nβ:
βi = ((�, v), i) implies � ∈ F .

The second property of interest for us is that TOCATA can be easily com-
plemented. One can simply swap accepting and non-accepting locations, and
‘dualise’ the transition relation, without changing the acceptance condition2 (as
in the case of OCATA on finite words [16]). Formally, the dual of a formula
ϕ ∈ Γ (L) is the formula ϕ defined inductively as follows. ∀� ∈ L, � = � ; false =
true and true = false ; ϕ1 ∨ ϕ2 = ϕ1 ∧ ϕ2 ; ϕ1 ∧ ϕ2 = ϕ1 ∨ ϕ2 ; x.ϕ = x.ϕ ;
the dual of a clock constraint is its negation (for example: x ≤ c = x > c).
Then, for all TOCATA A = (Σ,L, �0, F, δ), we let AC = (Σ,L, �0, L \ F, δ)
where δ(�, σ) = δ(�, σ). Thanks to Proposition 7, we prove that AC accepts the
complement of A’s language:

Proposition 8. For all TOCATA A, Lω(AC) = TΣω \ Lω(A).

TOCATA and MITL. Equipped with those results we can now expose the two
main results of this section. First, the translation from MTL to OCATA intro-
duced in [16] carries on to infinite words (to the best of our knowledge this had
not been proved before and does not seem completely trivial since our proof
requires the machinery of TOCATA developed in this paper). Second, for every
MITL formula ϕ, we can devise an M(ϕ)-bounded3 approximation function f�

ϕ

to bound the number of intervals needed along all runs of the intervals semantics
of the TOCATA Aϕ, while retaining the semantics of ϕ. Notice that this second
property fails when applied to formulae ϕ of MTL.

Theorem 9. (i) For every MTL formula ϕ, Lω(Aϕ) = �ϕ�.
(ii) For every MITL formula ϕ, there is an M(ϕ)-bounded approximation func-
tion f�

ϕ s.t. Lω
f�
ϕ
(Aϕ) = �ϕ�.

2 In general, applying this construction yields an OCATA with co-Büchi acceptance
condition for the complement of the language.

3 M(ϕ) ≤ |ϕ| × max
I∈Iϕ

(
4×

⌈
inf(I)
|I|

⌉
+ 2, 2×

⌈
sup(I)

|I|

⌉
+ 2

)
, where Iϕ is the set of all

the intervals that occur in ϕ.

78 T. Brihaye, M. Estiévenart, and G. Geeraerts

Proof (Ideas). Point (i) has been proved in the finite words case in [16, Prop. 6.4].
This proof relies crucially on the fact that OCATA can be complemented in this
case. Thanks to Proposition 8, we can adapt the proof of [16]. The proof of (ii)
can be adapted from [5, Th. 13], thanks to Proposition 7. ��

Example 10. Let us illustrate the idea behind the approximation function f�
ϕ by

considering again the run prefixes on θ = (a, 0.1)(a, 0.2)(a, 1.9)(b, 2)(b, 3)(b, 4) . . .
in Fig. 2. The two first positions (with σ1 = σ2 = a) of θ satisfy ♦[1,2]b, thanks to
the b in position 4 (with τ4 = 2), while position 3 (with σ3 = a) satisfies ♦[1,2]b
thanks to the b in position 5 (with τ5 = 3), see Fig. 1 (right). Hence, f�

ϕ groups
the two clock copies created in �♦ when reading the two first a’s, but keeps the
third one apart. This yields the f�

ϕ-run π′′ in Fig. 2. On the other hand, the
strategy of grouping all the clock copies present in each location, which yields
π′, is not a good solution. This prefix cannot be extended to an accepting run
because of the copy in state (�♦, [2.1, 2.9]) in the rightmost configuration, that
will never be able to visit an accepting location.

From MITL to Büchi timed automata. Thanks to the bound M(ϕ) on the
number of clock copies and the approximation function f�

ϕ, given by Theorem
9, it is now easy to build a timed automaton with Büchi acceptance condi-
tion4 [1] accepting �ϕ� for every MITL formula ϕ. To explain the construc-
tion, we first associate with all OCATA A = (Σ,L, �0, F, δ) and approxima-
tion function f the timed transition system TTS (A, f) = (Σ,STTS, sTTS0 ,→TTS)
where STTS = Config (A), sTTS0 = {(�0, [0, 0])} and (s1, t, σ, s2) ∈ →TTS iff
s2 ∈ f(Succ(s1 + t, σ)) for some t ≥ 0 and σ ∈ Σ. Notice that the non-
determinism of the transition also chooses the approximation (among the propo-
sitions allowed by the function f).Then, we associate with TTS (A, f) a Büchi
acceptance condition by adapting the classical construction due to Miyano and
Hayashi [14] to our setting. Formally, we let MHTS (A, f) be the timed transi-
tion system (Σ,SMH, sMH

0 ,→MH, α) obtained from TTS (A, f) by labeling all A
states in all configurations with a marker which is either � or ⊥. Intuitively,
a state is marked by � iff all the branches it belongs to have visited a fi-
nal location of A since the last accepting state of MHTS (A, f) (i.e., a state

where all markers are �). Formally, (i) SMH = 2L×I(R+)×{
,⊥}. Each state s
is thus of the form {(�1, I1,m1), . . . , (�n, In,mn)} where {(�1, I1), . . . , (�n, In)} is
a state of TTS (A, f), denoted conf (s), and the mi are the markers; (ii) sMH

0 =
{(�0, [0, 0],⊥)}; (iii) α is the set of accepting states of MHTS (A) and contains all
states of the form {(�1, I1,m1), . . . , (�n, In,mn)} s.t. mi = � for all 1 ≤ i ≤ n;
and (iv) →MH⊆ S×R+×Σ×S is the transition relation s.t. (s1, t, σ, s2) ∈→MH

iff (conf (s1) , t, σ, conf (s2)) ∈→TTS, and the markers in s2 are updated from the
markers in s1 in the following way. If s1 ∈ α, then the markers of all A-states
(�, I) in s1 are � iff � ∈ F . Otherwise, if conf (s1) �∈ α, then s = (�, I,�) ∈ s2 iff
either � ∈ F or for all (�′, I ′,m) ∈ s1 s.t. (�, I) ∈ dest(conf (s1) , conf (s2) , (�

′, I ′)),
we have m = �. We associate with MHTS (A, f) the language L(MHTS (A, f))

4 See Appendix [6] for a formal definition.

On MITL and Alternating Timed Automata over Infinite Words 79

obtained by interpreting α as a Büchi acceptance condition, i.e., a timed word
θ = (σ̄, τ̄) ∈ L(MHTS (A, f)) iff there is an infinite path of MHTS (A, f) visiting
α infinitely often and labeled by (τ̄1, σ1)(τ̄2− τ̄1, σ2) · · · (τ̄i− τ̄i−1, σi) · · · . Clearly,
L(MHTS (A, f)) = Lω

f (A) [14].
Building on this formalisation, one can define a timed automaton with Büchi

acceptance condition Bϕ = (Σ,B, b0, X, FB, δB) that simulates MHTS
(
Aϕ, f

�
ϕ

)
,

and thus accepts �ϕ�, for every MITL formula ϕ. Locations of Bϕ associate
with each location � of Aϕ a sequence of triples (x, y,m), where x and y are
clocks that store the infimum and supremum of an interval respectively, and m
is a Miyano-Hayashi marker. Formally, for a set of clocks X , we let loc(X)
be the set of functions S that associate with each � ∈ L a finite sequence
(x1, y1,m1), . . . , (xn, yn,mn) where, for 1 ≤ i ≤ n, mi ∈ {�,⊥} and (xi, yi)
is a pair of clocks from X s.t. each clock only occurs once in S(L). Then:

– X is the set of clocks of Bϕ s.t. |X | = M(ϕ);
– B = {S ∈ loc(X)} is the set of locations of Bϕ. Thus, a configuration (S, v)

of Bϕ (where S is the location and v the valuation of the clocks X) encodes
the labeled configuration C = {(�, [v(x), v(y)],m) | (x, y,m) ∈ S(�)};

– b0 = S0 is the initial location of Bϕ and is s.t. ∀� ∈ L \ {�0}, S0(�) = ∅, and
S0(�0) = (x, y,⊥), where x and y are two clocks arbitrarily chosen from X ;

– FB = {S ∈ B | (x, y,m) ∈ S(L) ⇒ m = �} is the set of final locations of Bϕ.

We skip the (mathematically heavy) definition of the transition function δB. It
follows the intuitions given above (see the technical report for further details
[6]). Because the number of clock copies along all runs in the f�

ϕ semantics of
Aϕ is bounded, this TA simulates faithfully Aϕ and accepts the same language:

Theorem 11. Lω(Bϕ) = Lω
f�
ϕ
(Aϕ).

5 MITL Model-Checking and Satisfiability with
TOCATA

In this section, we fix an MITL formula ϕ and a TA B = (Σ,B, b0, X, δB, FB),
and we consider the two following problems: (i) the model-checking problem asks
whether L(B) ⊆ �ϕ�; (ii) the satisfiability problem asks whether �ϕ� �= ∅. The
construction of the TA B¬ϕ from ϕ of the previous section allows to solve those
problems using classical algorithms [1]. Unfortunately, building B¬ϕ can be pro-
hibitive in practice. To mitigate this difficulty, we present an efficient on-the-fly
algorithm to perform MITL model-checking, which takes as input the TA B and
the TOCATA A¬ϕ (whose size is linear in the size of ϕ). It consists in exploring
symbolically the state space of the timed transition system SB,¬ϕ which is ob-
tained by first taking the synchronous product of TTS

(
A¬ϕ, f

�
¬ϕ

)
and the tran-

sition system5 TTS (B) of B [1], and then associating Miyano-Hayashi markers
with its states, by adapting the construction of MHTS (A, f) given above to cope

5 See appendix [6] for a formal definition.

80 T. Brihaye, M. Estiévenart, and G. Geeraerts

with the configurations of B. Namely6, we associate a Miyano-Hayashi marker
with the configurations of B too, and a state of SB,¬ϕ is accepting iff all mark-
ers (including the one on the B configuration) are �. Obviously, L(B) ⊆ �ϕ� iff
SB,¬ϕ has no accepting run (i.e., no run visiting accepting states infinitely often).
Symmetrically, we can solve the satisfiability problem by looking for accepting
run in MHTS

(
Aϕ, f

�
ϕ

)
(since the techniques are similar for model-checking and

satisfiability, we will only detail the former in this section).

Region-based algorithms. Since SB,¬ϕ, we adapt the region abstraction of [16]
in order to cope with: 1. the valuations of the clocks that are now intervals ;
and 2. the Miyano-Hayashi markers. Following the approach of [16] we represent
each region by a unique word. Let cmax be the maximal constant of automata
B and A¬ϕ. Let Reg (cmax) denote the set of one-clock regions up to cmax, i.e.
Reg (cmax) = {{i} | i = 0, 1, . . . , cmax} ∪ {(i, i + 1) | i = 0, 1, . . . , cmax − 1} ∪
{(cmax,+∞)}. Then, we encode regions of SB,¬ϕ by finite words whose letters
are finite sets of tuples of the form (�, r,m, k), where � ∈ L ∪B, r ∈ Reg (cmax),
m ∈ {�,⊥} and 0 ≤ k ≤ M(ϕ)/2. For a state s =

(
C, (�B, v,m)

)
of SB,¬ϕ, we

let its region be the word H(s) = H1H2 · · ·Hm, s.t. the Hi’s are built as follows:

1. For each location �, let C(�) = {(�′, I,m) ∈ C | �′ = �}. Assume C(�) =
{(�1, I1,m1), . . . , (�k, Ik,mk)}, with I1 ≤ · · · ≤ Ik. Then, we first build
E� = {(�i, inf(Ii),mi, i), (�i, sup(Ii),mi, i) | 1 ≤ i ≤ k}. We treat (�B, v,m)
symmetrically, and let EB = {(�B, v(x1),m, 1), . . . , (�B, v(xn),m, n)}. We let
E = EB ∪�∈L E�. That is, all elements in E are tuples (�, v,m, i), where � is
a location (of Aϕ or B), v is a real value (interval endpoint or clock value),
m is a Miyano-Hayashi marker and i is bookkeeping information that links
v to an interval (if � is a location of Aϕ), or to a clock (� is a location of B).

2. We partition E into E1, . . . , Em s.t. each Ei contains all elements from E with
the same fractional part to their second component (assuming frac(u) =
0 for all u > cmax). We assume the ordering E1, E2,. . . , Em reflects the
increasing ordering of the fractional parts.

3. For all 1 ≤ i ≤ m, we obtain Hi from Ei by replacing the second component
of all elements in Ei by the region from Reg (cmax) they belong to.

Example 12. Consider a TA B with 1 clock, let cmax = 2, and let s ={
{(�1, [0, 1.3],⊥), (�1, [1.8, 2.7],�)}, (�B, 1.3,⊥)

}
. The first step of the construc-

tion yields the set E = {(�1, 0,⊥, 1), (�1, 1.3,⊥, 1), (�1, 1.8,�, 2), (�1, 2.7,�, 2),
(�B, 1.3,⊥, 1)}. Then, we have H(s) =

{
(�1, {0},⊥, 1), (�1, (2,+∞),�, 2)

}{
(�1, (1, 2),⊥, 1), (�B, (0, 1),⊥, 1)

}{
(�1, (1, 2),�, 2)

}
.

We extend the function H to set of states in the usual way. Then, assuming
SB,¬ϕ = (Σ,S, s0,→, α) we let HB,¬ϕ = (H(S), H(s0),→H, H(α)) be the un-
timed transition system which is the quotient of SB,¬ϕ by H , with W1 →H W2

6 Details omitted. Observe that SB,¬ϕ cannot be obtained by taking the synchronous
product of MHTS

(A¬ϕ, f
�
¬ϕ

)
and TTS (B), because the Miyano-Hayashi markers

need to be synchronised, and must thus be added after the synchronous product.

On MITL and Alternating Timed Automata over Infinite Words 81

iff there are s1, s2 s.t. W1 = H(s1), W2 = H(s2) and (s1, t, σ, s2) ∈→ for some t,
σ. Thanks to the approximation function, HB,¬ϕ is finite. We note H0 = H(s0)
and F = H(α). Then, our model-checking algorithm consists in checking whether
there is, in HB,¬ϕ, a path starting in H0 and visiting F infinitely often.

To this end, we let Post(W) = {W | W →H W ′} for all W ∈ H(S). We
let Post+(W) and Post∗(W) be respectively the transitive, and reflexo-transitive
closures of Post. We solve the model-checking problem by means of a fix point
computation [13]. Let E0 = Post�(H0)∩F , and, for all i ≥ 1: Ei = Post+(Ei)∩F .
One can check that this sequence eventually stabilises to a set that we denote
E∗. Then, the answer to the model-checking problem is ‘yes’ (i.e., there is no
accepting path in HB,¬ϕ) iff E∗ = ∅. To obtain an algorithm for satisfiability,
one simply needs to replace SB,¬ϕ by MHTS (Aϕ) in the construction above, and
to declare ϕ satisfiable iff E∗ �= ∅. In practice, this fix point computation can be
implemented on-the-fly because the set Post(W) can be computed directly from
all words W by adapting the construction of [16]. To characterise the complexity
of this algorithm, we show that the number of states of HB,¬ϕ is at most doubly
exponential in the sizes of B and ϕ. Thus, our algorithms can be considered as
optimal, since MITL model-checking and satisfiability are ExpSpace-c [3]:

Theorem 13. Let ϕ be an MITL formula, and B be a TA with n clocks and m
locations. Then HB,¬ϕ has O (2m) states, with m ≤ 16× (m+ |ϕ|+ 1)× cmax ×
max(M(¬ϕ), n)2.

Zone-based algorithms. In the case of TAs, zones have been advocated as a data
structure which is more efficient in practice than regions [1]. Let us close this
section by showing how zones for OCATA [2] can be adapted to represent set
of states of SB,¬ϕ. Intuitively, a zone is a constraint on the values of the clock
copies, with additional information (locA and locB) to associate clock copies of
A¬ϕ and clocks of B respectively to locations and Miyano-Hayashi markers.

Formally, assume A¬ϕ = (Σ,L, �0, F, δ), with clock x, and assume B =
(Σ,B, b0, X, δB, FB) is a TA with X = {xB1 , xB2 , . . . , xBn}. An extended clock
constraints on a set of clocks C, is a constraint of the form the form c �� k
or c1 − c2 �� k for c, c1, c2 ∈ C, k ∈ N and ��∈ {<,≤, >,≥}. We also use
c1 = c2 as shorthand for c1 − c2 ≥ 0 ∧ c1 − c2 ≤ 0. For all m ≤ M(¬ϕ)/2,
we let Xm be the set of clocks {x1, x2, . . . , xm, y1, y2, . . . , ym} " X (intuitively,
each pair of clock copies (xi, yi) will represent an interval). Then, a zone Zm of
dimension m (with 0 ≤ m ≤ M(¬ϕ)/2) is a tuple Zm = (locA, locB, Z) where:
(i) locA : {x1, x2, . . . , xm} → L×{⊥,�}; (ii) locB ∈ B×{⊥,�}; and (iii) Z is a
finite set of extended clock constraints on Xm, interpreted as a conjunction (it is a
‘classical zone’ on Xm [1]). A zone Z is interpreted as the set of states of SB,¬ϕ it
represents. Let s =

(
{(�1, [a1, b1], k1), . . . (�m, [am, bm], km)}, (�B, v, k)

)
be such a

state. Then, s ∈ Z iff Z is of dimension m, locB = (�B, k) and there is a bijection
h : {1, . . . ,m} !→ {1, . . . ,m} s.t. (i) for all 1 ≤ i ≤ m: locA(xi) = (�h(i), kh(i));
and (ii) the valuation v′ satisfies Z, where v′ is s.t. for all x ∈ X : v′(x) = v(x),
for all 1 ≤ i ≤ m, v′(xi) = ah(i) and v′(yi) = bh(i). Thanks to these definitions
we can define a symbolic version of the Post operator, working directly on zones,

82 T. Brihaye, M. Estiévenart, and G. Geeraerts

Table 1. Benchmark for satisfiability (top) and model-checking (bottom). Reported
values are execution time in ms / number of visited states.

Sat ? Formula Size Regions Reduced regions Zones Reduced zones
Sat E(5, [0,+∞)) 5 74 / 61 16 / 31 58 / 36 39 / 31
Sat E(10, [0,+∞)) 10 3296 / 2045 369 / 1023 1374 / 1033 2515 / 1023
Sat E(5, [5, 8)) 5 382 / 228 394 / 228 83 / 33 86 / 33
Sat E(10, [5, 8)) 10 70129 / 7172 79889 / 7172 1982 / 1025 2490 / 1025
Sat A(10, [0,+∞)) 10 1 / 1 1 / 1 4 / 1 5 / 1
Sat A(10, [5, 8)) 10 1926 / 7 2036 / 5 3036 / 2 3153 / 2
Sat U(10, [0,+∞)) 9 231 / 7 5 / 4 16 / 1 6 / 1

Unsat U(2, [5, 8]) 2 13 / 6 15 / 8 4 / 2 4 / 2
Unsat U(3, [5, 8]) 3 OOM OOM OOM OOM
Sat T (10, [0,+∞[) 9 > 5min 3 / 2 33 / 3 7 / 2
Sat T (10, [5, 8)) 9 52 / 2 40 / 2 11 / 2 11 / 2
Sat R(5, [0,+∞)) 20 > 5min 301 / 270 4307 / 1321 145 / 81
Sat R(10, [0,+∞)) 40 > 5min OOM OOM > 5min
Sat R(5, [5, 8)) 20 OOM 6996 / 117 1299 / 36 1518 / 36
Sat R(10, [5, 8)) 40 > 5min > 5min > 5min > 5min
Sat Q(5, [0,+∞)) 10 44 / 39 11 / 20 43 / 29 22 / 20
Sat Q(10, [0,+∞)) 20 1209 / 1041 286 / 521 841 / 540 933 / 521
Sat Q(5, [5, 8)) 10 497 / 98 378 / 57 167 / 32 181 / 32
Sat Q(10, [5, 8)) 20 35776 / 2646 20324 / 2912 81774 / 782 86228 / 782

Floors Formula Form./ TA size OK ? Regions Zones Red. zones
2 �∧

i=1,2

(
oi ⇒ ♦]1,2]ci

)
3 / 10 × 166 / 89 57 / 35 56 / 32

2 �∧
i=1,2

(
bi ⇒ ♦[0,4]oi

)
3 / 10 � 302 / 225 31 / 31 26 / 25

2 �∧
i=1,2

(
li ⇒ ♦[0,6]oi

)
3 / 10 � 820 / 690 68 / 51 60 / 40

3 �∧
i=1,...,3

(
oi ⇒ ♦]1,2]ci

)
4 / 37 × 681 / 480 463 / 154 337 / 140

3 �∧
i=1,...,3

(
bi ⇒ ♦[0,12]oi

)
4 / 37 � >5min 1148 / 541 1008 / 376

3 �∧
i=1,...,3

(
li ⇒ ♦[0,14]oi

)
4 / 37 � >5min 1321 / 774 1387 / 540

4 �∧
i=1,...,4

(
oi ⇒ ♦]1,2]ci

)
5 / 114 × 5570 / 1638 1381 / 498 1565 / 461

4 �∧
i=1,...,4

(
bi ⇒ ♦[0,20]oi

)
5 / 114 � >5min 26146 / 5757 22776 / 3156

4 �∧
i=1,...,4

(
li ⇒ ♦[0,22]oi

)
5 / 114 � >5min 52167 / 7577 48754 / 4337

5 �∧
i=1,...,5

(
oi ⇒ ♦]1,2]ci

)
6 / 311 × 61937 / 4692 3216 / 1402 3838 / 1310

5 �∧
i=1,...,5

(
bi ⇒ ♦[0,28]oi

)
6 / 311 � >5min >5min OOM

5 �∧
i=1,...,5

(
li ⇒ ♦[0,30]oi

)
6 / 311 � OOM >5min >5min

and obtain a zone-based version of the fix point algorithm given above. We rely
on the Approxβ widening operator [4] to ensure convergence of the fix point.

Eliminating useless clock copies. In many practical examples, MITL formulas
contain modalities of the form U[0,+∞) or Ũ[0,+∞) that do not impose any real-
time constraints (in some sense, they are LTL modalities). For instance, consider
the �� modality in ϕ = ��(a ⇒ ♦[1,2]b). When this occurs in a formula ϕ, we can
simplify the representation of configurations of Aϕ, by dropping the values of the
clocks associated with those modalities (these clocks can be regarded as inactive
in the sense of [8]). We call those configurations reduced configurations. In the
example of Fig. 1, this amounts to skipping the clocks associated to ��, and
the configuration {(��, 0.1)(�♦, 0)} of Aϕ in Fig. 1 can be represented by a pair
({��}, {(�♦, 0)}). As we will see in the next section, maintaining reduced config-
urations, when possible, usually improves the performance of the algorithms.

On MITL and Alternating Timed Automata over Infinite Words 83

6 Experimental Results

To evaluate the practical feasibility of our approach, we have implemented the
region and zone-based algorithms for model-checking and satisfiability in a pro-
totype tool. To the best of our knowledge, this is the first implementation to
perform MITL model-checking and satisfiability using an automata-based ap-
proach. We first consider a benchmark for the satisfiability problem, adapted
from the literature on LTL [9] and consisting of six parametric formulas (with
k ∈ N and I ∈ I(N+∞)):

E(k, I) =
∧

i=1,...,k ♦I pi U(k, I) = (. . . (p1UIp2)UI . . .)UIpk
A(k, I) =

∧
i=1,...,k �I pi T (k, I) = p1ŨI(p2ŨI(p3 . . . pk−1ŨIpk) . . .)

Q(k, I) =
∧

i=1,...,k (♦Ipi ∨ �Ipi+1) R(k, I) =
∧

i=1,...,k (�I (♦Ipi) ∨ ♦I(�Ipi+1))

Table 1 (top) reports on the running time, number of visited regions and returned
answer (column ‘Sat ?’) of the prototype on several instances of those formulas,
for the different data structures. A time out was set after 5 minutes, and OOM
stands for ‘out of memory’. Our second benchmark evaluates the performance
of our model-checking tool. We consider a family of timed automata Blift

k that
model a lift, parametrised by the number k of floors (see appendix [6]). The

alphabet of each Blift
k contains, for all 0 ≤ i ≤ k − 1 letters bi, li, oi, ci and pi

meaning respectively that the call button number i in the cabin control station
is pressed, that the call button is pressed at floor i, and that the lift opens the
doors, closes the doors or passes without stopping, at floor i. The lift takes 1 time
unit to perform each action. Table 1 (bottom) reports on the performance of our
prototype, for several properties, and values of the parameter. We have skipped
the results for the ‘reduced regions’ because the running times are consistently
longer (at most 30%) than with classical regions – the overhead induced by the
elimination of useless clocks is a heuristic that does not pay off.

References

1. Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2),
183–235 (1994)

2. Abdulla, P.A., Deneux, J., Ouaknine, J., Quaas, K., Worrell, J.: Universality Anal-
ysis for One-Clock Timed Automata. Fundam. Inform. 89(4), 419–450 (2008)

3. Alur, R., Feder, T., Henzinger, T.A.: The benefits of relaxing punctuality. J.
ACM 43(1), 116–146 (1996)

4. Bouyer, P.: Timed Automata may cause some troubles. Research Report LSV-02-9,
Lab. Spécification et Vérification, CNRS & ENS de Cachan, France (2002)

5. Brihaye, T., Estiévenart, M., Geeraerts, G.: On MITL and Alternating Timed Au-
tomata. In: Braberman, V., Fribourg, L. (eds.) FORMATS 2013. LNCS, vol. 8053,
pp. 47–61. Springer, Heidelberg (2013)

6. Brihaye, T., Estiévenart, M., Geeraerts, G.: On MITL and Alternating Timed
Automata over infinite words. Technical report arXiv.org.,
http://arxiv.org/abs/1406.4395

7. Clarke, E.M., Grumberg, O., Peled, D.: Model checking. MIT Press (2001)

http://arxiv.org/abs/1406.4395

84 T. Brihaye, M. Estiévenart, and G. Geeraerts

8. Daws, C., Yovine, S.: Reducing the number of clock variables of timed automata.
Real-Time Systems, 73–81 (1996)

9. Geeraerts, G., Kalyon, G., Le Gall, T., Maquet, N., Raskin, J.-F.: Lattice-Valued
Binary Decision Diagrams. In: Bouajjani, A., Chin, W.-N. (eds.) ATVA 2010.
LNCS, vol. 6252, pp. 158–172. Springer, Heidelberg (2010)

10. Gastin, P., Oddoux, D.: Fast LTL to Büchi Automata Translation. In: Berry, G.,
Comon, H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, pp. 53–65. Springer,
Heidelberg (2001)

11. Koymans, R.: Specifying real-time properties with metric temporal logic. Real-
Time Systems 2(4), 255–299 (1990)

12. Kupferman, O., Vardi, M.Y.: Weak alternating automata are not that weak. ACM
Trans. Comput. Log. 2(3), 408–429 (2001)

13. Maquet, N.: New Algorithms and Data Structures for the Emptiness Problem of
Alternating Automata. PhD thesis, Université Libre de Bruxelles (2011)

14. Miyano, S., Hayashi, T.: Alternating Finite Automata on omega-Words. Theor.
Comput. Sci. 32, 321–330 (1984)

15. Ouaknine, J., Worrell, J.: On the decidability of metric temporal logic. In: LICS
2005, pp. 188–197. IEEE (2005)

16. Ouaknine, J., Worrell, J.: On the decidability and complexity of metric temporal
logic over finite words. Logical Methods in Computer Science 3(1) (2007)

17. Parys, P., Walukiewicz, I.: Weak Alternating Timed Automata. Logical Methods
in Computer Science 8(3) (2012)

Time Petri Nets with Dynamic Firing Dates:

Semantics and Applications�

Bernard Berthomieu1,2, Silvano Dal Zilio1,2,
�Lukasz Fronc1,2, and François Vernadat1,3

1 CNRS, LAAS, 7 avenue du Colonel Roche, 31400 Toulouse, France
2 Université de Toulouse, LAAS, 31400 Toulouse, France

3 Université de Toulouse, INSA, LAAS, 31400 Toulouse, France

Abstract. We define an extension of time Petri nets such that the time
at which a transition can fire, also called its firing date, may be dynami-
cally updated. Our extension provides two mechanisms for updating the
timing constraints of a net. First, we propose to change the static time
interval of a transition each time it is newly enabled; in this case the
new time interval is given as a function of the current marking. Next, we
allow to update the firing date of a transition when it is persistent, that
is when a concurrent transition fires. We show how to carry the widely
used state class abstraction to this new kind of time Petri nets and define
a class of nets for which the abstraction is exact. We show the usefulness
of our approach with two applications: first for scheduling preemptive
task, as a poor man’s substitute for stopwatch, then to model hybrid
systems with non trivial continuous behavior.

1 Introduction

A Time Petri Net [16,6] (TPN) is a Petri net where every transition is associated
to a static time interval that restricts the date at which a transition can fire.
In this model, time progresses with a common rate in all the transitions that
are enabled; then a transition t can fire if it has been continuously enabled for
a time θt and if the value of θt is in the static time interval, denoted Is(t). The
term static time interval is appropriate in this context. Indeed, the constraint is
immutable and do not change during the evolution of the net. In this paper,
we lift this simple restriction and go one step further by also updating the
timing constraint of persistent transitions, that is transitions that remain enabled
while a concurrent transition fires. In a nutshell, we define an extension of TPN
where the time at which a transition can fire, also called its firing date, may be
dynamically updated. We say that these transitions are fickle and we use the
term Dynamic TPN to refer to our extension.

Our extension provides two mechanisms for updating the timing constraints
of a net. First, we propose to change the static time interval of a transition
each time it is newly enabled. In this case the new time interval Is(t,m) is

� This work has been partially supported by the ITEA2 project OpenETCS.

A. Legay and M. Bozga (Eds.): FORMATS 2014, LNCS 8711, pp. 85–99, 2014.
© Springer International Publishing Switzerland 2014

86 B. Berthomieu et al.

obtained as a function of the current marking m of the net. Likewise, we allow
to update the deadline of persistent transitions using an expression of the form
Id(t,m, ϕt), that is based on the previous firing date of t. The first mechanism is
straightforward and quite similar to an intrinsic capability of Timed Automata
(TA); namely the possibility to compare a given clock to different constants
depending on the current state. Surprisingly, it appears that this extension has
never been considered in the context of TPN. The second mechanism is far more
original. To the best of our knowledge, it has not been studied before in the
context of TPN or TA, but there are some similarities with the updatable timed
automata of Bouyer et al. [9].

The particularity of timed models, such as TPN, is that state spaces are typ-
ically infinite, with finite representations obtained by some abstractions of time.
In the case of TPN, states are frequently represented using composite abstract
states, or state classes, that capture a discrete information (e.g. the marking)
together with a timing information (represented by systems of difference con-
straints or zones). We show how to carry the state class abstraction to our ex-
tended model of TPN. We only obtain an over-approximation of the state space
in the most general case, but we define a class of nets for which the abstraction
is exact. We conjecture that our approach could be used in other formal models
for real-time systems, such as timed automata for instance.

There exist several tools for reachability analysis of TPN based on the notion
of state class graph [5,3], like for example Tina [7] or Romeo [15]. Our construc-
tion provides a simple method for supporting fickle transitions in these tools.
We already provide a prototype implementation of fickle transitions in Tina, see
http://projects.laas.fr/tina/fickle/. We have used this prototype to test
the usefulness of our approach in the context of two possible applications: first
for scheduling preemptive task, as a poor man’s substitute for stopwatch; next
to model dynamical systems with non trivial continuous behavior.

2 Time Petri Nets and Fickle Transitions

A Time Petri net is a Petri net where transitions are decorated with static time
intervals that constrain the time a transition can fire. We denote I the set of
possible time intervals. We use a dense time model in our definitions, meaning
that we choose for I the set of real intervals with non negative rational end-
points. To simplify the definitions, we only consider the case of closed intervals,
[a, b], and infinite intervals of the form [a,+∞). For any interval i in I, we use
the notation ↓i for its left end-point and ↑i for its right end-point.

We use the expression Dynamic TPN (DTPN) when it is necessary to make
the distinction between our model and more traditional definitions of TPN. With
our notations, a dynamic TPN is a tuple 〈P, T,Pre,Post,m0, Is, Id〉 in which:

– 〈P, T,Pre,Post,m0〉 is a Petri net, with P the set of places, T the set of
transitions, m0 : P → N the initial marking, and Pre, Post : T → P → N
the precondition and postcondition functions.

http://projects.laas.fr/tina/fickle/

Time Petri Nets with Dynamic Firing Dates: Semantics and Applications 87

– Is is the static interval function, that associates a time interval (in I) to
every transition (in T).

– Id is the dynamic interval function. It will be used to update the firing date
of persistent transitions.

We slightly extend the “traditional” model of TPN and allow to define the
static time interval of a transition as a function of the markings, meaning that Is
is a function of T → (P → N) → I. We will sometimes use the curryied function
Is(t) to denote the mapping from a marking m to the time interval Is(t,m).

We also add the notion of dynamic interval function, Id, that is used to update
the firing date of persistent transitions. The idea is to update the firing date ϕt

of a persistent transition t using a function of ϕt. Hence Id is a function of
T → (P → N) → R≥0 → I. For example, a transition t such that Id(t,m, θ) =
[θ + 1, θ + 2], for all θ ≥ 0, models an event that is delayed by between 1 and 2
units of time (u.t.) when a concurrent transition fires.

2.1 A Semantics for Time Petri Nets Based on Firing Functions

As usual, we define a marking m of a TPN as a function m : P → N from places
to naturals. A transition t ∈ T is enabled at m if and only if m ≥ Pre(t) (we
use the pointwise comparison between functions). We denote E(m) the set of
transitions enabled at m.

A state of a TPN is a pair s = (m,ϕ) in which m is a marking and ϕ : T →
R≥0 is a mapping, called the firing function of s, that associates a firing date
to every transition enabled at m. Intuitively, if t is enabled at m, then ϕt is the
date (in the future, from now) at which t should fire. Also, the transitions that
may fire from a state (m,ϕ) are exactly the transitions t in E(m) such that ϕt

is minimal; they are the first scheduled to fire.
For any date θ in R≥0, we denote ϕ

.−θ the partial function that associates the
transition t to the value ϕt − θ, when ϕt ≥ θ, and that is undefined elsewhere.
This operation is useful to model the effect of time passage on the enabled
transitions of a net. We say that the firing function ϕ .− θ is well-defined if it is
defined on exactly the same transitions as ϕ.

The following definitions are quite standard. The semantics of a TPN is a
Kripke structure 〈S, S0,→〉 with only two possible kind of actions: either s

t→ s′

(meaning that the transition t ∈ T is fired from s); or s
θ→ s′, with θ ∈ R≥0

(meaning that we let time θ elapse from s). A transition t may fire from the
state (m,ϕ) if t is enabled at m and firable instantly (that is ϕt = 0). In a state
transition (m,ϕ)

t→ (m′, ϕ′), we say that a transition k is persistent (with k �= t)
if it is also enabled in the marking m−Pre(t), that is if m−Pre(t) ≥ Pre(k).
The transitions that are enabled atm′ and not atm are called newly enabled. We
define the predicates prs and nbl that describe the set of persistent and newly
enabled transitions after t fires from m:

prs(m, t) = { k ∈ E(m) \ {t} | m−Pre(t) ≥ Pre(k) }
nbl(m, t) = { k ∈ (T \ E(m)) ∪ {t} | m−Pre(t) +Post(t) ≥ Pre(k) }

We use these two predicates to define the semantics of DTPN.

88 B. Berthomieu et al.

Definition 1. The semantics of a DTPN 〈P, T,Pre,Post,m0, Is, Id〉 is the
timed transition system SG = 〈S, S0,→〉 such that:

– S is the set of states of the TPN;
– S0, the set of initial states, is the subset of states of the form (m0, ϕ), where

m0 is the initial marking and ϕt ∈ Is(t,m0) for every t in E(m0);
– the state transition relation → ⊆ S × (T ∪ R≥0)× S is the smallest relation

such that for all state (m,ϕ) in S:
(i) if t is enabled at m and ϕt = 0 then (m,ϕ)

t→ (m′, ϕ′) where m′ = m−
Pre(t)+Post(t) and ϕ′ is a firing function such that ϕ′

k ∈ Id(k,m
′, ϕk)

for all persistent transition k ∈ prs(m, t) and ϕ′
k ∈ Is(k,m

′) otherwise.
(ii) if ϕ .− θ is well-defined then (m,ϕ)

θ→ (m,ϕ .− θ).

The state transitions labelled over T (case (i) above) are the discrete tran-
sitions, those labelled over R≥0 (case (ii)) are the continuous, or time elaps-
ing, transitions. It is clear from Definition 1 that, in a discrete transition
(m,ϕ)

t→ (m′, ϕ′), the transitions enabled at m′ are exactly prs(m, t)∪nbl(m, t).
In the target state (m′, ϕ′), a newly enabled transition k gets assigned a firing
date picked “at random” in Is(k,m

′). Similarly, a persistent transition k get
assigned a firing date in Id(k,m

′, ϕk). Because there may be an infinite number
of transitions, the state spaces of TPN are generally infinite, even when the net
is bounded. This is why we introduce an abstraction of the semantics in Sect. 3.

2.2 Interesting Classes of DTPN

In the standard semantics of TPN [16], the firing date of a persistent transition
is left unchanged. We can obtain a similar behavior by choosing for Id(t,m, θ)
the time interval [θ, θ]. We say in this case that the dynamic interval function
is trivial. Another difference with respect to the standard definition of TPN is
the fact that the (static!) time interval of a transition may change. We say that
a dynamic net is a TPN if its static function, Is, is constant and its dynamic
function, Id, is trivial. We say that a DTPN is weak if only the function Id is
trivial. We show that TPN are as expressive as weak DTPN when the nets are
bounded. Weak nets are still interesting though, since the use of non-constant
interval functions can lead to more concise models. On the other hand, the results
of Sect. 3 show that, even in bounded nets, fickle transitions are more expressive
than weak ones. (Proofs can be found in a long version of this paper [19]).

Theorem 1. For every weak DTPN that has a finite set of reachable markings,
there is a TPN that has an equivalent semantics.

We define a third class of nets, called translation DTPN , obtained by re-
stricting the dynamic interval function Id. This class arises naturally during the
definition of the State Class Graph construction in Sect. 3. Intuitively, with this
restriction, a persistent transition can only shift its firing date by a “constant
time”. The constant can be negative and may be a function of the marking.

Time Petri Nets with Dynamic Firing Dates: Semantics and Applications 89

More precisely, we say that a DTPN is a translation if, for every transitions t,
there are two functions κ1 and κ2 from (P → N) → Q such that Id(t,m, θ) is the
time interval [A,B] where A = max(0, θ + κ1(m)) and B = max(A, θ + κ2(m)).
(The use of max in the definition of A,B is necessary to accomodate negative
constants κi(m)); weak DTPN are a trivial example of translation DTPN.

2.3 Interpretation of the Quantized State System Model

With the addition of fickle transitions, it is possible to model systems where
the timing constraints of an event depend on the current state. This kind of
situations arises naturally in practice. For instance, we can use the function Is
to model the fact that the duration of a communication depends on the length
of a message (the marking of a place).

In this section, we consider a simple method for analyzing the behavior of
a system with one continuous variable, x, governed by the ordinary differential
equation ẋ = f(x). The idea is to define a TPN that computes the value x(θ) of
the variable x at the date θ. To this end, we use an extension of TPN with shared
variables, x, y, . . . , where every transition may be guarded by a boolean predicate
(on b) and such that, upon firing, a transition can update the environment (using
a sequence of assignments, do e). This extension of TPN with shared variables
can already be analyzed using the tool Tina.

t
on f(x) �= 0
do x := x - Q

Is(t, x) =
Q

f(x)

[h, h]
do x := x+ h.f(x)

Fig. 1. A simple QSS simulation (left) and the Euler method (right) for ẋ = −x.
(Q = 500, h = 1150, global error smaller than 500.)

The simplest solution is based on the Euler forward method. This is modeled
by the TPN of Fig. 1 (right) that periodically executes the instruction x :=
x + h.f(x) every h (the value of the time step, h, is the only parameter of
the method). This solution is a typical example of (synchronous) discrete time
system, where we sample the evolution of the system using a “quantum of time”.
A discrete time approach answers the following question: given the value of x at
time k.h, what is its value at time (k + 1).h?

90 B. Berthomieu et al.

The second solution is based on the Quantized State System (QSS)
method [11,12], which can be interpreted as the dual of the Euler method. QSS
uses a “quantum of value”, Q, meaning that we only consider discrete values for
x, of the form k.Q with k ∈ N. The idea is to compute the time necessary for
x to change by an amount of Q. To paraphrase [12], the QSS method answers
the following modified question: given that x has value k.Q, what is the earliest
time at which x has value (k ± 1).Q? This method has a direct implementation
using fickle transitions: at first approximation, the time ϕt for x to change by
an amount of Q is given by relation Q = ϕt.f(x), that is ϕt = Q/|f(x)|. We have
that the time slope of x is equal to 1/f(x).

We compare the results obtained with these two different solutions in Fig. 1,
where we choose f(x) = −x and x(0) = 4000. Each plot displays the evolution
of the TPN compared to the analytic solution, in this case x(θ) = 4000e−θ.
Numerical methods are of course approximate; in both cases (Euler and QSS)
the global error is proportional to the quantum. The plots are obtained with
the largest quantum values giving a global error smaller than 500, that is a
step h of 1150 and a quantum Q of 500. The dynamic TPN has 10 states while
the standard TPN has 38. The ratio improves when we try to decrease the
global error. For instance, for an error smaller than 100 (which gives Q = 100
and h = 250) we have 42 states against 182. We observe that in this case the
“asynchronous” solution is more concise than the synchronous one.

The Euler method is the simplest example in a large family of iterative meth-
ods for approximating the solutions of differential equations. The QSS method
used in this section can be enhanced in just the same way, leading to more precise
solutions, with better numerical stability. Some of the improved QSS methods
have been implemented in our tool, but we still experiment the effect of numer-
ical instability on some stiff systems. In these cases, the synchronous approach
(that is deterministic) may sometimes exhibit better performances.

Although we make no use of the fickle function Id here, it arises naturally
when the system has multiple variables. Consider a system with two variables,
x, y, such that ẋ = f(x, y). We can use the same solution than in Fig. 1 to model
the evolution of x and y. When the value of x just changes, the next update is
scheduled at the date Q/f(x,y) (the time slope is f1 = 1/f(x,y)). If the value of y
is incremented before this deadline—say that the remaining time is θ1—we need
to update the time slope and use the new value f2 = 1/f(x,y+Q).

We illustrate the situation in the two diagrams of Fig. 2, where we assume
that f1 is positive. For instance, if the two slopes have the same sign (diagram
to the left), we need to update the firing date to the value θ2 such that |f1|.θ1 =
|f2|.θ2. Likewise, when f2 is negative, we have the relation |f1|.θ1+ |f2|.θ2 = 2.Q.
Therefore, depending on the sign of f1.f2 (the sign of ẏ tell us whether y is
incremented or decremented) we have Id(t, x, y, θ) = [A(θ), A(θ)] with:

A(θ) =
|f(x, y ±Q)|

|f(x, y)| .θ or
|f(x, y ±Q)|

|f(x, y)| . (2.Q.|f(x, y)| − θ)

This example shows that it is possible to implement the QSS method using only
linear fickle functions.

Time Petri Nets with Dynamic Firing Dates: Semantics and Applications 91

0

Q
f1 f2

θ1

θ2

f1θ1 f2θ2

θ1

θ2

f1θ1

f2θ2

Q

−Q

0

f1

f2

Fig. 2. Computing the updated firing date in the QSS method

3 A State Class Abstraction for Dynamic TPN

In this section, we generalize the state class abstraction method to the case of
DTPN. A State Class Graph (SCG) is a finite abstraction of the timed transition
system of a net that preserves the markings and traces. The construction is
based on the idea that temporal information in states (the firing functions)
can be conveniently represented using systems of difference constraints [18]. We
show that the SCG faithfully abstracts the semantics of a net when the dynamic
interval functions are translations. We only over-approximate the set of reachable
markings in the most general case.

A state class C is defined by a pair (m,D), where m is a marking and the
firing domain D is described by a (finite) system of difference constraints. In
a domain D, we use variables xt, yt, . . . to denote a constraint on the value of
ϕt. A domain D is defined by a set of difference constraints, that is a system of
inequalities: αi ≤ xi ≤ βi and xi−xj ≤ γi,j , where i, j range over a given subset
of “enabled transitions” and the coefficients α, β and γ are rational numbers.
We can improve the reduced form of D by choosing the tightest possible bounds
that do not change its associated solutions set. In this case we say that D is in
closure form. We show in Th. 2 how to compute the coefficients of the closure
form incrementally.

In the remainder of this section, we use the notation As
t (m) and Bs

t (m) for
the left and right endpoints of Is(t,m). Likewise, when the marking m is obvious
from the context, we use the notations At(θ) and Bt(θ) for the left and right
endpoints of Id(t,m, θ), that is At(θ) = ↓Id(t,m, θ) and Bt(θ) = ↑Id(t,m, θ). We
call At and Bt the fickle functions of t. In the remainder of the text, we assume
that 0 ≤ At(θ) ≤ Bt(θ) for all possible (positive) date θ and that B(∞) =
limθ→∞B(θ). We also require these functions to be monotonically increasing.
We impose no other restrictions on the fickle functions.

We define inductively a set of classes Cσ, where σ ∈ T ∗ is a sequence of
discrete transitions firable from the initial state. This is the State Class Graph
construction of [5,3]. Intuitively, the class Cσ = (m,Dσ) “collects” the states

92 B. Berthomieu et al.

reachable from the initial state by firing schedules of support sequence σ. The
initial class Cε is (m0, D0) where D0 is the domain defined by the set of inequal-
ities As

i (m0) ≤ xi ≤ Bs
i (m0) for all i in E(m0).

Assume Cσ = (m,D) is defined and that t is enabled at m. We detail how
to compute the domain for the class Cσ.t. First we test whether the system
D extended with the constraints Dt = {xk − xt ≥ 0 | t �= k, k ∈ E(m)} is
consistent. This is in order to check that transition t can be fired before any
other enabled transitions k at m. If D∧Dt is consistent, we add Cσ.t = (m′, D′)
to the set of reachable classes, where m′ is the result of firing t from m, i.e.
m′ = m−Pre(t) +Post(t). The computation of D′ follows the same logic than
with standard TPN.

We choose a set of fresh variables, say yk, for every transition k that is enabled
at m′. For every persistent transition, k ∈ prs(m, t), we add the constraints
yk = xk − xt to the set of inequalities in D ∧ Dt. The variable yk matches the
firing date of k at the time t fires, that is, the value of ϕk used in the expression
Id(k,m

′, ϕk) (see Definition 1, case (i)). For every newly enabled transition,
k ∈ nbl(m, t), we add the constraints As

k(m
′) ≤ yk ≤ Bs

k(m
′). This constraint

matches the fact that ϕ′
k is in the interval Is(k,m

′) if k is newly enabled at m′.
As a result, we obtain a set of inequations where we can eliminate all occurrences
of the variables xk and xt. After removing redundant inequalities and simplifying
the constraints on transitions in conflicts with t—so that the variables only range
over transitions enabled at m′—we obtain an “intermediate” domain Dint that
obeys the constraints: κi ≤ yi ≤ λi and yi − yj ≤ μi,j , where i, j range over
E(m′) and the constants κ, λ and μ are defined as follows.

κi =

{
As

i (m
′)

max (0, {−γi,j | j ∈ E(M)})
if i is newly enabled,
otherwise

λi =

{
Bs

i (m
′)

γi,t

if i is newly enabled,
otherwise

μi,j =

{
λi − κj

min (γi,j , λi − κj)
if either i or j newly enabled,
otherwise

(C1)

Finally, we need to apply the effect of the fickle functions. For this, we rely
on the fact that Ai and Bi are monotonically increasing functions. To obtain
D′, we choose a set of fresh variables, say x′i, for every transition i ∈ E(m′) and
add the following relations to Dint . To simplify the notation, we assume that in
the case of a newly enabled transition, j, the functions Aj and Bj stand for the
identity function (with this shorthand, we avoid to distinguish cases where both
or only one of the transitions are persistent):

x′i = yi if i newly enabled
Ai(yi) ≤ x′i ≤ Bi(yi) and x′i − x′j ≤ Bi(yi)−Aj(yj) if i or j are persistent

The relation for newly enabled transitions simply states that yi already captures
all the constraints on the firing time ϕ′

i. For persistent transitions, the first
relation states that x′i is in the interval [Ai(yi), Bi(yi)], that is in Id(i,m

′, ϕ(i)).

Time Petri Nets with Dynamic Firing Dates: Semantics and Applications 93

We obtain the domain D′ by eliminating all the variables of the kind yi.
First, we can observe that, by monotonicity of the functions Ai and Bi, we
have Ai(κi) ≤ Ai(yi) and Bi(yi) ≤ Bi(λi). This gives directly a value for the
coefficients α′

i and β′
i. The computation of the coefficient γ′

i,j is more complex,
since it amounts to computing the maximum of a function over a convex sets of
points. Indeed γ′

i,j is the least upper-bound for the values of x′i − x′j over Dint

or, equivalently:

γ′
i,j = max {Bi(yi)−Aj(yj) | yi, yj ∈ Dint}

= max {Bi(yi)−Aj(yj) | κi ≤ yi ≤ λi, κj ≤ yj ≤ λj , yi − yj ≤ μi,j}

It is possible to simplify the definition of γ′
i,j . Indeed, if we fix the value of

yj then, by monotonicity of Bi, the maximal value of Bi(yi)−Aj(yj) is reached
when yi is maximal. Hence we have two possible cases: either (i) it is reached
for yi = yj + μi,j if κj ≤ yj ≤ λi + μi,j ; or (ii) it is reached for yi = λi if
λi − μi,j ≤ yj ≤ λj . This result is illustrated in the schema of Fig. 3a, where we
display an example of domain Dint . When yj is constant (horizontal line), the
maximal value is on the “right” border of the convex set (bold line). We also
observe that in case (ii), by monotonicity of Aj , the maximal value is equal to
Bi(λi)− Aj(λi + μi,j). Therefore the value of γ′

i,j is obtained by computing the
maximal value of the expression Bi(θ)−Aj(θ − μi,j), that is:

γ′
i,j = max {Bi(θ)−Aj(θ − μi,j) | κj + μi,j ≤ θ ≤ λi} (C2)

As a consequence, the value of γ′
i,j can be computed by finding the minimum of

a numerical function (of one parameter) over a real interval.

0 1 2 3

1

2

3

ti

tj

λiκj + μi,j

λj

κj

yj = 1

yi − yj = μi,j

μi,j = λi − κj

(a) Domain Dint projected over ti, tj

5/2

1/4

0 1 2 3

1

2

3

4

5

6

ti

tj

x′
i − x′

j = 9/4

5/22 3

(b) Domain D′ obtained from Dint

Fig. 3. Computing the coefficient γ′
i,j in the domain D′

94 B. Berthomieu et al.

We display in Fig. 3b the domain D′ obtained from Dint after applying the
fickle functions. In this example, tj is the only fickle transition and we choose
Aj(θ) = Bj(θ) = (θ − 1/2)2 when θ ≥ 1/2. With our method we have that
μi,j = 3/2 and the value of γ′

i,j is obtained by computing the maximal value of

the expression (θ − 1/2)2 − (θ − 3/2) with θ ∈ [2, 3], that is 9/4.

Theorem 2. Assume C = (m,D) is a class with D in closure form. Then for
every transition t in E(m) there is a unique class (m′, D′) obtained from C by
firing t. The domain D′ is also in closure form and can be computed incremen-
tally as follows (we assume that Ai and Bi stands for the identity functions when
i is newly enabled).

α′
i = As

i (m
′) if i is newly enabled,

= max (Ai(0), {Ai(−γi,j) | j ∈ E(M)}) otherwise
β′
i = Bs

i (m
′) if i is newly enabled,

= Bi(γi,t) otherwise
γ′
i,j = min(γi,j , β

′
i − α′

j) if i, j are newly enabled,
= max{Bi(θ) −Aj(θ − μi,j) | μi,j + κj ≤ x ≤ λi} otherwise

(where λi, κj and μi,j are defined as in (C1))

Moreover, if the state (m,ϕ) is reachable in the state graph of a net, say N , and
(m,ϕ)

θ→ t→(m′, ϕ′) then there is a class Cσ = (m,D) reachable in the SCG
computed for N with ϕ ∈ D, Cσ.t = (m′, D′) and ϕ′ ∈ D′.

The hatched area inside the domain displayed in Fig. 3b is the image of the
domain Dint after its transformation by the fickle function Aj(θ). We see that
some points of D′ have no corresponding states in Dint . Hence we only have
an over-approximation. (We do not have enough space to give an example of
net with a marking that is reachable in the SCG but not reachable in the state
space, but such an example is quite easy to build.) If we consider the definition
of the coefficients γ′ in equation (C2), we observe that the situation is much
simpler if the fickle functions are translations. Actually, it is possible to prove
that, in this case, the SCG construction is exact.

Theorem 3. If the DTPN N is a translation then the SCG defined in Th. 2
has the same set of reachable markings and the same set of traces as the timed
transition system of N .

Proof (sketch). If the net is a translation then there are two constants ci, cj such
that Bi(θ) = θ+ ci and Aj(θ) = θ+ cj . Therefore the expression Bi(θ)−Aj(θ−
μi,j), used in equation (C2), is constant and equal to ci−cj−μi,j (the maximum
is reached all over the boundary of the domain). In this case, every state in D′

has a corresponding state in Dint . ��

We can also observe that, if the dynamic interval bounds Ai and Bi are
linear functions, then we can follow a similar construct using (general) systems
of inequations for the domains instead of difference constraints. This solution
gives also an exact abstraction for the state space but is not interesting from a

Time Petri Nets with Dynamic Firing Dates: Semantics and Applications 95

computational point of view (since we loose the ability to compute a canonical
form for the domain incrementally). In this case, we are in a situation comparable
to the addition of stopwatch to TPN where systems of difference constraints
are not enough to precisely capture state classes. With our computation of the
coefficient γ′, we use instead the “best difference bound matrix” that contains
the states reachable from the class C. This approximation is used in some tools
that support stopwatches, like Romeo [15] or ORIS [10].

4 Two Application for Dynamic TPN

We study two possible applications for fickle transitions. First to model a system
of preemptive, periodic tasks with fixed duration. Next to model hybrid system
with non trivial continuous behavior. These experiments have been carried out
using a prototype extension of Tina. The tool and all the models are available
online at http://projects.laas.fr/tina/fickle/.

4.1 Scheduling Preemptive Tasks

We consider a simple system consisting of two periodic tasks, Task1 and Task2,
executing on a single processor. Task2 has a period of 10 unit of time (u.t.) and
a duration of 6 u.t. ; Task1 has a period of 5 u.t. and a duration of 1 and can
preempt Task2 at any time. We display in Fig. 4 a TPN model for this system.
Our model makes use of a stopwatch arc, drawn using an “open box” arrow tip
(�), and of an inhibitor arc (�).

The net is the composition of four components. The roles of Sched1 and
Sched2 is to provide a token in place psched at the scheduling date of the tasks.
The behavior of the nets corresponding to Task1 and Task2 are similar. Both
nets are 1-safe and their (unique) token capture the state of the tasks. When
the token is in place e, the task execute; when it is in place w it is waiting for its
scheduling event. Hence we have a scheduling error if there is a token in place
psched and not in place w.

[6,6]

Task2Finished

[0,0]

Task2Scheduled

[0,0]

psched [10,10]

period

[1,1]

Task1Finished

Task1Scheduled

[0,0]

psched

period

[5,5]

[0,0] e1 e2

w2w1

Sched1 Task1 Task2 Sched2

Fig. 4. System with one preemptive and one simple task

We use an inhibitor arc between the place e1 and the transition
Task2Scheduled to model the fact that Task2 cannot use the processor if Task1

http://projects.laas.fr/tina/fickle/

96 B. Berthomieu et al.

is already running. We use a stopwatch arc between e1 and the transition
Task2Finished to model the fact that Task1 can preempt Task2 at any moment.
A stopwatch (inhibitor) arc “freezes” the firing date of its transition. Therefore
the completion of Task2 (the firing date of Task2Finished) is postponed as long
as Task1 is running. Using the same approach, we can define a TPN modeling a
system with one preemptive task and n “simple”tasks.

We can define an equivalent model using fickle transitions instead of stop-
watch. The idea is to add the duration of Task1 to the completion date of Task2
each time Task1 starts executing (that is Task1Scheduled fires). This can be ob-
tained by removing stopwatch arcs and using for Task2Finished the fickle func-
tions A(θ) = B(θ) = θ+1 when Task1Scheduled fires and the identity otherwise.
The resulting dynamic TPN is a translation and therefore the SCG construction
is exact. In this new model, we simulate preemption by adding the duration of
the interrupting thread to the completion date of the other running thread. The
same idea was used by Bodeveix et al. in [17], where they prove the correctness
of this approach using the B method.

The following table gives the results obtained when computing the SCG for
different number of tasks. The models with fickle transitions have slightly more
classes than their stopwatch counterpart. Indeed, in the fickle case, the firing
date of Task2Finished can reach a value of 7, while it is always bounded by 6
with stopwatches. The last row of the Table gives the computation time speedup
between our implementation of fickle transitions and the default implementation
of stopwatch in Tina. We observe that the computation with fickle transitions is
(consistently) two times faster; this is explained by the fact that the algorithmic
for stopwatches is more complex. Memory consumption is almost equal between
the two versions approaches, with a slight advantage for the fickle model.

tasks 2 3 5 10 12

states
(fickle/stopwatch)

84
83

208
205

1 786
1 771

539 902
539 391

5 447 504
5 445 457

time speedup
(fickle/stopwatch)

×2.00
(0.005s/0.010s)

×1.90
(0.022s/0.042s)

×2.12
(0.37s/0.784s)

×2.31
(170s/392s)

×1.95
(3077s/6024s)

4.2 Verification of Linear Hybrid systems

The semantics of fickle transitions came naturally from our goal of implementing
the QSS method using TPN (see Sect. 2.3). We give some experimental results
obtained using this approach on two very simple use cases.

Our first example is a model for the behavior of hydraulic cylinders in a
landing gear system [8]. The system can switch between two modes, extension
and retraction. The only parameter is the position x of the cylinder head. (It is
possible to stop and to inverse the motion of a cylinder at any time.) The system
is governed by the relation ẋ = 5− x while opening, with x ∈ [0, 5], and ẋ = −1
while closing. We can model this system using two fickle transitions.

Time Petri Nets with Dynamic Firing Dates: Semantics and Applications 97

Fig. 5. Evolution of the PI-controller: fickle (left) and discrete (right) versions

The second example is a model for a double integrator, an extension of the
simple integrator of Fig. 1 to a system with two interdependent variables x1 and
x2. The system has two components, P1, P2, where Pi is in charge of the evolu-
tion of xi, for i ∈ {1, 2}, and each xi is governed by the relation ẋi = fi(x1, x2).
The components P1 and P2 are concurrent and interact with each other by
sending an event when the value of xi changes. Therefore the system mixes
message passing and hybrid evolution. This system can be used to solve second
order linear differential equations of the form ÿ = kP ẏ + kI(S − y); we simply
take ẋ1 = x2 and ẋ2 = kPx2 + kI(S − x1). This family of equations often ap-
pears in control-loop feedback mechanisms, where they model the behavior of
proportional-integral (PI) controller. For example, a system with double quan-
tized integrators is studied in [14] in the context of a dynamic cruise controller.

We compare the results obtained with our two versions of the integrator: fickle
and discrete (synchronous). Figure. 5 displays the evolution of the variable x1 in
the PI-controller for our two models, with a quantum of 1/10. We observe that
the discrete version does not converge with this time step (we need to choose a
value of 1/100).

System Landing Gear Cruise Control (PI-controller)
(version)

parameters
(fickle)
Q = 1/10

(discrete)
h = 1/10

(fickle)
Q = 1/10

(discrete)
h = 1/10

(discrete)
h = 1/100

states 1 906 2 590 259 2 049 20 549

time (s) 0.076 0.125 0.004 0.017 0.185

memory (MB) 1.00 1.56 0.11 0.90 9.02

5 Conclusion and Related Work

We have shown how to extend the SCG construction to handle fickle transitions.
The SCG is certainly the most widely used state space abstraction for Time Petri
nets: it is a convenient abstraction for LTL model checking; it is finite when the
set of markings is bounded; and it preserves both the markings and traces of the
net. The results are slightly different with dynamic TPN, even for the restricted
class of translation nets. In particular, we may have an infinite SCG even when
the net is bounded. This may be the case, for instance, if we have a transition

98 B. Berthomieu et al.

that can stay persistent infinitely and that is associated to the fickle function
Id(θ) = [θ+1, θ+1]. This entails that our construction may not terminate, even
if the set of markings is bounded. This situation is quite comparable to what
occurs with updatable timed automata [9] and, like in this model, it is possible to
prove that the model-checking problem is undecidable in the general case. This
does not mean that our construction is useless in practice, as we show in our
examples of Sect. 4.

The notion of fickle transitions came naturally as the simplest extension of
TPN able to integrate the Quantized State System (QSS) method inside Tina.
Although there are still problems left unanswered, this could provide a solution
for supporting hybrid systems inside a real-time model-checker. Section 3 gives
clues on how to support fickle transitions in existing tools for standard TPN.
Indeed, the incremental computation of the coefficients (α, β and γ) in the SCG
construction is not very different from what is already implemented in tools like
Tina or Romeo.

There are two main differences. First, we need to apply a numerical function
over the coefficients of Dint ; this is easy if the tool already supports associating
a function to a transition in a TPN, as it is the case with Tina. Next, we need
to compute the maximal value of a numerical function over a given interval; this
can be easily added to the tool or delegated to a numerical solver. Actually, for
the examples presented in Sect. 4, we only need to use affine functions, for which
the maximal value can be defined by a simple analytical expression. As a result,
it should be relatively easy to adapt existing tools to support the addition of
fickle transitions. This assessment is supported by our experience when extending
Tina. ; once the semantics of fickle transitions was stable, it took less than a week
to adapt our tools and to obtain the first results.

To our knowledge, updatable TA is the closest model to dynamic TPN. The
relation between these two models is not straightforward. We consider very gen-
eral update functions but do not allow the use of multiple firing dates in an
update (that would be the equivalent of using other clocks in TA). Also, the
notion of persistent transitions does not exist in TA while it is central in our
approach. While the work on updatable TA is geared toward decidability issues,
we rather concentrate on the implementation of our extension and its possible
applications. Nonetheless, it would be interesting to define a formal, structural
translations between the two models, like it was done in [2,6] between TA and
TPN. Some of our results also show similarities between fickle transitions and
the use of stopwatch [4]. In the general case, it does not seem possible to encode
one extension with the other, but it would be interesting to look further into this
question. Finally, since the notion of slope is central in our implementation of
the QSS method (see Sect. 2.3), it would be interesting to compare our results
with an approach based on multirate transitions [13], that is a model where time
does not advance at the same rate in all the transitions.

Time Petri Nets with Dynamic Firing Dates: Semantics and Applications 99

References

1. Berthomieu, B., Vernadat, F.: State class constructions for branching analysis of
time petri nets. In: Garavel, H., Hatcliff, J. (eds.) TACAS 2003. LNCS, vol. 2619,
pp. 442–457. Springer, Heidelberg (2003)

2. Bérard, B., Cassez, F., Haddad, S., Lime, D., Roux, O.H.: Comparison of the
expressiveness of timed automata and time petri nets. In: Pettersson, P., Yi, W.
(eds.) FORMATS 2005. LNCS, vol. 3829, pp. 211–225. Springer, Heidelberg (2005)

3. Berthomieu, B., Diaz, M.: Modeling and verification of time dependent systems
using time Petri nets. IEEE Trans. on Software Engineering 17(3), 259–273 (1991)

4. Berthomieu, B., Lime, D., Roux, O.H., Vernadat, F.: Reachability problems and
abstract state spaces for time Petri nets with stopwatches. Journal of Discrete
Event Dynamic Systems 17, 133–158 (2007)

5. Berthomieu, B., Menasche, M.: A state enumeration approach for analyzing time
Petri nets. In: Proc. of ATPN, Applications and Theory of Petri Nets (1982)

6. Berthomieu, B., Peres, F., Vernadat, F.: Bridging the gap between timed automata
and bounded time petri nets. In: Asarin, E., Bouyer, P. (eds.) FORMATS 2006.
LNCS, vol. 4202, pp. 82–97. Springer, Heidelberg (2006)

7. Berthomieu, B., Ribet, P.-O., Vernadat, F.: The tool TINA – construction of ab-
stract state spaces for Petri nets and time Petri nets. International Journal of
Production Research 42(14), 2741–2756

8. Boniol, F., Wiels, V.: The landing gear system case study. In: Boniol, F., Wiels, V.,
Ait Ameur, Y., Schewe, K.-D. (eds.) ABZ 2014. CCIS, vol. 433, pp. 1–18. Springer,
Heidelberg (2014)

9. Bouyer, P., Dufourd, C., Fleury, E., Petit, A.: Updatable timed automata. Theo-
retical Computer Science 321(23), 291–345 (2004)

10. Bucci, G., Fedeli, A., Sassoli, L., Vicario, E.: Timed state space analysis of real-time
preemptive systems. IEEE Transactions on Software Engineering 30(2) (2004)

11. Cellier, F.-E., Kofman, E.: Continuous System Simulation. Springer (2006)
12. Cellier, F.-E., Kofman, E., Migoni, G., Bortolotto, M.: Quantized state system

simulation. In: Proc. GCMS 2008, Grand Challenges in Modeling and Simulation
(2008)

13. Daws, C., Yovine, S.: Two examples of verification of multirate timed automata
with kronos. In: Proc. of RTSS, IEEE Real-Time Systems Symposium (1995)

14. Foures, D., Albert, V., Nketsa, A.: Formal compatibility of experimental frame
concept and FD-DEVS model. In: Proc. of MOSIM, International Conference on
Modeling, Optimization and Simulation (2012)

15. Gardey, G., Lime, D., Magnin, M., Roux, O(H.): Romeo: A tool for analyzing time
petri nets. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576,
pp. 418–423. Springer, Heidelberg (2005)

16. Merlin, P.M.: A study of the recoverability of computing systems. PhD thesis,
Department of Information and Computer Science, University of California (1974)

17. Nasr, O., Rached, M., Bodeveix, J.-P., Filali, M.: Spécification et vérification d’un
ordonnanceur en B via les automates temporisés. L’Objet 14(4) (2008)

18. Ramalingam, G., Song, J., Joscovicz, L., Miller, R.E.: Solving difference constraints
incrementally. Algorithmica 23 (1995)

19. Dal Zilio, S., Fronc, L., Berthomieu, B., Vernadat, F.: Time petri nets with dynamic
firing dates: Semantics and applications. Technical Report 14148, LAAS-CNRS
(2014) arXiv: 1404.7067

Verification and Performance Evaluation

of Timed Game Strategies�

Alexandre David1, Huixing Fang2,
Kim Guldstrand Larsen1, and Zhengkui Zhang1

1 Department of Computer Science, Aalborg University, Denmark
{adavid,kgl,zhzhang}@cs.aau.dk

2 Software Engineering Institute, East China Normal University, China
wxfang@sei.ecnu.edu.cn

Abstract. Control synthesis techniques, based on timed games, derive
strategies to ensure a given control objective, e.g., time-bounded reach-
ability. Model checking verifies correctness properties of systems. Sta-
tistical model checking can be used to analyse performance aspects of
systems, e.g., energy consumption. In this work, we propose to combine
these three techniques. In particular, given a strategy synthesized for a
timed game and a given control objective, we want to make a deeper
examination of the consequences of adopting this strategy. Firstly, we
want to apply model checking to the timed game under the synthesized
strategy in order to verify additional correctness properties. Secondly, we
want to apply statistical model checking to evaluate various performance
aspects of the synthesized strategy. For this, the underlying timed game
is extended with relevant price and stochastic information. We first ex-
plain the principle of translating a strategy produced by Uppaal-tiga

into a timed automaton, thus enabling the deeper examination. However,
our main contribution is a new extension of Uppaal that automatically
synthesizes a strategy of a timed game for a given control objective, then
verifies and evaluates this strategy with respect to additional properties.
We demonstrate the usefulness of this new branch of Uppaal using two
case-studies.

1 Introduction

Model checking (MC) of real-time systems [12] has been researched for over 20
years. Mature tools such as Uppaal [3] and Kronos [5] have been applied to
numerous industrial case studies. Nowadays, more interesting formal methods
for real-time systems are inspired by or derived from model-checking. Two re-
markable ones are controller synthesis and statistical model checking. Controller
synthesis techniques [6], based on games, derive strategies to ensure some given
objective while handling uncertainties of the environment. Statistical model-
checking (SMC) [14], based on statistical analysis of simulations, is used to anal-
yse reliability and performance aspects of systems, e.g., energy consumption.

� This work has been supported by Danish National Research Foundation – Center
for Foundations of Cyber-Physical Systems, a Sino-Danish research center.

A. Legay and M. Bozga (Eds.): FORMATS 2014, LNCS 8711, pp. 100–114, 2014.
c© Springer International Publishing Switzerland 2014

Verification and Performance Evaluation of Timed Game Strategies 101

In the Uppaal toolbox, efficient implementations of these new techniques are
found in the branches Uppaal-tiga [2] and Uppaal-smc [9].

We believe the three techniques can complement each other. Given a timed
game and a control objective, controller synthesis will generate a strategy if
the game is controllable. The strategy may ensure hard timing guarantees for a
controller to win the game. We aim at verifying additional correctness properties
by applying MC to the timed game under this strategy. Similarly, SMC should
allow to infer more refined performance consequences (cost, energy consumption
etc) of the synthesized strategy. For this, we extend the underlying timed game
with prices and stochastic semantics.

There have been a few previous attempts to combine modelling, synthesis,
verification and performance evaluation in a single paradigm. In [7] Franck et al.
presented a tool chain – Uppaal-tiga for synthesis, PHAVer for verification,
Simulink for simulation – to solve the energy consumption and wear control
problem of an industrial oil pump case-study. In [10]Uppaal-tiga was combined
with Matlab and Simulink to achieve synthesis, simulation and executable
code generation for the climate controller of a pig stable. These tool chains are
not integrated inside one tool and require translations to let the different tools
interact.

As the first contribution in this paper, we propose the principle of translating
a synthesized strategy, as obtained from Uppaal-tiga, into a controller timed
automaton. One can build a closed system using the controller and do model-
checking in Uppaal or statistical model-checking in Uppaal-smc. The second
contribution is an extension of the semantics and algorithms of MC and SMC
to use a synthesized strategy when exploring the state space (for MC) or gen-
erating random runs (for SMC). The third contribution is an implementation
of this extension based on Uppaal referred here as Control-SMC, which allows
users to synthesize a timed game strategy then verify and evaluate this strategy
automatically. It is worth noting that Uppaal-tiga may not guarantee that the
synthesized strategy is time optimal and here we are interested in evaluating a
given strategy w.r.t. a number of different cost measures.

The rest of the paper is organized as follows. Section 2 defines timed games
and strategies. Section 3 provides the stochastic semantics of SMC. Section 4
describes the translation of a strategy to a timed automaton. Section 5 presents
the extended SMC semantics and implementation of Control-SMC. Section 6
gives the experiment results on two case-studies using Control-SMC. The paper
concludes with the future work in Section 7.

2 Timed Game

This section recalls the basic theory of timed game and controller synthesis.
Controller synthesis aims at solving the following problem: Given a system S
and an objective φ, synthesize a controller C such that C can supervise S to
satisfy φ (C(S) |= φ) regardless how the environment behaves. The problem can
be formulated as a two-player game between the controller and the environment.

102 A. David et al.

2.1 Timed Game Automata

Let X = {x, y, ...} be a finite set of clocks. We define B(X) as the set of clock
constraints over X generated by grammar: g, g1, g2 ::= x �� n |x−y �� n | g1∧g2,
where x, y ∈ X are clocks, n ∈ N and ��∈ {≤, <,=, >,≥}.

Definition 1. A Timed Automaton (TA) [1] is a 6-tuple A = (L, �0, X,Σ,E,
Inv) where: L is a finite set of locations, �0 ∈ L is the initial location, X is a
finite set of non-negative real-valued clocks, Σ is a finite set of actions, E ⊆
L×B(X)×Σ×2X ×L is a finite set of edges, Inv : L → B(X) sets an invariant
for each location.

Definition 2. The semantics of a timed automaton A is a Timed Transition
System (TTS) SA = (Q,Q0, Σ,→) where: Q = {(�, v) | (�, v) ∈ L× RX

≥0 and
v |= Inv(�)} are states, Q0 = (�0, 0) is the initial state, Σ is the finite set of
actions, →⊆ Q× (Σ ∪R≥0)×Q is the transition relation defined separately for
action a ∈ Σ and delay d ∈ R≥0 as:

(i) (�, v)
a−→ (�′, v′) if there is an edge (�

g,α,r−−−→ �′) ∈ E such that v |= g,
v′ = v[r !→ 0] and v′ |= Inv(�′),

(ii) (�, v)
d−→ (�′, v + d) such that v |= Inv(�) and v + d |= Inv(�).

A timed game automaton is an extension of a timed automaton whose actions
are partitioned into controllable actions for the controller and uncontrollable
actions for the environment. Besides discrete actions, each player can decide to
wait in the current location. As soon as one player decides to play one of his
available actions, time will stop elapsing and the action will be taken.

Definition 3. A Timed Game Automaton (TGA) [13] is a 7-tuple G = (L, �0, X,
Σc, Σu, E, Inv) where: Σc is the finite set of controllable actions, Σu is the fi-
nite set of uncontrollable actions, Σc and Σu are disjoint, and (L, �0, X,Σc ∪
Σu, E, Inv) is a timed automaton.

Let SG be the timed transition system of G. A run ρ of G can be expressed in

SG as a sequence of alternative delay and action transitions: ρ = q0
d1−→ q′0

a1−→
q1

d2−→ q′1
a2−→ · · · dn−→ q′n−1

an−→ qn · · · , where ai ∈ Σc ∪Σu, di ∈ R≥0, qi is state
(�i, vi), and q′i is reached from qi after delay di+1. ExecG denotes the set of runs

of G and Execf
G denotes the set of its finite runs.

Definition 4. Given a timed game automaton G and a set of states K ⊆ L ×
RX

≥0, the control objective φ can be: (i) a reachability control problem if we
want G supervised by a strategy to reach K eventually, or (ii) a safety control
problem if we want G supervised by a strategy to avoid K constantly.

We can define a run ρ ∈ ExecG as winning in terms of its control objective.
For a reachability game, ρ is winning if ∃k ≥ 0, (�k, vk) ∈ K. For a safety game,
ρ is winning if ∀k ≥ 0, (�k, vk) �∈ K.

Verification and Performance Evaluation of Timed Game Strategies 103

Definition 5. A strategy for a controller in the timed game G is a mapping
s : Execf

G → Σc ∪ {λ} satisfying the following conditions: given a finite run ρ
ending in state q = last(ρ), if s(ρ) = a ∈ Σc, then there must exist a transition

q
a−→ q′ in SG, or if s(ρ) = λ, λ being the delay action, then there must exist a

positive delay d ∈ R>0 such that q
d−→ q′ in SG.

When a strategy only depends on the current state of the game, that is
∀ρ, ρ′ ∈ ExecG , last(ρ) = last(ρ′) implies s(ρ) = s(ρ′), it is called a positional
or memoryless strategy. The strategies for reachability and safety games, as the
ones handled by Uppaal-tiga, are memoryless.

The analysis of TA and TGA is based on the exploration of a finite symbolic
reachability graph, where the nodes are symbolic states. A symbolic state S is a
pair (�, Z), where � ∈ L, and Z = {v | v |= gz, gz ∈ B(X)} is a zone [12], which
is normally efficiently represented and stored in memory as difference bound
matrices (DBM) [4]. Uppaal-tiga uses efficient on-the-fly algorithms [6] that
manipulate zones to solve timed games. The winning strategy ŝ produced by
Uppaal-tiga is also represented using zones. More precisely, for each location
�, ŝ gives a finite set of pairs as ŝ(�) = {(Z1, a1), . . . , (Zn, an)}, where ai ∈
Σc ∪ {λ}, Zi ∩ Zj = ∅ if i �= j.

2.2 A Running Example

Fig. 1 [6] shows a timed game automaton named Main which has one clock x and
two types of edges: controllable (solid) and uncontrollable (dashed). The control
objective is to find a strategy that can supervise Main to reach goal, regardless of
the environment’s behavior. The object is expressed as control: A<> Main.goal.
The game is controllable, and Uppaal-tiga provides a strategy as shown in
Fig. 2 if running the command line version of Uppaal-tiga– verifytga with
the option -w0. The strategy is a list of (zone, action) pairs indexed by locations.

Fig. 1. TGA Main

State: (Main.L1)
While you are in (10<=Main.x && Main.x<20), wait.
When you are in (20<=Main.x), take transition

Main.L1->Main.goal { x >= 20, tau, 1 }
State: (Main.L3)
While you are in (Main.x<10), wait.
When you are in (Main.x==10), take transition

Main.L3->Main.L1 { x <= 10, tau, 1 }
State: (Main.L0)
When you are in (Main.x==10), take transition

Main.L0->Main.L1 { x <= 10, tau, 1 }
While you are in (Main.x<10), wait.
State: (Main.L2)
When you are in (Main.x<=10), take transition

Main.L2->Main.L3 { 1, tau, 1 }
State: (Main.goal)
While you are in true, wait.

Fig. 2. A Strategy for Main

104 A. David et al.

For example when Main is at L1, the action is to wait if 10 ≤ x < 20, or to take
the action to reach goal if x ≥ 20.

3 Stochastic Priced Timed Automata

In this section, we briefly recall the definition of priced timed automata and
stochastic semantics of SMC. We borrow the definitions from [8].

3.1 Priced Timed Automata

Priced timed automata are a generalization of timed automata where clocks
may have different rates in different locations. We note by R(�) : X → N the
rate vector assigning a rate to each clock of X at location �. For v ∈ RX

≥0

and d ∈ R≥0, we write v + R(�) · d to denote the clock valuation defined by
(v +R(�) · d)(x) = v(x) +R(�)(x) · d for any x ∈ X .

Definition 6. A Priced Timed Automaton (PTA) is a tuple P = (L, �0, X,Σ,E,
R, I) where: (i) L is a finite set of locations, (ii) �0 ∈ L is the initial location,
(iii) X is a finite set of clocks, (iv) Σ = Σi "Σo is a finite set of actions parti-
tioned into inputs (Σi) and outputs (Σo), (v) E ⊆ L×B(X)×Σ × 2X × L is a
finite set of edges, (vi) R : L → NX assigns a rate vector to each location, and
(vii) I : L → B(X) assigns an invariant to each location.

3.2 Stochastic Semantics

Consider a closed network of PTAs A = (P1| . . . |Pn) with a state space St =
St1×· · ·×Stn. For a concrete global state q = (q1, . . . , qn) ∈ St and a1a2 . . . ak ∈
Σ∗ we denote by π(q, a1a2 . . . ak) the set of all maximal runs from q with a prefix
t1a1t2a2 . . . tkak for some t1, . . . , t2 ∈ R≥0, that is, runs where the i’th action ai
has been output by the component Pc(ai). We give the probability for getting
such sets of runs as:

PA(π(q, a1a2 . . . ak)) =

∫
t≥0

μc
q(t)·

(∏
j �=c

∫
τ>t

μj
q(τ)dτ

)·γc
qt(a1)·PA

(
π((qt)a1 , a2 . . . an)

)
dt

where c = c(ai) is the index of component taking a1, μ
c
q is the delay density

function for component c to choose a delay ti at q, and γ
c
qt is the output probability

function for component c to choose an action ai after q is delayed by t. The above
nested integral reflects that the stochastic semantics of the network is defined
based on race among components. All components are independent in giving
their delays which are decided by the given delay density functions. The player
component who offers the minimum delay is the winner of the race, and takes the
turn to make a transition and (probabilistically) choosing the action to output.

Verification and Performance Evaluation of Timed Game Strategies 105

PTA P2PTA P1

Fig. 3. A Tiny Example

Fig. 3 gives the intuition of the SMC se-
mantics. Two PTAs P1 and P2 race to reach
locations A or B. If P1 enters A, it blocks P2

to enter B, and vice versa. Furthermore, ei-
ther PTA can delay uniformly within the in-
variants from its initial state before firing its
output transition. We can use the SMC se-
mantics to calculate the probability for P1 to
enter location A within 2 time units as:

P(π(q0, a)) =
∫ 1

x=0

1 · (
∫ 2

y=x

1

2
dy

)
dx =

1

2

∫ 1

x=0

(2− x)dx =
3

4

where q0 is the initial state of the network of P1 and P2, and the delay density
functions for P1 and P2 at q0 are 1 and 1

2 respectively. P1 can reach A only if it
takes its transition before P2.

4 Translating Strategies to Timed Automata

In this section, we provide a systematic way to translate a synthesized strategy
of a timed game G produced by Uppaal-tiga into a controller timed automaton
C. Once the controller is built, we can verify additional correctness properties
or evaluate performance aspects of the closed system C(G) in Uppaal.

4.1 The Method

We recall from Section 2.1 that strategies have the form ŝ(�) = {(Z1, a1), . . . , (Zn,
an)}. Given a concrete state q = (�, v), one can lookup which action ai to take
by finding Zi such that v ∈ Zi. Fig. 4 illustrates how to translate the strat-
egy from a location � with the schematic zone representation (left) into a basic

C C

C

C

ŝ(�) = {(Z1, a1), (Z2, a2), (Z3, λ), (Z4, λ)}, � ∈ L

u?

Z2

Z4

Z3

�
SW

a2!

a1!

Z1

CS1

CS2

CS3

CS4

Init u?

|Z̄4|
Z̄4 ∩ Z1

Z̄4 ∩ Z2

x

Z4

Z2

Z3

Z1

y

Z̄4 ∩ Z2

Z̄4 ∩ Z1

Fig. 4. Translating the Strategy

106 A. David et al.

controller TA (right). The complete controller TA is obtained by repeating the
same translation procedure for all locations and connecting all resulting basic
controller TAs to the same initial state. The symbol “C” inside states indicates
committed states. Time does not elapse in committed states, and the outgoing
transitions are taken atomically. We use Z̄ to denote the closure of the zone Z.

The small controller TA on the right is constructed as follows. For a given
discrete state (�) (location only), a transition from Init to a switch state SW is
added with a guard encoding �. From there we add transitions guarded by Zi

for each (Zi, ai) entry of ŝ(�) to a choice state CSi. Then, we have tree basic
cases: Either (1) ai is a controllable action, (2) ai is an unbounded delay, or (3)
it is a bounded delay. In case (1), the controller takes ai immediately with the
synchronization ai! (e.g. from CS1 and CS2 in Fig. 4). In case (2) corresponding
to ai = λ, the controller stays idle waiting for a move from the environment
with the synchronization u?. Finally, case (3) is similar to case (2) except for the
upper bound on the delay (encoded with an invariant) and additional transitions
to go back to SW whenever the upper bound is reached and a controllable action
is enabled.

4.2 The Running Example

We translate the strategy in Fig. 2 into a controller TA C. Before translating,
we need to synchronize C and G so that C can observe the state of G and control
it. To observe the locations, we assign unique IDs and use global flags for each
component to keep track of the current active location. Then we rename the
local clocks to be global to make them visible. To monitor every uncontrollable
transition in G, we use a unique channel u and the synchronizations u! in G and
u? in C. Similarly, to control G, controllable actions ai use the corresponding
channel synchronizations ai! in C and ai? in G.

In Fig. 5, we define location IDs for Main.L0 – Main.L4 and Main.goal from 0
to 5. Then we use the global location flag loc to keep track of the current location
of Main, and the global clock x to replace the local one, then the broadcast
channels u1, u2, a1 – a4 to synchronize Main and its controller TA MyCon in Fig.
6. In MyCon, by testing loc on the predefined location IDs, transitions from Init

lead to the switch states L0 – L3 and L5, which correspond to the strategies at
locations Main.L0 – Main.L3 and Main.goal. Choice states M00, M10, M20 and
M30 depict case (1) in Fig. 4. Accept corresponds to case (2). M01, M11 and M31

match case (3).
We also add price and a delay distribution to Main for performance evaluation

in SMC. This essentially turns Main into a priced timed automaton. We use
an integer s to count the number of transitions to reach goal, and a clock e
to measure the energy consumption to reach goal. The rate of the clock e is
specified at all locations as e′ == n, n ∈ N except at L4 because L4 is not
reachable under the strategy. e′ is stopped at goal by setting to 0. Besides, an
exponential rate of 3 is defined for the delay density function at L1. Now a closed
system can be made from Main and MyCon. We can verify correctness properties
and evaluate performance aspects of this strategy as shown in Table 1.

Verification and Performance Evaluation of Timed Game Strategies 107

Fig. 5. Decorated TGA Main Fig. 6. Controller TA MyCon

Table 1. MC & SMC Experiments of the Running Example

Queries Results

MC
1 A<> Main.goal Yes
2 A<> Main.goal and time<=20 No

SMC
3 Pr[<=30] (<> Main.goal) [0.902606,1]
4 E[<=30;200] (max: Main.s) 3.05
5 E[<=30;200] (max: Main.e) 27.5137

Fig. 7. Distribution on Time to Reach goal

Experiment 1 verifies the orig-
inal control objective that is sat-
isfied (Yes) for sure. Experiment
2 verifies if the strategy ensures
Main to reach goal within 20
time units, where time is a global
clock. The result is not satisfied
(No). We evaluate reachability of
goal within 30 time units under
the strategy in experiment 3. The
probability is [0.902606,1] with

confidence 0.95 if the probability
uncertainty factor ε is 0.05. Be-
sides, several kinds of statistical
plots can be generated by Uppaal-smc such as probability distribution, prob-
ability density distribution, cumulative probability distribution, and frequency
histogram. Fig. 7 shows the cumulative probability distribution of 36 runs. The
curve shows that over 55% of runs reach goal between 20.0 and 22.6 time units,
and almost 90% runs can reach goal within 29.1 time units. The last two exper-
iments report the expected number of steps and energy consumption to reach
goal for 200 simulated runs within 30 time units.

108 A. David et al.

5 MC and SMC under Strategies

Control-SMC is a new extension of Uppaal. It automatically synthesizes a strat-
egy of a timed game, keeps the strategy in memory, then verifies and evaluates
the strategy on a number of SMC properties. We extended the semantics and
algorithms of MC and SMC to apply the synthesized strategy when exploring
the state space (for MC) and generating random runs (for SMC).

5.1 Extended Stochastic Semantics

Let A = (P1| . . . |Pn) be a network of priced timed automata modelling an
environment to be controlled. That isAmay be seen as a timed game with global
state space St = St1 × · · · × Stn, and with sets Σc and Σu of controllable and
uncontrollable actions, respectively. Now assume that – using Uppaal-tiga–
we have synthesized a strategy s : St → (R × Σc) ∪ {λ} for A ensuring some
desired reachability or safety objective. That is s(q) = (d, a) indicates that the
strategy s in state q proposes to perform controllable action a after a delay of d;
s(q) = λ indicates that the strategy will delay indefinitely until the environment
has performed an uncontrollable action. Now we may view the extended network:

Ae = (P1| . . . |Pn|As)

as a closed stochastic network over Σu ∪ Σc, where the components P1, . . . ,Pn

have been given delay density functions μ1, . . . , μn and output probability func-
tions γ1, . . . , γn. Now As is a one-state component implementing the strategy
s. That is s has delay density function μs

q = δd, when s(q) = (d, a) and δd is
the Dirac delta function with probability mass concentrated at time-point d1.
Moreover the output probability function γs

q for s is given by:

γs
q(b) =

⎧⎪⎪⎨⎪⎪⎩
1 ; s(q) = (0, a), a = b
0 ; s(q) = (0, a), a �= b
⊥ ; s(q) = (d, a), d > 0
⊥ ; s(q) = λ

In this way Ae may be subject to statistical model checking provided. We ex-
tend the capability of Uppaal-smc to generate random runs for networks of
environment components extended with control strategies.

5.2 Implementation

Fig. 8 shows the work-flow of Control-SMC. The Uppaal-tiga engine receives
the timed game model G and the control objective φ. It synthesizes a strategy
that is kept in memory if G is controllable. The strategy can be printed out with
the option -w0. If the option -X is used then subsequent MC or SMC queries

1 Which should formally be treated as the limit of a sequence of delay density functions
with decreasing, non-zero support around d.

Verification and Performance Evaluation of Timed Game Strategies 109

ρi are checked under this strategy. For the purpose of evaluating performance,
the model G can be extended with costs to G′. These costs are modeled with
clocks that must be declared as hybrid clock. They are ignored for the purpose
of symbolic model-checking (synthesis or MC) and taken into account for SMC.
Furthermore, floating-point variables can be used in the same way. These addi-
tional variables may not be active for the purpose of controlling the behavior.

Uppaal-tiga
Uppaal-smc

Uppaal/G
φ Result

Strategy

G ′ ρi

Strategy

Fig. 8. Workflow of Control-SMC

The exploration under a given strategy is similar to standard MC or SMC
when considering uncontrollable transitions since they are played by an oppo-
nent. The opponent is stochastic for the purpose of SMC and when doing MC, all
possible successors are tried. However, only the controllable transitions allowed
by the strategy are allowed. In addition, delay is constrained by the delays of
the strategy, e.g., if a controllable transition is to be taken after 5 time units,
Uppaal will not delay more. For SMC, this is resolved naturally through the
semantics with a race between components. For the symbolic exploration, the
strategy specifies how much delay is allowed and this constrains the standard
delay operation. Furthermore, we have to add the upper border of bounded de-
lays to enable following transitions. More precisely Uppaal-tiga maintains a
partition so we could have the case to wait while in x ∈ [0, 5[and take a tran-
sition at x = 5, but x = 5 is then unreachable. Therefor we have to wait while
x ∈ [0, 5]. Finally, when an action follows a delay it has an urgent semantics,
i.e., the states in which such an action is enabled are not allowed to delay.

5.3 The Running Example

We demonstrates how to use Control-SMC on the running example described in
Section 2.2 and 4.2 without the need to translate the strategy. We add prices
and stochastic information directly on the TGA Main as shown in Fig. 9. The
clocks used for cost are declared as hybrid clock (e.g. e), while counters for
SMC evaluation are declared as double (e.g. s).

Fig. 10 shows the query file we use here. A control query that expresses the
control objective starts on the first line with a list of MC and SMC queries on

110 A. David et al.

Fig. 9. TGA Main with Prices

control: A<> Main.goal

A<> Main.goal

A<> Main.goal and time<=20

Pr[<=30] (<> Main.goal)

E[<=30;200] (max: Main.s)

E[<=30;200] (max: Main.e)

Fig. 10. Combined Query File

the following lines. For now, Control-SMC is available only from the command
line checker verifytga and is enabled with the option -X. Given the model as
in Fig. 9 and the query file as in Fig. 10 as inputs, it first synthesizes a strategy
for the control query, then processes the rest MC and SMC queries in a batch
fashion, and gives the same results as in Table 1 in Section 4.2.

6 Experiments Results

We show the experiments of two case-studies by first using the Control-SMC
method of Section 5, then using the strategy translation method in Section 4 as
a cross-check. The two methods gave the same results for MC and SMC queries.
We also measured the execution time of the queries for both methods, because
we want to know the runtime benefit of applying a strategy in time and memory
compared with using a translated controller from a strategy. All models in the
experiments are available on our SMC web-page2.

6.1 Case Study 1: Jobshop

The Jobshop problem is about scheduling a set of machines for a set of jobs,
where each job needs to use those machines in a particular order for a particular
time limit. This case-study involves two professors Kim and Jan who want to
read a single piece of four-section newspaper. Each person has his own preferred
order on sections, and can spend different times on different sections. The con-
trol objective, which is expressed as control: A<> Kim.Done and Jan.Done and

time<=80, is to find a scheduling strategy that guarantees both people finish
reading within 80 time units. Uppaal-tiga finds such a strategy. The full ex-
planation about this model can be found on web-page of examples [11]. The
model is down-sized for the purpose of the manual conversion to a controller
automaton.

2 Section Control-SMC at http://people.cs.aau.dk/~adavid/smc/cases.html

http://people.cs.aau.dk/~adavid/smc/cases.html

Verification and Performance Evaluation of Timed Game Strategies 111

Fig. 11. Job Template with Prices

Table 2. MC & SMC Experiments of Jobshop

Queries Results T (CS) T (M)

MC
1 A[] Jan.Done imply Kim.Done Yes - -
2 E<> Kim.Done and Jan.Done and time<=45 Yes - -
3 E<> Kim.Done and Jan.Done and time<=44 No - -

SMC

4 Pr[<=80] (<> Kim.Done and Jan.Done) 1∗ 76.5s 148.3s
5 E[time<=80 ; 2000000] (max: Kim.wt) 5.40221 62.1s 132.5s
6 E[time<=80 ; 2000000] (max: Kim.rt) 22.7469 61.7s 138.7s
7 E[time<=80 ; 2000000] (max: Jan.wt) 11.5652 60.9s 136.8s
8 E[time<=80 ; 2000000] (max: Jan.rt) 47.3951 62.1s 138.8s

1∗ in [0.999998,1] with confidence 0.95.

Fig. 11 shows the TGA template with prices for each person for Control-
SMC. The availability of four sections are maintained by four global boolean
variables. During the initialization of Kim and Jan, the references to the boolean
variables are assigned to sec1 – sec4 according to each person’s preferred order
of reading. The strategy tells a person when to acquire a section (controllable,
solid edge), while a person can release a section at any time within a time
bound (uncontrollable, dashed edge). We add respectively three stop-watches3

wt, rt and t to measure the accumulated time on waiting, reading and finishing
the newspaper respectively.

We obtain the same results when checking the MC and SMC queries in
Control-SMC and Uppaal. Thus in Table 2 we use the single column Result
to show the MC results (Yes for satisfied or No for not satisfied), and SMC re-
sults (probabilities or evaluations). The T (CS) column shows the execution time
of a query in seconds by Control-SMC, while the T (M) column shows that by
using a manually translated controller. We do not compare the runtime of MC
queries because the size of this model is not big enough to make the runtime
distinguishable. But we compare the runtime of SMC queries, because we can
let the SMC engine to generate a large number of runs to make the runtime
difference noticeable.

Experiment 1 shows that Kim always finishes reading before Jan. We get the
shortest time (= 45 time units) for both to finish from experiments 2 and 3.
Experiment 4 measures the probability for Kim and Jan to finish reading within
80 time units if the probability uncertainty ε = 0.000001.

3 Stop-watches are clocks whose rates are reset to zero.

112 A. David et al.

Fig. 12. Distribution on Time to Finish Read-
ing for Both People

In Uppaal-smc we can get the
plot of probability distribution of
this query as shown in Fig. 12.
The plot gives the mean value
of around 59 time units. The re-
maining SMC experiments show
the expected time for Kim and
Jan to wait and read the news-
paper individually. The strategy
biases Kim because Kim waits
less than Jan. The runtime ex-
periments of SMC queries were
carried out on a PC with Intel
i7-2640M CPU @ 2.80GHz, 8GB
main memory and Ubuntu 12.04
x86 64 with the upcoming version 0.18 of Uppaal-tiga. Experiment 4 set
ε = 0.000001 to force the SMC engine to generate a large number of runs
(1844438 runs). In experiments 5 – 8, we set the number of runs to 2000000.
We can conclude that applying a strategy in memory improves the performance
of SMC engine inside Control-SMC by a factor of two. This is due to the strategy
look-up in a hash table instead of simulating it within the model.

6.2 Case Study 2: Train-Gate

Fig. 13. Train Template with Prices

Train-Gate is a classical case-study for
real-time model checking. It is distributed
with Uppaal with an detailed expla-
nation in [3]. Fig. 13 shows the game
version of it with prices and stochastic
extensions. The control objective, which
is expressed as control: A[] forall (i :

id t) forall (j : id t) Train(i).Cross

and Train(j).Cross imply i == j, is find-
ing a strategy to guarantee the exclusive
access to Cross by two trains. If neces-
sary, the strategy should stop a train at
Appr in time (x ≤ 10) by the control-
lable solid edge to Stop, otherwise the
train goes to Cross directly by the un-
controllable dashed edge. The train can
resume at Stop by the other controllable

solid edge to Start. The exponential rate ((1+id):N*N) appears at Safe for spec-
ifying the delay density function. A counter ncr records the throughput at Cross.

Verification and Performance Evaluation of Timed Game Strategies 113

Table 3. MC & SMC Experiments of Train-Gate

Queries
Result

T (CS) T (M)
Syn Que

MC 1 E<> Train(0).Cross && Train(1).Start Yes No - -

SMC
2 Pr[<=100] (<> Train(0).Cross) 1∗ 1∗ 45.9s 88.5s
3 E[<=100 ; 1000000] (max: ncr) 8.0665 5.8065 72.3s 173.3s
4 E[<=100 ; 1000000] (max: Train(0).eng) 124.938 88.402 69.3s 169.5s

1∗ in [0.999998,1] with confidence 0.95.

A hybrid clock e measures the energy consumption of a train. The interesting
point of this case-study is that we compare the behavior and performance of
the synthesized strategy with the manually programmed queue-based controller
available in the train-gate example provided in the distribution of Uppaal.

Table 3 shows the comparative experiments of the synthesized strategy Syn

and the queue-based controller Que. Experiment 1 shows Syn allows Train(1)
to approach Cross while Train(0) is still crossing. This is forbidden by Que.
Experiment 2 measures the probability for Train(0) to reach Cross within 100
time units with the probability uncertainty ε = 0.000001. Experiment 3 shows
that Syn gives a bigger throughput from Que, because Syn allows different trains
to approach Cross concurrently as witnessed by experiment 1. Experiment 4
gives the expected energy consumption for Train(0). We compare the execution
time of SMC queries in seconds by Control-SMC in the T (CS) column with that
using a manually translated controller in the T (M) column. In experiment 2,
we set ε = 0.000001 to force the SMC engine to generate a large number of runs
(1844438 runs). In experiments 3 and 4, we set the number of runs to 1000000.
We can conclude that applying a strategy in memory improves the performance
of SMC engine inside Control-SMC by a factor of two.

7 Future Work

The future work are in three directions. Our first goal is to merge Uppaal and
Uppaal-tiga, which will enable Control-SMC from the graphical interface with
all its capabilities, in particular the plot composer. Next, we aim to make the
clocks for measuring prices in Control-SMC to become real hybrid as in Uppaal-

smc. The clock rates can be floating-point, negative, or in the form of ordinary
differential equations (ODE). The third direction is exploring more potential
use of the synthesized strategy in memory. We can try to refine or optimize the
strategy using machine learning methods.

114 A. David et al.

References

1. Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2),
183–235 (1994)

2. Behrmann, G., Cougnard, A., David, A., Fleury, E., Larsen, K.G., Lime, D.:
UPPAAL-tiga: Time for playing games! In: Damm, W., Hermanns, H. (eds.) CAV
2007. LNCS, vol. 4590, pp. 121–125. Springer, Heidelberg (2007)

3. Behrmann, G., David, A., Larsen, K.G.: A tutorial on uppaal. In: Bernardo, M.,
Corradini, F. (eds.) SFM-RT 2004. LNCS, vol. 3185, pp. 200–236. Springer, Hei-
delberg (2004)

4. Bengtsson, J., Yi, W.: Timed automata: Semantics, algorithms and tools. In: De-
sel, J., Reisig, W., Rozenberg, G. (eds.) Lectures on Concurrency and Petri Nets.
LNCS, vol. 3098, pp. 87–124. Springer, Heidelberg (2004)

5. Bozga, M., Daws, C., Maler, O., Olivero, A., Tripakis, S., Yovine, S.: Kronos: A
model-checking tool for real-time systems. In: Vardi, M.Y. (ed.) CAV 1998. LNCS,
vol. 1427, pp. 546–550. Springer, Heidelberg (1998)

6. Cassez, F., David, A., Fleury, E., Larsen, K.G., Lime, D.: Efficient on-the-fly algo-
rithms for the analysis of timed games. In: Abadi, M., de Alfaro, L. (eds.) CONCUR
2005. LNCS, vol. 3653, pp. 66–80. Springer, Heidelberg (2005)

7. Cassez, F., Jessen, J.J., Larsen, K.G., Raskin, J.-F., Reynier, P.-A.: Automatic
synthesis of robust and optimal controllers – an industrial case study. In: Majum-
dar, R., Tabuada, P. (eds.) HSCC 2009. LNCS, vol. 5469, pp. 90–104. Springer,
Heidelberg (2009)

8. David, A., Larsen, K.G., Legay, A., Mikucionis, M., Poulsen, D.B., van Vliet,
J., Wang, Z.: Stochastic semantics and statistical model checking for networks
of priced timed automata. CoRR abs/1106.3961 (2011)

9. David, A., Larsen, K.G., Legay, A., Mikučionis, M., Wang, Z.: Time for statistical
model checking of real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.)
CAV 2011. LNCS, vol. 6806, pp. 349–355. Springer, Heidelberg (2011)

10. Jessen, J.J., Rasmussen, J.I., Larsen, K.G., David, A.: Guided controller synthesis
for climate controller using uppaal tiga. In: Raskin, J.-F., Thiagarajan, P.S. (eds.)
FORMATS 2007. LNCS, vol. 4763, pp. 227–240. Springer, Heidelberg (2007)

11. Larsen, K.G.: Quantitative model checking exercise (2010),
http://people.cs.aau.dk/~kgl/QMC2010/exercises/; 28. Job Shop Scheduling

12. Larsen, K.G., Pettersson, P., Yi, W.: Model-checking for real-time systems. In:
Reichel, H. (ed.) FCT 1995. LNCS, vol. 965, pp. 62–88. Springer, Heidelberg (1995)

13. Maler, O., Pnueli, A., Sifakis, J.: On the synthesis of discrete controllers for timed
systems (an extended abstract). In: Mayr, E.W., Puech, C. (eds.) STACS 1995.
LNCS, vol. 900, pp. 229–242. Springer, Heidelberg (1995)

14. Younes, H.L.S.: Planning and verification for stochastic processes with asyn-
chronous events. In: McGuinness, D.L., Ferguson, G. (eds.) AAAI, pp. 1001–1002.
AAAI Press / The MIT Press (2004)

http://people.cs.aau.dk/~kgl/QMC2010/exercises/

The Power of Proofs: New Algorithms

for Timed Automata Model Checking�

Peter Fontana and Rance Cleaveland

Department of Computer Science,
University of Maryland, College Park, MD 20742, USA

Abstract. This paper presents the first model-checking algorithm for an
expressive modal mu-calculus over timed automata, Lrel,af

ν,μ , and reports
performance results for an implementation. This mu-calculus contains
extended time-modality operators and can express all of TCTL. Our
algorithmic approach uses an “on-the-fly” strategy based on proof search
as a means of ensuring high performance for both positive and negative
answers to model-checking questions. In particular, a set of proof rules
for solving model-checking problems are given and proved sound and
complete; our algorithm then model-checks a property by constructing a
proof (or showing none exists) using these rules. One noteworthy aspect
of our technique is that we show that verification performance can be
improved with derived rules, whose correctness can be inferred from the
more primitive rules on which they are based. In this paper, we give the
basic proof rules underlying our method, describe derived proof rules to
improve performance, and we compare our implementation to UPPAAL.

1 Introduction

Timed automata are used to model real-time systems in which time is contin-
uous and timing constraints may refer to elapsed time between system events
[4]. The timed automata model provides a balance between expressiveness and
tractability: a variety of different real-time systems can be captured in the for-
malism, and various properties, including safety (reachability) and liveness, can
also be decided automatically for a given automaton [1, 2, 3].

To specify these properties, different logics have been devised. One popular
logic, Timed Computation Tree Logic (TCTL) [3], extends the untimed Compu-
tation Tree Logic (CTL) [9] by adding time constraints to the modal operators.
Other researchers explored timed extensions to the modal mu-calculus [12]. One
such extension, called Tμ [18] extends the untimed modal mu-calculus with a
single-step operator. Another extension, which we refer to as Lν,μ [21, 26, 27],
extends the modal mu-calculus with separate time and action modal operators.
This logic is sufficient for expressing some basic safety and liveness properties.
However, it cannot express all of TCTL [14]. To address this, Lν,μ was extended
with relativization operators by [7]; we denote this logic as Lrel

ν,μ. These additional

� Research supported by NSF grant CCF-0926194. The Appendix to this paper is
available as a supplement on arXiv [16].

A. Legay and M. Bozga (Eds.): FORMATS 2014, LNCS 8711, pp. 115–129, 2014.
c© Springer International Publishing Switzerland 2014

116 P. Fontana and R. Cleaveland

operators make the logic expressive enough to express all of TCTL [14]. (Bouyer
et al. [7] included only greatest fixpoints, yielding Lν , which they referred to as
Lc; the least fixpoints in Lrel

ν,μ not in Lrel
ν add expressive power [14].)

Over the model of timed automata, the model checking problem for Lν,μ is
EXPTIME-complete [1]. Bouyer et al. [7] show that formulas using the relativiza-
tion operators can be model-checked in EXPTIME. Hence, model checking Lrel

ν,μ

over timed automata is EXPTIME-complete. The same model-checking problem
for TCTL over timed automata is PSPACE-complete [3].

While timed logics were being studied, tools and implementation algorithms
were developed as well. Much of the development focused on handling subsets
of properties specified in TCTL. A widely-used tool, UPPAAL [6], supports a
fragment of TCTL, which includes many safety and liveness properties; other
tools, including KRONOS [25], Synthia [20], and RED/REDLIB [23], have also
been developed, some of which are able to model-check all of TCTL. Additionally,
some tools were developed for timed modal-mu calculi. Two tools that can model
check fragments of a timed mu-calculus include CMC [19], which can handle Lν ,
and CWB-RT [13, 26, 27], which can check safety properties written in Lν .

The contributions of this paper include the first algorithm, and an imple-
mentation, to model check Lrel,af

ν,μ . By definition, Lrel,af
ν,μ consists of the so-called

alternation-free formulas of Lrel
ν,μ and is thus a superset of Lrel

ν . Assuming non-

zeno and timelock-free automata, Lrel,af
ν,μ is strong enough to express all of TCTL

[14]. Our implementation extends the tool CWB-RT [13, 26, 27]. Implementation
details of the model checker are discussed in Section 5; in Section 6, we give a
demonstration of some models and properties that can be model checked by our
tool as well as a performance comparison to UPPAAL.

CWB-RT is a proof-searchmodel checker: it verifies properties by constructing
a proof using a set of proof rules. These proof rules decompose the given goal
(does the automaton satisfy a formula) into (smaller) subgoals. These proof
search methods were used for the untimed modal mu-calculus in [10], explored
in [21], and extended to the timed setting in [26, 27] in order to produce a fast
on-the-fly model checker that can model check timed automata incrementally.
The generated proofs not only give additional correctness information but also
can be used as a mechanism to improve model-checking performance. We develop
the additional proof rules to check the relativized operators, extending the proof
rules used in [26, 27]. The additional rules are discussed in Section 3.

Furthermore, through select derived proof rules, we can enhance performance.
These derived rules, together with a judicious use of memoization, yield dramatic
performance improvements. We discuss the derived proof rules in Section 4.

2 Background

2.1 Timed Automata

This section defines the syntax of timed automata and sketches their semantics.
The interested reader is referred to [2, 15] for a fuller account. To begin with,
timed automata rely on clock constraints.

The Power of Proofs: New Algorithms for Timed Automata Model Checking 117

Definition 1 (Clock constraint cc ∈ Φ(CX)). Given a nonempty finite set
of clocks CX = {x1, x2, . . . , xn} and d ∈ Z≥0 (a non-negative integer), a clock
constraint cc may be constructed using the following grammar:

cc ::= xi < d | xi ≤ d | xi > d | xi ≥ d | cc ∧ cc

Φ(CX) is the set of all possible clock constraints over CX. We also use the
following abbreviations: true (tt) for x1 ≥ 0, false (ff) for x1 < 0, and xi = d
for xi ≤ d ∧ xi ≥ d.

Timed automata may now be defined as follows.

Definition 2 (Timed automaton). A timed automaton is a tuple
(L, l0, Σ, CX, I, E), where:

– L is the finite set of locations.
– l0 ∈ L is the initial location.
– Σ is the finite set of action symbols.
– CX = {x1, x2, . . . , xn} is the nonempty finite set of clocks.
– I : L −→ Φ(CX) maps each location l to a clock constraint, I(l), referred to

as the invariant of l.
– E ⊆ L×Σ×Φ(CX)×2CX×L is the set of edges. In an edge e = (l, a, cc, λ, l′)

from l to l′ with action a, cc ∈ Φ(CX) is the guard of e, and λ represents
the set of clocks to reset to 0.

The semantics of timed automata rely on clock valuations, which are functions
ν : CX −→ R≥0 (R≥0 is the set of non-negative real numbers); intuitively, ν(xi)
is the current time value of clock xi. A timed automaton begins execution in
its initial location with the initial clock valuation ν0 assigning 0 to every clock.
When the automaton is in a given clock location l with current clock valuation ν,
two types of transitions can occur: time advances and action executions. During
a time advance, the location stays the same and the clock valuation ν advances
δ ∈ R≥0 units to the valuation ν + δ, where ν + δ is defined as (ν + δ)(xi) =
ν(xi)+δ. For a time advance to be allowed, for all 0 ≤ δ′ ≤ δ, ν+δ′ must satisfy
the invariant of location l. Due to convexity of clock constraints, it suffices to
ensure that both ν and ν + δ satisfy I(l). An action execution of action a can
occur when ν satisfies the guard for an edge leading from l to l′, the edge is
labeled by action a, and , the invariant of l′ is satisfied after the clocks are reset
as specified in the edge. In this case the location changes to l′ and the clocks in λ
are reset to 0. These intuitions can be formalized as a labeled transition system
whose states consist of locations paired with clock valuations, each state notated
as (l, ν). A timed run of the automaton is a sequence of transitions starting from
the initial location and ν0. On occasion, we also augment each timed automaton
with a set of atomic propositions AP and a labeling function M : L −→ 2AP

where M(l) is the subset of propositions in AP that location l satisfies.

118 P. Fontana and R. Cleaveland

0: far

2: in
x1 < 15

1: near
x1 < 4

in, x1 = 4, x1 := 0

approach, x1 := 0

exit, x1 > 1

Fig. 1. Timed automaton of a train

Example 1 (Train timed automaton). The timed automaton in Figure 1 models
a train component of the GRC (Generalized Railroad Crossing) protocol [17].
There are three locations: 0: far (initial), 1: near, and 2: in; and one clock x1. Σ
has the actions approach, in, and exit. Here, location 1: near has the invariant
x1 ≤ 4 while 0: far has the vacuous invariant tt. The edge (1: near, in, x1 =
4, {x1},2: in) has action in, guard x1 = 4, and resets x1 to 0.

A sample timed run of this timed automaton is: (0: far, x1 = 0)
5−→ (0: far,

x1 = 5)
approach−→ (1: near, x1 = 0)

4−→ (1: near, x1 = 4)
in−→ (2: in, x1 = 0)

3−→
(2: in, x1 = 3)

2−→ (2: in, x1 = 5)
exit−→ (0: far, x1 = 5) . . .

2.2 Timed Logic Lrel
ν,μ and Modal Equation Systems (MES)

The following definition of Lrel
ν,μ uses the modal-equation system (MES) format

used in [11] for untimed systems and in [26, 27] for Lν,μ.

Definition 3 (Lν,μ, L
rel
ν,μ basic formula syntax). Let CX = {x1, x2, . . .} and

CXf = {z, z1, . . .} be disjoint sets of clocks. Then the syntax of a Lν,μ basic
formulas is given by the following grammar:

ψ ::=p | ¬p | tt | ff | cc | Y | ψ ∧ ψ | ψ ∨ ψ | 〈a〉(ψ)
| [a](ψ) | ∃(ψ) | ∀(ψ) | z.(ψ)

Here, p ∈ AP is an atomic proposition, cc ∈ Φ(CX) is a clock constraint over
clock set CX, Y ∈ V ar is a propositional variable (V ar is the set of propositional
variables), and a ∈ Σ is an action. In formula z.ψ z is a clock in CXf ; the z.
operator is often referred to as freeze quantification.

The relativized timed modal-mu calculus Lrel
ν,μ syntax replaces ∃(ψ) and ∀(ψ)

with ∃ψ1(ψ2) and ∀ψ1(ψ2), where each ψ1 and ψ2 are basic formulas in Lrel
ν,μ.

What follows is a sketch of the semantics; [7, 14] contains a formal definition.
Formulas are interpreted with respect to states (i.e. (location, clock valuation)
pairs) of a timed automaton whose clock set is CX and labeling function is M ,
and an environment θ associating each propositional variable Y with a set of
states. A state (l, ν) satisfies an atomic proposition p if and only if p is in the set
M(l). A state satisfies Y if and only if (l, ν) ∈ θ(Y). 〈a〉(ψ) holds in a state if,
after executing action a, ψ is true of the state after the action transition; [a](ψ)

The Power of Proofs: New Algorithms for Timed Automata Model Checking 119

means after all action transitions involving a, ψ holds in the target state; ∃(ψ)
holds of a state if after some time advance of δ ≥ 0, ψ holds in the new state,
while ∀(ψ) is satisfied in a state if for all possible time advances of δ ≥ 0, ψ is
true in the resulting states. Formula z.(ψ) holds in a state if, after introducing a
new clock z (z is not a clock of the timed automaton) and setting it to 0 without
altering other clocks, ψ is true. The formula ∃ψ1(ψ2) means, “there exists a time
advance where ψ2 is true and ψ1 is true for all times up to, but not including,
that advance”, and ∀ψ1(ψ2) means, “either ψ2 is true for all time advances or
ψ1 releases ψ2 from being true after some time advance.”

We also introduce two derived operators: [−](ψ) for
∧

a∈ΣTA
[a](ψ) (for all

next actions) and 〈−〉(ψ) for
∨

a∈ΣTA
〈a〉(ψ) (there exists a next action). It may

be seen that ∃(ψ) is equivalent to ∃tt(ψ), and ∀(ψ) to ∀ff(ψ).
Lrel
ν,μ MESs are mutually recursive systems of equations whose right-hand sides

are basic formulas as specified above. The formal definition follows.

Definition 4 (Lrel
ν,μ MES syntax). Let X1, X2, . . . , Xv be propositional vari-

ables, and let ψ1, . . . ψv all be Lrel
ν,μ basic formulae. Then a Lrel

ν,μ modal equa-
tion system (MES) is an ordered system of equations as follows, where each
equation is labeled with a parity (μ for least fixpoint, ν for greatest fixpoint):

X1
μ/ν
= ψ1, X2

μ/ν
= ψ2, . . . , Xv

μ/ν
= ψv.

In our MES, we will assume that all variables are bound (every variable in
the right of the equation appears as some left-hand variable).

The formal definition of the semantics of MESs may be found in [26, 27]; we
recount the highlights here. Given a timed automaton and atomic-proposition
interpretation M , a basic Lrel

ν,μ formula may be seen as a function mapping sets
of timed-automaton states (corresponding to the meaning of the propositional
variables to the formula) to a single set of states (the states that make the
formula true, given the input sets just referred to). The set of subsets of timed-
automaton states ordered by set inclusion form a complete lattice; it turns out
that the functions over this lattice definable by basic formulae are monotonic
over this lattice, meaning they have unique greatest and least fixpoints. This
fact is the lynch-pin of the formal semantics of MESs. Specifically, given MES

X1
μ/ν
= ψ1, . . . , Xv

μ/ν
= ψv, we may construct a function that, given a set of states

for X1, returns the set of states satisfying ψ1, where the values for X2, . . . , Xv

have been computed recursively. This function is monotonic, and therefore has a
unique least and greatest fixpoint. If the parity for X1 is μ, then the set of states
satisfying X1 is the least fixpoint of this function, while if the parity is ν then the
set of states satisfying X1 is the greatest fixpoint. By convention, the meaning
of a MES is the set of states associated with X1, the first left-hand-side in the
sequence of equations. However, in the MES, each variable Xi can be interpreted
as its own subformula; this interpretation will prove useful constructing proofs
that a state satisfies a MES.

Given timed automaton TA, atomic-proposition interpretation function M ,
and propositional variable environment θ, we use �ψ�TA,M,θ to denote the set of

120 P. Fontana and R. Cleaveland

states satisfying ψ. For an MES M of form X1
μ/ν
= ψ1 . . . Xv

μ/ν
= ψv, we write

�M�TA,M,θ, or equivalently �X1�TA,M,θ when there is no confusion, for the set
of states satisfying the MES.

To handle the clocks used in freeze quantification (z.(ψ)), we extend the timed
automaton’s states (l, ν) to extended states (l, ν, νf) using the additional valua-
tion component νf : CXf −→ R≥0. This formalism comes from [7]. When clear
from context, we will refer to an extended state as (l, ν) and omit the explicit
notation of νf .

In this paper we only consider MESs that are alternation-free. Intuitively, an
MES is alternation free if there is no mutual recursion involving variables of
different parities. For more information on the notion, see [12]. We denote the
alternation-free fragment of Lrel

ν,μ as Lrel,af
ν,μ . By definition, Lrel,af

ν,μ is a superset

of Lrel
ν because any formula with an alternation must have at least one greatest

fixpoint and at least one least fixpoint. The alternation-free restriction is not
prohibitive because for any timelock-free nonzeno timed automaton (see [8]), we
can express any TCTL formula into a Lrel,af

ν,μ MES [14].

Example 2 (Specifying properties with MES). Again consider the timed automa-
ton in Figure 1 of Example 1. Two Lrel,af

ν,μ specifications we can ask are:

X1
ν
= ¬broke ∧ ∀([−](X1)) (1)

X1
ν
= ¬far ∨

(
∀([−](X1)) ∧ ∃(z.(∀(z < 1)))

)
(2)

Equation 1 says “it is always the case the the train is not broken,” and equation
2 says “it is inevitable that a train is not far.”

3 Checking Lrel ,af
ν,μ Properties: A Proof-Based Approach

The Lrel,af
ν,μ model-checking problem for timed automata may be specified as

follows: given timed automaton TA = (L, l0, ΣTA, CX, I, E), atomic-proposition
interpretation function M , and Lrel,af

ν,μ formula ψ with initial environment θ,
determine if the initial state of TA satisfies ψ, i.e.: is (l, ν) ∈ �ψ�TA,M,θ. This
section describes the proof-based approach that we use to solve such problems.

Our model-checking technique relies on the construction of proofs that are
intended to establish the truth of judgments, or sequents, of the form (l, cc) # ψ,
where l ∈ L is a location, cc ∈ Φ(CX ∪ CXf) is a clock constraint, and ψ is
a Lrel,af

ν,μ formula. Note that cc includes clocks from the timed automaton as
well as any clocks used in freeze quantifications. Note that semantically, a clock
constraint cc can be viewed as the set of valuations cc = {ν | ν |= cc}; likewise,
we can encode a valuation ν as the clock constraint ccν = x1 = ν(x1) ∧ . . . ∧
xn = ν(xn). A proof rule contains a finite number of hypothesis sequents and a
conclusion sequent and may be written as follows.

Premise 1 . . . Premise n (Rule Name)
Conclusion

The Power of Proofs: New Algorithms for Timed Automata Model Checking 121

The intended reading of such a rule is that if each premise is valid, then so is
the conclusion. Some proof rules, axioms, have no premises and thus assert the
truth the validity of their conclusion. Given a collection of rules, our verifier
builds a proof by chaining these proof rules together. A proof is valid if the
proof rules are applied properly, meaning that the premise of the previous rule
is the conclusion of the next rule. The proof rules are designed to be sound and
complete, meaning: (l, ν) ∈ �ψ�TA,M,θ if and only if there is a valid proof for
(l, ccν) # ψ. The proof-construction process proceeds in an “on-the-fly” manner:
rules whose conclusion matches the sequent to be proved are applied to this goal
sequent, yielding new sequents that must be proved. This procedure is applied
recursively, and systematically, until either a proof is found, or none can be.

3.1 Proof Rules for Laf
ν,μ Over Timed Automata

The proof-based approach in this paper is inspired by a generic proof framework
in [26, 27] based on a general theory called Predicate Equation Systems (PES).
PES involved fixpoint equations over first-order predicates and used the proof-
search to establish the validity of a PES. For practical reasons, one generally
wishes to avoid the construction of the PES explicitly; this paper adopts this
point of view, and the proof rules that it presents thus involve explicit mention of
timed-automata notions, including location and edge. A selection of proof rules
derived from [26, 27] is given in Figure 2. The remaining rules are in Appendix
A of the supplement [16]. Several comments are in order.

1. Each rule is intended to relate a conclusion sequent involving a formula with
a specific outermost operator to premise sequents involving the maximal
subformula(e) of this formula. The name of the rule is based on this operator.

2. The premises also involve the use of functions succ and pred. Intuitively,
succ((l, cc)) represents all states that are time successors of any state whose
location component is l and whose clock valuation satisfies cc,
while pred((l, cc)) are the time predecessors of these same states. These op-
erators may be computed symbolically; that is, for any (l, cc) there is a cc′

such that (l, cc′) is equivalent to succ((l, cc)).
3. Some of the rules involve placeholders, which are (potentially) unions of clock

constraints, given as (subscripted versions of) φ. Given a specific placeholder,
the premise sequent (l, cc), φ is semantically equivalent to (l, cc ∧ φ); how-
ever, for notational and implementation ease, the placeholder φ is tracked
separately from the clock constraint cc.

More discussion of placeholders is in order. Intuitively, placeholders encode a
set of clock valuations that will make a sequent valid, and which will be com-
puted once the proof is complete. In practice, we are interested in computing
the largest such set. To understand their use in practice, consider the operator
∃. To check ∃, we need to find some time advance δ such that ψ is satisfied
after δ time units. Rather than non-deterministically guessing δ, we use a place-
holder φs in the left premise in rule ∃t1 to encode all the time valuations that

122 P. Fontana and R. Cleaveland

(l1, cc ∧ g1) � ψ[λ1 := 0] . . . (ln, cc ∧ gn) � ψ[λn := 0]
([a]Act), cond[a](l, cc) � [a](ψ)

cond[a]:
⋃

i{(gi, λi, li)} = {(l′, g′, λ′) | (l, a, g′, λ′, l′) ∈ E}

(l, cc), φs � ψ1 (l, cc),¬φs � ψ2
(∨c)

(l, cc) � ψ1 ∨ ψ2

succ((l, cc)) � ψ
(∀t1)

(l, cc) � ∀(ψ)

succ((l, cc)), φs � ψ succ((l, cc), φ∀) � succ((l, cc)) ∧ φs
(∀t2)

(l, cc), φ∀ � ∀(ψ)

succ((l, cc)), φs � ψ (l, cc) � pred(φs)
(∃t1)

(l, cc) � ∃(ψ)
succ((l, cc)), φs � ψ φ∃ � pred(φs)

(∃t2)
(l, cc), φ∃ � ∃(ψ)

Fig. 2. Select proof rules from [26, 27] adapted for timed automata and MES

ensure satisfaction of ψ. The right premise then checks that the placeholder φs

is some δ-unit time elapse from (l, cc). The placeholder allows us to delay the
non-deterministic guess of the value of φs until it is no longer required to guess.
Additionally, for performance reasons, we use new placeholders to handle time
advance operators for sequents with placeholders. An example may be found in
Rule ∃t2, where a new placeholder φ∃ is introduced in the right premise. While
useful for performance, this choice results in subtle implementation complexities,
which we discuss in Section 5.3.

Constructing Proofs. Given sequents and proof rules, proofs now may be
constructed in a goal-directed fashion. A sequent is proven by applying a proof
rule whose conclusion matches the form of that sequent, yielding as subgoals
the corresponding premises of that rule. These subgoals may then recursively be
proved. If a sequent may be proved using a rule with no premises, then the proof
is complete; similarly, if a sequent is encountered a second time (because of loops
in the timed automaton and recursion in an MES), then the second occurrence
is also a leaf. Details may be found in [26, 27]. If the recurrent leaf involves an
MES variable with parity μ, then the leaf is unsuccessful; if it involves a variable
with parity ν, it is successful. A proof is valid if all its leaves are successful.

Example 3. To illustrate the proof rules, consider the timed automaton in Figure
1. Suppose we wish to prove the sequent (2 : in, x1 ≤ 3) # [exit](0 : far).
Utilizing the first proof rule in Figure 2, we get the proof:

(0 : far, 1 ≤ x1 ≤ 3) # 0 : far

(2 : in, x1 ≤ 3) # [exit](0 : far)

In this rule, we intersect the clock constraint with the guard x1 ≥ 1 (if x1 < 1,
then there are no possible actions so the formula is true), make the destination
location the new sequent, and ask if the destination satisfies the formula. Since
the location is 0 : far, the proof is complete.

The Power of Proofs: New Algorithms for Timed Automata Model Checking 123

(l, cc), φs1 � ψ1 (l, cc), φs2 � ψ2 (l, cc) � φs1 ∨ φs2
(∨s)

(l, cc) � ψ1 ∨ ψ2

(l, cc), φs1 � ψ1 (l, cc), φs2 � ψ2 (l, cc), φ∨ � φs1 ∨ φs2
(∨s2)

(l, cc), φ∨ � ψ1 ∨ ψ2

succ((l, cc)), φs � ψ2 succ((l, cc)), pred<(φs) � ψ1 (l, cc) � pred(φs)
(∃r1)

(l, cc) � ∃ψ1(ψ2)

succ((l, cc)), φs′ � ψ2 succ((l, cc)), pred<(φs′) � ψ1 (l, cc), φs � pred(φs′)
(∃r2)

(l, cc), φs � ∃ψ1(ψ2)

Fig. 3. Proof Rules for ∨ and ∃φ1(φ2)

3.2 New Proof Rules for the Relativized Operators of Lrel,af
ν,μ

We now introduce rules for handling the relativized time-passage modalities
in Lrel,af

ν,μ . Figure 3 gives the rules for the operator ∃ψ1(ψ2). For the ∀ψ1(ψ2)
operator, we use the derivation given in Lemma 1.

Here is an explanation of the proof rule ∃r1; the proof rule ∃r2 is similar. The
idea is for the placeholder φs to encode the δ time advance needed for ψ1 to be
true. The proof-rule premises enforce that this placeholder has three properties:

1. Left premise: This premise checks that after the time advance taken by φs,
ψ2 is satisfied.

2. Middle premise: This premise checks that until all δ time-units have elapsed,
that ψ1 is indeed true. The pred<(φs) encodes the times before φs.

3. Right premise: This premise checks that φs encodes some range of time
elapses δ, ensuring that the state can elapse to valuations in φs.

To implement this rule, we check the premises in left-to-right order. Some sub-
tleties involving the middle premise are discussed in Section 5.3.

Now we give the claims ensuring the correctness of these new proof rules.
Their proofs are in Appendix B of the supplement [16]. This first lemma is a
corrected version of a similar lemma in [7].

Lemma 1. ∀φ1(φ2) is logically equivalent to ∀(φ2) ∨ ∃φ2(φ1 ∧ φ2).

Theorem 1 (Soundness and Completeness). The additional Lrel,af
ν,μ proof

rules are sound and complete: for any Lrel,af
ν,μ formula ψ and any state (l, ν),

(l, ν) ∈ �ψ�M,TA,θ if and only if (l, ccν) # ψ.

4 Optimizing Performance via Derived Proof Rules

To simplify reasoning about soundness and completeness, sets of proof rules are
often kept small and simple. However, we can improve the performance or proof

124 P. Fontana and R. Cleaveland

search by having the computer work with derived proof rules. We describe two
such situations where we use derived proof rules. We discuss a third situation,
invariants, in Appendix C.2 of the supplement [16].

Optimizing ∨. For performance reasons we replace a rule for ∨ in [26, 27]. Those
papers use the proof rule ∨c given in Figure 2. We instead use the proof rule ∨s,
which we give in Figure 3. By pushing fresh placeholders for both branches, we
avoid computing the complementation operator, which often results in forming
a placeholder involving a union of clock constraints.

Optimizing ∀ψ1(ψ2). Recall the derived formula for ∀ψ1(ψ2) from Lemma 1:
∀ψ1(ψ2) is equivalent to ∀(ψ2) ∨ ∃ψ2(ψ1 ∧ ψ2). This formula requires ψ2 to be
checked three times. However, by modifying the proof rule, we notice that we
can perform the checking of ψ2 only once. First, we rewrite ∃ψ2(ψ1 ∧ ψ2) as
∃≤,ψ2(ψ1), pushing the boundary case into the left subformula. Second, the key
is to compute the largest placeholder that satisfies ψ2, to remember those states
(memoize), and then to reason with this placeholder (and its time predecessor)
to find the placeholders needed to satisfy the two branches of the derived for-
mula. This reasoning allows the tool to reason with the subformula ψ2 only once,
reusing the obtained information. The derived proof rules are in Figure 4. The
first two handle the simpler cases when either ψ2 is always true (or when ψ1 is
always false) or ψ1 is immediately true (such as when ψ1 is an atomic proposi-
tion); the third rule (∀ro3) is the more complex case. The proof rules involving
placeholders are similar. Their derivations as well as their proofs of soundness
and completeness are in Appendix C.1 of the supplement [16].

(l, cc) � ∀(ψ2)
(∀ro1)

(l, cc) � ∀ψ1(ψ2)

(l, cc) � ψ1 ∧ ψ2
(∀ro2)

(l, cc) � ∀ψ1(ψ2)

succ((l, cc)), φs1 � ψ1

succ((l, cc)), φs2 � ψ2

succ((l, cc)), pred(φs1) � succ((l, cc)), φs2

φ∃ � pred(φs1)

succ((l, cc), φ∀) � succ((l, cc)) ∧ φs2

(l, cc) � φ∃ ∨ φ∀
(∀ro3)

(l, cc) � ∀ψ1(ψ2)

Fig. 4. Derived proof rules for ∀ψ1(ψ2)

5 Implementation Details

5.1 Addressing Non-convexity: Zone Unions

For a subset of properties including safety properties, clock zones, or convex
sets of clock valuations, are used to make the model-checking as coarse-grained
as possible. However, as shown in [24], certain automata with certain formulas
require non-convex sets of clock valuations (unions of clock zones) to be model-
checked correctly. For simplicity, we use a list of Difference Bound Matrices

The Power of Proofs: New Algorithms for Timed Automata Model Checking 125

(DBMs) to implement unions of clock zones. Other more complex data structures
have been developed which include the Clock Difference Diagram (CDD) [5] and
Clock Restriction Diagram (CRD) [22].

5.2 Addressing Performance: Simpler PES Formulas

When writing safety and liveness properties, we can use the formulas from [14].
However, in the common case where there are no nested temporal operators and
the formula does not involve clock constraints, we can simplify the formulations
considerably. In these cases, the subformula is a conjunction and disjunction of
atomic propositions, and is represented by p or q. Here are some simplifications:

AG [p] ≡ Y
ν
= p ∧ ∀([−](Y)) (3)

AF [p] ≡ Y
μ
= p ∨

(
∀([−](Y)) ∧ ∃(z.(∀(z < 1)))

)
(4)

EF [p] ≡ Y
μ
= p ∨ ∃(〈−〉(Y)) (5)

EG [p] ≡ Y
ν
= p ∧

(
∃(〈−〉(Y)) ∨ ∀(z.(∃(z ≥ 1)))

)
(6)

The correctness proofs for these simplified formulations are in Appendix C.3 of
the supplement [16].

The TCTL operators here are: AG [p] (always p), AF [p] (inevitably p), EG [p]
(there exists a path where always p), and EF [p] (possibly p). One noticeable
feature is that these simplified liveness properties do not require relativization.
Another noticeable feature is that the ∨ can be simplified to not use placeholders;
consequently, AG [p] and AF [p] do not require placeholders. Additionally, our
tool directly computes ∃(z.(∀(z < 1))), time can elapse forever without an action
transition, and its dual, ∀(z.(∃(z ≥ 1))).

5.3 Placeholder Implementation Complexities

Consider the two placeholder premises in the ∀(ψ) and ∃ψ1(ψ2) proof rules in
Figures 2 and 3. The placeholder sequents are given here:

succ((l, cc), φ∀) # succ((l, cc)) ∧ φs and succ((l, cc)), pred<(φs) # ψ1 (7)

In soundness and completeness proofs, we use soundness to give us a place-
holder to show that the formula holds, and with completeness, we argue that
some placeholder exists. Given the complexities of the formulas, the tool needs to
find the largest such placeholder. The rules are designed for the tool to implement
them in a left-to-right fashion, where placeholders are tightened by right-hand
rules. However, as the placeholders are tightened, we need to make sure that the
tightened placeholder still satisfies the left-hand premise. For instance, consider
the second of the above placeholders. As we tighten the placeholder to satisfy
ψ1, we need to check that this placeholder is the predecessor< of the placeholder
that satisfies ψ2. These checks take extra algorithmic work.

126 P. Fontana and R. Cleaveland

6 Performance Evaluation

We present the results of an experimental evaluation of our method that demon-
strates the types of timed automata and specifications the system can model
check. Furthermore, on the subset of specifications that UPPAAL supports, we
compare our tool’s time performance to their tools’s time performance.

6.1 Methods: Evaluation Design

In our case study, we use four different models: Carrier Sense, Multiple Ac-
cess with Collision Detection (CSMA); Fischer’s Mutual Exclusion (FISCHER);
Generalized Railroad Crossing (GRC); and Leader election (LEADER). For
more information on these models, see Appendix D.1 of the supplement [16]
or [17, 26, 27].

For each model, we start at 4 processes and scale the model up by adding more
processes (up to 8 processes). For each model we model-checked one valid safety
(always) specification (as), one invalid safety specification (bs), one valid liveness
(inevitably) specification (al), and one invalid liveness specification (bl). Each of
these cases involves only one temporal operator: ψ1 involves conjunctions and
disjunctions of atomic propositions and clock constraints. In addition we tested
4 additional specifications on each property (M1, M2, M3, and M4), some of
which are the leads to property p � q. Out of these specifications, at least
one (usually M4) is a property with no known equivalent TCTL formula. The
specifications checked are listed in Appendix D.2 of the supplement [16]. The
experiments were run on an Intel Mac with 8GB ram and a quad-core 2 GHz
Intel Core i7 processor running OS 10.7. Times were measured with the UNIX
utility time.

6.2 Data and Results

The data is provided in Tables 1 and 2. Table 1 contains the remaining specifi-
cations that are not supported by UPPAAL. Table 2 contains the examples that

Table 1. Examples that UPPAAL does not support. All times are in seconds (s).

File PES4 PES5 PES6 PES7 PES8

CSMA-as 0.29 4.62 139.16 6696.08 TO

CSMA-M3 0.01 0.03 0.14 0.80 3.99

CSMA-M4 0.01 0.03 0.14 0.71 3.66

FISCHER-M3 0.14 2.51 79.17 TO TOsm

FISCHER-M4 0.00 0.00 0.00 2.04 2.42

GRC-M2 0.01 0.01 0.01 0.02 0.03

GRC-M4 0.00 0.00 0.01 0.02 0.01

GRC-M4ap 0.00 0.00 0.01 0.01 0.01

LEADER-M1 0.00 0.00 0.00 0.01 0.01

LEADER-M3 0.01 0.08 2.12 79.05 4242.97

LEADER-M4 0.00 0.00 0.04 0.03 0.01

The Power of Proofs: New Algorithms for Timed Automata Model Checking 127

Table 2. Time performance in seconds (s) on examples comparing PES and UPPAAL

File PES4 UPP4 PES5 UPP5 PES6 UPP6 PES7 UPP7 PES8 UPP8

CSMA-al 0.01 1.45 0.03 0.24 0.13 0.25 0.72 0.26 3.65 0.26

CSMA-bl 0.01 0.26 0.03 0.27 0.13 0.27 0.73 0.28 3.53 0.33

CSMA-bs 0.01 0.33 0.05 0.27 0.22 0.27 1.14 1.33 5.09 4.66

CSMA-M1 0.01 0.29 0.03 0.27 0.14 0.28 0.73 0.27 3.69 0.27

CSMA-M2 0.33 0.35 5.21 7.00 154.56 1194.74 TO TO TOsm TOsm

FISCHER-al 0.00 0.51 0.00 0.27 0.00 0.28 0.00 0.40 0.00 0.27

FISCHER-as 0.07 0.27 0.51 0.28 13.44 0.67 864.04 0.96 TO 4.26

FISCHER-bl 0.00 0.26 0.00 0.26 0.00 0.28 0.00 0.34 0.00 0.26

FISCHER-bs 0.04 0.28 0.01 0.27 0.02 0.32 0.39 0.47 0.39 0.90

FISCHER-M1 0.00 0.26 0.00 0.26 0.00 0.28 0.00 0.28 0.00 0.25

FISCHER-M2 0.00 0.26 0.00 0.26 0.00 0.27 0.00 0.30 0.03 0.28

GRC-al 0.00 0.27 0.01 0.28 0.47 0.59 0.07 0.44 0.08 5.45

GRC-as 53.09 0.36 TO 7.11 TOsm 940.51 TOsm 3433.14 TOsm TO

GRC-bl 0.00 0.27 0.00 0.27 0.01 0.27 0.01 0.61 0.01 0.66

GRC-bs 0.11 0.41 1.91 0.41 433.59 1.76 O/M 16.19 O/M 52.03

GRC-M1 0.01 0.27 0.04 0.27 0.01 0.29 0.05 0.35 0.03 0.32

GRC-M3 0.00 0.27 0.00 0.31 0.01 0.56 0.04 1.23 0.01 3.85

LEADER-al 0.00 0.28 0.01 0.33 0.17 4.30 5.80 747.82 573.84 TO

LEADER-as 0.00 0.27 0.01 0.27 0.22 0.33 6.23 0.86 649.52 8.21

LEADER-bl 0.00 0.28 0.00 0.27 0.01 0.28 0.17 0.32 4.25 0.29

LEADER-bs 0.00 0.27 0.00 0.28 0.01 0.28 0.03 4.99 0.40 1.57

LEADER-M2 0.00 0.28 0.02 0.31 0.38 3.05 13.53 504.89 1570.37 TO

are supported both by our tool (PES) and by UPPAAL (UPP), with the num-
ber indicating the number of processes used in the model. We use the following
abbreviations: TO (timeout: the example took longer than 2 hours), TOsm (the
example timed out with fewer process), and O/M (out of memory). Since our
tool supports a superset of the specifications that UPPAAL can support, there
are specifications that our tool supports that UPPAAL does not. A scatter plot
of the data in Table 2 is given in Appendix D.3 of the supplement [16].

6.3 Analysis and Discussion

After analyzing the data, we may draw three conclusions. First, on the examples
that both our PES tool and UPPAAL support, we see that UPPAAL’s perfor-
mance is generally faster than ours, although, our tool performs faster on some
examples. Additionally, while our tool does time out more often than UPPAAL
does, most examples are verified quickly by both tools. Second, our tool can rea-
sonably efficiently verify specifications that UPPAAL cannot. Third, for these
examples, the performance bottleneck seems to be safety properties. Even with
the additional complexity of supporting the more complicated specifications (in
both tables), liveness was often verified more quickly than safety properties. Here
is one possible explanation: while the verifier must check the entire state space
for a valid safety property, often only a subset of the state space must be checked
for a liveness property.

128 P. Fontana and R. Cleaveland

7 Conclusion

We provide the first implementation of a Lrel,af
ν,μ timed automata model checker.

Additionally, this model checker is on-the-fly, allowing for verification to explore
both the timed automaton and the Lrel,af

ν,μ formula incrementally. To support
the full fragment of this logic, we extended the proof-rule framework of [26, 27]
to support the relativization operators, and we optimize the tool’s performance
using derived proof rules. We also provided simpler Lrel,af

ν,μ formulas for com-
mon safety and liveness formulas. While these may seem to be straightforward
extensions, the rules and the extensions were designed to be straightforward,
designing the proof rules to be both easy to implement efficiently.

We then compared our tool to UPPAAL. While UPPAAL seems to perform
faster more often, our tool is competitive for many of those examples, including
liveness formulas. Additionally, our tool was able to quickly verify specifications
that UPPAAL does not currently support.

Future work is to both further optimize the performance of our tool and to
augment our tool to provide more information than just a yes or no answer.
Potential information includes providing answers to these questions: Was the
formula true because the premise of an implication was always false? Was the
formula true because certain states were never reached?

Acknowledgements. We thank Dezhuang Zhang for providing the code base
[26] and for his insights.

References

[1] Aceto, L., Laroussinie, F.: Is your model checker on time? on the complexity of
model checking for timed modal logics. Journal of Logic and Algebraic Program-
ming 52-53, 7–51 (2002)

[2] Alur, R.: Timed Automata. In: Halbwachs, N., Peled, D.A. (eds.) CAV 1999.
LNCS, vol. 1633, pp. 8–22. Springer, Heidelberg (1999)

[3] Alur, R., Courcoubetis, C., Dill, D.: Model-checking in dense real-time. Informa-
tion and Computation 104(1), 2–34 (1993)

[4] Alur, R., Dill, D.L.: A theory of timed automata. Theoretical Computer Sci-
ence 126(2), 183–235 (1994)

[5] Behrmann, G., Larsen, K.G., Pearson, J., Weise, C., Yi, W.: Efficient Timed
Reachability Analysis Using Clock Difference Diagrams. In: Halbwachs, N., Peled,
D.A. (eds.) CAV 1999. LNCS, vol. 1633, pp. 341–353. Springer, Heidelberg (1999)

[6] Behrmann, G., David, A., Larsen, K.G.: A tutorial on uppaal. In: Bernardo,
M., Corradini, F. (eds.) SFM-RT 2004. LNCS, vol. 3185, pp. 200–236. Springer,
Heidelberg (2004)

[7] Bouyer, P., Cassez, F., Laroussinie, F.: Timed modal logics for real-time systems.
Journal of Logic, Language and Information 20(2), 169–203 (2011)

[8] Bowman, H., Gomez, R.: How to stop time stopping. Formal Aspects of Comput-
ing 18(4), 459–493 (2006)

[9] Clarke, E.M., Emerson, E.A., Sistla, A.P.: Automatic verification of finite-state
concurrent systems using temporal logic specifications. TOPLAS 8(2), 244–263
(1986)

The Power of Proofs: New Algorithms for Timed Automata Model Checking 129

[10] Cleaveland, R.: Tableau-Based Model Checking in the Propositional Mu-Calculus.
Acta Informatica 27(9), 725–747 (1990)

[11] Cleaveland, R., Steffen, B.: A Linear-Time Model-Checking Algorithm for the
Alternation-Free Modal Mu-Calculus. Formal Methods in System Design 2(2),
121–147 (1993)

[12] Emerson, E.A., Lei, C.L.: Efficient Model Checking in Fragments of the Proposi-
tional Mu-Calculus. In: LICS 1986, pp. 267–278. IEEE Computer Society (1986)

[13] Fontana, P., Cleaveland, R.: Data Structure Choices for On-the-Fly Model Check-
ing of Real-Time Systems. In: DIFTS 2011, pp. 13–21 (2011)

[14] Fontana, P., Cleaveland, R.: Expressiveness results for timed modal-mu calculi
(2014) (in Preparation Preprint available upon request)

[15] Fontana, P., Cleaveland, R.: A menagerie of timed automata. ACM Computing
Surveys 46(3), 40:1–40:56 (2014)

[16] Fontana, P., Cleaveland, R.: The power of proofs: New algorithms for timed au-
tomata model checking (appendix). arXiv.org (2014)

[17] Heitmeyer, C., Lynch, N.: The generalized railroad crossing: a case study in formal
verification of real-time systems. In: RTSS 1994, pp. 120–131 (December 1994)

[18] Henzinger, T., Nicollin, X., Sifakis, J., Yovine, S.: Symbolic model checking for
real-time systems. Information and Computation 111(2), 193–244 (1994)

[19] Laroussinie, F., Larsen, K.G.: CMC: A tool for compositional model-checking of
real-time systems. In: Budkowski, S., Cavalli, A., Najm, E. (eds.) Formal Descrip-
tion Techniques and Protocol Specification, Testing and Verification. IFIP, pp.
439–456. Springer, US (1998)

[20] Peter, H.J., Ehlers, R., Mattmüller, R.: Synthia: Verification and synthesis for
timed automata. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS,
vol. 6806, pp. 649–655. Springer, Heidelberg (2011)

[21] Sokolsky, O.V., Smolka, S.A.: Local model checking for real-time systems. In:
Wolper, P. (ed.) CAV 1995. LNCS, vol. 939, pp. 211–224. Springer, Heidelberg
(1995)

[22] Wang, F.: Efficient verification of timed automata with BDD-like data structures.
STTT 6(1), 77–97 (2004)

[23] Wang, F.: Redlib for the formal verification of embedded systems. In: ISoLA 2006,
pp. 341–346. IEEE Computer Society, Piscataway (2006)

[24] Wang, F., Huang, G.D., Yu, F.: TCTL inevitability analysis of dense-time systems:
From theory to engineering. IEEE Transactions on Software Engineering 32(7),
510–526 (2006)

[25] Yovine, S.: KRONOS: a verification tool for real-time systems. STTT 1(1), 123–
133 (1997)

[26] Zhang, D., Cleaveland, W.R.: Fast generic model-checking for data-based systems.
In: Wang, F. (ed.) FORTE 2005. LNCS, vol. 3731, pp. 83–97. Springer, Heidelberg
(2005)

[27] Zhang, D., Cleaveland, R.: Fast on-the-fly parametric real-time model checking.
In: RTSS 2005, pp. 157–166. IEEE Computer Society, Washington, DC (2005)

Anonymized Reachability of Hybrid
Automata Networks

Taylor T. Johnson1 and Sayan Mitra2

1 University of Texas at Arlington, Arlington, TX 76019, USA
taylor.johnson@uta.edu

2 University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
mitras@illinois.edu

Abstract. In this paper, we present a method for computing the set of reachable
states for networks consisting of the parallel composition of a finite number of the
same hybrid automaton template with rectangular dynamics. The method utilizes
a symmetric representation of the set of reachable states (modulo the automata
indices) that we call anonymized states, which makes it scalable. Rather than
explicitly enumerating each automaton index in formulas representing sets of
states, the anonymized representation encodes only: (a) the classes of automata,
which are the states of automata represented with formulas over symbolic indices,
and (b) the number of automata in each of the classes. We present an algorithm
for overapproximating the reachable states by computing state transitions in this
anonymized representation. Unlike symmetry reduction techniques used in finite
state models, the timed transition of a network composed of hybrid automata
causes the continuous variables of all the automata to evolve simultaneously. The
anonymized representation is amenable to both reducing the discrete and contin-
uous complexity. We evaluate a prototype implementation of the representation
and reachability algorithm in our satisfiability modulo theories (SMT)-based tool,
Passel. Our experimental results are promising, and generally allow for scaling
to networks composed of tens of automata, and in some instances, hundreds (or
more) of automata.

Keywords: hybrid automata network, reachability, verification, symmetry.

1 Introduction

Networks consisting of automata that communicate via shared variables are useful
for modeling distributed algorithms such as mutual exclusion algorithms, media ac-
cess control (MAC) such as time-division multiple access (TDMA) protocols, and dis-
tributed cyber-physical systems (CPS) such as air-traffic control systems [17]. However,
as the state-space of the network consisting of parallel compositions of these automata
grows exponentially in the number of automata N, automated analysis is challenging.
It is particularly challenging for timed and hybrid systems, where the number of con-
tinuous variables (dimensions) also grows. Such networks are often specified in a sym-
metric manner—such as being composed of instantiations of an automaton template
A(N, i)—and are often amenable to methods that exploit symmetries. Formal analy-
sis and state-space construction methods that exploit symmetries have been thoroughly

A. Legay and M. Bozga (Eds.): FORMATS 2014, LNCS 8711, pp. 130–145, 2014.
© Springer International Publishing Switzerland 2014

Anonymized Reachability of Hybrid Automata Networks 131

investigated for many classes of system models, because such methods ameliorate the
state-space explosion problem [1, 2, 5, 6, 9–11, 14, 15, 20–22].

For example, several methods exploiting symmetry have been developed and imple-
mented for the Murϕ verification system [8] for discrete systems, such as the scalarset
data structure [14], and the repetitive id data structure [15]. Advances in tools like UP-
AAAL [3] and PAT [23] that exploit state-space symmetries have enabled scaling to
larger models. For instance, the scalarset data structure from Murϕ was extended for
timed systems and implemented in UPAAAL [11,12], and a clock-symmetry reduction
method has been implemented in the PAT model checker [21]. Quasi-equal clocks and
variables for timed [13] and hybrid (multi-rate) [4] automata networks also allow reduc-
tions in state-space explosion, but do not require automata in the network to be identical
(modulo identifiers), as we do. We focus on safety properties, and to the best of our
knowledge, before this paper, such symmetry techniques have not yet been applied to
systems with general continuous dynamics like the rectangular differential inclusions
we consider (e.g., [4] analyzes multi-rate automata and does not allow differential inclu-
sions). The method described in this paper and implemented in our Passel verification
tool [16,18,19] uses the SMT solver Z3 [7]. The method is used as a subroutine in meth-
ods for performing uniform verification of parameterized networks of hybrid automata
(e.g., verification for all network sizes, ∀N ∈ N, A(N, 1)‖ . . .‖A(N,N) |= ζ(N)),
although we highlight that this paper addresses fixed, constant choices of N only.

2 Hybrid Automata Network Syntax and Semantics

We specify the behavior of each participant in the network using a syntactic structure
called a hybrid automaton template, denoted by A(N, i).1 The special symbols N and
i are natural numbers that respectively refer to the number of automata, and the ith

automaton. For a natural number n, the set [n] is {1, . . . , n}. For a set S, the set S⊥ is
S ∪ {⊥}. Fixing a particular value of N gives concrete instances of [N] and [N]⊥.

Terms and Formulas. We use a class of formulas to: (a) specify the syntactic compo-
nents of a hybrid automaton template A(N, i), and (b) represent sets of states symbol-
ically in the reachability computation. Formulas are built-up from constants, variables,
and terms of several types. The grammar for formulas is:

ITerm ::= ⊥ | 1 | N | i | p[i]
DTerm ::= lc | q | q[ITerm]

RTerm ::= 0 | 1 | rc | x | x[ITerm]

RPoly ::= RTerm | RPoly1 + RPoly2 | RPoly1 − RPoly2 | (RPoly1 ∗ RPoly2)

Atom ::= ITerm1 = ITerm2 | DTerm1 = DTerm2 | RPoly < 0

Formula ::= Atom | ¬Formula | Formula1 ∧ Formula2 | ∃x Formula

The grammar is composed of index terms (ITerm) with type [N]⊥, discrete terms
(DTerm) with type L, and real terms (RTerm) with type R. For a discrete term, lc is
constant from L and q is a discrete variable. For a real term, rc is a real numerical

1 Readers interested in additional technical details are referred to [16, Chapters 2 and 4].

132 T.T. Johnson and S. Mitra

constant and x is a real variable. Index (p[i]), discrete (q[ITerm]), and real (x[ITerm])
pointer variables are names for arrays composed of N elements of the corresponding
type, respectively referenced at an index variable i, or an evaluation of an index term
ITerm. Atoms (Atom) are composed of ordered relations between real polynomials
(RPoly), as well as equality relations between index terms and discrete terms. Formulas
are composed of Boolean combinations of atoms and shorter formulas. Comparison op-
erators are expressed using negation (¬) and conjunction (∧) in formulas. Combining
the Boolean operators ∧ and ¬ with the < operator, other comparison operators like
=, �=, ≤, >, and ≥, can be expressed. We assume the language contains the standard
quantifiers and Boolean operators, even if not explicitly specified in the grammar (e.g.,
universal quantification ∀, implication ⇒, disjunction ∨, less-than-or-equal ≤, etc.).

Variables. A hybrid automaton A(N, i) has a set of variables, each of which is a name
used for referring to state and is a term in the grammar just defined. As specified in the
grammar, each variable v is associated with a type—denoted type(v)—that defines a
set of values the variable may take. The type of a variable may be: (a) L: a finite set
of locations names, (b) [N]⊥: a set of automaton indices—called pointers—with the
special element ⊥ that is not equal to any automaton’s index, or (c) R: the set of real
numbers. A variable may be a local variable with a name of the form variable_name[i],
or global, in which case its name does not have a symbolic index [i]. For example, q[i] :
L, p[i] : [N]⊥, and x[i] : R respectively define location, pointer, and real typed local
variables, while g : [N]⊥ is a global variable of pointer type. The sets of local and global
variables are denoted by VL(i) and VG(i), respectively. The valuation of a variable v
is a function that associates the variable name v to a value in its type type(v). For a
set of variables V, val(V) is the set of valuations of each v ∈ V. For a set of variables
V, V′ Δ

= {v′|v ∈ V} and V̇
Δ
= {v̇|v ∈ V ∧ type(v) = R}. V′ is used for specifying

resets of discrete transitions and V̇ is used for specifying continuous dynamics. For a
formula φ, let: (a) vars(φ) be the set of variables appearing in φ, (b) ivars(φ) be the
set of distinct index variables appearing in φ.

Let N be a symbol representing an arbitrary natural number and i be a symbol rep-
resenting an arbitrary element of [N]. For the remainder of the paper, we fix N and
refer to it implicitly in the remaining definitions. When clear from context, we drop the
parameter N, for instance, a hybrid automaton template A(N, i) is written A(i), etc.

Definition 1. A hybrid automaton template A(N, i) is specified by the syntactic com-
ponents: (a) V(i): a finite set of variable names with associated types. (b) L: a finite set
of location names. (c) Init(i): an initial condition formula over V(i). (d) Trans(i): a fi-
nite set of discrete transition statements, each of which is a tuple 〈from, to,grd, rst〉,
where from, to ∈ L, grd is a formula over V(i) called a guard and rst is a for-
mula over V(i) ∪ V′(i) called a reset. The guard is an enabling condition that must
be satisfied so that a transition may be taken, and the reset models the update of
state. (e) Traj(i): for each element in L, there is a trajectory statement, each of which
is a tuple 〈loc, inv, frate〉, where loc ∈ L, inv is a formula over the real variables
X(i) called an invariant, and frate is a formula over X(i) ∪ Ẋ(i) called a flowrate that
specifies how the real variables evolve over time. The invariant is an assertion that must
be satisfied while A(i) is in loc, and the flow rate associates each real-valued variable
of A(i) with a rectangular differential inclusion.

Anonymized Reachability of Hybrid Automata Networks 133

g = ⊥ ∧ x[i] = 0
rem

ẋ[i] ∈ [lb, ub]
try

ẋ[i] ∈ [lb, ub]

cs
ẋ[i] ∈ [lb, ub]
inv: x[i] ≤ 6B

grd: g = ⊥ ∧ x[i] ≥ B
rst: g′ = i ∧ x′[i] = 0

grd: g = i ∧ x[i] ≥ 2B
rst: x′[i] = 0

grd: x[i] ≥ 3B
rst: g′ = ⊥ ∧ x′[i] = 0

Fig. 1. Hybrid automaton template A(i) for MUX-INDEX-RECT mutual exclusion algorithm

Let X(i)
Δ
= {v ∈ V(N, i)|type(v) = R} be the set of variables of A(i) with real type.

MUX-INDEX-RECT (Figure 1) is a timed mutual exclusion algorithm with an im-
precise real clock x[i] that evolves between rates lb ≤ ub. There is a global variable g
with type [N]⊥. Each automaton i starts in rem with x[i] = 0 and g = ⊥, then after
waiting B time i may enter try which also sets the global variable g to the identifier i.
After waiting at least 2B time, it may enter the critical section cs and stay there for at
least 3B and at most 6B time before returning to rem and setting g = ⊥.

2.1 Semantics of Hybrid Automata Networks

For a hybrid automaton template A(i), we define a transition system to formalize the
semantics of the network where N instantiations of A(i) operate concurrently.

Definition 2. Let N be a symbol representing an arbitrary natural number. A hybrid
automata network is a tuple AN Δ

= 〈VN, QN, ΘN, TN〉, where: (a) VN are the vari-
ables of the network, VN Δ

= VG ∪
⋃N

i=1 VL(i), (b) QN ⊆ val (VN) is the state-s-
pace, (c) ΘN ⊆ QN is the set of initial states, and (d) TN ⊆ QN × QN is the
transition relation, which is partitioned into sets of discrete transitions DN ⊆ QN×QN

and continuous trajectories T N ⊆ QN ×QN.

A state x of AN is a valuation of all the variables in VN and is denoted by boldface
v, v′, etc. The set of all states is called the state-space and is denoted QN. If a state
v ∈ QN satisfies a formula φ—that is, the corresponding variable valuations result in
φ evaluating to true—we write v |= φ. For a formula φ with vars(φ) ⊆ V(i), the
corresponding states x ∈ QN satisfying φ are �φ�

Δ
= {x ∈ QN|v |= φ}. For instance,

the initial states ΘN Δ
= �Init(i)� are the states satisfying Init(i). For some state v, the

valuation of a particular local variable x[i] ∈ VL(i) for automaton A(i) is denoted
by v.x[i], and v.g for some global variable g in VG(i). For a set of variables V, the
valuations of each v ∈ V at state v is denoted by v.V. For a formula φ and a set of
variables V ⊆ vars(φ), let φ↓ V be the projection of φ onto the variables V, such that
vars(φ↓ V) = V and �φ� ⊆ �φ↓ V�, which can be computed by eliminating the existen-
tial quantifiers from the formula ∃vars(φ)\V : φ. The evolution of the states of AN are
describing by a transition relation TN ⊆ QN ×QN. For a pair (v,v′) ∈ TN, we use the
notation v → v′, where v is called the pre-state and v′ is called the post-state. There
are two ways variables may be updated by TN. Discrete transitions DN model instanta-
neous changes and continuous trajectories T N model evolution over a real time interval.

134 T.T. Johnson and S. Mitra

When necessary to disambiguate state updates owing to either discrete transitions and
continuous trajectories, we write v →DN v′ or v →T N v′, respectively.

Discrete Transitions. Discrete transitions model atomic, instantaneous updates of state
due to one automaton in the network AN. Informally, a discrete transition from pre-
state v to post-state v′ models the discrete transition of one particular hybrid automa-
ton A(i) by some transition t ∈ Trans(i). There is a discrete transition v → v′ ∈
DN iff: ∃i ∈ [N] ∃t ∈ Trans(i) : v.V(i) |= grd(t, i) ∧ v′.V(i) |= rst(t, i) ∧
(∀j ∈ [N] : j �= i ⇒ v′.V(j) = v.V(j)). From the pre-state v, any automaton A(i) in
the network AN that has some transition where v satisfies its guard may update its post-
state according to the transition’s reset, while the variable valuations of all the other
automata in AN remain unchanged.2

Continuous Trajectories. Continuous trajectories model update of state over intervals
of real time. Informally, there is a trajectory v → v′ ∈ T N iff some amount of time—
te—can elapse from v, such that, (a) the states of all automata in the network AN

are updated to v′ according to their individual trajectory statements, and (b) while en-
suring the invariants of all automata along the entire trajectory. Formally, trajectories
are defined as solutions of differential equations or inclusions specified in the trajec-
tory statements of A(i). For a state v, a location m, a real time t, and a real variable
v ∈ X(i), let flow(v,m, v, t) = v.v+

∫ t

τ=0 frate(m, v)dτ . Since frate may specify a
differential inclusion, flow is a set-valued function. There is a trajectory v → v′ ∈ T N

iff: ∃te ∈ R≥0 ∀tp ∈ R≥0 ∀i ∈ [N] ∃m ∈ L : tp ≤ te ∧ flow(v,m,X(i), tp) |=
inv(m, i) ∧ v′.X(i) ∈ flow(v,m,X(i), te). For each i ∈ [N] and each real variable
x[i], v.x[i] must evolve to the valuations v′.x[i], in exactly te time in some location
m ∈ L according to the flow rates allowed for x[i] in location m. In addition, all inter-
mediate states along the trajectory must satisfy the invariant inv(m, i).

Executions and Invariants. An execution of the network AN models a particular be-
havior of all the automata in the network. An execution of AN is a sequence of states
α = v0,v1, . . . such that v0 ∈ ΘN, and for each index k appearing in the sequence,
(vk,vk+1) ∈ TN. A state x is reachable if there is a finite execution ending with x.
The set of reachable states for AN is Reach(AN). The set of reachable states for AN

starting from an arbitrary subset V0 ⊆ QN is Reach(AN,V0). An invariant for AN is
any set of states that contains Reach(AN).

3 Anonymized State-Space Representation

For any fixed N ∈ N, let i be a symbol representing an arbitrary element of [N], and for
the hybrid automaton template A(N, i), the composed automaton modeling a network
of size N is AN (Definition 2). We present an algorithm for computing Reach(AN)
that takes advantage of the symmetries in the template A(i) instantiated in AN. The
representation ofReach(AN) is anonymized, so numerical automaton indices—1, 2, . . .,
N—are not explicitly enumerated and are instead modeled using symbolic indices—i1,

2 The guard may depend on the variables of some automaton j �= i, so automata may commu-
nicate via global variables and local variables, for details, see [16, Chapter 2].

Anonymized Reachability of Hybrid Automata Networks 135

i2, . . ., iN. Frequently, the number of symbolic indices needed to represent equivalent
states is significantly smaller than the number N of numerical indices. For example, in
MUX-INDEX-RECT (Figure 1), a single symbolic index is sufficient independent of N.
For a given state x ∈ QN, the set of corresponding states X ⊆ QN that are equivalent
modulo indices is obtained by substituting any numerical index i of all local variables
v[i] ∈ VL(i) with a symbolic index j with type [N].

Definition 3. Two states x, x′ ∈ QN of AN, are equivalent modulo indices if there
exists a bijection π : [N] → [N] such that for each v[i] ∈ V(i), x.v[i] = x′.v[π(i)]. For
a state x ∈ QN of AN, the set of states ε(x) that is equivalent modulo indices to x is:
ε(x)

Δ
= {x′ ∈ QN | x and x′ are equivalent modulo indices}.

We note this is the same type of definition as the existence of an automorphism used
in [6, 9, 14]. A state is equivalent modulo indices to itself by picking the bijection π to
be the identity mapping. For a formula φ, we will overload π and write π(φ), which
modifies φ by applying π to each index variable i ∈ ivars(φ). The anonymized repre-
sentation takes this idea a step further by utilizing symbolic names for process indices
along with counters, and a formula representing the valuations of any global variables.
We use the (.) notation to refer to particular elements of tuples. For example, C.Count
refers to the count of anonymized class C, C.Form refers to C’s formula, etc. If C is clear
from context, we refer to C.Count as Count, etc.

Definition 4. An anonymized state S of the network AN is a tuple 〈Classes, G〉, where:

(a) Each anonymized class C ∈ Classes is a tuple C
Δ
= 〈Count, I, Form〉, where:

(i) Form is a quantifier-free formula over the variables VL(i1) ∪ . . . ∪ VL(iI),
where i1, . . ., iI are I distinct symbolic index variables.

(ii) I ≥ 1 is a natural number called the class’s rank, which is equal to the number
of distinct symbolic index variables appearing in Form: I

Δ
= |ivars(Form)|.

(iii) Count is a natural number called the class’s count, and satisfies N ≥ Count

≥ |I|. The count is the number of automata of class C. Additionally, the sum of
all the class counts in S equals N: N =

∑
C∈S.Classes C.Count, where C.Count

is the count of class C.
(b) G is a quantifier-free formula over the global variables VG.

For an anonymized class C, requirement (iii) of Definition 4 that Count≥ |I| means
the number of automata satisfying Form is at least the rank (the number of distinct index
variables appearing in Form). When the rank I is clear from context, we drop it from the
C tuple and write 〈Count, Form〉. We say two anonymized classes C1 and C2 over the
same symbolic indices (ivars(C1.Form) = ivars(C2.Form)) are equivalent and write
C1 ≡ C2 iff they have equivalent class formulas and equal class counts:3

3 It is possible for classes with different ranks to represent the same states. For example, consider
states arising from MUX-INDEX-RECT, S1 = 〈{〈2, 2, q[i1] = rem ∧ q[i2] = rem〉} , g =
⊥〉 and S2 = 〈{〈2, 1, q[i1] = rem〉} , g = ⊥〉, which both represent there are two automata
with location rem and g is ⊥, i.e., �S1� = �S2�. However, a class of a particular rank may
not be expressible as a different rank. For example, there is no way to express the following
using rank 1 classes: 〈{〈2, 2, q[i1] = rem ∧ q[i2] = rem ∧ x[i1] ≥ x[i2]〉} , g = ⊥〉, which
expresses that there are two automata in rem with one’s clock at least as large as the other’s.

136 T.T. Johnson and S. Mitra

Definition 5. Two classes C1 and C2 are equivalent, written C1 ≡ C2 iff C1.Count =
C2.Count ∧ C1.Form ≡ C2.Form.

Here, equivalence between the class formulas is a semantic and not syntactic notion,
and means the formula C1.Form ≡ C2.Form is valid.We say two anonymized states
S1 and S2 are equivalent and write S1 ≡ S2 iff they have the same state counts, the
classes in their sets of classes are equivalent, and their global formulas are equivalent.
See Footnote 3 for an example from MUX-INDEX-RECT.

Definition 6. Two anonymized states S1 and S2 are equivalent, written S1 ≡ S2, iff
∀ C1 ∈ S1.Classes ∃ C2 ∈ S2.Classes C1 ≡ C2 ∧ G1 ≡ G2.

We make the following assumption about the format of class formulas.

Assumption 1. For an anonymized state S, for each class C ∈ Classes, the class
formula C.Form is in conjunctive normal form (CNF). For each index i ∈ {i1, . . . , iC.I},
C.Form contains an equality q[i] = loc for some location loc ∈ L.

For example, Equation 1 (arsing from MUX-INDEX-RECT) satisfies this assumption.
This assumption ensures that each class corresponds to a concrete state, and has a con-
trol location specified to determine the transitions and trajectories that may be possible
(recall Definition 1). Under Assumption 1, the interpretation of an anonymized state S

corresponds to a set of states of QN, which we write as �S� and define formally next.
Since the class formulas of S are over the variables of automata with symbolic indices,
the interpretation instantiates the symbolic indices with specific elements of [N], which
yields the set of states that are equivalent modulo indices.

Definition 7. For an anonymized state

S = 〈{〈Count1, I1, Form1〉︸ ︷︷ ︸
C1

, . . . , 〈Countk, Ik, Formk〉︸ ︷︷ ︸
Ck

}, G〉,

we instantiate the set of symbolic indices {i1, . . ., iIk} with all possible values in [N] as
follows. A consistent partition of [N],

P = {{P 1
1 , . . . , P

I1
1 }︸ ︷︷ ︸

P1

, . . . , {P 1
k , . . . , P

Ik
k }︸ ︷︷ ︸

Pk

},

is a partition of [N], such that, for any Pj ∈ P , (a) |Pj | = Countj and (b) Pj is
partitioned into Ij sets P 1

j , . . ., P Ij
j (and we recall that Ij is the rank of Cj).

For a consistent partition P , we note that (a)
∑

Pj∈P |Pj | = N, since P partitions [N],
and (b) Countj ≥ Ij (by Definition 4, (iii)). For example, consider the anonymized
state (arsing from MUX-INDEX-RECT, Figure 1) with count three and rank two:

〈{〈3, 2, q[i1] = try ∧ q[i2] = rem ∧ x[i1] ≥ x[i2] +B〉} , g = i1〉. (1)

One consistent partition is: P = {P1, P2} where P1 = {1} and P2 = {2, 3}. The
set {{1, 2, 3}} is not a consistent partition since it is partitioned into one set, but the
rank I = 2, and Definition 7 requires each Pj ∈ P be partitioned into Ij partitions.

Anonymized Reachability of Hybrid Automata Networks 137

For an anonymized state S, the set of consistent partitions ConsPart(S) are all consis-
tent partitions of [N]. Continuing MUX-INDEX-RECT for Equation 1, ConsPart(S)
is {{{1}, {2, 3}}, {{2}, {1, 3}}, {{3}, {1, 2}}, {{1, 2}, {3}}, {{1, 3}, {2}}, {{2, 3},
{1}}}. All these partitions define the set of states �S� the anonymized state S repre-
sents. This is the same as all the states equivalent modulo indices to the states �SP � for
a particular consistent partition P .

Definition 8. For an anonymized state S and a consistent partition P ∈ ConsPart(S),
the set of states of network AN represented by S corresponding to P are:

�SP �
Δ
= {x ∈ QN | x |= G ∧ Form1(P1) ∧ . . . ∧ Formk(Pk)}, (2)

where each Formj(Pj)
Δ
= ∀i1j ∈ P 1

j , . . . , i
Ij
j ∈ P

Ij
j : Formj(i

1
j , . . . , i

Ij
j). The set of

states of network AN represented by S with all consistent partitions is:

�S�
Δ
=

⋃
P∈ConsPart(S)

�SP � . (3)

We have written Formj(i
1
j , . . . , i

Ij
j) to highlight that Formj is over Ij symbolic in-

dex variables. Note that Formj(Pj) is equivalent to a finite-length conjunction since
each P

Ij
j is a finite set. The next lemma states that this definition of interpretations of

anonymized states yields the same set of states as equivalence modulo identifiers.

Lemma 1. For an anonymized state S, for any x ∈ �S�, for any x′ ∈ ε(x), x′ ∈ �S�.

Continuing the MUX-INDEX-RECT Equation 1 example with the consistent partition
P = {{1}, {2, 3}}, the states represented by SP are:

�SP � = {x ∈ Q3 | x |=∀i11 ∈ P 1
1 , i

2
1 ∈ P 2

1 : q[i1] = try ∧ q[i2] = rem ∧
x[i1] ≥ x[i2] +B ∧ g = i1}

= {x ∈ Q3 | x |=(q[1] = try ∧ q[2] = rem ∧ q[3] = rem ∧
x[1] ≥ x[2] +B ∧ x[1] ≥ x[3] + B ∧ g = 1) }.

Applying Lemma 1, �S� = ε(�SP �).

4 Anonymized Reachability of Hybrid Automata Networks

Next we describe an on-the-fly algorithm for overapproximating the reachable states of
a network AN using anonymized states. We note that the CNF requirement (Assump-
tion 1) is not restrictive: if a new class is created during the execution of the algorithm
that contains disjunctions, it is split into multiple classes with CNF formulas. Recall
from Section 2.1, that φ↓ V is the projection of φ onto the variables V.

Pseudocode for the reachability algorithm, areach appears in Figure 2. The algo-
rithm operates on frontiers of reachable states represented by Frontier, which is initial-
ized (line 3) to a singleton set with one class with count N and formula Init(i)↓ VL(i),
which is Init(i) projected onto the local variables. The global formula is initialized with

138 T.T. Johnson and S. Mitra

1 function areach(A(i), Init(i), N)
AnonReach ← ∅

3 Frontier ← {〈{〈N, Init(i)↓ VL(i)〉} , Init(i)↓ VG(i)〉} / / i n i t i a l anonymized s t a t e
while Frontier �= ∅ / / r e p e a t u n t i l no new s t a t e s ar e added t o t h e f r o n t i e r

5 FrontierNew ← ∅ / / i n i t i a l i z e n e x t f r o n t i e r
AnonReach ← AnonReach ∪ Frontier / / add f r o n t i e r t o r e a c h a b l e s t a t e s

7 / / compute s u c c e s s o r s o f each anonymized s t a t e i n t h e f r o n t i e r
foreach anonymized state S in Frontier

9 FrontierNew ← FrontierNew ∪ discPost(S) / / Figure 4
FrontierNew ← FrontierNew ∪ contPost(S) / / Figure 5

11 FrontierNew ← mergeAndDrop(FrontierNew,AnonReach) / / Figure 3
Frontier ← FrontierNew

13 return AnonReach

Fig. 2. On-the-fly anonymized reachability algorithm. The inputs are an automaton template
A(i), an initial condition Init(i), and a constant natural number N. The anonymized reachable
states AnonReach are computed as a fixed-point starting from the anonymized initial states.

Init(i)↓ VG(i), which is Init(i) projected onto the global variables. The set of reachable
anonymized states computed so far is the set AnonReach. Next (line 4), we remove an
anonymized state S from Frontier, compute anonymized post-states from S, and con-
tinue until no new anonymized states are added to Frontier. Anonymized post-states
are added to the frontier using the set FrontierNew (line 5). Computing successors (post-
states)—the states reachable from S in one step—is composed of two parts: (a) com-
puting the discrete successors corresponding to transitions (line 9), and (b) computing
the continuous successors corresponding to trajectories (line 10).

Equivalent Class Merging Subroutine. We first describe the mergeAndDrop subrou-
tine (Figure 3). It takes a set of anonymized states FrontierNew and returns a set of
anonymized states guaranteed to (a) not have any equivalent classes (lines 7 through 8)
and (b) be new (not already represented in AnonReach) (line 3). Invariant 1 states no
two class formulas in any reachable anonymized state are equivalent, and Invariant 2
states no two anonymized states in AnonReach are equivalent (Definition 6).

Invariant 1. For any S ∈ AnonReach, C1, C2 ∈ S.Classes, C1.Form �≡ C2.Form.
Invariant 2. For any distinct S1, S2 ∈ AnonReach, S1 �≡ S2.

Discrete Successors. The function discPost (Figure 4) computes the discrete successors
from an anonymized state S in the frontier (Figure 2, line 9). The post-states StatesNew
are added to the frontier FrontierNew. First, we iterate over each class C in S.Classes
(line 3), and then we iterate over each index variable i in the set of index variables in
the class formula, {i1, . . . , iC.I} (line 5). Next, we iterate over the (syntactic) transitions
Trans(i) of A(i) (line 6). For a transition t ∈ Trans(i) and an anonymized class C, line 7

1 function mergeAndDrop(FrontierNew, AnonReach)
foreach S in FrontierNew

3 if S ∈ AnonReach then FrontierNew = FrontierNew \ {S}
else

5 foreach distinct pair of anonymized classes 〈C1, C2〉 in S.Classes
if ¬(C1.Form ≡ C2.Form) is UNSAT then

7 C1.Count ← C1.Count + C2.Count / / i f e q u i v a l e n t , sum c o u n t s
S.Classes ← S.Classes \ {C2} / / i f e q u i v a l e n t , drop e q u i v a l e n t c l a s s

9 return FrontierNew

Fig. 3. mergeAndDrop combines classes with equivalent class formulas and sums their counts

Anonymized Reachability of Hybrid Automata Networks 139

1 function discPost(S)
StatesNew ← ∅

3 foreach anonymized class C in S.Classes

Vs ← V′(i1) ∪ . . . ∪ V′(iC.I)
5 foreach symbolic index i in ivars(Vs)

foreach transition t in Trans(i)

7 CNew.Form ← (C.Form ∧ S.G ∧ grd(t, i) ∧ rst(t, i))↓ V′(i) / / make p o s t−s t a t e c l a s s
/ / s u b s t i t u t e p r i med v a r i a b l e s w i t h unprimed v a r i a b l e s

9 CNew.Form ← Substitute(CNew.Form, V
′(i), V(i))

/ / p r o j e c t o n t o g l o b a l v a r i a b l e s f o r g l o b a l c o n s t r a i n t
11 SNew.G ← CNew.Form↓ VG(i)

/ / p r o j e c t o n t o l o c a l v a r i a b l e s f o r l o c a l c o n s t r a i n t
13 〈CNew.Count, CNew.I, CNew.Form〉 ← 〈

1, 1, CNew.Form↓ VL(i)
〉

SNew.Classes ← S.Classes \ {C} / / remove pre−s t a t e from p o s t−s t a t e c l a s s e s
15 / / add pre−s t a t e c l a s s t o p o s t−s t a t e c l a s s e s i f co u n t a t l e a s t ra n k

if C.Count > C.I then SNew.Classes ← S.Classes ∪ {〈C.Count − 1, CI, C.Form〉}
17 / / o t h e r w i s e , pre−s t a t e c l a s s no l o n g e r e x i s t s (co u n t l e s s t h a n ra n k)

else SNew.Classes ← S.Classes ∪ {〈C.Count − 1, C.I − 1, C.Form↓ Vs \ V(i)}〉
19 SNew.Classes ← SNew.Classes ∪ {CNew} / / add c l a s s t o p o s t−s t a t e

StatesNew ← StatesNew ∪ {SNew}
21 return StatesNew

Fig. 4. discPost computes the post-states of an anonymized state S due to discrete transitions for
an automaton with index i and states satisfying C’s formulas.

computes the subsequent class from C by transition t, made by the automaton with
index i. This computation can be carried out using quantifier elimination procedures
over the types of the variables appearing in the guard and reset of the transition t, and
then syntactically unpriming all primed variables (representing successors) following
quantifier elimination using Substitute (line 9). This step is an overapproximation, since
it computes the successors of each class regardless of the number of automata with
states satisfying the anonymized class formula Form, and just presumes there is some
automaton with variable valuations satisfying Form.

The anonymized post-state SNew is constructed using the classes of the anonymized
pre-state S along with the new anonymized class, CNew (lines 14 through 19). First, the
classes for SNew are set to be the anonymized classes of S, without the anonymized
class of the current iteration, C (line 14). Next, if the class count of C is larger than
its rank, then it is added to the classes of the post-state, with its count reduced by
one to indicate some automaton has left the set of states satisfying the corresponding
class formula (line 16). On the other hand, if the class count is equal or less than its
rank, then the pre-state’s anonymized class C would no longer satisfy the requirements
of Definition 4, (iii), so its class formula is projected onto the variables of all automata
except those of automaton i, the one making a transition (line 18). If a class has count
or rank equal to 0, then it is removed. This process may result in two classes with
equivalent formulas, since the algorithm has not yet detected if any other classes had
the same formula and presumed the post-state class CNew had a count of one, which is
why we use mergeAndDrop (Figure 2, line 11).

Lemma 2. (Discrete Successor Soundness) For an anonymized state S, for any corre-
sponding concretized state x ∈ �S�, if x →DN x′, then x′ ∈ �discPost(S)�.

Continuous Successors. An overapproximation of continuous successors are com-
puted using contPost—shown in Figure 5—called from symreach (Figure 2, line 10).
For an anonymized state S in the frontier, contPost computes an overapproximation
of the post-states from S owing to the individual trajectories of all automata in the
network for up to the most amount of time that can elapse before any invariant is

140 T.T. Johnson and S. Mitra

1 function contPost(S)

Vs ← V′G
3 / / f o rmu l a t o en co d e t r a j e c t o r i e s f o r a l l a u t o ma t a i n t h e n e t w o rk

pf ← (te > 0 ∧ S.G)
5 foreach anonymized class C in S.Classes / / i t e r a t e o ver each c l a s s i n pre−s t a t e

Vs ← Vs ∪ V′(i1) ∪ . . . ∪ V′(iC.I)
7 pf ← pf ∧ C.Form / / en co d e pre−s t a t e c l a s s f o rmu l a

/ / d e t e r m i n e l o c a t i o n s any a u t o ma t o n may be i n (r e c a l l Assumption 1)
9 foreach location loc in L

foreach i in {i1, . . . , iC.I} / / i t e r a t e o ver a l l i n d i c e s (ra n ks)
11 if C.Form �⇒ (q[i] = loc) is UNSAT then / / u se loc i f a u t o ma t o n i i s i n loc

/ / add t h e t r a j e c t o r y s e m a n t i c s o v e r a p p r o x i m a t i n g t h e p o s t−s t a t e s
13 pf ← pf ∧ inv(loc, i) ∧ X(i) ∈ flow(pf, loc, X(i), te)

pf ← pf↓ Vs

15 pf ← Substitute(pf, V′(i), V(i))
SNew ← RemapClasses(S, pf) / / Figure 6

17 return SNew

Fig. 5. contPost function that computes the continuous successors from an anonymized state S

1 function RemapClasses(S, pf)
SNew.Classes = ∅

3 foreach anonymized class C in S.Classes
/ / p r o j e c t pf on to v a r i a b l e s o f i n d i c e s i n each pre−s t a t e c l a s s

5 Vs ← V(i1) ∪ . . . ∪ V(iC.I)
/ / c r e a t e new c l a s s w i t h pos t−s t a t e f o r m u l a and copy pre−s t a t e c o u n t

7 〈CNew.Count, CNew.I, CNew.Form〉 ← 〈C.Count, CNew.I, pf↓ Vs〉
SNew.Classes ← SNew.Classes ∪ CNew / / add pos t−s t a t e c l a s s t o c l a s s e s

9 SNew.N ← S.N
return SNew

Fig. 6. RemapClasses uses pf and the pre-state indices, class counts, and ranks to create the
anonymized post-state SNew. It first projects onto variables with indices of each class in the pre-
state and then uses the pre-state to ensure class counts and ranks remain constant over trajectories.

violated. The anonymized state specifies a location loc ∈ L for each automaton in
the network (recall Assumption 1). Each location loc specifies a trajectory statement,
so trajectories are defined for each automaton in the network. Each new anonymized
state SNew ∈ StatesNew computed corresponds to the trajectory semantics updating the
real variables of all automata in the network AN. The variable pf encodes the trajectory
semantics of all automata in the network AN (line 4), which is initially the constraint
te > 0, indicating that some positive real amount of time te will elapse. However, for an
anonymized state S, for distinct anonymized classes C1, C2 in S.Classes, the symbolic
indices appearing in the formulas may be equal, i.e., ∃i ∈ ivars(C1) and ∃j ∈ ivars(C2)
such that i = j. Since pf encodes the states of all automata in the network, the sym-
bolic index variables appearing in any class formula of any anonymized class must be
distinct. Rather than performing these tedious syntactic manipulations, we assume that
for an anonymized state S, for distinct classes C1, C2 in S.Classes, ∀i ∈ ivars(C1),
∀j ∈ ivars(C2), we have i �= j.4

Each anonymized class formula C.Form of an anonymized state S specifies the loca-
tion(s) of the automata, so the first step is to determine the dynamics that will modify
each class formula. This is accomplished by first determining the appropriate flow-rate
conditions to use for each class in S.Classes, which can be detected by finding which

4 This is a tedious, but trivial invariant that we maintain in our implementation in Passel, so we
make this assumption for clarity of presentation only.

Anonymized Reachability of Hybrid Automata Networks 141

1.00

10.00

100.00

1000.00

10000.00

1 6 11 16 21 26 31

M
em

or
y

(M
B)

NNFA Passel NFA Phaver MUX-SEM Passel MUX-SEM Phaver

MUX-INDEX-RA Passel MUX-INDEX-RA Phaver SSATS Passel SSATS Phaver

MUX-SEM-RA Passel MUX-SEM-RA Phaver

Fig. 7. Memory usage comparison of PHAVer and Passel’s anonymized reachability. Vertical axis
scale is logarithmic and has units of megabytes, and horizontal axis is number of automata, N.

Form implies the location variable q[i] is in some location loc ∈ L. If the control loca-
tion of automaton i is found to be equal to location loc, then the trajectory statement
of location loc is used to define the semantics of the time-evolution of i’s real vari-
ables (line 13). The semantics of trajectories result in all the automata’s real variables
evolving over time te, so the formula encoding the trajectory statements of all automata
is conjuncted (line 13). The post-states are computed by projecting onto the primed
variables of all classes, and then renaming primed variables with their unprimed coun-
terparts (line 15).5 We call RemapClasses with the pre-state S and pf, which encodes
the post-state constraints, to recreate classes from sub-formulas of pf (Figure 6 called
at line 16). This is done to ensure the class counts are constant when computing post-
states due to trajectories.

Lemma 3. (Continuous Successor Soundness) For an anonymized state S, for any cor-
responding concretized state x ∈ �S�, if x →T N x′, then x′ ∈ �contPost(S)�.

The next invariant states the sum of all class counts equals N. It follows from the
definitions of discPost and contPost, since discPost always decreases class counts by
the same amount it increases them—so the sum remains invariant—and contPost does
not change class counts (only formulas). Additionally, mergeAndDrop changes class
counts, but their sum remains the same since it removes any duplicate classes after
adding their counts (Figure 3, lines 7 through 8).
Invariant 3. For any S ∈ AnonReach, N =

∑
C∈S.Classes C.Count.

Theorem 1 states soundness of the algorithm: the concretization of the anonymized
reachable states AnonReach contains the reachable states for network AN. It follows
from Lemmas 2 and 3. The approximation comes from: (a) transitions are allowed as
long as some automaton satisfies a guard, (b) index-typed variables are abstracted to be
equal or not equal only, and (c) rectangular dynamics are overapproximated.

5 This may result in a DNF formula, and if so, each conjunctive clause is added as a new
anonymized state by iterating over the conjunctive clauses so all class formulas are CNF.

142 T.T. Johnson and S. Mitra

Theorem 1. (Soundness) For a fixed N ∈ N, for the network AN composed of N instan-
tiations of the template A(N, i), the anonymized reachable states AnonReach computed
by areach overapproximate the reachable states of AN: Reach(AN) ⊆ �AnonReach�.

5 Experimental Results

The anonymized reachability algorithm is implemented in Passel [16, 18, 19]. The cur-
rent implementation of Passel uses the SMT solver Z3 [7] for proving validity, checking
satisfiability, and performing quantifier elimination. Passel is written in C# and uses the
managed .NET API to Z3, with experimental results reported using version 4.1. Passel
proves validity of a formula φ by checking unsatisfiability of ¬φ. The variables V(i)
used in defining A(i) are specified to the SMT solver. Each local variable v[i] ∈ VL(i)
is modeled as an uninterpreted function v : [N] → type(v). Passel automatically gen-
erates and asserts trivial data-type lemmas that the SMT solver requires. The experi-
ments were conducted in an Ubuntu 12.04 VMWare virtual machine with 4 GB RAM
allocated running Passel through Mono, executed on a modern laptop with a quad-
core Intel i7 processor running Windows 8 with 16 GB RAM physically available. For
comparison purposes, we evaluated Passel, PHAVer (version 0.38), and SpaceEx (ver-
sion 0.9.8b). We do not present results for SpaceEx, as the only scenario—out of the
PHAVer, LeGuernic-Girard (LGG), and STC scenarios—that can compute the reach-
able states of systems with rectangular differential inclusion dynamics (ẋ ∈ [a, b] for
real constants a ≤ b) adequately is the PHAVer scenario, so the results are equivalent.

Figures 7 and 8 show, respectively, a runtime and memory usage comparison be-
tween PHAVer and Passel for several examples as a function of N, the number of

0.10

1.00

10.00

100.00

1000.00

10000.00

100000.00

1 6 11 16 21 26 31

Ru
nt

im
e

(s
)

NNFA Passel NFA Phaver MUX-SEM Passel MUX-SEM Phaver

MUX-INDEX-RA Passel MUX-INDEX-RA Phaver SSATS Passel SSATS Phaver

MUX-SEM-RA Passel MUX-SEM-RA Phaver

Fig. 8. Runtime comparison of PHAVer and Passel’s anonymized reachability. Vertical axis is
logarithmic and has units of seconds, and horizontal axis is number of automata, N.

Anonymized Reachability of Hybrid Automata Networks 143

automata.6 The examples include several timed mutual exclusion algorithms (such as
MUX-INDEX-RECT from Figure 1), a simplified SATS model [16,18,19], and several
purely discrete examples. All properties were safety properties (invariants), such as mu-
tual exclusion, separation (collision avoidance) in SATS, etc. Comparing all the exam-
ples, the anonymized reachability method implemented in Passel allows us to compute
the reachable states of networks composed of many more automata than PHAVer, which
runs out of memory on all examples for N ≥ 11. The experimental results indicate the
primary advantage is reduced memory growth. Even for networks of tens of automata,
in all examples, Passel never uses more than a few hundred megabytes of memory as
shown in Figure 7.7 For protocols that are highly asymmetric, the worst-case asymptotic
memory growth may be exponential. The runtime required by Passel could be reduced
by performing some operations more efficiently in the implementation—particularly
the checks to determine if a new anonymized state representation is actually new or
not—which we plan to implement for future work.

For MUX-INDEX-RECT, PHAVer runs out of memory for N ≥ 8. As shown in Fig-
ures 7 and 8, for N = 7, PHAVer uses over 1.3 GB memory and completes in over 3
hours, while Passel uses over an order of magnitude less memory at about 70 MB and
nearly four orders of magnitude less runtime at about three seconds. Because of the
anonymized representation, Passel is able to compute the reachable states of N = 30 in
a few seconds using about 70 MB memory, and we have experimented successfully up
to hundreds and even thousands of automata for this example.

6 Summary

In this paper, we present an on-the-fly forward reachability algorithm that computes an
anonymized representation of the reachable states for hybrid automata networks con-
sisting of N instantiations of a template A(N, i). The anonymized representation uses
symbolic automato indices instead of explicit ones to avoid generating all permutations
of automata indices and states. We showed it to be effective at computing the reachable
states of networks with tens of automata for several examples, with significantly lower
memory usage than PHAVer. The restriction to rectangular inclusion dynamics is due
in part to Passel’s implementation, but a future direction is to evaluate the anonymized
reachability method on examples with linear and nonlinear dynamics.

Acknowledgments. The authors are grateful for the anonymous reviewers’ feedback.
This material is based upon work supported by the National Science Foundation under
Grant No. NSF CNS 10-54247 CAR. This work was supported by the Air Force Office
of Scientific Research Young Investigator Program Award FA9550-12-1-0336.

6 Passel and the examples may be downloaded from:
https://publish.illinois.edu/passel-tool/.

7 For small N, PHAVer uses less memory than Passel because Passel must load runtime compo-
nents (e.g., the .NET framework via Mono) and libraries (e.g., Z3).

https://publish.illinois.edu/passel-tool/

144 T.T. Johnson and S. Mitra

References

1. Basler, G., Mazzucchi, M., Wahl, T., Kroening, D.: Symbolic counter abstraction for concur-
rent software. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 64–78.
Springer, Heidelberg (2009)

2. Behrmann, G., Bouyer, P., Fleury, E., Larsen, K.G.: Static guard analysis in timed automata
verification. In: Garavel, H., Hatcliff, J. (eds.) TACAS 2003. LNCS, vol. 2619, pp. 254–270.
Springer, Heidelberg (2003)

3. Bengtsson, J., Larsen, K., Larsson, F., Pettersson, P., Yi, W.: UPPAAL: A tool suite for auto-
matic verification of real-time systems. In: Alur, R., Sontag, E.D., Henzinger, T.A. (eds.) HS
1995. LNCS, vol. 1066, pp. 232–243. Springer, Heidelberg (1996)

4. Bogomolov, S., Herrera, C., Muñiz, M., Westphal, B., Podelski, A.: Quasi-dependent vari-
ables in hybrid automata. In: 17th International Conference on Hybrid Systems: Computation
and Control (2014)

5. Braberman, V., Garbervetsky, D., Olivero, A.: Improving the verification of timed systems us-
ing influence information. In: Katoen, J.-P., Stevens, P. (eds.) TACAS 2002. LNCS, vol. 2280,
pp. 21–36. Springer, Heidelberg (2002)

6. Clarke, E.M., Enders, R., Filkorn, T., Jha, S.: Exploiting symmetry in temporal logic model
checking. Formal Methods in System Design 9, 77–104 (1996)

7. de Moura, L., Bjørner, N.S.: Z3: An efficient SMT solver. In: Ramakrishnan, C.R., Rehof, J.
(eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008)

8. Dill, D.L.: The murϕ verification system. In: Alur, R., Henzinger, T.A. (eds.) CAV 1996.
LNCS, vol. 1102, pp. 390–393. Springer, Heidelberg (1996)

9. Emerson, E.A., Sistla, A.P.: Symmetry and model checking. Formal Methods in System De-
sign 9(1-2), 105–131 (1996)

10. Emerson, E., Wahl, T.: Dynamic symmetry reduction. In: Halbwachs, N., Zuck, L.D. (eds.)
TACAS 2005. LNCS, vol. 3440, pp. 382–396. Springer, Heidelberg (2005)

11. Hendriks, M., Behrmann, G., Larsen, K.G., Niebert, P., Vaandrager, F.W.: Adding symme-
try reduction to UPPAAL. In: Larsen, K.G., Niebert, P. (eds.) FORMATS 2003. LNCS,
vol. 2791, pp. 46–59. Springer, Heidelberg (2004)

12. Hendriks, M.: Model checking timed automata: Techniques and applications. Ph.D. thesis,
University of Nijmegen, The Netherlands (2006)

13. Herrera, C., Westphal, B., Feo-Arenis, S., Muñiz, M., Podelski, A.: Reducing Quasi-Equal
Clocks in Networks of Timed Automata. In: Jurdziński, M., Ničković, D. (eds.) FORMATS
2012. LNCS, vol. 7595, pp. 155–170. Springer, Heidelberg (2012)

14. Ip, C.N., Dill, D.L.: Better verification through symmetry. Formal Methods in System De-
sign 9, 41–75 (1996)

15. Ip, C.N., Dill, D.L.: Verifying systems with replicated components in Murϕ. Formal Methods
in System Design 14(3) (1999)

16. Johnson, T.T.: Uniform Verification of Safety for Parameterized Networks of Hybrid Au-
tomata. Ph.D. thesis, University of Illinois at Urbana-Champaign, Urbana, IL 61801 (2013)

17. Johnson, T.T., Mitra, S.: Parameterized verification of distributed cyber-physical systems: An
aircraft landing protocol case study. In: ACM/IEEE 3rd International Conference on Cyber-
Physical Systems (April 2012)

18. Johnson, T.T., Mitra, S.: A small model theorem for rectangular hybrid automata networks.
In: Giese, H., Rosu, G. (eds.) FORTE 2012 and FMOODS 2012. LNCS, vol. 7273, pp. 18–
34. Springer, Heidelberg (2012)

19. Johnson, T.T., Mitra, S.: Invariant synthesis for verification of parameterized cyber-physical
systems with applications to aerospace systems. In: Proceedings of the AIAA Infotech at
Aerospace Conference (AIAA Infotech 2013), Boston, MA (August 2013)

Anonymized Reachability of Hybrid Automata Networks 145

20. Obal, W.D., McQuinn, M., Sanders, W.: Detecting and exploiting symmetry in discrete-state
Markov models. IEEE Transactions on Reliability 56(4), 643–654 (2007)

21. Si, Y., Sun, J., Liu, Y., Wang, T.: Improving model checking stateful timed csp with non-
zenoness through clock-symmetry reduction. In: Groves, L., Sun, J. (eds.) ICFEM 2013.
LNCS, vol. 8144, pp. 182–198. Springer, Heidelberg (2013)

22. Sun, J., Liu, Y., Dong, J.S., Liu, Y., Shi, L., André, E.: Modeling and verifying hierarchical
real-time systems using stateful timed csp. ACM Trans. Softw. Eng. Methodol. 22(1), 1–29
(2013)

23. Sun, J., Liu, Y., Dong, J.S., Pang, J.: PAT: Towards flexible verification under fairness. In:
Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 709–714. Springer, Heidel-
berg (2009)

Combined Global and Local Search

for the Falsification of Hybrid Systems�

Jan Kuřátko1,2 and Stefan Ratschan1,��

1 Institute of Computer Science, Academy of Sciences of the Czech Republic
2 Faculty of Mathematics and Physics, Charles University in Prague, Czech Republic

Abstract. In this paper we solve the problem of finding a trajectory
that shows that a given hybrid dynamical system with deterministic
evolution leaves a given set of states considered to be safe. The algo-
rithm combines local with global search for achieving both efficiency and
global convergence. In local search, it exploits derivatives for efficient
computation. Unlike other methods for falsification of hybrid systems
with deterministic evolution, we do not restrict our search to trajec-
tories of a certain bounded length but search for error trajectories of
arbitrary length.

1 Introduction

In this paper we provide an algorithm that solves the problem of unbounded
safety falsification of hybrid systems with deterministic evolution. This means
that, given a hybrid system with deterministic evolution, and a set of initial and
a set of unsafe states, we search for a trajectory of arbitrary length starting in
an initial state and ending in an unsafe state.

Existing methods for falsification of hybrid systems with deterministic evolu-
tion roughly fall into the following two categories:

– Local search [1,26]: Such methods use local optimization to incrementally
bring a starting trajectory closer to an error trajectory, ideally based on
information on the derivative of the objective function. The advantage of
local search is its relative efficiency. The disadvantage is that for convergence
it needs to be started close enough to an error trajectory. At the very least
it needs to start from a sequence of modes that contains an error trajectory.
However, the number of sequences of modes grows exponentially with the
length of the sequence which makes the search for starting trajectories for
local search a difficult problem.

– Black-box global search [19,2]: Such methods search for error trajectories
globally, but use black-box optimization techniques [13,24] that do not ex-
plicitly exploit the structure specific to hybrid systems (partially continuous

� This work was supported by the Czech Science Foundation (GAČR) grant number
P202/12/J060 with institutional support RVO:67985807.

�� ORCID: 0000-0003-1710-1513.

A. Legay and M. Bozga (Eds.): FORMATS 2014, LNCS 8711, pp. 146–160, 2014.
c© Springer International Publishing Switzerland 2014

Combined Global and Local Search for the Falsification of Hybrid Systems 147

behavior, unbounded time variable). This extends their applicability (e.g.,
to Simulink models), but this may also result in loss of efficiency and restrict
search to trajectories up to a given user-provided length. Of course it is pos-
sible to repeatedly restart such methods with higher upper bounds on the
trajectory length, but every restart loses the information computed before.

The contribution of this paper is an algorithm that combines the scalability of
local search with global convergence for error trajectories of unbounded length.
Moreover, the resulting algorithm is reasonably simple and easy to analyze and
implement. Note however, that efficiency is not primary goal of this paper— since
the generic structure of the resulting algorithm allows the simple incorporation
more sophisticated global search techniques [13,17]. Of course, one can use local
search from any result of an algorithm based on black-box global search, but
this has the following drawbacks:

– It is not clear how to handle the unbounded time variable.
– Black-box global search does not explicitly exploit the structure of hybrid

systems.
– Black-box global search does not exploit the fact that it is combined with

a local search method and hence may both duplicate some of the efforts
of local search and fail to steer its search to good starting points for local
search.

Our approach is based on a standard technique in global optimization for
combining local with global search, so called two-phase methods [25]. But we
adapt those methods to the situation that we have here: A direct application
of two-phase methods would use a search space that is spanned by variables of
two kinds: the initial point of trajectories, and the trajectory length (wrt. time).
However, trajectory length is special, since it is unbounded, and since comput-
ing a trajectory of the given length from a given initial point also computes all
trajectories from that initial point with shorter length. Moreover, hybrid sys-
tems combine continuous with discrete behavior and local search can exploit
derivatives for searching the continuous part of the states space, but no such
derivatives are available for discrete search which is another obstacle to the di-
rect application of two-phase methods.

Hence, our approach modifies two-phase methods in such a way that—instead
of treating trajectory length as a problem variable—they build trajectories in-
crementally from trajectory segments, and use derivative based continuous local
search to glue together those segments based on continuous search (the litera-
ture on numerical algorithms for solving boundary value problems calls such an
approach “multiple shooting” [3,26]).

The structure of the paper is as follows: In the next section we precisely define
the problem and introduce some basic definitions. In Section 3 we introduce
the main algorithm. In Section 4 we present an improved, more incremental
version of the algorithm. In Section 5 we describe how to do local search for error
trajectories. In Section 6 we provide some termination proofs for the algorithm.
In Section 7 we present computational experiments. In Section 8 we describe
related work, and in Section 9 we conclude the paper.

148 J. Kuřátko and S. Ratschan

We thank Aditya Zutshi and Sriram Sankaranarayanan for interesting discus-
sions on the subject of this papers.

2 Problem Formulation

In this section we introduce notation and key concepts which we use, and present
the problem we try to solve.

Definition 1. A hybrid dynamical system is a quintuple H = (Q,Ω, F,G,R),
where

– Q is a finite set whose elements we call modes;
– Ω ⊆ Q× Rn (the state space of the hybrid system);
– F assigns to each mode q ∈ Q a system of differential equations Fq(t, x, ẋ) =

0, where (q, x) ∈ Ω and t ∈ R≥0 is time;
– G ⊆ Ω (the set of guards);
– R : Ω !→ Ω (the reset function).

For a given q ∈ Q, we will sometimes denote by Xq the set {x | (q, x) ∈ Ω}.

Definition 2. A trajectory of a hybrid dynamical system H is a sequence of
the form ((q1, x1), (q2, x2), . . . , (qk, xk)), where qi ∈ Q and xi : [0, ti] !→ Xq

is a continuous trajectory of the system of differential equations given by Fqi ,
i = 1, . . . , k. For all i ∈ {1, . . . , k − 1}, for all t ∈ [0, ti), not G(qi, xi(t)), but
for the trajectory endpoints G(qi, xi(ti)). Moreover, the starting points of subse-
quent trajectories are determined by the reset function, that is, R ((qi, xi(ti))) =
(qi+1, xi+1(0)).

We call ti ∈ R≥0 the length of xi. Moreover, we denote by (qi, x
s
i) ∈ Ω the

starting point of a trajectory (qi, xi) and (qi, x
e
i) ∈ Ω its endpoint.

Now we are ready to formulate the problem of falsification of hybrid dynamical
systems.

Problem 1. Let H be a hybrid dynamical system and Init ⊂ Ω, Unsafe ⊂ Ω
be two sets. The set Init is called the set of initial states and the set Unsafe
is called the set of unsafe states. The problem of falsification of H is to find
any trajectory ((q1, x1), (q2, x2), . . . , (qk, xk)) of H such that (q1, x

s
1) ∈ Init and

(qk, x
e
k) ∈ Unsafe. Such a trajectory is called an error trajectory of H .

3 Algorithm

We now present the main algorithm. Throughout this section we will assume
a given hybrid system H with set of initial states Init and set of unsafe states
Unsafe.

Informally, we intend to transform Problem 1 into the minimization of a cost
function. A value of this cost function will measure how far or close a sequence
of points in Ω is to an error trajectory. We will minimize this cost function until
we find an error trajectory.

Combined Global and Local Search for the Falsification of Hybrid Systems 149

The algorithm will maintain a finite set of points P ⊆ Ω on which it will
analyze the behavior of the given hybrid system H . We call sequences of ele-
ments from P paths. The algorithm will do this analysis by starting numerical
simulations from points in P . Such a simulation will conclude that there is a
trajectory from the starting point p of a simulation to the endpoint p′. This will
be stored in a relation→ on P that will relate all those points p, p′ in P for which
simulation showed that there is a trajectory from p to p′ according to H . If there
is a path from an initial point to an unsafe point according to the relation →,
we are done. However, since this is difficult to achieve, we allow paths of points
in P for which subsequent points are not in →. In order to measure how far such
a path is from being a trajectory we will now introduce a distance measure for
points in P :

Definition 3. Given a finite set of states P ⊆ Ω and a relation →⊆ P ×P , the
distance d((q, x), (q′, x′)), of states (q, x) and (q′, x′) in P , is

– 0, if (q, x) → (q′, x′), otherwise
– ‖x− x′‖, if q = q′, and
– ∞, otherwise.

Here, the symbol ‖ · ‖ denotes the Euclidean norm. Note that our distance func-
tion is not symmetrical because of the relation → that, in general, is not sym-
metrical which corresponds to the intuition that the existence of a trajectory
from p to p′ does not imply the existence of a trajectory from p′ to p.

We measure the difficulty of getting from an initial state of H to a given state
(q, x), and from a given state (q, x) to an unsafe state as follows:

Definition 4. For a state (q, x) ∈ P we put dI ((q, x)) ≡ infu∈Init d (u, (q, x))
and dU ((q, x)) ≡ infu∈Unsafe d ((q, x), u).

Now we model how close a path is to yielding an error trajectory, as follows:

Definition 5. The cost of a path (p1, . . . , pn) is given by c(p1, . . . , pn) = dI(p1)+∑n−1
i=1 d(pi, pi+1) + dU (pn).

Notice that we have an error trajectory of H if the cost c(p1, . . . , pn) is equal to
zero. In practice, we are satisfied if the distances dI(p1) and dU (pn) are zero

and
∑n−1

i=1 d(pi, pi+1) < ε for some small threshold ε.
Now we can formulate our method for falsification of hybrid dynamical sys-

tems. In a similar way as two-phase methods [25] the algorithm iterates between
two phases for exploring the state space of a given hybrid dynamical system.

The first phase is local optimization. For a given path of finite cost from P
we compute another path with lower cost. In this phase we employ standard
techniques for continuous optimization and use gradient information based on
sensitivity analysis of hybrid dynamical systems [14]. If we find a local minimum
which yields an error trajectory, we are finished. However, if the minimal cost is
greater than a given threshold ε, we need to proceed to phase two and explore

150 J. Kuřátko and S. Ratschan

the state space further. The reader can find more details on the first phase in
Section 5.

The second phase is called global exploration. If local optimization in the
first phase does not produce an error trajectory, we add additional states to
the set P . There are many options for adding new states such as a random
sampling, states resulting from forward and backward simulation from existing
states, states suggested by more sophisticated global search techniques [13,17],
and even states given by a designer of the system. The complete Algorithm 1
follows:

Input: a set of states P ⊆ Ω and a relation →⊆ P × P s.t.
– p → p′ implies that there is a trajectory from p to p′ in H
– there is a path of points in P that has finite cost with respect to →

Output: an error trajectory

while local optimization of the path with minimal cost does not yield an
error trajectory do

add a new state r ∈ Ω to the set P
for some p ∈ P do

simulate forward from p for some time to a new state p′

→ := → ∪{(p, p′)}
end
for some p ∈ P do

simulate backward from p for some time to a new state p′

→ := → ∪{(p′, p)}
end

end

Algorithm 1: Combined Global and Local Search for the Falsification

The second requirement on the input (existence of a path of finite cost) allows
us to use derivative based continuous local optimization from the beginning. For
fulfilling this requirement, we observe that paths can only have infinite cost due
to sub-sequent states in different modes that are not connected by the relation
→. We can make this more precise by the following property:

Property 1. Assume a set P ⊆ Ω and →⊆ P × P . Let →Q⊆ P × P be such
that (q, x) →Q (q′, x′) iff q = q′ or (q, x) → (q′, x′), and let →∗

Q be the transitive
closure of →Q. If P contains at least one initial state p and one unsafe state p′

such that p →∗
Q p′, then there is a path of points in P that has finite cost with

respect to →.

The necessary elements of → can be easily formed by pairs (p, p′) such that
G(p) and p′ = R(p). For example, for each pair of modes (q, q′) for which there
are x and x′ s.t. G(q, x) and (q′, x′) = R(q, x) we could add such (q, x) and

Combined Global and Local Search for the Falsification of Hybrid Systems 151

(q′, x′). If H has an error trajectory then this fulfills the assumptions of the
above property resulting in a path of finite cost.

The algorithm stops when we find a path whose cost is lower than some
threshold ε. A concrete implementation might add another stopping criterion, for
example stating a maximum number of states in P in order to ensure termination
for inputs that do not feature any error trajectory.

4 Algorithmic Details

4.1 Computation of the Path of Minimal Cost

We make the following observation: In Algorithm 1, one can view the problem of
computation of a path of minimal cost as a problem on weighted directed graphs:
The vertices of the graph are formed by the elements of the set P and there is
an edge from p ∈ P to p′ ∈ P iff the distance d(p, p′) is finite. The weight of this
edge is given by this value d(p, p′). Now the path of minimal cost is the shortest
path in this graph from an initial to an unsafe state. This is a classical problem
in algorithm theory with solutions such as the Floyd-Warshall algorithm.

Examining the situation more closely, we observe that our problem is neither
of the all-pair shortest path, nor of the single-source shortest path kind. Instead,
the paths have to start in a certain given set (call it S for source) and end in
another given set (call it G for goal). This can be reduced to a problem with
single vertices instead of sets by introducing two new, auxiliary vertices s and g
such that s has an edge of zero cost to each element of S and such that there is
an edge of zero cost from each element of G to g.

Now we are left with a single-source single-goal shortest path problem (also
called point-to-point shortest path). Of course, such problems can be solved
by algorithms solving the single-source shortest path problem, for example, by
Dijkstra’s algorithm [9]. But there are also specialized algorithms, for example,
algorithm based on a bi-directional [22,4] application of Dijkstra’s algorithm.

4.2 Heuristics

The algorithm can be instantiated with many heuristics resulting in special ver-
sions of Algorithm 1, for example:

– Forward version: only add initial points and only do forward simulation
– Backward version: only add unsafe points and only do backward simulation
– Complete random search version: never prolong existing simulations, only

simulation from newly added points.

The algorithm also leaves open the length of the employed simulations. A
simple possibility is to fix a certain length at the beginning and stick to it
throughout computation.

Note that simulation might run into problems, for example due to Zeno be-
havior, or due to the fact that it leaves the state space of the given hybrid

152 J. Kuřátko and S. Ratschan

system. In this case we simply ignore the result of simulation and continue with
the algorithm. See also more on this at the end of Section 5.

It is also possible to use information from verification tools here. Especially,
one can restrict the choice of points to an abstraction computed by a verification
tool [10,23].

4.3 Paths of Minimal Cost

We will now investigate the form of paths of minimal cost. For a given hybrid
system H we assume the following.

1. The sets {x | (q, x) ∈ Init} and {x | (q, x) ∈ Unsafe} are closed and convex.
2. For all q ∈ Q the set {x | (q, x) ∈ Ω} is convex.
3. For p, p′ ∈ P , p → p′ implies there is a trajectory from p to p′ in H .
4. There is at least one path of finite cost in P with respect to → .

Lemma 1. Let H be a given hybrid system and P be a set of states such that
assumptions 1.–4 hold. Let (p1, . . . , pn) be the path of minimal cost. Let r be a
state such that r �= pi, i = 1, . . . , n, and neither r → pi nor pi → r for any
i ∈ {1, . . . , n}. Then the cost of a path which is formed by either including state
r in (p1, . . . , pn) or substituting r for any pi’s, i ∈ {1, . . . , n}, in (p1, . . . , pn) is
greater or equal to c(p1, . . . , pn).

The reader can find the proof of Lemma 1 in the extended version of the paper.
The consequence of this lemma can be stated like this: Assuming 1.–4. the value
of c(p1, . . . , pn), where (p1, . . . , pn) is the path of minimal cost, does not depend
on states p ∈ P which are in no relation to other states in the path wrt. →. In
other words, for a state pi, i = 1, . . . , n, which is in no relation with other states
in a path, we have c(p1, . . . , pi, . . . , pn) = c(p1, . . . , pi−1, pi+1, . . . , pn).

This is important for finding paths of lower cost. Whenever we add a new
state r in Algorithm 1 we should simulate either forward in time or backward in
time to create a pair of states in a relation →. Solitary states do not affect the
resulting value of the cost function.

Lemma 2. Let H be a given hybrid system and P be a set of states such that
assumptions 1.–4 hold. Let (p1, . . . , pn), pi ∈ P , be the path of minimal cost.
Let pj, j = 2, . . . , n − 1, be a state such that pj−1 → pj and pj → pj+1. Then
d(pj−1, pj+1) = 0. ��

Proof. Due to transitivity of the relation →, we have pj−1 → pj+1 which gives
us d(pj−1, pj+1) = 0.

Lemma 2 presents us with a choice for the application of local optimization. If
a path contains such a triplet (pj−1, pj, pj+1), we may either work with them as
two separate hybrid trajectories or we may consider a hybrid trajectory which is
formed by their connection, thus removing the intermediate state from a path.
On the other hand, we also have the option to split a hybrid trajectory into
shorter hybrid trajectories before passing it to the local optimizer.

Combined Global and Local Search for the Falsification of Hybrid Systems 153

In the first approach we work with shorter trajectories however the resulting
optimization problem has higher dimension. The latter case may, on the other
hand, cause problems because it is less numerical stable [3]. The choice depends
on the system of differential equations that governs the evolution of hybrid sys-
tem H .

5 Local Optimization

In Algorithm 1, after we form a path (p1, . . . , pn) of finite cost we try to find
another path of smaller cost using local search. Therefore, we solve the minimiza-
tion problem in which we seek new states p̂1, . . . , p̂n which yield a path of lower
cost than (p1, . . . , pn). Eventually, such a path of minimal cost may correspond
to an error trajectory of a hybrid system.

The efficiency of such local search can be improved by exploiting the gradient
of the cost c(p1, . . . , pn). In this section we will develop explicit formulae for the
gradient of the cost function which will allow us to use efficient off-the-shelf tools
for gradient-based numerical optimization to minimize the cost function.

Without loss of generality, we will assume that for all i ∈ {1, . . . , n}, pi → pi+1

iff i is odd. This can be easily achieved, since, due to Lemma 1 if there are solitary
states that we can remove them from (p1, . . . , pn) without changing the value of
the cost function.

Note that in contrast to early work [26], in cases where pi → pi+1, pi and pi+1

are not restricted to be in the same mode. Moreover, points are not restricted
to reside in guards of the hybrid system.

We now give explicit formulae for computation of the gradient of the cost
function c(p1, . . . , pn). Let us start with the definition of the length of a trajectory
((q1, x1), . . . , (qk, xk)) and its sensitivity to the change of its initial state (q1, x

s
1)

which is essential for evaluation of the gradient of the cost c(p1, . . . , pn).

Definition 6. The length of a trajectory ((q1, x1), . . . , (qk, xk)) is defined to be

the sum tf =
∑k

i=1 ti, where ti is the length of xi for i = 1, . . . , k.

Definition 7. We define a function M : R × Ω !→ Ω such that for a state
(q, x) ∈ Ω and t ∈ [0, tf] we have M(t, (q, x)) = (q′, x′), where (q′, x′) is the
end-state of the trajectory of length t whose initial state is (q, x). In cases where
a reset happens at time t (which results in the trajectory of length t being non-
unique), we choose the unique point before the reset.

Definition 8. The sensitivity of a trajectory ((q1, x1), . . . , (qk, xk)) of H to the
initial state (q1, x

s
1) is a function S : R≥0 !→ Rn×n such that

S(t) ≡ ∂M(t, (q, xs1))

∂xs1
, t ∈ [0, tf].

With this sensitivity function we can measure how the states on a hybrid tra-
jectory are affected when we change its initial state. An important observation

154 J. Kuřátko and S. Ratschan

is that S(0) is the identity matrix. However, for hybrid systems, the function
M need not be differentiable everywhere, and so the sensitivity is not defined
everywhere. Computation of the sensitivity function is subtle [14]. In the sequel
let us use the following notation: For any state (q, x) ∈ Ω, we denote by (q, x)
its continuous part x.

For our path (p1, . . . , pn), for certain ti, i = 1, 3, . . . , n−1, we haveM(t1, p1) =
p2, M(t3, p3) = p4, . . . , M(tn−1, pn−1) = pn. Local search adjusts the position
of the initial state of each trajectory together with its length such that the cost
is minimized. It uses the gradient of the cost with respect to pi and lengths
ti for i < n odd. Therefore the gradient is given by the partial derivatives
∂c
∂pi

(p1, . . . , pn) and
∂c
∂ti

(p1, . . . , pn), i < n odd.
We will illustrate the whole process of computing the gradient of the cost

function for one particular definition of distances dI , d(·, ·) and dU that avoids
solving another minimization problem stemming from Definition 4. Hence, we
put dI(p1) and dU (pn) to be weighted norms to some fixed states in Init, and
Unsafe respectively. This amounts to the sets Init and Unsafe being ellipsoids.
We denote by u ∈ Ω and v ∈ Ω the centres of these ellipsoids and by EI , EU

symmetric positive definite matrices which characterize the size and shape of
sets Init and Unsafe.

Then we consider the cost of the following special form: c(p1, . . . , pn) =

dI(p1) +
∑n−2

i=1 d(pi, pi+1) + dU (pn) = ‖p1 − u‖2EI
+
∑n−2

i even ‖pi − pi+1‖2 +
‖pn − v‖2EU

. When we use the function M : R × Ω !→ Ω from Definition 7,
then the cost becomes dependent on pi and ti, i = 1, 3, 5, . . . , n − 1, and
c(p1, p3, . . . , pn−1, t1, t3, . . . , tn−1) = ‖p1−u‖2EI

+
∑n−2

i even ‖M(ti−1, pi−1)−pi+1‖2

+ ‖M(tn−1, pn−1)− v‖2EU
.

We can compute the gradient of the cost c(p1, p3, . . . , pn−1, t1, t3, . . . , tn−1)
which consists of the following partial derivatives

∂c

∂p1
= 2[p1 − u]TEI + 2

[
M(t1, p1)− p3

]T ∂M

∂p1
(t1, p1)

and for odd i with 1 < i < n− 1 we have

∂c

∂pi
= −2

[
M(ti−2, pi−2)− pi

]T
+ 2

[
M(ti, pi)− pi+2

]T ∂M

∂pi
(ti, pi)

with the last term

∂c

∂pn−1
= 2

[
M(tn−1, pn−1)− v

]T
EU

∂M

∂pn−1

(tn−1, pn−1)

− 2
[
M(tn−2, pn−2)− pn−1

]T
.

For odd i < n− 1 we put

∂c

∂ti
= 2[M(ti, pi)− pi+1]

T ∂M

∂ti
(ti, pi)

Combined Global and Local Search for the Falsification of Hybrid Systems 155

and the last term is

∂c

∂tn−1
= 2

[
M(tn−1, pn−1)− v

]T
EU

∂M

∂tn−1
(tn−1, pn−1) .

In addition we may introduce weights into the cost function to scale the problem.
Now we can use numerical optimization algorithms with the cost function

c and its gradient to do local search for paths of minimal cost. If started close
enough to an error trajectory, and if the hybrid system is sufficiently well-behaved
around the error trajectory, such local search will converge (usually quickly).
However, if this is not the case, local search may fail, due to various reasons:

– It may run in a local minimum that is not an error trajectory.
– There may be problems due to the fact that the sensitivity is not every-

where continuously differentiable. This corresponds to the situation where a
trajectory is tangential to the boundary of a guard [14].

– Well-known problems with simulation [18] of hybrid systems might arise. For
example, the simulation might run into Zeno behavior, or the ODE solver is
unable to start close to the boundary of a guard.

– Optimization may result in trajectories that leave the state space of the
hybrid system.

In all such cases, we simply terminate local optimization and continue with
the global phase of the main algorithm.

6 Termination Proof

We assume a hybrid system H with the following properties:

– The state space of H is compact.
– There exists an error trajectory E with final point in the interior of the

set of unsafe points, and an ε > 0 such that starting local search from any
sequence of hybrid trajectories with cost not bigger than ε converges to an
error trajectory.

– There exists a tube around E such that trajectories starting in this tube
depend continuously on their initial value (note that for ODEs this can be
ensured by Lipschitz continuous right-hand sides).

Moreover, we will study a variant of the algorithm with the following
properties:

– The algorithm does at least one forward simulation in each cycle, always of
length (in time) T .

– The algorithm chooses the starting point for its simulations randomly using
a distribution that is non-zero on the whole state space.

– If a simulation hits an unsafe state, it finishes (so, in such cases, the length
of the simulation may be shorter than T).

156 J. Kuřátko and S. Ratschan

– The simulations are exact, that is, we ignore rounding and discretization
errors of ODE solvers.

Note that the assumptions are asymmetrical wrt. time and set of initial vs.
unsafe states. This is necessary since simulations have to be done in a certain
direction, and since convergence requires simulations to be stopped if reaching
an unsafe state.

While it is obvious that such an algorithm will densely fill the state space of
the hybrid system with initial values of simulation, it is not obvious that this
will eventually result in a path of small enough cost, since—from a given initial
value—the trajectories follow the dynamics of the hybrid system H . Still, we
have:

Theorem 1. Under the assumption above, the algorithm finds an error trajec-
tory with probability 1.

The reader can find proofs of Theorems 1 and 2 in the extended version of the
paper. Clearly one can easily get a dual version of the theorem and proof by
turning around the time axis, switching initial and unsafe states etc.

Only slightly changing the proof, one can prove the following non-probabilistic
version of the theorem:

Theorem 2. Take the same assumptions as the previous theorem with the ex-
ception of choice of starting points of simulations. Instead of a choice according
to some probability distribution, assume a choice of those starting points that
fulfills the following property: For each ε > 0, there is an integer k such that for
every ε-ball with center in the state space contains a simulation starting point
that the algorithm has chosen in the first k iterations. Then algorithm always
finds an error trajectory.

7 Computational Experiments

Recall that one of the main goals of our method was to handle the absence of an
a-priori upper bound on the length of error trajectories. In order to study the
cost of having to work without this information we compare our approach (that
we will call “unbounded method”) with another approach that also combines
global with local search, but that does simulations of fixed length (we will call it
“bounded method”). The bounded method will also use derivative-based local
optimization, but for initializing local optimization it randomly generates initial
states in the mode containing I and simulates for the time interval [0, T]. When-
ever the resulting trajectory reaches the mode containing the set of unsafe states
U , we take it as a starting trajectory for local search for an error trajectory. If we
obtain an error trajectory then we stop. Otherwise we proceed until we generate
a certain number of trajectories (we will denote this number by M).

Note that any method that inspects the given hybrid system only up to a
fixed time bound T , if T is too small, it will not find any error trajectory at

Combined Global and Local Search for the Falsification of Hybrid Systems 157

all. The bounded method that we use here, for T too small, may never reach a
mode containing U , preventing it from finding any error trajectory. Moreover,
examples for which trajectories leading to the mode containing U lead over a
very small guard, become arbitrarily difficult for the bounded method. So we can
already conclude now—without running any experiments—that the unbounded
method is superior in certain cases.

Still we do some experiments with a widely known benchmark, the Navigation
benchmark with 16 modes [12]. We consider the linear dynamics ẋ = Ax −
Bu(i, j), with A and B as usual for the navigation benchmark, and

u(i, j) =

⎡⎣sin(π C(i,j)
4

)
cos

(
π C(i,j)

4

)⎤⎦ , C =

⎡⎢⎢⎣
4 3 3 4
4 4 4 4
4 6 6 4
1 0 7 6

⎤⎥⎥⎦ .

Assume the sets of initial and unsafe states to be ellipsoids such that their

principal axes have length 0.2, 0.2, 2 and 2, however, I is centred at
[
0.5 3.5 0 0

]T
and U is centred at

[
3.5 1.5 0 0

]T
. Our objective is to find any trajectory which

starts in set I and reaches set U .
For our experiments we use an instantiation of the unbounded method that

fulfills the requirement of starting with a set P that has a path of finite cost
as follows: We initialize the set P by putting a point on each boundary of two
neighboring modes, simulating forward and backward from each such point (0.05
time units in each direction), and adding the endpoints to the set P .

In the main algorithm, we add a random state to each mode (with velocities
x3 and x4 ranging from −1 to 1) and then we simulate forward and backward
in time from such a state (0.5 time units in each direction). The extremities of
the resulting error trajectory (its initial and end states) are stored in P and
used for obtaining a path of the minimal cost for local search. If local search
returns an error trajectory, then we stop. As in the bounded method we restrict
computation, but this time, to add up to M states to the set P .

In all our experiments we do local search using the Scilab function for gradient-
based numerical optimization, computing the gradient as described in Section 5.
We weighted each distance between two consecutive segments by the weight
ω = 500 in order to prefer the continuity of resulting trajectories. We use the
Scilab function rand for generating random states. For reducing dependence of
the result on the random number generator, we always carry out 100 exper-
iments, initializing the random number generator with a different seed (con-
cretely, rand(“seed”, i), where i = 1, . . . 100). In all our experiments we use the
value 500 for the constant M . The results are listed in Tab. 1. The column “suc-
cessful falsification” lists the number of experiments (from 100) for which the
method found an error trajectory. The column ”average total simulation time”
is the average of the length of all simulation done during a given experiment,
but only for those experiments that succeeded in finding an error trajectory.

The choices T = 10 and T = 20 that we used are big enough, so the bounded
method does find error trajectories, but still the success rate is lower than with

158 J. Kuřátko and S. Ratschan

Table 1. Computation Results

successful falsification average total simulation time

unbounded method 99 1937
bounded method, T = 10 85 1260
bounded method, T = 20 89 2935

the unbounded method, that does not need any bound T at all. In those cases
where the bounded method actually finds an error trajectory, if the choice of T
is small but large enough to reach a mode containing U , it needs less simula-
tion than the unbounded method. But very quickly, when not choosing T small
enough, also the cost of simulations increases beyond the unbounded method.

To sum up, the unbounded method significantly increases the chance of finding
an error trajectory, and moreover, it also decreases the amount of simulation
needed for that, except for cases where a very good bound on the error trajectory
length is available.

8 Related Work

Our algorithm can be viewed as an adaptation of the Best Start two-phase
method for global optimization [25] to our context.

The falsification problem can also be viewed as a boundary value problem
which is a classical topic in numerical mathematics [3]. However, classical numer-
ical methods assume a fixed final time, whereas we search for error trajectories
of arbitrary length. Moreover, classical methods for boundary values problems
are restricted to purely continuous systems and the formulation of boundary
conditions as equalities.

Zuthsi and co-authors [26] present a method for falsification of hybrid systems
that also uses multiple shooting based local search. However, the method assumes
a given upper bound on the length of the error trajectory the method searches for.
Moreover, their local search method always follows a given sequence of modes
and transitions. They propose to search for such a sequence using tools that
compute abstractions of hybrid systems, or by random search. The form of the
used trajectory segments is more restricted than in our method since trajectory
segments always stay in one mode, and end in the guard leading to another
mode.

Abbas and co-authors [1] show how to use local search for falsification of
hybrid systems with affine dynamics. They propose to start the method from
the result of global search algorithms [19].

The usage of abstractions for guiding local search for error trajectories has
been proposed earlier [23], in combination with the usage of derivative-free al-
gorithms for local search.

There is more related work for systems that—different from our case—allow
input or have non-deterministic dynamics. In the completely discrete case this
amounts to finding shortest paths in graphs [4]. We use shortest path algorithms

Combined Global and Local Search for the Falsification of Hybrid Systems 159

as a sub-algorithm to find starting points for local search. Similar problems are
studied in more structured domains by the field of planning [16], and in formal
verification by directed model checking [11].

In the continuous case, the classical field studying algorithm for finding paths
of dynamical systems that are in some sense optimal (e.g., as short as possible),
is optimal control [5,6]. In recent years, also the field of planning has started
to study continuous dynamical systems [16, Chapter IV: Planning Under Differ-
ential Constraints] from a different perspective. More recently, such techniques
have also been applied to hybrid systems [7,8,20,21]. Planning-based techniques
search globally, and do not require an upper bound on trajectory length, but
they do not incorporate derivative-based local search. The only exception that
we are aware of [15] uses optimal control to the result of planning in a purely
sequential way, without any iteration between the two phases.

9 Conclusion

We presented an algorithm for the falsification of hybrid system that combines
scalability due to local search with convergence due to global search. In future
work, we will improve the algorithm in analogy to advanced two-phase meth-
ods [25], such as clustering methods that exploit the regions of attraction to
local optima of the used local search technique.

References

1. Abbas, H., Fainekos, G.: Linear hybrid system falsification with descent. Technical
Report arXiv:1105.1733 (2011)

2. Annpureddy, Y., Liu, C., Fainekos, G., Sankaranarayanan, S.: S-taLiRo: A tool
for temporal logic falsification for hybrid systems. In: Abdulla, P.A., Leino, K.R.M.
(eds.) TACAS 2011. LNCS, vol. 6605, pp. 254–257. Springer, Heidelberg (2011)

3. Ascher, U.M., Mattheij, R.M.M., Russell, R.D.: Numerical Solution of Boundary
Value Problems for Ordinary Differential Equations. SIAM (1995)

4. Bertsekas, D.P.: Network optimization: continuous and discrete models. Athena
Scientific Belmont (1998)

5. Betts, J.T.: Survey of numerical methods for trajectory optimization. Journal of
Guidance, Control, and Dynamics 21(2) (1998)

6. Branicky, M.S., Borkar, V.S., Mitter, S.K.: A unified framework for hybrid control:
Model and optimal control theory. IEEE Transactions on Automatic Control 43(1),
31–45 (1998)

7. Branicky, M.S., Curtiss, M.M., Levine, J., Morgan, S.: Sampling-based planning,
control and verification of hybrid systems. IEE Proceedings-Control Theory and
Applications 153(5), 575–590 (2006)

8. Dang, T., Nahhal, T.: Coverage-guided test generation for continuous and hybrid
systems. Formal Methods in System Design 34(2), 183–213 (2009)

9. Dijkstra, E.: A note on two problems in connexion with graphs. Numerische Math-
ematik 1(1), 269–271 (1959)

10. Dzetkulič, T., Ratschan, S.: Incremental Computation of Succinct Abstractions for
Hybrid Systems. In: Fahrenberg, U., Tripakis, S. (eds.) FORMATS 2011. LNCS,
vol. 6919, pp. 271–285. Springer, Heidelberg (2011)

160 J. Kuřátko and S. Ratschan

11. Edelkamp, S., Schuppan, V., Bošnački, D., Wijs, A., Fehnker, A., Aljazzar, H.:
Survey on Directed Model Checking. In: Peled, D.A., Wooldridge, M.J. (eds.)
MoChArt 2008. LNCS, vol. 5348, pp. 65–89. Springer, Heidelberg (2009)

12. Fehnker, A., Ivančić, F.: Benchmarks for Hybrid Systems Verification. In: Alur, R.,
Pappas, G.J. (eds.) HSCC 2004. LNCS, vol. 2993, pp. 326–341. Springer, Heidel-
berg (2004)

13. Gendreau, M., Potvin, J.-Y. (eds.): Handbook of Metaheuristics, 2nd edn. Springer,
Heidelberg (2010)

14. Hiskens, I., Pai, M.: Trajectory sensitivity analysis of hybrid systems. IEEE Trans-
actions on Circuits and Systems I: Fundamental Theory and Applications 47(2),
204–220 (2000)

15. Lamiraux, F., Ferré, E., Vallée, E.: Kinodynamic motion planning: connecting ex-
ploration trees using trajectory optimization methods. In: 2004 IEEE International
Conference on Robotics and Automation, Proceedings. ICRA 2004, vol. 4, pp.
3987–3992. IEEE (2004)

16. LaValle, S.M.: Planning Algorithms. Cambridge University Press (2006)
17. Locatelli, M., Schoen, F.: Global Optimization–Theory, Algorithms, and Applica-

tions. SIAM (2013)
18. Mosterman, P.J.: An overview of hybrid simulation phenomena and their support

by simulation packages. In: Vaandrager, F.W., van Schuppen, J.H. (eds.) HSCC
1999. LNCS, vol. 1569, p. 165. Springer, Heidelberg (1999)

19. Nghiem, T., Sankaranarayanan, S., Fainekos, G., Ivančić, F., Gupta, A., Pappas,
G.J.: Monte-carlo techniques for falsification of temporal properties of non-linear
hybrid systems. In: Proceedings of the 13th ACM International Conference on
Hybrid Systems: Computation and Control, HSCC 2010, pp. 211–220. ACM, New
York (2010)

20. Plaku, E., Kavraki, L.E., Vardi, M.Y.: Falsification of LTL safety properties in
hybrid systems. In: Kowalewski, S., Philippou, A. (eds.) TACAS 2009. LNCS,
vol. 5505, pp. 368–382. Springer, Heidelberg (2009)

21. Plaku, E., Kavraki, L.E., Vardi, M.Y.: Hybrid systems: from verification to fal-
sification by combining motion planning and discrete search. Formal Methods in
System Design 34(2), 157–182 (2009)

22. Pohl, I.: Bi-directional search. Machine Intelligence 6, 124–140 (1971)
23. Ratschan, S., Smaus, J.-G.: Finding errors of hybrid systems by optimising

an abstraction-based quality estimate. In: Dubois, C. (ed.) TAP 2009. LNCS,
vol. 5668, pp. 153–168. Springer, Heidelberg (2009)

24. Rios, L.M., Sahinidis, N.V.: Derivative-free optimization: A review of algorithms
and comparison of software implementations. Journal of Global Optimization, 1–47
(2012)

25. Schoen, F.: Two-phase methods for global optimization. In: Pardalos, P., Romeijn,
H. (eds.) Handbook of Global Optimization. Nonconvex Optimization and Its Ap-
plications, vol. 62, pp. 151–177. Springer, US (2002)

26. Zutshi, A., Sankaranarayanan, S., Deshmukh, J.V., Kapinski, J.: A trajectory splic-
ing approach to concretizing counterexamples for hybrid systems. In: CDC 2013
(2013)

Weak Singular Hybrid Automata�

Shankara Narayanan Krishna, Umang Mathur, and Ashutosh Trivedi

Department of Computer Science and Engineering
Indian Institute of Technology - Bombay

Mumbai 400076, India

Abstract. The framework of Hybrid automata—introduced by Alur,
Courcourbetis, Henzinger, and Ho—provides a formal modeling and anal-
ysis environment to analyze the interaction between the discrete and the
continuous parts of hybrid systems. Hybrid automata can be considered
as generalizations of finite state automata augmented with a finite set of
real-valued variables whose dynamics in each state is governed by a sys-
tem of ordinary differential equations. Moreover, the discrete transitions
of hybrid automata are guarded by constraints over the values of these
real-valued variables, and enable discontinuous jumps in the evolution
of these variables. Singular hybrid automata are a subclass of hybrid
automata where dynamics is specified by state-dependent constant vec-
tors. Henzinger, Kopke, Puri, and Varaiya showed that for even very
restricted subclasses of singular hybrid automata, the fundamental ver-
ification questions, like reachability and schedulability, are undecidable.
Recently, Alur, Wojtczak, and Trivedi studied an interesting class of
hybrid systems, called constant-rate multi-mode systems, where schedu-
lability and reachability analysis can be performed in polynomial time.
Inspired by the definition of constant-rate multi-mode systems, in this
paper we introduce weak singular hybrid automata (WSHA), a previ-
ously unexplored subclass of singular hybrid automata, and show the
decidability (and the exact complexity) of various verification questions
for this class including reachability (NP-Complete) and LTL model-
checking (Pspace-Complete). We further show that extending WSHA
with a single unrestricted clock or with unrestricted variable updates
lead to undecidability of reachability problem.

1 Introduction

Hybrid automata, introduced by Alur et al. [1], provide an intuitive and seman-
tically unambiguous way to model hybrid systems. Various verification questions
for such systems can then be naturally reduced to corresponding questions for
hybrid automata. Hybrid automata can be considered as finite state-transition
graphs with a finite set of real-valued variables with state-dependent dynamics
specified using a set of first-order ordinary differential equations. The variables of
hybrid automata can be used to constrain the evolution of the system by means of
guards of the transitions and local invariants of the states of the state-transition

� This work was partly supported by the DST-CNRS project AVeRTS.

A. Legay and M. Bozga (Eds.): FORMATS 2014, LNCS 8711, pp. 161–175, 2014.
c© Springer International Publishing Switzerland 2014

162 S.N. Krishna, U. Mathur, and A. Trivedi

m1

m2

o1
0<x<6
0<y<1

m3

o2
2<x<3
−3<y<3

m4

o3
1<x<7

−2<y<−1

m5 m6

m7

o4
5<x<7,−3<y<− 1

��

2<x<3 −2<y<− 1 5<x<7 �

��

Fig. 1. A weak singular hybrid automaton

graph. The variables can also be reset at the time of taking a transition and thus
allowing discrete jumps in the evolution of the system. Considering the richness
of the dynamics of hybrid automata, it should come as no surprise that key ver-
ification questions, like state reachability, are undecidable for hybrid automata
limiting the applicability of hybrid automata for automatic verification of hybrid
systems. Henzinger et al. [12,11] observed that this negative result stays even
for a severely restricted subclass of hybrid automata, called the singular hybrid
automata (SHA), where the variables dynamics is specified as state-dependent
constant-rate vectors and showed that the reachability problem stays undecid-
able for singular hybrid automata with three clocks (unit-rate variables) and one
non-clock variable. In this paper we introduce a weak version of singular hybrid
automata, and show the decidability (and the exact complexity) of reachability,
schedulability, and LTL model-checking problems for this class.

Our definition of weak singular hybrid automata is inspired by the definition
of constant-rate multi-mode systems (CMS) [5], that are hybrid systems that
can switch freely between a finite set of modes (or states) and whose dynamics
are specified by a finite set of variables with mode-dependent constant rates.
The schedulability problem for CMS is to decide—for a given initial state and
convex and bounded safety set—whether there exists a non-Zeno mode-switching
schedule such that the system stays within the safety set. On the other hand,
the reachability problem is to decide whether there is a schedule that steers the
system from a given initial configuration to the target configuration while staying
within a specified bounded and convex safety set. Since the system is allowed
to switch freely between the enabled modes, the reachability and schedulability
problems can be solved in polynomial time [5] by reducing them to a linear
program. We say that a singular hybrid automaton is weak if there exists an
ordering among the states such that the transition to a lower order state is
disallowed, and the states with the same ordering form a CMS, i.e. such states
have a common invariant and vacuous guards on transitions among themselves.

WSHAs are a natural generalization of CMS with structure, and can be used
to model CMS with non-convex safety set. As an example of a WSHA, consider

Weak Singular Hybrid Automata 163

o1s0
m1

m2

o2

m3

o3m4

o4

m5m6

m7

sT

Fig. 2. Multi-mode system corresponding to a robotic motion planning problem

the two dimensional robotic motion planning problem shown in the Figure 2,
where the arena is a nonconvex region given as union of four convex polytopes
o1, o2, o3 and o4. The possible motion primitives, or modes, in each region are
shown as vectors showing the direction the robot will move given the corre-
sponding mode is chosen. Consider the following reachability and schedulability
problems for this example: given an initial valuation s0 decide if it is possible
to compose the motion primitives available in a given valuation so as to reach
the final state sT , while the schedulability problem is to decide if there is a non-
Zeno composition of motion specifications such that the robot stays in the safety
set forever. This problem can not be solved using the results for constant-rate
multi-mode systems sue to non-convexity of the safety set. On the other hand,
it is easy to see that the reachability and the schedulability problems for this
system can be reduced to corresponding problems on the weak singular hybrid
automaton shown in Figure 1, where modes with the same order are shown inside
a dashed box with global invariant is specified just below the box.

We extend the results of [5] by recovering decidability for WSHA by showing
that the reachability problem and schedulability problems are NP-Complete

for this model. We also define LTL and CTL model-checking problems for weak
singular hybrid automata, and show that while the complexity of LTL model-
checking stays the same as LTL model checking for finite state-transition graphs
(Pspace-Complete), the CTL model-checking is already PSPACE-hard. In-
spired by an unpublished result from Bouyer and Markey [16], we show (Sec-
tion 4) that extending WSHA with single unrestricted clock variable make the
reachability problem undecidable for WSHA with three variables. In the same
section, we also show that extending WSHA with unrestricted variable updates
also make the reachability problem undecidable for WSHA with three variables.
Table 1 shows a summary of results on singular hybrid automata, and the con-
tributions of this paper are highlighted with boldface.

164 S.N. Krishna, U. Mathur, and A. Trivedi

Table 1. Summary of decidability results related to (weak) singular hybrid automata

Problem SHA WSHA

Reachability Undecidable (≥3 vars.) [12]
NL-Complete (1 var.)

NP-Complete

Schedulability Undecidable (≥3 vars.) [12]
NL-Complete (1 var.)

NP-Complete

LTL model-checking Undecidable (≥3 vars.) [12]
Pspace-Complete (1 var.)

Pspace-Complete

CTL model-checking Undecidable (≥2 vars.)
Ptime-Complete (1 var.)

Pspace-Hard (≥2 vars.)
Ptime-Complete (1 var.)

Related Work. Timed automata are subclasses of SHA with the restriction
that all variables are clocks, while stopwatch automata are subclasses of hybrid
automata with the restriction that all variables are stopwatches (clocks that can
be paused). Using the region construction [2] Alur and Dill showed that the
reachability and the schedulability problems for timed automata are decidable
and are in fact complete for PSPACE. Čerāns [9] showed that the undecidability
result for singular hybrid automata holds even for stopwatch automata. Initial-
ized singular hybrid automata are subclasses of singular hybrid automata with
the restriction that if there is a transition between two modes that have different
rate for some variable then that transition must reset that variable. Henzinger at
al. [12] showed the decidability of reachability problem by reducing the problem
to the corresponding problem on timed automata—by appropriate adjustment
of the guards of the transitions. Unlike timed automata and initialized SHA, our
results for WSHA do not rely on the existence of finitary bisimulation.

Asarin, Maler, and Pnueli [7] studied a subclass of singular hybrid automata,
called the piecewise-constant derivative (PCD) systems, that are defined by a
partition of the Euclidean space into a finite set of polyhedral regions, where the
dynamics in each region is defined by a constant rate vector. PCD systems, unlike
our model, are defined as completely deterministic systems where discrete tran-
sitions occurs at region boundaries and runs change their directions according to
the rate vector available in the new region. They showed that even under such
simple dynamics the reachability problem for PCD systems with three or more
variables is undecidable [7]. On the positive side, Asarin, Maler, and Pnueli [7]
gave an algorithm to solve the reachability problem for two-dimensional PCD
systems. The work that is closest to ours is on constant-rate multi-mode sys-
tems by Alur et al. [5,3]. However, our model strictly generalizes this model and
permits analysis of multi-mode systems with non-convex safety set.

The paper is organized in the following manner. In the next section we intro-
duce technical notations and background required for the paper. In Section 3 we
present weak singular hybrid automata and show the decidability and complex-
ity results for the reachability, schedulability, and LTL model-checking problems.
In Section 4 we present the two undecidability results related to WSHA. Due to
lack of space, detailed proofs of the results are given in [14].

Weak Singular Hybrid Automata 165

2 Preliminaries

Let R be the set of real numbers. Let X be a finite set of real-valued variables.
A valuation on X is a function ν : X → R. We assume an arbitrary but fixed
ordering on the variables and write xi for the variable with order i. This allows
us to treat a valuation ν as a point (ν(x1), ν(x2), . . . , ν(xn)) ∈ R|X|. Abusing
notations slightly, we use a valuation on X and a point in R|X| interchangeably.
We denote points in this state space by x, y, vectors by r,v, and the i-th coor-
dinate of point x and vector r by x(i) and r(i), respectively. We write 0 for a
vector with all its coordinates equal to 0. We say that a set S ⊆ Rn is bounded
if there exists d ∈ R≥0 such that for all x, y ∈ S we have ‖x− y‖ ≤ d.

We define a constraint over a set X as a subset of R|X|. We say that a con-
straint is polyhedral if it is defined as the conjunction of a finite set of linear
constraints of the form a1x1 + · · ·+ anxn �� k, where k ∈ Z, for all 1 ≤ i ≤ n we
have that ai ∈ Z, xi ∈ X , and ��∈ {<,≤,=, >,≥}. Every polyhedral constraints
can be written in the standard form Ax ≤ b for some matrix A of size k × n
and a vector b ∈ Zk. We call a bounded polyhedral constraint a convex polytope.
For a constraint G, we write [[G]] for the set of valuations in R|X| satisfying the
constraint G. We write � (resp., ⊥) for the special constraint that is true (resp.,
false) in all the valuations, i.e. [[�]] = R|X| (resp., [[⊥]] = ∅). We write poly(X)
for the set of polyhedral constraints over X including � and ⊥.

2.1 Singular Hybrid Automata

Singular hybrid automata extend finite state-transition graphs with a finite set
of real-valued variables that grow with state-dependent constant-rates. The tran-
sitions of the automata are guarded by predicates on the valuations of the vari-
ables, and the syntax allows discrete update of the value of the variables.

Definition 1 (Singular Hybrid Automata). A singular hybrid automaton
is a tuple (M,M0, Σ,X,Δ, I, F) where:

– M is a finite set of control modes including a distinguished initial set of
control modes M0 ⊆ M ,

– Σ is a finite set of actions,
– X is an (ordered) set of variables,
– Δ ⊆ M × poly(X)×Σ × 2X ×M is the transition relation,
– I : M → poly(X) is the mode-invariant function, and
– F : M → Q|X| is the mode-dependent flow function characterizing the rate

of each variable in each mode.

For computation purposes, we assume that all real numbers are rational and
represented by writing down the numerator and denominator in binary.

For all δ = (m,G, a,R,m′) ∈ Δ we say that δ is a transition between the
modes m and m′ with guard G ∈ poly(X) and reset set R ∈ 2X . For the sake of
notational convenience and w.l.o.g., we assume that an action a ∈ Σ uniquely

166 S.N. Krishna, U. Mathur, and A. Trivedi

determines a transition (m,G, a,R,m′), and we write G(a) and R(a) for the
guard and the reset set corresponding to the action a ∈ Σ. This can be assumed
without loss of generality, since, in this paper, we do not study language-theoretic
properties of a singular hybrid automaton, and assume that the non-determinism
is resolved by the controller.

A configuration of a SHA H is a pair (m, ν) ∈ M × R|X| consisting of a
control mode m and a variable valuation ν∈R|X| such that that ν satisfies the
invariant I(m) of the mode m, i.e. ν ∈ [[I(m)]]. We say that the transition
δ = (m,G, a,R,m′) is enabled in a configuration (m, ν) when guardG ∈ poly(X)
is satisfied by the valuation, i.e. ν ∈ [[G]]. Moreover, the transition δ resets the
variables in R ∈ 2X to 0. We write ν[R:=0] to denote the valuation resulting
from substituting in valuation ν the value for the variables in the set R to 0,
formally ν[R:=0](x) = 0 if x ∈ R and ν[R:=0](x) = ν(x) otherwise. A timed
action of a SHA is the tuple (t, a) ∈ R≥0 × Σ consisting of a time delay and
discrete action. While the system dwells in a mode m ∈ M the valuation of
the system flows linearly according to the rate function F (m). This means that
starting from a valuation ν in mode m, the valuation of the variables, after
spending t time units, will be ν + t · F (m).

We say that ((m, ν), (t, a), (m′, ν′)) is a transition of a SHA H and we write

(m, ν)
t−→a (m′, ν′) if (m, ν) and (m′, ν′) are valid configurations of the SHA H,

and there is a transition δ = (m,G, a,R,m′) ∈ Δ such that:

– all the valuations resulting from dwelling in mode m for time t from the
valuation ν satisfy the invariant of the mode m, i.e. (ν +F (m) · τ) ∈ [[I(m)]]
for all τ ∈ [0, t] (observe that due to convexity of the invariant set we only
need to check that (ν + F (m) · t) ∈ [[I(m)]]);

– The valuation reached after waiting for t time-units satisfy the constraint G
(called the guard of the transition δ), i.e. (ν + F (m) · t) ∈ [[G]], and

– ν′ = (ν + F (m) · t)[R := 0].

A finite run of a singular hybrid automaton H is a finite sequence r =
〈(m0, ν0), (t1, a1), (m1, ν1), (t2, a2), . . . , (mk, νk)〉 such that m0 ∈ M0 and for
all 0 ≤ i < k we have that ((mi, νi), (ti+1, ai+1), (mi+1, νi+1)) is a transition
of H. For such a run r we say that ν0 is the starting valuation, while νk is
the terminal valuation. An infinite run of an SHA H is similarly defined to
be an infinite sequence r = 〈(m0, ν0), (t1, a1), (m1, ν1), (t2, a2), . . .〉 such that
((mi, νi), (ti+1, ai+1), (mi+1, νi+1)) is a transition of the SHA H for all i ≥ 0. We
say that ν0 is the starting configuration of the run. We say that such an infinite
run is Zeno if

∑∞
i=1 ti < ∞. Zeno runs are physically unrealizable since they

require infinitely many mode-switches within a finite amount of time.

2.2 Reachability, Schedulability, and Model-Checking

Given a finite set of atomic propositions P and a labeling function L : M→2P ,
a trace of a SHA H corresponding to an infinite run r = 〈(m0, ν0), (t1, a1), . . .〉
is the sequence 〈L(m0), L(m1), L(m2), . . . L(mn), . . .〉 of labels corresponding to

Weak Singular Hybrid Automata 167

the mode sequence of r. We use the standard syntax and semantics of LTL
and CTL [8] with the exception that we consider traces corresponding to non-
Zeno runs. Given a SHA H = (M,M0, Σ,X,Δ, I, F) and a starting valuation
ν ∈ R|X|, we are interested in the following problems over SHA.

– Reachability problem. Given a target polytope T ⊆ RX , decide whether
there exists a finite run from ν0 to some valuation ν′ ∈ T .

– Schedulability. Decide whether there exists an infinite non-Zeno run start-
ing from ν.

– LTL model checking. Given a set of propositions P , labeling function L,
and an LTL formula φ decide whether all non-Zeno traces of H satisfy φ.

– CTL model checking. Given a set of propositions P , labeling function L,
and a CTL formula φ decide whether all initial modes of H satisfy φ.

The termination [17] and the recurrent computation [4] problems for two-
counter Minsky machines are known to be undecidable. By encoding the two
counters as two vairables, and using another variable to do additional book-
keeping, the termination and the recurrence problem for Minsky machines can
be reduced to reachability and schedulability problems for SHA.

Theorem 1 (Undecidability [12,7,6]). The reachability, schedulability, LTL
and CTL model-checking problems are undecidable for SHA with three variables.

Improved Complexity Results. Using just two variables x, y (of which y is
only a clock variable), with the encoding x = 2 − 1

2c13c2 for counters c1, c2, we
improve the undecidability result for CTL model checking of SHAs:

Theorem 2. CTL Model-checking problem for singular hybrid automata with
two variables is Undecidable.

We adapt the construction of Laroussinie et al. [15] for the case of one clock
timed automata to show the following results for SHA with one variable.

Theorem 3. For SHA with one variable we have the following results.

(a) The reachability and the schedulability problems are NL-Complete.
(b) LTL Model-checking problem is Pspace-Complete.

Proof. (Sketch.) The Nlogspace-hardness of the reachability problem for SHA
follows from the complexity of reachability problem for finite graphs [13]. On the
other hand, the Nlogspace-hardness of the schedulability problem for SHA fol-
lows from the complexity of nonemptiness problem for Büchi automata (Propo-
sition 10.12 of [18]). For Nlogspace-membership of these problems we adapt
the region construction (LMS regions) for one-clock timed automata proposed
by Laroussinie, Markey, and Schnoebelen [15].

For LTL model checking the Pspace-hardness follows from the PSPACE-
completeness [19] for LTL model checking on finite automata, while the PSPACE
membership follows from the region construction introduced in the proof of (a).
However, we need to be extra careful as our semantics are defined with respect
to non-Zeno runs. To overcome this complication, we characterize non-Zenoness
property of the region graphs as LTL formulas using the following Lemma.

168 S.N. Krishna, U. Mathur, and A. Trivedi

Lemma 1. Let cx and Cx denote the smallest and largest constants used in
guards of H and let RGH be the LMS region graph of H. An infinite run in the
region graph RGH of the form ((m0, r0), a0, (m1, r1), a1, . . .) is called progressive
iff it has a non-Zeno instantiation. Here, rj and mj are respectively the regions
and modes. An infinite run ((m0, r0), a0, (m1, r1), a1, . . .) in the region graph
RGH of a one-variable SHA H is progressive iff one of the following hold:

1. For all j≥0 there exists k > j such that F (mk) = 0;
2. There exists n≥0 such that for all j≥n we have that [[rj]] = [[x>Cx]] and

there exists k > j such that F (mk) > 0;
3. There exists n≥0 such that for all j≥n we have that [[rj]] = [[x < cx]] and

there exists a k > j such that F (mk) < 0;
4. For all j≥0 there exists k > j s.t. rj �= rk; or
5. There exists n≥0 and a thick region r such that for all j≥n we have that

rj = r and there exists k > j such that F (mj).F (mk) < 0.

Given an LTL formula φ, and a one variable SHA H, we can express in LTL the
conditions characterizing non-zeno runs of H as given by Lemma 1. Let φC be
this LTL formula. Model checking of φ over all non-Zeno runs then reduces to
standard model checking against formula φ ∧ φC . ��

3 Weak Singular Hybrid Automata

We begin this section by formally introducing constant-rate multi-mode systems
and review the decidability of reachability and schedulability problems for this
class. We later present the weak singular hybrid automata model and show the
decidability of various verification problems.

3.1 Constant-Rate Multi-mode Systems

Definition 2 (Constant-Rate Multi-mode Systems). We say that a singu-
lar hybrid automaton H = (M,M0, Σ,X,Δ, I, F) is a constant-rate multi-mode
system if

– there is a bounded and open polytope S, called the safety set, such that for
all modes m ∈ M we have that I(m) = S, and

– all the modes in M form a strongly-connected-component, and for every mode
m,m′ ∈ M if there is a transition (m,G, a,R,m′) ∈ Δ then G = �, and
R = ∅.

We have slightly modified the definition of CMS from [5] to adapt it to the
presentation used in this paper. Moreover, we have restricted the safety set to
be an open set to avoid problems in reaching a valuation using infinitely many
transitions. Notice that there is no structure in a CMS in the sense that all of the
modes can be chosen in arbitrary order as long as the safety set is not violated.
Alur et al. [5] showed that due to lack of structure, the schedulability and the
reachability problems for CMS can be reduced to LP feasibility problem, and
hence can be solved in polynomial time.

Weak Singular Hybrid Automata 169

Theorem 4 (Reachability and Schedulability for CMS [5]). The schedu-
lability and the reachability problems for CMS can be solved in polynomial time.

Proof. Reachability. LetH = (M,M0, X,Δ, I, F) be a CMS with the safety set
S and the target polytope T be given as a system of linear inequalities AX ≤ b.
Moreover assume that ν and T are in the safety set S. Alur et al. showed that
the target set T is reachable from ν iff the following linear program is feasible:

ν +
∑
m∈M

F (m) · tm = ν′,

Aν′ = b, and (1)

tm >= 0, for all m ∈ M.

If this linear program is not feasible, then it is immediate that it is not possible
to reach any valuation in T from ν using modes in any sequence from H. On
the other hand, if the program is feasible, and as long as both the starting valu-
ation and the target set are strictly inside the safety set, a satisfying assignment
〈tm〉m∈M can be used to make progress towards T by scaling tm’s appropriately
without leaving the safety set. Since the feasibility of the linear program can
be decided in polynomial time, it follows that reachability for the CMS can be
decided in polynomial time.

Schedulability. Let H = (M,M0, X,Δ, I, F) be a CMS with the safety set S,
and initial valuation ν. In this case, Alur et al. showed that there exists a non-
Zeno run from arbitrary valuation in the safety set if and only if the following
linear program is feasible:∑

m∈M

F (m) · tm = 0,∑
m∈M

tm = 1 and (2)

tm >= 0, for all m ∈ M.

If this linear program is not feasible, then by Farkas’s lemma it follows that
there is a vector v such that taking any mode for nonnegative time makes some
progress in the direction of v. Hence any non-Zeno run will eventually leave
the safety set. On the other hand, if the program is feasible, then a satisfying
assignment 〈tm〉m∈M can be scaled down to stay in a ball of arbitrary size around
the initial valuation. Hence, if the starting valuation is strictly in the interior of
the safety set, the feasibility of the linear program (2) imply the existence of a
non-Zeno run. ��

3.2 Syntax and Semantics

Weak singular hybrid automata (WSHA) can be considered as generalized
constant-rate multi-mode systems with structure. The restriction on WSHA en-
sures that the strongly connected components of WSHA form CMS, and thus

170 S.N. Krishna, U. Mathur, and A. Trivedi

recovering the decidability for the reachability and the schedulability problem.
Formally we define WSHA in the following manner.

Definition 3 (Weak Singular Hybrid Automata). A weak singular hybrid
automaton H = (M,M0, Σ,X,Δ, I, F) is a SHA with the restriction that there
is a partition on the set of modes M characterized by a function : M → N
assigning ranks to the modes such that

– for every transition (m,G, a,R,m′) ∈ Δ we have that (m) ≤ (m′), and
– for every rank i the set of modes Mi = {m : (m) = i} is such that

– there is a bounded and open polytope Si, called the safety set of Mi, such
that for all modes m ∈ Mi we have that I(m) = Si; and

– all the modes in Mi form a strongly-connected-component, and for every
mode m,m′ ∈ Mi if there is a transition (m,G, a,R,m′) ∈ Δ then G =
�, and R = ∅.

Observe that every CMS is a weak singular hybrid automaton (WSHA), and
every strongly connected component of a WSHA is a CMS. Also notice that for
every (finite or infinite) run r = 〈(m0, ν0), (t1, a1), (m1, ν1), . . .〉 of a WSHA we
have that (mi) ≤ (mj) for every i ≤ j. We define the type Γ (r) of a finite
run r = 〈(m0, ν0), (t1, a1), (m1, ν1), . . . , (mk, νk)〉 as a finite sequence of ranks
(natural numbers) and actions 〈n0, b1, n1, . . . , bp, np〉 defined inductively in the
following manner:

Γ (r) =

{
〈 (m0)〉 if r = 〈(m0, ν0)〉
Γ (r′)⊕ (a, (m)) if r = r′ :: 〈(t, a), (m, ν)〉,

where :: is the cons operator that appends two sequences, while for a sequence
σ = 〈n0, b1, n1, . . . , bp, np〉, a ∈ Σ, and n ∈ N we define σ ⊕ (a, n) to be equal to
σ if np = n and 〈n0, b1, n1, . . . , np, a, n〉 otherwise. Intuitively, the type of a finite
run gives the (non-duplicate) sequence of ranks of modes and actions appearing
in the run, where action is stored only when a transition to a mode of higher rank
happens. We need to remember only these actions since transitions that stay in
the modes of same rank do not reset the variables. It is an easy observation
that, since there are only finitely many ranks for a given WSHA, we have that
for every infinite run r = 〈(m0, ν0), (t1, a1), (m1, ν1), . . .〉 there exists an index i
such that for all j ≥ i we have that (mi) = (mj). With this intuition we define
the type of an infinite run r as the type of the finite prefix of r till index i. We
write ΓH for the set of run types of a WSHA H.

Theorem 5. The reachability and the schedulability problems for weak singular
hybrid automata is NP-complete.

Proof. (Sketch) To show NP-membership we show that to decide the reachability
problem, it is sufficient to guess a finite run type, and check whether there is a
run with that type that reaches the target polytope. Since the size of every run
type is polynomial in the size of the WSHA, and there are only exponentially
many run-types, if for a run we can check whether there exists a run of this

Weak Singular Hybrid Automata 171

type reaching target polytope is polynomial time, the NP-membership claim
follows. Given a run type σ = 〈n0, b1, n1, . . . , bp, np〉 an initial valuation ν0 and
a bounded and convex target polytope T given as AX ≤ b, there exists a run
with type σ that reaches a valuation in T if and only if the following linear
program is feasible: for every 0 ≤ i ≤ p and m ∈ Mni there are νni , ν

′
ni

∈ R|X|

and tmi ∈ R≥0 such that:

ν0 = νn0 , ν
′
np

∈ T
νni , ν

′
ni

∈ SMni
for all 0 ≤ i ≤ p

νni ∈ G(bi) for all 0 < i ≤ p

νni+1(j) = 0 for all xj ∈ R(bi+1) and 0 < i ≤ p

νni+1(j) = ν′ni
(j) for all xj �∈ R(bi+1) and 0 < i ≤ p

ν′ni
= νni +

∑
m∈Mni

F (m) · tmi for all 0 ≤ i ≤ p

tmi ≥ 0 for all 0 ≤ i ≤ p and m ∈ Mni

These constraints check whether it is possible to reach some valuation in the
target polytope while satisfying the guard and constraints of the WSHA, while
exploiting the fact that modes of same rank can be applied an arbitrary number
of time in an arbitrary order. The proof for this claim is similar to the proof for
the CMS, and hence omitted.

To show NP-hardness we reduce the subset-sum problem to solving the reach-
ability problem in a WSHA. Formally, given A, a non-empty set of n integers and
another integer k, the subset-sum problem is to determine if there is a non-empty
subset T ⊆ A that sums to k. Given the set A and the integer k, we construct
a WSHA H with n + 3 variables x0, x1, . . . , xn+2, 2n + 1 modes m0, . . . ,m2n

and 2n transitions, such that starting from a given valuation, a particular target
polytope T is reachable in the WSHA iff there is a non-empty subset T ⊆ A that
sums up to k. Intuitively, the variable x0 ensures that the variables x1, x2 . . . xn
are initialized with values a1, a2, . . . an (the elements of A). The variable xn+1

sums up the values of the elements in the chosen subset T , and can be later com-
pared with k. The variable xn+2 ensures that the set T is non-empty (specifically
when k = 0). The rates in the modes mi(0 ≤ i ≤ 2n) are given as follows (ri

represents (F (mi)):

• r0(x0) = 1, r0(xn+1) = r0(xn+2) = 0, and r0(xi) = ai, where 1 ≤ i ≤ n
• r2j−1(xj) = −aj , r2j−1(xn+1) = aj , r2j−1(xn+2) = 1, and r2j−1(x0) =

r2j−1(xi) = 0, where 1 ≤ i �= j ≤ n
• r2j(xj) = −aj, and r2j(x0) = r2j(xi) = r2j(xn+1) = r2j(xn+2) = 0, where

1 ≤ i �= j ≤ n

The transitions are as follows: (i) There are edges from m0 to m1 and to m2,
and (ii) There are edges from m2j−1 and from m2j to m2j+1 and to m2j+2,
1 ≤ j ≤ n− 1. We claim that the polytope T , given by the set of points x such
that x(0) = 1, x(i) = 0, 1 ≤ i ≤ n, x(n+1) = k and x(n+2) ∈ [1, n], is reachable

172 S.N. Krishna, U. Mathur, and A. Trivedi

m0

(1, 1, 2,−3, 0, 0)

m1

(0,−1, 0, 0, 1, 1)

m2

(0,−1, 0, 0, 0, 0)

m3

(0, 0,−2, 0, 2, 1)

m4

(0, 0,−2, 0, 0, 0)

m5

(0, 0, 0, 3,−3, 1)

m6

(0, 0, 0, 3, 0, 0)

Fig. 3. Constructed WSHA for a set {1, 2,−3}

from the point 0 iff there is a non-empty subset T of A that sums up to k. Figure
3 gives an illustration of the WSHA construction for a set {1, 2,−3}.

The proof for schedulability is similar, and hence, omitted. ��

Corollary 1. The LTL model-checking problem for WSHA is PSPACE-complete.

We also observe that CTL model checking for weak singular hybrid automata
is already hard for Pspace by using a reduction from subset sum games [10].

Theorem 6. CTL model checking of weak SHAs with two clock variables is
Pspace-hard.

Proof (Sketch). We give a polynomial reduction from subset-sum games. A sub-
setsum game is played between an existential player and a universal player. The
game is specified by a pair (ψ, T) where T ∈ N and ψ is a list:

∀{A1, B1}∃{E1, F1} . . .∀{An, Bn}∃{En, Fn}

where Ai, Bi, Ei, Fi are all natural numbers. The game is played in rounds. In
the first round, the universal player chooses an element from {A1, B1}, and
the existential player responds by choosing a number from {E1, F1}. In the next
round, the universal player chooses an element from {A2, B2}, and the existential
player responds by choosing a number from {E2, F2}. This pattern repeats for n
rounds, and two players this construct a sequence of number, and the existential
player wins iff the sum of those numbers equals T .

For each set {Ai, Bi}, we construct a widget W∀i shown in the left side of
Figure 4. Similarly, for each set {Ei, Fi}, we construct a widget W∃i shown in
the right side of Figure 4.

Qi Pi

x = Ai?

x := 0

x = Bi?

x := 0

Pi Qi+1

x = Ei?

x := 0

x = Fi?

x := 0

Fig. 4. Widgets W∀i (left) and W∃i(right)

Weak Singular Hybrid Automata 173

The WSHA A constructed has 2 clocks x, y and is obtained by connecting the
last node of widget W∀i with the starting node of widget W∃i for 1 ≤ i ≤ n, and
by connecting the last node of W∃i with the initial node of W∀i+1 , 1 ≤ i ≤ n−1.
The last node of W∃n (labeled Pn) is connected to a node End with a guard
y = T . The clock y is never reset in any of the widgets and accumulates the
computed sum. Notice that the resulting timed automaton is a WSHA since it
is acyclic. Let i0 be the initial mode of this WSHA. The unique initial mode of
the WSHA is labeled with Q1. It is easy to see that the above WSHA can be
constructed in polynomial time; moreover, the constructed WSHA has 3n + 2
modes, 4n + 1 edges and 2 clocks. We now give a CTL formula ϕ of size O(n)
given by [Q1 ∧A© (P1 ∧E© (Q2 ∧ . . .A© (Pn ∧E©End)))] It can be seen
that the existential player wins the subsetsum game iff A, i0 |= ϕ. ��

We conjecture that the problem can be solved in Pspace, however decidability
of the problem is currently open.

4 Undecidable Variants of WSHA

In this section, we present two variants of WSHA and show that both lead to
undecidability of the reachability problem.

Theorem 7. The reachability problem is undecidable for three variable WSHAs
with discrete updates.

Proof (Sketch). We show a reduction from the halting problem for two-counter
Minsky machines M. The variables x, y, z of the SHA have global invariants
0 ≤ x ≤ 1, 0 ≤ y, z ≤ 5 respectively. The counters c1, c2 of two-counter machine
are encoded in variables y and z as y = 5− 1

2c1 and z = 5− 1
2c2 . To begin, we have

c1 = c2 = 0, hence y = z = 4, and x=0. The rates of x, y, z are indicated by 3-
tuples inside the modes of the SHA. The discrete updates on x, y, z are indicated
on the transitions. We construct widgets for each of the increment/decrement
and zero check instructions. Each widget begins with x=0, y = 5 − 1

2c1 and
z = 5− 1

2c2 , where c1, c2 are the counter values.

– (Increment and Decrement Instructions). Let us first consider incre-
ment instruction l : c1 := c1 + 1 goto l′. The Figure 5 depicts the increment
widget. This widget starts with a mode labeled l, and ends in a mode la-
beled l′. This widget can be modified to simulate the instructions increment
counter c2, decrement counters c1 and decrement counter c2,respectively, by
changing the cost rate of z at B to -3, the cost rate of y at B to -12, and
the cost rate of z at B to −12, respectively.

– (Zero Check Instruction). We next consider the zero check instruction:
l : if c1 = 0 goto l′ else goto l′′. The widget of Figure 6 depicts the zero
check widget. The zero check widget starts in a mode l and reaches either
the mode l′ or mode l′′.

174 S.N. Krishna, U. Mathur, and A. Trivedi

l
(1,−6, 0)

A
(1,−30, 0)

B
(1,−3, 0)

l′

(x, y, z)

y′ := y + 5 y′ := y + 5 x′ := x− 1

Fig. 5. Increment c1 widget

l
(2, 1, 0)

A
(−1,−1, 0)

l′

(x, y, z)

B
(1, 1

2
, 0)

C
(2, 1, 0)

D
(0, 0, 0)

l′′

(x, y, z)

y′ := y + 1 y′ := y − 1

x′ := x− 1 y′ := y + 4

y′ := y − 5

x′ := x− 1

Fig. 6. Zero Check widget

It is straightforward to see that the modules for increment, decrement, and
zero check simulate the two counter machine. There is a mode HALT correspond-
ing to the HALT instruction. The halting problem for two counter machines is
thus reduced to the reachability of the mode HALT. ��

The next variant that we consider is weak singular hybrid automata extended
with discrete updates on the variables even inside the strongly connected com-
ponents. We prove this result by showing that even CMS with one unrestricted
clock variable lead to undecidability.

Theorem 8. The reachability problem is undecidable for CMS with three vari-
ables and one unrestricted clock.

Proof (Sketch). We simulate a two counter machine using a CMS with 3 variables
and one clock. The three variables x1, x2, y have global invariants 0 ≤ x1, x2 ≤ 5
and 0 ≤ y ≤ 1 respectively. The clock variable is x. The counters c1, c2 are
encoded as x1 = 5− 1

2c1 , x2 = 5− 1
2c2 . At the beginning of each widget, we have

x1 = 5− 1
2c1 , x2 = 5− 1

2c2 and y = 1, where c1, c2 are the current counter values.
The gadget simulating an increment instruction is shown below.

l
(6, 0,−1)

A
(−5, 0, 0)

B
(5, 0, 0)

C
(−3, 0, 1)

D
(0, 0,−1)

E
(0, 0, 1)

l′

(x1, x2, y)
0<x<1

{x}
x=1

{x}
x=1

{x} {x}
x=1

{x}
x=1

{x}

The decrement gadget is similar to the increment gadget. The gadget for a
zero check is given in the figure below. Observe that starting at mode l with
y = 1 and x1 = 5 − 1

2c1 , the gadget in this gadget ensures that we reach l′ iff
c1 = 0, and otherwise reaches l′′.

l
(1, 0, 0)

A
(−1, 0, 0)

l′

(x1, x2, y)
B

(1, 0,−1)
C

(−5, 0, 0)

D
(5, 0, 0)

E
(−1, 0, 1)

F
(0, 0,−1)

G
(0, 0, 1)

l′′

(x1, x2, y)

x=1

{x}
x=1

{x}
x=0x<1

{x}

x=1 {x}

x=1

{x}
x<1

{x}
x=1

{x}
x=1

{x}

The proof sketch is now complete. ��

Weak Singular Hybrid Automata 175

5 Conclusion

We introduced weak singular hybrid automata and showed that verification prob-
lems like reachability and schedulability areNP-Complete, while LTL property
checking is Pspace-Complete. Extending the model with either unrestricted
variable updates or with a single unrestricted clock variable render the reach-
ablity problem undecidable. We showed PSPACE-hardness of the CTL model
checking problem, but the exact complexity of the problem remains open.

References

1. Alur, R., Courcoubetis, C., Henzinger, T.A., Ho, P.-S.: Hybrid automata: An algo-
rithmic approach to the specification and verification of hybrid systems. In: Hybrid
Systems, pp. 209–229 (1992)

2. Alur, R., Dill, D.: A theory of timed automata. TCS 126(2), 183–235 (1994)
3. Alur, R., Forejt, V., Moarref, S., Trivedi, A.: Safe schedulability of bounded-rate

multi-mode systems. In: HSCC, pp. 243–252 (2013)
4. Alur, R., Henzinger, T.A.: A really temporal logic. J. ACM 41(1), 181–203 (1994)
5. Alur, R., Trivedi, A., Wojtczak, D.: Optimal scheduling for constant-rate multi-

mode systems. In: HSCC, pp. 75–84 (2012)
6. Asarin, E., Maler, O.: Achilles and the tortoise climbing up the arithmetical hier-

archy. Journal of Computer and System Sciences 57(3), 389–398 (1998)
7. Asarin, E., Maler, O., Pnueli, A.: Reachability analysis of dynamical systems having

piecewise-constant derivatives. TCS 138, 35–66 (1995)
8. Baier, C., Katoen, J.P.: Principles of model checking. MIT Press (2008)
9. Čerāns, K.: Algorithmic problems in analysis of real time system specifications.

PhD thesis (1992)
10. Fearnley, J., Jurdziński, M.: Reachability in two-clock timed automata is PSPACE-

complete. In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.) ICALP
2013, Part II. LNCS, vol. 7966, pp. 212–223. Springer, Heidelberg (2013)

11. Henzinger, T.A., Kopke, P.W.: Discrete-time control for rectangular hybrid au-
tomata. TCS 221(1-2), 369–392 (1999)

12. Henzinger, T.A., Kopke, P.W., Puri, A., Varaiya, P.: What’s decidable about hybrid
automata? Journal of Comp. and Sys. Sciences 57, 94–124 (1998)

13. Jones, N.D., Lien, Y.E., Laaser, W.T.: New problems complete for nondeterministic
log space. Mathematical Systems Theory 10(1), 1–17 (1976)

14. Krishna, S.N., Mathur, U., Trivedi, A.: Weak singular hybrid automata (2014),
http://arxiv.org/abs/1311.3826

15. Laroussinie, F., Markey, N., Schnoebelen, P.: Model checking timed automata with
one or two clocks. In: Gardner, P., Yoshida, N. (eds.) CONCUR 2004. LNCS,
vol. 3170, pp. 387–401. Springer, Heidelberg (2004)

16. Markey, N.: Verification of Embedded Systems – Algorithms and Complexity.
Mémoire d’habilitation, ENS Cachan, France (April 2011)

17. Minsky, M.L.: Computation: finite and infinite machines. Prentice-Hall (1967)
18. Perrin, D., Pin, J.E.: Infinite Words—Automata, Semigroups, Logic and Games.

Pure and Applied Mathematics, vol. 141. Elsevier (2004)
19. Sistla, A.P., Clarke, E.M.: The complexity of propositional linear temporal logics.

J. ACM 32(3), 733–749 (1985)

http://arxiv.org/abs/1311.3826

Non-convex Invariants and Urgency Conditions

on Linear Hybrid Automata

Stefano Minopoli and Goran Frehse

VERIMAG, Centre Équation - 2, avenue de Vignate, 38610 GIÉRES, France
{stefano.minopoli,goran.frehse}@imag.fr

Abstract. Linear hybrid automata (LHAs) are of particular interest
to formal verification because sets of successor states can be computed
exactly, which is not the case in general for more complex dynamics.
Enhanced with urgency, LHA can be used to model complex systems
from a variety of application domains in a modular fashion. Existing
algorithms are limited to convex invariants and urgency conditions that
consist of a single constraint. Such restrictions can be a major limitation
when the LHA is intended to serve as an abstraction of a model with
urgent transitions. This includes deterministic modeling languages such
as Matlab-Simulink, Modelica, and Ptolemy, since all their transitions are
urgent. The goal of this paper is to remove these limitations, making LHA
more directly and easily applicable in practice. We propose an algorithm
for successor computation with non-convex invariants and closed, linear
urgency conditions. The algorithm is implemented in the open-source
tool PHAVer, and illustrated with an example.

1 Introduction

Linear Hybrid Automata (LHA) are discrete automata enhanced with real-
valued variables and linear constraints [12]. Despite their syntactical simplicity,
they admit a rich variety of behaviors. In LHA, the evolution of the variables
over time is governed by differential inclusions, called flows, which can be simple
intervals such as ẋ ∈ [1, 2], or more complex linear constraints over the deriva-
tives such as the conservation law ẋ+ ẏ = 0. Changes of the discrete state admit
arbitrary linear updates of the variables. For example, LHA can model discrete-
time affine systems, a widely used class of control systems, by using discrete
updates of the form x+ = Ax+ b.
Linear Hybrid Automata belong to the very few classes of hybrid systems

for which set-based successor computations can be carried out exactly [1]. This
makes them prime candidates for formal verification. LHA can serve as abstrac-
tions of systems that require not only timed behavior but quantitative infor-
mation, e.g., to capture accumulation effects. The LHA abstraction can then
be verified using model checkers such as HyTech [11] or PHAVer [9]. If the ab-
straction is conservative, verifying it implies that the real system satisfies the

A. Legay and M. Bozga (Eds.): FORMATS 2014, LNCS 8711, pp. 176–190, 2014.
c© Springer International Publishing Switzerland 2014

Non-convex Invariants and Urgency Conditions on Linear Hybrid Automata 177

specification; if the abstraction is an approximation that is not entirely conser-
vative, its verification helps to find bugs and identify pertinent test cases.
In model-based design, the basis for building LHA abstractions is often an

existing model, given in formats like Matlab-Simulink [14] or Modelica [15],
which are the de-facto standard in many industries. Like the academic formalism
Ptolemy [7], the semantics of these models are deterministic. In particular, a
discrete transition is taken as soon as it is enabled, which is also referred to as
urgent or as-soon-as-possible (ASAP) semantics. This can pose a problem when
trying to build a corresponding LHA model, since LHA transitions do not force
the system to change state when they are enabled. In particular, if the derivatives
of the system happen to be zero when the guard is enabled, the system may
remain forever at that state. One way to circumvent this problem is to add a clock
to the controller model and periodically test (with a self-loop transition) whether
the constraint is satisfied or not. This is a formally correct and conservative
way to model such a system, and it even corresponds quite closely to actual
behavior of process controllers, which periodically sample the sensors and set
actuators. But it can tremendously increase the computational complexity of
the verification task: the clock ticks introduce discrete state changes at a rate
much higher than the time constants of the system, multiplying the number
of sets of states that need to be computed. Another way is to build a LHA
with extra locations whose invariants depend on the geometry of the urgency
and flow conditions. But this requires several operations on polyhedra and one
needs to disregard the reachable states in the extra locations. Our approach is
to add urgency conditions to the LHA formalism and use a corresponding post-
operator. Declaring certain states of the controller as urgent prevents time from
elapsing, and one can now construct an LHA abstraction (or approximation) of
deterministic transitions.
Existing algorithms for set-based successor computations of LHA require ur-

gency conditions to either be independent of the continuous variables [11] or
consist of a single constraint [9], which can be quite restrictive in practice. In
this paper, we propose an algorithm to compute successor states for arbitrary,
non-convex, closed urgency conditions. To be able to do so, we also propose an
algorithm for computing successor states for general non-convex invariants, for
which so far no algorithm is available. Related work is discussed in more detail
for non-convex invariants in Sect. 2.3 and for urgency in Sect. 3.4.
The proposed algorithms are implemented in the open-source tool PHAVer on

the SpaceEx tool platform [8]. The tool as well as all examples from this paper
are available for download at spaceex.imag.fr. Detailed proofs are available in
a technical report [16].
In the next section, we recall the basics on LHA and then propose our post

operator for non-convex invariants. In Sect. 3, we propose our post operator for
urgency conditions and make the connection to urgent transitions. The compu-
tation of reachable states with these operators is illustrated by an example in
Sect. 4.

spaceex.imag.fr

178 S. Minopoli and G. Frehse

2 Linear Hybrid Automata with Non-convex Invariants

In this section, we give the syntax and the semantics description of a particular
case of Linear Hybrid Automata (LHA), where it is possible to define, for each
location, a non-convex invariant.

2.1 Definition and Semantics

We first need to define some notation. A convex polyhedron is a subset of Rn

that is the intersection of a finite number of strict and non-strict affine half-
spaces. A polyhedron is a subset of Rn that is the union of a finite number of
convex polyhedra. For clarity, we write P̂ if P is convex. The topological closure
of P is denoted by cl(P). Given an ordered set X = {x1, . . . , xn} of variables,
a valuation is a function v : X → R. Let Val(X) denote the set of valuations
over X . There is an obvious bijection between Val(X) and Rn, allowing us
to extend the notion of (convex) polyhedron to sets of valuations. We denote
by CPoly(X) (resp., Poly(X)) the set of convex polyhedra (resp., polyhedra)
on X . We use Ẋ to denote the set {ẋ1, . . . , ẋn} of dotted variables, used to
represent the first derivatives, and X ′ to denote the set {x′1, . . . , x′n} of primed
variables, used to represent the new values of variables after a discrete transition.
Arithmetic operations on valuations are defined in the straightforward way. An
activity over X is a function f : R≥0 → Val(X) that is continuous on its domain
and differentiable except for a finite set of points. Let Acts(X) denote the set
of activities over X . The derivative ḟ of an activity f is defined in the standard
way and it is a partial function ḟ : R≥0 → Val(Ẋ).

A Linear Hybrid Automaton is a tuple H = (Loc, X,Lab,Edg ,Flow , Inv , Init)
with

– a finite set Loc of locations ; a finite set X = {x1, . . . , xn} of real-valued
variables ; a state is a pair 〈l, v〉 of a location l and a valuation v ∈ Val(X);
a finite set of labels Lab;

– a finite set Edg of discrete transitions that describes instantaneous changes
of locations, in the course of which variables may change their value. Each
transition (l, α, η, l′) ∈ Edg consists of a source location l, a target location
l′, a label α ∈ Lab, and a jump relation η ∈ Poly(X ∪X ′), that specifies how
the variables may change their value during the transition. The guard is the
projection of η on X ;

– a mapping Flow : Loc → CPoly(Ẋ) attributes to each location a set of
valuations over the first derivatives of the variables, which determines how
variables can change over time;

– a mapping Inv : Loc → Poly(X), called the invariant ;
– a mapping Init : Loc → Poly(X), contained in the invariant, defining the

initial states of the automaton.

The set of states of H is S = Loc × Val(X). Moreover, we use the shorthand
notations InvS =

⋃
l∈Loc{l} × Inv(l) and InitS =

⋃
l∈Loc{l} × Init(l). Given a

Non-convex Invariants and Urgency Conditions on Linear Hybrid Automata 179

set of states A and a location �, we denote by A�� the projection of A on �, i.e.
A��= {v ∈ Val(X) | 〈�, v〉 ∈ A}.

Semantics. The behavior of a LHA is based on two types of steps: discrete steps
correspond to the Edg component, and produce an instantaneous change in both
the location and the variable valuation; timed steps describe the change of the
variables over time in accordance with the Flow component.
Given a state s = 〈l, v〉, we set loc(s) = l and val(s) = v. An activity f ∈

Acts(X) is called admissible from s if (i) f(0) = v and (ii) for all δ ≥ 0, if ḟ(δ)
is defined then ḟ(δ) ∈ Flow (l). An activity is linear if there exists a constant
slope c ∈ Flow (l) such that, for all δ ≥ 0, ḟ(δ) = c. We denote by Adm(s) the
set of activities that are admissible from s.

Runs. Given two states s, s′, and a transition e ∈ Edg , there is a discrete step
s

e−→ s′ with source s and target s′ iff (i) s, s′ ∈ InvS , (ii) e = (loc(s), α, η, loc(s′)),
and (iii) (val (s), val(s′)[X ′/X]) ∈ η, where val(s′)[X ′/X] is the valuation in
Val(X ′) obtained from s′ by renaming each variable in X with the corresponding
primed variable in X ′. Whenever condition (iii) holds, we say that e is enabled

in s. There is a timed step s
δ,f−−→ s′ with duration δ ∈ R≥0 and activity f ∈

Adm(s) iff (i) s ∈ InvS , (ii) for all 0 < δ′ ≤ δ, (〈l, f(δ′)〉) ∈ InvS , and (iii)
s′ = 〈loc(s), f(δ)〉. Given a state s ∈ S and a hybrid automaton H with initial
set of states Init , s is said to be reachable in H if there exists a finite run

r = s0
δ0,f0−−−→ s′0

e0−→ s1
δ1,f1−−−→ s′1

e1−→ s2 · · · sn, such that s0 ∈ Init and sn = s. We
denote the set of reachable states by Reach(H).
Classically, the algorithm that computes the set Reach(H) is a fixed-point

procedure, over all the locations l ∈ Loc, based on the continuous post operator
and on the discrete post operator : given a set of states S′ ⊆ S, the first one
operator is used to compute the set of states reachable from S′ by following an
admissible trajectory, while the second one operator is used to compute the set
of states reachable from S′ via discrete transitions. Notice that the computation
of the discrete post operator is not affected by the nature of the invariants, so
we focus on the continuous post operator. The formal definitions are as follows:

Definition 1 (Post operators). Given an hybrid automaton H, a location � ∈
Loc, a set of valuations P, I ⊆ Inv(�), the continuous post operator Post�(P, I)
contains the set of all valuations v ∈ Val(X) reachable from some u ∈ P without
leaving I:

Post�(P, I) =
{
v ∈ val(X)

∣∣ ∃u ∈ P, f ∈ Adm(〈l, u〉) and δ ≥ 0 :

∀0 < δ′ ≤ δ, f(δ′) ∈ I and f(δ) = v
}
. (1)

The discrete post operator Postε(P) contains the set of all valuations v ∈
Val(X) reachable from some u ∈ P by taking the discrete transition ε = (�, η, �′):

Postε(P) =
{
v ∈ val(X)

∣∣∃u ∈ P, (u, v[X ′/X]) ∈ η and v ∈ Inv(�′)
}
.

180 S. Minopoli and G. Frehse

From these operators on valuations we obtain the continuous and discrete post
operators for a set of states S by iterating over all locations and transitions:

Post c(S) =
⋃

�∈Loc

{�} × Post�(S ��, Inv(�)), Postd(S) =
⋃

(�,α,η,�′)∈Edg

{�′} × Postε(S ��).

Note that definition (1) is valid regardless whether I is convex or not. It differs
slightly from the classic definition in that we do not require that P ⊆ I. This
trick is used in the next section to apply the operator iteratively to convex
partitions of a non-convex invariant. In this case, I is a convex subset of the
invariant but P is not necessarily a subset of I. For the sake of clarity, we will
denote by Post�(P, I) the continuous post operator when I is convex and by
ncPost �(P, I) when I is non-convex.
The reachable states Reach(H) are computed as the smallest fixed point of

the sequence S0 = Postc(InitS), and Sk+1 = Sk ∪ Post c(Postd(Sk)).

2.2 Computing the Continuous Post Operator with Nonconvex
Invariants

In this section, after recalling how the continuous post operator is computed
when the invariant is a convex polyhedron, we give a sound and complete proce-
dure that, given a non-convex invariant I and an initial set of valuations P ⊆ I,
computes the continuous post operator ncPost �(P, I). Given a linear hybrid au-
tomaton H , it is well known that the continuous post operator, on a location
l ∈ Loc, a convex invariant I = Inv(�), a flow F = Flow (�) and a set of initial
valuations P ⊆ Inv(�), is given by:

Post�(P, I) = (P↗F) ∩ I, (2)

where P↗F are valuations on straight line trajectories starting in P with con-
stant derivative ẋ = c for any c ∈ F :

P↗F= {x′ | x ∈ P, c ∈ F, t ∈ R≥0, x′ = x+ ct}. (3)

The operator (3) is straightforward to compute for polyhedral sets, and is avail-
able in computational geometry libraries such as the Parma Polyhedra Library
(PPL) [2].
Before giving the fixed point characterization of ncPost �, we need to introduce

some extra notation (some of them similar to operators defined in [6]). Given
polyhedra A and B, their boundary is

bndry(A,B) =
(
cl(A) ∩B

)
∪
(
A ∩ cl(B)

)
. (4)

Clearly, bndry(A,B) is nonempty only if A and B are adjacent to one another
or they overlap; otherwise, it is empty.

Definition 2 (Potential entry). Given a location � and convex polyhedra A
and B, the potential entry region from A to B denotes the set of points on the

Non-convex Invariants and Urgency Conditions on Linear Hybrid Automata 181

A B

F = Flow(l)

(a) Case 1: the flow al-
lows to reach B from
bndry(A,B).

A B

F = Flow(l)

(b) Case 2: the flow does
not allow to reach B from
bndry(A,B).

A

F = Flow(l)

B

(c) Case 3: the flow does
not allow to reach B from
bndry(A,B).

Fig. 1. The computation of potential entry from A to B involves computing the bound-
ary of A and B, and identifying states reachable on that boundary

boundary between A and B that may reach B by following some linear activity
in location �, while always remaining in A ∪B:

pentry�(A,B) =
{
p ∈ bndry(A,B) | ∃q ∈ A, δ ≥ 0 and c ∈ Flow (�) :

p = q + δ · c and for all 0 ≤ δ′ < δ, q + δ′ · c ∈ A
}
. (5)

We call the above set the “potential” entry because it may happen that, even
though pentry�(A,B) is not empty, the system is not able to reach valuations
in B starting from a valuation in A (see Example 1, Fig. 1(c)). The following
Lemma gives us a way to effectively compute the potential entry region.

Lemma 1. Given a location � and convex polyhedra A and B, let F = Flow (�),
the potential entry region from A to B can be computed by:

pentry�(A,B) = bndry(A,B) ∩ A↗F .

From Lemma 1 follows the following Corollary:

Corollary 1. If A ⊆ B, then A ⊆ pentry�(A,B) ⊆ cl(A).

Example 1. Figure 1 shows two convex polyhedra A and B whose boundary is
non empty (A and B are adjacent), where flow is represented by an arrow. Con-
sidering Figure 1(a), it is easy to check that the flow allows to reach valuations on
the boundary between A and B starting from a valuation belongs to A, and then
pentry�(A,B) �= ∅. Considering instead the case depicted in Figure 1(b) (same as
the previous one except for the flow), there is no way to reach valuations belong
to bndry(A,B) starting from a valuation u ∈ A, and then pentry�(A,B) = ∅.
Figure 1(c) shows a case where the polyhedron B is not closed and then by fol-
lowing the flow, the system can never reach B, even if the starting valuation is
on the top border of A. Notice that, even if B is not reachable from A, we have
that pentry�(A,B) �= ∅: this clearifies why we denote this set as “potential”.

Now we are ready to give a way to correctly compute the continuous post
operator when the invariants could be non-convex. Given a LHA H and let l ∈

182 S. Minopoli and G. Frehse

Loc, I = Inv(�), F = Flow (�) and P ⊆ I. The idea is to build incrementally the
sets of reachable valuations by considering each time a single convex component
Î ′ ∈ [[I]] instead of considering the entire invariant I. The procedure starts by

finding, for all Î ′ ∈ [[I]] and P̂ ′ ∈ [[P]], the potential entry from P̂ ′ to Î ′.

Once obtained the set pentry�(P̂
′, Î ′), the procedure computes the classical

continuous post operator on pentry�(P̂
′, Î ′) and Î ′. The procedure is applied

recursively by building the sequence W0 ⊆ W1 ⊆ . . .Wi−1 = Wi of the sets of
the reachable valuations, with W0 = P , and ends when no new valuation can be
added to a set. When this happens, we have that ncPost �(P, I) = Wi.
The formal relationship between the fixed-point procedure described above

and the computation of the continuous post operator, when the invariant is
non-convex, is given by the following theorem:

Theorem 1. Given a location � ∈ Loc and sets P ⊆ Inv(�), I = Inv(�),
ncPost �(P, I) is the smallest fixed point of the sequence W0 = P ,

Wk =
⋃

Ŵ ′∈[[Wk−1]]

⋃
Î′∈[[I]]

Post�(pentry�(Ŵ
′, Î ′), Î ′).

Moreover, the above sequence reaches the fixed point in at most n =
∣∣[[I]]∣∣ steps,

that is Wn+1 = Wn.

Notice that the role of pentry�(Ŵ
′, Î ′) is crucial in order to compute all and

only those valuations that can be reached in Î ′ by always remaining in the global
invariant I. This condition can not be ensured by applying the post operator
directly on Ŵ ′ instead of pentry�(Ŵ

′, Î ′) (see Section 2.3 in [16] for more details).
We prove Theorem 1 by induction on the number of the convex components of

the invariant in which the system remains during a run. We define this number
as follows. Given a polyhedron I and two valuations u and v, assuming that v is
reachable from u via an admissible activity that always remains in I (i.e. always
avoids I), we denote by d(u, v, I) the minimum number of convex polyhedra
in [[I]] in which the system must remain in order to reach v from u via any
admissible activity f :

d(u, v, I) = min{n > 0 | ∃f ∈ Adm(〈�, u〉), δ ≥ 0, Î1, . . . În ∈ [[I]] :

f(δ) = v and ∀0 ≤ δ′ ≤ δ ∃j ∈ {1, . . . , n} : f(δ′) ∈ Îj}.

When there is no activity that can reach v from u avoiding I, we write d(u, v, I) =
∞. Hence either d(u, v, I) ≤

∣∣[[I]]∣∣ or d(u, v, I) = ∞. For the induction proof, we
define a version of ncPost � that takes into account only valuations v such that the
system, in order to reach v, always remains in a fixed number of convex polyhedra
in the invariant. Given a location � and sets P, I ⊆ Inv(�) and i ≤ |[[I]]|,

ncPost �(P, I, i) =
{
v ∈ ncPost �(P, I)|∃u ∈ P : d(u, v, I) ≤ i

}
.

Note that for all i ≤ j, ncPost �(P, I, i) ⊆ ncPost �(P, I, j).

Non-convex Invariants and Urgency Conditions on Linear Hybrid Automata 183

We exploit the following, fundamental property of LHA: if there is an activity
that goes from u to v inside the invariant, there is also a sequence of linear
activities that does the same. Moreover, each linear activity is contained within
one convex polyhedron of [[I]] and hence the connecting points between any two
consecutive linear activities lie on the boundary between two polyhedra in [[I]].
The following formalization is a reformulation of Lemma 2.2 in [18] given as
Lemma 5 in [6]:

Lemma 2. [6] Let u and v be valuations, and I a polyhedron. If d(u, v, I) = i <
∞, then there is a sequence of linear activities f1, . . . , fi, delays δ0, . . . , δi, and
convex polyhedra Î1, . . . , Îi ∈ [[I]] such that (i) f1 ∈ Adm(〈l, u〉), (ii) fi−1(δi−1) =

v, (iii) for all j < i it holds fj(δj) ∈ bndry(Îj , Îj+1) and fj+1 ∈ Adm(〈l, fj(δj)〉),
and (iv) for all j ≤ i and 0 < δ′ < δj it holds fj(δ

′) ∈ Îj .

For lack of space, we only give a proof sketch of Theorem 1. The complete
proof can be found in the appendix and in [16].

Proof of Theorem 1. (Sketch) Let n =
∣∣[[I]]∣∣, first notice that for two

valuation u and v, where u, v ∈ ncPost �(P, I), by definition of post operator
d(u, v, I) ≤

∣∣[[I]]∣∣. Then trivially holds that ncPost �(P, I) = ncPost �(P, I, n).
We show by induction that for all locations �, polyhedra P, I ⊆ Inv(�), and i ≥

1, ncPost �(P, I, i) = Wi. The base case is straightforward, since it corresponds
to a convex invariant.
We first discuss ncPost �(P, I, i) ⊆ Wi. Consider a run that goes from some

u ∈ W1 through some u′ ∈ Wi−1 to some v ∈ ncPost �(P, I, i). We need to show
that v ∈ Wi. Let Îi−1 be the i−1th invariant visited on the run. If u′ ∈ Îi−1, the
proof is straightforward, since all reachable states in Îi−1 are inWi−1. Otherwise,
u′ ∈ Îi. With Lemma 2, there is some u∗ ∈ Îi−1 such that a straight line activity
can be extended from u∗ to u′. These states are contained in the potential entry
set, and by definition also in Wi.
To show Wi ⊆ ncPost �(P, I, i), we need to show that Wi does not contain

more states than ncPost �(P, I, i). Using case distinctions similar to the previous
paragraph, we can show that Wi consists of states reachable using the convex
post operator inside a convex invariant, plus the boundary states reachable by
straight line trajectories. From Lemma 2, it follows that these boundary states
are also in ncPost �(P, I, i), which concludes the proof. �

2.3 Related Work

In [13], the author shows a different approach in order to tackle non-convex
invariants. The proposed algorithm to compute the reachable set is built only for
closed convex invariants, but this is not a restriction because (closed) non-convex
invariants can be modeled by splitting locations. This means that starting from
an automatonA with non-convex invariants, it is necessary to build an equivalent
automaton B whose locations have only convex invariants: this is done by taking,
for each location of A, the exact convex coveringQ of the corresponding invariant

184 S. Minopoli and G. Frehse

and then, for each convex component Q̂ ∈ Q, by adding a location to B whose
associated (convex and closed) invariant is Q̂. Therefore, this approach does not
work with non-closed invariants and needs a postprocessing phase in order to
build the automaton B. Our approach tries to overcome these limitations: the
reachability analysis is directly done by using the ncPost � operator, allowing the
usage of non-closed invariants and avoiding the hidden process of building a new
automaton.

3 Linear Hybrid Automata with Urgency

In this section, we extend LHA by allowing the possibility to attach to each loca-
tion a so-called urgency condition. The urgency condition impedes time elapse,
i.e., no continuous activities continue from a valuation that satisfies the condi-
tion. As we will see later, there is a connection between urgency conditions on
locations and urgent semantics on transitions.

3.1 Definition and Semantics

We denote by SPoly(X) the subset of RX that can be obtained by finite dis-
junction of closed convex polyhedra. A Linear Hybrid Automaton with Urgency
(LHAU) H = (Loc, X,Lab, Edg ,Flow , Inv ,Urg, Init) consists of a LHA defined
in Sect. 2 and a mapping Urg : Loc → SPoly(X), called urgency condition. To
designate the urgent states, we use the shorthand UrgS =

⋃
l∈Loc{�} × Urg(�).

Urgent transitions. In our definition, the urgency condition is defined for each
location. An alternative approach, popular mainly because of its syntactical
simplicity, is to designate each discrete transition as urgent or not. This is also
referred to as as-soon-as-possible (ASAP) transitions. Urgent transitions can
easily be translated to an urgency condition: Let EdgU ⊆ Edg be the set of
urgent transitions. Then the equivalent urgency condition is the union of the
outgoing guards, Urg(�) = {u | ∃(�, η, �′) ∈ EdgU : (u, v) ∈ η}.

Semantics. The urgency conditions affect only the timed steps, while the defi-
nition of discrete step remains the same as for LHA. Given a state s = 〈l, v〉, we
define loc(s) = l and val(s) = v. In order to give the semantics of timed-steps
for LHAU we define, for an activity f ∈ Adm(s), the Switching Time of f in
l, denoted by SwitchT (f, U), as the value δ ≥ 0 such that, for all 0 ≤ δ′ < δ,
f(δ′) /∈ U and f(δ) ∈ U . When for all δ ≥ 0 it holds that f(δ) /∈ U , we write
SwitchT (f, U) = ∞. Informally, the switching time of an activity f in the loca-
tion l specifies the maximum amount of time δ such that the system, by following
the activity f , is allowed to remain in the location l.

Given two states s, s′, there is a timed step s
δ,f−−→ s′ with duration δ ∈ R≥0

and activity f ∈ Adm(s) iff (i) there exists the timed step s
δ,f−−→ s′ in the LHA

without urgency conditions, and (ii) δ ≤ SwitchT (f,Urg(loc(s))).

Non-convex Invariants and Urgency Conditions on Linear Hybrid Automata 185

Parallel Composition. We give a brief formal definition of parallel composition
with urgency for the case where both automata range over the same variables.
The key here is that the urgency condition of the composition is the union of
the urgency conditions of the operands.

Definition 3 (Parallel composition). Given linear hybrid automata with ur-
gency H1, H2 with Hi = (Loci, X,Labi,Edg i,Flow i, Inv i, Urgi, Init i), their par-
allel composition is the LHAU H = (Loc1×Loc2, X,Lab1∪Lab2, Edg ,Flow , Inv,
Urg, Init), written as H = H1‖H2, where

– ((l1, l2), α, η, (l
′
2, l

′
2)) ∈ Edg iff

• α ∈ Lab1 ∩ Lab2, for i = 1, 2, (li, α, ηi, l
′
i) ∈ Edg i, with η = η1 ∩ η2, or

• α /∈ Lab1, l′2 = l2, and (l1, α, η, l
′
1) ∈ Edg1, or

• α /∈ Lab2, l′1 = l1, and (l2, α, η, l
′
2) ∈ Edg2 ;

– Flow (l1, l2) = Flow 1(l1) ∩ Flow 2(l2); Inv(l1, l2) = Inv1(l1) ∩ Inv2(l2);
– Urg(l1, l2) = Urg1(l1) ∪ Urg2(l2); Init(l1, l2) = Init1(l1) ∩ Init2(l2).

3.2 Reachability

The discrete post operator for the class of LHAU is trivially the same of the
classical one, while the continuous one, that we call Urgent Continuous Post
Operator, changes due to the extra condition induced by the operator SwitchT :

Definition 4 (Urgent continous post). Given a linear hybrid automaton
with urgency H, a location � ∈ Loc, and a set of valuations P ⊆ Inv(�), let I =
Inv(�), and U = Urg(�). The urgent continuous post operator UPost(P, I, U)
is defined as:

UPost(P, I, U) =
{
v ∈ val(X)

∣∣∣ ∃u ∈ P, f ∈ Adm(〈�, u〉), δ ≥ 0 :

f(δ) = v, for all 0 < δ′ ≤ δ, f(δ′) ∈ I, and δ ≤ SwitchT (f, U)
}
.

3.3 Computing the Urgent Continuous Post Operator

We now derive a construction of the urgent post operator, starting with the post
operator for non-convex invariants and adding the states that are missing.
The urgent post operator has to compute the valuations that are reachable

from some set P without passing through states in the urgent set U . This includes
the states that are reachable within the complement of U , so ncPost �(P ∩U, I ∩
U) is an underapproximation of UPost �(P, I, U). In the following, let Vnc =
ncPost �(P ∩ U,U) and VU = UPost �(P, I, U). The set Vnc trivially does not
contain valuations that belong to U (since Ū is used in the invariant), while VU

also contains those valuations that touch U for the first time on a run. As shown
in the examples of Figure 2, the system is allowed to remain on the boundary
of an invariant for any time as the invariant is satisfied, while the system can
not remain on the boundary of an urgency condition. In the instant the urgency

186 S. Minopoli and G. Frehse

U U

P

Flow(l)

(a) VU contains P ∩ U .

U

P

Flow(l)

(b) VU contains the reachable boundary

Fig. 2. The urgent post states VU = UPost�(P, I, U) can be obtained from Vnc =
ncPost�(P ∩ U, I ∩ U) plus the part (identified by the thick lines) of the boundary
between Vnc and U that can be reached from Vnc. The dashed lines identify the non-
closed borders.

condition is met, the system can not evolve any more, i.e., it is forced either to
stop the evolution of the continuous variables or to jump in another location.
The thick lines in Figure 2(a) and Figure 2(b) identify the valuations on the
boundary between Vnc and U that can be reached from Vnc, and therefore they
belong to VU .
In summary, we can compute VU as the union of P , Vnc and the set of the

valuations that belong to the boundary between Vnc and U from where it is pos-
sible to reach U by following some admissible activity. The latter set is obtained
by using the potential entry operator. This is formalized as follows:

Theorem 2. Given a location � ∈ Loc and a set P ⊆ Inv(�), let I = Inv(�), U =

Urg(�), Vnc = ncPost �(P∩U, I∩U), and B =
⋃

Â′∈[[Vnc]]

⋃
Û ′∈[[U]] pentry�(Â

′, Û ′∩
I). Then UPost �(P, I, U) = P ∪ Vnc ∪B.

3.4 Related Work

A general class of hybrid automata with urgency conditions is described in [17],
but without giving the computation of the continuous post operator for urgency.
In that work, the Time Can Progress (tcp) predicate specifies, for each location
the maximum sojourn time, which may depend on the values of the variables
when entering the location. This corresponds to the complement of our urgency
condition. Notice that the semantics in [17] require the tcp to be satisfied when
the location is entered. In our framework we relax this constraint by allowing to
enter a location even if its urgency condition is already satisfied: in this case, the
system must exit the location instantaneously. A similar urgency condition is
described in the Computational Interchange Format for Hybrid Systems (CIF)
(see [4]). For a more detailed and formal discussion of urgency, see [10] and
references therein.

Urgent locations. In the classic LHA model checker HyTech, a transition can
be designated as urgent by adding the keyword ASAP [13]. But this is restricted
to transitions without guard constraints [11,13], which is equivalent to having

Non-convex Invariants and Urgency Conditions on Linear Hybrid Automata 187

urgent locations, i.e., locations in which time progress is not allowed. The real-
time verification tool UPPAAL [5] similarly features urgent locations and urgent
channels (synchronization labels) that can be used only on transitions without
guard constraints. Urgent locations are semantically equivalent to adding an
extra variable t, with dynamics ṫ = 1, that is set to zero when the location is
entered and by attaching the invariant t = 0 to the location. In previous versions
of our model checker PHAVer, transitions could be designated as urgent, but
only if the guard consists of a single constraint, locally as well as in the composed
model [9]. This restriction was imposed because it suffices to be able to compute
the urgent post using the standard post operator for convex invariants.

Almost ASAP. In [19] the authors propose a relaxed semantics on asap transition
in the context of the timed automaton, for the so called almost asap by delay
δ. In practice, they define the guard enlargement, that means that transitions
can be taken also with δ time delay. The rationale behind this approach is that
no hardware can guarantee that a transition will always be taken in the exact
moment as defined in theory. We could define a similar approach, not only on
clock variables, in a simple but opposite way: it is enough to define the urgency
condition by narrowing all the constraints by a quantity that is equal to the
maximum variation of the variable in the time δ.

4 Example: Batch Reactor

To showcase the algorithm an its implementation, we present a modular model
of a batch-reactor system, which is a variation of the case study in [3]. It shall
illustrate that non-urgent transitions as well as urgent transitions with more
than one guard constraint arise naturally.
The batch reactor is comprised of a reactor R1 and two buffer tanks B2,B3

connected by pipes. The reactor is used to create a product that is then made
available to a consumer in the two buffer tanks, see the schematic in Fig. 3(a).
A controller measures the fill levels in the reactor and the buffers, and opens
and closes valves connecting the reactor to the buffers in order to produce and
deliver the product to the consumer. The specification is to verify that neither
buffer ever becomes empty, and that none of the tanks overflows.
We now present the LHA models. The controller automaton is shown in

Fig. 3(d). The opening and closing of valves is modeled by synchronization la-
bels. In the production step, the reactor is filled with educts (raw materials)
coming from the outside. Details on the filling and reaction process itself are
omitted since they are irrelevant to this example, but it does take a certain
amount of time and produces an uncertain amount of product. This is modeled
by the fact that the controller ends the filling process when the reactor level
x1 ∈ [x1 ,full , x1 ,max], which is accomplished with the invariant x1 ≤ x1 ,max and
a non-urgent transition with label close in and guard condition x1 ≥ x1 ,full .
When the product is ready, the controller decides whether to fill buffer B2,
buffer B3, or wait. The controller decides which buffer to fill using the following
simple criteria:

188 S. Minopoli and G. Frehse

max

full

Reactor 1

Buffer 2 Buffer 3

max

min

contr

contr contr

x1

x2
x3

(a) Schematic of the Batch-Reactor
System

filling
x ≥ 0

f min ≤ x′ ≤ f max

constant
x ≥ 0

x′ == 0

draining1 draining2
x ≥ 0 x ≥ 0

−d max ≤ x′ ≤ −d min −d max ≤ x′ ≤ −d min

draining1 empty draining2 empty
x == 0 x == 0

x′ == 0 x′ == 0

error

open in

open in

close1 out close2 out

close in

close2 outclose1 out

close in
open2 out

close1 out close2 out

open1 outclose in close in

open1 out open2 out

open2 outopen1 out

open in

open in

open2 in open1 in

close2 outclose1 out

(b) Automaton Model of the Reactor

filling
x ≥ 0

f min ≤ x′ ≤ f max

draining
x ≥ 0

−d max ≤ x′ ≤ −d min

filling empty
x == 0

x′ + x in′
== 0

open in close in

draining empty
x == 0
x′ == 0

open in

close in

open inclose in

close in

open in

(c) Automaton Model of the Buffers

start producing

waitingfilling2

close12 close13

filling3

open in

close in

producing
x1 ≤ x1 max

x1 ≥ x1 full
x1 == 0 x1 == 0

open12 open13

open13
open12
x2 ≤ x2 min

x3 ≤ x3 min &

x2 > x2 min

x3 > x3 min &

x2 ≤ x2 max & x2 ≤ x3
x2 > x2 min &

x3 ≤ x3 max & x2 > x3

(d) Automaton Model of the Controller

Fig. 3. Batch Reactor System: Schematic and Automata Models

– To avoid overflow, never start filling a buffer above a given maximum level.
– To avoid empty buffers, fill a buffer below a given minimum level.
– If the above is met, fill the buffer with the lower level.
– To be deterministic, prioritize B2.

All transitions for filling buffers B2 and B3 are urgent. The if-then-else structure
of the criteria leads to guards with more than one constraint, some of which
are strict inequalities. Thanks to the urgency, the controller model requires no
clocks or while-loops.
The reactor automaton is shown in Fig. 3(b). The locations of the reactor corre-

spond to the different combinations of open and closed valves. The model is sim-
plified using the assumptions that the reactormust not be filled and drained at the
same time (a common requirement in chemical engineering), and that only one of
the buffers is filled at any given time. An error location is included so that viola-
tions of these assumptions can be detected. The transitions are not set as urgent in
this automaton; the urgency in the composed system results from the controller.
The buffers are modeled each as an instantiation of the automaton shown in

Fig 3(c). The outflow of the buffers is determined by the consumer, and therefore
only known within the bounds (there is no valve to control outflow). The inflow

Non-convex Invariants and Urgency Conditions on Linear Hybrid Automata 189

0 100 200 300 400
0

100

200

300

400

x2

x
3

(a) reachable buffer levels x2 and x3 for
safe parameter values

0 100 200 300 400
0

100

200

300

400

x2

x
3

(b) decreasing the min. reactor outflow by
5% eventually leads to an empty buffer B3

Fig. 4. The evolution of the continuous variables of the batch reactor example, starting
from location start producing with initial values x1 = 0, x2 = 100 and x2 = 100

is determined is equal to the outflow of the reactor. This leads to the dynamics
ẋi = [−di,max ,−di,min]− ẋ1. Note that ẋ1 is negative when the buffer is filling,
so ẋi is augmented by −ẋ1 in this dynamics. Again, the transitions are not set
as urgent; the urgency in the composed system results from the controller.
The specification was verified using SpaceEx/PHAVer (an implementation of

the PHAVer reachability algorithm built on the SpaceEx platform). The inflow
and outflow rates were set nondeterministically to be within intervals; the models
incl. parameter values are available at spaceex.imag.fr. The computation of
the complete reachable states shown in Fig. 4(a) takes 3.0 s and 24 MB of mem-
ory on a standard laptop. Finding the fixed point takes a total of 178 continuous
post operations. Buffer 3 goes empty if the lower bound on the reactor outflow
is reduced by 5%. The fixed point is found in 1153 post operations, which takes
18.7 s and consumes 24 MB of memory.

5 Conclusions

Linear Hybrid Automata stand out in the hybrid systems domain because sets of
successor states can be carried out exactly. Available algorithms require convex
invariants and single-constraint urgency conditions. In this paper, we propose al-
gorithms that can handle non-convex invariants and (closed) non-convex urgency
conditions.The practical impact is that this extension canbe used in order tomodel
systems in which transitions have to be taken as soon as possible. This is a common
feature in several commercial tools used as de-facto standard in industry (for exam-
ple in the automotive context) such as Matlab/Simulink orModelica.We formally
proved the correctness and the termination of the proposed procedures, which are
based on two operators: the first one is the classical continuous post operator for
convex sets Post� and the other one (defined here) is the so-called potential entry

spaceex.imag.fr

190 S. Minopoli and G. Frehse

operator pentry�. To the best of our knowledge, the proposed solutions represent
the first sound and complete procedures for the task in the literature.

References

1. Alur, R., Henzinger, T., Ho, P.H.: Automatic symbolic verification of embedded
systems. IEEE Trans. Softw. Eng. 22, 181–201 (1996)

2. Bagnara, R., Hill, P.M., Zaffanella, E.: The Parma Polyhedra Library: Toward a
complete set of numerical abstractions for the analysis and verification of hardware
and software systems. Science of Computer Programming 72(1-2), 3–21 (2008)

3. Bauer, N., Kowalewski, S., Sand, G., Löhl, T.: A case study: Multi product batch
plant for the demonstration of control and scheduling problems. In: Engell, S.,
Kowalewski, S., Zaytoon, J. (eds.) ADPM 2000, pp. 383–388. Shaker (2000)

4. van Beek, D.A., Reniers, M.A., Schiffelers, R.R.H., Rooda, J.E.: Foundations of a
compositional interchange format for hybrid systems. In: Bemporad, A., Bicchi, A.,
Buttazzo, G. (eds.) HSCC 2007. LNCS, vol. 4416, pp. 587–600. Springer, Heidelberg
(2007)

5. Behrmann, G., David, A., Larsen, K.G.: A tutorial on uppaal. In: Bernardo, M.,
Corradini, F. (eds.) SFM-RT 2004. LNCS, vol. 3185, pp. 200–236. Springer, Hei-
delberg (2004)

6. Benerecetti, M., Faella, M., Minopoli, S.: Automatic synthesis of switching con-
trollers for linear hybrid systems: Safety control. TCS 493, 116–138 (2012)

7. Buck, J.T., Ha, S., Lee, E.A., Messerschmitt, D.G.: Ptolemy: A framework for
simulating and prototyping heterogeneous systems. Ablex Publishing Corp. (1994)

8. Frehse, G., Le Guernic, C., Donzé, A., Cotton, S., Ray, R., Lebeltel, O., Ripado, R.,
Girard, A., Dang, T., Maler, O.: SpaceEx: Scalable verification of hybrid systems.
In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 379–395.
Springer, Heidelberg (2011)

9. Frehse, G.: PHAVer: algorithmic verification of hybrid systems past HyTech.
STTT 10(3), 263–279 (2008)

10. Gebremichael, B., Vaandrager, F.: Specifying urgency in timed i/o automata. In:
SEFM 2005, pp. 64–74. IEEE Computer Society (2005)

11. Henzinger, T.A., Ho, P.H., Wong-Toi, H.: Hytech: the next generation. In: Proc.
IEEE Real-Time Systems Symposium, p. 56. IEEE Computer Society (1995)

12. Henzinger, T.: The theory of hybrid automata. In: 11th IEEE Symp. Logic in
Comp. Sci., pp. 278–292 (1996)

13. Ho, P.H.: Automatic Analysis of Hybrid Systems. Ph.D. thesis, Cornell University,
technical Report CSD-TR95-1536 (August 1995)

14. MathWorks: Mathworks simulink: Simulation et model-based design (Mar 2014),
http://www.mathworks.fr/products/simulink

15. Mattsson, S.E., Elmqvist, H., Otter, M.: Physical system modeling with Modelica.
Control Engineering Practice 6(4), 501–510 (1998)

16. Minopoli, S., Frehse, G.: Non-convex invariants and urgency conditions on linear
hybrid automata. Tech. Rep. TR-2014-4, Verimag (April 2014)

17. Nicollin, X., Olivero, A., Sifakis, J., Yovine, S.: An approach to the description and
analysis of hybrid systems. In: Grossman, R.L., Ravn, A.P., Rischel, H., Nerode, A.
(eds.)HS 1991 andHS1992.LNCS, vol. 736, pp. 149–178. Springer,Heidelberg (1993)

18. Wong-Toi, H.: The synthesis of controllers for linear hybrid automata. In: IEEE
Conf. Decision and Control, pp. 4607–4612. IEEE (1997)

19. De Wulf, M., Doyen, L., Raskin, J.-F.: Almost ASAP semantics: From timed models
to timed implementations. In: Alur, R., Pappas, G.J. (eds.) HSCC 2004. LNCS,
vol. 2993, pp. 296–310. Springer, Heidelberg (2004)

http://www.mathworks.fr/products/simulink

Time-Bounded Reachability for Initialized

Hybrid Automata with Linear Differential
Inclusions and Rectangular Constraints

Nima Roohi and Mahesh Viswanathan

Department of Computer Science, University of Illinois at Urbana-Champaign, USA

Abstract. Initialized hybrid automata with linear differential inclusions
and rectangular constraints are hybrid automata where the invariants,
guards, resets, and initial values are given by rectangular constraints,
the flows are described by linear differential inclusions of the form ax+
b �1 ẋ �2 cx + d (with �1,�2 ∈ {<,≤}), and a variable x is reset on
mode change whenever the differential inclusion describing the dynamics
for x changes. Such automata strictly subsume initialized rectangular
automata. Our main result is that while the control state reachability
problem for such automata is undecidable, the time-bounded reachability
problem is decidable.

1 Introduction

The reachability problem for hybrid automata [17] is very important from the
standpoint of safety verification of cyberphysical systems. This problem has
been carefully studied in the past couple of decades and boundaries of decid-
ability have been extensively explored. The problem is stubbornly undecidable
as evidenced by the many undecidability results in the area [2, 5, 19, 25, 31].
Results identifying decidable subclasses are few and rare. Apart from some low
dimensional hybrid systems [5–7,23,28], the main classes of decidable hybrid sys-
tems are timed automata [3], initialized rectangular hybrid automata [19], semi-
algebraic o-minimal systems [22], and semi-algebraic STORMED systems [31].

Given the computational difficulty of analyzing hybrid systems, time-bounded
versions of classical decision problems have received much attention. It has been
shown that time-bounded problems in many cases are computationally easier
than the corresponding problems without time bounds [21, 26]. One particular
problem that has been investigated recently is the time-bounded reachability
problem, which asks if a certain control state of a hybrid automaton can be
reached within a given time bound T . The time-bounded reachability problem
has been shown to be NEXPTIME-complete for monotonic, rectangular hybrid
automata, eventhough the same problem for non-monotonic rectangular hybrid
automata is undecidable [10, 11].

In this paper we introduce a new class of hybrid automata called initialized
hybrid automata with linear differential inclusions and rectangular constraints.
Like initialized rectangular automata, the invariants, guards, resets, and initial

A. Legay and M. Bozga (Eds.): FORMATS 2014, LNCS 8711, pp. 191–205, 2014.
c© Springer International Publishing Switzerland 2014

192 N. Roohi and M. Viswanathan

values in such automata are described by rectangular constraints, and variables
are initialized, i.e., whenever the continuous dynamics of a variable changes
due to a mode switch, its value is required to be reset to value in an inter-
val range. However, unlike rectangular automata, the continuous dynamics is
given by linear differential inclusions of the form ax + b �1 ẋ �2 cx+ d (where
�1,�2 ∈ {<,≤}) 1. In other words, the evolution of a continuous variable x is
any trajectory x : R≥0 → R such that at any time t, ax(t)+b�1 ẋ(t)�2 cx(t)+d.
Thus, such automata (henceforth called initialized linear inclusion automata for
short) strictly subsume the class of initialized rectangular automata. We antici-
pate such automata to be useful in abstracting hybrid automata more precisely
than initialized rectangular automata. Evidence of such an application can be
seen in the use of eigenforms for abstracting linear systems [14].

We show that the reachability problem for initialized linear inclusion automata
is undecidable by reducing the halting problem of 2-counter machines. In addi-
tion, the time bounded reachability for (uninitialized) linear inclusion automata
is undecidable. This follows from the undecidability of the time bounded reach-
ability problem for (non-monotonic) rectangular hybrid automata [10, 11]. In
contrast, we show that the time-bounded reachability problem is decidable. Our
decidability result is proved based on the following observations. Similar to the
translation of initialized rectangular automata to timed automata [18, 19], we
first reduce the reachability problem of initialized linear inclusion automata to
the reachability of problem in an automaton all of whose continuous variables
are clocks. Thus, we generalize an observation about rectangular flows to linear
inclusion flows. The resulting automaton though is not a timed automaton be-
cause the constants used in the constraints could be of the form r ln r′, where
r, r′ are rationals. We call such automata logarithmic timed automata. This dif-
ference is significant because reachability for such automata is undecidable; this
is a consequence of our undecidablility result for initialized linear inclusion au-
tomata. However, we show that the time-bounded reachability for such automata
is decidable. Note, that our decidability result does not follow from the result
in [11] — while clocks are special monotonic rectangular variables, the presence
of irrational constants in our automata complicates matters. Our decidability
proof relies on observing that if a control state q is reachable within time T , it
is reachable by an execution with at most exponentially many discrete transi-
tions. The algorithm deciding time-bounded reachability then guesses such an
execution, and checks if the execution is valid. To check validity of an execu-
tion, we reduce the problem of checking negative cost cycles in an exponentially
sized graph. The presence of irrational constants in logarithmic timed automata
ensures that checking for negative cost cycles involves comparing linear combi-
nations of natural logarithms of rational numbers with integers. All steps of our
algorithm, except the step of comparing logs with integers, can be bounded by
PSPACE. Even though natural logs can be approximated very efficiently (both
in terms of space and running time) with arbitrary precison [9, 20, 29], we are
unaware of any complexity bounds for computing a particular bit (say k) of

1 Linear inclusions for each variable are scalar.

Time-Bounded Reachability for Initialized Hybrid Automata 193

the natural logarithm of a rational number. This prevents us from proving hard
upper bounds. We conjecture that the problem is in fact PSPACE-complete.

Due to space constraints many detailed proofs have been omitted, but can be
found in [30].

Related Work. The decidability/undecidability boundary for the reachability
problem in hybrid automata has been delineated through a collection of results;
the main results are included in the following references [2,3,5–7,12,19,22,23,25,
28, 31]. Given that the reachability problem is in general undecidable, approxi-
mations to the reachability problem (and the reachable set of states) have been
introduced [1, 8, 15]. The time bounded reachability problem has been shown
to be decidable for monotonic, rectangular hybrid automata in [10, 11] and for
o-minimal systems [16]. However, these classes of automata are incomparable to
the class considered in this paper. O-minimal hybrid systems [16] require the
continuous variables to be reset on every discrete transitions (or on every “cy-
cle” of transitions), thus decoupling the discrete and continuous dynamics. Such
a requirement is not imposed on our automata. Detailed comparison between
monotonic, rectangular hybrid automata, and the automata considered here, is
presented in the introduction, and the decidability proof.

2 Preliminaries

2.1 Sets and Functions Notations

N, Z, Q, and R are respectively the set of natural, integer, rational, and real
numbers. Q+ and R+ are respectively the set of positive rational, and real num-
bers, and R≥0 is the set of non-negative real numbers. ≤, ≥, > and < are
the ordering relations on real numbers with their usual meaning. We assume
∞ is strictly larger and −∞ is strictly smaller than all real numbers. For all
a, b ∈ R ∪ {−∞,∞}, [a, b] is defined to be the set {x ∈ R|a ≤ x ≤ b}. (a, b],
[a, b), and (a, b) are defined in a similar way. For any set A, P(A) denotes the
power set of A and |A| denotes its cardinality. For sets A and B, A∪B, A∩B, and
A−B denote respectively union, intersection, and difference of A and B. A → B
is a (total) function from A to B, and [A → B] is the set of all (total) functions
from A to B. For r ∈ R+, ln(r) and lg(r) are respectively the natural logarithm of

r and ln(r)
ln(2) . For f ∈ [A → B] and set C ⊆ A, f(C) = {b ∈ B|(∃a ∈ C)b = f(a)}.

For any f ∈ [A → R] and t ∈ R, we define function (f + t) ∈ [A → R] by
(f + t)(x) = f(x) + t. We may sometimes omit parenthesis when it causes no
confusion and use fa to denote f(a). The set {0, . . . , n − 1} will be denoted
by [n].

A rectangular region is any subset of real numbers of the form [a, b], (a, b],
[a, b), or (a, b). We denote the set of all rectangular regions by K. For k ∈ K, lk
denotes the lower bound of k, and uk denotes the upper bound of k. In addition,
�lk ∈ {<,≤} indicates if k is left closed and �uk

∈ {<,≤} indicates if k is
right closed. For example, if k = (a, b] then lk = a, �lk =<, uk = b, and

194 N. Roohi and M. Viswanathan

�uk
=≤. For a ∈ R, we will use a to denote the rectangular region [a, a] when

it causes no confusion. Rectangular regions are closed under finite intersection.
For al, au ∈ R, bl, bu ∈ R ∪ {−∞,∞}, and �l,�u ∈ {<,≤}, a band is defined to
be {(y, x) ∈ R2|alx+ bl �l y �u aux+ bu} 2. The set of all bands is denoted by
B. For each p ∈ B we denote elements of p by alp, aup, blp, bup, �lp, and �up.
Furthermore, we denote alpx+ blp and aupx+ bup by lp(x), up(x), respectively.
We may also write p by [alpx+ blp, aupx+ bup] if �lp = �up =≤. For all a, b ∈ R
we use ax+ b to denote [ax+ b, ax+ b].

For every function x ∈ [R≥0 → R] that maps an input t to x(t), the first
derivative with respect to t will be denoted by either dx

dt or ẋ. If ẋ = ax+ b for
some a, b ∈ R, then the solution is given by:

x(t) =

⎧⎨⎩x(0)eat +
beat − b

a
if a �= 0

x(0) + bt otherwise
(1)

2.2 Transition Systems and Hybrid Automata

Definition 1. A transition system T is a tuple (S, Σ,→, Sinit) in which S is a
(possibly infinite) set of states, Σ is a (possibly infinite) set of labels, →⊆ S×Σ×S

is a transition relation, and Sinit ⊆ S is the set of initial states.
We write s

α→ s′ instead of (s, α, s′) ∈→. We write s → s′ as a shorthand for

∃α ∈ Σ • s
α→ s′ and →∗ denotes the reflexive transitive closure of →. Finally for

all s ∈ S we define reachT (s) to be the set {s′ ∈ S|s →∗ s′}, and reach(T) to be⋃
s∈Sinit reachT (s).
For all transition systems T , we denote the elements of T by ST , ΣT , →T ,

and SinitT . In addition, whenever it is clear we drop the subscript T to make the
notation simpler.

Hybrid automata are used to model the interaction of a digital controller
with physical processes. A hybrid automaton has a set of real-valued continuous
variables that evolve with time, in addition to a set of discrete control locations.
For an introduction to such automata see [17]. In this paper we consider a special
class of hybrid automata that we define formally below.

Definition 2. A hybrid automaton with linear differential inclusions and rect-
angular constraints A is a tuple (Q, X, I, F, E, Qinit, Xinit), where

– Q is a finite non-empty set of (discrete) locations.
– X is a finite set of variables.
– I ∈ [Q× X → K] maps each location q and variable x to a rectangular region

as the invariant of x in q.
– F ∈ [Q×X → B] maps each location q and variable x to a band as the possible

flows of x in q. For p = F(q, x) and r ∈ R, we define F(q, x)(r) to be the
rectangular region {z ∈ R|lp(r) �lp z �up up(r)}.

2 We assume bl ∈ {−∞,∞} ⇒ al = 0 and bu ∈ {−∞,∞} ⇒ au = 0. We also extend
the + operator to satisfy (∀r ∈ R)r +∞ = ∞∧ r + (−∞) = −∞.

Time-Bounded Reachability for Initialized Hybrid Automata 195

– E is a finite set of edges. Each edge e ∈ E itself is a tuple of (s, d, g, j, r) in
which
• s, d ∈ Q are source and destination locations, respectively.
• g ∈ [X → K] maps each variable x to a rectangular region as the guard

condition of e for x.
• j ∈ P(X) is the set of variables that their values will have jump after

traversing e.
• r ∈ [j → K] maps each variable x to a rectangular region as the possible
reset values of x after traversing e.

We write Se, De, Ge, Je, and Re to denote different elements of an edge e,
respectively. Also we denote (Ge)(x) and (Re)(x) respectively by G(e, x) and
R(e, x).

– Qinit ⊆ Q is the set of initial locations.
– Xinit ∈ [Qinit× X → K] maps each location q and variable x to the set of initial

values for x in q.

We only consider this class of hybrid automata in this paper, therefore when-
ever we write linear inclusion automaton we mean hybrid automaton with linear
differential inclusions and rectangular constraints. Also a linear inclusion au-
tomaton is said to be initialized iff for every edge e ∈ E and variable x ∈ X, if
F(Se, x) �= F(De, x) then x ∈ Je, i.e. x’s value is reset on taking edge e. Linear
inclusion automaton that is initialized will be called initialized linear inclusion
automaton. For all linear inclusion automata A, we display elements of A by
QA, XA, IA, FA, EA, SA, DA, GA, JA, RA, QinitA , and XinitA . A valuation function
νA ∈ [XA → R] assigns a value to each variable of A and we denote the set of all
valuations by ValA. We may omit the subscript when it is clear from the context.

Semantics of Hybrid Automata.We define the semantics of hybrid automata
as transition systems they represent [27]. The semantics of a hybrid automaton
A is defined by the transition system �A� = (S, Σ,→, Sinit) in which

– S = Q× Val,
– Σ = E ∪ R≥0,
– Sinit = {(q, ν) ∈ S�A�|q ∈ Qinit ∧ ν ∈ Xinit(q) ∩ I(q)}, and
– →=→1 ∪ →2 where

• →1 is the set of time transitions and for all t ∈ R≥0 (q, ν)
t→1 (q′, ν′) iff

q = q′ and for all x ∈ X there exists a function fx ∈ [[0, t] → R] with a
free variable x such that fx(0) = ν(x), fx(t) = ν′(x), ∀u ∈ [0, t] • fx(u) ∈
I(q, x), and dfx

dx (u) ∈ F(q, x)(fx(u)).

• →2 is the set of jump transitions and for all e ∈ E, (q, ν)
e→2 (q′, ν′) iff

q = Se, q′ = De, ν ∈ I(q) ∩ G(e), ν′ ∈ I(q′), and ∀x ∈ X • x ∈ JAe ⇒
ν′(x) ∈ R(e, x) and x /∈ JAe ⇒ ν(x) = ν′(x).

For all transition systems T , we display elements of T by ST , ΣT , →T , and
SinitT . We may omit the subscript when it is clear from the context.

For an initialized linear inclusion automaton A, any variable x ∈ XA, and
any location q ∈ QA, we define cnstA(q, x) to be the set of constants appearing

196 N. Roohi and M. Viswanathan

in invariants, guards, resets, and initialization involving variable x and location
q (we may omit the subscript A when it is clear from the context). Formally
cnstA(q, x) = CA,I(q, x) ∪CA,G(q, x) ∪ CA,R(q, x) ∪ CA,Xinit(q, x) in which

– CA,I(q, x) = {r ∈ R|r ∈ {lI(q,x), uI(q,x)}}
– CA,G(q, x) = {r ∈ R|∃e ∈ E • q = Se ∧ r ∈ {lG(e,x), uG(e,x)}}
– CA,R(q, x) = {r ∈ R|∃e ∈ E • q = Se ∧ r ∈ {lR(e,x), uR(e,x)} ∧ x ∈ Je}
– CA,Xinit(q, x) = {r ∈ R|q ∈ Qinit ∧ r ∈ {lXinit(q,x), uXinit(q,x)}}

We also define cnstA(x) to be
⋃

q∈Q cnstA(q, x), cnst
+
A(x) to be cnstA(x)− {0},

and cnstmax
A (x) to be max(cnstA(x)).

Observe that rectangular automata, stopwatch automata, and timed automata
are all special kinds of linear inclusion automata obtained by restricting its el-
ements. In a rectangular automaton all flows are given by rectangular regions
(instead of bands), in a stopwatch automaton the flows are either 0 or 1 and ini-
tial values as well as reset values are always singleton, and in a timed automaton
the flows are always 1 and initial values as well as reset values are always 0. In
this paper we introduce a slight generalization of timed automata that we call
logarithmic timed automata that have constraints that involve some irrational
numbers. The formal definition of this class is presented next.

Definition 3. Timed automata with logarithmic constants (logarithmic timed
automata for short) is a class of timed automata in which constants could be in
the form of r or r ln r′ for some r ∈ Q and r ∈ Q+. In addition, we need the
following conditions to be satisfied:

1. For any x ∈ X and q ∈ Q (at least) one of the following conditions must hold:
– cnst(q, x) ⊂ Q. It means all constants in cnst(q, x) are rational.
– ∃c′ ∈ Q • ∀c ∈ cnst(q, x) • ∃c′′ ∈ Q+ • c = c′ ln c′′. It means all constants

in cnst(q, x) are in the form of c′ ln c′′ for some fixed c′.
2. For any variable x ∈ X and edge e ∈ E, if the following condition is satisfied

then x must be reset by e (i.e. x ∈ Je):
– ∃c1 ∈ cnst(Se, x), c2 ∈ cnst(De, x) • (c1 ∈ Q ⇔ c2 /∈ Q) ∨ (�c, c′1, c

′
2 • c1 =

c ln c′1 ∧ c2 = c ln c′2). It means there are two constants c1 and c2 in the
source and destination locations of e such that c1 and c2 are of different
types.

We call a timed automaton in which all constants are rational a rational timed
automaton.

For a linear inclusion automaton A, a path is defined to be a finite sequence e1,
e2, . . . , en of edges in E such that Dei = Sei+1 for all 1 ≤ i ≤ n− 1. A timed path
π is a finite sequence of the form (t1, e1), (t2, e2), . . . , (tn, en) such that e1, . . . , en
is a path in A and ti ∈ R≥0 for all 1 ≤ i ≤ n . A run ρ from s0 to sn is a finite
sequence s0, (t1, e1), s1, (t2, e2), . . . , (tn, en), sn such that (a) (t1, e1), . . . , (tn, en)
is a timed path in A, (b) for all 0 ≤ i ≤ n we have si ∈ S�A�, and (c) for

all 0 ≤ i < n there exists a state s′i ∈ S�A� for which si
ti+1−→ s′i

ei+1−→ si+1. We

Time-Bounded Reachability for Initialized Hybrid Automata 197

define duration(ρ) =
∑

1≤i≤n

ti. For any T ∈ N, we say that ρ is T -time-bounded iff

duration(ρ) ≤ T .

The Reachability and Time-Bounded Reachability Problems. Given an
initialized linear inclusion automaton A and R ∈ [Q × X → K] the (unbounded-
time) reachability problem is to decide if for some (q0, ν0) ∈ Sinit�A� and (q, ν) ∈
flat(R), there is a run ρ from (q0, ν0) to (q, ν), where flat(R) = {(q, ν) ∈ S�A�|∀x ∈
X • ν(x) ∈ R(q, x)}. The time-bounded reachability problem asks if, given an
initialized linear inclusion automaton A, R ∈ [Q×X → K], and T ∈ R≥0, there is
some (q0, ν0) ∈ Sinit�A�, (q, ν) ∈ flat(R), and run ρ such that ρ is a run from (q0, ν0)

to (q, ν) and duration(ρ) ≤ T .

3 Time-Bounded Reachability

In this section we consider the problems of reachability and time-bounded reach-
ability in initialized linear inclusion automata. We begin by observing that the
(unbounded time) reachability problem is undecidable.

Theorem 1. Unbounded time reachability for initialized linear inclusion au-
tomata is undecidable.

Proof (Sketch). The result is proved by reducing the halting problem for 2-
counter machines. It is an adaptation of Miller’s proof [24] showing that the
reachability problem for timed automata with irrational constants is undecid-
able. The reason why the construction needs to be modified is because Miller’s
automata compares variables with both rational and irrational constants without
resetting them between the two comparisons. However the initialization require-
ment of initialized linear inclusion automaton forces one to reset variables when
it is compared to different constants.

Though the reachability problem is undecidable for initialized linear inclusion
automata (Theorem 1), we will show that time-bounded reachability is decidable.
We begin by observing that the reachability problem (bounded and unbounded)
for initialized linear inclusion automata can be reduced to the reachability problem
(bounded and unbounded) for logarithmic timed automata. Thus, our algorithm
for time-bounded reachability will be presented for logarithmic timed automata.

Proposition 1. For any initialized linear inclusion automaton A with size n,
there is a logarithmic timed automaton D with size at most 2O(n lgn) such that
D has the same (bounded as well as unbounded time) reachability information.

Proof (Sketch). The construction of the logarithmic timed automaton D is simi-
lar to the construction of rational timed automaton for an initialized rectangular
automaton [19]. Thus, we first construct an automaton that tracks the extremal
flows in each control state, then replace each variable by a clock that tracks
the time since the last reset, and finally tranform this stopwatch automaton to

198 N. Roohi and M. Viswanathan

a logarithmic timed automaton. The correctness relies on observing that even
though the set of reachable states for a single control mode is not convex under
linear inclusion flows (unlike rectangular dynamics), the set of values reached
for any variable at a given time is an interval.

The constants in the logarithmic timed automaton D constructed by Propo-
sition 1 are not rational. Thus, we cannot use the well known techniques for
analyzing rational timed automata [3]. Our proof relies on first observing that if
a configuration (q, ν) is reachable in D within bounded time T , it is reachable by
an execution of bounded length. Our algorithm therefore guesses an execution
of this length and checks if it is a valid execution by solving some constraints
(Section 3.2). Finally, we show that the problem is PSPACE-hard in Section 4.

3.1 Bounding the Execution Length in Logarithmic Timed
Automata

Our algorithm guesses a path of a bounded length and decides whether it is a
valid path that starts from some initial state and ends in some unsafe state. In
this section we bound the length of this path that we need to guess. Our proof
closely follows the proof outlined in [11] for monotonic hybrid automata. Notice
that a logarithmic timed automaton is a special monotonic hybrid automaton
with the difference that it may have irrational constants in its constraints. The
presence of irrational constants introduces challenges that we address in this
proof. We begin by giving a short outline of the proof in [11] to highlight the key
challenges that will need to be addressed when considering logarithmic timed
automata. We then present our proof.

Brihaye et al.’s Algorithm for Monotonic Hybrid Automata. The main
observation in [11] is that if there is a run ρ of monotonic hybrid automaton D
from state (q1, ν1) to (q2, ν2) such that duration(ρ) ≤ T then there is a shorter run
ρ′ from (q1, ν1) to (q2, ν2) of the same duration, whose length is exponential in
the size ofD and linear in T . The construction of ρ′ from ρ relies on a contraction
operator. The contraction operator identifies positions i < j in ρ that have the
same location such that all the locations between i and j are also visited before
i in ρ. The operator then deletes all the locations i+1, . . . , j and adds their time
to the other occurrences before i. Brihaye et al. apply this operator as many
times as required until a fixpoint is reached. They show that resulting run (after
contraction) has at most |QD|2 + 1 edges. The problem of course is that the run
after contraction may no longer be a valid run. The contracted run would be
valid only if the run to which we apply contraction has some special properties.
Brihaye et al., therefore, first partition the run ρ carefully into exponentially
many fragments such that the contraction operator can be reliable applied to
these fragments, and the resulting run is a genuine run.

We now describe how they partition the run into fragments to which the con-
traction operator can be applied. Observe that since the contraction operator

Time-Bounded Reachability for Initialized Hybrid Automata 199

removes certain locations from the run by adding the time spent in these loca-
tions to the time spent in the same locations earlier in the run, such an operation
can be sound only if the valuations in the merged locations satisfy the same con-
straints. If valuations in the merged location don’t satisfy the same constraints
then invariants and guards of transitions maybe violated by the merging pro-
cess. Thus, Brihaye et al. first transform the automaton D into an automaton
E that keeps track of the “region” of the valuation in its control state. Let D
be an automaton with positive rates such that all constants appearing in the
constraints are natural numbers (any automaton with rational constants can be
transformed into such a machine) and cmax is the maximum constant in D. A
region r (according to [11]) is a set of valuations that satisfy the same set of
constraints of the form x � c, where x is a variable of D, � ∈ {<,≤} and c is
a natural number ≤ cmax; thus a region r is similar to region of a timed au-
tomaton, except that the order of the fractional values is not maintained. The
automaton E has locations of the form (q, r) where q is a location of D and r
is a region, such that all its runs are region consistent. A run ρ = ((q0, r0), ν0),
(t1, e1), ((q1, r1), ν1), . . . , (tn, en), ((qn, rn), νn) is region consistent if νi ∈ ri for
all i. In addition, for variables x that enter a location with value 0, E keeps track
of whether the value of x never changes from 0 before the next transition, or x
becomes > 0 before the next transition. This is required to bound the number of
sub-runs that are constructed later, and prevents the contraction operator from
merging states where x stays 0 with those where x becomes > 0. The construc-
tion ensures that D admits a run between two states of duration T iff E admits
a run between the same states and for the same duration T and length.

Let us consider an arbitrary T -bounded run ρ of E. Assuming that each
location in E has a self loop that can be taken at anytime, one can construct an
“equivalent” run ρ0 that is the concatenation of at most T × rmax + 1 shorter
runs, each of duration at most 1

rmax ; these shorter runs are called type-1 runs.
If rmax is taken to be the maximum rate of flow of any variable in E, then
a type-1 run has the property that any variable changes its non-zero region
at most 3 times within that run, because within 1

rmax time, no variable can
change its value by more than 1. Splitting each type-1 run at the points when
a variable changes its non-zero region, results in 3 × |XE| type-2 runs, where
variables with value ≥ 1 never change their region. The only change in regions
involves variables whose value changes from 0 to a value in (0, 1), and there
could be unbounded number of region changes of this form. The contraction
operator when applied to a type-2 results in a valid run, but the problem is
that the valuation in the end state can be different after contraction. Changing
the end state of run does not allow one to concatenate all the contracted type-
2 runs to get a valid run of E. To address this problem each type-2 run is
subdivided into type-3 runs based on when a variable was first and last reset
within a type-2 run. Applying the contraction operator to type-3 runs, and
then concatenating them back, results in a valid contracted type-2 run of the
same duration, and same starting and ending states. These contracted type-
2 runs are then concatenated back to get a run ρ1 that is bounded length,

200 N. Roohi and M. Viswanathan

has the same duration as ρ0, and has the same start and end states. Having
established that E has T -bounded runs iff E has T -bounded runs of length at
most F (D,T) = 24× (T × rmax+ 1)× |XD|2 × |QD|2 × (2 × cmax+ 3)2|XD|, the
NEXPTIME algorithm to solve time-bounded reachability nondeterministically
guesses a run of length at most F (D,T) and solves a linear program to check if
there are time values and valuations for each step that make the run feasible.

Time-Bounded Reachability for Logarithmic Timed Automata. The
algorithm described in [11] (and outlined in above) cannot be directly applied to
logarithmic timed automata due to the presence of irrational constants. There
are 2 main challenges we need to address.

1. For the contraction operator to be correctly applied, we need a way to par-
tition valuations into finitely many regions that ensures that all valuations
in a region satisfy the same constraints. When irrational constants appear
in constraints, we can no longer define regions based on how the values of
variables compare to a finite set of natural numbers. Instead we need a new
definition of regions.

2. Type-1 runs are runs of short duration, where there are only a bounded
number of certain types of region changes. The duration for such a type-1
has to be such that any run can be divided into at most exponentially many
type-1 runs. We will need to identify what the right duration of a type-1 run
should be given the changed definition of regions.

We solve each of these challenges in order. We begin by describing a new
definition of regions.

Definition 4. Given a logarithmic timed automaton D, for each variable x ∈ X

we define reg(x) as the set of intervals created by the constants used in constraints
of x.

reg(x) ={0=, 0+, (cnstmax(x),∞)} ∪
{[c, c]|c ∈ cnst+(x)} ∪
{(a, b)|a, b ∈ cnst(x) ∧ ∀c ∈ cnst(x) • c /∈ (a, b)}

Region(D) is the set of all functions that map each variable x ∈ X to an element
of reg(x).

A region r ∈ Region(D) can be thought of as the set of valuations ν such that
for every variable x, ν(x) ∈ r(x) (where ν(x) ∈ 0= and ν(x) ∈ 0+ iff ν(x) = 0).
We will interchangeably think of regions in this way.

Just like [11], in the definition of regions, we distinguish between the case when
a variable is 0 and no time will be spent before the next transition (0=), and when a
variable is 0 but some non-zero time is promised to be spent before the next transi-
tion (0+). The regiondefinition above is different from [11] in that we only compare
the value of variable to the constants that appear in the constraints, as opposed to
all numbers upto somemaximumbound.Using this newdefinition of regions, given
a logarithmic timed automatonD, we construct automatonE that remembers the
region of the valuation when a run enters a location.

Time-Bounded Reachability for Initialized Hybrid Automata 201

The second challenge pertains to determining the duration of type-1 runs
(and hence type-2 runs). In [11] the duration is picked to ensure two properties:
(a) any run can be divided into an exponential number of type-2 runs, where
the regions of variables don’t change; (b) in a type-2 run, since the region of
a variable does not change, all valuations in a type-2 run satisfy the same set
of constraints, and so contracting the run results in valid run of E 3. Now, we
could pick the duration of a type-1 run to such that in any such run there are at
most 3 changes to the region of any variable, by estimating the distance between
any two constants that define regions. However, any estimation of the closest
distance between two constants (of the form r1 ln r2 and r3 ln r4) appearing in a
logarithmic timed automaton yields a doubly-exponential bound. This prevents
us from exponentially bounding the number of type-2 runs.

Instead, we relax condition (b) when picking our duration to ensure that there
are only exponentially many type-2 runs. Observe that in logarithmic timed au-
tomata, by definition, a variable cannot be compared with constants of different
types (q1 and q2 ln q3, or q1 ln q2 and q3 ln q4 for q1 �= q3) without being reset in
between. Therefore, instead of requiring that type-2 runs consist of valuations
belonging to the same region, we will instead define type-2 runs to be ones where
the flows of the variables (in the original initialized linear inclusion automaton
A) remain the same, and all valuations satisfy the same set of relevant con-
straints. Thus, even though two valuations in a type-2 run may satisfy different
constraints (and don’t belong to the same region, since they satisfy the same
constraints that would pertain to them (without a reset), applying the contrac-
tion operation will yield a valid run. We, therefore, pick the duration of a type-1
run to be determined by the minimum distance between constants of the form
r1 and r2, where r1 and r2 are rationals, or between constants of the form r ln r1
and r ln r2, where r, r1, and r2 are rational numbers. We have three cases:

– Both constants are rationals. In this case, the difference between two distinct
constants cannot be smaller than 1

210n+2 .
– Both constants are logarithmic. In this case, if constants are in the form

of r ln r1 and r ln r2 then ln r1
r2

cannot be smaller than 1
220n+7 . When this

number is multiplied by r it cannot be smaller than 1
221n+7 . Note that as a

special case, r ln r2 = 0, the distant between r ln r1 and 0 cannot be smaller
than 1

211n+4 .
– One constant is rational and the other one is logarithmic. We only need to

consider the case when the rational number is 0, which is special case of the
previous bullet.

If we take the duration of a type-1 run to be at most 1
221n+7 = min{ 1

210n+2 ,
1

221n+7 },
the set of relevant and satisfied constraints is changed at most 3 times for any
variable x. Now, any T -bounded run can be divided into at most T × 221n+7+1
type-1 runs. This concludes that F ′′(D,T) the bound on length of the run that

3 In addition we would like the contracted run to start and end in the same state. But
this is easily accomplished by splitting type-2 runs into type-3 runs, and applying
the contraction to type-3 runs.

202 N. Roohi and M. Viswanathan

is needed to be guessed is 24× (T × 221n+7+1)× |XD|2 × |QD|2 × (2KD +3)2|XD|.
Therefore F ′′(D,T) ≤ 24× (T × 221n+7 + 1) × (2n+ 3)2 × 210n+6 × n12n+20 ×
(n3 + 1)4n+6 × (2n5 + 3)2n+6 ∈ 2O(n lnn).

3.2 Algorithm for Time-Bounded Reachability

Since a reachable configuration is reachable by bounded length execution, the
algorithm for time-bounded reachability will guess an execution of appropriate
length (using polynomial space), and check if the guessed execution is valid.
Note that checking the validity of a guessed execution involves contraints with
transcendental numbers, and hence cannot be solved using linear programming.
We outline how this can be carried out.

Our path validity constraints are difference constraints of a special form. As
has been observed in Theorem 3 in [4], checking feasibility of these constraints
can be reduced to checking for the existence of negative cost cycles in a weighted
directed graph; this graph has as many vertices as the length of run whose
feasibility we are checking, and the weights are the constants appearing in the
timed automaton. Alur et al. present a modified shortest path algorithm that
checks the feasibility of these constraints and runs in time O(|X|2|π|), where π is
the guessed run, and uses space only O(|X|). Thus, the space requirements are
only polynomial in the size of the automaton and is independent of the length
of the execution π. However, since this algorithm computes costs of paths, it
involves adding weights and comparing them. To complete the description, we
need to show how one can compare the costs arising during such a computation.
The challenge involves comparing numbers involving natural logarithms. The
algorithm in [4] only looks for simple cycles, and thus never adds the weight of
an edge more than once in any of the values it computes. Thus, in the worst
case, the algorithm requires comparing 0 with the sum of exponentially many
constants. Observe that we have at most O(n) distinct constants (n is bound
on the size of the input automaton). Thus, the comparisons the algorithm needs
to perform will be of the form

∑
0≤i<n ai ln

bi
ci

<
∑

0≤i<n di where ai, bi, ci, di
are integers of O(n) bits. There are many algorithms that efficiently compute
natural logarithms with arbitrary precision; one can compute k bits of a number
that approximates ln b

c (where b and c are n-bit integers) with error at most 2−k

using space that is polynomial in n and logarithmic in k by combining ideas
in [13,20,29]. However, we are unaware of any complexity bounds on computing
the kth bit of ln bc, except in special cases like ln 2 [32]. If the kth bit of a linear
combination logarithms of n-bit rationals can be computed in PSPACE, then we
can bound the complexity of our algorithm to PSPACE, because we only need to
compute O(n) bits of the left-hand side, since the right hand side is an integer
with O(n) bits.

In the absence of an algorithm to compute bits of natural log, we observe that
the left hand side can never be equal to the right hand side, since the left hand
side is an irrational number while the right hand side is an integer. Thus, our
algorithm will compute the left hand side with increasing precision using either
ideas from [13,20,29] or [9]. If the precision of our approximation is 2−k and the

Time-Bounded Reachability for Initialized Hybrid Automata 203

difference between our approximation of the LHS and RHS is > 2−k, then we
can be sure of whether the inequality holds or not. Since the LHS is not equal
to the RHS, we are guaranteed that eventually this will happen, giving us our
decidability result.

We can prove the time-bounded reachability problem is PSPACE-hard (see
Section 4). The NEXPTIME-hardness lower bound from [10, 11] does not seem
to extend to this case. Intuitively, the main reason that in the simulation of
a 2-counter machine, monotonic rectangular hybrid automata can multiply a
counter by a constant in a constant amount of time. On the other hand, because
our machines are initialized, this does not seem possible for initialized linear
inclusion automata. Though we cannot give complexity bounds on our algorithm
because of difficulties in bounding the complexity of computing natural logs, we
conjecture that this problem is PSPACE-complete.

4 Time-Bounded Reachability is PSPACE-hard in
Initialized Linear Inclusion Automata

Recall that the reachability problem (without time bound) is PSPACE-hard [3]
for rational timed automata. The reduction described in [3] reduces the halting
problem of a linear bounded automaton to the reachability problem of timed
automata, where each step of the linear bounded automaton is simulated in fixed
time τ by the timed automaton. Now, recall that a linear bounded automaton
halts iff it halts in N = |Q|×(n+1)×|L|n steps, where |Q| is the number of states
of the linear bounded automaton, |L| is the size of its tape alphabet, and n is
the size of the input to the linear bounded automaton. Thus, the linear bounded
automaton halts iff the constructed timed automaton reaches the desired control
location within T = N × τ time. Since N × τ = O(2n), we can write T in
polynomial time.

5 Conclusion

In this paper, we considered initialized hybrid automata whose flows are de-
scribed by linear differential inclusions, and whose invariants, guards, and resets
are rectangular constraints. Such automata generalize both initialized rectan-
gular automata and timed automata. We proved that the reachability problem
(when time is not bounded) is undecidable, while the time-bounded reachabil-
ity problem is decidable. The only reason why we cannot obtain a complexity
bound on our algorithm is because we are unaware of any complexity bounds
on computing the ith bit a natural logarithm of a rational number (except in
special cases).

There are few open problems left by our investigations. The most interesting
is obtaining complexity bounds on computing natural logarithms of rational
numbers. Another question is whether the results in [11] can be extended to
monotonic linear inclusion automata.

204 N. Roohi and M. Viswanathan

References

1. Agrawal, M., Thiagarajan, P.S.: The discrete time behavior of lazy linear hybrid
automata. In: Morari, M., Thiele, L. (eds.) HSCC 2005. LNCS, vol. 3414, pp. 55–69.
Springer, Heidelberg (2005)

2. Alur, R., Courcoubetis, C., Halbwachs, N., Henzinger, T.A., Ho, P.H., Nicollin,
X., Olivero, A., Sifakis, J., Yovine, S.: The algorithmic analysis of hybrid systems.
TCS 138(1), 3–34 (1995)

3. Alur, R., Dill, D.L.: A theory of timed automata. TCS 126, 183–235 (1994)
4. Alur, R., Kurshan, R.P., Viswanathan, M.: Membership questions for timed and

hybrid automata. In: RTSS 1998, pp. 254–263. Press (1998)
5. Asarin, E., Maler, O., Pnueli, A.: Reachability analysis of dynamical systems having

piecewise-constant derivatives. TCS 138(1), 35–65 (1995)
6. Asarin, E., Schneider, G., Yovine, S.: On the decidability of the reachability

problem for planar differential inclusions. In: Di Benedetto, M.D., Sangiovanni-
Vincentelli, A.L. (eds.) HSCC 2001. LNCS, vol. 2034, pp. 89–104. Springer, Hei-
delberg (2001)

7. Asarin, E., Schneider, G., Yovine, S.: Algorithmic analysis of polygonal hybrid
systems, Part I: Reachability. TCS 379(1-2), 231–265 (2007)

8. Botchkarev, O., Tripakis, S.: Verification of hybrid systems with linear differential
inclusions using ellipsoidal approximations. In: Lynch, N.A., Krogh, B.H. (eds.)
HSCC 2000. LNCS, vol. 1790, pp. 73–88. Springer, Heidelberg (2000)

9. Brent, R.P.: Fast algorithms for high-precision computation of elementary functions
(invited talk). In: Seventh Conference on Real Numbers and Computers (RNC7),
vol. (7-8), July 10-12 (2006)

10. Brihaye, T., Doyen, L., Geeraerts, G., Ouaknine, J., Raskin, J.-F., Worrell, J.:
On reachability for hybrid automata over bounded time. In: Aceto, L., Henzinger,
M., Sgall, J. (eds.) ICALP 2011, Part II. LNCS, vol. 6756, pp. 416–427. Springer,
Heidelberg (2011)

11. Brihaye, T., Doyen, L., Geeraerts, G., Ouaknine, J., Raskin, J.-F., Worrell, J.:
Time-bounded reachability for monotonic hybrid automata: Complexity and fixed
points. In: Van Hung, D., Ogawa, M. (eds.) ATVA 2013. LNCS, vol. 8172, pp.
55–70. Springer, Heidelberg (2013)

12. Casagrande, A., Piazza, C., Policriti, A., Mishra, B.: Inclusion dynamics hybrid
automata. Inf. Comput. 206(12), 1394–1424 (2008)

13. Chadha, R., Kini, D., Viswanathan, M.: Quantitative information flow in boolean
programs. In: Abadi, M., Kremer, S. (eds.) POST 2014 (ETAPS 2014). LNCS,
vol. 8414, pp. 103–119. Springer, Heidelberg (2014)

14. Duggirala, P.S., Tiwari, A.: Safety verification for linear systems. In: Proceedings
of EMSOFT (2013)

15. Fränzle, M.: Analysis of hybrid systems: An ounce of realism can save an infinity
of states. In: Flum, J., Rodŕıguez-Artalejo, M. (eds.) CSL 1999. LNCS, vol. 1683,
pp. 126–140. Springer, Heidelberg (1999)

16. Gentilini, R.: Reachability problems on extended O-minimal hybrid automata. In:
Pettersson, P., Yi, W. (eds.) FORMATS 2005. LNCS, vol. 3829, pp. 162–176.
Springer, Heidelberg (2005)

17. Henzinger, T.A.: The theory of hybrid automata. In: Proceeding of IEEE Sympo-
sium on Logic in Computer Science, pp. 278–292 (1996)

18. Henzinger, T.A., Ho, P.H., Wong-Toi, H.: Algorithmic analysis of nonlinear hybrid
systems. IEEE Transactions on Automatic Control 43(4), 540–554 (1998)

Time-Bounded Reachability for Initialized Hybrid Automata 205

19. Henzinger, T.A., Kopke, P.W., Puri, A., Varaiya, P.: What’s decidable about hybrid
automata? Journal of Computer and System Sciences, 373–382 (1995)

20. Hesse, W., Allender, E., Barrington, D.A.M.: Uniform constant-depth threshold
circuits for division and iteratd multiplication. Journal of Computer and System
Sciences 65(4), 695–716 (2002)

21. Jenkins, M., Ouaknine, J., Rabinovich, A., Worrell, J.: Alternating timed automata
over bounded time, pp. 60–69. IEEE Computer Society, Los Alamitos (2010)

22. Lafferriere, G., Pappas, G., Sastry, S.: o-minimal hybrid systems. MCSS 13, 1–21
(2000)

23. Maler, O., Pnueli, A.: Reachability analysis of planar multi-linear systems. In:
Probst, D.K., von Bochmann, G. (eds.) CAV 1992. LNCS, vol. 663, pp. 194–209.
Springer, Heidelberg (1993)

24. Miller, J.S.: Decidability and complexity results for timed automata and semi-
linear hybrid automata. In: Lynch, N.A., Krogh, B.H. (eds.) HSCC 2000. LNCS,
vol. 1790, pp. 296–309. Springer, Heidelberg (2000)

25. Mysore, V., Pnueli, A.: Refining the undecidability frontier of hybrid automata. In:
Sarukkai, S., Sen, S. (eds.) FSTTCS 2005. LNCS, vol. 3821, pp. 261–272. Springer,
Heidelberg (2005)

26. Ouaknine, J., Rabinovich, A., Worrell, J.: Time-bounded verification. In: Bravetti,
M., Zavattaro, G. (eds.) CONCUR 2009. LNCS, vol. 5710, pp. 496–510. Springer,
Heidelberg (2009)

27. Prabhakar, P., Duggirala, P.S., Mitra, S., Viswanathan, M.: Hybrid automata-
based CEGAR for rectangular hybrid systems. In: Giacobazzi, R., Berdine, J.,
Mastroeni, I. (eds.) VMCAI 2013. LNCS, vol. 7737, pp. 48–67. Springer, Heidelberg
(2013)

28. Prabhakar, P., Vladimerou, V., Viswanathan, M., Dullerud, G.E.: A decidable class
of planar linear hybrid systems. In: Egerstedt, M., Mishra, B. (eds.) HSCC 2008.
LNCS, vol. 4981, pp. 401–414. Springer, Heidelberg (2008)

29. Reif, J.H., Tate, S.R.: On threshold circuits and polynomial computation. SIAM
Journal on Computing 21(5), 896–908 (1992)

30. Roohi, N., Viswanathan, M.: Time-bounded reachability for initialized hy-
brid automata with linear differential inclusions and rectangular con-
straints. Technical report, University of Illinois at Urbana-Champaign (2014),
http://hdl.handle.net/2142/49952

31. Vladimerou, V., Prabhakar, P., Viswanathan, M., Dullerud, G.E.: STORMED
hybrid systems. In: Aceto, L., Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M.,
Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126, pp.
136–147. Springer, Heidelberg (2008)

32. Yap, C.: Pi is in log space, http://www.cs.nyu.edu/exact/doc/pi-log.pdf

http://hdl.handle.net/2142/49952
http://www.cs.nyu.edu/exact/doc/pi-log.pdf

Virtual Integration of Real-Time Systems
Based on Resource Segregation Abstraction�

Ingo Stierand1, Philipp Reinkemeier2, and Purandar Bhaduri3

1 University of Oldenburg, Germany
stierand@informatik.uni-oldenburg.de

2 OFFIS, Germany
reinkemeier@offis.de
3 IIT Guwahati, India

pbhaduri@iitg.ernet.in

Abstract. Embedded safety-critical systems must not only be function-
ally correct but must also provide timely service. It is thus important to
have rigorous analysis techniques for determining timing properties of
such systems. We consider a layered design process, where timing anal-
ysis applies when the system is integrated on a target platform. More
precisely, we focus on contract-based design, and ask whether a set of
real-time components continues to comply to a given system specification
when it is integrated on a common hardware.

We present an approach for compositional timing analysis, and define
conditions under which the system integration will preserve all the timing
properties given by the system specification. Therefore, engineers can
negotiate specifications of the individual components a priori, knowing
that no integration issues will occur due to shared resource usage. The
approach exploits ω-languages, which enables analysis techniques based
on model-checking. Such an analysis is shown by a case study.

1 Introduction and Related Work

Developing safety-critical real-time systems is becoming increasingly complex
due to the growing number of functions realized by these systems. Moreover,
an increasing number of functions are realized in software, which are then inte-
grated on a common target platform in order to save costs. The integration on a
common platform causes interferences between the different software functions
due to their shared resource usage. It is desirable to bound these interferences in
a way to make guarantees about the timing behavior of the individual software-
functions. A schedulability analysis delivers such bounds for interferences be-
tween software-tasks sharing a CPU by means of a scheduling strategy.
� This work was partly supported by the Federal Ministry for Education and Research

(BMBF) under support code 01IS11035M, Automotive, Railway and Avionics Multi-
core Systems (ARAMiS), and by the German Research Council (DFG) as part of the
Transregional Collaborative Research Center Automatic Verification and Analysis of
Complex Systems (SFB/TR 14 AVACS).

A. Legay and M. Bozga (Eds.): FORMATS 2014, LNCS 8711, pp. 206–221, 2014.
c© Springer International Publishing Switzerland 2014

Virtual Integration of Real-Time Systems 207

Fig. 1. Exemplary Integration Scenario using Resource Segregation

The platform integration is typically part of a larger design process with
different phases. For safety-critical system design it is crucial that, starting with
the initial design, all steps ensure that the final implementation indeed satisfies
all given requirements. Contract-based design [2] provides a formal foundation
allowing us to reason about the validity of a design in all phases. Based on well-
defined semantics and operations, all design steps can be checked to verify the
result still satisfies the overall system requirements.

Formal verification, such as with contracts, is however not an easy task, and
requires carefully selected approaches in order to tackle computational complex-
ity. We focus on the integration phase, where real-time components are allocated
to the hardware platform. We present a compositional analysis framework using
real-time interfaces based on ω-regular languages. Following the idea of interface-
based design, components are described by interfaces and can be composed if
their corresponding interfaces are compatible. The contribution of this work al-
lows us to formally capture the resource demand of an interface, which we call
segregation property. Compatibility of interfaces then can be reduced to compat-
ibility of their segregation properties. Additionally, we put this into the context
of contract-based design, enabling us to reason about the overall specification
satisfied by the integrated implementation in a compositional way.

More specifically, we consider the following scenario. The bottom part of Fig-
ure 1 shows a target platform that is envisioned by say an Original Equipment
Manufacturer (OEM). It consists of two processing nodes (CPU1 and CPU2).
Suppose the OEM wants to implement two applications, components C1 and
C2, on this architecture and delegates their actual implementation to two dif-
ferent suppliers. Both applications share a subset of the resources of the target
platform, e.g. tasks τ2 and τ4 are executed on CPU2 after integration. Further-
more, we assume the system specification C shown in Figure 1 to be given from
previous design phases. While some components together with their (local) spec-
ifications may also be known (e.g. in case of reuse), the OEM generally has to
negotiate proper specifications with the suppliers, in our case C1 and C2.

Now two tasks have to be accomplished: It must be ensured that (1) the com-
position of C1 and C2 conforms to the specification C, and (2) the composed

208 I. Stierand, P. Reinkemeier, and P. Bhaduri

implementation satisfies C as well. It is highly desirable that both tasks are
performed before the suppliers start to implement the respective components.
Later integration issues would require to repeat this step, causing increased de-
velopment time and costs. To this end, the negotiation between the OEM and
the suppliers must include the resource consumption needed by the implemen-
tations. Otherwise, the contract theory will fail to detect integration issues that
may occur due to shared resource usage. We therefore assign a resource reser-
vation to each component, guaranteeing a certain amount of resource supply.
Then the timing behavior of both components can be analyzed independently
from each other based on their resource demands and the guaranteed resource
supply. Verification of the successful integration of C1 and C2 then amounts to
checking whether the reserved resource supplies can be composed. We further
define conditions under which the integrated application will satisfy its system
specification. These conditions allow us to derive proper (real-time) specifications
for the negotiation with the suppliers, and hence to tackle the first task.

There has been a considerable amount of study on compositional real-time
scheduling frameworks [11,12,9,6,4]. These studies define interface theories for
components abstracting the resource requirement of a component by means of de-
mand functions [11,12], bounded-delay resource models [6], or periodic resource
models [9,4]. Based on these theories the required resources of a component,
captured by its interface, can, for example, be abstracted into a single task.
This approach gives rise to hierarchical scheduling frameworks where interfaces
propagate resource demands between different layers of the hierarchy. Our pro-
posed resource segregation abstraction is an extension of the real-time interfaces
presented in [3]. Contrary to the aforementioned approaches, our real-time in-
terfaces and resource segregation are based on ω-regular languages. This means
the approach can for example be employed in automata-based model-checking
frameworks. In addition the results we present are not bound to specific task
and resource models, like periodic or bounded delay.

Analytical methods provide efficient analysis by abstracting from concrete
behavior. This, however, typically leads to over-approximations of the analysis
results. Computational methods on the other hand, such as model-checking for
automata ([1,7,5]), typically provide the expressive power to model and ana-
lyze real-time systems without the need for approximate analysis methods. This
flexibility comes with costs. Model-checking is computationally expensive, which
often prevents analysis of larger systems. The contribution of this paper will help
to reduce verification complexity for the application of computational methods.

The paper is structured as follows: We start with an introduction of real-time
interfaces as presented in [10], which characterize components including their
resource demands. Section 3 recapitulates the basic notions of contract-based
design that are consistent with our interfaces. Sections 4 and 5 provide the no-
tions and results to reason about the integration of interfaces in a compositional
way in the context of contract-based design. Section 6 shows the application of
the approach by an example, and Section 7 concludes the paper.

Virtual Integration of Real-Time Systems 209

...

...

...
0

input
events

output
events

slots
0

0
0

Fig. 2. Scheduling scenario (left) and exemplary trace-extract (right)

2 Real-Time Interfaces

A real-time interface characterizes a component when it is executed on a set of
resources such as processing nodes and buses. Each interface represents a set
of real-time tasks, and specifies a set of legal schedules when it is executed on
the resources in discrete slots of some fixed duration. For example, consider a
component with two tasks, τ1 and τ3, which are scheduled on a single resource.
A schedule for this component can be described by an infinite word over the
alphabet {0, τ1, τ3}, where 0 means the resource is idle during the slot, and τ1
and τ3 means the corresponding task is running.

Example 1. Suppose that task τ1 is a periodic task with period p = 5 and ex-
ecution time c = 3. The slot language of its interface can be described by the
regular expression 0<5[τ31 ||| 02]ω, where u ||| v denotes all possible interleavings
of the finite words u and v. That means, a schedule is legal for the interface,
as long as it provides 3 slots during a time interval of length 5. Observe that
the slot language captures an assumption about the activation pattern of task
τ1. The part 0<5 of the regular expression represents all possible phasings of the
initial task activation. This correlates to the formalism of event streams, which
is a well-known representation of task activation patterns in real-time systems
by lower and upper arrival curves η−(Δt) and η+(Δt) [8].

As interfaces also capture task activations and completions, we consider lan-
guages over tuples of symbols. A component has a set P = Pin"Pout of input and
output ports. Symbols occurring at a port represent activation and completion
events for the tasks that are connected to this port. The events observed at port
p ∈ P are characterized by the alphabet Σp, and we define ΣP = Σp1×. . .×Σpn .
As task activations and completions need not occur at each time step, we define
a special symbol ⊥ denoting that no event occurs. Interfaces talk about sets R
of resources that are running in parallel. To each resource r ∈ R a set of tasks
is allocated, which is represented by the alphabet Σr, as shown above.

Definition 1. An interface is a tuple IK = (K,ΣK , LK) where K = P ∪ R is
a set of ports P and resources R, ΣK =

∏
k∈K Σk, LK ⊆ Σω

K , and:

– For k ∈ P,Σk is the set of events, ⊥ ∈ Σk, that may occur at port k.
– For k ∈ R,Σk is the set of tasks, 0 ∈ Σk, that run on resource k. *

210 I. Stierand, P. Reinkemeier, and P. Bhaduri

Example 2. Suppose task τ1 on the system depicted at the bottom of Figure 1
is as in Example 1. Task τ2 depends on τ1, i. e., is activated by τ1, and has an
execution time c2 = 2. Task τ3 depends on τ2 and has an execution time c3 = 1.
Task τ4 is also a periodic task with period p4 = 5 and c4 = 2. Suppose both
CPUs are scheduled using a fixed priority preemptive policy, where tasks τ1 and
τ4 have high priority on their CPU. The delay of the task-chain τ1 → τ2 → τ3
depends on the activation-pattern of τ4 and its execution time. This is illustrated
on the left of Figure 2. Once τ1 completes execution it activates (via port po1) τ2,
which in turn might be preempted by τ4. Finally, τ3, activated by τ2, could be
preempted by a subsequent instance of τ1 resulting from another event i1 of the
periodic event stream. The interface of this system is IK = (K,ΣK , LK), K =
P ∪R, P = {pi1 , pi4 , po1 , . . . , po4} and R = {cpu1, cpu2}, Σpij

= {ij,⊥}, Σpoj
=

{oj ,⊥}, Σcpu1 = {τ1, τ3, 0} and Σcpu2 = {τ2, τ4, 0}. An excerpt of a possible
trace in LK is shown in Figure 2, which corresponds to the discussed scheduling
scenario. Observe that every port has its own event tape in the interface, just
as each resource has its own tape of time slots. Note that we omitted input
ports connected to some output port: we define a connection between tasks by
a unification of their ports to characterize a synchronization of the behavior.

The key to dealing with interfaces having different alphabets is a projection
operation. For alphabet Σ, language L ⊆ Σω, and Σ′ ⊆ Σ, we consider the
projection proj (Σ,Σ′)(L) to Σ′, which is the unique extension of the function
Σ → Σ′ that is identity on the elements of Σ′ and maps every element of Σ \Σ′

to 0. We will also need the inverse projection proj −1(Σ′′, Σ)(L), for Σ′′ ⊇ Σ,
which is the largest language over Σ′′ whose words projected to Σ belong to L.
We further define proj (Σ, ∅)(L) := ∅, and proj −1(Σ′′, ∅)(∅) := Σ′′ω.

For alphabets of the form ΣK = Σk1 × . . .×Σkn , the projection operation is
performed component-wise, i.e., for each ki individually. Furthermore, we want
to consider interfaces over different index sets. To this end, we define normaliza-
tion operations. Let K and K ′ ⊆ K be index sets. For an alphabet ΣK′ we define
ΣK′→K =

∏
k∈K Σ′

k where Σ′
k = Σk if k ∈ K ′, and {0} otherwise. For an al-

phabet ΔK we define ΔK |K′ =
∏

k∈K′ Δk. We extend these operations to words
and languages, i.e., we define ωK′→K , LK′→K , ωK |K′ and LK |K′ , respectively.

Definition 2. Let N = {1, ..., n}, and let Σ = Σ1×...×Σn and Δ = Δ1×...×Δn

be alphabets with Σi ⊆ Δi for i ∈ N . Define projection function proj (Δ,Σ) :
Δω → Σω by the unique extension of the function proj (Δ,Σ) : Δ → Σ where
proj (Δ,Σ)(δ1, ..., δn) = (σ1, ..., σn) such that σi = δi if δi ∈ Σi, and 0 otherwise.
For M = {i1, . . . , im} ⊆ N and Σ′ = Σi1 × ...×Σim we define proj (Δ,Σ′)(L) :=
proj (Δ|M , Σ′)(L|M). *

In other words, if Σi ⊆ Δi then projecting a word over the larger alphabet
Δi into a word over the smaller alphabet Σi will map any symbol from Δi not
belonging to Σi to 0; symbols that belong to Σi will be mapped to themselves.
The projection of a word over Σ then projects all elements i simultaneously. The
inverse projection of a word over Σi results in a set of words where every 0 in
the word is replaced by all the letters in Δi which are not in Σi. The inverse

Virtual Integration of Real-Time Systems 211

projection of a word over Σ results in a set of words with all combinations of
replacements for the individual elements.

This notion of interfaces exhibits several interesting operations and properties
[10]. In the considered context the composition operation is of importance, which
obtains the set of schedules when two components are executed together:

Definition 3. Let I1 = (K1, ΣK1 , LK1) and I2 = (K2, ΣK2 , LK2) be interfaces.
The parallel composition I1 ‖ I2 is the interface (K,ΣK , LK), where

– K = K1 ∪K2,
– ΣK =

∏
k∈K(ΣK1→K |k ∪ ΣK2→K |k),

– LK = proj −1(ΣK , ΣK1)(LK1) ∩ proj −1(ΣK , ΣK2)(LK2) *

The intuition of this definition is that a schedule is legal for I1 ‖ I2 if its
restriction to resources R1 and the port set P1 of interface I1 is legal in I1, and
similarly for interface I2. That means the tasks of an interface are allowed to
run in a slot of resource r ∈ R when r is idle in the other interface, i. e., the slot
is not used in that other interface.

Note that the projection operation also captures the synchronization of the
connected ports of I1 and I2, i. e., which events are synchronized in the compo-
sition. This is illustrated in Figure 2. Ports connected in the system are unified
in the corresponding interface (e.g. port po1), which means the same behavior
can be observed at connected ports. In the following, we will write L1∩̆L2 for
inverse projection followed by intersection when the common target alphabet is
known from the context. So we could write LK = LK1∩̆LK2 in Definition 3.

3 Contracts and Virtual Integration

While our interfaces are suitable for expressing concurrent resource usage of an
implementation, contracts are a suitable notion for specifications in upstream de-
sign phases. A main advantage of contract-based design is to distinguish explic-
itly responsibilities of the individual parts of a design. A contract is a pair (A,G)
of assertions where A is an assumption about the environment of a component,
and G is the guarantee the component offers to its environment [2]. Logically,
this is equivalent to A ⇒ G. In the context of this paper, both assumptions and
guarantees will talk about bounds on the frequency of task arrivals and time to
completions. In addition, they capture dependencies between tasks, for example,
by stating that “task 2 is triggered whenever task 1 completes”.

Both the assumptions A and the guarantees G consist of task release (or
arrival) times as well as task finishing (or completion) times. Again, these are
modeled using ω-regular languages. The semantics of a contract is about the
behavior observed at the ports P of a component. An ω-language of a contract is
defined over the set ΣP of events, and corresponds to time instants when either
nothing happens (modeled by ⊥), a task arrives (modeled by an event at the
input port of the task) or finishes execution (modeled by an event at an output
port). The contract (A,G), where A ⊆ Σω

P and G ⊆ Σω
P , specifies promises on

the arrival and finishing times of a set of tasks, given the assumptions on the

212 I. Stierand, P. Reinkemeier, and P. Bhaduri

arrival times of the same set of tasks. A dependency between tasks, such as task
τi triggers task τj , is captured by the occurrence of an event at the port that
connects the two tasks. When we compose components it becomes important to
care about which ports contracts talk about. Hence we define a contract over a
set of ports as a tuple C = (P,ΣP , A,G) where A,G ⊆ Σω

P .
An important objective of any design process is successive refinement. The

contract theory provides the corresponding relation that states whether a spec-
ification C′ refines another specification C. Indeed this is the case if C′ can be
used in any context as C, and if C′ has a restricted behavior:

Definition 4. [2] A contract C′ refines another contract C, written C′ , C if
and only if A ⊆ A′ and G′ ⊆ G. *
As the ultimate goal of the design process is to obtain an implementation, we also
need to define under which conditions an implementation behaves as specified:

Definition 5. [2] Let C = (P,ΣP , A,G) be a contract. An implementation M
of the contract satisfies C, written M |= C, if and only if M ∩A ⊆ G. *

Note that contract refinement and satisfaction are consistent. When an im-
plementation M satisfies a contract C′, and C′ refines C, then M also satisfies
C. In our scenario, we indeed consider interfaces as implementations.

The last important operation in the present setting is contract composition.
Systems are build from individual parts that are put together in order to provide
the intended functionality. In a bottom-up design, the composed contract C
is obtained from the contracts of the composed components. The operation is
based on the observation that the assumption of a composed contract shall be
the maximal behavior that does not cause integration errors. For contracts C1 =
(A1, G1) and C2 = (A2, G2), the contract C = C1 ‖ C2 is given by:

A = max{A | A ∩G1 ⊆ A2 ∧ A ∩G2 ⊆ A1} (1)
G = G1 ∩G2 (2)

For ω-languages the equations above result in the following definition. Note
that, in order to reason about contracts over different port sets, the alphabets of
the involved assertions must be made equal. This is done exactly as for interfaces:

Definition 6. Let C1 = (P1, ΣP1 , A1, G1) and C2 = (P2, ΣP2 , A2, G2) be con-
tracts. The composition C1 ‖ C2 is the contract C = (P,ΣP , A,G) where P =
P1 ∪ P2, ΣP =

∏
p∈P (ΣP1→P |p ∪ ΣP2→P |p), and

A = (A′
1 ∩ A′

2) ∪ (A′
1 ∩G′

1) ∪ (A′
2 ∩G′

2), G = G′
1 ∩G′

2,

where A′
i = proj −1(ΣP , ΣPi)(Ai), G′

i = proj −1(ΣP , ΣPi)(Gi). *
In a top-down design process we assume the system specification to be given.

Though some components might be known (e.g. from previous versions of the
design), the designers have a good understanding of what the system shall do.
In this case, one can derive from Eq. (1) and (2) the conditions under which a
system composed of individual parts conforms to a given specification. We call
them virtual integration conditions:

Virtual Integration of Real-Time Systems 213

Lemma 1. For contracts C = (A,G), C1 = (A1, G1) and C2 = (A2, G2) the
following holds: C1 ‖ C2 , C if and only if A ∩ G1 ⊆ A2 and A ∩G2 ⊆ A1 and
G1 ∩G2 ⊆ G. ��

4 Compositional Virtual Integration

One important property of contract based design is that contracts can be in-
dependently implemented. In [2] this is formalized as follows: For all contracts
C1, C2, C′

1 and C′
2, if C′

1 , C1 and C′
2 , C2 hold, then C′

1 ‖ C′
2 , C1 ‖ C2.

Thus, contracts can be independently refined towards a final implementation
and composing these implementations always results in an implementation of
the composed contracts. So considering real-time interfaces as implementations,
one might expect: Given a system specification C, it can be decomposed into
contracts Ci negotiated with suppliers. If C1 ‖ ... ‖ Cn , C holds, as well as
Ii |= Ci, then I1 ‖ ... ‖ In |= C. However, it can happen that reasoning about
integration based on the introduced contract formalism fails to detect integra-
tion issues when composing interfaces. To give an example, consider contracts
C1 and C2, each specifying an assumption about events occurring with a period
interval [5, 6] at an input port, and as guarantee a deadline of 6 between events
occurring at that input port until an event is sent at an output port. Now assume
interfaces I1 |= C1 and I2 |= C2, each of which exactly mirrors the input and
output behavior of C1, C2 respectively. Each interface has a single task with an
execution time of 3 and both tasks share the same resource. Observe that all the
formulas from above hold. However, I1 ‖ I2 only accepts input behavior for both
input ports with a strict period of 6. This is due to the incompatible resource
usages, i.e. the tasks are not schedulable under the assumed activation rates. Of
course this is not what we want, since the assumption of C1 ‖ C2 tells us that a
valid environment may send events with a period interval of [5, 6]. Hence, relying
on the assumption and using I1 ‖ I2 in a context, where the environment sends
events with a period of 5 would cause deadlines of C1 and C2 to be missed.

The cause of this problem is twofold: First, our specification in terms of con-
tracts is incomplete. Since the contracts do not talk about resource usage, there
is simply no way to detect integration errors due to resource sharing solely based
on them. Second, satisfaction as per Definition 5 does not force the implemen-
tation to accept every behavior expressed by the assumption.

Our solution to these problems is, first, to define a notion of characteristic
contract of an interface. This allows us to use the stricter contract refinement
relation instead of satisfaction. Second, we define a composability criterion for
interfaces, which avoids integration errors when composing them. As we con-
sider real-time interfaces as implementations, we develop sufficient conditions
for interface composability, which can be checked based on contracts and an
abstraction of the resource usage of the interfaces. The latter allows us to check
for proper integration in design phases before the actual implementation exists.

For the characteristic contract of an interface, we focus on the case where the
assumptions define activations patterns for each input port, and the guarantees

214 I. Stierand, P. Reinkemeier, and P. Bhaduri

define execution deadlines [10]. As an interface includes the behavior observed at
the component ports, it can serve as a specification. Expressing such a combined
specification of assumption and guarantee as a contract is in general not easy.
However, if one is interested in assumptions that talk only about the behavior
of the input ports, as in our case, it becomes straightforward:

Definition 7. Let I be an interface, and P be the set of ports in the index set
K = P ∪R of I. We define the characteristic contract CI = (AI , GI) of I, where
AI = LI |Pin and GI = LI |P . *

As we have observed, composition of interfaces may restrict their accepted
input behavior. The goal is to define composability of interfaces, such that this
restriction does not occur. More formally, for composable interfaces the following
should hold: CI1‖...‖In , CI1 ‖ ... ‖ CIn . For the definition of composability, we
need a notion of “maximal resource usage” that allows us to reason about the
maximum resource demand of an interface:

Definition 8. Let ω = σ0σ1 . . . and ω′ = σ′
0σ

′
1 . . . ∈ Σω where 0 ∈ Σ. We say

ω′ ≤ ω if and only if ∀i ∈ N : σi = σ =⇒ σ′
i ∈ {0, σ}. We extend this to words

over tuple of symbols: Let be ωK , ω′
K ∈ Σω

K . We say ω′
K ≤ ωK if and only if

∀k ∈ K : ω′
K |k ≤ ωK |k. *

A word ω′ precedes ω if either both words agree on the usage of each slot σi, or
that slot is not used in ω′ (i.e. σ′

i = 0). In other words, a slot used in ω′ (σ′
i �= 0)

is also used in ω. We extend this order on slot words to languages over Σω
K :

Definition 9. Let be LK , L′
K ⊆ Σω

K . We define L′
K - LK if and only if ∀ω′

K ∈
L′
K : ∃ωK ∈ LK : ω′

K ≤ ωK . *

Intuitively, L′
K - LK means that the slot usage of all words ω′

K ∈ L′
K is

“dominated” by at least one word ωK ∈ LK . Note that (P(Σω
K),-) is a pre-

order, as LK - L′
K and L′

K - LK does not necessarily imply LK = L′
K . We are

interested in a particular subset of a slot language LK ⊆ Σω
K , containing only

those words from LK with maximal execution demands:

Definition 10. Given a slot language LK ⊆ Σω
K , we define L̂K = {ωK ∈ LK |

∀ω′
K ∈ LK : ωK ≤ ω′

K ⇒ ωK = ω′
K} *

Intuitively, L̂K removes all words from LK , whose slot usage is “dominated”
by another word in LK . L̂K is unique and maximal with respect to the order -:

Lemma 2. For every LK ⊆ Σω
K the subset L̂K ⊆ LK is unique and maximal,

i.e. ∀L′
K ⊆ LK : L′

K - L̂K . ��

Now we can define the conditions for composability of interfaces, based on
Definition 10 and Lemma 1:

Definition 11 (Composability of Interfaces). Let I1 and I2 be two inter-
faces. We say I1 and I2 are composable if:

Virtual Integration of Real-Time Systems 215

1. L1|P1in =
∏

p∈P1in
L1|p and L2|P2in =

∏
p∈P2in

L2|p
2. L1|P2in ⊆ AI2 and L2|P1in ⊆ AI1

3. ∀a ∈ L1|P1in ∩̆L2|P2in : ̂L1(a)|R1 ∩̆ ̂L2(a)|R2 �= ∅,
where Lj(a) = {ω ∈ Lj | ω|Pjin = a|Pjin}. *

The first condition requires the behavior specified for the individual input
ports of every component to be independent. The second one provides the virtual
integration condition as in Lemma 1 (note that Li = AIi ∩GIi). And the third
condition requires that all components can be executed even if they expose
maximal execution usage, considered separately for every possible activation.

The following result states that under these conditions the involved interfaces
can indeed be composed without restricting their original input specification:
Theorem 1. Let I1 and I2 be composable interfaces, and let I = I1 ‖ I2. Then
AI = (AI1 ∩̆AI2)|Pin . ��

This result establishes the requested properties: Considering interfaces as im-
plementations of their characteristic contracts, we can check whether their com-
position restricts input behavior:
Corollary 1. Let I1 and I2 be composable interfaces. Then the following holds:
CI1‖I2 , CI1 ‖ CI2 . ��

We use the above results to solve our initial integration problem as follows.
Given the system specification C = (A,G), the OEM can decompose it into sub-
contracts C1...Cn during the negotiation phase with the suppliers. The property
C1 ‖ ... ‖ Cn , C establishes Condition 2) of Definition 11, provided the char-
acteristic contracts of the interfaces implemented by suppliers refine their local
sub-contract, i.e. CIi , Ci. This is the responsibility of the suppliers. Further
the assumption of each CIi must be such that Condition 1) of Definition 11 is
satisfied. Condition 3) requires the interfaces to be known, which still remains
an obstacle in the design flow. In the remaining part we introduce segregation
properties, providing sufficient conditions to establish the third condition of Def-
inition 11, which can be negotiated without knowing the final implementation.

5 Resource Segregation

A segregation property BI for an interface I abstracts from the slot allocations of
the legal schedules of I, by means of a set of input-independent slot reservations
for which the interface is schedulable. Note that BI indeed may reserve more
slots than are used by the interface I. The basic idea is that composition of
segregation properties BI1 and BI2 of interfaces I1 and I2 then combines non-
conflicting slot reservations of BI1 and BI2 . If at least one such combination
exists, then the third condition for composability of I1 and I2 holds.

Definition 12. Let IK be an interface, and let B ⊆ Σω
R be a slot reservation

language over R, the set of resources in K. B is a segregation property for IK
if and only if

∀b ∈ B, ∀a ∈ LK |Pin : ∃ω ∈ ̂LK(a)|R : ω ≤ b

where L(a) = {ω ∈ L | ω|Pin = a|Pin} *

216 I. Stierand, P. Reinkemeier, and P. Bhaduri

Hence B is a segregation property for IK , if for all its possible activation
patterns each word in B "dominates" at least one of the maximal execution
demands resulting from the activation pattern.

The composition of slot reservation languages B1 and B2 is defined by B1∩̆B2.
The condition for composability of slot reservation languages is rather simple:

Definition 13. Two slot reservation languages B1, B2 ⊆ Σω
R are composable if

and only if B1∩̆B2 �= ∅. *

The following proposition states the desired sufficient condition for the third
condition of interface composability based on their segregation properties.

Theorem 2. Let I1 and I2 be interfaces with disjoint input port sets P1in , P2in

and disjoint output port sets P1out and P2out . Let Bi ⊆ Σω
R be segregation property

for Ii. Then the following holds:

B1∩̆B2 �= ∅ =⇒ ∀a ∈ L1|P1in ∩̆L2|P2in : ̂L1(a)|R1 ∩̆ ̂L2(a)|R2 �= ∅

where Lj(a) = {ω ∈ Lj | ω|Pjin = a|Pjin}. ��

From Definition 12 follows that, given a segregation property BI , any non-
empty subset B′

I ⊆ BI is also a segregation property for interface I. In particular
every b ∈ BI is a segregation property for I. Further, if I is schedulable under b,
then it is schedulable under any slot reservation b′ with b ≤ b′. In other words,
we can always reserve more slots for I without affecting its schedulability. This
leads us to the following definition for refinement of slot reservation languages:

Definition 14. Given slot reservation languages B,B′ ⊆ Σω
R, we say B′ refines

B (B abstracts B′), denoted B′ , B, if and only if ∀b ∈ B : ∃b′ ∈ B′ : b′ ≤ b. *

Similar to the order on slot languages, refinement for slot reservations is a pre-
order (P(Σω

R),,). Given a segregation property BI , every B′
I with BI , B′

I is
also a segregation property for I. Hence, composability of segregation properties
can be checked based on their abstractions, as stated by the following Lemma,
which follows directly from Definition 14:

Lemma 3. Let B1, B2, B
′
1, B

′
2,⊆ Σω

R be slot reservation languages such that
B′

1∩̆B′
2 �= ∅, then B1 , B′

1 and B2 , B′
2 implies B1∩̆B2 �= ∅. ��

This allows us to augment contract-based design with resource reservations by
associating with contract C a slot reservation B. In this combined specification
(C,B), contracts are refined together with their slot reservation. Composition of
(C1, B1) and (C2, B2) amounts to composing the contracts as well as their slot
reservations, i.e. (C1, B1) ‖ (C2, B2) = (C1 ‖ C2, B1 ‖ B2). An implementation
I satisfies (C,B) if CI , C and B is a segregation property for I.

6 Case Study

We apply the approach to a case study from the automotive domain as depicted
in Figure 3. The system under investigation has two components that control

Virtual Integration of Real-Time Systems 217

Fig. 3. Case Study: Components, Contracts and Segregation Properties

the signal lights of a car according to the drivers actions. The Brake Light
component controls the rear brake lights according to the drivers brake pedal
position. The pedal position is periodically sensed, which is characterized by the
input port BrakeSensTimer. The activity of the brake lights is controlled by the
output port BrakeLamp. The Turn Light component controls the turn lights
according to the position of the turn switch and the warning light switch at
the driver console. To this end, the component senses periodically the position
of the switches (input port SwitchSensTimer), and actuates the turn indicator
lights accordingly. In our case, these are the lights connected to the output ports
RearLeftLamp and RearRightLamp, respectively (the front lights are omitted).

The system also implements an emergency brake signaling feature. Whenever
the driver performs an emergency brake (which is indicated by a brute force
brake action), then the car should activate both rear turn lights in order to
signal following drivers about the emergency brake situation. The emergency
brake detection takes place in the Brake Light component. It informs the Turn
Light component via the EmcyStatus/EmcySens port connection about the
current emergency brake status, which actuates the turn lights accordingly.

The OEM defines two timing requirements for the system. The first one states
that the delay between the brake sensing and the activation of the brake light
must be no greater than 25ms. The second requirement states that the end-to-
end latency between the brake sensing and the activation of the warning turn
lights in case of an emergency brake situation must not exceed 60ms.

Negotiation Phase: The OEM mandates different suppliers for the two compo-
nent implementations. According to our approach, the OEM specifies contracts
for the individual components, which are shown at the right part of Figure 3.
The assumptions A11 and A12 define the activation patterns for the compo-
nent Brake Light in terms of periodic event streams as discussed in Section 2.
Assumption A11 defines a periodic event stream with a period of 20ms for the
sensing part, and A12 defines a periodic activation with 10ms period for the

218 I. Stierand, P. Reinkemeier, and P. Bhaduri

Fig. 4. Case Study: Implementation Model

actuator part. A similar situation holds for the assumptions A21 and A22
(20ms), and A24 (10ms) for the component Turn Light. Note that these
assumptions anticipate an implementation detail, as the OEM defined asyn-
chronous activations for the individual parts of the components (sensing (A11,
A22), control (A21) and actuator (A12, A24)). The deadline requirements are
expressed by contract guarantees. The first one is local to Brake Light, and ex-
pressed by the guarantee G11. The second requirement expresses an end-to-end
deadline across the two components. Here, the OEM has to split the deadline
into two parts. In our case, the OEM selects 10ms for component Brake Light,
expressed by the guarantee G12, and 50ms for component Turn Light (G22).

The applications shall be deployed on a hardware architecture with two ECUs.
The sensing and control part shall be implemented on the ECU CEM, and the
actuator part on the ECU REM. The ECUs are connected to the body CAN
bus for exchanging data between the parts. The OEM provides for each part a
time budget. The slot reservation for the Brake Light component is indicated
by a set of real-time tasks (upper part of Figure 3). For example, the OEM
ensures that the ECU provides 3 − 4ms execution time for sensing and control
of the brake light part, and additional 2ms for the calculation of the emergency
brake situation. This is expressed by the task at the top level corner of Figure 3.
For the analysis, the slot reservation is represented by a finite state machine
(FSM) that is generated in a separate analysis step. As Brake Light shall have
higher priority, the slot reservation for the Turn Light component is simply the
inverted FSM where non-occupied slots can be used, and vice versa.

Implementation: The suppliers eventually generate the implementation depicted
in Figure 4. The Turn Light component implements sensing and pre-processing
tasks for the turn switch (TSSens, TSPrep) and the warning lights (WLSens,
WLPrep). The pre-processed data is read by the central Logic task, which
generates control values for the individual actuator tasks. The data is sent via
the CAN bus to the actuator tasks RLAct and RRAct, which are hosted at the
ECU REM. The task also generates control data for the switch lights that reside
in the driver console (SLAct). The brake pedal is sensed and preprocessed by
the tasks BPSens and P2L, respectively. The latter sends the generated control

Virtual Integration of Real-Time Systems 219

Table 1. Guarantee Verification Results

Guarantee Brake Light Turn Light integrated
G11 [5.25, 16.25] - [5.25, 15.25]
G12 [5, 6] - -
G22 - [10.25, 46.25] -
G12+G22 - - [15.25, 45.25]

FSM states 28.021 225.945.919 41.806.561
explored states 109.262 932.377.509 265.473.150

values via the bus to the actuator task BLAct. The task EmcyPrep calculates
whether an emergency brake took place. The dotted elements with a rectangle
symbol indicate shared variables that store control values. The variables at the
ECU CEM store the data from the pre-processing tasks. Whenever the Logic
task is activated, it reads the stored values to generate the actuator control
values. The shared variables at the ECU REM store these values for the actuator
tasks. As the analysis has no functional (i.e. data dependency) aspect, we omit
the variables in the analysis model in order to reduce computational complexity.

The trigger elements in the model (rectangles with a filled circle symbol)
characterize the event streams conforming to the respective assumptions. Trigger
T11 for example implements an event stream that activates task BPSens every
20ms according to assumption A11.

Analysis: We first check the proof obligations imposed by the conditions of Def-
inition 11. The independence of the individual input ports is trivially satisfied
due to the definition of independent event streams for all inports. The second
condition concerns the ports that connect the involved components. In our case,
the required language inclusion is given by definition, which can be checked by
comparing the definitions of A23 and G13, and A12 and G21, respectively.
In general, however, a formal language inclusion check must be performed. For
the third condition, requiring the composability of the component interface, we
exploit Theorem 2. Hence, it must be ensured that the composition of the indi-
vidual slot reservation languages does not impose an empty language. Also this
is given by definition in our case, as the slot reservation of the one component
is the inverted slot reservation of the other one.

The remaining proof obligation is to check whether the implementations of
the individual components satisfy the given requirements, while using only slots
that are given by the respective slot reservation language. The analysis employs
an evolved version of the tool RTana2 for computational real-time scheduling
analysis [10]. Three analysis runs have been performed. The first analysis checks
whether the Brake Light implementation satisfies the guarantees G11 and
G12. To this end, the analysis model contains both the application tasks and
the slot reservation FSM. The tool performs a scheduling analysis where the
application tasks can only use time slots that are available according to the
slot reservation scheme. The second run does the same with the Turn Light
implementation and guarantee G22, using however the inverted slot reservation

220 I. Stierand, P. Reinkemeier, and P. Bhaduri

of the first run. The third analysis checked the integrated model for comparison,
and also performed an end-to-end analysis of the guarantees G12+G22. The
results are shown in Table 1. Note that the number of states are consistently
larger for the analysis of the separate Turn Light component compared to
the integrated analysis. This is due to the fact that the slot reservation scheme
introduces an additional non-determinism for the analysis of the component.

Verification for the guarantees G13 and G21 is not shown. The latter is
trivially given as the events of trigger T24 are directly put through to component
Brake Light. G13 can be derived from A11 and G12. A formal verification
would require a language inclusion check, which is however not yet available in
the tool. Finally, the (over-approximated) end-to-end latency G12+G22 can be
easily derived by adding the results from the separated analysis runs.

7 Conclusion

In this paper we have proposed a compositional method to verify proper compo-
nent integration at an early design stage, while taking into account resource usage
of implementations of respective components. The method combines contract-
based reasoning for verifying refinement of a system specification by a set of
component specifications, with resource segregation properties. We provided a
set of conditions for the composability of resource segregation that guarantees
preservation of the validity of the contract-based refinement check, when resource
usage of implementations of the contracts are considered in a later design step.

We showed the application of the approach by a case-study from the automo-
tive domain, containing all steps of the proposed design process. The verification
steps employed an extended version of the prototype analysis tool for interfaces
discussed in [10] with preliminary support of segregation properties.

References

1. Basu, A., Bozga, M., Sifakis, J.: Modeling Heterogeneous Real-time Components
in BIP. In: Proc. Software Engineering and Formal Methods, SEFM (2006)

2. Benveniste, A., Caillaud, B., Nickovic, D., Passerone, R., Raclet, J.B., Reinkemeier,
P., Sangiovanni-Vincentelli, A., Damm, W., Henzinger, T., Larsen, K.: Contracts
for Systems Design (2013), INRIA Research Report No. 8147 (November 2012)

3. Bhaduri, P., Stierand, I.: A Proposal for Real-Time Interfaces in SPEEDS. In:
Proc. Design, Automation Test in Europe, DATE (2010)

4. Easwaran, A., Anand, M., Lee, I.: Compositional Analysis Framework using EDP
Resource Models. In: Proc. Real-Time Systems Symposium, RTSS 2007 (2007)

5. Guan, N., Ekberg, P., Stigge, M., Yi, W.: Effective and Efficient Scheduling of
Certifiable Mixed-Criticality Sporadic Task Systems. In: Proc. Real-Time Systems
Symposium, RTSS (2011)

6. Henzinger, T., Matic, S.: An Interface Algebra for Real-Time Components. In:
Proc. of the 12th IEEE Real-Time and Embedded Technology and Applications
Symposium (RTAS), pp. 253–266 (2006)

Virtual Integration of Real-Time Systems 221

7. Perathoner, S., Lampka, K., Thiele, L.: Composing Heterogeneous Components
for System-wide Performance Analysis. In: Design, Automation Test in Europe
Conference Exhibition, DATE (2011)

8. Richter, K.: Compositional Scheduling Analysis Using Standard Event Models.
Ph.D. thesis, TU Braunschweig, Germany (2005)

9. Shin, I., Lee, I.: Periodic Resource Model for Compositional Real-Time Guarantees.
In: Proc. International Real-Time Systems Symposium (RTSS), pp. 2–13 (2003)

10. Stierand, I., Reinkemeier, P., Gezgin, T., Bhaduri, P.: Real-Time Scheduling In-
terfaces and Contracts for the Design of Distributed Embedded Systems. In: Proc.
Symposium on Industrial Embedded Systems, SIES (2013)

11. Thiele, L., Wandeler, E., Stoimenov, N.: Real-Time Interfaces for Composing Real-
Time Systems. In: Proc. International Conference on Embedded Software (EM-
SOFT), pp. 34–43 (2006)

12. Wandeler, E., Thiele, L.: Interface-Based Design of Real-Time Systems with Hier-
archical Scheduling. In: Proc. Real-Time and Embedded Technology and Applica-
tions Symposium (RTAS), pp. 243–252 (2006)

Timed Pattern Matching

Dogan Ulus1, Thomas Ferrère1, Eugene Asarin2, and Oded Maler1

1 VERIMAG, CNRS and the University of Grenoble-Alpes, France
2 LIAFA, Université Paris Diderot / CNRS, Paris, France

Abstract. Given a timed regular expression and a dense-time Boolean signal
we compute the set of all matches of the expression in the signal, that is, the
set of all segments of the signal that satisfy the regular expression. The set of
matches is viewed as a set of points in a two-dimensional space with each point
indicating the beginning and end of a matching segment on the real time axis.
Our procedure, which works by induction on the structure of the expression, is
based on the following result that we prove in this paper: the set of all matches
of a timed regular expression by a signal of finite variability and duration can be
written as a finite union of zones.

1 Introduction

Pattern matching, the determination of all sub-sequences of a string of symbols that
match some pre-specified pattern, is a fundamental operation in searching over texts
and elsewhere. Pattern matching has been studied extensively for textual data starting
from the 60s. The basic string matching algorithms for single words [KMP77, BM77] as
well as specialized data structures such as suffix trees [Wei73] and later advancements
can be found in [Ste94, CR02]. For more complex patterns, the classical regular expres-
sions of [Kle56] is an adequate pattern description language supporting a minimal set of
features (concatenation, alternation and repetition). It has been enhanced over the years
by various features such as anchors, character sets and any-character [Fri06]. Pattern
matching based on variants of regular expressions is implemented in many software
tools ranging from the grep [Tho68] family to regular expression modules of mod-
ern programming languages, notably Perl and Python. Besides texts, pattern matching
has important applications in Biology (DNA and protein searches) [AGM+90] and in
database querying (especially temporal databases [FRM94]).

In this work we introduce a quantitative-time variant of the pattern matching prob-
lem where discrete sequences are replaced by dense-time, discrete-valued signals. As
a pattern specification formalism we use a variant of the timed regular expressions of
[ACM02] which are expressively related, in terms of timed languages, to the timed
automata of [AD94]. We provide a complete solution to the timed pattern matching
problem defined as: find all sub-segments of the signal that match the expression. Note
that a straightforward application of the classical translations of regular expressions to
automata can be used to detect whether the prefix of a string matches the pattern. The
classical algorithm of Thompson [Tho68] adapted the automaton construction for the
matching context but still, the discrete case, finding all matches of an expression in a

A. Legay and M. Bozga (Eds.): FORMATS 2014, LNCS 8711, pp. 222–236, 2014.
c© Springer International Publishing Switzerland 2014

Timed Pattern Matching 223

string is considered a very difficult problem and is not part of the mainstream (some ex-
ceptions are [Pik87] and [Lau00]). One reason might be that without a symbolic repre-
sentation, which is necessary for the timed case, the set of matches may be prohibitively
large to represent.

In addition to the theoretical interest, we believe that the problem of finding pat-
terns in real-time data has numerous applications in many domains. This particular work
was triggered by assertion-based circuit (dynamic) verification which is the hardware
equivalent of what is called runtime verification in software. This form of lightweight
verification consists in monitoring simulation traces against temporal specifications.
Monitoring procedures for temporal logic formulas are well-studied and have been ex-
tended successfully to real-time and analog signals [MN04, MNP08]. However, standard
assertion languages used in the semi-conductor industry such as PSL [EF06, CVK04]
and SVA [VR06, Spe06] combine temporal logic with regular expressions in a non trivial
way. The results of this paper can be used to extend monitoring procedures toward such
specification languages and their timed extensions such as the one proposed in [HL11].

To give an intuition of what we do, consider the expression ϕ := 〈(p∧q)· q̄ ·q〉[4,5] ·p̄
whose verbal description is as follows. Inside a time window of a duration between 4
and 5 there exists an interval where both p and q are high, followed by q going down
and up again; after that time window there is an interval where p is low. If we look
at signals p and q plotted in Fig. 1-(a), we can see ϕ is matched by any time intervals
[t, t′] such that t ∈ [1, 2] and t′ ∈ [6, 7]. Clearly, the number of such segments of the
signal (the matches) is infinite and two of them, [1.3, 6.8] and [1.5, 7.0] are shown in
Fig. 1-(b).

Technically, our contribution is based on the following result. Let w be a Boolean
signal defined over an interval [0, d], let its restriction to the temporal interval [t, t′] be

p

0 2 4 6 8 10 12

q

(a)

1.3 2.0 6.0 6.3 6.8

p ∧ q q̄ q p̄

1.5 2.0 6.0 6.4 7.0

p ∧ q q̄ q p̄

(b)

Fig. 1. (a) Boolean signals p and q; (b) Intervals [1.3, 6.8] and [1.5, 7.0] are two possible matches
that satisfy ϕ over p and q

224 D. Ulus et al.

denoted by w[t, t′] and let ϕ be a timed regular expression. Then, the set of matches for
ϕ in w,

M(ϕ,w) = {(t, t′) : w[t, t′] ∈ [[ϕ]]}
is a finite union of zones. Zones are a special class of convex polytopes definable by
intersections of inequalities of the form c1 ≤ xi ≤ c2 and c1 ≤ xi − xj ≤ c2. They
are used extensively in the verification of timed automata and admit a data-structure
(difference-bound matrices, DBM) on which various operations, including all those
required by the recursive computation of M(ϕ,w), can be carried out efficiently.

The rest of the paper is organized as follows. Section 2 defines the syntax and seman-
tics of timed regular expressions. Section 3 illustrates the zone-based decomposition of
match-sets, states the main result that is the finiteness of such a decomposition, and
proves it by showing the following lemma: for every signal w of finite variability and
expression ϕ there exist some k such that M(ϕ∗, w) = M(ϕ≤k, w). Section 4 gives
more details about the implementation of our algorithm with a practical bound on the
convergence to a fixed point for ϕ∗. Section 5 reports the performance of the algorithm
on several families of examples and is followed by a discussion of future work.

2 Timed Regular Expressions over Signals

Signals are the dense-time analogues of sequences, functions from a time domain into a
value domain. We will work with Boolean signals but the results can be easily extended
to any discrete value domain.

Definition 1 (Boolean Signals). Let T = [0, d] be a bounded interval of R+ and let m
be a positive integer. A Boolean signal is a function w : T → Bm.

We use w[t] to denote the value of the signal at time t. An interval I ⊆ [0, d] is uniform
with respect to w if w[t] = w[t′] for every t, t′ ∈ I . A maximally uniform interval is a
uniform interval such that any interval strictly containing it is not uniform. We focus on
non-Zeno signals of bounded duration which thus have a finite number of maximally-
uniform intervals. We use w[t, t′] to denote the segment of w on the interval [t, t′].
Remark: To keep the fluidity of the presentation we do not give too much attention to
the issue of open/closed intervals in the definitions of signals and expressions. In fact,
the semantics of timed regular expressions in [ACM02] is not based on total functions
from T to the alphabet. An element from the underlying signal monoid is written as
w = p5 · p̄3 which means 5 time of p followed by 3 time of p̄. As a function, it is clear
that w[t] = 1 when t ∈ (0, 5) and w[t] = 0 when t ∈ (5, 8). However concerning its
value at points 0, 5 and 8 there are different schools of thought. One possibility is to
let w = 1 at [0, 5), w = 0 at [5, 8) and undefined elsewhere. Another possibility is to
consider the value of the signal be non-deterministic or undefined at boundary points.
In this paper our regular expressions semantics simply ignore the value of signal w at
boundary points.

As a pattern specification language we use a variant of the timed regular expression
of [ACM02]. Such expressions admit, in addition to the standard concatenation, union
and star, also intersection, time restriction and renaming (we do not use the latter op-
erator which was introduced to match the full expressive power of timed automata).

Timed Pattern Matching 225

Definition 2 (Timed Regular Expressions). The syntax of timed regular expressions
is given by the grammar

ϕ := ε | p | p | ϕ · ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ | ϕ∗ | 〈ϕ〉I

where p ∈ {p1, . . . , pm} is a propositional variable and I is an interval of R+ with
integer endpoints.

We use an exponent notation with ϕ0 = ε, ϕk+1 = ϕk · ϕ, ϕ<1 = ε and ϕ<k+1 =
ϕ<k ∨ ϕk. Note that the expressions used in the paper are more “symbolic” than in the
standard “flat” theory of regular expression and closer in spirit to temporal logic where
an atomic expression like pi denotes (or can be viewed as a syntactic sugar for) the set
of all tuples in Bm whose ith coordinate is 1. The identity of signal w should always
be clear from context, so that we use pi[t] as a shorthand for the value at time t of the
projection of w on propositional variable pi.

Typically, the semantics of real-time temporal logics such as MTL [Koy90] and
MITL [AFH96] is expressed in terms of a satisfaction relation of the form (w, t) |= ϕ,
indicating that the signal w satisfies ϕ from position t. For the past fragment of a tempo-
ral logic this is a statement about w[0, t] while for the future fragment it is a statement
about w[t, d], see [MNP05]. For regular expressions we found necessary to parameter-
ize the satisfaction relation by two time points t ≤ t′, as concatenation requires equality
between the end time of its left argument with the begin time of its right argument. In
this setting we note (w, t, t′) |= ϕ the fact that w[t, t′] is part of the semantics of ex-
pression ϕ. Such a satisfaction relation also appears in extensions to real-time temporal
logics such as freeze quantification which has been shown in [DBS12] to be monitorable
by working directly in R2.

Definition 3 (Semantics). The satisfaction relation � of a timed regular expression ϕ
by a signal w, relative to start time t and end time t′ ≥ t is defined as follows:

(w, t, t′) � ε ↔ t = t′

(w, t, t′) � p ↔ t < t′ and ∀t′′. t < t′′ < t′ → p[t′′] = 1
(w, t, t′) � p ↔ t < t′ and ∀t′′. t < t′′ < t′ → p[t′′] = 0
(w, t, t′) � ϕ · ψ ↔ ∃t′′. (w, t, t′′) � ϕ and (w, t′′, t′) � ψ
(w, t, t′) � ϕ ∨ ψ ↔ (w, t, t′) � ϕ or (w, t, t′) � ψ
(w, t, t′) � ϕ ∧ ψ ↔ (w, t, t′) � ϕ and (w, t, t′) � ψ
(w, t, t′) � ϕ∗ ↔ ∃k ≥ 0. (w, t, t′) � ϕk

(w, t, t′) � 〈ϕ〉I ↔ t′ − t ∈ I and (w, t, t′) � ϕ

The set of segments of w that match an expression ϕ is captured by the match-set.

Definition 4 (Match-Set). For any signal w and expression ϕ, we let

M(ϕ,w) := {(t, t′) ∈ T× T : (w, t, t′) � ϕ}

Geometrically speaking, match-sets are subsets of [0, d] × [0, d] confined to the upper
triangle defined by t ≤ t′. In the sequel we show constructively that for every timed
regular expression ϕ and a finite-variability signal w, the match-set can be written as a
finite union of zones.

226 D. Ulus et al.

3 Match-Sets and Zones

Zones constitute a restricted class of convex polyhedra defined by orthogonal con-
straints c ≺ ti and difference constraints c ≺ ti − tj with ≺∈ {<,≤,≥, >}. They
are used extensively to represent clock values in the analysis of timed automata. In this
paper we use them to represent absolute time values in a match-set. While the con-
stants for the diagonal constraints may be taken as integers, those of the orthogonal
constraints have fractional parts inherited from the time stamps of events in w. Such a
zone z also lies in the upper quadrant of R2 and not below the diagonal. Consequently
we let π1(z), π2(z) and δ(z) be its vertical, horizontal and diagonal projections; these
are intervals with respective endpoints noted π−

1 (z), π+
1 (z), π

−
2 (z), π+

2 (z), δ
−(z), and

δ+(z). Typically we have

(t1, t2) ∈ z ↔

⎧⎨⎩
π−
1 (z) ≤ t1 ≤ π+

1 (z)
π−
2 (z) ≤ t2 ≤ π+

2 (z)
δ−(z) ≤ t2 − t1 ≤ δ+(z)

with all constraints being tight. Note that under this representation diagonal constraints
may no longer be integers. Due to the positive duration constraint for atomic predicates
we also have to consider zones that are partly open, with the same canonical represen-
tation yet featuring strict inequalities.

Below we explain how the match-set of an expression is inductively constructed
and prove that the outcome is always a finite union of zones. Since operations ∧, 〈.〉I
and · distribute over union, it is sufficient to prove closure of zones under their asso-
ciated match-set operations and the closure of unions of zones will immediately fol-
low. The closure is almost immediate for all cases except ϕ∗ where we will compute
the match-set by a finite number of concatenation. The convergence to a fixed point
M(w,ϕ≤k+1) = M(w,ϕ≤k) can be intuitively understood due the finite number of
zones definable using a finite number of constants in the constraints. One may show
that non-redundant constraints, as opposed to tight ones are either integers or have a
fractional part equal to that of some event in w. However a bound obtained from an
argument along these lines would be overly pessimistic and we will use other proofs to
compute better bounds on the number of iterations.

Empty Word. Just notice that the match-set of ε is the diagonal zone

M(ε, w) = {(t, t′) ∈ T× T : t = t′}.

Literals. When ϕ is a literal (p or p̄) the match-set is a disjoint union of triangles
touching the diagonal whose number depends on the number of switching points of the
projection of w on p, see Fig. 2-(a).

Boolean Operations. The match-sets for disjunction and conjunction satisfy

M(ϕ ∨ ψ,w) = M(ϕ,w) ∪M(ψ,w) and M(ϕ ∧ ψ,w) = M(ϕ,w) ∩M(ψ,w)

and finite unions of zones are closed under Boolean operations.

Timed Pattern Matching 227

Time Restriction. The match-set of the time restriction of an expression is obtained
by intersecting the match-set with the corresponding diagonal band, that is,

M(〈ϕ〉I , w) = M(ϕ) ∩ {(t, t′) : t′ − t ∈ I}.

This is just an intersection with a zone and the result remains a union of zones, see
Fig. 2-(b).

0

1

2

3

4

5

6

7

8

9

10

11

12

p

0 1 2 3 4 5 6 7 8 9 10 11 12

p

0

1

2

3

4

5

6

7

8

9

10

11

12

〈p〉[1,2]

0 1 2 3 4 5 6 7 8 9 10 11 12

p

(a) (b)

Fig. 2. (a) The match-set of a signal with respect to an atomic expression; (b) The effect of time
restriction

Concatenation. Viewing M as a binary relation, the match-set for concatenation is
nothing but a relational composition of the corresponding match-sets:

M(ϕ · ψ,w) = M(ϕ,w) ◦M(ψ,w)

as illustrated in Fig. 3-(a).

Lemma 1. The composition of two zones is a zone.

Proof. Let F [t, t′] and G[t, t′] be conjunctions of difference constraints defining zones
z and z′ respectively. Their composition z′′ = z ◦ z′ is defined by the formula H :=
∃t′′.F [t, t′′]∧G[t′′, t′]. Eliminating t′′ from H using the Fourier-Motzkin procedure we
get an equivalent, quantifier-free formula H ′ which is also a conjunction of difference
constraints and hence z′′ is a zone.

Geometrically speaking, z ◦ z′ can be seen as inverse-projecting z and z′ into a 3-
dimensional space with axes labeled by t, t′ and t′′, intersecting these two sets and
projecting back on the plane t, t′. Another intuition in dimension 2 is given Fig. 3-(b).

228 D. Ulus et al.

0

1

2

3

4

5

6

7

8

ϕ

ψ

ϕ · ψ

p

0 1 2 3 4 5 6 7 8

q

t′′

t′

p

t t′′ t′

q

(a) (b)

Fig. 3. (a) Match-sets of expressions ϕ := 〈p〉[1,∞], ψ := 〈q〉[0,2] and ϕ · ψ; (b) A point
(t, t′) ∈ z ◦ z′ corresponds to a path from t to t′ via some (t, t′′) ∈ z, t′′ on the diagonal, and
(t′′, t′) ∈ z′

Star. We prove that the match-set of the star can be computed by a finite number of
concatenations. An interval [t, t′] is said to be unitary with respect to w if t′− t < 1 and
w is constant throughout its interior (t, t′). The following simple property of unitary
intervals can be proved by a straightforward structural induction on ϕ.

Lemma 2. Let [t, t′] be a unitary interval with respect to w. For all intervals [r, r′] ⊆
[t, t′] we have (w, r, r′) |= ϕ if and only if (w, t, t′) |= ϕ.

Let σ(w) be the least k such that w can be covered by k unitary intervals, that is,
there exists a sequence of intervals [0, t1], [t1, t2], ..., [tk−1, d], all unitary with respect
to w. A key property of k = σ(w) is the following.

Lemma 3. For any n > 2k + 1 if (w, t, t′) |= ϕn then (w, t, t′) |= ϕn−1.

Proof. Let [0, t1], [t1, t2], ..., [tk−1, d] be a sequence of unitary intervals with respect to
w. If (w, t, t′) |= ϕn then there exists a sequence of time points t = r0 ≤ r1 ≤ · · · ≤
rn = t′ such that for any i ∈ 1..n

(w, ri−1, ri) |= ϕ (1)

When n > 2k + 1, by the pigeonhole principle, among time points r0, . . . , rn there
are three consecutive points, denoted by ri−1, ri, ri+1, within the same unitary interval

Timed Pattern Matching 229

[tj−1, tj] of w. By Lemma 2 it holds that (w, ri−1, ri+1) |= ϕ, thus the time point ri
can be excluded from r0, . . . , rn still preserving (1). Hence (w, t, t′) |= ϕn−1.

Corollary 1. For any expression ϕ and any signal w with σ(w) = k it holds that
M(ϕ∗, w) = M(ϕ≤2k+1, w).

From all this we conclude:

Theorem 1 (Match-Sets and Unions of Zones). Given a finite variability signal w
and a timed regular expression ϕ, M(ϕ,w) is a finite union of zones.

Fig. 4 demonstrates the whole process of computing matches by zones for the ex-
pression 〈(p∧ q) · q̄ · q〉[4,5] · p̄ and signal of Fig. 1-(a) from the introduction. The result
is indeed the rectangle [1, 2]× [6, 7].

0

1

2

3

4

5

6

7

8

9

10

11

12

p

p̄

q

q̄

p ∧ q

(p ∧ q) · q̄

0 1 2 3 4 5 6 7 8 9 10 11 12
0

1

2

3

4

5

6

7

8

9

10

11

12

(p ∧ q) · q̄ · q

0 1 2 3 4 5 6 7 8 9 10 11 12

〈(p ∧ q) · q̄ · q〉[4,5]

0 1 2 3 4 5 6 7 8 9 10 11 12

〈(p ∧ q) · q̄ · q〉[4,5] · p̄

Fig. 4. The match-sets for all sub-expressions of 〈(p∧ q) · q̄ · q〉[4,5] · p̄ in the signal of Fig. 1-(a)

4 Computation

4.1 Algorithms and Implementation

The proof of Theorem 1 gives us a procedure for computing match-sets. This proce-
dure, sketched in Algorithm 1, recursively calls a subroutine COMBINE that takes as
arguments the topmost operator of the expression • ∈ {·,∨,∧,∗ , 〈 〉I} along with the
match-set(s) of the subexpression(s) and applies the operation corresponding to the spe-
cific operator •. All the operations on individual zones, including composition of two
zones, see Lemma 1, are realized using calls to the zone library of the tool IF [BGM02]
from our Python implementation.

230 D. Ulus et al.

Algorithm 1. ZONES(ϕ,w)

select (ϕ)
case ε, p, p:

Zϕ := ATOM(ϕ,w)
case •ψ:

Zψ := ZONES(ψ,w)
Zϕ := COMBINE(•, Zψ)

case ψ1 • ψ2:
Zψ1 := ZONES(ψ1, w)
Zψ2 := ZONES(ψ2, w)
Zϕ := COMBINE(•, Zψ1 , Zψ2)

end select
return Zϕ

Our algorithm intensively performs various binary operations over sets of zones,
that is, Z • Z ′ = {z • z′ : z ∈ Z, z′ ∈ Z ′}. In addition to the operations defined
in the expressions, in various stages we eliminate redundancy by checking pairwise
inclusion of zones covering a match-set. For this we define a special filtering operation
by ↓ Z = {z ∈ Z : ∀z′ ∈ Z. z �⊂ z′}, which consists in removing from Z all zones
strictly included in other zones in Z . We define the general pairwise inclusion test - by
Z - Z ′ ↔ ∀z ∈ Z, ∃z′ ∈ Z ′. z ⊆ z′, that is each zone in Z is included in a zone of
Z ′. Note that the filtering Z is just taking the smallest Z ′ ⊆ Z such that Z - Z ′.

A straightforward implementation of a binary operation on sets of zones with n ele-
ments will need O(n2) operations. In practice, many of these operations yield an empty
set and can be avoided by exploiting inherent ordering between zones. Such operations
are very similar to the spatial join operation, studied extensively for spatial databases,
see [JS07]. Spatial joins are usually performed using a filter-and-refine approach to
avoid redundant operations, where two-dimensional objects in Euclidean space are first
approximated by their minimum bounding boxes in a filtering stage and then actual
operations are performed on filtered sets of objects. We implement this idea through
the plane-sweep algorithm, used as is for intersection and filtering, and specialized for
concatenation.

For intersection, Algorithm 2 keeps Z and Z ′ sorted according to π−
1 . It maintains

two active lists Y and Y ′ consisting of candidates for intersection. Elements are suc-
cessively moved to the active lists and are removed from them when it is clear they will
not participate in further non-empty intersections. This happens for z ∈ Y such that
π+
1 (z) < π−

1 (z
′) for every z′ ∈ Y ′ and vice versa. The filtering operation ↓ is per-

formed using a similar algorithm. For concatenation, that is computing Z ′′ = Z ◦Z ′,
observe that z ◦z′ �= ∅ iff π2(z)∩π1(z

′) �= ∅. Hence we can apply an algorithm similar
to Algorithm 2 where Z is sorted according to π−

2 and Z ′ is sorted according to π−
1 .

For the star operation, we tried two different approaches. In the incremental approach
we compose the input set Z with an accumulating set Y initialized to Z . In the squaring
approach we compose the accumulating set Y with itself. The squaring approach is
more efficient for sets of zones that converge slowly to a fixpoint. Algorithm 3 depicts
our implementation of this approach. In order not to compose the same sequence of

Timed Pattern Matching 231

Algorithm 2. COMBINE(∧, Z, Z ′) assume Z,Z ′ sorted by π−
1

Y := Y ′ := Z′′ := ∅
while Z �= ∅ ∨ Z′ �= ∅ do

z := first(Z); � := π−
1 (z)

z′ := first(Z′); �′ := π−
1 (z′)

if � < �′ then
Move z from Z to Y
Y ′ := {z′ ∈ Y ′ : π+

1 (z′) ≥ �}
foreach z′ ∈ Y ′ loop

z′′ := z ∩ z′

Z′′ := Z′′ ∪ {z′′}
end loop

else
Move z′ from Z′ to Y ′

Y := {z ∈ Y : π+
1 (z) ≥ �′}

foreach z ∈ Y loop
z′′ := z ∩ z′

Z′′ := Z′′ ∪ {z′′}
end loop

end if
end while
return ↓Z′′

zones twice, we maintain two sets Xk and Yk such that at the end of iteration k we have
∪Xk = (∪Z)2

k

and ∪Yk = (∪Z)<2k . According to Corollary 1, we may stop at the
first k such that 2k ≥ 2 · σ(w) + 1; however a fixpoint can be reached in less iterations.
For performance reasons we use the pairwise inclusion test Xk - Yk and give in the
sequel an upper-bound on the number of iterations needed until this condition is met.

Algorithm 3. COMBINE(∗, Z)

Y := Z
X := COMBINE(·, Z, Z)
while X �� Y do

Y :=↓(Y ∪X ∪ COMBINE(·, X, Y))
X := COMBINE(·, X,X)

end while
return Y ∪ {ε}

4.2 A Bound on the Number of Iterations

We show that for an input set of zones Z produced by our matching procedure, having
|Z| elements and covering d = 0max {π+

2 (z
′) − π−

1 (z) : z, z′ ∈ Z}1 time units, the
pairwise inclusion test is met before k = log(|Z|+ d) iterations.

232 D. Ulus et al.

A sequence of zones z1, . . . , zn is said to be redundant if there exists 1 ≤ i < j ≤ n
with z1 ◦ · · · ◦ zj ⊆ z1 ◦ · · · ◦ zi. Note that the star algorithm eliminates redundant
sequences as for any such sequence z1, . . . , zn we have by transitivity z1 ◦ · · · ◦ zn ⊆
z1 ◦ · · · ◦ zi ◦ zj+1 ◦ · · · ◦ zn. We first see that in a non-redundant sequence the maximal
duration never decreases.

Lemma 4. For any z, z′ such that z ◦ z′ � z we have δ+(z ◦ z′) ≥ δ+(z).

Proof. The propagation of difference constraints gives us δ+(z ◦ z′) = min{δ+(z) +
δ+(z′), π+

2 (z
′) − π−

1 (z)}. Suppose δ+(z ◦ z′) < δ+(z) and show z ◦ z′ ⊆ z. First
note that π1(z ◦ z′) ⊆ π1(z). By hypothesis π+

2 (z
′) − π−

1 (z) < δ+(z), yet δ+(z) ≤
π+
2 (z)− π−

1 (z) so that π+
2 (z

′) < π+
2 (z). This implies that π2(z ◦ z′) ⊆ π2(z). Finally

the hypothesis δ+(z ◦ z′) < δ+(z) gives us δ(z ◦ z′) ⊆ δ(z).

We call repeated a position i in the sequence z1, . . . , zn such that there exists j > i
with zi = zj . Now when appending a zone that may be repeated, the maximal duration
increases by the corresponding amount.

Lemma 5. For any z, z′ such that there exists z′′ with z ◦ z′ ◦ z′′ ◦ z′ � z ◦ z′ we have
δ+(z ◦ z′) = δ+(z) + δ+(z′).

Proof. Suppose δ+(z ◦ z′) < δ+(z)+δ+(z′), take z′′ a zone and show z ◦ z′ ◦ z′′ ◦ z′ ⊆
z ◦ z′. Similarly to the proof of Lemma 4 it is sufficient to show that π+

2 and δ+ do not
increase. On the one hand π+

2 (z ◦ z′ ◦ z′′ ◦ z′) ≤ π+
2 (z

′) = π+
2 (z ◦ z′), and on the other

hand δ+(z ◦ z′ ◦ z′′ ◦ z′) ≤ π+
2 (z

′)− π−
1 (z) = δ+(z ◦ z′).

By a straightforward induction on the expression one may show that a zone z′ such
that δ+(z′) < 1 always verifies z′ = π1(z

′) × π2(z
′) ∩ {(t, t′) : t′ − t > 0}. Thus

if such a zone z′ was repeated it would make the corresponding sequence redundant;
under the conditions of Lemma 5 we indeed have δ+(z ◦ z′) ≥ δ+(z) + 1.

Theorem 2. Let Z be a set of zones covering d time units; Algorithm 3 stops within
k = log(|Z|+ d) iterations.

Proof. We first show that any non-redundant sequence of zones z1, . . . , zn with m rep-
etitions verifies δ+(z1 ◦ · · · ◦ zn) ≥ m.
Let i be a position in the sequence. If zi is repeated there exists j > i with zi = zj .
Factoring the composition of z1, . . . , zj into (z1◦· · ·◦zi−1) ◦ zi ◦(zi+1◦· · ·◦zj−1) ◦ zj
we see by Lemma 5 that δ+(z1◦· · ·◦zi) = δ+(z1◦· · ·◦zi−1)+δ+(zi) and in particular
δ+(z1 ◦ · · · ◦ zi) ≥ δ+(z1 ◦ · · · ◦ zi−1) + 1, maximal duration increases of 1. Else zi
is not repeated and by Lemma 4 we ensure δ+(z1 ◦ · · · ◦ zi) ≥ δ+(z1 ◦ · · · ◦ zi−1),
maximal duration does not decrease. With m repeated zones the sequence z1, . . . , zn
has maximal duration of at least m.
Now suppose the algorithm reaches iteration k, and take x a zone in Xk. There exists a
sequence z1, . . . , zn such that x = z1 ◦ · · · ◦ zn with n = 2k ≥ |Z| − d. If such a se-
quence was non-redundant it would have at least n− |Z| repeated zones, and maximal
duration δ+(z1 ◦ · · · ◦ zn) ≥ n − |Z| ≥ d > π+

2 (zn) − π−
1 (z1) which is impossi-

ble. Therefore it is redundant so that there exists y ∈ Yk with x ⊆ y; we have shown
Xk - Yk thus if iteration k is reached the algorithm stops.

Timed Pattern Matching 233

5 Experimentation

We test our implementation on several examples, focusing on performance aspects and
investigating the sensitivity of our algorithms to various parameters such as signal vari-
ability, signal length, and the magnitude of time units in the expression.

Example: Performance of the Concatenation. In this example we define an expres-
sion ϕ := p · q on random Boolean signals p and q with length L. We draw a number
E of switching points from a uniform distribution between 0 and L, and we define the
variability of the resulting signal as V = E/L. In Fig. 5-(a), we evaluate expression
ϕ over such signals w with fixed variability and of increasing length to measure the
execution time. This corresponds to the usual situation when monitoring various exe-
cutions of the same system: there the algorithm performs in linear time with respect to
signal length. Note that we use similar algorithms for concatenation, union, intersec-
tion and time-restriction operations; therefore, one can extend performance behavior of
concatenation to others.

500000 1000000

Length

0.0

0.2

0.4

0.6

0.8

1.0

E
xe

cu
tio

n
Ti

m
e

(s
)

V = 0.1

V = 0.05

V = 0.025

0 10 20 30 40 50 60

Fixpoint Index

0

20

40

60

80

100

120

140

E
xe

cu
tio

n
Ti

m
e

(s
)

Incremental
Squaring

(a) (b)

Fig. 5. (a) Performance of concatenation operation with respect to signal length; (b) Performance
comparison of star algorithms with respect to fixpoint index

Example: Performance of the Star. In this example we use a family of expressions
(〈p·q〉[0,r])∗ on randomly generated Boolean signals p and q of fixed length and variabil-
ity, taken as large numbers in order to stress our algorithms. Reducing r in the expres-
sion increases the fixpoint index n, defined as the minimum sequence length such that
all longer sequences are included in a sequence of at most this length. We can compare
incremental and squaring star algorithms as n changes and we plot the performance re-
sults in Fig. 5-(b). We see that the squaring performs better than incremental algorithm
except cases where n is small. This can be explained by the fact that in the squaring ap-
proach, the effect of filtering is multiplied in the following sense. Every sequence that

234 D. Ulus et al.

we discard may have appeared in several factorizations of longer sequences; squaring
will reuse sequences as subsequences in many places which the incremental approach
does not do. Another effect that we observe is that the number of zones covering se-
quences of length n does not explode but rather seem to stay constant over iterations.
This is illustrated by the linearity of execution time with respect to fixpoint index in the
incremental approach.

Example: A Complex Expression. In this example we keep expression ϕ fixed while
modifying the signal. We have two Boolean signals p and q, and define an expression
which is satisfied when they oscillate rapidly together for some amount of time:

ϕ := 〈(〈p · p̄〉[0,10])∗ ∧ (〈q · q̄〉[0,10])∗〉[80,∞]

We generate input signals by segments, with a segment length of 400 time units. For
each segment, we draw switching points in time using an exponential distribution over
the segment to provide less switching at the end thus favoring the stabilization case.
We tested the expression ϕ with varying signal length and variability. The results are
depicted in Table 1. We also report the number of maximally uniform intervals in the
signal |w| along with the number of zones found |Zϕ|. These results are consistent with
simpler examples, indicating that one can monitor complex expressions without facing
a blow-up in computation time.

Table 1. Evaluation time of the matchset construction of ϕ as a function of the variability (V) and
length (L) of input signal w

V L |w| |Zϕ| Time (s)
0.025 40000 1893 0 0.08
0.025 80000 3825 0 0.17
0.025 160000 7642 0 0.37
0.05 40000 3654 0 0.27
0.05 80000 7305 0 0.60
0.05 160000 14614 0 1.27

0.075 40000 5131 1 0.64
0.075 80000 10476 4 1.40
0.075 160000 21200 5 2.88
0.1 40000 6715 10 1.35
0.1 80000 13306 23 2.73
0.1 160000 26652 47 5.83

6 Future Work

We can already consider several direct or indirect extensions to the work presented here.

Longest or shortest match. There often exists several matches beginning at a given
time or position. In that case string matching programs enforce the greedy policy of
returning the longest match (containing all other matches), while hardware specification
languages enforce the lazy policy of returning the shortest match (earliest violation).
Both features are straightforward to implement within our framework.

Timed Pattern Matching 235

Online matching. In the context of dynamic verification, it is useful to monitor a prop-
erty during simulation so as to possibly stop early in case a violation. Making our algo-
rithm work online would require to re-order the operations on zones according to some
notion of time. The duration-restriction operator may also enjoy specific treatment so
as to cancel matches passed the maximum duration.

New operators. Temporal operators can be useful to specify the intent of the regular
expression; for instance a safety property should be monitored according to the seman-
tics of a temporal always operator. This feature is available in hardware specification
languages PSL/SVA, where a regular expression may be evaluated in the context of
an arbitary temporal logic formula. Negation may also be introduced not as a Boolean
operation on signals, but as a regular expression primitive. Looking for absence of a
match requires to compute the complement of a matchset, which may be expensive to
compute.

Events and delays. Standard assertions languages only handle events or actions. This
also was the model of the timed regular expressions of [ACM02]. In our signals frame-
work, we would like to handle events such as rise and fall of signals. Events only in-
duce finitely many matches and can be represented by punctual zones. In the setting of
events-based regular expressions, specification languages have concatenation operators
allowing to wait a (non-deterministic) number of discrete time units between events;
the generalization of SVA proposed in [HL11] shows that this concept easily translates
in the real-time setting.

References

[ACM02] Asarin, E., Caspi, P., Maler, O.: Timed regular expressions. Journal of the ACM
(JACM) 49(2), 172–206 (2002)

[AD94] Alur, R., Dill, D.L.: A theory of timed automata. Theoretical Computer Sci-
ence 126(2), 183–235 (1994)

[AFH96] Alur, R., Feder, T., Henzinger, T.A.: The benefits of relaxing punctuality. Journal of
the ACM (JACM) 43(1), 116–146 (1996)

[AGM+90] Altschul, S., Gish, W., Miller, W., Myers, E., Lipman, D.: Basic local alignment
search tool. Journal of Molecular Biology, 403–410 (1990)

[BGM02] Bozga, M., Graf, S., Mounier, L.: IF-2.0: A validation environment for component-
based real-time systems. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS,
vol. 2404, pp. 343–348. Springer, Heidelberg (2002)

[BM77] Boyer, R.S., Moore, J.S.: A fast string searching algorithm. Communications of the
ACM (1977)

[CR02] Crochemore, M., Rytter, W.: Jewels of Stringology. World Scientific (2002)
[CVK04] Cohen, B., Venkataramanan, S., Kumari, A.: Using PSL/Sugar for formal and dy-

namic verification: Guide to Property Specification Language for Assertion-based
Verification. VhdlCohen Publishing (2004)

[DBS12] Dluhos, P., Brim, L., Safránek, D.: On expressing and monitoring oscillatory dy-
namics. In: HSB, pp. 73–87 (2012)

[EF06] Eisner, C., Fisman, D.: A practical introduction to PSL. Springer (2006)
[Fri06] Friedl, J.: Mastering regular expressions. O’Reilly Media, Inc. (2006)

236 D. Ulus et al.

[FRM94] Faloutsos, C., Ranganathan, M., Manolopoulos, Y.: Fast subsequence matching in
time-series databases. In: Proceedings of the ACM SIGMOD Conference on Man-
agement of Data (1994)

[HL11] Havlicek, J., Little, S.: Realtime regular expressions for analog and mixed-signal
assertions. In: FMCAD, pp. 155–162 (2011)

[JS07] Jacox, E.H., Samet, H.: Spatial join techniques. ACM Transactions on Database
Systems (TODS), 70 (2007)

[Kle56] Kleene, S.C.: Representation of events in nerve nets and finite automata. Automata
Studies (1956)

[KMP77] Knuth, D.E., Morris Jr., J.H., Pratt, V.R.: Fast pattern matching in strings. SIAM
Journal on Computing, 323–350 (1977)

[Koy90] Koymans, R.: Specifying real-time properties with metric temporal logic. Real-Time
Systems 2(4), 255–299 (1990)

[Lau00] Laurikari, V.: NFAs with tagged transitions, their conversion to deterministic au-
tomata and application to regular expressions. In: Proceecedings of the Symposium
on String Processing and Information Retrieval (SPIRE 2000), pp. 181–187 (2000)

[MN04] Maler, O., Nickovic, D.: Monitoring temporal properties of continuous signals. In:
Lakhnech, Y., Yovine, S. (eds.) FORMATS/FTRTFT 2004. LNCS, vol. 3253, pp.
152–166. Springer, Heidelberg (2004)

[MNP05] Maler, O., Nickovic, D., Pnueli, A.: Real time temporal logic: Past, present, fu-
ture. In: Pettersson, P., Yi, W. (eds.) FORMATS 2005. LNCS, vol. 3829, pp. 2–16.
Springer, Heidelberg (2005)

[MNP08] Maler, O., Ničković, D., Pnueli, A.: Checking temporal properties of discrete, timed
and continuous behaviors. In: Pillars of Computer Science, pp. 475–505 (2008)

[Pik87] Pike, R.: The text editor sam. Software: Practice and Experience 17(11), 813–845
(1987)

[Spe06] Spear, C.: SystemVerilog for Verification. Springer (2006)
[Ste94] Stephen, G.A.: String searching algorithms. World Scientific (1994)
[Tho68] Thompson, K.: Programming techniques: Regular expression search algorithm.

Communications of the ACM, 419–422 (1968)
[VR06] Vijayaraghavan, S., Ramanathan, M.: A practical guide for SystemVerilog asser-

tions. Springer (2006)
[Wei73] Weiner, P.: Linear pattern matching algorithms. Switching and Automata Theory

(1973)

Interval Abstraction Refinement

for Model Checking of Timed-Arc Petri Nets

Sine Viesmose Birch, Thomas Stig Jacobsen, Jacob Jon Jensen,
Christoffer Moesgaard, Niels Nørgaard Samuelsen, and Jǐŕı Srba

Department of Computer Science, Aalborg University,
Selma Lagerlöfs Vej 300, 9220 Aalborg East, Denmark

Abstract. State-space explosion is a major obstacle in verification of
time-critical distributed systems. An important factor with a negative
influence on the tractability of the analysis is the size of constants that
clocks are compared to. This problem is particularly accented in ex-
plicit state-space exploration techniques. We suggest an approximation
method for reducing the size of constants present in the model. The
proposed method is developed for Timed-Arc Petri Nets and creates an
under-approximation or an over-approximation of the model behaviour.
The verification of approximated Petri net models can be considerably
faster but it does not in general guarantee conclusive answers. We im-
plement the algorithms within the open-source model checker TAPAAL
and demonstrate on a number of experiments that our approximation
techniques often result in a significant speed-up of the verification.

1 Introduction

Formal verification of time-dependent systems has been an active area of re-
search for the last two decades or so. There are two prominent models that
involve timing: timed automata (TA) [1] and different time extensions of Petri
nets like Time Petri Nets (TPN) [22] and Timed-Arc Petri Nets (TAPN) [5,15].
Both symbolic1 and explicit time-representation techniques have been devel-
oped for these models. For TA and TPN, it is well known [4,25] that the explicit
(discrete-time) semantics coincide up to reachability with the continuous (real-
time) semantics on time models with closed (non-strict) clock guards. A similar
result can be proved also for TAPNs. The state-space exploration techniques for
continuous semantics usually rely on symbolic zone-based abstractions (using
the DBM data structure [12]). On the other hand, the discrete state-spaces can
be searched in a direct manner where the clock values are remembered explicitly.
The explicit approach can successfully compete with the symbolic one, as long
as the constants in clock guards are reasonably small [6,19,17,3,16]. As the sizes
of constants grow, the models become increasingly more difficult to verify, in
particularly in case of explicit verification techniques.

1 Referring here to a symbolic way to represent clock values and not to symbolic
techniques based on decision diagrams.

A. Legay and M. Bozga (Eds.): FORMATS 2014, LNCS 8711, pp. 237–251, 2014.
c© Springer International Publishing Switzerland 2014

238 S.V. Birch et al.

As a motivating example, consider a design of a task scheduling algorithm for
an embedded system where timing constraints are obtained from real physical
measurements given in nanoseconds. Here a worst-case and best-case execution
time of a certain task can be in the interval from 117 to 185 nanoseconds, while
having the period of 10000 nanoseconds (the timing is taken from the model of
a LEGO Mindstorm scheduling algorithm [14] created by software engineering
students at Aalborg University). If a model of the task scheduling algorithm is
populated with a larger number of components at this precision level, checking
for the schedulability becomes quickly intractable. However, we may instead of
the measured values approximate that the task duration is between 1 to 2 time
units with the period of 100 units, abstracting away the precise timing and
hence extending the task execution window. In case we succeed to verify that
the system is schedulable under this abstraction (as it is the case for the LEGO
scheduler), the schedulability of the original system is established as well.

Our contribution is a methodology that allows us to perform automatically
such abstractions. The technique is demonstrated on the model of timed-arc
Petri nets. The main idea is that time intervals of the form [a, b], where a ≤ b
are nonnegative integers, can be divided by a given approximation constant r
and become [�a/r�, 0b/r1] in case of over-approximation and [0a/r1, �b/r�] in
case of under-approximation. By doing this, the constants used in the net are
reduced, resulting possibly in large (even exponential) savings in verification time
and memory. However, over-approximated nets allow for more behaviour while
the under-approximated ones contain less behaviour and this may result in in-
conclusive verification answers. We discuss the correctness of the approximation
techniques in the continuous as well as discrete semantics and both for the reach-
ability and liveness properties. The approximation algorithms are implemented
in a publicly available, open-source model checker TAPAAL [10], including a
suitable GUI support, and we demonstrate its applicability on a number of case
studies, ranging from academic examples to real-world inspired scenarios. For
example in the LEGO case study [14], it takes 3366 seconds (more than 56 min-
utes) to verify that all tasks meet their deadlines, while if we over-approximate
the intervals by dividing them with r = 10 it takes 36 seconds and with r = 50
only 7 seconds, still providing conclusive answers.

Related Work. Abstraction techniques like over-approximation [9] and under-
approximation [21,24] have been studied in the past, including a counter-example
guided abstraction methodology [8] where spurious counter-examples are used to
refine the current approximation. Our approach is inspired by these techniques
but focuses exclusively on the refinement of timing information and efficient fea-
sibility analysis of the generated traces. State equations [23] and linear program-
ming are often used to over-approximate the reachable space-space of untimed
Petri nets. This technique is efficient, however, the timing information is com-
pletely disregarded, resulting often in inconclusive answers for timed nets. The
authors in [13] suggest an algorithm for under- and over-approximations of timed
safety automata by approximating the union operation on zones. Our method
is not based on zones and it is targeted instead towards explicit state-space

Interval Abstraction Refinement for Model Checking 239

producing

inv: ≤ 48

0

truckReady 0

drivingWithLoad

inv: ≤ 20 waitingToOffload

drivingBack

inv: ≤ 20

storage

consuming

inv: ≤ 50

0

garbagePlace

load

arrived

arrivedBack

offload

getProduct

throwAway

[12, 48]

[18, 20]

[16, 20] [0, 50]

[18, 50]

[51,∞)

Fig. 1. Producer/consumer running example (intervals [0,∞] are not drawn)

exploration techniques where it can be combined with some recently intro-
duced techniques and data structures like PTrie and Time Darts [16]. Finally,
a time-relaxing method for a network of automata where events have interval-
durations is described in [2]. The work proposes a pseudo-polynomial algorithm
that enlarges delay intervals so that constants can be divided by a large greatest-
common divisor (gcd). However, the division by gcd is, perhaps surprisingly, not
a sound operation for liveness properties in the discrete semantics as we show in
Section 3.2. Also, the method in [2] assumes that the network of automata satisfy
the language intersection property (the language of the network is equal to the
intersection of languages of the individual components). Our model of timed-arc
Petri nets is more general as it supports also urgency, age invariants and in-
hibitor arcs (the language intersection property is not preserved anymore) and
our approximation algorithm is simpler (with polynomial running time) and at
the same time the experiments document a promising performance. Last but not
least, another contribution of our work is the integration of the approximation
algorithms into the tool TAPAAL.

2 Definitions

We start by informally introducing timed-arc Petri nets using a running example
in Figure 1. The net consists of eight places (circles) and six transitions (rect-
angles) and models a simple producer/consumer system where produced items
are loaded on a truck, transported to an off-load storage and later processed by
the consumer, while at the same time the truck returns to the producer site.
The producer, consumer and the truck are represented by three tokens in the
depicted marking, all having the initial age 0. In the initial marking the transi-
tion load is not enabled because its input places do not contain tokens of ages
that fit into the time intervals on the input arcs of the transition (by agreement
we will not draw intervals of the form [0,∞] that do not restrict the ages of
tokens in any way). However, if we wait for between 12 to 48 hours (longer de-
lay than 48 hours is not allowed due to the age invariant ≤ 48 associated with
the place producing), the transition load can fire. The firing consumes the two
tokens from the input places and produces two fresh tokens of age 0 into the
places producing and drivingWithLoad. Now after another 18 to 20 hours the

240 S.V. Birch et al.

track arrives (by firing the transition arrived) to its destination. As the pair of
arcs (with diamond-shaped tips) connected with the transition arrived are the
so-called transport arcs, the token from dirivingWithLoad is transported into
the place waitingToOffload and its age is preserved. Similarly once the tran-
sition offload is fired, the age of the token moved into the place storage now
represents the total time the product was in transfer. Note that the transition
offload has a special dot in the middle, meaning that it is urgent and once it
is enabled, time cannot progress any more (though the transition does not have
priority over other enabled transitions in the net). Moreover, offload cannot fire
as long as there is a token in the place storage due to the inhibitor arc with a
circle-shaped tip. Finally, the truck starts its journey back to the producer and
the product can be consumed by the consumer. In case that the total amount
of time the product was in transport exceeds 50 hours, it cannot be consumed
any more and can only be thrown away while marking the place garbagePlace.
The model can also contain weighted arcs (not depicted in our figure) that will
consume/produce multiple tokens along the same arc.

We now proceed with a formal definition of timed-arc Petri nets (TAPN). Let
N0 = N∪ {0}, N∞

0 = N0 ∪{∞} and R≥0 = {x ∈ R | x ≥ 0}. We define the set of

well-formed time intervals as I def
= {[a, b] | a ∈ N0, b ∈ N∞

0 , a ≤ b} and a subset
of I used in invariants as I inv = {[0, b] | b ∈ N∞

0 }.

Definition 1. A TAPN is a tupleN = (P, T, TUrgent, IA,OA, g, w,Type, I) where

– P is a finite set of places,
– T is a finite set of transition such that P ∩ T = ∅,
– TUrgent is a finite set of urgent transitions such that TUrgent ⊆ T ,
– IA ⊆ P × T is a finite set of input arcs,
– OA ⊆ T × P is a finite set of output arcs,
– g : IA → I is a time constraint function assigning guards to input arcs,
– w : IA ∪ OA → N is a function assigning weights to input and output arcs,
– Type : IA∪OA → Types is a type function assigning a type to all arcs, where

Types = {Normal , Inhib} ∪ {Transportj | j ∈ N} such that

• if Type(a) = Inhib then a ∈ IA,
• if Type((p, t)) = Transportj for some (p, t) ∈ IA then there is exactly

one (t, p′) ∈ OA such that Type((t, p′)) = Transportj and w((p, t)) =
w((t, p′)),

• if Type((t, p′)) = Transportj for some (t, p′) ∈ OA then there is ex-
actly one (p, t) ∈ IA such that Type((p, t)) = Transportj and w((p, t)) =
w((t, p′)),

– I : P → Iinv is a function assigning age invariants to places.

The preset of input places of a transition t ∈ T is defined as •t = {p ∈ P |
(p, t) ∈ IA,Type((p, t)) �= Inhib}. Similarly, the postset of output places of t
is defined as t• = {p ∈ P | (t, p) ∈ OA}. Let B(R≥0) be the set of all finite
multisets over R≥0. A marking M on N is a function M : P → B(R≥0) where
for every place p ∈ P and every token x ∈ M(p) we have x ∈ I(p).

Interval Abstraction Refinement for Model Checking 241

We use the notation (p, x) to denote a token at a place p of the age x ∈ R≥0.
We write M = {(p1, x1), (p2, x2), . . . , (pn, xn)} for a marking with n tokens of
ages xi located in places pi. A marked TAPN (N,M0) is a TAPN N together
with its initial marking M0 with all tokens of age 0.

We say that a transition t ∈ T is enabled in a marking M by the multisets

of tokens In = {(p, x1p), (p, x2p), . . . , (p, x
w((p,t))
p) | p ∈ •t} ⊆ M and Out =

{(p′, x1p′), (p′, x2p′), . . . , (p′, x
w((p′,t))
p′) | p′ ∈ t•} if

1. for all input arcs except inhibitor arcs, the tokens from In satisfy the age
guards of the arcs, i.e.
∀(p, t) ∈ IA.Type((p, t)) �= Inhib ⇒ xip ∈ g((p, t)) for 1 ≤ i ≤ w((p, t))

2. for any inhibitor arc pointing from a place p to the transition t, the number
of tokens in p satisfying the guard is smaller than the weight of the arc, i.e.
∀(p, t) ∈ IA.Type((p, t)) = Inhib ⇒ |{x ∈ M(p) | x ∈ g((p, t))}| < w((p, t))

3. for all input and output arcs that constitute a transport arc, the age of the
input token must be equal to the age of the output token and satisfy the
invariant of the output place, i.e.
∀(p, t) ∈ IA.∀(t, p′) ∈ OA.Type((p, t)) = Type((t, p′)) = Transportj ⇒ (xip =

xip′ ∧ xip′ ∈ I(p′)) for 1 ≤ i ≤ w((p, t))
4. for all output arcs that are not part of a transport arc, the age of the output

token is 0, i.e.
∀(t, p′) ∈ OA.Type((t, p′) = Normal ⇒ xip′ = 0 for 1 ≤ i ≤ w((p, t)).

A TAPN N defines a timed transition system where states are markings and
the transitions are as follows.

– If t ∈ T is enabled in a marking M by the multisets of tokens In and Out
then t can fire and produce the marking M ′ = (M�In)"Out where " is the
multiset sum operator and � is the multiset difference operator; we write

M
t−→ M ′ for this switch transition.

– A time delay d ∈ R≥0 is allowed in M if (x+ d) ∈ I(p) for all p ∈ P and all
x ∈ M(p) and there does not exist any t ∈ TUrgent and any d′, 0 ≤ d′ < d,
such that t becomes enabled after the time delay d′ (by delaying d time units
no token violates any of the age invariants and the delay can at most last
until the first urgent transition becomes enabled). By delaying d time units
in M we reach the marking M ′ defined as M ′(p) = {x+ d | x ∈ M(p)} for

all p ∈ P ; we write M
d−→ M ′ for this delay transition.

We have just defined a continuous semantics of TAPNs where the possible
time delays are from the domain of nonnegative real numbers. By restricting the
delays only to nonnegative integers, we get the discrete semantics of TAPNs.

We write M −→ M ′ if either M
d−→ M ′ or M

t−→ M ′ for some delay d or

a transition firing t. We write M
d,t−−→ M ′ if there is a marking M ′′ such that

M
d−→ M ′′ and M ′′ t−→ M ′. A maximum run of a net N from the initial marking

M0 is any infinite alternating sequence M0
d0,t0−−−→ M1

d1,t1−−−→ M2
d2,t2−−−→ · · · or

242 S.V. Birch et al.

a finite alternating sequence M0
d0,t0−−−→ M1

d1,t1−−−→ M2
d2,t2−−−→ · · · dn−1,tn−1−−−−−−−→ Mn

where either (i) for any delay d ≥ 0 there is a marking Md such that Mn
d−→ Md

or (ii) there is a delay d ≥ 0 such that Mn
d−→ Md and Md does not allow any

further nonzero delay and Md does not enable any transition.
Let ϕ be a boolean combination of atomic predicates of the form p �� n

where p ∈ P , ��∈ {=, <,>,≤,≥} and n ∈ N0 (such predicates compare the
number of tokens in a place p against the constant n), and the predicate deadlock.
The satisfability of a formula ϕ in a marking M is defined by M |= p �� n if
|M(p)| �� n, and M |= deadlock if there is no delay d and no transition t such

that M
d,t−−→ M ′. The extension to boolean operators is obvious. A formula ϕ is

deadlock-free if it does not contain any proposition deadlock.
We can now define the reachability (EF) and liveness (EG) questions, as

supported by the tool TAPAAL, for a given marked TAPN (N,M0).

Definition 2 (Reachability). We write (N,M0) |= EF ϕ if there is a compu-
tation M0 →∗ M such that M |= ϕ.

Definition 3 (Liveness). We write (N,M0) |= EG ϕ if there is a maximum
run such that all markings M on this run satisfy M |= ϕ.

If M0 is clear from the context, we write only N |= EF ϕ or N |= EG ϕ. The
dual operators AG ϕ ≡ ¬EF¬ϕ and AF ϕ ≡ ¬EG¬ϕ are defined as expected.

Remark 1. If a query EFϕ is satisfied, the evidence for this fact is a finite run
ending in a marking satisfying ϕ. The witness for the formula EGϕ is a maximum
run invariantly satisfying ϕ. The maximum run is either finite (ending in a
marking where we can delay forever or in a marking where no transition firing
and no delay is possible) or infinite. If such an infinite run exists then there is
also one that has a lasso shape (see e.g [3]) so that the sequence of the transition
firings is of the form t1t2 . . . (t� . . . tn)

ω.

3 Interval Abstractions

Verification of reachability and liveness queries is a computationally hard prob-
lem because the size of the reachable state-space can be exponential compared
to the size of the analyzed net. For timed systems, there are two sources of this
exponential explosion. The first one is that Petri nets allow to model parallel
activities that can have exponentially many different interleavings. The second
degree of explosion stems from the addition of timing aspects. In this section,
we shall see how the explosion caused by the timing constraints can be greatly
reduced while still providing conclusive answers in many concrete scenarios. We
suggest two approximation methods, one creating an over-approximation and
the other one an under-approximation. Both methods rely on a given approxi-
mation constant r that determines the ratio by which the constants in the net
are scaled. As constants in a net must be integers, we need to round the scaled
values. For over-approximation, we enlarge the available intervals in the net,

Interval Abstraction Refinement for Model Checking 243

while for under-approximation we shrink them. A special care has to be given to
inhibitor arcs as they inhibit behaviour. Hence for over-approximation we need
to shrink the intervals on inhibitor arcs while for under-approximation we do
the opposite.

Definition 4 (Interval abstraction by over-approximation). Let N =
(P, T, TUrgent , IA,OA, g, w,Type, I) be a TAPN, let M0 be its initial marking
and let r be a positive natural number (approximation constant). The over-
approximation algorithm on an input (N,M0) outputs a marked net (Nover

r ,M0)
where Nover

r = (P, T, TUrgent , IA′,OA, g′, w′,Type ′, I ′) such that

– IA′ = IA � {(p, t) ∈ IA | Type((p, t)) = Inhib, 0a
r 1 > � b

r � where [a, b] =
g((p, t))}

– g′((p, t)) =

{
[�a

r �, 0
b
r 1] if g((p, t)) = [a, b] and Type((p, t)) �= Inhib

[0a
r 1, �

b
r �] if g((p, t)) = [a, b] and Type((p, t)) = Inhib

for all (p, t) ∈ IA′,

– w′(x, y) = w(x, y) and Type ′(x, y) = Type(x, y) for all (x, y) ∈ IA′ ∪ OA,

– I ′(p) = [0, 0 b
r 1] where [0, b] = I(p) for all p ∈ P .

The over-approximation clearly runs in polynomial time. Note that the over-
approximation may remove some inhibitor arcs in case that the resulting interval
is empty (meaning that the lower-bound is larger than the upper-bound).

Definition 5 (Interval abstraction by under-approximation). Let N =
(P, T, TUrgent , IA,OA, g, w,Type, I) be a TAPN, let M0 be its initial marking
and let r be a positive natural number (approximation constant). The under-
approximation algorithm on an input (N,M0) outputs a marked net (Nunder

r ,M0)
where Nunder

r = (P, T ′, T ′
Urgent , IA′,OA′, g′, w′,Type ′, I ′). Let X = {(p, t) ∈ IA |

Type((p, t)) �= Inhib, 0a
r 1 > � b

r � where [a, b] = g((p, t))}. Then

– T ′ = T � {t ∈ T | (p, t) ∈ X for some p ∈ P},

– T ′
Urgent = TUrgent � {t ∈ T | (p, t) ∈ X for some p ∈ P},

– IA′ = IA �X

– OA′ = OA � {(t, p) ∈ OA | t ∈ T � T ′},

– g′((p, t)) =

{[
0a
r 1, �

b
r �
]

if g((p, t)) = [a, b] and Type((p, t)) �= Inhib[
�a
r �, 0

b
r 1
]

if g((p, t)) = [a, b] and Type((p, t)) = Inhib

for all (p, t) ∈ IA′,

– w′(x, y) = w(x, y) and Type ′(x, y) = Type(x, y) for all (x, y) ∈ IA′ ∪ OA′,

– I ′(p) = [0, � b
r �] where [0, b] = I(p) for all p ∈ P .

The under-approximation clearly runs in polynomial time. Observe that the con-
struction of under-approximated net slightly differs from the over-approximated
net. In particular, if an arc of a transition is removed because of an empty in-
terval, then it is necessary to remove also the connected transition as otherwise
the net might achieve more behaviour.

244 S.V. Birch et al.

p0

0

p3

p1 p2

t0

t1 t2

[4, 4] [0, 1]

[2, 2]

p0

0

p3

p1 p2

t0

t1 t2

[2, 2] [0, 1]

[1, 1]

(a) N |= EF p1=1 and Nover
2 �|= EF p1=1

p0

0

p1 p2

t1 t2

[2, 3] [1, 3]

p0

0

p1 p2

t1 t2

[1, 1] [1, 1]

(b) N �|= EF p1=1 andNunder
3 |= EF p1=1

Fig. 2. Urgent transitions with timed input arcs

3.1 Approximation Correctness for Reachability

In order to argue about the correctness of the over-approximation for reachability
queries, we wish to prove that if N |= EF ϕ then also Nover

r |= EF ϕ for any
r ≥ 1. For under-approximation, the implication should be the other way round.
The correctness clearly does not hold if the formula ϕ contains any deadlock
proposition as the approximations can both create new deadlocks and remove
some existing ones. Moreover, the situation is a slightly more complicated than it
may look, as urgent transitions with time-guarded input arcs may also influence
the answer to reachability queries as demonstrated in Figure 2. This is caused
by the fact that once the interval on an urgent transitions is approximated, it
may disable a time delay that was possible in the original net. Hence for example
the net N in Figure 2a can mark the place p1 while this is not possible in the
over-approximated net Nover

2 because once the token of age 1 arrives to the place
p3, no time delay is allowed due to the urgency of t2. This means that t1 is never
enabled in the over-approximated net. A similar situation can be observed also
for the under-approximated net in Figure 2b.

We can now prove that the approximations are correct for any deadlock-
free reachability objective, assuming that urgent transitions have only trivial
guards on incoming arcs2. The following correctness theorem holds both for the
continuous as well as the discrete semantics.

Theorem 1. Let N = (P, T, TUrgent , IA,OA, g, w,Type, I) such that g((p, t)) =
[0,∞] for all t ∈ TUrgent and let ϕ be a deadlock-free formula. If N |= EF ϕ then
Nover

r |= EF ϕ for any r ≥ 1. If Nunder
r |= EF ϕ for some r ≥ 1 then N |= EF ϕ.

3.2 Approximation Correctness for Liveness

Let us first notice that we cannot expect to prove under-approximation correct-
ness for liveness queries as under-approximation can introduce additional dead-
locks that can create non-existent maximum runs. For example, consider the net

2 This restriction on urgent transitions also guarantees that DBM-based algorithms
can be used in the TAPAAL continuous engine [11].

Interval Abstraction Refinement for Model Checking 245

p0

0

inv: ≤ 1

p1t
[1, 1]

(a) N �|= EG p0=1

p0

inv: ≤ 0

0

p1

(b) Nunder
2 |= EG p0=1

done

ready

inv: ≤ 2

0

check

inv: ≤ 2

0

waitinginit

young old

[0, 0]
[2, 2]

(c) N |= EG done=0

done

ready

inv: ≤ 1

0

check

inv: ≤ 1

0

waitinginit

young old

[0, 0]
[0, 1]

(d) Nover
3 �|= EG done=0

Fig. 3. Problem with over-approximation and under-approximation for liveness

N in Figure 3a that does not satisfy the query EG p0=1 as any maximum run is
forced to fire the transition t. On the other hand, the under-approximated net
for r = 2 in Figure 3b clearly satisfies the query.

A less expected message is that the same problem is present also for the
over-approximation as relaxing the net behaviour can remove some existing
deadlocks. Consider the TAPN in Figure 3c that satisfies EG done=0 by the
maximum run delay 1, init, delay 1 that actually only uses integer delays. The
over-approximated net for r = 3 in Figure 3d cannot deadlock in a similar situa-
tion as before as any maximum run will necessarily place a token into the place
done (both in discrete and continuous semantics). Hence Nover

3 �|= EG done =0.
For the discrete semantics we get already for r = 2 (greatest common divisor of
all constants in the net) that Nover

2 �|= EG done =0.
To sum up, even though the over- and under-approximations are correct

for reachability objectives, the correctness does not hold any more for liveness
queries. Nevertheless, in the next section we show that we can still efficiently
verify whether the maximal runs for EG queries in the approximated models are
valid maximal runs also in the original ones.

4 Trace Validation

The aim of this section is to define the so-called trace net. A trace net guides the
state-space search in the original net based on a given sequence of transitions
(trace). The use of a trace net is to efficiently verify whether a trace proposed by
a net approximation is executable in the original net or not (for each trace we
construct a different trace net). Assume now a fixed untimed trace of the form
trace = t1t2 . . . tn or trace = t1t2 . . . (t� . . . tn)

ω where ti ∈ T for all i, 1 ≤ i ≤ n.
By #(t) we denote the number of occurrences of the transition t in trace (for
an infinite trace only it its finite prefix t1 . . . tn). By #i(t), where 1 ≤ i ≤ n, we
denote the number of occurrences of t in the prefix t1 . . . ti of trace.

246 S.V. Birch et al.

pblock

0

p10

pi

pi+1

pn+1

Net N with several copies

of each transition

··
·

··
·ti t1i t

#i(ti)
i t

#(t)
i

· · · · · ·

Fig. 4. Construction of the net N trace

For the given TAPN N , we shall
now construct a TAPN N trace that re-
stricts the behaviour of the net N so
that transitions can be executed only
in the order that follows the sequence
trace (without imposing any concrete
time delays), while at the same time
making sure that along any compu-
tation in N trace the proposition dead-
lock evaluates equivalently as it would
in the original net N .

We shall modify the net N and its
initial marking M0 via the following
steps until we get N trace and the ini-
tial marking M trace

0 . The construction is depicted in Figure 4. In what follows,
by a simple arc we mean a normal input or output arc of weight one; simple
input arcs have the guard [0,∞].

– For each transition t ∈ T we create #(t) additional copies of t, denoted by
t1, t2, . . . , t#(t), such that every new copy tj , 1 ≤ j ≤ #(t), has an identical
preset and postset as t (the same input and output places connected with
arcs of the same type and with the same weight and containing the same
time intervals as guards). The new copies of t are urgent if and only if t
is urgent. Clearly adding these transitions does not have any effect on the
behaviour of the net.

– We add new places p1, p2, . . . , pn and a place pn+1 such that if trace is
finite the pn+1 is a newly added place and if trace is infinite (of the form
t1t2 . . . (t� . . . tn)

ω) then pn+1 = p�. The added places have the age invariant
[0,∞]. There will be always exactly one token in the places p1, . . . , pn+1,
such that if the place pi is marked then the only transition that can fire is
some copy of ti. In the marking M trace

0 the place p1 contains one token and
the places p2, . . . , pn+1 are empty.

– For each i, 1 ≤ i ≤ n, we add two simple arcs (pi, t
#i(ti)
i) and (t

#i(ti)
i , pi+1).

In other words, the places pi and pi+1 are connected via the next available
copy of the transition ti so that each copy is used only once in the sequence
(note that the same transition can appear several times in trace). This con-
struction imposes an order in which transitions can be fired, following step
by step the sequence of transitions in trace. On the other hand, the modified
net has a full freedom in choosing time delays as in the original net.

– Finally we add a place pblock , initially marked with a token, together with
a pair of simple arcs (pblock , t

j
i) and (tji , pblock) for each copy tji of every

transition ti. We also add a simple arc (pblock , ti) for every original transition
ti in trace. The purpose of pblock is to allow to deviate for one step from the
transition sequence in trace so that every transition enabled in the original
net N is enabled also in N trace . However, once this step is taken (via firing
some of the original transitions ti), the token from pblock is consumed (and

Interval Abstraction Refinement for Model Checking 247

pick an approximation constant r ≥ 1

Nover
r |= EFϕ

N trace |= EF (ϕ ∧ pblock = 1) Is ϕ deadlock-free?

Not satisfiedSatisfied

Inconclusive
(repeat with smaller r)

false, r > 1true, r > 1, trace

false

truetrue

false

true, r = 1 false, r = 1

(a) Over-approximation flow diagram for EFϕ

pick an approximation constant r ≥ 1

Nunder
r |= EFϕ

Is ϕ deadlock-free?N trace |= EF (ϕ ∧ pblock = 1)

Not satisfiedSatisfied

Inconclusive
(repeat with smaller r)

true, r > 1
trace

false, r > 1

true

false

trace

true

false

true, r = 1

false, r = 1

(b) Under-approximation flow diagram for EFϕ

Fig. 5. Flow diagrams for over- and under-approximation reachability queries

the whole net N trace terminates). This is to make sure that all enabled
transitions in N are enabled also in N trace in order to preserve the validity
of the proposition deadlock .

Theorem 2. Let N be a TAPN and let ϕ be a formula (possibly containing the
proposition deadlock). If N trace ,M trace

0 |= EF (ϕ ∧ pblock = 1) then N,M0 |=
EF ϕ. If N trace ,M trace

0 |= EG (ϕ ∧ pblock = 1) then N,M0 |= EG ϕ.

Finally, we present the refinement process for approximation of reachability
queries in Figure 5. The diagrams for liveness only differ in the point that a trace
has to be always verified even for the under-approximation and in case a trace is
not discovered in the approximated net, the answer is always inconclusive. The
correctness of the flow diagrams follows from Theorem 1 and 2.

248 S.V. Birch et al.

5 Evaluation

We discuss the case studies of Patient Monitoring System (PMS) [7] where the
patient’s pulse rate and oxygen saturation level is monitored and abnormal sit-
uations should be detected within given deadlines (constants scaled up to 250
seconds), Business Activity with Participant Completion (BAwPC) [18]—a web-
service protocol from WS-BA where we verify its safety (avoidance of invalid
states) using the fact that the original protocol is flawed while its enhanced
variant is safe [18], Train Level Crossing (TLC)—a standard benchmark case
study where trains are crossing a road and traffic lights should be controlled
correctly, Producer and Consumer Synchronization (PCS)—our running exam-
ple scaled by introducing more producers and consumers and Plate Spinning
Problem (PSP) [20] where jugglers try to keep a number of plates spinning in-
definitely. The greatest common divisor in all models is 1.

The approximations were implemented in the model checker TAPAAL avail-
able at http://www.tapaal.net/. The experiments, run on a Macbook Pro
2.7GHz Intel Core i7, were terminated once the memory usage exceeded 4GB
(OOM) or the verification took longer than 5 minutes (�). In the summary table
we report on the running time using TAPAAL’s discrete verification engine [16]
and the column labelled with r = 1 corresponds to verification where no approxi-
mation is used. The rows marked with “no trace” correspond to EF or EG queries
that are not satisfied (and hence no trace is returned). Only over-approximation
is used here as under-approximation cannot reach conclusive results in this case.
The rows marked with “trace” are satisfied EF and EG queries returning a trace
that is verified by the trace net3. An inconclusive answer is prefixed by a ques-
tion mark. We also note for each row whether we used depth-first search (DFS)
or breadth-first search (BFS) when exploring the approximated nets.

In case of singleton intervals on arcs, under-approximation will remove such
arcs (including the connected transitions). This may quickly result in a net where
too many transitions are missing and the verification answers become inconclu-
sive. Our experiments show that if we instead keep the arcs with singleton inter-
vals (divided by the approximation constant r and rounded down), then we are
likely to get more conclusive answers. Of course, we are not creating an under-
approximation any more. However, this is not an issue as for liveness queries the
trace returned by under-approximation must be always verified by the trace net
(see Section 3.2) and we can do the same also for the reachability queries. Our
experimental data use the variant of under-approximation described above.

The experiments show that both approximations frequently provide conclusive
answers and significantly speedup the verification process. The general trend is
that increasing the approximation constant r improves the verification times up
to a certain point after which the improvements are not that significant and
finally may result in inconclusive answers (like in PSP) or a timeout (in case of

3 For the PMS case-study only under-approximation is reported as over-approximation
was returning inconclusive answers; the size scaling in PMS is also different for the
satisfied and unsatisfied query in order to provide measurable data.

http://www.tapaal.net/

Interval Abstraction Refinement for Model Checking 249

Patient Monitoring System (PMS) — Reachability

Size r=1 r=2 r=3 r=5 r=7 r=10
n
o
tr
a
ce

ov
er
-

a
p
p
ro
x
.

B
F
S

1 � 57.1 s 18.8 s 11.7 s 4.1 s 0.7 s
2 � 102.3 s 25.4 s 38.6 s 5.6 s 0.8 s
3 � 231.9 s 40.7 s 65.4 s 8.2 s 1.1 s
4 � � 67.4 s 135.0 s 56.0 s 1.5 s

tr
a
ce

u
n
d
er
-

a
p
p
ro
x
.

B
F
S

1 39.3 s 5.0 s ? 2.1 s 1.2 s ? 0.5 s 0.5 s
2 242.5 s 21.9 s ? 4.5 s 2.2 s ? 0.7 s 1.2 s
3 � 39.7 s ? 3.9 s 3.2 s ? 0.9 s 1.4 s
4 � 50.4 s ? 4.7 s 4.2 s ? 1.3 s 0.8 s

Business Activity Protocol (BAwPC) — Reachability

Size r=1 r=2 r=4 r=6 r=10 r=15

n
o
tr
a
ce

ov
er
-

a
p
p
ro
x
.

D
F
S

1 � 88.6 s 16.4 s 7.8 s 3.1 s 2.3 s
2 � � 93.0 s 38.3 s 13.6 s 9.5 s
3 � � � 136.5 s 41.1 s 31.7 s
4 � � � � 110.5 s 88.0 s

tr
a
ce

ov
er
-

a
p
p
ro
x
.

D
F
S

1 1.3 s 0.4 s 0.2 s 0.1 s 0.2 s 0.2 s
2 155.9 s 24.5 s 4.9 s 2.6 s 0.2 s 0.2 s
3 � � 114.6 s 42.5 s 0.3 s 0.3 s
4 � � � � 0.4 s 0.3 s

tr
a
ce

u
n
d
er
-

a
p
p
ro
x
.

D
F
S

1 0.4 s 0.2 s 0.1 s 0.1 s 0.1 s
2 17.5 s 2.8 s 1.3 s 0.2 s 0.1 s
3 � 51.1 s 14.6 s 0.2 s 0.2 s
4 � � 116.6 s 0.3 s 0.3 s

Train Level Crossing (TLC) — Reachability

Size r=1 r=2 r=3 r=5 r=7 r=9

n
o
tr
a
ce

ov
er
-

a
p
p
ro
x
.

B
F
S

1 5.7 s 0.8 s 0.3 s 0.1 s 0.1 s 0.0 s
2 � 21.4 s 5.0 s 1.0 s 0.3 s 0.2 s
3 � � 96.2 s 10.0 s 2.4 s 1.1 s
4 � � � 80.7 s 14.4 s 5.4 s

tr
a
ce

ov
er
-

a
p
p
ro
x
.

B
F
S

1 4.1 s 1.9 s 1.6 s 1.4 s 1.4 s 1.4 s
2 9.9 s 2.8 s 2.0 s 1.6 s 1.6 s 1.6 s
3 12.0 s 3.0 s 2.1 s 1.6 s 1.6 s 1.6 s
4 11.9 s 3.0 s 2.1 s 1.7 s 1.6 s 1.6 s

tr
a
ce

u
n
d
er
-

a
p
p
ro
x
.

B
F
S

1 0.9 s 0.6 s ? 0.1 s 1.3 s 0.5 s
2 1.9 s 1.0 s ? 0.7 s 1.5 s 0.5 s
3 2.0 s 0.9 s ? 6.2 s 1.5 s 0.5 s
4 2.0 s 0.9 s ? 50.4 s 1.5 s 0.5 s

Producer and Consumer Synchronization (PCS) — Liveness

Size r=1 r=2 r=3 r=4 r=5 r=6

tr
a
ce

ov
er
-

a
p
p
ro
x
.

D
F
S

1 0.8 s 1.0 s 1.0 s � ? 171.1 s �
2 10.9 s 6.8 s 6.4 s � � �
3 126.0 s 30.4 s 27.5 s � � �
4 � 162.2 s 142.9 s � � �

tr
a
ce

u
n
d
er
-

a
p
p
ro
x
.

D
F
S

1 1.0 s 0.3 s 0.2 s 0.7 s 0.3 s
2 6.7 s 1.2 s 1.1 s 4.2 s 1.0 s
3 30.2 s 7.6 s 7.3 s 22.9 s 6.7 s
4 157.2 s 47.1 s 50.3 s 120.3 s 43.4 s

Plate Spinning Problem (PSP) — Liveness

Size r=1 r=2 r=3 r=4 r=5 r=6

tr
a
ce

ov
er
-

a
p
p
ro
x
.

D
F
S

1 12.4 s 0.6 s 0.3 s 0.3 s 0.3 s ? 0.1 s
2 41.3 s 1.5 s 0.4 s 0.4 s 0.4 s ? 0.1 s
3 100.3 s 3.2 s 0.7 s 0.7 s 0.7 s ? 0.1 s
4 213.2 s 6.3 s 1.1 s 1.1 s 1.1 s ? 0.1 s

tr
a
ce

u
n
d
er
-

a
p
p
ro
x
.

D
F
S

1 1.7 s 0.5 s 0.6 s � 0.3 s
2 5.5 s 1.5 s 1.5 s 0.4 s 0.4 s
3 12.8 s 3.2 s 3.2 s 2.2 s 0.7 s
4 26.8 s 6.3 s 6.2 s 1.2 s 1.1 s

250 S.V. Birch et al.

an over-approximation that suddenly allows too much behaviour like in PCS).
Occasionally, inconclusive answers may appear for relatively small r values (like
for PMS where r = 3 and r = 7) due to an unfortunate rounding of guards that
produces infeasible traces.

As already mentioned, the reported experiments rely on the discrete-time
engine. We also investigated how the approximation methods behaved in case
of a continuous TAPAAL engine that performs a zone-based exploration (using
DBM data structure). The general observation in most of such experiments is
that the approximations do not significantly influence the verification times that
usually differ by a constant factor only. This is caused by the fact that the
continuous engine performs a symbolic exploration that is not that affected by
the size of the constants like during the explicit exploration. The comparison of
discrete vs. continuous verification is not in the scope of this paper and we refer
to [6,19,16] for further discussion.

6 Conclusion

We provided a simple, yet efficient method for discrete-time verification of timed-
arc Petri net. The approximation algorithms were implemented in the tool
TAPAAL and the experiments document a high practical applicability, in partic-
ular for nets where the timing constraints are robust, meaning that small changes
in the guard intervals do not change the validity of the properties in question.
As a result, the designers of formal models do not have to consider so carefully
the size of constants in their models anymore; in many cases the constants can
be automatically lowered while still providing conclusive answers.

References

1. Alur, R., Dill, D.: A theory of timed automata. Theoretical Computer Sci-
ence 126(2), 183–235 (1994)

2. Alur, R., Itai, A., Kurshan, R., Yannakakis, M.: Timing verification by succes-
sive approximation. In: Probst, D.K., von Bochmann, G. (eds.) CAV 1992. LNCS,
vol. 663, pp. 137–150. Springer, Heidelberg (1993)

3. Andersen, M., Gatten Larsen, H., Srba, J., Grund Sørensen, M., Haahr Taankvist,
J.: Verification of liveness properties on closed timed-arc Petri nets. In: Kučera, A.,
Henzinger, T.A., Nešetřil, J., Vojnar, T., Antoš, D. (eds.) MEMICS 2012. LNCS,
vol. 7721, pp. 69–81. Springer, Heidelberg (2013)

4. Asarin, E., Maler, O., Pnueli, A.: On discretization of delays in timed automata
and digital circuits. In: Sangiorgi, D., de Simone, R. (eds.) CONCUR 1998. LNCS,
vol. 1466, pp. 470–484. Springer, Heidelberg (1998)

5. Bolognesi, T., Lucidi, F., Trigila, S.: From timed Petri nets to timed LOTOS. In:
IFIP WG 6.1 Tenth International Symposium on Protocol Specification, Testing
and Verification, pp. 1–14. North-Holland, Amsterdam (1990)

6. Bozga, M., Maler, O., Tripakis, S.: Efficient verification of timed automata using
dense and discrete time semantics. In: Pierre, L., Kropf, T. (eds.) CHARME 1999.
LNCS, vol. 1703, pp. 125–141. Springer, Heidelberg (1999)

Interval Abstraction Refinement for Model Checking 251

7. Cicirelli, F., Furfaro, A., Nigro, L.: Model checking time-dependent system spec-
ifications using time stream Petri nets and UPPAAL. Applied Mathematics and
Computation 218(16), 8160–8186 (2012)

8. Clarke, E., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided ab-
straction refinement. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS,
vol. 1855, pp. 154–169. Springer, Heidelberg (2000)

9. Clarke, E.M., Grumberg, O., Long, D.E.: Model checking and abstraction. ACM
Trans. Program. Lang. Syst. 16(5), 1512–1542 (1994)

10. David, A., Jacobsen, L., Jacobsen, M., Jørgensen, K.Y., Møller, M.H., Srba, J.:
TAPAAL 2.0: Integrated development environment for timed-arc Petri nets. In:
Flanagan, C., König, B. (eds.) TACAS 2012. LNCS, vol. 7214, pp. 492–497.
Springer, Heidelberg (2012)

11. David, A., Jacobsen, L., Jacobsen, M., Srba, J.: A forward reachability algorithm
for bounded timed-arc Petri nets. In: SSV 2012. EPTCS, vol. 102, pp. 125–140.
Open Publishing Association (2012)

12. Dill, D.L.: Timing assumptions and verification of finite-state concurrent systems. In:
Sifakis, J. (ed.) CAV 1989. LNCS, vol. 407, pp. 197–212. Springer, Heidelberg (1990)

13. Dill, D.L., Wong-Toi, H.: Verification of real-time systems by successive over and
under approximation. In: Wolper, P. (ed.) CAV 1995. LNCS, vol. 939, pp. 409–422.
Springer, Heidelberg (1995)

14. Drægert, A., Kaysen, A.C., Byrdal Kjær, J., Mikkelsen, F.B., Nduru, C., Petersen,
D.S.: LEGO car safety systems. 5th Semester Software Engineer Project Report,
Aalborg University (2014)

15. Hanisch, H.M.: Analysis of place/transition nets with timed-arcs and its application
to batch process control. In: Ajmone Marsan, M. (ed.) ICATPN 1993. LNCS,
vol. 691, pp. 282–299. Springer, Heidelberg (1993)

16. Jensen, P.G., Larsen, K.G., Srba, J., Sørensen, M.G., Taankvist, J.H.: Memory ef-
ficient data structures for explicit verification of timed systems. In: Badger, J.M.,
Rozier, K.Y. (eds.) NFM 2014. LNCS, vol. 8430, pp. 307–312. Springer, Heidelberg
(2014)

17. Jørgensen, K.Y., Larsen, K.G., Srba, J.: Time-darts: A data structure for verifica-
tion of closed timed automata. In: SSV 2012. EPTCS, vol. 102, pp. 141–155. Open
Publishing Association (2012)

18. Marques Jr., A.P., Ravn, A.P., Srba, J., Vighio, S.: Model-checking web services
business activity protocols. International Journal on Software Tools for Technology
Transfer (STTT) 15(2), 125–147 (2013)

19. Lamport, L.: Real-time model checking is really simple. In: Borrione, D., Paul, W.
(eds.) CHARME 2005. LNCS, vol. 3725, pp. 162–175. Springer, Heidelberg (2005)

20. Larsen, K.G., Behrmann, G., Skou, A.: Exercises for UPPAAL (2008),
http://www.cs.aau.dk/~bnielsen/TOV08/ESV04/exercises

21. Lee, W., Pardo, A., Jang, J.-Y., Hachtel, G., Somenzi, F.: Tearing based automatic
abstraction for CTL model checking. In: ICCAD 1996, pp. 76–81. IEEE Computer
Society (1996)

22. Merlin, P.M., Faber, D.J.: Recoverability of communication protocols: Implications
of a theoretical study. IEEE Trans. on Comm. 24(9), 1036–1043 (1976)

23. Murata, T.: State equation, controllability, and maximal matchings of Petri nets.
IEEE Trans. on Automatic Control 22(3), 412–416 (1977)

24. Pardo, A., Hachtel, G.D.: Incremental CTL model checking using BDD subsetting.
In: DAC 1998, pp. 457–462. ACM (1998)

25. Popova-Zeugmann, L.: On time Petri nets. Elektronische Informationsverarbeitung
und Kybernetik 27(4), 227–244 (1991)

http://www.cs.aau.dk/~bnielsen/TOV08/ESV04/exercises

Author Index

Al-Bataineh, Omar 38
Andrychowicz, Marcin 7
Asarin, Eugene 222

Barkaoui, Kamel 53
Bartocci, Ezio 23
Baruah, Sanjoy 1
Berthomieu, Bernard 85
Bhaduri, Purandar 206
Bortolussi, Luca 23
Boucheneb, Hanifa 53
Brihaye, Thomas 69

Cleaveland, Rance 115

Dal Zilio, Silvano 85
David, Alexandre 100
Dziembowski, Stefan 7

Estiévenart, Morgane 69

Fang, Huixing 100
Ferrère, Thomas 222
Fontana, Peter 115
Frehse, Goran 176
French, Tim 38
Fronc, �Lukasz 85

Geeraerts, Gilles 69

Johnson, Taylor T. 130
Jon Jensen, Jacob 237

Krishna, Shankara Narayanan 161
Kuřátko, Jan 146

Larsen, Kim Guldstrand 100

Maler, Oded 222
Malinowski, Daniel 7
Mathur, Umang 161
Mazurek, �Lukasz 7
Minopoli, Stefano 176
Mitra, Sayan 130
Moesgaard, Christoffer 237

Nørgaard Samuelsen, Niels 237

Ratschan, Stefan 146
Reinkemeier, Philipp 206
Reynolds, Mark 38
Roohi, Nima 191

Sanguinetti, Guido 23
Srba, Jǐŕı 237
Stierand, Ingo 206
Stig Jacobsen, Thomas 237

Trivedi, Ashutosh 161

Ulus, Dogan 222

Vernadat, François 85
Viesmose Birch, Sine 237
Viswanathan, Mahesh 191

Weslati, Karim 53

Zhang, Zhengkui 100

	Preface
	Organization
	Table of Contents
	The Modeling and Analysis
of Mixed-Criticality Systems

	References

	Modeling Bitcoin Contracts by Timed Automata
	1 Introduction
	1.1 A Short Description of Bitcoin

	2 Modeling the Bitcoin
	2.1 The Keys, the Secret Strings, and the Signatures
	2.2 The Transactions
	2.3 The Parties
	2.4 The Adversary
	2.5 The Block Chain and the Notion of Time

	3 Modeling the Bitcoin-Based Timed Commitment Scheme from [8]
	3.1 The Results of the Verification
	3.2 The NewSCS Protocol from [8]

	References

	Data-Driven Statistical Learning of Temporal Logic Properties
	1 Introduction
	2 Problem Statement and Methodology
	2.1 Statistical Modelling of Data: Learning and Model Selection
	2.2 Learning Properties

	3 Results
	3.1 Logical Characterisation of a Biological Oscillator
	3.2 Logical Discrimination of Cardiac Arrhythmias

	4 Related Work
	5 Conclusions
	References

	Finding Best and Worst Case Execution Times
of Systems Using Difference-Bound Matrices

	1 Introduction
	2 Preliminaries
	2.1 Timed Automata
	2.2 The Zone Approach
	2.3 The Difference Bound Matrices

	3 Zone-Based Algorithms For Calculating BCET and WCET
	3.1 The Zone-Based Algorithms

	4 Implementation
	5 Case Studies
	6 Conclusion
	References

	Delay-Dependent Partial Order Reduction Technique for Time Petri Nets
	1 Introduction
	2 Time Petri Nets
	2.1 Definition and Semantics
	2.2 Contracted State Class Graph

	3 Partial Order Reduction Based on POSETs
	3.1 Partial Order Successors and Reduced State Class Graphs

	4 RSCG Preserving Non-equivalent Sequences of N

	4.1 Delay Lower Bound Matrix of N

	4.2 Computing a Partial Order Generator G
	4.3 Does G Preserve the Non-equivalent Firing Sequences of N?

	5 Experimental Results
	6 Conclusion
	References

	On MITL and Alternating Timed Automata
over Infinite Words

	1 Introduction
	2 Preliminaries
	3 The Intervals Semantics for OCATA on Infinite Words
	4 TOCATA: A Class of OCATA for MITL
	5 MITL Model-Checking and Satisfiability with TOCATA
	6 Experimental Results
	References

	Time Petri Nets with Dynamic Firing Dates:
Semantics and Applications

	1 Introduction
	2 Time Petri Nets and Fickle Transitions
	2.1 A Semantics for Time Petri Nets Based on Firing Functions
	2.2 Interesting Classes of DTPN
	2.3 Interpretation of the Quantized State System Model

	3 A State Class Abstraction for Dynamic TPN
	4 Two Application for Dynamic TPN
	4.1 Scheduling Preemptive Tasks
	4.2 Verification of Linear Hybrid systems

	5 Conclusion and Related Work
	References

	Verification and Performance Evaluation
of Timed Game Strategies

	1 Introduction
	2 Timed Game

	2.1 Timed Game Automata
	2.2 A Running Example

	3 Stochastic Priced Timed Automata
	3.1 Priced Timed Automata
	3.2 Stochastic Semantics

	4 Translating Strategies to Timed Automata
	4.1 The Method
	4.2 The Running Example

	5 MC and SMC under Strategies
	5.1 Extended Stochastic Semantics
	5.2 Implementation
	5.3 The Running Example

	6 Experiments Results
	6.1 Case Study 1: Jobshop
	6.2 Case Study 2: Train-Gate

	7 Future Work
	References

	The Power of Proofs: New Algorithms
for Timed Automata Model Checking

	1 Introduction
	2 Background
	2.1 Timed Automata
	2.2 Timed Logic Lrel
ν,μ and Modal Equation Systems (MES)

	3 Checking Lrel ,af
ν,μ Properties: A Proof-Based Approach

	3.1 Proof Rules for Laf
ν,μ Over Timed Automata

	3.2 New Proof Rules for the Relativized Operators of Lrel ,af
ν,μ

	4 Optimizing Performance via Derived Proof Rules
	5 Implementation Details
	5.1 Addressing Non-convexity: Zone Unions
	5.2 Addressing Performance: Simpler PES Formulas
	5.3 Placeholder Implementation Complexities

	6 Performance Evaluation
	6.1 Methods: Evaluation Design
	6.2 Data and Results
	6.3 Analysis and Discussion

	7 Conclusion
	References

	Anonymized Reachability of Hybrid Automata Networks
	1 Introduction
	2 Hybrid Automata Network Syntax and Semantics
	2.1 Semantics of Hybrid Automata Networks

	3 Anonymized State-Space Representation
	4 Anonymized Reachability of Hybrid Automata Networks
	5 Experimental Results
	6 Summary
	References

	Combined Global and Local Search
for the Falsification of Hybrid Systems

	1 Introduction
	2 Problem Formulation
	3 Algorithm
	4 Algorithmic Details
	4.1 Computation of the Path of Minimal Cost
	4.2 Heuristics
	4.3 Paths of Minimal Cost

	5 Local Optimization
	6 Termination Proof

	7 Computational Experiments
	8 Related Work
	9 Conclusion
	References

	Weak Singular Hybrid Automata
	1 Introduction
	2 Preliminaries
	2.1 Singular Hybrid Automata
	2.2 Reachability, Schedulability, and Model-Checking

	3 Weak Singular Hybrid Automata
	3.1 Constant-Rate Multi-mode Systems
	3.2 Syntax and Semantics

	4 Undecidable Variants of WSHA
	5 Conclusion
	References

	Non-convex Invariants and Urgency Conditions
on Linear Hybrid Automata

	1 Introduction
	2 Linear Hybrid Automata with Non-convex Invariants
	2.1 Definition and Semantics
	2.2 Computing the Continuous Post Operator with Nonconvex Invariants
	2.3 Related Work

	3 Linear Hybrid Automata with Urgency
	3.1 Definition and Semantics
	3.2 Reachability
	3.3 Computing the Urgent Continuous Post Operator
	3.4 Related Work

	4 Example: Batch Reactor
	5 Conclusions
	References

	Time-Bounded Reachability for Initialized
Hybrid Automata with Linear Differential
Inclusions and Rectangular Constraints

	1 Introduction
	2 Preliminaries
	2.1 Sets and Functions Notations
	2.2 Transition Systems and Hybrid Automata

	3 Time-Bounded Reachability
	3.1 Bounding the Execution Length in Logarithmic Timed Automata

	3.2 Algorithm for Time-Bounded Reachability

	4 Time-Bounded Reachability is PSPACE-hard in
Initialized Linear Inclusion Automata

	5 Conclusion
	References

	Virtual Integration of Real-Time Systems Based on Resource Segregation Abstraction
	1 Introduction and Related Work
	2 Real-Time Interfaces
	3 Contracts and Virtual Integration
	4 Compositional Virtual Integration
	5 Resource Segregation
	6 Case Study
	7 Conclusion
	References

	Timed Pattern Matching
	1 Introduction
	2 Timed Regular Expressions over Signals
	3 Match-Sets and Zones
	4 Computation
	4.1 Algorithms and Implementation
	4.2 A Bound on the Number of Iterations

	5 Experimentation
	6 Future Work
	References

	Interval Abstraction Refinement
for Model Checking of Timed-Arc Petri Nets

	1 Introduction
	2 Definitions
	3 Interval Abstractions
	3.1 Approximation Correctness for Reachability
	3.2 Approximation Correctness for Liveness

	4 Trace Validation
	5 Evaluation
	6 Conclusion
	References

	Author Index

