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Abstract In order to persuade users of widely using cloud storage, one critical
challenge that should be solved is finding way to determine whether data has been
illegally modified on the cloud server or not. The topic has although been addressed in
several works, there is lack of scheme to meet all the demand of supporting dynamic
operations, public verification, less computation etc. This paper surveys the related
results that has been done and proposes two alternative schemes, called DIV-I and
DIV-II. Compared to S-PDP introduced by Ateniese et al., both DIV-I and DIV-II
use less time to generate tags and verify. In addition, the proposed schemes fully
support dynamic operations as well as public verification.
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1 Introduction

When using cloud storage, user enjoys many prominent characteristics such as
accessing data anytime and anywhere, being released from arduous work of main-
taining hardware and software, etc. Those cutting edges promote the wide adaptation
of cloud storage in practice. However, many critical security challenges emerge due
to user’s limited control over his data, which totally differentiate to traditional stor-
age approach. One of those challenges is how to determine the intactness of data is
ensured or not. Notice that the data can be damaged by many reasons from malicious
attack to hardware failure, and the cloud storage providers (CSP) may hide that to
hold their reputation. Hence, establishing a scheme to verify the data’s intactness is
a key requirement.
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Such a verification scheme should have the following features, as many as
possible:

Support public verification: The scheme should allow not only data owner but also
anyone authorized in the cloud system to verify the data integrity. This is especially
important because when outsourcing data, user sometime wants to share his data to
his friends or partners. They need to have ability to make sure that the data they
retrieve are not illegally modified. Additionally, user, who is not online frequently,
can delegate the verification task to a third party auditor (TPA). The TPA will send the
verification request periodically to CSP to ensure that any data corruption is detected
in time. TPA can even play more essential role in evaluating the quality of service of
CSP. Any CSP that has poor profile in terms of ensuring the innocence of the data it
stores will probably lose their users.

Unlimited verification time: For each verification request, auditor needs to send a
challenge to CSP, and CSP is supposed to return appropriate result corresponding to
the challenge. If the scheme allows only limited verification time, some challenges
must be repeated after all of them has been used. That brings CSP a wonderful chance
to answer with a deceived return if it stores all of previous response corresponding
to each challenge.

No data leakage: During the verification process, the data owner may not want to
reveal any data to TPA. Hence, the scheme should protect the data privacy against
TPA no matter how many tuple (challenge, response) is collected.

Support data dynamic operations: The data owner sometime wants to modify his
file such as deleting part of the file or inserting more data somewhere in the file. In
this case, the file’s tags need to be recomputed. Thus, the scheme should be able to
update the tags with lowest cost.

This paper proposes two schemes that address all above concerns. The proposed
schemes fully support data dynamic operations as well as public verification without
data leakage. Related demonstration and experiment are carried out to prove their
correctness and outstanding performance compared to other schemes.

The rest of this paper is organized as follows. Section 2 reviews some related
work. Section 3 introduces two novel schemes DIV-I and DIV-II in detail. Section 4
presents experiment results and analysis. And the last section makes conclusion.

2 Related Work

Many outstanding work has been done to provide judgment scheme for data integrity
on cloud storage. Some of them generates limited number of tuple (challenge,
response) before outsourcing data. For example, Juels and Kaliski introduced POR
scheme [1] which embedded a number of special blocks, called ‘sentinels’, among file
blocks, and the verifier releases one sentinel’s position for each challenge. Aravan and
Ashutosh [2] selected from each block a certain number of bits to compose its verifica-
tion proof. This scheme has been improved in [3] to support data dynamic operations,
but limited verification time still remains. Ateniese et al. [4] used cryptographic hash
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function to generate verification proof. This scheme supports block update, deletion
and append. However, block insertion anywhere in the file is not allowed. Chaoling li
et al. [5] tried to improve scheme of [4] to support block insertion by using SN-BN
table. However, the authors did not realizes that correctness of this scheme was not
ensured if the integrity of SN-BN table was not guaranteed. Noticeably, if the CSP
stores full set of tuples, all above schemes are not reliable any more.

On the other hand, some solutions based on RSA and Diffie-Hellman assumptions
support dynamic operations such as Deswarte and Quisquater [6] and Sebe et al. [7].
However, those schemes do not support public verification. Some another solutions
using homomorphic authentication like Shacham and Waters [8] and Ateniese et al.
[9] allow unlimited public verification time, but may lead to data leakage. We notice
that S-PDP introduced in [9] can be improved by masking the CSP’s response with
a random number to prevent data leakage. Erway et al. [10] proposed another model
based on Ateniese et al.’s [9] model to better support dynamic operations. Liu et al.
[11] improved Erway et al.’s [10] model to reduce computational and communication
overhead. Neither of them allows public verification. Wang et al. [12] took advan-
tage of both homomorphic authentication and Merkle hash tree [13] to allow both
unlimited public verification and dynamic operations. However, data privacy was
not considered in this work. Zhu [14] introduced a scheme based on Diffie-Hellman
assumption [15] and bilinear pairings. Although the scheme supports public verifi-
cation, dynamic operations were not addressed in this work.

3 The Novel Schemes

Let p, q, be two large primes and N = p ∗ q be an RSA modulus. Let ϕ(N ) =
(p − 1) ∗ (q − 1) be the Euler function of N, and d, e are two big integers satisfy
d ∗ e ≡ 1 mod ϕ(N ). Let l is a security parameter, assume that |d| ≥ l, |e| ≥ l,
(|d|, |e| are bit-length of d and e respectively). N and e are made public while p, q,
ϕ(N ), d are only known by the data owner. Additionally, let g be an element with
high order in Z

∗
N and g is coprime to N. g is also made publicly known.

We suppose that data owner has a file, which includes n blocks, each block has
bits, needs to be outsourced. Hence, the file size is n ∗ sb bits. In this paper, a tag is
calculated for each block as its authentication data. The i th block is denoted by bi

and its tag is denoted by Ti .

3.1 DIV-I Scheme

Here, we propose a scheme which is similar to S-PDP but performances better in term
of tag generation and integrity verification. We call the scheme DIV-I. The scheme
includes four functions as follows:
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GenKey(l1, l2)→ (pk, sk): generates a public key pk = (N , e, v, r, g) and pri-
vate key sk = (ϕ(N ), d, α), where r, α are two random numbers and v = gα mod N .
Let l1, l2 are two security parameter, r ← {0, 1}l1 , α← {0, 1}l2

GenTag(pk, sk, i, bi ) → Ti : Let hi = H(r ||i), where H is responsible to
compute the hash value and convert to big integer. Data owner computes Ti =
g(αhi+bi )∗d mod N and sends {(bi , Ti )}0≤i<n to CSP.

GenProof (pk, F, chal)→ (T, B): Verifier sends challenge to CSP in a form of
(gs, c, {(i j , c j )}1≤ j≤c), where gs = gs mod N , s is a random number, c is the number
of blocks that compose the response, (i j , c j ) is those blocks’ index and coefficient,
correspondingly. CSP responds two values:

T = �c
j=1T

c j
i j

mod N and B = g

∑c
j=1 c j bi j

s mod N

VenProof (pk, chal, T, B) → {′′Y ′′, ′′N ′′} : Verifier computes h = v
∑c

j=1 c j hi j

mod N and check the condition T e∗s = B ∗ hs mod N . If the condition is satis-
fied, then returns “Y” indicates no data corruption detected. Otherwise, returns “N”
indicates Data corruption detected.

Correctness: In case of the intact of all bi j and Ti j is ensured, we have T e∗s =
g

s∗∑c
j=1(c j bi j+αc j hi j ) mod N

= g
s∗∑c

j=1c j bi j ∗ g
αs∗∑c

j=1 c j hi j mod N

= B ∗ (g
α∗∑c

j=1 c j hi j )s mod N

= B ∗ hs mod N

Robustness: Assuming that the factorization, RSA and Diffie-Hellman problem
are difficult over Z

∗
N, CSP successfully pass the challenge for DIV-I scheme if and

only if the intact of all blocks and tags participate in the response is ensured.
Proof Suppose that some of blocks participate in the response are corrupted. We

prove that if CSP successfully pass the challenge, there is method to break RSA
problem. That means with any integer z, it is able to find a value w that satisfies
we = z mod N without knowing d. The construction of this method is describes as
follows.

In the above construction of DIV-I, let g = z. We assume that there are k cor-
rupted blocks in total c blocks compose B, and w.l.o.g they are b

′
i1
, b
′
i2
, . . . , b

′
ik

. CPS

responds to verifier a tuple (T
′
, B
′
), where B

′ = gb
′

s mod N . Without knowing s, in

order to pass the challenge, CSP needs to ensure that T
′e = gb

′ ∗ h mod N (2). Let

u =∑c
j=1, c j hi j (2)⇔ T

′e = zb
′ ∗ zαu mod N . Because α is unknown to CSP and

we can choose e as a large prime, thus w.l.o.g we assume that gcd(e, b
′ + αu) = 1.

Thus the extended Euclidian algorithm can be used to find out x and y such that ex +
(b
′ +αu)y = 1. Let w = zx ∗ T

′ y
, we have we = zex ∗ T

′ey = zex ∗ z(b
′ +αu)y = z.

That means the RSA problem has been break.
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Update: If data owner inserts a block b at the position pos, all the tag of blocks
from pos to n need to be updated. The update process is summarized as follow:

• CSP sends {Ti }pos≤i≤n to data owner.
• Data owner computes new tags: T

′
i+1 = Ti ∗ gα(hi+1−hi )∗d mod N

• Data owner sends {T ′i+1}pos≤i≤n to CSP.

The maximum communication overhead is (2n+1)∗|N |+sb when pos = 0 and the
minimum one is |N | + sb when pos = n + 1 (|N | is bit-length of N ). The deletion
process is carried out similarly.

Storage: pk and sk need a storage space of 5|N |+ l1+ l2 bits (g is ignored because
we can set g as small integer like 2, 3, 5). Extra storage to keep all tags on CSP is
∗|N |. Thus, the ratio of extra storage and file size is |N |/sb . For example, in case of
a 4GB file includes n =1,000,000 blocks, each block is 4 KB-size, |N | = 1024
bits and l1 = l2 = 128 bits, CSP need 122 MB extra storage, pk and sk need
5.25 KB.

3.2 DIV-II Scheme

We try to reduce power and multiplication computation compared to above schemes
to hopefully lessen the computation cost. The new scheme, called DIV-II, is described
as follow:

GenKey(l1, l2) → (pk, sk): generates a public key pk = (N , e, r, g, v) and
private key sk = (ϕ(N ), d, α, u), where r, u are random numbers and v = gα mod N .
Let l1, l2, are two security parameter, r ← {0, 1}l1 , u ← {0, 1}l1 , α← {0, 1}l2 .

GenTag(pk, sk, i, bi ) → (Ti , βi ): Let hi = H1(r ||i), h
′
i = H2(u||i) and βi =

g
h

i
′ mod N , where H1, H2 are two functions that compute the hash value of string

and convert to big integer. Data owner generates tag for all block using the formula
Ti = α ∗ bi + d ∗ hi + h

′
i mod ϕ(N ) mod then sends {(bi , Ti , βi )}0≤i≤n to CSP.

GenProof (pk, F, chal) → (T, B): Verifier sends challenge to CSP in a form
of (c, {(i j , c j )}1≤ j≤c), where is the number of blocks that compose the response,
(i j , c j ) is those blocks’ index and coefficient, correspondingly. CSP responds three
values:

T = g
∑c

j=1 c j Ti j mod N , B = v
∑c

j=1 c j bi j ∗�c
j=1β

c j
i j

mod N .

VerProof (pk, chal, T, B) → {"Y ", "N"}: Verifier computes h = g
∑c

j=1 c j hi j

mod N and check the condition T e = Be ∗ h mod N . If the condition is satisfied,
then return “Y” means “No data corruption detected”. Otherwise, return “Y” means
“Data corruption detected”.

Correctness: In case of the intact of all bi j , Ti j and βi j is ensured, we have:

T e = g
e∗∑c

j=1 c j Ti j mod N
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= g
e∗∑c

j=1c j (α∗bi j+d∗hi j+h
′
i j

)
mod N

= g
e∗α∗∑c

j=1 c j bi j ∗ g

∑c
j=1 c j h

′
i j ∗ g

∑c
j=1 c j hi j mod N

= Be∗h mod N

Robustness: Assuming that the factorization, RSA and Diffie-Hellman problem
are difficult over Z

∗
N, CSP successfully pass the challenge for DIV-II scheme if and

only if the intact of all blocks and tags participate in the response is ensured.
Proof We prove that if CSP’s response to challenge can successfully pass the

verification while some block has been corrupted, there is scheme to break RSA
problem. For instance, for a particular z , we are able to find out a value w that
satisfies W e = z mod N .

In the above scheme, let g = z. Suppose that CSP responds T and B. Let u =∑c
j=1c j hi j . If the response passes the verification, the equation T e = Be∗zu mod N

(3) should be established. (3)⇔ (T B−1)e = zu mod N . We assume w.l.o.g that
gcd(e, u) = 1. Thus we can find out x and y such that ex + uy = 1. Let w =
zx ∗ (T B−1)y , we have we = zex ∗ (T B−1)ey = zex ∗ zuy = z. That means the RSA
problem has been break.

Update: In DIV-II, when data owner inserts a block at the position , all the tags
need to be updated. The update process is summarized as follow:

• CSP sends {Ti }0≤i≤n to data owner.
• Data owner chooses a random number u

′
. Let h

′′
i = H2(u

′ ||i)
• Data owner computes new tags:

T
′

i = Ti + h
′′
i − h

′
i mod ϕ(N ) if 0 ≤ i < pos

T
′

i+1 = Ti + d ∗ (hi+1 + hi )+ h
′′
i+1 − h

′
i mod ϕ(N ) if pos ≤ i < n

• Data owner sends {T ′i }0≤i≤n to CSP.

Like the previous scheme, the update process of DIV-II is without downloading
the block’s data. The communication overhead is (2n+1)∗|N |+sb. However, if new
block is appended, no tag need to be updated. Thus, the communication overhead is
only |N | + bs .

Unlike DIV-I scheme, when a new block inserted, DIV-II requires all tag to be
recomputed. If tag of blocks prior position are not recomputed, there’s no need to
choose u

′
. Hence, T

′
i+1 = α ∗ bi + d ∗ hi+1 + h

′
i+1 mod ϕ(N ), pos ≤ i < n.

Because CSP knows Ti+1 = α ∗ bi+1 + d ∗ hi+1 + h
′
i+1 mod ϕ(N ), pos ≤ i < n

it can compute T
′

i+1 − Ti+1 = α ∗ (bi − bi+1) mod ϕ(N ). Thus, CSP can find out α

as well as ϕ(N ), and it will be able to compute all the tag.
Storage: compared to DIV-I, the ratio of extra storage on CSP and file size is

2|N |/sb.
In both DIV-I and DIV-II, in order to avoid storing many r, we can set this value

to each file’s unique sequence provided by CSP. Additionally, if we use two seeds,
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one used to generate i j and the other used to generate c j , just like S-PDP scheme,
the challenge communication overhead can be reduced from 0(c) to 0(1). Besides
that, unlike some previous schemes, verifier does not receive a linear combination
of data blocks, hence data privacy is preserved.

The deletion process is similar to insertion.

4 Experiment and Analysis

4.1 Experiment Environment and Assumptions

We code C++ programs to run on a computer with Intel(R) Core(TM) 2 Quad CPU
Q8200@2.33 GHz, 2.34 GHz and RAM of 2 GB to test the performances. We want
to compare the computation time of two proposed schemes with S-PDP scheme,
thus we just need one computer to run all functions including GenKey, GenTag,
GenProof, VerProof. We do not use two seeds to generate i j and c j . Those val-
ues are included in the challenge. Additionally, we use MD5 to compute all hash
value. Algorithms use NTL library [16] for doing big number calculation. Each
case in our experiment is repeated 10 times and the mean value is used for further
analysis.

4.2 Results and Analysis

First of all, we test the performance of three schemes (S-PDP, DIV-I, DIV-II) for
1 MB file in different cases corresponding to different value of block size. As can be
seen from Fig. 1, the tag generation time of all three scheme is inversely proportional
to block size. Additionally, the time of S-PDP is the biggest and the time of DIV-II
is significantly less than that of the others. Interestingly, Fig. 2 shows that the server
computation time is absolutely the same in three scheme independently to block
size. Moreover, the time decreases when block size is smaller than 4 KB, reaches the
bottom when block size is equal to 4 KB, and increases with larger block. Table 1
presents that the verification time of S-PDP is inversely proportional to block size
while the time of other schemes just slightly decreases when block size varies from
1 to 64 KB. Furthermore, the time of our two schemes is less than that of S-PDP in
all cases.

On the other hand, Fig. 3 depicts inversely proportional relation of maximum
insertion time and block size for two novel schemes. Notably, the time of DIV-I
is the bigger than that of DIV-I. In Fig. 4, however, the minimum insertion time of
DIV-II is the bigger. In fact, the maximum and minimum insertion time of DIV-II is
the same because all blocks need to be updated in both situations.
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Fig. 1 Tag generation time for 1 MB file

Fig. 2 Server computation time for 1 MB file

Table 1 Verification time for
1 MB file

Block size (KB) S-PDP (ms) DIV-I (ms) DIV-II (ms)

1 2602 32 43

2 1298 27 39

4 659 27 37

8 337 25 37

16 180 25 37

32 97 24 36

64 58 24 36
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Fig. 3 Maximum insertion time for 1 MB file

Fig. 4 Minimum insertion time for 1 MB file

Next, we set block size to 4 KB and test the performance of three scheme with
different file size. Note that when block size is constant, number of block is directly
proportional to file size. Figure 5 shows the directly proportional relation of server
computation time, which is the same for three schemes, and file size. However, in
case of verification, as can be seen from Table 2, the time of our two schemes only
lightly rises while that of S-PDP still directly proportional to file size and the time
of S-PDP is always bigger than that of two proposed schemes in all cases.
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Fig. 5 Server computation time for 4 KB block size

Table 2 Verification time in
case of 4 KB block size

File size (MB) S-PDP (ms) DIV-I (ms) DIV-II (ms)

1 659 27 37

2 1311 28 40

4 2593 30 43

8 5160 37 48

5 Conclusion and Future Work

This paper proposes two novel schemes to verify the data integrity in cloud stor-
age. Those schemes allow unlimited verification time and third party verification.
Moreover, those support public verification and do not introduce any data leakages.
Compare to S-PDP, those schemes need fewer computation time to generate tags
and verify data integrity. Additionally, DIV-II needs more extra storage on CSP and
dramatically decreases tag generation time compared to DIV-I. However, the verifi-
cation time of DIV-II is slightly bigger than that of DIV-I. Interestingly, we notice
that the two novel scheme have potential to combine with error-correcting like in
POR and with spot checking referred in [9] to obtain better performance. This idea
should be addressed in the future work.
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