
A Heuristic Algorithm for Workflow-Based
Job Scheduling in Decentralized Distributed
Systems with Heterogeneous Resources

Nasi Tantitharanukul, Juggapong Natwichai and Pruet Boonma

Abstract Decentralized distributed systems, such as grids, clouds or networks of
sensors, have been widely investigated recently. An important nature of such systems
is the heterogeneity of their resources; in order to archive the availability, scalability
andflexibility.As a consequence,managing the systems tomeet requirements is obvi-
ously a nontrivial work. The issue is even more challenging in term of job scheduling
when the task dependency within each job exists. In this paper, we address such prob-
lem of job scheduling, so called workflow-based job scheduling, in the decentralized
distributed systems with heterogeneous resources. As such problem is proven to be
an NP-complete problem, an efficient heuristic algorithm to address this problem
is proposed. The algorithm is based on an observation that the heterogeneity of the
resources can affect the execution time of the scheduling. We compare the effective-
ness and efficiency of the proposed algorithm with a baseline algorithm. The result
shows that our algorithm is highly effective and efficient for the scheduling problem
in the decentralized distributed system with heterogeneous resources environment
both in terms of the solution quality and the execution time respectively.

Keywords Decentralized algorithm · Heterogeneous resources · Workflow-based
job scheduling

1 Introduction

In recent years, distributed systems such as P2P and computational grid become
a generic platform for high performance computing [1]. In term of management,
a distributed system can be centralized or decentralized [5]. In the centralized

N. Tantitharanukul · J. Natwichai (B) · P. Boonma
Data Engineering and Network Technology Laboratory, Department of Computer Engineering,
Faculty of Engineering, Chiang Mai University, Chiang Mai 50200, Thailand
e-mail: juggapong@eng.cmu.ac.th

N. Tantitharanukul
e-mail: n.tantitharanukul@gmail.com

P. Boonma
e-mail: pruet@eng.cmu.ac.th

© Springer International Publishing Switzerland 2015
R. Lee (ed.), Computer and Information Science, Studies in Computational
Intelligence 566, DOI 10.1007/978-3-319-10509-3_8

101

102 N. Tantitharanukul et al.

distributed system (CDS) setting, a central controller is required for coordinating
resource sharing and computing activities among computing machines. That is, all
the system-wide decisionmakings are coordinated by the central controller. Contrary
to the CDSs, in decentralized distributed systems (DDSs), multiple controllers can
coexist and cooperate. Thus, management services such as job scheduling, resource
discovery and resource allocation can be managed by the multiple controllers. If a
controller fails, the other controllers can take over its responsibility autonomously.
This is the major advantage of the DDSs. Examples of the DDSs are grid and cloud
computing systems.

Although DDSs have the aforementioned advantage, completely decentralized
nature of DDSs raises a big challenge in job scheduling [5, 6]. In addition, for
composite jobs, i.e. jobs with multiple sub-processs or tasks, the tasks in the jobs can
have dependency, e.g. a task requires an output of another task as its input. Thus, some
tasks are prohibited to be executed concurrently. For instance, in order to calculate
the histogram of collected sensing data, data grouping need to be performed first;
thus, histogram calculation depends on data grouping. Therefore, the jobs must be
executed under valid flow-constraints, generally, described as a workflow template.
We can represent aworkflow template using a directed acrylic graph (DAG)where the
tasks are represented by nodes while the dependency (the execution order) between
tasks is represented by edges. Figure1 shows examples of workflow template where
ti represents a task with index i and w j represents a workflow template with index j .

From Fig. 1, to finish a job with workflow template w1, the tasks must be executed
in the order of t1, t2, and t3. In workflow template w2, the tasks t5 and t6 can be
executed in parallel after t4 is completed. In workflow template w3, each task has no
dependency on the others, in this case, the set of edges is empty.

There are several attempts on decentralized job scheduling, e.g. [2–4, 8]. For
example, in [8], a decentralized scheduling algorithm for web services using linear
workflow is proposed. In this work, linear workflow allows only one incoming edge
for each node. The goal of this work is to minimize the response time. However, this
work only focuses on linear workflow which might not be practical in the real world.

In [7], the authors proposed aworkflow-based composite job scheduling for decen-
tralized distributed systems algorithm. The algorithm is based on an observation that

Fig. 1 Examples of workflow templates

A Heuristic Algorithm for Workflow-Based Job Scheduling … 103

the degree of each task significantly affects the execution time of all jobs. The result
shows that this algorithm is efficient, the solution of this algorithm is mostly close to
the optimal solution. However, this algorithm is evaluated only in the homogeneous
resources decentralized distributed systems.

In this paper, we propose an algorithm for the mentioned problem with hetero-
geneous resources condition, i.e. each resource can only be used to execute some
specific tasks from any workflow template. Such difference in resources often exists
in the real-world scenarios e.g. the cost of some data centers might be too high for
executing some tasks, or the result of some tasks might be too large to be propagated
from one site to another economically. The main aim of the proposed algorithm is to
minimize the total execution time when a DDS has to process multiple jobs simul-
taneously with such heterogeneous resources. As the problem has been proven as an
NP-complete problem we propose a heuristic algorithm to find the solution.

The idea of the proposed algorithm is to allocate the resource to a task based on the
heterogeneity of such resource. A resource with less heterogeneity, or more restric-
tion, will be allocated to the task earlier. This can preserve the more heterogenous
resources for the later tasks. The experimental results, which compare the proposed
algorithm with a baseline algorithm in [7], is shown to illustrate the effectiveness
and the efficiency of our work.

The rest of this paper is organized as follows: Sect. 2 introduces the basic defini-
tions and formulates theminimum length of time-slot with heterogeneous resource
(MLTH) problem. Section3 presents a heuristic algorithm to find the minimum exe-
cution time. Experimental results are presented in Sects. 4 and 5 concludes this paper.

2 Basic Definitions and MLTH Problem

In this section, we introduce the basic notations and concepts based on the previous
work in [7]. Then, the MLTH problem is defined with our additional heterogeneity
notations.

Definition 1 (Distributed System) A distributed system D is presented by an undi-
rected graph where each node corresponds to a machine in the system. The finite set
N (D) denotes the set of nodes in D, and the finite set E(D) is the set of edges where
each edge corresponds to a non-directed connection between two nodes.

Definition 2 (Resource) Let ni be a node in N (D), ni ∈ N (D). The resources of ni

are the computing units, that ni can use to execute a computing process. The set of
the resources of ni is denoted as R(ni) whereas the set of resources of D is denated
as Ω , Ω = ⋃

R(ni).

Then, the decentralized distributed systems (DDSs) as in [5] can be defined as
follows,

104 N. Tantitharanukul et al.

Definition 3 (DDS) Let D be a distributed system, D is classified as a decentralized
distributed system (DDS) if it has multiple controllers, where the controller is a node
that can allocate the resources of itself and some other nodes.

As the dependencies between some tasks processed by a DDS exist, then, tasks,
workflow templates, jobs are defined as follows,

Definition 4 (Task) Let D be a DDS, a task in D is a unit of computing process that
a node in D can complete execution in a unit of time. A set of all tasks that can be
executed by the resources in Ω denotes by T .

Definition 5 (Workflow Template) Workflow templates in D are the directed acyclic
graph where each node corresponds to a task, ti , and each edge indicates the data
flow between two tasks. Given a workflow template wx in the set of all workflow
templates W , N (wx) denotes the node set of wx where N (wx) ⊆ T . On the other
hand, E(wx)denotes the directed edge set in theworkflow template. For anyworkflow
template wx , task tl is called a predecessor of task tl ′ , if and only if, the order pair
(tl , tl ′) ∈ E(wx). This indicates that task tl must be executed and completed before
execution of task tl ′ . Meanwhile, task tl ′ is called a successor of task tl . The node
without incoming edge from other nodes is called the start task. On the other hand,
the node without outgoing edge to other nodes is called the end task.

From Definition 5, we use the workflow template to be the template of any job
that the system can execute. It can show the execution flow of a job, So, we define
the definition of a job in Definition 6.

Definition 6 (Job) Let W be the set of workflow templates, a job jk in D is an
instance of a workflow template wk in W . The task tl of job jk is denoted by tk

l and
T is the set of all tasks from J , where J is the set of all jobs in D.

As the DDSs may have the heterogeneous resources as mentioned before, each
resource can only be used to execute the specific tasks from a workflow due to some
limitation, e.g. cost of the communication. For example, assume that we have 3
resources in the system denoted as r1, r2, and r3 as shown in Fig. 2. In the figure,
an example of the executable tasks of each resource is shown. It can be seen that,
resource r1 can be used to execute only 7 tasks which are the tasks from workflow
w1 and w2 in Fig. 1. Meanwhile resource r2 can be used to execute all the tasks of
the jobs that are an instance of any workflow template, i.e. w1, w2 or w3.

In order to allow the heterogeneity in the DDSs, we define the executable set as
follows.

Fig. 2 The executable tasks
of r1, r2, and r3

A Heuristic Algorithm for Workflow-Based Job Scheduling … 105

Definition 7 (Executable Set) Let rp be the resource, rp ∈ Ω , an executable set
of resource rp is the set of tasks from all workflow templates that rp can execute,
denotes by λ(rp) where λ(rp) ⊆ ⋃

N (wx) where wx ∈ W .

After the basic definitions related to the jobs have been defined, the time-slot is
defined for describing the job scheduling, or the execution flow, as follows.

Definition 8 (Time-slot) Let J be a set of current jobs in D, the time-slot of J on
Ω is the function S : I + × Ω → T ∪ {null} where S(αq , rp) ∈ λ(rp), rp ∈ Ω , and
αq is a time unit where αq ∈ I + and I + is the set of natural numbers.

The domain of S is the order pair of time unit αq , αq ∈ I +, and resource rp,
rp ∈ Ω . Thus the range of S, S(αq , rp), is the executed task that uses resource rp

at time unit αq , and S(αq , rp) ∈ λ(rp). When there is no task to be executed on
resource rp at time unit αq , S(αq , rp) is null.

For any S(αq , rp) and S(αq ′ , rp′), where p �= p′, if q = q ′ then S(αq , rp) and
S(αq ′ , rp′) are executed in parallel. If q < q ′ then S(αq , rp) is executed before
S(αq ′ , rp′), also, S(αq , rp) is executed before S(αq ′ , rp).

In order to illustrate the concepts clearly, the time-slot can be represented as a
2-dimensional matrix. Figure3 shows a time-slot structure, a cell at row q and col-
umn p in the structure represents S(αq , rp). We can see that the representation can
illustrate the execution flow of multiple tasks from multiple jobs along with their
workflow template.

In order to define the problem precisely, we also introduce the length of the time-
slot, as follows.

Definition 9 (Length of Time-slot) The length of time-slot S is the maximum value
of time unit αq which is S(αq , rp) is not null, ∃rp ∈ Ω .

For aDDS, there can bemanyversions of the time-slots for a given T . For example,
let us reconsider the given workflow templates in Fig. 1. Suppose that there are five

Fig. 3 The structure of timeslots

106 N. Tantitharanukul et al.

Fig. 4 Workflow template of
j1 to j5

Fig. 5 Time-slot I
(length= 7)

Fig. 6 Time-slot II

jobs as shown in Figs. 3 and 4 resources, r1, r2, and r3 with their executable tasks as
in Fig. 2.

In Figs. 5, 6 and 7, three versions of the time-slots are presented. First, the time-
slot with length of 7 time units is shown in Fig. 5. Although it is a valid time-slot
subjected to the definitions, it is not an optimal time-slot length. Figure6 shows a
time-slot with 6 time units, however, resource r1 can not be used to execute tasks
t5, t6, and t7 as shown in the dash line (the tasks of job j3). So, Fig. 6 is not a valid
time-slot. Last, Fig. 7 shows a valid minimal time-slot for this example, which it is
the desirable solution for the problem.

After the required notations are defined, the minimum length time-slot with het-
erogeneous resources (MLTH) problem can be formulated as follows.

A Heuristic Algorithm for Workflow-Based Job Scheduling … 107

Fig. 7 Time-slot III

Problem 1 (MLTH) Given a set of jobs J in a DDS D that belongs to a set of
workflow templates W , find a time-slot S of J on the set of heterogeneous resources
Ω that is the length of the time-slot is minimized.

3 A Heuristic Algorithm for the MLTH Problem

In [7], the MLT (minimum length time-slot problem) with homogenous resources is
proven as an NP-Complete problem by reducing the problem from the subset sum
problem. It can be seen that MLTH is also an NP-Complete problem by reducing the
problem from the subset sum problem as well. We omit this proof because of space
limitations, however, the same proof approach can be applied. So, we propose an
effective heuristic algorithm to schedule the given jobs to the heterogenous resources
as follows.

First, we follow an approach presented in [7] to manage the dependency of the
given tasks. Thus, the degree of successors of each task is to be determined. Then, the
tasks with higher degree of successors are to be executed earlier in order to minimize
the waiting time of their successors.

Then, the next issue is tomanage the heterogeneity in theDDSs, e.g. how to assign
each selected task into the time-slot. For such focused issue, since of the resources
are heterogeneous, the resources those can execute the selected task, supposedly t x

y ,
are to be considered. Such set of resources is R = {rp|ty ∈ λ(rp)}. Here, the set of
free resources R′ ⊆ R is considered, where R′ = {rp′ |S(αq , rp′) = null}. First, for
the allocation S(αq , rp) = null, rp ∈ R, we propose that the domain value of S, αq ,
must be higher than the time of the predecessors of the task t x

y in order to guarantee
the validity of the workflow template. We also propose to select the free resource
with such minimum time to execute the task as soon as possible. Subsequently, we
select a single one resource rp′′ that has the minimum size of its executable set from
R′, and assign task t x

y into the slot S(αq , rp′′).

108 N. Tantitharanukul et al.

The reason for our proposed approach is that, if resources with more heteroge-
neous, larger executable set, are assigned before less-heterogeneous resources, it can
cause the tasks that execute later to have less choice for resource acquisition. Thus,
their execution can be delayed, and the whole time-slot length will be longer. As
our problem setting also consider task dependencies, the delay can cause more if the
successor tasks are effected.

Last, as there can be many tasks with the same degree of successors and many
resources with the same size of executable sets, selecting different task or resource
can lead to different time-slot assignment. Thus, we utilize the nature of the DDSs
by letting all the controllers to determine the local solution differently using the local
algorithm described above. Subsequently, the time-slot with minimal length will be
selected as the final global solution using a simple interconnect algorithm.

The details of the proposed algorithms are presented as follows.

3.1 Local Algorithm

The local algorithm for each controller is shown in Algorithm 1. The two major
procedures of it are selecting a task for the allocation, and selecting a resource for
the selected task as described above.

From the algorithm, first, the degree of successors, scrDeg, of each task in all jobs
jx ∈ W is determined. Also, the set of predecessors, pdr, of each task is determined.
From the algorithm, the size of pdr, denoted as |pdr x

y |, is the degree of predecessors
of the task. Then, the task is added to taskSet set, which it represents all the tasks in
the system.

Subsequently, while the taskSet is not empty, the algorithm iterates through the
taskSet. For each task without predecessor, i.e. pdrDeg = 0, it is added to another
set, called useableTask. This set represents the candidate tasks that can be assigned
into the time-slot. Then, the tasks with the highest degree of successors are selected.
Though there could bemany tasks with the same degree, the controller will randomly
select one of them.

After selecting the task, the resource for it has to be decided. It begins with
determining the preAssignedTime of the task. Formally, preAssignedTime of a task
is the maximum time of the predecessor of such task, that has been assigned in the
time-slot already. Next, the algorithm determines the slots of the resources that can
execute the task where preAssignedTime + 1 is the beginning time of the valid slot.
The usableSlot set therefore contains the resources that can execute the task.

Then, the algorithm selects a single slot S(αq ′ , rp′) from usableSlot using the het-
erogeneity of the resource.More specifically, the algorithm selects the slot S(αq ′ , rp′)
which the size of the executable set of rp′ , |λ(rp)|, is minimal. If there is more than
one slot having the same level of heterogeneity, the algorithm selects the resource
randomly.

Finally, the algorithm assigns the selected task to the selected resource. Also, it
updates the assignedTime of this task, and the length of the time-slot. The pdrDeg

A Heuristic Algorithm for Workflow-Based Job Scheduling … 109

Algorithm 1 Local Algorithm
Require: a set of resourcesΩ of DDS D with λ and a set of jobs J with a set of workflow templates

W .
Ensure: a potentially minimal length Time-slot S.

taskSet ← ∅, usableTask ← ∅, and timeSlot Length = 0
for in each job jx ∈ W do
Determine the degree of successors of each task ty in jx ,
denoted as scr Degx

y .
Determine the set of predecessors of each task ty in jx
as pdr x

y .
pdr Degx

y = |pdr x
y |.

taskSet ← taskSet ∪ {t x
y } where t x

y is ty from jx
end for
while taskSet �= ∅ do

usableT ask ← ∅
for each task t x

y ∈ taskSet do
if pdr Degx

y = 0 then
usableT ask ← usableT ask ∪ {t x

y }
end if

end for
Determine the set of maximum-scr Deg tasks from
usableT ask, denoted as max_scr Deg.
Select task t g

h from max_scr Deg randomly.
Determine preAssignedT ime which is
max({assignedT ime(t)|t is the predecessor of t g

h }),
if t g

h is the start task, preAssignedT ime = 0.
usableSlot = ∅
while usableSlot = ∅ do

usableSlot = {S(αq , rp)|S(αq , rp) = null,
t g
h ∈ λ(rp), ∃rp ∈ Ω ,
and αq = preAssignedT ime + 1}

preAssignedT ime = preAssignedT ime + 1
end while
Select slot S(αq ′ , rp′) such that |λ(rp′)| is the minimum
from all elements in usableSlot , if there is more than
one slot, select a slot randomly.

S(αq ′ , rp′) = t g
h

assignedT ime(t g
h) = αq ′

taskSet = taskSet − {t g
h }

if αq ′ > timeSlot Length then
timeSlot Length = αq ′

end if
for each successor t g′

h′ of t g
h do

pdr Degg′
h′ = pdr Degg′

h′ − 1
end for

end while
return S and timeSlot Length

110 N. Tantitharanukul et al.

of successor of the assigned task is reduced by one. Such algorithm keeps repeating
this described procedure until all the tasks are assigned to the time-slot.

The cost to resolve the MLTH problem using Algorithm 1 is O(n3m) where n is
the number of all tasks, and m is the number of all resources. The main cost comes
from the usableSlot determination, i.e. the set of slots that can assign the selected
task into it. In each task, it takes O(n2m) to determine the usableSlot. Since, such
computing is required until all tasks are completely assigned, so, the cost is O(n3m).

For the sake of clarity, we present an example to illustrate our local algorithm
execution as follows. Let the set of jobs are given as shown in Fig. 4, and the set
of resources and their executable set are as shown in Fig. 2. First, all of the start
tasks from all jobs are considered as useableTask since their pdr Deg = 0. Then,
the algorithm selects task t34 from useableTask because it has the maximum degree
of successors. As task t4 of job j3 is either in λ(r2) and λ(r3), so usableSlot =
{S(α1, r2), S(α1, r3)}. Since t34 is the start task, its preAssignT ime = 0, and
S(α1, r2) and S(α1, r3) is null, both slots are in usableSlot set. Finally, the algo-
rithm selects S(α1, r3) to execute task t34 because |λ(r3)| < |λ(r2)|. It also updates
the assignedTime of t34 , timeSlot Length and pdr Deg of successors of t34 . The algo-
rithm repeats all of the procedures until taskSet = ∅. Figure7 is the solution from
this running example.

3.2 Interconnect Algorithm

Once the local solutions have been computed by all the controllers using Algorithm
1, the global final solution is to be determined. It can be done simply by comparing
the local solution from each controller, i.e. the time-slot length information. Subse-
quently, the minimal global time-slot length is determined, and such assignment is
ready to be executed.

4 Evaluation

In this section, we present the experiment results to evaluate our proposed work.

4.1 Simulation Setup

To evaluate our work, a workflow synthetic-data generator, that generates the work-
flow template using the number of workflow templates, number of minimal and
maximal tasks per jobs, and number of jobs as the inputs, is implemented.

In the experiments, the number of resources, the number of controllers, and the
number of workflow tempts are fixed at 100 resources, 50 controllers, and 10 work-

A Heuristic Algorithm for Workflow-Based Job Scheduling … 111

flow templates respectively. The number of tasks of each workflow is fixed between
45–50 tasks. The degree of successors of each node is set between 0–5. The number
of tasks in the longest path of eachworkflow template is set between 15–35 tasks. The
workflow template for each job is selected uniform randomly. In order to guarantee
that all jobs can be executed, in each experiment, 10% of the resources are set to be
able to execute all tasks from all workflow templates.

The experiment results of our proposed work are compared with a baseline algo-
rithm in [7]. Such algorithm has demonstrated for its efficiency and effectiveness, i.e.
its polynomial-time complexity and the solutions which are close to the theoretical
results respectively. Both algorithms are implemented using Java SE 7. The exper-
iments are conducted on an Intel Core 2 Duo 2.4GHz with 4GB memory running
Mac OS X.

4.2 Result

First, to evaluate the impact of the heterogeneity on the performance of our algorithm,
the size of the executable sets is varied from 10 to 100% of the number of tasks from
all workflow templates, while the number of jobs is fixed to 500 jobs.

Figure8 shows the experimental results. It can be seen that when the size of
executable set of each resource is small (10–30%), the time-slot lengths from both

Fig. 8 The time-slot length and the computation time when the heterogenous level is varied

112 N. Tantitharanukul et al.

algorithms are quite large. However, the computation time of the proposed algorithm
is very low comparing with the computation time of the algorithm in [7]. It is because
the algorithm in [7] will specify the resource firstly, then it select a task form all
available tasks to assign into the time-slot at this resource. If there is no task to
be executed by this resource, the algorithm will select the next resource and finds
a task for the assignment again. This can enormous delay the assignment in the
heterogenous environment. Meanwhile, our proposed work will select the resource
based on the executable set, which is also first available for the task (its αq =
preAssignedTime + 1). So, the execution time of our proposed work is much less
than the baseline algorithm.When the size of the executable set is set at 30–50%, the
time-slot lengths from both algorithms are very different. The most different point
is when the size of the executable set is fixed at 40%, in which the time-slot length
from proposed algorithm is 275 time units, while the time-slot length from [7] is
457 time units. The reason behind this is that the proposed algorithm considers the
heterogeneity of the resources. Specifically, the resources with the small executable
set are always allocated first. So, we preserve the resources with the larger executable
set in the earlier phase of computing. When the algorithm finds the resources for the
selected task later on, such task can be assigned earlier. In the other words, the
delay due to waiting for the available executable resource is less. This gives more
advantage particularly for the successor-task as discussed in the previous section.
With this reasoning, the small time-slot length of the proposed algorithm can be
achieved.

When the size of the executable sets are more than 50%, the performance of both
algorithms are similar. The reason is that each resource can execute many tasks from
many workflow templates at these sizes, so, it has small number of null slots in both
algorithms. Then, the time-slot lengths of both algorithms are too low.With the same
reason, any selected task can be always assigned to the proper resource, this makes
the computation time of the algorithm in [7] close to the computation time of the
proposed algorithm.

After the impact of the task scheduling using the size of the executable sets in
the heterogeneous resources has been evaluated, we then evaluate the impact of the
number of jobs, or the scalability. The number of the jobs is varied from 50 to 500
jobs. In this experiment, we randomly generate the resources with the size of their
executable sets, the heterogeneity of the resources, at a moderate level, i.e. 35–45%
of the number of total tasks from all workflow templates. The reason is that too large
executable sets can cause the resources to be able to execute too many tasks from all
workflow templates. In the other words, it causes the heterogeneity of the resources
undistinguished. On the other hand, if the size of the executable sets is too small, it
causes the resources to be able to execute too few tasks. So, the amount of delayed
tasks can be extreme large due to waiting for available resources. This can be extreme
cases in real-life applications.

Figure 9 shows the performance in terms of the time-slot length and the execution
time. First, we consider the solutions from the experiments, i.e. minimal time-slot
lengths. Figure 9 shows that the time-slot length from the proposed algorithm is
obviously less than the time-slot length from the algorithm in [7]. And, when the

A Heuristic Algorithm for Workflow-Based Job Scheduling … 113

Fig. 9 The minimum length of time-slot and the computation time when the number of jobs is
varied

number of jobs is increased, the difference of the time-slot length of two algorithms
are increased. When considering the execution time, when the number of jobs is
increased, the proposed algorithm is much efficient. The reason behind this is the
complexity of the algorithm in [7] is O(n3m2) meanwhile the complexity of the
proposed algorithm is only O(n3m). When the execution time with the effectiveness
of the solutions is considered, the proposed algorithm is highly effective. Even when
the number of jobs is set at 500, our algorithm takes only 8.7 s to determine the
time-slot which is very small. Thus, not only the algorithm is effective, but also it is
efficient in decentralized distributed system with the heterogeneous resources.

5 Conclusion and Future Work

In this paper, we have addressed a scheduling problem in decentralized distributed
systemswith heterogeneous resources for the jobswith dependency, so calledMLTH.
As it is an NP-Complete problem, thus, a heuristic algorithm is proposed instead of
aiming at the exact solution. Our proposed algorithm is based on the observation
that the length of the schedule, time-slot length, can be reduced, if the resources
with less heterogeneity is assigned to the tasks earlier. This not only can generate
a smaller time-slot length, but the less execution time to generate the schedule can
also be achieved. In order to evaluate the proposed work, the experiment results are
presented. The results show that our approach is highly effective and also efficient,

114 N. Tantitharanukul et al.

particularly, when the heterogeneity is at moderate level and the number of jobs is
large. In the future work, we intend to investigate the approximation approach which
can guarantee the quality of the solution. Moreover, we intend to address the similar
problem with different scheduling objectives.

Acknowledgments The work is partially supported by Graduate School of ChiangMai University.
The authorswould like to thank the colleagues atData Engineering andNetworkLaboratory, Faculty
of Engineering, Chiang Mai University for their support.

References

1. Kondo, D., Andrzejak, A., Anderson, D.P.: On correlated availability in internet-distributed
systems. In: Proceedings of the 9th IEEE/ACM International Conference on Grid Computing,
pp. 276–283. Washington, DC, USA (2008)

2. Lai, K., Huberman, B.A., Fine, L.R.: Tycoon: A distributed market-based resource allocation
system. Comput. Res. Repos. cs.DC/0404013 (2004)

3. Mainland, G., Parkes, D.C., Welsh, M.: Decentralized, adaptive resource allocation for sensor
networks. In: Proceedings of the 2nd conference on Symposium on Networked Systems Design
and Implementation, Vol. 2, pp. 315–328. Berkeley, CA, USA (2005)

4. Masuishi, T., Kuriyama, H., Oki, Y.,Mori, K.: Autonomous decentralized resource allocation for
tracking dynamic load change. In: Proceedings of the International Symposium on Autonomous
Decentralized Systems, pp. 277–283 (2005)

5. Pathan, AsK, Pathan, M., Lee, H.Y.: Advancements in Distributed Computing and Internet
Technologies: Trends and Issues, 1st edn. Information Science Reference - Imprint of: IGI
Publishing, Hershey, PA (2011)

6. Sotiriadis, S., Bessis, N., Xhafa, F., Antonopoulos, N.: From meta-computing to interopera-
ble infrastructures: A review of meta-schedulers for hpc, grid and cloud. Advanced Informa-
tion Networking and Applications, International Conference on 0, 874–883 (2012). http://doi.
ieeecomputersociety.org/10.1109/AINA.2012.15

7. Tantitharanukul, N., Natwichai, J., Boonma., P.: Workflow-based composite job scheduling for
decentralized distributed systems. In: Proceedings of the Sixteenth International Conference on
Network-Based Information Systems (NBiS), pp. 583–588 (2013)

8. Tsamoura, E., Gounaris, A., Manolopoulos, Y.: Decentralized execution of linear workflows
over web services. Futur. Gener. Comput. Syst. 27(3), 290–291 (2011)

http://doi.ieeecomputersociety.org/10.1109/AINA.2012.15
http://doi.ieeecomputersociety.org/10.1109/AINA.2012.15

	8 A Heuristic Algorithm for Workflow-Based Job Scheduling in Decentralized Distributed Systems with Heterogeneous Resources
	1 Introduction
	2 Basic Definitions and MLTH Problem
	3 A Heuristic Algorithm for the MLTH Problem
	3.1 Local Algorithm
	3.2 Interconnect Algorithm

	4 Evaluation
	4.1 Simulation Setup
	4.2 Result

	5 Conclusion and Future Work
	References

