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Abstract Mining software historical repositories (SHR) has emerged as a research
direction Sun, over the past decade, which achieved substantial success in both
research and practice to support various software maintenance tasks. Use of dif-
ferent types of SHR, or even different versions of the software project may derive
different results for the same technique or approach of a maintenance task. Inclusion
of unrelated information in SHR-based technique may lead to decreased effective-
ness or even wrong results. To the best of our knowledge, few focus is on this
respect in the SE community. This paper attempts to bridge this gap and proposes a
preprocess to facilitate selection of related SHR to support various software mainte-
nance tasks. The preprocess uses the topic model to extract the related information
from SHR to help support software maintenance, thus improving the effectiveness
of traditional SHR-based technique. Empirical results show the effectiveness of our
approach.

Keywords Software historical repositories · Topic model · Information retrieval ·
Software maintenance

1 Introduction

Software maintenance has been recognized as the most difficult, costly and labor-
intensive activity in the software development life cycle [21]. Effectively supporting
software maintenance is essential to provide a reliable and high-quality evolution
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of software systems. However, the complexity of source code tends to increase as
it evolves. Recently, the field of software engineering (SE) focused on this field
by mining the repositories related to a software project, for example, source code
changes, bug repository, communication archives, deployment logs, execution logs
[12]. Among these information, software historical repositories (SHR) such as source
control repositories, bug repositories, and archived communications record informa-
tion about the evolution and progress of a project. The information in SHR have been
analyzed to support various software maintenance tasks such as impact analysis, bug
prediction, software measures and metrics, and other fields [2, 12, 16, 23, 27]. All
these studies have shown that interesting and practical results can be obtained from
these historical repositories, thus allowing maintainers or managers to better support
software evolution and ultimately increase its quality.

The mining software repositories field analyzes and explores the rich data available
in SHR to uncover interesting and actionable information about software systems
and projects [12]. The generated information can then be used to support various
software maintenance tasks. These software maintenance tasks are traditional SHR-
based techniques, which directly used the information in SHR in support of these
software maintenance tasks without any filtering process. In practice, use of different
types of software repositories, or even different versions of the software project may
derive different results for the same technique or approach of a maintenance task [12,
13]. Sometimes, appropriate selection of the information in software repositories may
obtain expected effectiveness for some techniques. However, inclusion of unrelated
information in SHR for practical analysis may lead to decreased effectiveness. Hence,
the main research question comes out:

“What information in SHR should be included to support software mainte-
nance tasks?”

To the best of our knowledge, there is still few work to address this issue. In this
paper, we focus on this respect, and attempt to facilitate selection of related SHR to
support various software maintenance tasks. In the software repositories, the data can
be viewed as unstructured text. And topic model is one of the popular ways to analyze
unstructured text in other domains such as social sciences and computer vision [4,
15], which aims to uncover relationships between words and documents. Here, we
proposed a preprocess before directly using SHR, which uses the topic model to help
select the related information from SHR. After the preprocess, the effectiveness of
traditional SHR-based techniques for software maintenance tasks is expected to be
improved.

The rest of the paper is organized as follows: in the next section, we introduce the
background of SHR and the topic model. Section 3 presents our approach to select
the necessary information from SHR. In Sect. 4, empirical evaluation is conducted to
show the effectiveness of our approach. Finally, we conclude and show some future
work in Sect. 5.
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2 Background

As our approach is to use topic model to facilitate selection of appropriate information
from SHR to support software maintenance tasks. In this section, we introduce some
background about SHR and the topic model.

2.1 Software Historical Repositories

Mining software repositories (MSR) has emerged as a research direction over
the past decade, which has achieved great success in both research and practice
[12]. Software repositories contain a wealth of valuable information about soft-
ware projects such as historical repositories, runtime repositories, and code reposi-
tories [12]. Among these repositories, software historical repositories (SHR) record
information about the evolution and progress of a project. SHR collect important
historical dependencies between various software artifacts, such as functions, doc-
umentation files, and configuration files. When performing software maintenance
tasks, software practitioners can depend less on their intuition and experience, and
depend more on historical data. For example, developers can use this information to
propagate changes to related artifacts, instead of using only static or dynamic pro-
gram dependencies, which may fail to capture important evolutionary and process
dependencies [11].

SHR mainly include source control repositories, bug repositories, communication
archives. A description of these repositories is shown in Table 1. The amount of these
information will become lager and larger as software evolves. These information

Table 1 Software historical repositories

Software historical repositories Description

Source control repositories These repositories record the information of the

development history of a project. They track all

the changes to the source code along with the

meta-data associated with each change, for example,

who and when performed the change and a short message

describing the change. CVS and subversion belong

to these repositories.

Bug repositories These repositories track the resolution history of

bug reports or feature requests that are reported

by users and developers of the projects. Bugzilla is

an example of this type of repositories.

Communication archives These repositories track discussions and communications

about various aspects of the project over its lifetime.

Mailing lists and emails belong to the communication archives.
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can be used to support various software maintenance tasks, such as change impact
analysis, traceability recovery [12, 14]. These traditional SHR-based techniques
directly used the information in the SHR to perform software maintenance. However,
with the evolution of software, some information may be outdated. Therefore, not
all historical information are useful to support software maintenance. In this paper,
we focus on selection of useful or related information from SHR to support practical
software maintenance tasks.

2.2 Topic Model

As information stored in SHR is mostly unstructured text, researchers have proposed
various ways to process such unstructured information. An increasingly popular way
is to use topic models, which focus on uncovering relationships between words and
documents [1]. Topic models were originated from the field of natural language
processing and information retrieval to index, search, and cluster a large amount of
unstructured and unlabeled documents [25]. A topic is a collection of terms that
co-occur frequently in the documents of the corpus. The most used topic models
in software engineering community are Latent Semantic Indexing (LSI) and Latent
Dirichlet Allocation (LDA) [25]. These two topic models have been applied to
support various software engineering tasks: feature location, change impact analysis,
bug localization , and many others [17, 19, 25]. The topic models require no training
data, and can well scale to thousands or millions of documents. Moreover, they are
completely automated.

Among the two topic models, LDA is becoming increasing popular because it
models each document as a mixture of K corpus-wide topics, and each topic as a
mixture of the terms in the corpus [5]. More specifically, it means that there are
a set of topics to describe the entire corpus, each document can contain more than
one of these topics, and each term in the entire repository can be contained in more
than one of these topic. Hence, LDA is able to discover a set of ideas or themes
that well describe the entire corpus. LDA is a probabilistic statistical model that
estimates distributions of latent topics from textual documents [5]. It assumes that
the documents have been generated using the probability distribution of the topics,
and that the words in the documents were generated probabilistically in a similar
way [5]. With LDA, some latent topics can be mined, allowing us to cluster them on
the basis of their shared topics. In this paper, we use LDA to extract the latent topics
from various software artifacts in SHR.

3 Approach

Our main focus in this paper is to provide an effective way to automatically extract
related information from the SHR to provide support of software maintenance tasks.
The process of our approach is shown in Fig. 1, which can be seen as a preprocess to
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traditional SHR-based techniques. Given a maintenance task or request, we need some
related information in SHR to well support comprehension, analysis and implementa-
tion of this request. The data source of our approach includes a maintenance request,
SHR and current software. We extract current software from SHR here because the
current software usually needs some necessary changes to accomplish this change
request. As the data source can be seen as unstructured text, we use LDA on these data
source to extract the latent topics in them. Then, we compare the similarity among the
topics extracted from different data source, and ultimately produce the related soft-
ware repositories which are related to the maintenance request and current software.
For example, in Fig. 1, when there exists a bug repository which has similar topics
with the software maintenance request, we can consider this bug repository as related
data source to analyze the current software maintenance request. In addition, there
is also a feedback from this bug repository to its corresponding version repository in
source control repositories. More specifically, the corresponding version evolution
corresponding to this bug repository is also considered to be a useful data source for
analyzing the request in the current software. Hence, the extracted related informa-
tion from SHR includes the related bug repository, useful communication archive,
and some evolutionary code versions related to this maintenance request and the
current software.

Feed back Feed back

Fig. 1 Process of our approach
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3.1 Extracting Related Information from Bug Repositories
and Communication Archives

First, we extract the related information from bug repositories and communication
archives to see what information is related to the maintenance request. We use the
LDA model to extract the latent topics in these data source, i.e., maintenance request,
bug repositories, and communication archives. The topics extracted from these data
source can be represented with a vector (for maintenance request) and matrices
(for bug repositories and communication archives). Then, we compute the similarity
between the vector and these two matrices, respectively. There are many approaches
to compute the similarity result, for example, distance measures, correlation coeffi-
cients, and association coefficients [22]. Any similarity measure can be used in our
approach. According to the similarity results, the bug repositories and communica-
tion archives which are similar to the maintenance request can be extracted as useful
data source. These extracted information can be helpful to guide the change analysis.
For example, when the maintenance request is to fix a bug and if there is an existing
bug report similar to this bug fixing request, we can use the information in related
bug repositories and communication archives to see “who fixes the bug?”, “how to
fix the bug?”, etc.

3.2 Extracting Related Information from Source Control
Repositories

Source control repositories, a fundamental unit of software evolution, are important
data source in software maintenance research and practice. Source control reposito-
ries include three main different types of information, that is, the software versions,
the differences between the versions, and metadata about the software change [12].
These different types of information have been used in both research and practice to
well support various software maintenance tasks such as impact analysis. However,
most of these research and practice seldom consider the usefulness of the informa-
tion in source control repositories. As software evolves, some information may be
outdated and become awful, or even “noise” to current software analysis. Hence,
we need to extract the related and necessary versions in SHR to support software
maintenance tasks.

To fully obtain the related information from source control repositories, we per-
form this step in two ways. First, we select the versions corresponding to the bug
repositories and communication archives from the previous step, where we have
obtained the bug repositories and communication archives related to the mainte-
nance request. In addition, we can also obtain the consecutive source code versions
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corresponding to the bug repositories and communication archives.1 Thus, this kind
of source code versions is produced based on the maintenance request. Second, we
extract the source versions similar to current software. We extract the latent topics
from current software and represent them as a vector. Then, we compute the simi-
larity result between the current software vector and the matrices (for source control
repositories). Here, we also extract consecutive versions which are related to the
current software.

Until here, all the related information have been extracted from various SHR. We
believe that such a preprocess on [12] can effectively improve the effectiveness of
traditional software maintenance activities which are not preprocessed or filtered.

4 Evaluation

Our approach aims to improve traditional SHR-based software maintenance tech-
niques after filtering the unrelated information without decreasing the completeness
of the results.

4.1 Empirical Setup

We conduct our evaluation on an existing benchmark built by Poshyvanyk et al.2 We
select three Java subject programs from open projects for our studies. The first subject
program is ArgoUML, which is an open source UML modeling tool that supports
standard UML 1.4 diagrams. The second subject is JabRef, which is a graphical
application for managing bibliographical databases. The final subject is jEdit, which
is a text editor written in Java. For each subject program, we used four concecutive
versions (V 0 → V 3) for study. Then, we compare the effectiveness of our approach
with traditional software maintenance techniques on this benchmark. Here, we use
change impact analysis as the representation of one of the software maintenance
techniques for study [14]. Change impact analysis is a technique used to identify
the potential effects caused by software changes [6, 14]. In our study, we employ
ROSE (Reengineering of Software Evolution) tool to represent the SHR-based CIA
[28]. ROSE is shown to be effective for change impact prediction [24], and it applies
data mining to version histories to guide impact analysis. The input of ROSE can be
coarser file or class level changes, or finer method-level changes. Its output is the
corresponding likely impacted entities at the same granularity level as the change
set. In this paper, the chosen granularity level is class level.

1 Here we need consecutive versions since many software maintenance tasks are performed based
on the differences between consecutive versions in source control repositories.
2 http://www.cs.wm.edu/semeru/data/msr13/.

http://www.cs.wm.edu/semeru/data/msr13/
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To show the effectiveness of CIA, we used precision and recall, two widely used
metrics of information retrieval [26], to validate the accuracy of the CIA techniques.
They are defined as follows:

P = |Actual Set ∩ Estimated Set |
|Estimated Set | × 100 %

R = |Actual Set ∩ Estimated Set |
|Actual Set | × 100 %

Actual Set is the set of classes which are really changed to fix the bugs for the
system. Estimated Set is the set of classes potentially impacted by the change set
based on ROSE. The change set is composed of a set of classes used to fix each
bug. The change set is mined from their software repositories. Specific details on
the process of the identification of the bug reports and changed classes can refer to
[20]. With the change set, we applied ROSE to compute the Estimated Set. Then,
precision and recall values are computed based on the Actual Set and Estimated Set.
Here, ROSE is performed twice, one is on the original software historical repositories,
i.e., ROSE; the other is on the extracted repositories preprocessed by our approach,
i.e., ROSE′.

4.2 Empirical Results

We first see the precision results of ROSE before (ROSE) and after (ROSE′) software
historical data filtering. The results are shown in Fig. 2. From the results, we see that
all the precision values of ROSE are improved after software historical data filter-
ing. It shows that there is indeed some unrelated information in software historical
repositories for software maintenance and evolution. Hence, we should filter these
unrelated software historical information to improve the precision of change impact
analysis.

In addition, during the process of filtering the software historical data, there may
be some related information which is filtered by our approach, so we need to see

Fig. 2 Precision of ROSE
before and after information
filtering
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Fig. 3 Recall of ROSE before and after information filtering

whether the recall of ROSE is seriously decreased after information filtering. The
recall results are shown in Fig. 3. It shows that most of the recall values are decreased
after information filtering process. However, the degree of the deceasing values is not
big. Hence, we can obtain that only a small amount of related information is filtered
during the process, which has few effect on software maintenance and evolution.

5 Conclusion and Future Work

This paper proposed a novel approach which can improve the effectiveness of
traditional SHR-based software maintenance tasks. Our approach extracted related
information from SHR using the topic model, i.e., LDA. The generated software
repositories can eliminate the information that are outdated during software evolu-
tion, thus improving the effectiveness of the traditional SHR-based software main-
tenance tasks. Finally, this paper evaluated the proposed technique and showed its
effectiveness.

Though we have shown the effectiveness of our approach through real case studies
based on ROSE, it can not indicate its generality for other real environment. And we
will conduct experiments on more real programs to evaluate the generality of our
approach. In addition, we would like to study whether the effectiveness of other
software maintenance tasks (e.g., feature location [8, 9], bad smell detection [10,
18], traceability recovery [3, 7], etc.) can be improved based on the SHR preprocessed
by our approach.
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