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Abstract In this paper a new dynamic neural network structure based on the Elman
Neural Network (ENN), for identification of nonlinear systems is introduced. The
proposed structure has feedbacks from the outputs to the inputs and at the same
time there are some connections from the hidden layer to the output layer, so that
it is called as Output to Input Feedback, Hidden to Output Elman Neural Network
(OIFHO ENN). The capability of the proposed structure for representing nonlinear
systems is shown analytically. Stability of the learning algorithms is analyzed and
shown. Encouraging simulation results reveal that the idea of using the proposed
structure for identification of nonlinear systems is feasible and very appealing.
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1 Introduction

In broad terms, the ultimate goal of system identification is to obtain a mathematical
model whose output matches the output of a dynamic system for a given input. The
solution to the exact matching problem, in general, is extremely difficult. Conse-
quently, for practical reasons the original problem is relaxed to development of a
model whose output can be made “as close as possible” to the output of the con-
sidered dynamic system. Different methods have been developed in recent years
for linear/nonlinear system identification. A common characteristic of most of these
methods is the use of a parameterized model where parameters are adjusted based on
the minimization of a norm of the output identification error. These methods can be
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classified into two main categories, namely, conventional and neural network-based
methods [1]. Conventional methods are based on well established linear system
theory and recently developed nonlinear system techniques. In most of existing
methods, under certain conditions, desired characteristics such as convergence of the
output error (identification error) to zero and stability of the identifier are shown ana-
lytically. The main disadvantage of these methods is that they are generally applicable
and extendible to only a special class of nonlinear systems. In order to generalize
these results to arbitrary classes of nonlinear systems, restrictive knowledge about
the system is required [1].

Fortunately, the characteristics of the Artificial Neural Network (ANN) approach,
namely nonlinear transformation, provide effective techniques for system identifica-
tion, especially for non-linear systems. The ANN approach has a high potential for
identification applications because: (1) it can approximate the nonlinear input–output
mapping of a dynamic system; (2) it enables to model the complex system’s behavior
through training, without a priori information about the structures or parameters of
systems. Due to these characteristics, there has been a growing interest, in recent
years, in the application of neural networks to dynamic system identification and
control [2–5].

1.1 Literature Review

Elman neural network (ENN) is a partial recurrent network model proposed by
Elman in 1990 [6]. It lies somewhere between a classic feedforward perception and
a pure recurrent network. The feedforward connection consists of the input layer,
hidden layer, and output layer, in which the weights connecting two neighboring
layers are variables. In contrast to the classical feedforward neural networks, the
back forward connection employs context layer that is sensitive to the history of
input data, therefore, the connections between the context layer and the hidden layer
are fixed. Furthermore, since dynamic characteristics of Elman network is provided
by internal connections, it does not need to use the state as input or training signals,
which makes ENN superior to static feedforward network and is widely used in
dynamic system identification [7].

There has been much research interest in Elman Neural Network [2, 8–15]. Elman
Neural Network has been applied to dynamic system identification and financial pre-
diction in [8, 10], respectively. A modified Elman Neural Network has been proposed
by [4] because it was found that the basic Elman network trained by the standard
Backpropagation (BP) algorithm was able to model only first-order dynamic systems.
The performance of Elman’s RNN has shown by means of two different applications
in [14]. Song [15] focuses on the real-time online learning of an extended training
algorithm for Elman Neural Network with a new Multiple-Input–Multiple-Output
(MIMO) adaptive dead zone scheme and guaranteed weight convergence. Hsu [16]
proposes an Elman-based self-organizing RBF Neural Network (ESRNN) for online
approximation of the unknown nonlinear system dynamics based on a Lyapunov
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function and an Adaptive Backstepping Elman-based Neural Control (ABENC)
system to eliminate the effect of the approximation error. Pham has described the
dynamic BP (DBP) algorithm in [8] which is proper for training the basic Elman
Neural Network and shows that the modified Elman Neural Network is an approx-
imation of the Elman Neural Network trained by DBP. Pham has clarified why the
modified Elman Neural Network can model higher-order dynamic systems. In [11]
OHF and OIF Elman Neural Networks are presented for identification and control
of ultrasonic motor. A hybrid Elman- NARX Neural Network is presented by [12]
to analyze and predict chaotic time series. A new recurrent Neural Network based
on the original Elman Neural Network is introduced in [2] to improve the resolution
ratio of Elman Neural Network. Yuan Cheng has presented a new modified Elman
Neural Network to improve the dynamic characteristics of the original Elman Neural
Network [17]. A novel EMD–ENN approach, a hybrid of Empirical Mode Decom-
position (EMD) and Elman neural network (ENN), is presented in [5] to forecast the
wind speed. In this study, first, the original wind speed dataset are decomposed into
sub-series with EMD and then each sub-series are forecasted using an Elman Neural
Network model. The forecasted values of original wind speed are calculated by the
sum of the predicted values of every sub-series.

1.2 Contributions

The contributions of this paper are as follows:

• To present a new modified Elman neural network in which covers four classes of
nonlinear systems. The feedback information from all layers can improve dynamic
characteristics and convergence speed of the new modified Elman neural network.
It possesses comparatively higher learning capability and convergence speed.

• To analysis the stability of the learning rates.
• To compare numerical results obtained through the proposed approach of this

paper with ones achieved from other modified Elman neural networks reported in
the literature.

1.3 Paper Organization

The organization of this paper is as follows. Section 2, introduces the proposed modi-
fied Elman neural network, namely OIFHO ENN for identification of general classes
of nonlinear systems and develops the dynamic recurrent back-propagation algorithm
for the purposed new modified Elman neural network. In Sect. 3, to guarantee the
fast convergence, the optimal adaptive learning rates are also derived in the sense of
discrete-type Lyapunov stability. Simulation results are presented in Sect. 4. Section 5
uses different norms of error, namely, Mean Square Error (MSE), Root Mean
Square Error (RMSE) and Normalized Mean Square Error (NMSE) to evaluate the
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performance of the new modified Elman Neural Network structure proposed in Sect. 2
in comparison with the OHF and the OIF structures.

2 New Modified Elman Neural Network (OIFHO ENN)

In the original Elman neural network, the hidden layer neurons are fed by the outputs
of the context neurons and the input neurons. Context neurons are known as memory
units as they store the previous outputs of hidden neurons. Since a typical Elman
neural network only employs the hidden context nodes to diverse message, it has
low learning speed and convergence precision. On the other hand, in the proposed
modified Elman neural network, the feedback of the output layer is taken into account;
therefore better learning efficiency can be obtained. Moreover, to make the neurons
sensitive to the history of input data, self connections of the context nodes and
output feedback node are added. Thus, the proposed modified Elman neural network
combines the ability of dealing with nonlinear problems and can effectively improve
the convergence precision and reduce learning time.

Figure 1 depicts our proposed new modified Elman neural network, namely,
Output to Input Feedback, Hidden to Output Elman Neural Network (OIFHO ENN)
that is presented based on the Elman neural network. The OIFHO ENN possesses
self-feedback links with fixed coefficient α, β and γ in the context nodes. The feed-
back information from all layers can improve dynamic characteristics and conver-
gence speed of the new modified Elman neural network. In order to compare the
speed of convergence of the proposed method with other method, we try several
benchmark examples in Sect. 5.

The Input–output equation of OIFHO ENN is:

Y (k) = g
(
W 4 (k) Xc (k) + W 5 (k) X (k)

)

= W 4 (k) (γ Xc (k − 1) + X (k − 1)) + W 5 (k) X (k)

= N f [U (k) , U (k − 1) , . . . , Y (k − 1) , Y (k − 2) , . . .]
(1)

yc,l (k) = βyc,l (k − 1) + yl (k − 1) , l = 1, . . . , n (2)

xc,k (k) = γ xc,k (k − 1) + xk (k − 1) , k = 1, . . . , n (3)

where yc,l is the output of the lth output context unit, xc,k is the output of the kth
hidden context unit and β

(
0 < β ≤ 1

)
and γ

(
0 < γ ≤ 1

)
are the self-feedback

coefficients. It is a type of recurrent neural networks with different layers of neurons,
namely: input nodes, hidden nodes, output nodes and context nodes. The input and
output nodes interact with the outside environment, whereas the hidden and context
nodes do not. The context nodes are used only to memorize previous activations of the
hidden nodes and the output nodes. The feed–forward connections are modifiable,
whereas the recurrent connections are fixed.
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If we assume that there are r nodes in the input layer, n nodes in the hidden layer
and the hidden context layer and m nodes in the output layer and the output context
layer, then the input u is an r dimensional vector and the output x of the hidden layer
and the output xc,k of the hidden context nodes are n dimensional vectors, where
the output y of the output layer and the output yc,l of the output context nodes are
m dimensional vectors, and the weights W 1, W 2, W 3, W 4, and W 5 are the weights
between hidden layer and input layer, input layer and output context layer, hidden
layer and output context layer, output layer and hidden context layer and output layer
and hidden layer and are n ×r , r ×m, n ×m, m ×n, and m ×n dimensional matrices,
respectively.

The mathematical model of the new modified Elman Neural Network can be
described as follows:

y (k) = g
(

W 4xc (k) + W 5x (k)
)

(4)

xc (k) = γ xc (k − 1) + x (k − 1) (5)
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Fig. 1 Architecture of the new modified Elman neural network (OIFHO ENN)
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x (k) = f
(

W 1
(

W 2 yc (k) + u (k)
)

+ W 3 yc (k)
)

(6)

yc (k) = βyc (k − 1) + y (k − 1) (7)

f (x) is often taken as the sigmoid function:

f (x) = 1

1 + e−x
(8)

and g (x) is often taken as a linear function, that is:

y(k) = W 4xc(k) + W 5x(k) (9)

We may define a norm of error as:

E(k) = 1

2
(yd(k) − y(k))T (yd(k) − y(k)) (10)

By differentiating E with respect to W 1, W 2, W 3, W 4, and W 5, according to the
gradient descent method, we obtain the following equations:

W (k + 1) = �W (k) + W (k)

�w5
i j (k) = − η5

∂(ei (k))

∂w5
i j (k)

= η5.δ
o
i (k)(x j (k) + w5

i j (k)
∂x j (k)

∂w5
i j (k)

)

(i = 1, . . . , m), ( j = 1, . . . , n) (11)

∂x j (k)

∂w5
i j (k)

= f ′
j (.)

⎛

⎝
r∑

q=1

w1
jq(k).A5 +

m∑

l=1

w3
jl(k).B5

⎞

⎠ (12)

where

A5 =
m∑

l=1

w2
ql(k)(γ

∂yc,l(k − 1)

∂w5
i j (k)

+ (x j (k − 1) + w5
i j (k)

∂x j (k − 1)

∂w5
i j (k)

))

B5 =
(

γ
∂yc,l (k−1)

∂w5
i j (k)

+ (x j (k − 1) + w5
i j (k)

∂x j (k−1)

∂w5
i j (k)

)
)

(i = 1, . . . , m), ( j = 1, . . . , n)
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�w4
ih(k) = −η4

∂(ei (k))

∂w4
ih(k)

= η4δ
o
i (k)

(
xh(k − 1) + γ

∂yi (k−1)

∂w4
ih(k)

)

(h = 1, . . . , n), (i = 1, . . . , m)

(13)

�w3
jl = η3

∂(x j (k))

∂w3
jl

.δh
j (k) = η3

n∑

j=1
w5

i jδ
o
i (k)

∂x j (k)

∂w3
jl

= η3

n∑

j=1
w5

i jδ
o
i (k)

(
f ′

j (.)yl(k − 1) + β
∂x j (k−1)

∂w3
jl

)

( j = 1, . . . , n), (q = 1, . . . , r), (p = 1, . . . , m)

(14)

�w2
ql(k) = η2

∂(x j (k))

∂w2
ql(k)

.δh
j (k)

= η2

r∑

q=1

n∑

j=1

w1
jq(k)w5

i j (k) f ′
j (.)

×
⎛

⎜
⎝

γ
∂yc,l (k−1)

∂w2
ql (k)

+(
n∑

h=1
w4

ih(k)
∂xc,h(k−1)

∂w2
ql (k)

+
n∑

j=1
w5

i j (k)
∂x j (k−1)

∂w2
ql (k)

)

⎞

⎟
⎠ .δo

i (k)

(l = 1, . . . , m) (15)

�w1
jq(k) = η1

∂(x j (k))

∂w1
jq(k)

.δh
j (k) = η1

n∑

j=1

w5
i j (k) f ′

j (.)
∂(x j (k))

∂w1
jq(k)

.δo
i (k)

∂x j (k)

∂w1
jq(k)

= (uq(k) +
m∑

l=1

w2
ql(k)yc,l(k)) + (

r∑

q=1

w1
jq(k).A1 +

m∑

l=1

w3
jl(k).B1)

(16)

(q = 1, . . . , r)

where

A1 =
m∑

l=1
w2

ql(k)(γ
∂yc,l (k−1)

∂w1
jq (k)

+ (
n∑

h=1
w4

ih(k)
∂xc,h(k−1)

∂w1
jq (k)

+
n∑

j=1
w5

i j (k)
∂x j (k−1)

∂w1
jq (k)

)))

B1 = (γ
∂yc,l (k−1)

∂w1
jq (k)

+ (
n∑

h=1
w4

ih(k)
∂xc,h(k−1)

∂w1
jq (k)

+
n∑

j=1
w5

i j (k)
∂x j (k−1)

∂w1
jq (k)

))

which form the learning algorithm for the OIFHO ENN, where η1, η2, η3, η4, and
η5 are learning rates of W 1, W 2, W 3, W 4, and W 5, respectively, and

δo
i (k) = (yd,i (k) − yi (k))g′

i (.) (17)
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δh
j (k) =

m∑

i=1

w5
j i (k)δo

i (k) f ′
j (.) (18)

δi
q(k) =

n∑

j=1

m∑

i=1

w1
jq(k)w5

j i (k)δo
i (k) f ′

j (.) (19)

if g(x)is taken as a linear function, then g′(.) = 1.

3 Convergence of Output to Input Feedback, Hidden to Output
Elman Neural Network (OIFHO ENN)

The update rules in Eqs. (12–16) need appropriate choice of the learning rates. For
the learning rate with a small value, the convergence can be guaranteed, but the
speed of convergence is very slow. On the other hand, if the value of the learning
rate is too large, the algorithm will become unstable [2]. In order to train neural
networks efficiently, we propose five criterions of selecting proper learning rates
for the dynamic back propagation algorithm adaptively based on the discrete-type
Lyapunov stability analysis. The following theorems give sufficient conditions for
the convergence of OIFHO ENN. Suppose that the modification of the weights of by
Eqs. (12–16). For the convergence of OIFHO ENN we have the following theorems.

Theorem 1 The stable convergence of the update rule on W 1 is guaranteed if the
learning rate η1 (k) satisfies the following condition:

0 < η1(k) <
8

nr

∣∣∣∣
∣
max

i j
(w5

i j (k))

∥∥∥∥
∥

(

max
q

∣∣uq(k)
∣∣+ max

q

∣∣∣∣
∣

m∑

p=1
w2

qp yc,p(k)

∣∣∣∣
∣

)∣∣∣∣
∣

(20)

Proof Define the Lyapunov energy function as follows:

E(k) = 1

2

m∑

i=1

e2
i (k) (21)

where
ei (k) = yd,i (k) − yi (k) (22)

and consequently, we can obtain the modification of the Lyapunov energy function

�E(k) = E(k + 1) − E(k) = 1

2

m∑

i=1

[e2
i (k + 1) − e2

i (k)] (23)
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the error during the learning process can be represented as

ei (k + 1) = ei (k) +
n∑

j=1

m∑

q=1

∂ei (k)

∂w1
jq

�w1
jq = ei (k) −

n∑

j=1

m∑

q=1

∂yi (k)

∂w1
jq

�w1
jq (24)

therefore

�E(k) = 1

2

m∑

i=1

e2
i (k)

[(
1 − η1(k)[∂yi (k)

∂W 1 ]T [∂yi (k)

∂W 1 ]2
)2

− 1

]

= 1

2

m∑

i=1

e2
i (k)

⎡

⎣

(

1 − η1(k)

∥
∥∥∥
∂yi (k)

∂W 1

∥
∥∥∥

2
)2

− 1

⎤

⎦ = −
m∑

i=1

e2
i (k)β1

i (k)

(25)

where

β1
i (k) = 1

2

[

1 −
(

1 − η1(k)

∥∥∥ ∂yi (k)

∂W 1

∥∥∥
2
)2
]

= 1
2η1(k)

∥∥∥ ∂yi (k)

∂W 1

∥∥∥
2
(

2 − η1(k)

∥∥∥ ∂yi (k)

∂W 1

∥∥∥
2
) (26)

We have

∣
∣∣∣
∂yi (k)

∂w1
jq

∣
∣∣∣ =

∣
∣∣∣

∂yi (k)
∂x j (k)

.
∂x j (k)

∂w1
jq

∣
∣∣∣ =

∣∣
∣∣∣
w5

i j (k). f ′
j (.).(uq(k) +

m∑

p=1
w2

qp yc,p(k))

∣∣
∣∣∣

(i = 1, . . . , m : j = 1, . . . , n : q = 1, . . . , r)

(27)

then

∣∣∣∣
∂yi (k)

∂w1
jq

∣∣∣∣ ≤ 1
4

∣
∣∣∣∣∣
∣∣

max
i j

(w5
i j (k))

∥
∥∥∥∥∥
∥∥

⎛

⎜⎜
⎝max

q

∣∣uq(k)
∣∣+ max

∣∣∣∣∣

m∑

p=1
w2

qp yc,p(k)

∣∣∣∣∣
q

⎞

⎟⎟
⎠

∣
∣∣∣∣∣
∣∣

(i = 1, . . . , m : j = 1, . . . , n : k = 1, . . . , n : q = 1, . . . , r)

(28)

then

∥∥∥ ∂yi (k)

∂W 1

∥∥∥ ≤

√√√√√
√√

nr
4

∣∣∣∣∣∣
∣∣

max
i j

(w5
i j (k))

∥∥∥∥∥∥
∥∥

⎛

⎜⎜
⎝max

q

∣∣uq(k)
∣∣+ max

∣∣∣∣
∣

m∑

p=1
w2

qp yc,p(k)

∣∣∣∣
∣

q

⎞

⎟⎟
⎠

∣∣∣∣∣∣
∣∣

(i = 1, . . . , m : j = 1, . . . , n : k = 1, . . . , n : q = 1, . . . , r)

(29)
and we have
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0 < η1(k) <
8

nr

∣
∣∣∣∣∣
∣∣

max
i j

(w5
i j (k))

∥
∥∥∥∥∥
∥∥

⎛

⎜⎜
⎝max

q

∣∣uq(k)
∣∣+ max

∣∣∣∣∣

m∑

p=1
w2

qp yc,p(k)

∣∣∣∣∣
q

⎞

⎟⎟
⎠

∣
∣∣∣∣∣
∣∣

(30)

We haveβ1
i (k) > 0, then from Eq. (25) we obtain �E(k) < 0. According to the

Lyapunov stability theory, this shows that the training error will converge to zero as
t → ∞. This completes the proof.

Theorem 2 The stable convergence of the update rule (15) on W 2 is guaranteed if
the learning rate η2 (k) satisfies the following condition:

0 < η2(k) <
8

mn

∣∣∣
∣max

i j
(w5

i j (k))

∥∥∥
∥max

jq
(w3

jq(k))

∥∥∥
∥max

p
ycp(k)

∣∣∣
∣

(31)

Proof The error during the learning process can be expressed as

ei (k + 1) = ei (k) +
n∑

j=1

r∑

q=1

∂ei (k)

∂w2
jq

�w2
jq = ei (k) −

n∑

j=1

r∑

q=1

∂yi (k)

∂w2
jq

�w2
jq (32)

therefore

�E(k) = 1

2

m∑

i=1

e2
i (k)

[(
1 − η2(k)[ ∂yi (k)

∂W 2 ]T [ ∂yi (k)

∂W 2 ]
)2 − 1

]

= 1

2

m∑

i=1

e2
i (k)

[(
1 − η2(k)‖ ∂yi (k)

∂W 2 ‖2
)2 − 1

]
= −

m∑

i=1

e2
i (k)β2

i (k) (33)

where

β2
i (k) = 1

2

⎡

⎣1 −
(

1 − η2(k)

∥∥∥
∥
∂yi (k)

∂W 2

∥∥∥
∥

2
)2
⎤

⎦

= 1

2
η2(k)

∥∥∥∥
∂yi (k)

∂W 2

∥∥∥∥

2
(

2 − η2(k)

∥∥∥∥
∂yi (k)

∂W 2

∥∥∥∥

2
)

(34)

Notice that the activation function of the hidden neurons in the modified Elman
neural network is the sigmoidal type, we have
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∣∣
∣∣∣
∂yi (k)

∂w2
jq

∣∣
∣∣∣
=
∣
∣∣w5

i j (k)w3
jq(k) f ′

j (.)ycp(k)

∣
∣∣

≤ 1

4

∣∣∣∣max
i j

(w5
i j (k))

∥∥∥∥max
jq

(w3
jq(k))

∥∥∥∥max
p

ycp(k)

∣∣∣∣

(i = 1, . . . , m : j = 1, . . . , n : q = 1, . . . , r) (35)

According to the definition of the Euclidean norm, we have

∥∥∥
∥
∂yi (k)

∂W 2

∥∥∥
∥ ≤

√
mn

4

∣∣∣
∣max
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We have β2
i (k) > 0, then from Eq. (33) we obtain �E(k) < 0. According to the

Lyapunov stability theory, this shows that the training error will converges to zero
as t → ∞. This completes the proof.

Theorem 3 The stable convergence of the update rule (14) on W 3 is guaranteed if
the learning rate η3 (k) satisfies the following condition:
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Proof The error during the learning process can be expressed as
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where
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therefore ∣∣∣
∣
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We have
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therefore, η3 (k) is chosen as above, then we have β3
i (k) > 0 and �E(k) < 0,

According to the Lyapunov stability theory, this shows that the training error will
converges to zero as t → ∞.

Theorem 4 The stable convergence of the update rule (13) on W 4 is guaranteed if
the learning rate η4(k) satisfies the following condition:

0 < η4(k) <
2
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Proof The error during the learning process can be expressed as
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where
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W 4 represents an n dimensional vector and ‖.‖ denotes the Euclidean norm. Noticing
that the activation function of the hidden neurons in the modified Elman Neural
Network is the sigmoidal type, we have
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According to the definition of the Euclidean norm, we have
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therefore, η4 (k) is chosen as:
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then we have β4
i (k) > 0 and �E(k) < 0, according to the Lyapunov stability theory,

this shows that the training error will converges to zero as t → ∞.

Theorem 5 The stable convergence of the update rule (12) on W 5 is guaranteed if
the learning rate η5 (k) satisfies the following condition:

0 < η5(k) <
2
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Proof
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W 5 represents an n dimensional vector and ‖.‖ denotes the Euclidean norm. Noticing
that the activation function of the hidden neurons in the modified Elman neural
network is the sigmoidal type, we have
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According to the definition of the Euclidean norm, we have
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then
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2
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therefore, η5 (k) is chosen as 0 < η5(k) < (2/mn), then we have β5
i (k) > 0 and

�E(k) < 0, According to the Lyapunov stability theory, this shows that the training
error will converges to zero as t → ∞.

4 Simulation Results

The objective of this section is to illustrate the performance and capabilities of the
proposed structure shown in Fig. 1 for identification of four classes of nonlinear
systems considered in [18]. The reference input u (t) to all the identifiers must be
selected to be “persistently exciting”. For identification of linear systems the persis-
tent excitation of the input guarantees the convergence of the identifier parameters to
their true values [1]. The following results are compared with OHF and OIF Elman
Neural Network [11] and the amplitude and the frequency of the reference inputs are
selected experimentally as recommended in [18].
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4.1 Application to Model I

Example 1 The governing equation of the system is given by

y (t) = 0.3y (t − 1) + 0.6y (t − 2) + 0.6

1 + u(t − 1)2 (60)

where the output at time t is a linear function of past output at times t − 1 and t − 2
plus a nonlinear function of the input at time t − 1. The reference input u (t − 1) to
the system is selected as u (t − 1) = sin(2π(t − 1)/100)).

To show the robustness of the proposed structure to the variations in the amplitude
and frequency of the input, an input with 50 % reduction in the frequency (within the
400–600 time steps) and 100 % increase in the frequency (within the 600–800 time
steps) is applied to the system. Figures 2 and 3 depict the simulation results using
the OIFHO, OHF and OIF Elman NN.

As can be seen from Fig. 3 the performance of the OIFHO Elman NN structure is
more robust to the variations in the amplitude as well as the frequency of the input
than two other Networks.

Figure 4 shows the variation of learning rates during the simulation for Example 1.
For each step the learning rates are chosen according to Eqs. (30), (37), (44), (52)
and (59), in which max (w) is chosen from available information for the same step.
Selecting learning rates in the determined bounds assures the stability of OIFHO
ENN.

Fig. 2 Responses of the OIFHO, OHF and OIF Elman neural network applied to Example 1 for
changing input characteristics
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Fig. 3 Comparison of the MSE error of the OIFHO, OHF and OIF Elman neural network applied
to Example 1 for changing input characteristics

Fig. 4 Variations of learning rates for Example 1

4.2 Application to Model II

Example 2 The governing equation of the system is given by

y (t) = y (t − 1) y (t − 2) + (y (t − 2) + 2.5)

1 + y (t − 1)2 + y (t − 2)2 + u (t − 1) (61)

where the output at time t is a nonlinear function of the outputs at times t − 1 and
t − 2 plus a linear function of the input at time t − 1. The reference input u (t − 1)

is selected as u (t − 1) = sin(2π(t − 1)/25)).
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Fig. 5 Responses of the OIFHO, OHF and OIF Elman neural network applied to Example 2 for
changing input characteristics

To show the robustness of the proposed structure to variations in the input ampli-
tude and frequency, an input with 50 % reduction in the amplitude (within the 100–200
time steps), 100 % increase in the amplitude (within the 200–300 time steps), 50 %
reduction in the frequency (within the 300–400 time steps), and 100 % increase in the
frequency (within the 400–500 time steps) is applied to the system. Figures 5 and 6
depict the simulation results using the OIFHO, OHF and OIF Elman NN.

As can be seen from Fig. 6 the performance of the OIFHO Elman NN structure is
more robust to the variations in the amplitude as well as the frequency of the input
than two other Networks.

Fig. 6 Comparison of the MSE error of the OIFHO, OHF and OIF Elman neural network applied
to Example 2 for changing
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Fig. 7 Variations of learning rates for Example 2

Figure 7 shows the variation of learning rates during the simulation for Example 2.
For each step the learning rates are chosen according to Eqs. (30), (37), (44), (52)
and (59).

4.3 Application to Model III

Example 3 The governing equation of the system is given by

y (t) = 0.2y (t − 1) + 0.6y (t − 2)

1 + y (t − 1)2 + sin (u(t − 1)) (62)

where the output at time t is a nonlinear function of the output at time t − 1 and
t − 2 plus a nonlinear function of the input at time t − 1. The reference input applied
to the system is u (t − 1) = sin(2π(t − 1)/10)) + sin(2π(t − 1)/25)). To show
the robustness of the proposed structure to variations in the input amplitude and
frequency, an input with 50 % reduction in the amplitude (within the 400–600 time
steps), and 100 % increase in the frequency (within the 600–800 time steps) is applied
to the system. Figures 8 and 9 depict the simulation results using the OIFHO, OHF
and OIF Elman NN.

As can be seen from Fig. 9 the performance of the OIFHO Elman NN structure is
more robust to the variations in the amplitude as well as the frequency of the input
than two other Networks. Figure 10 shows the variation of learning rates during the
simulation for Example 3. For each step the learning rates are chosen according to
Eqs. (30), (37), (44), (52) and (59).
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Fig. 8 Responses of the OIFHO, OHF and OIF Elman neural network applied to Example 3 for
changing input characteristics

Fig. 9 Comparison of the MSE error of the OIFHO, OHF and OIF Elman neural network applied
to Example 3 for changing input characteristics

4.4 Application to Model IV

Example 4 The governing equation of the system is given by

y (t) = y (t − 1) + u (t − 1)

1 + y (t − 1)2 (63)

where the output at time t is a nonlinear function of the outputs at times t − 1 and
the inputs at times t − 1. The reference input is u (t − 1) = sin(2π(t − 1)/50)).
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Fig. 10 Variations of learning rates for Example 3

To show the robustness of the proposed structure to variations in the input ampli-
tude and frequency, an input with 50 % reduction in the amplitude (within the 250–500
time steps), 100 % increase in the amplitude (within the 500–750 time steps), 50 %
reduction in the frequency (within the 750–1,000 time steps), and 100 % increase in
the frequency (within the 1,000–1250 time steps) is applied to the neuro-dynamic
structure. Figures 11 and 12 depict the simulation results using the OIFHO, OHF and
OIF Elman NN.

Fig. 11 Responses of the OIFHO, OHF and OIF Elman neural network applied to Example 4 for
changing input characteristics
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Fig. 12 Comparison of the MSE error of the OIFHO, OHF and OIF Elman neural network applied
to Example 4 for changing input characteristics

As can be seen from Fig. 12 the performance of the OIFHO Elman NN structure
is more robust to the variations of the amplitude as well as the frequency of the input
than two other Networks.

Figure 13 shows the variation of learning rates during the simulation for Example 4.
For each step the learning rates are chosen according to Eqs. (30), (37), (44), (52)
and (59).

Fig. 13 Variations of learning rates for Example 4
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Table 1 Comparison of errors for OIFHO, OHF and OIF structures

Error OIFHO OHF OIF

Example 1 MSE 0.0078 0.0121 0.0157

RMSE 0.0882 0.1102 0.1254

NMSE 0.018 0.0281 0.0365

Example 2 MSE 0.322 0.4073 0.5264

RMSE 0.5675 0.6382 0.7256

NMSE 0.0854 0.108 0.1396

Example 3 MSE 0.0312 0.0359 0.0649

RMSE 0.1765 0.1895 0.2548

NMSE 0.0405 0.0466 0.0843

Example 4 MSE 0.0427 0.0508 0.0667

RMSE 0.2067 0.2254 0.2583

NMSE 0.0603 0.0717 0.0941

5 The Identification Error

Depending on the nature and desired specifications of an application, different error
norms may be used to evaluate the performance of an algorithm. We use the Mean
Square Error (MSE), Root Mean Square Error (RMSE) and Normalized Mean Square
Error (NMSE) to evaluate the performance of OIFHO Elman Neural Network struc-
ture proposed in Sect. 2 in comparison with OHF and the OIF structure. The results
are given in Table 1.

According to the above tables, we can draw the conclusion that OIFHO structure
provided a better performance than other structures, which is due to the excellent
nonlinear function approximation capability of OIFHO structure.

6 Conclusion

This paper proposes an improved Elman Neural Network with better performance in
comparison with other improved Elman Neural Network by employing three context
layers. Subsequently, the dynamic recurrent Backpropagation algorithm for OIFHO
is developed according to the gradient descent method. To guarantee the fast conver-
gence, the optimal adaptive learning rates are also derived in the sense of discrete-type
Lyapunov stability. Furthermore, capabilities of the proposed structures for identifi-
cation of four classes of nonlinear systems are shown analytically. Simulation results
indicate that the proposed structure is very effective identifying the input–output maps
of different classes of nonlinear systems.
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