
Generation of Assurance Cases
for Medical Devices

Chung-Ling Lin and Wuwei Shen

Abstract In safety critical systems, the manufacturers should provide compelling
and comprehensible arguments to demonstrate that their system is well designed
and safety of the system to the public is guaranteed. These arguments are usu-
ally represented by an assurance case. However, one of challenging issues facing
the safety critical industry is how to produce an assurance case that provides a set
of well-structured arguments connecting safety requirements and a body of evi-
dence produced during software development. In this paper, we take the medical
systems industry into account to illustrate how an assurance case can be gener-
ated when a software process is employed. In particularly, we consider the Generic
Insulin infusion Pump (GIIP) to show how an assurance case can be produced via
during a popular software development process, called Rational Unified Process
(RUP).

Keywords Assurance cases · UML profile · OCL · Medical device software ·
Safety critical system

1 Introduction

One of the most challenging issues facing the safety critical industry is how to
develop an assurance case providing a compelling and comprehensible argument
to demonstrate that a safety critical system is well designed so its safety is guar-
anteed when it is in use. In safety critical domains, there are many international
standards where many safety-related requirements are specified. A well-designed
assurance case should successfully link the evidence to the specific safety objective
of the system in a convincing way. But, how to produce such an assurance case has
become an important issue. Many manufacturers have found the generation of an
assurance case after a software system has been developed is quite time consuming

C.-L. Lin (B) · W. Shen
Department of Computer Science, Western Michigan University,
Kalamazoo, MI, USA
e-mail: chung-ling.lin@wmich.edu

W. Shen
e-mail: wuwei.shen@wmich.edu

© Springer International Publishing Switzerland 2015
R. Lee (ed.), Computer and Information Science, Studies in Computational
Intelligence 566, DOI 10.1007/978-3-319-10509-3_10

127

128 C.-L. Lin and W. Shen

and error-prone. One of the important reasons is that developers should recall the
details made during the software development process in order to build an argu-
ment linking the evidence and the corresponding claim(s). Then, a question has been
raised: can an assurance case be generated when a specific software process has been
employed?

In this paper, we take medical device software into account. In the medicals
device industry, all medical devices must pass the FDA pre-market review before a
new product can be deployed to the market because the FDA regulators are entitled
to ensure that each new product is safe and reliable to the public. To better design a
software system embedded into a medical device, some international standards such
as ISO14791 [1] have been proposed. Recently, some guidance documents based on
a specific medical device such as infusion pumps were released [2]. These standards
and guidance documents aim to help medical device manufacturers to design medical
device software according to recommendation in these documents. Consequently, the
quality of medical device software can be improved.

However, how to conform to the regulation-requirements in these standards and
guidance-has bothered many medical device manufacturers. In the medical device
industry, many companies have already put in place their own cultures such as their
own policies and processes to achieve the objectives of the regulation. They have
found that it is a painful process to build a compelling assurance case which consists
of information scattered over a large body of artifacts such as the hazards-analysis
report and test and validation report, which they have produced before. Even worse,
when constructing an assurance case, developers must spend more time to recall many
design decisions made before. For instance, why a requirement has been decomposed
into several sub-requirements and what criterion has been used at that time. Recall of
these design decisions is always time consuming and error prone. Thus, the construc-
tion of an assurance case becomes one of persistent complains from medical device
manufactures and stifle the motivation and creativity of manufacturers in building
safer and more reliable medical devices.

In this paper, we strive for a new method that can automatically combine a spe-
cific software development process with the assurance information to reduce the
burden of medical device manufacturers. We consider the goal structure notation
(GSN) [3] as a backbone to build an assurance case. In order to integrate a spe-
cific development process employed by a medical device manufacturer, we employ
the Rational Unified Process (RUP) [4] as a representative development process.
We illustrate our approach with the case study of the Generic Insulin Infusion
Pump (GIIP) [5], which we co-developed with FDA staff in the past years. In fact,
in our previous work, the traceability established between different artifacts pro-
duced during the RUP process enable to track a system’s design downstream to the
implementation and upstream to the rationale. The traceability information lever-
ages the understanding of how a system has been designed to satisfy the relevant
safety requirement and thus expedite the regulator review process. Simultaneously,
the traceability information becomes an integral part of constructing an assurance
case.

Generation of Assurance Cases for Medical Devices 129

The remainder of this paper is organized as follows: In Sect. 2, we introduce
an assurance case and its GSN notation. In Sect. 3, we employ the Generic Insulin
Infusion Pump case study to illustrate how to produce an assurance report when the
Rational Unified Process is applied. Some related work is discussed in Sect. 4, and
we draw a conclusion in Sect. 5.

2 Assurance Case and Its GSN Notation

An assurance case is important for safety critical systems in that it provides an
argument from the developers about why a safety critical system can work well
when it is in use. In the medical device industry, an assurance case of a medical
device should demonstrate that the device does not harm a patient but also improve a
patient’s health. In order to assure the correctness of safety-critical software systems,
a convincing assurance case should consist of the following elements:

• Claim. A claim is a statement that claims about some important property of a
system such as safety and security.

• Argument. An argument is reasoning of why a claim can be supported. The rea-
soning can be done via the justification between claims and sub-claims or claims
and evidence.

• Context. A context gives assumptions made about the whole assurance case.

A convincing and valid argument of why a system meets its assurance require-
ments is the heart of an assurance case. An assurance case should consist of extensive
references to evidence used by the system. In general, an assurance case is a collec-
tion of claims, arguments, and evidence that are created to support the contention
that a system will satisfy the particular requirements.

Certain claims can be directly supported by evidence, which usually refers to
external documents collected by some systematic methods and procedures. In gen-
eral, a structure of an assurance case is a tree-like structure with the top element as the
root claim. Currently, there are two different notations to denote an assurance case,
i.e. Goal Structuring Notation (GSN) [3] and Claims-Arguments-Evidence (CAE)
Notation [6, 7].

In this paper, we adopt the GSN notation to represent an assurance case. In GSN,
a rectangle node represents a claim, such as C0 (“All relevant hazards have been con-
sidered”) in Fig. 1. A parallelogram node represents argument reasoning. In Fig. 1,
the parallelogram A0 represents that the following argument: the decomposition of
claim C0 is based on the categories recommended by the Guidance for Infusion
Pump, i.e. “Total Product Life Cycle: Infusion Pump—Premarket Notification Sub-
mission” (abbreviated as Guidance in the rest of the paper) [2]. A rounded rectangle
node denotes the relevant information used in an assurance case. For instance, C1
in Fig. 1 denotes the Guidance [2]. A diamond decorator node represents that infor-
mation related to the node will be supported later. Finally, a circle node denotes
evidence.

130 C.-L. Lin and W. Shen

Fig. 1 Top level structure of an assurance case for GIIP

3 Development Process for GIIP

We apply the Rational Unified Process (RUP) to develop the Generic Insulin Infu-
sion Pump case study due to the following several reasons. First, RUP is an iterative
software development process created by Rational Software Cooperation, which was
bought by IBM in 2003. It consists of various types of activities, each of which pro-
duces one or several different artifacts. RUP can be adapted to satisfy different needs
during a software development process. Second, RUP has a good tool-based support.
Various tools from IBM support different activities during software development. For
example, RequisitePro [8] supports to produce artifacts at early stage of a software
development process while Rational Software Architect (RSA) [9] can leverage the
model design and software implementation. Because of the above reasons, RUP has
gained a great popularity in industry.

In general, the RUP has four phases for a software development cycle. The key
to the RUP is that a traditional software development process lies within all of the
four phases, each of which has its own objective and milestone at the end. The
milestone of each phase can be checked via the corresponding artifacts to validate
whether the objective has been accomplished or not. These four phases are: Inception,
Elaboration, Construction, and Transition. During the Inception phase, the primary
objective is to scope the system adequately as a basis for validating initial costing
and budgets. The primary objective of the Elaboration phase is to mitigate the key

Generation of Assurance Cases for Medical Devices 131

risk items; and at the same time, domain analysis is made and the architecture of
the project gets its basic form. Consequently, some design artifacts such as a USE
CSAE model should be available for the later phases. The primary objective of the
Construction phase is to build the software system. The main activities should include
the bulk of coding activities. As a result of the activity, software implementation as
software artifacts should be done. Finally, during the Transition phase, the objective
is “transit” the system from development into production, making it available to and
understood by the end user. The main activities include to beta testing the system to
validate it against the end users’ expectations. The corresponding test and validation
report should be produced.

The GIIP problem was proposed as a case study by FDA to study how a software
system embedded into an insulin infusion pump can be designed and validated.
In addition to the requirements related to an insulin infusion pump application, a
software system designed for the GIIP application should also consider some specific
standard or guidance documents in the medical device domain, such as “Total Product
Life Cycle: Infusion Pump—Premarket Notification Submission” [2]. In this paper,
we will demonstrate how to generate an assurance case when the RUP process has
been employed.

First, an assurance case is necessary for each premarket submission from an
infusion pump manufacturer. According to the Guidance, it says: “In making this
demonstration of substantial equivalence for your infusion pump, FDA recommends
that you submit your information through a framework known as an assurance case
or assurance case report. An assurance case is a formal method for demonstrating
the validity of a claim by providing a convincing argument together with supporting
evidence.” Furthermore, a claim, according to the Guidance, is “a statement about a
property of the system”. To make a claim, the Guidance identifies 8 different hazard
categories. FDA further requires each submission to “clearly describe the method
used to analyze the hazards and each hazardous event mitigation”. Next, we illustrate
how an assurance case can be generated during the RUP process. Due to the space
limit, we cannot show all the artifacts produced during the RUP. We concentrate on
the Inception/Construction Phase, which mainly produces the requirement document,
feature description document, use case report, and a sequence diagram. As the starting
point, we claim that all relevant hazards have been considered during the Construction
Phase. Then, this claim can be decomposed into eight sub-claims according to the
Guidance such as Hardware Hazards. The argument of this decomposition is shown
by A0 and C1 in Fig. 1. In this paper, we only consider Software Hazards denoted
as HCs. The Software Hazards can also be divided into some sub-subclaims and in
this case we consider the “Excessive Bolus Administration” denoted as SHCeba.

During the Construction Phase, first the safety requirement document should be
produced. In this document, all safety requirements related to an infusion pump
should be addressed. In the case of claim SHCeba, the following argument is built:
“Each hazard should be well addressed in a hazardous event mitigation way via
safety requirements”. In this argument, the phrase “well addressed” means as fol-
lows: the disjoint of relevant subclaim/sub-arguement/evidence should be complete
(exhaustive) while the conjoint of the subclaim/sub-arguement/evidence should be

132 C.-L. Lin and W. Shen

Fig. 2 Structure between SHCeba and safety requirements

empty (exclusive). More specifically, during the Inception Phase, a design decision
about safety requirements should be made as follows: all safety requirements should
satisfy the exhaustive and exclusive properties. If there is only one safety requirement
produced:

• 1.2.2 The pump shall allow the user to set at least two basal profiles at the same
time, and require the user to activate no more than one profile at any single point
in time.

then the above argument is not complete since how the hazard SHCeba can be miti-
gated when a user set only one basal profile is not addressed. So, when developers
apply the RUP to produce the safety requirements documents, the flaw in the assur-
ance case is observed. Figure 2 shows the structure between hazard SHCeba and the
related safety requirements.

Assume that the other safety requirement related to when a user sets one basal
profile is considered continue to apply the RUP to design features document. A
features document lists all the features that an infusion pump system should achieve.
Similar to the previous argument structure, we should build an argument that “Each
safety requirement should be well addressed via system features”. In this case, we
assume that the following features are produced:

• R3113-2: The component shall be able to manipulate the Basal Profiles record in
the following ways:

– Add a new profile to the record if doing so will not exceed the record’s capacity
(see Requirement R3116 for more detail).

• R3114: The component shall not accept any invalid basal profile that the user
programs into the Basal Profiles record. A valid basal profile includes one or more
segments, each of which is defined as a pair (effective period, basal rate), where
the basal rate shall range from 0.05 Unit/h to x Unit/h and the effective period is

Generation of Assurance Cases for Medical Devices 133

defined by its starting time (of day) and ending time (of day). The ending time of
a basal segment shall be no earlier than its starting time. In a valid basal profile,
the effective periods of two distinct segments shall not overlap with each other,
and effective periods of all segments shall cover 24 h of day.

• R3115: If the Basal Profiles record is not empty, the component shall allow the
user to activate (via IUID) any profile stored in the record, i.e. scheduling basal
delivery according to this profile. If the profile to be activated is not currently active,
the component shall deactivate the currently active one first and then activate this
profile. The activation of basal profiles has to be confirmed by the user before it
can take effect.

• R3116: When the user selects (via IUID) to program a new basal profile, the
component shall check if the Basal Profiles record has reached its storage limit. If
so, the component shall instruct IUID to prompt the user to either quit programming
or select an existing profile to override. Otherwise, the component shall acquire
the newly programmed profile from IUID and check its validity. If the new profile
is valid, the component shall add it into the Basal Profiles record without affecting
other profiles in the record or selection of the active basal profile. If the new profile
is not valid, the component shall reject this profile and inform IUID of the rejection.

In the case of claim safety requirement 1.2.2 is well designed, two arguments are
built based on the fact that each safety requirement is mapped to a set of features that
satisfy the exhaustive and exclusive properties and each safety requirement should
be connected with related features. For the first argument, the exhaustive and exclu-
sive properties mean that each feature considers one scenario for a safety require-
ment. For example, safety 1.2.2 can be decomposed into the following scenarios
that should be addressed by the features: (1) A function that allows the user to add
new profiles, (2) The definition of a valid profile that can be accepted by the system,
(3) A function that allows the user to activate profile, and (4) the constraint of acti-
vating a profile. In this example, R3113-2 considers adding a new profile, which
is further explained by R3116. These two features are related to the scenario 1 of
safety 1.2.2. The scenario 2 is addressed by R3114 which defines a valid structure
of a profile. When a basal profile is added, R3115 shows the feature of setting an
added basal profile to be an active basal profile and is related to scenarios 3 and 4
of safety 1.2.2. From these descriptions, the design decision is based on that these
features should satisfy the exclusive and exhaustive properties. Namely, any two
of these features have no overlapping, and safety requirement 1.2.2 is completely
addressed by these features. For the second argument, the traceability links between
safety requirements and system features are considered as evidence to support this
argument. Figure 3 shows the arguments and sub-claims decomposed from safety
requirement 1.2.2. Figure 4 shows the traceability matrix between safety require-
ments and system features.

Next, we establish an argument via a design decision made about features via
some artifacts produced during the next activity of the RUP as shown in Fig. 5. In
this case, we enter the Construction Phase in the RUP which mainly produces some
design artifacts. Some important artifacts to be produced include use case reports,

134 C.-L. Lin and W. Shen

Fig. 3 Structure between safety requirement 1.2.2 and features

Fig. 4 Traceability matrix between safety requirements and system features

Generation of Assurance Cases for Medical Devices 135

Fig. 5 Structure of feature R3114

Fig. 6 Use case reports related to feature R3114

and sequence models. Likewise, we can continue to consider the similar arguments,
each feature should be well designed via a use case report and each feature should be
connected with related system artifacts. Here we use Feature R3114 as an example.
Figure 6 shows three use case reports that targets on the three different scenarios
related to R3114 and Fig. 7 shows the traceability matrix between features and use
case reports.

136 C.-L. Lin and W. Shen

Fig. 7 Traceability matrix between system features and use case reports

Fig. 8 Sequence diagram for add profile

Generation of Assurance Cases for Medical Devices 137

Last, due to space, we assume that the RUP process stops at the second argu-
ment, i.e. each use case is designed. In the real development process, we continue to
develop the system in which a design class model and a final C++ implementation
are produced. Under this assumption, these sequence diagrams serve as evidence of
the whole argument hierarchy. The logical connection between a high-level hazard
and the final sequence diagram reflects how each hazard has been analyzed and miti-
gated. We show a sequence diagram related to Use Case “Add basal profile” in Fig. 8.
Here, it is worth discussing what “each use case should be well designed” means.
We follow the definition of exhaustive and exclusive properties to design sequence
diagrams from use case models. In order to comply with the exclusive property,
every use case is implemented by different sequence diagram. Each sequence dia-
gram describes different system interactions and no overlapping between any two
sequence diagrams. To fulfill the exhaustive property, every basic flow and alterna-
tive flows of a use case can be mapped to different message in the sequence diagram.
Every lifeline designed in the sequence diagram is already defined in the use case.
That is, all of the information in the use case is completely captured and implemented
by the sequence diagram.

4 Related Work

Construction of an assurance case has been a hot topic since the software-intensive
safety-critical systems are becoming popular and increasing complex. How to build
a compelling argument draws more attention in safety-critical industry. Many chal-
lenges have remained in the assurance case community [10]. Various techniques
have been proposed to address the problems and difficulties in the construction of an
assurance case.

Hawkins et al. presented a new approach that incorporates a confidence argument
in a safety argument [11]. Traditionally, a safety argument includes the confidence
about this argument and the separation of a confidence argument can make both
arguments clarity of purpose and helps to avoid some redundancy in arguments and
evidence.

Jee et al. discussed the construction of an assurance case for the pace-maker
software via a model-driven development approach [12], which is similar to ours.
However, their approach emphasizes on the later stage of a software development
such as a timed automata model as a design model and C code as implementation
language. The approach considers the application of the results from a model checker
called UPPAAL and measurement based on timing analysis as evidence.

Attwood et al. proposed to apply a linguistic model of understanding to iden-
tify mismatches and provide guidance on composition and integration when con-
structing an assurance case. Dominguez et al. presented an experience in developing
an assurance case for a rebreather system via the Goal Structuring Notation. Ray
et al. demonstrate an approach for safety assurance case argumentation based on the
Generic Patient Analgesic Pump (GPCA). As a governing agency in medical device

138 C.-L. Lin and W. Shen

industry, a document recently released by FDA recommends the submission of an
assurance case as part of pre-market submission.

Rushby observed that an assurance/safety case is an argument that helps increase
confidence in the soundness of a given case. One of the most important ways to check
an argument is formal logic. Thus Rushby proposed a method to formalize safety
cases and one important ramification of this work is the use of automated tools to
check the logical soundness of a safety case [13]. Another advantage of formalization
is the development of metamodel for various tactics of argument.

The automotive industry is another specific domain requiring the construction
of a safety case. For example, the automotive standard ISO26262 [14] requires the
development of a safety case for electrical and/or electronic (E/E) systems whose mal-
function has the potential to lead to an unreasonable level of risk. Many researchers
have developed various strategies to design a safety case for an automotive software
system. Birch et al. investigated the main argument structures of a safety case and
the relationships among these structures when assessing functional safety in that
ISO26262 does not specify how a safety argument should be evaluated in the func-
tional safety assessment process [15]. Birch et al. emphasized on the product-based
safety rational when constructing a safety argument.

Westman et al. demonstrated that the contract theory can be employed to construct
safety requirements in ISO26262 [16]. Contracts are used to separate the responsi-
bility of a system from its environment by imposing safety requirements on the
environment as assumptions. To check an automotive software system against ISO
26262, contract theory provides the verification of consistency and completeness on
the safety requirements.

Stürmer et al. proposed a novel approach to study whether an automotive soft-
ware system is compliant with ISO26262 via reviewing software models [17]. Since
model-based development has gain the popularity in the automotive industry, the
early detection of model artifacts that violate the safety requirements in ISO26262
can greatly improve the quality of an automotive software system. Stürmer et al.
combined an automated and manual review to detect any violation of ISO26262.

5 Conclusion and Future Work

Developing a software system that, software engineers can guarantee, satisfies the
regulatory requirements is one of the most challenging issues facing the software
engineering community. In this paper, we propose a novel approach which integrates
the construction of an assurance case into a software development process. While
we only consider the Rational Unified Process, our approach can be applied to all
other software development processes employed by medical device manufacturers.
We aim to save the time and labor to generate a convincing and compelling argument
for a system and our approach cannot only be used by some regulatory bodies but
also improve manufacturers’ capability to understand the quality of a system they
have designed.

Generation of Assurance Cases for Medical Devices 139

While our approach is still in the preliminary stage, we think the approach paves
the way to leverage the capability of regulatory review and even software certification
via an assurance case in an automatic way. With the recent progress made in the
Model Driven Engineering (MDE) community, we think some important techniques
advanced in the MDE community can be adapted to regulatory review and software
certification. In both regulatory review and software certification, one important issue
is to investigate whether a system has achieved the claimed requirements. In fact,
an assurance case has been widely proposed to establish an argument in a logically
consistent fashion.

We have noticed that a metamodel for a structured assurance case, called SACM
[18], has been proposed by the Object Management Group while GSN and CAE
have been used as popular notations in the assurance case community. Obviously,
the assurance case community does not lack of the notation to represent an assurance
case. The introduction of SACM is in fact consistent with the latest development
fashion in MDE, aiming to bridge the gap between the problem domain and the
implementation domain.

On the other hand, a UML profile mechanism has been widely employed to
model different artifacts produced during software development process. Also, a
UML profile can model a development process. For instance, a UML profile for
business modeling proposed by IBM aims at the application of UML notation to
represent the artifacts produced during BPMN [19]. In fact, many industry companies
have their own metamodel capturing the specific development process used in their
company. Based on this fact, we think the application of the metamodels that represent
a development process and an assurance case structure respectively can facilitate the
regulatory review and software certification from the following two aspects.

First, inspired by the forward engineering features in MDE, we take the advantage
of the two different metamodels that can help to generate an assurance case. One
important feature of a metamodel is to leverage the ability of model transformation.
Thus, using the model transformation techniques we can produce an assurance case
from artifacts produced during a development process. In this case, developers can
record all design decision made to produce various artifacts during a development
process. Consequently, there is no additional time and effort to build an assurance
case separately.

Second, the popular technique in MDE to retrieve a design model from an imple-
mentation motivates us to retrieve an assurance case from the produced artifacts. This
so-called reverse engineering is quite useful when a system has been designed before
some standards and guidance documents are proposed. Obviously, the metamodels
can help to dive into text in the related documents that can be possibly established an
argument structure. Next, thanks to the latest development in information retrieval,
we can consider to apply some techniques such as vector space model to retrieve the
relevant information to recover an assurance case.

An assurance case provides a powerful method for medical device manufactur-
ers to convince some regulation agencies such as FDA that their system is com-
pliant with safety requirements under some guidance documents or standards. Our
future work based on the approach will concentrate on the application of the MDE

140 C.-L. Lin and W. Shen

techniques. Thus, the generation of an assurance case can be done in an automatic
and systematic approach so we should finally leverage the capability of regulatory
review and software certification.

References

1. Medical devices—Application of risk management to medical devices, ISO 14971
2. US Food and Drug Administration, Guidance for Industry and FDA Staff-Total Product Life

Cycle: Infusion Pump- Premarket Notification[510 (k)] Submissions. April 2010
3. Kelly, T., Weaver, R.: The Goal Structuring Notation—A Safety Argument Notation, in depend-

able systems and networks 2004 workshop on assurance cases (2004)
4. Kruchten, P.: The Rational Unified Process: An Introduction. Addison-Wesley Professional,

Amsterdam (2003)
5. FDA, Generic Insulin Infusion Pump Functional Specifications (2011)
6. Adelard. The Adelard Safety Case Editor—ASCE. http://adelard.co.uk/software/asce/ (2003)
7. Bishop, P.G., Bloomfield, R.E.: The SHIP Safety Case Approach, in Safe Comp 95, pp. 437–

451. Springer, London (1995)
8. Zielczynski, P.: Requirements Management Using IBM Rational RequisitePro. IBM Press,

Upper Saddle River (2008)
9. Leroux, D., Nally, M., Hussey, K.: Rational software architect: a tool for domain-specific

modeling. IBM Syst. J. 45(3), 555–568 (2006)
10. Langari, A., Maibaum, T.: Safety Cases: A Review of Challenges (2013)
11. Hawkins, R., Kelly, T., Knight, J., Graydon, P.: A New Approach to Create Clear Safety

Arguments, In Nineteenth Safety-Critical Systems Symposium. Southampton, UK (2011)
12. Jee, E., Lee, I., Sokolsky, O.: Assurance Cases in Model-Driven Development of the Pacemaker

Software, LNCS 6416 (2010)
13. Rushby, J.: Formalization in Safety Cases. In Eighteenth Safety-Critical Systems Symposium,

pp. 3–17 (2010)
14. CD ISO, Road vehicles-Functional safety, International Standard ISO/FDIS, vol. 26262 (2011)
15. Birch, J.: Safety cases and their role in ISO 26262 functional safety assessment. In Computer

Safety, Reliability, and Security, pp. 154–165. Springer (2013)
16. Westman, J., Nyberg, M., Törngren, M.: Structuring safety requirements in ISO 26262 using

contract theory. In Computer Safety, Reliability, and Security. pp. 166–177, Springer (2013)
17. Stürmer, I., Salecker, E., Pohlheim, H.: Reviewing software models in compliance with ISO

26262. In Computer Safety, Reliability, and Security. pp. 258–267, Springer (2012)
18. OMG. Structured Assurance Case Metamodel (SACM)—Version 1.0. http://www.omg.org/

spec/SACM/
19. Johnston, S.: Rational UML Profile for business modeling, IBM Developer Works. http://www.

ibm.com/developerworks/rational/library/5167.html, (2004)

http://adelard.co.uk/software/asce/
http://www.omg.org/spec/SACM/
http://www.omg.org/spec/SACM/
http://www.ibm.com/developerworks/rational/library/5167.html,
http://www.ibm.com/developerworks/rational/library/5167.html,

	10 Generation of Assurance Cases for Medical Devices
	1 Introduction
	2 Assurance Case and Its GSN Notation
	3 Development Process for GIIP
	4 Related Work
	5 Conclusion and Future Work
	References

