
Specifying Safety Monitors for Autonomous
Systems Using Model-Checking

Mathilde Machin1,2, Fanny Dufossé1,2, Jean-Paul Blanquart3,
Jérémie Guiochet1,2, David Powell1,2, and Hélène Waeselynck1,2

1 CNRS, LAAS, 7 avenue du colonel Roche, F-31400 Toulouse, France
2 Univ de Toulouse, LAAS, F-31400 Toulouse, France

firstname.lastname@laas.fr
3 Airbus Defence and Space, 31 rue des cosmonautes, 31402 Toulouse, France

jean-paul.blanquart@astrium.eads.net

Abstract. Autonomous systems operating in the vicinity of humans
are critical in that they potentially harm humans. As the complexity of
autonomous system software makes the zero-fault objective hardly at-
tainable, we adopt a fault-tolerance approach. We consider a separate
safety channel, called a monitor, that is able to partially observe the sys-
tem and to trigger safety-ensuring actuations. A systematic process for
specifying a safety monitor is presented. Hazards are formally modeled,
based on a risk analysis of the monitored system. A model-checker is
used to synthesize monitor behavior rules that ensure the safety of the
monitored system. Potentially excessive limitation of system functional-
ity due to presence of the safety monitor is addressed through the notion
of permissiveness. Tools have been developed to assist the process.

Keywords: Safety Monitoring, Safety Rules, Autonomous Robotics.

1 Introduction

Autonomous systems such as robots and unmanned vehicles are widely studied
and technically feasible. An important bottleneck for their effective deployment
in human environments is the safety concerns of both users and certification
authorities. Various ad-hoc safety measures have been designed, often focused
on particular risks, such as collision. However, if autonomous systems are to be
certified, the method needs to be generalized. We propose here a general method
to build high-level safety specifications based on hazard analysis.

The autonomous systems of interest to us offer a wide range of features and op-
erate in a diverse unstructured environment. They can thus be complex, which
makes them difficult to verify. Moreover, diversity of the environment implies
that testing cannot significantly cover the situations that the system will face.
Here, we choose a classical fault tolerance approach by considering online safety
measures implemented in a device called a safety monitor, that is simple and
independent from the main control channel, and thus easier to verify. The mon-
itor is solely responsible for safe system behavior. To this end, the monitor is

A. Bondavalli and F. Di Giandomenico (Eds.): SAFECOMP 2014, LNCS 8666, pp. 262–277, 2014.
c© Springer International Publishing Switzerland 2014

Specifying Safety Monitors for Autonomous Systems 263

equipped with means for context observation (i.e., sensors) and is able to trigger
safety interventions. The monitor behavior is specified declaratively by a set of
safety rules, each defining one intervention to apply in certain observation condi-
tions. However, safety interventions may also prevent the system from fulfilling
its functions. For instance, a vehicle whose emergency brakes are permanently
engaged is useless. We require the monitor to be permissive with respect to the
possibility for the system to perform useful tasks.

Continuing the work of Mekki-Mokhtar et al. [1], we propose a process based
on hazard analysis to specify safety monitors and extend it by means of formal
methods. Once a hazard is identified, it is necessary to specify what the monitor
has to do to avoid it, i.e., the safety rules. We aim to explore solutions very
early in the autonomous system design process. Thus, many observations and
interventions can be considered in a first design iteration, whereas only the most
appropriate ones are actually developed and implemented. We propose to use
model-checking to explore and check the specifications.

The main contributions of this paper are:
– A method to explore possible safety specifications by using model-checking.
– A method for modeling permissiveness in temporal logic.
– A set of tools to support the methodology1.
First, we present the overall concepts and process in Section 2. Section 3

details the exploration of possible safety rules in a discrete model, which is
applied in Section 4 to a mobile manufacturing robot. Related work is discussed
in Section 5 and Section 6 presents conclusions and future work.

2 Baseline and Concepts

We introduce here the underlying concepts of our work, based on definitions
adapted from [1], and then present the overall process.

2.1 Concepts

Taking inspiration from the IEC 61508 standard [2], we define a safety monitor
as a device responsible for safety, in opposition to the main control channel
which is responsible for all other functional and non-functional requirements
of the system. The monitor is equipped with means for context observation
(i.e., sensors) and able to trigger safety interventions. The safety monitor is
independent from the main control channel, as regards its means of observation,
computation and intervention. It is required to protect against all faults that
adversely affect safety, including interaction faults. The whole safety channel is
assumed fault-free (for example, we consider that the sensors available to the
monitor are perfect, without uncertainty.) In practice, this must be achieved
through classical redundancy and verification techniques. We focus in our work
on the upstream task of obtaining a correct high-level specification with respect
to safety and permissiveness.
1 Available at http://webhost.laas.fr/TSF/archives/safety_rule_synthesis

http://webhost.laas.fr/TSF/archives/safety_rule_synthesis

264 M. Machin et al.

Warning states

Catastrophic states

Safe states
Path aborted

by action Path aborted
by inhibition

safety '
action

xs
xc xw

¬ STC

SI

safety
inhibition

Fig. 1. Partition of system states in catastrophic, warning and safe states

A safety invariant (SI) is a necessary and sufficient condition to avoid a
hazardous situation. If a safety invariant is violated, we assume that damage
is immediate and irreversible, with no possible recovery. We refer to any state
violating the safety invariant as a catastrophic state.

Example: “the robot speed shall not exceed 3 m/s” (where 3 m/s is the
speed beyond which harm is considered to be inevitable).

A safety intervention is an activity carried out explicitly to prevent the sys-
tem from violating a safety invariant by constraining the system behavior. An
intervention is only applicable in states satisfying its associated precondition. We
distinguish two types of interventions: inhibitions and actions.
A safety inhibition prevents a change in system state. When triggered, an
inhibition is assumed to be immediately effective.

Example : “lock the wheels” (with “robot stationary” as precondition).

A safety action triggers a change in system state (and implicitly prevents other
state changes).

Example : “apply emergency brake”.

A safety trigger condition (STC) is a condition that, when asserted, triggers
a safety intervention. The intervention is applied when the STC is true. The STC
is chosen such that it becomes true before the safety invariant is violated.

Example: “the robot speed is greater than 2 m/s (i.e., less than the safety
invariant threshold of 3m/s)”.

A safety rule defines a way of behaving in response to a hazardous situation.
A safety rule can be operationalized as an if-then rule:
Safety rule � if [safety trigger condition] then [safety intervention].

Example: “if the robot speed is greater than 2 m/s then apply emergency
brake.”

As illustrated in Figure 1, the safety invariant defines the partition between
catastrophic states and non-catastrophic states of the monitored system. In-
terventions have to be applied before the catastrophe, i.e., in non-catastrophic

Specifying Safety Monitors for Autonomous Systems 265

Discrete model analysis

Safety invariants

HazOp/UML

Margin analysis

Variables observable
by the monitor

Interventions
effects and preconditions

Discrete model of 1 safety invariant

Synthesis of safety rules
of 1 safety invariant

Analysis of consistency
between rules of all the invariants

Fig. 2. Overview of the process

states. Now, interventions add constraints to the system behavior. So the set of
non-catastrophic states is partitioned into warning states, where interventions
are applied, and safe states, in which the system operates without constraint.
The warning states are defined such that every path from a safe state (e.g., xs

on Figure 1) to a catastrophic state, e.g., xc, passes through a warning state,
e.g., xw. The warning state enables triggering of an intervention to abort the
path to the catastrophic state.

We assess the monitor and its safety rule set according to the following three
properties:
Safety is the ability to ensure that the safety invariants are never violated, i.e.,
that catastrophic states are unreachable.
Permissiveness is the ability to allow the system to perform its tasks.
Validity specifies that no intervention is applied while its precondition is false.

Safety and permissiveness are antagonistic. We take this antagonism into ac-
count by designing the monitor to be maximally permissive with respect to safety,
i.e., to restrict functionality only to the extent necessary to ensure safety.

2.2 Process Overview

Figure 2 presents the overall process. We base our process on a HAZOP-UML
hazard analysis, which outputs safety invariants expressed in natural language.
We consider as a running example a mobile robot with a manipulator arm and
the informal safety invariant The arm must not be extended beyond the base when
the speed is greater than V0.

The safety invariant is then expressed formally with predicates on variables
that are observable by the monitor. We focus for now only on predicates involv-
ing a variable compared to a fixed threshold. This type of safety threshold is
amenable to formal verification and is used in many real systems. Considering
the two monitor observations: the absolute speed v, and a Boolean observation

266 M. Machin et al.

of the arm position a (true when the arm is above the base, false, when the arm
is extended), the example safety invariant is formalized as v < V0 ∨ a = true.

The margin analysis partitions non-catastrophic states into safe states and
warning states by splitting variable value intervals or sets. This is done one
variable after another. For example, the speed interval [0, V0[from the safety
invariant is partitionable according to a margin m in two intervals [0, V0 − m[
and [V0 − m,V0[. In the case of arm position, the observation is Boolean. The
singleton value set {true} cannot be partitioned, hence no margin exists. Formal
conditions for the existence of a margin are studied in [1].

From the margin analysis, we can discretize variables involved in the safety
invariant in order to synthesize safety rules. We call this the discrete model
analysis, which is detailed in Section 3. It is composed of three main steps: cre-
ation of a discrete model, rule synthesis, and rule consistency checking. In order
to keep models simple enough to be validated, each safety invariant is modeled
separately. The state variables of the model are the observable variables dis-
cretized by intervals according to the thresholds of the safety invariant and the
existing margins. The discrete model (e.g., Figure 3) is the Cartesian product of
the variable partitions. A catastrophic state is one that violates the safety invari-
ant (there is one catastrophic state on Figure 3, labeled C). The warning states
(W) are those that lead the system to the catastrophe in one step. Interventions
are modeled using the same discretized variables. In the example the monitor is
able to brake (action) and to prevent the arm from extending (inhibition).

The monitor is responsible for neutralizing every transition leading to a catas-
trophic state. For instance, Figure 4 illustrates a satisfying safety rule set, which
applies braking in s3 and arm inhibition in s1 and s2. Additionally to the tran-
sitions leading directly to the catastrophic state, several other transitions are
deleted. The safety rule set respects the safety properties, as the system cannot
enter the catastrophic state. All non-catastrophic states are reachable. Never-
theless, there is some loss of permissiveness as the system cannot stay in s3. We
consider this to be acceptable. In Sections 3.4 and 3.5, we propose two methods
to find systematically such safety rule sets.

As safety invariants are processed separately, the final step is to check the
consistency between the safety rule sets from different safety invariants. This is
addressed in Section 3.6.

3 Discrete Model Analysis

Given a safety invariant, several safety rules are usually needed to avoid violation
of the safety invariant. We call a safety strategy a set of rules applied with respect
to a single safety invariant. In this section, we aim to synthesize a safe, permissive
and valid strategy based on the discrete model.

We propose two approaches to synthesize strategies (Figure 5). The automatic
method finds strategies fast, given permissiveness requirements, by exploring
automatically the various combinations of safety rules. The interactive method
enables the user to adapt permissiveness requirements, and to build or modify
a strategy rule by rule.

Specifying Safety Monitors for Autonomous Systems 267

W

W

W

C

S

S

v < V0-m
⋀ a = true

v=0&a=1

V0-m
≤ v < V0

⋀ a = true

v=1&a=1

v ≥ V0
⋀ a = false

v=2&a=0

v ≥ V0
⋀ a = true

v=2&a=1

V0-m
≤ v < V0

⋀ a = false

v=1&a=0

v < V0-m
⋀ a = false

v=0&a=0

Fig. 3. The example discrete model from the partitions {true, false} for arm position,
and {[0, V0 −m[, [V0 −m,V0[, [V0, Vmax[} for speed

W

W

W

C

S

S

v < V0-m
⋀ a = true

v=0&a=1

V0-m
≤ v < V0

⋀ a = true

v=1&a=1

v ≥ V0
⋀ a = false

v=2&a=0

v ≥ V0
⋀ a = true

v=2&a=1

V0-m
≤ v < V0

⋀ a = false

v=1&a=0

v < V0-m
⋀ a = false

v=0&a=0

s1 s2

s3

t1
inhibition

action

Fig. 4. The example model with a safety rule set

The interactive method is used whenever there is no solution to the given
model and requirements. It informs the user on how to adapt the submitted
problem. The automatic method can then be used on the new problem to find
all possible strategies

3.1 Tools

We use the modeling language SMV and the model-checker NuSMV2 [3]. SMV
enables the declaration of integer variables and constraints on their behavior.
NuSMV builds transparently the Cartesian product of the ranges of all variables.
When no constraint is declared, all the combinations of variable values (i.e.,
states) are possible and all transitions between each pair of states are implicitly
declared. Constraints are then added to delete undesired states and transitions.
As for variables, time is discrete. It is modeled by the operator next(). NuSMV is
well-adapted to our variable-oriented modeling approach. Moreover, the implicit
transition declaration is convenient for modeling the whole physically possible
behavior.

268 M. Machin et al.

Interactive synthesisAutomatic synthesis

Generate a strategy

no

Check Safety

Choose state in path
as warning state Remove

safety
rule

Path to cata
Safe
= No path to cata

Not permissive
Permissive

Strategy

Choose an intervention

Suggest interventionsCheck Reduced
permissiveness

Check Safety

Check Validity

Save strategy
Compute criteria

The user chooses a
strategy

no

no

End of tree

User choice

Accept permissiveness
reduction

Discrete model

Check
Permissiveness

no

Fig. 5. The two methods for safety strategy synthesis

In the following, SMV code and output of NuSMV are given in typewriter
font. We have developed a template file to facilitate the modeling and to allow
the process to be automated.

3.2 System and Intervention Modeling

The domain of each variable of the safety invariant is partitioned according to the
thresholds of the safety invariant and the margin (if it exists), and the resulting
elements are numbered. For instance {[0, V0 − m[, [V0 − m,V0[, [V0, Vmax[} is
encoded as {0,1,2} (see Figure 3). Continuity of variables, i.e., contiguity of
partition elements, is modeled as the constraint: next(x) = x | x+1 | x-1,
i.e., a variable x can stay in the same interval or move to an adjacent interval,
but it cannot jump from one interval to another that has no common boundary.

We then model possible dependencies between variables. Nevertheless, some
dependencies cannot be modeled in a discrete way or with a given partition.
If a dependency is not modeled, the discrete model has less constraints than it
should, or from another point of view, it has too many transitions. If this “super-
graph” is safe, so is the “true” model. On the contrary, the permissiveness results
of the super-graph are not trustworthy. The resulting strategies are always safe;
but their level of permissiveness depends on the dependency modeling effort.

Interventions are always effective (when their preconditions are true), provided
some environmental and dimensioning assumptions. A safety braking action

Specifying Safety Monitors for Autonomous Systems 269

requires to consider for example a maximum slope rate, a maximum torque
from the motors. Safety interventions are then modeled as constraints that may
be applied or not. Consider a discretized speed v. The braking action and the
acceleration inhibition can be modeled by:

braking -> ((v!=0 -> next(v)=v-1) & (v=0 -> next(v)=0))
acc_inhibition -> next (v)!=v+1

As these examples show, an intervention usually adds a constraint on only one
variable, and leaves the others free. For example, at the same time step: speed can
be decreased by braking, and the arm can fold (as in transition t1 in Figure 4).

We make no restrictive assumption about the behavior of the main control
channel. The system model represents what is physically possible in the system
without a monitor. Therefore, safety interventions only remove transitions, i.e.,
possible behaviors, and cannot add transitions, i.e., add physically impossible
behaviors.

Unlike classical model-checking, an integer value does not model a single in-
terval width of an observable variable. Consequently, the time step has no de-
termined value. The next operator models an elastic future, which can be very
close or far away.

3.3 Safety, Permissiveness and Validity Modeling

Monitor properties are expressed in CTL (Computation Tree Logic), which is
entirely supported by NuSMV without any syntax change. Time along paths is
modeled by three operators: X for a property to hold in the next state, G to hold
on the entire path, F to hold eventually. The branching aspect is modeled by A,
all the branches, and E, there exists a branch. A CTL operator is composed of
one branching operator and one time operator. It is applied on states, or more
generally on statements on the system state.

To model safety, we use the atomic property cata to denote the catastrophic
states. cata is the negation of the safety invariant, e.g., cata := speed=2 &
arm_pos=0. Safety is modeled as the unreachability of the catastrophic states,
i.e., in CTL, AG ¬ cata. The expression of cata is the only user task in the
initial property modeling. Permissiveness and validity properties are generated
automatically. During the synthesis, the user is supposed to remove some per-
missiveness properties according to the accepted permissiveness loss choices.

Permissiveness is translated by three liveness properties applied to each non-
catastrophic state snc:

– Simple reachability EF snc
The state is reachable from the initial state.

– Universal reachability AG EF snc
The state is reachable from any reachable state.

– Continuous (and universal) reachability AG EF
(
snc ∧ EG snc

)

The state is reachable and the automaton can stay (indefinitely) in this state.
If an action is applied to the state, the system cannot stay in the state. It is
only a transient state, so the system cannot carry out tasks in this state.

270 M. Machin et al.

Continuous reachability is stronger than universal reachability, which is stronger
than simple reachability. The three properties checked separately on each warn-
ing state enable permissiveness to be assessed in a more detailed way than with
a single binary value. It is usually impossible to obtain safety without some loss
of permissiveness, and particularly with respect to continuous reachability.

It is possible but highly unlikely for variables to change their values simul-
taneously and independently. Such changes are called diagonal transitions by
reference to the two variable case (cf. Figure 3). As permissiveness should not
depend on such unlikely transitions, we choose to ignore diagonal transitions
when checking permissiveness. diag denotes that the immediately fired transi-
tion was a “diagonal” transition. mem(diag) is the memorization of diag, i.e.,
diag and mem(diag) are initially false and as soon as diag is true, mem(diag)
becomes true and stays true even if the value of diag changes. To ignore diago-
nal transitions during permissiveness checking, the properties are modified using
mem(diag) as follows:

– Simple reachability EF (snc ∧ ¬mem(diag))
The state is reachable by a path that always satisfies ¬diag , i.e., a path
that has no simultaneous value changes of independent variables.

– Universal reachability AG

(
¬mem(diag) → EF

(
snc ∧¬mem(diag)

))

The implication selects the part of the model without diagonal transitions
and checks the reachability property only in this part. From the previous
simple reachability property, we already know that this part is non-void.

– Continuous (and universal) reachability

AG

(
¬mem(diag) → EF

(
snc ∧ ¬mem(diag) ∧ EG

(
snc

))
)

The automaton without any safety rule is usually permissive because it is only
a structure without specified behavior. Variables can change freely their values.
Similarly, it is unsafe, as catastrophic states are reachable.

Validity specifies that interventions are not applied in states that violate their
preconditions. We express this as:

AG
∧

i∈Interventions

i → preconditioni

where Interventions is the set of the candidate interventions and preconditioni

is the precondition associated to intervention i.
Once the safety invariant and the interventions have been defined, and the

properties have been generated, we can synthesize a strategy using either the
interactive method (Section 3.4) or the automatic method (Section 3.5).

3.4 Interactive Method

The interactive method (right side of Figure 5) uses the command-line interface
of NuSMV and alias commands. The model-checker finds a path to a catas-
trophic state as a counter-example to the safety property. The user chooses

Specifying Safety Monitors for Autonomous Systems 271

a warning state in this path to apply an intervention. The warning state is
by default the state immediately preceding the catastrophic state. Then the
model-checker determines whether each intervention is locally relevant. To this
end, the warning state is declared as the initial state and additional properties,
called suggestion properties, are checked. Suggestion properties are of the form
i → (preconditioni ∧ AX¬cata) where i is the intervention. The intervention is
suggested if its precondition is satisfied (i.e., the rule is valid) and if it renders
the catastrophic state unreachable in one step. If the state immediately preced-
ing the catastrophic state is not suitable (e.g., no intervention can be applied),
the user chooses an earlier state. When the nth state before the catastrophic
state is selected, the property has to be modified to apply the AX operator n
times to check that the catastrophic state is unreachable in n steps.

The user chooses an intervention among those suggested. The model-checker
checks the permissiveness of the system with the new safety rule.

This is done iteratively until there are no more paths to catastrophic states,
i.e., the system is safe. The selected safety rules constitute a satisfying strategy.

If the permissiveness test returns false, the user has three choices: accept the
loss of permissiveness; try another intervention; or try another warning state.
Selecting an earlier warning state in the path implies that downstream states
will be unreachable, which negatively impacts permissiveness. It may however
be relevant if a combination of safety rules makes many states unreachable.

The interactive method enables the user to customize in what states and to
what extent permissiveness is required. But exploration can be slow, which is
the reason why we have also developed an automatic method.

3.5 Automatic Method

The automatic method (left side of Figure 5) runs on the same model. It outputs
all safe and valid strategies that satisfy the permissiveness requirements (if any
such strategies exist). If full permissiveness is required, no result is obtained. On
the contrary, the lower the requirements, the more results there are. We thus
consider by default only simple and universal reachability, and compute criteria
that help the user to choose. When there is no solution, the interactive method
enables the user to find the blocking point and locally reduce the permissiveness
requirement. The automatic method is then run with customized requirements.

The automatic method is based on the enumeration of the strategies through
a branch-and-cut algorithm and the verification of properties by NuSMV [4].
The method is implemented using NuSMV scripts and a C program.

3.6 Consistency between Strategies

Different strategies may apply interventions simultaneously, which may be in-
compatible, e.g., braking and acceleration. To check strategy consistency, the
previous models (with their strategies) are merged into a single model. When
observable variables are common to several models but with different domain
partitions, a new domain partition is defined by taking the union of the thresh-
olds from the different models.

272 M. Machin et al.

There are two types of inconsistency. For example, braking and acceleration
impose incompatible constraints on speed, so the model-checker cannot compute
a next state. This type of inconsistency is detected by a basic command. Other
inconsistencies are not visible in the model because they cannot be modeled
with the chosen partition or there is no impact on an observable variable. In
these cases, we propose to list concurrent interventions to enable an expert to
determine inconsistencies.

4 Case Study

Our case study is part of the SAPHARI (Safe and Autonomous Physical Human-
Aware Robot Interaction) project [5]. The robot is composed of a mobile base
and an articulated arm. It is an industrial co-worker in a manufacturing setting.
It takes and places part boxes on shelves, work stations, or on the robot base in
order to convey them. It operates in the human workspace. We study here two
safety invariants from this robot.

4.1 Human/Arm Collision during Base Motion

Collision avoidance of the base trajectory relies only on base-to-obstacle distance
sensor. Consequently, if the arm is unfolded and extends beyond the base during
base motion, a collision between the arm and a human is possible. A very slow
base movement is tolerated. This case is the same as the example of Section 2.2.
The safety invariant is: The arm must not be extended beyond the base when the
base is moving (with speed higher than V0).

Discrete Model. The available observations are: 1) a Boolean observation
of the arm position a; 2) linear absolute base speed v (to simplify we ignore
rotation speed). a and v are independent. The safety invariant is formalized as
a = true∨v < V0. The considered interventions are: 1) braking (of base wheels);
2) inhibit the arm motion to prevent it from extending beyond the base, this is
possible only when the arm is above the base. A margin exists for the speed. The
following excerpt of the SMV module encodes the discrete model of Figure 3.
No other template modification is required.

MODULE Collision_SI
VAR -- Variable declarations
-- Continuity (low bound , high bound , initial value , mode)
base_speed : Continuity (0,2,0, mode);

-- 0:<V0 -m, 1:V0 -m<v<V0 , 2:>V0
arm_pos : Continuity (0,1,1,mode);

-- 1: above the base , 0: extended beyond

DEFINE cata := (base_speed .v=2 & arm_pos .v=0);

VAR -- Intervention declarations

Specifying Safety Monitors for Autonomous Systems 273

--Interv(precondition , flag to apply interv , effect , mode)
brake_base : Interv(base_speed .v!=0, flag_brake_base , next

(base_speed .v)=base_speed .v - 1, mode);
inhib_arm : Interv(arm_pos .v=1, flag_inihb_arm , next (

arm_pos .v)=1, mode);

The effect of brake_base is to decrease the speed. However, when speed.v=0,
decreasing it violates the variable range, so speed!=0 is set as precondition.

Interactive Method. We apply the algorithm of the right side of Figure 5.
Checking for safety returns a path to the catastrophic state. The state imme-
diately preceding the catastrophic state, chosen as a warning state, is defined
by base_speed.v = 1 & arm_pos.v = 0. With this state as initial, suggestion
properties are checked. The only suggested intervention is brake_base. We thus
define its trigger flag_brake_base in a safety rule:

DEFINE flag_brake_base := base_speed .v=1 & arm_pos.v=0;

Permissiveness properties are true except for the continuous reachability of
the warning state. This is expected since braking is an action intervention.

Another path to the catastrophic state results in defining base_speed.v = 1
& arm_pos.v = 1 as a warning state. Both possible interventions are suggested.
The inhibition inhib_arm is chosen since it does not decrease permissiveness:

DEFINE flag_inhib_arm := base_speed .v=1 & arm_pos.v=1;}

We check that permissiveness is indeed unchanged.
A third path to catastrophe defines the warning state base_speed.v = 2

& arm_pos.v = 1 where both interventions are again suggested. We choose
inhib_arm again and therefore add the warning state to flag_inhib_arm.

DEFINE flag_inhib_arm := (base_speed .v=1 & arm_pos.v=1) | (
base_speed .v=2 & arm_pos .v=1);}

Checking for safety now returns true. The strategy so defined is valid, safe, and
acceptably permissive. It is the same strategy as in Figure 4.

Automatic Method. From the same model Collision_SI the automatic
method returns three strategies. Among the three generated strategies, two have
two non-continuously reachable states and the last has only one such state.
To minimize loss of permissiveness we choose the strategy with only one non-
continuously reachable state.

STRATEGY #2
--Criteria
non continuously reachable states 1
states with intervention 3
states with combined interv 0
total nb of interv 3
interv_brake_base used in 1 states

274 M. Machin et al.

interv_inhib_arm used in 2 states
--Strategy definition
DEFINE flag_brake_base := flag_cinterv_1 | flag_cinterv_3 ;
DEFINE flag_inhib_arm := flag_cinterv_2 | flag_cinterv_3 ;
DEFINE flag_st_1 := base_speed .v = 1 & arm_pos.v = 0;
DEFINE flag_st_4 := base_speed .v = 1 & arm_pos.v = 1;
DEFINE flag_st_5 := base_speed .v = 2 & arm_pos.v = 1;
DEFINE flag_cinterv_1 := flag_st_1 ;
DEFINE flag_cinterv_2 := flag_st_4 | flag_st_5 ;
DEFINE flag_cinterv_3 := FALSE ;

The other computed criteria are: number of states where an intervention is
applied, use of combined interventions, i.e., application of several interventions
on the same state, the type of intervention. For example, our strategy makes
use of the two defined interventions brake_base and inhib_arm and uses no
combination of interventions. This strategy is the same as in Figure 4.

Our modeling and synthesis methods find the same strategy that was previ-
ously found intuitively on the graphical representation. Interventions are clearly
modeled, contrary to the graphical method. Moreover, as our modeling is textual
we can solve the same problem type with three or more variables.

4.2 Boxes Sliding from the Base

The robot arm has an impactive gripper as an end-effector that takes and places
boxes on its base, which can be used to convey part boxes. In this case, the robot
must respect a speed limit V1 that is less than the general speed limit.

Discrete Model. The available observations are: 1) box, a Boolean (true in
presence of box), and 2) base speed v (the same as in Section 4.1). The safety
invariant is box = false∨v ≤ V1. A safety margin value can be placed on speed.
The resulting integer ranges are [[0,1]] for box and [[0,2]] for speed (with cata:=
box=1 & speed=2). The only possible intervention is braking, since the presence
of boxes is not controllable.

Synthesis. Running the automatic method returns no strategy. During interac-
tive exploration, braking is suggested and applied, leading to a complete loss of
permissiveness in the state box=0 & speed=2. In other words, the robot cannot
go faster than V1 even if there is no box on the base. This is clearly not accept-
able. The user can choose either another suggested intervention (not possible
in this example) or an earlier state in the path (which brings here no benefit).
The current model and requirements admit no satisfying strategy. The intuitive
cause is that the presence of a box is uncontrollable.

Now, according to the robot service hypotheses only the robot arm is allowed
to place a box on the base. We add to the model the observable variable gripper
with values {closed_empty, open, closed_with_box} and the associated inter-
ventions: inhibit_opening and inhibit_closing. The variable is continuous
in the sense that from the value closed_empty to closed_with_box, the grip-
per always transits by open. We model that a box cannot arrive on the base

Specifying Safety Monitors for Autonomous Systems 275

without being in the gripper, and symmetrically a box can only be removed by
the (open) gripper.2

TRANS box.v=0 & next (box.v)=1 -> gripper .v=closed_with_box
TRANS box.v=1 & next (box.v)=0 -> gripper .v=open

Due to perception latency, gripper and box sensors may not be synchronized.
Therefore, the likely next gripper values (open in the first constraint) are not
specified.

The automatic method returns 32 strategies (which is a lot, so the selectivity of
the method should be improved). For every strategy, 5 states are not continuously
reachable and braking is applied in every warning state. One strategy uses only
braking. The other strategies add some inhibitions to this minimal strategy. For
instance, we consider the strategy that adds inhibit_opening in warning states
with no box on the base (inhibit_closing is not used).

In this example, the safety invariant is first ensured, with a high impact on
permissiveness. The gripper hypothesis makes the safety invariant feasible with-
out any impact on permissiveness at the expense of lower safety coverage. Even
if modeled safety is fully checked, the strategy does not cover all cases, e.g., when
workers disobey service regulations and place boxes on the robot base.

4.3 Consistency between Strategies

The two models with their strategies make every intervention pair reachable.
By modeling that V0 < V1 − m, the braking triggered by the first strategy is
no longer concurrent with interventions of the second invariant. In our example,
inhib_arm is compatible with brake and inhibit_opening.

5 Related Work

Several safety monitoring approaches have been proposed in the literature. For
instance [6] argues for a small and simple component in charge of guaranteeing
system safety, in particular with respect to hazardous sequences of function
invocations. We actually extend this conceptual approach proposing a systematic
methodology for the identification of the properties to ensure, while focusing only
on invariants.

Runtime verification (RV) typically generates code instrumentation from tem-
poral logic properties to verify execution traces at runtime [7]. Runtime verifi-
cation can be seen as a downstream process of our workflow: it could implement
the monitor from the specification that we generate. Some runtime verification
work explores the issue of independence between the monitor and the monitored
system. For example, Pike et al. [8] consider time-triggered monitoring of a set of
global variables, which avoids code instrumentation, achieves time-isolation, and
consequently does not require re-certification of the system due to the presence
of the monitor. A concept close to permissiveness is defined as functionality:
“the monitor cannot change the monitored system’s behavior, unless the latter
2 For clarity, the gripper variable is given textual values rather than integer values.

276 M. Machin et al.

has violated its specification.” Another relation between RV and our work is the
use of formal verification for monitoring purposes. We check offline the tree of
all possible executions (of the model) by using the branching logic CTL whereas
RV checks concrete executed traces with respect to linear temporal properties.
The reaction to trigger when detecting an error is called the steering problem in
the runtime verification community. It is a potential feature of monitors, but it
remains much less developed than the detection part. Error detection typically
returns information to the monitored program or raises an exception. Other pos-
sible reactions are considered as ad-hoc to particular systems because they are
not formally captured.

A parallel can be established between game theory and the way the system
is modeled, as possible physical behaviors. The monitor player is able to fire
or inhibit some transitions whereas the opponent, which can be regarded as
the environment or the main controller, is able to fire any transitions. Safety
rules are then the monitor strategy to achieve the winning condition (safety,
permissiveness and validity) whatever the opponent plays. In particular, we take
inspiration from supervisor synthesis [9], which is close to game theory.

Supervisor synthesis is based on language theory. It outputs directly the max-
imally permissive monitor, i.e., the monitor resulting in the system automaton
that recognizes the largest language. Therefore, permissiveness is taken into ac-
count but the user cannot customize it, by preferring one state instead of another.
In [10], Fotoohi et al. use supervisor synthesis to check the safety requirements
of a semi-autonomous wheel-chair.

Woodman et al. [11] present a very similar workflow to monitor autonomous
systems. They use HAZOP to identify hazards and determine (intuitively) the
corresponding safety rules, which are if-then-else rules. From sensor observations,
the monitor (safety layer) sends actuation inhibitions to both the controller and
the software actuator interface. The strong point of the method is to take into
account sensor uncertainty. Permissiveness is implicit.

6 Conclusion

We have described a method for obtaining a high-level safety monitor specifica-
tion, taking into account the specific features of autonomous systems. We base
it on hazard analysis, which is non-formal. Thanks to formal methods, we en-
sure that the derivation from formal safety invariants to safety rules is correct,
provided the modeling of safety invariants is valid. Safety invariants are modeled
separately in order to maintain model validability and to ensure scalability.

Our method justifies the modeling effort in that it does not only check the
specification but also guides the user in building it. Compared with related work,
both actions and inhibitions are allowed, resulting in a more generic method. An-
other strong point is the explicit modeling of permissiveness. The user has no
permissiveness requirement to provide and can choose precisely the permissive-
ness trade-off (provided variable dependency is modeled). By using the template,
the modeling approach is scalable to many variables and interventions.

Specifying Safety Monitors for Autonomous Systems 277

As future work, the algorithm selectivity is to be improved and the method
extended to process safety invariants other than those based on thresholds. The
method has yet to be applied on real and complete systems. Implementation
of the monitor would show how to adapt our hypotheses to the real system,
or vice versa. The implemented safety interventions have to comply with the
temporal hypothesis of the method taking into account the system dynamics and
the environment: 1) inhibitions have to be effective “instantaneously”; 2) margin
values have to cater for possible action latency. Note that the permissiveness
analysis always prefers inhibitions to actions whereas actions may be preferred
from an implementation viewpoint. Future work concerns customization of the
fault independence assumption by implementing safety rules at different levels
in the system architecture, resulting in several safety monitors instead of one.

Acknowlegment. This work is partially supported by the SAPHARI Project,
funded under the 7th Framework Programme of the European Community.

References

1. Mekki-Mokhtar, A., Blanquart, J.P., Guiochet, J., Powell, D., Roy, M.: Safety
trigger conditions for critical autonomous systems. In: 18th Pacific Rim Int’l Symp.
on Dependable Computing (PRDC), pp. 61–69. IEEE (2012)

2. ISO/IEC 61508-7: Functional safety of electrical / electronic / programmable elec-
tronic safety-related systems - part 7: Overview of techniques and measures (2010)

3. Cimatti, A., Clarke, E., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri, M.,
Sebastiani, R., Tacchella, A.: Nusmv 2: An opensource tool for symbolic model
checking. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp.
359–364. Springer, Heidelberg (2002)

4. Dufossé, F., Machin, M., Guiochet, J., Powell, D., Roy, M., Waeselynck, H.: Safety
strategy synthesis: Game theory versus model-checking. LAAS-CNRS, Tech. Rep.
14059 (2014)

5. Saphari project, http://www.saphari.eu
6. Rushby, J.: Kernels for safety. Safe and Secure Computing Systems, 210–220 (1989)
7. Leucker, M., Schallhart, C.: A brief account of runtime verification. Journal of

Logic and Algebraic Programming 78(5), 293–303 (2009)
8. Pike, L., Niller, S., Wegmann, N.: Runtime verification for ultra-critical systems.

In: 2nd Int’l Conf. on Runtime Verification, San Francisco, California, USA (2011)
9. Wonham, W.M.: Supervisory control of discrete event systems (2005)

10. Fotoohi, L., Gräser, A.: A supervisory control approach for safe behavior of service
robot case study: Friend. In: Proceedings of the 2010 ACM Symposium on Applied
Computing, pp. 1305–1306. ACM (2010)

11. Woodman, R., Winfield, A.F., Harper, C., Fraser, M.: Building safer robots: Safety
driven control. Int’l J. Robotics Research 31(13), 1603–1626 (2012)

http://www.saphari.eu

	Specifying Safety Monitors for AutonomousSystems Using Model-Checking
	1 Introduction
	2 Baseline and Concepts
	2.1 Concepts
	2.2 Process Overview

	3 Discrete Model Analysis
	3.1 Tools
	3.2 System and Intervention Modeling
	3.3 Safety, Permissiveness and Validity Modeling
	3.4 Interactive Method
	3.5 Automatic Method
	3.6 Consistency between Strategies

	4 Case Study
	4.1 Human/Arm Collision during Base Motion
	4.2 Boxes Sliding from the Base
	4.3 Consistency between Strategies

	5 Related Work
	6 Conclusion
	References

