
Andrea Bondavalli
Felicita Di Giandomenico (Eds.)

 123

LN
CS

 8
66

6

33rd International Conference, SAFECOMP 2014
Florence, Italy, September 10–12, 2014
Proceedings

Computer Safety,
Reliability, and Security

Lecture Notes in Computer Science 8666
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Andrea Bondavalli
Felicita Di Giandomenico (Eds.)

Computer Safety,
Reliability, and Security

33rd International Conference, SAFECOMP 2014
Florence, Italy, September 10-12, 2014
Proceedings

13

Volume Editors

Andrea Bondavalli
University of Florence
Department of Mathematics and Informatics
Florence, Italy
E-mail: bondavalli@unifi.it

Felicita Di Giandomenico
ISTI-CNR
Pisa, Italy
E-mail: felicita.digiandomenico@isti.cnr.it

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-319-10505-5 e-ISBN 978-3-319-10506-2
DOI 10.1007/978-3-319-10506-2
Springer Cham Heidelberg New York Dordrecht London

Library of Congress Control Number: 2014946200

LNCS Sublibrary: SL 2 – Programming and Software Engineering

© Springer International Publishing Switzerland 2014

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication
or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location,
in ist current version, and permission for use must always be obtained from Springer. Permissions for use
may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution
under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

This year we celebrate the 33rd edition of SAFECOMP, a major forum to provide
ample opportunity for academic and industrial researchers to exchange insights
and experience on emerging methods, approaches and practical solutions in the
areas of safety, security and reliability of critical computer applications. Since
it was established in 1979 by the European Workshop on Industrial Computer
Systems, Technical Committee 7 on Reliability, Safety and Security (EWICS
TC7), SAFECOMP has contributed to the progress of the state-of-the-art in
dependable application of computers in safety-related and safety-critical systems.

This year SAFECOMP is organized within FLORENCE 2014 a one-week
scientific event on the development of safe, secure, dependable and performing
systems covering design and assessment both from a quantitative and a formal
perspective. Together with SAFECOMP 2014 the other major event is Quantita-
tive Evaluation of SysTems – QEST 2014. Many other satellite events, in addition
to the six SAFECOMP workshops, are taking place, such as FORMATS (the
International Conference on Formal Modeling and Analysis of Timed Systems),
EPEW (the European Workshop on Performance Engineering) and FMICS (the
International Workshop on Formal Methods for Industrial Critical Systems).

We are very proud to present this year’s SAFECOMP program, which in-
cludes 20 research papers and 3 reports on practical experience and tools, out
of 85 submissions from 22 countries. Four keynotes given by outstanding repre-
sentatives from academia (Prof. Henrique Madeira and Prof. Philip Koopman),
industry (Mr. Philippe Quere) and EU Research Programs (Mr. Werner Stein-
hoegl) enrich the program. We are grateful to them for their invaluable con-
tribution in providing additional fuel for fruitful discussion and inspiration for
research.

Following the tradition of thoroughness of this conference, all the manuscripts
went through a rigorous review process by the 48 members of the Program
Committee and a number of external reviewers. Then, final discussion was held
at the plenary meeting on May 7th in Pisa, attended by 24 PC members, where
the papers appearing in the program were selected.

We would like to express our deep gratitude to the PC members, who con-
tributed their expertise and time from their busy schedules before, during, and
after the PC meeting to ensure the quality of the reviewing and shepherding
processes. We also greatly appreciate the efforts and expertise of the external
reviewers. Of course, we would like to gratefully acknowledge and thank all the
authors for their effort in submitting papers!

Several other individuals deserve our gratitude for their help, guidance, visible
and invisible work in preparing the conference, among them the EWICS TC7
Chair Francesca Saglietti, the Worskhop Chair Frank Ortmeier, the Industry-
Liaison Chair Michael Paulitsch, the Publicity Chair Francesco Flammini, the

VI Preface

Publication Chair Andrea Ceccarelli, the Local Organizing Chair Paolo Lollini
and his team (Nicola Nostro, Leonardo Montecchi, Andreia Rossi, Marco Mori,
Valentina Bonfiglio) and our Finance Chair Ettore Ricciardi.

Finally, we warmly welcome all the attendees in Florence and wish a very
interesting, fruitful, and enjoyable conference!

September 2014 Andrea Bondavalli
Felicita Di Giandomenico

Organization

EWICS TC7 Chair

Francesca Saglietti University of Erlangen-Nuremberg, Germany

General Chair

Andrea Bondavalli University of Florence, Italy

Program Co-Chairs

Andrea Bondavalli University of Florence, Italy
Felicita Di Giandomenico ISTI-CNR, Italy

Workshop and Tutorial Chair

Frank Ortmeier Otto -v.-Guericke-Univ. Magdeburg, Germany

Industry-Liaison Chair

Michael Paulitsch AIRBUS Group, Germany

Finance Chair

Ettore Ricciardi ISTI-CNR, Italy

Publication Chair

Andrea Ceccarelli University of Florence, Italy

Publicity Chair

Francesco Flammini Ansaldo STS, Italy

Local Organizing Chair

Paolo Lollini University of Florence, Italy

VIII Organization

Program Committee

Stuart Anderson University of Edinburgh, UK
Friedemann Bitsch Thales Transportation Systems GmbH,

Germany
Robin Bloomfield ADELARD, UK
Sandro Bologna Associazione Italiana Esperti in Infrastructure

Critiche (AIIC), Italy
Andrea Bondavalli University of Florence, Italy
Jens Braband Technische Universität Braunschweig, Germany
Francesco Brancati Resiltech S.R.L., Italy
Domenico Cotroneo University of Naples Federico II, Italy
Bojan Cukic West Virginia University, USA
Salvatore D’Antonio University of Naples ”Parthenope”, Italy
Peter Daniel SELEX ELSAG, UK
Felicita Di Giandomenico ISTI-CNR, Italy
Kevin R. Driscoll Honeywell Laboratories, USA
Wolfgang Ehrenberger Hochschule Fulda - University of Applied

Sciences, Germany
Massimo Felici HP Lab., UK
Francesco Flammini Ansaldo-STS, Italy
Barbara Gallina Mälardalen University, Sweden
Janusz Górski Gdansk University of Technology, Poland
Jérémie Guiochet LAAS, CNRS, France
Mohamed Kaaniche LAAS, CNRS, France
Nobuyasu Kanekawa Hitachi, Japan
Karama Kanoun LAAS, CNRS, France
Johan Karlsson Chalmers University, Sweden
John Knight University of Virginia, USA
Phil Koopman Carnegie Mellon University, USA
Floor Koornneef TU Delft, Netherlands
Giuseppe Lami ISTI-CNR, Italy
Søren Lindskov Hansen Novonordisk A/S, Denmark
Michael Lyu University of Hong Kong, Hong Kong
Istvan Majzik Budapest University of Technology and

Economics, Hungary
Fabio Martinelli IIT-CNR, Italy
Paolo Masci Queen Mary University, UK
Fatima Mattiello INPE, Brasil
Silvia Mazzini Intecs SpA, Italy
Nuno Neves University of Lisbon, Portugal
Odd Nordland SINTEF, Norway
Frank Ortmeier Otto -v.-Guericke-Univ. Magdeburg, Germany
Michael Paulitsch AIRBUS Group, Germany

Organization IX

Alexander Romanovosky University of Newcastle, UK
John Rushby SRI International, USA
Francesca Saglietti University of Erlangen-Nuremberg, Germany
Christoph Schmitz Zühlke Engineering AG, Switzerland
Erwin Schoitsch AIT Austrian Institute of Technology, Austria
Christel Seguin ONERA, France
Nuno Silva Critical Software SA, Portugal
Amund Skavhaug NTNU, Norway
Wilfried Steiner TTTech, Austria
Mark Sujan University of Warwick, UK

Elena Troubistsyna Åbo Akademi University, Finland
Tatsuhiro Tsuchiya Osaka University, Japan

External Reviewers

Aaron Kane
Aikaterini Mitrokotsa
Anatoliy Gorbenko
András Vörös
Andre Didier
Andrea Domenici
Anna Lanzaro
Artsiom Yautsiukhin
Carlo Clarotti
Dan Sheridan
David Powell
Davide Iacono
Fanny Dufossé
Fei Xia
Felix Hutchison
Francesco Fucci
Francesco Santini
Ilaria Matteucci
Inna Pereverzeva
John R. Filleau
Kateryna Netkachova
Kevin Mueller

Leanid Krautsevich
Linas Laibinis
Linling Sun
Ludovic Pintard
Malcolm Taylor
Maria Vigliotti
Mario Fusani
Mathilde Machin
Milda Zizyte
Nicola Nostro
Pablo Gutierrez Peon
Pierre Bieber
Robert Buchholz
Robert Stroud
Roberto Natella
Roberto Pietrantuono
Tanja Hebecker
Vincenzo Fioriti
Wolfgang.D. Ehrenberger
Yuliya Prokhorova
Zahid Syed
Zoe Andrews

Sponsors

Scientific Sponsors

EWICS TC7

Università degli Studi di
Firenze

Consiglio Nazionale delle Ricerche
(CNR) - Istituto di Scienza e Tecnologie
dell’Informazione (ISTI) “A. Faedo”

Industrial Sponsors

Organization XI

Technical Co-sponsors

Associazione Italiana Esperti in
Infrastrutture Critiche (AIIC)

Austrian Institute of Technology

European Network of Clubs for
Reliability and Safety of Software

European Research Consortium for
Informatics and Mathematics (ERCIM)

Gesellschaft für Informatik e. V.

International Federation for Information
Processing

Oesterreichische Computer Gesellschaft-
Austrian Computer Society

Quantitative Safety Assessment: Experiments

and Field Measurements (Invited Talk)

Henrique Madeira

University of Coimbra, DEI-CISUC
Coimbra, Portugal

henrique@dei.uc.pt

The idea of inserting deliberated faults (or errors) in computer systems or com-
puter components to evaluate its behavior in the presence of such faults, or
to validate specific fault tolerance mechanisms, is quite intuitive and has been
extensively used since the very beginning of the computer industry. There are
many variants of this approach, which is generally known as fault injection.

Fault injection is often regarded as a testing approach. In fact, a popular
utilization of fault injection is to test fault-handling mechanisms, in order to
validate them. The idea is simple and obvious: if those mechanisms are supposed
to handle faults, then a way to test them is to inject realistic faults and provide
such mechanisms with the kind of inputs they are supposed to handle. This
is often named fault removal, as the aim is to detect the presence of design
and/or implementation faults, and then to help to locate and remove them.

But fault injection can also be used to evaluate or to measure the efficiency
of specific fault-handling mechanisms (e.g., evaluate the detection coverage and
latency of given error detection mechanism), helping quantifying the confidence
that can be put on a given component or system, and contributing for the es-
timation of the number and the consequences of possible faults in the system.
This is often named fault forecasting.

Fault injection is widely used today by both the industry and the research
community but, unfortunately, most of the utilization examples are related to
the use of fault injection as a testing approach. In fact, the examples of using
fault injection as evaluation or measurement technique are relatively rare and
generally not convincing, from a technical perspective (i.e., the relevance and
correctness of the evaluation is often questionable).

Many reasons account for this narrow utilization of fault injection techniques
but maybe the first one lies in the fact that fault injection tools are not readily
available for the industry. Fault injection and experimental dependability eval-
uation is often regarded as a very expensive approach (indeed, in the ad hoc
fashion it is used most of the times is in fact very expensive and time consum-
ing), as the absence of adequate fault injection tools forces the practitioners and
researchers to develop their own tools, without taking advantage of decades of
progress in the field and quite often repeating the same mistakes others did in
the past.

The talk addresses the use of fault injection techniques to assess dependability
attributes of components and/or computer systems, with particular focus on the

XIV H. Madeira

use of fault injection to help on computer safety assessment. The potential use
of fault injection techniques in conjunction with traditional methods for safety
analyses will be discussed, for both qualitative and quantitative safety assessment
methods.

The talk starts with a compact view on the different fault injection approaches
and presents in detail the software implemented fault injection techniques that
are widely used today, providing examples of the fault injection tools available,
including the few commercial tools available in the market. The fundamental
issue of the definition of fault models, and the representativeness and coverage
of the injected faults, is discussed in detail, as this is an essential element to
allow the use of fault injection for the quantitative assessment of the efficiency
of fault-handling mechanisms and, consequently, for safety assessment.

Two types of injected faults are particularly relevant. First the injection of
software faults, as the problem of residual software faults (i.e., bugs) is, most
probably, the main threat for computer-based systems. In fact, the high com-
plexity of the software together with its tight integration with physical systems,
the intensive use of third-party software components, and the pressure on the
development budgets due to market constraints (including for the safety-critical
market segment), lead to residual software defects that escape all the tests and
manifest themselves only during operation. The injection of software faults is in-
tended to reproduce realistically similar conditions to the ones observed when a
residual software fault is activated in a given software component, with the goal
of assessing how the rest of the system copes with the faulty software component.

The second type of faults widely injected is the traditional hardware transient
faults. Actually, this kind of faults is quite relevant in safety-critical scenarios,
as quite often the environmental conditions are tough and have the potential to
induce transient faults in the hardware. Furthermore, the trend in the semicon-
ductor industry to reduce the gate sizes of the integrated circuits, to improve
performance and reduced power consumption, makes the newer generation of
hardware more susceptible to soft errors. In fact, the decrease in feature sizes
and the small operating voltages make the spontaneous bit changes (soft errors)
much more frequent. Even considering that the hardware used in safety-critical
applications remains some generations behind the most recent hardware versions,
the trend of using small smart devices in safety-critical applications, makes the
expected increase in the soft error rate a problem for small devices, such as small
smart sensors, as the pressure to increased portability by improving the device
power consumption will push the use of the most recent hardware versions to
safety-critical applications. For all these reasons, the injection of hardware tran-
sient faults is one of the major goals in fault injection.

The talk uses examples of real fault injection experiments, in both labora-
tory conditions and real field environments to illustrate the hurdles and possibil-
ities of using fault injection for the quantitative assessment of computer safety.
Whenever possible, the potential use of these examples of fault injection stud-
ies in conjunction with traditional methods for safety analyses will be discussed.

Quantitative Safety Assessment XV

Other utilizations of fault injection such as faultload for dependability bench-
marking, experimental risk assessment, and computer failure prediction are also
presented and illustrated with research examples.

Key Challenges for the Automotive Industry

and Renault (Invited Talk)

Philippe Quere

UET Logiciels Embarques Temps Réel- DEA-SFF6
Guyancourt, France

philippe.p.quere@renault.com

The automotive domain will continue to change in the future, for instance cars
are becoming more and more connected, ADAS (Advanced Driving Assistance
Systems) will more and more help the driver and sometimes take hand on the
car, and maybe one day our car will become fully autonomous ! The automotive
industry is therefore facing new major technical challenges, with very important
safety and security stakes.

The talk will present in five points the challenges in the automotive domain
and within Renault more specifically.

At first, a general introduction on the automotive context will recall the key
factors driving this industry and business challenges that we are facing.

Some of the differentiating characteristics with other industries will be high-
lighted in order to allow the understanding of the automotive context.

Then, from this introduction, the focus will be put on Renault and its strategy
for his customers. Some orientations that may differ from other car manufactur-
ers will be explained. These orientations influence the research and development
efforts for Renault.

Then, the top technical challenges at vehicle level, as seen by Renault will be
shown. Some of the actions already on going in order to meet these challenges
will be highlighted.

I will then explain more deeply the consequences at the software level, and
what are the key areas of interest on Renault’s side, and in particular regarding
safety and security of the software embedded in the cars.

And as a conclusion, the importance of the link between the industry and
the academics will be emphasized. Some figures showing Renault involvement in
this domain will be provided.

Software Quality, Dependability and Safety in

Embedded Systems (Invited Talk)

Philip Koopman

Carnegie Mellon University,
Pittsburgh, PA, USA

koopman@cmu.edu

We often trust embedded systems with mission-critical functions, and even our
own lives. But the designers of such systems (and especially their managers)
are often domain experts who have not been formally trained in software de-
velopment. While many embedded systems work well, in my design reviews I
frequently see problems ranging from the subtle to the catastrophic. I have iden-
tified commonly occurring technical, process, and quality assurance issues based
on my experience performing more than 135 industry design reviews. Common
problems include a lack of embedded-specific software engineering skills, soft-
ware process gaps, and a failure to appreciate that more than just product-level
testing is required to create high quality software. Most of these problems cannot
simply be fixed by adopting a tool, but rather require a change of culture and
perspective in engineering organizations. All too often, the developers and their
management simply don’t realize they have gotten in over their heads as their
product’s software has escalated from performing a simple supporting function
to providing make-or-break product functionality.

The Toyota Electronic Throttle Control System (ETCS) is a system deployed
in almost a decade of vehicle production that exhibits many of the common
problems I have seen in design reviews. It has numerous lapses in following good
software practices in general, and safety-critical software practices in particular.

Briefly, the ETCS takes inputs from the driver (for example the accelerator
pedal position and brake pedal activation), and has complete control over the
throttle position as well as fuel and spark. There are practical scenarios in which
a fully open throttle can overpower the brakes in Toyota vehicles. This makes
the ETCS a safety-critical throttle-by-wire system.

Mishaps involving the Toyota ETCS have resulted in billions of dollars of
costs in the US, including an economic loss class action settlement, a criminal
cover-up case, and undisclosed settlements in hundreds of individual death and
injury cases. Recalls have been issued – but for mechanical issues rather than
for software defects. A redacted NASA report has been made public, as well as
some transcripts from the one public trial that featured software safety testimony
(including testimony by this author). The jury in that one trial found Toyota
liable for a fatal crash based on testimony that alleged software defects were
responsible. Toyota has denied that software defects have resulted in this or any
other mishap.

XVIII P. Koopman

While the question as to whether software defects caused the hundreds of
other loss events involved in lawsuits remains open, the following observations
about the ETCS are for practical purposes uncontested: Applying brakes will
not necessarily stop the car if the throttle is commanded wide open (whether
by floor mat entrapment or a possible software defect). Toyota did not follow an
applicable set of safety guidelines (e.g., the MISRA Development Guidelines),
and has not made an argument that their development processes are compara-
bly rigorous to any established safety guideline. A significant amount of testing
was performed both at the module and vehicle level but, as one would expect,
this testing effort pales in comparison to the exposure of a fleet of millions of
deployed vehicles. While there are dual redundant analog signals from the accel-
erator pedal to the ETCS, they both go through the same A/D converter on the
same chip. While the ETCS has two CPU chips, they do not form a proper dual
path system. While Toyota did have some coding rules, developers did not always
follow their own coding rules, and did not have a formalized (written) waiver pro-
cess. Static analysis of the ETCS software reveals global variables declared with
different types, casts that alter values, condition evaluations with side effects,
and uninitialized variables. The ETCS main CPU software has approximately
10,000 global variables, most of which could have been declared ”local static”
or ”file static” to reduce their scope – but weren’t. Shared global variables are
not all declared ”volatile,” and shared global variables are not always accessed
under the protection of interrupt masks. Moreover, NASA identified a specific
concurrency hazard situation with the ETCS. Many ETCS software functions
are quite long, and modularity is poor in general. There is no mitigation for stack
overflow, and NASA did not find it possible to establish a maximum stack depth
due to the presence of recursion. The main CPU can be more than 80% loaded,
but beyond that NASA found that timing analysis was too difficult to complete
due to, for example, the presence of busy-wait loops and indirect recursion. A
watchdog timer is used to monitor average CPU load, but is not able to detect
some task deaths. Much of the ”paperwork” that is typically associated with a
rigorous software development process does not seem to exist, including: defect
logs, peer review records, comprehensive test plans, recorded test results, and
process quality audit records.

Cyber-Physical Systems in Horizon 2020 –

Trends in EU research and innovation activities
(Invited Talk)

Werner Steinhögl

European Commission, Unit Complex Systems and Advanced Computing,
CONNECT - A3
Brussels, Belgium

Werner.Steinhoegl@ec.europa.eu

Cyber-Physical Systems (CPS) refer to next generation embedded ICT sys-
tems that are interconnected and collaborating including through the Internet
of Things, and providing citizens and businesses with a wide range of innovative
applications and services. These are the ICT systems increasingly embedded in
all types of artefacts making ”smarter”, more intelligent, more energy-efficient
and more comfortable our transport systems, cars, factories, hospitals, offices,
homes, cities and personal devices. The challenge for Europe is on both reinforc-
ing industrial strengths as well as exploring new markets.

Often endowed with control, monitoring and data gathering functions, CPS
need to comply with essential requirements like safety, privacy, security and near-
zero power consumption as well as size, usability and adaptability constraints. To
maximise impact and return on investment in this field, the following challenges
are essential:

– De-verticalising technology solutions with CPS platforms that cut across the
barriers between application sectors including mass consumer markets

– Bringing together actors along the value chain from suppliers of components
and customised computing systems to system integrators and end users.

– Creating new ICT Platforms for both vertical and core markets from auto-
motive, health, smart buildings and energy to wireless communications and
digital consumer products and services.

The goal is to enable every business in Europe, and notable SMEs, to get
access to latest CPS technologies, knowledge and skills in order to innovate and
generate higher value in its products, processes and services and to compete at
a world scale.

Different EU actions are foreseen for this:

– Objectives related to CPS in the ”Industrial Leadership” part of Horizon
2020 supporting collaborative research and innovation projects

– In particular, networks of competence centres offering a one stop shop for
any business to upgrade their products, processes and services. These should
enable the organic development of innovation clusters around these centres
and a dynamic environment for business growth in emerging areas such as
”smart anything everywhere” and Internet of Things.

XX W. Steinhögl

– ECSEL, the Joint Technology Initiative in components and systems, strength-
ens the digital supply chain in Europe and ensures that value creation from
the supply industry in Europe is compatible with the size of our economy
and provides the technologies needed to drive the whole economy.

Table of Contents

Fault Injection Techniques

A Simulated Fault Injection Framework for Time-Triggered
Safety-Critical Embedded Systems . 1

Iban Ayestaran, Carlos F. Nicolas, Jon Perez, Asier Larrucea, and
Peter Puschner

Rapid Fault-Space Exploration by Evolutionary Pruning 17
Horst Schirmeier, Christoph Borchert, and Olaf Spinczyk

Verification and Validation Techniques

Safety Validation of Sense and Avoid Algorithms Using Simulation and
Evolutionary Search . 33

Xueyi Zou, Rob Alexander, and John McDermid

Debugging with Timed Automata Mutations . 49
Bernhard K. Aichernig, Klaus Hörmaier, and Florian Lorber

Automotive Systems

Systematic Derivation of Functional Safety Requirements for
Automotive Systems . 65

Kristian Beckers, Isabelle Côté, Thomas Frese, Denis Hatebur, and
Maritta Heisel

Making Implicit Safety Requirements Explicit: An AUTOSAR Safety
Case . 81

Thomas Arts, Michele Dorigatti, and Stefano Tonetta

Securing Vehicle Diagnostics in Repair Shops . 93
Pierre Kleberger and Tomas Olovsson

Coverage Models and Mitigation Techniques

Analysis of Persistence of Relevance in Systems with Imperfect Fault
Coverage . 109

Jianwen Xiang, Fumio Machida, Kumiko Tadano, and
Yoshiharu Maeno

Exploiting Narrow Data-Width to Mask Soft Errors in Register Files . . . 125
Jianjun Xu, Qingping Tan, Zeming Shao, and Hong Ning

XXII Table of Contents

Assurance Cases and Arguments

Towards a Clearer Understanding of Context and Its Role in Assurance
Argument Confidence . 139

Patrick John Graydon

Assurance Cases for Block-Configurable Software . 155
Richard Hawkins, Alvaro Miyazawa, Ana Cavalcanti,
Tim Kelly, and John Rowlands

Generation of Safety Case Argument-Fragments from Safety
Contracts . 170

Irfan Sljivo, Barbara Gallina, Jan Carlson, and Hans Hansson

System Analysis

Estimating Worst Case Failure Dependency with Partial Knowledge of
the Difficulty Function . 186

Peter Bishop and Lorenzo Strigini

Proving the Absence of Stack Overflows . 202
Daniel Kästner and Christian Ferdinand

Security and Trust

Trust-Based Intrusion Tolerant Routing in Wireless Sensor Networks . . . 214
Francesco Buccafurri, Luigi Coppolino, Salvatore D’Antonio,
Alessia Garofalo, Gianluca Lax, Antonino Nocera, and Luigi Romano

A Petri Net Pattern-Oriented Approach for the Design of Physical
Protection Systems . 230

Francesco Flammini, Ugo Gentile, Stefano Marrone,
Roberto Nardone, and Valeria Vittorini

On Two Models of Noninterference: Rushby and Greve, Wilding, and
Vanfleet . 246

Adrian Garcia Ramirez, Julien Schmaltz, Freek Verbeek,
Bruno Langenstein, and Holger Blasum

Notations/Languages for Safety-Related Aspects

Specifying Safety Monitors for Autonomous Systems Using
Model-Checking . 262

Mathilde Machin, Fanny Dufossé, Jean-Paul Blanquart,
Jérémie Guiochet, David Powell, and Hélène Waeselynck

Table of Contents XXIII

Automatically Generated Safety Mechanisms from Semi-Formal
Software Safety Requirements . 278

Raphael Fonte Boa Trindade, Lukas Bulwahn, and
Christoph Ainhauser

Querying Safety Cases . 294
Ewen Denney, Dwight Naylor, and Ganesh Pai

Safety and Security

Security Application of Failure Mode and Effect Analysis (FMEA) 310
Christoph Schmittner, Thomas Gruber, Peter Puschner, and
Erwin Schoitsch

Safety and Security Interactions Modeling Using the BDMP Formalism:
Case Study of a Pipeline . 326

Siwar Kriaa, Marc Bouissou, Frederic Colin, Yoran Halgand, and
Ludovic Pietre-Cambacedes

A Pragmatic Approach towards Safe and Secure Medical Device
Integration . 342

Christoph Woskowski

Author Index . 355

A Simulated Fault Injection Framework

for Time-Triggered Safety-Critical Embedded
Systems

Iban Ayestaran1, Carlos F. Nicolas1, Jon Perez1,
Asier Larrucea1, and Peter Puschner2

1 Embedded Systems Group, IK4-Ikerlan Research Center, Arrasate-Mondragón,
Basque Country (Spain)

{iayestaran,cfnicolas,jmperez,alarrucea}@ikerlan.es
2 Institut für Technische Informatik, Technische Universität Wien, Wien, Austria

peter@vmars.tuwien.ac.at

Abstract. This paper presents a testing and simulated fault injection
framework for time-triggered safety-critical embedded systems. Our ap-
proach facilitates the validation of fault-tolerance mechanisms by per-
forming non-intrusive Simulated Fault Injection (SFI) on models of the
system at different stages of the development, from the Platform Inde-
pendent Model (PIM) to the Platform Specific Model (PSM). The SFI
enables exercising the intended fault tolerance mechanisms by injecting
faults in a simulated model of a system. The main benefit of this work
is that it enables an early detection of design flaws in fault-tolerant sys-
tems, what reduces the possibility of late discovery of design pitfalls that
might require an expensive redesign of the system. We examine the fea-
sibility of the proposed approach in a case study, where SFI is used to
assess the fault tolerance mechanisms designed in a simplified railway
signaling system.

Keywords: Simulated Fault Injection, Automatic Test Executor, Time-
Triggered Systems, Dependable Systems, Safety-Critical Systems, Fault
Tolerance.

1 Introduction

Safety-critical embedded systems are dependable systems that could cause loss
of life, significant property damages or damages to the environment in case
of failure. The selection of appropriate fault-tolerance mechanisms requires a
careful analysis of the system through all the design refinement phases using
techniques such as Failure Mode and Effect Analysis (FMEA), recommended
by the international IEC-61508 safety standard. Typically the safety validation
involves fault injection experiments at the final stage of the system development.
However, the late fixing of the detected design flaws might require a complete
and expensive redesign of the system. Thus, the validation of fault-tolerance
mechanisms in the early steps of the development could bring major benefits to

A. Bondavalli and F. Di Giandomenico (Eds.): SAFECOMP 2014, LNCS 8666, pp. 1–16, 2014.
c© Springer International Publishing Switzerland 2014

2 I. Ayestaran et al.

designers. In fact, the IEC-61508 standard recommends fault injection techniques
in all steps of the development process of safety-critical systems [21].

Simulated Fault Injection (SFI) is a technique to insert faults in models of
systems during their simulation. This technique allows the developers to observe
the behavior of the system in the presence of faults, enabling the verification of
fault-tolerance mechanisms before assembling a system prototype. The analysis
of the results obtained in SFI campaigns can be used to evaluate the effectiveness
of the fault tolerance mechanisms, analyze the weaknesses of the system and
study possible improvements.

In order to cope with the increasing complexity of embedded systems and
to analyze the diverse failures a system might suffer from, the IEC-61508 stan-
dard highly recommends the usage of semi-formal methods, like the ones used in
Model Driven Development (MDD) approaches such as the Model Driven Archi-
tecture (MDA) [17]. According to the MDA, first a purely functional model of
the system is created, called Platform Independent Model (PIM). This first sep-
aration of the functionality from the hardware (HW) components saves design
time and cost during the development process, and eases the early verification of
the functionality of the system. Several commercial tools are available to develop
functional models, e.g. SCADE Suite [9].

Once the assessment of the PIM is finished, the model is refined into the so-
called Platform Specific Model (PSM) by defining a platform model and deploy-
ing the functional components of the PIM into it. This enables the introduction
of HW-specific errors into the model.

In this context, SystemC [11] is a high-level HW/SW co-design language based
on C++ that enables modeling and simulating systems at different levels of ab-
straction. Therefore, SystemC can be used to design, simulate and verify plat-
form specific models of dependable embedded systems. Nowadays SystemC has
become the de-facto standard in HW/SW system development.

Given this situation, the aim of this research work is to provide a modeling
and simulation environment for dependable Time-Triggered HW/SW systems
based on SystemC. The main contribution of this paper is the presentation
of a testing and simulated fault injection framework for the Platform Specific
Time-Triggered Model (PS-TTM) approach [2], which enables reproducible non-
intrusive SFI at different stages of the development for the early assessment of
fault-tolerance mechanisms.

The paper is structured as follows: Section 2 briefly describes previous re-
lated work. Section 3 reviews the PS-TTM modeling and simulation platform
for dependable time-triggered embedded systems, which is the platform where
the testing and fault injection framework has been developed. Section 4 presents
the framework for the verification of time-triggered dependable systems by sim-
ulated fault injection at different stages of the development, which is evaluated
in Section 5 by means of a case study based on a simplified railway signaling
system. Section 6 briefly presents the results obtained in the case study and
finally Section 7 summarizes the main conclusions of the work.

A Simulated Fault Injection Framework for TT Safety-Critical Systems 3

2 Related Work

According to Avizienis et al. [1], a failure is an event that occurs when the de-
livered service deviates from correct service. An error is a deviation from the
correct service of an external state of the system, and a fault is the cause of an
error. In other words, errors are the manifestations of faults whereas failures are
the consequence of errors. Therefore, injecting faults into systems is a straight-
forward technique to verify that such faults do not cause failures in the system,
i.e., the system is tolerant to that faults.

Thus, fault injection strategies and techniques have been very widely analyzed
[7,27] and several tools have been developed, most of them focusing on VHDL
models [12,10,5,19]. However, as previously stated, SystemC is nowadays the de-
facto standard in industrial HW/SW system design and simulation. Therefore,
fault injection design and simulation in SystemC models has been getting an
increasing interest in the latest years [18,24,8,15,23].

Misera et al. [18] adapt fault injection techniques and strategies from VHDL
models to SystemC models in order to analyze the limitations and possibilities
of the SystemC kernel. They simulate systems including saboteurs and simulator
commands, and they extend logic types of SystemC in order to perform a more
realistic behavior of logic components. Since the approach is based on strategies
used in VHDL models, they focus on logic-level models. In [24] Shafik et al.
propose an alternative technique to the one presented in [18], also focusing on
logic-level models.

Bolchini et al. go one step further into multiple abstraction level fault injection
in [8]. The paper presents a fault injection environment for the ReSP simulation
platform [6]. The approach enables injecting faults by using saboteurs and sim-
ulator commands, using a novel technique called reflective wrapper. It does not
focus on a specific MoC, so simulation is paused and resumed whenever a fault
is injected.

In [15] Lu and Radetzki use the Concurrent and Comparative Simulation
(CCS) technique to inject faults in SystemC models. This approach makes it
possible to perform more than one fault injection experiment in each execution.
The developer must use a specific data-type in order to inject faults in variables,
and fault libraries are not defined, so the tester must implement the fault models.

Reiter et al. [23] perform error injection in simulated HW models defined
using the CHESS modeling language by extending them in order to inject er-
rors. The approach provides a library of different error models, including data-
corruption, timing-corruption, halt, and signal-loss. The framework does not rely
on a concrete model of computation, and the paper does not describe how timing
constraints of the System Under Test (SUT) are guaranteed.

Regarding to fault models and their simulation, the Model-Based Genera-
tion of Test-Cases for Embedded Systems (MOGENTES) project [20] specifies a
number of HW and SW related fault and failure models and taxonomies. On the
other hand, the international ASAM AE HIL [26] standard defines an interface
to perform error simulation in Hardware in the Loop testing.

4 I. Ayestaran et al.

In this context, this paper describes a novel testing and simulated fault in-
jection framework for the verification of time-triggered safety-critical embedded
systems at different stages of the development, including PIM and PSM. The
framework is integrated in the PS-TTM modeling and simulation platform [2],
and includes a time-triggered Automatic Test Executor (ATE) with libraries of
fault models in order to assess the robustness of the SUT in the presence of
faults without making any modification to the models.

3 The PS-TTM Modeling and Simulation Platform

The Platform Specific Time-Triggered Model (PS-TTM) [2] is a modeling and
simulation platform for time-triggered safety-critical embedded systems, based
on the Y-chart approach [4,13] and MDA models. The goal of the PS-TTM
framework is to give the designer an environment based on SystemC for the
development and testing of time-triggered safety-critical embedded systems fol-
lowing the MDA.

In compliance to the MDA, the development of a system in the PS-TTM
framework starts with the definition of a functional model, called Platform In-
dependent Model (PIM). Since the approach focuses in time-triggered systems,
PIMs rely on the Logical Execution Time (LET) model of computation (MoC)
[14]. The LET MoC defines the functionality of systems by specifying a logi-
cal duration for each computational job of the system, regardless of its physical
duration. This permits the software engineers to communicate more effectively
with the control engineers, since the properties of the system are closely aligned
with the mathematical model of the control design.

Thus, a LET computation engine called Platform Independent Time-Triggered
Model (PI-TTM) has been developed for the simulation of the PIMs [3]. This
engine has been built by providing an extension that imposes LET MoC con-
straints to the E-TTM simulation platform [22].

The design framework includes a library of HW components that can be
assembled to generate a model of the target platform. In accordance to the MDA,
once the PIM has been validated, it is deployed into the platform description
model in order to generate the final PSM. The simulation of PSMs is handled by
the E-TTM engine. This gives the designers a higher freedom regarding to the
definition of the temporal behavior of their systems, as the restrictions previously
imposed by the LET MoC disappear.

This approach eases the modeling and validation of time-triggered systems,
since it starts with the design of a purely functional LET-based model and
enables a straightforward transformation into a platform specific E-TTM-based
model, what guarantees that time-properties are intrinsically preserved in the
final implementation when the platform is based on the TTA.

4 Testing and Simulated Fault Injection Framework

The PS-TTM simulation platform has been extended with facilities to perform
testing and simulated fault injection experiments. Two are the main aims of this

A Simulated Fault Injection Framework for TT Safety-Critical Systems 5

PS-TTM ATE

TCI

TC Parser Test Case

TC Interpreter

Data Generator

*.xml

TC spec.

Python
shell

FIU

FI Parser FI Set

FI Set Interpreter

Fault Injector

*.xml

FI spec.

Fault
library

TPM

TP Parser TP Set

TP Set Interpreter

Data Recorder

*.xml

TP spec.

*.vcd

Test results

SUT

Fig. 1. PS-TTM Automatic Test Executor (ATE)

framework: On one hand, it must enable non-intrusive fault injection, i.e. fault
injection activities must not require the designer to modify the model of the
system. On the other hand, testing and fault injection must be possible in all
stages of the development of the systems, in order to enable an early detection
of design flaws.

In order to achieve these goals, this work presents the PS-TTM Automatic
Test Executor (ATE) shown in Fig. 1, a time-triggered testing and SFI frame-
work. The PS-TTM ATE is composed by three different modules: The Test Case
Interpreter (TCI), the Fault Injection Unit (FIU), and the Test Point Man-
ager (TPM).

4.1 Test Case Interpreter (TCI)

The TCI is the module that enables exercising the desired test-cases. It provides
two services:

1. Automatic interpretation of test-cases: The test-case parser reads and stores
the test-cases specified in XML files during the initialization phase. During
simulation the data-generator feeds the SUT at each time tick with the
signals corresponding to the test-case defined.

2. Interactive signal setting: The module provides a set(signal,value) com-
mand that permits the testing team to modify the input signals of the SUT
during simulation, sending commands via a Python command shell.

6 I. Ayestaran et al.

4.2 Fault Injection Unit (FIU)

The FIU enables injecting different types of faults in the variables of the SUT.
The fault injection parser reads the fault configuration files (XML files) during
the initialization phase and stores the fault injection campaign. In order to per-
form the injection of faults, the PS-TTM simulation engine has been modified
so that all the communications that take place in the SUT are sent to the FIU.
The fault injector of the FIU compares the properties of each received signal to
the fault injection set collected in the initialization phase. In case a fault has
to be injected, the FIU sabotages the signal as required and returns it to the
SUT. Therefore, as required by the first goal of this work, the faults are injected
non-intrusively, i.e., the model of the system does not suffer any modification
for the fault injection activities.

In order to achieve the second goal of the framework, the FIU provides fault
libraries for both platform independent and platform specific models. The fault
library for PIMs draws on the failure modes defined in the MOGENTES project
for boolean, integer and floating point variables (Table 1). Faults in PIMs can
be injected in both output and input signals, what enables symmetric and asym-
metric fault simulation.

Since the PS-TTM approachmodels the HW components at a high abstraction
level, the fault library for PSMs is composed by the effects to which HW-related
faults are typically reduced in the literature [23] (Table 2). However, as it is
possible to extend the PSM component library with more detailed models of
HW components, the fault library may also be extended for fault injection at a
lower level of abstraction.

The FIU supports two different fault modes: transient and permanent. Tran-
sient faults are temporary misbehaviors, so their configuration requires to specify
a duration. Instead, permanent faults only need to specify their trigger time, as
these faults are assumed to remain active until the simulation ends.

The selected XML schema for the definition of fault injection campaigns com-
plies with the international ASAM AE HIL standard for hardware-in-the-loop
testing. Although the aim of this work is not to perform fault injection at

Table 1. Fault library for platform independent models

Fault Effect Name Config. attributes Description

Invert B I - Boolean value is inverted

Stuck At B SA stuck value Signal gets stuck at a given value

Stuck B S - Signal gets stuck at the actual value

Stuck If B SI stuck value, condition Signal gets stuck if a given condition holds

Open Circuit B OC - Wire is disconnected, signal takes an arbitrary value (noise)

B
oo

le
an

Delay B D delay Signal is delayed by an amount of time

Constant I C, F C constant value Signal gets stuck at a given constant value

Amplification I A, F A ampl value Signal is amplified by fixed value

Amplification Range I AR, F AR min amp value, max ampl value Signal is amplified by a randomly selected value (between given max. and min. values)

Drift I D, F D drift value At each time stepc, the signal drifts away from its nominal value by a given value

Offset I O, F O offset value A given fixed offset is added to the signal

Offset Range I OR, F OR min offset value, max offset value A randomly selected offset value is added to the signal (between given max. and min. values)

Stuck I S, F S - Signal gets stuck at the actual value

Random I R, F R min value, max value Signal takes an arbitrary value (between given max. and min. values)

In
te

ge
r/

F
lo

at

Delay I D, F D delay Signal is delayed by an amount of time

A Simulated Fault Injection Framework for TT Safety-Critical Systems 7

Table 2. Fault library for platform specific models

Fault Effect Name Attributes Description

Corruption C - The functionality is performed incorrectly. The information provided in the interface is corrupted

No execution NE - The functionality is not executed. No information is provided as a result

Out of time OoT Delay Time bounds of the functionality are not respected. Information is provided later than expected

Babbling B Delay Information in the interface is erroneous both in terms of content and time.

hardware-in-the-loop level, sticking to the standard enables forward reuse of
the fault injection campaigns until the final prototyping phase. In order to ease
the definition of the fault injection specification, we developed a graphical tool
with automatic code generation.

4.3 Test Point Manager (TPM)

The TPM is the module for the observation of internal signals of the SUT. The
signals to be observed are specified in an XML file which is read by the test-point
parser during the initialization. During simulation the data recorder stores at
each time stamp the values of the signals specified on the test point configuration
file. At the end of the simulation, the recorded data is saved in a value-change-
dump file (*.vcd). The file can be textually and graphically visualized using
different tools for the assessment of the system behavior.

5 Case Study

In order to check the testing and simulated fault injection framework described
in Section 4, we model a simplified railway signaling system by means of the
PS-TTM platform. Following the approach described in the PS-TTM, we first
design a PIM and we later refine it into a PSM.

The European Railway Traffic Management System (ERTMS) [25] is an Eu-
ropean Union backed initiative for the definition of a unique train signaling
standard throughout Europe. The high-speed train on-board European Train
Control System (ETCS) is a safety-critical embedded system (SIL-4, Safety In-
tegrity Level) that protects the train by supervising the traveled distance and
speed, and activating the emergency brake if the authorized values are exceeded.

The ETCS is composed by several subsystems connected to the central safety
processing unit called European Vital Computer (EVC). The EVC contains an
on-board odometry system that performs an estimation of the speed and traveled
distance based on the measurements provided by a set of sensors, such as wheel
speed encoders, accelerometers or Doppler radars, and the Balise Transmission
Module (BTM) that gives the exact position as the train passes the eurobalises
placed in the railway track. If the estimations exceed the authorized values, the
EVC automatically activates an emergency brake.

In this case, we summarize the basic functionality of the EVC system in four
main tasks: speed and position estimation, operational mode control, emergency
brake control and service brake control.

8 I. Ayestaran et al.

The speed and position estimation reads the information provided by a set of
sensors and the BTM and makes an estimation of the speed and position of the
train.

The operational mode control manages the activation of the Standby and
Supervision modes in the emergency and service brake control tasks, depending
on the command received from the DMI.

The emergency brake control task implements the safety-critical (SIL-4) func-
tionality of the system. It receives the information about the position and speed
estimated by the odometry system, the Standby and Supervision activation sig-
nals from the mode control unit, and the reset command from the DMI. When
the operational mode control unit sends the Standby activation signal the emer-
gency brake is activated. When the system is set to Supervision mode, the es-
timated distance and speed are compared to a pre-defined braking-curve that
sets a maximum speed for each point in the track. If the maximum speed is
exceeded the emergency brake is activated. The brake is only deactivated if a
reset command is received from the DMI when the train is stopped.

The service brake control implements the non-safety-critical functionality. It
receives the estimated position and speed from the odometry unit, and the mode
activation signals from the mode control unit. If the system is in Standby mode,
the service brake and the warning are deactivated. However, in Supervision
mode, the warning signal and the service brake are activated when the speed of
the train reaches the warning and service brake activation speeds respectively.
The maximum speeds are pre-defined in two braking-curves. Both the warning
and the service brake are deactivated when the speed of the train falls below the
warning activation speed.

5.1 Platform Independent Model

We design the PIM of the system relying on the meta-model described in section
3. As Figure 2 shows, the PIM implementation consists of 5 jobs deployed in
4 DASes. The DMI, odometry and mode-control DASes contain one job each,
whereas the brake-system DAS executes the emergency-brake-control and the
service-brake-control jobs.

Since the system activates an emergency brake when the values estimated by
the odometry system exceed the authorized limits, the odometry algorithm has
to provide accurate and reliable measurements. Thus, the algorithm is usually
based on a fault-tolerant sensor-fusion approach. In this case, we design the
algorithm following one of the approaches described by Malvezzi et al. in [16].
The algorithm estimates the speed of the train and the traveled distance with
the information provided by an accelerometer that measures the acceleration of
the train and two encoders that measure the speed of a different wheel each.

We design the functions of the SUT in SCADE and we generate the C-code
implementation automatically using KCG. Then we integrate the resulting com-
ponents into the platform independent model of the system for their verification.
We also design a simplified model of the environment using SCADE.

A Simulated Fault Injection Framework for TT Safety-Critical Systems 9

DAS SUT

DAS DMI

DAS EVC

C
o
m

m
.
c
h
.

DAS DMI

job dmi

C
.
c
h
.

DAS EVC

DAS odo

DAS mode

DAS brakes C
o
m

m
.
c
h
a
n
.

DAS odo

job odo

C
.
c
h
.

DAS mode

job mode

C
.
c
h
.

DAS brakes

job emerg

job serv

C
o
m

m
.
c
h
.

Fig. 2. SUT: Railway signaling system modeled at PIM level

5.2 Platform Specific Model

In this example the platform independent model is deployed into a Triple Mod-
ule Redundant (TMR) platform, in compliance with the requirements from the
international EN-50126 safety standard for railway applications. The TMR sys-
tem is composed by three main nodes, each of them hosting a replica of the
simplified EVC functionality. Each of the nodes is connected to its dedicated
sensors and BTM.

Two voters handle the replicated values of the EVC nodes. The voters receive
9 input signals (a warning, service brake and emergency brake from each EVC
node) and they compare the replicated values to produce 3 output signals (voted
warning, service brake, and emergency brake). In addition to this, two other
output signals, the failure warning and the system-failure warning, are used to
inform the driver about the detection of failures in the system. The functionality
of the voting system is the following:

– The voting algorithm is based in a 2oo3 design. The voters start in normal
voting mode. In this situation, if the three replicated input values are equal,
the voter remains in normal voting mode and forwards the input values to
the output value. No failure warning is sent to the DMI.

– If one of the replicated values received by the voter is distinct to the other
two, the voter switches to degraded voting mode. In that case the voter be-
haves as a 1oo2 voter, where the inputs coming from the faulty node are no
longer taken into account for the voting algorithm. The result of the 1oo2
algorithm is forwarded to the output, and a failure warning is sent to the
DMI.

– If there is a disagreement between the two active inputs when the voter is
in degraded voting mode, the voter sends a system-failure warning to the
DMI to inform about a multiple failure in the system. The voting system
is disconnected and the emergency brakes are applied to the train, whereas
the service-brake and the warning are deactivated.

Figure 3 shows the platform specific model of the system in the PS-TTM.
As the figure shows, the two voters and the DMI are deployed into dedicated

10 I. Ayestaran et al.

Cluster

Node EVC

Node EVC

Node EVC

Node voter

Node voter

Node DMI

C
o
m

m
.
c
h
a
n
n
e
l

Node

Processor

C
.
c
.

Processor

Core1

Core2 C
.
c
h
.

job odo

job mode

job emerg C
o
m

m
.
c
h
.

Core 1

job serv

C
.
c
.

Core 2

Node

Processor

C
.
c
.

Processor

Core

C
.
c
.

job voter

C
.
c
.

Core

Node

Processor

C
.
c
.

Processor

Core

C
.
c
.

job dmi

C
.
c
.

Core

Fig. 3. SUT: Railway signaling system modeled at PSM level

nodes containing a single-core processor, whereas the each EVC node contains a
dual-core processor. The first core of the processor is the host for the odometry,
mode-control and emergency-brake-system jobs, whereas the service-brake system
job is hosted on the second core.

We design the functions with SCADE and we generate C code automatically
using the KCG tool. C code for the voters is also automatically generated from
SCADE models.

The PS-TTM ATE is connected to the SUT and the environment model again
as shown in Fig. 4 in order to assess the fault-tolerance mechanisms introduced in
the platform specific model of the system by injecting faults during simulation.

6 Reliability Assessment

This section describes the reliability assessment made to the railway signaling
system model described in Section 5. The fault-tolerance provided by the system
is evaluated by means of simulated fault injection. To do so, the PS-TTM ATE
framework described in Section 4 is connected to the SUT and the environment
model as shown in Fig. 4.

This way, the TCI parses the test-cases defined in XML files and feeds the
the environment during simulation with the corresponding input signals. The
environment model generates the sensor values and sends them to the SUT.
The simulation engine sends all the communication signals inside the SUT to
the FIU, which modifies their value according to the fault injection campaigns
defined by the testing team. The results of the simulations are sent to the TPM,
which stores them for their off-line evaluation.

A Simulated Fault Injection Framework for TT Safety-Critical Systems 11

SUTEnvironment

PS-TTM ATE FIU

T
C
I

T
P
M

Fig. 4. Composition of the testing and fault injection environment

6.1 Platform Independent Model

As mentioned before, the odometry algorithm should be tolerant to a fault in one
of its sensors. Injecting faults at the functional model enables an early assessment
of the of the robustness of the algorithm. Therefore, we first simulate the PIM by
means of the PI-TTM engine with a pre-defined test-case and we store the results
provided by the odometry algorithm. We consider the results of this fault-free
simulation the golden behavior of the system. Then, we carry several simulations
including the fault injection campaigns shown in Table 3, and we compare their
results with the golden behavior.

Table 3. Fault injection campaigns for PIM model

Fault Location Fault Fault Set
#

Job Entity Type Effect Attributes Mode Trig.time(s) Duration(s)
Description

1 job odo enc1 input I C 0 p 130.0 - Wheel stuck / Encoder broken
2 job odo enc1 input I S - p 180.0 - Encoder broken (measuring a fix value)
3 job odo enc1 input I R 0,600 p 80.0 - Encocer broken (measuring wrong values)
4 job odo enc1 input I C 600 t 91.0 7.0 Wheel slipping during acceleration
5 job odo enc2 input I C 0 t 150.0 8.0 Wheel skidding (blocked by brakes)
6 job odo accel input F A 1.1 p 0.0 - Accelerometer incorrectly installed
7 job odo accel input F S - p 200.0 - Accelerometer broken(measuring a fix value)
8 job odo accel input F R -2, 2 p 20.0 - Accelerometer broken(measuring wrong values)
9 job odo accel input F OR -0.1, 0.1 t 35.0 50.0 Noise in the signal

Figure 5 shows an extract of the results obtained in the simulation. The results
show that odometry algorithm designed for this system provides accurate results
in the estimation of the traveled distance even in the presence of faults in the
sensors. Overall, the maximum estimation errors occurred during the 8th fault
injection campaign, where the maximum error raised up to 3.07m from a total
of 6044.46m (0.05%, at 160.5sec). The maximum error in percentage took place
during the 6th campaign, and reached 4.76%. Anyway, this happened at instant
8.250sec, where the traveled distance was still very low (0.21m traveled, 0.22m
measured due to the fault).

Regarding the estimation of the speed, the experiments made by means our
fault injection framework show the robustness of the algorithm. In this case we
also get the maximum error in the 8th campaign, where at instant 151.75s we
find a disagreement of 1.350m/s respect to the non-faulty simulation (60.23m/s,
2.24%) .

All in all, estimation errors made by the algorithm are considered acceptable,
since they always fall below the 5% of the traveled distance and speed, and never

12 I. Ayestaran et al.

(a) Traveled distance and estimation error due to faults

(b) Speed and estimation error due to faults

Fig. 5. Results of the PIM simulation and fault injection

go further than ±5m and ±2m/s. As a conclusion, we state that the algorithm
has shown to be specially sensitive to faults in the accelerometer, so future work
could focus on the improvement of this fact.

6.2 Platform Specific Model

The PSM of the system introduces redundancy in order to tolerate hardware
related faults. A TMR architecture has been chosen in order to guarantee the
availability of the system even in the presence of faults. As stated before, the
voting algorithm should be able to identify any failure in the replicated nodes.
In that case, the voters send a failure warning signal and ignore the results
provided by the faulty node. If a second failure is detected in the system, the
voters activate the emergency brake and inform about a failure in the system. We
set the period of each job to the time-triggered macrotick, i.e., 250 milliseconds.
Table 4 shows the fault injection campaigns made to the PSM in order to evaluate
the voting algorithm.

During the fault-free simulation, the system activated the warning 4 times,
and the service brake once. As expected, the failure and system-failure warnings

A Simulated Fault Injection Framework for TT Safety-Critical Systems 13

Table 4. Fault injection campaigns for PSM model

Fault Fault Set
Fault Location

Effect Attributes Mode Trig.time(s) Duration(s)
Description

1 Node EVC A NE - p 85.0 - Node A stopped working
2 Proc EVC B C - p 20.0 - Processor B provides incorrect results
3 EVC C Core1 OoT 0.50 p 120.0 - Core 1 of a processor C is out of time bounds
4 Node EVC A B - t 40.0 25.0 Node A babbling, incorrect results
5 Node EVC B, Proc EVC C NE, C - p, p 60.0, 150.0 - Double failure (Node B stops, then processor C incorrect)
6 job serv A serv output B I - t 160.0 0.50 Bit-flip in Service. Brake signal sent by node A
7 job emrg C emrg output B OC - t 105.0 15.0 Emerg. Brake not received from Node C (noise)

Table 5. Results of fault injection campaigns in the PSM model

Fault trigger Fault warning System fault
#

instant (s) activ. instant (s) activ. instant (s)

1 85.0 125.25 -
2 20.0 20.25 -
3 120.0 125.25 -
4 40.0 40.25 -
5 60.0, 150.0 79.00 150.25
6 160.0 160.25 -
7 105.0 105.25 -

were not activated. The results obtained for each fault injection campaigns are
summarized in Table 5.

As the table shows, all the faults injected in the system during the simulations
were detected by the voters. Since we configured all jobs in the system with a
period of one macrotick (250ms), corruption and babbling faults were detected
250ms after their injection in the system, as expected. Bit-flips in signals and
open circuits were also detected in the next macrotick.

However, no-execution and out of time faults, injected in the 1st, 3rd and 5th

fault configurations, took longer to detect. This happened because, due to the
state of the system at the moment of the injection, the faults were dormant.
In fact, no-execution and out of time faults do not get active until the value of
the signal changes, since they do not cause an alteration of the signal values by
themselves.

Fault injected: Node B, no-excution Fault injected: Node C, corruption

0 50 100 150 200

Input_warning_nodeA

Input_warning_nodeB

Input_warning_nodeC

Output_emerg

Output_serv

Output_warning

Output_FaultWarning

Output_SystemFaultWarning

Fig. 6. Results of PSM simulation with fault configuration #5

14 I. Ayestaran et al.

All in all, the faults were detected as expected. The voters also notified a
multiple failure caused by the two faults injected in the system during the 5th

simulation. That occurred at instant 150.25s, and also caused the activation of
the emergency brakes of the train, as stated by the requirements. Fig. 6 shows
an extract of the results of the the 5th simulation. For the sake of simplicity, we
omit input signals of emergency and service brakes from the figure.

7 Conclusion

This paper introduced a testing and simulated fault injection framework for time-
triggered dependable-systems based on the PS-TTM approach. The environment
enables testing and injecting faults at different stages of the design, from platform
independent models to platform specific models, what enables an early detection
of design flaws in the system.

The Automatic Test Executor (ATE) presented in this paper is composed by
three different modules for the design and simulation of test-cases, injection of
faults during simulation and storage of simulation results for the evaluation of
the behavior of the system under such faults. The ATE is synchronized with
the simulation time of the SUT, a way that functional tests and fault injection
experiments become reproducible.

The herein presented simulated fault injection technique is non-intrusive, i.e.,
enables injecting faults in the system models during simulations without the need
of performing any modifications to them. This is achieved by monitoring the sig-
nals of the SUT and modifying their values if required. The framework provides
the user with a library of faults in order to configure the fault injection experi-
ments. The ATE imports these configurations for carrying out the simulations.
As the mapping of LET and E-TTM-based models to time-triggered architec-
tures is straightforward, this eventually facilitates the re-usability of tests even
on real prototypes, provided that we could build a test harness with equivalent
real-world Fault Injection Units (FIUs).

We evaluated our framework in a case study consisting of a railway signaling
system. We modeled the system at both PIM and PSM levels, and checked the
behavior of the system under different faults by means of the Simulated Fault
Injection (SFI) capabilities provided by the framework. Our non-intrusive SFI
approach enabled an early assessment of a fault-tolerant odometry algorithm
long before assembling a costly system prototype, and eased identifying its main
weaknesses. We also evaluated the behavior of the voters introduced in the Triple
Module Redundant (TMR) system by means of our framework. The response
of the voters under the presence of faults was considered successful. Therefore,
the case study demonstrated the suitability of the framework for simulated fault
injection in time-triggered safety-critical systems modeled with the PS-TTM
platform at different stages of the development.

Acknowledgments. This research work has been supported in part by the
European FP7 DREAMS project under grant No. 610640 and the Spanish IN-
NPACTO project VALMOD under grant number IPT-2011-1149-370000.

A Simulated Fault Injection Framework for TT Safety-Critical Systems 15

References

1. Avizienis, A., Laprie, J.-C., Randell, B., Landwehr, C.: Basic Concepts and Tax-
onomy of Dependable and Secure Computing. IEEE Trans. Dependable Secur.
Comput. 1(1), 11–33 (2004)

2. Ayestaran, I., Nicolas, C.F., Perez, J., Larrucea, A., Puschner, P.: Modeling and
Simulated Fault Injection for Time-Triggered Safety-Critical Embedded Systems.
In: IEEE 17th International Symposium on Object/Component/Service-Oriented
Real-Time Distributed Computing, ISORC (2014)

3. Ayestaran, I., Nicolas, C.F., Perez, J., Puschner, P.: Modeling Logical Execution
Time Based Safety-Critical Embedded Systems in SystemC. In: 3rd Mediterranean
Conference on Embedded Computing, MECO (2014)

4. Balarin, F., Chiodo, M., Giusto, P., Hsieh, H., Jurecska, A., Lavagno, L., Passerone,
C., Sangiovanni-Vincentelli, A., Sentovich, E., Suzuki, K., Tabbara, B.: Hardware-
software co-design of embedded systems: the POLIS approach. Kluwer Academic
Publishers (1997)

5. Baraza, J.C., Gracia, J., Blanc, S., Gil, D., Gil, P.J.: Enhancement of Fault Injec-
tion Techniques Based on the Modification of VHDL Code. IEEE Transactions on
Very Large Scale Integration (VLSI) Systems 16(6), 693–706 (2008)

6. Beltrame, G., Bolchini, C., Fossati, L., Miele, A., Sciuto, D.: ReSP: A non-intrusive
Transaction-Level Reflective MPSoC Simulation Platform for Design Space Explo-
ration. In: Asia and South Pacific Design Automation Conference, ASPDAC 2008,
pp. 673–678 (2008)

7. Benso, A., Prinetto, P.: Fault Injection Techniques and Tools for Embedded Sys-
tems Reliability Evaluation. Kluwer Academic Publishers (2003)

8. Bolchini, C., Miele, A., Sciuto, D.: Fault Models and Injection Strategies in Sys-
temC Specifications. In: 11th EUROMICRO Conference on Digital System Design
Architectures, Methods and Tools, DSD 2008, pp. 88–95 (2008)

9. Esterel, A.: SCADE Suite (2014), http://www.esterel-technologies.com/

products/scade-suite/

10. Gracia, J., Baraza, J.C., Gil, D., Gil, P.J.: Comparison and Application of different
VHDL-Based Fault Injection Techniques. In: Proceedings of the 2001 IEEE Inter-
national Symposium on Defect and Fault Tolerance in VLSI Systems, pp. 233–241
(2001)

11. IEEE. IEEE Standard SystemC Language Reference Manual (2005)

12. Jenn, E., Arlat, J., Rimen, M., Ohlsson, J., Karlsson, J.: Fault Injection into
VHDL Models: The MEFISTO Tool. In: Twenty-Fourth International Symposium
on Fault-Tolerant Computing, FTCS-24. Digest of Papers., pp. 66–75 (1994)

13. Kienhuis, B., Deprettere, E., Vissers, K., van der Wolf, P.: An Approach for Quan-
titative Analysis of Application-Specific Dataflow Architectures. In: Proceedings of
the IEEE International Conference on Application-Specific Systems, Architectures
and Processors, pp. 338–349 (1997)

14. Kirsch, C.M., Sokolova, A.: The Logical Execution Time Paradigm, ch 5, pp.
103–120. Springer, Heidelberg (2012)

15. Lu, W., Radetzki, M.: Efficient Fault Simulation of SystemC Designs. In: 2011 14th
Euromicro Conference on Digital System Design (DSD), pp. 487–494 (2011)

16. Malvezzi, M., Allotta, B., Rinchi, M.: Odometric estimation for automatic train
protection and control systems. Vehicle System Dynamics 49(5), 723–739 (2010)

17. Miller, J., Mukerji, J.: MDA Guide Version 1.0.1, 2003/06/12 (2003)

http://www.esterel-technologies.com/products/scade-suite/
http://www.esterel-technologies.com/products/scade-suite/

16 I. Ayestaran et al.

18. Misera, S., Vierhaus, H.T., Sieber, A.: Fault Injection Techniques and their Accel-
erated Simulation in SystemC. In: 10th Euromicro Conference on Digital System
Design Architectures, Methods and Tools, DSD 2007, pp. 587–595 (2007)

19. Moazzeni, S., Poormozaffari, S., Emami, A.: An Optimized Simulation-Based Fault
Injection and Test Vector Generation Using VHDL to Calculate Fault Coverage. In:
2009 10th International Workshop on Microprocessor Test and Verification (MTV),
pp. 55–60 (2009)

20. MOGENTES. Fault Models. Technical report, MOGENTES, 2009/12/29 (2009)
21. Perez, J., Azkarate-askasua, M., Perez, A.: Codesign and Simulated Fault Injection

of Safety-Critical Embedded Systems Using SystemC. In: European Dependable
Computing Conference, p. 9 (2010)

22. Perez, J., Nicolas, C.F., Obermaisser, R., Salloum, C.E.: Modeling Time-Triggered
Architecture Based Real-Time Systems Using SystemC. In: Kaźmierski, T.J.,
Morawiec, A. (eds.) Forum on specification & Design Languages (FDL) 2010,
vol. 106, pp. 123–141. Springer, Heidelberg (2010)

23. Reiter, S., Pressler, M., Viehl, A., Bringmann, O., Rosenstiel, W.: Reliability as-
sessment of safety-relevant automotive systems in a model-based design flow. In:
2013 18th Asia and South Pacific Design Automation Conference (ASP-DAC), pp.
417–422 (2013)

24. Shafik, R.A., Rosinger, P., Al-Hashimi, B.: SystemC-based Minimum Intrusive
Fault Injection Technique with Improved Fault Representation. In: International
On-line Test Symposium (IOLTS), p. 6 (2008)

25. Winter, P., Guiot, B., International Union of Railways: Compendium on ERTMS:
European Rail Traffic Management System. Eurail Press (2009)

26. ASAM HIL workgroup. ASAM AE HIL Programmers Guide (2009)
27. Ziade, H., Ayoubi, R., Velazco, R.: A Survey on Fault Injection Techniques. The

International Arab Journal of Information Technology 1, 16 (2004)

Rapid Fault-Space Exploration
by Evolutionary Pruning

Horst Schirmeier, Christoph Borchert, and Olaf Spinczyk

Technische Universität Dortmund, Computer Science 12
Otto-Hahn-Str. 16, 44221 Dortmund, Germany

{horst.schirmeier,christoph.borchert,olaf.spinczyk}@tu-dortmund.de

Abstract. Recent studies suggest that future microprocessors need low-cost fault-
tolerance solutions for reliable operation. Several competing software-implemented
error-detection methods have been shown to increase the overall resiliency when
applied to critical spots in the system. Fault injection (FI) is a common approach
to assess a system’s vulnerability to hardware faults. In an FI campaign compris-
ing multiple runs of an application benchmark, each run simulates the impact of
a fault in a specific hardware location at a specific point in time. Unfortunately,
exhaustive FI campaigns covering all possible fault locations are infeasible even
for small target applications. Commonly used sampling techniques, while suffi-
cient to measure overall resilience improvements, lack the level of detail and accu-
racy needed for the identification of critical spots, such as important variables or
program phases. Many faults are sampled out, leaving the developer without any
information on the application parts they would have targeted.

We present a methodology and tool implementation that application-specifically
reduces experimentation efforts, allows to freely trade the number of FI runs for
result accuracy, and provides information on all possible fault locations. After
training a set of Pareto-optimal heuristics, the experimenting user is enabled to
specify a maximum number of FI experiments. A detailed evaluation with a set
of benchmarks running on the eCos embedded OS, including MiBench’s auto-
motive benchmark category, emphasizes the applicability and effectiveness of our
approach: For example, when the user chooses to run only 1.5 % of all FI experi-
ments, the average result accuracy is still 99.84 %.

1 Introduction

Recent technology roadmaps [1,2,3] suggest that future hardware designs for embedded
systems will exhibit an increasing rate of soft errors, trading reliability for smaller struc-
ture sizes, lower supply voltage, and reduced production costs. This trend creates new
challenges for embedded software development, which must application-specifically
place error detection [4] and recovery mechanisms [5,6,7] (EDM/ERMs) that do not
diminish all gains from these new hardware designs. In future embedded software, crit-
ical spots in the software stack must be hardened against hardware faults, while the
remaining unprotected components economize resource consumption by occasionally
tolerating incorrect results.

Architecture-level fault injection (FI) has been the standard analysis technique in the
software fault-tolerance community for at least two decades [8,9]. In an FI campaign

A. Bondavalli and F. Di Giandomenico (Eds.): SAFECOMP 2014, LNCS 8666, pp. 17–32, 2014.
© Springer International Publishing Switzerland 2014

18 H. Schirmeier, C. Borchert, and O. Spinczyk

Fig. 1. Fault-space plot (left): Each coordinate in the fault space (RAM × Time) shows the out-
come of one independent experiment that injects one transient fault at the particular coordinate.
Faults that have no effect are shown as white points. Timeouts are denoted in blue, CPU exceptions
in red, and SDCs in black. The magnified subplot (right) reveals def/use fault equivalence classes
(see Sect. 2.1).

comprising many similar runs of an application benchmark, each run simulates the im-
pact of a fault in a specific hardware location (e.g., a single bit in main memory or a CPU
register) at a specific point in time during the benchmark’s execution (e.g., one μs after
the start). Unfortunately, FI campaigns exhaustively covering all possible fault locations
are infeasible even for small target applications.

Consequently, most studies leveraging FI for dependability analysis purposes resort
to statistically sampling fault locations [10,11]: A randomized selection of fault loca-
tions (usually in the thousands) is used to drive the FI campaign, until statistics predict
a “good enough” probability for the overall result distribution to lie within the desired
confidence interval. The result is an estimate on the aggregated campaign outcome –
i.e., the usual probability breakup that an experiment finishes with the expected output
(no effect), with a different output (a silent data corruption, SDC), that it terminates
prematurely with a CPU exception, or that it runs into an endless loop and never termi-
nates (timeout).1 While an estimate on the aggregated results suffices for measuring the
resiliency improvement between a benchmark’s baseline and an ERM-protected vari-
ant, it gives no authoritative insights on critical spots and local phenomena, such as the
vulnerability of specific data structures or program phases.

In contrast, the left half of Fig. 1 shows a visual representation of FI campaign re-
sults that were collected injecting faults into all possible fault locations of a particular
benchmark application, requiring enormous computing power using the Fail* [12] FI
framework with an x86 simulator backend. The fault model used for Fig. 1 constitutes
uniformly distributed transient bit flips in the main memory. The fault space spans all
CPU cycles during a benchmark run, and all bits in the address space. Thus, each co-
ordinate in Fig. 1 shows the outcome of one independent FI experiment after injecting
a burst bit-flip at a specific point in time (CPU cycles axis) and a specific byte in main

1 This result categorization is just a (common) example; depending on the analyzed benchmarks
and EDMs/ERMs, the FI campaign designer may choose a more fitting categorization.

Rapid Fault-Space Exploration by Evolutionary Pruning 19

memory (memory address axis). A large fraction of the injected bit flips is never read
by the benchmark. This fact is acknowledged by most of the white areas in Fig. 1. Only
injections into memory locations that are read in subsequent CPU cycles can have an
effect, indicated by a colored coordinate. With information on the memory locations of
program variables, and the phases in time certain system modules are active, the user can
draw detailed conclusions on the vulnerability of specific variables and program phases.

In this paper, we describe a fault-space pruning methodology that massively reduces
the FI campaign runtime and keeps information on all possible fault locations in the pro-
gram. The basic idea stems from a simple insight: If in two FI experiments the machine
state is similar (or identical) at the point in time where the fault is injected, the exper-
iment result will be similar (or identical), too. The primary contributions of this paper
are (1) a detailed description of an effective application-specific fault-space pruning
technique that preserves local features of the application’s reaction to faults, (2) a
means to freely trade accuracy for experimentation runtime without suffering the
drawbacks of randomized sampling, and (3) detailed evaluation results with bench-
marks running on the eCos embedded OS [13], including the automotive category of
the MiBench [14] benchmark suite.

In the following, we focus on transient burst bit flips (flipping all eight bits at one
address) in main memory to approximate multi-bit flips induced by single-event upsets
[15], which are commonly caused by particle strikes. We assume a uniform distribu-
tion of faults, meaning that a fault can be triggered independently at any CPU cycle and
memory address. We believe, though, that our approach can be easily applied to other
fault models, such as single-bit flips or transient faults in CPU registers or caches, and
intend to analyze this in future work. The following section revisits related FI and fault-
space pruning principles, and points to related work in these areas. Sections 3 and 4
describe the design and implementation of our generic fault-equivalence heuristic, Sec-
tion 5 presents and discusses evaluation results, and Section 6 summarizes and concludes
the paper.

2 Background and Related Work

Recent FI techniques that proceed with more sophistication than randomly sampling
locations in the fault space are based on deterministic experiment runs2 and recorded
instruction and memory-access traces. These traces are created during a “golden run”,
which exercises the target software without injecting faults, and, thus, serves as a refer-
ence for the expected program behavior. In the following we describe the most important
FI techniques based on trace information, which opens up a wide variety of possibilities
to systematically reduce the number of FI experiments.

2.1 Conservative Def/use Analysis

Smith et al. are among the first concisely describing the classical def/use analysis tech-
nique [16] that was subsequently reinvented several times, e.g., by Benso et al. [17],

2 Note that deterministic does not mean that system reactions on external events, such as asyn-
chronous device interrupts, cannot be analyzed. In deterministic benchmark runs, such events
are replayed at the exact same point in time during each run.

20 H. Schirmeier, C. Borchert, and O. Spinczyk

Berrojo et al. [18], Barbosa et al. [19], and recently by Grinschgl [20]. This method con-
servatively prunes the fault space, i.e., without compromising the result quality in any
way. The basic insight is that all fault locations between a def (a Write) or use (a Read)
of data in memory3, and a subsequent use, are equivalent (see the right half of Fig. 1):
regardless of when exactly in this time frame a fault is injected there, the earliest point
where it will become architecturally visible is when the corrupted data is read. Instead of
conducting one experiment for every point within this time frame, it suffices to conduct a
single experiment (for example at the latest possible time directly before the Read), and
assume the same outcome for all remaining coordinates within that def/use equivalence
class (green frame in Fig. 1). Similarly, all points in time between a R or W and a sub-
sequent W are known to result in no effect, as the corrupted data will be overwritten in
all cases. The result is a partitioning of the fault space into def/use equivalence classes,
some of which a single experiment needs to be conducted for (those ending with a Read),
and some with a priori known experiment outcome. Note that even if we conduct only
one experiment for a particular def/use equivalence class, the experiment’s result con-
tributes to many fault locations in the fault space. For example, in the right half of Fig. 1,
the lower equivalence class, which ends with a Read, represents eight fault-injection
outcomes, and has a greater weight in the outcome distribution than the upper def/use
class representing three FI outcomes.

2.2 Fault Equivalence Heuristics

Although def/use pruning significantly reduces the number of experiments, the compu-
tational efforts for complete fault-space coverage are still far too heavy for most bench-
marks. For example, the experiment count for the MiBench benchmark basicmath (small
input data set, x86 build) is reduced from 5.3 × 1013 to 1.8 × 108 – still prohibitively
many, even if a single experiment only takes a few seconds.

Only recently, more advanced fault-equivalence pruning techniques appear in litera-
ture, leaving the realm of conservative, accuracy-neutral methods. A significant contri-
bution constitutes the Relyzer tool by Hari et al. [21], who describe several heuristics
that combine multiple def/use equivalence classes into larger groups. From each group,
only one representing def/use equivalence class (the pilot) gets picked, and the experi-
ment result is assumed to be identical for the remaining group members. Although rather
effective, a major deficiency of this approach is the inflexibility regarding the result accu-
racy (the authors report an average accuracy of 96 % for pilots representing their group)
and experiment count tradeoff: If the result accuracy turns out too low, no alternative is
offered, and if the experiment count is still too high, the authors suggest sampling from
the set of pilots (resulting in the fault-space coverage problems mentioned in Sect. 1). Ad-
ditionally, the grouping heuristics are based on complex control and data-flow analyses,
SPARC platform specifics, and assumptions on the experiment result interpretation: Re-
lyzer only differentiates between no effect and SDC outcomes, while in many use cases
more outcome types, or even quality thresholds on the output [22], become relevant.

3 This technique also works for any other level in the memory hierarchy, e.g., CPU registers or
cache memory.

Rapid Fault-Space Exploration by Evolutionary Pruning 21

Li and Tan [23] describe similar pruning heuristics in their SmartInjector tool. They
provide a slightly better experiment count reduction than Relyzer, but otherwise share
the aforementioned drawbacks, including the single focus on SDCs, and a fixed tradeoff
between accuracy (reportedly 94 % on average) and pruning effectivity.

3 A Generic Fault-Equivalence Heuristic

In the following, we outline a generalization – and simplification – of the fault equiva-
lence notion coined in the works of Hari et al. [21] and Li & Tan [23], and subsequently
derive a generic heuristic that ameliorates the inflexibilities mentioned in Sect. 2.2.

3.1 Fault Similarity, and a Generalization of Fault Equivalence

Instead of using the term “fault-equivalence class” from Hari and Li to denote groupings
of multiple def/use equivalence classes, we will use the term fault-similarity class in the
following to avoid confusion with def/use equivalence classes (cf. Sect. 2.1), and to
capture the following facts:

Mispredictions May occur: One def/use class (the pilot) represents all the other fault-
similarity class members. Due to the approximative nature of heuristics, one or more
non-pilot members can have a different experiment outcome than the pilot, making
the word “equivalence” unwarranted.

Equivalence Is in the Eye of the Beholder: The equivalenceof two FI experimentout-
comes purely depends on the experimenter’s definition. While for one type of FI
campaign, any deviation from the golden run is a failure, for others a detailed dif-
ferentiation into several outcome types (cf. Sect. 1) is important. Hence, multiple
def/use classes are similar only under the chosen evaluation metric.

Although both studies [21,23] invent various complicated analysis techniques to com-
bine multiple def/use equivalence classes into larger groups, the general notion of fault
similarity can be reduced to a simple insight: If at one point in time during the bench-
mark run the machine state is completely identical to the state at another point in time,
conducting two FI experiments that inject a fault (e.g., a single-bit flip) at a specific mem-
ory location will yield the same result, no matter whether the fault was injected at the
first or the second point in time. For example, if one FI experiment results in an SDC that
affects the program’s output, the very same thing will happen in the other experiment.

Of course, in reality the machine state is never completely identical at two points in
time during a program run; even if the benchmark would enter an infinite loop, some
parts of the machine (e.g., a wallclock timer) would be in a different state. Neverthe-
less, over the program’s runtime, a relevant part of the machine state may be identical
at several points in time. To gain a better intuition on what we mean by a relevant part
of the machine state, observe the x86 assembler code snippet in Fig. 2 (left-hand side):
In a loop, the (integer) elements of an array are added up in the EAX register, keeping
the array index (also used for the loop abort condition) in the EDX register. When con-
sidering faults in memory only, and applying the def/use pruning method described in
Sect. 2.1, the only memory-reading (use) instruction is the one in Line 2 (marked with

22 H. Schirmeier, C. Borchert, and O. Spinczyk

Fig. 2. Short x86 assembler snippet (left) adding up the contents of an array: All memory reads
in the dynamic execution (right) share a similar machine state, and FI will lead to similar results
in all cases (a wrong sum). For simplicity registers carry dummy 16-bit values.

the comment “READ!”). Injecting a fault into the memory location being read from
directly before the read will lead to a similar result in all loop iterations: The resulting
sum will be calculated faultily. Thus, it would suffice to do a single experiment instead
of 1000, and predict the same result outcome for the others.

Now consider the machine state right before each memory read in the dynamic exe-
cution (right-hand side, highlighted lines): Among others, the EIP (instruction pointer),
ESP and EBP registers are the same in all cases, EDX only differs by its lower-order bits
in most consecutive loop iterations, and EAX may (depending on the magnitude of the
values in the array) not change too much from one iteration to the next either. A (geomet-
ric) projection function of the machine-state vector – preserving only the components
EIP, ESP, EBP, and the higher-order bits of EDX and EAX – therefore serves very well
as a criterion to combine all these def/use equivalence classes into a single group, and
to conduct a single experiment instead of one per loop iteration.

3.2 A Flexible Fault-Similarity Heuristic

Our working hypothesis is that a projection of the machine-state vector can successfully
be used to combine multiple def/use equivalence classes with high result accuracy, de-
pending on the user’s requirements. We assume that this projection highly depends on
the analyzed program(s) (including the underlying operating system) and their chosen in-
put, the CPU architecture, the compiler, the chosen compiler optimizations, the chosen
time discretization, the fault model, and what experiment outcome differentiation the
user chooses. A generic fault-similarity heuristic therefore has to adapt to these factors;
a detailed analysis of their impact is beyond the scope of this paper, though.

The basic idea behind our heuristic is to find a suitable machine-state projection
that can be used to accurately combine def/use classes with “mostly” equivalent FI re-
sults. More in detail, we first record a machine-state vector for each def and use when
recording the golden run trace; for efficiency reasons, we do not record the complete
machine state, but only the values listed in Tab. 1. Then we determine FI results by run-
ning actual experiments for a feasible, randomly chosen subset of all def/use classes,
which serve as the training set for searching a state-vector projection that accurately
groups def/use classes with mostly equivalent experiment outcomes. An optimization
algorithm then searches for a projection function that is optimal regarding the specified

Rapid Fault-Space Exploration by Evolutionary Pruning 23

result accuracy, or the limit on the number of FI experiments, which refers to the number
of fault-similarity classes.

These two criteria – maximum accuracy and minimal number of fault-similarity classes
– are contradictory and can be traded for each other. One extremal point (in favor of accu-
racy) uses the identity function as the state-vector projection – hence defines all available
machine state as relevant for grouping – and combines no def/use partition with another:
it produces fault-similarity classes with one def/use member each, hence conducts an FI
experiment for every def/use class, and achieves maximum accuracy. The other extremal
point combines all def/use classes to a single similarity class and only conducts a single
experiment, resulting in minimal experimentation effort and maximal result error. Be-
tween these extremal points exists a large search space with all possible machine-state
vector projections, some of them representing Pareto-optimal solutions that optimally
trade experiment effort for accuracy.

3.3 Applying the Similarity Heuristic

After finding a projection function that satisfies the user’s requirements regarding accu-
racy and FI campaign efforts, the user can apply it to the remaining def/use classes with
yet unknown outcome: multiple def/use classes with identical values in the projected
machine-state vector are grouped into one common fault-similarity class. Speaking in
the example from Sect. 3.1, all def/use classes with the same values in EIP, ESP, EBP,
and the higher-order bits of EDX and EAX, are assigned the same fault-similarity class.
For all fault-similarity classes that do not yet contain at least one member with a known
outcome (because an FI experiment was run in the training phase), one pilot def/use
class gets picked, and one experiment is run. After this step is completed, all def/use
classes (and, thus, every coordinate in the fault space, as depicted in Fig. 1) either di-
rectly – by running an FI experiment for them – or indirectly – by looking at the pilot in
their fault-similarity class – can be assigned an experiment outcome.

4 Implementation

We implemented a tool set for the outlined fault-space pruning approach in the Fail*
[12] FI experimentation framework, configured to run with the Bochs x86 simulator
[24]. Ideally, we would simulate faults in a detailed register transfer and gate-level pro-
cessor model; however, since simulation of realistic benchmarks on low-level models is
extremely slow, this work chooses a fast architecture simulator. We extended the tracing
plugin of Fail* with the capability to record the additional machine state listed in Tab. 1
alongside the usual instruction and memory-access trace.

We encode the recorded machine state (Tab. 1) into a single, long bit vector with all
state variables concatenated. This state vector exists once for every dynamic instruction
in the golden run that reads memory. The projection function we want to search for
is also encoded as a bit vector (with the same length as the state vector), which we
call the projection vector. Its bits indicate whether the corresponding bit position in the
machine state is used (1) or not used (0) for comparing the machine state of def/use
classes, deciding whether or not to group them into a common fault-similarity class.

24 H. Schirmeier, C. Borchert, and O. Spinczyk

Table 1. Information recorded for every dynamic def or use instruction executed during the golden
run of each benchmark.

data_address Memory address the def/use writes/reads
data_value Actual value that is written/read

EIP Instruction pointer of the def/use instruction
dyn_instr Dynamic instruction count since benchmark start

opcode Instruction’s opcode
EAX, EBX, ECX, EDX, ESI, EDI, ESP,

EBP, EFLAGS
Contents of general-purpose registers, stack pointer, CPU flags

*EAX, *EBX, *ECX, *EDX, *ESI,
*EDI, *ESP, *EBP

Contents of the machine word the respective register points to (if interpretable as
a mapped memory address)

jumphistory Relyzer [21] style (control-equivalence) bit list indicating whether each of the
last 16 and next 16 conditional branches was taken

duration Temporal duration of the def/use equivalence class (e.g., in CPU cycles)
benchmark_id An ID uniquely identifying each benchmark

The bitwise AND of an – initially randomly chosen – projection vector and each state
vector yields a vector uniquely identifying the similarity class each def/use class belongs
to. The example projection function from Sect. 3.1 – preserving only the components
EIP, ESP, EBP, and the higher-order bits of EDX and EAX – can directly be encoded by
setting the corresponding bits in this vector.

In order to find an optimal projection vector, we model the search problem on the train-
ing data using the SPEA2 multi-objective evolutionary algorithm [25] (implemented in
the PISA library [26]) with the projection vector as the genome, and simple multi-bit
mutation and single-point crossover operators [27]. Initially we run a fixed number of
100,000FI experiments4 per benchmark to gain training data. Then the genetic algorithm
is initialized with a population of randomized projection vectors. In every generation of
the search algorithm, each individual’s (i.e., projection bit vector’s) fitness is evaluated
by 1. performing the aforementioned grouping of def/use classes from the training set
into similarity classes, 2. picking the largest5 def/use class in each similarity class as the
pilot and pretending it properly represents the remaining class members, and 3. measur-
ing the two fitness criteria accuracy and the emerging number of fault-similarity classes
within the training set.

The accuracy measures how accurately the pilots actually represent the remaining
members within their similarity classes. As a misprediction of a large (i.e., many clock
cycles wide) def/use class has a greater impact on the outcome quality than a small one
(cf. Sect. 2.1), the correctly predicted area in the fault space is used for this metric, taking
the weights of the def/use classes into account:

Accuracy =
Correctly predicted fault-space area

Total fault-space area

4 This number was arbitrarily chosen for the purpose of this article, but may be selected
application-specifically in the future.

5 Currently the def/use class spanning the most CPU cycles (cf. Sect. 2.1) is chosen as each
similarity class’s pilot to minimize error when mispredictions occur.

Rapid Fault-Space Exploration by Evolutionary Pruning 25

The second fitness criterion is the number of different similarity classes emerging
from the def-use class grouping step. These two criteria – the number of correctly repre-
sented faults, and the number of similarity classes that directly translates into the number
of pilots (and, hence, the total number of necessary FI experiments) – are used as the
optimization objectives for the SPEA2 algorithm.

5 Evaluation

In the following, we will elaborate on the evaluation setup we used, and subsequently
analyze the effectiveness and efficiency of our fault-space pruning heuristic.

5.1 Evaluation Setup and Ground Truth

First, we chose a subset of the benchmark programs that accompany the eCos operating
system (namely those we already used in a previous work [5]). The 19 eCos/baseline
programs are relatively small, and test eCos kernel capabilities, such as synchronization,
scheduling, and inter-process communication (refer to [5] for a more detailed descrip-
tion). They are also reasonably similar to each other regarding their fault propagation,
which allows us to consider them as a single, combined benchmark for the remainder of
this section. A second variant of the 19 programs – eCos/CRC – is hardened against
memory faults by error-detection measures (CRC32 codes for all kernel objects [5]
and for the stacks of preempted threads [28]), and subsequently executes about three
times more dynamic executions (cf. Tab. 2). Additionally, we picked MiBench’s [14]
automotive benchmark category as a set of real-world application benchmarks. The four
benchmarks (qsort, basicmath, bitcount, susan, using the small input data set) each
execute more dynamic instructions than all eCos benchmarks combined and represent a
more heavyweight workload for our tooling.

To determine the “ground truth” for our pruning experiments, we ran FI experiments
for all def/use equivalence classes of our benchmarks, resulting in the total (single-CPU)
simulation time shown in the last column of Tab. 2. We limited FI to the first 107 dy-
namic instructions for the MiBench benchmarks to keep our computing time budgets
reasonable.

For each benchmark in Tab. 2 we randomly6 picked 100,000 def/use classes as the
training set, and parametrized the genetic algorithm with a population size of 100 indi-
viduals, 400 optimization generations, and a mutation probability of 10 %. The values
for these parameters were picked from experiences in early evaluation rounds; we will
analyze their impact on the approach more in detail in future work.

5.2 Heuristic Training and Test

Fig. 3a shows the training results and fitness values for eCos/baseline after 3′40′′ of
optimization (on a 32-core Intel Xeon E5-4650): Each point represents an individual
(the machine-state projection vector; cf. Sect. 3.2), which partitions the training set into

6 Uniform sampling without taking the def/use class size into account.

26 H. Schirmeier, C. Borchert, and O. Spinczyk

●
●

●

● ●●

●

●

●

● ●●

●

●● ●

●

●● ● ●

●

● ●

●

●

● ●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●●

●

●●●● ● ●

●
●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●●

●

●● ●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●● ●

●

●

●●

●

●

●

●
●

●

●
●

●
●

●

● ●

●

●
●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●●

●

●●

●

●●

●

●●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

● ●●

●

●

●

●

●
●

●

●

●

●●● ●

●

● ●● ●●● ●

●

●

●● ●

●

●

●●

●

●

●

● ●●

●

●

●

●

●

●

●●●

●

● ●●

●

●●●●

●

●

●

●

●

●●

●

●● ●● ●●●●

●

●●● ●
●

●

●

●

●

●
●● ●●●

●

●

●

● ●

●

●●● ●

●

●

●

●

●

●

●

●

●

● ●●●

●

●

●

●

●

●

●

●●

●

●●● ●

●

●

●

●

●

●

●

●

●●●

●

●

●

● ●● ●●●● ● ●● ●●● ●●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●●

●

●● ●

●

●

●

●

●

●● ●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

● ●

● ●

●

● ●

●

●

●

●● ●● ●●●

●

●

●

●

●

● ●

●

●

●

●● ●● ● ●●

●

●●● ●

●

●

●●

●

● ●● ●● ●

●

● ●●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●● ●●
●

●

●

●

●●

●

● ●● ●●●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●● ●● ●●

●

●

●

●

●

● ●

●

●●

●

● ●

●

●●●

●

●

●

●

●● ●

●

●

●

●

●

●

●

● ●

●

●●

●

●

● ●●● ● ●●● ●● ●● ●

●

● ●

●

●●

●

●●

●

●

●

●

●

● ●

●

●

●

●

● ●●

●

● ●

●

●● ●●● ● ●●

●

●● ●

●

●

●●

●

●

●

●

●●

●
●

●●●

●

● ●
● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●
●

●● ●

●

●
●

●
●

●

●

●

● ●

● ●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●●● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

● ●● ● ● ●● ●
●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
● ●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●●● ●

●

● ●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●● ●●● ● ●

●

●

●

●

●

●

●●

●

● ●●

●

●
●

● ●● ●●

●

●

●

●

●

●

●

●

● ●

●

●● ●

●

●

●

●●●●●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●
●● ●

●

● ●●●●
●●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●● ●

●●

●

●

●

●

●

●●

●

●

●

●●

●

●●●

●

●

●

●●

●
●

●●● ● ●●

●

●●

●

●

●

● ●

●

●

●

●

●●
●

●

●

●

● ●

●

●

●

● ● ●

●

● ● ●●●

●

●
●●

●

●

●

●
●

●

●

●

●●

●

● ●●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●● ●

●
●

●

●

●

●

●

●

●

●
●

●

●● ●

●

●

●●●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●●

●

●

●

●● ●●●

●

●●

●

●● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●● ●

●

●●●

●

● ●●● ●

●

●

●

●

●

●

●

●●

●

●●

●

●●

●

●

●

●

●

● ●

●

● ●

●

●

●

●●●

●

●

●

●

● ●●
●

●

●
●

●

● ●

●

● ●●●●●

●

●

●

●

●

●●

●

●

●

●●●

●

●

●

●●

●

●

●

●● ●

●

●

● ●

●

●

●

●

●

●

● ● ●

●

●

●●

●

●

●

●

●●

●

●

●

● ●● ●●●

●

●

●●
●

●

● ●●

●

●

●

●

●

●

●

●

●

●● ●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

● ●●● ●

●

●

●

● ●●

●

● ●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●● ●●

●

●

● ●

●

● ●

●

● ●●

●

●

●

●● ●

●

●●●●

●

●● ●

●

●

●

●

●

●

●●
●

●
●

●
●

●

●● ●● ●

●

●

●
●

●

●●
●

●

●

●

●

●

●

●

● ●● ●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●
●

●

●

●

●

●

●

● ● ●● ●

●

●

●

●

●

●

●●● ●●● ●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●●

●

●

●

● ● ●

●

●●

●

●

●

●

● ●●

●

●●

●

●● ●

●

●●● ●

●

●

●

●●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●●

●

●

●

●

●

●

●

●

● ● ●

●

●

●
●

●● ●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●●

●●

●
●

●

●

●

● ●

●

●●●

●

●

●

● ●

●

● ●●●●● ●●

●

●●

●

●

●

● ●●●●

●

●●●

●

●

●

●●

●

●

●

●

●

● ●● ● ●●● ●

●

●

● ●●

●

●

●

● ●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●● ●●

●

●

● ●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●
●

● ●

●

●

● ●

●

●

●
●

●

●

●

● ●● ●●●

●

●

●

●

●●

●●

●
●

●

●

●●

●

●

●

●●
●

●

●

●

● ●●●
●

●

●●
●●

●

●

●

●

●●

●

●

●

●

●

●●●

●

●

●●

●

●

●

●● ●●

●

●

●

●

●

●

●
●

●

●●

● ●●

●

●

●

●

●

●

●●● ●● ●●

●

●

●●●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●
●

●●●

●

●●●

●

●

●●● ●●

●

●

●

●

●●

●

●

●

●

●

●

●●
●

●

●

●●

●

●

● ●

●

●
●

●

●

●

●
●

●

●●

●

●

●

●

●●

●

●

●
●

● ●●

●
●

●

●

●

●

●

●● ●●

●

●

●●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

● ●●

●

●

●

●

●

●●

●

● ●

●

●
● ●

●

●

●

●

●

●● ●● ● ●●

●

●

●

●●

●

●

●

●

●

●

●

●●● ●●

●

●
●

●

●

●

● ●

●

●

●●●

●

●

●

●

●

●● ●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●●

●

●

●

●

●● ●●

●

●● ●

●

● ●

●

●●

●

●

●

●

●

●

●

●●●

●

● ●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●
● ●

●● ●

●

●●

●

●

●

●

● ●

●

●

●●●

●

●

●

●

● ● ● ●

●

●

●

●●● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●

●

●

●

●

●

●

●

● ●● ●

●

●

●

●●

●

● ●

●

●●● ●

●

● ●● ●● ●● ●

●

●

●

●

●●

●

●

● ●

●

● ●● ●

●

●

●

●

●

●

●● ●

●

●

●

●
●

●

●

●●●

● ●
●

●
● ●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●●●●

●●

●●

●●

●

●

●

●

●

● ●●●

●

●●

●

●

●● ●

●

●

●

●

●

●

● ●●

●

●
●

● ●

●

● ● ●

●

●

●

●●● ●●●●

●

●●● ●

●

●

●

●

●●● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ● ●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●
●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●
● ●● ●●

●●

●

● ●●

●

●
●

●

●

●

●

●

●

● ●●

●

●●

●

● ●

●

●

●

●

●

●

●
●

●●● ●
●

●

●

●●● ●
●

● ●

●●

● ●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●● ●

●

●

●●● ● ●●●●●

●

●

●

●● ●

●

●

●

●●●● ●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

● ●

●

●

● ● ●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●●●

●

● ●● ●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●● ●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●●

●

●●

●

●

●

●

●
●

●●

●

●●

●

●

●
●

●● ● ●●● ●●

●

● ●

●

● ●

●

●

●

●

● ●

●

●

●

●

● ●

●

●●● ● ●●

●

●●

●

●

●

●

●

●

●

●

●● ●

●

●● ●● ●●● ●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

● ●

●

● ●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●●

●

● ●

●

●

●

● ● ●●●

●
●

● ●

●

●

●

●

●

●●

●

●

●

●

● ●●

●

●

●

●

●

●● ● ● ●●

●

●

● ●● ●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

● ●●

●

● ●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●● ●●

●

●

●

●

●

●

●

●

●

●● ●● ●●
●

●

●

●

●●
●

●

●

●
● ●

● ●

●●

●

●

● ● ●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●● ●●

●

●

●

●

●

●●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ● ●●●
●

●

●

●

●

●

●●●●

●

●●

●

●

●

●●● ●●●● ●

●

●

●

●

●

●

●

●

●

●

●

●●● ●● ●●●

●

●

●●●

●

●

●

●

●

●

●●

●

●

●

●
●

●●
●

●

●

●●

●

●●

●

●

●● ●●●

●

●●

●

● ●●●

●

●

●

●

●

●

● ●●

●

●●● ●

●

●
●

●●

●

● ●

●

●

●

●●

●

●

●

●●

●

●

●

●

● ●● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

● ●● ●

●

● ● ● ●

●

●
●

●

●

●

●● ● ●

●

● ●

●

●● ●

●

●

●

●

●

●●

●

●●
●●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●●
●

●

●

● ●

●

●

●●

●●

●

●●● ●

●

●

●

●

●●

●

●●

●

●
●

●

●

●

●
●

●

●●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●

●

● ●

●

●

●● ●● ●

●

●

●

●

●●
● ● ●●

●

●

●

●

●

●

●

●

●

●

●

● ●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●● ●

●

●

●

●●

●
●

● ● ●●●

●

● ●●

●

●

●

●

●

●●

● ●

●

●

●

●

● ● ●●● ●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●●

●

●

●
●

●

●

●

●

●
●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●●● ●● ●

●

●

●

● ●

●

●●

●

●●

●

● ●●● ● ●●●●

●

●●

●●

●

●

●●

●

●

●

●

●

●●●

●

●

●

●● ● ●

●

●●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●●

●

●

●

● ●
●

● ●

●

● ●

●
●

●

●

● ●

●

●

●

● ●

●

●● ●● ●
●

●● ●

●

● ● ●

●

●

●

● ●● ● ●

●

●
● ●● ● ●

●

●●

●

●

●

●

●

●● ●●●● ●

● ●

● ●●●

●

●

● ●

●

●

●

●●

● ●

●

●

● ●

●

●

●

●

●●

●

●●

●

● ●● ●

●

●

●●

●

●

●

●

●

●

●●●

●

● ● ●

●

●●

●

●

●
●

●

●●

●

●

●

●

●●

●

●

● ●●● ●●

●

●

●

●●●●

●

●●

●

●

●●
●
●●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●●

●

● ● ●● ●●

●

●

● ●● ●●●

●

●

●

●

● ●●

●

●

●

●

●

●

●●

●

● ●● ● ●●
●

●● ●

●

●

●

●

●

●

●● ●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●●● ●● ●●

●

●

●

●

●

●

●
● ●

●

●

●●● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●● ● ●●●

●

●
●

●
●

●●

●●●

●

●

●

●

●

● ●

●

●

●
●

●

●

●●●●● ●●

●

●

●●

●

● ● ●●●

●
●

●●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

● ● ●●

●
●

●

●

●
●

●●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

● ●●●●

●

●

●
●

●

●● ●●● ● ●●●●●●●●

●

● ●

●

●

●

●

● ●

●

●

●

●

●● ●● ●
●

●

●

●
●
●

●

●

●

●

● ●

●

●

● ●

●
●

●

●● ●●
●

●

●●

●

●

●

●

●
●

●

●

● ●●●●

●

●
●

●

●

●

●

●

●

●

●

● ●●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●●

●

●●

●

●

●

●

●
● ●

●

●●

●

●

●

●

●

●

●

●

●

●●●●●

●

●

●

●

●

●

●

●

●● ●●

●

●

● ●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●●

●

●●● ●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●

●

●● ● ●●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ● ●

●

●●●

●

●

●

●

●● ●

●
●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●● ●

●

●

●

●

●

● ●●

●

●

●

●

●● ●

●

●

●
● ●● ●

●

●●● ●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●
●

●●

●

●

●

●

●
●

●

●

●

●●

●

●● ●● ●

●

●

●

●

●● ● ●●● ●

●

● ●●

●

●

●

●

●

●

●

●

●●

●

● ● ●●●
● ●

●

●

●●

●

●

●●● ●●

●

●● ●

●

●

●

●
● ● ●

●

●

●

● ●

●
●●

●

●

●●

●

● ●● ●●●
●

●

●

●

●● ● ●● ●

●

● ●

●
●

●

●

●

●●● ●

●

●●●

●

●

●●●

●

●
●

●

●

●

●● ●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●●

●

●

●

● ●●●

●

● ● ● ●●●●

●

●

●

●

● ●●● ●●●●
●

●

●

●

●

●

●

●

● ●●●

●

●

●

●

●

●

●

●●●● ● ●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●● ●● ●

●

●

●

●

●

●

●

●●●

●

●●●

●

●
●
● ●

●

●● ● ●● ●●● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ● ●

●

●● ● ●

●

●

● ●

●

●

●● ●

●

●

●
●

●

●

●

●

●

●

●

●

●●●

●

● ●

●

●●●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●●

●

●

●

●

●

●●

●

● ●

●

●●

●

●

●

●

●

● ● ●● ●● ●

●

●
●

●●●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

● ●

●

●

●● ●● ●●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●
● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●●

●

● ●●

●

●

●

● ●
●

●

●

●

●

●

●

●●
●

●

●

●

●

● ● ●

●

●

●

●

●● ●

●

●●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●● ●

●

● ●●

●

●

●

●

●●

● ●●

●

●

●

●

● ●●
●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

● ●

●

●● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

● ●●●

●

●

●
●

●●

●

●

●

●

●

●

● ●●●●

●

●

●
●

● ●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●● ●

●

●

● ● ●●

●

●

●

●

●

●

●

● ●

● ●

●

●

● ●●

●

●●

●

●
●

●

●

●

●

● ●

●

● ●

●

●●●

●

●

●

●

●

●

●

●

●
●

●

●● ● ●●● ●

●

●

●

●

●

●●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

● ●● ●●●●

●

● ●

●

●

●

●

●●●●●

●

●●●

●

●●

●

●

●

●

●

●
●

● ●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ● ● ●●●

●

●

●

●●

●

●

● ●

●
●

●

●

●

●

●

●● ●

●

● ●● ●●

●

● ●●

●

●

●●

●

●

●

●

●●

●

●●● ●●

●

●

●●● ●

●

●

●

●●● ●

●

●

●

●

●

●

●● ● ● ●●●●● ●● ●

●

●

●

●

●●

●

●

●●● ●

●

●

● ●

●

●●● ●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

● ●

●

● ●
●●●● ●

●

●

●

●

●

●●

●

●

●●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●●●

●

●

●

●

●●

●

●

●

●

●● ●●

●

●● ●

●

●

● ●

●

●

●

●●

●

●

●

●

●●● ●●

●

●

●

● ●

●

● ● ●●● ●● ● ●● ●

●

●

●

●

● ●●●●

●

● ●●● ●●

●

●

●

●●
● ●

●

●

●●●

●

●

●● ●

●

●

●

●

●●

●

● ●

●

●

●● ●●● ●

●

●

●

●

●

●

●

●

●

●●●

●
●

●

●

●

●

●

●

●

●

●

●● ●

●

●● ● ●●●●

●

●● ●

●

●

●

●●

●

●●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●●●

●

●

● ●

●

●
●

●

●

●

●

●

●

● ●●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●
●

●

● ●

●

●

●

●● ● ●● ●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

● ●●

●

●

●●

●

●

●

●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

● ● ●●●●●● ●●

●

●●
●

●

●

●

● ●●

●

●

● ●●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

● ●

●

●

● ●

●

●

●

● ●

●

●

●

● ●●●

●

●

●

●
●

●

●

●

●
●

● ● ●●
●

●

●

●

●

●

●

●

●

●

● ● ●● ●

●

●

●●

●

●●●●

●

●●●●

●

●

●

●

●

● ●

●

●

●

● ●● ●● ●●

●

●●

●

●

●●

●

●

●

●●

●

●●● ●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●● ●

●

●

●

●

●
●

●

● ●

●

●

●● ●

●

●

●

●

●●

●

●

●

●
●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

● ● ●● ● ●● ●

●

●● ● ●●●

●

●

●

● ●

●

●

●

●●

●

●●

●

●

● ●●

●

●●●●●

●

●

●

●

●

●

●

●

●

● ●● ●

●

●

●

●

●

●

●

●●● ●

●
●

●

● ●● ●● ●

●

●

●

●

●

●

● ●●

●

●

●●

●

●

●

●

●

●● ●● ●

●

●

●

●

●

●

●

●●

●●● ● ●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

● ●●

●

●

●

● ●●

●

●

●

●
●

●

●●

●

●●● ●● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

●

●

●●●●

●

●●●● ●

●

●

●

●

●

●

●

● ● ●

●

●

●●

●
●

●●●●● ●● ●

●

●

●

● ● ●

●

●●● ●

●

●

●

●●●

●

●

● ●●

●

●

●

●

● ●

●

●●●
●

●●

● ●

●

●

●●●

●

● ● ●●

●

● ●

●

●

● ●● ●●

●

●

●

●

●

●

●

●

●

●

●● ●● ●●

●

●

●

●●

●

●

●

●

●
● ●● ●●●

●

●

● ●●

●

●

● ●●

●

●

●

●

●

● ●●

●

●

●●● ●● ● ●

●

● ●

●
●

●

●

●

●

●

●

●

●● ●●●●

●

●●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●● ● ●● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

● ● ● ●●

●

● ●●

●

●

●

●

●

●

●

●

●

●●

●

● ●●●●
●

●

●●

●

●

●●

●

●

●●● ●

●

●●● ●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●●●●

●
●

●

●●●●●● ●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●● ●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●●●

●

●
● ●●

●

●●

●

●

● ● ● ●●

●

●

●● ●●

●

●

●

●

●

●● ● ●

●

●

●

●●

●

● ●

●

●

●

●

●● ●

●

●

●● ●●●●

●

●● ●

●

●

●●

●

●

●● ●

●

● ●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●
●

●

●

●

●

●● ●●

●

●

● ●●

●

●

●

●

●

●
●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●●●●

●

●●

●

● ● ●

●

● ●

●

● ●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

● ●

●

●

●

●

● ●

● ●

●

●

●

●●

●

●

●

●

●

● ●● ●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

● ●●

●

● ●

●

●● ●● ●● ●

●

● ●

●

● ●● ●

●

● ●

●●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●● ●●

●

●

●

●

●● ● ●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●●●

●

●

●●●●● ●●

●

●

●

●

●
●

●
●

● ●

●

●

●

●
●

● ●●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●
●

● ●●

●

●

●

●

●

●

●

● ●● ● ●●

●

●

●

●

●

●

● ● ●

●

●

●
●

●●

●

●

● ●

●

●

●

●

●● ●

●

●

●

●

●●

●

●

● ● ●

●

● ●●

●

●

● ● ●

●

●●●

●

● ●

●

● ● ●

●

●● ● ●●

●

●●●

●

●

●● ●●

●

●

●

●

●

●

●

● ●●●
●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●
●● ●● ● ●●●

●

●

●

●

●

● ● ●

●

●

●

●

● ●

●

●

●
● ●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

● ●
●

● ●

●

●●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●

●

●

●●

●
●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ● ●

●

●

●

●

●

●

●●●

●

● ●●● ●●● ●● ●● ●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●●

●

●●● ●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

● ● ●

●

●

●

●

●

●

●●● ●●

●

●

●

●

●

●● ●●

●

●

● ●

●

●

●

●

● ●●●●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●● ●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●● ●

●

●
●

●●● ●

●

●

● ●● ●

●

●● ●●

●

●

●

●

● ● ●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●●

●

●●● ●●

●

●

●
●

●

● ●●

●

●

●

●

●
●

●●

●

●

●

●

● ●

●

●●● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●● ●

●

●● ●

●

●

●

●

●
●

●

●●● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●● ●

●

●

●●

●

●●

●

●●●

●

●

●

●

●

●

●

●
●

●

●● ●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●● ● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●●●

●

●●

●

●●

●

●

●

●

●

●

●●

●

●

●

●●●
●

●●

●

●

●●●

●

●

●

●

●●

●

●

●

●

●

●

●● ●●●

●

●

●

●

●

● ●

●

●

●

● ●●●

●

●

●
●● ●

●

●

●

●● ● ●

●

●●●

●

●

●

●

●● ●●●

●

●

●

●

● ●● ●●

●

●

●

●

●

●

●

●●

●

●●

●

● ●●

●

●●●

●
●

●●

●

●

●

●

●

●

●

●

●

●● ● ●

●

● ●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●● ●
●●

●

●●●

●

●●

●

● ●●●●

●

●

●

●

●

●

●●

●

●

●

●● ●●

●

●● ●

●

●

●

●

●

●●

●

●

●

●

●●

●

●●

●

●● ●●

●

●

●

● ●●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●● ● ●● ●

●

●

●

● ●● ●●
●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●●●

●

●

●

●

●
●

●

●●

●

●

● ● ●●●

●

●

●

●

●●

●

●● ●●●

● ●

●● ●●●

●

●

●

●●

●

●

●

●●● ●

●

●● ●

●

●

●

●●● ●

● ●

●

● ●● ●●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●●
●

●

●●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●●

●

● ● ●

●

●● ●●

●

●

●

●

●

●

●

● ●

●

● ●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●● ●

●

●

●

●

●

●

●

●

●●

●

●●

●

●● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●●

●

● ●●

●

● ● ●

●

● ●●

●

● ●● ●

●

●

●●

●

●
●

●

●
●

●
●

● ●●

●

●

●

●

● ● ●● ●

●

●
●

●

●

● ●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

● ●●

●

●

●●● ●●

●

●

●

●●

●

●

●

●● ●● ●

●

●●

●

●●● ●

●

●● ● ●

●

●

●

●

●

●

●

●

● ●

●

● ● ●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

● ●

●

●

●

● ●●●

●

●● ●

●

●●

●

●● ●

●

●●

●

●

●●●●

●

●

●●

● ●

●

●

●●

●

●

●

● ●●

●

●●

●

●

●

●

●● ●

●

●

● ●

●

●

●

●
●

● ●

●

●● ●

●

●

●

●

●●

●

●●

●

●●●● ●●

●

●

●

●

●

●

●

●

●
●

●●

●

●●

●

● ●

●

●●

●

● ●● ●

●

●

●

●

●

●

●●

●

●●● ●●

●

●
●

●

●

●

●

● ●

●

●●

●

●

●

●

●●

●

●

●

●

●● ●● ● ●
●

●

●

●

●

● ●●

●

●

●

●

●● ●●●●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●● ●

●

●

● ●

●

●

● ● ●

●

●

●
●

●

●

●●●

●
●

●

●

●

●●

●

●

●● ● ●● ●●

●
●

●●

●

●●

● ●

●

●

●●● ● ●●
●

●

●

●

●

●●

●

● ●●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●● ● ●

●

●

●

●
●

●●

●

●

●

● ●

●

● ●● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●
●

●

●●

●

●

●

●●

●

●●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●●●●● ●●●●

●

●

●

●

●

●

●●

●

●

● ●●●

●

● ●●

●

●

●
●

● ●

●●●

●

●

●

● ●

●

●
●

●

●

●● ●

●

●● ●●●

●

●

●●●

● ●

●

●

●●
●

● ●

● ●

● ●

●

●

●

●

● ●

●

●

●●● ●●

●

● ●

●

● ●● ●

●

●

●

●
●

●

●●● ●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●● ●

●

●
●●

●

●

●●●

●

● ●

●

●

●

●

●

●

●

●●● ●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●● ●

●

●

●●

●

●●

●

●

●

●

●● ● ●

●

●

●

●

●●● ●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

● ●

●

● ●●●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●●●

●

●

●●●● ●

●

●● ● ●

●

●

●

●

●
●

●

●

●

● ●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

● ●●

●

●

● ●●●●● ●
●

●● ●●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●●● ●

●

●●●● ●

● ●

●

●

● ●●● ● ● ●
● ●

●

●

●

● ●

●●

●

●

●

●

●

●●●

●

●

●

●

●

● ● ●

●

●

●

●
●

●

● ● ●●

●

●

●

● ●●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●●●

●

●●

●

● ● ●●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●●

●

●

●

●

●

●

●

● ●●●

●

●

●

●

●

●

●●

●

●

●● ●● ●●

●

●

●●

●
●

● ●

●

●

●

●

●

●
●

●

●● ●●

●

● ●●● ●

●
●

●

●

●

●

●●●

●

●●● ●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●●●

●

●

●●

●

●

●

●

●

● ●●

●

●● ●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

● ●

●

● ●
●

●

●

● ●

●

● ● ●●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●●

●

●

●

●

●
●

●

●●●● ●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●
●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●● ●

●

●

●● ●

●

●●

●

●

●

●

●

●

●● ●●●

●

● ●

●

●

●

●

●

●

● ●●● ●●

●

● ●

●

●

●

●

● ●●

●

●

●

●●● ●●

●

● ●● ●

●

●● ●

●

●

●

●

●

●

●●● ●

●

●

●

●

● ●

●

●

●

●

●

●

● ●●

●

●●

●

● ●● ●●●● ● ●

●

● ●

●

●

● ●

●

●

●

●

●

● ●
●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●●

●

●

●

●

●●●

●

●●●● ●●● ●● ●●

●

●

●

●

●

●

● ●●

●

●

●

●●

●

●
●

●●● ●●●

●

●

●

●●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●● ● ●

●

●

●

●

●

●

●

●

●● ●● ●● ●

●

●●

●

●●● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●●
●● ● ●

●

●

●

●

● ●●

●

●

●

●

●

●
●

● ●

●●

●●●

●

●

●

●●●
●

●

● ● ● ●

●

●● ●●

●

●

●

●

●

●

●
● ● ●●

●

● ●

●

●

● ●●

●

●●

●

●

●

●●

●

●

●

●

●●

●

●●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

● ●●

●

●● ●●●

●

●

●

●

●

●

● ●

●

●

● ●●●

●

●

●
●

● ●● ●● ●

●

●●

●

●

● ●●

●

●

●

●

●

●

●
●

●

●
●

● ●

●

●

●

●

●●

●

●

● ●●●●

●

●

●
●

● ●● ●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●●

●

●

●

● ●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●● ●

●

●●

●

●

●

●

●● ●●●●

●

●
●

●● ●

●

● ●

● ●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●● ●●

●

●

●

●

●

●

●

●● ●●●●●

●

●

●

● ●

●

●● ●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●● ● ●● ●

●

●

●

●

● ●

●

●● ●

●

●

●

●

●

●● ●

●

●● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●●

●

● ● ●● ● ●●● ●●

●

●

●
●

●

●

●

●
●

●● ●

●

●

●

●

●● ●

●

●

● ● ●

●

●●

●

●

●
●

●

● ●●●

●

●

●● ● ●●

●

●●● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●

●
● ●

●

●

●●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ● ●

●

● ● ●● ●●● ●

●

●

●

●

●

●● ●●● ●

●

●

● ●●●

●

●

● ● ●

●

●●

●

●●● ●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

● ●

●

●

●

●

●

●

● ●

●

● ● ●●●●

●

●

●●

●

●

●

●●

●

●

●

● ●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ● ●● ●

●

●

●

●●

●

● ●

●

●

●

●

●

● ●●

●

●●

● ●

●

● ●●

●

●

●

● ●● ●

●

●
●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●
●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

● ●
●

●

●

●

● ●●

●

●

●

●

●

●

●

● ●●
●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

● ●●

●

●

●

●●

● ● ●

● ●

●

●

● ●

●

●

●

●

●● ●●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●● ●

●

●●● ● ●●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●●●

●

●

●

● ●

●

● ●●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●● ●

●

●

●

●● ●

●

●

●

●

●

● ●●

●

●

●

●

●

● ●●●

●

●

●●
●

●

●

●●

●

● ●

●

●●●

●

●●

●

● ●

●

●

●

●

●●●●●

●

●

●

● ●

●

●

●

●●
●

● ●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

● ●

●

●

●

● ●

●

●

●

●

●

●● ●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●●● ●●●

●

●

●● ●●

●

●

●

●

●

●

●

●

●●● ●

●

●

●

●
●●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●● ●

●

●

●

●

●

● ● ●●

●

●

●

●

●

●● ●● ●●●●

●

●

●

●

●
●

●●

●

●● ●● ●

●

●

●

●

●●

●

●
●

●

●

●●

●

●

●

●

●

● ●●● ●●●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●●

●
●

●

●

● ●
●

●

●

●

●

●● ● ●●● ●●●

●

●●

●

●

●

●

●

●

●

●●

●

●●● ● ●●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●●

●

● ●

●

●● ●

●

●
●

●

●

●
●

●

●

●

●●

●

●

●

●

●●●

●

●

●

●

●

●● ●

● ●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●
●● ●● ●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●●●
●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●

●

●

●

●

● ●

●●
●

●

●

●

●

●

●

●

●●

●

●
●

●

● ● ●

●

●

●

●● ●●●

●

●

●

●● ● ●●

●

●

●

●

●

●

●

●

●● ● ●

●

●
●● ●

●

●

●

● ●● ●● ● ●

●

● ● ●
●

●

●

●

●●

●

●
●

● ● ●●

●

●●● ●● ●

●

●

●

●

●
●

●

●

●

●

●

●

● ●● ●

●

●

● ●● ●

●

● ● ●● ●●

●

●

●
●

●

●

● ●●

●

●

●●●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

● ●

●

● ●

●

●

●

●

●

●●

●

● ●●●

● ●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●●●
●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●●● ● ●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●●

●

● ● ●●● ●

●

●

●

●● ●

●

●

● ● ●●

●

●

●

●

●

● ●

●

● ●
● ●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●●●● ●

●

●

●

●

● ●

●

●

●
●

●
● ●

●
●●

●

●

●

●

● ●●

●

●

●
●

●

●● ●●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●● ●●●

●

● ●

●

●

●

●

●

●

●

●

● ● ●●●●●

●

●●

●

●●● ●

●
●

●

● ●●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

● ●●

●

●

●

●

● ●

●

●● ●● ●

●

●● ●

●

●

●

●

●

●

●● ●

●

●●

●

●

●

●

●

●

● ●●

●

●

● ●●

●

●●

●

●

●

●●

●

● ●

●

●

●

●●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●●
●●

●

●

● ●● ● ●

●

●

●

●

●

●

●

●●●● ●

●

●

● ●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●● ●●

●

●

●

●●

●

●● ● ●●

●

●

●

●

●

●

●● ●●

●

●

●

● ● ●● ●

●

●

●

●● ●●

●

●

●

●

● ●● ●
●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

● ●●●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●● ●

●

●

● ●

● ●●

●

●

●

●

●

●

●

●●

●
●

●●● ●

●●

●●

●

●

●

●

●

●

●●● ●●

●

●

●

●

●

●

●

●

●

● ●●● ●● ● ●

●

●

●
●

● ●

●

●

●

●

●
●

●

●

●

●

●● ●

●

●

●

● ●●●●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●●
●

●● ●

●

●
●

●

● ●●● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

● ●
●

● ●

●

●

●●

●

●● ●●

●

●

●

● ●

●

●
●

●

●

●

●● ●●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●
● ●●

●
●

●

●

● ●●●● ●● ●

●

●●●

●

●

●●

●

● ●

●

●
●

●

●

●

●●

●

●● ●●

●

● ●●

●

●

● ●●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●●●

●

●

●

●

●

●

●●●

●

●

●
●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●● ●●

●

●

●

●

●

●

●●● ●●

●

●

●

●● ●
●

●

●

●

●

●

●

●

●

●●

●

● ●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●● ●●

●

●

●

●

●

●
●

●● ●

●

●

●

●

●

● ●

●
●●● ●

●

●●

●

●

● ●● ●

●
●

●

●

●
●

●

●

● ● ●●●

●

●

●

●
●

●

●●●

●

●

●● ●●

●

●

●

●●

●

●●

●

●● ●

●

● ●●● ●

●

●● ●● ●●

●

●

●●

●

●
●

●

●●

●

●●

●

●

● ●

●

● ●

●

●● ●●●

●

●

● ●● ●●●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●● ●

●

●

●

●

●

●

●

●

●

● ●●

●

●
●

●

●

●

●
●

●● ●

●

●
●

●

●

●

●●

●

●

●

●

●

● ●

●

●● ●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●● ●●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●● ●●

●

●

●

●

●

●

● ●● ●

●

●

●

●

●

●

●

●●●
●

● ●

● ●

●● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●● ● ●

●

●● ●
●

●

●●

●

●●
●

●

●
●

●

●●

●

●

●

●

●

●

●

● ● ●

●

● ●

●

●●●

●

●

●

●

●

●

●

●● ●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ● ●

●

●

●

●

●● ● ●

●

●

●

●●● ●

●

●

●

●

●●

●

●

●

●

●

●

●

● ● ●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●● ●

●

●

●

●

●

●●

●

●

●

● ●

●

● ●●●

●

●
●

●

●

●

●

● ●● ●

●

●●

●

●

●● ●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●● ●● ●
●

●

●

●● ●

●

● ●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

● ● ●

●

●● ●● ●● ●● ●

●

●

●

●●

●

●●

●

●●● ●●

●

● ●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●● ●●

●

●

●

●

●● ●

●

●

●

●

●

●
●

●●●

●

●

●
●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●● ●

●

●

●

●●

●

● ●● ●

●

●

●

●

●●

●

●

●●

●●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●● ●●

●

●●

●

●

●

● ●●

●

●

●

●

●●

●

●

●

● ●●

●

● ●

●

●●● ●● ●●●

●

●
● ●

●

●

● ●●●

●

●

●

●

●

●

●

●

●

●

●

●

●● ● ●●●

●

●

●

●

●

●●●● ●● ●●

●

●●

●

● ● ●● ●

●

● ●

●

● ●● ●●

●

●

●

●

●

●

●

● ●

●

●

●

●●●

●

●

● ●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●● ●

●

●

●
●

●●

●

●

●

●

●

● ●●

●

●

●

●●

●

●

● ●

●

●

●

●
●

●

● ●

●

●●

●

●

●● ●

●

●

●

●●

●

●●●

●

●

●

●

●●●●

●

●●●

●

●

●

●

● ●

●

●

●

●● ●

●

●

●● ● ●●

●

● ●●

●

●

●

●

● ●

●

●●●

●

● ●

●

●● ●
●

●

●

●

●

● ●●

●

●

●

● ●●

●

●

●

●

●

●
●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●●

●

●
●

●

●

●

●

● ●

●

●

●

●● ●●● ●

●

●●●

●

●

●● ●

●

●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●● ●● ●

●

●

●●
●

●●● ●●

●

● ●

●

●●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●● ●

●

●

●

●

●

●

●

●

●

●●●

●
●

●

●

●

●

● ●

●

●

●

●

●

●●

●

● ● ●

●

●

●●● ●

●

●

●● ●●

●

●

●

●

●

●

●

●●●● ●●

●

●●●

●

●

●

●

● ●

●

●

●

● ●● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●●●● ●●

●

●

●

●

●

●

●

●
●

●

●

●●● ●

●

●

●

●

● ●●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●●

●

●

●

● ●●

●

●

●●

●

● ●

●

● ●●●

●

●

● ●

●

●●

●● ● ●● ●●

●

●

●
●

●●●

●

●● ●

●

●

●

●

●

●

●●●

●

● ● ●●● ● ●● ●

●

●●●

●

●

●

●

● ●

●

●

●

●

●

●

●● ●●● ●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●●

●

●●● ●●

●

●

●

●

● ● ●

●

●● ●●

●

●

● ●●●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

● ●● ●

●

●

●

●

●

● ●● ●

●

●

●●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●
●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

● ●

●

●

●

●

●

●

●

● ●●

●
●

● ●●

●

●●

●

●

●

●

●●●

●

●

●●

● ●

● ●
●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●●

●

● ●●● ●

●

●

●

●

● ●●

●

●

●

●

●

●

● ●

●

● ●

●

● ●●●● ● ●

●

●

●

●

●

●
●

●

●

●● ●
●

●

●

●●

●

●

●● ●

●

● ●●

●

●

●●

●●●

●●● ●

●

●●● ● ●

●

● ● ●●

●

● ●●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●●

●

● ●●●

●

●

●

●

●

● ●

●

●

●

● ●●●

●

●

●

●

●

● ●●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

● ●●● ●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●●●●

●

●

●

●● ●●

●

●

●

●

●

●

●

●

●

●

●●● ●●

●

●

●

●●●●

●

●

●

● ●

●

●

●

●

●

● ●●● ●● ●

●

●
●

●

●

●

● ●

●

●

●●●● ●● ●

●
● ●

●

●

●

●

●●● ●●

●

●

●

●

● ●●

●

●●

●

●

●

● ● ●●● ●●

●

● ●● ● ●

●

●

●

●● ●

●

● ●

●

●●

●
● ●

●

● ●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

● ●●

●

●

●

●

●

●

●

●

●
●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●● ●●

●

●

●

●

●

●

●

●

●

● ●●●

●

● ●

●

●

●

●●● ●

●

● ●

●

●

● ●

●

●

●
● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●
●

●
●

●

●

●

●●

●

●

●

●

●

●●● ●

●

●

●● ● ●●

●

●

●

●

●

●

●

●●
●

●

●●

●
●

●

●

●

● ●

●

●

●

● ● ●

●

●

●

●

●

●

●●

●●

●● ●● ●● ●●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●● ●● ●

●

●

●

●

●

●

●● ●

●

●

●

● ●

●

●●

●

●

●

●●

●

● ● ●● ●●● ● ●● ●●●● ●

●

●

●● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●●

●

●

●

●

●●●

●

●

●
●

● ● ●●●
●●

●

●●●●

●

●●

●

●

●

●

●

●

●

●
●● ●

●

●

●

●

●

●

● ●

●

● ●●

●

●

●

●

●

●

●●

●

●

●●●●●

●

●

●

●

●

●

●

●●

●

●● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●●

●

● ●

●

●

●

●

●

●

●

●

●● ●●● ●●●

●

●

●

●● ●●● ●●

●

●

●

●

●● ●

●

●●

●

● ●● ●

●

●

●

●● ●●●

●

●

●

●

●

●●

●

●

●

● ●●● ●

●

●

● ●

●

●

●

●

● ●●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●● ●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●●

●

●
●●● ●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ● ●

●

●●●

●

●

●

●

● ● ●●

●

●

●

●

●

● ●● ●● ●

●

●

●

●●

●

●

●

●

●

●

●●

●

●●●

●

●

●

●

●

●

●

●● ● ● ●●

●

● ●●

●

● ●●

●

●

●

●●●●
●●

●

●

●

●

●

●

●

● ●● ●

●

●●

●

●

●

●

●

●

●

●●●

●

●

● ●●

●

●

●

● ●●

●

●

●
●

●

●

● ●

●

●

● ●

●

● ●

●

●

●

●

●

●

●● ●

●

●● ●●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●● ● ●●●

●

●●●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●●

●

●

●

●

●
●

●

●
●

●

●

●

● ●● ●● ●

●

●
● ●●

●
●

●

●
● ●●

●

●

● ●

●

●

●

●

● ●●

●

●●

●

●

●

●● ●
●

●

●

●

●

●●

●

●

● ●

●

●
●

●

●

●

● ●● ●

●

● ●

●

● ●● ● ● ●

●

●

● ● ●

●

●

●

● ●

●

●●
● ● ●●● ●

●

●●

●

● ●
●

●●

●

●●

●

●

●● ●●

●

●● ●● ●● ●

●

●●● ●

●

●
●

●● ●● ●

●

●

● ●●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ● ●

●

●

●

●

● ●
●

●

●

● ●●

●

●

●

●

●●

●

●●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●● ●●

●

●●
●●

●
●

●

● ●

●

●

●

●

●●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

●

●

●●●● ●●

●●

●●●

●

●

●●
●

●

●

●● ●●

●

●

●● ●

●

●

●

●●

●

●

●

●

●

●●● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●● ●

●

●

●

●●●

●

● ●

●

●

●

●

●

● ●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●● ●

●

● ●

●

●

●

●●

●

●

●

● ●

●

●

●

●

● ●●

●

●

●
●

●●● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ● ●●● ●

●

●

●●●

●

●

● ●

●

●

●

●

●

●●

●

●●

●

●

●

●

● ●

●●● ●

●

● ● ●●●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●●

●

●● ●●●●

●

●

● ●

●

● ● ●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●●

●

●

●

●

● ●

●

●

●

●

●

●

● ●●

●

● ● ●●

●●

● ●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●●

●

●

●

●●

●

●

●
●

●

●●

●

● ●●

●

●

● ● ●

●

●

●

●● ●

●

●

● ●

●

●

●

●● ●

●

●● ●

●

●

● ●●

●

● ●● ● ●

●

●

●

●

●

●● ●

●

●● ●●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●● ● ●

●

●● ●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●●

●

● ● ●●●

●

●

●●●

●

●

●

●

●

● ● ●●●

●

●

●

●

●

●

● ●

●

●●

●

●

●●●

●

●●

●

● ●●

●

●

●●●● ●

● ●

● ●●● ●

●

●●

●

● ●

●

●

●●

●

●

●

●

●

●

●● ●●

●

●●●●

●

●●

●

●

●

●

●

●

●

●

●

●●● ●

●

● ●

●

●
●

●

●

●

●●

●

●

●●

●

●

● ●

●

●
●●●●

●

●

●

●●● ● ●●●● ●●

●

●

●

●

●

●

●

●

●●

●

●

● ● ●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

● ●●●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●

●

●●

●

●● ●

●

●●
●

●

●

●● ●

●

●

●

●

●

●

●

●

●

● ●

●

● ● ●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●● ●

●

●●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●● ●

●

●

●

●

●

●

●● ●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●
●

●

●

●

●

● ●

●

●●

●

●

●
●

●

●

●

●

●●●

●

● ●●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●● ● ●

●

● ●

●

● ●● ●●●

●

●

●

●

●

●

●●

●

●

● ●

●

●● ●●

●

●

● ● ●

●

●

●

●

●●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●●●

●

●

●

● ●

●

●●

●

●

●

●

●●

●

●

●

●●

●

● ●● ● ●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●●

●

●●
●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●
●

● ●

●

●

●● ● ●
●

●

●

●

●

●

●

●

●

●

●

● ●
●

● ●

●

●●
●

●

●

●

●

● ● ● ●
●

●

●

● ●

●

●

●

●●

●

●

●●●

●

●

●

●

●

●● ●●

●

●●● ●

●

● ●●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●● ●

●

●

●

●●●

●

●

●

●●● ●●

●

●

●

●

●

● ●

●
●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●● ●

●

●● ●● ●

●

● ●

●

●● ●●

●

●

●

●

●

●

●● ● ●●

●

●

●

●

●

●

●

●●

●

●

●

●●●● ●●

●

●● ●

●

●

●

●

●●●

●

●

●● ●

●

●

●

●

●

●

●

●●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●● ●

●

●

●

●

●

●

●

●

●●●●

●

●●●● ●

●

●

●

●

●

●

● ●

●

●

●

●

● ●
●

●

● ●● ●

●

●

●

●●● ●

●

●

●

● ●

●

●

● ●

●

●

●

●●

●

●● ●

●

●
●

●

●

●

● ●
●

●

● ● ● ● ●● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●● ●

●

●

●

●●

●

●●●●

●

●●●● ●●

●

●

●

●

● ●

●

●

●
●

●

●●●

●

●

●

● ●●

●

●

●● ●

●

●

●

●● ●●

●

●

●

●

●

●

●

●

●
●

● ●● ●

●

● ●●

●

●

●

●

●
● ●● ● ●● ●

●

●

●

●

● ●●●●

●

●●●
●●

●

●

●
●

●

●

●

●

●

●

●
●
●

●
●

●
● ●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

● ●●
●

●●●

●

●●●● ●

●

●

●
●

●

●

●● ●

●

● ●●

●

●● ●

●

●

●

●

●●

●
●

●● ●

●

●

●●

●

●

●

●
●

● ●●

●●

●

●●

●

●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●●

●●

●

●●●

●

●

●●● ●●

●

●

●

●

● ●

●

●● ●

●

●

●

● ●

●

●

●

● ●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●● ● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●● ●●

●

●

●

●

●

●

●

●

●

●

●●
●

●

● ●●●

●

●

●

●

●
●

●

●

●

● ●

●

●●

●

● ●●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●● ●

●

●

●

●

●

●

●

●

●

● ●● ● ●●

●

●

●

●
●

●●

●

●●●

●

●●●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●●●●

●

●● ●

●

●

●

● ●●

●
●

●

●

● ● ●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

● ●

●
●

●

●

● ●●●

●

●

●

●

●

●

●

●

●

●●

●

●●● ●

●

●● ●●● ●●● ● ●

●

●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●● ● ●

●

●

●

●●● ●
●●

●

● ●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

●

●

●

●

● ●● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●● ●● ●

●

●● ● ●

●

●

●

●●

●

●

●

●●

●●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

● ●

●

●

●

●

● ●

●

●

●●● ●
●

●

●

●
●

●● ●●●
●

●

●

●
●

●

● ●

●

● ●● ●

●

●

●

●

●

●

●

●
●

●●●●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●● ●

●

●

●

●

●●●

●

●

●

●

●

● ● ●●

●

●● ● ●● ●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●● ●●●

●

●

●

●

●●

●

● ●● ●

●

●

●

●

●

●
●

●

●

●
●● ●● ●

●

●

●

●●
●●

●

●●

●

●

●

●

●●●

●

●

●

●●

●

● ●

●

●
●

●

●

●

●

●

●

●●●● ●

●

●

●

●

●

●

● ●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●● ●● ●● ●●●

●

●

●
●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●●

●

●

●

●●● ●

●

● ●●

●

●

●

●

●

●

●
● ●●●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

● ● ●●
●

●● ●

●

●

● ●

●

●●

●

●

●

●●

●

●●●

●

●

● ●●● ●● ●

●

●

●

●

●● ●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●● ● ●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

● ●
●

●
●

●

●

●

●

●

●

●
●

●

●

● ● ●●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●●

●

●
●

●

●

●

●

●

● ●●●

●

●●

●

● ●●●

●

●

●

●

●
●●● ●●

●

●

●

●

●

●

●

●●● ●

●

●

●

●

●

●

●

●● ●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●● ●
●

●●

●

●

●● ●

●

●●●

●

●

●

●

●

●

●

●

●

●●
●

●●●

●

●

● ●● ●

●

●

●

● ●●●

●

●

● ●● ●● ●

●

●

● ●

●

●

●

●●●

●

●

●

●

●

●

●●● ●●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●●

●

●

●●
●

●

●

●

● ●● ●●

●

●

●

●●

●

●

●

●

● ●

● ● ●●●

●

●

●●

●

●

●

●●
●

●●

●

●

●

●●● ● ●

●

●

●

●●

●

●

●●●

●

●

●

●

● ●
● ●● ●●

●

●●●

●

●●

●

●● ● ●●

●

●

●● ●

●

●
●

●

●

● ●●●

●

●
●

●●

●

●

●
●

●

●

●

●●

●

●

●●

●

● ●● ●●●

●

●● ●

●

●

●
●

●

●●

●

● ●●
●

●●

●

●●

●

● ●

●

●●●

●

●

●

●

●

●

●

●

● ●●●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●●●

●

● ●●

●

● ●

●

●
●

●

●

●

●

●

●

● ●

●

●●

●

●
●

●

●

● ● ●●

●

● ●

●

●
●●

●

●●● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●●

●

●

●

●●

●

● ●●●

●

● ●

●

●

●

●

●●

●

●●●●

●

● ● ●

●

●●● ●●

●

●

●

●
●

● ●

●

●

●

● ●●● ●

●

●

●

●

● ●
●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●● ● ●

●

●●●●

●

●

●

●

●●

●

●● ● ● ●● ●●

●

●

●●

●

●

● ●

●

●

●

●●

●

● ● ● ●●

●

● ●●●●

●

● ●

●

●

● ●

●

●

●

● ●●
●

●

● ●●●

●

● ●

●

●●●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ● ●●● ● ●

●

●

●

● ● ●

●

●

●

●

●
●

●

●● ●● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●● ●●●● ● ●

●

●●

●

●

●
●

●●

●

●
●●

●

● ●●

●

●

●
●

●●

●

●

●

●

●● ●● ●●● ● ●● ●● ●

●

●

●

●●●● ●●●

●

●

●●

●

●

●

●

● ●

●

●●

●

●

●

●

●●

●

●

●●● ●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●● ●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

● ●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●●

●●

●●●● ●

●

●

● ●

●
●

●● ●●●

●

●

●

●●

●

●

●●●

●

●

●

●● ●

●

●
●● ●

●

●

●

●

●

●

●●
●

●

●

●●

●● ●

●

● ●

●

● ● ●●●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

● ●●

●

●

●

●

●

● ●● ●

●

●

●

●● ●

●

● ●

●●

●

●

●●● ●

●

●● ● ●●

●

● ●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●● ●●

●

●

●

● ●●●

●

●

●

●

● ●●

●

● ● ●●

●

●●●

●

●

● ●● ●

●

●●●

●

● ●

●

● ●●●

●

● ●

●

●

●

●

●

●

●●●

●

●

●

● ●

●

●

●

●

●

●

●

● ● ●

●

●●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●●

●

●

● ●●

●

●●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●
●

●●●
●

●

●●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

● ● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●● ●

●

●
●

● ●● ●

●

●

●

●

● ●
●

●

●

●● ●●● ●

●

●

●

●

●

●

●●

●

●● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●●●

●

●

●
●

●

●

●

●

● ●

●

● ●●

●

●● ●●

●

●

●

● ●●● ●

●

●
●

●

●

●

●● ●●●

●

●● ●●

●

●

●

●

●●

●

●

●

●

●

● ●

●

● ●● ●●

●

● ●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●● ●

●

● ●● ● ●

●

●

●

●

●

●
●

●

●●

●

●●●

●

●

●●

●

●

●

●

●

●

●●

●

●

● ●

●

●●

●

●

●

● ● ●

●

●

●

●

● ●●

●

●

●

● ●

●

● ●

●

● ● ● ●

●

●

● ●●● ●●

●

●

● ●

●

● ●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●
●

● ●

●

●

●

●

●

●

●● ●

●

●
●

● ●

●●
●

●●

●

●
●

●
● ●●

●●

●●
● ●

●●
●●●

●
●

● ●
● ●●●

●●
●
● ●●●●●●●●

●●●●
●●●●●

●●●●●●●●●●
●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●● ●●●●●●● ●●●

60%

70%

80%

90%

100%

1 10 100 1000 10000
#Fault−Similarity Classes

A
cc

ur
ac

y

(a) eCos/baseline (training)

●

●

●

●

●
●●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ●●

●

●●

●

●

●
●

●

●

●

●

●

●
●

●

● ●

●

●

●

●
●

●

●

●

●

●
●●

●

●● ●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

60%

70%

80%

90%

100%

100000 150000 200000 250000 300
Total #Experiments (including training)

A
cc

ur
ac

y

(b) eCos/baseline (total)
●

●

●

●

●

●
●

●● ●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●● ●

●

●●

●

●

●

●

● ●

●

●

●

●

●●●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

● ●● ●● ●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●●

●●● ●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●●
●

●●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●●

●

●●●●●●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●
●●●

●

●

●

●

●

●

●

●

●

●●● ●●●

●

●

●

●

●
●

●

●

●●●

●

●

●

●

●●

●

●

●

●

●

● ●●

●

●● ●●

●

●

●

●
●

●●
●

●

●

●

●

● ●

●

●

●●●

● ●

●

●

●●

●

●

●

●

●● ●

●

● ● ●●●● ●

●

●

●
●

●

●

●

●

●

●

●
●

● ●●●●● ●●● ● ●●●
●

●

● ● ●

●

● ●

●

●

●

● ●●

●

●

●

●
●

●

●

●

●

● ●

●

●●● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●●● ●●
●

●● ● ●
●

●

●

●

●

●●● ●●

●

●
●● ●

●

● ●●●

●

● ● ●

●

●

●

●

●●

●

●
●

●

●

● ●

●

●

●

●

●●●

●

●

●

● ●●
●

●

●

●

●

●
●●● ●

●

●

●

●

●

●●
●

●●● ●

●

●

●

●
●

●

●

●● ●

●

●

●

●

●

●●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●●

●

●
●

●

● ●●
●

●

●

●
●

●●●
●

●

●

●
●

●● ●

●

● ●●

●

●● ●●

●

●●● ●

●

●● ●

●

●
● ●

●

●

●

●

● ●● ●

●

●

●

●

●●
●

●

●

●

●

●

●●●●

● ●

●

● ●

●

●● ●

●

●

●

●●

●

●
● ●

●

●

●

●●● ●●
●

●
●

●

●
●

●
●●

●

●●●

●

●●
● ●

●

●

●

●

●

●

● ●
● ● ●

●

●●

●

●●

●

●

●

●

●●●

●

●

●
●

●

●

●

●
●

● ●●
●

●

●
●

●

●

●

●

●

● ●●

●

● ●

●

● ●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●● ●●● ●●

●

●

●● ●

●

●● ● ●● ● ●● ●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●●

●

●●

●

● ●● ●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●●● ●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●● ●

●

●●

●

●

●

●● ●

●

●

●

●●

●

●● ●
●

●

●

●

●

●

●

●

●

●

● ●●

●

● ●
●

●

● ●
●●

●

●

●

●

●

●

●

●●

●

●●●

●

●●

●

●●●

●

●

● ●

●

●

●

● ●● ●

●

●

●

●

●

●

● ●

●

●

● ●
●

●● ● ●

●

●
●

●●

●

●

●

●

●

●

●

● ●
●

●●●●

●

●
●

●●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

● ●●

●

● ●●

●

●● ●●

●

●● ●●●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●●● ●
●

●

●

●

●

●

● ●●

●

● ●●

●

●

●
●●

● ●●

●

●●● ●

●

● ●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●● ●

●

●

●

●

● ●●

●

●

●

●

●

●●

●

● ●
●

●●

●

●● ● ●

●

●

●

●
●

●●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●● ●●
●

●● ●

●

●

●

●
●

●

●

●

●

●

●●●●
●●●

●

●

●

●

●
●

●
●

●

●●

●

● ●

●

●

●●● ●●

●

● ●●

●

● ●●● ●

●

●
●

●

● ●●●

●

●●

●

●

●

●● ●

●

●

●

●
●

●●● ●
●

●

● ●

●

●

●
●●●

●
● ●

●

●

●

●

●

●

●

●●● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

● ●●●

●

●

●

●

●

●
● ●●●

●

●

●●
●

● ●●

●

●

●● ●

●

●

●

● ●●● ●●

●

● ●

●

● ●●

●

● ●● ●●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●
●

●
●

●● ● ●●● ●● ● ●

●

●

●

●●●

●

●

●

●

● ●

●

● ●●

●

● ● ●●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●●

●

●

●

●

● ●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●● ●

●
●

●
●● ●●

●

● ●

●

●

●

●

●

●

● ●●

●

●

●

● ●●●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●●●● ●● ●●
●

● ●
●

●

●

●

●

● ●

●

●

●

●

●

●●●● ●

●

●●
●

● ●

●

●

●

●

●

● ●
●

●

●

●● ● ●

●

● ●

●

● ●
●

●

●

●

●

●●

●

●● ● ●●

●

●

●

● ●● ●

●

●

●

●

●
●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●●

●

●

●

●●

●

●

●

● ●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●
●

●●●

●

● ●

●

●●●

●

● ●●● ●
●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●● ●

●

●

●

●● ●●

●

●●

●

●

●

●●●

●

●

●

●

●

●

●●● ●●● ●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●● ● ● ●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●●

●

●

●

●

●

●●

●

● ●

●

●●● ●

●

●●

●

●

●

●

●

●

●

●

● ●● ● ●

●

●

●

●
●

●

● ●

●

●● ●●●

●

●

●

● ●

●

●
●

●

●

●

●

●●● ●●

●

●
●●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●●●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

● ●
●

● ●●
●

●

●

●

●

● ●●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●
●

●

●

●

●

●● ●●

●

● ●

●

●●
●

●
●

●

●

●●

●

●
●●

●

●

●
● ●

●
●

●
●

●

●●

●

● ●
●

●

●●
●

●

● ●

●

●

●

● ●

●

●●
●

●

●

●

●

●●

● ●●

●

●

●●● ●

●

●

●

●●●●

●

●

●

●

●

●
●

●● ●●

●

●

●

●

●

●●●

●

●

●●
●

●

●

●

●

●
●

● ●

●

●

●

●

●
●●●

●

● ●

●

●

●●

● ●

●

●

●
●

●

●

●

●●

●

●

●

●

● ●

●
●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●● ●

●

●●●●

●

●●

●

●

● ● ●●

●

●

●

●

●● ●

●

●
●

●

●

●
●
●

●● ●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●● ●● ●

●

●

●

●● ●

●

●●
●

●

●
●●

●

●

●

●

●

●

●

●
●

●

●● ●

●

●

●

●

●
●

●

●

●

●

●

●●

●

● ●●●● ●●

●

● ●●
●

●

● ●●● ●

●

●

●

●● ●

●●

●

●

●
●

●

●●● ●● ●

●●

●

●

●

●●

●

●

●
●

●

●

●●
●●

●

●

●

●
●

●● ●

●

● ●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●● ●● ●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●●
●

●

●
●●

●

●

●●

●

●

●

●

●

●

●●

●

● ●

●

●●

●

● ●

●●
●

●

●

●

●

●● ● ●●●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ● ●
●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●●●●●

●

●

●

●●

●

● ●
●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●●

●

●
●

●
●

●

● ●●●

●

●

●

●

●

●

● ●●●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

● ●

●

●

●
●

●

●

●●

●

●●

●

●

●
● ●●

●
●● ●

●

●●

●

●

●

●
●

●●

●

●
●● ●

●

●

●
●

●● ●
● ●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●
●

●●●

●

●

●
●●●●● ●

●

●●

●

●
●

●

● ●
●●

●

●

●

●

●●

●

●

●

● ●

●

● ●●

●

●

●
● ●

●

●

● ●●●
●

●● ● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●●●●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●● ●●

●

● ●

●

●● ●●

●

●

● ●● ●●

●

●

●

● ●●

●

●
●

●● ●

●

●●

●

●

●

●

●

●

●
● ● ●

●

●

●●

●
●

● ●
●

●●

●

●

●

●

●

●
●

●

●

●

●●
●

● ●●● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●● ● ●

●

●

●

●●● ●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

● ●

●

●
● ●●

●

●
●

●

●

●● ● ●
●

●

●●● ●●
●

●

●

●

●

●●● ●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●
●

●

●

● ●●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●● ●

●

●

●

●

●

● ●

●

●

●●●

●

●
●

●

● ●● ●

●

●

●

●

●

●

●●●●●●● ●● ●●

●

●

●
●

●●

●

●

●
●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●
●●

●

● ●
●

●

●

●●

●

●

●

●
●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●●● ●

●

●

●

●

●

●

●●●
●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●● ● ●

●

●

●

●●●

●

●●●● ●●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●●

●

●

●

●

●●

●●

●

●
●

●●●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●●

●

●

●
●

●
●

●

●
●

●

●● ●●●

●

●● ●

●

●
● ● ●●

●

●

●

●

●
●

●

●

●

● ●● ●

●

● ●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●●● ● ●

●

●

●

●●
● ●

●

●
● ●

●

●

●

●● ●

●

●

●

●

●●●

●

● ●● ● ●

●

●

●

●

●

●

●

●

● ●●

●●

●●

●

●

●

●

●●

●

● ● ●

● ●

● ●● ●●

●

● ●

●

● ●

●

● ●

●

●●

●

●

●

●●● ●●

●

●
●

● ●●

●

●

● ● ●
●

●
●

●●

●
●

●

●
●

●●

●

●●

●

●●

●

●

●

● ●

●

●

●

●

● ● ●

●

● ●●● ●

●

●

●

●

●

●

●

●

●

● ●●●●●● ●

●

●
●●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●● ●

●

●

●●

●
●

●

●
●

●

●●

●

●

●

●
●●

●

●
●

●

●

●

●

●
●

●● ●
●

●

●

●

●

●

●
●

●
●

●●●
●

● ●● ●● ● ●● ●● ●● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●● ●

●

●● ● ●

●

●

●● ●

●

●●● ●●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●
●

●

●● ●●

●

●●

●

●

●

●

●

●

●

●●●●

●

●●
●● ● ●

●

● ●● ●●

●

●● ● ●

●

●

●

●

●

●
●

●● ●

●

●

●

●

● ● ● ●

●

●

●

●

● ●●●● ●

●

●

●●
●

●●●

●

●

●

●

●
●

●●

●

● ● ●

●

●

●
●●

●

● ●●
●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●● ●●
●

●
●

●

●

●●●
●

● ●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●●● ●

●

●●●

●

●

●

●
● ●● ●

●

●
●

●

●

●

●

●

●

● ●
●

●

●

●
●

●

●

●

●

●

●

●
● ●

●● ● ●● ● ●
●

●●●

●

●●
●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●●● ●

●

●●●

●

●

● ●
●

●

●

●

●
●

●

●

●

●
●

●

●●●●

●

● ●

●

●
● ●●

●

●

●

●
●

●● ●
●

●

●● ●●●

●

●

●

●
● ●●

●

●

●

●

●

●●●

●
●

●

●

●

●

●

● ●

●

●● ●●

●

●●●●●

●

●●

●

●

●

●

●●

●

●

●

●

●

●●

●●●
●

●

● ●

●

● ●● ●

●

● ●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●● ●●●

●

●
●

●

●

●

●

●

●

● ●● ● ● ●

●

● ●

●

●

● ●
●

●●●

●

●

●

●
●

●

● ●

●
●

●

●

●
● ●

●●

●

●

●

●

●

●

●

●● ●●

●

●

●

●

●
● ●

●

●

●

●

●
●

●

● ●

●

● ●●●

●

●
● ●

●

●
●

●

●
●●

●●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●● ●

● ●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

● ●● ●●

●

● ●

●

● ● ●

●

●

●

●

●●● ●●●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●● ●● ●●●●●

●

●

●●●●●● ●
●

●●● ●
●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●● ●● ●

●

●

●

●

●

●●

●

●

●● ●●

●

●

●

●●

●

●● ●●●
● ●

●

●

●● ●

●

● ●●

●

●

●

●

● ●●

●

●

●

●● ●

●

●

●

●

●

●●
●

●●●
●

●
●

●● ●●
●

●
●

● ●

●

●

●

●

●

●
●

●

●

●

●● ●

●

●

●
●

●

●

●

●

●●● ●

●

●

● ●

●

●

●
●

●●● ●●
●

●

●

●

●

●

●● ●● ●

●

●
●

● ●●●

●

●

●

●

●

●

●

●●●

●

●

●

●●●●

●

●

●

●●● ●
● ●

●

●

●

●●●

●

● ●● ●●●

●

● ●●●
●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●● ●

●

●

●
●

● ●

●

●

●

●●

●

●

●

●

●●

● ●

●

●
●

●

●

●

●
●

●

●

● ●

●

●●●

●

●
●

● ●

●

●

●
●

●

●

●

●

●

●●● ●

●

●●

●

●

●

●

●

●

● ●

●

● ●● ●●●

●

●

●

●● ●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

● ●●● ●

●

●●
●

●●

●

● ●

●

●

●

●

●

●

●● ●●●

●

● ●

●

●

●●

●
●

●

● ●

●

●●● ●

●

●

●

●
●

●

●
●

●

● ●●●● ●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●
●

●

●

● ● ●

●

●●

●

●● ●

●

●●

●

●●

●

●

●●●

●

●●● ● ●● ●
●

●●
●

●
●

●

●

●

●

●
●

●

●● ●

●

● ●
●

●

●●

●●

●
●

●

●

●

●
●

●

●

● ●●

●

●

●●● ●●●

●

●●

●
●

●●

●

●

●●

●

●

●●●

●●

●●●●

●

●

● ●

●

●

●●

●

●

●● ●● ● ●

●

● ●●

●

●
● ●●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●
●●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●
● ●●

●
●

● ●
●

●●

●

●

●

●

●

●

●

●

● ●
●●

●●●

● ●

● ● ●● ●

●

●

●

●

●

●

●●●●●

●

●

● ●● ●●

●

●

●

●
●

●●

●
●

●

●

●
● ●

●

●

●

●

●

●

●

●●●

●

●

●● ● ●

●

●

●

●

● ●●

●

●

●

●● ●● ●

●

●

●●

●

●

●
● ●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●●● ●●●

●

●●

●●

●

●

●

●

●

● ●

●

●●

●

●

●
●●

●

●

●

●

●

●

●● ● ●

●

● ●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●●

●

● ●

●●

●

●
● ●

●

●

●● ●

●

●●

●

●

●

●
●

●

●
●

●

●

●

●

●● ●●

●

●

● ●

●

● ●
●

●

●
●●

●

●

●

● ● ●●

●●

●●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

● ●

●
●

●
●

●

●

●

●

●

●●●●●●

●

● ● ●

●

● ●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●

● ● ●●

●

● ●●

●

●
●

●

●

●●

●

●

●

●● ●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●● ● ●

●

●●

●

●

●

●

●

●●

●

●

●

●
●

●●

●

●

●

●

●●

●

●

●

●●●

●

●

● ●●

●

●●

●

●

●

●●● ●●●

●

●

●●

●

●

●

●

●●

●

● ●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

● ●● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●
●

●

●

●
●

●

●

●

●

● ●

●

● ●

●

●

●

●
●

●
●

●
●

●

● ●●

●

●

● ● ●● ●

●

●

●●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●●● ●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●
●

●

●

●

● ●

●

●
● ●

●

●●●● ●

●

● ● ●●● ●●

●

●●
●

●

●

●

●

●

●● ●

●

●● ●

●

●● ●

●

●

●

●

● ●●

●

●

● ●

●

●

●

●

●

●

●●●

●

●

●

●
●● ●

●
●

●
●●

●●

●

● ●

●
●

●

●

●
●

●

● ● ●

●
●

●

●

●

●
●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●● ●●

●

●
● ● ●

●

●

● ●●

● ●

●

●

●

●

●

●

●●

●●●● ●
●

●

● ●

●

● ●

●

●

●

●●

●

●

●

●

●

●
●

● ●●

●

●

●

●

●

●

●
●

●

● ●

●

● ●●

●

●

●

●

●

● ●

●

●

● ●
●

● ●

●

●●●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●●
●

● ●● ●●

●

●
●

●

●●

●

●●●
●

●
●

● ●

●

●

●●●●● ●
●

●

● ●

●

●

●

●●
● ● ●●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●●

●

●●●
●

●

●

● ●

●●

●

●

● ● ●

●

●

●

●

●●
●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●● ●●
●

●

●

●

●

●

●

●

●

●
●

● ●
●

●●

●

●

● ●●●

●

● ●

●

●

●

●

●

●

●

●

●● ●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●●● ●
●

●

●

● ●

●

●

●

●

●

●

●●●

●

●

● ●
●

●

●

●

●

●
●

●

●● ●

●

●

●

●

●

●

●● ●

●

●

●

●
●

●

●● ●

●

●

●

●

●
● ● ●

●

●

●

●

●

●

●● ●
●

●●

●

●

●
●●

●

●

●

●

●

●● ●●

●

●

● ●
●

●

●

●

●●

●

● ●

● ●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●● ●

●

●

●

●

●

●● ●●
●

●

●

●

● ●

●

●

●●●

●

●

●

●

●●

●

●
●●

●

●

●

●

●
●

●
●

●

●

●

●

●

●●●

●

●

●

●

●● ●●

●

●

●●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●● ●●

●

●

●

●

●

●

●

●

●●

●

●

●● ●●

●

●

●

●● ●●

●

●●●

●

●
●

●

●
● ●

●

●

●
●

●
●● ●●● ●

●

●●

●

●

●

●

●●●● ●●

●

●● ● ●●

●

● ●● ●●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●● ●

●

●●
●

●● ● ●

●

● ●

●

●

●

●

●

●

●

●● ●● ●

●

●

●

●

●

●

●

●

● ● ●●

●

●

●●●●
●

●

●

●●●●●

●

●●● ●

●

●

●

●

●

● ●

●

●

●

●

● ● ●

●

●

●

●

● ● ●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●●

●

● ●

●

●

●

●

●

●

●● ●●

●

● ●●
●

●

●

●

●

●

●

● ● ●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●● ●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●● ●

●

●

● ● ●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

● ●●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●●● ●●● ●●● ●●

●

●

●

●
●

●

●
●

●

●

●●

●

●

●

●

●●

●

●● ●

●

● ●

●

●

●

● ●●

●

●●●

●

● ●

●

●

●

●●

●

●●●

●

● ●

●

●●● ●● ●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●●●

●

●

●

●

●● ●

●

●

●

●

●
●

●●

●●●

●

●●●

●

●●●

●

●●

●
●

● ●●

●

●

●

●

●

●

●

●●
●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●● ● ● ●
●

●

●
●

●

●

●

● ●● ●

●

●● ●●

●

● ●●●

●

●
●

●●
●

●

●●● ●

●

●

●●
● ●

●

●

●● ●

●

●● ●●
●

●● ●

●
●

●●
●

●
●●

●
●

●

● ●

●

●

●

●

●

●
●

●● ●

●

●●

●

●

●

● ●●●●

●

●

●

●

●

●●● ●●
●●

●

●

●
●

● ●●● ●●

●

●

● ●●●●●●● ●

●

●

●

●

●

●
● ●

●

●

●

●●

●

● ●
●

●

●●●● ●

●

●● ●

●

●

●

●

●

●●
●

●

●

●

●●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●● ●

●

●

●

●

●

●

● ●

●

●

●

● ●● ●

●

●

●

●●
●

●●

●

●

●
● ●

●

●●

●

●

●

● ●

●

●

●

●

●●

●

●●●
●

●

●

●●
●

●

●

● ●●●

●

●

●

●

●

●

● ●

● ●

●

● ●

●

● ●

●

●●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●●

●

●

●

●

●

● ●●●

●

●

●

●

●

● ●

●
●

●

●

●● ●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●●

●

●

●●

●
●

●
●●

●

●

●

● ●●●

●

●

●●
●

●

●

●

●●
●

●

●

● ●

●

● ●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●●●

●

●

●
●

●

●

●

● ●●

●

● ● ●●●●

●

●●

●

●
●

● ●●

●

●●

●

● ●●

●

●

●
●

●
●

● ●

●

●
●

●

●

●

●● ●●

●

●
●●

●

●

●

●

●

●

●●

●

●

●

●● ●● ●● ●●

●

●

●

●

●●

●

● ●●●

●

●●

●

●

●●

●

●

● ●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●
●

● ●

●

●
●

●

●
●

●

●

●

●●●
●

●

●

● ●●

●

●

●

●

●●
●

●

● ●●● ●
●

●●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●● ●●

●

●

●

● ●

●

●●

●

●●● ●

●

● ●●●
●

● ●●
●

●

●

● ●●●● ●
●●

● ●

●

●●● ● ●

●

● ●
●

●

●

●

●

●

●

●● ●●

●

●
●

●

●

●
●

●

●

●●● ● ●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●● ●●● ●

●

●

●

●●

●
●

●

●●

●

● ●

●

●

●

●

●●● ●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●● ●

●●●

●
●

●●● ● ●
●

●

●●
●

●

●

●

●● ●● ●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

● ●●

●

●

●

●

●

●

●●●

●

●
●

●

●●

●

●
●

●

●

●●

●

● ● ●● ●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

● ● ●●● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●
● ●● ●

●

●

●

●

●

●

●

●
●

●

●

●

●● ●

●

●

●

●

●
●

●

●

●●●

●

●

●

●
●

●

●

●

●

●●
●●

●

●

●

●

●

● ●

●

●

●●●
●

●
●

●

●●
●

● ●

●

●

●

●

●

●

● ●

●

●

●

●●●● ●

●

●

●● ●● ●●●

●

●●

●

●

●● ● ● ●●

●

●

●

●
●

●●●●

●

●

●

●
●

●

● ●●

●

●

●

● ●

●

●●

●
●

●● ●●

●

● ●●

●

●

●

●●

●

●
●

●
●

●
●●

●

●
●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●●

●

●
●

●

●

●

●● ●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●
●●

●

●

● ●
●

●

●●●●

●

●●●

●

●●

●

●

●

●
●

●●●
●

●

●

●

●
●

●

●●●

●

●

●

●
●

●

●

●

●

●

●

●

●● ●
●

●

●

●

●

●

●

●

● ●●

●

●
●

●● ●●

●

●●

●

●

●

●

● ●●

●

● ●
●●

●●

●

●

●

●● ●
●

●●

●

●

●
●

●● ●● ●●

●
●

●

●

●

●

●

●
●

● ● ●●●

●

●● ●●●

●

●

●

●

●

●

●

●

●
●

●

●●●

●

●

●●

●

● ●

●

●

● ●●●● ●●

●

●

●

● ●● ●

●

●●●●
●

●

●

●

●

●
●

●● ●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

● ●

●

● ●●●

●

●

●

●

●

●
● ●

●

●

●

●●● ●
●

●

●

●

●

●
●

●

●

●

●
● ●

●

●

● ●
●

●

●

●
● ●

●

●

●

● ●●

●

●

●

●

●

●●

● ●

●
●

●

●

●
●

●

● ●●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●●

●

●●

●

●

●

●

●
●

●

●

●

● ●●

●

●
●

●●● ●

●

●●● ●●● ●

●

●
●
●

●
●

●

●

●

●
●

● ●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●● ●

●

●●●●
●●

●

● ●

●

●

●●

●

●

●● ●

●

● ●●●
●

●

●

● ●● ● ●

●

●
●

●

●

●●

●

●

●●

●
●

●

●●

●

●●

●

●● ●

●

●
●

●

● ●

●

●● ●

●

●

●●
● ● ●

●

●
● ●●

●

●

●

●●

●

●

●

●

● ●●●

●

●

●

●

●

●

●

●

●

●
● ● ●●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

● ●
●

●● ●

●

●

●

●

●

●● ●●
● ● ●

●

●
●

●●

●

●

●
●

●

●

●

●

●● ●●●
●

● ●

●

●

●
●

●

●

●

●●
●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●●
●

●

●
●

●

●
● ● ●

●

●

●

●●●
●

●

●
●

●●

●

●

●

●

●

●

●
● ●●

●

● ●●

●

●

●●●●

●

●

●

●

●

●

●

●

●
●

●

●●

●

● ●●●● ●

●

●
●

●
● ●● ● ●●●●

●

●

●●

●

● ●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●

●

●

●

●

●

● ●

●

●

● ●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●● ● ●●

●

●

●

●● ●●

●

●

●

●

●

●

●

●
●●

●
●

●●●●●

●

●

●

●

●
●

●
●

●● ●●

●

●

●

● ●●● ●●

●
●

●

●

●

●

●● ●●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

● ●
●

●● ●

●

●

●

●

●●●

●
●

●

●

●● ●

●

● ●
● ● ●●●

●●

● ●●

●

● ●

●

●

●●●●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●●●● ●

●

● ●●●●

●

●

●

●
●

● ●●

●

●●●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●
● ●

●

● ●●

●

●● ●●
●

●

●

●

●
●

●

●

●
●

●

● ●● ●

●

●

●● ●

●
●

● ●●

●

●

●●

●

●●●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

● ●
●

●●●

●

●

●

●

● ●

●

●
●

●● ●

●

●● ●
●

●

●

●

●

●

●
●● ● ●

●

●

● ●● ● ●● ●

●

●● ●

●

●
●

●

●

●

●

●
●

● ●

●● ●● ●

●

●

●

●●

●

●

●

●

●

● ●●●● ●

●

●

● ●● ●

●

●

●

●

● ●● ● ●● ●●

●

●●●

●

● ●●

●

● ●

●

●

●

●
●

●
●

●

●●

●

●

●

●

●

●●●●

●

●

●●●

●

●

●

●

● ●●●

●

●

●

●

● ●

●

●

●

●●●

●

●

●

●●

●

● ●●

●

●

● ●●● ● ●●●●

●

●

●
●● ●●

●

●

●
●

●● ●● ●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●● ●

●

●

●

●

●

●

●

●
●

●
● ●

●

●● ●

●

●

●

● ●
●●

●●

●

●

●
● ●

●

● ● ●

●

●
●

●

●●● ●

●

●●● ●●

●

● ●●
●

●
●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●● ●● ●● ● ●

●

●● ● ●

●

●●

●

●●
●●

●● ●● ●● ●

●

●

●

●

●
●

●

●

●

● ● ●

●

●●●●
● ●

●

●●

●

●

●

● ●
●

●
●

●
● ●●●●● ●●

●

●
●●

●

●

●

● ● ●

●

●

●

● ●●

●

●

●

●●

●

●
●●

●

●●

●
●

●●

●

●

●●●

●

●● ●

●

●

●

●

●

●

●

●

● ●

●

●● ●●

●

●

●

●

● ● ●● ●●●●●●

●

●

●

●

●

●
●

●
●

●

●

●● ● ●●●●

●
●

●

● ●

●

● ●

●

●

●

●

●

●

●

●●●
●

●
●
●

●

●●
●

●

●

● ● ●●●●
●

●

●

●●

● ●● ●● ●●

●

●●

●
●

● ●●

●
●

●
●

●

●

●

●

●

●

●

● ●●

●

●●

●

●

●

●

●●

●

●

●

● ●

●

●

●

● ●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●
●

●

●●

●

●
●

●

●

● ●●

●

●

●

●

●

●
●

●
●

●

●

●

● ●

● ●
●

●

●
●● ●● ●●●

●

●● ●●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●●●

●

●

●

●

● ●●

●

●

●
●

●
●

●

●

●

●● ●

●

●

●

●
●

●

●

●

●

● ●●●

●

●

●

●● ● ●
●

●

●

● ●● ●

●

●●

●

●

●

●

●● ●

●

●

●
●

●●

●

● ●
●

●

●● ● ● ●●●●● ●

●

●●●● ●

●

●
●

●● ●●●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●●●
●

●●
● ●

●

●

●

●

●

●

●

● ●

●

●
●

●● ●●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●●● ●●

●

●

● ●● ●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●●●● ●● ●

●

● ●●● ●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●● ●

●

●

●

● ●

●

●●●

●

●

●

●●
●

●

●

●

●

●●●

●

●
●

●

● ●

●●

●

●

●

●●

●

● ●●
●

●

●

●

●

●●●
●

●●

●

●

●

●

●

●●

●

●

●

●●
●

●

●
●

●

●

●

●●●

●

●

●

●

●
● ●●●

●

●

●

●

●

●

●●●

●

●
●

●

●

● ●

●

●

● ●

●

●●●

●

●

●

●

●
●

●● ●●

●

●

●

●● ●

●

●
● ●●● ●

●

●

●

●

● ●● ●

●

●
●

●

●

●

● ●

●

● ●

●

●

●
● ●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

● ●●

●

●

●●

●

●

●●

●

●

●

● ●● ●

●

● ●

●

●●

●

●

●

●

●● ●●●

●

●
●

●

●

●

●
●

●●

●

● ●●● ●●

●

● ●●

●

●

● ●● ●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

● ● ●

●
●

●

●●

● ●

●

●● ●

●

●

●

●●
●

●

●

●

●

● ●

●

●

●

●
●

●
●

●

● ●

●

●

●● ●

●
●

● ●
●

●

●

●
●

●

●

●● ● ●

●

●

●

●

●

●

●

● ●

●

●
●

●
●

●●●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

● ●
●

● ●
●●

●

●

● ●

●

●

● ●

●

●●

●

●

●

●● ●●● ●

●

●
●

●

● ●

●

●●

●

●

●
●

●

●

●

●● ●

●

● ●●

●

●
●

●●

●

●

●

●

●

●

●●
●

● ●

●

●
● ●

●

●●

●
●

●●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●●●

●

●

● ●

●

●

●

●●

●

●

●●

●

●
● ●

●●
●

●

●● ●●

●
●

●

●

●

●●

●

●

● ●● ●●

●

●●

●

● ●

●

●●

●

●●

●

●

●

●

●

●

●

●● ●

●

●

●● ●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●●

●

●

●
●●●●●●

●

●

●

●

●● ●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

● ●● ●

●

●
● ●

●

●

●● ●●●

● ●

●●●●
●● ● ●●● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

● ●
●

●

●●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

● ● ●

●

● ●
●

●

● ●● ●● ●● ●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●●●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●●●● ● ●●● ●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

● ● ●

●

●

●

● ●

●

●

●
●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●●

●
●

●
●

●

●
● ●

●
●●

●

●

●

●
●

●

●●

●

●

●
●

●

●

● ● ●

●

●
● ●● ●●●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

● ●
●●

●

●

●

●

●

●
●●

● ●● ●

●

●

● ●

●

●●●
●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

● ●

●

● ●●● ●●●● ●

●

●● ●

●

● ● ●

●

●

●

●

●

●

●

●●
●●

●●

●

●

●

●

●

●● ●
●

●

●

●

●●
●

● ●

●●

●

●

●●

●
●

●●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●●●

●

●
●

●

●●●

●

●

●

●

●

●●●

●

●

●

●●
●

●

●

●

●
●

●

● ●●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

● ●●

●

● ●●●●
●

●

●

●

●

● ●

●

●● ●

●

●
●● ●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●●

●

● ●
●

●

● ●

●
●

●● ●

●

●

●

●

●

●

●

●●

●

●

●

●●● ● ●

●

●

●

●

●

●● ●●

●
●

●

●

●

●

●● ●

●

●

●

●

●

●●● ●

●
●

● ●

●

●

●

●
●

●●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●●

●

●

●● ●●
● ●

●

●

●

●
●

●

●●●● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ● ●●●● ●

●

●

●

● ● ●
●

●

●

● ●

● ●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

● ●●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

● ●● ●● ●●
●

●●●

●

●●

●

●

● ●

●

●●
●

●
●

● ●

●

●

●

●

●● ●

●

● ● ●●

●
● ●

●
●

●

●

●
●

●● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

● ●● ●
●

●

● ●
●● ●●●

●

●

●
●

●

●
●

●●●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●● ●
●

●● ●
● ●

●

●

●● ●

●

●

●

●●●

●

●

● ● ●

●

●

●

●
●

●

●

●
●

●
●

●

●●

●
●

●

●

●

●

● ●

●

●●

●

●

●

●

●●

●

●

●

●

●
●

●

●●

●●

●● ●●

●

●

●
●

●

●

●

●

●●

●
●

●

●

●

●

●

●

● ●

●

●
●

● ●

●

●

●

●

●

●●
●

●

●●●
●

●

●

●

●

●
●

●●

●

●●● ● ●

●

●
●

●

●

●

●
●

● ●●

●

●
●●

●

●

●

●

●●
●

●

●

●● ●
●

● ●●●
●

●

●

●

●
●

●

●● ●●

●

●

●

●

●
●

●

●

●
●●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●● ● ●●

●

●

●
●

● ● ●●● ●●

●

● ●● ●● ●●

●

●●●● ●● ●●

●

● ●● ● ●

●
●

●●●

●

● ●

●

● ●●

●

●

●
●

●

●

●

●
●●

●
●

●
●

●

●

● ●

●

●

●

● ●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

●

●

●●

●

●●
●

●

●

●

●

●

●

●

●● ●●
●

●

● ●

●●
●

●

●●

●

●

●● ●● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●●

●

●

● ●

●

● ●

●

●

●

●

●●

●

●● ●
●

●

●

●

●

●

●

●●

●

●

●● ●●●

●●

●

●

●● ●

●

●
●

●
●

●

● ●●

●

●●●

●

●

●

●

●●

●●

●

●

● ●●●●●
● ●● ●●

●

●

●

●

●

●
●

● ●

●

●

●●

●
●

●

●

●
●

●

●

●
●

●

● ●

●

●

●

● ●

●

● ●● ●

●

●●● ● ●

●

●

●

● ●●

●

●

●

●

●

●

● ●

●

●●● ●

●

●

●

●

●

●●

●

●●

●

●
●

●

● ●● ●● ●
●

●

●

●
●

●

●

●

●

●

● ●●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●
●

● ●

●

●

●

●

●
●

●

●

● ●●

●

●

●

●●

●

●

● ●●●●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

● ●

●

●

●

●

●

●

● ●
●

●

●●

●

●

●
●

●

●

● ●

●

● ●

●

●
●

●

●

●

●

●

● ●

●

● ●

●

●
●

●

●

●

●

●●

●

●

●
●

●

●● ●● ●

●

● ●●

●

●●●● ●

●

● ● ●

●

●
●

●

●

●

●

●

●

●

● ●

●

●
●

●●

●

●● ●●

●

●●

●

●

●

●

●
●

●

●
●●● ●

●

●

● ●● ●

●

●● ●
●

● ●
●

●

●●●●

●

●
●

●

●

●●●

●

●

●

●

●

●

●

●

●

●● ●●

●

● ●●

●

● ● ●● ● ●● ●

●

●●

●
●

●●●● ● ●●●

●

●●●

●

●

●

●

●

●
●

●

●●

●

●

●

●● ●

●

●
●

●

●

●

●

●

●

●

●

●

●●●● ●● ●●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

●

●●● ●

●

● ●

● ● ●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

● ●

●

●● ●

● ●

●

●

●

●
●

●●● ●

●

●●

●

●● ●

●

●

● ●● ●

●

●

●●●
●

●

●

●

●

●

●

●

● ●

●

●

●

●●● ●

●

●
●

●

●

●

●

●

●

●

●● ●●

●

●

●

●● ●

● ●

●●

●
●

●
● ●

●●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●●
●●

● ●
●

●

●

●

● ●●●●●●

●

●

●

●● ●●●●

●

●

●

● ●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●
●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●● ●

● ●

● ●●

●

●

●

●
●

●
●

●● ●

●

●

●

●

●

●

● ● ●●

●

● ●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

● ●●● ● ●●●

●

●

●
●

●

●

●

●

●

●● ●

●

●

●

●

●

● ●
●

●
●●●

●

●●

●

●

●

● ● ●

●

●

●

●

● ●●●

●

●

●
●●

●

●

●

●

● ●
●

●

●
● ●●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●
●

●●●

●

●

●

●

●● ●

●

●●
●

●

●

●

●

●
●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●●●●

●

●●

●
●

●

●●

●

● ●●

●

●●● ● ●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●
●

●●●●● ●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

● ●

●

●

●●

●

● ●

●

● ●●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

● ●●

●

●

●

●

●

● ●

●

●

●

●
● ●

●

●● ●

●

●

●

●

●

●

●●●●

● ●●

●

●

●

●

● ● ●●●

●

●●●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

● ●●

●

●
●

●● ●●●● ●

●

●

●

●

●
●

●

●

●

● ●

●

●●
●

●

●

●

●

●

●

●

●

●●● ● ●
●●

●

●

●

● ● ●

●

●●

●

●

●

●

●
●

●● ●●
●

●

●

●
●

●

●

●●●● ●●

●

●

●●● ●●

●

●

●

●

●
●

●

●
●

●

●● ●●

●

●●
●●●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●

● ●

●

●

●

●●●

●

●
●●

●

●

●

●●●

●

●● ●● ●

●

●

●

●● ● ●● ●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●
●

●
●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●●●

●

●

● ●

●

●

●

●
●

●

●

●
●●●

●

●

●

●●

●●●
●●

●

●
●

●

●

●

●●
●

●

●

●

●

●
●

●
●

●

●

●

●●

●

●●

●

●● ●

●

●● ●

●

●
●●● ● ●●

●
●

●

●

●

●●● ●

●

●

●● ●●●

●

● ●●

●

●

●●●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●● ● ●●

●

●

●

●
●

●

●

●● ●●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●
●

●

●

●

●

●

● ●●● ●
●

●

●
●

●●

●

●

●

● ●● ●●

●

●

●

●● ●● ●●●

●

●

●

●
●

●

●

●

●●

●

● ●●●

●

●
●

●

●

●

●

●
●●●● ●

●

● ●●

●

●
●

●
●

● ● ●●
●

●

●● ● ●

●

●

●

●● ●● ●
●

● ●

●

●

●●

●
●

●

●

●

●

●

●
●

●●●

●

●

●●

●

●

●

●

●
●

●

●●

●

● ●

●

●

●

●

●

●●

●

●

●

●●● ●

●

●●●

●

● ●

●

●● ●●●●

●

●

● ●
●

●

●

●

● ●● ●●●● ●

●

●

●

●
●

●

●

●

●

● ●●

●

●

●

●●● ●
●

●

●

●

●

●●

●

●● ● ●

●

● ●

●

● ●

●

●

●

● ●●

●

●

●●●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●●

●
●

●●● ●

●

●

●●●

●

●

●●

●

●

●

●

●

●●●
●

● ●

●

●

●●
●

●

●

●
●

● ●

●

●●

●

●
●
● ● ●

●

●

●

● ●

●

●

●

●

●

●

●
●●

●

●
● ● ● ●●●●

●

●

●

●● ●● ●

●

●● ●

●

●●

●

●

●

●

●

●

●

●● ● ●●

●

● ●●

●

●●●

●

●● ●

●

●

●

●●

●

●
●

●

●

●● ●●

●

●
●

●

●●●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

● ●

●

●

●
●

●●
●●

●

● ●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●
●

● ●

●

●

●

●

●

● ●
● ●

●
● ●● ●●

●

●●●

●

●

● ●●

●

●● ●●●

●

●●
●

●

●

●

●

●

●

●● ● ●●● ●
●

●

●

● ●●●● ●●
●

●●
●

●
●

●●● ●
●

● ●●

●
●

●● ●●●●

●

●

●

●

●

●● ●

●

●

●

●

●

●

● ●

●

● ●

●

●

● ● ●●

●

●

●● ●
●

●

● ●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●
●

● ●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●● ●
●●

●

● ●

●

●
●

●

●

● ●

●

●

●

●
●

●

● ●●●
●●

●

●●

●

●
● ●

●

● ● ●●● ●

●●

● ●

●

●

●

●● ●

●

● ●

●

●● ●●

●

●

●

●

●●

●

●

●

●

●

●

●

●● ●● ● ●

●

●

●

●

●

●
●

●● ●

●

●●●●● ●●●

●

●

●
● ●

●
●● ●●

●
●

●
● ●●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●
●● ●

● ●

●

●
●

●

●
●

●

●

●

●

●

● ●

●

●

●

●● ●
●

●●

●

●
●

●

●

●

●●
● ●

●

●

●

●

●●

●

●● ●
●

●●

●

●●

●

● ●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●● ●

●

●
●

●●●

●

●

●

●
●

●

●
●

●

●
●

●

●

● ● ●

●

●●

●
●●

●

● ●●

●

● ●

●

●

●
●

●

●

● ●

●

●

●

●

●●
●

●
●

● ●

●

●

●

●

●

●

●

●

●●●

●

● ●●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●● ●
●●●

●

●

●

●

●

●

●

●● ●

●

●
●

●

●
●

●

● ●

●

● ●●

●

●

●

●●● ● ●

●

●

●●

●

●

●

●

●●

●

● ●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

● ●●●

●

●

●

●

●

● ●
●

●●

●

●

●

●●

●

●

●

●

●

●

●● ●

●

●●

●

●

●●●●●

●

●

●●

●

● ●
● ●● ● ●

●●●●●●●●
●●●●

●●●●●
●●●●●●●●●●●●●● ●●●●● ●●●

●●●●
●●●

●●●●●●●●●●●●
●

● ●●●

90.0%

92.5%

95.0%

97.5%

100.0%

1 10 100 1000 10000
#Fault−Similarity Classes

A
cc

ur
ac

y

(c) eCos/CRC (training)

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●●●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●●● ●

●
●

●●

●

●

●
●

●●

●

●

●● ●●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●●●●

●

● ●

●

● ●

●●●

●

●●●●●

●

●

●

●

●

● ●

●

●
●

●●

●

●●

●

●

●●

●
● ●

●
●

●

●

● ●

●

●●
●

●

●

●

●

●

●
● ●

●

●●

●

●

●

●

●●

● ●

●

●

●

●
●

●

●

●

●

● ●

●

●●● ●●

●●

●

●

● ●
●

60%

70%

80%

90%

100%

0e+00 1e+05 2e+05 3e+05 4e+05 5e+05
Total #Experiments (including training)

A
cc

ur
ac

y

(d) eCos/CRC (total, w/ and w/o training)
●

●

●

●

●

●

●

●

●●
●

●●

●

●
●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●
●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●
●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

● ●●

●

●●

●

●

●

●

●

●●

●

● ●

●

●

●

●●

●

●

●

●
●

●

●

●

●●

●

●

●●

●

●

●

● ●

●

●●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●●

●
●

●

●

●
●

●

● ●

●

●

●●
●

●

●

● ●

●

●

●

●

● ●

●

●

●

●●

●
●

●

●

●

●

●

●

●
●

● ●

●

● ●

●

●●

●

●

● ●●

●

●

●

●● ●

●

●

●

●
● ●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●● ●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●●
● ●

●●

●

●
●● ● ●

●

●●

●

●

●
●●

●

●

●

●●●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●●● ● ●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●●● ●

●

●

●

●

●

● ●

●

●

●

●

●

●● ●●

●

●●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

●
●

●●

●

●

●

●

● ●

●
●

●

●

●●

●

●

●

●●

●

●

●

●

●

●●●

●

●

●

●

●

●●

●

●

●

●

●

● ● ●●● ●

●

●
● ●

●

●

● ●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
● ●

●

●

●

●● ●

●

●●

●
●

●

●●●● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

● ●●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●
●●

●

●●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●●● ●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

● ●●●●●
●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●
●

● ●

●

●

●●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●
●

●

●

●

●●●

●

● ●

●

●

●●

●

●

●●●

●

●

●

●
●

●
●

●

●

●●
●

●

● ●
●

●

●

●

● ●●

●

●

●
●

●●
●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●●●

●

●
●

●

●

●

●●● ●

●

●●●●
●

●

●
●●

●
●

●

●

●●

●

●

●

●

●

●

●●● ●●
●

●
●

●

● ●●

●
●

●

●

●
● ●

●

●

●●

●

●

●

● ● ● ●

●

●

●
●●

● ● ●
●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●● ●●
●

●

●● ●
●

●

●

●

●

●

● ●●

●

●
●● ●●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●●

●

●

● ●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

● ●● ●

●

●

● ●

●

●

●

●
●

●

●

●
●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●
●●

●

●

●

● ●●●
●

●

●

● ●●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●● ●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●
●

● ●

●

●

●●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●
● ●

●

● ●

●

●

● ●

●

●●

● ●

●

●

●

●

●
●

●●

●

● ●
●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

● ●●
● ●

●

●

●

●

●

●

●
● ● ●

●

●

●●●
●

●

●

●●●● ●
● ●

●

●●●

●

●

●

●

●

●

●

●●
●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●
●● ●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●● ●
●

●

●

●

●●

●

●

●

●

●●
●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

● ●

●

●●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●
●

●
●●●●

●

●
●

●
●

●

●

●

●

●

●

●
●

●●●●

●

●
●●

●

●

●

●
●

●

●

●

●

●● ●●

●

●

●

●

●

●

●

● ●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●●●
●

● ●

●

● ●●●●●●
●

●
●

●

●

●

●

●
●●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●

● ●
●

●●

●

●

●

●

●

●●

●

●●

●

●●

●● ●● ●● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●●●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●●● ●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●● ●

●

●

●

●●

●

●● ●

●

●

●●●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●● ●

●

●

●

●

●
●●

● ●

●

●

●

●

●

● ●

●

● ●

●

●●●

●

●

●

●●

●

●
●

●

●

●●●

●

●
●

●

●

●

●

● ●●
●

●●●●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●
●

●

●●

●

●

●

●●● ●

●

●
●

●

●

●

●

●

● ●

●

●
●

●

●

● ●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

●

●

●

●●

●●

●

●

●

●● ●● ●●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●
●

●

●

●●●

●

●

●

●●
●

●

●

●

●

●

●

●

● ●
●

●

● ●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●●●

●

●

●

●● ●

●
●

●

●

●

●

●●●●

●

●●

●

●●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●●

●

●●●

●

●

●

●

●

●

●

●

● ●●

●

●●

●

●

●

●

●●●●●
●

●

●●

●

●

●

●

●

●

●
● ●

● ●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

● ●

●●

●●

●

●

●

●

●

●

●

●

●

●● ●● ●●●

●

●● ●

●

●
●●

● ●

●

●

●

●●
●

●●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●
●

● ●

●
● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●●
●

●

●

●

●

●●

●

●●

●

●

●

●● ●
●

●

●●

●

●

●

●

●●●

●

●

●

●

●●

●●●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●●●
●

●

●

●

●

●●

●

●

●

●● ●
●

●

●

● ●●

●

●

●

●

●●

●

●

●

●

●

●

●

●●
●●

●
●

●

●

●

●
●

● ●●●●●●

●
●

● ●

●

●

●

●

●

●

●
●

●
● ● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●
●

●

●

●

●

●
● ●

●

●
●●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●● ●

●

● ●

●

●
●

●

● ●

●

●

●
●

●

●●

●

●

●

●
●●

●

● ●●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
● ●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●●
●

●●

●

●●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●●

●

●

●●

●
●

●

●

●●

●

●

●
●

●

●

●
●

●

●
●● ●

●

●

●

●●

●●

●

●

●

●

●● ●●●

●

●

●●
●

●

● ●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●● ●

●

●

● ●
●

●

●
●● ●

●

●●● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●
●

●

●

●

● ●

●

●
●

● ● ●
●

●

●

●

●

●

●

●

●
●

●

●

●●
● ●

●

●
●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●
●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●
● ●

●

● ●●

●

●

●

●
●

●

●

●

●

● ●
●

●

●

●● ●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

● ● ●●

●

●

●

●●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●
●●

●

●

● ●

●

●

● ●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●● ●

●

●

●

●

●

●
●

●

●

●

●●

●

●●
●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●● ●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

● ●●

●

● ●

●

● ●
●

●

● ●

●

●● ●●

●

●

●

●

●

● ●

●

● ●●●

●

●

●

●

●

●●

●

●

●

●

●●

●
● ●

●

● ●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ● ● ●

●

●
●●

●

● ●

●

●

●●

●

●

●

●

●

● ●

●

●
●●

●

●

●
●
●

●

●●●

●

●

● ●

●
●

● ●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●
●

●●

●

●

●●●●●

●

●

●
●

●

●● ●●

●

●

●

●●

●

●

● ●● ●● ●

●

●

●

●● ●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

● ●●

●

●

●

●

● ●

●

●

●●

●●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●● ●●●

●

●

●
●

●

●

● ●
●

●●●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●●

●

●

●●●

●

●

●
●

●

●

●

●
● ●

●

● ● ●●

●

●

● ●

●
●

● ● ●●●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●●

●●

●
●●

●

●

●

●

●

●

● ● ●

●

● ●●
●

● ●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●●
●

●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●

●

●

●●

●

●

●

●

●
●

●

● ●

●

●
●

●

●

●●

●

●

●

●●

●

● ●●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●

●

●

●●

●

●

● ● ●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●

●

● ●

● ●

●

●

●
●●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

● ●

●
●

●

●●

●

●

●

●

●

●● ●●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●
●

●
●● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●
●

●●

●

● ●

●

●

●

●

●

●

●
●●

●

●

● ●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●●●

●

●● ●

●

●●

●
●

●

●

●●●

●

● ●● ●

●

●

●

●●●

●

●

●

●●●

●

●

●

●

●

●

●●
●

●● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●●

●
● ●

●

●
●

● ●●●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

● ● ●●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●●

●

●

●
●

●
●

●

●●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●● ●

●

● ●

●

●

●

●
●

●●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●
●

●● ●

●

●●●●

●
●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●
● ●

●

●
●

●

●

●
●

●

●

●●

●

●
●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●●

●

●

●

●

●

●

●
● ●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●● ● ●

●

●●

●●

● ● ●●●

●

●

●

●

●

●

●

●●

●

●

●

●

●● ●

●

●

●

●

●●

●

●

●●

●●

●● ●

●
●

● ●

●

●

●

●

●● ●

●

●

● ●

●

●
●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●● ●

●

●

●

●●

●

●
●

●
● ●●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

● ● ●

●

●

●

●

●

●

●
●

●

●●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
● ●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●●

●

●

●

●

●

●

●

●

●●●●

●

● ●

●

●

●● ● ●

●

●

●

●●●●

●

●

●

●

●●

●
●

●●● ●

●

● ●●

●

●

●

●

●

●

●●
●

●●

●

● ●●●

●

●

●●●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●●●

●

●

●

●

● ●● ●● ●●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

● ●●
●

●

●● ●

●

●

●●
●

●

●

●

●

●

●●

●

● ● ●●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●
●

●

●● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●● ● ●● ●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

● ●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●
●

●

●

●

●● ●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●●●

●

●

●

● ●●● ●●●●

●

●

●

●●

●

●●

●

●

●●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●● ●●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

● ●

●

● ●●
● ●

●

●

●

●

●●●●

●

●
●

● ●●

●

●

●

●

●

●●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

● ●● ●●●●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●● ●●

●

●

●
●

●

●

●

●

●●

● ●●

●

●

●
●● ●

●

●

●

●●
●

●●

●

●

●

●

●

●

●

●
●

●● ●●●● ●

●

●

●●
●●●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●● ●

●

●

●

●

●

●●●● ●
●

●

●●
● ●

●
●●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

● ● ●●

●

●

●

●

●●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●
● ●

●

●

●

● ●●

●

●
●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●●

●

●● ●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●● ●
●

●

●

●

●

●

●

●

●

●●●

●

●
●

●

●

●
●

●

●

●

●

●
● ●

●

●

●

●

●
●

●
●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

● ● ●
●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●
●

●

●●

● ●

●

●
●

●

●

●

●

●

●

●

● ●
●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●●●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●●●
●

●

●

●

●

●●

●

●

●

●
●

●
●

●
●

●
● ●

●

●

●●

●

●

● ●

●

●

●

●

●

●●●

●

● ●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●

● ●

●

●

●

● ●●

●

●●●
●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●● ●● ●● ●● ●

●●

●

●

●

●

●

●●● ● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●
●

●

●

● ●

●

●
●

●

●
●

● ●

●

● ● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●●

●

● ●

●

●
●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

● ●

●

●
●

●

●

●●

●

●
●●

●

●●●●

● ●●

●

● ●

●

●

●

●

●

●● ●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●● ●●

●

●

●

●

●●

●

●

●
●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●● ●●

●

●

●●●

●

●

●
● ●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●
●

● ●

●

●

●

●●

●

●●
●

●

●

●

●

●

●

●

●

●

●● ● ●

●

●

●

● ●

●
●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●● ● ●●

●
● ●●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●●● ●

●

●

●

●

●

●

●

●

●●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●●

●

●

●●
●

●

●●
●

●

●

●

●

●

●●●

●

●
●

● ●●●●●
●

●

●

●

●

●

●

●
●

●

●

●

●

●● ●

●

●

● ●

●

●

●
●

●

●

● ●

● ●

●

●

● ●●●● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●●●

●
●

●

●

●

●

●

●●

●

●

●●

●
●

●
●

●

●

●●

●

●●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●●
●

●●

●

●
●

● ●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

● ●

●

●● ●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●●●

●

●
●●

●

●

●

●●

●

●
●

●

●
●

●

● ●●●
●

●

● ●●●

●

●
●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●● ●

●

●● ●●

●

●

●

●●

●

●●

●
●

●

●

●

●
●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

● ●●

●

●

●
●●●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●●●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●●

● ● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●●

●

● ●

●

●

●

●

●

●

●

●

●

●● ●●

●

●●

●

●

● ●●

●
●

●

●

●

●●

●

●

●

●

●●●

●

●

●

●

●

●

●

●●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●
● ●●

●

●
●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●
●●

●

●

●

●

●

●

●

●

● ● ●●

●

●

●

●

●

●

●●

●

●
●

●
●

●

●●●

●

●

●

●

●

●

●

● ●●

●

●●● ●●

●

●

●

●

●

●

●

●●● ●●

●

●●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●● ●●

●

●

●

●
●●

●

●
●

●

●

●

●

●●● ●●
●

●

●

●

●

●

●
●

●

●

●● ●●

●

●

●

●

●

●

●●●

●

●

●

●

● ● ●●

●

●

●

●

●

●
●●

●

●

●

●

●●

●

●

●

●
●

●●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
● ●●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

● ●

●

●

●

●

●● ●

●

●●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●●● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●
●

●
●

● ● ●

●

●

●

●

●
●

●
●●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●●

●
●

●
●

●

●

●

●

●

●

● ●●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
● ●

●●●●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●●●

●

●

●● ●●
●

●

●

●

●

● ●

●

●

●

●

●●●●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●● ●
●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●
●

●

●

●

●

●

●

●● ●

●

●

●

●
●

●

●

●

●

●

●

●
●● ●●

●

●

●

●

● ●
●●

●

●

●

●

●

●●

●

●●●

●

●

●

●

●
●

●

●

●

●

●

●

●● ●●● ● ●●

●

●

●
●

●●●

●

●

●

●
●

●

●

● ●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●● ●●●●

●

●

●

●

●●●
● ● ●●●●

●

●

● ● ●●

●

●
●●

●
●

●

●
●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●●

●

●

●

●

●● ●

●

●

●

●

● ●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

● ● ●

●

●
●●

●

●

●● ●
●

●

●

●

●

●●

●

●● ●

●

●

●

● ●●●●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●

● ●

●

●●
●

●

●

●

●●●●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●●

●
●

●●●●●

●

●

●

●

●

●

●

●

●

●
●

●

● ●●●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●●

●

●

●

● ●

●●

●

●

● ●

●

●●●●●
●
●

●

●

●
●

●
● ● ●●●●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

● ●●

● ●

●
●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

● ●
●

●●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●●

●

●

●

● ●●

●

●

●●

●

●

●

●●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●●

●

●

●

●
●

●●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●● ●●●

●

●

●

●● ● ● ●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●● ● ●

●

●●
●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

● ●●●

●

●

●

●
●

●
●

●

●

●

●●

●

● ●●●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●●● ● ●●

●

●

●

●

●●

●

●

●●

●

●

●
●●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●
●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●● ● ●

●

●

●

●

●

●

●

●

●● ●●●●

●

●

●

●

●

●

●●

●

●●●

●

●

●

●

●

●

●● ●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●
● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

● ●

●

●
● ●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●●●

●

●

●

●

●●

●

●

●
●

●

●

●●
●

●

● ● ●●

●

●

●

● ●

●
●

●

●

●

●

●●

●

●

●

●
●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

● ●●

●

●

● ●● ●

●

●

● ●●

●

●

●

●

●

●

●
●

●● ●● ●

●

●

●

●

●

●
●

●

●●

●

●

●
●

●

●

●

●

●

●● ●●

●

●

●

●● ●

●

●

●

●●●
●

●
●

●●

●

●

●

● ●●
●

●

●
●

●

●

●

●

●●●●

●

●

● ●●
●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●● ●●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●● ●● ●
● ●

● ●● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
● ● ●

●

● ●●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●●●●
● ●● ●

●

●

●

● ●

●

●
●

●●●

●

●

●

●

●

●
●●

●

●

●

● ●

●

●●

●

●

●

●

●
●

●

●●

●

●

●

●

●

● ●●

●

●

●

●●

●

●

●

●

●

●

●●

●●
●

● ●●

● ●

●

●

●

● ●
●

●

●
●

●

●

●

● ●

●

●

●

●

●

●● ●

●

●●●

●

●

●

●

●●

●

●

●
●

●●

●

●

● ●●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●●● ●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●● ●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●●
●

●

●● ●● ●●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●● ●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

● ●
●

●

●

●

●

●

●●●

●

●

●

●

●
●●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●●●

●

●

●

●

●

● ●
●

●
●

●

●

● ●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

● ●●●●

●

●

●

●
●

●

●

●

●

●

●

●● ●
●

●

●

●

●

●

●

●

●

●

●●
●●

●

● ●

●

●

●

●

●●

●

●
●

●

●●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●●

●

●● ● ●●●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●● ●

●

●

●
●

●

●

●

●●● ●●

●

●

●
● ● ●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●●

●

●

●

●

●

●

●

● ● ●●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●●

●

●

●●

●●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

● ●●●

●

●

●

●

●

●●●
●

●●

●

● ●●●

●

●
●

●●

●

●●

●

●
●

●

●

● ●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●
●

●

● ●

●
●

●

●

●●

●

●
●

●

●

●

●

●
● ●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●
● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●● ●

●

● ●●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●●

●

●

● ●●

●

●●●

●
●

●

●

●

●● ●

●

●

●

●

●
●● ●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●● ●●

●

●

●

●

●

● ●

●

●

●●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●● ●

●

●●
●

●

●

●

●

●

●

●

●

● ●

●

●●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●
●
●

●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

● ●● ●●
●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●●
●

●

●
●

●●

●

●

●

●

●

●

●

●
●

●●

●

●●

●●

●

●

●

●

●●

●●

●

●

●

●
●

●●

●

●

●●
● ● ●●

●

●

●

●

●

●

●

●

●●●●

●

●

●
●

●

●

●
●

●

● ●

●

●●

● ●

●

●

●

●

●
●

●

●

●● ●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●●

●

●●
●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●●● ●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

● ● ● ●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●●

●

●
●

●●
●

●

●●

●

● ●

●●

●

●

●
●● ●●●

●

●●
●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●●

●●

●

●

●

●

●

●
●

● ●
●● ●

●

●

●

●

●

● ●

●

●● ● ●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●●

●

●

●●

●

●

●

●●●

●●

●●
●

●

●

●

● ●
●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●
●

●

●

●●

●

●

●● ●

●

●

●

●●

●

● ●●
●●

●

●

●

●

●

●●● ●

●

●●

●

● ●●

●

●●●

●

●

●
●

●

●

●●●

●

●
●

●

●

● ●

●● ● ●

●
●

●

●

●
● ●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

● ●●●●

●

●

●

●●●

●

●
●

●

● ●●

●

●●

●

●

●
● ●●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●● ●

●

● ● ●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

● ●
●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●● ●

●

●● ●●

●

●
●

●

●

●
●

●
●

●

●

● ●●●
●

●●

●

●

●

●

●

●

●

●

●● ●

●

● ●

●●

● ●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●●

●

●
●

●

●●● ●●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●●

●

●
●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●●

●

●

●

●
● ●

●

●

●

●

●

● ●

●
●

●

●

●●

●

●

●●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ● ●

●

●

●

●

●

●

●

●

● ●●

●

●● ●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●
●●●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

● ●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●
●

●

●

●
●

● ●
●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●
● ● ●

● ●
●

●

●

●

●● ● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●●
●

●

●●

●

●● ●●

●

●●

●

●
●

●

●

●

●

●

● ●●

●

●

●● ●●

●

●

●● ●

●

●

●

●

●

●●●●

●

●●
● ●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●●●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●
● ●

●
●

●●●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

● ●

●

● ●●●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●●

●

●

●

●

●●● ●

●

●

●

●

● ●●

●
●

●

●

●

●●●

●

● ● ●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
● ●

●
●

●

●●

●

●

●

●

●

●

● ●●

●

●

●

●

●●●●

● ●

● ●

●

●

●

●

●●

●

●● ●● ●●

●

●

●

●

●

●
●

●

● ●

●●

●●

●

●

●

●

●
●

●

●

●

● ● ●●

●
●

●

●

●

●

●

●

●

●

●●●

●

●● ●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●●

●

●●
●

●

●

●●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●
●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●
●●●

●

●

●

●

●
●

● ●●

●

●

●●

●●

●

●

●

●

●●●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●
●

●

●

●

●

●

●

●

●

●●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●● ●

●

●

●

●●

●

●
●

●

● ●●

●

●

●

●
●

●

●

●

●●

●

●
●

●●
●

●

●

●

●

●

●

●●

●

●●

●

●●●
●●

●

●●

●

●

●

●

●

●

●

●●●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

● ●●●●

●●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

● ●

●

●
●

●

●

●

●●

●

●
●

●

●

●

●

●
●

●

● ●●

●

●

●●

●

●● ● ●

●

●●●
●

●

●
●

●●●

●

●
●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●●
●

●

●

●

●

●●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●●

●

●●
●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●
●●

●

●

● ●
●

●

●

●●
●

●●●

●

●

● ●●
●

●

●

●

●
●

●

●

●●●

●

●

●

●
●

●

●

●

●
●

●

●●

●

●●

●

● ●●

●

●
●

●

●

●

●

●

●

●

●●

●

●
●●

●

●●
●

●
●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●
●

● ●●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●
●

● ●

●

●●●

●

●●

●

●

●●

● ● ●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●●● ●

●●

●

●

●
●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●
●

●

●● ●●●

●

●

●

●

●

●

●

●

●

● ●●

●

●
●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●●● ●●●

●

●●

●

●

●
●

●

●

●

●●● ●●●

●

●

●

●

●

●

●

●

●

●

● ●●

●
● ●● ●●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

● ●

●

●●

●

● ●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●

●

●

●
●

●

●●

● ●● ●

●

●

●● ●

●

●

●

● ●●

●

● ●

●

●

●

●

● ●
●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●●

●

●

●

●

●

●

●
●

●

●

●●●●

●

● ●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●●● ●
●

●

●

●

●

●

●● ●

●

●
●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●● ● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●
●

●●●

●

●● ●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●● ●●●

●

●●

●

●
●

●

●

●

●

●

●
● ●

●

●

●

●
●

●

●●

●

●●
●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●
●

●
● ●● ●●

●

●●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●●

●●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

● ●

●

● ●

●

● ●●

●

●

●
●

●

●

●

●●

●●

●

●

●

● ●

●

●●●

●

●

●

●

● ●

●

●

● ●

●

●
●

●
●

●● ●●●●

●●

●

●●

●

●●●

●

●
●

●

●

●

●

●

● ●●

●

●●

●
●

● ●
●

●

●

●

● ●

●

●●●

●

●

●

●●
●

●

● ●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

● ●●
●●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

● ●●

●
●

●

●

●

● ●

●

●

●

●

●

●

●● ●

●

●

●
●●

●

●

●

●

●

●●

●

●

●

●
● ●

●

●● ●●●● ● ●

●

●

●

●

●

●

●● ●

●

●

●

●
●●

●

● ●

●

●

●

●

●

●

●●● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●●

●

●

●
● ●

●

●

●

●
●

● ●

●

●

●

●

●
●●

●
● ●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●
●●●

●

●

●

●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●●
●

●

●

●

●

●●
●

●

●

●●

●
●

●

●

●

●
●

●

●

●

●

●●
●

●
●

●

●
●

●●

●

●

●

●

●

●

●

●●●

●

●●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

● ●

●

●

●

● ●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

● ●
●

●

●●

●

●●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●● ●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●● ●

●

●

●

●

●

●

●

●

●●

●

● ●
●● ●

●

●

● ●
●

●

●

●

●

●

●●●

●

●

●

●

●

●

●●●

●

●

●

●

●

●●●

●
●

●●
●

●

●
●

●

●

●

●

●

● ●

●

●

●● ●

●

●
●

●
●

● ● ● ●

●

●

● ● ●

●
●

●

●

●

●●●● ●●

●

●

●

●

●

●

●

●

●

● ●● ●●

●

●

●

●

●

● ●●

●

●●

●

●●
●

●●
●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●●

●

●

●

●

●

●

●

●

●●● ●

●

●● ●●●

●

●
●

●

●

●

●

●

●

●
●

●

●● ●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●
●●

●●
●●

●

●

●

●

● ●

●
●

●
●●

●

●●

●

●● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●
●●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●● ●
●

●

●

●

●

●

●

●
● ● ●

●

●

●●●

●

●

●

●
●

●

●

●
● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●
●●●

●

●●●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●●● ●● ● ● ●

●
●

●

●

●●

●

●

●

●

●

●
●

●

●
●

●

●

●

● ●

● ●
●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●● ●●

●

●

●●

●

●●

●
●●

●

●

●●

●

●

● ●●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ● ●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ● ●

●

●
●

●

●

●●●

●

●

●●
●

●
●

●

●●

●

●
●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●● ●

●

●

●

●

●●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●●

●

●

●●

●

●

●

●

●

●

●
● ●●●●●

●

●

●●● ●

●

●

●

●

●

●
●

●

●
●● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●●●

●
●

●

●

●●●
●

●
●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●● ●

●

●
●

●

●

●

●

● ●

● ●● ●
●

●

●

●

● ●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

● ●
●

●

●

● ●●●

●

●

●

●

●

●

●

●
●

●

● ●

●

● ●
●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●●

●●

●

●

●

●

●

●
● ●

●●

●

●
●●

●

●

●

●●

●

●
●

●● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

● ●●

●
●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●●● ●

●

● ●●

●

●

● ●

●

●

●

●● ● ●●

●

●
●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●● ●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●● ●●●

●

●

●
●

●
●

●

●

●●

●

●

●

●

●

●

● ●●● ●

●

●

●

●●

●

●●

●

●

●

●
●

●

●

●

●●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●●● ●

●

●●
●

●●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●●

●

●
●

●
●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●● ●●●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●

●

●
●●

●

●●
●

●

●
●

● ●

●

●

●

●
●

● ●●

●

●

●

●● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●
●●

●

●

●●●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●● ●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●
●

●

●●

●

●
●

●

● ● ●●
●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

● ●

●

●
●

●● ●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

● ●●

●
●

● ●●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●
● ●●

●

●●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ● ●
●

●●
●

●

●

●

●

● ●

●
●

●

●●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●●●

●

●

●

●

●● ●●

●

●

●

●

●

● ●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●●

●

●

●

●

●

●●
●

●
●

●
●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

● ●● ●

●

●

●●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●●●
●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

● ● ●●
●

●

●

●

●

●

●

●
●●● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●●●●

●

●

●

●

●

●

●●

●

●●

●

●●
●

●●●

●

●

●

●

●

● ●
●●

●

●

●

●

●

●

●

●

●

●

●●● ●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●
●

●●

●

●

●

●

●

●

● ●● ●
●

●●

●

●●
●

●●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●
● ●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●● ●

●

●

● ●● ●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●●●● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

● ●●● ●●

●

●

●

●

● ●

●

●

●● ●

●

●●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●●

●

●●

●

●
●

●

●

●

● ● ●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●● ●●

●

●

●

● ●

●

●

●

●

●

●

●
●● ●

●

●
●

●

●

●

●

●

●
●

●

●
● ●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●● ●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●● ●●

●

●

●
●

●

●

●

●

●

●

●
●

●●
●● ●

●● ●

●

●

●

●

●

●

●●●

●

● ●●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●●

●

●

●

●

●●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●● ●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●● ●●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ● ●

● ●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●●●●

●

●

●

●

●

● ●

●

●

●

●

● ● ●●

●

●

●

●

●

●

●● ●●

●

●

●

●

●

●

●

●

●

●●

●

●●
●●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●●● ●

●

●

●

●

●

●●

●

●

●

●●

●

● ●
●

● ●

●

●

●

●
●●●

●

●

●

●

●

●

●●

●
●

●●●

●

●●

●

●

●

●

●

●

●

●●
●

● ●

●

●

●

●

●

●

●● ●

● ●

●

●

●

●

●●●

●

●

●
●

●

●

●

●●
●

●

●

●

●
●

●

●● ●
● ●

●
● ●

●

●

●

●
●

●
●

●

●●

●

●

●

●
●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●●●
● ●●

●

●

●●

●

●

●

●

●

●
●●●

●

●
●●●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●●

●

●●

●

●● ●

●

●

●
●

●

●

●

● ●

●

●
●

●

●

●

● ●

●
●

●

●

●

●

●●
●

●

●

●

●●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●
●

●

●

●

●

●●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●
●

●

●

●●

●

●

● ●●
●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

● ● ●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●
●
●

● ●●●

●●

●

●

●

●

●●

●

●

●

●
● ●

●

●●
●●

●

●

●

●

● ●

● ●●●

●

● ●
● ●● ●●

●●●

●●

●●●●●●
●●●●

●●
●●
●●●

●
●●●●

●
●●●●●

●●●●
●●●●●

●
●●●●●●

●
●
●●●

●●●●
●●●●

●●●●●●
●●●●●●●●

●●●●●
●●●●●●●●●

●●●
●●●●●

●●●●●●●●●●●●●●●●●●●
●● ●●●●●●●● ●●●●●●●●●●●●●●●●●●

25%

50%

75%

100%

1 10 100 1000 10000
#Fault−Similarity Classes

A
cc

ur
ac

y

(e) MiBench/basicmath (training)

●

●●

●

●

●

●

●

● ●● ● ●● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●●●

●

●

●

●

●

●

●

●

●● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●●
●

●

●

●

●● ●●

●●

●

●
●●
●

●

●

●

●●

●

●

●

●
●

●●
● ●

●

●

●

●

●

●

●●

●

●

●● ●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●●●

●

●●

●

●

●

●●

60%

70%

80%

90%

100%

0 50000 100000 150000 200000 250000
Total #Experiments (including training)

A
cc

ur
ac

y

(f) MiBench/basicmath (total)
●

●

●

●

●

●
●●

●●

●●

●

●

●
●

●●

●

●

●
●

●

●

●

●

●

● ● ●●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●
●

●
●

●

● ●
●

●

●

●●

●

●

●

●

●●

●

● ●●

●

●

●

●
●

●
● ●

●

●●

●

●

●

●

●

●●●●●

●

●

●

●

●●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●●

● ●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●●

●
● ●●

●

●

●

● ●

●

● ●●

● ●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●
●

●
●

●
●

●●●

●
●

●

●

●●
●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●●●

●

●
●

●
●

●
●●

●

●●

●
●

●

●

●

●

● ●
●

●

●

● ●
●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●
●

●

●

●

● ●

●
●

● ● ●

●

●

●

●●●
●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●●

●

●
●

●●
●

●

●
●

●
●

●●

●

●

●

●
●

● ●

●
●

●
●

●

●

●

●

●●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●
● ●

●

● ●

●

●
●

●

●

●

●
●

●

●

●●●

●

●

●

●

●●● ●● ●

●

●●

●

●

●

●●

●

●●●
●

●
●●

●●

●

●

●● ●
●●●

●

●●

●

●
●

●

●

●

●
●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●●

●

●

●●
●

●●
● ●

●

●●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

● ●

●

●

●
●

●●

●

●●●

●

●

●● ●

●

●
●

●
●
●

●

●●

● ●
●

●

●

●

●

● ●

●

●
●

●

●
●

●

● ●

●●

●

●

●●

●

●
●

●

●
●

●

●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●●

●

●

●
●

●
●

●●

●

● ●

●

●●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●

●

●
●●

●●●●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●●

●

● ●

●
●

●

● ●●●

●

●

●

●

●

●●●

●

●● ●

●
●

●

●

●●

●

●●
●

● ●
●

●

●●

●

●

●●

● ●
● ●●

●

●

●

●

●

●
● ● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

● ●

●

●

● ●

●

●

●

●●●

●

● ●

●
●

●

●

●

●

●

●
●

●

●
●

●●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●

● ●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●●● ●
●

●●

●

●
●

●

●

●●

●

● ●●
●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●
●

●
●●

●

●

●
●●

●

●

●

●

●

●

●

●

● ● ●● ●●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

● ●

●
●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●● ● ●
●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●●

●

●
●

●

●

●●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

● ●●

● ●

●

●
●

●

●

●

●●
●

●

●

●
●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●●

●

●● ●
●

●
●●

●

●

●

●

●

● ●●●

●
●

●

●●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●●●●

●●

●

●

●

●
●●

●
●

●
●

●

●

●

●

● ●

●

●
●

●

●

●
●

●

●

●

●

●

●
●● ●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●● ●●

●
●

●

●
●

●

●

●

●

●●

●

● ●●

●

●

●
●

●

●

●
●

●

●●

●

●

●● ●●●

●
●

●

●

● ●

●

●

●

●●
●

●

●

●

● ●
●

● ●

●

●

●●

●

●

●

●
●

●

●●
●

●

●
●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●
●

●

●

●●

●

●●
●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●● ●

●

●

●●

●

●
●

●

●

●

●

●

●
●

● ●

●

●
●

●
●

● ●●
●

●

●●

●

●●

●

●

●

●

●

●

●
●●

●

●

●●
●

●
●●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●● ●
●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●
●

●
●

●

● ●

●

● ●

●

●●● ●
●

●

●

●

●

●●

●

●

●

●

●

●
●●

●

●

●
●

●●●

●

●●

●

●

●

●

● ●

●

●

●

●

● ●

● ●

●

●
●

●

●●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●●

●

● ●
●

●●
●

●

● ●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●●
●●

●

●
●

● ●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●●●
●

●●

●

●

●

●

●●
● ●

●

●

●
●

●

●

●

●

●

●
●

●

●● ●

●

●

●

●●●

●

●

● ● ●● ●

●

●
●

● ●

●

●●
●

●

●

●

●

●

●
●●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●●

●●

●

●
●

●●

●

●

●

●●

●
●

●

●
●

●●

●

●
●

●
●

●

●

●●● ●●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●●
●

●

●

●

●●

●

●
●●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

● ●
●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●● ●

●

●

●

●

●

●●

●

●

●

●

●
●● ●●

●

●

●●

●

●

●●

●

●
●

● ●

●

●●●

●

●

●

●●

●

●
●

●

●

●

●●

●●
●

●

●

●●

●

● ●

●

●●

●

●

●

●

●

●

●

● ●

●

●●
● ●

●

●

●● ●●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●●

●

●●

●

●●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●●

●●

●
●

●

●●

●
●

●

●●

●

●

●
●

●●

●
●

●

●

●
●

●●

●

●

● ●
●

●

● ●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
● ●

●

●

●

●
●

●

●
●● ●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●
●

●

● ●●
●

●

●

●

●

●

●●

●●

●

●● ●

●

●

●

●● ●

●

●●

●

●

●

●

●

●
●

●

● ●
●●●

●● ●●

●

●

●

●

●
● ●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●●●

●

●

●●● ●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●●
●

●

● ●
●

●

●

●

●

●

●

●

●

●

●
●●

●

●●

●

●

●

●

●

●

●
●●

●●●
● ●

●

●

●

●●●●●
●

●

●

●

●

●●●●● ●●
●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●
●●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●● ●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●
●

●

●

● ●●

●

●
●●

●
●

●

●

●

●
●

●●
●

●●

●
●

●

●

●

●●

●● ●

●

●

●
●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
● ●●●

●

●

●

●

●●

●

●

●●

●

●

●

●●●
●

●●
●●

●
●

●●

●

●

●

●
● ●
●

●

●

● ●

●
●

●
●

●

● ● ●●
●

●

●

●
● ●

●

●

●● ●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

● ●●●
●

●● ●

●

●●

●
●●●●

●

●

●

●
●

●

●●

●

●

●

●
●

●

●●

●
●●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●
●●●

●

●

●

●

●
●

●

●
●●

●

●

● ●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●
●

●

●●
● ●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●●●

●

●

●●

●

●●●
● ●

●

●

● ●

●

●
●●

●

●

●

●

●

●

●

●

●●
● ●

●

●

●
●

●
● ●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●
●

●

●●
●

● ●

●

●

●

●●

●

●

●

●

●

●●

●

● ●●
●

●
●

●

●

●

●

●● ●

●

●

●

●

● ●
●

●

●

●

●

●●

●

●

●

●
●

●

●
●

●
●

●
● ●

●

● ●
●● ●●

●

●●

●
● ● ● ● ●●

●

●

●

●

●

●

● ●
●

●

●

●
●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●● ●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●
●

●

●
● ●

●

●●

●

●

●

●

●

●

●

●

●

● ●
●●

●

●

●●●
● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●●●●●● ●

●

●
●

●
●

●

●

●

●

●

●
●

●

●●

●

●

●●

●

●

●

●

●

●

●●
●

●●

●

●

●

●

●

●

● ●
●

●●●

●

●●

●

●

●

●

● ●●
●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●●●

●

●

●
●

●

● ●●

●

●

●

●●
●

●
●

●

●
●

●

●

● ●

●●

●

●

●

●

●
●

●

●

● ●● ●
●

● ●

●

●

●

●

●●●● ● ●

●

●
●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●● ●●

●

●

●

●
●●

●

●

●
●

●

●

●

●

●●●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●●

●●●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●
●

● ●●●

●●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●
●●

●
●

●

●●●
●

●●●●

●

●

●

● ●● ●●

●

●

●

●

●

●

●

●

●●

●

●

●

●
● ●

●

●●

●

●●●

●

●
●

●

●

●●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●
●
●

●
●●●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●●
●●

●

●

●

●●●
●

●

●

●

●

●● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●●
● ●

●
●●

●

● ●●

●

●
●

●
●

●

●
●

●●●

●

●

●
●

●

●
●

●

●

●

●●
●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●● ●● ●●

●

●

●

●

●●

●

●

●
●

● ●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●
●

●

●● ●

●

●

●

●

●

●●●● ●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●
●

●

●

●
● ●

●

●

●

●●

●

●

●

●

●
● ●●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●●
●

● ●●●
●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●
●●

● ●●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

● ●●
● ●

●
● ●

●

●

●

●

●

●

● ●
●●

●●

●

●●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●● ●● ●●

●

●

●

● ●
●

●

●

●
●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●
●

●

●●

●●

●

●
●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●●●

●

●
●

●
●

●

●
●

●

●
●

●

●

●
●

●

● ●

●

●

●

●
●

●

●
●

●

●
●●

●
●

●
●

● ●

●

● ●

●

●

●

●●

●

● ●●

● ●
●
●

● ●●● ● ●
●

●

●
●

●
●

●
●

●

● ●●
●

●

●

●

●●

●

●

● ●● ●

●

●●
●

●

●

●●●
●●

●

●
● ●

●

●

●
●

●

●
● ●

●

●●

●

●

●

●

●● ●
●

●

● ●● ●●
●

●

●
● ●

●

●

● ●
●

●

●

●

●

●

●●

●

●●
●●

●

●

●
●

●
● ●

●

●

●

●

●
●

●

●

●

●

●
●

●●

●

●

●

● ●

●●

●
●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●
●●

●
●

●

● ●
●

●

●

●

●
●●

●
●

●

●

●

●

●

● ●

●

●

●

●

●
● ● ●

●

●

● ●
●

●

● ●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●●
●

●
●

●

●●●● ●●● ●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

● ●●●● ●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ● ●

●

●

●●

●

●

●● ●●

●

●
●

●

●
●

●

●● ●●

●
●

●

●

●

●

●

●

●

●

●
●

●●●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●●

●

●

●
●

●
●

●

●

●

●●

●

●

●
●

●●

●

●● ●●●●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●●

●

●
●

●●●

●
●

●
●

● ●●
●

●

●

●

●
●

●
●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●● ● ●●●●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●●●

●

●

●

●●●
●

●

●

●

●

●●

●

● ●

●
●

●
●

●
●

●

●

●

●

●

●

●●●

●

●

●

● ●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

● ●

●

●
●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●●

●

●

●●

●
●

●

●
●

●

●

●

●

●

●●

●●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●●
●

●

●

●
●

●

●●●● ●●●

●

●●

●

●
●

●

●

●

●

●
●●

●

●

●

●

●
●

●
●

●

●
●

●●

●

● ●●
●

●

●

●

●
●●

●

●

●

●

● ●

●

●

●●●

●

●

●

●
●

●
●● ●

●
●● ●

●

●

●●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●●
●

● ●●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●
●●●

●

●

●

●

●

●
●

●●

●

●

●
●● ●

●●

●

●
●

●●

●

●●

●

●

●

●

●

●

●

●

●
● ●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●●● ●●
●

●

●

●

●

●●
●

●● ●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●●

●

●

●
●

●●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●
●●

●

●

●

●

●●

●

●

●

●

●
●

●

●●

●

●●●●

●
●●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●●

●

●
●

●

●

●

●●

●

●

●

●●●

●

●
●● ●●

●

●

●

●●

●

●
● ●

●
●

●

●
● ●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●
●●

●

●

●

●● ●

●

●
●

●

●

●●
●●

●

●

●

●

●

●●

●

● ●

●

●●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

● ● ●●

●

●●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●● ●●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

● ●
●

●

●

●

●
●

●

●

●

●● ●●

●

● ●

●

●

●

●

●●
●

●

●
●

●
●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●
● ●

●

●● ●
● ● ●

●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●

●

●

● ● ●●

●

●

●

●●
●

●●

●

●

●

●

●

●

●

●

●●
●

●

●●

● ●

●

●
●

●

●

●

●●

●

●

●

●●● ●

●

● ● ●●●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●●
●

●

●

●
●

●

●●
●

●

●

●

●

●

●●

●●

●●
●

●

●

● ●
●

●●

●

●

●

●
●
●

●

●

●

●

●

●

●

● ●

●

●

●

●●● ●

●

●●●

●

●
●●

●
●

●

● ●

●

●●●

●

●

●●

●

●●●

●

●

●

●

●

●●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
● ●

●

●

●

●

●

●

●
●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●●
●

●

●

●

●
● ●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●
●

●

●●

● ●●●●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●● ●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●●

●

●●

●

●

●

●
●

●●

●

●

●

●
●

●

●
●

●

●

●●
●

●

●

●

●

●

●●

●

●

●

● ●● ●●

●
●

● ●

●

● ●

●

●

●

●●●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●●

● ●

●

●

●
●●●●

●

●

●

●

●

●

●●

●

●
●

●
●

●

●

●
●

●
●

●

●
●●

●

●
●●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

● ●
●

●

●●

●

●

●

●

●
●●

●●
●

●
●

●

●

●

●●

●

●

●

●

●

● ●●●
●

●●

●

● ●●

●

●●

●

●

● ●

●

●
● ●

●

●

●

●

●
●

●

●●

●

●
●●

●

●

●

●
●

●
● ●

●
● ●

●

●

●

●●
● ●

●

●

●

●

●

●
●●

●●
●

●

●

●

●

●

●

●

●

●

●

●
●●

● ●●

●
●

●

●
●

●
●●

●●●
●●

●

●

●
●

●

●

● ●● ●

●

●

●
●

●●

●

●
●

●
●

●

●

● ●

●

● ●

●

●
●

●

●

●

●

●● ●

●

●
●

●

●

●
● ●

●

●
● ●

●
●

●
●●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●
● ●

●●

●

●

●●
●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●●●
●

●

●

●

●

●

●

● ●

●

●
●

●

●
●

●
●

●

●

●

●●

●
●

●

●
●

●

●

●
●

●
●

●

●

●

●●
●

●

●

●● ●
●

●

●

●●

●

●

●
●

●●

●

●
●

●

●

●
●

●
●

●
●●

●

●●

●

●

●

●

●

●
●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●●

●

●

●

●

●

●

●●
●

●

●

●

●●

●

●

●●

●●
●

●

●
●

●
●

●

●

●

●

●

●
●

●
●

●

●
●

●

●
● ●

●

●

●

●

●●● ●

●

●
●

●●●●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●
●

●

●

● ●
●

● ●
●

●

●

●

●

●

●

●
●

●

● ●
●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

● ●●●

●

●

●

●●●

●

●●
● ●●●

●

●

●

●
●

●

●

●

●

●
●

●
●●

●
●

●

●

●

●

● ●●●
●

●
●

● ●

●

●●
●

●

●●●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●
●

●●
●

●

●

●

●

● ●

●

●●

●

●

●

●●
●●

●

●
●

●● ●● ●
●

●

●

●

●

●

●

●

●

●

●● ●●●

●

●

●●
●●

●

●

●

●

● ●
●

●

●

●

●
●

●●

●

●
●

●●

●

● ●

●

●
●

●

●●

●

● ●

●
●

●

●

●

●

●

●● ●●

●

●

●●

●

●

●

●

●●●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●●
●●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●
● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●

● ●

●

●
●

●●●●

●

●

● ●

●

●

●

●●●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●

●

● ●●

●

●● ●

●

●

●●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

● ●

●●

●

●
●

●

●

●

●
●

●

●

●

● ●●
●

●

●
●

●

●

●

● ●
●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●●
● ●

●

●
●

●
●

●

●

●

●

●

●

● ●

●

● ●●●
●

●
● ● ●

●

●

●

●

●
●

●
●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●● ●●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●

● ●
● ●

●

●

●●

●● ●●

●●

●
●●

●

●

●●

●●

●
●●

●

●
●

● ●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●●

●
●

● ●

●
●

●●●
●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●
● ●●

●

●●

●

●

●
●● ●● ●

●● ●

●

●●●
●

●

●

●
●

●●
●

●

●

●

●
●

●

●

●●●
●

●●

●

●

●

●

●

●●

●●

●

●

●

●●● ●
● ●

●

●

●●

●

●

●

●

●●
●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●●

●

●
●●

●

●

●

●

●

●●

●

●

●
●

●●●

●

●

●●
●

●

●

●

●

●

● ●

●

●

●●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

● ●●●
●

●
●

●

●

●

●

●

●

●

●
●

●
●● ● ●●●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

● ●●

●

●

●

●
●

●

●

●

●
●

●

●

●●●
●

●

●
●

●

●

●●

●
●●

●

●

●

●

● ●● ●
●

●

●

●
●

●
●

●
●

●

●

●

●

●

●
●

●

● ●

●

●

●
●●

●

●
●

●
●

●

●

●●

●

●

●

●

●●●

●

●
●

●●

●

● ● ●●●●
●

●

●

●

●

●

● ●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●

●

●

●

●
●

●●●

●
●

●

●

●

●

●
●

●

●● ●●

●

●

●

●

●●

●

●
●

●

●

●
● ●

●

●

●

●

●

●● ●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●
●

●

●

●●●

●

●
●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●●

●

● ●
● ●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●●

●

●

●

●
●●

●

●

●

●

●

●

●●

●

●●
●

●

●●
●

●
●

●

●

● ● ●

●●
●●●

●

●

●

● ●● ●
●

●

●

●

●
●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●● ●

●

●

●
●●●

●

●
●

●

●

●
●

●
●

●

●

●

● ●
●

●

●

●
●

●

●

●

●● ●

●

●●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
● ●

●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●
● ●

●●

●

●● ●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●●
●

●●
● ●●

●

●

●

●

●

●
●

●

● ●

●

●
●

●

●
●

●

●

●

●
●●

●●

●

●●

●

●

●

●
●

●

●

●

●●● ●●●

● ●

●

●●

●

●

●

●

● ●

●

●

●

●
●

●

●
●

●

●

●

●●
●

●

● ●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●● ●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●●

●
● ●

●●
●

●

●

●

●

●
● ● ●

●●
●

●

●

●

●

●
●

●
●●

●

●

●

●

●

● ●

●

●

●

●●●●
●

●

●

●

●

●

●

●

●
●

●

●

● ● ●●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●
●● ●

●
●●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●●●

●

●

●

●●
●

●

●

●

● ●●
●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

● ●

●
●

●

●

●

●

● ●

●

●

● ●
●●●

●
●

● ●

●

●

●

●

●

●

●

●

●
●
● ●

●

●
●

● ● ●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●
●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●● ●●

●

●

●

●

●

●

●●

●

●

●
●●

●● ●

●

●●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
● ●●

●

●

●
●

●

●
●

●

●

● ●

●

●●●

●
●

●

●

● ●●

●
●

●●●

●

●

●

●

●●

●
●

● ●

●

●

●

●

●
●

●●

●●

●●

●

●●●

●
●

●

●

●

●

●

● ●

●

●

●

●●

●

●●●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

● ●

●● ●

●●

●

●●●
●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●
●●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●●●●

●

●
●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●●●

●

●●

●●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●●

●

●
●●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ● ●
●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●
●

● ●●

●

●

●●

●

●●

●

●

●● ●
●

●
●

●

●
●

●

●

●●

●

●

●

●

●

●
● ●

●●

●

●

●

●

●

●

●
●

●
●●

●●

●

●

●
●

●
●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●●
●●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

● ●

●

●

●

●
●

●

●

●
● ●

●

●
●

●
●

●

●●

●

●●

●

●

●
●

●● ● ●
●

●

●

●
●

●

●
●

●

●

●

● ●

● ●
●

●

● ●●
●

●

●

●

●

●

●

●
●●

●

●●
●

●
●

●

●

●

●

●●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●
●

●
●

●
●

●

●

●

● ●●

●
●

●●

●●●

●

●

●

●

● ●

●

●

●
●

●

●

●

● ●●●●
●

●●●●
●

●

●

● ●

●

●

●

● ●●

●

●●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●● ●

●

●●

●●
●

●

●

● ●●

●

●

●●

●●

●

●

●
●

●
●

●

●

●

●

●

●

●●●
●

●
●

●●

●

●

● ●

●

●
●

● ●

●

●

●

●

●
●

● ●●

●
●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●
● ●●

● ●

●

●

●
●

●

●

●

●
●

●

●

● ●

●

●

●
●

● ●

●

●●●●

●

●
●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●
●

●

●

●●

●

●

●

●●

●

●

●

●

●

●●

●

●●

●

●●●

●

●
●

●●

●

●

●●●
●

●●

●

●

●

●

●

●

●
●●

●

●

●

●

● ●●

●

●

●

●●●

●

●

●

●

●

●

●

●

●●●
●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●●
●

● ●

●

●

●

●●●

●

●

●

●

●
● ●

●
●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●

● ●● ●
●

● ●
●

●
● ● ●

●

●

●

●●

●
●

●

●

●

●
●

●
●

●

●●

●

●

●
●● ●

●

●

●

●

●

● ●

●

●
●

●
●

●

●

● ●

●

●

●●

●

●
●

●

●

●●

●

●●

●

●

●

●

●

●

●
●

●

●●
●

●
●

●

●

●●

●

●

●

●

●●

●

●●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●●●

●

●●
●

●

●

●

●
●

●
●

●

●

●

●

●●● ●●

● ●

●●

●

●

●
●

●

●

●
●

● ●●●

●
●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

● ●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
● ● ●

●

●

●

●

●●
●●

●

●

●

●
●

●

●

●●
●

●

●
●

●

●
●

●
●

●

●
●●

●

●
●

●

●●

●●

●

●

●

●

●

● ●

●

●●●

●
●

●

●

●●

●

●●
●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●
●

●

●
●

●

●

●

●● ●

●

●

●
●

●

●● ●

●

●

●

●●

●

●● ●
●

●

●

●

●

●

●

●
●

●

●

●●

●

● ●● ●

●

●

●

●

●●

●

●

●●

●
●

●

●

●

●●●

●

● ●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

● ●
●

●
●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●
●●

●●

●

●●●
●

● ●●

●

●

●

●

●

●
●

●

●

● ●
●

●

●

●

●
●

●●

●

●

●
●

●

●

●

●

●●●

●

●
●

●

●
●

●

●● ●

●
●

● ●

●

●
●

●

●

●●

●

●

●● ●●

●

●
●

●

●

● ●

●

●●

●
●

●

●

●●

●

● ●

●

●

●

●

●
● ●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●●● ●
●

●
●

●

●

●
●

●

●

●

●

●

●●●

● ●

●

●

●●

●

●●●● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●●

●

●

●

●

●●

● ●

●

●

●

●●

●

●

●

●●

●

●● ●

●

● ●

●

●

●

●
●

●

●●
●●

●

●●●●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●●

●●
●

● ●● ●●●

●

●

●

●●
●

●

●

●
●

●

●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

● ●● ●●

●

●
●

●

●

●

●

●
● ●

●

●

●

●

● ●

●

● ●

●

●

●

●

●●

●

●
●

●

●

●

●
●

●●●●

●

●

● ● ●
●

● ●
●

● ●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●●

●
● ●●

●

● ●
●

●

●

●

●
●

●

● ●

●

● ●

●

●

●
●

●

●●
●●

●
● ●

●
● ●

●

●
●

●●

●

●

●

●
●

●

●
●●

●
●

●

●

●
●

●

●
●

●●

●●

●

●●

●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●
●●

●●●

●

●

●

●

●●

●
●

●

●

●

●

●

●
●

●

● ●●

●
●

●

●

●

●

●

●
● ●

●●

●
●

●●
●●●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●●

●

●
●

●

●●
●

●

●

●
●

●
●

●

●

● ●

●

●●

●

●

●

●
●

●

●● ●
●

●

●

●●●●

●

●

●

●

●●

●●

●

●

●

●

●

●

●●

●
●●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●
●

●

●
●●

●

●

●●●

●

●

●

●
●

●●●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

● ●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●●

●

●

●

●
●●

●

●
●

●
●

●

●

●

●

●

●

●

●●

●

●

●●
●

● ●

●●
●

●

●

●●

●

●●●

●

●
●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●
●

●

●

●

●

●
●

●

●

●

● ●● ●●

●

●

●
●

●

●● ●
●

●

●

●

●
●

●

●

●

●
●●

●
●

●

●
●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●●●

●

●

●

● ●

●

●●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●
● ●●

●

●

●

● ●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●
●

●
●

●● ●●

●
●
●●

●

●

●

●

●

●●

●

●

●●●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●
●

● ●
●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●●

●

● ●●

●

● ●●

●

● ●●
●

●

●

●

●
●

●

● ●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

● ●
●

●

●

●

●
●

● ●

●

●

●

●●

●

●

●

●

●
●

●

●

●
●

●●

●

● ●

●

● ●

●●

●

●

●●●●

● ●

●

●

●

●

●
●

●
●●

●

●●● ●
●

●

●●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●
●

●●

●●●

●

●

●●

●

●●

●

●

●

●
●

●

●

●

●
● ●

●

●

●
●

●

●

●
●●●

●● ●●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●●●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●
●●●

●

●

● ●● ●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●
●

●●

● ●●

●
●

●

●

●

● ●●●●
●

●

●●
●●

● ●

●

●

●
●●

●

●● ●●●●

●

●●
●

●

● ●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●●

●
●

●
●

●

●

●

●

●

●

●●

●

●

●

●

● ●●●

●

●

●
● ●

●

●

● ●

●

●
●

●
●

●●

●

●

● ●

●

●●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●●

●

●●

●

●●
●

●

●

●
●

●

●

● ● ●
●

●

●

● ●● ●●
●

●

●
●●●

●

●

●
●●

●

●

●

●

●
●

●

●
● ●

●

●
● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●●
●

●

●

●●

●
● ●

●
●

●

●

●

●
● ●●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●● ●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●●●

●

●●

●

●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●●

●

●

●●

●

●

●

●

●

●

●

●

●
●● ●

●

●

●●

●

●

●

●
●●

●●

●

●

● ●

●

●

●
●

●

● ●

●

●
●

●

●

●

●●
●

●

●

●● ●●●
●

●
●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●
●●●

●

●

●

●

●

●
●

●
●

●

●●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●
●

●●

●

●
●

●
●●●●

●

●

●

●
●

●

● ● ●

●
●

●

●

●

●●

●

●

●
●●●

●

●

●

●●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●●●●●●

●●
●

●

●

●

●●

●

●●●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●
●

● ●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●
●●

●

●

●

● ●

●

●

●

●
● ●●

●
●

●
●

●
●

●

●
●

●

●

●

●

● ●●

●

●

●

●
●

● ●●● ●

●

●
●

●●●●
●●

● ●

●
●

●

●

●●

●

●

●

●

●

●●

●

● ●

●

●

●●

●

●●●

●

●●

●

●

●

●

●

●●

●

●

● ●

●

●

● ●
●●

●

●

●

●

●●

●

●
● ●

●

●

●

●

●

●● ●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●●
●

●

●

●

●

● ●

●
●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●●

●
● ●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●●

●

●

●

●

●

● ●● ●

●

●
●

●

● ●●
●

●

● ●

●

●

●
●

●

● ●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●
●●

●●

●

●
●

●

●

● ●●

●

●

●

●

●

●

●
●

●
●

●

●● ●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●●

●
●

●

●

●

●

●
●

●

●

● ●

●●
●

●
●

●

●

●
●

●●
●

●

●
●

●

●●

●

●

●

●

●●

●

●

●

●
● ●●●●

●

●

● ●
●

●

●

●

●

●

●

●● ●●

●
●

●●●

●

●

●●

●

●

●

●

● ●

●

●
●●

●

●

●

●

●

● ●
●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●● ●

●

●

●

●●

●

● ●

●
●

●
●

●

●

●
●

●
●

●

●
●● ●

●

●

●

●

●

●

●

●

●●●● ●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●●
●

●

●
●

●

●

●

●
●

●

●

● ●● ● ● ●●

●●

●
●

●

●

●

●

● ●

●

● ● ● ●

●
●

●

●

●●
●●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●● ●

●
●
●

●●

●

●
●

●

●

●

●

●

●
●

●

● ●●
●●

●

●
●

●

●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●
●●

●

●●
●●●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●
●

●●

●

●
●

●

●●
●

●
●

●

●

●

●

● ●

●

● ●

●●●●●

●

●

●

● ● ●

●

●

● ●●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●
●

●

●

●

●

●●●

●
●

●

●●

●

●

●●

●

●

●

●●

●

●

●●

●
●

●

●

●●

●

●
●

●

●
●

● ●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●
●

●

●
●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●
●●●

●

●

●
●●

●

●
●●

●

●

● ●

●

●

●

●

●

●●

●

●

●
●

●

●
●

●●

●

●

●●●

●

●
●

●

●

●

●

●

●
●

● ●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●
● ●

●

●● ● ●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

● ●●● ●●

●

●
●

●

●

●

●

●

●●●
●

●

●

●

●

●

●●

●

●

●
●

●

●

●
●

●

●

● ●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

● ●●

●
●

●

●

● ●

●

● ●
● ●

●

●
●

●
●

●
●

●

●●

●
●

●

●

●
●

●

●

●●

●

●
● ●●●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●
●●●

●

●

●●

●

●

●●●

●

●

●

●
●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

● ●

●

●●●

● ●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●
●●

●

●
●

● ●●
●

●

●●●

●

●●

●

● ●

●

●

●
●

●●

●

●

●

●● ●●●
● ●

●

●
●

●

●●

●●

●

●

●

●
●

●

●

●

●
●

●

●

● ●●

●

● ●

●
● ●●

●

●

●

●

●

●

●
●

●
●●

●

●

●
● ●

●● ●

●

●

●

●

●
●

●●

●

● ●●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●
●

●

●●●

●

●

●●
● ●●

●
●

●

●●
● ●

●

●

●●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●
● ●

●

●

●

●

●

● ● ●

●

●

●

●
●

●● ●

●

●

● ●

●

●

●

●●

●

●

●

●

●●

●

●

●

●
● ●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●
●●

●

●●●

●

●
●

●

●

●

●

●

●●●

●

●

●
●

●

●

●●
●

●

●
●●●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●●●

● ●

●
●●

●

●●
●

●

●

●

●

●●●
●

●●●
●

●

●

●●●●

●

●

●●●●● ●

●

●

●● ●

●

●●

●

●

●●

●

●
● ●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●
●

●

●

●●●

●

●● ●●●●

●

●

●

●

●

●

●

● ●●●
●

●

●● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

● ●
●

●

●
●

●

●

●

●

●
●

●
●

●

●
●

●●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●●●

●

●

●

●

●

●
●

●

●

●

●

●

●●●

●

●● ●●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●● ●●

●

●●
●

●
●

●
●●

●

●

●

●

●

●

●●●

●

● ●

●

●

●

●●

●

●●
● ●

●

●

●●

●

●
●

●●●● ●

●

●

●

●

●

●
●●

●

●
●

●
●

●

●●

●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●
●

●

●
●

●
●

●●●
●●

●
●

●
●●

●

●

●

●

●●
●●●

●

●
●●

●

●

●●

●

●
●

●

● ●

●

●
●

●

●

●

●
●

●

●
● ●●

●

●

●
●

●

●

●

●
●

● ●
●

●

●

●

●

●●

●

●

●

●

●

●
●

● ● ●●● ●
●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●●
●

●

●

●●

●

●

●

● ●●
● ●

●

●

●
●●

●

●

●

●

●

●
●

●

●
●

●

●●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●
●

●●

●
●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●
●●

●●

●

●

●
● ●●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

● ●

●

●
●

●

●

●●

●

● ●
●

●

●

●●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●●
●

●●

●

●

●

●

●

●

●

●

●●
●

●

●

●●●●
●●

●

●

●

●●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●
●

●●

●

●

●

●●
●

●●
●● ●

●

●

●

●

●

●
●

●
●

●

●

●●

●

●

●●●

●

●
●

● ●

●

●

●

● ●●

●●●

●

●

●
●

●

●

● ● ●

●

●
●●

● ●

●

●

● ●

●

●
●

●
●

●

●

●●
●

●

●
●●

●

●●

●

●
●

●

●

●
●

●

●

●●●
●●●●
●●

●

●

●

●●
●

●

●

● ●

●

●

●●●

● ●●

●
●

●

●

●

●

● ●

●

●

●

●●

●

● ●●

●

●

●

●
● ●

●

●

●

●

●

●
●

●
●●● ●

●

●

●

●

●

●
●

●●

●

●
●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●
●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

●
●●●

●

●

●●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

● ●

● ●

●

●

● ●

●

●●
●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●
● ●

●●

●●

●●

●

●

●●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●
● ●

●

●

●●●●

●

●

●

●

●

●

● ●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●
●

●

●
●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●●

●

●

●●

●

●

●

●

●

●
●

●

●●

●

● ●

●

●
●

●

●

●
●

●

●●

●
●●

●

●

●● ●

●

●

● ●

●

●

●
●

●

●

●

●

●

● ●

●
●

●

●

●●●

●●

●

●

●

●●

●

●

●

●●
●

●
●

●●

●

●

●

●

●

●●

● ●

●

●

●

●

●●

●
●

●

●
●

●

●

●
●

● ●

●

●

●

●
●

● ● ●
●

●

●

● ●●

●

●

●

●

●
●●●●

●

●

●

●●
●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●●●

●

●

●
●

●

●

●

●
●

●

● ● ●●●● ●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●●

●
●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●● ●
●●

●

●

●

●
●

●

●

●

●

●
●●

●●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●●

● ●

●
●

●

●
●

●

●
●●

●

●

● ●●● ●

●

●

●

●

●

●
●●

●
●

●

●

●

●

● ●●
●

●●

●

●

● ●
●

●

●

●

●

●
●●

●

●
●

●

●

●

●
●

●

●● ●
●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●
●●●● ●

●

●

●

●

● ●

●

●

●

●

●

● ●
●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●●
●

●
●

●●●

●

●

●

●
●●

●

● ●

● ●

● ●●
●

●

●
●

●●
●●

●

●●
●

●

●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

● ●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●
●●

●

● ●

●

●●
●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●●
●

●

●

●

●

●

● ●

●

●

●

●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

● ●

●
●

● ●
●●●

●

●

●
● ●● ●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●●

●

●●

●

●

●

●

●

●

●
●

●●

●

●●●

●

●

● ●
●●

●

●

●

●

●●

●

●●

●

●●●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●●
●●

●

●

●●

●

●

●

●

●

●

●

●

●
● ●●

●

●

●

●

● ●

●

●

●

● ●
●

●

●

●

●

●●

●

●

●

●●●

●

●
●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

● ●

●
●

●

●●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●● ●
●

●

● ●

●

●
● ●

●

●●

●

●

●

●
●

●

●

●

●
●

● ●●

●

● ●

●

●

●

●

●

●●
●

●

●

●

●

● ●●●
●

●

●

●
●

●

●

●
●

●

●

●

●
● ● ●

●

●

●

●

●
●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●●●●●

●

●

●

●●●●

●

●

●
●

●

●●
●

●

●

●

●

●

●

●
●

●

● ●

●

●

●●

●

●● ●●●
●

●

●●
●

●

●

●

●

●

●

●

●●

●●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●
● ●

●

●

●

●

●●●

●

●

●

●

●

● ●

●

●

●

●●●

●

●
●

●

●

●

●

●

●

●
● ●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●
●

●
●

●

●●
●

●

●

●

●

● ●

●

●

●

●● ●

●

●

●●
●

●

●

●

●

●
●

●●

●

●
●

●

●

●●

●

●
●

●
●●

●

●

●●
●

●

●

●

●

●

● ●●●● ●●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●●

●

●
●

●
●

●

●

●

●

●

●

● ● ●

●

●●
●

●

●

●

●●

●

●

●

●

●

●

●
● ●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●●●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●●● ●●●

●

●

● ●

●

●

● ●

● ●

●

●●

●
●

●

●

●

●●

●

●
●

●

●

●●

●

●

●

●

●

●●
●

●

●●
● ●

●
●●

●

●

●

●

●

● ●
●

●

●

●●●●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●●

●
●

●
●

●

●

● ●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●● ●

●

●

●

●

●

●
●

●

●●● ●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

● ●

●

●

● ●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

● ●

●
●● ●

●

●
●

●

●●●

●

●
●

●

●●
●

●

●

●

●

●
● ● ●

●

●●●●● ●
●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●●

●

●
●

●●

●

●
●

●
●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●●

●

●

●
●●

●
●

●

● ●

●
● ●●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●●

●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●
●

●

●

●

●
●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●●

●

●

●●

●

● ●

●

●

●
●●

●

● ●●
●

●

●

●

●

●

●

●
●●

●

●

●

● ●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

● ●

●

●●
●

●●

●

●

●

●
●

●

●

●
●

●

●
●

●

●●
●

●

●

●

●●

●

●

●

●

●●●●

● ●
●

●●

●

●
●

●

●

●

●●●●●●

●

●

●

● ●●

● ●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

● ●
●●

●

●

●

●

●

● ●

●

●

●

●

● ●

● ●●
●

●

●

●
●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●●

●

●

●

● ●●●

●

●●

●

●

●
●

●

●

●●

● ●
●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●
●●

●●●
● ●

●

●

●

●

●●

●

●
● ●

●

●

●

●

●

●

●
●

●
●

●

●●

●
●

●

●

●
●

●

●●●●

●

● ●●

●
●

●

●

●
●●

●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●● ●

●

●

●

●

●
●●●

●
●

●
●

●

●

●

●

●

●

●●
●●

●

● ●
●

●

●

●

●
● ●

●

●●●

●
●

●
●

●

●

●

●

●

●

●

●●●
●

●●

●

●

●

●●

●●
●

●

●

●

●

●

●●●

●

●

●●●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●●
●●

●

● ●

●

●

●●

●

●

●

●

●
●●

●

●

●

●●

●
●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●
●●

●●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●
●

●● ●●●●

●

●

●

●

●●●

●

●

●

●

●
●

●

●
●

●●

●

●

●

●
●

●●

●●

●●
●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●
●

●
●

●
●

●
●

●

● ●

● ●●●

●

●●

●

●●●

●

● ●

●

●●

● ●

●
●●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●
●

●

●
●●●
●

●●●
● ●

●

●●

●

●

● ●●
●

●

●

●
●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

● ●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

● ●
●●

●

●

●

●

●
●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●● ●

●

●
●

●

● ●

●

●

●
●

●

●
●

●

●

●

●

●●
●●

● ●
●●

●

●

●

●●

●

● ●

●

●● ●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●● ●

●

●

●

● ●

●

●●

●

●● ●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●●

●

●

●
●

●

●

●

●

●

● ●●●
●

●

●

●

●●

●

●●

●

●●●●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●●●

●●

●
●

●

●
●
●

●

●

●●●

●

●

● ●

●

●
●

●

●

●●●

●

●

●

●

●

●

●

● ●

●

● ●● ●●

●

●

●●
●

●
●

●
●

●

●
● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●● ●
●

●
●

●

● ●
●

●

●

●●●
●●

●

●
●

●

●

●●

●

●

● ● ●

●

●●

●

●

●

●

● ●
●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

●

●●●●● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●● ●

●

●

●

●

●

●

●

●

●

●

● ●
●● ●

●
●

●

●
●

●

●

●●
●

● ●

●

●

●

●

●
●●

●

● ●

●

● ●●●

●

●

● ●

●

●

●

●

●

● ●
●●

●

●

●

● ●

●

●
●

●

● ●

●

●

●
●

●●
●

●

●
●

●

●

●

●●
●

●

●
●

● ●

●

●

●

●

●

●

●● ●

●

●

●

●● ●

●

●●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

● ●●
●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●● ●
●

●●●

●

●● ●●

●

●

●

●●

●●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●
●

●●

●

●

●●
●

●● ●

●

●●

●

●
● ●

● ●

●

●
●

●

●

●

●●

●

●

●

●

●●
●●●

●

●
●

●

●

●

●

●
●

●

●
● ●

●

●

●

● ●

●

●

●

●
●

●

●

●

●●● ●

●

●

●

●

●
●●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

● ●●●
●

●

●

●

● ●

●

●●

●

●

●

●

●
●

●

●

●

● ●

●

● ●

●
●

● ●●
● ●

●

●●
●

●● ●
●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

●●

●

●

●●

●

●

●

●●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●●

●
●

●

●

●

●●
●●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●
●

●●●

●

●

●

●●●

●

●●

●

●

●

●

●

●

●

●

●● ●
● ●

●

●

●

●

●

●

●
●

●

●

● ●●
●

●

●

●

●
●

●

●●

●

●
●●

● ●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●●

●

●
●

●

●

● ●

●
●● ●

●●●

●
●

●●

●

●

●

●●

●

●

●●

● ●
●

●●

●

●

●
●

● ●●

●

●

●

●

●
●

●

●

● ●●
●

●

●

●

●

● ●

●

●

●

●
●

●
●

●

●
●

●

●● ●●●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●

●
●

●

●

●●

●

●

● ●

●

●

●

●

●●

●●

● ●

●

●

●
●

●

●

●
●

●

●
●

●●

●

●

●

●

●● ●

●

● ●● ●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●●
●
●●

●
●

● ●
●●●●● ●

●
●
●●●●●●●●●●

●●●●●●
●●●●●●

●●●●●●●●●●
●●●●●●●●

●●●
●●

●●●

99.9900%

99.9925%

99.9950%

99.9975%

100.0000%

1 10 100 1000 10000
#Fault−Similarity Classes

A
cc

ur
ac

y

(g) MiBench/qsort (training)

●

●●●●●●●●

●
●

●●
●

●

●●
● ●
● ●

●

●

●●●● ●
●●●

●●
●●●

●

●
●

●

●
●

●●

●●
●

●●●●

●
●●

●

●●●● ●●

●

● ●●● ●●●● ●
●

●
●

●

●

●●●
●
●
● ●

● ●● ●
●●

●
●●● ●●

●

●●●●
●

● ●●

●●●●●
●

●●●●●●

●

●

●

● ●●●
●

●●
●

●

●●

●

●●●●●● ●
●

●

●
●
● ●●●●

●
●●●●

●

●

●●
●

●

●

●

●

●

●

●●

●

●●●●●● ●
●
●●●●●● ●

●

●●

●

●
●●●●●●●● ●

●
●●●
●●
●●●●●●●●●●● ●● ●●●●

●

●●●●
●

●
● ●

●

● ●●●

●

●● ● ●
●●

●
●
●

●

● ●
●

●

●

●

●● ●● ●●● ● ●●● ●●●
●

●

●●●●● ●●●●●● ●●●● ●
●●

●

●
●●●

●

●
●

●

●

●●
●●

● ●●● ●●

●

●

99.00%

99.25%

99.50%

99.75%

100.00%

0.0e+00 2.5e+06 5.0e+06 7.5e+06 1.0e
Total #Experiments (including training)

A
cc

ur
ac

y

(h) MiBench/qsort (total)
●

●

●●

●
●

●

●●

●

●

●
●

●
●

●

●
●

●

●

●
●●●

●

●
●

●

● ●●

●

●
●

●

●

●
● ●

●

●

●
●●

●

●

●

●

●●

●

●

●●

●

●●

●

●
●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●

●●●●

●
●

●

●

●●

●

●
●

●

●

● ●

●

● ●
●

●

●

●

●● ●

●

●

● ●

●●

●

● ●

●

●
●

●

●

●

●

●
●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
● ●● ●

●

●
●

●

●

●

●

●

●

●

●● ●●●

●

●

●
●

●

●

●

●

●●

●●●●

●

● ●

●

●

●
● ●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

● ●
●

●
●●

●

●●

●

●●●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●
●

●
●●

●

●
●

●

●

●

●

●

●●

●
●

●

●
●

●

●

● ●

●
●●● ●●

●●
●●

●

●

●

●

●

●

● ●

●●

●

●

●

●●
●

● ●

●

●
●●

●

●

●
●

●
●●

●

●●●

●

●

●
●

●

●● ●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●●

●

●●

●

●

●
●

●

●
●

●

●
●

●●
●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●●●

●

●
●

●
●

●
●

●● ●

●

●
●

●
●

●

●

●
●

●

●●●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●●

●●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●
●

●

●
●

●

● ●●

●

●

●

●

●
●

●

●

●

●

● ●
●

●

●

●●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●
●●

●

●
●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●●●
●

●

●

● ●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●●
●

●

●

●
●

●
●

●●●

●
●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

● ●

●●

●

●●

●

● ●

●

●

●

●
●

●
●

●●●

● ●

●

●

●

●

●

●

●

●

●

●
●●

● ●

●

●

●

●

●●
●

●

●

●

●●

●
●

●●●

●

●

●

●
●

●●

● ●
●

●
●

●

●

●

●

●●●
●

●●

●

●

●
●●

●

●

●

●

●

●

●

●

●●

●●

●

●

●
●

●

●

●
●

●

●●●

●
●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

● ●

●

●
●

●●●
●●

●

●
●

●

●

●
●

●

●

●
●●

●

●●

●

●

●

●
●● ●

●

●
●●

●
●

●

●
●

●

●

●

●

●

●

●
●

●
●●

●

●
●

●

●

●
●●

●

●

●

●
●

●
●●●●

●

●● ●

●
●

●

● ●●●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

● ●●

●

●

●●

●
●

●●

●

●
● ●

●

●

●

●

●●

●

●

●
●

●
●

● ●
●

●

●

●

●

●

●

●

●●
●

●
●

●●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●

● ●

●

●
●

●●
●

●
●

●

●

●

●

●●

● ●
●

●

●
●

●
● ●

●
●

●

●●

●

●
●

●

●

●●

●

●

●

●

●
●

●●
●

●●

●
●

●●
●

●

●

●

●
●

●
●●●●

●

●
●

●

●

●●
●

●

●

●

●●

●
●

●

●●

●

●●

●

●

●

●

●●

●
●

●
●●

●

●

●

●

●

●

● ●
●●

●

●

●
●

●
●●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●●
●

●

●●
●

●

●

●
●

●
●●

●

●

●
●

●●●

●●

●

●

●

●

●

●
●

●
●

●

●●

●

●

●

●
●

●●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●●

● ●

●

●●

●

●

●●
●

●

●
● ●

●●
●●

●

●

●
● ● ●●

●

●●●

●

●

●

●

●

●
●●

●

●

●

●

● ●●●

●

●

●●
●

●

●●

●

●

●

●

● ●
●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●●

●

●●

●

●

●

●

●

●
●

●
●

●

●

●
●

●
●

●

●

●

●
●

●

●●

●

●

●

●●

●

●

●●

●

●
●

●●●

●●

●

●●

●

●

●

●

●● ●
●

●

●
●

●

●
●

●

●●

●

●

●

●

●

●

●●

●

●

●

●●

●
●

●

●● ●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●●●
●

●
●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●
●

●

●●●

●●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

● ●

●

●
●● ●

●

●

●

●

●
●

●

●

●

●
●

●● ● ●

●

●

●

●
●

●
●

●

●
●●●

●
●

●●

●

●

●
●

● ●

●●

●

●

●●

●

● ●

●

●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●
●

●

●

●

●●●

●●

● ●

● ●

●

●

●

●

●

●●

●●
● ●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●●
●

●
●

●

●

●

● ●●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●
●

●●

●

●●

●

●
●

●

●

●

●
●

●

●

●

●

●

●●

●

●●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

● ●

● ●

●

●

●

●
●

●

●
●

●

●

●
●

●
●

●
● ● ●

●

●

●

●

●

●
●

●
●

●
●

●

●

●
●

● ●

●

● ●

●

●

●

●

●
●

● ●●

●
●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

● ●

●

●

●

●

●●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

● ●

●

●● ●● ●●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●●

●

●●

●

●● ●
●

●

●

●

●

● ●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●
● ●●

●
●

●
●

●

●

● ●

●

●

●

●●

●

●
●

●

●●●

●●
●

●

●

●
●

● ●

●

●

●

●
●

● ●●

●

●

●●

●

●

●

●
●

●

●

●

●
● ●

●

●

● ●●

●

●

●
●

● ●

●

●

●

●

●
●●

●●
●

● ●

●

●

●●

●

●

●

●●
●

●

●

●

●
●

●

●
●●

●

●●

●
●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●
●●●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●
●●

●●

●
●●

●

●

●●

●

●

●
●

●

●

●
●

●●
●

●●

●
●

●

●

●

●
●

●

●

●

●

●

●
●●●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●
●

●●
● ●

●

●
●

●●

●
●

●

●

●

●

●

●

●●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●
●

●

●

●●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●●

●

●

●● ●
●

●
●●

●●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●●

●

●● ●
●

●

●

●●

●
●

●

●●

●

●

●
●

●
●

●

●

●

● ●●
●

● ●

●
●

●

●

●

●
●

●
●

●

●

●

●●

● ●●

●

●

●
●

●

●
●

●

●
●

●●

●

●

● ●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●●

●

●

●
●

● ●●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●● ●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●
●

●●

●

●
●

● ●
●●

●

●
●

●

● ●

●
●●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●
●

●
●

●

●

●

● ●
●●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ● ●
●

●

●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●● ●●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●
● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

●● ●

●●

●

●

●

●
●

●
●

●

●●●

●

●

●●

●
●

●●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●●
●

●

● ●

●
●

●

●

●●

●

●
●

●

●

●

●
●●

●

●

●

●●
●

●

●

●

●

●

●
●

●

● ●

●

●

●●●

●

● ●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●
●

●

●●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●
●

●

●

●

●●

●

●●

●●

●

●●

●
●

●

●
●

●●●

●

●

●
● ●

●

●

●

●

●

●

●●●

●

●

●
●

●

●

●
●

●

●

●

●●

●

●

●
●●

●

●

●

●

●

●

● ●

●

●
●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●●●●

●
●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●●

●

●
●●

●

●

●
●

●
●

●

●

●
●

●

●

●
●

●

●●●

●●

●

●●
●

●
●

●

●●
●

●
●

●

●
●

●● ●●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●
●●

●

●

●

●

●

●

●
●●

●

●●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●●

●●

●
●

●

●

●

● ●

●

●

●
●

●

●

●

●

● ●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●
● ●

●
●

●

●●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
● ●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●●

●

●●
●

●● ●

● ●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●●

●●
●

●
●

●

●

● ●●

● ●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●
●●

●●●

● ●

●

●

●

●
●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●● ●

●

●●●
●

●

●
●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●●
●

●

●

●

●

●

●●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

● ●●●

●

●

● ●
●●

●
●

●

●
●

●

●
●

●

●●

●
●

●

●

●

●

●

● ●

●

●

●

●●
●

●
●

●●

●

●

●

●

●

●

●
●

●

●

●
● ●

●
●

●
●

●

●

●

●
●

●

●

●

●

●
●

● ●

●

●●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●●●
●

●● ●
●

●●●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●●

●

●

●

●
●●

●

●
●

●

●

●

●

●● ●

● ●●

●
●

●

●

●

●

●
●

● ●
● ●

●

●

●
●

●●

●

● ●

●
●

●

●

●

●

●

●

●●
●

●●

●

●

●

●

●

●
●

●
●

●

●●
●

●

●●

●

●

●

●

●

●

●
● ●●

●●

●●

●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●
●

●

●

●

● ●
●

● ●

●

●●●●

●

●●

●
●

●
●●●

●●
●

●

●

●●
●

●
●

●●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●
●

●

●●

●

●
●

● ●

●

●

●

●

●

●

●●
●

● ●

●
●

●

●

●

● ●

●

●

●

●
●●●

●

●

●

●●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●●

●

●●

●

● ●●
●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●●

● ●

●

●
●

●●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●●

●
●

●

●●●
●

●

●

●

●●

●

● ●●
●●

●

●

●●●
●

●

●
●●

●

●

●

●

●

●
●

●●

●

●●

●

●

● ●●
●● ● ●

●●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●●

●
●

●

● ●
●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●
●

●
●

●

●●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●●

●●●

●

●

●
●

●

●

●●

●

●

●

●

●
●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●●

●
●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●
●

●

●

●

● ●

●

●
●

●

●
●

●

●

●

●

●●
●●●

●●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●●

●

●●●

●

●

●

●

●

●

●

●●

●
●

●●●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●
●

●
●

●

●

●

●●
●● ●
● ●

●

●

●

●

●

●

●

●●
●

●

●

●●
●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●● ●
●

●

●

●

●

●

●
●

●

●

●
●

●●

●

●
●

●

●

●
●

●
●

●
●

●●

●

●
●

●

●
●

●

●●●

●

●

●●

●●

●

●

●
●●

●● ●

●

●

●

●
●

● ●

●

●
●

●

●

● ●

● ●

●

●

●●

●●

●
●

●●

●●

●

●●
●

●

●

●
●

●

●

●

● ●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●●
●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●●

●

● ●

●●
● ●

●

●

●

●

●
●

●

●

●

●

●● ●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●
●

●

●

●
●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●●

●

●
● ●

●

●●

●

●

●

●

●

●

●

●

● ●
● ●

●

●

●

●

●
●

●

●●●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●●

●

●

● ●
●

●

●

●
●●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●
●

●

●●

●

●

●

●
● ●

●
●

●

●

●
●

●

●
●●

●●

●

●
●

●

●

●

●

●

●
●●

●
●

●

●●

●

●

●

●
●

● ●
●●

●

●

●

●
●

●●
●

●

●

●

●

●

●
●

●
●

●

●

●

● ●●

●

●●●● ●

●

●

●●
●

●
●●

●
●

●

●●

●

●
●

●

●

●

●

●
●

●

●
●

●●

●

●

●

●

●

●

●

●

●
●

●●

●●
●●

●

●
●

●
●

●

●

●

●
●

●

●●

●
●

●

●

●

●●
●

●

●

●●

●

●

●
●

●

●

●

●

●

●

● ●●

●
●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●
●●

●

●
●

●

●

●

●

●

●●
●

●● ●

●

●●●

●

●

●

●
●●

●

●

●●

●

●

●●●●

●

●

●

●

●

●●
●

●

●

●

●

● ●

●

●
●

●

● ●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●●

●
●●

● ●

●

●

●

●

●
●●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●
●

●

●● ●
●

●

●

●

●●●
●

●

●

●
●

●

●

●

●

●●

● ●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

● ●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ● ●●

●

●

●
●●

●

●
●

●

●

●
●●

●
●

●

●●

●

●

●
●●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●●

●●
●

●

●

●
●

●● ●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●
●

● ●
●

●

●

●

● ●

●

●

●

●

●

● ●
●

●
●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●

●
●

●

●

●

●●

●

●

●
●

●●
●● ●

●

●●● ●

●

●

●
●

●

●●

●

●

●●

● ●

●●

●

●

●

●
●

●●●

●

●●

●

●

●

●●

●

●

●

●

●
●●

●

●
●

●
●

● ●

●

●

●
●

●

●

●
●

●

●

●
●

●

●●●

●

●

●●
●●

●
●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●

●

●

●

●

●

●
● ●●

●

●

●
●

●●

●

●

●

●

●

●
●

●●
●●

●

●

●
●

●

●

●

●
●

●

●● ● ●

●

●

●

●

●●
●

●

●

●
●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●●●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

● ● ●
●

●

●

●●●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●●●
●

●
● ●

●

●
●

●●

●

●

●

●
●

●

●

●

●

●●

●

●
●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●
●

●

● ●
●●

●

●

●

●

●

●
●

●

●

●

●

●●

●●●●

●

●

●

●

●
●●

●

●

●

●

●●

●

●
●

●●

●

●

●

● ●

●●

● ●
●

●

●

●
●

●
●

●

●

●
●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ● ●●

●
●

●

●

●

●●●

●

●
●

●
●●

●

●
●

●●

●
●●

●

●

● ●●

●●

●●●

●

●

●
●

●●●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

● ●
●

●

●●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

● ●

●●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●● ●

●
●

●

●

●

●
●

●
●

●

●●

●

●●

●

●

●

●

●

●

●

●

● ●●

●
●

●

● ●

●

●

●
●

●

●

●
●

●

●

●

●
●

●
●

●●●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●●

●
●

●

●●

●

●●

●●

●

●●●

●
●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●
●

●

●●

●

●

●

●

●●

●

●●

●

●

●

●●
●

●
●

●●

●

●

●

●●

●

●

●●

●●
●

●

● ●

●

●

●
●

●
●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●
● ●

●●

●

●

●

●
●

●

●●●

●

●●

●

●
●

●

●

●
●●●

●●
●

●

●

●

●

●

●

●

●
●

●●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●
●

●

●●●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●●

●

●

●●●

●

●

●

● ●

●

●

●

●

●●●

●●

●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●

●

●

●●● ●

●

●

●●
●

●

●

●

●

●

●

●●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●●

● ●

●

●
●

●●●

●

●

●
●●

●
●

●

●
●

●

●●●

●

●

●
●

●

● ●
● ●

●

●

●

●

●
●

●

●

●
●

●

●

●●
●

●

●

●

●

● ●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●

●

●

●

●●

● ●●

●

●
●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●●

●

●

●●●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●
●● ●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●
●● ●
●●

●
●

●●

●

●
●

●●●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

● ●
●

●●●●

●

●

●●
●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●●

●

●

●

●

●●
●

●

●

● ●

●
●

●

●

●●
●

●
●

●

●
●

●

●

●

●

●

●●
●

●
●

●

●
●

●
●

●

●

●

●
●

●

●

●
● ●●

●

●

●●

●●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●●
●

●
●

●
●

●
●

●●

●●

●●●
●

●

●●
●

●
●

●

●●

●

●

●●●●

●●

●

●

●

●

●

●
●

● ●

●

●

●
●

●

●

●

●
●●

●●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●●

●

●●

●

●

●●
●

●

●

●
●●

●

●● ●

●

●

●
●

●●
●●●

●

●●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●
●●

●

●●●
● ●

●
●

●

●● ●
●

●

●
●●

●
●

●

●

●

●

●

●

●

● ●

●
●

●

●

● ●

● ●

●

● ●
●

●

●
●

●●
●

●

●

● ●

●

●

●● ●
●

●

●

●

●● ●

●

●●●●

●●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

● ●

●

●●● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

● ●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●●

●

●

●
●

●

●

●

●

●

●●●
●

●
●

●

●

●
●

●
●●

●●●

●

●
●

●

●●●●

●
●

●● ●●

●

●

●

●

●

●

●

●

●

●
●

●

●●●●
●●●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●●●

●

●●

●

●

●

●

●

●●

●

●

●
● ●

●

●

●

●
●

●

●
●

●

●●
●

●

●

●

●

●

●

●

● ●
●

●
●

●●●

●

●

●●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

● ●

●

●
●

●

● ●
●

●

●

●● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●●

●

●

●●
●

●
●●

●●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●
●

●

●

● ●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●
●

●●

●●●●

●

● ●

● ●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●●● ●

●●

●

●

●

● ●

●

●

●

● ●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●●●
●

●

●

●
●

●

●
●

●●
●

●

●

●

●

●

●

●●

●

●
●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

● ●●

●

●
●●

●
●

●●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●●
●

●

●

●

●

●

●

●

●● ●

●
●

●

●

●

●

●

●●
●

●

●

●

●●

●

●

●
●●●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●●

●

●

●
●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●●

●

●

●

●●

● ●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●
●

●● ●
●●

●

●

●

●
●

●

●●

●

●

●

●

●

●
●

●●●
●

●

●
●

●

●
●

●

●

●●

●
●

●

●

●
● ●

●

●●
●

●
●

●

●

●●

●

●●

●

●

●
●

●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●●●●●

●

● ●

●
●

●

●

●
●

● ●

●

●●

●
●

●

●

●

●●

● ●

●

●

●

●

●
●

●
●

●

●

●● ●

●

●

●

●
●

●●

●●

●

●

●

●

●●

●●
●

●
●●

●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●●

●
●

●

●

●
●

●

●●

●

●

●
●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●
●● ●

●

●
●

●●
●

●●● ●

●

●●

● ●

●

●

●

●

●
●

●

●

●

●
●

●

●
● ●

●

●

●

●

●

●

●
●

●

●
●
●

●

●

●
●

●

●

●
●●

●

●

●
●

●

●

●

●

●
●●●●

●

●
●

●●●

●

●

●
●

●●
● ●

●

●
●

●●
●

●
●

●
●

●

●
●

●●
●

●

●

●●●

●

●

●

●

●

●

● ●

●
● ●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●
●

●

●

●
●

●

●●● ●
●

●

●
●

●

●

●

●

●●

●

●

●
● ●

●

●
●

●

●
●●

●
●

●

●

●

●

●

●

●

● ●

●

●
● ●●

●
●

●

●

●

●

●

●

●●

●

●● ●

●

●

●

●

●

●●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●●

●

●●

●

●

●

●

●

●● ●

●

●

●
●

●

●

●

●

●●

●

●●

●

●
●

●
●

●

●

●

●●

●

●

●

●

●

●●

●

●
●

●

●

●

●
●●

●

●
●

●

●●

●●
●

●

●
●

●

●

●

●●
●

●

●

●●

●

●

●

●

●

●
●

●

●

● ●●

●●

● ●

● ●●

●

●

●

●

●

●

●

●
●
● ●

●

●

●

●
●

●
●

●
●

●

●

●

●●● ●●●
●

●

●
●

●

●●●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●●

●

●

●

●

● ●
● ●

●

●

●●

●

●

● ●

● ●●●

●●

●●

●

●

●

●
●

●

● ●

● ●
●

●

●

●

●
●● ●

●●●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●●●

●

●
●

●●

●

●

●● ●●

●
●

●
●

●

●

●●

●

●

●
●

●

●●

●

● ●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●●

●

●

●

●●

●

●

●●

●

●●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●●

●

●

●● ●

●
● ●●●

●

●

●

●
●

●● ●

●

●●
●

●

●● ●
●●

●

● ●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●●
●

●

●
●

●

●

●
●●

●

● ●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●●

●●

●
●

●●
●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●
●

● ●

●
●

●
● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

● ●
●

●
●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●
●

●

●

●●

●●●
● ●●

●

●
●

●

●

●

●

●

●

●

●● ●●●

●

●

●

●

●●●

●
●

●●

●

●

●
●

●

●●

●

●

● ●

●

●

●
●●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●●
●

●●●
●

●●

●
●

●

●

●

●

●

●●

●

●

●

●● ●
●

●
●

●

●

●

●

●● ●●

●

●

●
●

●

●

●●

●
●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●● ●
●

●●●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●●
●

●

●

●

●

●
●

●

●●●
●

●

●

●

●
●

●

●

●●

● ●

●

● ●

●

●●

●

●●

●●

●●
●

●

●

●●●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●

●

●●●
●●

●●
●

●●

●

●

●

●●●

●
●

●

●
●

●
●

●
●

●

●

● ●
●●

●
●

●
●

●

●
● ●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●
●●

●

●

●

●●
●

●

●

●

●
●

●

●

●●●

●

●
●

●

●

●

● ●
●

●

●

●

●
●●

●
●

●●

●

●

●

●
●●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

● ●●●

●

●●
●

●
●●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●● ●●

●

●●

●

●

●●

● ●

●
●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●
●

●
●

●

●
●

●

●●

●

●

●●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

● ●

●
●

●
● ●

●●●

●

●

●

●

●

●

●

●

●

●●●● ●●●●

●

●

●●

●

●

●

●

●
●

●●

●

● ●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●
●

●

●

●

●

●
●

●●

●

●

●
●

●
●

●

●●

●

● ●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●●●● ●

●●

●

●
● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●● ●

●

●

●
●

●

●●

●

●● ●

●

●
●

●

●

●
●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●●●●

●

●

●

●

●●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●

●

●

●
●

●● ●●

●

●
●●●

●
●

●
●

●●

●●

●

●

●

●●

●●

●
●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●
●

● ●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
● ●

●

●

●
●

● ●●

●

●

● ● ●

●
●

●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●●
●

● ●

●

●

●

●

●

●
●●

●● ●

●

●

●●●

●

●

●

●
●

●

● ●● ●●

●

●

●

●

●

●
●●●

●

● ●

●

●
●

●
●

●

●
● ●

●

●●

●

●

●

●●

●

● ●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●
●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●●●

●

●●
●

●
●

●

●

●
●

●

●

●

●

●●
●

●
●

●

●

●

●

●
●

●
●

●●●

●

●

●
●

●
●●

●
●

●

●

●

● ●

●

●

● ●●

●

●

●

●

●

●

●

● ●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●
●

●
●

●

●

●

●
● ●

●
●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●
●

●

● ●
●●

●

●

●

●

●●● ●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●
●

●●

●

●●

●

●

●

●

●

●

●

●●●
●

●

●

●

●
●

●

●●

●
●

●

●

●

●

●

●
●

●●

●

●
●

●●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

● ●●●●

●

●
●

●

●

●

●
●

●

●●●

●

●

●

●

●
●

●●

●

●

●

●

●●

●

●

●

●

●
●

●

●●
● ●

●

●●
●

●

●

●

●

●

●● ●

●
●●

●
●

●

●●●

●

●

●●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●●
●

●

● ●

●

●●

●
●

●

●

●
●

●

●

●
●●

●

●

●

● ●●●●

●

●
●

●

●

●

●

●●●

●

●

●

●

●

●

●●

●●

●●

●

●
●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●●

●

●
●

●

●

●●
●

●●

●

●

●

●

●

●

● ●

●

●
●

●

●
●

●

●

●

●

● ●●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●● ●●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

● ●

●
●

●

●
●

●

●

●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

● ●●
●

● ●●

●
● ●

●

●
●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●●

●●

●

●

●

●

● ●●

●

●

●
●● ●●

●
●

●
●

●
●

●
●●

●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●●

●

●

●
●●

●

●●
●

●●

●

●

●
●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●

● ●●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●●
●

●

●
●

●

●

●
●

●

●
●

●

●

●

●●

●

●

●
●

●● ●●●
●●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●● ●
● ●●

●

●

●
●

●

●

●
● ●

●●●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●
●

●
●●

●
●

●

●

●

●

●●

●

●

●

●

●
●

●●

●●

●

●

●

●
●

●●● ●●

●

●

●●

●
●

●

●

●

● ● ●

●●

●●

●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●●

●

●

●

●

●

●

● ●●●●

●

●
●●

●●●

●

●

●
●

●

●

●●

●

●

●

● ●

●●

●

●

●●

●

●

●●

●

●

●
●●

●●●

●

●●

●

●

●
●●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●● ●

●

● ● ●

●

●

● ●

●

●

●
●

●

●

●

●

●
●

●●

● ●

●●●
●●●●

●

●

●
●

●

●
●

●

●●●● ●

●

●●●

●

●

●

●
●

●

●●

●●
●●

● ●

●
●
●

●
●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●
● ●●●

●

●

●●

●
●

●
●

●

●
●

●

● ●●●

●

●

●

●
●

●

●

●

●

●

●●

● ●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●
●●

●

●

●

●●●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●

●
●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

● ●
●

●●

●
●

● ●

●●

●

●

●

●

●
●

●

●●

●

●

●●

●

●
●
●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●
●

●

●●●

●

●

●

● ●

●●

●

●● ●●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●
●

●

●
●

●

●
●

● ●

●●

●

●●

●
●

● ●
●

●

●

●

●

●

●
●

●
●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●●

●

●

●

●
●●

●

●

●

●
●

●

●

● ●●

●

●

●

●●

●
●●

● ●

●

●

● ●

●

●

●●
●

●●

●

● ●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●●

●●

●

●
●

●

●

●

●
●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●
●

●

●

●

●●

●

●

●
●

●

●
●

●

●●

●

●●

●

●●

●●●

●

● ●●

●

●

●●●
●

●

● ● ●

●

●

●

●

●

● ●

●
●●● ●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●●

●●

● ●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●
●

●

●
●

●

●

●●
●

●

●

● ●

●●

●

●

●

●

●
●

●

●

●●

●●

●
●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●●●

●●
●

●

● ●●

●

●

●

●

●

●

●
●

● ●

●

●

●

● ●

●●●

●

● ●
●

●

●●

●

●

●
●●

●

●●
●

●

●

●

●

●

●

●

●

●

●

● ●●

●●

●●●

●●
●

●

● ●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●●
●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
● ●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●●
●

●●

●

●

●
●●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●
●

● ●

●
●

●

●

●●●

●

●

●
●

●

●

●●

●

●
●

●

●

●●

●

●
●●

●●● ●

●

●

●
●

●
●●

●

●

●

●

● ●●

●

●●

●

●
●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

● ●

● ●

●

●

●

●

●●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●●●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●●
●

●

●

●

●
●

● ●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●
●

●

●●
●

●●
●

●

●

●●

●

●

●

●

● ●●●

●
● ●

●●
●

●

●

●

●
●

●●

●
●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●

●

●

●

●

●
●

●

● ●
●

●

●

●
● ●

●●●

●

● ●●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●
●●

●

●

●
●

●
●

●●●● ●●●

●●●

●

●

●
● ●

●●
●

●
●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●●

●
●

●

●

●

●
●

●

●

●

●
●

●

●●●

●●
●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●●
●

●
●

●●

●

●

●

●

●
● ●

●

●

●

●

●●●

●

●

●

● ●

●
●●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●
●

●●

●

●
●

●

●

●

●
●

●
●●

●

●

●●

●
●

●

●

●

● ●●
●

●

●

●

●
●

●
● ●

●●

● ●● ●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●
●

●

●
●

●

●●●

●

●

●

●

●

●
● ●

● ●
●

●

●

●
●

●
●●● ●

●●
●●

●

●

● ●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●●●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●●
●

●

●

●
●

●

●

●

●●

●
●

●
●

●

●

●
●

●
●●●

●●

●●
●

●
●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●●
●

●

●

●

●

●●

●

●

●
●

●

●● ●
●

●

●
●

●

●
●

●
●

●

●●

●

●

●

●

●

●●
●

●

● ●●

●

●●

●

●
●

● ●

●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●●

●

●
●

●

●

●
●●

●

●

●

●●●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

● ●

●●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●●●● ●
●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●●
●

● ●

●

●
●

●

●

●

●

●

●
●

●
●●

●

●

●

●

● ●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●
●

●

●

●
●

●●

●

●●

●
●●

●

●

●

● ●

●

●

●

●

●
●

●

●

●
●

●

●

● ●
●

●

●

●

●

●
● ●

●

●
●

●●

●

●
●

●

●

●

●
●

●

●

●

●

●● ●

●

● ●

●

●●

●

●
● ●

●

●

●

●●
●

●

●
●

●
●●

●

●
●●

●

●●
●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●
●

●

●

●
●

●

●

●

●●●

●

●

●

●

●
●●

●

●

●

●
●

●

●●●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●●●

●
●

●

●●
●

●

●

●●
●

●

●

●

●
●

●
●●

●

●

●

●●

●

●

●

●●

●
●

●
●

●

●
●

●

●

●

●

●

●●

●
●

●

●

●

●●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●●●●
●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●
●

●

●

●

●

●
●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●●●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
● ●

●
●

●●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●
●

●

●

●
●

●●
●

●

●●

●

●

●●

●

●
●

●

●

●●

●

●●
●

●

● ●●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●

● ●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

● ●● ●

●

● ●

●

●

●
●●

●

●●●
●

●
●

●

●

●

●●

●
●

●
●

●

●

●●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●
●

●
●●

●

●

●

● ●

●
●

●

●
●

●

●

●

● ●

●

●●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●

●● ●

●
●

●

●
●

●

●

●

●●●●

●

●●

●
●

●

●

●● ●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

● ●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●●

●

● ●

●

●

●
●

●

●

●

● ●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●●

● ●
●

●

●

●

●

●

● ●
●

●

●

●

●●

●

●

●

●
●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●●

●
●

●

●

●

●
●●●

●

●

● ●

●

●●

●
●

●

●

●

●●●

●

●

●
●

●●

●

●

●
●

●

●

●

●
●

●
●

●
●

●●

●
●

●

●

●

●●

●

●
●

●

●

●

●●●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●

● ●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●●●

● ●

●

●

● ●
●

●

●

●

●

●

●

●

●

●●●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●

● ●
●

●

●

●

●

●●

●

●

●

●

●●
● ● ●

●
●

●

●
●

●
●

●

●

●●

●

● ●●

● ●

●
●

●

●

●
●

●

●
● ●●●

●
●

●

●

●●

●

● ●
●

●

●

●

●● ●

●

●

● ● ●
●

●

●

●

●

●

●

●●●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●●

●
●

●●
●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●
●

●●

●

●

●

●

●

●

●●
●

●
●

●

●

●

●
●

●
●

●●

●
●

●
●

●

●

●

●

●

●●

●

●

●●

●

●

●
●

●

●
●

●
●

●●

●

●●

●

●

●

●

●

●

●

●

●●
●

●

●●
●

●

●

●

●

●

●

●

●
●●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

● ●●

●

●

●

●●

●●●

●

●

●●●

●

●●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●●

●

●

●
●

● ●● ●

●

●

●

●

●

●●

●●●

●
●

●

●

●

●

●●
●

●

●●

●

●

●

●

●

●

●

● ●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●●

●
●

●●

●

●

●

●

●

●
●

● ●

●

●

●
●
●

●
●

●

●

●

●

●
●

● ● ●

●
●●

●

●●

●

●

●

●

●

●

●

●●
●

●

●
●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●●

●

●

●
●

●

●

●
●

●

●

●●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

● ●●

●

●
●

●

●

●
●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●●

●
● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●●

●

●●

●
●

●

●
●●

●
●

●

●●

●

●

●
●

●
●

●●

●
●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●●

●

●●
●

● ●

●

●
●

●

●

●

●●●

●
●

●

●

●●●
●●

●

●●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●●●●

●

●

●

●

●

●

●● ●

●

●
●

●
●●

●

●●

●

●

●

●

●●● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●
●●●●

●
●

●
●

● ●

●

●

●

●

●

●●

●● ●

●

●●

●

●

●
●●●

●
●

●

●

●
●

●●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●●

●

● ●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

● ●●●

●

●

●●

●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●●

●

●●

●
●

●

●

●

●●

●

●

●

●●

●

●
●● ●

●

●

●●

●

●●

●

●
●

●

●

●

●

● ●●

●

●

●
●

●

●

●

●
●

●●

●

●

●●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●
●

●
●

●●

●

●

●

●
●

●

●

●
●

●

●

●●

●

●
●

● ●

●●

●

●

●

●●
●

●

●

● ●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●
●●

● ●

●

●

●

●
● ●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●●
●●

●

●●
● ●

●

●

●

●

●

●

●

●
●

●

●

●

● ●
●

●●

●

●●

●

●

●
●

●

●
●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●●

●

●

●

●

●
●

●

●●●

●

●

●

●
●

●
●

●

●

●

●●
●●

●

●
●●●

●

●

●
●

●

●

●

●

●

●
●

●●
●●

●

●

●

●●●

●

●

●●

●
●

●
●

●
●

●

●

●

●
●

● ●

●

●●
●●

●
●

●

●

●
●

●● ●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

● ●

●

● ●
●

●

●

●
●

●

●

● ●

●

●

●
●

●

●

●

●●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●●
●

●

●

●●

●
●

●

●

●

●

●

●●

●

●

●
● ●● ●●

●

●
●

●●

●

●

● ●

●

●

●
●

●●

●

●

●

● ●
●

●

● ●● ●

●●

●

●

●

●

●

●● ●●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●●● ●

●●

●

●●
●

●

●

●

●

●
●

●

● ●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●●

●

●

●●●

●

●

●

●

●

●

●
●●

●●

●

●

●

●
●

●
●

●

●
●

●
●

●

●

●

●●

● ●

●
●

●

●

●
● ●

●

●

●

●

●

●●●
●

●
●

●
●

●
●

●

●

●

●

●●

●

●

●

●

●

●●
●

●

●
●

●
●

●●

●
●

●

●

●
●

●
●

●

●●

●

●
●

●

●

●
●

●●●●

●●●
●

●

●

●

●
●

●

●
●

●●
●

●

●

●

●

●
●

●

●

●
●

●

● ●
●

●

●

● ●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●
●

●

●

●●
● ● ●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●
●●

●

●

●

●

●

●
●

●

●●

●

●

●● ●
●

●
●

●

●

●●
●●●

●
●●●

●

●
●

●

●
●

●
● ●

●

●● ●●

●

●

●

●

●

●●

●

●

●
●

●
●

●

●

●

●

●

●

●●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

● ●

●

●

●

● ●

●

● ●

●

● ●
●

●●

●

●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●
●

●
●

●
●●●

●

●

●●

●

●

●

● ●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●●

●
● ●

●
● ●

●

●
●

●

●
●

●
●

●
●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●

●●

●

●●

●

●

● ●●●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

● ●

●

● ●

●
●

●

●

●
●

●

●

●

●
●

●

●

●
●

●●

●

●

●

●●
●

●

●

●

●

●●
●

●

●

●

●

●

●

●
●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●
●

●●
●

●

●

●

●

●
●

●

●●

●
●

●
●●●●

●●
●●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

● ●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●●

●

●

●

●

●

●
● ●

●

●

●
●

●●

●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●
● ●

●

●

●●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●

● ●

●
●

●

●

● ●●●●

●

● ●●
●●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

● ●

● ●

●

●●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●
●

●

●●●●

●●

●

●
●●

●●

●

●

●●
●

●

●
●●

●
●●

●
●

●

● ●
●

●

●

●

●

●

●
●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

● ●

●

●
●

●

●

●

●

●

● ●●

●

●

● ●

●

●

●
●

●

●

●

●●
●

●
●

●

●
●●

●
●

● ●
●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●●

●

●

●

●
●

●

●●

●

●●●

●

●
●

●

●

●

●

●

●

●

●

● ● ●● ●
●

●
●

●
●

●

●

●

●

●

●
●

●

●
●

● ●
●●

●

●

●●

●

●

●
●

●

●
●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

● ●

●
●

●

●

●

●

●
●

●
●

●●

●
●●

●

●●

●

● ●
●

●

●

● ●

●●

●
●●

●

●●
●

●
●

●

●●

●
●

●

●

●
●

●

●●

●

●●
●

●

●

●
● ●

●
●

●
●●●

●

●●

●

●

●

●

●
●

●

●
●

●

●

●

● ●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●
●

● ●● ●

●

●
●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●●
●

●●

●

●
●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

● ●●
●

●
●

●
●

●

●

●

●
●

●

●

●

● ●

●

●
●

●

●

●●●

●

●

●

●

●

●

●

●

●
●

●

●●● ●● ●

●

●

●

●

●●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●
●

●●
●●

●

●

●

●
●

●

●●

●
●

●●●

● ●

●

●

●

●

●

●

●

●

●

●

●●●
●

●●
●●

●
●●
●

●

● ●● ●

●

●

●

●●
●

●

●

●

●●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●● ●

●
●

●
●

●

●

●

●
●

●●●●

●

●●

●

●●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●
●

●

●
●

●

●●●

●

●

●

●
●

●

●●

●

●●

●

●
●

●

●
●

●
●

● ●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●●

●

●

●●

●

●●●

●

●

●

●

●

●●
●●

●
●

●

●
●

●

●

●

●

●●●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

● ●
●

●

●

●●

●

●●
●●

●

●

● ●
●

●●
●

●
●

●

●

●

●

●
●●

●● ●●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

● ●●
●

●

●

●

●

●

●
●●

●

●●
●●

●

●

●

●

●●●●

●

●

●
●

●

●

●
●

●
●

● ●
●

●

●

●

●

●

●

●● ●●

●

●

●

●

●●

●
●●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●●

●

●

●

●●

●

●
●

●

●

●

●●●

●

●

●

●●

●

●

●●

●

●●
●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
● ● ●

●

●

●
●

●

●●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●
●

●

●

●

●●

●

●

●

●
●

●
●

●

●●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

● ●●●

●

●

●
●

●

●

●

●●
●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●●●
●

●

●

●
●

●
●

●●

●
●●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●●

●

●●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●
●

●

●●● ●●

●●
●

●

●

●

●

●

●

●

●

●

●
●●

●●

●

●

●
●

●
●

●

●

●

● ●●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

● ●

●

●
●

●●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●● ●

●

●
●

● ●

●

●

●

●

● ●●●

● ●

●●

●
●

●

●

●

●

●●

●

●

●●

●

●

●

●

●●●●

●

●

●

●

●

●

● ●
●

●
●

●
●

●

●

●

●

●

●
●

●● ●● ●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●

●●●●

●

●●
●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●
●

●
●

●●
●

●

●

●

● ●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●
●

●

●●

● ●

●

●

●

●●

●

●

●
●

●●
●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●
●

●
●●

●

●

●
●

● ●
●

●

●

●

●

●

●

●●

●

●

●●●

●

●

●

●

●

●
●

●

●●

●

●

●
●

●●
●

●
●

●

● ●●

●

●
●

●

●●●

●●

●

● ●

●

●

●●

●

●

●

●

● ●

●

●

●●
●

●
●●

●

●
●

●

●

●

●●●

●

●●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●
●

●

●
●

●

●●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●
●●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●

●●
●

● ●

● ●●

●

●
●

●

●
●

●●

●

●●

●

●

●●

●

●

●●

●
●

●
●

●

●●

●●●

●
●

●

●
●

●

●

●

●●

●

●

●●●●

●

●

●

●

●

●●

●

●

●

●

●●
●●●

●

●

●
●

●

●

●

●

●
●

●

●●

●●
●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●● ●

●

●

●

●●●

●

●

●
●

● ●
●

●

●

●

●
●

●

●

●
●

●

●●

●

●

●
●

●

●

●

●
●

● ●

●
●

●
●

●●●

●●

●●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●
●

●●
●

●

●

●●

●

●

● ●
●

●
●

●

●

●

●

●
●

●

●●●

●

●
●

●
●

●

●

●●●
●

●●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●●
●

●●

● ●
●

●

●

●
●

●

●
●

●

●

●

●

●●
●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●●

●

●

● ●●

●
●

●●
●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●●●●

●

●

●
●

●●

●●

●

●

●●●

●

●
●

●

●●

●
●●●

●
●●

●

●
●

●●

●●

●

●

●

●

●
●

●●

●

●

●

●

●

●
●●●●●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●
●

●●

●

●
●

●

●
●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●● ●

●

●

●●
●

●

●
●

●

●

●

●
● ●

●●●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●
●

●●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●●●●

●

●

●

●

● ●

●

●

●●

●●

●

●

●

●

●

●
●●

●

●

●

●

●● ●●

●

●

●
●

●
●

●
●

●

●

●●
●

●

●

●
●●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●●

●

●
●

●

●

●●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

● ●

●

●
●

●
●

●
●

●
●

●●

●
●

●

●

●

●
●

●

●

●● ●●

●

●

●

●
●●

●●
●

●

●

● ●

●

● ●●

●

●●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●●●●●

● ●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●●

●

●
●

●

● ●

●

●

●

●●

●

●

●

●●
●

●

●

●

●
●

●

● ●
●

●
●●

●

●

●

● ●
●

●

●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

● ●

●

●●●

●

●

●

●●●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●●●

●
●

● ●

●

●

●

●

●

●● ●●●● ●

●

●
●

●

●

●

●

●

●

●
●

●

●●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

● ●

●

●

●

●●

●
●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

● ●
●

● ●

●

●●

● ●

●

●
●

●

●

●●●
●

●
●

●

●

●

●

●

●

●

●●

● ●

●

●●

●

●

●

●

●●●
●

●

●●●●

● ●
●

●
●

●●

●

●

●

●

●

●

● ●
●

● ●●

●●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

● ●

●

●

●

● ●

●

●

●
●

●●●

●
●●

●

●

●

●

●
●

●

●●●

●

●

● ●

●

● ●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●
●

●

●

●●

●
●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●
●●●

●

●

●

●

●●

●

●

●●●

●
●

●●

●

●

●●

●

●

●

●●
●

●

●
●●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●●

●

●

●

●●

●

●●●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●●

●

●

●
●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●
●

●

●●

●

●

●●

●
●

●

●

●

●●
●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●●●
●

●

●

● ●●

●

●

●

●

●●●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

● ●●●

●●
●

●●

● ●●●

●

●
●

●

●

●

●

●

●

●

●
● ●

●

●●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

● ● ●●

●
●●

●●

●
●

●

●

●●

●
●

●

●
●

●

●

●

●
●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●
●

●

●

●●

●

●●● ●

●

●

●

●●

●

● ●●

●

●

●

●●

●

●

●●

●
●

●

● ●
●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●
●●

●

●
●●

●

●

●

●

●

●● ●●

●

●

●

●

●

●

●

●●

●

●●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●
●

●

●

● ●

●

● ●

●

●
●

●

●

●
●

●
●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●

●

●

●

●

●

●

●
●●

●
●

●●

●●

●●

●
●

●●

● ●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●
●

●

●
●

●
●

●

●

●

●●●

●

●

● ●

●

●●
●●

●

●

●

●
●

●

●
●

●●
●

●●●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●● ●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●● ●●●
●

●
●

●
●

●

●

●
●

●

●
●

●

●

●
●

●●

●

●●●

●

●

● ●

●
●

●●

● ●

●

●●

●

●

●
●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●
● ●

●

●●● ●

●●
●

●

●●
●

●

●

●
●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●
●● ●

●

●

●

●●

●

●

●

●

●

● ● ●●
●

● ●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

● ●
●

●

●

●

●

●

●●●

●

●

● ● ●

●

●
●●

●●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●

● ●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●●

●●

● ●

●
●

●
●

●

●

●●
●

●●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●●

●

●

●

●●

● ●

●

●

●

●●

●

●

● ●●

● ●

●
●

●

●
●

●

●

●●●

●

●
●

●

●

●
●

●

●●●

●
●

●
●●●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●
●

●●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●●

●

●
●

●

●●
● ●

●
●

●

●

●●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
● ●

●
●

●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●●

●

●

●

●

●●

●

●
●

● ●

●

●

●

●
●●

●

●

●●
●

●

● ●

●

●

●●

●

●
●

●
●

●

●
●

●

●
●

●

●
●

●

●

●

●

●
●

●

●●

●

●●
●

●

●
●

●●

●

● ●

●
●●

●●

●

●

●

●

●●

● ●

● ●●

●

●

●

●●●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●
●

●

● ●●

●●

●●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●
●

●
●

●

●

● ●

●

●●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●●

●

●

●

●

●

●●●●

●

●
●

●

●

●

●
●

●●

●

●

●

●

●●

●

● ●

●

●

●
●

●●

●

●●● ● ●

●
●

●● ●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●●

● ●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●
● ●

●

●
●

●●

●

●●

●

●

●●
●

●●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●
●

● ●

●
●

●

●
●

●●

●
●

●

●

●
●●

●●
●

●
●

●

●● ●
●

● ●

●

●

●

●
●●●

●
●

●

●

●

●

●●
●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●● ●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

● ●
●

●
●

●●

●

● ●

●
●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●
●

●
●

●●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●
●

●● ●●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

● ●●●

●

●

●

●
●

●

●

●

●●

●●

●

● ●

●

●●

●
●

●

●
● ●

●
●●

●

●●
●

●
●

●

●

●

●● ●●

●

●
●

●
●

●

●

●

●
●

●

●

●●

●

●●

●
●

●

●

●

●
●●

●●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●●●

●●

●
●

●

●

●

●●

●

●

●
●

●●●
●

●

●

●
●

●

●

●
●

● ●

●●

●
●

●

●

●

●

●

●

●

●

● ●

●●

●

● ●

● ●

●

●

●●

●

●
●

●
●

●

●
●

●

●

●

●●
●●

●

●

●
●

●

●

●
●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●●●

●●

●

●
●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●● ●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●●●

●

●

●

●

●

●

●
● ●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

● ●

●

●●
●

●● ●

●

●

●●
●

●

● ●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
● ●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●
●

●

●

●
●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●●
●●●

●

●

●

●

●

●
●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●
●

●

●●

● ●
●●

● ●

●

●

●

●

●
● ●●●

●

●
●

●

●

●

●

●
● ● ●

●

●

●

●

●

●

●

●

●●

●
●●

●

●

●● ●

●
●

●

●

●

●

● ●

●

● ●

●

●

●

●
●

●

●
●

●

●

●
●

●
●

●●

●

●

●●● ●

●● ●
●

●

●

●●

●

●

●●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●
●

●●

●

●

●●●●
●

●

● ●

●
●

●●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

● ●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●
●

●

●● ●

●

●

●

●

●

●

●

●
●

●
●

●

●

● ●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●
●

●

●●

●

●

●

●
●

●● ●

●●

●

●

●
●

●

●

●

●
●

●

●

●●●

●

●

●

●

●

●●

●

●

●
●

●

● ● ●

●

●
●

●

●

●●

● ●●●

● ●
●

●

●

●

●

●●●

●

●

●

●●

●

●
●●

●

●

●
● ●

●●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●●

●
● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●●●

●
●

●
●●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●●

●

●●

● ●

●

●

●

● ●
● ●

●
●

●

●

●

●
●

●

●

●

●

●

●●

●
●

●

●
●

●

●

●
●

●

●

●
●

●
●

●

●

●
●

●

●

● ●

●●●
●●

●

●●

●

●

●

●

●
●

●
●

●

●

● ●

●●

●
●●

●
●

●

●
●●

●

●

●●

●
●

●
●

●

●

●

●

●●●

●

●
●

●

●

● ●

●●
●

●

●

●●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●●

●

●● ●

●

●●●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●●

●
●

●

●
●

●

●

●

●

●
●

●●

● ●

●

●

●

●●
●●

●

●
●

●
●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●
●

●●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●
●

●

●

●

●

●

●

●
●

●●

●

●

●

●
●

●
● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●●

●

●

●

● ●

●

●

● ●

●

●

●

●●

●●

●

●

●
●

●
●

●
●

●

●

●
●

●

●
●

●

●

●
●

●

●

● ●

●

●

●

●

●

●
●

●
●●

● ●

●

●

●
●

●

●
●

●

●

●●

●

●

●

●

●

●

●
●

●

●
● ●

●

●

●●

●

●

●
●

●

●

●

●

●●

● ●

●●

●
●●●

●

●●

●●

●

●●

●

●
●

●

●

●

●
●

●

●

●●

●
●

●

●

●
●

●●
●

●

●
●

●

●

●

●

●● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●

●
●

●

●

●
●

●

●

●●● ●

●

●

●

●

● ●

●

● ●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●
●

●

●
●

●

●

●

●

●●

●

●
●

●

●
●

●

●

●

●●●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●● ●

●

●

●●

●

●

●

●

● ●

●
●

●

●

●

● ●●●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●
●

●

●

●

●

●

●

●

●●

●

●●
●

●

●

●

●

●●

●
●

●

●
●●

●

●

●

●

●

●● ●

●

●

●

●

●

●●
●

●

●●
● ●

●

●

● ●●

●

●

●

●

●

●
●

●

● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

● ●●

●●
●

●

●●
●

●
● ●

●

●
●

●

●●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●●

●

●
●

●

●
●

●

●

●
●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●●● ●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●●

● ●●

●●●

●

●

●
●

●

●

●

● ●
●

●●

●

●

●
●

●● ●

●

●

●
●

●

●

●●

●

●

●

●

●●
● ● ●

● ●

●

●

●

●

●●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●●

●

●

●

●

●●

●

●

●
●

●●

●
●

●

●

●●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●●

●●

●

●

●

●

●

●●●

●
●

●● ●●

●
●●●

●

●

●

●

● ●●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●●

●
●

●

●

●

● ●● ●

●

●

●●

●●
●

●

● ●●●

●

●

●
●

●

●
●

●
●

●

●

●

●●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●● ●

●●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●●

●●

●

● ●

●

●

●

●

●●

●●

●

●
●

●

●●●
●

●

●

●●

●

●
●

●

●

●

●

●●

●

●●

●
●

●

●
●

●●

● ●

●

●●●●●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

● ●

●●

●

●

●

●● ●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●

●

●●●

●

●●
●

●

●
● ●

●
●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●
●●

●

●

●

●●

● ●

●●

●
●

●

●

●

●

●

●

●●

● ●

●●

●

●
●●

●

●

● ●

●●

●

●●

●

●●

●
●

●

●
●

●

●
●

●

●

●

●
●

●

●

●●●

● ●

●
●

●

●
●

●

●

●
●●

●

●●

●

●
●● ●

●
●

●

●●

●

●●

●

●

●

●
●●

●

●

●
●●

●
●

●

●●●
●

●

●

●

●●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●●

●●

●

●

●

●●

●●
●

●
●

●

●●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●●●

●
●

●●●

●

●

●●●●

●●

●

●

●

●

●●

●
●

●

●

●
●

●

●

●
●● ●

●

●

●

●
●

● ●

●

●●

●
●

●
●

●

● ●
●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●●
●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●●
●

●

●

●

●●

●

●

●

●
●

●

●

●

● ●

●

●

●

●
●

●● ●

●

●

● ●

●

●

●

●

●●

●

●

●
●

●

●● ●●

●●

●
●

●

●
●●

●

●

●

●

●

●
●●

●●●
●

●

●
●

●

●

●●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●
●

●

● ●

● ●

● ●

●

●●● ●

●
●

●

●

●

●

●

●

●●

●

●●
●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●●

●
●

●

●●
●

●

●

●●
●●

●

●

●

●

●
●

●

●

●

●
● ●

●

●

●

●●
●●

●

●

●
●

● ●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●● ●

●

●

●
●

●

●
●

● ●●

●

●

●

● ●

●

●

●

●●

●
● ●●

●

●

●

●

●●●

●
●

●
●

●

●

●
●

●
●

●●●
●

●

●

●

●

●

●

● ●

●

●

●

●

●●
●

●●

● ●

●

●●

● ●

●

●

●●

●●

●

●

●

●● ●

●

●

●

●

●
●

●

●

●
●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●●
●

●●
●●

●
●

●

●

●

●

●●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●●

●
●●●

●

●

●

●●

●

●
●

●●
●

●
●

●

●

●

●

●

●

●

●

●
●●

●●

●●●

●
●

●

●
●

●

●●

●

●●●

●

● ●

●

●
●

●

●

●

● ●

●

●

● ●
●●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

● ● ●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●●●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

● ●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●
●

●
●

●

●
●

●

●

●
●

●

●●●

●
●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●●

●

●

● ●

●
●

●

●

●

● ● ●●

●

●

●

● ●

●

●

●

●

●

●

●

●
●●

●●

●

●
●

●●
●

●

●

●●
●

●

●

●

●
●

●

●●●

●

●

●
●

●

●

●
●

●

●
●●

●
●

●

●
●

●

●

●

●

●

●●

●
●

●●
●

●
●

●

●

●
●●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●●
●

●

●

●

●

●

●

●

●
●

●

● ●●

●

●●

●

●
●

●
●

●
●●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●
●●

●

●

●
●

●

● ●

●

●

●●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●● ●

●

●

●

●

●● ●●
●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●●

●

●
●

●

●

●
●

● ●●

●

●

●

●●●

●

●

●

●●

●

●●

●

●
●

●

●

●

●

●

●

●
●●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

● ●

●

●●

●

●

●

●

●
●

● ●
●

● ●

●
●●

●

●● ●

●

●
●

●

●

● ●

●

●

●

●
●

●

●

●

●●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●●

●

●
●

●●

●

●
●●●

●

●

●

●

●

●●

●

●●

●

●●
●

● ●

●

●

●

●

●

●

●●

●

●

●

●●
●

●
●●

●

●
●

●

● ●●
●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

● ●●

●

●

●●

●

●
●

●●

●●

●

●●

●

●

●

●

●

●

● ●

●
●

●

●

●
●

●

●

●●

●

●

●●

●

●
●

● ●

●
●● ●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●
● ●

●●

●

●

●
●

●

●
●
●

●●

●
●

●

●

●●

●

●

●

●

●

●

● ●
●

●
●

●

●

●

●

●
●

●
●

●●● ●

●

●

●

●

●

●
●

●
●

●●

●

●

●

●
●

● ●

●

●

●

●●●

●

●●

●

●

●

●

●
●

●

●

●

● ●●

●

●
●

●

●●●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●● ●

●

●

●

●

●●

●

●
●●

● ●●

●
●

●

●

●

●

●

●

●
●

●
●

●●

●

●●

●
●

●

●

●

● ●

●

●

●
●

●
●

●

●
●

●●

●

●
●

●

●

●●
●

●

●●

●

●

●
●

●

●

●
●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●
●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●
●

●●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●●
●

●●

●
●●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●

●●
●

●

●

●●
●

●

●

●

●

●
●●

●

●

●

●●

●

●
● ●

●

●

● ●

●

●
●●

●

●

●●
● ●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●●●

●

●

●

●●

●

●

●

●

●
●

●
●

●

●

● ●

●
●

●

●

●

●

●●

●●

●
●

●

●
●●

●
●

●●

●

●

●

●●
●●

●●

●

●●●

●

●

●

●

●

●●● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●●

● ●●

●

●
●

●●

●

●●

●●●

●

● ●●

●

●●

●●
●

●

●

●
●

●● ●

●

●

●

●

●

●

●

●

●

●

● ●●

●
●

●● ●
●

●

●

●●

● ●

●

●

●
● ●

●
●

●
●

●●

●
●● ●●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●● ●●●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●●

●

●●

●
●

●

●
●

●●
●

●

●● ●

● ●

●

● ●●

●

●

●

●

●

●

●
●

●
●

●●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●
●

●

●●●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●● ●●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●●

●

●

●●●●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●●
●

●

●

●
●

●
●

●●●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●
●

● ●

●

●

●●

●

●

●●

●

●

●

●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●●
●

●

●

●●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●
●

●

●

●

●

●●
●

●●

●

●●●

●

●
●

●

●
●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●●

● ●●
●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●●

●

●
●

●

●
●

●

●

●

●
●

●
●

●

●

● ●

●
●●

●●

●

●
●

●

●

●
●

●
●

●●

●
●

●

●

●

●

●

●
●

●
●

●●●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●
●

● ●
●

●

●

●

●

●

●

●

●
●●

●

●● ●

●

●
●

●

●
●

●

●

●

●

●

● ●

●
●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●●
●

●●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●●
●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●
●

●●
●

●

●

●

● ●

●

●

●●

●

● ●

●●●

●

●

●●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●●●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●
●

●
●

●
●● ●

●
●

●

●

●

●

● ●

●

●●

●

●
●●

●

●

●

●

●

●

●
●●

●

●

●

●

● ●●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●
● ●
●●

●●

●

●

●

●● ●

●

●

●

●

●●●

●

●
●●●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●

●
●

●
●

●●

●

●

●

●

●

●

●

● ●

●

●
●

●

●
●

●

● ●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●
●●●

●

●

●

●

●

●

●●●

●

●●

●

●●
●

●

●

●

●●

●

●

●●

●
●

●
●

●

●

●

●●

●● ●●

●

●●●● ●●

●

●

●

●
●●

●

●

●

●

●●●

●
●

●

●● ●

●

●

●

●

●

●●

●
● ●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●●

●

●

●

●

●

●●

●
● ●

●

●
●

●

●●

●

●

●

●

●

●

●

●●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●
●

●

●
●

●
●

●

●

●

●
●●

●

●

●
●

●●

●

●●●
●

●

●

●

●
●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●●●
●

●

● ●

●

●

●

●
●

●

●●

●
●

●

●

●

●●

●

●

●

●

●
●

●●
●●

●

●●

●
●

●

● ●

●

●

●

●

●

●

●

●

●●
●

●●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●●
●●

●
●

●
●

●

●
●

●

●

●

●●
●●

●

●
●

●●
●

●

●

●

●

●●

●

●

●●

●

●

●

●

●
●

●

●

●●

●

●●●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●
●

●

●

●●

●●

●

●

●

●

●
●

● ●

●

●

●

●●

●

●

●● ●●

●
●

●

●
●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●
●

●
●

●●

●

●●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●●

●
●

●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●

●●

●

●

● ●

●
●

●

●●
●

●

●●

●

●●

●

●
●

●
● ●

●

●

●

●

●●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●●

●●

●●
●

●

●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●
●

●

●●

●

●

●

●

●●●● ●

●
●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●●

●
●

●

●

● ●

●●

●

●●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●
●

●

●

●

●

●●● ●
● ●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

● ●

●

●●

●

●

●

● ● ●●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

● ●
●

●
●●

●

●●

●

●
● ●●

●

●
●

●

●
●●

●
●

●

●●●
●

●
●

●

●

●

●

●●●

●

●
●

●
●

●

●
●

●

●

●●
●

●
●

●
●

●
●

●

●●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●●

●●

●

●

●
●

●

● ●●●

●

●
●

●●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●●

●

●●

●●

●

●

●

●

●

●

●

●

●●●

●

●
●

●

● ●

● ●

●

●

●●

●

●

●
●

●

●
●

● ●

●

●

●

●●

●

●
●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

● ● ●●

●●

●

●
●●

●
●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●●

●
●

●

●

●
●

●

●

●

●
●

●

●

●
● ●

●

●

●
●●●

●

●

●

●
●

●

●

●
●

●●

●

● ●

●

●

●
●

●
●

●

●●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●
●●

●●

●

●

●●

●

●●

●
●

●

●

●●
●

●

●

● ●

●●

●●●

●

●

●

●

●

●

●

●

●●

● ●
●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●●●●

●

●● ●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●●

●

●●● ●

● ●
●●

●

●

●

●

●
●

●

●
●

●
●

●

●
●

●

●

●

●●

●
●

●

●

●
●

●

●
●

●●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●●

●

●

●

●
● ●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●
●

●●
●

●

●
●

●

●

●
●

●●

●
●

●

●● ●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●● ●

●

●●

●

●

● ●

●

●
● ●

●

●

●

●

●

● ●

●
●

●

●●●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●
● ●●●

●

●●

●

●

●● ●
●

●

●

●

●

●
●

●

●

●●

●●

●

●

●

●

●

● ●

●

●●●
●

●●

●

●

●
●

●

●

●

●

●

● ●●

●●●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●
●

●

●

●
●

●

●
●

●
●

● ●●
●

●

●
●

●

● ●●

●

●●

●
● ●●

●

●

●

●
●

●

●
●

●
●

●

●

●
●

●

●●

●

●

●●

●

●

●

●

●●● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●

● ●

●

●

●
●

● ●

●

●

●

●

●●

●

●

●

●
●

●

●

●

● ●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●
●●

●
●

●

●

●

●●

●
●

●

●
●

●

●

●

●

●
●

●

●●

●

●●

●

●

●

●●

●
●

●

●
●

● ●●
●

●

●
●●

●●

●●

●

●

●

●
●

●●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●●

●

●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●●●●

●
●

●

●

●

●
●

●●

●

●

●

●

● ●●

●
●

●
●● ●

●●

●

●

●

●
●

●

●

●

●

●

●● ●●

●
●

●

●

●
●

●●

●

●

●

●
●

●

●●●

●●

●

●
●

●

●●

●

●

●

●

●

●
●

●

●

●

●
●●●

●
●

●

●

●●

●

●

●

●

●

●

●

●
●

●● ●
●

●

●

●

●
●

●
●●

●

●

●

●

●

●
●

●

●

●

●
●

● ● ●
●

●●

●

●

●

●

●

●

●

●

●
●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

● ●

●

●● ●
●

●

●

●
●

●

●
●

●

●

●●●

●
●

●

●
●

●

●

●●

●
●

●

●

●

● ●
●

●

●

●●

●
● ● ●

●●●●

●
●

●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●

●

● ●●

● ●
●

●

●●

●

●

●

●

●

●

●

●

●●
●

●●

●

●
●

●

●

●

●

●

●

●●

●

●● ●

●

●
●●

●

●

●

●

●

●●●

●●

●●

●
●

● ●

●●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

● ● ●

●

●

●●

●●●

●

●
●

●

●

●

●
●

●

●

●●●

●

●

●
●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●●

●
●●

●

●

●

●
●

●

●●

●
●●

●

●

●●

●●

●

●●

●
●

●

●
●●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●● ●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●
●

●●

● ●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
● ●

●
●●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●●

● ●

●

●

●●●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●
●

● ●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●●

●

●

●

●

● ●
●

●

●
●

●●

●

●

●

●
●

●

●●●
●

●

●

●

●
● ●

●

●●

●

●

●● ●
●

●

●

●

●● ●
●

●●
●

●

●
●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●●●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●●●

●

● ●

●

●

●●

●
●

●

●

●●

●

●

●

●●

●

●

●
●

●

●
●

●

●

●

●
●

●●

●

●

● ●

●

●●●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●
●●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●●●

●

●
●

●

●

●
●

●

● ●●
●●

●

●
●●

●

●

●

●

●

●●●

●●

●
●

●

●

●

●

●

● ●

●

●
●

● ●

●

●

●
●

●
●

●●

●

●

●

●

●●

●
●

●●
●

●

●

●

●

●
●

● ●
●

●

●

●

●

●

●

●●

●
● ●

●

●

●

●
●

●

●

● ●●

● ●

●●

●

●

●

●●

●

●
●

● ●

●

●

●

●

●
●

●

●

●

●

●

●● ●

●

● ●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●
●

● ●

●

●

●
●

●● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●●

●

●
●●

●

●

●

●

●
●

●

●● ●●

●

●

●

●

●

●

●●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

● ●

●
●

●

●

●
●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●● ●● ●

●
●

●

● ●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●●
●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●●

●●●

●●●

●

●●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●●
●

●

●

●

●

● ●

●
●

● ●

●
●

●

●●

●

●

●

●

●

●

●

●
●

● ●●

●

●

●

●●

●
●

●

●

●●

●

●

●

●
●

● ●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●
●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

● ● ●

●

●

●●

●
●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●●●
●●

●

●
●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●●

●

●

●

●

●

●
●

●
●

●

● ●● ●●
●

●

● ●●

●●●●

●

●

●●

●●

●●

●

●

●●

●

●

●

●

●

●

●

●●●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●

●

●●●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●● ●

●

●

●
●

●

●
●●

●●
● ●●●

●

●

●

●●●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●
●

●

●
●●

●

●
●●

●

●

●

●

●

●

●

●

● ●
●

●
●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

● ●
●

●

● ●

●

●

●
●●

●

●●

●

●

●

●

●● ●

●

●

●● ●

●
●

●

●
●

●

●

●

●

●●

●
●

●

●

●

●

●

●●
●

●
●●●●● ●

● ●

●●● ●●●●
● ●●● ●●●●●●●●●●●●●●●●● ●●●●●●●●● ●●● ●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●
●●●

●●●

40%

60%

80%

100%

1 10 100 1000 10000
#Fault−Similarity Classes

A
cc

ur
ac

y

(i) MiBench/susan (training)

●

●

●

●

●
●●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ●●

●

●●

●

●

●
●

●

●

●

●

●

●
●

●

● ●

●

●

●

●
●

●

●

●

●

●
●●

●

●● ●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

60%

70%

80%

90%

100%

100000 150000 200000 250000 300
Total #Experiments (including training)

A
cc

ur
ac

y

(j) MiBench/susan (total)
Fig. 3. Accuracy in the training set (left) and in the complete fault space (right).

Rapid Fault-Space Exploration by Evolutionary Pruning 27

Table 2. Dynamic instruction counts, simulated CPU cycles, num. of 8-bit burst FI experiments
necessary after basic def/use pruning (cf. Sect. 2.1), and FI simulation runtime for all experiments
(and the 100,000 experiment training set). For the eCos benchmarks, the total CPU cycles differ
from the dynamic instructions due to idle phases; for MiBench, we limited FI to the first 107

dynamic instructions.

Benchmark Dyn. instr. CPU cycles # FI exp. after def/use
pruning

FI simulation
runtime

eCos/baseline 1.08 × 107 9.7 × 109 1.48 × 107 4,946 hrs
(33.4 hrs)

eCos/CRC 2.73 × 107 9.7 × 109 4.15 × 107 15,035 hrs
(36.1 hrs)

MiBench/qsort 4.20 × 107 4.20 × 107 1.48 × 107

(of 5.49 × 107)
44,139 hrs
(297.6 hrs)

MiB/basicmath 1.47 × 108 1.47 × 108 1.24 × 107

(of 1.84 × 108)
95,068 hrs
(767.8 hrs)

MiB/bitcount 4.08 × 107 4.08 × 107 2.89 × 106

(of 9.15 × 106)
3,621 hrs

(124.9 hrs)

MiBench/susan 2.95 × 107 2.95 × 107 1.25 × 107

(of 3.68 × 107)
23,526 hrs
(186.9 hrs)

a number of fault-similarity classes (X-axis, logarithmic scale, with possible values from
1 to 100,000). As described in Sect. 4, the accuracy of such a partioning, plotted on the
Y-axis, is defined as the percentage of correctly represented fault-space area.

The optimization yields a set of Pareto-optimal solutions (black) the user can choose
from to partition the benchmark’s complete fault space in the next step (cf. Sect. 3.3).
Fig. 3b shows the test results when applying all previously determined, Pareto-optimal
projection vectors to the complete fault space while reusing all results from the 100,000
training FI experiments: Depending on the partitioning our heuristic creates in the com-
plete fault space, more experiments than the initial training experiments need to be
conducted to get a representing pilot for all new fault-similarity classes. For a chosen
projection, the accuracy drops by a nonlinear factor (in the order of 0.1 % for highly-
accurate, up to 20 % for the low-quality solutions) from training to test. For example,
a solution with 99.9986% accuracy in the training set (9,012 fault-similarity classes)
requires the user to conduct 99,308 additional FI experiments (totaling in 199,308 in-
cluding the training set, from a total of 14.8 million, cf. Tab. 2) and reconstructs the
complete fault space with 99.2512% accuracy; a solution with 99.9903% training set ac-
curacy (2,100 fault-similarity classes) yields 90.4036% accuracy with 8,243 additional
experiments (108,243 total).

In Fig. 4, we apply the latter example solution to the complete eCos/baseline fault
space, illustrating the advertised local fault-space feature preservation of our heuristic: A
close-up of a small area of the fault-space plot of the eCos/baseline mutex1 benchmark
(actually the same excerpt as in Fig. 1) even remains largely intact when after training
only 8,243 additional FI experiments (totaling 108,243 including the training set, a mere
0.73 % of all 14.8 million eCos/baseline experiments) are conducted.

Subsequently we investigated how well previously trained solutions apply to a new,
unknown (yet not completely different) benchmark. As described in the previous section,

28 H. Schirmeier, C. Borchert, and O. Spinczyk

Fig. 4. A tiny fault-space plot excerpt from a stack memory area of the mutex1 benchmark (from
top to bottom; color coding as in Fig. 1): Ground-truth results (100 % FI experiments), results
from sampling 0.73 % of all experiments (gray areas are unknown results, i.e., def/use classes
that were not sampled or known a priori), and reconstructed results with also a total of 0.73 %
(including training set) of all experiments for the eCos/baseline benchmarks.

Rapid Fault-Space Exploration by Evolutionary Pruning 29

the eCos/CRC benchmark comprises the same 19 programs as eCos/baseline, yet they
are hardened against memory faults, and execute substantially more dynamic instruc-
tions. Probably most notably they introduce a new FI experiment outcome type “de-
tected” that signals a successful error detection of an EDM: This outcome type does not
exist in eCos/baseline, and, thus, cannot have been observed by the training process
from Fig. 3a. The black points in Fig. 3d show how well these projection vectors per-
form for eCos/CRC without any eCos/CRC-specific training. (Hence, there is no initial
100,000 FI experiment penalty for the training set). One interesting observation is that
the solutions requiring up to 300,000 FI experiments are partially in the 90–97% accu-
racy range, but by far not as close to 100 % as in the eCos/baseline plot (Fig. 3b). Never-
theless, previously trained heuristics seem to be reusable even for unknown benchmarks:
As our training process only learns how to group def/use classes into fault-similarity
classes, but does not try to completely predict experiment outcomes without carrying
out new FI experiments, it can even deal with previously unseen experiment outcomes,
such as “detected” in this case. Fig. 3c and the green points in Fig. 3d show the accu-
racy results after training specifically for eCos/CRC:7 The accuracy (and especially the
accuracy mapping from training to test) is significantly better than without training (the
low-quality left margin vanishes), but at the cost of an initial training phase and more FI
experiments depending on the desired accuracy.

Among the remaining Fig. 3e–3j (MiBench/bitcount is omitted due to space con-
straints, but closely resembles the plots for susan), MiBench/qsort displays an ex-
tremely high accuracy even for minimal numbers of additional experiments: With 100,012
FI experiments (results from training, plus 12 new fault-similarity classes in the com-
plete fault space) it achieves an accuracy of 99.9902%. The primary reason for this is
that the vast majority (99.9892%) of experiment outcomes for this benchmark are SDCs
(not very astonishing for a benchmark sorting a long list of text strings), which allows
to create extremely large fault-similarity classes that yield the same outcome.

5.3 Experiment Outcome Breakup and Comparison with Sampling

As the user is, apart from fault-space details, also interested in the usual experiment
outcome breakup (for example, in the basicmath benchmark, 34.18 % of all faults result
in no effect, 19.34 % SDC, 31.80% CPU exception, 14.68% timeout), this aggregate
should not turn out to be inaccurate either. Fig. 5 shows the root mean squared error
(RMSE) of experiment outcome breakups for a selection of benchmarks with the Pareto-
optimal heuristics from Fig. 3 applied to their complete fault space (black points and
green points with the same meaning as in the previous section): As expected, the fault-
space reconstruction accuracy and the outcome breakup RMSE correlate quite well –
good local accuracy also yields a good global accuracy.

The plots in Fig. 5 also include the outcome breakup RMSE for FI sampling (with
fault expansion [29]; red lines in the figure), a technique commonly used to only es-
timate the breakup without gaining any information on local fault-space details. Inter-
estingly, in some cases sampling yields inferior results – especially for the un-trained

7 ... and reusing some of the eCos/baseline projection vectors as the initial population for the
optimization algorithm.

30 H. Schirmeier, C. Borchert, and O. Spinczyk

●

●

●

●

●

●●

●

●

● ● ●

●

●

●

●

●

● ●
●

● ● ● ●

●

●●

●
●

●

●

●

●

●● ●● ● ●

●

●

●

●

●

● ●

●

●● ●
●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●●

●

● ●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●
● ●

●

●●

●
●

●

●●0%

1%

2%

3%

4%

5%

0e+00 1e+05 2e+05 3e+05 4e+05
Total #Experiments (including training)

R
M

S
E

(a) eCos/baseline

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●● ● ●

●
●

●●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●●

●

●
●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●
●

● ●

●

●

●

●

●●

●

●
●

● ●

●

●

●
●

●

●●●

●

●

●

●

●

●●

●
●

●

●

●
● ● ●

●
●

●

●

0%

1%

2%

3%

4%

5%

0e+00 1e+05 2e+05 3e+05 4e+05
Total #Experiments (including training)

R
M

S
E

(b) eCos/CRC

●

●

●

●

●●●

●
●

●

●●
●

●

●

●

●

●

●
●

●

●

●●
●

●●
●

●

●

●

●
●

●
● ●

●

●

●

●

●

●● ●●

●

●

●

●

●

●

●●●●

●
●

●

●

●

●
●●

● ●
●

● ●

●

●

●

●

●

●●

●

●●

●

●●
●

●

● ●

●

●

●
●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
● ●

●●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●●
●

●

●

●

●

●

●●

●

●

●●
●

●

●
●

● ●

●

●

●

●

●● ●
●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●
●

0%

1%

2%

3%

4%

5%

0e+00 1e+05 2e+05 3e+05 4e+05
Total #Experiments (including training)

R
M

S
E

(c) MiBench/basicmath

●
●

●

●
●

●

●

●●

●

●

● ●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●●●

●

●●
●
●

●●
●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

● ●

●

●●

●

●
●

●

●

●

●●

●

●

●
●

●

●

●

●
●

●●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

● ●
●
●

●

●●

●

●

●

●
●

●
●

●

●●

●

●

●

●

●

●

●

●

●●

●
●

●

●●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●●
●

●

●

●

●●

● ●

●●

●

●●
●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●
●●●

●

●

●

●

●0.000%

0.025%

0.050%

0.075%

0.100%

0e+00 1e+05 2e+05 3e+05 4e+05
Total #Experiments (including training)

R
M

S
E

(d) MiBench/qsort

Fig. 5. Comparison to sampling (red line): RMSE of the outcome probability breakup is compa-
rable to, and many cases better than the common sampling approach – which completely lacks
information on local fault-space details.

heuristic configurations in the eCos/CRC case (Fig. 5b, black points) as it does not have
the experiment-count penalty of a training set. This means our heuristic can compete
with sampling, although it yields much more detailed information on the fault space,
e.g., for EDM/ERM placement.

6 Conclusions and Future Work

We presented an adaptive, application-specific fault-space pruning technique that pre-
serves local features of the fault space for detailed susceptibility analyses. The approach
allows the user to freely trade accuracy for experimentation runtime, choosing a Pareto-
optimal heuristic that was trained with a feasible FI experiment subset from the pro-
gram(s) under analysis. Our results confirm the assumption that a machine-state subset
can be successfully used to partition the fault space into fault-similarity classes, allowing
to gain insights on local phenomena for EDM/ERM placement with massively reduced
experimentation efforts: For example, when the user chooses to run 1.5 % of all FI ex-
periments, the average (weighted by the total number of faults in each benchmark) result
accuracy is 99.84 %.8 In many cases our fault-space pruning technique even outperforms
classic sampling techniques, although they do not preserve any fault-space details.

Future work includes a detailed analysis of the various free parameters of our
approach, including the impact of different training-set sizes, the genetic algorithm’s

8 Except for bitcount, where training yields no solution that only needs 1.5 % experiments. Here,
the user can achieve, e.g., 99.84 % accuracy for 4 % of all experiments.

Rapid Fault-Space Exploration by Evolutionary Pruning 31

configuration (population size, generation number, and mutation probability), and the
chosen genome representation itself. To gain more confidence in the genericity of our
approach, we intend to evaluate it on other instruction-set architectures and with other
types of benchmark applications. We also plan to analyze different fault models, and
consider to completely replace the evolutionary algorithm with a more sophisticated
machine-learning algorithm. Beyond this, merging the training phase and the FI cam-
paign into a continuously adapting online training might speed up the dependability
assessment process even more.

Acknowledgments. This work was partly supported by the German Research Founda-
tion (DFG) priority program SPP 1500 under grant no. SP 968/5-2. The authors would
like to thank Jochen Streicher for lenghty discussions on quality metrics and machine
learning, Adrian Böckenkamp, Richard Hellwig and Lars Rademacher for feedback on
the core idea of the pruning heuristic, and Daniel Cordes for initial help with the PISA
library.

References

1. Borkar, S.Y.: Designing reliable systems from unreliable components: The challenges of tran-
sistor variability and degradation. IEEE Micro 25(6), 10–16 (2005)

2. Duranton, M., Yehia, S., de Sutter, B., de Bosschere, K., Cohen, A., Falsafi, B., Gaydadjiev,
G., Katevenis, M., Maebe, J., Munk, H., Navarro, N., Ramirez, A., Temam, O., Valero, M.:
The HiPEAC vision. Technical report, HiPEAC (2010)

3. Narayanan, V., Xie, Y.: Reliability concerns in embedded system designs. IEEE Comp. 39(1),
118–120 (2006)

4. Hari, S.K.S., Adve, S.V., Naeimi, H.: Low-cost program-level detectors for reducing silent
data corruptions. In: 42nd IEEE/IFIP Int. Conf. on Dep. Sys. & Netw., DSN 2012. IEEE
(2012)

5. Borchert, C., Schirmeier, H., Spinczyk, O.: Generative software-based memory error detec-
tion and correction for operating system data structures. In: 43rd IEEE/IFIP Int. Conf. on Dep.
Sys. & Netw., DSN 2013. IEEE (June 2013)

6. Borchert, C., Schirmeier, H., Spinczyk, O.: Protecting the dynamic dispatch in C++ by de-
pendability aspects. In: 1st GI W’shop on SW-Based Methods for Robust Embedded Sys.,
SOBRES 2012. LNI, pp. 521–535. German Society of Informatics (September 2012)

7. Borchert, C., Schirmeier, H., Spinczyk, O.: Return-address protection in C/C++ code by de-
pendability aspects. In: 2nd GI W’shop on SW-Based Methods for Robust Embedded Sys.,
SOBRES 2013. LNI. German Society of Informatics (September 2013)

8. Arlat, J., Aguera, M., Amat, L., Crouzet, Y., Fabre, J.C., Laprie, J.C., Martins, E., Powell,
D.: Fault injection for dependability validation: A methodology and some applications. IEEE
TOSE 16(2), 166–182 (1990)

9. Benso, A., Prinetto, P.: Fault injection techniques and tools for embedded systems reliability
evaluation. Frontiers in electronic testing. Kluwer, Boston (2003)

10. Leveugle, R., Calvez, A., Maistri, P., Vanhauwaert, P.: Statistical fault injection: Quantified
error and confidence. In: IEEE 2009 Conf. on Design, Autom. & Test in Europe, DATE 2009,
pp. 502–506 (2009)

11. Ramachandran, P., Kudva, P., Kellington, J., Schumann, J., Sanda, P.: Statistical fault injection.
In: 38th IEEE/IFIP Int. Conf. on Dep. Sys. & Netw., DSN 2008, pp. 122–127. IEEE (2008)

32 H. Schirmeier, C. Borchert, and O. Spinczyk

12. Schirmeier, H., Hoffmann, M., Kapitza, R., Lohmann, D., Spinczyk, O.: FAIL*: Towards a
versatile fault-injection experiment framework. In: Mühl, G., Richling, J., Herkersdorf, A.
(eds.) 25th Int. Conf. on Arch. of Comp. Sys., ARCS 2012, Workshop Proceedings. LNI,
vol. 200, pp. 201–210. German Society of Informatics (March 2012)

13. Massa, A.: Embedded Software Development with eCos. Prentice Hall (2002)
14. Guthaus, M.R., Ringenberg, J.S., Ernst, D., Austin, T.M., Mudge, T., Brown, R.B.: MiBench:

A free, commercially representative embedded benchmark suite. In: IEEE Int. W’shop. on
Workload Characterization (WWC 2001), pp. 3–14. IEEE, Washington, DC (2001)

15. Mukherjee, S.: Architecture Design for Soft Errors. Morgan Kaufmann (2008)
16. Smith, D.T., Johnson, B.W., Profeta III., J.A., Bozzolo, D.G.: A method to determine equiva-

lent fault classes for permanent and transient faults. In: Annual Reliability and Maintainability
Symposium, pp. 418–424 (January 1995)

17. Benso, A., Rebaudengo, M., Impagliazzo, L., Marmo, P.: Fault-list collapsing for fault-
injection experiments. In: Annual Reliability and Maintainability Symposium (January 1998)

18. Berrojo, L., Gonzalez, I., Corno, F., Reorda, M., Squillero, G., Entrena, L., Lopez, C.: New
techniques for speeding-up fault-injection campaigns. In: 2002 Conf. on Design, Autom. &
Test in Europe, DATE 2002, pp. 847–852 (2002)

19. Barbosa, R., Vinter, J., Folkesson, P., Karlsson, J.: Assembly-level pre-injection analysis for
improving fault injection efficiency. In: Dal Cin, M., Kaâniche, M., Pataricza, A. (eds.) EDCC
2005. LNCS, vol. 3463, pp. 246–262. Springer, Heidelberg (2005)

20. Grinschgl, J., Krieg, A., Steger, C., Weiss, R., Bock, H., Haid, J.: Efficient fault emulation
using automatic pre-injection memory access analysis. In: SOC Conference, pp. 277–282
(2012)

21. Hari, S.K.S., Adve, S.V., Naeimi, H., Ramachandran, P.: Relyzer: Exploiting application-
level fault equivalence to analyze application resiliency to transient faults. In: 17th Int. Conf.
on Arch. Support for Programming Languages and Operating Systems, ASPLOS 2012, pp.
123–134. ACM, New York (2012)

22. Döbel, B., Schirmeier, H., Engel, M.: Investigating the limitations of PVF for realistic program
vulnerability assessment. In: 5rd HiPEAC W’shop on Design for Reliability (DFR 2013),
Berlin, Germany (January 2013)

23. Li, J., Tan, Q.: SmartInjector: Exploiting intelligent fault injection for SDC rate analysis. In:
IEEE Int. Symp. on Defect & Fault Tol. in VLSI & Nanotech. Sys., DFT 2013 (2013)

24. Lawton, K.P.: Bochs: A portable PC emulator for Unix/X. Linux Journal 1996(29es) (1996)
25. Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the strength pareto evolutionary

algorithm for multiobjective optimization. In: Giannakoglou, K.C., Tsahalis, D.T., Périaux,
J., Papailiou, K.D., Fogarty, T. (eds.) Evolutionary Methods for Design Optimization and
Control with Applications to Industrial Problems, Athens, Greece. International Center for
Numerical Methods in Engineering, pp. 95–100 (September 2001)

26. Bleuler, S., Laumanns, M., Thiele, L., Zitzler, E.: PISA — a platform and programming lan-
guage independent interface for search algorithms. In: Fonseca, C.M., Fleming, P.J., Zitzler,
E., Deb, K., Thiele, L. (eds.) EMO 2003. LNCS, vol. 2632, pp. 494–508. Springer, Heidelberg
(2003)

27. Mitchell, M.: An Introduction to Genetic Algorithms. MIT Press (1998)
28. Hoffmann, M., Borchert, C., Dietrich, C., Schirmeier, H., Kapitza, R., Spinczyk, O., Lohmann,

D.: Effectiveness of fault detection mechanisms in static and dynamic operating system de-
signs. In: 17th IEEE Int. Symp. on OO Real-Time Distrib. Computing, ISORC 2014. IEEE
(2014)

29. Smith, D.T., Johnson, B.W., Andrianos, N., Profeta III., J.A.: A variance-reduction technique
via fault-expansion for fault-coverage estimation. IEEE TR 46(3), 366–374 (1997)

A. Bondavalli and F. Di Giandomenico (Eds.): SAFECOMP 2014, LNCS 8666, pp. 33–48, 2014.
© Springer International Publishing Switzerland 2014

Safety Validation of Sense and Avoid Algorithms
Using Simulation and Evolutionary Search

Xueyi Zou, Rob Alexander, and John McDermid

Department of Computer Science, University of York, UK
{xz972,rob.alexander,john.mcdermid}@york.ac.uk

Abstract. We present a safety validation approach for Sense and Avoid (SAA)
algorithms aboard Unmanned Aerial Vehicles (UAVs). We build multi-agent
simulations to provide a test arena for UAVs with various SAA algorithms, in
order to explore potential conflict situations. The simulation is configured by a
series of parameters, which define a huge input space. Evolutionary search is
used to explore the input space and to guide the simulation towards challenging
situations, thus accelerating the process of finding dangerous faults of SAA al-
gorithms and supporting the safety validation process. We applied our approach
to the recently published Selective Velocity Obstacles (SVO) algorithm. In our
first experiment, we used both random and evolutionary search to find mid-air
collisions where UAVs have perfect sensing ability. We found evolutionary
search can find some faults (here, interesting problems with SVO) that random
search takes a long time to find. Our second experiment added sensor noise to
the model. Random search found similar problems as it did in experiment one,
but the evolutionary search found some interesting new problems. The two ex-
periments show that the proposed approach has potential for safety validation of
SAA algorithms.

Keywords: Sense and Avoid, Unmanned Aerial Vehicles, safety validation,
multi-agent simulation, evolutionary search, Genetic Algorithm.

1 Introduction

Amazon, the world's largest online retailer, announced its “Prime Air” plan in 2013,
where Unmanned Aerial Vehicles (UAVs) will be used to deliver goods to customers.
However, this is only a fiction now: UAVs are not currently permitted to access civil-
ian airspace in most countries due to safety considerations. One of the safety concerns
is the UAV's inability to avoid mid-air collision with other aircraft. To alleviate this
concern, UAVs must provide what is referred to as a Sense and Avoid (SAA) capabil-
ity. In [1], SAA is defined as “the capability of a UAV to remain well clear from and
avoid collisions with other airborne traffic. Sense and Avoid provides the functions of
self-separation and collision avoidance to establish an analogous to “see and avoid”
required by manned aircraft”.

As for collision avoidance, a wide variety of approaches have been proposed in
the general field of robotics [2-6] that have the potential to be adapted for UAVs.

34 X. Zou, R. Alexander, J. McDermid

The safety of these approaches, however, is by no means well understood. Consider-
ing the strict safety requirements in the aviation sector, a collision avoidance algo-
rithm cannot be accepted and deployed without rigorous safety validation.

Validation is the process of determining whether a product (e.g. a piece of imple-
mented software or a system) has the desired properties; desired, that is, in hindsight,
rather than with reference to a pre-defined specification. Validation is different from
verification, which is often conducted at the end of each development stage to deter-
mine whether a product of that stage (e.g. specification, computer model, design, and
implementation etc.) is consistent with an explicit specification (or reference model).
It is entirely possible that a product passes verification but fails validation, for exam-
ple when the specification has not captured what the user actually wants or needs.

By safety validation, we mean the process of determining whether a product will
behave safely during operation in terms of protecting itself, the environment it inhab-
its, and humans. Safety validation is difficult, firstly because users (regulators, opera-
tors, bystanders) often cannot provide precise safety requirements for complex, novel
systems. Secondly, the operational environment of the product may be too complex to
predict the range of possible operational scenarios in advance, which makes it hard to
fill in the missing requirements.

For SAA algorithms, the conventional approaches for safety validation are simula-
tion and flight test. Due to the high cost of flight test, it can only be conducted for a
very limited time and thus gives limited assurance, although it does have the great
advantage of testing real aircraft behaviours. Simulation is more cost-effective and
thus can cover a far larger part of the possible operational situations, albeit subject to
limitations in the fidelity of the simulation.

In this paper, we present a safety validation approach for SAA algorithms based on
multi-agent simulation and evolutionary search. Arnold and Alexander previously
presented an approach to testing autonomous robot control software [7], which they
claimed to also have potential for validation. They randomly created a diverse range
of situations and executed them in the Player/Stage robot simulator to test whether the
robot behaved safely. The work presented in this paper is an advancement of [7],
specifically in that we use evolutionary search to guide the simulation towards chal-
lenging situations. We believe that this has greater potential to reveal safety issues
than randomized simulations. Moreover, we test our approach using a promising new
collision avoidance algorithm (Selective Velocity Obstacles), rather than the quite
simple algorithm (Smoothed Nearness Diagrams) tested in [7].

The paper is organized as follows: in section 2 we identify the challenges for such
a safety validation approach, in section 3 we explain our proposed approach, and in
section 4 we describe experimental use of our approach to validate the safety of the
Selective Velocity Obstacles approach. Section 5 summaries the paper and outlines
our future plans.

 Safety Validation of Sense and Avoid Algorithms 35

2 Challenges for an Automated Safety Validation Approach

Ideally, a safety validation approach would reveal all safety issues (dangerous faults)
of the validated system (if there are any). It would do so efficiently, and would give
confidence regarding the extent to which all the credible faults have been revealed. In
this paper we attack only a small piece of the puzzle – given a space of situations and
a system under validation, how we can efficiently home in on hazardous situations
that we haven’t seen before?

As stated in [7], to reveal as many faults as possible, a wide range of diverse test
situations should be generated. It is important to favour situations that have a high
likelihood of causing dangerous behaviours of the validated system; otherwise, it
would be easy for an approach to spend most of its time in generating safe situations,
which is computationally inefficient. In this paper, we use evolutionary search to
generate test situations with a high collision risk.

A second challenge is “situation coverage” – testing the maximum proportion of
potentially dangerous situations that the system could ever encounter [7]. Here, we
partially address this using an encounter model of possible situation types to generate
a broad distribution of specific situations.

A third challenge is simulation fidelity, in particular whether there are faults in the
system that the simulation cannot reveal because they depend on details that are not
modelled. In this paper, we explore this issue in a simple way – we run simulations
with both infallible sensors and sensors subject to random noise, and look at how the
results of the latter simulations are richer (in terms of the range of hazardous situa-
tions found).

In section 5, we discuss briefly how we will further address these issues in our fu-
ture work.

3 Proposed Method

The proposed method is the integration of multi-agent simulation and evolutionary
search. We build multi-agent simulations to provide a test arena for UAVs with vari-
ous SAA algorithms, in order to explore potential conflict situations. The simulation
is configured by a series of parameters, which define a huge input space. Evolutionary
search is used to explore the input space and to guide the simulation towards chal-
lenging situations, thus accelerating the process of finding faults and supporting the
safety validation process.

Multi-agent Simulation
We use MASON (See http://cs.gmu.edu/~eclab/projects/mason/) as our multi-agent
simulation framework. In a typical multi-agent simulation, there are three basic elements:
agents, environment, and their interactions. The agents in our simulation are UAVs with
various kinds of SAA algorithms. They have attributes, such as maximum and minimum
speed, maximum turning rate, etc., and they also have behaviours, such as sensing other
UAVs and avoiding them. The environment in our simulation is simplified as a 2-D rec-

36 X. Zou, R. Alexander, J. McDermid

tangular horizontal flight area with length and width set according to the range of the
“Traffic Advisory (TA)” and “Resolution Advisory (RA)” regions of the TCAS (traffic
alert and collision avoidance system). Apart from UAVs, some other entities in the envi-
ronment are waypoints for navigation, and the start point and destination of each UAV.
The interactions between the UAVs are only via the sense and avoid algorithms. We
have not modelled any explicit communication between UAVs. The interactions between
UAVs and the environment include UAVs following waypoints and generating new
waypoints for collision avoidance.

To validate the safety of SAA algorithms, the simulation should simulate different
encounters for the SAA algorithm to handle. We developed “encounter generators”
that can generate three kinds of encounters, each involving two UAVs: (1) head on
encounters, (2) crossing encounters, and (3) tail approach encounters. We refer to one
of the UAVs as the “subject” UAV and the other as an intruder. Using any one of the
encounter generators, the intruder's start point, velocity vector and destination can be
decided on the premise that the subject UAV's start point, velocity vector and destina-
tion have been fixed. The three encounters are explained as follows:

1. The head on encounter is where the subject UAV and the intruder approach each
other in opposite directions, as illustrated in Fig. 1 (a). The intruder can approach
the subject UAV from either the left side or the right side with a certain offset.

2. The crossing encounter is where the subject UAV and the intruder approach each
other at an encounter angle ranging from 0° (exclusive) to 1800 (exclusive) from
either the left or the right side, as illustrated in Fig. 1 (b). If the encounter angle
equals 1800, it is a head on encounter without offset. If the encounter angle equals
0°, it is a tail approach encounter without offset, which will be discussed next.

3. The tail approach encounter is where the intruder overtakes or is overtaken by the
subject UAV flying on parallel tracks, as illustrated in Fig. 1 (c). The intruder can
overtake or be overtaken by the subject UAV from the left side or the right side
with a certain offset.

Fig. 1. (a) Head on; (b) Crossing; (c) Tail approach

Some global agents are utilized to monitor the simulation: a “proximity measurer”
measures the nearest distance of each UAV to other UAVs in every simulation step
and the most dangerous proximity of each UAV to others in a simulation run; an “ac-
cident detector” monitors the simulation and logs accidents and removes UAVs dis-
abled by a collision. These global monitoring agents play an important role in guiding
the search (which will be described later) towards challenging situations.

 Safety Validation of Sense and Avoid Algorithms 37

As stated above, the simulation is configured by a series of parameters, which can
be divided into three categories:

1. parameters for one or more encounters, e.g. the parameter to decide which encoun-
ter should be simulated in a simulation run, and the parameters used to generate
that encounter;

2. parameters for the subject UAV, e.g. the subject UAV’s destination, its maximum
and minimum speed, maximum acceleration and turning rate;

3. parameters for the intruders, e.g. the intruder’s (or intruders’) maximum and mini-
mum speed, maximum acceleration and turning rate.

Evolutionary Search
The evolutionary search part of the approach is implemented by using ECJ (See
http://cs.gmu.edu/~eclab/projects/ecj/), which is a Java-based evolutionary computa-
tion research system. We have experimented with Genetic Algorithms (GA).

To use GA, first, the initial population is set up with n individuals, with each indi-
vidual’s genome representing the settings of the simulation parameters identified
above. Then each individual of the population is evaluated by a simulation run and the
fitness of that individual can be calculated. According to the fitness, the selection
process will (re)sample n individuals from the population, and the selected individu-
als' genome will be “crossed-over" and mutated. After these genetic operations, the
individuals will be used to form the next generation of the population, which will
replace the old population. This process goes on until it runs out of time or the ideal
individual(s) has been found.

The fitness of an individual is calculated by applying a “fitness function” to it. De-
fining a good fitness function is a crucial task in GA work, as it will ultimately deter-
mine where the search moves towards. In our case, a good fitness function should
favour those individuals that embody hazardous situations, while avoiding premature
convergence (i.e. avoiding the population becoming very homogenous). Since the
main concern of SAA is mid-air collision, we define a fitness function based on the
nearest distance between pair of UAVs during each simulation run observed by our
“proximity measurer”.

Similarities to Existing Approaches
It is noted that our approach shares commonalities with search-based software testing
where meta-heuristic search techniques are employed for automatic generation of test
data [8]. Whilst none of the results from that work are directly comparable to what we
have presented here, we have adapted some of the ideas for our work. In search-based
software testing, test data are generated as the input of a piece of code (or software)
while in this paper, we use evolutionary search to generate input data (e.g. configura-
tion parameters) for multi-agent simulations. This is because, for SAA algorithms,
safety cannot be analysed without consideration of other UAVs and the environment.

Similar approaches have also been used in the ASHiCS (Automating the Search for
Hazards in Complex Systems) project [9] and by Alam et al. in [10, 11] to conduct

38 X. Zou, R. Alexander, J. McDermid

safety analysis of ATM (Air Traffic Management) systems. However, their main con-
cern is to identify the combination of airspace configurations and Air Traffic Control-
ler's actions that can result in a high collision risk. This is different from our work that
is to identify safety issues of SAA algorithms.

4 Experiments and Findings

4.1 Case Study Introduction

We confine the experiments to two UAV encounters, where the two UAVs run the
same SAA algorithm, though it is possible for our approach to handle multiple UAVs
with heterogeneous SAA algorithms. We have tested our proposed approach on the
recently published Selective Velocity Obstacles (SVO) [4] algorithm for collision
avoidance. We selected SVO because it improves the widely studied Velocity Obsta-
cles [3] approach to accommodate the common right-of-way rules of the air while
providing collision avoidance capability. Full details of SVO are provided in [4];
below, we provide a brief summary.

A velocity obstacle is the set of all velocity vectors of an agent (UAV) that will re-
sult in a collision with other agents (or obstacles) at some moment in time, assuming
that the other agents maintain their current velocity vectors [3]. It follows that if the
agent chooses a velocity vector outside its velocity obstacle, then a collision will not
occur in a certain time horizon.

SVO is designed for cooperative collision avoidance, where each UAV in an en-
counter cooperatively avoids each other while obeying the right-of-way rules. The
rules are as follows [4, 12]:

1. On a converging encounter, the one on the right has the right-of-way;
2. On a head-on encounter, both aircraft should move to the right side;
3. The one that is about to be overtaken has the right-of-way;
4. Avoidance manoeuvres should not go over, under, or in front of other aircraft that

have the right-of-way, except when it is clear.

Here three types of encounters are defined: Converging, Head-on, and Overtaking

as illustrated in Fig. 2. Note they are different from the encounters defined by our
simulation as illustrated in Fig. 1, which we think will help in revealing faults. SVO
defines a way to selectively avoid the other UAV(s) by defining three manoeuvre
modes [4], which are

1. Avoid, where the host UAV takes an manoeuvre to avoid collision with others;
2. Maintain, where the host UAV keeps its current velocity vector;
3. Restore, where the collision avoidance system gives back the control to the origi-

nal controller/pilot.

It is noted that, for a UAV to use the SVO approach, the only information it needs
about the others is their current positions, velocity vectors and shapes. It is assumed

 Safety Validation of Sense and Avoid Algorithms 39

that each UAV has perfect sensing ability when fitted with ADS-B1 to enable the
cooperative collision avoidance (comments on the capabilities of ADS-B are outside
the scope of this paper). In the experiments, we added some dynamic constraints on
the UAVs, which were converted from the performance data of Global Hawk given in
[6], as shown in Table 1. For SVO, when in the “Avoid” mode, it is desirable for the
host UAV to select a new velocity vector outside its velocity obstacle induced by
others but still obey the right-of-way rules. However, considering the dynamic con-
straints, we assume that each UAV can only avoid others by turning right 2.5deg/s.
This means that during a simulation run, the magnitude of each UAV’s velocity vec-
tor keeps constant and only the direction of the velocity vector will change. Another
consideration for this is that we follow the policy given in [4] and set the other ma-
noeuvres, such as the “climb and descend” for non-cooperative situations and speed
and direction change for conflict resolution2. Note that, between simulation runs, the
velocity magnitude also varies.

Fig. 2. AV encounter types, adapted from manned air traffic [13]

Table 1. UAV performance limits

Max speed 92.6m/s Min speed 51.4m/s
Normal speed 77.2m/s Max turning rate 2.5deg/s

Collision avoidance manoeuvres in some typical encounters are shown in Fig. 3. In
the figures in this paper, the subject UAV always starts from the middle of the left
side. The points in the diagram were generated by the SVO algorithm to denote the
waypoints the host UAV should navigate by – the bigger red points generated from

1 ADSB (Automatic Dependent Surveillance-Broadcast) is a cooperative surveillance tech-

nology with which a UAV will send its real time information, such as position and velocity,
to its peers via a radio frequency.

2 Conflict resolution resolves situations where the distance between two UAVs becomes or is
forecasted to become less than the minimum desired separation distance. It happens before
collision avoidance, so is outside the scope of the SVO algorithm.

40 X. Zou, R. Alexander, J. McDermid

Avoid” modes, the smaller orange points from “Maintain” modes, and the black hol-
low points from “Restore” modes.

Fig. 3. (a) In a Head-on encounter, each UAV avoids the other; (b) In an Overtaking encounter,
the front one has the right-of-way; (c) In a right Converging encounter, the intruder has the
right-of-way; (d) In a left Converging encounter, the subject UAV has the right-of-way

4.2 Experiment 1: Perfect Sensing Ability

Experiment 1 was conducted under the assumption that each UAV has perfect sensing
ability – they know both their own and the other UAV’s real time position and veloc-
ity vector.

Experiment 1.1
We first used random search as pre-treatment to find some “obvious” mid-air colli-
sions. We conducted random search 3 times, with 250,000 uniformly distributed sam-
ple points (simulation runs) each time. Overall there were 9 mid-air collisions, all of
which happened in crossing encounters. Examples and their parameter settings are
shown in Table 2.

From Table 2 one pattern can be found – the encounters are all left side crossing
(according to Fig. 1) with encounter angles around 46o; and the subject UAV’s speed
is very high (92.6 is the maximum speed for this kind of UAV) while the intruder’s
speed is very low (51.4 is the minimum speed for this kind of UAV).

When we scrutinize all these encounters, a typical situation is shown in Fig. 4. The
situation is “Left Converging” according to Fig. 2, where the subject UAV has the
right-of-way. The intruder made a right turn manoeuvre. But since the subject UAV
was at high speed and the intruder was at low speed, the manoeuvre was not enough
to avoid a collision.

 Safety Validation of Sense and Avoid Algorithms 41

Table 2. Mid-air collisions and their parameter settings revealed in experiment 1.1

 Subject UAV speed Is right side Encounter angle Intruder speed

Trial 1 92.00 NO 46.15 54.34

Trial 2 90.70 NO 45.18 54.30

…. …. …. ….

Trial 3 89.86 NO 45.27 52.70

…. …. …. ….

92.60 NO 46.75 55.50

Average 90.98 46.01 54.33

Fig.4. A typical encounter found in experiment 1.1

It is noted that of all the 3*250,000=750,000 random searched points, random
search found only 9 “obvious” mid-air collisions. Either there are few obvious colli-
sion situations, or random search has difficulty finding more challenging situations.

It was not clear whether or not the “obvious” situations found so far constitute all
the possible situations that will result in a mid-air collision for the SVO algorithm.
We explored this in experiments 1.2 and 1.3.

Experiment 1.2
Experiment 1.2 was intended to find new, subtler, situations that will result in mid-air
collisions other than those found in experiment 1.1 using random search. To this end,
if we sampled a point that corresponded to the class of collision situations found in
1.1, it was discarded without ever being simulated. These points were identified based
on them satisfying all of the following conditions:

1. It is a left side crossing encounter;
2. The subject UAV’s speed minus the intruder’s speed is more than 18m/s;
3. The encounter angle is greater than 45o, but it is less than 51.2o.

The numbers above were estimated from the numbers in the “Average” row of Ta-
ble 2 with some extra margin. Thus we excluded the “obvious” dangerous encounters
already identified, ensuring that the search were only looking for “new” problems.

We conducted random search 3 times, with 250,000 sample points each time. Of
all the sampled points, we found no mid-air collision and thus nothing interesting.

42 X. Zou, R. Alexander, J. McDermid

Experiment 1.3
The purpose of experiment 1.3 was the same as experiment 1.2, but evolutionary search
was used instead. The point discarding conditions were the same as those in experiment
1.2. Whenever a new individual was created that matched all of the conditions, it was
immediately awarded the worst possible fitness value (i.e. 0) without ever being simulated.

In the experiment, since we only considered two UAV encounters, the objective
was thus to minimize the average of the minimum distances3 of each UAV to the
other (the minimum distances were actually equal). Formally, it was defined as:

where is the number of simulation steps; is the distance to collision be-
tween the subject UAV and the intruder in the simulation step; and is the
reverse.

In this experiment, the fitness function was defined as:

where the value of is the fitness of each individual, and when equals
this fitness function reaches its maximum, 1, meaning there is a mid-air collision.

In this experiment, we set the number of generations to be 500, each generation
with 500 individuals. So the number of total sample points is the same as before. We
made 3 trials. Each trial took less than 3 minutes to compute using an ordinary desk-
top, slightly longer than the previous random searches, which took about 2.5 minutes.

From the log we can see a fast increase in average fitness in the beginning genera-
tions as illustrated by the blue curves in Fig. 5. It means over these generations, the
average minimum distance between the two UAVs decreased quickly and the evolu-
tionary search was guiding the simulation towards more challenging situations. The
figure also shows that the average fitness curves all reached a near-plateau before 100
generations, but their values varied. The third trial got the greatest value.

As shown by the orange curves in Fig. 5. (a) and (b), the first two trials did not find
any mid-air collision, but the third trial found many (Fig. 5. (c)). Note that in Fig. 5.
(c), the average fitness near-plateaus before the average number of accidents. This is
because one accident only happens and is counted when the fitness of that individual
is exactly 1 (i.e. the distance between the two UAVs is exactly 0).

When we checked these mid-air collisions found in trial 3, we found that the ge-
nomes (parameter settings) were almost the same – the genomes that code for acci-
dent scenarios were almost clones of each other. This is because when the GA finds a
good individual, it will have a high probability to focus on the individual and make
some minute modifications to it. So GA has a strong tendency to converge. But if the
initial genomes are not very good, the minute modifications are not enough to find
some better individuals and an evolutionary search may fail to find the best individu-
als in a finite number of generations (“premature convergence” in GA terms), which
was what happened in the first two trials. We tried to overcome this by using a much
bigger initial population in experiment 2.3, see below.

3 Here, the distance was scaled for simulation visualization purpose. Whenever a collision

happened the distance was set to 0.

 Safety Validation of Sense and Avoid Algorithms 43

Fig. 5. Average fitness and accidents of each generation in experiment 1.3

Fig. 6. Typical encounters found in experiment 1.3

Fig.7. Collisions shown in Fig. 6 can be avoided with a slightly larger turning rate

Two typical encounters that resulted in mid-air collisions are shown in Fig. 6.
These encounters are not so interesting, as the initial positions of the two UAVs are
too close. But even in such close initial positions conditions, if the UAV’s maximum
turning rate is a bit greater than 2.5deg/s, say 3deg/s, all the collisions can be avoided,
as shown in Fig. 7.

44 X. Zou, R. Alexander, J. McDermid

Fig. 8 shows the average fitness of each generation using GA (data from trial 1)
and random search (data from trial 1, 2, 3 of experiment 1.2). Since the fitness repre-
sents the nearest proximity between the two UAVs during a simulation run, we can
conclude that the evolutionary search is more efficient in finding subtler challenging
situations than random search.

Fig. 8. Average fitness of GA and random searches

So far, two rough patterns of encounters have been revealed that are likely to result
in mid-air collisions. The two patterns are summarized as follows:

1. Pattern 1 is left 45o crossing encounters, where the intersection of the following
conditions is true:
─ It is a left side crossing encounter;
─ The subject UAV’s speed minus the intruder’s speed is more than 18m/s;
─ The encounter angle is greater than 45o, but it is less than 51.2o.

2. Pattern 2 is close initial positions encounters, where the intersection of the follow-
ing conditions is true:
─ The encounter angle is less than 20o;
─ The subject UAV’s speed minus the intruder’s speed is less than 5m/s.

4.3 Experiment 2: Sensor Value Uncertainty

Experiment 2 was conducted without making the perfect sensing ability assumption.
Here we simply add Gaussian noise to the sensing result of the other UAV’s position
and velocity vector. The mean (µ) of the Gaussian noise is 0, and the standard devia-
tion (σ) is 0.05*{real value}. The sensing rate is as TCAS, which is 1Hz.

Experiment 2.1
Again, we first used random search to find “obvious” mid-air collisions. We con-
ducted random search 5 times, with 250,000 sample points each time.

In the first 4 trials, all the collision situations found can either be categorized as
pattern 1 or pattern 2, except one. No collision was found in trial 5. The one exception
is a left side crossing according to Fig. 1, where even though the subject UAV and the

 Safety Validation of Sense and Avoid Algorithms 45

intruder’s speeds are very close (i.e. 85.84m/s and 83.04m/s), their encounter angle is
larger (28.56o) than that in pattern 2. This exceptional encounter recurred as shown in
Fig. 9 (a).

According to SVO, this is an Overtaking encounter, where the speeds of the UAVs
are very close. Due to the sensor noise, the intruder sometimes decided its speed was
greater than the subject UAV’s and took avoidance manoeuvres while in fact it
shouldn’t have. The result is that the intruder’s right turn avoidance manoeuvres can-
celled out some of the effect of the subject UAV’s and they collide sometime in the
future. But if there were no sensor noise, the collision would not have happened as
shown in Fig. 9 (b).

Fig. 9. (a) Trajectory with sensor noise; (b) Trajectory without sensor noise

Again we need to ask whether or not the situations found so far constitute all the
possible situations that will result in a mid-air collision under sensor noise. We ex-
plored this in experiments 2.2 and 2.3.

Experiment 2.2
Experiment 2.2 tried to find subtler situations that will result in mid-air collisions
other than those found in experiment 2.1 using random search. We conducted random
search 5 times, with 250,000 sample points each time. Of all the sampled points, we
found no mid-air collision.

We then checked some of the nearest mid-air approaches and found another situa-
tion that may lead to mid-air collision – the intruder approaches the subject UAV
from the right side with an encounter angle a little greater than 45o; and the intruder
has a high speed while the subject UAV has a low speed. This is actually the same as
those identified in pattern 1 except the intruder approaches from the right side. It fol-
lows that the random search should have found some collisions in this situation as it
did in experiment 1.1 considering that we have searched such a huge number of sam-
ple points. One explanation for this could be that with the Gaussian noise added, more
uncertainty was added and the set of possible paths through the simulation became far
larger than before.

Experiment 2.3
Experiment 2.3 tried to find even subtler situations that will result in mid-air collisions
other than those found in experiment 2.1 and 2.2 using evolutionary search. To achieve

46 X. Zou, R. Alexander, J. McDermid

this, we noted that GA has a strong tendency to converge and the existence of some
good initial genomes determines whether it can find the “best” individuals in a finite
number of generations. (See our earlier comment on this in experiment 1.3). We set the
search to run for 50 generations (ten times fewer than before), each generation with
5000 individuals (ten times more than before). The number of total sample points is
also the same as experiment 2.1 and 2.2. The fitness function is the same as that of
experiment 1.3.

We made 5 trials, of which all but the third trial found mid-air collisions. A typical
collision is shown in Fig. 10 (a). This is a little like those identified in pattern 1, ex-
cept that the encounter angle is a little greater (51.7o for this typical encounter). Due
to sensor noise, sometimes the intruder decided to “Maintain” its velocity while in
fact it should have made an “Avoid” manoeuvre.

When we observed this encounter without sensor noise, we found the trajectory as
shown in Fig. 10 (b). The intruder did avoid the subject UAV, but it could not get to
its target due to the maximum turning rate constraint. So it kept circling around the
target. This is undesirable and also forms a hazard, because it may cause the UAV to
run out of fuel and finally crash. As can be seen from the figure, this happened in the
“Restore” stage and it is actually not the responsibility of the collision avoidance sys-
tem but the autopilot (or other controllers). This problem can be solved by letting the
UAV take a Dubins Curve [14] to its target.

Fig. 10. A typical encounter in experiment 2.3, (a) with sensor noise; (b) without sensor noise

4.4 Findings

Through the experiments, we found the following:

1. Whether with random search or evolutionary search, our multi-agent simulations
have the ability to reveal safety issues of a SAA algorithm (SVO). Using the en-
counters generated by our “encounter generators”, SAA algorithms can be tested in
different situations;

2. Even though random search can reveal some relatively obvious safety issues, evo-
lutionary search has the ability to guide the simulations towards much subtler chal-
lenging situations for SVO to handle. With the combination of the two, the safety
validation process has the potential to be accelerated;

 Safety Validation of Sense and Avoid Algorithms 47

3. Some plausible safety issues of SVO have been revealed by our approach – it is
dangerous to let low speed UAV avoid high speed UAV in some situations; the 45o
encounter angle for crossing is a dangerous boundary value for SVO; the SVO al-
gorithm is sensitive to sensor noise on velocity.

5 Conclusions and Future Work

We have described a safety validation approach for SAA algorithms using multi-agent
simulation and evolutionary search. Through experiments we have shown that our
approach can reveal faults that random simulation takes a long time to find, and thus
that our approach may accelerate the safety validation process. In the process, we
found some safety issues with the SVO algorithm.

When building simulations, we treat SAA algorithms as black boxes. The informa-
tion on positions, velocities and shapes of UAVs is provided as input to the algorithm
and the next waypoint the host UAV should navigate to is returned as output. There-
fore, this approach can be easily used to assess a variety of SAA algorithms as long as
they follow that input and output protocol (or can be adapted to do so).

The collision avoidance algorithm analysed in this paper is relatively simple, and
thus the fitness function used in this paper is straightforward – only the nearest prox-
imity to the other UAV is considered. In the future, we will study more sophisticated
algorithms (e.g. the ACAS X algorithm [5]) and devise risk measurements that ac-
commodate factors beyond simple proximity. We will then base our fitness function
on these risk measurements to lead the simulation towards high risk situations.

In the experiments, the GA was not well-tuned and sometimes it would lead to
premature convergence to local maxima (or minima). We will explore ways to over-
come this in the future by adaptively controlling the crossover and mutation probabili-
ties (e.g. as discussed in [15]).

According to section 2, this work partially addresses the challenge of efficiency
and touches on challenges of fidelity and coverage. Our future work will tackle these
further, the latter two in particular by creating more complex encounter generators
that produce richer situations (including equipment failure and other degraded
modes). Also, we will consider multi-body encounter problems and the use of 3D
simulations. In this way we hope to contribute to the development of effective SAA
algorithms, and to provide a cost-effective approach for validation of this important
class of algorithm.

Acknowledgements The first author would like to thank the China Scholarship
Council (CSC) for its partial financial support for his PhD study.

References

1. Federal Aviation Administration, U.S. Department of Transportaion: Integration of Civil
Unmanned Aircraft Systems (UAS) in the National Airspace System (NAS) Roadmap, 1st
edn (2013)

48 X. Zou, R. Alexander, J. McDermid

2. Fox, D., Burgard, W., Thrun, S.: The dynamic window approach to collision avoidance.
IEEE Robotics & Automation Magazine 4, 23–33 (1997)

3. Fiorini, P., Shiller, Z.: Motion planning in dynamic environments using velocity obstacles.
The International Journal of Robotics Research 17, 760–772 (1998)

4. Jenie, Y.I., Van Kampen, E.-J., de Visser, C.C., Chu, Q.P.: Selective Velocity Obstacle
Method for Cooperative Autonomous Collision Avoidance System for Unmanned Aerial
Vehicles. In: AIAA Guidance, Navigation, and Control (GNC) Conference. American In-
stitute of Aeronautics and Astronautics (2013)

5. Kochenderfer, M.J., Chryssanthacopoulos, J.: Robust airborne collision avoidance through
dynamic programming. Massachusetts Institute of Technology, Lincoln Laboratory,
Project Report ATC-371 (2011)

6. Temizer, S., Kochenderfer, M.J., Kaelbling, L.P., Lozano-Pérez, T., Kuchar, J.K.: Colli-
sion avoidance for unmanned aircraft using Markov decision processes. In: AIAA
Guidance, Navigation, and Control Conference. American Institute of Aeronautics and
Astronautics (2010)

7. Arnold, J., Alexander, R.: Testing Autonomous Robot Control Software Using Procedural
Content Generation. In: Bitsch, F., Guiochet, J., Kaâniche, M. (eds.) SAFECOMP. LNCS,
vol. 8153, pp. 33–44. Springer, Heidelberg (2013)

8. McMinn, P.: Search-based software test data generation: A survey. Software Testing, Veri-
fication and reliability 14, 105–156 (2004)

9. Clegg, K., Alexander, R.: The discovery and quantification of risk in high dimensional
search spaces. In: Proceeding of the Fifteenth Annual Conference Companion on Genetic
and Evolutionary Computation Conference Companion, pp. 175–176. ACM (2013)

10. Alam, S., Lokan, C., Abbass, H.: What can make an airspace unsafe? characterizing colli-
sion risk using multi-objective optimization. In: IEEE Congress on Evolutionary Computa-
tion, CEC, pp. 1–8 (2012)

11. Alam, S., Lokan, C., Aldis, G., Barry, S., Butcher, R., Abbass, H.: Systemic identification
of airspace collision risk tipping points using an evolutionary multi-objective scenario-
based methodology. Transportation Research Part C: Emerging Technologies 35, 57–84
(2013)

12. Federal Aviation Administration: Federal Aviation Regulations (FAR) Chapter I, subchap-
ter F Air Traffic and General Operating Rules, 91.113 Right-of-way rules: Except water
operations (1989)

13. Federal Aviation Administration: JO 7110.65U, Air Traffic Control, Chapter 1: General.
In: U.S. Department of Transportation (ed.) (2012)

14. Dubins, L.E.: On curves of minimal length with a constraint on average curvature, and
with prescribed initial and terminal positions and tangents. American Journal of Mathe-
matics, 497–516 (1957)

15. Srinivas, M., Patnaik, L.M.: Adaptive probabilities of crossover and mutation in genetic
algorithms. IEEE Transactions on Systems, Man and Cybernetics 24, 656–667 (1994)

Debugging with Timed Automata Mutations

Bernhard K. Aichernig1, Klaus Hörmaier2, and Florian Lorber1

1 Institute for Software Technology
Graz University of Technology, Austria
{aichernig,florber}@ist.tugraz.at

2 Infineon Technologies Austria AG. Villach, Austria
klaus.hoermaier-ee@infineon.com

Abstract. Model-based Debugging is an application of Model-based Di-
agnosis techniques to debugging computer systems. Its basic principle is
to compare a model, i.e., a description of the correct behaviour of a sys-
tem, to the observed behaviour of the system. In this paper we show
how this technique can be applied in the context of model-based muta-
tion testing (MBMT) with timed automata. In MBMT we automatically
generate a set of test sequences out of a test model. In contrast to gen-
eral model-based testing, the test cases of MBMT cover a pre-defined set
of faults that have been injected into the model (model mutation). Our
automatic debugging process is purely black-box. If a test run fails, our
tool reports a diagnosis as a set of model mutations. These mutations
provide possible explanations why the test case has failed. For reproduc-
ing the failure, we also generate a set of minimal test cases leading to the
implementation fault. The technique is implemented for Uppaal’s timed
automata models and is based on a language inclusion check via bounded
model checking. It adds debugging capability to our existing test-case
generators. A car-alarm system serves as illustrating case study.

Keywords: Timed automata, debugging, model-based mutation debug-
ging, mutation testing, model-based testing, language inclusion, muta-
tion operators.

1 Introduction

Testing and debugging are important tasks of the development process in the au-
tomotive industry. Especially for safety related products exhaustive testing/de-
bugging needs to be done to ensure functional safety. This leads to a high effort
spent during product development. So what is testing and debugging about?
The verification engineer is stimulating the device under test (DUT) with input
patterns and is observing the outputs of the DUT simultaneously. If the observed
outputs are equal to the expected outputs, everything is fine. But if at least one
test case fails (the observed output is not equal to the expected output), the
investigation of why the test fails starts. There are two possibilities why a test
case can fail. The test case or the test setup could be faulty or the implemen-
tation can be incorrect. Especially in larger products where more designers are

A. Bondavalli and F. Di Giandomenico (Eds.): SAFECOMP 2014, LNCS 8666, pp. 49–64, 2014.
c© Springer International Publishing Switzerland 2014

50 B.K. Aichernig, K. Hörmaier, and F. Lorber

working on the DUT, it is important to identify the erroneous part as fast as
possible. Therefore the verification engineer has to go through the design and
probe outputs / signals / variables related to the faulty test case to judge their
correctness. This debugging process is a difficult and time consuming task which
is up to now mostly done manually. Within this paper we propose a method for
speeding up the debugging process by automation.

Related Work. Model-based software debugging (MBSD) [17,13] is an automated
debugging approach with the goal of identifying model components that might
be responsible for faulty behavior. MBSD relies on a set of test cases that spec-
ify the correct behavior and one or more models that reflect incorrect behavior.
Usually the models are divided into a set of components, e.g. the set of code state-
ments. Then the goal of MBSD is to find minimal sets of components (called
”diagnoses”) that, if assumed to be faulty, explain the fault in the implementa-
tion. Several different model notations have already been used for model based
debugging [14], using formal textual specifications for the models, usually cre-
ated automatically from the source code. The most commonly used models are
Dependency-based Models, Value-based Models and Abstraction-based Models.
Other common approaches rely on satisfiability checking and worst-case analysis
of several different models [14].

Model-based testing (MBT) [20] provides techniques to automatically gen-
erate test cases from specification models. These test cases are used to check
conformance of the DUT to the specification. Most MBT approaches rely on the
input/output behaviour of the DUT and do not need any access to its internal
structure. They are therefore called ”black-box” methods. Usually MBT tech-
niques generate test cases until the test suite meets a predefined coverage criteria
(e.g. transition coverage, where the test cases have to reach every transition of
the model at least once).

Mutation testing [7,9] provides a way to measure the quality of such a test
suite: By introducing small errors into the DUT, a set of faulty implementations,
called mutants, is created. A test case that is able to distinguish between the
original and a mutant is said to kill the mutant. By executing the whole test suite
on the mutants, the killing rate of the test suite can be calculated, indicating
how many of the mutants could be killed. Instead of altering the DUT, one can
also mutate the model and check for conformance between the test case and the
mutated model, to see whether the test case can kill it.

Model-based mutation testing is a specific type of model-based testing, in
which faults are deliberately injected into the specification model. The aim of
mutation-based testing techniques is to generate test cases that can detect the
injected errors. This means that a generated test case shall fail if it is executed
on a (deterministic) system-under-test that implements the faulty model. The
power of this testing approach is that it can guarantee the absence of certain
specific faults. In practice, it will be combined with standard techniques, e.g. with
random test-case generation [1]. Mutation-based testing was studied in [2,18] in
the context of UML models, in [6,8] in the context of Simulink models and in

Debugging with Timed Automata Mutations 51

[3,10] in the context of Timed Automata. Model-based mutation testing is also
known as specification-based mutation testing.

Contribution. In this paper, we propose a methodology for mutation-based de-
bugging of real-time systems combining model-based debugging, classical mu-
tation testing and model-based mutation testing. Given a faulty DUT and a
testcase that fails when executed on it, we can determine a set of model mutants
that reflects the implemented fault on model level.

To the best of our knowledge, this approach is novel. The used tool and test
case generation procedure have already been published [4,3], yet they were only
used for test case generation, whereas in this paper we describe a model-based
debugging methodology. In contrary to most previous model-based debugging
approaches, our approach does not rely on creating its own model from the faulty
implementation, but needs a correct specification model. While using manually
designed models is not common practice in standard software engineering, safety
critical domains, like automotive or railway domains, use models to comply with
their verification standards. If there are any real-time requirements on the DUT,
timed automata models grant some important benefits.

Wotawa [22] introduced mutation debugging, using code mutations as possible
diagnoses for faulty implementations. Model-based debugging is used to deter-
mine possibly faulty components and the mutation algorithm is only executed
on these candidates, to speed up the process.

Nica et al. [16] propose a method for combining debugging, testing and mu-
tants to reduce the set of possible fault candidates. Contrary to our work, they
use white-box methods: by mutating the faulty code, they try to find mutants
behaving correctly, while we mutate the correct model, trying to find mutants
that show the same faulty behavior as the implementation.

Within this paper, we also present a framework implementing this method for
specifications modeled using a deterministic class of timed automata with inputs
and outputs. We already work on the field of mutation testing for quite some
time and recently presented our model-based mutation testing tool for timed au-
tomata, MoMuT::TA [4,3]. To benefit from the functionalities already available
there, this method was integrated into the existing tool. The tool is implemented
in Scala (v2.9.1), using the standard Uppaal [12] Timed Automata XML format
for specifying the models as well as the test cases. It uses the Satisfiability Mod-
ulo Theories (SMT) solver Z3 (v4.0) [15] to compute conformance checks of TA
via language inclusion.

Within Section 2, we describe the basic concept of our novel model-based mu-
tation debugging approach. Section 3 illustrates a model of a car alarm system,
which is used as a running example during this paper. In Section 4 we define our
deterministic Input/Output Timed Automata. In Section 5, we explain model
mutation and a set of mutation operators for TA models and describe the link-
age between model mutants and corresponding implementation faults. We ex-
plain our notion of the timed input/output conformance relation tioco and show
the equivalence between language inclusion and tioco conformance in Section 6.

52 B.K. Aichernig, K. Hörmaier, and F. Lorber

Section 7 describes the experimental results we achieved for the car alarm system
case study. In Section 8, we conclude the paper.

2 Model-Based Mutation Debugging

Fig. 1. Workflow

Model-based mutation debugging (MBMT) starts
with a common in model-based testing situation: we
are given a specification model (assumed to be cor-
rect), a faulty implementation and a random test case
failing on the implementation. Since many test cases
are not minimal, they do not give a lot of feedback on
which part of the implementation is faulty.

Via model mutation we can create model mutants
representing possible implementation faults. In dif-
ferent filtering steps we can select a small subset of
those mutants showing the same faulty behavior as the
DUT. These mutants are therefore likely to represent
the implemented fault and can be seen as ”mutant di-
agnoses” for the faulty implementation. Since correct
timing behavior gains more and more importance in
safety critical domains, we decided to use timed au-
tomata [5] to model the specification.

Our approach consists of several steps, each of
which will be explained in detail in the next sections.
The basic concept behind the approach works as il-
lustrated in Figure 1 and is described in the follow-
ing. The whole procedure is done automatically by
our framework. Only the final step, the analysis of
the source code, steered by the final mutants, needs
to be done manually.

– Mutant Generation: First, we create a set of all model mutants our frame-
work supports (Mutant1, Mutant2, Mutant3, Mutant4 in Figure 1). Details
on the different supported mutation operators can be found in Section 5.

– Mutation Analysis: Next, the random test case can be compared to the
mutants. If a mutant shows any faulty behaviour along the path of the test
case, the mutant is said to be killed by the test case. The killed mutants
are stored for the next step. All mutants that are not killed are disregarded
(Mutant3 in Figure 1), because either their mutations did not lie along the
path of the initial test case or did not introduce any faults. The mutation
analysis is implemented as a language inclusion check of timed traces (see
Section 6).

– Test Case Generation: Then, we use our model-based mutation testing
technique [3,4] for creating minimal test cases (Test1, Test2, Test4) for the
selected mutants (Mutant1, Mutant2, Mutant4). The test cases reflect the
shortest input/output sequence leading to the faulty output of the mutants.

Debugging with Timed Automata Mutations 53

– Test Case Execution: Next, by executing the test cases on the faulty
implementation, we can identify the subset of test cases (and their corre-
sponding mutants) that still are able to find the bug. Some of the test cases
cover the bug, but contain several unnecessary steps afterwards. By discard-
ing these test cases and their corresponding mutants, an even smaller set of
test cases (Test2, Test4) and mutants (Mutant2, Mutant4) can be achieved.

– Source Code Analysis: Finally, the remaining subset of mutants consists
of those mutants that reflect the behavior of the faulty implementation the
best. Each mutant reflects a specific implementation fault at a specific loca-
tion. By examining these code fragments, the location of the bug can usually
be traced easily. We give some detailed examples in Section 7.

3 Running Example

Within this paper, we illustrate our approach with a Car Alarm System (CAS)
[2,18]. We developed a timed automata model of the CAS from the requirements:

Arming: The system is armed 20 s after the vehicle is locked and the bonnet,
luggage compartment and all doors are closed;

Alarm: The alarm sounds for 30 s if an unauthorized person opens the door,
the luggage compartment or the bonnet. The hazard flasher lights flashes for
5 min;

Deactivation: The anti-theft alarm system can be deactivated at any time,
even when the alarm is sounding, by unlocking the vehicle from outside.

A correct model is shown in Figure 2(a). Input signals are denoted by question
marks, output signals by exclamation marks. In the initial state, the car is open
and unlocked hence the close? and lock? signals are enabled. Timing properties
are modeled via guards and invariants. After a close? and a lock? signal, the
invariant forbids waiting longer than 20 seconds (modeled via invariant), and
the armedOn? signal must be triggered after exactly 20 seconds (modeled via
guard).

Additionally to the model, we have a Java implementation, a tool to gener-
ate random test cases and our model-based mutation test case generation tool
MoMuT::TA. Now let us assume a fault in our implementation, skipping the ef-
fect of the unlock? signal after the alarm went silent. The corresponding model
mutant mimicking this implementation fault can be seen in Figure 2(b). Also
assume the untimed abstract test case TC1

1: close? - lock? - armedOn! - open?
- armedOff! - flashOn! - soundOn! - soundOff! - soundOff! - flashOff! - unlock?
- lock? - close? - armedOn! to return the verdict fail after this sequence. Now
of course if it was a real random test case, it could be much longer and the trace
would not lead straight towards the fail. But already in this simple version, it
is hard to trace the exact location of the fault, that could have been introduced
anywhere along the path.

1 For presentation purposes, the test case does not include any timing information.

54 B.K. Aichernig, K. Hörmaier, and F. Lorber

Our method provides mutant diagnoses for the bug that can be created with-
out access to the source code, are simple to understand, illustrated as UPPAAL
models and give information about both the possible locations and the possible
types of fault.

Example 1. Applying MBMD to the CAS:

– Mutant Generation: we produce the whole set of model mutants. For the
CAS the total number of mutants is 296.

– Mutation Analysis: we filter out all mutants that conform to the test case
and keep only those that are killed. E.g. all mutations on the unlock? signal
while the alarm is still active are not within the scope of the test case.

– Test Case Generation: we can produce minimal test cases for each remaining
mutant, leading straight to the fault. A mutation of the armedOn! signal
might for example produce the test case TC2 lock? - close? - armedOn!
to make sure that the implementation fault corresponding to this specific
mutation would be detected in the implementation.

– Test Case Execution: after executing the new test cases on the faulty imple-
mentation, mutants with test cases that cannot reach the implementation
fault are filtered out. TC2 does not reach the fault, therefore it would be
filtered out, as well as its corresponding mutant. Only the shortest test cases
and their mutants pass this selection step and are presented to the user as
the final set of mutant diagnoses.

– Source Code Analysis: For this specific fault, only two of our mutants re-
main at the end. Both represent implementation faults of the unlock signal,
deactivating its functionality after the alarm went silent. Both lead to the
same faulty implementation statement. Figure 2 (b) shows one of them.

4 Timed Automata with Inputs and Outputs

The time domain that we consider is the set R≥0 of non-negative reals. The fol-
lowing definitions are based on definitions we used in previous publications [3,4].
We denote by Σ the finite set of actions, partitioned into two disjoint sets ΣI

and ΣO of input and output actions, respectively. A time sequence is a finite
or infinite non-decreasing sequence of non-negative reals. A timed trace σ is a
finite alternating sequence of actions and time delays of the form t1 ·a1 · · · tk ·ak,
where for all i ∈ [1, k], ai ∈ Σ and (ti)i∈[1,k] is a time sequence.

Let C be a finite set of clock variables. Clock valuation v(c) is a function
v : C → R≥0 assigning a real value to every clock c ∈ C. We denote by H
the set of all clock valuations and by 0 the valuation assigning 0 to every clock
in C. Let v ∈ H be a valuation and t ∈ R≥0, we then have v + t defined by
(v + t)(c) = v(c) + t for all c ∈ C. For a subset ρ of C, we denote by v[ρ]
the valuation such that for every c ∈ ρ, v[ρ](c) = 0 and for every c ∈ C\ρ,
v[ρ](c) = v(c). A clock constraint ϕ is a conjunction of predicates over clock
variables in C defined by the grammar

ϕ ::= c ◦ k | ϕ1 ∧ ϕ2,

Debugging with Timed Automata Mutations 55

start

flashOff!

c ≤ 20

e ≤ 0

e ≤ 0

e ≤ 0

e ≤ 30

e ≤ 300g ≤ 0

g ≤ 0 d ≤ 0 f ≤ 0 e ≤ 300

close?

open?

lock?

unlock?

unlock?

lock?
c := 0

open?

close?
c := 0

c == 20
armedOn!

open?
e := 0

c == 0
armedOff!

flashOn!

soundOn!

e < 30
unlock?
g := 0

e == 30
soundOff!

unlock?
g := 0

e == 300
soundOff!

flashOff!

unlock?

close?
f := 0

armedOn!

soundOff!

unlock?
d := 0

armedOff!

start

flashOff!

c ≤ 20

e ≤ 0

e ≤ 0

e ≤ 0

e ≤ 30

e ≤ 300g ≤ 0

g ≤ 0 d ≤ 0 f ≤ 0 e ≤ 300

close?

open?

lock?

unlock?

unlock?

lock?
c := 0

open?

close?
c := 0

c == 20
armedOn!

open?
e := 0

c == 0
armedOff!

flashOn!

soundOn!

e < 30
unlock?
g := 0

e == 30
soundOff!

unlock?
g := 0

e == 300
soundOff!

flashOff!

unlock?

close?
f := 0

armedOn!

soundOff!

unlock?
d := 0

armedOff!

Fig. 2. Car alarm system: correct TAIO specification (a) and a mutant (b)

where c ∈ C, k ∈ R≥0 and ◦ ∈ {<,≤,=,≥, >}. Given a clock valuation v ∈ H,
we write v |= ϕ when v satisfies the clock constraint ϕ. We are now ready to
formally define input/output timed automata (TAIO):

Definition 1. A TAIO2 A is a tuple (Q, q̂, ΣI , ΣO, C, I,Δ), where Q is a finite
set of locations, q̂ ∈ Q is the initial location, ΣI is a finite set of input actions
and ΣO is a finite set of output actions, such that ΣI ∩ΣO = ∅ and Σ is the set
of actions ΣI ∪ΣO, C is a finite set of clock variables, I is a finite set of location
invariants, that are conjunctions of constraints of the form c < d or c ≤ d, where
c ∈ C and d ∈ N and each invariant is bound to its specific location, and Δ is a
finite set of transitions of the form (q, a, g, ρ, q′), where

– q, q′ ∈ Q are the source and the target locations;
– a ∈ Σ is the transition action
– g is a guard, a conjunction of constraints of the form c ◦ d,

where ◦ ∈ {<,≤,=,≥, >} and d ∈ R≥0;
– ρ ⊆ C is a set of clocks to be reset.

We say that a TAIO A is deterministic if for all transitions (q, a, g1, ρ1, q1)
and (q, a, g2, ρ2, q2) in Δ, q1 �= q2 implies that g1 ∧ g2 = ∅. We denote by A
the set of all TAIO and by Det(A) ⊂ A its deterministic subset. We denote

2 TAIO are similar to UPPAAL TA, which we use to illustrate our examples. One
difference is that for simplicity of presentation we do not have urgent and commit-
ted locations. However, these types of locations are just syntactic sugar to make
modelling easier, and can be expressed with standard timed automata.

56 B.K. Aichernig, K. Hörmaier, and F. Lorber

by ΔO ⊆ Δ the set {δ = (q, a, g, ρ, q′) | δ ∈ Δ and a ∈ ΣO} of transitions
labeled by an output action and by ΔI = Δ\ΔO the set of transitions labeled
by an input action. We define |G| to be the number of basic constraints that
appear in all the guards of all the transitions in A, i.e. |G| = Σδ∈Δ|Jg|, where
δ = (q, a, g, ρ, q′) and g is of the form

∧
j∈Jg

cj ◦ dj . We define |I| as the number
of basic constraints that appear in all the invariants of all the locations in A.

The semantics of a TAIO A = (Q, q̂, ΣI , ΣO, C, I,Δ) is given by the timed
input/output transition system (TIOTS) [[A]] = (S, ŝ,R≥0, Σ, T), where S =
{(q, v) ∈ Q×H | v |= I(q)}, ŝ = (q̂,0), T ⊆ S × (Σ ∪R≥0)× S is the transition
relation consisting of discrete and timed transitions such that:

– Discrete Transitions: ((q, v), a, (q′, v′)) ∈ T , where a ∈ Σ, if there exists
a transition (q, a, g, ρ, q′) in Δ, such that: (1) v |= g; (2) v′ = v[ρ] and (3)
v′ |= I(q′); and

– Timed Transitions: ((q, v), t, (q, v+t)) ∈ T , where t ∈ R≥0, if v+t |= I(q).

A run r of a TAIO A is the sequence of alternating timed and discrete tran-

sitions of the form (q1, v1)
t1−→ (q1, v1 + t1)

δ1−→ (q2, v2)
t2−→ · · · , where q1 = q̂,

v1 = 0 and δi = (qi, ai, gi, ρi, qi+1), inducing the timed trace σ = t1 · a1 · t2 · · · .
We denote by L(A) the set of timed traces induced by all runs of A.

5 Model Mutation

Mutation of a specification is done by altering the model in a small way, mim-
icking common implementation errors. In our setting, this is done via 9 different
predefined mutation operators, that were already introduced in a previous pub-
lication [3]. Each of them represents an individual type of implementation fault,
that can occur at multiple parts of the model. We only create first order mutants,
which means we only apply one operator at a time to one part of the model at
a time. Each operator creates a set of mutants:

1. Change Action: changes a single output transition in A by replacing the
action labeling the transition by a different output label. This mutation
mimics an implementation fault producing incorrect output signals.

2. Self Loop: changes a single output transition in A by replacing the target
location of the transition by the source location. The intention behind this
operator is to mimic an implementation fault that omits the original behavior
of a signal.

3. Change Target: replaces the target location of a transition in A, by another
location in A. This mimics an implementation fault, where signals lead to
wrong internal states, e.g. by setting internal state variables to wrong values.
Figure 3 (b) gives an example on this kind of mutation.

4. Change Source: replaces the source location of a transition in A, by another
location in A. A corresponding implementation fault would enable triggering
a signal that should be disabled for a certain state. A second corresponding
implementation fault is the fact that the signal cannot be triggered in the
original state. Figure 3 (c) illustrates this, by changing the transition q2 : q4
to q0 : q4.

Debugging with Timed Automata Mutations 57

5. Change Guard: replaces the guard of a transition in A by replacing ev-
ery equality/inequality sign appearing in the guard by another one. This
expresses implementation faults caused by incorrect enabling conditions. An
example is given in in Figure 3 (d), on the transition between q2 and q4.

6. Negate Guard: replaces the guard in a transition in A, by its negation.
This covers faults that happened because a programmer forgot to negate an
enabling condition.

7. Change Invariant: replaces the invariant of a location with another invari-
ant which adds 1 to the right side of an invariant. This mimics an ”off by
one” fault, allowing to stay in a state longer than intended.

8. Sink Location: replaces the target location of a transition in A, by a newly
created sink location that models a don’t care location which accepts all
inputs. This expresses program faults leading to a quiescent state where
every input is accepted, but ignored. This kind of behavior is experienced in
implementation faults leading to internal states outside of the state domain.

9. Invert Reset: replaces a transition in A, by another transition with the
occurrence of one clock flipped compared to the original set of clocks. This
reflects different timing errors, e.g. the incorrect resetting of a timer.

Figure 3 illustrates a sample model and mutants resulting from applying the
mutation operators to the model. Formal definition of the above mutation op-
erators and an upper bound of mutants created by each operator can be found
in our technical report [4]. There are two major changes compared to the tech-
nical report: In order not to get too many mutants representing the same type
of implementation fault at the same location, the three mutation operators 1,
2 and 4 are only applied once per transition. Hence instead of creating several
change actions mutants for the same output transition (one per possible other
output action) only one mutant per output transition is created, with the action
name changed to a random other output label. All omitted mutants create the
same test cases and would only worsen the debugging results. Consequently, we
also use only one random target / source location for the change target / change
source mutation operators.

The second difference is the fact that for the experiments in this paper, all
mutants are transformed to be input-enabled. Since we assume all implementa-
tions to be input-enabled, we tried to keep the mutants as similar as possible.
So implementations and mutants accept any undefined input, but do not react
to it. We applied angelic completion [20] to the mutants in order to achieve this.

6 Conformance Check

6.1 tioco Conformance

During the debugging process, we need to check conformance two times. To ex-
ploit the timing properties of timed automata we use tioco [19], a real time ex-
tension of Tretman’s input-output conformance ioco [21]. Intuitively, a TAIOA1

conforms to a second TAIOA2, if for each trace specified in A2 the set of possible

58 B.K. Aichernig, K. Hörmaier, and F. Lorber

q0start

q1 q2

q3 q4

c ≤ 3

(a)

a?
c := 0 b?

c := 0

d!
c ≥ 2

e!
c < 2

e!
c < 2

q0start

q1 q2

q3 q4

c ≤ 3

(b)

a?
c := 0 b?

c := 0

d!
c ≥ 2

d!
c < 2

e!
c < 2

q0start

q1 q2

q3 q4

c ≤ 3

(c)

a?
c := 0 b?

c := 0

d!
c ≥ 2

e!
c < 2

e!
c < 2

q0start

q1 q2

q3 q4

c ≤ 3

(d)

a?
c := 0 b?

c := 0

d!
c ≥ 2

e!
c < 2

e!
c > 2

Fig. 3. (a) a sample specification; (b-d) corresponding mutants with (b) a mutated
target location; (c) a mutated source location; (d) a mutated guard

outputs of A1 is a subset of the possible outputs of A2. Note that the passing of
time is seen as an output.

We consider TAIO without silent (τ) transitions, hence all actions are ob-
servable. Consequently, we can use a simplified version of the tioco definition
from [11]. We need four operators (illustrated in Equation 1) for the definition
of the relation.

A after σ = {s ∈ S | ŝ σ−→ s}
elapse(s) = {t > 0 | s t−→}
out(s) = {a ∈ ΣO | s a−→} ∪ elapse(s)
out(S) =

⋃
s∈S out(s)

(1)

Given a TAIO A and σ ∈ L(Σ), A after σ is the set of all states of A that can be
reached by the sequence σ. Given a state s ∈ S, elapse(s) is the set of all delays
that can elapse from s without A making any action, and out(s) is the set of all
output actions or time delays that can occur when the system is at state s, a
definition which naturally extends to set of states S.

Definition 2. The timed input-output conformance relation, denoted by tioco,
is defined as

AI tiocoAS iff ∀σ ∈ L(AS) : out(AI after σ) ⊆ out(AS after σ)

Several theoretical results about the tioco have been published in [11]. One
of them states that given two TAIO AI and AS , if AI tioco AS , then the set
of observable traces of AI is included in the set of observable traces of AS ,
while the converse is not true in general. However, if AS is input-enabled, then
the set inclusion between observable traces of AI and AS also implies the tioco
conformance of AI to AS .

In previous work [4,3] we included demonic completion to make AS input
enabled. In this paper we apply a more efficient technique for handling partial
models. A pruning of AI is performed, removing all inputs unspecified by AS in
a certain state. The same results are obtained when checking language inclusion

Debugging with Timed Automata Mutations 59

between a demonic completed specification and an mutant, as when checking
language inclusion between a specification and a pruned mutant.3

The language inclusion is computed via the SMT solver Z3 for a bounded
depth, since we are only interested in finite counter examples. Due to space
limitations, the detailed SMT formula will not be presented here, but can be
found in previous publications [4,3].

6.2 Conformance Checks within Model-Based Mutation Debugging

Conformance checks are needed at two different stages of our method: The first
conformance check is done in the Mutation Analysis step, between the abstract
failing test case and the model mutants. This is possible, because our abstract
test cases are timed automata traces in sequential form, that can be seen as
partial models of the specification. Since the initial test case only covers a certain
part of the specification, a lot of the mutations will be placed at parts that
are not reached by the test case. Yet since the test case fails on the faulty
implementation, we are only interested in parts of the model covered by the test
case. Hence we can disregard each mutant that conforms to the test case.

By applying this conformance check, we already gain a reduced set of mutants,
but not yet any further knowledge on which of them correspond to the actual
fault. The second conformance check is applied within the Test Case Generation
step, by our model-based mutation technique [4,3]: for each mutant it generates
a specific new test case that leads exactly to the first output discrepancy between
specification and mutant. The result is a set of minimal test cases that covers
all of the mutations that were covered by the initial test case.

Now while the initial test case covers a lot of different regions of the speci-
fication, only one of which is supposed to be faulty, the new test cases contain
the direct, minimal way to the mutation they were created for, only covering as
little of the specification as possible.

The next step consists in executing the newly generated test cases on the
faulty implementation. Only the test cases that cover the implementation fault
will fail, hence the other test cases and their corresponding mutants can again
be disregarded.

All of the remaining timed automata mutants represent fault models that
show the same faulty behavior as the faulty implementation. Each of them was
created with the intention of mimicking one or more specific implementation
faults, and hence we only need to check the code for a small set of possible
implementation errors. Section 7 shows the results of applying this technique to
the Car Alarm System.

7 Results

To validate our approach we conducted several experiments on a Java implemen-
tation of the Car Alarm System [1]. For experimentation we produced 38 faulty

3 A detailed argument of this is out of scope of the paper. Our experiments give
evidence that our technique works.

60 B.K. Aichernig, K. Hörmaier, and F. Lorber

Table 1. Possible fault models derived by the remaining mutant diagnoses

Model Mutation Mutated Transitions Corresponding Implementation Fault
Invert Reset lock? A wrong clock reset during the lock? signal.
Self Loop close?/lock? The close?/lock? signal has no effect.

Sink Location close? / lock? The close?/lock? signal leads to a quiescent state.
Change invariant - The armedOn! signal is delayed longer than allowed by

the specification.
Change source close?/lock? The close?/lock? signal is enabled in a wrong internal

state & disabled in the right one.
Change target close?/lock? The close?/lock? signal leads to a wrong internal state.
Negate Guard close?/lock? The close?/lock? signal is disabled.

implementations of this program. The implementation consists of four public
methods, open, close, lock and unlock, and two internal methods, SetState and
the constructor. Elapse of time is simulated with a tick method. The faulty im-
plementations were generated with the mutation tool μJava4. Since none of the
automatically generated faulty implementations contained any timing errors, we
additionally created six of those: we generated two faulty implementations for
each of the three signals armedOn, flashOff and soundOff, one where the signal
is delayed and one where the signal is triggered too early.

We applied our method to each of the faulty implementations in a separate ex-
periment: In each experiment, we used the specification model shown in Figure 2,
one of the faulty implementations and a random test case of length 50, gener-
ated from the model by our tool MoMuT::TA. If the random test case passed
on the faulty implementation, new test cases were generated until one failed on
it. All experiments used the same model mutants, which were produced from
the specification model by our tool chain. The total number of timed automata
model mutants for the CAS is 296.

This section is split into three subsections: The first two will show two of the
experiments in detail. They represent the two most demonstrative special cases,
a mutation that can be reached from the initial state, and a mutation that needs
ten preceding signals to be reached. Then in the third subsection, we will give
an overview on how good our method performed, presenting the average values
of the 44 experiments.

7.1 Experiment 1

The first experiment was started with a random test case of length 50. The mu-
tated code of the faulty implementation is shown in Listing 1.1: The introduced
implementation fault (negating the state variable in Line 10) causes the close?
signal to lead to an incorrect internal state that can never be left. The bug only
occurs if close? is triggered from the initial state.

By doing the tioco - conformance check between the mutants and the test case,
the number of possible mutants was already reduced to 108. Hence, 188 mutants
were disregarded either because they were equivalent to the specification, or
because the mutation was not covered by the random test case.

4 http://cs.gmu.edu/~{}offutt/mujava/

http://cs.gmu.edu/~{}offutt/mujava/

Debugging with Timed Automata Mutations 61

Listing 1.1. Code mutation of the close? signal leading to a wrong internal state, by
negating the state variable in the initial state.
1 public static final int OpenAndUnlocked = 1;
2 public static final int ClosedAndUnlocked = 2;
3 public static final int OpenAndLocked = 3;
4 public static final int ClosedAndLocked = 4;
5 public static final int SilentAndOpen = 5;
6 ...
7 public void Close() {
8 switch (m_state) {
9 case CarAlarmSystemState.OpenAndUnlocked :

10 SetState (-CarAlarmSystemState.ClosedAndUnlocked);
11 break;
12 ...

Executing MoMuT::TA on the remaining mutants took 724 seconds and pro-
duced the corresponding set of test cases. A total of 51 out of the 108 test cases
were able to kill the faulty implementation. 17 of these test cases are minimal
and all of the minimal test cases are identical, consisting of the trace close? -
lock? - armedOn!. All test cases longer than this trace and their mutants are
disregarded.

Observing that all test cases contain the trace close? - lock? - armedOn! and
none of them contains lock? - close? - armedOn! allows two conclusions: The
fault is not located at the armedOn! signal and it is state dependent. The fault
is either located in the close? signal, when triggered from the initial state, or in
the lock? signal, when triggered from the closed and unlocked state.

Since there is no possible output between the close? and the lock? signal, the
test cases cannot provide more information on the location of the bug.

However, using this information, one can discard all mutants with mutations
in the armedOn! signal, further reducing the 17 mutants to 11. This is how-
ever the first step that requires manual input, while the execution so far can be
done automatically. Table 1 presents the implementation faults represented by
the remaining mutant diagnoses. The bold row shows the model mutant repre-
senting the actual implementation fault, which could easily be found with this
information.

7.2 Experiment 2

Part of the second experiment has already been discussed in the introduction,
yet here we present the full results. The exact fault is shown in Listing 1.2.
The switch condition for the silent and open state in the mutated unlock signal
(Line 3) has been negated and can never evaluate to true, hence the unlock
method has no effect after the alarm went silent.

Listing 1.2. Code mutation of the unlock? signal. The switch condition cannot eval-
uate to true, because of the incorrect negation.
1 public void Unlock () {
2 switch (m_state) {
3 case -CarAlarmSystemState.SilentAndOpen :
4 SetState (CarAlarmSystemState.OpenAndUnlocked);
5 break;
6 ...

62 B.K. Aichernig, K. Hörmaier, and F. Lorber

Our initial test case was produced randomly with a length of 50 and is able
to kill our faulty implementation. The tioco - conformance check between the
model mutants and the test case reduced the total amount of mutants to 127,
taking 742 seconds. Hence, 169 mutants were disregarded because the test case
did not cover any unspecified output on them.

In the next step, we produced the corresponding test cases with our model-
based mutation testing technique, obtaining 127 test cases in 68 seconds. Due to
the fact that the mutation is not easy to reach, only 2 of the test cases were able
to kill the faulty implementation, therefore only two mutant diagnoses remained
in the final set. One of them can be seen in Figure 2(b). It was produced with the
”self loop” mutation operator, applied to the unlock? transition leaving the silent
and open state. ”Self loop” mutations mimic the behavior of implementation
faults that disable the functionality of a signal. The second mutant diagnosis
remaining was created via the ”Negate Guard” mutation operator, disabling the
guard of the unlock? signal. Both diagnoses are valid explanations for the faulty
behavior.

7.3 Average Results

Applying the whole procedure to a faulty implementation took an average of 835
seconds. The final set of mutant diagnoses contained an average of 13 mutants.
The reason for this value to be so high is that in black box methods at least one
observable has to be reached before a difference in behaviour can be detected.
Consequently, the minimal length of a test case for the CAS is three and most
implementation faults that lie within these three steps show the same behav-
ior with respect to tioco. Therefore, all model mutations that lie within these
steps are seen as possible explanations for the faults. Faults that are harder to
reach and therefore usually harder to detect, can be identified far better by our
approach.

An average of 14 mutants were selected as diagnoses for the timed faults of
the six manually created faulty implementations. Several of these diagnoses con-
tained mutations of the (time dependent) guard of the transition and mutations
on the time invariant. This shows that MBMD also supports the debugging of
timing faults. Table 2 shows the relation between the faulty implementations and
the amount of mutant diagnoses produced by them. The nine faulty implemen-
tations that produce 30 possible mutant diagnoses all contain a fault introduced
within the first three transitions. The last row shows the average length of the

Table 2. Characteristics of the generated mutant diagnoses and minimal test cases.
E.g. for nine of the faulty implementations we produced 30 diagnoses, that could be
reached via test cases of length three, while for five of the faulty implementations one
diagnosis was enough.

Faulty implementations 9 1 1 3 1 4 1 2 3 4 2 1 5 2 5 Avg.

Mutant diagnoses 30 29 28 17 16 13 10 9 8 7 6 5 3 2 1 12.65

Avg. length of minimal TCs 3 3 3 3 3 3 10 9 8 6.5 4 11 3 13 4.6 4.95

Debugging with Timed Automata Mutations 63

minimal test cases per cardinality of the diagnosis set. It highlights the fact that,
in general, deeper faults generate fewer possible explanations.

8 Conclusion and Future Work

We proposed a model-based debugging technique, combining debugging and test-
ing and presented a framework implementing the whole technique. We illustrated
the approach by applying it to a Car Alarm System to locate automatically in-
troduced faults and presented the first promising results.

The technique can illustrate the type and location of implementation faults
at the model level. It returns a set of mutant diagnoses (model mutants) that
explain why a given test case failed. For the Car Alarm System, it reduces the
number of possible diagnoses from 296 to an average of 13 for each of the faulty
implementations. Interestingly, for faults that only occur after long execution
traces and are therefor usually harder to locate, the number of diagnoses is
below average. The process does not need access to the source code during the
first four out of five steps. Hence, it can be started even if the source code is
not yet accessible. Experiments showed that timing faults can be identified as
accurate as standard faults.

Since the approach is novel, there are still several topics we want to address in
future work: in the next step we will refine our mutation operators and elaborate
the correspondence between model mutants and implementation faults. We also
want to examine the performance of our technique on more complex examples.
A very promising point for future improvement would be switching from posi-
tive to negative test cases. While negative test cases are too restrictive for our
model-based mutation testing approach, this restriction would be very benefi-
cial for debugging. It would allow a more fine-grained matching between faulty
implementations and model mutants, consequently reducing the set of mutant
diagnoses. We also believe the technique could be combined with other debug-
ging or testing methods. It can detect the location and possible fault type, which
can then be investigated in detail by the other testing / debugging methods.

Acknowledgement. The research leading to these results has received fund-
ing from the ARTEMIS Joint Undertaking under grant agreements No 269335
and No 332830 and from the Austrian Research Promotion Agency (FFG) un-
der grant agreements No 829817 and No 838498 for the implementation of the
projects MBAT, Combined Model-based Analysis and Testing of Embedded Sys-
tems and CRYSTAL, Critical System Engineering Acceleration.

References

1. Aichernig, B.K., Brandl, H., Jöbstl, E., Krenn, W.: Efficient mutation killers in
action. In: ICST, pp. 120–129 (2011)

2. Aichernig, B.K., Brandl, H., Jöbstl, E., Krenn, W.: UML in action: A two-layered
interpretation for testing. ACM SIGSOFT SEN 36(1), 1–8 (2011)

64 B.K. Aichernig, K. Hörmaier, and F. Lorber

3. Aichernig, B.K., Lorber, F., Ničković, D.: Time for mutants - model-based mutation
testing with timed automata. In: Veanes, M., Viganò, L. (eds.) TAP 2013. LNCS,
vol. 7942, pp. 20–38. Springer, Heidelberg (2013)

4. Aichernig, B.K., Lorber, F., Ničković, D.: Model-based mutation testing
with timed automata. Technical Report IST-MBT-2013-02, TU Graz (2013),
http://www.ist.tugraz.at/aichernig/publications/papers/IST-MBT-2013-02

.pdf
5. Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2),

183–235 (1994)
6. Brillout, A., He, N., Mazzucchi, M., Kroening, D., Purandare, M., Rümmer, P.,

Weissenbacher, G.: Mutation-based test case generation for Simulink models. In:
de Boer, F.S., Bonsangue, M.M., Hallerstede, S., Leuschel, M. (eds.) FMCO 2009.
LNCS, vol. 6286, pp. 208–227. Springer, Heidelberg (2010)

7. DeMillo, R.A., Lipton, R.J., Sayward, F.G.: Hints on test data selection: Help for
the practicing programmer. Computer 11(4), 34–41 (1978)

8. He, N., Rümmer, P., Kroening, D.: Test-case generation for embedded Simulink
via formal concept analysis. In: DAC, pp. 224–229 (2011)

9. Jia, Y., Harman, M.: An analysis and survey of the development of mutation
testing. IEEE Transactions on Software Engineering 37(5), 649–678 (2011)

10. Krenn, W., Ničković, D., Tec, L.: Incremental language inclusion checking for net-
works of timed automata. In: Braberman, V., Fribourg, L. (eds.) FORMATS 2013.
LNCS, vol. 8053, pp. 152–167. Springer, Heidelberg (2013)

11. Krichen, M., Tripakis, S.: Conformance testing for real-time systems. Formal Meth-
ods in System Design 34(3), 238–304 (2009)

12. Larsen, K.G., Pettersson, P., Yi, W.: Uppaal in a nutshell. STTT 1(1-2), 134–152
(1997)

13. Mayer, W., Stumptner, M.: Model-based debugging - state of the art and future
challenges. Electr. Notes Theor. Comput. Sci. 174(4), 61–82 (2007)

14. Mayer, W., Stumptner, M.: Evaluating models for model-based debugging. In:
ASE, pp. 128–137. IEEE (2008)

15. de Moura, L., Bjørner, N.S.: Z3: An efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

16. Nica, M., Nica, S., Wotawa, F.: Does testing help to reduce the number of po-
tentially faulty statements in debugging? In: Bottaci, L., Fraser, G. (eds.) TAIC
PART 2010. LNCS, vol. 6303, pp. 88–103. Springer, Heidelberg (2010)

17. Reiter, R.: A theory of diagnosis from first principles. Artif. Intell. 32(1), 57–95
(1987)

18. Schlick, R., Herzner, W., Jöbstl, E.: Fault-based generation of test cases from UML-
models: Approach and some experiences. In: Flammini, F., Bologna, S., Vittorini, V.
(eds.) SAFECOMP2011. LNCS, vol. 6894, pp. 270–283. Springer, Heidelberg (2011)

19. Schmaltz, J., Tretmans, J.: On conformance testing for timed systems. In: Cassez,
F., Jard, C. (eds.) FORMATS 2008. LNCS, vol. 5215, pp. 250–264. Springer,
Heidelberg (2008)

20. Tretmans, J.: Model based testing with labelled transition systems. In: Hierons,
R.M., Bowen, J.P., Harman, M. (eds.) FORTEST. LNCS, vol. 4949, pp. 1–38.
Springer, Heidelberg (2008)

21. Tretmans, J.: Test generation with inputs, outputs and repetitive quiescence. Soft-
ware - Concepts and Tools 17(3), 103–120 (1996)

22. Wotawa, F.: On the relationship between model-based debugging and program
mutation. Artificial Intelligence 135, 2002 (2001)

http://www.ist.tugraz.at/aichernig/publications/papers/IST-MBT-2013-02.pdf
http://www.ist.tugraz.at/aichernig/publications/papers/IST-MBT-2013-02.pdf

Systematic Derivation of Functional Safety
Requirements for Automotive Systems

Kristian Beckers1, Isabelle Côté2, Thomas Frese3,
Denis Hatebur1,2, and Maritta Heisel1,�

1 Universität Duisburg-Essen, Germany, Fakultät für Ingenieurwissenschaften
{kristian.beckers,maritta.heisel}@uni-due.de
2 Institut für technische Systeme GmbH, Germany

{i.cote,d.hatebur}@itesys.de
3 Ford Werke GmbH
tfrese@ford.com

Abstract. The released ISO 26262 standard for automotive systems
requires breaking down safety goals from the hazard analysis and risk
assessment into functional safety requirements in the functional safety
concept. It has to be justified that the defined functional safety require-
ments are suitable to achieve the stated safety goals. In this paper, we
present a systematic, structured and model-based method to define func-
tional safety requirements using a given set of safety goals. The ratio-
nale for safety goal achievement, the relevant attributes of the functional
safety requirements, and their relationships are represented by a UML
notation extended with stereotypes. The UML model enables a rigor-
ous validation of several constraints expressed in OCL. We illustrate our
method using an example electronic steering column lock system.

1 Introduction

The automotive standard for road vehicles ISO 26262 [1], released in 2011, is seen
as an automotive industry standard for developing functional safety systems, be-
cause it offers the ability to achieve a consistent functional safety process. Its
scope covers electronic and electric (E/E) systems for vehicles with a max gross
weight up to 3500 kg. Since ISO 26262 is a risk-based functional safety standard
addressing malfunctions, its process involves a hazard analysis to determine the
necessary risk reduction to achieve an acceptable level of risk. In [2], we described
how to define safety goals with an automotive safety integrity level (ASIL) that
describes this necessary risk reduction. According to ISO 26262, the next step
is to break down these safety goals into functional safety requirements. It has
to be justified that the defined functional safety requirements are suitable to
achieve the stated safety goals. Functional safety concepts in practice are cur-
rently document-based using text processing and drawing tools such as Microsoft

� Part of this work is funded by the German Research Foundation (DFG) under grant
number HE3322/4-2 and the EU project Network of Excellence on Engineering Se-
cure Future Internet Software Services and Systems (NESSoS, ICT-2009.1.4 Trust-
worthy ICT, Grant No. 256980).

A. Bondavalli and F. Di Giandomenico (Eds.): SAFECOMP 2014, LNCS 8666, pp. 65–80, 2014.
c© Springer International Publishing Switzerland 2014

66 K. Beckers et al.

Word and Visio. In this paper, we present a systematic, structured and model-
based method to define functional safety requirements using a given set of safety
goals. The rationale for safety goal achievement, the relevant attributes of the
functional safety requirements, and their relationships are represented by using
UML notation [3] extended by stereotypes. The UML models enable a rigorous
validation of several constraints expressed in the Object Constraint Language
(OCL) [4]. Our method is applied to an electronic steering column lock system,
serving as illustrative example.

For the break-down of safety goals into functional safety requirements, the ISO
26262 gives no dedicated guidance. It only defines requirements on the content of
the documentation. Performing such a break-down is a challenging task because:

– A sound rationale has to be provided.
– Assumptions have to be handled appropriately.
– For the functional safety requirements, the necessary attributes depending

on the requirement type have to be defined.
– The functional safety requirements have to be implementable.
– Review activities have to be performed.

In this paper, we propose a structured method based on UML environment mod-
els supported by a tool. We assume that an item definition, hazard analysis, risk
assessment and safety goals according to ISO 26262 are given (see e.g. [2]). In
this paper, we focus on the next step: the creation of a functional safety concept
(FSC) in which we show how the functional safety requirements are systemati-
cally derived. In the FSC, additionally, requirements may be decomposed in order
to lower the ASIL. Furthermore, the functional safety requirements are allocated
to elements of a preliminary architecture. These aspects are appropriately de-
scribed in the ISO 26262 and need no further explanation and improvement
and are, therefore, not part of this paper. The contribution of our paper can be
summarized as follows:

Rationales are given that show that all safety goals are fulfilled if the require-
ments are realized, as required by ISO 26262. This will be achieved by using
the goal structuring notation with patterns for several solution strategies.

Assumptions are generated based on different sources. It has to be ensured
that these assumptions are valid. This is ensured by generating require-
ments with corresponding descriptions of validation and verification (V&V)
activities for them.

Only relevant attributes are described by the developer. This is achieved by
classifying the requirements into different categories and by defining, which
attributes are required, which are optional, and which should be left out
according to the category.

UML profile for expressing all elements of a functional safety concept is
created in compliance with ISO 26262 making it possible to apply all already
mentioned aspects. The profile also provides the basis for validation checks
written in OCL.

OCL validation checks concerning consistency and correctness of the
functional safety concept are set up. Thus, we provide a computer-aided
technique to discover errors in the hazard analysis caused by finding incon-
sistencies or errors in one or more of the UML models.

Systematic Derivation of Functional Safety Requirements 67

Functional safety concept document can be generated by the tool, based
on the information contained in our UML models. The resulting documen-
tation can then be used for reviewing purposes.

Our paper is organized as follows. The goal structuring notation is introduced
in Sect. 2.1. In Sect. 2.2, we give a brief overview of ISO 26262. Our method is
presented in Sect. 3. This section also describes our UML profile, which is used
to express the functional safety concept. Based on this profile, we define the
validation conditions. The tool support is outlined in Sect. 4. We introduce the
illustrative example of an electronic steering column lock system as case study
in Sect. 5. Section 6 presents related work, while Sect. 7 concludes the paper and
gives directions for future work.

2 Background

This section introduces the notation used to derive and justify functional safety
requirements (Sect. 2.1. It also provides a short reference to the standard used
in this paper (Sect. 2.2).

2.1 Goal Structuring Notation

The Goal Structuring Notation (GSN)[5] - a graphical argumentation notation -
explicitly represents the individual elements of any safety argument (goal, strat-
egy, assumption, justification, context, and requirements) and – perhaps more
significantly – the relationships that exist between these elements, i.e., how indi-
vidual requirements are supported by specific strategies, and the assumed con-
text that is defined for the argument.

In the Functional Safety Concept, GSN is used to provide an argument for
Functional Safety Requirements starting from Safety Goals, thus also provid-
ing the means to check the consistency between Safety Goals and Functional
Safety Requirements. In Fig. 1, the GSN elements and their usage for Func-
tional Safety are depicted [6,7]. The “claim” of the argumentation is the (Safety)
Goal (e.g. SG03). The Strategy expresses the rationale how the goal is addressed
by subgoals or functional safety requirements (e.g. ESCL-F-S-Req 03). Sub-Goals
represent an intermediate step between safety goals and functional safety require-
ments. Relationships between these elements are expressed with supported by,

Fig. 1. GSN Notation Overview

68 K. Beckers et al.

 e
xt

er
n

al
 in

p
u

t
m

et
h

od
in

p
u

t/
ou

tp
u

t

3. Check for
Completness of
Requirements

5. Allocate
requirements to the

preliminary
architecture

6. Perform safety
analysis,

simulation, and
test

4. ASIL
Decomposition

1. Break down
safety goals

2. Specify all
applicable

attributes of the
requirements

Goal-Structure

Safety
Goals

UML4PF Profile
including GSN
extensions

Strategy
Patterns

Refined
Safety
Requirements

Preliminary
Architecture

Safety Analysis,
Simulation, and
Test

Allocation

7. Verification
and Integrity

Checks

Review
Results

Fig. 2. Method for Functional Safety Concept Creation

optional and alternatives with the element for M out of N. For a goal, strategies,
subgoals, functional safety requirements, Context, Justifications, and Assump-
tions can be defined. These relationships are annotated using in context of.

Goal structures might reach a size that is hard to fit on a page. To split such
a big structure into several smaller ones, we introduced two additional reference
elements (see “W&RC3” in Fig. 1).

2.2 ISO 26262

ISO 26262 is a risk-based functional safety standard intended to be applied
to safety-related systems that include one or more E/E systems and that are
installed in series productions of passenger cars It addresses possible hazards
caused by malfunctions of E/E safety-related systems, including the interaction
of these systems.

ISO 26262 was derived from the generic functional safety standard ISO/IEC
61508 [8]. It is aligned with the automotive safety life-cycle including specifica-
tion, design, implementation, integration, verification, validation, configuration,
production, operation, service, decommissioning, and management. ISO 26262
provides an automotive-specific risk-based approach for determining risk classes
that describe the necessary risk reduction for achieving an acceptable residual
risk, called automotive safety integrity level (ASIL).

The possible ASILs are QM, ASIL A, ASIL B, ASIL C, and ASIL D. The
ASIL requiring the highest risk reduction is ASIL D. For functions with ASIL
A, ASIL B, or ASIL C, fewer requirements on the development processes, safety
mechanisms, and evidences are required. In case of a QM rating, the normal
quality measures applied in the automotive industry are sufficient.

3 Method for Functional Safety Concept

Wepropose amethod to create a functional safety concept according to ISO 26262.
The aim of the analysis is to break down the generic safety goals into functional
safety requirements and allocate them to logical elements of a preliminary archi-
tecture. Figure 2 depicts an overview of our method consisting of seven steps. Each
step is described in the subsequent paragraphs.

Systematic Derivation of Functional Safety Requirements 69

Fig. 3. UML Profile for Goal Structuring Notation Elements

1. Break-down safety goals into functional safety requirements
ISO 26262 requires that the safety goals from the hazard analysis [2] are broken-
down into functional safety requirements. This can be documented using the
goal structuring notation (see Sect. 2.1). Figure 3 shows the UML profile for
the elements of a goal structure. Throughout several projects, it was possible to
detect recurring patterns while setting up goal structures. These patterns were
transformed into so-called strategy patterns. One of these patterns being used in
Ford projects, is the use of independent sources to obtain certain information,
e.g., the vehicle speed and the ignition status can be used for detecting stand-
still. Further patterns can be found in [9]. The stereotypes for (�SafetyGoal�,
�SubGoal�, as well as sub-types of �FunctionalSafetyRequirement�) includ-
ing their respective attributes, are shown in Fig. 4. These elements are explained
in more detail in Step 2 of our method. The goal structures document the justifi-
cation that the functional safety requirements are suitable to address the safety
goals obtained from the hazard analysis and risk assessment. They include all
assumptions necessary to address the respective safety goal. For better readabil-
ity, the names of the elements in the goal structure (i.e. safety goal, subgoal,
strategy, assumption, context, justification, functional safety requirement or its
sub-types) are unique. To verify that, the condition 1M01UE1 has been formu-
lated (see Tab. 4). According to [6] and [7], not all elements can be connected
with each other. The relationships between the different elements are realized as
follows:

– classes with the stereotypes �SafetyGoal�, �SubGoal�, or �Strategy�
are connected to classes with stereotypes �SubGoal�, �Strategy�, or sub-
types of�FunctionalSafetyRequirement� by dependencies starting from the
former and pointing to the latter. This is checked by condition 1M02DG.
Furthermore, we check that two strategies are not directly connected to
each other (see Tab. 4, 1M03DS).

– �Justification�, �Context�, and �Assumption� are connected to
�SafetyGoal�, �SubGoal�, �Strategy� or sub-types of �Functional-
SafetyRequirement� by dependencies starting from the former pointing to
the latter. This is verified by condition 1M04DC.2

1 The first number refers to the step in the procedure, C is for consistency checks, M
is for checks considering correct modeling, G is for generation, the next number is
the number of the check within the step, and the last characters are an abbreviation
of the description.

2 In the following, references to validation conditions are given in parentheses.

70 K. Beckers et al.

Fig. 4. Elements for Safety Requirements

2. Specify all applicable attributes of the requirements
The requirements developed in Step 1 must to be refined. We support Step
2 with a UML profile that can be used to express the different requirement
types. Figure 4 shows the part of our profile that is used to express the different
requirement types. A class with the stereotype �Requirement� is used to de-
scribe the requirements in general. Safety requirements (�SafetyRequirement�)
are – according to ISO 26262 – special requirements with additional attributes
for ASIL and safe states. Safety Goals (�SafetyGoal�) are top-level safety re-
quirements. A �SubGoal� (not being defined in the ISO 26262) is used in
goal structures to structure the argumentation. Functional safety requirements
(�FunctionalSafetyRequirement�) are special safety requirements. They de-
scribe the functionalities to achieve the safety goals from a functional perspec-
tive without any technical details, such as CAN messages. Each functional safety
requirement addresses a set of safety goals (sg), is valid for a given set of op-
erating modes (omM) and should have a purpose (purpose) that may be simi-
lar to the strategy or subgoal above. To define functional safety requirements
that can be verified, e.g., by testing, the method for verification (vVMethod)
and the acceptance criteria (vVAcceptanceCriteria) should be defined. The sub-
goals or the strategies being supported by the functional safety requirement
must be documented. It is important that operating mode, purpose, text, vali-
dation and verification method, and acceptance criteria are set for all functional
safety requirements (see Tab. 4, 2M01RA). The attributes strategy or subGoal of
a �FunctionalSafetyRequirement� can be automatically set based on the infor-
mation in the goal structure by following the dependencies with the stereotypes
�supportedBy�, �alternativelySupportedBy� and �optionallySupportedBy�
(see Tab. 4, 2M02SG and 2M03SS).

Based on our experience it is helpful to structure the functional safety re-
quirements according to the following categories:
– general requirements,
– safety-related function requirements,
– emergency operation requirements,
– fault reaction: user information requirements,
– fault reaction: recovery requirements, and
– decomposition requirements.

Systematic Derivation of Functional Safety Requirements 71

General requirements (�GeneralRequirement�) could be generic require-
ments to electronic or electric elements, requirements to elements of other tech-
nologies, external measures, or other requirements, e.g., requirements addressing
assumptions. For general requirements, it should be possible to define a fault
tolerant time (ftt) and the emergency operation interval (emergencyOpInterval).
The fault tolerant time defines the period of time between the occurrence of a
functional fault and this fault actually becoming dangerous (if it remains un-
detected). If a safe state cannot be reached by a transition within an accept-
able time interval, an emergency operation time interval and a reference to the
emergency operation requirement shall be specified. We define general safety
requirements for all assumptions to ensure that they are validated or verified.
Assumptions are defined

– in the hazard analysis to focus the scope of the analysis to a dedicated vehicle
line,

– in the risk assessment on actions of driver or other persons involved to ensure
controllability,

– in the rationale for safety goal fulfillment, and
– in the analysis of driver or other persons involved given in the hazard analysis

and risk assessment.

Note that it is not necessary to define an ASIL for all general safety requirements,
e.g., if they treat external measures or elements of other technologies, no ASIL
is required.

We define at least one safety-related function requirement (�SafetyRelated-
FunctionRequirement�) for each safety goal. Safety related-functions include
the requirement, the functionality itself, the fault detection requirement and a
description of the reaction in case of a detected fault, including transition to
a safe state. In addition to the fault tolerant time and the emergency opera-
tion interval, a description of actions by the driver or other persons involved
(descriptionOfDriverOtherPersonsAction) and validation criteria for these actions
(validationCriteriaForActions) can be added. For safety-related function require-
ments, it is required to specify the ASIL, at least one safe state, and the fault
tolerant time (see Tab. 4, 2M04RA).

If an emergency operation interval is specified, we define the corresponding
emergency operation requirement (�EmergencyOperationRequirement�) with
the same kind of attributes and conditions as the safety-related function require-
ment (see Tab. 4, 2M05RA).

If a safe state is entered, usually the driver should be informed. This part
of the fault reaction can be defined by user information requirements (�Fault-
ReactionUserInformationRequirement�). For user information requirements,
the fault tolerant time, a description of actions by the driver or other persons
involved, and validation criteria for these actions can be added. For user informa-
tion requirements, it is required to specify at least one safe state, and a descrip-
tion of actions by the driver or other persons involved (see Tab. 4, 2M06RA).

Additionally, the safe state shall be maintained, i.e., the condition for leav-
ing the safe state shall be defined by a fault reaction recovery requirement
(�FaultReactionRecoveryRequirement�). These requirements shall refer to at
least one safety goal and the safe state that may be left (see Tab. 4, 2C07RA).

72 K. Beckers et al.

ASIL decomposition requirements (�DecompositionRequirement�)
with fault tolerant time are specified in Step 4. These requirements shall re-
fer to at least one safety goal (see Tab. 4, 2M08RA).

3. Check for completeness of defined requirements
It is important that the functional safety concept is complete. The following
criteria can be used to reach this aim:

– for each safe state at least one safety-related function is defined,
– for each assumption at least one general safety requirement is defined,
– for each safe state emergency operation requirement, user information re-

quirements and recovery requirements are defined if, applicable,
– all relevant operating modes are referred to by requirements, and
– requirements necessary to ensure controllability referring to technical means

or controls necessary for driver (or other persons involved) actions are iden-
tified.

For each safe state, the conditions and the transition to enter this safe state
have to be specified. This is achieved by specifying a safety-related function
requirement. It can be checked automatically that for each safe state at least
one safety-related function requirement is defined (see Tab. 4, 3C01SS) and
that for each assumption at least one general safety requirement is defined (see
Tab. 4, 3C02AS).

For each safe state and strategy/subgoal-combination, emergency operation
requirements, user information requirements, and recovery requirements shall
be defined, if applicable. This can be checked by an engineer. The engineer is
supported by a table containing all references (see Tab. 4, 3G03SS).

It is important to maintain the consistency of the model of the system to be
developed. Therefore, each relevant operating mode shall be referred to by a set of
safety-related function requirements. This must be checked by an engineer. The
engineer is supported by a table containing all references (see Tab. 4, 3G04OR).

The engineer has to check if all requirements necessary to ensure controllabil-
ity are identified. These requirements may refer to technical means or controls
necessary for the driver (or other persons involved) to perform necessary actions.
To perform this step, the engineer has to check the controllability rationales in
the risk assessment. The engineer is supported by a table containing controlla-
bility rationales (see Tab. 4, 3G05CR). Using this table, the engineer documents
appropriate assumptions.

The automated checks mainly cover the consistency of the model. The content
of a requirement (e.g., if the requirement text as such is correct and appropriate)
has to be verified manually by the engineer.

4. ASIL decomposition
To lower the ASIL for certain components, ASIL decomposition (described ap-
propriately in ISO 26262) can be applied. The necessary requirement category
(�ASILDecompositionRequirement�) has been defined as part of Step 2. In
this step, the values for this category are set. The decomposed requirements
have a lower ASIL for the technical realization, but the processes have to be es-
tablished for the original ASIL. This is indicated by providing the original ASIL
in parentheses behind the lowered one, e.g. ASIL A(D) (see Fig. 4).

Systematic Derivation of Functional Safety Requirements 73

5. Allocation of Requirements
ISO 26262 requires that the functional safety requirements are allocated to
the logical blocks in the preliminary architecture. The allocation supports the
next document, in which technical safety requirements are generated for dedi-
cated elements (e.g., electronic control units). The allocation can be performed
according to safety capabilities, technical complexity of logical blocks, and to
commonality of logical blocks with existing requirements. To document this al-
location, our UML profile defines the stereotype �LogicalElement� for classes
and the stereotype �allocatedTo� for dependencies. The dependencies with
the stereotype �allocatedTo� point from classes with the stereotype with a
subtype of �FunctionalSafetyRequirement� assigned to classes with stereotype
�LogicalElement� (see Tab. 4, 5M01AR).
6. Safety Analysis, Simulation, and Test
ISO 26262 requires to perform safety analysis, simulation, and test. This is
beyond the scope of this paper. However, some of the ISO 26262 requirements
for this safety analysis are covered by the goal structures set up in Step 1.
7. Verification Review
ISO 26262 requires to perform a verification review of the functional safety
concept. This must be performed by a different person who knows the technology
of the system-to-be. This is supported by some of the OCL validation constraints
in Tab. 4 and the generation of a structured document from the model.

4 Tool Support

We used a tool called UML4PF, developed at the University of Duisburg-Essen,
and integrated support for the method to create a functional safety concept as
described in Sect. 3. After the developer has drawn some diagram(s) using an
EMF-based editor, for example Papyrus UML [10] and applied our stereotypes,
UML4PF provides him or her with the following functionality: it checks if the
developed model is valid and consistent by using our OCL constraints described
in Table 4, it returns the location of invalid parts of the model, and it generates
documentation that can be used for (manual) validation and review activities.

Basis for the tool is the Eclipse platform [11] together with its plug-ins EMF
[12] and OCL [4]. Our UML profile is conceived as an Eclipse plug-in, extending
the EMF meta-model. The OCL constraints are integrated directly into the
profile. Thus, it is possible to automatically check the constraints using the
validation mechanisms provided by Eclipse.

1 Dependency . a l l I n s t a n c e s () −>select (
2 ge tApp l i edSte reotypes () . name −>includes (’ supportedBy ’) or
3 getApp l i edSte reotypes () . name

−>includes (’ a l te rnat ive lySupportedBy ’) or
4 getApp l i edSte reotypes () . name −>includes (’ optional lySupportedBy ’)
5) −>forAll (f |
6 (source . ge tApp l i edSte reotypes () . name −>includes (’ SafetyGoal ’) or
7 source . ge tApp l i edSte reotypes () . name −>includes (’ SubGoal ’) or
8 source . ge tApp l i edSte reotypes () . name −>includes (’ Strategy ’)) and
9 (ta rge t . ge tApp l i edSte reotypes () . name −>includes (’ SubGoal ’) or

10 ta rge t . ge tApp l i edSte reotypes () . name −>includes (’ Strategy ’) or
11 ta rge t . ge tApp l i edSte reotypes () . g en e ra l . name

−>includes (’ FunctionalSafetyRequirement ’)))

Listing 1.1. Validation Condition 1M02DG

74 K. Beckers et al.

Fig. 5. Goal Structure for SG01 of ESCL

Usually, we consider only one feature at a time in a project. However, it is
our believe, that even if all safety related features of a vehicle would be consid-
ered in one project, it could be handled by the Eclipse platform running on an
appropriate computer.

For example, the OCL expression in Listing 1.1 checks that supporting depen-
dencies connect appropriate elements. To perform the check, it first selects all
dependencies (in Line 1) with the either one of the stereotypes �supportedBy�,
�alternativelySupportedBy� or �optionallySupportedBy� applied (using the
EMF keyword getAppliedStereotypes in Lines 2-4). For each of the dependencies
matching the stereotypes, it checks if it points from (using the EMF keyword
source in Lines 6-8) �SafetyGoal�, �SubGoal�, or �Strategy� to (using the
EMF keyword target in Lines 9-11) �SubGoal�, �Strategy�, or sub-types of
�FunctionalSafetyRequirement� (using the EMF keyword general in Line 11).

The other validation conditions given in Table 4 are implemented in a similar
way.

5 Case Study

Our case study is an electronic steering column lock (ESCL) system, which
was presented at the “VDA Automotive SYS Conference 2012”, June 18/20,
2012, Berlin, Germany and at the VDI Conference “Baden-Baden Spezial 2012”,
October 10/11, 2012, Baden-Baden, Germany. Item definition, hazard analysis,
risk assessment and the safety goals exist. More details on this topic can be
found in [2]. We show the applicability of our method by executing the method
steps to the ESCL-example.

Systematic Derivation of Functional Safety Requirements 75

Fig. 6. Goal Structure for Warning and Recovery Concept for SG01 of ESCL

1. Break down safety goals into functional safety requirements
Starting from the safety goals (derivation described in [2]), the goal structures
are created. The goal structure in Fig. 5 is created using the pattern “use in-
dependent sources” for standstill detection with the appropriate justification (J
01.1) and strategy (S 01.2) to monitor the actuator. Context 01 refers to the
situation in which safety is relevant. References to other diagrams are depicted
as gray-shaded classes as means to indicate that the diagram is split-up.

Subgoal 01.1.1 and requirement ESCL-F-S-Req01 considering vehicle speed
to detect vehicle movement are depicted. Subgoal 01.1.2 considering the ignition
status is treated in a different diagram.

Strategy 01.1.1.1 refers to the warning and recovery concept of ESCL-F-S-
Req01 and is shown in Fig. 6. In the warning and recovery concept, the context
is the safe state that is established by ESCL-F-S-Req01. In the corresponding
goal structure given in Fig. 6, a requirement for user information in case of
prevented locking and a recovery requirement defining the conditions for entering
the normal operation state again, are identified (ESCL-F-S-Req09 and ESCL-F-
S-Req10, respectively).
2. Specify all applicable attributes of the requirements
Several requirements have been derived in Step 1. For all of them, it is necessary
to specifiy the all relevant attributes. These attributes can be detailed by using
a table or to generate such a table. Such a requirement table depicted in Tab. 1.
It contains all attributes relevant to ESCL-F-S-Req01.
3. Check for completeness of defined requirements
After defining all attributes of the functional safety concept, it is automatically
checked that for each safe state at least one safety-related function is defined
and that for each assumption at least one general safety requirement exists by
executing Conditions 3C01SS and 3C02AS (see Tab. 4).

To check that for each safe state and strategy/subgoal-combination, all rele-
vant requirement categories have been considered, Tab. 2 was generated auto-
matically (see Tab. 4, 3G03SS) to support the manual completeness check.

An operating mode overview (see Tab. 4, 3G04OR) can be generated from the
functional safety concept information. Additionally, a controllability rationale

76 K. Beckers et al.

Table 1. Attributes of ESCL-F-S-Req01

Safety Req-ID3 ESCL-F-S-Req01 Strategy/Subgoal 01.1.1
Safety Goal Ref. SG01, SG02 Operating Modes Steering column unlocked
ASIL Classification
(if applicable)

C (D) Safe State
(if applicable)

ESCL off; Steering column
unlocked

Functional Safety Requirement The steering column shall only be locked if the physical vehi-
cle speed information is valid (correct and in time) and the ab-
solute value is lower than PERMITTED LOCKING SPEED for
VS QUALIFICATION TIME. Invalid vehicle speed information shall
be detected. The PERMITTED LOCKING SPEED shall be such
that locking below this speed is not dangerous. 4

Purpose To prevent steering column locking while vehicle is moving at speed
and steering is required.

Fault Tolerant Time interval
(if applicable)

VS QUALIFICATION TIME for vehicle speed faults

Reduced Functionality interval
(if applicable)

n/a

Functional Redundancies (e.g. fault tol-
erance) (if applicable)

No

Description of actions of the driver or
other endangered persons (if applicable)

n/a

Validation Criteria for these actions
(if applicable)

n/a

V&V method Set vehicle speed > PERMITTED LOCKING SPEED while ig-
nition status = ignition off. Set vehicle speed < PERMIT-
TED LOCKING SPEED. Fault insertion of vehicle speed signal.

V&V acceptance criteria Steering column is not locked until vehicle speed is valid
and for VS QUALIFICATION TIME below PERMIT-
TED LOCKING SPEED.

overview table (see Tab. 4, 3G05CR) can be generated from risk assessment
information. Both tables support reviews by engineers.

4. ASIL decomposition
It is possible to lower the ASIL assigned to SG01. The following decomposition
of ASIL D was chosen:

– an ASIL C(D) for no locking in case of vehicle speed,
– an ASIL A(D) for no locking if the ignition status shows that ignition is on,

and
– the ASIL decomposition requirement with ASIL D that excludes dependen-

cies between vehicle speed and ignition status.

The decomposition is performed according to ISO 26262.

5. Allocation of Requirements
The functional safety requirements are allocated to the elements of the prelim-
inary architecture. This can be done with UML diagrams as depicted in Fig. 7.
From these diagrams, an allocation table as depicted in Table 3 can be generated.

7. Verification Review
To support the reviews, the validation conditions listed in Tab. 4 are executed
on the complete case study. These validation conditions check the consistency
and correctness of the model. That is, we check

– that all necessary attributes are defined and
– the functional safety concept is complete with respect to the safety goals.

3 Req-ID = name of the class.
4 The value for VS QUALIFICATION TIME is derived in later phases of the Func-
tional Safety Project (e.g. during creation of the Technical Safety Concept).

Systematic Derivation of Functional Safety Requirements 77

Table 2. Safe State and Requirement References

Safety
Goal
refer-
ence

Safe State Strategy
(S) or
Sub Goal
(SG) ref-
erence
(optional)

Safety Related
Functions With
this Safe State
reference

Reduced
Functional-
ity reference
(if applicable)

User Informa-
tion reference

Maintain Safe
State / Re-
covery to Nor-
mal Opera-
tion reference
(if applicable)

SG01 ESCL off;
Steering
Column
unlocked

1.1.1 (SG) ESCL-F-S-Req01 n/a ESCL-F-S-Req09 ESCL-F-S-Req10

1.1.2 (SG) ESCL-F-S-Req03
Steering
Column
unlocked
and fur-
ther locking
prevented

1.2 (S) ESCL-F-S-Req05 n/a ESCL-F-S-
Req05b

ESCL-F-S-Req05c

No engine
start al-
lowed due
to reduced
safety in-
tegrity

1.2.1 (SG) ESCL-F-S-Req05a n/a ESCL-F-S-
Req05b

ESCL-F-S-Req05c

Fig. 7. Allocation of Functional Safety
Requirements to Logical Elements

F
-S

-R
e
q
.
ID

R
e
q
.
te

x
t

A
S
IL

Subsys-
tem/
Component

K
V
M

P
o
w
e
r
L
in
e

K
-L

in
e

S
C
L

A
B
S

E
C
M

D
IM

P
o
w
e
r
B
u
t.

ESCL-F-S-Req01 . . . C (D) X X X
. . .

Table 3. Allocation of Functional Safety
Requirements to Logical Elements

6 Related Work

Basir, Denny, and Fischer [9] present goal structures for safety cases in the
automotive sector. They do not focus on the technical realization but consider
the entire safety process with their documents as entities.

Dittel and Aryus [13] present an overview of V&V activities at Ford Motor
Company applied for the lane keeping aid system. This paper also presents
elements of the process for functional safety according to ISO 26262, i.e. the
analysis activities.

Sinha [14] illustrates an example of a brake-by-wire system for road vehicles
including a safety and reliability analysis compliant to ISO 262626. The conclu-
sions derive suggestions for future projects, such as that the system architecture
of road vehicles shall support the detection of failures and have the means to
still provide desired services until the failures are repaired.

Palin et al. [15] provide guidelines for safety practitioners and researchers to
create safety cases compliant to the ISO 26262 standard. The authors propose

78 K. Beckers et al.

extensions of the Goal Structuring Notation, patterns, and a number of re-usable
safety arguments for creating safety cases. For confidentiality reasons, the au-
thors cannot show example instantiations of their patterns or generic arguments.

Conrad et al. [16] compares software tools that support ISO 26262 certifica-
tion. The authors identified a list a qualification requirements for selecting ISO
26262 support tools. The publication also contains a report about Conrad et
al.’s experience with these tools.

Hillebrand et al. [17] discuss how to develop electric and electronic archi-
tectures (EEA) compliant with the ISO 26262 standard. The authors focus on
safety requirements during early development phases. Hillenbrand et al. present
a method for eliciting safety requirements, and mapping their safety concerns to
functions of design artifacts. Previously, Hillebrand et al. [18] proposed a model-
based and tool- supported approach for the failure mode and effect analysis
(FMEA) of EAAs complaint to ISO 26262. The authors contribute a formalized
method for eliciting and analyzing data for a FMEA.

Habli et al. [19] propose a process for model-based assurance for justifying
automotive functional safety. They use SysML and GSN as graphical notations.
Their goal and ours is similar. We both want to support a method based on ISO
26262 to derive functional safety requirements. In contrast to their work, we use
UML, which gives us a broader spectrum of modeling possibilities. Furthermore,
we provide tool support for our method and equipped our approach with formal
consistency checks on the model. These checks can be automatically checked by
our tool. In addition, our way of modeling allows us to trace elements within our
models.

Born et al. [20] report on lessons learned from applying a model-based ap-
proach for ISO 26262 certification. The authors also discuss the advantages of
models instead of text in the ISO 26262 certification process.

7 Conclusions and Future Work

The method presented in this paper has been and currently is applied in several
Ford of Europe projects. However, the formal validation conditions and tool
support were and are not part of these projects. Both have been developed as
contribution of this paper. Still, we are confident that the validation conditions
in combination with the tool support ensure at least the same consistency and
correctness as the currently used approach, with the benefit of less effort needed.
Furthermore, the method is the logical next step to the work presented in [2].

Our contribution has the following main benefits:

– a structured and model-based approach for deriving functional safety con-
cepts for the automotive domain compliant to ISO 26262

– a UML profile to express all required elements for a functional safety concept
compliant to ISO 26262

– computer-aided validation of created UML models via executable OCL ex-
pressions, e.g., checks for correctness and completeness of the model

– enforcing considering adequate assumptions and safety reasoning by explic-
itly checking that these are present (by computers) and their soundness (by
human experts)

Systematic Derivation of Functional Safety Requirements 79

Functional safety concepts in practice are currently document-based using text
processing and drawing tools. If the documents are created using a UML tool,
the information can be checked for consistency and the document can be cre-
ated. With our method, a seamless integration into a model-based development
process is possible. In the future, we intend to apply our method and tool in
different projects. In addition, we plan to focus on technical safety requirements
generation and metric derivation.

Table 4. Validation Conditions

Step ID Condition
1 1M01UE Names of the elements in the goal structure (safety goal, subgoal, strategy, assumption,

context, justification, functional safety requirement or subtype) are unique.
1 1M02DG Dependencies with the stereotypes �supportedBy�, �alternativelySupportedBy� and

�optionallySupportedBy� point from classes with the stereotypes �SafetyGoal�,
�SubGoal�, or �Strategy� to �SubGoal�, �Strategy�, or subtypes of
�FunctionalSafetyRequirement�.

1 1M03DS A dependency between 2 strategies is not allowed.
1 1M04DC A dependency with the stereotype �inContextOf� point from classes with the stereo-

types �SafetyGoal�, �SubGoal�, or �Strategy� to �Justification�, �Context� or
�Assumption�.

2 2M01RA For each functional safety requirement and their subtypes: the operating mode is required
to be set, the purpose, the text, the validation and verification method, and its acceptance
criteria is required not to be empty.

2 2M02SG If the dependency with stereotypes �supportedBy�, �alternativelySupportedBy� or
�optionallySupportedBy� point from a class with stereotype �SubGoal� to a class with a
stereotype being subtypes of �FunctionalSafetyRequirement�, its attribute subGoal points
to the source of the dependency.

2 2M03SS If the dependency with stereotypes �supportedBy�, �alternativelySupportedBy� or
�optionallySupportedBy� point from a class with stereotype �Strategy� to a class with a
stereotype being subtypes of �FunctionalSafetyRequirement�, its attribute strategy points
to the source of the dependency.

2 2M04RA For a class with the stereotype �SafetyRelatedFunctionRequirement�, ASIL, at least one
safe state, and fault tolerant are specified.

2 2M05RA For a class with the stereotype �EmergencyOperationRequirement�, ASIL, at least one safe
state is referred to, and fault tolerant time is specified.

2 2M06RA For a class with the stereotype �FaultReactionUserInformationRequirement�, at least one
safe state is referred to, and a description of actions by the driver or other persons are
specified.

2 2C07RA For a class with the stereotype �FaultReactionRecoveryRequirement�, at least one safety
goal and one safe state are referred to.

2 2M08RA For a class with the stereotype �ASILDecompositionRequirement�, at least one safety goal
is referred to.

3 3C01SS Each a state or state machine with the stereotype �SafeState� is referred to by a class with
the stereotype �SafetyRelatedFunctionRequirement�.

3 3C02AS From each class with the stereotype �Assumption�, a dependency with the stereotype
�supportedBy� points to a class with the stereotype �GeneralRequirement�.

3 3G03SS For each class with the stereotype �SafetyRelatedFunctionRequirement�, all safe states and
the related strategies or subgoals are determined. For each combination of safe state and the
related strategy or subgoal, references to emergency operation requirements, user information
requirements, and recovery requirements are listed in a table.

3 3G04OR For each state or state machine, the name of the classes with the stereotype
�SafetyRelatedFunctionRequirement� are listed in a table. The line is removed, if all sub-
states are referenced or if the containing state is referenced.

3 3G05CR The controllability rationales from all assessment together with the addressing safety goals
are listed in a table.

5 5M01AR Dependencies with the stereotype �allocatedTo� points from subtype of
�FunctionalSafetyRequirement� to �LogicalElement�.

References
1. Int. Organization for Standardization (ISO): Road Vehicles – Functional Safety.

ISO 26262 (2011)

80 K. Beckers et al.

2. Beckers, K., Frese, T., Hatebur, D., Heisel, M.: A Structured and Model-Based
Hazard Analysis and Risk Assessment Method for Automotive Systems. In: Procs
of the 24th IEEE Int. Symposium on Software Reliability Engineering, pp. 238–247.
IEEE Computer Society (2013)

3. UML Revision Task Force: OMG Unified Modeling Language: Superstructure. Ob-
ject Management Group (OMG) (May 2010)

4. UML Revision Task Force: OMG Object Constraint Language: Reference (Febru-
ary 2010)

5. Kelly, T.P.: A Systematic Approach to Safety Case Management. In: Procs. 28th
Symp. on Applied Computing, Detroit, Society for Automotive Engineers (2004)

6. Spriggs, J.: GSN - The Goal Structuring Notation: A Structured Approach to
Presenting Arguments, 2012th edn. Springer (2012)

7. Goal Structuring Notation Working Group. GSN community standard version 1
(2011)

8. International Organization for Standardization (ISO) and International Elec-
trotechnical Commission (IEC): Functional safety of electrical/electronic/pro-
grammable electronic safety-relevant systems. ISO/IEC 61508 (2000)

9. Basir, N., Denney, E., Fischer, B.: Deriving safety cases for hierarchical structure
in model-based development. In: Schoitsch, E. (ed.) SAFECOMP 2010. LNCS,
vol. 6351, pp. 68–81. Springer, Heidelberg (2010)

10. Atos Origin: Papyrus UML Modelling Tool (February 2011),
http://www.papyrusuml.org/

11. Eclipse Foundation: Eclipse - An Open Development Platform (2011),
http://www.eclipse.org/

12. Eclipse Foundation: Eclipse Modeling Framework Project (EMF) (June 2012),
http://www.eclipse.org/modeling/emf/

13. Dittel, T., Aryus, H.-J.: How to ‘survive’ a safety case according to ISO 26262.
In: Schoitsch, E. (ed.) SAFECOMP 2010. LNCS, vol. 6351, pp. 97–111. Springer,
Heidelberg (2010)

14. Sinha, P.: Architectural design and reliability analysis of a fail-operational brake-
by-wire system from ISO 26262 perspectives. Reliability Engineering & System
Safety, 1349–1359 (2011)

15. Palin, R., Ward, D., Habli, I., Rivett, R.: ISO 26262 safety cases: Compliance and
assurance. In: 2011 6th IET Int. Conf. on. System Safety, pp. 1–6 (2011)

16. Conrad, M., Munier, P., Rauch, F.: Qualifying software tools according to ISO
26262. In: Proc. Dagstuhl-Workshop Modellbasierte Entwicklung Eingebetteter
Systeme, MBEES 2010 (2010)

17. Hillebrand, J., Reichenpfader, P., Mandic, I., Siegl, H., Peer, C.: Establishing Con-
fidence in the Usage of Software Tools in Context of ISO 26262. In: Flammini, F.,
Bologna, S., Vittorini, V. (eds.) SAFECOMP 2011. LNCS, vol. 6894, pp. 257–269.
Springer, Heidelberg (2011)

18. Hillenbrand, M., Heinz, M., Adler, N., Matheis, J., Müller-Glaser, K.: Failure mode
and effect analysis based on electric and electronic architectures of vehicles to sup-
port the safety lifecycle ISO/DIS 26262. In: 2010 21st IEEE International Sympo-
sium on apid System Prototyping, RSP, pp. 1–7 (June 2010)

19. Habli, I., Ibarra, I., Rivett, R., Kelly, T.: Model-Based Assurance for Justifying
Automotive Functional Safety. In: SAE Technical Paper 2010-01-0209 (2010)

20. Born, M., Favaro, J., Kath, O.: Application of ISO DIS 26262 in Practice. In: Procs
of the 1st Workshop on Critical Automotive Applications: Robustness & Safety,
CARS 2010, pp. 3–6. ACM, New York (2010)

http://www.papyrusuml.org/
http://www.eclipse.org/
http://www.eclipse.org/modeling/emf/

Making Implicit Safety Requirements Explicit
An AUTOSAR Safety Case

Thomas Arts, Michele Dorigatti, and Stefano Tonetta

QuviQ and FBK
thomas.arts@quviq.com,

{mdorigatti,tonettas}@fbk.eu

Abstract. Safety standards demand stringent requirements on embedded sys-
tems used in safety-critical applications such as automotive, railways, and aero-
space. In the automotive domain, the AUTOSAR software architecture provides
some mechanisms to fulfill the ISO26262 requirements. The verification of these
mechanisms is a challenging problem and it is not always clear in which context
the safety requirements are supposed to be met.

In this paper, we report on a case study developed in the SafeCer project,
where we combined contract-based design and model-based testing. A contract-
based approach has been used to formalize the safety requirements to detect com-
munication failures. The formal specification shows under which assumptions
the AUTOSAR protection mechanism fulfills these requirements. A model-based
testing approach has been used to test the software implementing such protec-
tion mechanism. The model used for testing has been model checked against the
contract specification ensuring that the system-level safety requirements are met.

Keywords: Formal Methods, Contract-Based Design, Testing, AUTOSAR.

1 Introduction

The AUTOSAR standard [1] is a detailed architectural description of software compo-
nents for the automotive industry. Modern cars contain many different computing units
(ECUs) that are connected via several networks. The basic software running on all these
units is written by different vendors, but it should be compatible. The AUTOSAR stan-
dard is created to “enforce” compatibility. The C software implementing AUTOSAR
components is highly configurable and has in general a practically infinite number of
possible internal states. Ensuring compatibility is in practice performed by testing and,
in the setting of our work, by using Model-Based Testing (MBT): a formal model of the
software is instantiated by the same configuration used for the C software. This model
instance is then used to automatically generate thousands of random tests. Failing tests
indicate a conformance deviation with the model.

Sensors and actuators often handle data for safety-critical applications such as an
airbag or a parking brake. They can be located at different physical ECUs so that safety-
critical data are communicated over one of the networks. For this reason, the ISO26262
standard [2] prescribes to implement measures to detect communication faults such as
loss or corruption of messages. The AUTOSAR standard caters for a common set of
these fault models by offering a solution called End-to-End (E2E) Protection [3] and is

A. Bondavalli and F. Di Giandomenico (Eds.): SAFECOMP 2014, LNCS 8666, pp. 81–92, 2014.
c© Springer International Publishing Switzerland 2014

82 T. Arts, M. Dorigatti, and S. Tonetta

specified as a library with functions to protect a data item and to check it at the other end
of the communication. In short, it adds a counter and identifier to the data, computes
a checksum and sends the data and checksum over the bus instead of the raw data. At
the other end, the checksum is used to see if the data got corrupted and if not, the data
is compared to an earlier value to see if it can be trusted. By addressing a number of
fault models once and for all with a library, the AUTOSAR software developers know
what they can use when they are faced with specific safety requirements. However,
what is achieved by using such libraries is not always clear: by just using the protection
mechanism of AUTOSAR, the software developer is not guaranteed to obtain a fault-
tolerant system, and it is critical to define the context in which the system is safe and
level of tolerance that is guaranteed.

In this paper, we formalized the guarantees of the E2E Protection library components
(with the simplest profile P01) and the assumptions on the communication failures into
the input language of OCRA [4], a tool for Contract-Based Design (CBD) of embedded
systems. Given that we have formalized the protection mechanism, we can combine
this with system-level safety requirements of a system architecture. In particular, we
modeled an airbag that inflates when the sensors send a message that we are in colli-
sion, whereas at the same time, the airbag never inflates if no such message arrives from
the sensor. The contract-based refinement of the airbag using the AUTOSAR protection
mechanism was proved correct with the OCRA support to contract-refinement check-
ing. We finally verified with model checking techniques the contract specification on
existing test models of the AUTOSAR library for QuickCheck [5,6], a tool for MBT of
software. With QuickCheck, we can automatically generate arbitrary tests for the com-
munication stacks. These tests are clearly enhanced by the formal proof that the test
models correctly refine the safety requirements.

The contributions of the paper are manifold. First, we showed how to bridge the gap
between system requirements and guarantees on the E2E Protection library. Second,
we derived the guarantees on the communication stacks for a concrete example. Third,
we showed how the properties of the AUTOSAR library used in the contract-based
derivation can be verified on the models used for code testing. Finally, we provided a
methodology to integrate CBD and MBT tools.

The paper is structured as follows: in Sec. 2, we give an overview of the AUTOSAR
E2E Protection mechanism and the related ISO26262 safety requirements; in Sec. 3,
we describe the background tools and techniques, which are CBD, OCRA, MBT, and
QuickCheck; in Sec. 4, we present the main part of the paper, including the airbag exam-
ple, the methodology integrating CBD and MBT, the formalization of the E2E Protection
library, the contract-based derivation, and the verification of the code implementation;
in Sec. 5 we give an overview of the related work, and finally in Sec. 6, we draw some
conclusions.

2 AUTOSAR E2E Protection

2.1 AUTOSAR

AUTOSAR is a software standard for the automotive industry providing the specification
of the basic software components, such as several protocol stacks, memory management,

Making Implicit Safety Requirements Explicit 83

communication routing, etc. The AUTOSAR platform offers a variety of components to
provide functionality, for example a component for E2E data protection that encodes and
decodes a message in a standard way so that corruption or message loss can be detected.
Each software component is specified by both a very specific programmer API as well
as a behavioral description. The diversity of demands from different hardware platforms
and car models are catered for by specifying the configurability of the software. Each
component can be configured in many different ways. The actual software that is even-
tually put in a vehicle is partly generated from a confuguration file and partly statically
provided.

The flexibility in configurations makes it difficult to test AUTOSAR software, since
a test case typically consists of both a sequence of API calls with expected return val-
ues and side-effects as well as a configuration for which the code under test has to be
generated. Manually creating test cases is tedious and error prone. Therefore, Quviq
has developed a method to generate test cases from a formal model of one or more AU-
TOSAR components. Given a configuration, test cases, valid and meaningful for that
configuration, are generated and executed.

Clearly, the correctness of software applications built on top of the AUTOSAR ba-
sic software components requires correctly implemented components and a correct use
and configuration of these components. The latter is an engineering challenge due to
the difficult in understanding from the set of requirements on software what guarantees
the software components offers in a specific configuration and architecture. For exam-
ple, the E2E Protection library is recommended, among others, as an implementation
measure against message loss during transmission [3]. Clearly, message may get lost
for several reasons and the engineering task is to handle that. Using the E2E protection
library may seem the right thing to do, but the engineering challenge is to understand
the context of this guarantee. If communication is safety-critical and many messages in
a row are lost in few milliseconds, can one then still use the designed solution? What
configuration of the E2E Protection library should be used in order to protect against
this scenario? These questions are based on the use of the software component by an
application outside the AUTOSAR basic software. Without knowledge about this ap-
plication, such questions are difficult or impossible to answer. This paper shows how
one can make the assumption of the application explicit in order to formulate precise
guarantees on the E2E Protection library.

2.2 ISO26262 Requirements and E2E Protection

In order to implement effective measures against communication loss the ISO26262
standards prescribe to take into account a series of possible communication faults: loss
of peer to peer communication; unintended message repetition due to the same mes-
sage being unintentionally sent again; message loss during transmission; insertion of
messages due to receiver unintentionally receiving an additional message, which is in-
terpreted to have correct source and destination addresses; re-sequencing due to the
order of the data being changed during transmission, i.e. the data is not received in
the same order as in which it was been sent; message corruption due to one or more
data bits in the message being changed during transmission; message delay due to the
message being received correctly, but not in time; blocking access to data bus due to a

84 T. Arts, M. Dorigatti, and S. Tonetta

faulty node not adhering to the expected patterns of use and making excessive demands
for service, thereby reducing its availability to other nodes, e.g. while wrongly waiting
for non existing data; and constant transmission of messages by a faulty node, thereby
compromising the operation of the entire bus.

The faults described above are represented in AUTOSAR by the following fault
models:

– repetition: a message is received more than once.
– deletion: a message or parts of it have been removed from the communication

stream.
– insertion: an additional message or parts of it have been inserted into the commu-

nication stream.
– incorrect sequence: the messages of a communication stream are received in an

incorrect order.
– corruption: the corruption data of a message or parts of it occurred.
– delay: a message is received too late.
– addressing faults: a message is sent to the wrong destination.

The protection measure provided by the AUTOSAR E2E library consists of using:

1. a counter modulo N (N = 15 in Profile 1) which is increased by one at every sent
message;

2. a checksum provided by the AUTOSAR CRC library;
3. data ID to verify the identity of each transmitted safety-related data element.

In particular, the repetition, deletion, insertion, and incorrect sequence are addressed
by the counter, corruption by the CRC checksum, addressing faults by the data ID. In
addition to this, the real-time properties of AUTOSAR in combination with periodically
sending messages enable detection of not receiving new data on the bus. Timeouts are
therefore represented by either no new data available or by receiving new data with the
same counter as the previously received valid data.

3 Background Techniques

3.1 OCRA and CBD

In this paper, we adopt the CBD framework supported by the OCRA tool [4]. In partic-
ular, we use a finite-state discrete-time model of the system. Component interfaces are
described with Boolean or bounded integer data ports and with events, which are in-
stantaneous triggers of changes (from the formal point of view, they are Boolean labels
on the state transitions). An execution trace of the component is therefore a sequence of
states, which are assignments to the port variables. The transition from a state to another
one can be labeled with an event. Assertions on the execution traces are specified by
means of linear-time temporal logic. In particular, we use LTL [7] with past operators
and predicates over current and next variables to represent state changes, as informally
described in Table 1.

The OCRA input language is a component-based description of the system architec-
ture where every component is associated with one or more contracts. Each contract

Making Implicit Safety Requirements Explicit 85

Table 1. Overview of the temporal logic used to specify the contracts

Syntax Informal Description Example Example description
P (V) atomic predicate over the port

variables V
m ≥ 2 m is greater or equal to 2

P (V, V ′) atomic predicate over the cur-
rent port variables V and their
next value after a transition

c′ = c+ 1 c is increased by 1

¬φ Boolean negation ¬f f is false
φ1{∧,∨,→}φ2 binary Boolean operators m = n →

c′ = c
if m = n then c is not
changed

G φ φ holds in every future state G (f → G f) when f is true, it remains true
forever

F φ φ holds in some future state G (f → F e) f is always followed by e

O φ φ holds in some past state G (f → O e) f is always preceded by e

X φ φ holds in the next state G (f → X e) f is always immediately fol-
lowed by e

Y φ φ holds in the previous state
(so, we are not in the initial
state)

G (f → Y e) f is always immediately pre-
ceded by e

consists of an assumption and a guarantee specified as temporal logical formulas. The
assumption represents a requirement on the environment of the component. The guar-
antee represents a requirements for the component implementation to be satisfied when
the assumption holds.

When a component S is decomposed into subcomponents, the contract refinement
ensures that the guarantee of S is not weakened by the contracts of the subcomponents
while its assumption is not strengthened. This is checked independently from the actual
implementation of the components and is verified by means of a set of proof obligations
in LTL, which are discharged with model checking techniques [8,9].

OCRA allows to associate to a component a behavioral model representing its im-
plementation. The language used for the behavioral model is SMV, the input language
of the NuSMV model checker [10]. OCRA checks if the SMV model is a correct im-
plementation of the specified component simply calling NuSMV to verify if the SMV
model satisfies the implication A → G for every contract 〈A,G〉 of the component.

3.2 QuickCheck and MBT

QuickCheck is a testing technique and tool originating from the functional program-
ming community [11] where one expresses properties of the software under test in a
functional language. QuickCheck then computes test cases that should be satisfied if
this property holds for the software. The original stateless and logic properties have
been extended by Quviq into conformance properties, where the functional language
is used to implement a kind of reference implementation from which test cases are
automatically generated [5].

86 T. Arts, M. Dorigatti, and S. Tonetta

Fig. 1. A simple architecture of an airbag system communicating with a collision sensor

Thus, rather than focusing on individual test cases to encapsulate the behavior of a
system, this behavior is specified by properties, expressed in a logical form. The system
is then tested by checking whether it has the required properties for randomly generated
data, which may be inputs to functions, sequences of API calls, or other representations
of test cases. In this way, large software systems, such as the AUTOSAR basic software
or Radio Base Station Software, have successfully been tested.

Some versions of QuickCheck can systematically inflate the complete state space of
a model. However, the models in general have an infinite or at least practically infinite
state space. Therefore, the Quviq QuickCheck version is optimized for random walks
through the state space, not for guaranteeing that all paths have been walked through.

4 Making Implicit Safety Requirements Explicit

4.1 The Airbag Example

As an example of usage of the E2E Protection mechanism, we consider a simplified
version of an airbag system. An informal picture of the system architecture is shown
in Figure 1. In real systems the airbag software is different, but we use this example to
show how we handle systems similar to real industrial ones. The formalization of the
real E2E library is faithful and the method we present for deriving the constraints of
using the E2E library is generally applicable to any similar system.

The Airbag System communicates with a Collision Sensor to know when to trigger
the airbag. The communication runs on a bus which may fail. In this example, the Colli-
sion Sensor is split into two components: the actual sensor that senses the collision and
the E2E Protection which enriches the message with the E2E Protection mechanism be-
fore sending it over the bus. Similarly, the Airbag System is split into the actual airbag
controller and the software component that checks the message to detect communica-
tion failures.

After making a design like this, one wants to reason about it in the presence of the
given fault models. In theory, when the world is perfect, as soon as the sensor detects
a collision, a message is sent and the airbag inflates. In practice, the sensor may be
broken, the bus may experience one of the faults described above and the controller
may be disfunctional. In other words, there is no guarantee that this is going to work.

Making Implicit Safety Requirements Explicit 87

Fig. 2. Integration of CBD and MBT

Since it is important to know whether the sensor is working, it will continuously send
messages to the controller. In that way, a broken sensor is detected. We do not want to
report sensor failure if only one message is lost and therefore it is important that the
E2E Protection detects message deletion.

It is also important to only inflate the airbag if the car is in a real collision. We
therefore want to detect data corruption at the same time as that we do not just send a
one bit zero and one message, but use over engineering to send a byte with two different
bit patterns to distinguish normal and collision situation.

4.2 Integration of CBD and MBT

We propose a methodology that integrates Contract-Based Design (CBD) and Model-
Based Testing (MBT). CBD is used at the system level in order to ensure a correct
derivation of the properties of the components. In particular, in case of safety-related
requirements, it forces to explicitly state the assumptions on the failures that are neces-
sary in order to guarantee the requirements. MBT is used at the code level to ensure the
compliance of the code with the model.

The proposed methodology integrates CBD and MBT as depicted in Figure 2: the
system architecture is enriched with a contract refinement, which is proved correct with
formal methods; the software components are implemented with a state machine and
with a concrete program; the state machine is proved to satisfy the component contracts
with model checking and is used to generate a test suite for the program.

The airbag system has been formalized with OCRA. Each component is enriched
with contracts to specify the assumption and guarantee of the component. The con-
tract of the Bus component include the possibility to have failures (either a message
corruption or loss). The system component explicitly specifies the assumptions on such

88 T. Arts, M. Dorigatti, and S. Tonetta

failures in order to ensure its guarantee. The contract refinement has been proved
correct. The state machine of the E2E Check component has been taken from the AU-
TOSAR specification and modeled with QuickCheck. This model has been automat-
ically translated into an SMV model and verified with OCRA to check that the state
machine correctly implements the E2E Checks contract. Finally, the QuichCheck state
machine has been used to generate tests for a real C implementation of the E2E Check.

4.3 Formal Model of the E2E Protection Mechanism

We modeled in OCRA an abstraction of the E2E Protection mechanism described in
Sec. 2.2. The OCRA components of the E2E have a counter that is incremented by
the E2E Protect component at every transmitted message. The E2E Check component
checks if the received counter is exactly the last received valid counter incremented by
one or if there was a communication fault. The CRC checksum is abstracted with a
Boolean ValidCRC variable that represents the return value of the CRC Library. Thus,
if ValidCRC is false, the message was corrupted. The data IDs instead are not modeled
since we have only one destination of messages. The availability of new data on the bus
is represented by a Boolean variable.

The interface of the E2E Check component has therefore the following ports:

– NewDataAvailable: a Boolean input port that represents if there is new data avail-
able on the transmission medium;

– ReceivedCounter: a 4-bit input port that represents the value of the counter on a
new received message;

– ValidCRC: a Boolean input port that represents if the received message is valid;
– MaxDeltaCounter: a parameter used to define acceptable number of lost messages;
– Status: an output port that defines the status of the received message, which can

be: NONEWDATA, WRONG CRC, INITIAL, REPEATED, OK, OKSOMELOST,
WRONG SEQUENCE;

– LastValidCounter: an output port that stores the counter of the last received mes-
sage.

The main guarantees of the component are formalized by the following formulas (a
complete version of the specification can be found in
https://es.fbk.eu/people/tonetta/tests/safecomp14):

– G (((NewDataAvailable∧ValidCRC∧ 1 ≤ DeltaCounter ≤ MaxDeltaCounter)∧
Y O (NewDataAvailable ∧ ValidCRC)) → (X status ok(Status))); in the OCRA
syntax this is written as:

always (((NewDataAvailable and ValidCRC and
1<=DeltaCounter and DeltaCounter<=MaxDeltaCounter)

and previously in the past (NewDataAvailable and ValidCRC))
implies (then status_ok(Status)));

this means that whenever the component receives a new valid message with a valid
counter and previously another valid message was received, then the status is set to
OK or OKSOMELOST depending on the value of the counter (this is encoded by
the macro “status ok”).

https://es.fbk.eu/people/tonetta/tests/safecomp14

Making Implicit Safety Requirements Explicit 89

– G (status ok(Status) → (Y ((NewDataAvailable∧ValidCRC∧1 ≤ DeltaCounter
≤ MaxDeltaCounter) ∧ Y O (NewDataAvailable ∧ ValidCRC)))); in the OCRA
syntax this is written as:

always (status_ok(Status) implies
(previously ((NewDataAvailable and ValidCRC and
DeltaCounter>=1 and DeltaCounter<=MaxDeltaCounter) and
previously in the past (NewDataAvailable and ValidCRC))));

this means that the status is set of OK or OKSOMELOST only if the component
just received a valid message with a valid counter and in the past another valid
message was already received.

4.4 Contract-Based Refinement of the Airbag Requirements

The top-level requirements of our airbag example are that every collision must be fol-
lowed by the inflation of the airbag and vice versa, the airbag inflates only after a
collision. This is formalized in the LTL formulas G (collision → F inflate) and
G (inflate → O collision). This is accomplished by the five components of the sys-
tem as follows: the sensor senses the collision and generates a message; the message
is enriched with the counter by the E2E Protect component; the message is transmitted
from the sender to receiver by the bus; on the receiver side, the message is checked
by the E2E Check component and then passed to the airbag controller that makes the
airbag inflate. Each of these functions is formalized by an LTL formula.

The bus contracts include the fault models of message corruption and deletion. In
particular, the bus component receives in input two events, fault deletion and fault
corruption. Whenever fault deletion happens, the NewDataAvailable output is set to
false. Whenever fault corruption happens, the ValidCRC output is set to false.

If we do not specify any assumption on the system inputs, the contract refinement
fails, confirming that some assumptions are implicit. There are three assumptions that
we added in order to obtain a correct refinement:

1. G (fault → X ¬fault): we assume that there cannot be two consecutive faults,
either corruption or deletion of a message;

2. MaxDeltaCounter ≥ 2: we assume that at least one lost message is acceptable
and the E2E Check component will consider the new message valid even if the
counter has been increased by 2;

3. G (collision → G collision): whenever there is collision, this will be permanent,
so that collision messages will be continuously sent to airbag controller.

If we remove one of these assumption, the OCRA tool gives us a counterexample
showing an execution trace that violates the top-level contract. Note however that these
assumptions are not guaranteed to be the weakest conditions.

4.5 Formal Model and Verification of the E2E Check Implementation

The E2E Check function is informally presented as a state machine description in the
AUTOSAR specification. In our case, we took that informal presentation as a start for a

90 T. Arts, M. Dorigatti, and S. Tonetta

QuickCheck model. This QuickCheck model has a formal semantics and has been used
to generate test cases. On turn, these were used to verify a C implementation of the E2E
Check function.

The QuickCheck model was also translated into an SMV model. This translation is to
a high extent automated. Erlang [12] is a functional language, with single assignment.
In a few steps, we transform the program by partially evaluating all occurrences of local
variables. The result is a program that only has the input variables present. For technical
reasons we rewrite if-statements into case statements and make all case statements into
Boolean choices by nesting them. The resulting transformation is a completely equiv-
alent Erlang program. The QuickCheck model uses records to store data in. The input
record is processed and a similar output record is returned. For each field in the output
record, we backtrace in the source code what conditions should hold to change its value
into the value that it can get in the return record. This then results in the SMV next state
function for each input variable.

Finally, the SMV model has been model checked with OCRA to verify that it is a
correct implementation of the E2E Check component, in other words that it satisfies the
contracts of the component. We can conclude that the Erlang model satisfies such con-
tracts. Moreover, we can be confident that the C implementation satisfies such contracts,
since the state space is finite and by collecting the model state space while running a few
hundred thousand tests (which takes about an hour), we can show to have covered all
model states during testing. We also performed other sanity checks provided by OCRA
such as the checking the receptiveness of implementation [4].

4.6 Discussion

In this section, we discuss the results that we achieve giving also a critical overview
of the pros and cons of the approach. We start highlighting the importance of the feed-
back on the requirements that we achieved. Protection mechanisms such as the one
implemented in AUTOSAR are fundamental to detect failures and to fulfill the safety
requirements prescribed by the safety standards. However, it should be clear that they
do not allow to achieve a complete tolerance to failures and that the system require-
ments are fulfilled only under some assumptions. The contract-based approach allows
to formalize a context in which this holds.

These conclusions should also suggest to improve the safety standards accordingly.
In fact, requiring that the system is robust to any communication failures in absolute
terms is not realizable and pose on the designer an arbitrary choice on the assumptions
under which the requirements should be fulfilled. It would be desirable instead that such
assumptions are defined by the standard itself.

Another important aspect of the case study is that the E2E Check component that
has been used and verified can be reused in another case study as is. Using it in another
system architecture will require to perform a different contract refinement of the top-
level contract, but the contracts of the E2E components should not be changed.

The main weakness of the case study is that is a small example and many details are
abstracted. This has the advantage that the example is suitable to explain and understand
the approach. We focused on the protection mechanism disregarding a more realistic

Making Implicit Safety Requirements Explicit 91

representation of the airbag controller or of the bus. The E2E Check component is
faithfully represented and we also consider a real C implementation of it.

In a contract-based approach the analysis is compositional so that the verification of
the contract refinement would remain the same even if we added a full description of the
airbag controller. In future work, we plan to model a more complex system involving
more components communicating on the same bus. We used only two types of faults,
but these were sufficient to elicit the modeled protection mechanisms. Finally, we used
a discrete model of time, but this seems acceptable due to the real-time properties of
AUTOSAR and the periodic sending of messages via an external scheduling algorithm.

5 Related Work

Contracts have been previously used in the context of safety-critical systems and in
particular in relation to standards such as ISO26262. Many of these works focused
on processes and methodologies [13,14]. In [15] and [16], example of contracts are
elaborated and it is shown that they can be used to reason about safety. The relation
between contracts and ISO26262 is made stronger in [17] where contracts are used to
structure the safety requirements of the standard.

Our paper differs from previous ones in a number of distinguishing features: first, we
take a critical look at the implicit assumptions on safety requirements and use contracts
to make such assumption explicit; second, we focus on the usage of concrete tools to
support contracts and testing; to the best of our knowledge, it is the first contribution
that concretely integrates a tool that supports contracts with a tool for testing in a way
that the same model is used by both tools.

Model based testing in combination with fault-injection has been presented in [18]
on exactly the same airbag example, but without CBD. Fault injection is a technique
to demonstrate that even in the presence of faults, the system behaves in a safe way.
This is highly valuable from a testing point of view, but like testing in general, it shows
weaknesses rather than that it provides guarantees. In best case one obtains knowledge
on what guarantees are not fulfilled.

6 Conclusions and Future Work

In this work, we experimented with a new integration of CBD supported by the OCRA
tool and MBT supported by QuickCheck. The goal of the integration is to exploit the
contract-based refinement to make explicit the assumptions of the model used for test-
ing. The approach has been applied to the AUTOSAR measures to protect safety-critical
communication from communication failures as specified by the ISO26262 standard.
The assumption of the AUTOSAR protection mechanism has been formalized with
OCRA on an airbag example.

In the future, we want to link the proposed approach to the development and cer-
tification process defined in the SafeCer project; we may also integrate both tools in
a common design environment, develop further the case study introducing real-time
aspects and generalizing the assumption using parametrized properties.

92 T. Arts, M. Dorigatti, and S. Tonetta

Acknowledgments. We like to thank Hans Svensson from Quviq for writing the Er-
lang QuickCheck model for the end-to-end protection library. The research leading to
these results has received funding from the ARTEMIS JU under grant agreement no

295373, from National funding, and from the Swedish research foundation Vinnova for
its support of the Acsäpt project (ref. 2012-00943).

References

1. AUTOSAR: Software architecture specification, www.autosar.org
2. ISO 26262: Road vehicles Functional safety (2011)
3. AUTOSAR. In: Specification of SW-C End-to-End Communication Protection Library. AU-

TOSAR consortium (2008-2013)
4. Cimatti, A., Dorigatti, M., Tonetta, S.: OCRA: A tool for checking the refinement of temporal

contracts. In: ASE, pp. 702–705 (2013)
5. Arts, T., Hughes, J., Johansson, J., Wiger, U.: Testing telecoms software with Quviq

QuickCheck. In: ACM SIGPLAN Workshop on Erlang (2006)
6. Svenningsson, R., Johansson, R., Arts, T., Norell, U.: Formal methods based acceptance

testing for AUTOSAR exchangeability. SAE Int. Journal of Passenger Cars Electronic and
Electrical Systems 5(1), 209–213 (2012)

7. Pnueli, A.: The Temporal Logic of Programs. In: FOCS, pp. 46–57 (1977)
8. Cimatti, A., Tonetta, S.: A Property-Based Proof System for Contract-Based Design. In:

EUROMICRO-SEAA, pp. 21–28 (2012)
9. Cimatti, A., Tonetta, S.: Contracts-refinement proof system for component-based embedded

systems. Sci. Comput. Program (to appear)
10. Cimatti, A., Clarke, E., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri, M.,

Sebastiani, R., Tacchella, A.: NuSMV 2: An OpenSource Tool for Symbolic Model Check-
ing. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 359–364.
Springer, Heidelberg (2002)

11. Claessen, K., Hughes, J.: QuickCheck: A lightweight tool for random testing of Haskell
programs. In: ACM SIGPLAN ICFP, pp. 268–279 (2000)

12. Armstrong, J.: A history of erlang. In: HOPL, pp. 1–26 (2007)
13. Blanquart, J.-P., et al.: Towards Cross-Domains Model-Based Safety Process, Methods and

Tools for Critical Embedded Systems: The CESAR Approach. In: Flammini, F., Bologna,
S., Vittorini, V. (eds.) SAFECOMP 2011. LNCS, vol. 6894, pp. 57–70. Springer, Heidelberg
(2011)

14. Baumgart, A., Reinkemeier, P., Rettberg, A., Stierand, I., Thaden, E., Weber, R.: A Model-
Based Design Methodology with Contracts to Enhance the Development Process of Safety-
Critical Systems. In: Min, S.L., Pettit, R., Puschner, P., Ungerer, T. (eds.) SEUS 2010. LNCS,
vol. 6399, pp. 59–70. Springer, Heidelberg (2010)

15. Damm, W., Josko, B., Peikenkamp, T.: Contract Based ISO CD 26262 Safety Analysis. In:
Safety-Critical Systems. In: SAE (2009)

16. Damm, W., Hungar, H., Josko, B., Peikenkamp, T., Stierand, I.: Using contract-based com-
ponent specifications for virtual integration testing and architecture design. In: DATE, pp.
1023–1028 (2011)

17. Westman, J., Nyberg, M., Törngren, M.: Structuring Safety Requirements in ISO 26262 Us-
ing Contract Theory. In: Bitsch, F., Guiochet, J., Kaâniche, M. (eds.) SAFECOMP. LNCS,
vol. 8153, pp. 166–177. Springer, Heidelberg (2013)

18. Vedder, B., Arts, T., Vinter, J., Jonsson, M.: Combining fault-injection with property-based
testing. In: Proc. of Int. Workshop on Engineering Simulations for Cyber-Physical Systems,
ES4CPS 2014, pp. 1–8. ACM, New York (2014)

www.autosar.org

Securing Vehicle Diagnostics in Repair Shops

Pierre Kleberger and Tomas Olovsson

Department of Computer Science and Engineering
Chalmers University of Technology
SE–412 96 Gothenburg, Sweden

{pierre.kleberger,tomas.olovsson}@chalmers.se

Abstract. Diagnostics over IP (DoIP) is a new ISO standard for trans-
mitting diagnostics messages, such as ISO 14229 Unified Diagnostic
Services (UDS), over IP-based networks. The standard specifies the com-
munication architecture needed for diagnostics communication and
defines an application layer protocol for exchanging management and
diagnostics messages between DoIP-enabled devices. However, DoIP re-
lies on the insecure network protocols used in today’s Internet and no
additional security was added in the standard to tackle this. Thus, to
prevent malicious manipulations of vehicle diagnostics sessions in repair
shops, appropriate security mechanisms need to be in place.

In this paper, we analyse possible approaches to find the most suitable
security architecture for diagnostics communication in repair shop net-
works. First, an evaluation of possible approaches is conducted. These
are then analysed with respect to a set of security requirements and
implementation challenges. Finally, we present the approach that best
meets the requirements for a secure diagnostics architecture in repair
shops.

Keywords: Vehicle diagnostics, repair shop, security, diagnostics over
IP, ISO 13400, ISO 14229, ISO 15764.

1 Introduction

It can be expected that much of the maintenance of tomorrow’s vehicles will be
performed using wireless communication. A great benefit of such an approach is
the reduced maintenance time and the possibility to maintain multiple vehicles
at the same time, both leading to increased productivity in future connected
repair shops. However, since communications with vehicles so far have been per-
formed within controlled environments using wired connections, security has not
yet been widely implemented [1–3]. Therefore, to benefit from wireless commu-
nications in tomorrow’s connected repair shops and to prevent malicious manip-
ulations of vehicles, appropriate security mechanisms must be in place, both in
the vehicles as well as in the other devices used for vehicle diagnostics.

In an aim to enable standardised vehicle diagnosticmessages, such as ISO 14229
Unified Diagnostic Services (UDS) [4], to be transmitted over IP-based networks,
ISO has recently issued a new standard 13400 Diagnostics over IP (DoIP) proto-
col [5]. Unfortunately, not much attention was given to security and DoIP lacks

A. Bondavalli and F. Di Giandomenico (Eds.): SAFECOMP 2014, LNCS 8666, pp. 93–108, 2014.
c© Springer International Publishing Switzerland 2014

94 P. Kleberger and T. Olovsson

fundamental security mechanisms to ensure data integrity and data authenticity
[6]. Well known security protocols exist to provide secure communications for ap-
plications, e.g., SSL/TLS, but a complicating factor inDoIP is the use of broadcast
functionality to announce the presence of DoIP-enabled devices in Local Area Net-
works (LANs). Thus, new approaches are needed that supports secure broadcast
in LANs.

The introduction of DoIP enables vehicle diagnostics to be performed in repair
shops using ordinary network equipment. Unfortunately, this means that vehicle
diagnostics also becomes affected by many of the threats and vulnerabilities
available in today’s Internet. Especially critical becomes the lack of security in
fundamental protocols used in LANs, since an attacker can exploit them and
gain control of the (diagnostics) traffic as a man-in-the-middle [7]. In this paper,
we address secure diagnostics in repair shops and more specifically we try to
answer the questions:

– how can diagnostics messages be securely transmitted between diagnostics
equipment and vehicles, and

– how can the diagnostics infrastructure in the repair shop be secured?

Based on the OSI layering model, we present possible approaches to secure these
protocols and provide secure communication in the repair shop.

The rest of this paper is organised as follows. In next section, an introduction
to DoIP and ISO 14229 is given. Requirements for a secure diagnostics architec-
ture is then defined in Section 3. In Section 4, possible approaches are evaluated
to define the security architecture and an analysis of these to best meet the se-
curity architecture is presented in Section 5. The paper concludes with related
work in Section 6, followed by our conclusion in Section 7.

2 Vehicle Diagnostics

2.1 ISO 13400 — Diagnostics over IP (DoIP)

Diagnostics over IP (DoIP) [5] is a newly approved ISO standard for conducting
diagnostics over IP-based networks. The required services from layer 2–4 and 7
(following the OSI layering model) are stated for the diagnostics architecture and
an application protocol is defined for exchanging management and diagnostics
messages between DoIP-enabled devices. The diagnostics messages themselves
are not specified by DoIP as the purpose of the standard only is to transmit these
messages over IP-based networks. Instead, the diagnostics messages are described
in other standards, such as ISO 14229 Unified Diagnostic Services (UDS) and
ISO 27145-3 World-Wide Harmonised On-Board Diagnostics (WWH-OBD) [8].
Figure 1 shows the DoIP stack with encapsulation of ISO 14229 diagnostics
messages.

The following scenario exemplifies how a vehicle connects to a DoIP-enabled
network [5, 9]:

Securing Vehicle Diagnostics in Repair Shops 95

IP

TCP, UDP

DHCP DoIP

UDS

ARP

Network Layer

Transport Layer

Session Layer

Presentation Layer

Application Layer

Link Layer

←− UDS security sub-layer

Fig. 1. The DoIP Stack

1. The vehicle establishes a connection to the LAN, either by wire or through
a wireless access point (AP).

2. The vehicle requests an IP address by a DHCP request (IPv4) or through
auto configuration (IPv6).

3. The vehicle announces its presence in the network by sending vehicle

announcement messages (in accordance to conformance requirement DoIP-
050 [9]) to the LAN. The announcement messages are broadcast to the local
network on port 13400/udp and hold the newly configured IP-address to-
gether with the vehicle’s ID; the <IP, VID>-association.

4. Diagnostics equipment receive the announcement messages and record the
mapping of VID and IP-address. The mapping is used by the diagnostics
application to present vehicles available in the network for further commu-
nication to their operators.

If diagnostics equipment for some reason does not receive the vehicle

announcement messages, diagnostics equipment may broadcast a vehicle

identification request message that the vehicle should respond to.
DoIP uses the protocols IP, TCP, and UDP, both in unicast and broadcast.

Port 13400 is reserved for exchanging management communication over UDP
and to establish diagnostics connections over TCP. Since no attention was made
to security, DoIP is vulnerable to common threats available in ordinary IP-based
networks, such as spoofing and packet modifications by other parties. Without
proper authentication and integrity mechanisms, messages sent by DoIP cannot
be trusted. For example, an attacker may impersonate as another vehicle by
simply sending a vehicle announcement with that vehicle’s ID.

96 P. Kleberger and T. Olovsson

2.2 ISO 14229 — Unified Diagnostic Services (UDS)

ISO 14229 [4] defines an application layer protocol for diagnostics of vehicles
and provides two services that are relevant to security: SecurityAccess and
SecuredDataTransmission. SecurityAccess protects applications in an
Electronic Control Unit (ECU) from unauthorised access by means of a challenge
response mechanism. First the client sends a seed request to the ECU. The ECU
respondswith a seednumber forwhich the client is expected to replywith the corre-
sponding “key” to unlock the protected application. SecuredDataTransmission
introduces a security sub-layer in the network stack as shown in Figure 1. The sub-
layer enables an implementor to add security functionality, however, the current
standard does not describe details of which securitymechanisms to implement, nor
how to negotiate the security association: “The task of the Security sub-layer when
performing a diagnostic service in a securedmode is to encrypt dataprovidedby the
”Application”, to decrypt data provided by the ”Application Layer” and to add,
check, and remove security specific data elements.” [4] In a previous version of the
standard, ISO15764was referred to for an implementationof the security sub-layer.
ISO 15764 [10] describes security mechanisms suitable for the security sub-layer
and thesemechanisms aim to preventmasquerading, replaying, and eavesdropping
of diagnostics messages, as well as non-repudiation and detection of message ma-
nipulation. However, references to ISO 15764 as a security sub-layer protocol have
been removed in the latest ISO 14229 standard.

The security sub-layer implemented by the SecuredDataTransmission ser-
vice enables manufacturers to implement end-to-end security (all the way to
the ECUs in the vehicle). The sub-layer mandates a request-response approach,
where each request must be succeeded by a response, but three message types
do not follow this approach and cannot be transmitted using this service. These
are ResponseOnEvent, ReadDataByPeriodicIdentifier, and TesterPresent.

3 Requirements for Secure Vehicle Diagnostics

3.1 Threat Model

An attacker is assumed to be able to perform the following operations on all
network traffic in the local network: read, copy, steal, modify, delete, spoof, delay
(a combination of steal and spoof), and replay (a combination of copy and spoof)
[11]. Furthermore, we assume that encryption algorithms are secure and cannot
be broken.

We assume that an attacker cannot perform a Denial-of-Service (DoS) attack
by network overloading or jamming wireless communication. Protection mecha-
nisms to prevent such attacks are complicated, if not impossible, and are in this
context considered to be out of scope.

3.2 Digital Certificates

All vehicles and diagnostics equipment are assumed to have digital certificates
installed, used to authenticate the device. These certificates have been issued by

Securing Vehicle Diagnostics in Repair Shops 97

a common Certificate Authority (CA), which is acknowledged by the automotive
company.

3.3 Security Requirements

The following security requirements must be fulfilled on transmissions of all
diagnostics messages :

– Data Integrity. To prevent malicious manipulation of vehicles, unautho-
rised modification of diagnostics messages must be detectable.

– Data Authenticity. To prevent unauthorised manipulation of vehicles, the
source of diagnostics messages must be possible to verify.

– Data Freshness. To prevent replay of old diagnostics messages, protection
from replay attacks must exist.

– Data Confidentiality. To protect ECU firmware and proprietary data,
diagnostics messages must be protected from eavesdropping.

Additionally, the following desirable security requirements should preferably also
be met:

– Robustness. Diagnostics communication should not easily fail due to ma-
licious traffic.

– Fine-Grained Access Control. Only authorised diagnostics commands
should be handled by vehicles. Some types of diagnostics should be limited
with respect to the commands they are authorised to do and the information
they should be able to retrieve. A fine-grained access control mechanism
implemented in the vehicle shall restrict such access in accordance to a given
security policy [12]. The retrieval of privacy related data can be prevented,
but if such data is deem needed to be transmitted, e.g., vehicle’s ID, such
data should be kept confidential.

– Prevent V2V Communication. To prevent attacks from malicious, still
authorised vehicles, communication between vehicles should be prevented.

3.4 Implementation Challenges

A security architecture for the repair shop must be attractive to the automotive
industry to be implemented. The following aspects need to be considered when
different security mechanisms are evaluated:

– Easy to Deploy. The implemented security solution should be as trans-
parent as possible and require as little modification as possible to current
protocols and standards.

– Easy to Maintain. As secure diagnostics should be available also to very
small repair shops, it is reasonable to assume that technical staff with knowl-
edge in security protocols and complex network infrastructures will not be
available. Security mechanisms should therefore be possible to manage for
non-technical persons.

98 P. Kleberger and T. Olovsson

– Limited Increase in Costs. Due to cost restrictions, it is problematic to
mandate specialised hardware and software approaches that are expensive
to implement.

– Prevent Unauthorised Network Access.Only authorised vehicles should
get access to the repair shop network, i.e., those that are scheduled for main-
tenance.

4 Approaches to Secure Diagnostics Communication

Security mechanisms can be introduced at several layers in the communication
stack as shown in Figure 2: in the security sub-layer of ISO 14229 (P4), in
the application layer (P3), in the network layer (P2), or in the link layer (P1).
In next section, all these possible approaches to secure ISO 14229 diagnostics
messages and DoIP communication are presented. In the sections following, these
approaches are evaluated against the requirements identified in Section 3.

IP

TCP, UDP

DHCP DoIP

UDS

ARP

Network Layer

Transport Layer

Session Layer

Presentation Layer

Application Layer

Link Layer

←− P4

←− P3

←− P2

←− P1

Fig. 2. Possible approaches to secure vehicle diagnostics

4.1 Possible Approaches to Secure Vehicle Diagnostics

The following possible approaches to implement security have been identified at
the different layers and are presented in Table 1:

– P4: The ISO 14229 (UDS) security sub-layer has a well-defined interface
to implement end-to-end security mechanisms for diagnostics messages. We
evaluate ISO 15764 [10] and SSL/TLS [13] as two possible candidates to
implement security in this sub-layer. With a security implementation at this
layer, communication is secured between diagnostics equipment and the in-
vehicle ECU.

Securing Vehicle Diagnostics in Repair Shops 99

– P3: SSL/TLS is a possible candidate to secure DoIP communication (in-
cluding the encapsulated ISO 14229 diagnostics messages) by integrating
the SSL/TLS protocol into the DoIP implementation. Communication is
secured between diagnostics equipment and the vehicle’s gateway ECU.

– P2: IPsec [16] is a possible candidate to secure IP communication between
diagnostics equipment and the vehicle’s gateway ECU at the network layer.
To establish Security Associations (SAs) and exchange session keys between
communicating parties of IPsec, the Internet Key Exchange (IKE)-protocol
[17] can be used.

– P1: We evaluate Virtual LAN (VLAN) and CLL [18] as two possible candi-
dates to secure diagnostics communication at link layer. Other approaches
exist to secure Ethernet communication [19], however, we do not find them
relevant in our context for different reasons:
1. We do not consider MACsec [20] as a possible candidate because of

the introduced complexity. Not only do the network infrastructure need
support for MACsec, but the clients must also implement the protocol.
A fall-back approach is also needed if MACsec support is lacking in one
of them.

2. Protocols for secure Address Resolution Protocol (ARP) and secure Dy-
namic Host Configuration Protocol (DHCP) [19] do only consider part
of the problem.

We focus on more general and less complex approaches where only one party,
the clients or the network equipment, enforces the security mechanisms and
not a combination of them. Moreover, communication is secured between
diagnostics equipment and the vehicle’s gateway ECU.

A thorough discussion of each of these possible approaches and their provided
security mechanisms with respect to the requirements (as shown in Table 1)
follows in the following sections.

4.2 Evaluation of Approaches: Possibilities to Fulfil Required
Security Requirements

Data Integrity, Data Authenticity, and Data Freshness. Data integrity,
data authenticity, and data freshness can be provided at all layers by using
Message Integrity Codes (MICs), signing, and nonces.

ISO 15764 is intended to provide an implementation of data integrity, data
authenticity, and data freshness in the ISO 14229 security sub-layer (P4). An
adaptation of SSL/TLS may also be possible to provide these security mech-
anisms within the specification of the security sub-layer. Furthermore, at the
application layer (P3), SSL/TLS provides the data integrity, data authenticity,
and data freshness for TCP. TLS over UDP can be provided by Datagram Trans-
port Layer Security (DTLS) [14], but multicast and broadcast messages are not
supported. Thus, a secure broadcast functionality is lacking at the application
layer to secure DoIP broadcast messages.

100 P. Kleberger and T. Olovsson

T
a
b
le

1
.
E
va

lu
a
tio

n
o
f
d
ia
g
n
o
stics

m
essa

g
e
p
ro
tectio

n
a
n
d
p
o
ssib

le
secu

rity
m
ech

a
n
ism

s
a
t
d
iff
eren

t
en

try
p
o
in
ts

P
4

P
3

P
2

P
1

G
e
n
e
r
a
l

I
S
O

1
5
7
6
4

S
S
L
/
T
L
S

G
e
n
e
r
a
l

S
S
L
/
T
L
S

I
P
s
e
c

G
e
n
e
r
a
l

V
L
A
N

C
L
L

I
n
t
e
g
r
it
y

I
S
O

1
4
2
2
9

d
ia

g
n
o
s
t
ic

s

m
e
s
s
a
g
e
s
1

I
S
O

1
4
2
2
9

d
ia

g
n
o
s
t
ic

s
m

e
s
s
a
g
e
s

I
S
O

1
4
2
2
9

d
ia

g
n
o
s
t
ic

s
m

e
s
s
a
g
e
s

D
o
I
P

t
r
a
ffic

(
in

c
.
I
S
O

1
4
2
2
9
)
1

U
n
ic

a
s
t

O
n
ly

:
D

o
I
P

t
r
a
ffic

.
(
U
D

P
o
v
e
r
T
L
S
:

D
T
L
S

[1
4
])

D
o
I
P

t
r
a
ffic

A
ll

t
r
a
ffic

(
in

c
.

D
o
I
P
,
D

H
C
P
,

A
R
P
)
1

N
o

I
P

(
in

c
.
D

o
I
P
)
,

A
R
P
,
D

H
C
P

A
u
t
h
e
n
t
ic

it
y

–
”
–

–
”
–

–
”
–

–
”
–

–
”
–

–
”
–

–
”
–

–
”
–

–
”
–

F
r
e
s
h
n
e
s
s

I
S
O

1
4
2
2
9

d
ia

g
.
m

s
g
2

–
”
–

–
”
–

D
o
I
P

t
r
a
ffic

(
in

c
.
I
S
O

1
4
2
2
9
)
2

–
”
–

–
”
–

A
ll

t
r
a
ffic

2
–
”
–

–
”
–

C
o
n
fid

e
n
t
ia

lit
y

I
S
O

1
4
2
2
9

d
ia

g
n
o
s
t
ic

s

m
e
s
s
a
g
e
s
3

–
”
–

–
”
–

U
n
ic

a
s
t
:
D

o
I
P

t
r
a
ffic

(
in

c
.

I
S
O

1
4
2
2
9
)
.

M
u
lt

ic
a
s
t
:

D
o
I
P

t
r
a
ffic

p
o
s
s
ib

ly
b
y

s
h
a
r
e
d

s
y
m

m
e
t
-

r
ic

g
r
o
u
p

k
e
y
. 3

–
”
–

U
n
ic

a
s
t
:
D

o
I
P

t
r
a
ffic

.
M

u
lt

ic
a
s
t
:

D
o
I
P

t
r
a
ffic

p
o
s
s
ib

ly
b
y

s
h
a
r
e
d

s
y
m

m
e
t
-

r
ic

g
r
o
u
p

k
e
y
.

U
n
ic

a
s
t
:
A
ll

t
r
a
ffic

b
y

s
h
a
r
e
d

k
e
y
s

(
s
y
m

m
e
t
-

r
ic

/
a
s
y
m

m
e
t
r
ic

)
.

M
u
lt

ic
a
s
t
:
A
ll

t
r
a
ffic

b
y

s
h
a
r
e
d

s
y
m

m
e
t
r
ic

g
r
o
u
p

k
e
y
s
. 3

–
”
–

U
n
ic

a
s
t

O
n
ly

:
I
P

(
in

c
.
D

o
I
P
)

R
o
b
u
s
t
n
e
s
s

A
R
P

s
p
o
o
fin

g
m

a
y

c
a
u
s
e

D
o
S

b
y

s
e
le

c
t
iv

e
d
r
o
p
p
in

g
o
f

d
iv

e
r
t
e
d

t
r
a
ffic

S
p
o
o
fin

g
/

m
a
n
ip

u
la

t
io

n
o
f

lo
w
e
r
la

y
e
r

c
o
m

m
u
n
ic

a
t
io

n
m

a
y

c
a
u
s
e

I
S
O

1
5
7
6
4

t
o

b
r
e
a
k

d
o
w
n

S
p
o
o
fin

g
o
f
T
C
P

p
a
c
k
e
t
s

m
a
y

c
a
u
s
e

S
S
L

c
o
m

m
u
n
ic

a
t
io

n
t
o

b
r
e
a
k

d
o
w
n

[1
5
]

A
R
P

s
p
o
o
fin

g
m

a
y

c
a
u
s
e

D
o
S

b
y

s
e
le

c
t
iv

e
d
r
o
p
p
in

g
o
f

d
iv

e
r
t
e
d

t
r
a
ffic

S
p
o
o
fin

g
o
f
T
C
P

p
a
c
k
e
t
s

m
a
y

c
a
u
s
e

S
S
L

c
o
m

m
u
n
ic

a
t
io

n
t
o

b
r
e
a
k

d
o
w
n

[1
5
]

A
R
P

s
p
o
o
fin

g
m

a
y

c
a
u
s
e

D
o
S

b
y

s
e
le

c
t
iv

e
d
r
o
p
p
in

g
o
f

d
iv

e
r
t
e
d

t
r
a
ffic

A
u
t
h
e
n
t
ic

a
t
io

n
o
f
A
R
P

p
a
c
k
e
t
s

p
r
e
v
e
n
t
s

A
R
P

s
p
o
o
fin

g
.
O

n
ly

A
P
/
s
w
it
c
h

m
a
y

s
e
le

c
t
iv

e
ly

d
r
o
p

p
a
c
k
e
t
s
.

P
o
s
s
ib

ly
:
o
n
e

D
E

a
n
d

o
n
e

V
in

it
s

o
w
n

V
L
A
N

D
iv

e
r
s
io

n
a
t
t
a
c
k

b
y

A
R
P

s
p
o
o
fin

g
n
o
t

p
o
s
s
ib

le
.

O
n
ly

A
P
/
s
w
it
c
h

m
a
y

s
e
le

c
t
iv

e
ly

d
r
o
p

p
a
c
k
e
t
s
.

F
in

e
-G

r
a
in

e
d

A
c
c
e
s
s

C
o
n
t
r
o
l

P
o
s
s
ib

le
P
a
r
t
ly

N
o

P
o
s
s
ib

le
N
o

N
o

N
o

N
o

N
o

P
r
e
v
e
n
t

V
2
V

C
o
m

m
u
n
ic

a
t
io

n
N
o

N
o

N
o

N
o

N
o

T
o

s
o
m

e
e
x
t
e
n
t

b
y

n
o
t

a
llo

w
in

g
S
A
s

b
e
t
w
e
e
n

v
e
h
ic

le
s

S
e
p
a
r
a
t
io

n
b
y

e
n
c
r
y
p
t
io

n
o
f
L
2

fr
a
m

e
s

u
s
in

g
g
r
o
u
p

k
e
y
s

Y
e
s

N
o

E
a
s
y

t
o

D
e
p
lo

y
R
e
q
u
ir
e
s

m
o
d
ific

a
t
io

n
t
o

I
S
O

1
4
2
2
9
,

n
o
n
-t

r
a
n
s
p
a
r
e
n
t

F
o
llo

w
s

s
t
a
n
d
a
r
d
s

R
e
q
u
ir
e
s

m
o
d
ific

a
t
io

n
t
o

I
S
O

1
4
2
2
9
,

n
o
n
-t

r
a
n
s
p
a
r
e
n
t

R
e
q
u
ir
e
s

m
o
d
ific

a
t
io

n
t
o

D
o
I
P

s
t
a
n
d
a
r
d
,

n
o
n
-t

r
a
n
s
p
a
r
e
n
t

R
e
q
u
ir
e
s

m
o
d
ific

a
t
io

n
t
o

D
o
I
P

s
t
a
n
d
a
r
d
,

n
o
n
-t

r
a
n
s
p
a
r
e
n
t

F
o
llo

w
s

s
t
a
n
d
a
r
d
s

N
o
n
-s

t
a
n
d
a
r
d

s
o
lu

t
io

n
,

t
r
a
n
s
p
a
r
e
n
t

F
o
llo

w
s

s
t
a
n
d
a
r
d
s
,

d
y
n
a
m

ic
g
r
o
u
p

a
llo

c
a
t
io

n
is

p
r
o
b
le

m
a
t
ic

N
o
n
-s

t
a
n
d
a
r
d

s
o
lu

t
io

n
,

t
r
a
n
s
p
a
r
e
n
t
.

I
m

p
le

m
e
n
t
a
t
io

n
e
x
is
t
s
.

E
a
s
y

t
o

M
a
in

t
a
in

D
e
p
e
n
d
s

o
n

c
h
o
s
e
n

a
p
p
r
o
a
c
h

C
e
r
t
ific

a
t
e
s

m
u
s
t

b
e

m
a
in

t
a
in

e
d

D
e
p
e
n
d
s

o
n

c
h
o
s
e
n

a
p
p
r
o
a
c
h

C
e
r
t
ific

a
t
e
s

m
u
s
t

b
e

m
a
in

t
a
in

e
d

N
e
e
d
s

P
A
D

s
fo

r
m

a
n
a
g
in

g
S
A
s

D
e
p
e
n
d
s

o
n

c
h
o
s
e
n

a
p
p
r
o
a
c
h

M
a
in

t
a
in

in
g

V
L
A
N

c
o
n
fig

u
r
a
t
io

n
is

p
r
o
b
le

m
a
t
ic

S
A
s

a
u
t
o
m

a
t
ic

a
lly

c
r
e
a
t
e
d

C
o
s
t

S
W

im
p
le

m
e
n
t
a
t
io

n
o
f
s
e
c
u
r
it
y

s
u
b
-la

y
e
r
n
e
e
d
e
d

S
W

im
p
le

m
e
n
t
a
t
io

n
a
c
c
o
r
d
in

g
t
o

s
t
a
n
d
a
r
d

n
e
e
d
e
d

S
W

m
o
d
ific

a
t
io

n
n
e
e
d
e
d

t
o

s
e
c
u
r
it
y

s
u
b
-la

y
e
r

S
W

m
o
d
ific

a
t
io

n
n
e
e
d
e
d

t
o

D
o
I
P

im
p
le

m
e
n
t
a
t
io

n

S
W

m
o
d
ific

a
t
io

n
n
e
e
d
e
d

t
o

D
o
I
P

im
p
le

m
e
n
t
a
t
io

n

D
e
fin

it
io

n
s

o
f

P
A
D

s
n
e
e
d

t
o

e
s
t
a
b
lis

h
e
d

a
n
d

m
a
in

t
a
in

e
d

A
d
d
it
io

n
a
l
S
W

d
e
v
e
lo

p
m

e
n
t

n
e
e
d
e
d

H
W

s
u
p
p
o
r
t

n
e
e
d
e
d
,
b
o
t
h

in
s
w
it
c
h
e
s

a
n
d

A
P
s

N
o

a
d
d
it
io

n
a
l

H
W

s
u
p
p
o
r
t

n
e
e
d
e
d

P
r
e
v
e
n
t

U
n
a
u
t
h
.

N
e
t
w
o
r
k

A
c
c
e
s
s

N
o

N
o

N
o

N
o

N
o

P
o
s
s
ib

le
P
o
s
s
ib

le
N
o

N
o

1
b
y

s
ig

n
in

g
2
b
y

n
o
n
c
e
s

3
b
y

e
n
c
r
y
p
t
io

n

Securing Vehicle Diagnostics in Repair Shops 101

IPsec is a good candidate to implement security at the network layer (P2)
that already provides data integrity, data authenticity, and data freshness. At
link layer (P1), only CLL provides these security mechanisms and ensures secure
IP, ARP, and DHCP communication [18]. Not surprisingly, VLAN does not
provide any of the required security mechanisms since it was not designed to
protect communication between devices within a virtual LAN.

Data Confidentiality. At (P4), ISO 15764 supports data confidentiality by
encryption. An adaptation of SSL/TLS may also be possible within the specifi-
cation of the security sub-layer.

At application layer (P3), network layer (P2), and link layer (P1), data con-
fidentiality is provided by SSL/TLS, IPsec, and CLL, respectively. However, so
far only IPsec supports data confidentiality for multicast communication [16]. If
management traffic, such as the announcement of a vehicle’s ID, should be kept
secret from other vehicles, a secure multicast functionality is needed.

4.3 Evaluation of Approaches: Possibilities to Provide the Desirable
Security Requirements

Robustness. All protocols above link layer (P1) are vulnerable to diversion of
traffic by ARP spoofing attacks [7], which results in an attacker becoming a man-
in-the-middle being in control of the delivery of DoIP traffic. Thus, the attacker
can selectively drop packets and cause a DoS. This might not be considered a
big problem, but if such a DoS attack is performed during firmware update, it
may cause the update to fail and leave the Electronic Control Unit (ECU) in an
inconsistent state. Since communication in a LAN is performed through direct
delivery at link layer, diversion of traffic can be prevented by proper device
authentication, provided the following requirements are fulfilled:

– the device’s MAC address(es) is included in its certificate,

– Ethernet frames are protected against unauthorised modification, and

– Ethernet frames are signed, thus providing data authenticity,

then the receiver can verify the signature and the source MAC address against
the sender’s certificate. Since the MAC addresses represent the truthful sender
and receiver, and the Ethernet frame is delivered through direct delivery, the
frame cannot have been diverted through a malicious host by an ARP spoofing
attack. Remaining devices that still can control packet delivery are switches and
APs that forward packets.

SSL/TLS relies on the delivery of messages by TCP but lacks recovery mecha-
nisms if TCP erroneously delivers messages to the SSL layer due to exploitation
of features in the TCP protocol. For example, spoofing TCP data within the
TCP window may cause injected packets to be delivered to the SSL layer and
break the ongoing session [15].

102 P. Kleberger and T. Olovsson

Fine-Grained Access Control. A fine-grained access control mechanisms can
only be implemented in the upper layers, (P4) and (P3), which only authorises
access to diagnostics commands and data in accordance to a given security policy.
So far, only ISO 15764 partly supports a fine-grained access control mechanism.
With the help of an audit trail service, the standard suggests that access to the
vehicle can be regulated based on previously stored information about a session
and information from the ongoing session [10].

Prevention of V2V Communication. Prevention of Vehicle-to-Vehicle (V2V)
communication is only possible at lower layers, i.e., (P2) and (P1). In IPsec (P2),
a Peer Authorisation Database (PAD) can regulate accesses and to some extent
prevent communication by denying SAs to be established between vehicles. At
link layer (P1), prevention of V2V communication is possible using VLAN by
allocating a separate VLAN group for each connected vehicle (together with ap-
propriate devices). Another possible approach is separation by encryption, where
each vehicle is allocated to a separate encryption group and multicast is used to
send data to specific groups. CLL, however, has no mechanisms to prevent V2V
communication among authenticated devices.

4.4 Implementation Aspects

Easy to Deploy. Picking a solution based on a standard protocol is preferable,
however a chosen approach should also be transparent and still meet the other
requirements. The ISO 14229 security sub-layer (P4) has a standard interface for
incorporating security mechanisms where both ISO 15764 and SSL/TLS can be
implemented. As such a security module may be replaced without any changes
to the rest of ISO 14229, high transparency exists. At the application layer (P3),
modifications are needed to the DoIP standard to implement security mecha-
nisms, which limits the transparency of such an approach. At lower layers, (P2)
and (P1), transparency is once again better preserved. An IPsec implementa-
tion requires no changes to DoIP to be implemented. A VLAN approach is also
transparent, but it only prevents V2V communication which makes it less usable
unless combined with some other approach. Furthermore, even though CLL is
not a standardised approach, it is transparent to DoIP and an implementation
already exists [18].

Easy to Maintain. Assuming certificates are kept up to date by external
parties, knowledge in certificate management should not be needed by mechan-
ics. For approaches implemented in upper layers, i.e., (P4) and (P3), certificate
management are already integrated parts of the protocols. For IPsec, the PAD
database regulates how SAs should be established between diagnostics equip-
ment and vehicles, however, a mechanic cannot be expected to maintain a PAD
in case of configuration errors or in the need for local adaptations, unless there
are some additional helper application that can support, troubleshoot, and cor-
rect such problems. Similarly, CLL establishes SAs between devices, but lacks

Securing Vehicle Diagnostics in Repair Shops 103

an authorisation database that restricts communication to be between diagnos-
tics equipment and vehicles only. Furthermore, to consider VLAN a feasible
approach, supporting systems are needed that can relieve mechanics from all
administrative work required to manage VLAN groups.

Limited Increase in Costs. Approaches in (P4), (P3), and (P2) need to be
implemented in software and new costs are mainly due to development, mainte-
nance, and continues management of these implementations. An approach based
on special hardware support, such as VLAN (P1) are not necessarily more ex-
pensive in the long run as equipment is bought once and later easily replaced by
new equipment.

Prevent Unauthorised Network Access. Standard approaches exist to pre-
vent unauthorised accesses to networks, e.g., IEEE 802.1X for wired access con-
trol and WPA2 for wireless access control. Yet, it is desirable to have an in-
tegrated solution where access control is implemented in the communication
protocol, so that special hardware support is unnecessary and the loss of au-
thentication keys in wireless APs cannot be used for impersonation of repair
shops [21]. Only IPsec and link layer protocols may provide such access control
and prevent unauthorised network access to the repair shop network. For exam-
ple, only vehicles with valid SAs may connect using IPsec, and authentication
and authorisation mechanisms may be integrated into the link layer protocols.

5 A Repair Shop Security Architecture

5.1 Meeting the Security Requirements

Based on our evaluation of possible approaches, a repair shop security architec-
ture that best meets the security requirements can be designed. Our analysis
suggest that possible security mechanisms should be selected as follows:

– Data integrity, data authenticity, and data freshness can be provided at any
of the four entry points in the stack, however, at (P4) only the diagnostics
messages are protected, while at (P3) and below, DoIP is also protected.

– Data confidentiality can be provided for unicast communication at any layer,
but if multicast protection is desired, security mechanisms must be imple-
mented at (P2) or below.

– ARP spoofing and TCP manipulations affect the robustness of the imple-
mented security mechanisms since such activity can cause diagnostics ses-
sions to fail and be terminated. Thus, to protect against such attacks, se-
curity mechanisms should be implemented as far down in the network stack
as possible. Moreover, the robustness is also affected by the exposure of the
network stack. The further down the network stack security mechanisms are
implemented, the lesser amount of code is exposed with possible bugs to
exploit.

104 P. Kleberger and T. Olovsson

– A fine-grained access control mechanism is easier to implement at higher
layers in the network stack. Implementations at lower layers are possible
but such implementations require understanding of how to filter diagnostics
messages from the upper layer protocols.

– Prevention of V2V communication needs to be handled as far down the
network stack as possible to prevent communication from other vehicles and
discard such traffic as quickly as possible. Such an approach also limits the
exposure of the network stack as much as possible.

– Even though the ISO 14229 security sub-layer (P4) is transparent, it cannot
meet all desirable requirements: there is no prevention of V2V communica-
tion and it does not provide protection to all diagnostics services within the
standard (as discussed in Section 2.2). At (P2) and (P1), security mecha-
nisms may be replaced without affecting the diagnostics protocol itself, thus
making them easy to deploy.

– The more the security mechanisms are transparently integrated in the com-
plete diagnostics architecture, the lesser the requirements becomes on specific
security knowledge for non-technical staff, thus, making it easy to maintain.

– From a cost perspective, a standardised approach (whether in hardware or
software) is preferable as such an approach is easy to buy, deploy, and sign
support contracts for. Specialised solutions will drive cost and should be
avoided as far as possible.

– To prevent unauthorised network access to the repair shop network, the lower
layer protocols need to restrict such access.

To conclude, most of the requirements are fulfilled when the security mecha-
nisms are implemented as far down in the network stack as possible. However,
the fine-grained access control mechanisms is one security mechanism that is
simpler to implement directly into the diagnostics protocol.

5.2 Secure Vehicle Diagnostics

To decide upon the best security architecture for a repair shop network, we come
to the conclusion that there are conflicting requirements that only an implemen-
tor can decide upon: easy to deploy and maintain vs. robustness — IPsec vs. a
complete link layer security architecture. We believe that IPsec is the desirable
approach since it is standardised and therefore easier to deploy and maintain,
but some efforts need to be spent in developing supporting tools for easy man-
agement of the authorisation database (PAD). However, IPsec does not provide
protection against diversion attacks by ARP spoofing, where an attacker be-
comes a man-in-the-middle and can control traffic delivery. If protection against
diversion attacks is required, then we find no other approaches available than
the need for a complete link layer security architecture.

Even though our analysis was directed towards a security architecture for re-
pair shop networks, an approach based on IPsec also comes with a great benefit;
it also secures remote vehicle diagnostics over the Internet. In such an architec-
ture, we can also improve the key agreement protocol and replace IKE with a key

Securing Vehicle Diagnostics in Repair Shops 105

distribution protocol specifically designed to distribute session keys and security
policies (used by the fine-grained access control) only to equipment authorised
to perform diagnostics, thus prevent unauthorised diagnostics of vehicles. In our
previous work [12, 22], we designed such a protocol to protect vehicles from
unauthorised diagnostics and the protocol has also been formally verified. Inside
the repair shop network, IKE can not simply be replaced since a SA is required
for communication between vehicles and diagnostics equipment before the au-
thorisation protocol can be executed. Nevertheless, after a SA is established and
the authorisation protocol has been executed, the session key used by IPsec
can be replaced by the newly received and authorised session key, thus prevent
unauthorised diagnostics equipment to be used.

6 Related Work

Even though quite some effort has been spent in securing the vehicular commu-
nication domain over the last years, very little has still been done in securing
the protocols for vehicle diagnostics. The work that has been done in secure
diagnostics has mainly focused on secure software download and firmware up-
dates [23–26]. A first preliminary study of the DoIP protocol was performed by
Lindberg [6], which focused on the security aspects of the protocol. The author
concluded that even though some security mechanisms were defined in the draft
specification, they were far from enough to ensure the security of the protocol.
Furthermore, a test implementation for evaluation of DoIP, mainly from a safety
perspective, has also been developed by Johanson et al. [27].

A few security assessments have been conducted. In [28], Nilsson et al. per-
form a security assessment of a wireless infrastructure used for remote diag-
nostics and software updates over the air. Their wireless infrastructure consists
of a back-end system, a communication link, and the vehicle. Furthermore, in
our previous work [21], a security assessment of the repair shop network was
conducted, however, an evaluation of all possible approaches to implement the
security mechanisms in the protocol stack and an analysis of these to define the
most suitable security architecture was not part of that work.

In this paper, we have taken a general approach and analysed possible security
mechanisms to secure a complete vehicle diagnostics architecture based on DoIP
and ISO 14229.

7 Conclusion

In this paper, we have analysed possible approaches to secure vehicle diagnostics
in repair shops for the newly standardised Diagnostics over IP (DoIP) protocol.
DoIP defines a transmission protocol for diagnostics messages, but the actual
diagnostics commands themselves are described in other standards. We have
focused on diagnostics commands as defined by ISO 14229 Unified Diagnostic
Services (UDS). Even though a security mechanism can be implemented directly

106 P. Kleberger and T. Olovsson

into the ISO 14229 security sub-layer, we have shown that such an approach does
not provide a complete protection.

Our evaluation of possible security approaches suggests that the necessary
security mechanism should be implemented as far down the network stack as
possible. However, one security requirement, the fine-grained access control that
regulates the execution of diagnostics commands and access to information in
vehicles, is best implemented at the application layer.

To conclude, we find that, although it is a compromise, the most desirable
security architecture is achieved by an IPsec implementation, even though some
efforts need to be spent in developing tools for easy management of the IPsec
authorisation database (the Peer Authorisation Database (PAD)). Furthermore,
although our analysis was directed at a local repair shop network, we can also
conclude that an IPsec-based security architecture provides additional benefits:
secure remote diagnostics over the Internet. However, we note that IPsec does
not prevent an attacker from being in control of the delivery of (encrypted) di-
agnostics messages between diagnostics equipment and vehicles by spawning an
ARP spoofing attack. Thus, an attacker can become a man-in-the-middle and
selectively discard messages which could result in a denial of service. If such pro-
tection also is needed, we find no other approaches available than implementing
a complete link layer security architecture for the repair shop network.

Acknowledgements. This research was funded by the project Security Frame-
work for Vehicle Communication (2011-04434), co-funded by VINNOVA, the
Swedish Governmental Agency for Innovation Systems

References

1. Koscher, K., Czeskis, A., Roesner, F., Patel, S., Kohno, T., Checkoway, S., et al.:
Experimental Security Analysis of a Modern Automobile. In: 2010 IEEE Sympo-
sium on Security and Privacy, SP, pp. 447–462 (2010)

2. Rouf, I., Miller, R., Mustafa, H., Taylor, T., Oh, S., Xu, W., Gruteser, M., Trappe,
W., Seskar, I.: Security and Privacy Vulnerabilities of In-car Wireless Networks: A
Tire Pressure Monitoring System Case Study. In: Proceedings of the 19th USENIX
Conference on Security. USENIX Security 2010, Berkeley, CA, USA, p. 21 (2010)
(Visited on 12/18/2013)

3. Checkoway, S., McCoy, D., Kantor, B., Anderson, D., Shacham, H., Savage, S.,
Koscher, K., Czeskis, A., Roesner, F., Kohno, T.: Comprehensive Experimental
Analyses of Automotive Attack Surfaces. In: Proceedings of the 20th USENIX
Security Symposium, San Francisco, CA, USA, pp. 77–92 (August 2011)

4. ISO 14229-1:2013: Road vehicles — Unified diagnostic services (UDS) — Part 1:
Specification and requirements. ISO (2013)

5. ISO 13400-1:2011: Road vehicles — Diagnostic communication over Internet Pro-
tocol (DoIP) — Part 1: General information and use case definition. ISO (2011)

6. Lindberg, J.: Security Analysis of Vehicle Diagnostics using DoIP. Master Thesis.
Chalmers University of Technology. Gothenburg (2011)

Securing Vehicle Diagnostics in Repair Shops 107

7. Altunbasak, H., Krasser, S., Owen, H., Sokol, J., Grimminger, J.: Addressing the
Weak Link Between Layer 2 and Layer 3 in the Internet Architecture. In: 29th
Annual IEEE International Conference on Local Computer Networks, pp. 417–418
(2004)

8. ISO 27145-3:2012: Road vehicles — Implementation of World-Wide Harmonized
On-Board Diagnostics (WWH-OBD) communication requirements — Part 3: Com-
mon message dictionary. ISO (2012)

9. ISO 13400-2:2012: Road vehicles — Diagnostic communication over Internet Pro-
tocol (DoIP) — Part 2: Transport protocol and network layer services. ISO (2012)

10. ISO 15764:2004: Road vehicles — Extended data link security. ISO (2004)
11. Howard, J.D., Longstaff, T.A.: A Common Language for Computer Security Inci-

dents. In: Sandia Report: SAND98-8667 (1998)
12. Kleberger, P., Olovsson, T.: Protecting Vehicles Against Unauthorised Diagnostics

Sessions Using Trusted Third Parties. In: Bitsch, F., Guiochet, J., Kaâniche, M.
(eds.) SAFECOMP. LNCS, vol. 8153, pp. 70–81. Springer, Heidelberg (2013)

13. Dierks, T., Rescorla, E.: The Transport Layer Security (TLS) Protocol Version 1.2.
RFC 5246 (Proposed Standard). IETF (Aug. 2008)

14. Rescorla, E., Modadugu, N.: Datagram Transport Layer Security Version 1.2. RFC
6347 (Proposed Standard). IETF (January 2012)

15. Völker, L., Schöller, M.: Secure TLS: Preventing DoS Attacks with Lower Layer
Authentication. en. In: Kommunikation in Verteilten Systemen (KiVS), pp.
237–248. Informatik aktuell (2007)

16. Kent, S., Seo, K.: Security Architecture for the Internet Protocol. RFC 4301 (Pro-
posed Standard). IETF (December 2005)

17. Kaufman, C., Hoffman, P., Nir, Y., Eronen, P.: Internet Key Exchange Protocol
Version 2 (IKEv2). RFC 5996 (Proposed Standard). IETF (September 2010)

18. Jerschow, Y.I., Lochert, C., Scheuermann, B., Mauve, M.: CLL: A Cryptographic
Link Layer for Local Area Networks. In: Ostrovsky, R., De Prisco, R., Visconti, I.
(eds.) SCN 2008. LNCS, vol. 5229, pp. 21–38. Springer, Heidelberg (2008)

19. Kiravuo, T., Sarela, M., Manner, J.: A Survey of Ethernet LAN Security. IEEE
Communications Surveys Tutorials 15.3, 1477–1491 (2013) ISSN: 1553-877X

20. IEEE 802.1AE-2006: IEEE Standard for Local and metropolitan area networks:
Media Access Control (MAC) Security. IEEE (2006)

21. Kleberger, P., Olovsson, T., Jonsson, E.: An In-Depth Analysis of the Security of
the Connected Repair Shop. In: Proceedings of the Seventh International Confer-
ence on Systems and Networks Communications, ICSNC 2012, Lisbon, Portugal,
pp. 99–107 (November 2012)

22. Kleberger, P., Moulin, G.: Short Paper: Formal Verification of an Authorization
Protocol for Remote Vehicle Diagnostics. In: IEEE Vehicular Network Conference,
VNC, Boston, USA (December 2013)

23. Mahmud, S.M., Shanker, S., Hossain, I.: Secure Software Upload in an Intelligent
Vehicle via Wireless Communication Links. In: Proceedings of the 2005 IEEE In-
telligent Vehicles Symposium, pp. 588–593 (2005)

24. Hossain, I., Mahmud, S.M.: Secure Multicast Protocol for Remote Software Upload
in Intelligent Vehicles. In: Proc. of the 5th Ann. Intel. Vehicle Systems Symp.
of National Defense Industries Association (NDIA), pp. 145–155. Traverse City,
Michigan (June 2005)

25. Nilsson, D.K., Larson, U.E.: Secure Firmware Updates over the Air in Intelligent
Vehicles. In: IEEE International Conference on Communications Workshops, ICC
Workshops 2008, pp. 380–384 (May 2008)

108 P. Kleberger and T. Olovsson

26. Idrees, M.S., Schweppe, H., Roudier, Y., Wolf, M., Scheuermann, D., Henniger,
O.: Secure Automotive On-Board Protocols: A Case of Over-the-Air Firmware Up-
dates. In: Strang, T., Festag, A., Vinel, A., Mehmood, R., Rico Garcia, C., Röckl,
M. (eds.) Nets4Cars/Nets4Trains 2011. LNCS, vol. 6596, pp. 224–238. Springer,
Heidelberg (2011)

27. Johanson, M., Dahle, P., Soderberg, A.: Remote Vehicle Diagnostics over the Inter-
net using the DoIP Protocol. In: Proceedings of the Sixth International Conference
on Systems and Networks Communications, ICSNC 2011, Barcelona, Spain, pp.
226–231 (October 2011)

28. Nilsson, D.K., Larson, U.E., Jonsson, E.: Creating a Secure Infrastructure for Wire-
less Diagnostics and Software Updates in Vehicles. In: Harrison, M.D., Sujan, M.-A.
(eds.) SAFECOMP2008. LNCS, vol. 5219, pp. 207–220. Springer, Heidelberg (2008)

Analysis of Persistence of Relevance in Systems

with Imperfect Fault Coverage

Jianwen Xiang1,2, Fumio Machida2, Kumiko Tadano2, and Yoshiharu Maeno2

1 Wuhan University of Technology, Wuhan, Hubei, 430070 China
xiangjw@gmail.com

2 NEC Corporation, Kawasaki, 211-8666 Japan
{f-machida@ab,k-tadano@bq,y-maeno@aj}.jp.nec.com

Abstract. This paper introduces the concept of persistence and ana-
lyzes its influence on reliability of systems with imperfect fault coverage
(IFC). A component is persistent if it is always relevant in the system un-
less the system is failed, and a system is persistent if all the components
are persistent. In traditional imperfect fault coverage models, simply
coverage models (CMs), the coverage (including identification and iso-
lation) is typically limited to the faulty components regardless of their
relevance. The general assumption on system coherence cannot guaran-
tee that a component will be always relevant in the system. Rather, an
initially relevant component could become irrelevant later due to the
failures of other components, which is unfortunately a missing issue in
the traditional CMs. For systems with IFC, it is important to cover the
non-persistent components whenever they become irrelevant, so as to
prevent their future uncovered faults that may lead to system failure. A
new coverage model incorporating the timely coverage of the irrelevant
components (in addition to the faulty components) is proposed, which
opens up a cost-effective approach to improve the system reliability with-
out increasing redundance.

Keywords: Imperfect fault coverage, relevance, irrelevance, persistence,
reliability, fault tree.

1 Introduction

Fault tolerance is an essential architectural attribute for achieving high reliabil-
ity in many critical applications such as flight control, space missions, and data
storage systems. A fault tolerant (computer) system is typically designed to han-
dle most of the faults that can occur in the system, including hardware-related
faults, software bugs and errors, interface errors between hardware and software,
and so on [1]. Fault tolerance is generally achieved by using redundance concepts.
Automatic fault detection, location, isolation, recovery, and reconfigurationmech-
anisms, or simply recovery mechanisms, play a crucial role in implementing fault
tolerance because an uncovered component fault may lead to a system or subsys-
tem failure and this is called an uncovered failure even when adequate redundance
exists [2]. This typically happens because the system cannot be reconfigured if the

A. Bondavalli and F. Di Giandomenico (Eds.): SAFECOMP 2014, LNCS 8666, pp. 109–124, 2014.
c© Springer International Publishing Switzerland 2014

110 J. Xiang et al.

fault has not been detected or covered, and other non-faulty components may be
contaminated by the non-isolated faulty component. For instance, an undetected
fault may affect the subsequent calculations and operations which may lead to
overall system failure, and an undetected leak, fire, or virus-infected file may cor-
rupt the whole system and lead to catastrophic failure. The models that consider
the effects of imperfect fault coverage (IFC) are known as imperfect fault coverage
models, or simply coverage models (CMs) [3].

In traditional CMs, the coverage (including identification and isolation) is
typically limited to the faulty components irrespective of their relevance. In other
words, an irrelevant component will not be isolated from the system if it is not
failed. Consequently, future uncovered faults of the irrelevant component may
lead to system failure just like the uncovered faults of the relevant components.

Informally speaking, a component is irrelevant if its status (failed or not)
does not affect the system state. Obviously, the irrelevance is not an issue if the
component is persistent, i.e, it is always relevant in the system. In traditional
CMs, especially the combinatorial approaches to modeling IFC (e.g., DDP [4]
and SEA [5]), it is generally assumed that the system is coherent which implies
that each component is relevant. This could be one reason for the omission of
irrelevance in the traditional CMs. However, even with the assumption on initial
relevance, the persistence of a component cannot be guaranteed. This is because
an initially relevant component could become irrelevant later due to the failures
of other components. For instance, let f = x1 ∧ (x2 ∨ x3) be the fault tree
of a system. f is coherent in which each variable is relevant. However, when
x2 = 1 (i.e., the corresponding component fails), x3 becomes irrelevant because
f [1/x2] = x1∧ (1∨x3) = x1, where the function f evaluated in x = v (v ∈ [0, 1])
is denoted by f [v/x]. Similarly, x2 becomes irrelevant in f [1/x3].

A component is not persistent if it is initially irrelevant or it is initially relevant
but its relevance can be changed (lost) later due to the failures of other com-
ponents. A system including non-persistent components is called non-persistent,
otherwise it is persistent. For a non-persistent system subjected to IFC, it is
important to cover the non-persistent components whenever they are (become)
irrelevant even when they are not failed. The coverage of the non-persistent
components will not affect the normal functioning of the system because the
coverage is carried out when the components are or become irrelevant. Rather,
the coverage can prevent the future uncovered failures from the covered irrele-
vant components so as to enhance the system reliability. The effect is particularly
significant when the system includes many non-persistent components and the
uncovered failures are dominant in system unreliability. This opens up a new
cost-effect way to improve system reliability without increasing redundance.

In the work described in this paper, we first introduce and formalize the
concept of persistence, and then address its significance on reliability for the
systems subjected to IFC. We propose a new coverage model incorporating
the coverage of non-persistent components whenever they become irrelevant for
the systems subjected to IFC, called irrelevance coverage model (ICM). Given
the structure function (e.g., fault tree) of the system, we present an algorithm

Analysis of Persistence of Relevance in Systems 111

to calculate under which conditions a component will become irrelevant, and we
call the smallest conditions as the minimal irrelevance triggers (MITs) of the
component. With the calculation of the MITs, the unreliability of a system in
the ICM can be evaluated by a closed-form formula. The significance and effec-
tiveness of the ICM in contrast to the traditional CM are demonstrated with a
practical example with both qualitative and quantitative analysis results.

The rest of this paper is organized as follows. The background on functions,
fault trees, and the traditional CM is introduced in Section 2. The concepts
of persistence and irrelevance triggers are introduced in Section 3. The ICM is
proposed in Section 4. A case study is presented in Section 5. The related work
and concluding remarks are summarized in Sections 6 and 7, respectively.

2 Preliminaries

2.1 Functions and Fault Trees

For the purpose of this paper, fault trees are essentially considered as Boolean
formulae with variables representing the covered and uncovered component fail-
ures. A literal is either a variable x or its negation ¬x, called positive and neg-
ative respectively. By a product we mean a conjunction of literals that does not
contain both a variable and its negation. For convenience, a product is often
assimilated as the set of its literals such that standard set operations can be
applied to it.

Definition 1 (Monotonicity). Let f be a Boolean function. f is monotonic
if for any assignment that satisfies f , switching any variable from 0 (false) to 1
(true) cannot change the value of f from 1 to 0.

It is clear that a Boolean formula made only of variables and connectives ∧
(and) and ∨ (or) (without negation, ¬) is monotonic.

Definition 2 (Relevance). Let f(x1, . . . , xn) be a Boolean function. The vari-
ablex1 is said to be relevant in f anddenotedby relevant(x1 , f) iff(1, x2, . . . , xn) �=
f(0, x2, . . . , xn) for some assignment over {x2, . . . , xn}.

For convenience, the irrelevance of x1 in f is defined as the negation of the

relevance, i.e., irrelevant(x1, f)
def
= ¬relevant(x1, f), i.e., f(1, x2, . . . , xn) =

f(0, x2, . . . , xn) for any assignment over {x2, . . . , xn}.

Definition 3 (Coherence). Let f be a Boolean function. f is coherent if it is
monotonic and each variable is relevant.

Definition 4 (Implicant). Let f be a formula, and let π be a product of literals.
π is an implicant of f if π |= f , i.e., any assignment satisfying π satisfies f .
The implicant π is prime if there is no other implicant π′ of f such that π′ ⊂ π.

112 J. Xiang et al.

If there are some assignment satisfying π that does not satisfy f , we say π
is not a implicant of f , which is denoted by π �|= f . Prime implicants (PIs) of
monotonic fault trees are often called minimal cut sets (MCSs) in the reliability
engineering literature. We denote by PI[f] and MCS[f] the set of all the PIs
and the set of all the MCSs of the formula f , respectively.

In this paper, we are particularly interested in the prime implicants that
consist of only positive literals (i.e., variables). This is because only positive
literals represent failures in the context of fault trees, and we are interested in
the failures that may make a (relevant) component become irrelevant.

Definition 5 (Positive Prime Implicant). Let f be a Boolean formula and
let π be a prime implicant of f . π is called as a positive prime implicant if π is
a product of positive literals.

We denote by PPI[f] the Positive Prime Implicants (PPIs) of f .

2.2 Imperfect Fault Coverage Model

The appropriate coverage modeling approach depends on the type of fault tol-
erant techniques used and the details available on the recovery mechanisms. By
considering the system behavior in response to a fault in each component at the
component level, the models can be classified into single-fault (coverage) models
and multi-fault (coverage) models [3]. For clarity, in this paper, we limit our-
selves to the single-fault model based on the assumption that the coverage of a
faulty component is independent of the status and information available at any
other components. The coverage of the non-persistent components proposed in
the ICM, however, can be applied to multi-fault models also.

Single-Fault
Coverage

Model

cr

s

fault
occurs

single-point failure
(uncovered failure)

permanent
coverage

transient
restoration

Fig. 1. General structure of single-fault coverage model

The general structure of single-fault model is shown in Figure 1. Once a com-
ponent fault occurs, it leads to one of the three possible outcomes or exits, namely
transient restoration, permanent coverage, and uncovered (single-point) failure.
A transient restoration takes place when the offending fault is transient and the

Analysis of Persistence of Relevance in Systems 113

component returns to its normal working state after the restoration. A perma-
nent coverage takes place when the fault is determined to be permanent, and the
offending component is discarded and isolated from the system. A permanent
(component) failure is considered as a covered failure and may lead to system
failure according to the failure logic (structure function) of the system, such as
the system runs out of redundancy by the covered failure. If the fault cannot
be detected, located, or isolated by the recovery mechanism, the fault may lead
to a system failure and this is called an uncovered (single-point) failure. This
generally happens because other non-faulty components may be contaminated
by the non-isolated faulty component, or the system cannot be reconfigured if
the faulty component cannot be detected and isolated. Within the context of
this paper, we refer to the exit probabilities, r, c, and s with r + c+ s = 1. The
exits are mutually exclusive and thus non-independent. Because the transient
restoration does not change the overall system state, we may omit it and let
r = 0 to simplify the analysis.

Let θx be a component, x, x, and x be the covered failure, the uncovered
failure, and the failure of θx, respectively. Let F be the system failure resulting
from the combinations of both covered and uncovered component failures. The
single-fault model can be formalized with the following axioms [6].

x = x⊕ x (1)

x = x ∧ covered(x) (2)

x ↔ isolated(θx) (3)

x = x ∧ ¬covered(x) (4)

x → F (5)

where→ and↔ stand for logic (material) implication and equivalence operators,
respectively.

Suppose there are n distinct components θx1 , . . . , θxn , and let F be the fault
tree with basic events of only covered component failures (i.e., with perfect fault
coverage), F can be defined as a disjunction of F and the disjunction of all the
uncovered component failures [4, 5], i.e.,

F = F ∨
n∨

i=1

xi (6)

For instance, let F1 be an example fault tree with perfect fault coverage as
shown in Eq. (7).

F1 = x1 ∨ x2 ∧ (x3 ∨ x4) (7)

The fault tree considering imperfect fault coverage, say F1, then can be de-
fined according to Axiom (6) below.

F1 = x1 ∨ x2 ∧ (x3 ∨ x4) ∨ x1 ∨ x2 ∨ x3 ∨ x4 (8)

114 J. Xiang et al.

3 Persistence and Irrelevance Trigger

Suppose a system state is denoted by the fault tree representing the combinations
of covered component failures that lead to system failure in that state. In the
sequel, we will use F to denote the original fault tree in the initial system state
(in which each component is assumed to be operational, i.e., not failed), and use
F ′ to denote the updated fault tree in a specific state with the occurrences of
some covered component failures. Let π be a set (product) of covered component
failures occurred in the state denoted by F ′, we have F ′ = F [1/π] where F [1/π]
is the formula obtained from F with y = 1 for any y ∈ π. Notice that F ′ = F
when π = 0 (or say π is empty in the set sense).

Definition 6 (Component Irrelevance). A component θx is said to be irrel-
evant in a state denoted by F ′, if the covered failure x is irrelevant in F ′, i.e.,
irrelevant(θx,F ′)

def
= irrelevant(x,F ′) [6].

The component irrelevance is based on the covered component failures. A
component could also become irrelevant due to the uncovered failures of other
components. We do not consider such an irrelevance because it is difficult or
impossible to cover the irrelevant component when the “trigger” failures are
undetected or uncovered.

In contrast, we say that the component θx is relevant in the state F ′ if
relevant(x,F ′), which is denoted by relevant(θx,F ′). Obviously, even if the
system is originally coherent, the initial relevance of θx cannot guarantee that
θx will be always relevant in the future, i.e., relevant(θx,F) �|= relevant(θx,F ′)
for any F ′. To address this issue, the concepts of persistence and non-persistence
are introduced below.

Definition 7 (Component Persistence). A component θx is said to be non-
persistent if it is irrelevant in some state in which the system is not failed, i.e.,
irrelevant(θx,F ′) for some F ′ (F ′ �= 1), and otherwise it is called persistent.

A non-persistent component could be either an initially irrelevant component,
or a component that is initially relevant but may become irrelevant later when
the system is not failed. Obviously, when the system is failed (i.e., F ′ = 1) due
to the failures of some components, all the rest (operational) components are
irrelevant. This is what we called trivial irrelevance. The trivial irrelevance is
not considered (included) as a sub case of non-persistence, because it is useless
to cover the irrelevant components when the system is failed. Moreover, the
inclusion of the trivial irrelevance may introduce considerable but unnecessary
calculation in reliability analysis, since the number of trivial irrelevance of a
component depends on the number of MCSs that does not include the component
which could be big.

For instance, as for the example fault tree F1 of Eq. (7), x2, x3, and x4 could
become trivially irrelevant when x1 occurs because x1 is a MCS of F1 (that
does not include x2, x3, and x4). It is not necessary to cover the components
θx2 , θx3 , and θx4 when x1 occurs which leads to a system failure. Moreover, θx2

is persistent if the above trivial irrelevance is excluded.

Analysis of Persistence of Relevance in Systems 115

Definition 8 (System Persistence). A system is said to be persistent if each
component is persistent, otherwise it is called non-persistent.

For a non-persistent component in a non-persistent system subjected to IFC,
it is important to analyze under which conditions the non-persistent component
will become irrelevant, especially when it is initially relevant. Without knowing
the conditions, it is impossible to cover the non-persistent component in time
when it becomes irrelevant. We call such conditions the irrelevance triggers of
the component.

The notion of irrelevance trigger can be generalized for the variables of general
Boolean formulae (not necessary to be coherent) below.

Definition 9 (Irrelevance Trigger). Let f be a formula and x be a variable
of f , and let τ be a product (set) of other variables of f (i.e., x �∈ τ) with τ �|= f .
Let f [1/τ] be the formula obtained from f with y = 1 for any y ∈ τ . τ is called
an irrelevance trigger of x if irrelevant(x, f [1/τ]). The irrelevance trigger τ is
said to be minimal if there is no other irrelevance trigger ρ such that ρ ⊂ τ .

We denote by MIT [x, f] the set of all the minimal irrelevance triggers (MITs)
of x in f . In the sequel, we will omit the parameter f and simply write MIT [x]
when the referenced formula is clear in the context, especially when f refers
to the original fault tree F . In addition to the set form, we will also use the
disjunctive normal form (DNF) to denote MIT [x] by a logic product.

Two special cases are considered, namely x is originally irrelevant (in f) and
x is always relevant (i.e., persistent). The MITs of these two cases can be repre-
sented by MIT [x] = 1 (or {∅} in the set form) and MIT [x] = 0 (or ∅ in the set
form), respectively.

Theorem 1 (Calculation of MITs). Let f(x1, . . . , xn) be a monotonic func-
tion. The MITs of x1 can be obtained as the PPIs of g(x2, . . . , xn) that are not
the MCSs of f(x1, . . . , xn), i.e.,

MIT [x1, f(x1, . . . , xn)] = PPI[g(x2, . . . , xn)] \MCS[f(x1, . . . , xn)]

where g(x2, . . . , xn)
def
= ¬f [1/x1] ∨ f [0/x1], and \ stands for the set difference

operator.

Proof (Proof Sketch). According to the Definition 9, a MIT of x1, say τ , must be
a minimal positive product and imply the logical equivalence between f [1/x1]
and f [0/x1], i.e., it is a PPI of f [1/x1] ≡ f [0/x1] (i.e., (¬f [1/x1] ∨ f [1/x0]) ∧
(¬f [0/x1] ∨ f [1/x1])). It is easy to verify that ¬f [0/x1] ∨ f [1/x1] = 1 because
f is monotonic, then τ is a PPI of ¬f [1/x1]∨ f [0/x1]. In addition, τ should not
imply f according to Definition 9, and thus τ should not be a MCS of f .

For instance, as for the example fault tree F1 of Eq. (7), the MITs of x1 can
be calculated below.

116 J. Xiang et al.

MIT [x1,F1] = PPI [x2 ∧ (x3 ∨ x4)] \MCS[x1 ∨ x2 ∧ (x3 ∨ x4)]

= {{x2, x3}, {x2, x4}} \ {{x1}, {x2, x3}, {x2, x4}}
= ∅

i.e., x1 is persistent because all MITs are trivial (i.e., they are MCSs of F1).
With the calculation of MITs, the component persistence can be redefined in

terms of the MITs of the component.

Proposition 1. Let f be a Boolean function and x be a variable of f . The
variable x is said to be persistent in f if it has no MIT, i.e., MIT [x, f] = ∅,
otherwise it is non-persistent.

4 Irrelevance Coverage Model (ICM)

Based on the calculation of MITs, it is possible to cover (identify and isolate)
the non-persistent components whenever they become irrelevant. The coverage
of the irrelevant components can be (easily) integrated into the automatic recov-
ery and reconfiguration mechanisms of the traditional CMs, provided that the
structure function (fault tree) representing the combinations of covered compo-
nent failures that lead to system failure is given. In this section, we propose the
irrelevance coverage model (ICM) based on the traditional single-fault coverage
model by incorporating the coverage of the irrelevant components in addition to
the coverage of the faulty components.

In the ICM, we assume that when a fault occurs and is determined to be
permanent, not only the offending faulty component is isolated, but also the
irrelevant components caused by the covered failure, if any, are isolated so that
they will not contribute to the system uncovered failure anymore. Let FICM be
the fault tree representing the combinations of covered and uncovered component
failures that lead to system failure in the ICM, the axioms (3) and (5) of the
traditional CM can be revised in the ICM as follows:

x ∨ irrelevant(θx) ↔ isolated(θx) (3′)
x ∧ ¬isolated(θx) → FICM (5′)

i.e., an uncovered component failure can only lead to system failure when the
component is not isolated, and the isolation can be carried out whenever the
component is irrelevant (or in the covered failure mode).

Let MIT [xi] be the MITs of xi (in the original fault tree F with only covered
component failures), FICM can be interpreted by a closed-form formula below.

FICM = F ∨
n∨

i=1

(xi ∧ ¬MIT [xi]) (6′)

in which the uncovered component failure xi can only result in a system failure
when none of the MITs of xi occurs; otherwise the component θxi is irrelevant
and covered in the ICM.

Analysis of Persistence of Relevance in Systems 117

In contrast to F of axiom (6), an uncovered component failure of FICM will
no more become a single-point failure to the system if it is irrelevant. From this
point of view, the system reliability can be (significantly) enhanced in the ICM,
especially when the system includes many non-persistent components.

5 Case Study

The example system used in this section is the leading edge flap (LEF), a sub-
section of the F18 flight control system (FCS) [7]. The system was previously
studied in the traditional CMs using the combinatorial DDP solution [4] and
binary decision diagrams (BDDs) [8]. The LEF system is not complex but non-
trivial, and the component failure rates are hypothetical but accurate in relation
to each other (estimated with the help of a NASA engineer) [4], which aids in
demonstrating the significance and effectiveness of our approach, the ICM.

5.1 LEF System Description

The leading edge flaps of the F18 FCS aid in takeoff & landing. The schematic
diagram for both left and right LEF is presented in Figure 2 [4]. The two flight
control computers (FCCs), labeled A and B (FCCA and FCCB), send signals
through four channels, numbered 1 through 4 (CH1, CH2, CH3, and CH4). All
four channels feed into the servo/drive unit (SERV). There are two asymmetry
control units (ASYM), one for each LEF. CH2 and CH4 connect to the left and
right asymmetry control units, respectively. Both the servo/drive unit and the
corresponding asymmetry control unit have direct connections to each LEF. For
clarity, we look specifically at the left LEF (LLEF) as studied likewise in [4, 8].

FCCA

FCCB

SERVO/
DRIVE
UNIT

CHANNEL 1

CHANNEL 3

CHANNEL 4

CHANNEL 2 LLEF

RLEF

RIGHT
ASYMMETRY

CONTROL

LEFT
ASYMMETRY

CONTROL

FLAP

FLAP

Fig. 2. Schematic Diagram of F18 FCS LEF

118 J. Xiang et al.

5.2 LLEF Fault Tree

By considering only covered component failures, the LLEF fails if either the
servo/drive unit, the asymmetry control unit, or the LLEF itself fails. Other fail-
ure scenarios include all four channels failed, FCCA and CH3, FCCA and FCCB,
FCCB and CH2, and CH2 and CH3 [8]. Let F be the system failure of LLEF re-
sulting from the combinations of covered component failures, CH1, . . . , CH4 be
the covered failures of the channels 1-4, respectively, FCCA and FCCB be the
covered failures of the FCCs A and B, respectively, SERV be the covered fail-
ure of the servo/drive unit, ASYM be the covered failure of the left asymmetry
control unit, and let LLEF be the covered (primary) failure of the LLEF itself.
The fault tree and corresponding formula are shown in Figure 3 and Eq. (9),
respectively.

F

SERV ASYM

FCCA CH2 FCCB CH3

CH1 CH4

LLEF

CH2 CH3

Fig. 3. Fault Tree of Covered Failures of Left LEF

F = SERV ∨ASYM ∨ LLEF∨
(FCCA ∨ CH2) ∧ (FCCB ∨ CH3) ∨ (CH1 ∧ CH2 ∧ CH3 ∧ CH4) (9)

It is easy to verify that F is actually not a coherent fault tree but only
a monotonic fault tree, because it includes two irrelevant variables, CH1 and
CH4. Although the general assumption on system coherence was made in [4], the
non-coherence of F was somehow overlooked. Nevertheless, the DDP algorithm
proposed in [4] also works for monotonic fault trees including F .

5.3 Assumptions and Parameters

Assumptions

Analysis of Persistence of Relevance in Systems 119

1. All components have constant failure rates.
2. The system is as good as new at the start of each mission.
3. The coverage factor is the same for each component.
4. The LLEF fails iff:

– A combination of covered component failures results in a system failure
as depicted in Eq. (9), or

– A non-isolated component experiences an uncovered fault.

Parameters
The component failure rates used in the analysis were estimated with the help
of a NASA engineer. The failure rates are hypothetical but accurate in relation
to each other. The one exception is the FCCs whose failure rates were thought
to be underestimated at 10−8/hour. A well-accepted failure rate for standard
computers (processors) is 10−5/hour [4]. In our analysis, we used the two rates
and compared the results. The failure rates [8] are shown in Table 1.

Table 1. Exponential Failure Rates for LLEF System Component

Component Failure Rate (/hour)

LLEF 10−10

ASYM 10−8

SERVO 10−8

FCCs 10−8 or 10−5

CH1-CH4 10−6

Another parameter varying in our analysis is the coverage factor c, the proba-
bility of taking the permanent coverage exit given that a fault occurs. We assume
that the coverage factors for all components are equal, and the values are set
between 0.9 to 1. For clarity, we do not consider the transient restoration, and
the exit probability r is set to 0 for all the components. Note that in Doyle et
al.’s work [4, 8], the IFC was restricted to the FCCs, and the fault coverage of
the other components was assumed to be perfect such that they would never
experience any uncovered fault. The reason for the restriction is unclear, but we
guess that to show the impact of the IFC of the FCCs on the system and on the
FCCs themselves [4] could be one of the considerations.

The mission time is set to 2 hours as a typical time for a test mission. Mission
times for other missions such as a combat mission could be longer [4].

5.4 Qualitative Analysis

Let F be the fault tree with covered and uncovered component failures in the
traditional CM without coverage of non-persistent components. According to
Eq. (6), F can be interpreted as:

F = F ∨
∨

x∈X

x (10)

120 J. Xiang et al.

whereX is the set of component failures, i.e.,X={SERV,ASYM,LLEF, FCCA,
FCCB,CH1, CH2, CH3, CH4}.

Let FICM be the fault tree with covered and uncovered failures in our ICM
with coverage of irrelevant components. According to Eq. (6′), FICM can be
interpreted as:

FICM = F ∨
∨
x∈X

x ∧ ¬MIT [x] (11)

The MITs of each x can be calculated in terms of Theorem 1 because F is
monotonic.

MIT [SERV] = 0 MIT [ASYM] = 0 MIT [LLEF] = 0

MIT [FCCA] = CH2 MIT [FCCB] = CH3 MIT [CH1] = 1

MIT [CH2] = FCCA MIT [CH3] = FCCB MIT [CH4] = 1

There are three persistent components, namely SERV, ASYM, and LLEF,
because their MITs are 0 (or ∅ in the set form). The other six components are
non-persistent, among them CH1 and CH4 are initially irrelevant because their
MITs are 1 (or {∅} in the set form), and the four remaining, FCCA, FCCB,
CH2, and CH3, are initially relevant but can become irrelevant afterwards due
to the occurrences of the corresponding MITs.

The MITs of a component indicate when the component should be covered
(shut down and safely isolated) in addition to the times when it fails covered in
the ICM. For instance, CH1 and CH4 should be covered in the very beginning
because they are initially irrelevant with the only MIT of 1 (true), FCCA should
be covered together with CH2 when CH2 fails covered, and FCCB, CH2, and
CH3 should be covered under the covered failures of CH3, FCCA, and FCCB,
respectively. The irrelevance coverage of the three persistent components, SERV,
ASYM, and LLEF, however, is useless because their MITs are 0 (false).

With the timely irrelevance coverage in the ICM, an uncovered component
fault can only lead to a system failure when none of its MITs occurs, otherwise
the component is safely isolated (due to the occurrence of a MIT) and will not
contribute to the system uncovered failures anymore. This is different from the
case of the traditional CM in which any uncovered component fault may lead
to system failure and become a single-point failure. The difference can be seen
more clearly by further reducing FICM with the MITs of each component, i.e.,
Eq. (11) can be reduced into:

FICM = F ∨
∨

x∈X

x ∧ ¬MIT [x]

= F ∨ SERV ∨ ASYM ∨ LLEF ∨ (FCCA ∧ ¬CH2) ∨ (FCCB ∧ ¬CH3)

∨ (CH2 ∧ ¬FCCA) ∨ (CH3 ∧ ¬FCCB) (12)

By comparing Eqs. (12) and (10), it is apparent that the FICM can achieve
(much) higher reliability than F by restricting the single-point failures of the
non-persistent components in the traditional CM. For instance, the single-point

Analysis of Persistence of Relevance in Systems 121

failures, CH1 and CH4 of F , are removed from FICM because the two com-
ponents (CH1 and CH4) are initially irrelevant, and the single-point failures,
FCCA,FCCB,CH2, and CH3 of F , are no more single-point failures in FICM

in which they can only lead to system failure with the restrictions on the non-
occurrence of any of their MITs. The single-point failures, SERV ,ASYM , and
LLEF of F , are, however, still the single-point failures in FICM because the
corresponding components are persistent. This suggests that the ICM is not
necessary for persistent systems in which all components are persistent.

5.5 Quantitative Analysis

The quantitative analysis results of F and FICM are shown in Table 2. The
effectiveness of the ICM can be seen by the change in the coverage factor c and
the change in the failure rate of the FCCs.

With c = 1, i.e., all the components have perfect fault coverage, there is no
difference between the probabilities (unreliabilities) Pr(F) and Pr(FICM). This,
again, verifies the observation made earlier in the qualitative analysis, i.e., when
the fault coverage is perfect for every component, the ICM is useless in the sense
to prevent the nonexistent uncovered faults that may lead to system failure.

Table 2. Unreliability Results of LLEF in CM and ICM

FCCs Failure Rate

10−8/hour 10−5/hour

c Pr(F) Pr(FICM) Pr(F) Pr(FICM)

.90 8.44 · 10−7 4.44 · 10−7 4.84 · 10−6 4.44 · 10−6

.95 4.42 · 10−7 2.42 · 10−7 2.44 · 10−6 2.24 · 10−6

.98 2.01 · 10−7 1.21 · 10−7 1.00 · 10−6 9.20 · 10−7

.99 1.21 · 10−7 8.06 · 10−8 5.21 · 10−7 4.81 · 10−7

1.0 4.02 · 10−8 4.02 · 10−8 4.07 · 10−8 4.07 · 10−8

When c < 1, the decrease ratio of unreliability in the ICM is significant, par-
ticularly in the case with the underestimated failure rate of 10−8/hour for the
FCCs. Let UDR = (Pr(F) − Pr(FICM))/Pr(F) be the unreliability decrease
ratio (UDR) between Pr(F) and Pr(FICM), the UDR with different failure
rate of the FCCs and different coverage factors can be seen more clear in Fig-
ure 4. For instance, when c = 0.9, the unreliability can be decreased in ratio
8.28% in the ICM with the FCC failure rate of 10−5/hour, and the unreliability
can be decreased up to 47.39% with the underestimated FCC failure rate of
10−8/hour. This interesting observation suggests that the ICM could be more
effective in terms of the UDR for the systems with more reliable components. In
this particular example there are only nine components, and the FCCs have a
sizeable effect on the unreliability, which is one reason for the above observation.
Different observations, however, may be obtained from different systems.

122 J. Xiang et al.

Fig. 4. Unreliability Reduction Ratio

In both cases with the failure rates of 10−8/hour and 10−5/hour for the FCCs,
the amount (absolute value) of the decrease of unreliability in the ICM decreases
with the increase of the coverage factor c. This shows that the ICM can play a
more important role for the systems with “worse” fault coverage factors.

6 Related Work

The coverage concept was first introduced in the seminal paper by Bouricius et
al. [9], also called as the coverage factor, as a conditional probability accounting
for the efficiency of fault-tolerant mechanisms. If the identification and recovery
of faults are independent of each other, the CM is called a single-fault model
(e.g., [5, 10]); otherwise it is called a multi-fault model (e.g., [11, 12]). A re-
cent survey on the status and trends of various CMs was presented in [3]. The
issues of persistence and coverage of non-persistent components have not been
addressed in these traditional CMs, in which the coverage was limited to the
faulty components with a general assumption on system coherence [4, 5].

The relevance concept has also been used in Boolean logic driven Markov
processes (BDMP) [13], in which the relevance indicator of an event is used to
denote whether the Markov processes associated to the event is relevant and
should not be trimmed. The relevance indicator of an event depends on the
structure functions (i.e., fault trees) of other events (gates or basic events) that
have edges to or triggers (a subset of edges) from the event. The relevance
indicator in BDMP is analyzed without considering IFC.

A similar concept to relevance is functional dependency (FDEP) [14]. In the
FDEP gate, it assumes that the system is configured such that when the trig-
ger event (i.e., the failure of the functionally depended component) occurs, all

Analysis of Persistence of Relevance in Systems 123

the dependent components become inaccessible or unusable, and later faults in
the dependent components do not further affect the system [14]. An approach,
able to handle functional dependency in the reliability analysis of systems with
IFC, has been proposed in [15]. Unlike the logical relevance which is encoded in
the structure function of the system and the irrelevance triggers of each compo-
nent can be evaluated automatically in the ICM as presented in this paper, the
functional dependency in the FDEP gate must be specified manually.

It has been proved that the reliability of any system subjected to IFC, espe-
cially with single-fault models, decreases after certain level of redundance [10].
Several researchers have studied the optimal redundance problem for various sys-
tems (e.g., [16–19]). Our work is complementary to these works in terms of the
common goal of reliability optimization. The ICM opens a new cost-effective way
to enhance the reliability without additional redundance, and it may even play
a role in systems whose optimal redundance limits have already been reached in
the traditional CMs.

The issue of coverage of irrelevant components in the systems subjected to
IFC has only been addressed in a most recent letter with a simple numerical
example [6]. In this paper, we further introduce the concept of persistence at
both component level and system level, refine the concept of MIT by excluding
the trivial ones that also result in system failures, and propose a new and more
efficient algorithm to calculate the refined MITs. Moreover, a non-trivial prac-
tical example, a subsystem of the F18 flight control system (FCS), is used to
demonstrate the effectiveness of the ICM in this paper.

7 Conclusions

This paper has introduced the concept of persistence in systems subjected to
IFC. The ICM has been proposed to incorporate the coverage of the non-
persistent components whenever they become irrelevant, which opens up a
cost-effective approach to improve the system reliability without increasing re-
dundance. As for the future directions, we are going to extend the ICM to
non-monotonic systems and multi-fault models.

Acknowledgements. The authors are particularly grateful to Dr. Christel
Seguin at ONERA and the anonymous reviewers for their detailed and con-
structive comments to improve the paper.

References

1. Pradhan, D.K.: Fault-tolerant computer system design, pp. 135–138. Prentice Hall
(1996)

2. Arnold, T.: The concept of coverage and its effect on the reliability model of a
repairable system. IEEE Trans. on Computers C-22, 325–339 (1973)

3. Amari, S.V., Myers, A.F., Rauzy, A., Trivedi, K.S.: Imperfect coverage models:
Status and trends. In: Misra, K.B. (ed.) Handbook of Performability Engineering.
Springer (2008)

124 J. Xiang et al.

4. Doyle, S.A., Dugan, J.B., Patterson-Hine, F.A.: A combinatorial approach to mod-
eling imperfect coverage. IEEE Trans. on Reliability 44(1), 87–94 (1995)

5. Amari, S.V., Dugan, J.B., Misra, R.B.: A separable method for incorporating im-
perfect fault-coverage models into combinational models. IEEE Transactions on
Reliability 48(3), 267–274 (1999)

6. Xiang, J., Machida, F., Tadano, K., Maeno, Y.: Coverage of irrelevant components
in systems with imperfect fault coverage. IEICE Transactions on Fundamentals of
Electronics, Communications and Computer Sciences E96-A(7), 1649–1652 (2013)

7. Doyle, S.A., Dugan, J.B., Patterson-Hine, A.: A quantitative analysis of the F18
flight control system. In: Proc. of AIAA Computing in Aerospace, pp. 668–675
(October 1993)

8. Doyle, S.A., Dugan, J.B.: Dependability assessment using binary decision diagrams
(BDDs). In: IEEE Proc. of the 25th International Symposium on Fault-Tolerant
Computing, FTCS 1998, pp. 249–258 (January 1998)

9. Bouricius, W.G., Carter, W.C., Schneider, P.R.: Reliability modeling techniques for
self-repairing computer systems. In: 24th Ann. ACM National Conf., pp. 295–309
(1969)

10. Amari, S.V., Dugan, J.B., Misra, R.B.: Optimal reliability of systems subject to
imperfect fault-coverage. IEEE Transactions on Reliability 48(3), 275–284 (1999)

11. Bavuso, S.J., Rothmann, E., Mittal, N.: Hirel: Hybrid automated reliability predic-
tor (harp) integrated reliability tool system (version 7.0) - harp graphics oriented
(go) input user’s guide (1994)

12. Myers, A.F.: k-out-of-n: G system reliability with imperfect fault coverage. IEEE
Trans. on Reliability 56(3), 464–473 (2007)

13. Bouissou, M., Bon, J.L.: A new formalism that combines advantages of fault-trees
and markov models: Boolean logic drivenMarkov processes. Reliability Engineering
& System Safety 82, 149–163 (2003)

14. Dugan, J.B., Bavuso, S., Boyd, M.: Dynamic fault tree models for fault tolerant
computer systems. IEEE Transactions on Reliability 41(3), 363–377 (1992)

15. Xing, L., Morrissette, B.A., Dugan, J.B.: Efficient analysis of imperfect coverage
systems with functional dependency. In: IEEE Proc. of Annual Reliability and
Maintain-ability Symposium, RAMS, San Jose, CA, pp. 1–6 (January 2010)

16. Amari, S.V., McLaughlin, L., Yadlapati, B.: Optimal cost-effective design of par-
allel systems subject to imperfect fault-coverage. In: Proc. of Annual Reliability
and Maintainability Symposium, pp. 29–34. IEEE (2003)

17. Amari, S., Pham, H., Dill, G.: Optimal design of k-out-of-n:G subsystems subjected
to imperfect fault-coverage. IEEE Trans. on Reliability 53, 567–575 (2004)

18. Levitin, G.: Optimal structure of multi-state systems with uncovered failures. IEEE
Trans. on Reliability 57(1), 140–148 (2007)

19. Myers, A.: Achieveable limits on the reliability of k-out-of-n:g systems subject to
imperfect fault coverage. IEEE Trans. on Reliability 57(2), 349–354 (2008)

Exploiting Narrow Data-Width to Mask Soft

Errors in Register Files

Jianjun Xu, Qingping Tan, Zeming Shao, and Hong Ning

School of Computer, National University of Defense Technology,
Changsha 410073, P. R. China

{jjun.xu,eric.tan.6508,szmsmile}@gmail.com,hning@nudt.edu.cn

Abstract. The dependability of computing, caused by soft errors, has
become a growing design concern in the safety critical systems. Since
Register Files (RFs) are very frequently accessed and errors occurred
in them will propagate to other components quickly, RFs are among
the major reasons for affecting systemic reliability. Current protecting
techniques usually provoke significant power penalty and performance
degradation. This paper proposes a lightweight software implemented
method for mitigating soft errors in RFs. Based on the observation of
many narrow data-width of registers’ value, which indicates a large frac-
tion of unused bits of register data, the masking operations are inserted
to clear the possible errors in these bits for reducing the window of
vulnerability for RFs. To improve the effectiveness, the effect of each
masking range is calculated, and the covered masks analysis can remove
the unnecessary masks without scarifying the errors coverage. Under the
user-defined overhead constrain, the most cost-effective masking oper-
ations can be automatically selected. Experimental results from several
benchmarks indicate that the reliability of programs have been averagely
improved for 16.8% with only 3.3% performance overhead.

Keywords: Register file, soft error, value range analysis, masking
operation, program analysis.

1 Introduction

Today, computers are widely used in many safety critical systems, such as vehicle
control modules, medical systems and space applications. With the scaling of
semiconductor technologies, soft errors are becoming a new challenge for them.

Soft errors, also known as single event upsets, are hardware transient faults
caused by external radiation or electrical noises, for example high energy neu-
trons from cosmic rays and packaging impurity [1][2]. These errors may flip bits
stored in storage cells or change the state of logic structures, thus affecting the
correctness of program execution. With the continuing progress of VLSI towards
smaller feature size, lower supply voltage, and higher frequency, microprocessors
are becoming more susceptible to soft errors [3]. There have been multiple costly
crash, caused by soft errors, in earth-bound computer systems [4]. Therefore, it
is necessary to employ effective techniques to address soft errors.

A. Bondavalli and F. Di Giandomenico (Eds.): SAFECOMP 2014, LNCS 8666, pp. 125–138, 2014.
c© Springer International Publishing Switzerland 2014

126 J. Xu et al.

In modern processors, the original error rates of arithmetic and logic units are
much smaller than those of storage structures [5]. The large storage components,
such as memory and caches, are routinely protected by the ECC Codes or parity
checking bits. Since Register Files (RFs) are accessed very frequently, errors
occurred in them can quickly propagate to other parts. Due to the consideration
of power consumption and performance loss, protecting RFs using ECC or parity
bits is usually impractical. Consequently, the soft errors of RFs are among the
top challenges for systemic reliability [6][7]. Moreover, current trend to employ
large for better performance (e.g. IA-64) can exacerbate the reliability problem.

Recently, many methodologies have been proposed to overcome soft errors.
These techniques can be mainly classified into two types: hardware-based and
software-based. Comparing with the former, the latter becomes attractive be-
cause it does not incur the high economical costs and can be applied flexibly.
Software-based techniques range from the basic error detection mechanisms (e.g.
exception handling and assertions) to complex methodologies, including AN-
codes[8], ABFT [9], data duplication [10], time redundancy [11][12] and etc. In
these methods, the general strategy should be temporal or spatial redundancy,
which may unfortunately have evident impact on performance and storage over-
head. For example, the full duplication of data can incur double space occupation
and the performance will decline significantly when redundancy computation
and considerable consistency checking are introduced. The overhead is usually
unacceptable in the real time systems or embedded applications.

In this paper, we present a novel lightweight approach, namedMASER (MAsk-
ing Soft Errors in Register files), which can mitigate soft errors through insert-
ing masking instructions to reset the unused binary bits of target registers. In this
way, errors occurred in these bits will not impact the correctness of program exe-
cution. Exploiting the profile information, the data-width of live variables stored
in registers and the masking ranges of target registers are estimated. Moreover,
MASER analyzes the covered masks to remove the unnecessary masking opera-
tions. Finally, the most cost-effective masks can be selected automatically under
the constrained performance overhead. To illustrate the effectiveness of MASER,
we perform several experiments on a set of benchmark programs. Experimental
results indicate that the average reliability of programs have been improved for
16.8% with only 3.3% runtime costs.

The content of this paper is organized as follows. Our motivation and the
framework of MASER are outlined in Section 2. Section 3 introduces the detail of
MASER, including masking ranges analysis, covered masks analysis and optimal
masks selection. The experimental results and related works are presented in
Section 4 and 5, respectively. Section 6 then summarizes the final conclusion.

2 Motivation

Since a soft error will affect a single-bit cell, we do analysis at the level of assem-
bly code. This paper adopts the PISA instruction set [13], a 32-bit architecture,
which is a MIPS-like instruction set.

Exploiting Narrow Data-Width to Mask Soft Errors in Register Files 127

Firstly, we introduce the following definition. A basic block is a sequence of
instructions 〈i1, i2, . . . , ik | k ≥ 1〉, program executes from i1 to ik sequentially.
For an instruction i, we define the located basic block and its successive instruc-
tion as β(i) and next(i), respectively. The set of all basic blocks in a program is
denoted as N . Using N , a program can be associated to a control flow graph,
and we define the set of connecting edges as E = P(N × N), expressing all
the possible execution flows. For a basic block n, succ(n) = {m|〈n,m〉 ∈ E}
represents the set of immediate successors of n, and F (n) denotes the executing
frequency of n. For an edge e = 〈n,m〉, P (e) denotes the probability about block
m executing after n.

For each register r, ω(r) is denoted as its binary width (e.g. ω(r) = 32 in
PISA), and the data-with of actual value stored in r is defined as (r), which
depends on the concrete execution process of program. These execution profile
and the data-width information of register value can be extracted from profiled
execution, or generated from static approximations[14]. Previous work indicates
that the data-width of registers’ value are highly predictable [15].

move $16,$0 #1
$L1:

addu $16,$16,1 #2
slt $2,$16,100 #3
bne $2,$0,$L1 #4

$L2:

int i = 0;
do
{

i++;
} while (i < 100);

(b) PISA assembly code(a) C source code

andi $16,$16,0x3f

Fig. 1. The sample code

The idea of our approach is based on the observation that a large fraction
of the data-widths of registers’ actual value are narrow(i.e. less than 16 bits
for a 32-bit system, or (r) � ω(r)). Fig. 1 shows a sample code sequence
of C language and the target assembly language version written in PISA. The
value range of variable ’i’ is [0, 100]), thus the corresponding stored register $16
only uses low 7 bits. If the instruction ”andi $16,$16,0x3f” is inserted before
#3, the semantics of snippet code will not be impacted since we know that
the upper 25 bits will keep zero (called known-zero bits). However, the errors
occurred in these known-zero bits will be masked out, resulting in the decrease of
register $16’s vulnerability (2532 errors are cleaned). Through inserting the andi

instructions before the source operands to clear their known-zero bits, MASER
increases the reliability of program against soft errors.

It is noted that MASER can be easily extended to mask the known-one bits
through ori instruction and sign-extensions to clean known-sign bits. Even the
technique can be used to enforce the floating point registers. The exponential
and decimal part can be masked distinguishingly. But, this paper only focus on
the known-zero bits in general purpose registers.

128 J. Xu et al.

Since the immediate field of andi instruction should be less than 16 bit-width,
we focus on the value less than 0xFFFF in the target registers (called narrow
registers). The straightforward way to protect registers is to insert masking op-
erations for each narrow register. Apparently, such an approach will be trivial
but very costly. For example, masking instruction can also be inserted before #2,
because the value range of source operand $16 is also [0, 100]. But this insertion
is unnecessary because the later masking operation since #3 also clears the up-
per 25 bits. Based on the data flow analysis, MASER analyses the effect of error
propagation to remove these non-vital masking operations. Moreover, to further
reduce the performance penalty, the effect of each masking range are calculated.
The most cost effective masking operations can then be selected automatically
under the constrained performance overhead.

MASER

Compile Original
assembly code

Reliability enhanced
assembly code Link

Source code

Executable
program

Masking ranges
analysis

Data-width Of
registers' value

Execution profile

Optimal masks
selection

Covered masks
analysis

Fig. 2. The framework of MASER

Fig. 2 shows the framework of MASER, which consists of three parts: (1)
Based on execution profile, analyzing masking ranges at the assembly code level
using the registers’ vulnerability analytical methods from work [16]. (2)Analyzing
covered masks to remove the non-vital masking operations. (3) Based on previous
analytical results, the most cost effective masking operations are selected through
a sort algorithm. The following section will discuss these three parts in detail.

3 The MASER Approach

3.1 Masking Ranges Analysis

In this section, we want to know that how many errors can be masked when
a masking operation is inserted. During the execution process of a program, a
register may be read and written with new data for many times. Intuitively,

Exploiting Narrow Data-Width to Mask Soft Errors in Register Files 129

the maskable errors occur in upper known-zero bits during the intervals (called
maskable intervals) from latest usage (write or read) to current masking opera-
tion. Moreover, the branch and merge structures may introduce multiple latest
accesses. We define the maskable domain as masking range, denoted formally via
a quintuple, < r, i⊥, ε, Γ, φ >, in which:

– r: the target register.
– i⊥: for instruction i⊥, r is one of its source operands and the masking in-

struction will be inserted before i⊥;
– ε: the effect will be masked by this masking operation, which is relative

factor for evaluating different ranges;
– Γ : the set of latest accessing instructions;
– φ : Γ → [0, 1]: the masking probability function, for i ∈ Γ , φ(i) represents the

probability of errors, which occurred in the interval starting from i, masked
by this mask.

Through the use-define chain analysis, the latest accessing instructions can
be determined easily. If the previous reference and i⊥ located in the same basic
block, the interval can be calculated with the number of intervening instruc-
tions between them within the static code. Otherwise, the maskable intervals
computation will incur the inherent difficulty of path-dependence.

move $2,$0 #1

addu $2,$3,1 #2
move $3,$2 #3

slt $4,$2,20 #4

0.2
0.8

0.75 0.25

B1:5

B2:1
B3:4

B4:4

B5:4

B2 =1

B1 =0

B3 =0.75

B4 =0.75

B5 =0

Fig. 3. The sample of masking range

Fig. 3 illustrates a sample control flow graph, where the executing frequency of
basic blocks and the probability of branch edges are also marked. For example,
the executing frequency of B1 is 5, and the probability of B2 executing after
B1 is 0.2. The target register $2 is written in B1 and B2, read in B3 and B5

respectively. If the masking operation is inserted before instruction #4(i⊥), the
latest accesses of $2 include #2(write) in B2 and #3(read) in B3. The maskable
intervals of $2 are described by the thick arrows in Fig. 3. It should be pointed
that the interval between #1 and #3 can not be masked because the errors

130 J. Xu et al.

occurred in this interval may propagate to $3 due to #3. We only need to analyze
the maskable intervals from latest usage to current mask. However, because of
the inherent path dependance, tracing every possible interval is impractical.

To break away this path-dependence of maskable intervals computation,
MASER adopts the idea from the static analysis method [16], which is used
to analyze the vulnerability of RFs. For a masking range < r, i⊥, ε, Γ, φ >, the
maskable intervals are decomposed into intra-block v� for the mask inserting
basic block β(i⊥) and inter-block v�n for each block n. v� is a definitely maskable
interval from the entrance of β(i⊥) to i⊥, and it can be calculated from the in-
struction sequence in β(i⊥). The latter intervals, from the possible latest accesses
to the exit for each block n, are necessarily depended on the usage of r during
the subsequent execution, which is defined as a post condition function ψ(n),
i.e. the probability of errors can be masked after n. The maskable intervals of r
can then be simply computed by adding up the basic block attributes multiplied
by its execution frequency, and the effect ε is calculated as following:

ε = F (β(i⊥))× v� +
∑

n∈N (F (n)× v�n × ψ(n))) (1)

For the example of Fig. 3, the intra-block v� is the interval from the entrance
of B5 to instruction #4, the inter-block v�B3

is the interval from #3 to the exit of
B3. The most essential parameter of each basic block n, the post condition ψ(n)
depends on the successive blocks, and can be calculated through the system of
linear equations: for each block n and its immediate successors, this relationship
holds: ψ(n) =

∑
m∈succ(n) P (〈n,m〉)×ψ∗(m), where ψ∗(m) is a variable associ-

ated with m, which is defined as 1, 0, or ψ(m) whether the first access of m is
i⊥, access(write or read), or no access, respectively.

This set of linear equations has a unique solution and can be solved efficiently.
In Fig. 3, we also labels the post condition for each basic block. For example,
the post condition of B3 is 0.75. Finally, the effect ε of each masking range can
be calculated via Equation (1). And the masking probability function φ can also
be determined easily, i.e. if the previous accessing instruction i is located in the
same block of mask inserted, then φ(i) = 1, otherwise φ(i) = ψ(β(i)).

3.2 Covered Masks Analysis

As introduced in Section 2, MASER tries to remove the non-vital (unnecessary)
masking operations for reducing performance overhead without losing errors
coverage. The non-vital masks mean that their masked errors can be covered
by later masking operations. Each mask is inserted before the reading access
of target register. Eliminating this mask will incur errors propagating to the
destination operands, so which should be definitively masked the later ones. To
ensure the safety of removing, we introduce the definition of the trusty operations
and covered masks similar with the work [17].

The trusty operators are those instructions, which have a low chance to cause
the original maskable errors to affect the useful bits. In other words, the maskable
errors can only propagate to known-zero bits. The trusty operators thus include:

Exploiting Narrow Data-Width to Mask Soft Errors in Register Files 131

bitwise instructions (such as and, xor, or and etc), addition and subtraction,
left shift and move instructions. Then the definition of covered masking range is
as following:

Definition 1. A masking range m1 is covered by later masking range m2 when:

1. m1’s next reading instruction m1.i⊥ belongs to the trusty operations, m1.r
and m2.r is the source and destination operand of m1.i⊥, respectively;

2. (m1.r) ≥ (m2.r);
3. m2.i⊥ probabilistic postdominates m1.i⊥;
4. if m1.r �= m2.r and m1.r is still live after m1.i⊥, then m1.r should be masked

by m3 in addition (m1.r) ≥ (m3.r).

Fig. 4 further explains this definition. Assume the data-width of register $2
and $3 to be 2 and 3 respectively. In Fig. 4-(a), m1 is obviously covered by m2
for satisfying all conditions. But in Fig. 4-(b), m1 can not be removed because
of ($2) < ($3), m2 will not cover all known-zero bits of $2. In Fig. 4-(c), m1
also can not be eliminated, because although m1 is covered by m2 in the left
branch but $3 is read (still live) in right side. Therefore, removing m1 incurs
errors propagating to $4, which will not be masked in the later phase. Fig. 4-(d)
is an interesting example, in which m1 is also partly covered by m2, $2 is dead
(written with new data) in right branch resulting in the safety of removing m1.

(m1)mask $2
addu $2,$2,1

(m2)mask $2

(m1)mask $2
move $3,$2

(m2)mask $3

(m1)mask $3
addu $2,$3,1

(m2)mask $2

0.75

move $4,$3
no mask $4

0.25

(m1)mask $2
addu $2,$2,1

(m2)mask $2

0.75

move $2,$3

0.25

(a) (b) (c) (d)

Fig. 4. Examples of covered and non-covered masking ranges

As shown in Fig. 4-(d), this kind of postdominate is different from the tradi-
tional definition (such as classic Common Sub-Expression Elimination), which
often conservatively request dominating in each successive path (including the
dead ones). After calculating the living probability of registers at each program
point via work[16], we can use the probabilistic post-domination. It means that
the living probability of target register of masking range m1 equal to the mask-
ing probability of later m2, then condition 3 of Definition 2 satisfy, e.g. both of
two probabilities are 0.75 in Fig. 4-(d).

Based on the data-width information, we can sketch all possible masks (data-
width less or equal 16 in PISA). Then the non-vital masks are removed according
to Definition 2. Because of the strictness requirement of removing, we can assume
that later masks may always exist (they will be safely covered by others even if
they are removed) during the procedure of covered masks analysis. Finally, we
get the minimum set consisted of all vital masks.

132 J. Xu et al.

3.3 Optimal Masks Selection

During the execution process, there are obvious differences between the execute
frequency of different instructions, and the data-widths of registers’ value are
tremendously diverse. If the overhead is predefined, it will be valuable to select
the most cost-efficient masking operations to provide the optimum effectiveness.

Based on the analytical result of masking ranges, we can simply define the
masking rate of each masking range as the masking effect divided by the execu-
tion frequency of masking operation. In this way, all masking ranges are sorted
according to the masking rate and the biggest ones should have priority to be
selected.

However, a masking range may be covered by others as analyzed in Section
3.2. To calculate the masking rate, the contribution of covered masks should be
considered, i.e. must include its coverable masking ranges. Unlike Section 3.2,
the strict condition of covered masks can be released and the partial covering is
proposed. For example in Fig. 4-(b), although the data-width of $3 is 1-bit wider
than that of $2, m2 can cover 29

30 errors masked by m1. In Fig. 4-(c), according
to the probability of branch, m2 can cover 75% errors originally masked by m1.

Hence, it is necessary to calculate the covered probability during selection
process. The first condition of covered masks is still requested to guarantee that
the propagating errors will not affect the known-one bits. Under this premise,
all possible covered masks are called partial coverable masks. If m2 is one of
the partial coverable masks of m1, the concrete partial coverable probability
will be defined as the coverable ratio, which is the width of known-zero bits of
m1 comparing with m2’s, multiplied by the masking probability of m2 for the
successive instruction of m1, written in formally using Equation (2):

ParCvrProb(m1 ,m2) = min(1,
ω(m1.r) −(m1.r)

ω(m2.r) −(m2.r)
)×m2.φ(m1.i⊥) (2)

Consequently, the most cost-effective masking operations are selected accord-
ing to the weight about the effects of coverable masks multiplied by the corre-
sponding partial coverable probabilities. Algorithm 1 illustrates a greedy method
of the selection procedure.

The input consists of the set of all masking ranges M and the predefined
threshold T , the output includes the set of selected masking ranges S. Step
1 ∼ 2 are the initial parts and the array prob (remaining probability) is set to 1
for each range. Then the selection process is repeated from step 4 to 20 until the
overhead cost ≥ T . For each remaining range sm, the partial covered probability
of all possible coverable masks are calculated during step 6 ∼ 13. The partial
coverable probabilities are set to 0 except itself (step 7). To resolve the inter-
dependeney of coverable ranges, we use the standard worklist[18] iterating proce-
dure (step 8 ∼ 13). Step 12 ∼ 13 describe that if the partial coverable probability
is changed, then it will be inserted the worklist W . Since the transforming func-
tions have the attribute of monotonicity and the value range is [0, 1], the iterating
procedure will terminate. Then, step 14 can compute the masking rate, and the
range with maximum value will be selected finally (step 17). At the same time,

Exploiting Narrow Data-Width to Mask Soft Errors in Register Files 133

the remaining probability are changed for following selection, and equaling with
0 will result in removing from M (step 18 ∼ 20).

Algorithm 1. Optimal masking selection

Input: The set of all masking ranges M, the overhead threshold T
Output: The set of selected masking ranges S

1 cost = 0; S = ∅;
2 foreach m ∈ M do prob[m] = 1;
3 while cost < T do
4 maxMaskRate = 0;
5 foreach sm ∈ M do
6 W = {sm}; cvrProb[sm] = prob[sm];
7 foreach tm ∈ (M− {sm}) do cvrProb[tm] = 0;
8 while W �= ∅ do
9 m ← remove the first element from W;

10 foreach cm ∈ M∧ the coverable ranges set of m do
11 cp = ParCvrProb(cm,m)× cvrProb[m];
12 if cp > cvrProb[cm] ∧ cm /∈ W then
13 cvrProb[cm] = cp;W = W ∪ {cm};

14 maskRate = (
∑

tm∈M(tm.ε× cvrProb[tm]))÷ F (β(sm.i⊥));
15 if maxMaskRate < maskRate then
16 maxMaskRate = maskRate;mm = sm;maskProb ← cvrProb;

17 S = S ∪ {mm}; cost = cost+ F (mm);
18 foreach m ∈ M do
19 prob[m] = prob[m]−maskProb[m];
20 if prob[m] = 0 then M = M− {m};

4 Experiments

In order to evaluate the capacity of MASER, we perform several experiments
on a set of six numerical programs written in C. The experimental platform is
SimpleScalar[13], which includes several powerful simulators. In our experiments,
the concrete version of SimpleScalar is 3.0, which runs on Red Hat Linux 9.

To generate the profile information and the data-width of registers’ value, we
use a modified sim-profile simulator, which can produce detailed profiles on
the data-width values and other factors. The execution frequency of each instruc-
tion is attached into the assembly code through the built-in textprof.pl script.
And the running parameters are generated randomly for representativeness.

Firstly, we cross compiler programs into assembly codes using a GCC-based
cross-compiler with ’O3’ optimization level. Based on the assembly code and the
transformed tool implemented by us, four versions for each program are gener-
ated: the original program (NONE), all narrow registers being masked version

134 J. Xu et al.

0%

20%

40%

60%

80%

100%

N
O
N
E

M
-F
U
LL

M
-C
VR

M
AS

ER

N
O
N
E

M
-F
U
LL

M
-C
VR

M
AS

ER

N
O
N
E

M
-F
U
LL

M
-C
VR

M
AS

ER

N
O
N
E

M
-F
U
LL

M
-C
VR

M
AS

ER

N
O
N
E

M
-F
U
LL

M
-C
VR

M
AS

ER

N
O
N
E

M
-F
U
LL

M
-C
VR

M
AS

ER

N
O
N
E

M
-F
U
LL

M
-C
VR

M
AS

ER

Correct Wrong Timeout Exception

mm pi jacobi gausse hsort shuf AVG

Fig. 5. The experimental results of fault injection

(M-FULL), removing covered masking ranges version (M-CVR) and the opti-
mal selection version (MASER). Different from Algorithm 1, the threshold of
the MASER versions is required to cover 90% errors of M-FULL. Comparing
with the NONE versions, the proportions of inserted masking instructions are
21.6%, 14.0% and 4.2% for M-FULL, M-CVR, and MASER, respectively.

4.1 Dependability

We conduct fault injection experiments for these programs in the sim-safe

simulator, which checks for correct alignment and access permissions for each
memory reference. To be consistent with the characteristics of soft errors, we
perform the injection of single bit-flip in randomly selected bits of RFs, and the
concrete injection time are selected randomly according to the total execution
time of target program. For each version of the studied programs, 5,000 soft
errors are injected. Injected soft errors are classified into the following categories
according to their effects:

– Correct : the injected faults do not affect the program’s behavior, i.e. program
completes its execution process normally with the correct result;

– Wrong: program exits normally, but the result is not the expected one;
– Timeout : program does not terminate within the given time;
– Exception: faults are reported by sim-safe, such as a segmentation fault.

The experimental results of fault injection are illustrated in Fig. 5, and the
’AVG’ group describes the average value for all versions. From this figure, we
find that the original versions (NONE) can also mask most of injected errors,
the average value of correct category is 60.5%, which is in accordance with other
researches, e.g. errors ocurred in dead variables. The average correct rates of the
three enhanced versions are 70.3%, 71.5% and 70.2%, respectively. And the rates
of other categories decrease in different degrees, which indicate the effectiveness
of masking operations.

We attribute the correct category as the reliability of each program. The
NONE versions are considered as the basis, and the improved reliability of three

Exploiting Narrow Data-Width to Mask Soft Errors in Register Files 135

0%

10%

20%

30%

mm pi jacobi gausse hsort shuf AVG

M-FULL M-CVR MASER

Fig. 6. The reliability improvement

0%

10%

20%

30%

40%

mm pi jacobi gausse hsort shuf AVG

M-FULL M-CVR MASER

Fig. 7. Performance overhead

enhanced versions are normalized to those of the NONE versions. Fig. 6 illus-
trates the final results. We can find that the reliability of each enhanced program
are certainly improved comparing with NONE versions. Respectively, the aver-
age rates of improvement are 16.9%, 18.9%, 16.8% for M-FULL, M-CVR and
MASER versions.

Interestingly, although the M-CVR version removes some non-vital masks
from M-FULL’s, the reliability improvement is higher than that of M-FULL.
Through preliminary analysis, we find that M-FULL inserts many extra masking
instructions into programs, which expands the live intervals of registers resulting
in the bigger windows of vulnerability than before.

While the MASER version adds much less masking operations than M-FULL
and M-CVR, its reliability only decrease slightly and almost in common with
that of M-FULL. This result indicates the effectiveness of our optimal selection
strategy, i.e. data-width of different register values exist huge distinction and the
correctness of program execution is closely-related with its most critical data.

4.2 Performance

We do performance evaluations using the sim-outorder simulator, which is
the most complicated and detailed simulator in SimpleScalar. In this simulator,
timing statistics are generated for a very detailed out-of-order issue superscalar
processor core with a two-level cache hierarchy, which is appropriate for perfor-
mance evaluations.

136 J. Xu et al.

For every version of the six programs, we execute it for several times and
recognize the average execution time. The values of performance overhead are
normalized by the time overhead with the original execution time. These results
are presented in Fig. 7. The ’AVG’ group describes the average value.

From Fig. 7, we find that the performance of enhanced programs are decreased
in varying degrees because of the inserted masking instructions. The average
performance overhead of M-FULL, M-CVR and MASER versions are 21.8%,
14.3% and 3.3% respectively. Due to the relatively limit number of inserted
masks and the fast speed of masking operations, the additional overhead is fewer
than other traditional fault tolerance techniques against soft errors.

It is important that the overhead of MASER versions are much less than other
two versions (15% of M-FULL, 23% of M-CVR), indicating the effectiveness for
selecting the cost-efficient masking operations. Comparing with the results of
fault injection, the MASER versions only incur 3.3% performance penalty and
guarantee the same level of reliability as M-FULL.

5 Related Works

Since soft errors are a random phenomenon and the same error do not occur
repetitively, the most effective and general implementation is using data dupli-
cation and time redundancy for detecting soft errors. SWIFT [12] is a represen-
tative instruction-level method, in which the original instructions are replicated
to generate shadow versions with duplicated data. In the combined program, the
validation checks must be inserted before including load, store, branch and syscall
instructions. SWIFT averagely introduces 41% performance overhead with more
than 95% errors coverage. It is noted that MASER can also cooperate with cur-
rent data duplication methods, for example registers with the wide data-width
values can be enhanced through duplication. Based on SWIFT, Chang et al.
proposed three kinds of software-only recovery techniques [19] for soft errors.
Among them, MASK is a lightweight mitigating method without adding redun-
dancy. Similar with ours, MASK enforces statically known invariants to sketch
known-zero bits, and also insert masking operations to eliminate errors in these
bits. Nevertheless, MASK is only valuable for some special programs, and its ca-
pacity is mostly negligible. Based on SWIFT, work in [17] removed the non-vital
checking to reduce the performance penalty through a set of compiler optimiza-
tion methods.

To decrease the overhead of hardware implemented techniques, researchers
tried to improve the effectiveness of protection through program analysis. Based
on the partially ECC protected RFs and register lifetime analysis, work in [20]
selectively protects a subset of registers through generating and decoding the
ECC codes of most vulnerable registers. Lee et al. also proposed a register swap-
ping method [16] to improve reliability based on the partially protected RFs.
Memik et al. [21] proposed the duplication of actively-used registers in unused
physical registers. If the primary copy can detect errors through available pro-
tection mechanism (parity or ECC), then the shadow copy can recover errors.

Exploiting Narrow Data-Width to Mask Soft Errors in Register Files 137

There are several work to address soft errors through exploiting the narrow
data-width of registers’ value. Work in [22] proposes the in-register duplication
strategy to generate the copy of shadow versions within the upper unused bits,
decreasing the requirement of additional registers for duplication. Kandala et al.
extend this idea in [23], which the divides register operands into two categories:
short operands and long operands. Short operands are replicated in upper unused
bits, and long operands are duplicated with the unused physical registers for
enhancing reliability. Work in [24] improves the immunity of register files through
storing the ECC codes in the upper known-zero bits. These techniques reduce the
implementing cost of area and power consumption for addressing soft errors, but
they still require special hardware equipments for duplication and generating the
ECC codes. But MASER is a software pure method without additional registers
and other hardware resources, it can be extended to different platforms.

6 Conclusion

In this paper, we propose a low-cost software implemented method to mitigate
soft errors in register files. Based on the fact of many narrow-width values of
registers, we find that a large fraction of register data are known-zero bits, which
originally do not affect the semantics of program. MASER inserts the masking
operations to clear the unintended errors in these bits, resulting in the improve-
ment of reliability. To increase the effectiveness, MASER analyzes the concrete
masking ranges and the covered masks. Finally, the most cost-effective masking
operations can be automatically selected under the overhead constrain. Experi-
mental results indicate that the reliability of programs can be averagely improved
for 16.8%, but the performance overhead is only 3.3%.

In the future, we will refine the implementation of MASER and plan to apply
it in more systems, for example the 64-bit architecture.

Acknowledgments. This research was supported by National Natural Science
Foundation of China (Grant No. 61202116) and Ph.D. Programs Foundation of
Ministry of Education of China (Grant No. 20124307120037).

References

1. Baumann, R.C.: Radiation-induced soft errors in advanced semiconductor tech-
nologies. IEEE Trans. on Device and Materials Reliability 5(3), 305–316 (2005)

2. Ziegler, J.F., Puchner, H.: SER - History, Trends, and Challenges: A Guide for
Designing with Memory ICs. Cypress Semiconductor Corp. (2004)

3. Baumann, R.C.: International technology roadmap for semiconductors 2007 exec-
utive summary (2007)

4. Michalak, S.E., Harris, K.W., et al.: Predicting the number of fatal soft errors
in los alamos national laboratory’s asc q computer. IEEE Trans. on Device and
Materials Reliability 5(3), 329–335 (2005)

138 J. Xu et al.

5. Shivakumar, P., Kistler, M., Keckler, S.W., Burger, D., Alvisi, L.: Modeling the
effect of technology trends on the soft error rate of combinational logic. In: 32nd
Int’l Conf. on Dependable Systems and Networks (DSN), pp. 389–398 (2002)

6. Blome, J.A., Gupta, S., Feng, S., Mahlke, S.A.: Cost-efficient soft error protec-
tion for embedded microprocessors. In: Int’l Conf. on Compilers, Architecture and
Synthesis for Embedded Systems (CASES), pp. 421–431 (2006)

7. Wang, N.J., Quek, J., Rafacz, T.M., Patel, S.J.: Characterizing the effects of tran-
sient faults on a modern high-performance processor pipeline. In: 34th Int’l Conf.
on Dependable Systems and Networks (DSN), pp. 61–70 (2004)

8. Schiffel, U., Schmitt, A., Süßkraut, M., Fetzer, C.: ANB- and aNBDmem-encoding:
Detecting hardware errors in software. In: Schoitsch, E. (ed.) SAFECOMP 2010.
LNCS, vol. 6351, pp. 169–182. Springer, Heidelberg (2010)

9. Huang, K.H., Abraham, J.A.: Algorithm-based fault tolerance for matrix opera-
tions. IEEE Trans. on Computers 33(6), 518–528 (1984)

10. Benso, A., Chiusano, S., Prinetto, P., Tagliaferri, L.: A c/c++ source-to-source
compiler for dependable applications. In: 30th Int’l Conf. on Dependable Systems
and Networks (DSN), pp. 71–78 (2000)

11. Oh, N., Shirvani, P.P., et al.: Error detection by duplicated instructions in super-
scalar processors. IEEE Trans. on Reliability 51(1), 63–75 (2002)

12. Reis, G.A., Chang, J., Vachharajani, N., Rangan, R., August, D.I.: Swift: Software
implemented fault tolerance. In: Int’l Symp. on Code Generation and Optimization
(CGO), pp. 243–254 (2005)

13. Burger, D., Austin, T., Bennett, S.: Evaluating future microprocessors: the sim-
plescalar tool set. Technical Report 1342, UW Madison CS (1997)

14. Wu, Y., Larus, J.R.: Static branch frequency and program profile analysis. In: Proc.
of the 27th Int’l Symp. on Microarchitecture (MICRO), pp. 1–11 (1994)

15. Loh, G.H.: Exploiting data-width locality to increase superscalar execution band-
width. In: 35th Int’l Symp. on Microarchitecture (MICRO), pp. 395–405 (2002)

16. Lee, J., Shrivastava, A.: Static analysis to mitigate soft errors in register files. In:
Design, Automation, and Test in Europe (DATE), pp. 1367–1372 (2009)

17. Yu, J., Garzarán, M.J., Snir, M.: Esoftcheck: Removal of non-vital checks for fault
tolerance. In: Int’l Symp. on Code Generation and Optimization (CGO), pp. 35–46
(2009)

18. Kildall, G.A.: A unified approach to global program optimization. In: 1st ACM
Symp. on Principles of Programming Languages (POPL), pp. 194–206 (1973)

19. Chang, J., Reis, G.A., et al.: Automatic instruction-level software-only recovery.
In: 36th Int’l Conf. on Dependable Systems and Networks (DSN), pp. 83–92 (2006)

20. Montesinos, P., Liu, W., Torrellas, J.: Using register lifetime predictions to protect
register files against soft errors. In: 37th Int’l Conf. on Dependable Systems and
Networks (DSN), pp. 286–296 (2007)

21. Memik, G., Kandemir, M.T., Ozturk, O.: Increasing register file immunity to tran-
sient errors. In: Design, Automation and Test in Europe (DATE), pp. 586–591
(2005)

22. Hu, J.S., Wang, S., Ziavras, S.G.: In-register duplication: Exploiting narrow-width
value for improving register file reliability. In: Int’l Conf. on Dependable Systems
and Networks (DSN), pp. 281–290 (2006)

23. Kandala, M., Zhang, W., Yang, L.T.: An area-efficient approach to improving
register file reliability against transient errors. In: 21st Int’l Conf. on Advanced In-
formation Networking and Applications Workshops (AINAW), pp. 798–803 (2007)

24. Amrouch, H., Henkel, J.: Self-immunity technique to improve register file integrity
against soft errors. In: 24th Int’l Conf. on VLSI Design (VLSID), pp. 189–194
(2011)

Towards a Clearer Understanding of Context

and Its Role in Assurance Argument Confidence

Patrick John Graydon

Mälardalen Real-Time Research Centre, Mälardalen University, Väster̊as, Sweden
patrick.graydon@mdh.se

Abstract. The Goal Structuring Notation (GSN) is a popular graphical
notation for recording safety arguments. One of GSN’s key innovations
is a context element that links short phrases used in the argument to
detail available elsewhere. However, definitions of the context element
admit multiple interpretations and conflict with guidance for building
assured safety arguments. If readers do not share an understanding of
the meaning of context that makes context’s impact on the main safety
claim clear, confidence in safety might be misplaced. In this paper, we
analyse the definitions and usage of GSN context elements, identify con-
tradictions and vagueness, propose a more precise definition, and make
updated recommendations for assured safety argument structure.

Keywords: Assurance argument, safety case, safety argument, goal
structuring notation, context, confidence, assured safety argument.

1 Introduction

Developers of some safety-critical systems develop a safety case that contains
both safety evidence and an argument linking that evidence to safety claims [1,2].
The Goal Structuring Notation (GSN) is a popular graphical notation for record-
ing these safety arguments [2,3,4]. One of GSN’s key innovations is a context
element for linking to contextual information (which is not necessarily about
the system’s operating context). However, definitions of context in GSN ad-
mit multiple interpretations. Moreover, a recent proposal for a clearer argument
structure, namely assured safety arguments, demonstrates an understanding of
context elements that is at odds with existing definitions [5]. If argument readers
and writers do not share an understanding of the meaning of context that makes
context’s impact on the truth of the safety claim clear, confidence in the safety
claim might be misplaced with disastrous consequences. This paper makes four
contributions toward a clearer understanding of context in GSN arguments:

– A review of the definitions and uses of context elements in GSN
– Identification of contradictions and vagueness in existing notions of context
– A precise definition in terms of normative models of inductive argument
– Recommendations for applying the proposed definition, including new guid-

ance for structuring assured safety arguments

A. Bondavalli and F. Di Giandomenico (Eds.): SAFECOMP 2014, LNCS 8666, pp. 139–154, 2014.
c© Springer International Publishing Switzerland 2014

140 P.J. Graydon

In Sect. 2, we analyse the definitions of GSN context elements given in author-
itative sources and show that these admit multiple interpretations. In Sect. 3, we
examine GSN context elements as used in assured safety arguments. In Sect. 4,
we show that these definitions are inherently contradictory and explore the con-
sequences of that contradiction. In Sect. 5, we propose and defend a definition
of context in GSN given in terms of normative models of inductive argument.
Finally, we discuss related work in Sect. 6 and conclude in Sect. 7.

2 Context in the Goal Structuring Notation

In some domains, developers of critical systems construct an assurance case.
When the critical property is safety, assurance cases are known specifically as
safety cases. A safety case is a ‘structured argument, supported by a body of
evidence, that provides a compelling, comprehensible and valid case that a sys-
tem is safe for a given application in a given environment’ [1, Sect. 9.1]. The
argument explains how the evidence relates to safety objectives [2, Sect. 1.2.1].

GSN is one of two popular graphical notations for recording assurance argu-
ments [3,4]. Figure 1 presents an example that the GSN Community Standard
gives to illustrate the notation [3]. Goal element G1 presents the argument’s
main claim. Arrows with filled heads indicate that G1 is SupportedBy goals G2
and G3: the control system is deemed acceptably safe because all identified haz-
ards have been eliminated or sufficiently mitigated and the software has been
developed to an appropriate safety integrity level. Strategy S1 explains how goals
G4–G6 support goal G2. Solution Sn1 provides evidence supporting the claim in
G4. Context elements C1 and C2 are asserted at goal G1 using the open-ended
InContextOf arrow. This paper considers the function of such context elements.

Consider three potential interpretations of the meaning of asserting C2 at
G1: (1) the arguer asserts that the system as operated matches the referenced
definition, (2) the arguer is identifying the system the argument is about, and
(3) the arguer is identifying a document that the reader can refer to for details
about the system. These alternatives have different impacts on the argument’s
soundness: (1) presents a claim that must be checked because false premises
undermine conclusions; (2) is clarification that cannot be said to be true or false;
and (3) has indeterminate impact because a reader could look up anything. We
now turn to normative sources for help choosing the correct interpretation.

2.1 Kelly’s Arguing Safety

One of the first specifications of GSN appeared in Kelly’s DPhil Thesis [2]. Kelly
introduces context elements into GSN ‘in order to be able to represent the con-
text in which a safety argument is stated and, thus, how the argument relates to,
and depends upon, information from other viewpoints’ [2, Sect. 3.3]. Context ele-
ments have ‘two possible forms: as a reference to contextual information [and] as
a statement of contextual information’. Providing context elements ‘allows ref-
erence to where [the concepts used in a goal] are fully defined’ [2, Sect. 3.5.2].

Towards a Clearer Understanding of Context and Its Role 141

Sn1
Formal

Verification

Sn2
Fault Tree
Analysis

G1 Control System is
acceptably safe to operate

C1 Operating Role
and Context

C2 Control
System Definition

G2 All
identified
hazards have
been eliminated
or sufficiently
mitigated

C3
Toler-
ability
targets
(Ref Z)

C4
Hazards
identified
from FHA

(Ref Y)

G3 Software in
the Control
System has been
developed to SIL
appropriate to
hazards involved

C5 SIL
Guidelines

and
Processes

. . .

S1 Argument over
each identified hazard

A1 All
hazards have been

identified
A

G4 Hazard H1 has
been eliminated

G5 Probability of Hazard H2
occurring < 1×10-6 per year

G6 Probability of Hazard H3
occurring < 1×10-3 per year

Fig. 1. Extract from ‘An Example Goal Structure’ (Fig. 6 from [3])

But the thesis does clearly describe how context affects the meaning and sound-
ness of arguments. Kelly introduces Toulmin’s normative model of informal,
inductive argument [6] as background [2, Sect. 2.6.3], but does not describe the
function of context elements in terms of any normative argument model. Instead,
he gives the examples depicted in Fig. 2 [2, Sect. 3.3 (emphasis mine)]:

The claim that all applicable hazards have been complied with [sic] is set
in the context of whatever is determined as an applicable standard. C1
. . . refers to the set of standards identified as applicable (e.g. pointing to
the document or file location / section where applicability is discussed
and defined). The second example shows an argument . . . (S1) . . . over
. . . all hazards. . . . S1 is only truly defined when the basis over which
it is stated is made clear. C2 refers to where the identified hazards are
discussed and defined within the supporting safety case documentation.
The [third] example . . . shows context being used to communicate the
basis on which a piece of evidence (solution) is being put forward. . . . C3
makes clear that the fault tree evidence referred to by Sn1 depends upon

142 P.J. Graydon

G1 System is compliant with
all applicable safety standards

S1 Argument over
all identified hazards

So1 Fault
Tree for

Hazard H1

G2 The software elements
of the system are fault free

C1 Identified Applicable
Safety Standards

C2 Hazards identified by
Functional Hazard Analysis

C3 Basic Component Failure
Modes identified in FMEA

C4 A fault is a deviation from operation
defined by the specification

Fig. 2. Combination of ‘Example Uses of GSN Context’ (Fig. 26 from [2]) and ‘Example
Use of Context Statement’ (Fig. 27 from [2])

the failure rates provided by the more primitive FMEA (Failure Modes
and Effects Analysis) evidence. . . . [The fourth example illustrates] an
‘immediate’ contextual statement used to clarify the basis of [a] goal
. . . . C4 is phrased as a statement that helps define . . . the basis of G2.
Without C4, . . . a reader of G2 may adopt an alternative meaning.

We will return to what might be meant by ‘define the basis’ in Sect. 2.3.
In GSN, context asserted at a goal is inherited by all goal, strategy, and

solution elements supporting that goal. Considering the example of an ‘argument
over all identified hazards’ strategy expressed in the context of a hazard log,
Kelly writes that ‘all the goals and solutions underneath are also expressed in
the context of the hazard log’ [2, Sect. 4.4.3.2].

2.2 The GSN Community Standard

More than a decade after GSN’s introduction, a consortium of GSN users wrote
the GSN Community Standard to ‘provide a comprehensive, authoritative def-
inition of the Goal Structuring Notation’ [3]. The standard introduces context
elements by noting that ‘when documenting a GSN goal or strategy it can also
be important to capture the context in which the claim or reasoning step should
be interpreted. This is done in GSN by documenting context’. Like Arguing
Safety, the standard explains that a context element may contain ‘a reference to
contextual information or a statement’ [3, Fig. 7]. Part 1 (which defines GSN)
offers no normative model of how context affects the meaning and validity of
arguments [3]. However, Part 2 clarifies what context isn’t [3]:

– ‘In GSN, context elements should not be used to refer to information which
is intended to support the validity of a claim. Such information . . . should
be represented using a GSN solution element’ [3, Sect. 2.6.2.1].

– ‘Context elements are sometimes used where a GSN assumption or justifi-
cation may be more appropriate’ [3, Sect. 2.6.2.3].

Towards a Clearer Understanding of Context and Its Role 143

G3 System has a failure
rate of < 1×10-6 per anum

C4 System
Fault Tree

C5 System has no
common mode failures

Fig. 3. Combination of ‘Incorrect Use of Context (as a Solution)’ (Fig. 52 from [3])
and ‘Incorrect Use of Context (as an Assumption)’ (Fig. 53 from [3])

Figure 3 depicts the example with which the standard illustrates these points.
‘Context C4 is incorrectly associated with Goal G3 as evidence [supporting] the
failure rate claim The correct way to represent this relationship is to asso-
ciate the System Fault Tree with Goal G3 as a GSN solution. . . . [Context C5]
would be more appropriately rendered as an assumption’ [3, Secs. 2.6.2.2–3].

Like Arguing Safety, the standard states that context is inherited: ‘contextual
information associated with a claim made in a particular goal is understood
to be in scope for all sub-goals of that goal’ [3, Sect. 2.3.3.4]. Discussion with
Kelly suggests a fourth possible meaning of context: what is inherited is the
understanding created by asserting contextual information at a claim, not the
contextual information itself [7]. Returning to C2 in Fig. 1, that interpretation
would be that it is the clarification of ‘Control System’ created by asserting C2
at G1, not the control system definition itself, that is inherited by G2, G3, etc.

Unlike Arguing Safety, the GSN Community Standard explicitly addresses
conflicting context: ‘nothing in the supporting argument for the goal to which
the context is applied should contradict or undermine the relationship between
the goal and the context’ [3, Sect. 1.3.7, emphasis removed].

2.3 Interpreting GSN’s Definition of Context

Arguing Safety and the GSN Community Standard are the two most authorita-
tive definitions of GSN. Given what they say about context elements, we return
to the assertion of C2 as context for G1 in example argument given in Fig. 1
and discussed in Sect. 2. Interpretation (1) of this context assertion as a claim
that the system as operated matches the referenced definition cannot be cor-
rect because it contradicts the prohibition on context introducing information
on which the validity of a claim depends [3, Sect. 2.6.2.1]. Interpretation (2)
of the context assertion as identifying the system the argument is about seems
plausible because it allows reference to where the concepts in G1 are defined [2,
Sect. 2.6.3]. But interpretation (3) of context C2 also seems plausible. Kelly’s
use of the phrase ‘define the basis of’ [2, Sect. 3.3] and the standard’s use of
the phrase ‘capture the context in which the claim . . . should be interpreted’ [3,
Sect. 2] seem to suggest that the reader should keep the entire contents of the
control system definition in mind when interpreting G1 and the entirety of the
argument supporting it. Those contents cannot be used as a premise, but might
presumably clarify the meaning of any part of the argument.

Some examples in Arguing Safety seem to be very clearly intended to be read
using interpretation (2). For example, a context element in one example reads,

144 P.J. Graydon

‘“Sufficient” = platform meets target failure rate of 1× 10−6 per flight hour’ [2,
Fig. 44]. Context C1 in Fig. 1 seems to be more consistent with interpretation
(3): there is no mention of the system’s operational role or operating context in
goal G1. Other examples don’t seem to clearly fit either of those interpretations.
For example, context C3 in Fig. 2 seems to be better explained as documenting
the provenance of an evidence item than as explaining the meaning of the text in
solution So1 or offering information that would help interpret the evidence. One
might regard C3 as explaining what is meant by ‘fault tree’, but simply knowing
the failure modes would not help to interpret the strength and meaning of that
evidence. It is knowing the provenance of the fault tree – which would not be
documented in the referenced FMEA results – that would aid this interpretation.

3 Assured Safety Arguments

Hawkins et al. have proposed assured safety arguments as a means of more
clearly communicating both (1) how evidence supports system safety claims
and (2) why that argument establishes sufficient confidence in the main safety
claim [5]. An assured safety argument contains two distinct sub-arguments:

1. ‘A safety argument that documents the arguments and evidence used to
establish direct claims of system safety’

2. ‘A confidence argument that justifies the sufficiency of confidence in this
safety argument’ [5, emphasis mine]

Later discussion [7] resulted in adding a conformance argument to document
how developers interpreted and conformed with relevant standards [8].

3.1 Structure of an Assured Safety Argument

Assured safety arguments simplify and clarify the safety rationale by relocating
information that does not explain how evidence supports the safety claim. Infor-
mation that increases confidence – by, for example, testifying to the quality or
relevance of the evidence – is presented in a separate confidence argument. As-
surance Claim Points (ACPs) link inferences, evidence assertions, and context
assertions in the safety argument to relevant parts of the confidence argument.

Figure 4 reproduces an example used to illustrate ACPs. The square deco-
rations ACP.A4, ACP.A1, and ACP.A3 identify the assertion of context elements
DIP.A4, DIP.A1, and DIP.A3, respectively, at goal DIP.G1. ACP.S1 identifies the
inference of DIP.G1 from premises DIP.G2–DIP.G6 using the argument strategy
DIP.S1. ACP.A2 identifies the assertion of context DIP.A2 at that inference step.
(The diamond decorations on goals GIP.G2–GIP.G6 are from GSN’s pattern ex-
tension and indicate that these goals require support that is not shown here [3].)

Each ACP is a pointer to a separate portion of the confidence argument.
Figure 5 reproduces an example Hawkins et al. give to illustrate assurance argu-
ments [5, Fig. 17]. Goals CC1.3 and CC2.3 are associated with ACP.A1; together,

Towards a Clearer Understanding of Context and Its Role 145

ACP.S1ACP.A1

ACP.A4
ACP.A3

ACP.A2

DIP.G1 Insulin
pump is adequately
safe for routine use

DIP.G2 Risk
of hypogly-
caemia
adequately
mitigated

DIP.G3 Risk
of hypergly-
caemia
adequately
mitigated

DIP.S1 Argument
over credible hazards

DIP.A2 List
of credible

hazards

DIP.A3 Details
of diabetic

patient types &
usage

environments

DIP.A4 Definition of
adequately safety &

routine use

DIP.A1 Pump design
documentation

DIP.G4 Risk
of electric
shock
adequately
mitigated

DIP.G5 Risk
of infection
adequately
mitigated

DIP.G6 Risk of
allergic reaction
to materials
adequately
mitigated

Fig. 4. ‘High-level safety argument for an insulin pump’ (Fig. 16 from [5])

the arguments supporting them show why we can have confidence in the asser-
tion of ‘pump design documentation’ as context for the claim that the ‘insulin
pump is adequately safe for routine use’. (Presumably, given other patterns in
the paper, ACP.A1 is attached to a different goal not shown in the original figure.
That goal would read ‘sufficient confidence exists in the assertion of DIP.A1 as
context at goal DIP.G1’ and be supported by CC1.3 and CC2.3.)

3.2 Confidence Argument Structure

Figure 6 reproduces Hawkins et al.’s illustration of a confidence argument’s top-
level structure. The argument claims that confidence in the safety argument’s
main safety claim is justified because each of the safety argument’s components
(inferences, solutions, and context) is fit for the purpose it serves. Instantiations
of confidence patterns of the kind shown in Fig. 5 demonstrate that fitness.

There are several ways to describe confidence in assurance claims, each with its
own benefits and drawbacks [9]. Hawkins et al.’s confidence argument patterns
use a form of Baconian probability [9,10,11]. That is, they enumerate plausible
defeaters of the argument – things that might directly rebut a claim or undermine
the reasoning supporting it – and describe why those defeaters are thought to
be implausible and/or the residual likelihood of them acceptable. (Some small
degree of doubt is inevitable: even a machine checked, deductive proof might be
wrong if the proof checker is faulty or was used improperly.)

3.3 Context as Used in Assured Safety Arguments

Hawkins et al. describe the meaning of a context element linked to a goal as an

146 P.J. Graydon

CC1.3 Residual assurance deficits in the trustworthiness
of the pump design document are acceptable

SC1.3 Argument over identified
residual assurance deficits

CC1.3.1 The residual assurance deficit
relating to the integrity of the commercial
word processing tool used is acceptable

CC1.3.2 The residual assurance deficit
relating to the use of the correct version
of the design document [is] acceptable

CC1.3.1.1 No field reports of
deficiencies in word processing
tool have been reported

CC1.3.1.2 Testing and analysis of the
pump elsewhere in the argument limits
sensitivity to this assurance deficit

CC2.3 Residual assurance deficits for the appropriateness of
the use of pump design document at ACP.A1 are acceptable

SC2.3 Argument over identified
residual assurance deficits

CC2.3.1.1 Patient group is generally
considered responsible and there
are no reports of patient tampering

CC2.3.1 The residual assurance deficit relating to unforeseen
alterations made to pump by patient during use is acceptable

CC2.3.1.2 Consistency and reasonableness
checks within the pump system would
reveal tampering with high probability

Fig. 5. ‘Part of the confidence argument for ACP.A1’ (Fig. 17 from [5])

assert[ion] that the context is appropriate for the elements to which it
applies. For example, consider a context reference to a list of failure
modes for a particular piece of equipment. The introduction of this con-
text element when arguing about the safety of that piece of equipment
implicitly asserts that the list of failure modes referred to is appropriate
to the application and operating context in question.

The appropriateness of context must be considered throughout the part of the
argument that inherits the context: ‘the assurance of the strategy depends upon
the confidence that the context . . . stated is appropriate for that strategy and its

Towards a Clearer Understanding of Context and Its Role 147

G2 There is sufficient
confidence that all asserted
inferences are true

G1 Sufficient confidence
demonstrated in safety argument

C1 Subject
safety argument

S1 Argument over all argument assertions

G3 There is sufficient
confidence that all
asserted solutions are true

G4 There is [sufficient]
confidence that all
asserted context is true

Fig. 6. ‘Representing an overall confidence argument’ (Fig. 15 from [5])

subgoals’ [5]. But considering the appropriateness of context alone is insufficient:
‘in addition to the appropriateness of the context, it is also necessary to provide
an argument as to the trustworthiness of the context in question’.

Hawkins et al. do not provide a testable definitions of what it means for
context to be ‘appropriate’ and ‘trustworthy’, although in the latter case they say
that ‘the concept of trustworthiness relates to freedom from flaw’ [5]. However,
they do provide examples. Referring to a generic argument over all hazards, they
write that for a hazard list to be appropriate context ‘there must be confidence
that the hazard list is appropriate with respect to the system, application, and
context’. In the case of the example shown in Fig. 4, they give the confidence
argument fragment depicted in Fig. 5. They also write of the meaning of ACP.A2
that ‘there is sufficient confidence that the list of credible hazards is complete
and correct. Inadequate definition of a hazard or omission might invalidate the
safety claim’. The context must be ‘true’, as goal G4 in Fig. 6 puts it.

The assertion of a context element in an assured safety argument seems to be
mostly clearly defined as the making of two claims:

1. Acceptable instantiation. The identified thing is the kind of thing implied by
the ordinary meaning of the term used to represent it.

2. Fitness for role. The identified thing has all of the properties that the entire
applicable portion of argument needs it to have.

These claims then serve as implicit premises throughout the inheritance area. In
Toulmin’s terms [6], to assert a context element in an assured safety argument
is to assert that acceptable instantiation and fitness for role are warrants that
can be implicitly used in any of the affected reasoning steps.

To illustrate this definition of context, consider the example in Fig. 4. A haz-
ard list must be the hazard list created for the system in question because the
ordinary meaning of the words ‘all credible hazards’ is that they are hazards
of the system in question. The hazard list must also be ‘complete and correct’
because inference DIP.S1 would be invalid if supporting goals DIP.G2–DIP.G6 did
not accurately portray all relevant hazards. The hazard list can be assumed to
have these properties throughout the argument supporting goals DIP.G2–DIP.G6.

148 P.J. Graydon

Acceptable instantiation and fitness for role are not simply properties that
must be true as prerequisites for judging whether an argument is sufficiently
compelling. There are such properties, for example argument clarity and compre-
hensibility. But the example argument depends upon these as premises. DIP.G1
in Fig. 4 lacks a sub-goal or justification claiming that the list of hazards identi-
fied by DIP.A2 is complete and correct. Such support is used in similar reasoning
steps in plain safety arguments, including in Hawkins’ High Level Software Safety
Argument Pattern [12]. The absence of such support here can only mean that the
assertion of DIP.A2 is meant to demonstrate that there are no credible hazards
that are not covered by one of the goals DIP.G2–DIP.G6.

4 The Problem of Conflicting Definitions of Context

Section 2.3 discussed how context is (somewhat vaguely) defined in authoritative
guides to GSN. Section 3.3 showed that context elements in assured safety argu-
ments function as claims of acceptable instantiation and fitness for role. These
definitions are mutually exclusive. Clarification and identification of reference
material cannot introduce new claims. Introduction of claims contradicts the
prohibition on using context elements ‘to refer to information which is intended
to support the validity of a claim’ [3, Sect. 2.6.2.1].

It is vital that all readers of an argument understand the same meaning of its
context elements. If they do not, confidence in safety claims might be misplaced.
For example, consider multiple reviewers collaborating to review of a large argu-
ment in parts [13]. Suppose that reviewer A examines the assertion of a hazard
list document identifier as context and interprets it as explaining the term ‘haz-
ard list’. Suppose that reviewer B reviews a supporting portion of argument and
interprets the context assertion as claims of acceptable instantiation and fitness
for role. Because A sees no need to check either property and B assumes that
they have been checked, neither will check it. The system might be put into
service despite not addressing a significant hazard.

Returning to the example in Fig. 1, suppose that reviewer C interprets this
‘basis’ of goal G1 as simply scoping the situations to which the argument applies.
Suppose that stakeholderD reads in the referenced documentation a claim about
what the operating context is. D might assume that review had confirmed that
it was acceptable to assume that the system would be used in this way while C
might not see the need to check that assumption.

5 Proposed Treatment of Context and Confidence

Given the harm that misinterpretation of context might bring, GSN users should
adopt a single, normative definition. This section gives and justifies our proposal.

A useful definition of GSN context elements must satisfy two requirements:

1. Means to perform the functions that people have been using GSN context ele-
ments to perform must be preserved. If the definition precludes using context
elements to meet a need that GSN users have used them to meet, we must
also propose an alternative means of meeting that need.

Towards a Clearer Understanding of Context and Its Role 149

2. The effect of context elements on confidence in the argument’s main claim
must be well defined. Understanding this effect is a precondition for defining
an effective argument review process and, ultimately, for using an argument
to make certification or acceptance decisions.

5.1 Our Proposal: GSN Context Elements as Explications

We propose defining context elements as explicating terms used in the argument.

Form. Context element text must be of the form ‘X : Y ’ where X is a phrase and
Y is its explication. Y should identify relevant documentation where appropriate.

Scope. The explication applies to (i) the element e at which the context c
is asserted, (ii) any goal, strategy, or solution in the same argument module
that directly or indirectly supports e through IsSupportedBy relationships, and
(iii) any justification, assertion, or confidence element in the same module as-
serted as context to an element to which c applies as per rules (i) and (ii).

Effect. Arguments should be understood as if explicated terms were replaced by
their explications.

Uniqueness. Arguers may not assert two explications for the same term that
apply to the same element.

Non-circularity. Arguers may not assert explications such that any term is di-
rectly or indirectly explicated in terms of itself.

Presentation. Explicated terms appearing in GSN elements should be visually
distinguished from non-explicated text. For example, explicated terms might be
presented in a different font, in italics, in a different colour, underlined, or some
combination of these. Hyperlinks should be used where practicable.

Loaded language. Arguers should not use context to phrase arguments in terms
whose plain-language meaning might cause misunderstanding of the argument.

5.2 An Illustrative Example

To illustrate the proposal given in Sect. 5.1, consider the example given in Fig. 4.
Figure 7 presents a version of that argument revised to reflect our definition of
context. Context elements C1–C3 now clearly explicate terms used in goal G1.
C1 clarifies which insulin pump we mean and that we mean it as delivered, not
just as designed. C2 refers to documentation giving the relevant definition of
‘adequately safe’. C3 clarifies what we mean by ‘routine use’, thus limiting the
scope of the argument to that use. For clarity, we introduce goal G2 to separate
(a) the inductive leap related to the relationship between safety and hazard
management from (b) the argument-by-cases over the set of identified hazards.

150 P.J. Graydon

ACP.I1

ACP
.X

. . .

G1 Insulin pump is
adequately safe for
routine use

S1 Argument over
identified credible hazardsC6 Identified credible hazards: the

hazards listed in the hazard log

C3 Routine use: use as per {user’s guide} to treat
the conditions listed in {treatment guidelines}

C2 Adequately safe: satisfying the definition
of adequately safe given in {relevant standard(s)

or guidance document(s)}

C1 Insulin pump: the device described in {pump
design document} as shipped to wholesalers

C5 Hazard log: {hazard log}

G4 Risk of
hypergly-
caemia
adequately
managed

G3 Risk of
hypogly-
caemia
adequately
managed

G5 Risk of
electric
shock
adequately
managed

G7 Risk of
allergic
reaction to
materials
adequately
managed

G6 Risk of
infection
adequately
managed

G8 Hazard
log contains
all credible
hazards

G2 All credible
hazards are
adequately managed

C4 Adequately managed: the risk associated
with a hazard has been reduced ALARP as per

{relevant guidance document}

Fig. 7. Revised version of argument given in Fig. 4. The text in braces stands for
details that identify the documents in question (e.g., document and version numbers).

New goal G8 is the claim of hazard log completeness that justifies strategy S1.
G8 could be replaced by a justification or an away goal asserted as justification
using the InContextOf relationship [12]. Those alternatives have the stylistic
benefit of distinguishing the claim about hazard log completeness from the claims
to have managed each hazard. However, those alternatives also have an area
effect that complicates both change management and argument review.

The scope rule dictates that explications of ‘insulin pump’, ‘adequately safe’,
and ‘routine use’ are applicable in all goals, strategy S1, and context elements
C4–C6. The uniqueness rule would preclude asserting a competing explication
of ‘adequately managed’ at goals G2–G8 or strategy S1. The loaded language
recommendation suggested the change from ‘credible hazards’ in the original to
‘identified credible hazards’ in S1.

Towards a Clearer Understanding of Context and Its Role 151

5.3 Assessing the Proposal: Performing All Context Functions

The examples in Arguing Safety [2], the GSN community standard [3], and
the assured safety argument paper [5], Hawkin’s software safety argument pat-
terns [12], and our own experience suggest at least six functions that arguers
might want context elements to perform: (1) to explain a term’s meaning, (2) to
link arguments to other documents, (3) to assert an implicit premise, (4) to iden-
tify background information, (5) to document the circumstances in which the
argument was made, and (6) to make GSN elements less verbose.

Explaining terms. Our proposed definition clearly serves this purpose.

Linking the argument to documents. Our definition facilitates linking to explain
terms more clearly. Solution elements link arguments to evidence. Linking with-
out a clear purpose is disallowed to prevent confusion. We would replace C3 in
Fig. 2 with an ACP on the solution linking to an argument that explains the
fault tree’s provenance and that provenance’s effect on confidence.

Asserting an implicit premise. GSN offers two ways to assert a premise through-
out an argument (i.e., as an implicit warrant in Toulmin’s model [6]): justification
elements and away goals asserted as context. In any case, this function might be
overused. Local scope simplifies change and review and we might only need the
goal G8 in Fig. 7 as a premise in this particular reasoning step.

Identifying background information. Background information can help to under-
stand and validate an argument (e.g., show that it is not oversimplified [14]). But
premises should be introduced using a goal, away goal, or justification element,
links to details can be made as described above, and it is not clear that ‘back-
ground information’ serves any other useful purpose. Categorising information
as either what-the-arguer-means (which can be accepted) or as evidence claims
(which must be checked) facilitates argument validation.

Documenting the argument writer’s circumstances. Documenting the circum-
stances under which an argument was made might aid interpretation. But much
of this (e.g., the colour of the author’s clothing) is irrelevant. Moreover, different
people might interpret the remainder differently. Restricting context elements to
explication forces arguers to identify which meanings are influenced by circum-
stance and (more importantly) what those meanings are meant to be.

Making GSN elements less verbose. A single artefact might serve multiple roles
in an argument. For example, a hazard log might serve as a list of hazards, infor-
mation about hazard severity, or an indication of project status [7]. Explication-
only context might not reduce verbosity as well as unrestricted context because
authors might have to reword element text to include the explicated term or as-
sert context multiple times to fill multiple roles. We consider this an acceptable
price for increased clarity.

152 P.J. Graydon

Table 1. How our definition of context solves other definition’s problems

Problem Solution

The effect on argument
confidence is unclear. See
Sect. 4.

The assurance argument should be judged as if
explicated terms had been replaced by their
explications. See Sect. 5.4.

A document asserted as the
basis for a goal (and possibly
all of its supporting reasoning,
depending on how inheritance
is interpreted) could be
understood by different people
as explaining different things.
See Sect. 2.

The context explicitly identifies the term being
explicated. The presentation recommendation
reminds readers that a term is explicated. See
Sect. 5.1.

Readers might interpret
different parts of a linked
document as the explanation
of a term. See Sect. 2.

Arguers understanding context as explication will
craft explications to resist misinterpretation.
Reviewers will help by pointing out vagueness.
Guidance created to clarify terms used in
requirements might help further, e.g. by eliminating
hedge words such as ‘usually’ or ‘generally’ [15].

Readers might or might not
interpret context assertion as a
claim that referenced material
is what its title suggests and is
fit for purpose. See Sect. 3.3
and Sect. 4.

Our definition precludes this interpretation. The
loaded language recommendation, the presentation
recommendation, and appropriate review reduce the
risk that the explicated term’s plain-language
meaning will colour understanding of the argument.
See Sect. 5.1.

5.4 Assessing the Proposal: The Effect on Confidence

The main virtue of the definition of context in Sect. 5.1 is a well-defined impact
on argument confidence: the argument should be assessed as if all explicated
terms had been replaced by their explications. In Toulmin’s terms, context as
we define it is simply a mechanism for replacing shorthand text used in data,
warrants, claims, reservations, and qualifications [6]. Table 1 shows how our pro-
posal addresses the confidence-related problems that other definitions have.

5.5 Impact on Assured Safety Arguments

The organisation of the confidence argument (depicted at the top level in Fig. 6)
must change: context as defined in Sect. 5.1 cannot be said to be ‘true’ or false.
There is no need to argue over context elements because we argue instead over the
elements and relationships whose meanings they clarify. The burden of demon-
strating hazard log completeness, carried at ACP.A2 in the original formulation
in Fig. 5, is carried by the evidence and inferences supporting goal G8 in Fig. 7.

But GSN also allows justification elements, assumption elements, and away
goals to be the object of InContextOf relationships. Goal G4 in Fig. 6 would cover

Towards a Clearer Understanding of Context and Its Role 153

those assertions if it read ‘there is sufficient confidence that all assumptions,
justifications, and away goals asserted as context are true’.

One might argue the need for an assurance claim point on the inference of goal
G2 from goals G3–G8 through strategy S1. The associated confidence argument
fragment would cite review evidence showing that goals G3–G7 cover all of the
credible hazards listed in the hazard log. It is obvious that such a review will
be performed. Since the inference admits no other assurance deficit, we see no
reason to burden the arguer with writing such a confidence argument fragment.

5.6 Further Recommendations: Update Review Processes

An explication cannot be either true or false, but a poor explication might admit
multiple interpretations, compromising the efficacy of argument review. Existing
argument review processes include steps aimed an ensuring clarity [3,13,16]. GSN
argument review processes should require reviewers to consider whether terms
used in the argument have multiple meanings in general use and in the relevant
technical domain(s). Terms with multiple meanings should be explicated, and
explications should rule out unintended meanings of the explicated terms.

6 Related Work

Arguing Safety [2] and the GSN Community Standard [3] define context in GSN.
Examples of context in the former clearly explicate terms. What is novel about
our proposed definition of context is that we limit context to this function, thus
making its impact on argument confidence clear.

Matsuno and Taguchi’s proposed formalisation of GSN patterns [17] defines
context elements as declarations of types and variables. The definition of context
proposed in Sect. 5.1 is for arguments that have not been formalised.

Because the other popular graphical argument notation, CAE, has no context
element, our proposed definition of context does not apply to it [4]. For similar
reasons, our proposal does not apply to plain text or tabular arguments. Any
informal argument might be vague, but other causes will apply in other notations.

7 Conclusion

In this paper, we reviewed how both Kelly’s thesis [2] (the original normative
definition of GSN) and the GSN community standard [3] define context elements.
Neither defines context in terms of normative models of argument and both
permit multiple interpretations. But both sources are clearly at odds with how
context elements are treated in assured safety arguments: the former say that
context elements cannot support the validity of claims, while the latter says that
they do. To resolve this contradiction and bring clarity to the meaning of GSN,
we proposed a more precise definition of the semantics of GSN context elements.
We illustrated this definition and its impact on the structure of assured safety
arguments by reworking a published example of an assured safety argument.

154 P.J. Graydon

Any proposed change to language semantics – whether for a natural language,
a programming language, or an argument notation – will fail if people choose not
to adopt it. A key factor in the adoption of this change is whether the proposal
addresses all of the functions for which arguers have been using GSN context
elements. We have examined examples for evidence of such functions and found
none, but very few published examples exist. The only practical way forward is
to make this proposal public so that arguers can judge for themselves.

Acknowledgments. This research was funded by the Swedish Foundation for
Strategic Research as part of the SYNOPSIS project and by the EU/Artemis as
part of the nSafeCer project (grant 295373). We thank Pierre Loisy for inspiring
this work and Tim Kelly and Iain Bate for helpful discussions of this paper.

References

1. Defence Standard 00-56: Safety Management Requirements for Defence Systems,
Issue 4, Part 1: Requirements (U.K.) Ministry of Defence (June 2007)

2. Kelly, T.P.: Arguing Safety — A Systematic Approach to Managing Safety Cases.
DPhil thesis, University of York (September 1998)

3. Attwood, K., et al.: GSN Community Standard Version 1. Origin Consulting Lim-
ited, York (November 2011)

4. Bishop, P., Bloomfield, R.: A methodology for safety case development. In: Proc.
Safety-Critical Systems Symposium (SSS) (1998)

5. Hawkins, R., Kelly, T., Knight, J., Graydon, P.: A new approach to creating clear
safety arguments. In: Proc. Safety-Critical Systems Symposium (SSS), pp. 3–23
(2011)

6. Toulmin, S.E.: The Uses of Argument, Updated edn. Cambridge University Press,
New York (2003)

7. Kelly, T.: Personal communication
8. Graydon, P., Habli, I., Hawkins, R., Kelly, T., Knight, J.: Arguing conformance.

IEEE Software 29, 50–57 (2012)
9. Graydon, P.J.: Uncertainty and confidence in safety logic. In: Proc. Int’l System

Safety Conference (ISSC) (2013)
10. McDermid, J.A.: Risk, uncertainty and software safety. In: Proc. Int’l Systems

Safety Conference (ISSC) (2008)
11. Weinstock, C.B., Goodenough, J.B., Klein, A.Z.: Measuring assurance case confi-

dence using Baconian probabilities. In: Proc. Int’l Wkshp. on Assurance Cases for
Software-Intensive Systems (ASSURE) (2013)

12. Hawkins, R., Kelly, T.: A software safety argument pattern catalogue. Technical
Report YCS-2013-482, University of York (2013)

13. Graydon, P., Knight, J., Green, M.: Certification and safety cases. In: Proc. Int’l
Systems Safety Conference (ISSC) (2010)

14. Greenwell, W.S., Knight, J.C., Holloway, C.M., Pease, J.J.: A taxonomy of fallacies
in system safety arguments. In: Proc. Int’l System Safety Conference (ISSC) (2006)

15. Wasson, K.S.: CLEAR Requirements: Improving Validity Using Cognitive Linguis-
tic Elicitation and Representation. PhD thesis, University of Virginia (2006)

16. Kelly, T.: Reviewing assurance arguments — a step-by-step approach. In: Proc.
Wkshp. on Assurance Cases for Security — The Metrics Challenge (July 2007)

17. Matsuno, Y., Taguchi, K.: Parameterised argument structure in GSN patterns. In:
Proc. Int’l Conf. on Quality Software (2011)

Assurance Cases for Block-Configurable Software

Richard Hawkins1, Alvaro Miyazawa1, Ana Cavalcanti1,
Tim Kelly1, and John Rowlands2

1 Department of Computer Science, University of York, York, UK
2 BAE Systems, Warton Aerodrome, Preston, PR4 1AX, UK

Abstract. One means of supporting software evolution is to adopt an
architecture where the function of the software is defined through recon-
figuring the flow of execution and parameters of pre-existing components.
For such software it is desirable to maximise the reuse of assurance assets,
and minimise re-verification effort in the presence of change. In this pa-
per we describe how a modular assurance case can be established based
upon formal analysis of the necessary preconditions of the component.
Our approach supports the reuse of arguments and evidence established
for components, including the results of the formal analysis.

1 Introduction

Software maintenance and evolution is typically very costly. In the safety-critical
domain, extensibility and reconfigurability have to be traded for simplicity, with
impact on maintainability. We consider here what we call block-configurable soft-
ware, which achieves this compromise by adopting an architecture that supports
configuration via structured input data.

Block-configurable software comprises a number of components that provide
particular functionality, and a manager, which uses configuration data to define
how the components cooperate. The architecture resembles that of a control-law
diagram with connections defined by configuration data. Block-configurable soft-
ware is a convenient means of implementing control systems for which changes
in dynamic behaviour can be restricted to changes in the parameters and con-
nections of a fixed set of components.

Block-configurable software facilitates changes: to add or to change a func-
tion, it may be not be necessary to touch the code at all. It is also easier for a
third-party to implement changes, since it may be enough simply to provide ap-
propriate data. So, the integrity of the code can be maintained, whilst flexibility
is still provided to the user.

This gives rise, however, to a challenge for assurance. To realise the benefits
of block-configurable software, it is necessary to limit the work required for
validation in the face of changes. Also from an assurance perspective, the impact
should be limited to the configuration data.

The validity of the configuration data provided is a key aspect of the as-
surance case. We need to identify the constraints that characterise valid data,
and to consider the way in which validity is established. This can be related to

A. Bondavalli and F. Di Giandomenico (Eds.): SAFECOMP 2014, LNCS 8666, pp. 155–169, 2014.
c© Springer International Publishing Switzerland 2014

156 R. Hawkins et al.

concerns regarding exceptional behaviour, use of resources, or any other general
properties. To address both the identification and verification of constraints on
the data we adopt the use of formal analysis.

Our contribution is a general pattern for assurance cases that can be made
for block-configurable software using a combination of formal analysis and more
traditional verification. Safety-argument patterns provide a way of documenting
and reusing argument structures by abstracting the fundamental strategies from
the details of a particular argument. It is possible to create specific arguments by
instantiating the patterns in a manner appropriate to the application. We present
a number of options for supporting various aspects of the assurance cases. We
also consider the effect that changes to the software have on the assurance case,
and how the impact can be minimised. We maximise reusability both at the level
of the structural arguments and of the formal analysis.

Our assurance cases are not for particular properties of the system; they
demonstrate that the software does not adversely affect the system in which it
is embedded. We have applied our approach in an industrial case study, but use
a quadratic-equation solver as an example here.

To represent assurance arguments clearly, we use a graphical notation: the Goal
Structuring Notation (GSN), as it is mature, widely used, and standardised [6].We
observe, however, that our results apply to anynotation that conforms to themeta-
model of the OMG standard for structured assurance cases (including Adelard’s
CAE, for example) [12].

Section 2 defines the characteristics of block-configurable software. Our
assurance-case pattern is described in Section 3. Section 4 discusses the well-
behavedness arguments, and in particular termination. Section 5 discusses the
effects of likely changes. Section 6 explains how the validity of configuration data
can be established using a formal approach. Finally, Section 7 discusses related
work and Section 8 provides conclusions.

2 Block-Configurable Software

Block-configurable software is created from generic components. It may be used
to implement a solution for any problem that requires a vector of inputs to
be transformed to a vector of output values. The functionality of the block-
configurable software is determined at runtime through the connection of the
components and the provision of parameters to them as defined using loaded
configuration data specific to a particular function. A unique characteristic of
this type of software, in comparison for example to data-driven software, is that
data is also the means by which software is configured at design-time, through
defining parameters for the code blocks and connections between them.

A key feature of block-configurable software is that it is extensible; it allows
the user to employ any number of components, which can be used in any se-
quence to derive the required outputs. The configuration data provides all the
information required to define the inputs that are needed, the outputs that are
to be generated from the inputs using the components, and the parameters that
are given to each component.

Assurance Cases for Block-Configurable Software 157

Block-configurable software

-Pre-condition
-Post-condition

Generic Algorithm Configuration Data

Input

*

-recieves

1

Output-generates

1 *

-Inputs
-Outputs

Output Manager

-Constraints
Reconstructor1*

1
1

1

1

Function Specific Data

1

-configures

1

*

Fig. 1. Structure of block-configurable software

Figure 1 shows the structure of block-configurable software. Inputs and Out-
puts characterise its interface. A Reconstructor characterises the functions
provided by the software using one or more generic components. Configuration
Data for a function is selected at runtime. Function Specific Data configures
the software for a particular function. The Output Manager is a component
that defines the parameters provided to the other components and their order of
execution. Each function must include an output manager, and it must be the
first component executed (to define how the others are used). The design of the
reconstructor and the output manager are the same in all block-configurable soft-
ware. The only changes ever required to the reconstructor are small adaptations
to take into account the introduction and removal of components.

A deployment of block-configurable software may include a number of differ-
ent functions. Each function is reconstructed using a subset of the components
available and function-specific configuration data. A deployment, therefore, con-
sists of a set of generic components, a reconstructor that can reference all of
them, and configuration data for each function. New functions can be added to
the deployment by adding new configuration data, as long as only the existing
components are required.

As an example, we consider a quadratic-equation solver; its Ada implemen-
tation is presented in [13]. Its inputs are the coefficients of a quadratic equation
and it generates as output its solutions. The configuration data can be used to
select one or both of them as output. The reconstructor uses generic components
called OUTPUT MANAGER, ADDER, MULTIPLIER, SQRT, and so on. The software may,
therefore, implement different functions that uses addition, and square root, for
example.

158 R. Hawkins et al.

3 An Assurance Case for Block-Configurable Software

In defining the structure for the assurance arguments of block-configurable soft-
ware, there have been two primary considerations: resilience to expected change
scenarios and creation of libraries of assurance-case modules for generic compo-
nents and function-specific configuration data. Figure 2 shows the structure of
the assurance-case pattern we have defined.

Figure 3 shows the argument within the top Block-Configurable Software
module, which supports the overall claim that the block-configurable software
does not adversely affect the system. To demonstrate this, we show that the
software itself does not adversely affect the system and all the constraints are
met by the configuration data for that application.

The claims relating to the components and the configuration data are in
separate modules. This allows the demonstration that the configuration data
meets the constraints to be done independently from the analysis of the compo-
nents. The connection between the two parts of the argument is the constraints,
which are derived as part of the generic-components argument and used by the
configuration-data argument. In Figure 3 this is captured by Away Context def-
initions (boxes with rounded top) associated with the Away Goal regarding the
data constraints. The Away Goal is defined in the module Configuration Data (as
named in the bottom of the Away Goal symbol). The Away Contexts are defined
in the Generic-Component module (also named at the bottom).

Our approach relies on the use of the block-configurable software pattern. The
assurance argument must, therefore, include evidence that the software has the

Spinal

DC Application

Spinal

Generic Algorithms

Description Generic
Algorithms

Spinal

Configuration Data

Description
Configuration Data

Generic Components

Block-Configurable S/w
Top-level Flow Configurable
Software Assurance Argument

Generic Components Well-
Behaved Argument Configuration Data Constraint

Satisfaction Argument

Function X Configuration Data
Constraint Satisfaction Argument

SpinalSpinalSpinalzSpinal

Generic Algorithm X
Generic Component X Well-Behaved
Argument

SpinalSpinalSpinal
Spinal

Function X Configuration Data
Constraint Satisfaction Argument

Function X Config DataGeneric Component X

Fig. 2. Assurance-Case Architecture

Assurance Cases for Block-Configurable Software 159

Goal: BCswWellBehaved

The block-configurable software
will not adversely affect other
system functions

Strat: DDWIwellBehaved
Argument over the generic
modules and the
configuration data used to
create the software

Goal: GAwellBehaved_Generic
Algorithms

Data-configured software generated from the
Generic Algorithms will not adversely affect
other system functions

Generic Algorithms

Goal: ConfigData_Configuration
Data

Configuration data meets all required
constraints for the software application

Configuration Data

Con:
appDescription

Description of
software

Con: structCons
_Generic Algorithms

Structural constraints are...

Generic Algorithms

Con: timingConstr _Generic
Algorithms

Timing constraints are ... (e.g. limits
on no.of calls to particular GAs, total
size of data tables etc)

Generic Algorithms

Con: memConstr _Generic
Algorithms

Memory constraints are ... (e.g toal
file size, no. of data items etc.)

Generic Algorithms

Goal: appConstr _Generic
Algorithms

Application-level
constraints

Generic Algorithms

Con: termCalc _Generic
Algorithms

Calculated termination constraints
are ... (weakest pre-conditions for the
algorithm)

Generic Algorithms

Goal: DCsoftware

The software has all the
necessary characteristics of
data-configured software

Fig. 3. Assurance Argument: BC Software Module

necessary characteristics identified by this pattern. This can be demonstrated,
for example, through a simple manual check of the structure of the software
modules against the pattern.

The argument regarding the generic components demonstrates that the soft-
ware is “well behaved”. In the argument, we assert that “if well behavedness
is demonstrated, this ensures that the software does not adversely affect the
system”. Notions of interest for “well behavedness” are related to termination,
resources, and exceptions. Here, we only consider the argument made for ter-
mination. In [13], we explore the other arguments. A confidence argument is
required to show that the identification of concerns regarding well behavedness
is complete and correct. The argument considers each of these concerns in turn.

The argument regarding termination must be valid for all functions of the
deployment. As shown in the instantiation of our pattern for the quadratic solver
example in Figure 4, the argument considers the termination guarantees of the
reconstructor as well as those of each of the generic components. The claim that
must be demonstrated is that the guarantee of termination is achieved for each
component if the defined constraints on the configuration data are met.

An argument module (Generic Component X) is created for each of the generic
components and for the reconstructor. This allows the argument for each com-
ponent to be reused for different functions. The reconstructor may require small
changes for different deployments. A generic component, on the other hand, may
be reused, as is, for any deployment. Since it is expected that the generic com-
ponents are used across different applications, this can provide a large saving in
reverification effort.

We omit the pattern for the Configuration Data module; it can be found
in [13]. Its argument establishes that the configuration data meets all of the
constraints determined within the components argument.

160 R. Hawkins et al.

Goal: quadSolveWellBehaved

Quadratic Solver software
generated from the Generic
Algorithms will not adversely
affect other system functions

edd

Strat:
quadSolveWellBehaved

Argument over the
characteristics of 'well
behaved' software

Goal: progExceptions

Quadratic Solver software will
not give rise to exceptions due
to termination errors

Goal: resourceExceptions

Quadratic Solver software will
not give rise to exceptions due
to insufficient resources

Goal: appProp

Quadratic Solver software will not
give rise to application-level
behaviour that adversely affects
other system functions

Strat: termination
Argument over the Reconstrictor
for the Quadratic Solver
functions and the Generic
Algorithms used by the
Reconstructor

Con: Algorithms

The GAs used by theQuatratic
Solver Reconstructor are:
OUTPUT_MANAGER,
BOOLEAN, CONST, ADDER,
MULTIPLIER, SQRT, DIVIDE,
TRACE

Goal: Reconstructor Gtees
_Reconstructor

Termination guarantees for Reconstructor
will be met for all configuration data that
meets the defined constraints

Reconstructor

Goal: OUTPUT MANAGER Gtees _OUTPUT
MANAGER

Termination guarantees for OUTPUT
MANAGER will be met for all configuration data
that meets the defined constraints

OUTPUT MANAGER

Goal: MULTIPLIER Gtees
_MULTIPLIER

Termination guarantees for MULTIPLIER
will be met for all configuration data that
meets the defined constraints

MULTIPLIER

Goal: SQRT Gtees _SQRT

Termination guarantees for SQRT will be
met for all configuration data that meets
the defined constraints

SQRT

...

Fig. 4. Quadratic-Solver Assurance Argument: Components Module

We have a separate argument for each function, with the assumption that only
one function executes at any time (otherwise combinations of functions need
to be considered). This argument structure creates assurance components for
function-specific configuration data, and facilitates reuse for particular functions
across multiple deployments.

We envisage three strategies that can be adopted to show that the constraints
are upheld by the configuration data. First, if the constraints are simple, manual
review is possible. This is easy to implement and requires no specialist tools or
techniques. It is, however, infeasible for more complex data and constraints, and
provides low assurance.

Rather than checking the configuration data, it is possible to consider the
process for its generation. A systematic process may begin with an abstract
representation of the function (such as a data-flow diagram including the relevant
generic components). This abstract model can be verified to check that it is
structured to ensure essential properties, like the correct number of parameters
are defined for each block. This can also be an effective method of establishing
application-level constraints, since it provides a view of the required inputs and
outputs as well as an end-to-end view of the components used. The process of
transforming that abstract model into configuration data can also be used to

Assurance Cases for Block-Configurable Software 161

enforce constraints on the data. This requires reliable (probably bespoke) tool
support and correct encoding of the constraints within the tool.

Finally, it is possible to prove formally that the configuration data satisfies
the constraints using SAT (Satisfiability) or SMT (Satisfiability Modulo Theo-
ries) solvers. There are a number of tools available that implement such tech-
niques [7]. This has the potential to give the highest available level of assurance.
Its feasibility, however, depends on the structure of both the constraints and the
configuration data.

4 Termination

In this section, we consider the arguments for well behavedness as defined in the
Generic Component X argument module (Figure 5). It illustrates our approach
to combining structured argumentation and formal analysis.

Goal: GCX Gtees

Termination guarantees for
{Generic Component X} will be
met for all configuration data that
meets the defined constraints

Goal: constGuess

Asserted and verified constraints
are sufficient to prove the
program guarantees if defined
structural constraints are met

Goal: constCalc

Calculated approximations of weakest
pre-conditios for the component prove
the program guarantess if defined
structural constraints are met

Con: termCalc

Calculated termination
constraints are ... (weakest
pre-conditions for the GC
and structural constraints)

Con: termrGuess

Asserted and verified
termination constraints
are ... (pre-conditions for
the GC)

Con: GCX Gtees

Termination
guarantees of {Generic
Component X} are ...

Strat: Formal

Argument over a formal
approach to demonstrating
guarantees are met

Sol: WPcalcs

WP calculations
for {Generic
Component X}

Goal: WPcalcsCorrect
_Confidence

WP calculations are correct

Confidence

Con: structCons

Structural
constraints are...

Goal: structCons
_Confidence

Structural constraints are
correct

Confidence

Goal: VCproof

Verification conditions (VCs)
generated from asserted
preconditions are proved

Goal: assertPre

Preconditions sufficient to
guarantee termination are
asserted

Goal: guessPre

Preconditions are
determined using an
educated guess

Sol: VCproof

VC proofs for
{Generic

Component X}

Goal: VCcorrecct _Confidence

VCs have been correctly generated
from the asserted preconditions

Confidence

Goal: Aliasing _Confidence

Alising does not occur in the
algorithm

Confidence

Fig. 5. Assurance Argument: Generic Component X

162 R. Hawkins et al.

In arguing termination, a possible approach is to test the components. This
requires test cases that provide sufficient coverage of the configuration data.
Without unrealistically constraining the configuration data, however, this is ex-
tremely difficult. It is possible to use typical data, but extrapolating those test
results would not provide much confidence. An alternative would be to test the
components every time new configuration data is used. This, however, does not
permit reuse of evidence.

In addition, testing gives no indication of the constraints that need to be satis-
fied, and so no guidance for the definition of configuration data. The constraints
can serve as a contract between the software developers and those configuring
the software to provide particular functionality.

An alternative is to use formal analysis to prove that the termination guar-
antees are always met. There are two possibilities: to calculate weakest precon-
ditions that guarantee termination of the components, or assert constraints that
are believed to be sufficient and then verify that they guarantee termination.
The asserted preconditions can be obtained through an educated guess, based
on an understanding of the code.

There are advantages and disadvantages to each of these possibilities. The
advantage of formal analysis is that it gives the highest available level of as-
surance, as it is based on proof. The disadvantage is that currently no tool
support exists for calculating the weakest preconditions of Ada programs. We
note, however, that due to the structure of the assurance argument, the calcula-
tions for each generic algorithm only needs to be performed once, and after that
can be reused for all functions requiring that algorithm. The main advantage of
the guess-and-verify approach is that there is an existing tool set available - the
SPARK toolset [21] - that can generate and prove verification conditions. The
disadvantage is that guessing the precondition may be difficult, and there is no
guarantee that the correct precondition will be found. Based on this, we have
decided to adopt a weakest precondition approach.

Weakest preconditions [8,9] can be calculated using a function WP.P.ψ that
defines, for a given program P and postcondition ψ, the weakest precondition φ
that guarantees that, if P is executed in a state that satisfies φ, then it terminates
and the final state satisfies ψ. The predicates φ and ψ establish restrictions on
the values of the programming variables, and in our case, the preconditions are
restrictions on the configuration data imposed by the implementation. (More
details are provided in Section 6.)

Confidence arguments are required to demonstrate that constraints are com-
plete and correct. An example is provided in [13] of a confidence argument to
demonstrate the correctness of the weakest precondition calculations. This en-
sures completeness as well.

In Figure 6, we present the argument in the reconstructor module, which
instantiates the pattern in Figure 5. The instantiation is guided by the adoption
of a weakest precondition approach. There are confidence arguments that must
also be provided. The argument for the reconstructor is similar in all block-
configurable software. The similar argument for a specific component is provided

Assurance Cases for Block-Configurable Software 163

in [13]. The argument for the output manager is exactly the same for all block-
configurable software.

Goal: Reconstructor Gtees

Termination guarantees for
Reconstructor will be met for all
configuration data that meets the
defined constraints

Con: Reconstructor
Gtees
Termination guarantee
of Reconstructor is
`true'

Goal: constCalcRecon

Calculated approximations of weakest
pre-conditios for the Reconstructor
prove the program guarantee if the
defined structural constraints are met

Con: termCalcRecon

Calculated weakest pre-
conditions for the
Reconstructor are defined
in Section 8.3.2

Strat: FormalRecon

Argument over a formal
approach to demonstrating
Reconstructor termination
guarantees is met

Sol:
WPcalcsRecon

WP calculations for
Reconstructor (see
Section 8.3.2)

Goal: WPcalcsCorrect
_Confidence

WP calculations are correct

Confidence

Con: structCons

The structural
constraints are
defined in section 8.1

Goal: structCons
_Confidence

Structural constraints are
correct

Confidence

Goal: Aliasing _Confidence

Alising does not occur in the
algorithm

Confidence

Fig. 6. Quadratic-Solver Assurance Argument: Termination Argument

As shown in Figure 3, the top-level argument requires a Configuration Data
module that demonstrates that the constraints are met by all the configuration
data. An argument module needs to be created for each set of configuration data.
For the quadratic example, we assume that two different sets of configuration
data are used by the reconstructor, which, for instance, require a different subset
of the equation solutions.

5 Managing Changes to Block-Configurable Software

We consider three of the most likely change scenarios for block-configurable
software, and discuss their effect on the assurance argument and evidence.

Add a new function to a deployment. In this scenario, we assume that the new
reconstructor only requires the use of the existing generic components. In this
case, another Function X Configuration Data module must be created for the
new configuration data, and the Configuration Data module must be updated
with an additional away goal reference to it.

164 R. Hawkins et al.

Modify configuration data for an existing function. Here, the behaviour of a
function needs to be modified, but there are no required changes to generic com-
ponents. In this case, only the existing Function X Configuration Data module
for the changed function must be updated.

Introduce a new generic component. Now, a new function or a change to an
existing function requires a new generic component, and, correspondingly, a new
Generic Component X argument module. This can generate new constraints, and
so, the Function X Configured Data argument modules need to demonstrate
that all constraints, including the new constraints, are met. In addition, due
to required changes to the reconstructor, its Generic Component X argument
module needs to be reassessed.

In conclusion, the best possible outcome is if, as a result of changes, all that is
required is a reverification of data constraints. For that, it must be possible to
demonstrate the required guarantees purely through data constraints. In addi-
tion, these required guarantees must remain unchanged. In practice, this is possi-
ble only in restricted scenarios of change. It is crucial, however, that the argument
considers each generic component independently. It is also necessary to be able to
make generic guarantees for the components in the absence of specific data.

Changes to the structure of the reconstructor (that is, those not implemented
through configuration data), should be avoided. If object-oriented features can
be used in a particular rendering of a block-configurable software, this becomes
easier. In this case, the reconstructor can be implemented (and assured) once
and for all, in terms of an abstract class that captures a generic interface for a
component.

6 Validity of Configuration Data

There are different sources and kinds of constraints. Structural constraints de-
rive from the way the block-configurable software is designed. These constraints
are mostly independent of the particular application for which the software is
used (except in the definition of the particular data types used in the generic
components).

We have formalised the structural constraints using Z [18,1]. Our Z data model
is the same for all deployments of block-configurable software, except only for
the data types of the generic components. Changes are, therefore, only needed
if different components are considered, and, in any case, the modelling effort
required is small, since the data types are just records that can be directly
represented in Z.

Our model ignores the use of pointers. For the quadratic solver, we have
an Ada implementation where access types are used just to allow the use of
unconstrained array types in a way that ensures absence of aliasing. In general,
we need a technique to ensure that aliasing does not occur. This is addressed by
a structured argument as shown in Figure 5.

Assurance Cases for Block-Configurable Software 165

To illustrate howwemodel the data types of generic components, we showbelow
the model for the ADDER component of the quadratic solver. It is a straightforward
translation of the Ada code to Z. The DATA PACKET TYPE is a record (schema) that
includes the parameter and the components of the Ada record. The predicate (in-
variant) of the schema defines the range restriction in the declaration of the type.

RECONSTRUCTOR ADDER DATA PACKET TYPE

INPUT SIZE : POSITIVE WORD TYPE

INPUT SCALING : PARAMETER ARRAY TYPE

INPUT SCALING = INPUT SIZE

Other constants, which define inputs and an identifier for the generic component,
are also defined by a direct translation of the code.

More interesting is themodel of the OUTPUT MANAGER, which embodies the struc-
tures that allow the data configuration. This model, except in its dependency on
the definitions of the DATA PACKET TYPE schemas for each of the generic
components, is the same for all deployments. This is the most complex part of the
model, but since the output manager is a generic component, what we have is a
DATA PACKET TYPE record.

RECONSTRUCTOR O M DATA PACKET TYPE

OUTPUT MANAGER DATA : O M DATA TYPE

The O M DATA TYPE , however, is a record with six components that define
the size of the output vector, the vector of outputs actually provided and its size,
and the dependencies between the outputs and inputs. The Z model for it and all
the quadratic solver components is in [13].

The configuration data is an array of DATA PACKET TYPE records.

CONFIGURATION DATA TYPE ==
ARRAY [POSITIVE WORD TYPE ,

RECONSTRUCTOR DATA PACKET TYPE]

The instantiation of this model for a particular deployment defines the type
RECONSTRUCTOR DATA PACKET TYPE , which aggregates the possible
DATA PACKET TYPE records used in the components.We calculate the weak-
est precondition of the reconstructor, which restricts the values of a record
CONTRACT that includes a component of type CONFIGURATION DATA
TYPE , and two others to represent the input and a selection of outputs.

166 R. Hawkins et al.

There may also be domain constraints on inputs that arise in the area of appli-
cation. They typically restrict the range of the values of the inputs (for example,
height, speed, and so on). For our example, we require that the first coefficient of
the equation is different from 0, otherwise it is not a quadratic equation. It is nec-
essary to prove that any configuration data to be used satisfies the programming
and structural constraints. For that, domain constraints can be assumed to hold.
This is demonstrated in the Configuration Data argument module.

To calculate weakest preconditions, we define the function WP(S).ψ, and
consider the postcondition True. The definition ofWP(S).ψ is mostly standard,
except that we consider that expressions can raise exceptions and prevent proper
termination. We, therefore, use auxiliary functions that determine when a expres-
sion or a command terminates. Definitions are provided in [13], along with calcu-
lations for the quadratic solver.

A significant part of those calculations, namely, the treatment of the reconstruc-
tor and the output manager, is reusable, and does not need to be revisited for other
software. In addition, as long as the components terminate, the calculation of the
weakest precondition is compositional: if a component is added, it can be consid-
ered in isolation, and no recalculation is needed. This is despite the fact that the
components can be enlisted by the reconstructor in any order.

7 RelatedWork

As far as we know, there has not been a lot of work on assuring software whose
behaviour is configured using data. There are results on validating the data used
in systems that use large quantities of data to perform their function [14,10] and
on safety-related information systems [17]. They describe specification and verifi-
cation techniques for data, but do not consider systems whose flow of execution is
itself determined by data.

Calculation of weakest preconditions is a demanding task; an automated cal-
culator is essential to make it practical and scalable. To our knowledge, there are
almost no tools that can handle realistic languages and their types, except per-
haps Java [2]. The extension of a tool like that in [4] to handle a safe language is,
therefore, an interesting problem.

Weakest preconditions are the basis of the calculator in [4], which is implemented
using the HOL theorem prover [11]. The simple imperative language considered
includes recursive procedures; all HOL types are available. A similar calculator is
described in [16], but it uses weakest liberal preconditions, which cannot be used
to reason about termination.

Termination is also not treated in the more recent approach to invariant cal-
culation in the tool in [15]. Their idea of using patterns of programs to identify
invariants, on the other hand, merits further investigation. Given the constrained
nature of block-configurable software, it may well be possible to identify a cata-
logue of program patterns and associated invariants to afford automation.

Availability of tool support is a strong point of the assert-and-verify approach,
which is a clear alternative to the technique explored here. For Ada, the SPARK

Assurance Cases for Block-Configurable Software 167

toolsmerit further investigation to assess automation. ForC, the C verifierVCC [5]
handles annotated concurrent programs.

Our work is concernedwith a component-based verification and assurance tech-
nique. Work in this area has typically concentrated on the definition of languages
for component connectors, and associated compositional techniques. For example,
the approach in [20] advocates verificationbymodel checking in a framework called
X-MAN.Thework in [19], on the other hand, considers object-orientedmodels and
can be a good basis for description of our work. It is possible that we can specify
the block-configurable architecture in the languages for components considered in
these works to take advantage of their results for the generation of evidence. We
have here, however, dealt directly with (Ada) programs, rather than a high-level
modelling language. In addition, these works have not covered the construction of
assurance arguments like we do here.

8 Conclusions

We have described how assurance cases can be created for block-configurable soft-
ware. Our approach maximises resilience of arguments and evidence to expected
changes, and enables the build up of reusable assurance-case modules for both
components and configuration data. To provide evidence of termination, we have
explored the use of weakest preconditions to determine the required constraints.
Simple modelling and clearly prescribed adaptations are needed when the set of
components changes.

The assurance case demonstrates that the software is “well behaved”, by which
we mean that the software does not adversely affect the rest of the system. We
have identified that the notions of interest for “well behavedness” are related to
termination, resources, and exceptions. In this paper we have only considered the
argument made for termination. In [13], however, we also explore the arguments
for resources and exceptions.

An accurate comparison between the assurance effort entailed by conventional
and by block-configurable software is difficult. There is some additional effort re-
quired for a block-configurable software. Firstly, the constraints must be deter-
mined, but this is offset if a formal approach is used as testing for the particular
properties needed in the assurance case is not required. Secondly, the configura-
tion data must be verified. This is expected to be a simple task for the anticipated
constraints, and the effort should, therefore, be less than is involved in testing.

For a conventional application, adding new functions requires changes to the
code, and the entire programmust, therefore, be reverified. For block-configurable
software it is required only that the configuration data for the new functions is
verified. It is when new functions are integrated into the system that savings in
the assurance effort are realised.

Amajor drawback is the absence of tools to support weakest precondition calcu-
lations.This technique canbe used to produce evidence for any functional property
that can be specified by a postcondition.As we considermore elaborate properties,
however, automation becomes more difficult. It is possible to use approximations

168 R. Hawkins et al.

like in [3]. In this case, we can ensure that invalid data is rejected, but valid data
may also be rejected.

Acknowledgements. We are grateful to Jane Fenn for her support.

References

1. ISO/IEC 13568:2002. Information technology—Z formal specification notation—
syntax, type system and semantics. International Standard

2. Barthe, G., Burdy, L., Charles, J., Grégoire, B., Huisman, M., Lanet, J.-L., Pavlova,
M.I., Requet, A.: JACK - A Tool for Validation of Security and Behaviour of Java
Applications. In: de Boer, F.S., Bonsangue, M.M., Graf, S., de Roever, W.-P. (eds.)
FMCO 2006. LNCS, vol. 4709, pp. 152–174. Springer, Heidelberg (2007)

3. Cavalcanti, A.L.C., King, S., O’Halloran, C., Woodcock, J.C.P.: Test-Data Gen-
eration for Control Coverage by Proof. In: Formal Aspects of Computing (2013),
doi:10.1007/s00165-013-0279-2 (online first)

4. Cavalcanti, A.L.C., Woodcock, J.C.P.: A Weakest Precondition Semantics for Cir-
cus. In: Communicating Processing Architectures 2002. IOS Press (2002)

5. Cohen, E., Dahlweid, M., Hillebrand, M., Leinenbach, D., Moskal, M., Santen, T.,
Schulte, W., Tobies, S.: VCC: A Practical System for Verifying Concurrent C. In:
Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS,
vol. 5674, pp. 23–42. Springer, Heidelberg (2009)

6. GSN Standardisation Committee. GSN community standard (November 2011)
7. de Moura, L., Bjørner, N.: Satisfiability modulo theories: introduction and applica-

tions. Communications of the ACM 54(9), 69–77 (2011)
8. Dijkstra, E.W.: A Discipline of Programming. Prentice-Hall (1976)
9. Dijkstra, E.W., Scholten, C.S.: Predicate Calculus and Program Semantics. Texts

and Monographs in Computer Science. Springer (1989)
10. Faulkner, A.G., Bennett, P.A., Pierce, R.H., Johnston, I.H.A., Storey, N.: The Safety

Management of Data-Driven Safety-Related Systems. In: Koornneef, F., van der
Meulen, M.J.P. (eds.) SAFECOMP 2000. LNCS, vol. 1943, pp. 86–95. Springer,
Heidelberg (2000)

11. Gordon, M.J.C., Melham, T.F. (eds.): Introduction to HOL: A Theorem Proving
Environment for Higher Order Logic. Cambridge University Press (1993)

12. Object Management Group. Structured assurance case metamodel (SACM). OMG
Standard Document, 2013. OMG Document Number: formal/2013-02-01

13. Hawkins, R., Miyazawa, A., Cavalcanti, A.L.C., Kelly, T., Rowlands, J.: Assur-
ance Cases for Data-configured Software. Technical report, University of York,
Department of Computer Science, York, UK (2014),
http://www-users.cs.york.ac.uk/~rhawkins/HMCKR14.pdf

14. Knight, J.C., Strunk, E.A., Greenwell, W.S., Wasson, K.S.: Specification and Anal-
ysis of Data for Safety-Critical Systems. In: ISSC (2004)

15. Mraihi, O., Ghardallou,W., Louhichi, A., Labed Jilani, L., Bsaies, K., Mili, A.: Com-
puting preconditions and postconditions of while loops. In: Cerone, A., Pihlajasaari,
P. (eds.) ICTAC 2011. LNCS, vol. 6916, pp. 173–193. Springer, Heidelberg (2011)

16. Nipkow, T.: Winskel is (almost) Right: Towards a Mechanized Semantics. Formal
Aspects of Computing 10(2), 171–186 (1998)

17. Tillotson, J.: System safety and management information systems. In: Redmill, F.,
Anderson, T. (eds.) Aspects of Safety Management, pp. 13–34. Springer (2001)

http://www-users.cs.york.ac.uk/~rhawkins/HMCKR14.pdf

Assurance Cases for Block-Configurable Software 169

18. Woodcock, J.C.P., Davies, J.: Using Z—Specification, Refinement, and Proof.
Prentice-Hall (1996)

19. Broy, M.: A core theory of interfaces and architecture and its impact on object ori-
entation. In: Reussner, R., Stafford, J.A., Ren, X.-M. (eds.) Architecting Systems.
LNCS, vol. 3938, pp. 26–47. Springer, Heidelberg (2006)

20. Lau, K.-K., Tran, C.M.: X-man: An mde tool for component-based system develop-
ment. In: 39th Euromicro Conference on Software Engineering and Advanced Ap-
plications, pp. 158–165 (2012)

21. Barnes, J.: High Integrity Software: The SPARK Approach to Safety and Security.
Addison-Wesley (2003)

Generation of Safety Case Argument-Fragments

from Safety Contracts

Irfan Sljivo, Barbara Gallina, Jan Carlson, and Hans Hansson

Mälardalen Real-Time Research Centre, Mälardalen University,
Väster̊as, Sweden

{irfan.sljivo,barbara.gallina,jan.carlson,hans.hansson}@mdh.se

Abstract. Composable safety certification envisions reuse of safety case
argument-fragments together with safety-relevant components in order to
reduce the cost and time needed to achieve certification. The argument-
fragments could cover safety aspects relevant for different contexts in
which the component can be used. Creating argument-fragments for the
out-of-context components is time-consuming and currently no satisfying
approach exists to facilitate their automatic generation. In this paper we
propose an approach based on (semi-)automatic generation of argument-
fragments from assumption/guarantee safety contracts. We use the con-
tracts to capture the safety claims related to the component, including
supporting evidence. We provide an overview of the argument-fragment
architecture and rules for automatic generation, including their applica-
tion in an illustrative example. The proposed approach enables safety
engineers to focus on increasing the confidence in the knowledge about
the system, rather than documenting a safety case.

Keywords: Safety Case Argument-fragments, (Semi-)automatic Gener-
ation, Safety Contracts, Composable Certification, Out-of-context
Components.

1 Introduction

The cost for achieving certification is estimated at 25-75% of the development
costs [16]. As a part of certification, a safety case in form of a structured argument
is often required to show that the system is acceptably safe to operate. To reduce
cost and time-to-market, more and more safety standards are offering support for
reuse within safety cases. Safety Element out of Context (SEooC) is an example
of a concept for reuse proposed by the automotive ISO 26262 standard [12].
Building on such reusable elements, an approach to composable certification
has been proposed [5]. The approach aims at achieving incremental certification
by composing reusable argument-fragments related to safety elements, whose
behaviour is specified through safety contracts. We define argument-fragments
as parts of the system safety argument that argue about safety aspects relevant
for the individual components.

In our previous work [15] we developed a safety contract formalism to facili-
tate reuse of components developed out-of-context. The safety contracts capture

A. Bondavalli and F. Di Giandomenico (Eds.): SAFECOMP 2014, LNCS 8666, pp. 170–185, 2014.
c© Springer International Publishing Switzerland 2014

Generation of Safety Case Argument-Fragments from Safety Contracts 171

safety-relevant behaviours of the components in assumption/guarantee pairs.
The semantics of such a pair is that if the assumption holds then the guarantee
will also hold. The assumption/guarantee pairs are characterised as being either
strong or weak. The strong contract assumptions are required to be satisfied
in all contexts in which the component is used, hence the strong guarantees
are offered in every context in which the component can be used. On the other
hand, the weak contract guarantees are only offered in the contexts in which the
component can be used and that satisfy the corresponding weak assumptions.

The strong and weak contracts allow us to distinguish between properties that
hold for all contexts and those that are context-specific. Since every context has
specific safety requirements, argument-fragments for out-of-context components
maypartially cover safety aspects relevant for several contexts.Creating argument-
fragments for components developed out-of-context is a time-consuming activity.
(Semi-)automatic generation of such argument-fragments from safety contracts
would speed up the activity and allow for generation of context-specific argument-
fragments. Moreover, the safety engineers would have the possibility to focus on
increasing the confidence in the knowledge about the system, rather then on cler-
ical tasks such as documenting a safety case [13].

Currently, no satisfying approach exists that facilitates generation of argu-
ment-fragments for out-of-context components. The main contribution of this
paper is that we propose such an approach, capable to (semi)automatically
generate argument-fragments from safety contracts and related safety require-
ments and evidence. As the basis for our approach we developed a meta-model
that captures relationships between the safety contracts, safety requirements and
evidence. To support the generation of argument-fragments from the safety con-
tracts we provide conceptual mapping between the meta-model and argumen-
tation notation elements. To perform the generation we provide the resulting
argument-fragment architecture and a set of rules to generate the argument-
fragments.

We demonstrate our approach on a Fuel Level Estimation System (FLES)
and its variants that are used within Scania’s trucks and busses. We focus on a
single component of FLES that estimates the fuel level in the tank. This com-
ponent represents a good candidate to be developed as SEooC as it is used with
slight variations in many different variants. We use the safety contracts not only
to capture the knowledge we have about the behaviour of the component, but
also the evidence supporting the guaranteed behaviour. Moreover, by connecting
in-context safety requirements with the weak safety contracts that address the
requirements, we enable only those safety properties of the component relevant
for the particular context to be used when developing the argument-fragment.
This allows us to support more efficient creation of the argument-fragments as
well as generation of context-specific arguments that contain information rele-
vant for the context in which the component is used.

Compared to existing works, we focus on generation of argument-fragments
for components developed and prepared for safety certification independently
of the system in which they will be used. Approaches to generating safety case

172 I. Sljivo et al.

arguments [9, 3] usually extract the necessary information to build an argument
from artefacts provided to satisfy some process, e.g., mandated by a safety stan-
dard. In our approach we utilise the safety contracts to capture the necessary
information about a component from artefacts obtained out-of-context and show
how argument-fragments can be generated for such components.

The structure of the paper is as follows: In Section 2 we present background
information. In Section 3 we present the rationale behind our approach and
how the generation of argument-fragments can be performed. In Section 4 we
illustrate the approach for the Fuel Level Estimation System, and in Section 5 we
provide a discussion of our approach. We present the related work in Section 6,
and conclusions and future work in Section 7.

2 Background

In this section we introduce FLES that we use to illustrate our approach. We
also provide some brief information on safety contracts based on our previous
work; and Goal Structuring Notation, the argumentation notation we use for
documenting safety case argument-fragments.

2.1 Illustrative Example: The Fuel Level Estimation System

In this subsection, based on [8], we provide brief but essential information related to
FLES and the hazard analysis performed on it. We limit our attention to some bits
of information that we use in illustrating the generation of argument-fragments.

FLES is based on a real estimation system used in Scania trucks with liquid
fuel. The component-based architecture of FLES is shown in Fig. 1. The Esti-
mator component estimates the volume of fuel in a vehicle’s tank based on the
sensor data obtained from the Fuel Tank and the Engine Management System
(EMS). The received sensor values go through a series of transformations and
filtering to handle any fluctuations in the sensed fuel level value. The estimated
value is converted into percentage, passed to the Presenter and presented to the
driver of the vehicle through the Fuel Gauge mounted on the dashboard. Due
to dependencies of the transformations to the physical properties of sensors and
its environment (e.g., size of the tank), these parameters are made configurable
to make Estimator usable in different variants of the system.

The hazard analysis performed on the system reveals that if the fuel level
displayed on the fuel gauge is higher than the actual fuel level in the tank
then the vehicle could run out of fuel without the driver noticing, which would
cause a sudden engine stop. If this happens while driving on e.g., a highway,
the consequences could be catastrophic. Although there are other hazards in the
system, this is the only hazard we use in illustrating our approach.

The safety analysis, as recommended by ISO 26262, starts by identifying at
least one Safety Goal (SG) for each hazard, then for every safety goal, corre-
sponding Functional Safety Requirements (FSRs) are derived and finally, Tech-
nical Safety Requirements (TSRs) are derived from the FSRs. We consider the
following SGl and derived FSR:

Generation of Safety Case Argument-Fragments from Safety Contracts 173

Fig. 1. Fuel Level Estimation System

– SG1 : FLES shall not show higher fuel level on the fuel gauge than the actual
fuel in the vehicle’s tank;

– FSR1 : Estimator shall not provide value of the estimated fuel level that
deviates more than -5% from the actual fuel-level in the tank.

Additionally, the engine status signal provided by EMS should not be older than
0.3 seconds. An older value could result in a too high deviation from the actual
fuel consumption that may cause deviation in the estimated fuel level value.

2.2 Strong and Weak Contracts

Our extension of the traditional contract-based formalism with strong and weak
contracts allows for distinguishing between properties that are context-specific
and properties that must hold for all contexts [14].

A traditional assumption/guarantee contract C = 〈A,G〉 is composed of as-
sumptions A and guarantees G, where a component offers the guarantees G if
its assumptions A on its environment are satisfied [6]. As an illustrative and
simplified example based on the system we presented in Section 2.1, we specify
a contract for Estimator with assumptions that if both the fuel level and fuel
rate are provided with sufficient accuracy, Estimator guarantees that the total
estimated fuel level it provides will be with certain accuracy.

Strong contracts 〈A,G〉 are composed of strong assumptions (A) and strong
guarantees (G), and weak contracts 〈B,H〉 of weak assumptions (B) and weak
guarantees (H) [15]. While strong assumptions must hold in order for a com-
ponent to be used in any context, weak assumptions and guarantees just pro-
vide additional information for particular contexts. We say that a component,
described by a set of safety contracts, is compatible with a certain context if
all of its strong assumptions are satisfied by the environment. The weak con-
tracts ensure that in all compatible contexts where the weak assumptions (B)
are satisfied, the component offers the weak guarantees (H). For example, strong
contracts could assume input type, range, or minimum amount of stack required
and guarantee similar properties. On the other hand, weak contracts assume
configurable parameters such as tank or sensor parameters in FLES and guar-
antee different behaviour of the component dependant on those parameters such
as different accuracy of the output or specific timing behaviour.

174 I. Sljivo et al.

2.3 Goal Structuring Notation

In this paper, we use Goal Structuring Notation (GSN) [2] for expressing safety
case argument-fragments. GSN is a graphical argumentation notation that can
be used to specify elements of any argument. Some of the basic elements of GSN
are illustrated in Fig. 2 and their semantics is given in the following list:

– Goal : a claim or a sub-claim that should be supported by the underlying
argument. It can be broken down to several sub-goals (sub-claims).

– Strategy: describes a method used to develop a goal into additional sub-goals.
– Context : represents the domain/scope of the element it is connected to.
– Solution: describes the evidence that the connected goal has been achieved.
– Undeveloped element : states that the element to which the symbol is attached

requires further development.
– InContextOf : used to connect context with goals.
– SupportedBy: used to show relationship of inference between goals in the

argument, or to show that certain evidence is supporting a goal.
– Away goal : used to specify a module in which the goal is further developed.

For the sake of clarity it must be noted that the context element can be used
to simply enrich or clarify the statements of the elements it is connected to. Be-
sides the basic symbols, we additionally use a notational extension that supports
abstract argument patterns [2]. More specifically, to denote a variable we use the
curly brackets within statements; to denote generalised n-ary relationships be-
tween GSN elements we use the supportedBy relationship with a solid circle;
to denote a choice, either 1-of-n or m-of-n selection, we use a solid diamond,
which can be paired, using a simple connector line, with an Obligation element
represented by an octagon symbol, stating condition for the choice selection.

Fig. 2. Basic elements of the Goal Structuring Notation

3 Composable Arguments Generation

The aim of this section is twofold: (1) to explain the rationale underlying our ap-
proach to (semi)automatic generation of argument-fragments, and (2) to explain
how the generation can be performed. The latter is done by

– providing a component meta-model, developed to capture the relationships
between the safety contracts, safety requirements and evidence in an out-
of-context setting, and being sufficient to provide us with the information
required for argument-fragment generation,

– presenting a conceptual mapping of the meta-model elements to a subset of
the basic GSN elements to provide better understanding of the transition
from the meta-model to the argument-fragment,

Generation of Safety Case Argument-Fragments from Safety Contracts 175

– presenting an overview of the argument-fragment architecture, and by
– providing a set of rules for the argumentation-fragment generation.

3.1 Rationale of the Approach

In our work we focus on safety-relevant components developed and prepared for
safety certification independently of the system in which they will be used. To de-
velop such components, the engineer must assume some safety requirements that
might be required when the component is used in a context. To prepare compo-
nents for certification, safety engineers need to capture safety-relevant properties
of the component that show how the safety requirements allocated to the compo-
nent are met. To do that, we use our notion of strong and weak contracts.

It is worth to point out that the safety requirements and the safety contracts
we use are closely related, but not the same. The safety contracts contain infor-
mation about the actual behaviour of the component. On the other hand, the
safety requirements contain information about what a particular context/system
requires from the component. While the safety requirements vary between con-
texts, the safety contracts should be correct regardless of the context. This is
important to enable reuse of out-of-context components. As an illustration, con-
sider FLES example requirement “Estimator shall send a valid value in totalFu-
elLevel within 2 seconds from when the Electronic Control Unit starts”. This is a
requirement on Estimator in this particular context and should not be specified
within the Estimator’s safety contract in that form. In the safety contract we
should rather specify the actual time Estimator needs to send the totalFuelLevel.
This makes the contracts independent of the context in which out-of-context
component can be used, which allows us to use the knowledge captured within
the contracts for all contexts in which the contracts are satisfied. The strong con-
tracts denote properties that must be argued about in argument-fragments for
every context, while the weak contracts will be argued about only if associated
with a safety requirement within a particular context.

In order to guarantee the actual behaviour of the component, as specified in
the safety contracts, we need to provide evidence about confidence in the con-
tract. We categorise the evidence that supports the confidence in the contracts
in terms of completeness, correctness and consistency, as follows: (1) complete-
ness refers to whether contracts have captured all the needed properties of the
component and the environment, (2) correctness refers to whether the contracts
are correct with respect to associated requirements and (3) consistency refers to
whether the contracts are not contradicting each other.

When using an out-of-context component in a particular context, a set of
actual safety requirements (e.g., FSR or TSR) is allocated to the component. One
of the roles of an argument-fragment is to show that these requirements are met.
As safety contracts can be used to address different types of requirements, we are
developing our approach without focusing on a particular class of requirements.

The (semi)automatic generation of argument-fragments from the safety con-
tracts enables us to reduce the effort safety engineers need to dedicate for cre-
ating a set of argument-fragments. These fragments could be created for several

176 I. Sljivo et al.

contexts in which the component could be used. By speeding up both the inte-
grator’s and the developer’s activities related to documenting a safety case, we
enable them to focus on activities related to their knowledge about the system,
by capturing this knowledge in the safety contracts.

3.2 Component Meta-Model

Our component meta-model in Fig. 3 is presented as an UML class diagram. This
diagram captures the relationships between the assumed requirements, safety
contracts and evidence, as described in Section 3.1. Our meta-model is based on
the SafeCer component meta-model [7], which we have adapted, focusing only
on its out-of-context part. Instead of associating argument-fragments (that may
contain information not relevant for a specific context) with a component, we
associate evidence and safety requirements directly with contracts to facilitate
generation of context-specific argument-fragments.

Fig. 3. Component and safety contract meta-model

The meta-model specifies a component that is composed of safety contracts,
evidence and the assumed safety requirements. Each assumed safety requirement
is satisfied by at least one safety contract, and each safety contract can have
supporting evidence. Additionally, we assume that there is at least one evidence
provided with the component supporting the consistency of the contracts. The
safety contract elements in the meta-model are covering both the strong and
weak safety contracts explained in Section 2.2. It should be noted that, based
on the SafeCer component meta-model, the components can be composite i.e.,
a set of interconnected subcomponents, and can represent a (sub)system.

3.3 Conceptual Mapping of the Component Meta-Model to GSN

As mentioned in Section 2.3, GSN is used for documenting safety cases by ex-
pressing arguments and supporting evidence to show that the safety claims are
satisfied. At the same time, as described in Section 3.2, our component meta-
model captures the component safety claims in the safety contracts, supported

Generation of Safety Case Argument-Fragments from Safety Contracts 177

by the associated evidence, with the goal to argue the satisfaction of the safety
requirements. The conceptual mapping between the meta-model and GSN is
depicted in Table 1.

Table 1. Conceptual mapping between the meta-model and GSN elements

The component meta-model elements GSN-elements

Properties representing guarantee(s)
Assumed safety requirement(s)

Goals

Evidence Solutions

Properties representing assumption(s) Contexts

In order to build an argument structure from the safety contracts, we need
to map the meta-model elements to the GSN elements. Our aim is to, based on
our meta-model, develop an argument-fragment that addresses the following:

1. Compatibility of a component with a context : to show satisfaction of strong
contracts of the component by the context, as described in Section 2.2. Be-
sides satisfaction, confidence in contracts needs to be addressed using asso-
ciated evidence.

2. Satisfaction of safety requirements : to show that a safety requirement is
satisfied we need to argue both, that weak contracts related to the safety
requirement are satisfied, and that the set of the related contracts is sufficient
to show that the requirement is satisfied.

3. Confidence in contracts : showing only that a contract is satisfied by a con-
text is not enough. Evidence about confidence in the contract should be
provided also. We provide evidence about confidence in contracts in terms
of completeness, correctness and consistency as described in Section 3.1.

The satisfaction of a contract, as described in Section 2.2, means that the con-
tract guarantees are offered. Consequently, properties representing the safety
contract guarantees in the meta-model as well as the assumed safety require-
ments correspond to goals in GSN. Furthermore, we use evidence from the meta-
model related to consistency, correctness and completeness as solutions within
GSN. To clarify the context of our goals, we make context statements providing
properties representing the assumptions of the safety contracts.

3.4 Overview of the Architecture of the Resulting
Argument-Fragment

Given the meta-model in Section 3.2, we propose to generate the resulting
argument-fragment based on the mapping provided in Section 3.3.

In the argumentation-fragment generation we will follow a pattern that for a
component, say x, with a top-level goal, sayG1, in a series of successive steps will
generate the corresponding argumentation fragment. We start by decomposing

178 I. Sljivo et al.

the goal G1 into three sub-goals, as shown in Fig. 4. We first argue satisfaction
of all the strong contracts of x in the goal G2. Then, we provide evidence for
the consistency of all the contracts associated with x in the goal G4 and finally,
we argue over satisfaction of the requirements by the related contracts in the
goal G3. We now further develop the goal G3 and leave the goals G2 and G4
undeveloped, as they will be explored later.

Fig. 4. Safety requirements satisfaction goal sub-structure

We further develop the goal G3 by applying the strategy S1 to argue over
satisfaction of all safety requirement allocated to component x. For every safety
requirement k ∈ [1,K] where K is the number of allocated requirements, a goal
G3.k is created, stating satisfaction of the requirement by the related contracts.
We further break down the G3.k goal into two sub-goals: (1) G3.k.1 arguing over
satisfaction of every supporting contract of the requirement k, and (2) G3.k.2
providing associated evidence that the related safety contracts supporting the
safety requirement k are correct with respect to the requirement. We first focus
on the G3.k.1 goal, and leave the G3.k.2 goal undeveloped, as it will be explored
together with other parts of the argument referring to evidence.

When arguing over satisfaction with sufficient confidence of a set of contracts,
we use the same strategy whether we argue over all the strong contracts (G2) or
the weak contracts that support the safety requirements. To further develop the
G3.k.1 goal, we apply the strategy S2 to argue over satisfaction with sufficient
confidence over every related contract and reach the choice represented by obli-
gation O1. If a goal has been developed elsewhere to support a contract n we
create an away goal, otherwise we create a goal G3.k.1.n for every contract n ar-
guing over its satisfaction, where n ∈ [1, N], with N being the number of related
contracts to the requirement k. In order to further clarify the goal G3.k.1.n we
provide assumed properties of the contract n as a goal context.

Generation of Safety Case Argument-Fragments from Safety Contracts 179

Fig. 5. Contract satisfaction with confidence goal sub-structure

As shown in Fig. 5, to argue that a safety contract n is satisfied with sufficient
confidence we break down the goal G3.k.1.n into two sub-goals: (1) G3.k.1.n.1
arguing over satisfaction of every safety contract m that supports the assumed
properties of the contract n, where m ∈ [1,M] and M is the number of contracts
supporting the contract n, and (2) G3.k.1.n.2 providing attached evidence about
the completeness of contract n. We further develop the goal G3.k.1.n.1 by ap-
plying the strategy S3 to argue over satisfaction of every supporting contract m
and create a sub-goal G5.m arguing that the corresponding assumed property
of the contract n is satisfied by the supporting contract m. To develop the goal
G5.m we apply the same strategy as for the goal G3.k.1.

For developing the three arguments that present the attached evidence re-
lated to completeness, correctness and consistency, represented by the goals
G3.k.1.n.2, G3.k.2 and G4, we develop the argument inspired by the ”Speci-
fication Argument Pattern” [4]. Unlike in that work, we define the three types
of evidence differently, as described in Section 3.1. The goal G3.k.1.n.2 is de-
veloped by applying a strategy S4 to argue over every attached evidence of the
specific type. For every evidence a goal is created claiming with what level of
confidence does this goal support the completeness/consistency/correctness and
the evidence reference is provided as the solution to the goal.

3.5 Rules for Generation of Component Argument-Fragments

Given the argument structure in Section 3.4 and the component meta-model
we can define a sequence of transformation rules that facilitate (semi)automatic
generation of argument-fragments. Our goal is not only to transfer all the infor-
mation provided by the safety contracts into the argument-fragment, but also
to point out the goals that need further development and thus alert safety man-
agers. For this we use undeveloped goals within the argument-fragments. We
provide the rules similarly as in [9]. We create an argument-fragment for a com-
ponent x by using the following rules:

180 I. Sljivo et al.

R1. Create the top-level goal G1: ”{x} satisfies the allocated safety require-
ments”. Develop the goal G1 further by creating three sub-goals:

(a) G2: ”Strong contracts of {x} are satisfied with sufficient confidence”.
(b) G3: ”Allocated safety requirements are met by the related weak contracts

of {x}”.
(c) G4: ”Contracts of {x} are consistent”.

R2. Further develop the goal G3 and for every allocated safety requirement k
create a goal G3.k ”Safety requirement {k} is satisfied by the related weak
contracts of {x}” and develop this goal further by creating two sub-goals:

(a) G3.k.1: ”Every contract supporting safety requirement {k} is satisfied
with sufficient confidence”.

(b) G3.k.2: ”The set of contracts is correct with respect to safety requirement
{k}”.

R3. Further develop the goal G3.k.1 by developing an argument for every safety
contract n of the component x, associated with the safety requirement k. If
the contract satisfaction module is developed elsewhere in the argument pro-
vide an away goal, otherwise create a sub-goal G3.k.1.n ”Contract {x}{n}
is satisfied with sufficient confidence” and provide properties representing
the assumptions of the contract {n} as the goal context C3.k.1.n. Further
develop the sub-goal:

(a) G3.k.1.n.1: ”Every contract supporting assumed properties of the con-
tract {x}{n} is satisfied with sufficient confidence”. For every contract
m supporting the assumed property p of the contract n create a sub-
goal G5.m: ”Contract {y}{m} supports the assumption {p} ”, where m
is specified for a component in environment of x, say y.

(b) G3.k.1.n.2: ”Contract {x}{n} is sufficiently complete”.

R4. The goal G5.m is developed further in the same way as G3.k.1 and the goal
G2 is developed further in the same way as the goal G3.k.1.n.

R5. Goals G3.k.1.n.2, G3.k.2 and G4 are developed further in the same way
for the list of attached evidence of the corresponding type, respectively,
completeness, correctness and consistency. For every evidence z from the
corresponding list of evidence type:

(a) Create a goal G6.z: ”{Evidence : title} supports {EvidenceType} of the
contract with {Evidence : confidence}”.

(b) Attach a solution S1.z to the goal G6.z with Evidence : id as reference.

R6. If no evidence of a particular type is provided, an undeveloped goal is used
to indicate that the goal should be further developed.

It should be noted that, based on RuleR4, we can generate argument-fragments
for a composite component by iterating through hierarchical structure. Applying
the rules to an out-of-context component will generate an incomplete argument-
fragment since not all relevant claims can be captured out-of-context. Such claims
are left undeveloped, e.g., correctness of contracts with respect to a safety require-
ment. Hence further development of the argument-fragment is required to address
all the undeveloped claims.

Generation of Safety Case Argument-Fragments from Safety Contracts 181

4 Argument-Fragment for FLES

In this section we provide safety contracts for the Estimator and EMS com-
ponents of FLES, as well as show the generation of an argument-fragment for
Estimator.

Table 2. Safety contracts for the Estimator component

A1: fuelLevelSensor within [0,5] AND fuelRate within [-1,3212]
G1: totalFuelLevel within [−1, 100]
EA1,G1: Sw architecture design specification, Sw architecture verification report

B1: (fuelLevelSensor within correct range AND fuelLevelSensor does not deviate more
than 10% from the actual fuel level value AND fuelLevelSensorParameter=10) OR
(fuelRate within [0,3212] AND fuelRate does not deviate more than 1% from the
actual engine consumption value AND Tank size within [230-1000])
H1: totalFuelLevel does not deviate more than -1% from the actual fuel level value
EB1,H1: Simulation of the Estimator component under assumed conditions

4.1 The Safety Contracts

The strong and weak contracts for Estimator addressing the requirement FSR1
of FLES are shown in Table 2. The strong contract assumes the allowed ranges
of inputs and guarantees the possible outputs of the component. The evidence
supporting the completeness of strong contract 〈A1, G1〉 includes the software
architecture design specification and the corresponding verification report.

As described in Section 2.1, the quality of the totalFuelLevel output of the
Estimator component is dependent on relevant parameters and the quality of
inputs. The weak contract 〈B1, H1〉 of Estimator guarantees that the deviation
of the totalFuelLevel from the actual fuel level is less than or equal to -1% if as-
sumptions on either fuelLevelSensor and parameters related to it, or fuelRate and
parameters related to it, are satisfied. The corresponding evidence is obtained
by simulation of Estimator under the assumed conditions, and the simulation
report is attached as evidence supporting the contract completeness.

The EMS component safety contracts related to the Estimator component
are provided in Table 3. The EMS strong contract is similar to the one for the
Estimator component, ensuring the input and output port ranges. The weak
contract 〈B2, H2〉 guarantees that the deviation of the estimated fuel consump-
tion does not exceed 0.4% of the actual fuel consumption under the assumed
engine parameters and freshness of the information obtained from the engine.
A simulation of the EMS component’s behaviour under the stated conditions is
attached as an evidence to support contract completeness.

4.2 The Resulting Argument-Fragment for the Estimator
Component

In Fig. 6 we provide a part of the argument-fragment for FSR1 of FLES, allo-
cated to the Estimator component and associated with the Estimator contract

182 I. Sljivo et al.

Table 3. Safety contracts for the EMS component

A2: engineStatus within [a,b]
G2: fuelRate within [-1,3212]
EA2,G2: Sw architecture design specification, Sw architecture verification report

B2: Engine parameters=20 AND engineStatus delay under 0.3 seconds
H2: fuelRate does not deviate more than 0.4% from the actual fuel consumption
EB2,H2: Simulation of the fuel consumption estimation under assumed conditions

Fig. 6. A part of the resulting argument-fragment

〈B1, H1〉 denoted as Estimator1 within the argument. By using the rules from
Section 3.5, we generate an argument-fragment from the provided safety con-
tracts to argue over satisfaction of FSR1 by showing that the requirement
is satisfied by the related Estimator1 contract. The argument for satisfac-
tion of Estimator1 contract is developed to show the associated evidence sup-
porting its completeness, and point to the away goals supporting its assumed
properties. Due to space limitations we show only an away goal supporting
Estimator1 assumed property related to the fuelRate deviation and supported
by the EMS 〈B2, H2〉 contract, denoted as EMS2 within the argument. The
generated argument-fragment contains some properties that could be captured
in an out-of-context setting and should be further developed to cover all relevant
properties not captured within the contracts.

5 Discussion

As seen in the example in Section 4 we are able to generate a partial argument-
fragment based on the component meta-model in Section 3.2. We support the
confidence in contract completeness by associating the supporting evidence with
the contracts. At the same time, by making the contracts related to the actual

Generation of Safety Case Argument-Fragments from Safety Contracts 183

behaviour of the component and not to particular safety requirements, we are
able to use the contracts to address different context-specific safety requirements.

The presented approach allows us to use the safety claims captured for an
out-of-context component to develop context-specific argument-fragments. The
resulting argument-fragment for a particular context should not include infor-
mation relevant for all contexts, but only the information relevant for the partic-
ular context. By automating the generation of argument-fragments from safety
contracts we speed up the creation of such argument-fragments for different
contexts. The argument presented in Section 4 does not present all the aspects
an argument should cover, such as failure modes or process-based arguments,
but it provides an illustration of how the contracts can be used to generate
argument-fragments. Contracts can be used to capture different safety aspects
of components, e.g., failure behaviour. The resulting argument quality depends
on the quality and variety (e.g., in terms of aspects) of the provided contracts.

The amount of work that still needs to be performed for a specific system
depends on the abstraction level at which we allocate the safety requirements
to components that have their safety contracts specified. If we connect the re-
quirements with the contracts at higher levels of abstraction, based on the com-
positional nature of our approach a more complete argument-fragment could be
generated. According to ISO 26262, SEooC cannot be an item, i.e., a system
implementing a complete functionality, but it can be a subsystem or a subcom-
ponent of an item. Hence we focused on lower level components and how to
reduce efforts needed to generate their argument-fragments.

The problem of automation and reuse of safety analyses and safety reasoning
within the safety cases is a sensitive issue, especially since safety is a system
property and needs to be reasoned about for the particular system. As men-
tioned in [13], the goal of automation is not to replace human reasoning, but to
focus it on areas where they are best used. Similarly, in this work we are not
aiming at eliminating human reasoning from the process of safety reasoning and
argumentation, but to support it by providing automation of more clerical tasks.

6 Related Work

Generating safety case arguments to increase efficiency of safety certification
has been a topic of many recent works. While some consider different notions of
assumption/guarantee contracts for that purpose [17, 10] others directly build
upon safety requirements [9, 3].

Assume/guarantee contracts are used in [17] to capture the vertical depen-
dencies between a software application and a hardware platform that enables
automatic generation of application specific arguments. The work presents a
model-based language for specifying demanded and guaranteed requirements
between the applications and platforms. The language allows for capturing re-
stricted set of properties, whereas the contract formalism we base our work on is
more expressive and offers support for easier out-of-context to in-context reuse
of components. Also, [17] does not provide means for generating arguments from
the captured contracts.

184 I. Sljivo et al.

An approach where “informal” contracts are used for safety-case generation
is proposed in [10]. The approach uses Dependency-Guarantee Relationships
(DGRs) that correspond to our contracts. It derives an argument for a module
by using all the DGRs of the module to build an argument relying on dependen-
cies from other modules. In contrast to this approach, we take in consideration
different types of evidence that need to be provided with the safety contracts and
components, including compatibility of a component with a particular context.

A method for automated generation of safety case arguments based on an au-
tomatic extraction of information from existing work-products is presented in [3].
The generated argumentation consists of summaries of different work-products
created within a project. Similarly, a methodology for safety case assembly from
artefacts required to satisfy some process objectives is presented in [9]. The
work provides a set of transformation rules from captured safety requirements
to safety case arguments. While these methods are useful for generating a safety
case argument from a set of safety requirements that are related to existing
work-products, they do not as we do consider reuse of out-of-context compo-
nents developed and prepared for certification.

7 Conclusion and Future Work

In this paper we have presented an approach for generating safety case argument-
fragments from safety contracts for out-of-context components developed and
prepared for safety certification independently of the system in which they will
be used. The approach allows us to speed up the creation of context-specific
argument-fragments. More specifically, we have presented an overview of the
argument-fragment architecture and provided a set of rules for generating the
argument-fragments from the safety contracts, including illustrating the applica-
tion of the rules with an example. We can conclude that safety contracts provide
a good basis for generating argument-fragments and in that way allow safety
engineers to focus more on capturing the knowledge about the system rather
than spending time on documenting a safety case.

In our future work, we plan to refine our component meta-model, e.g., to pro-
vide support for different classes of requirements. Consequently, this refinement
entails co-evolution of the generation rules. We also plan to implement the pro-
vided rules within an existing tool that supports a contract formalism, e.g., the
CHESS-toolset [1]. To show the scalability of our approach we aim at using it
for more complex case studies, e.g., for a larger number of safety requirements.
Further more, we plan to explore how our approach could be used to reduce
some of the common argument fallacies [11] related to the structure of argu-
ments. Moreover, it is worthwhile investigating usage of our approach for safety
case maintenance and change management.

Acknowledgements. Thanks to Iain Bate for useful discussions and comments.
Thiswork is supportedby the SwedishFoundation for StrategicResearch (SSF) via
project Synopsis as well as EU andVinnova via the Artemis JTI project SafeCer.

Generation of Safety Case Argument-Fragments from Safety Contracts 185

References

[1] CHESS-toolset: http://www.chess-project.org/page/download
[2] GSN Community Standard Version 1. Technical report, Origin Consulting (York)

Limited (November 2011)
[3] Armengaud, E.: Automated safety case compilation for product-based argumen-

tation. In: Embedded Real Time Software and Systems (ERTS) (February 2014)
[4] Bate, I., Conmy, P.: Assuring Safety for Component Based Software Engineering.

In: 15th IEEE International Symposium on High Assurance Systems Engineering
(HASE) (January 2014)

[5] Bate, I., Hansson, H., Punnekkat, S.: Better, faster, cheaper, and safer too - is this
really possible? In: 17th IEEE Int’l Conf. on Emerging Technologies for Factory
Automation (ETFA). IEEE (September 2012)

[6] Benveniste, A., Caillaud, B., Ferrari, A., Mangeruca, L., Passerone, R., Sofronis,
C.: Multiple viewpoint contract-based specification and design. In: de Boer, F.S.,
Bonsangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2007. LNCS, vol. 5382,
pp. 200–225. Springer, Heidelberg (2008)

[7] Carlson, J., et al.: Generic component meta-mode, Version 1.0 SafeCer, Deliverable
D132 (November 2013)

[8] Dardar, R.: Building a Safety Case in Compliance with ISO 26262 for Fuel Level
Estimation and Display System. Master’s thesis, Mälardalen University, School of
Innovation, Design and Engineering, Väster̊as, Sweden (2014)

[9] Denney, E., Pai, G.: A lightweight methodology for safety case assembly. In: Ort-
meier, F., Daniel, P. (eds.) SAFECOMP 2012. LNCS, vol. 7612, pp. 1–12. Springer,
Heidelberg (2012)

[10] Fenn, J.L., Hawkins, R.D., Williams, P., Kelly, T.P., Banner, M.G., Oakshott, Y.:
The who, where, how, why and when of modular and incremental certification.
In: 2nd International Conference on System Safety (ICSS). IET (2007)

[11] Greenwell, W.S., Knight, J.C., Holloway, C.M., Pease, J.J.: A taxonomy of fallacies
in system safety arguments. In: 24th International System Safety Conference, ISSC
(2006)

[12] ISO 26262-10. Road vehicles — Functional safety — Part 10: Guideline on ISO
26262. International Organization for Standardization (2011)

[13] Rushby, J.: Logic and epistemology in safety cases. In: Bitsch, F., Guiochet,
J., Kaâniche, M. (eds.) SAFECOMP 2013. LNCS, vol. 8153, pp. 1–7. Springer,
Heidelberg (2013)

[14] Sljivo, I., Carlson, J., Gallina, B., Hansson, H.: Fostering Reuse within Safety-
critical Component-based Systems through Fine-grained Contracts. In: Interna-
tional Workshop on Critical Software Component Reusability and Certification
across Domains (CSC) (June 2013)

[15] Sljivo, I., Gallina, B., Carlson, J., Hansson, H.: Strong and weak contract formal-
ism for third-party component reuse. In: IEEE 3rd International Workshop on
Software Certification (WoSoCer) (November 2013)

[16] Storey, N.R.: Safety Critical Computer Systems. Addison-Wesley Longman Pub-
lishing Co., Inc., Boston (1996)

[17] Zimmer, B., Bürklen, S., Knoop, M., Höfflinger, J., Trapp, M.: Vertical safety
interfaces–improving the efficiency of modular certification. In: Flammini, F.,
Bologna, S., Vittorini, V. (eds.) SAFECOMP 2011. LNCS, vol. 6894, pp. 29–42.
Springer, Heidelberg (2011)

http://www.chess-project.org/page/download

A. Bondavalli and F. Di Giandomenico (Eds.): SAFECOMP 2014, LNCS 8666, pp. 186–201, 2014.
© Springer International Publishing Switzerland 2014

Estimating Worst Case Failure Dependency with Partial
Knowledge of the Difficulty Function

Peter Bishop1,2 and Lorenzo Strigini1

1 Centre for Software Reliability, City University, London, UK
{pgb,strigini}@csr.city.ac.uk

2 Adelard LLP, London, Exmouth House, London, UK
pgb@adelard.com

Abstract. For systems using software diversity, well-established theories show
that the expected probability of failure on demand (pfd) for two diverse pro-
gram versions failing together will generally differ from what it would be if
they failed independently. This is explained in terms of a “difficulty function”
that varies between demands on the system. This theory gives insight, but no
specific prediction unless we have some means to quantify the difficulty func-
tion. This paper presents a theory leading to a worst case measure of “average
failure dependency” between diverse software, given only partial knowledge of
the difficulty function. It also discusses the possibility of estimating the model
parameters, with one approach based on an empirical analysis of previous sys-
tems implemented as logic networks, to support pre-development estimates of
expected gain from diversity. The approach is illustrated using a realistic safety
system example.

Keywords: Safety, software reliability, fault tolerance, failure dependency,
software diversity, difficulty function.

1 Introduction

Software diversity has been advocated as a means of improving the reliability of safe-
ty related software and in particular safety systems that react to a demand, where a 1
out of 2 or a 2 out of 3 voting scheme can be used to ensure that some safety action is
performed. This approach is used in industry (e.g. for railway interlocking), but de-
velopment and maintenance is costlier than for a non-diverse system and it is not easy
to predict in advance the likely safety improvement that can be achieved.

Theory as well as experimental studies indicate that failures of diverse implemen-
tations (“versions”) are not necessarily independent [3, 7, 15]. The challenge is to
determine how much improvement should be expected with diversity. Early theoreti-
cal work by Eckhardt and Lee [4] showed that variations in the degree of “difficulty”
for different inputs (or “demands”) will result in the expected pfd for a pair of diverse
programs being greater than the product of the expected pfds of the two programs and
thus limit the effectiveness of diversity. Littlewood and Miller [8] later showed that, if
diversity in development results in different “difficulty functions” for the two diverse

 Estimating Worst Case Failure Dependency with Partial Knowledge 187

programs, the expected pfd for common failures of a diverse pair can also be less than
the product of the expected pfds of the single versions.

To quantify via these theories the improvement in expected pfd for a diverse safety
system, one would need to specify both the difficulty for every demand, and the de-
mand profile. Difficulty functions will normally be impossible to estimate for real
projects (although a posteriori difficulty estimates have been obtained [1, 15] for
some “toy” applications where many different versions were developed [12]). In addi-
tion, if the safety system is used in different operational contexts, the demand profile
might also be different and this can change the expected pfds.

In this paper we examine an approach for a more modest, but still useful, goal of
estimating the worst case improvement in average pfd, by deriving a worst case de-
mand profile that only requires knowledge about two points on the difficulty function
rather that characterizing the whole function.

The paper will first summarize the theory underlying the difficulty function, then
identify the worst demand profile that maximizes the expected pfd for a pair of di-
verse programs, relative to the expected pfd of a single version for a given difficulty
function. We then consider what estimates for the expected pfd can be derived given
different types of knowledge about the difficulty function. We also discuss means,
and difficulties, for estimating the model parameters and tentatively suggest an ap-
proach for systems implemented as logic networks.

2 The Difficulty Function

In these models, the process that delivers a program, with its unknown faults (if any),
is modelled as the random sampling of a program from a “population of all possible
programs”. The (unknown) probability of “drawing” each specific possible program
depends on the specification, the development process, the development team, etc.
Given these factors, the “difficulty function” θ(x) is defined as the probability that
such a “randomly drawn” program will fail on a given demand x.

The mean pfds of a single program (pfd1) and of common failure for a pair of di-
verse programs (pfd2) depend on the difficulty function θ(x) and the demand profile
p(x). For a difficulty function θ(x), the expected pfd of a single program version is:

 pfd1 = θ(x) p(x) (1)

We consider the case in which the two versions for a 1-out-of-2 system are devel-
oped from the same process for the same specification: the two developments have
the same “difficulty function” (Eckhardt and Lee model [4]). Thus pfd1 is the same for
both programs; among all the scenarios where this holds, this scenario, of identical
difficulty functions, yields the highest (i.e., the worst) value of pfd2.

Assuming conditional independence between failures of the versions for each de-
mand [4] (i.e., the two developments are independent [11]), the expected pfd for a
randomly drawn pair of programs is then:

 pfd2 = θ(x) θ(x) p(x) (2)

188 P. Bishop and L. Strigini

pfd2 increases with the variance of the difficulty function θ(x). Intuitively, if the
difficulty function is very “spiky”, there is a high probability that the diverse pro-
grams will fail on the same, “difficult” demands: the average benefit from diverse
programs will be lower than otherwise. Conversely if the difficulty function is “flat”
(the same value for all demands), there is nothing that forces the diverse programs to
fail on similar inputs, so the gain in average reliability is higher. In this case, pfd2 does
equal the product between the expected pfd values for the two versions. For brevity,
when this equality holds we will say there is “independence on average”1.

Clearly the mean pfd depends upon the demand profile p(x) as well as the demand
difficulty θ(x). In the next section we use this dependence on the demand profile to
derive the worst case value of pfd2 for a given value of pfd1.

3 Estimating the Worst Case Expected pfd

We compare the expected pfd for this system with that of a single-version (i.e., non-
diverse) system used in the same function (hence with the same demand profile).

To determine the worst-case impact of the profile on the expected pfd, we choose
the family of the most extreme profiles possible: the ones in which the only demand
values with non-zero probabilities are x=hi and x=lo that have the highest and lowest
values of the difficulty function, θ(hi) and θ(lo). For this profile, we can write:

 pfd1 = zθ(hi) + (1−z)θ(lo) (3)

 pfd2 = zθ(hi)2 + (1−z)θ(lo)2 (4)

where z = p(lo) and (1−z) = p(hi). So pfd1 and pfd2 can vary between their mini-
mum and maximum values depending on z, i.e.:

 min(pfd2) = θ(lo) 2 , z = 0 (5)

 max(pfd2) =θ(hi) 2 , z = 1 (6)

No other profile can achieve this range, as non-zero probabilities for demands with
intermediate θ values would reduce the maximum and increase the minimum value
achievable. There is also another sense in which these profiles are “extreme”. Given a
certain difficulty function, a given value of pfd1 can in general be the result of many
different profiles, only one of which is “extreme”2. This “extreme” profile is the one
where pfd2 is largest, i.e., the advantage of diversity is smallest. Under this profile, the

1 We underscore that “independence on average” is a property of expected values, not of

individual program pairs. If independence of failures held for every pair of diverse pro-
grams, “independence on average” would also hold. However, “independence on average”
could hold even if independence does not hold within each pair; and we can have pfd2 >pfd1

2
even in a population of pairs in which pairs with negative or zero correlation between fail-
ures of their component versions are more common than pairs with positive correlation [10].

2 To be precise, we should consider the cases in which more than one demand values have
values of θ equal to θ(hi) (or equal to θ(lo)). The reasoning presented here remains valid: we
can treat all the demands with an identical value of θ as one demand.

 Estimating Worst Case Failure Dependency with Partial Knowledge 189

expected pfd of a diverse pair, pfd2, is a linear combination of θ(lo)2 and θ(hi)2 and
hence a linear combination of (min pfd1)

2 and (max pfd1)
2. This can be compared with

the “best case” profile that only selects demands x with exactly the same difficulty,
i.e. where θ(x)=pfd1, so from (2) that pfd2=pfd1

2 which represents “independence on
average”.. The expected pfds for the best and worst profiles are shown in Fig. 1 below
for the case where θ(hi)=0.04, and θ(lo) takes different values from zero to 0.02.

0

0.001

0.002

0 0.01 0.02 0.03 0.04

pfd 1

pfd 2

pfd 2 , θ(lo) = 0

pfd 2 , θ(lo)=0.01

pfd 2 , θ(lo)=0.02

pfd 1
2

θ(hi)=0.04

Fig. 1. Variation in pfd2, given the extreme profile and θ(hi)=0.04

To understand this graph, we consider that for a given value of θ(lo), the lowest
possible value of pfd1 is θ(lo), given by setting z=0 in equation (3), and the corres-
ponding value of pfd2 equals θ(lo)2 (equation 4). This is why the straight lines for
θ(lo)=0.01 and θ(lo)=0.02 do not continue to the left of these points. The maximum
values of pfd1 and pfd2 are given by setting z=1, and correspond to the rightmost point
in the graph, pfd1=θ(hi), pfd2=θ(hi)2. All the intermediate “extreme” profiles for the
same values of θ(lo) and θ(hi) give the {pfd1, pfd2} pairs represented by the points of
the straight line joining these maximum and minimum points on the pfd1

2 curve.
We now study the effects of various levels of knowledge about θ(hi) and θ(lo).

3.1 Case where θ(hi) and θ(lo) are Known

When θ(hi) and θ(lo) are known, the endpoints of the linear combination are known
and changing z changes the ratio of pfd2 to pfd1, since from equation (3):

)()(

)(1

lohi

pfdhi
z

θθ
θ

−
−= and

)()(

)(
1 1

lohi

lopfd
z

θθ
θ

−
−=−

190 P. Bishop and L. Strigini

From equation (4) we can calculate pfd2 as a linear function of pfd1, i.e.:

)()(

))()()()((
)(1

22
2

2 lohi

lopfdlohi
lopfd

θθ
θθθθ

−
−−+= (7)

We note that if pfd1=θ(lo) or pfd1=θ(hi), then pfd2 = pfd1
2. This is not surprising:

these cases select profiles where all points have the same difficulty value: effectively
a flat difficulty function, which is known to imply “independence on average”. It also
follows that the reduction factor pfd2/pfd1 will vary between θ(lo) and θ(hi).

3.2 Case Where Only θ(hi) is Known

If θ(lo) is unknown, then the worst case assumption is that θ(lo) = 0, and hence equa-
tion (7) reduces to the following, known bound on pfd2:

 12)(pfdhipfd θ≤ (8)

3.3 Case Where θ(hi) and θ(lo) are not Known

The worst case assumption is now θ(lo) = 0, θ(hi) = 1 and hence equation (8) reduces
to the extreme case where the bound is:

 12 pfdpfd ≤ (9)

In this case, the mean pfd of a diverse pair could be no better than that for a
single version. The worst case – the equality in (9) holds – would mean that the
programs developed have fail on some specific demands and no others (with proba-
bility 1). Comparison with the previous cases highlights how knowledge about the
difficulty function allows us to reduce the mean value of pfd2 as a proportion
of pfd1.

3.4 Case Where the Ratio between θ(hi) and θ(lo) is Known

In this case we only know the maximum “roughness” of the difficulty function, k, the
ratio of θ(hi) to θ(lo), but not the absolute difficulty values. Hence:

)(

)(

lo

hi
k

θ
θ= (10)

In this model, there is no constraint on the x axis endpoints θ(hi) and θ(lo) apart
from the ratio k (and the fact that 0≤θ(lo)≤pfd1≤θ(hi)≤1). The worst case value of pfd2
lies on the chord between the two endpoints: as illustrated in Fig. 2 below.

 Estimating Worst Case Failure Dependency with Partial Knowledge 191

Fig. 2. Worst case given a known difficulty ratio k

To get the worst case for a given pfd1, we effectively slide the linear combination
chord for pfd2 along the pfd1

2 curve, while keeping the ratio between the endpoints of
the chord (on the pfd1 axis) equal to k. Then we choose the chord that gives maximum
(worst) possible value of pfd2 for a given value of pfd1. Since pfd1 is held constant,
maximizing the ratio pfd2/pfd1 also maximizes pfd2/pfd1

2 (the worst case increase rela-
tive to independence on average). The analysis in Appendix A shows that pfd2 is
bounded by:

2

1

2

2 4

)1(
pfd

k

k
pfd

+≤ (11)

So the worst case reduction factor for pfd2 relative to pfd1 is pfd1⋅(k+1)2/4k, rather
than the factor of pfd1 that would result from “independence on average”.

This worst case bound equation is only applicable up to the point where θ(hi)=1 (as
we cannot slide the pfd2 chord any further to the right). From the analysis in Appen-
dix A, it can be shown that this limit is reached when:

1

2
1 +

≥
k

pfd (12)

If pfd1 exceeds this constraint, a variant of equation (7) has to be used instead
where θ(hi)=1 and θ(lo)=1/k, i.e.:

1

1
1

2
2

2 1

))(1(
−

−−
−

−
−−+=

k

kpfdk
kpfd ,

1

2
1 +

≥
k

pfd (13)

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

pfd1

pfd

pfd1

pfd1
2

pfd2

fixed value

192 P. Bishop and L. Strigini

The difficulty “roughness” parameter, k, could be a very large value or even infini-
ty if θ(lo)=0. Thus to forecast a good (low) worst-case pfd2 we need θ(hi) to be not
too high; counter-intuitively, we also need θ(lo) not to be too low: we need evidence
that the probability of faults affecting any one demand will be “bad enough”.

4 Numerical Illustration

For some non-realistic programs, we have empirical difficulty data derived from an
analysis of program versions from an archive of mathematical problems and solutions
[12]. Analysis of a population of around 3000 initial releases of program versions for
a relatively simple problem [1] yielded the difficulty surface (taking the observed
frequencies as estimates of probabilities) shown in Fig. 3 below.

0

60

120

180

-100-80 -60 -40 -20 0 20 40 60 80 1000

0.05

0.1

0.15

0.2

0.25

θ

t

v

Fig. 3. Empirical difficulty function from around 3000 program versions [1]. These programs
receive two inputs, t and v, hence the difficulty function is plotted as a surface.

Analysis showed that θ(hi)=0.2282 and θ(lo)=0.1012. That is, in this case k =
0.2282/0.1012 = 2.25.

Inserting these values into equations 7, 8 and 9, the relationship between these
bounding equations is illustrated in Fig. 4.

The bound based on knowledge of both θ(hi) and θ(lo) (equation 7) represents the
least pessimistic worst case bound on pfd2. It can be seen that the curve based on an
estimate of k (equation 9) touches the least conservative bound line at the maximum
dependency point when pfd1 = 0.140 (see Appendix A for details). Unlike equation
7, equation 9 allows the maximum dependency point that defines pfd2 to be shifted if a
new estimate of pfd1 is made. This is equivalent to defining new values for θ(hi) and
θ(lo) which retain the same ratio k.

The pfd2 bound based on θ(hi) alone (equation 8) tends to be the most pessimistic,
although it does intersect with the least conservative bound when pfd1 = θ(hi)

 Estimating Worst Case Failure Dependency with Partial Knowledge 193

(0.2282) when equations 7 and 8 agree with the “independence on average” result
when pfd2 = pfd1

2 = θ(hi)2.

0

0.01

0.02

0.03

0.04

0.05

0.06

0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24

pfd1

pfd2

θ (hi)

k = θ (hi)/θ (lo)

θ(hi), θ(lo)

Fig. 4. Comparison of worst case bound equations. The labels for the three plots indicate which
parameters are assumed known, with the values derived a posteriori for the study in Fig. 3.

5 Parameter Estimation

In the analysis above we have identified alternative ways of deriving a worst case
value for pfd2 given pfd1 by using different kinds of information about the difficulty
function. To apply these models for prediction, as opposed to generic insight, we
require realistic model parameters. At the current state of knowledge, there are no
means for deriving credible difficulty values to support prediction (estimation of ex-
pected pfd) for a specific safety application. In the following subsections we examine
some potential directions for deriving model parameters, and difficulties to be over-
come for them to become applicable in the future.

5.1 Estimating k

Estimation of k could be based on relative complexity, if one assumed the demand
difficulty for demand x proportional to some measure of demand logic complexity3,

)()(xcx ∝θ (14)

3 We accept that this could only be a first-cut assumption. One of the possible objections is

that higher complexity may lead to more effort to avoid or remove faults, so that the diffi-
culty function might not be a linear function (or maybe not even a monotonic function) of a
measure of complexity [5].

194 P. Bishop and L. Strigini

where c(x) is a measure of the logic complexity required to process a given demand
x. For example, the complexity measure could based on the number of lines of code
or number of decision points in the code involved in a particular type of demand.
Program analysis (such as code pruning) could be used to identify the relevant subset
of code involved with each demand. Assuming such complexity measures can be
derived, k would be estimated as:

)(min

)(max

)(min

)(max

xc

xc

x

x
k

Xx

Xx

Xx

Xx

∈

∈

∈

∈ ≈=
θ
θ

 (15)

This approach need not be restricted to conventional code. Many safety systems
are represented as logic networks with a set of interconnected logic gates. Each type
of demand requires different logic and sensor inputs to respond to different safety-
related incidents on the associated plant. The complexity of the logic network could
be used to estimate c(x).

5.2 Estimating θ(hi) and θ(lo)

One means of estimating θ(hi) is to make use of the fact that, by definition:

 θ(hi) ≤pfaulty (16)

where pfaulty is the probability that a program selected from the population of all
possible program versions is faulty. The value of pfaulty could be estimated via a range
of methods including an analysis of the development process [2] and the level of test
coverage achieved [9], however they are not mature methods and confidence in their
predictions will be especially low when few faults are expected to be present.

Alternatively, estimates of θ(x) could be made directly based on some expected
fault density f [13] and an estimate of the amount of code or logic n(x) needed to re-
spond to a particular demand. There can be many demands x that exercise the same
logic, but if we make a (strong) assumption that all demands are equally likely to fail
if the logic is faulty (on average over the whole population), then:

 θ(x) =n(x)f (17)

So the maximum and minimum values of n(x) over all types of demand x can be
used to obtain θ(hi) and θ(lo).

5.3 Empirical Data Analysis

Data sets that can be used for empirical parameter estimation are quite limited, but
there is survey of programmable logic controller (PLC) logic faults undertaken for the
UK Health and Safety Executive [14]. Such PLCs are not programmed using conven-
tional code but as an interconnected set of logic elements (like AND, OR, NOT) or
relay “coils” (that simulate the behavior of hardware relays). Field reliability data was
collected from a range of industrial applications from the nuclear, chemical, oil and

 Estimating Worst Case Failure Dependency with Partial Knowledge 195

gas and electrical industrial sectors (but predominantly nuclear). A full set of data was
collected for 125 PLCs which included the number of:

• inputs
• outputs
• coils
• failures
• years of use

No PLC “platform” failures were recorded in over 600 PLC-years of operation,
suggesting that PLC platforms are fairly reliable. We should also note that “coils”
were used as the measure of the number of logic elements, but we cannot be sure the
actual logic network contained coils or whether an “equivalent coils” estimate was
calculated for alternative types of logic. In addition, the term “failures” in this data set
might actually be a misnomer for “number of faults”, as the failure counts are typical-
ly zero or one. We assumed “failures” indicate the number of different faults. This is
conservative from the viewpoint of estimating maximum difficulty as it can only
over-estimate the number of network logic faults. Furthermore, if over-estimation of
faults were consistent, it would not affect the k ratio derived in Section 3.4.

On further analysis, we found that some of the PLCs contained identical logic net-
work metrics and identical fault counts. This was interpreted to mean that the same
logic network was installed on multiple PLCs, which could bias the result by counting
the same logic network several times over. These duplicates were eliminated from the
analysis, leaving size and fault data for 96 different PLC programs. The results are
presented in Fig. 5 below.

0

5

10

15

20

0 10000 20000 30000 40000

Sum coils (ordered by size)

Sum
faults

Fig. 5. Logic faults vs. network coils (cumulative)

As the fault data are relatively sparse, the graph presents a cumulative count of
faults versus the number of “coils”. The summation is performed in program size
order, as this will reveal a non-linear relationship between PLC program size

196 P. Bishop and L. Strigini

and faults by an increasing or decreasing gradient. As can be seen in Fig. 5, the rela-
tionship does appear to be roughly linear (to 95% in a chi-squared test). Perhaps sur-
prisingly, the slope seems to be slightly less for the larger PLC programs (at the right
hand side of the graph).

A very similar graph was obtained when we used the sum of inputs and outputs
(io) as the network size measure. Again, the correlation is better than 95% in a chi-
squared test.

Given the evidence of a linear relationship between network size and logic faults, it
may be legitimate to use an average fault density to estimate the number of faults in a
logic network. The logic density estimates derived from the linear regression analysis
of faults against the coil and io measures are shown in Table 1 below.

Table 1. Logic fault density estimates

Logic fault density measure Value

fio (faults/io) 3.0 10-4

fcoil (faults/coil) 5.0 10-4

Some caveats need to be placed on these fault density estimates, notably:

• The fault density is based on the number of fault discovered which could be an
underestimate if some of the faults have yet to be found. The data in [14] shows the
mean operating time is 5.9 years. It is not certain that all defects would have been
detected over that period of time.

• Given the sparseness of failure data it cannot be demonstrated that linearity applies
over the whole range of complexity. If the density is lower for small logic subsys-
tems, k would be larger than predicted under the linearity assumption.

• We do not know which of the PLC faults were caused by errors in user require-
ments or implementation. Common user requirement flaws cannot be mitigated by
diverse logic implementations. Section 6 provides an example where we assume
the fault density estimates relate to diverse implementation faults.

• Fault density figures will differ depending on the application type and safety criticality.

So the empirically derived figures might be viewed as indicative “ball-park” fig-
ures, but should not be viewed as being applicable to a specific diverse system.

6 Example Application

The application of the fault density quantification approach outlined in Section 5
is illustrated on an actual industrial safety system with two independent safety trains
that control functionally diverse plant shutdown mechanisms4. The A and B train
subsystems and logic element counts (taken from the logic specification sheets) are
shown in Table 2 below.

4 The details have been anonymised at the request of the system operators.

 Estimating Worst Case Failure Dependency with Partial Knowledge 197

Table 2. A and B Train subsystem network complexity measures

A Train subsystem I/O Gates
A1 24 16
A2 22 9
A3 49 28
A4 31 23
Total 126 76
B Train subsystem I/O Gates
B1 17 9
B2 28 16
B3 15 7
Total 60 32

We will use the data to illustrate the mean pfd estimation approach, using arbitrary

(and quite extreme) assumptions about the variation of logic use with demands. Let us
assume some logic subsystems are unnecessary for some demands. For example a
standby electrical supply subsystem might be essential if connection to the grid power
supply is lost but not otherwise.

So the extreme level of variation in number of subsystems with demand might be:

• One (the smallest) logic subsystem in A and B
• All logic subsystems in A and B

Using the io complexity measure we set an upper bound on the difficulty for a log-
ic sub-network x containing nio(x) io elements as:

 θ(x) = fio nio(x)

Based on the nio(x) numbers assumed for the assumed maximum and minimum
logic networks needed for a demand we derive the bounding values for θ and k shown
in Table 3 below. Note that, in this particular example, the specified logic differs be-
tween trains A and B, so we are assuming that there are no common specification
flaws and the difficulty values estimate the likelihood of implementation flaws only.

Table 3. A and B Train difficulty and difficulty variation estimates

Subsystem A Train B Train Worst case

Demand x requires: #io θ(x) #io θ(x) θ(x)

Smallest single subsystem 22 6.6 10-3 15 4.5 10-3 6.6 10-3

All subsystems 126 3.78 10-2 60 1.8 10-2 3.78 10-2

k 5.7 4 5.7

For the A and B trains, different logic is involved, so the values are not identical,
but we conservatively assume the worst case value applies to both trains. In the fol-
lowing calculation, we assume that the expected value pfd1 is 10-2

 for each train. This
is combined with the bound formulae for pfd2 from Section 3 and the worst case

198 P. Bishop and L. Strigini

values in Table 3 above to yield the bounds on the expected value of pfd2 shown in
Table 4 below.

Table 4. Worst case A and B Train pfd estimates

Bound equation pfd2
bound

a) pfd2 ≤ pfaultypfd1 3.8 10-4
b) pfd2 ≤ θ(hi) pfd1 3.8 10-4
c) pfd2 ≤ (θ(hi)+θ(lo)) pfd1 − θ(hi)θ(lo) 2.5 10-4

d) pfd2 ≤ ((k+1)2/4k) pfd1
2 2.6 10-4

It can be seen that in this example the results are very similar. The results for a)

and b) are identical because the θ(hi) estimate is based on all the logic in the train and
hence is identical to pfaulty for the train. The results for c) and d) are also similar since
the pfd1 value chosen is close to the maximum dependency point.

7 Discussion

It should be noted that the analysis in this paper relates to expected values. The analy-
sis seeks to estimate the improvement we might expect between the averages pfd1 and
pfd2 by using diversity, under worst case assumptions about the operational profile. It
does not predict the improvement ratio that will actually be achieved by a specific
pair of program versions under a specific operational profile—clearly the actual re-
duction achieved could be better or worse than a model based on averages [10].

It is also important to note that this analysis describes the effects of those parts of
development that are indeed diverse. For example, if there is a common specification,
the possibility of a specification flaw would invalidate the conditional independence
assumption required in the Eckhardt and Lee model [4]. Accounting for such common
factors requires more complex models [11] and we have not checked how the ap-
proach would extend to those models.

The paper also explores possible directions for quantifying the model parameters.
The analysis of PLC failure data in Section 5 illustrates how one might attempt to
estimate ranges of difficulty. However the method discussed should be viewed as
“work in progress”, as it has not been validated or substantiated. In particular:

• It assumes that difficulty can be estimated from predicted fault density. This is not
supported by deduction and could only be validated experimentally.

• There is an assumption of linearity between logic complexity and logic faults. This
is not contradicted by the available empirical data but it would require far more
empirical data to validate the assumption over the whole range of complexity.

• There are no fault density and complexity data for systems of higher criticality, so
we have no support for an assumption of linearity for such systems, and we cannot
derive “typical” fault density figures for such systems.

 Estimating Worst Case Failure Dependency with Partial Knowledge 199

Clearly further empirical studies are needed to check the underlying assumptions and
to derive realistic faults density values before the models can be applied to high criticali-
ty systems. For validating this approach to estimating the difficulty function, the main
obstacle is that direct empirical assessment of difficulty functions means counting faults
affecting each demand in a large population of programs developed independently for
the same specification. The rarity of such populations, outside laboratory experiments
on toy problems, is the usual problem in empirical software engineering. Given instead
sets of realistic, but practically unique programs, a feasible form of weaker validation
would be to select sets of programs that are assessed to have the same parameters for the
estimation method used, and then, within such a set of programs, measure fault frequen-
cies over sets of demands estimated to have the same difficulty.

More generally, the current models assume a common difficulty function and fur-
ther work is needed to generalize this approach to the case where the difficulty func-
tions differ for the two versions (the Littlewood and Miller model [8]).

We also note that these bounding methods also apply to the models by Hughes [6]
that explain correlation between random failures in redundant hardware in terms of
variation of failure rates with environmental stress. Variation of failure rates with
environmental factors will typically be easier to assess than variation of difficulty
between demands.

8 Conclusions

We have developed models for estimating the worst case reduction in mean pfd
achievable by diverse program pairs that require only a partial knowledge of the diffi-
culty function. These models can give qualitative insight, e.g. about the effects of
development decisions thought to increase or to reduce maximum or minimum diffi-
culty. We have also discussed ways for estimating the parameters required for these
models, and their difficulties; in particular, an approach for estimating difficulty val-
ues and difficulty variation for applications defined in terms of a logic diagram.

We note that the methods discussed for deriving the difficulty parameters are very
preliminary. Much more empirical support, especially for the high criticality systems
where diversity is likely to be employed, would be needed before they could be ap-
plied for quantitative prediction (e.g. for pre-development decisions about diversity).
Further work is also needed to generalize the theory to cases where the difficulty
functions differ for the diverse program versions.

References

1. Bentley, J.G.W., Bishop, P.G., van der Meulen, M.J.P.: An Empirical Exploration of the
Difficulty Function. In: Heisel, M., Liggesmeyer, P., Wittmann, S. (eds.) SAFECOMP
2004. LNCS, vol. 3219, pp. 60–71. Springer, Heidelberg (2004)

2. Bloomfield, R.E., Guerra, A.S.L.: Process Modelling to Support Dependability Argu-
ments. In: IEEE Dependable Systems and Networks, DSN 2002, pp. 113–122 (2002)

3. Eckhardt, D.E., Caglayan, A.K., et al.: An experimental evaluation of software redundancy
as a strategy for improving reliability. IEEE Trans. Software Eng. 17(7), 692–702 (1991)

200 P. Bishop and L. Strigini

4. Eckhardt, D.E., Lee, L.D.: A theoretical basis for the analysis of multiversion software
subject to coincident errors. IEEE Transactions on Software Engineering 11(12),
1511–1517 (1985)

5. Hatton, L.: Reexamining the fault density-component size connection. IEEE Soft-
ware 14(2), 89–97 (1997)

6. Hughes, R.P.: A New Approach to Common Cause Failure. Reliability Engineering 17(3),
211–236 (1987)

7. Knight, J.C., Leveson, N.G.: Experimental evaluation of the assumption of independence
in multiversion software. IEEE Trans. Software Engineering 12(1), 96–109 (1986)

8. Littlewood, B., Miller, D.R.: Conceptual Modelling of Coincident Failures in Multiversion
Software. IEEE Transactions on Software Engineering 15(2), 1596–1614 (1989)

9. Malaiya, Y.K., Denton, J.: Estimating the number of residual defects in software. In: Third
IEEE International High-Assurance Systems Engineering Symposium, pp. 98–105. IEEE
(1998)

10. Popov, P., et al.: Software diversity as a measure for reducing development risk. In: IEEE
Tenth European Dependable Computing Conference, EDCC 2014, pp. 106–117 (2014)

11. Salako, K., Strigini, L.: When does ‘Diversity’ in Development Reduce Common Failures?
IEEE Transactions on Dependable and Secure Computing 11(2), 193–206 (2014)

12. Skiena, S., Revilla, M.: Programming Challenges. Springer (2003) ISBN: 0387001638
13. Sherriff, M., Williams, L.: Defect Density Estimation Through Verification and Valida-

tion. In: The 6th Annual High Confidence Software and Systems Conference, Lithicum
Heights, MD, pp. 111–117 (2006)

14. Wright, R.I., Pilkington, A.F.: An Investigation into PLC Reliability. HSE Software Relia-
bility Study, GNSR/CI/21. Risk Management Consultants (RMC), Report R94-1(N),
Issue B (1995)

15. van der Meulen, M.J.P., Revilla, M.A.: The Effectiveness of Software Diversity in a Large
Population of Programs. IEEE Transactions on Software Engineering 34(6), 753–764
(2008)

Appendix A Worst Case Pfd Model Details

This analysis compares the mean pfd of a pair, pfd2, with the “independence on aver-
age” value pfd1

2 by defining a dependency factor D as pfd2 / pfd1
2

An extreme profile is assumed where only p(hi) and p(lo) can be non-zero. From
the expressions of pfd1 in (3) and pfd2 in (4), the ratio of pfd2 to pfd1

2 is:

() ()
)− + (

− + =
2

22

)1)(()(

)1()()(

zlozhi

zlozhi
D

θθ
θθ

 (18)

By definition θ(hi) = kθ(lo), so the dependency equation can be re-written as:

2

2

)1)1((

1)1(

+−
+−=

zk

zk
D

(19)

Differentiating with respect to z we obtain:

 Estimating Worst Case Failure Dependency with Partial Knowledge 201

3

2

)1)1((

)1)1(()1(

+−
−+−−=

kz

kzk

dz

dD

(20)

Hence the differential is zero when either k=1 or z=1/(k+1). When k=1, the diffi-
culty function is flat, θ(hi)=θ(lo)=pfd1=D: the best case ("independence on average").

The z=1/(k+1) case is the situation where the dependency factor D is highest.
Substituting z=1/(k+1) into (19), the maximum dependency value D can be shown
to be:

k

k
D

4

)1(2+=

(21)

This can be used the set the worst case value of pfd2 relative to pfd1
2, i.e.:

2
1

2

2 4

)1(
 pfd

k

k
pfd

+=

(22)

Substituting z=1/(k+1) into (3), this occurs when:

)(
1

2
 1 lo

k

k
pfd θ

+
=

(23)

Or expressed in entirely terms of θ(hi) and θ(lo), it can be shown that the maxi-
mum dependency occurs when:

)()(

)()(2
 1 lohi

lohi
pfd

θθ
θθ

+
=

(24)

So that:

)()(2 lohipfd θθ= (25)

Hence at the maximum dependency point, the ratio of the mean pfds is:

2

)()(

1

2 lohi

pfd

pfd θθ +=

(26)

Proving the Absence of Stack Overflows

Daniel Kästner and Christian Ferdinand

AbsInt GmbH, Science Park 1, 66123 Saarbrücken, Germany
{kaestner,ferdinand}@absint.com

Abstract In safety-critical embedded systems the stack typically is the only dy-
namically allocated memory area. However, the maximal stack usage must be
statically known: at configuration time developers have to reserve enough stack
space for each task. Stack overflow errors are often hard to find but can cause
the system to crash or behave erroneously. All current safety standards, e.g., ISO-
26262, require upper estimations of the storage space; due to its dynamic behavior
the stack is an especially critical storage area.

Typically neither testing and measuring nor static source code analysis can
provide safe bounds on the worst-case stack usage. A safe upper bound can be
computed by whole-program static analysis at the executable code level. When an
Abstract Interpretation based static analyzer is used, it can be formally proven that
the maximal stack usage will never be underestimated. The challenge for binary-
code level analyzers is to minimize the necessary amount of user interactions,
e.g., for function pointer calls. To minimize user interaction, the analysis has to
be precise, and the annotation mechanism has to be flexible and easy-to-use. The
analyzer configuration has to be done once for each software project; afterwards
the analysis can be run automatically, supporting continuous verification.

In this article we describe the principles of Abstract Interpretation based stack
analysis. We present an annotation language addressing all properties of typical
automotive and avionics software and report on practical experience.

1 Introduction

In embedded systems, the run-time stack (often just called ”the stack”) typically is the
only dynamically allocated memory area. It is used during program execution to keep
track of the currently active procedures and facilitate the evaluation of expressions.
Each active procedure is represented by an activation record, also called stack frame or
procedure frame, which holds all the state information needed for execution. Usually
the stack grows towards lower addresses. The procedure frame typically consists of
the return address, space for saved registers, local variables, temporaries and outgoing
function arguments. In consequence the frame size depends on the number of local
variables, and the number of temporary variables and parameters at each specific call
site. The stack size at a given program point then depends on the program path executed
and the sizes of the frames of all currently active functions. The frame layout is defined
by the calling conventions, which are either defined with the instruction set architecture,
or by the individual compiler.

In a multi-tasking system, in general each task and each interrupt service routine
(ISR) can be assigned their own stack. The maximal stack usage then results from

A. Bondavalli and F. Di Giandomenico (Eds.): SAFECOMP 2014, LNCS 8666, pp. 202–213, 2014.
c© Springer International Publishing Switzerland 2014

Proving the Absence of Stack Overflows 203

adding the stack maxima of all relevant tasks and ISRs at a critical instant, i.e., the
worst-case interruption scenario. Operating systems for safety-critical systems typically
use static-priority scheduling strategies. The overall worst-case stack usage then can be
determined from the priorities of tasks and the interrupt hierarchy. In the case of OSEK
[20] the necessary information can be derived from the OS configuration (cf. Sec. 6).

Precisely determining the maximum stack usage before deploying the system is im-
portant for economical reasons and for system safety. Overestimating the maximum
stack usage means wasting memory resources. Underestimation leads to stack over-
flows: memory cells from the stacks of different tasks or other memory areas are over-
written. This can cause crashes due to memory protection violations and can trigger
arbitrary erroneous program behavior, if return addresses or other parts of the execution
state are modified. In consequence stack overflows are typically hard to diagnose and
hard to reproduce, but they are a potential cause of catastrophic failure. The accidents
caused by the unintended acceleration of the 2005 Toyota Camry illustrate the poten-
tial consequences of stack overflows: the expert witness’ report commissioned by the
Oklahoma court in 2013 identifies a stack overflow as probable failure cause [7].

In safety-critical systems stack overflows should be avoided in order to prevent dam-
age to health or property of people. Updating an embedded system typically is very
costly once the system is deployed. Also liability questions have to be considered as all
current safety standards, e.g., DO-178B/C or ISO-26262, require upper bounds of the
used storage space used to be given, which includes the stack usage.

A safe upper bound of the maximal stack usage can be computed by whole-program
static analysis at the executable code level. When an abstract interpretation based static
analyzer is used, it can be formally proven that the maximal stack usage of each task
will never be underestimated. From the per-task stack maxima the system-level stack
maximum can be determined from the priorities of the tasks and the interrupt hierarchy.
The challenge for binary-code level analyzers is to minimize the necessary amount of
user interactions, e.g., for function pointer calls. To minimize user interaction, the anal-
ysis has to be precise, and the annotation mechanism has to be flexible and easy-to-use.
The analyzer configuration has to be done once for each software project; afterwards
the analysis can be run automatically, supporting continuous verification.

2 Methodology Overview

Measurement-based techniques to investigate the maximum stack usage are typically
based on stack pollution checks: the stack area is pre-filled with a fixed bit pattern and
then a set of test cases is executed. Afterwards in the used parts of the stack the initial
pattern has been overwritten: they have been polluted. The amount of polluted stack
space represents the maximal observed stack usage. The limitation of this approach is
that memory overwrites caused by stack overflows which are outside the stack area are
not detected. In the simplest case, the size of the polluted area is determined manually
by using a debugger. The stack pollution checks can also be automatically performed
at run-time [13,8,23]. The drawback is that when a stack overflow occurs the system
might crash before the stack overflow is detected and handled.

The basic problem of all measurement-based techniques is that the worst-case in-
put typically is unknown. So even repeated measurements with various inputs cannot

204 D. Kästner and C. Ferdinand

guarantee that the maximum stack usage is ever observed. This is already true for the
sequential code of a single task, as in general all potential program paths have to be
investigated. In a multi-tasking context the problem is exacerbated: the worst-case stack
usage occurs for a specific interruption scenario where a number of preempted or blocked
tasks and possibly nested interrupt service routines are active at the same time. More-
over, the preemptions have to occur at program points where the task/ISR stack usage
is maximal. On realistic systems no full test coverage covering all potential scenarios
can be achieved [25].

To circumvent the coverage problem some approaches advocate to continuously
monitor the used stack during ’normal’ operation of the system for a given period in
time, aiming at a reliability metrics based on the time spent for measurements. However,
in contrast to hardware metrics, the results are inconclusive since there is no indication
how often a specific execution path has been exercised during the observation period,
or whether it has been exercised at all. In consequence for software-based systems no
statistical failure rates are available which are comparable to those used for hardware
components with typical requirements between maximally 10−5 and 10−9 failures per
hour of operation [22].

In interrupt-driven systems execution is mainly controlled by event handlers and
non-blocking tasks which are atomic with respect to other tasks [15]. Typically there is
only one stack. For this execution paradigm advanced testing methods have been devel-
oped which aim at automatically creating critical interruption scenarios [24,9]. There
is also a number of static approaches to compute the worst-case stack usage at the
system level [4,5,25]. However these approaches target small devices like networked
sensors whereas our focus is on safety-critical control-centric aerospace and automo-
tive applications which require more complex system architectures. In the same context
also static analyses to compute the maximum stack usage at the task level are dis-
cussed [5,25,18]. Their focus is on system-level aspects like automatically determining
enabling/disabling of interrupts to limit the number of potential interruption scenarios.
The value analysis used to determine stack usage of sequential code typically is not very
elaborate so that, e.g., indirect function calls and memory accesses cannot be handled.

Static analysis at the source code level typically is unsafe as the effects of the code
generation tool chain including compiler, assembler and linker cannot be taken into ac-
count. Compilers can exploit knowledge about the code generation process in order to
provide information about stack usage. However they typically do not take into account
the effects of inline assembly code or link-time optimizations. Moreover nowadays em-
bedded control software, especially in the automotive domain, is often composed of
libraries and object code integrated from different suppliers. Stack effects of such soft-
ware parts cannot be safely estimated by the compiler. Another aspect relevant for func-
tional safety certification is the independence between stack usage verification and the
code generation tool chain.

Other approaches aim at monitoring the stack size and increasing it, if required. In
[3,21] the compiler is modified to check the available stack size at function entry. If the
stack grows too high, a stack overflow handler is invoked, and additional stack space can
be provided. [21] additionally proposes to modify the compiler to emit the current stack
maximum at function entries as an alternative to stack pollution checks. However, since

Proving the Absence of Stack Overflows 205

no precise information about the stack size of the function is computed the size check
cannot prevent stack overflows in all cases. Moreover dynamic stack size checking and
resizing can cause significant runtime overhead.

Our approach is to compute sound and precise information about the maximal stack
usage at the task level which minimizes the need for user interaction to provide indirect
function call targets and recursion bounds. All required user information can be spec-
ified concisely in the formal language AIS [1]. In the safety-critical domain from this
information the system-level maximum can be calculated from the per-task maxima and
the OS configuration information. This approach supports non-preemptive and preemp-
tive static-priority scheduling schemes with multiple levels of interrupt handling.

3 Static Analysis
Static program analyzers compute information about the software under analysis with-
out actually executing it. The analyzers can work at the source code level, or at the
object or executable code level. Semantics-based static analyzers use a program se-
mantics that is a model of the program executions in all possible or a set of possible
execution environments. Applied at the binary machine code level they do not compute
an approximation of a programming language semantics, but an approximation of the
semantics of the machine code of the microprocessor. Based on the program semantics,
information about data and control flow is obtained. The most important characteristics
of static analyzers is whether they are sound or unsound. A static analyzer is called
sound if the computed results hold for any possible program execution.

A program analyzer is unsound when it can omit to signal an error that can appear
at runtime in some execution environment. Unsound analyzers are bug hunters or bug
finders aiming at finding some of the bugs in a well-defined class. Their main defect is
unreliability, being subject to false negatives thus claiming that they can no longer find
any bug while many may be left in the considered class.

The theory of abstract interpretation [6] is a mathematically rigorous formalism pro-
viding a semantics-based methodology for static program analysis. The semantics of a
programming language is a formal description of the behavior of programs. The most
precise semantics is the so-called concrete semantics, describing closely the actual ex-
ecution of the program. Yet in general, the concrete semantics is not computable. Even
under the assumption that the program terminates, it is too detailed to allow for efficient
computations. The solution is to introduce an abstract semantics that approximates the
concrete semantics of the program and is efficiently computable. This abstract seman-
tics can be chosen as the basis for a static analysis. Compared to an analysis of the
concrete semantics, the analysis result may be less precise but the computation may
be significantly faster. By skillful definition of the abstract semantics, a suitable trade-
off between precision and efficiency can be obtained. This makes it possible even for
complex analyses to scale up to industry-size software projects (cf. Sec. 7).

Abstract interpretation supports formal correctness proofs: it can be proved that an
analysis will terminate and that it is sound, i.e., that it computes an over-approximation
of the concrete semantics. Moreover it can be shown that imprecisions always occur
on the safe side. Examples of such proofs can be found in [10,27,19]. For stack usage
analysis soundness means that the computed stack height must never be below the stack
usage in any concrete execution: If no potential stack overflow is signaled the absence of

206 D. Kästner and C. Ferdinand

stack overflows has been formally proven, i.e., there are no false negatives. Furthermore,
as a static technique abstract interpretation can be easily automatized and can reduce
the verification and validation effort.

4 Stack Usage Analysis by Abstract Interpretation
As discussed above, for safe stack size analysis it is important to work on fully linked
binary code, i.e., here the static analysis is not based on the source code but on the exe-
cutable code. It approximates the semantics of the machine code of the microprocessor
by using an abstract model of the processor architecture. The abstract model does not
need to cover the entire state of the microprocessor, only the parts affecting the stack are
needed. The hardware state relevant for worst-case stack analysis includes the proces-
sor registers and the memory cells. For a naive analysis only the stack pointer register
is needed, but for precise results it is important to perform an elaborate value analysis
on the contents of processor register and memory cells (cf. Sec. 4.2). In the following
we will give an overview of the structure and analysis phases of the tool StackAnalyzer
[14,11].

4.1 Decoding

The input for the decoding phase is the fully linked binary executable that contains
the task to be analyzed. The instruction decoder identifies the machine instructions
and reconstructs the control-flow graph [26]. To ensure safety of later analysis re-
sults, the reconstructed CFG itself must be safe, i.e., all possible paths that can occur
during execution of the program must be represented. Finding the target addresses of
absolute and PC-relative calls and branches is straightforward, but determining target
addresses computed from register contents can become difficult. Examples of such com-
puted addresses are, e.g., indirect calls via function pointers or the implementation of
high-level programming language constructs like switch tables. Uncertainties may lead
to over-approximations of the actual control flow of the analyzed task which reduces
analysis precision. To deal with this, StackAnalyzer uses specialized decoders that are
adapted to certain code generators and/or compilers. They usually recognize branches
to a previously stored return address, and know the typical compiler-generated patterns
of branches via switch tables. Yet non-trivial applications may still contain some com-
puted calls and branches (in hand-written assembly code) that cannot be resolved by the
decoder; these unresolved computed calls and branches are documented by appropriate
messages and require user annotations. Such annotations may list the possible targets
of computed calls and branches, or tell the decoder about the address and format of an
array of function pointers or a switch table used in the computed call or branch. The
annotations are written in the formal language AIS and can be supplied in a dedicated
input file (cf. Sec. 5).

4.2 Value Analysis

Value analysis aims at statically determining the contents of the registers and mem-
ory cells at each program point and for each execution context. The results of the value
analysis are used to predict the addresses of data accesses, computed calls and branches,
and to find infeasible paths caused by conditions that always evaluate to true, or always

Proving the Absence of Stack Overflows 207

evaluate to false in a specific context. By concentrating on the value of the stack pointer
during value analysis, the analysis can figure out how the stack increases and decreases
along the various control-flow paths. This information can be used to derive the maxi-
mum stack usage of the entire task.

Contexts Disambiguating contexts is important to achieve high analysis precision. Con-
sider a value analysis that computes an interval of possible values for every register r.
The interval for r is a correct approximation of a concrete program state if it contains
the value of r in this program state. Suppose now a routine R is called twice, once with
parameter 0 and once with parameter 3. Then the best abstract information that can be
obtained for the parameter register is the interval [0,3], which indicates that the value
of the register might be 0, or 1, or 2, or 3. The precision of the analysis can be improved
considerably if the analysis does not compute a single abstract value for each program
point in R, but two different ones, one for each call of R. In the example considered
above, these are the intervals [0,0] for the call with parameter 0 and [3,3] for the call
with parameter 3. The values 1 and 2 are thus excluded successfully. To be more gen-
eral again, StackAnalyzer computes an abstract information for every pair of a program
point p and a possible calling context of p. All program points in a given routine R
have the same set of calling contexts. Each calling context indicates a particular way
of calling R. The context is represented as a call string which is essentially composed
from the addresses of all call instructions to currently active functions together with
the corresponding function names. The context information is further refined by distin-
guishing between different iterations of a loop. By default, the length of the call string
is not bounded, but for efficiency reasons, StackAnalyzer offers a way to restrict the
number of contexts by limiting the length of the call strings. If a call string exceeds
this limit, the first elements are omitted. The consequence is then that contexts are only
disambiguated until a given calling depth. The information from the additional contexts
will be unified, leading to a potential loss of precision of the analysis.

Loop Bound Analysis As a part of the value analysis a so-called loop bound analysis
is performed. It uses the results of value analysis to determine lower and upper bounds
for the number of iterations of loops. Knowing such bounds can improve the precision
of value analysis, e.g., if the loop iterates through an array. For stack analysis the loop
bound analysis can be restricted to loops that increase or decrease the stack in every
iteration. If the iteration bound of a loop cannot be determined automatically, users can
provide it in the AIS file or as source code annotations (see Sec. 5).

Iteration Between Decoding and Value Analysis The target of an indirect call or branch
depends on the value of some register. Sometimes, an explicit value is written to the
register some time before the call so that the call target can in principle be determined
automatically. Unfortunately, the setting of the register often does not occur immedi-
ately before the call, but some time earlier, e.g., before a loop containing the call, so
that matching of a simple code pattern is not sufficient to find the target address. The
executable reader, which should follow function calls to decode the reachable instruc-
tion sequences, is not aware of the register values. These values are determined by value

208 D. Kästner and C. Ferdinand

analysis, which however cannot construct control-flow graphs. The solution of the prob-
lem is to iterate between decoding and value analysis. If value analysis has found some
register values needed by the decoder to resolve some indirect calls or branches, then
the decoder is run again so that it can use these register values. Since this changes the
control-flow graph, the value analyzer is run again to take care of the changes. If it finds
more register values or the information about the values already found changes, a third
iteration is performed, etc.

5 Refining the Analysis

Additional input to StackAnalyzer can be supplied in a formal language called AIS [1]
in a dedicated input file. Alternatively, for executables built with debug information,
AIS annotations can also be provided as source code comments.

AIS annotations often refer to program points. In the simplest cases, program points
are described by an address or a routine name. More complicated descriptions are also
possible, e.g., to denote the third computed call in a particular routine, or the loop
beginning in a specific source code line. In the following we will only summarize anno-
tations for call and branch targets, and loop bounds. Other AIS annotations allow path
and dependency information to be specified, recursion bounds, reachability informa-
tion, effects of external functionality, etc. For a complete reference see [1].

If user specifications are needed, StackAnalyzer issues a notification which describes
the type of annotation needed (e.g., loop bound annotation) and the instruction (block)
for which it is needed. If the executable has been build with debug information, also
the corresponding source code construct is shown. An annotation wizard assists users
to create the annotations in the correct syntax.

5.1 Indirect Calls and Branches

A call or branch is computed or indirect if its target depends on the value of some reg-
ister. Computed calls often result from the usage of function pointers, while computed
branches often correspond to switch tables. Computed targets which cannot be resolved
automatically have to be resolved by annotations. Either the possible targets of the call
or branch can be listed, or the list of targets can be extracted automatically from a given
array or table.
Example:

instruction 0xc0f8 calls "disable";
instruction 0x9024 calls 0xa4, "go", "munch";

Program points are not restricted to simple addresses. A program point descrip-
tion particularly suited for calls and branches specifications is "R" + n COMPUTED
which refers to the nth computed call or branch in routine R.
Example:

instruction "MC" + 1 computed branches to
"MC" + 0x5C bytes, "MC" + 0x6C bytes;

Further syntactical variants support expressing branch targets relative to the address
of the computed branch instruction, and branches via function pointer tables.

Proving the Absence of Stack Overflows 209

Example: Assume the first computed call or branch in main is a call via array A with
10 elements. Each array element is a target address of 4 bytes. The number and size of
the array elements can be read from the symbol table. This is covered by the following
AIS annotation:

instruction "main" + 1 computed calls via "A";

Sometimes, the situation is more complex because there are some steps of indirec-
tion: there is a master table containing not the function pointers themselves, but pointers
to some other tables containing the function pointers, or pointers to yet other tables etc.
The AIS declaration language can describe all these cases.

5.2 Loop Bounds

Stack analysis does not need loop bounds unless the loop body has a non-zero stack ef-
fect. Such loops, e.g., are generated by some compilers for pushing function parameters
onto the stack before a function call. The parameters are removed from the stack by a
single instruction after the call.

If a loop bound is missing StackAnalyzer issues a corresponding warning. Loop
bound specification can be written in the following form:

LOOP ProgramPoint Bounds Type;

A ProgramPoint is either an address or a loop expression. The address must be the
start address of the loop; this is the same address as in the messages about missing loop
bounds. A loop expression looks like "R" + n LOOPS which means the nth loop in
routine R, counted from 1.

The Bounds information can be supplied in several forms, e.g., by providing the
minimum and maximum execution count for the loop body in the executable, or by
specifying the maximum execution count only. The Type expression specifies the loca-
tion of the loop test, i.e., whether it is at the beginning or the end of the loop.
Example: The following annotation specifies that the first loop in prime has the loop
test at the end and is executed at most 10 times.

loop "prime" + 1 loop end max 10;

Furthermore AIS permits to specify parametric loop bounds, i.e., the loop bound can
be expressed as a formula depending on function parameters or auxiliary variables.

6 The System Level
We focus on complex safety-critical systems as used for Control&Command programs
in the aerospace and automotive domains. Common system architectures are synchronous
systems, or dynamically scheduled systems based on static-priority scheduling. In syn-
chronous systems tasks are invoked from a cyclic executive and the schedule is com-
pletely static. They typically use one stack and, hence, for the purpose of stack height
analysis they can be considered as a single piece of sequential code. The stack height
analysis of StackAnalyzer directly yields the global maximum.

One example of a dynamically scheduled system architecture is the architecture de-
fined by the OSEK standard [20] which is commonly used in automotive industry. Ap-
plications are composed of tasks and interrupt service routines. OSEK requires tasks
to be scheduled by static-priority scheduling according to the priority ceiling protocol
[20]. Tasks can be configured to be non-preemptable, or fully preemptive. Each task is

210 D. Kästner and C. Ferdinand

associated with a run-time context which includes the stack. Tasks which can never pre-
empt each other may be executed in the same run-time context, i.e., depending on the
OS there may be one stack per task, or one stack per priority level. At the task level the
run-time context is occupied at the beginning of execution time and is released again
once the task is finished. The interrupt processing level consists of one or more interrupt
priority levels. Interrupts take precedence over tasks; interrupt service routines have a
statically assigned interrupt priority level. There are two ISR categories, depending on
whether they use an operating system service, or not.

The maximal stack usage of the entire system is influenced by the maximal stack size
of each task and ISR, by the preemptability of tasks, the task priority, category and pri-
ority of the ISRs, and the extend of the run-time context (per task or per priority level).
In consequence the maximal stack usage can be calculated from the per-task maxima
by a simple formula depending on information about implementation and configuration
of the OS which is statically available. In general, the maximum stack usage Smax of the
entire system can be calculated as:

Smax = sinit

+ ∑
0≤p<pmax

(maxi{Stack(Ti) | p(Ti) = p}+ sTCF)

+ maxi{Stack(Ti) | p(Ti) = pmax}
+ ∑

0≤p′≤p′max

(maxi{Stack(Ii) | p(Ii) = p}+ sICF)

where sinit is the size of the initialization frame, Stack(Ti) is the maximal stack usage of
task Ti, Stack(Ii) is the maximal stack usage of ISR Ii, p(Ti) denotes the priority of task
Ti, pmax denotes the maximal task priority, p′max is the maximal interrupt priority, sTCF

denotes the size of the task context switch frame, and sICF denotes the size of the ISR
context switch frame.

In StackAnalyzer such formula can be specified using the so-called ResultCombina-
tor view. For the analysis of the tasks and ISRs separate analysis objects are created.
The results of these analysis can be referenced in the formula editor of the ResultCom-
binator to compute the global stack maximum.

7 Practical Experience
StackAnalyzer depends on the instruction set architecture and is available for a wide
range of targets, including ARM, Infineon C16x, Infineon TriCore/Aurix, TI C28x, TI
C33, Fujitsu FR81S, M68k, PowerPC, and V850. It has been successfully used for
certification according to various contemporary safety standards. Qualification Support
Kits and Qualification Software Life Cycle Data Reports enable the tool qualification
to be performed automatically [17].

Experience shows that even for large applications precise stack bounds can be cal-
culated within short computation time. The computation time is mainly influenced by
the program structure and the task size; no significant variations between different in-
struction set architectures could be observed. In Tab. 1 stack analysis results are shown
for some tasks from different industry sectors and for different target architectures.
The tasks have been arbitrarily chosen among the largest available tasks of industrial

Proving the Absence of Stack Overflows 211

production software. Colum Arch denotes the target architecture, column Industry the
application area (E: electronics, AU: automotive, AE: aerospace). In column Task Size
the code size of the task under analysis is shown in kilobytes; column Stackmax shows
the computed maximal stack size in bytes. The number of required AIS annotation
is shown in column Annotations, the analysis time is given in column Analysis Time.
Some processors like the Infineon C16x, TriCore, and Aurix have separate user and sys-

Table 1. Stack analysis results

Arch Industry Task Size [KB] Stackmax [B] Annotations Analysis Time
ARM E 24.67 2184 5 8s
ARM AU 124.86 396 0 1m 12s

M68020 AE 48.34 34752 1 1m 50s
M68020 E 0.96 128 2 1s
PowerPC AE 681.63 67728 28 2m 52s
PowerPC AU 82.94 1312 187 12m 25s

C16x AU 93.55 168u/56s 1 2m 31s
C16x AE 25.84 394u/32s 77 7s

tem stacks; StackAnalyzer computes separate maxima for both the user and the system
stack. In the table above ’u’ denotes the user stack while ’s’ denotes the system stack.

The graphical user interface of StackAnalyzer provides different views of the result,
including visualizations of the call graph and control flow graph, and enables the in-
formation contained in the executable to be browsed in a user-friendly way. Creating
AIS annotations is facilitated by a dedicated annotation wizard. These mechanisms help
users to efficiently set up the analysis and evaluate the analysis results. After the con-
figuration of the analysis and the assessment of the results the analysis can be executed
in batch mode as a part of continuous verification processes or regression tests.

A dedicated XML-based exchange format (XTC format [2]) enables StackAanalyzer
to be seamlessly integrated in other development tools. Tool couplings are available
with model-based code generators including Esterel SCADE [12] and dSPACE Tar-
getLink [16]. They make it possible to detect stack problems early in the development
process. Another benefit of the tool couplings is that all required AIS annotations can
be automatically generated from the model level without any user interaction being
required.

8 Summary
Stack overflows are serious errors which can cause embedded software to crash or to
behave erratically. They are typically hard to identify and fixing them can be very cost-
intensive, especially when the system has already been deployed. All current safety
standards, including DO-178B/C or ISO-26262, require upper bounds of the storage
space used to be given, which explicitly includes the stack usage.

Whole-program static analysis at the executable code level can provide upper bounds
on the maximal stack height of tasks. When an abstract interpretation based static an-
alyzer is used, it can be formally proven that the bound is safe, i.e., that the maximal
stack usage will not be underestimated. To be practically usable the analyzer must be
able to handle indirect function calls, stack-relevant loops, and recursions. The tool

212 D. Kästner and C. Ferdinand

StackAnalyzer addresses this goal by performing a sophisticated value analysis which
enables the control flow to be precisely reconstructed and provides precise information
about the potential values of registers and memory cells. However, in general, it is not
possible to statically resolve all indirect calls, and to compute bounds for every loop
and recursion. For any unresolved issues user annotations can be provided in the formal
annotation language AIS in a flexible and concise way. From the maximal stack usage
of each task and ISR and static information about the OS configuration, the global stack
maximum can be computed.

Practical experience shows that industry-size projects from different industry sectors
for various target processors can be analyzed in short time with precise results. Static
analyses can be easily automatized, supporting continuous verification. This way, stack
overflows can be detected early, preventing late-stage integration problems. The analy-
sis results also provide valuable feedback in optimizing the stack usage of an application
so that the most cost-efficient hardware can be chosen. With dedicated Qualification
Support Kits the tool qualification for StackAnalyzer can be done automatically with
respect to any contemporary safety standard. In summary, using a sound static stack
usage analysis enables safety to be improved and development time to be reduced.

Acknowledgement. The work presented in this paper has been supported by the ITEA2
project TIMMO-2-USE and the EU ARTEMIS Joint Undertaking under grant agree-
ment no. 269335 with the German BMBF (MBAT project).

References

1. AbsInt. AIS Quick Reference Guide (2013)
2. AbsInt. XTC Language Specification Version 2.1 (2013),

http://www.absint.com/xtc/
3. Biswas, S., Simpson, M., Barua, R.: Memory overflow protection for embedded systems us-

ing run-time checks, reuse and compression. In: Proceedings of the 2004 International Con-
ference on Compilers, Architecture, and Synthesis for Embedded Systems, CASES 2004, pp.
280–291. ACM, New York (2004)

4. Brylow, D., Damgaard, N., Palsberg, J.: Static checking of interrupt-driven software. In: Pro-
ceedings of the 23rd International Conference on Software Engineering, ICSE 2001, pp.
47–56. IEEE Computer Society Press, Washington, DC (2001)

5. Chatterjee, K., Ma, D., Majumdar, R., Zhao, T., Henzinger, T.A., Palsberg, J.: Stack size
analysis for interrupt-driven programs. In: Cousot, R. (ed.) SAS 2003. LNCS, vol. 2694, pp.
109–126. Springer, Heidelberg (2003)

6. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static analysis of
programs by construction or approximation of fixpoints. In: POPL 1977: Proceedings of the
4th ACM SIGACT-SIGPLAN Symposium on Principles of Programming Languages, pp.
238–252. ACM Press, New York (1977)

7. Dunn, M.: Toyota’s killer firmware: Bad design and its consequences. EDN Network (Octo-
ber 2013), http://www.edn.com/design/automotive/4423428/Toyota-s-
killer-firmware--Bad-design-and-its-consequences

8. Engelschall, R.S.: Portable multithreading: The signal stack trick for user-space thread cre-
ation. In: Proceedings of the Annual Conference on USENIX Annual Technical Conference,
ATEC 2000, p. 20. USENIX Association, Berkeley (2000)

9. Eslamimehr, M., Palsberg, J.: Testing versus static analysis of maximum stack size. In: Pro-
ceedings of the 2013 IEEE 37th Annual Computer Software and Applications Conference,
COMPSAC 2013, pp. 619–626. IEEE Computer Society Press, Washington, DC (2013)

http://www.absint.com/xtc/
http://www.edn.com/design/automotive/4423428/Toyota-s-killer-firmware--Bad-design-and-its-consequences
http://www.edn.com/design/automotive/4423428/Toyota-s-killer-firmware--Bad-design-and-its-consequences

Proving the Absence of Stack Overflows 213

10. Ferdinand, C.: Cache Behavior Prediction for Real-Time Systems. PhD thesis, Saarland Uni-
versity (1997)

11. Ferdinand, C., Heckmann, R., Franzen, B.: Static Memory and Timing Analysis of Embed-
ded Systems Code. In: Groot, P. (ed.) Proceedings of the 3rd European Symposium on Ver-
ification and Validation of Software Systems (VVSS 2007), Eindhoven, The Netherlands,
March 23. TUE Computer Science Reports, vol. 07-04 (2007)

12. Ferdinand, C., Heckmann, R., Le Sergent, T., Lopes, D., Martin, B., Fornari, X., Martin, F.:
Combining a high-level design tool for safety-critical systems with a tool for WCET analysis
on executables. In: 4th European Congress ERTS Embedded Real Time Software, Toulouse,
France (January 2008)

13. Guillemin, P.: Stack overflow detection using the ST9 timer/watchdog. Doc id 2476 rev 2,
STMicroelectronics (2011)

14. Heckmann, R., Ferdinand, C.: Stack Usage Analysis and Software Visualization for Em-
bedded Processors. In: Grote, C. (ed.) Vorträge und Begleittexte zur Embedded Intelligence
2002. Grundlagen, Architekturen, Werkzeuge und Lösungen, Nürnberg, Poing, Februar 19-
21. Design & Elektronik (2002)

15. Hill, J., Szewczyk, R., Woo, A., Hollar, S., Culler, D., Pister, K.: System architecture direc-
tions for networked sensors. SIGARCH Comput. Archit. News 28(5), 93–104 (2000)

16. Kästner, D., Kiffmeier, U., Fleischer, D., Nenova, S., Schlickling, M., Ferdinand, C.: In-
tegrating Model-Based Code Generators with Static Program Analyzers. Embedded World
Congress (2013)

17. Kästner, D., Pister, M., Gebhard, G., Schlickling, M., Ferdinand, C.: Confidence in Timing.
In: Safecomp 2013 Workshop: Next Generation of System Assurance Approaches for Safety-
Critical Systems, SASSUR (September 2013)

18. Kim, H., Cha, H.: Multithreading optimization techniques for sensor network operating sys-
tems. In: Langendoen, K.G., Voigt, T. (eds.) EWSN 2007. LNCS, vol. 4373, pp. 293–308.
Springer, Heidelberg (2007)

19. Miné, A.: Weakly Relational Numerical Abstract Domains. PhD thesis, École Polytechnique,
Palaiseau, France (December 2004),
http://www.di.ens.fr/˜mine/these/these-color.pdf

20. OSEK/VDX. OSEK/VDX Operating System. Version 2.2.3 (2005)
21. Park, S.H., Lee, D.K., Kang, S.J.: Compiler-assisted maximum stack usage measurement

technique for efficient multi-threading in memory-limited embedded systems. In: Lee, R.
(ed.) Computers,Networks, Systems, and Industrial Engineering 2011. SCI, vol. 365, pp.
113–129. Springer, Heidelberg (2011)

22. Radio Technical Commission for Aeronautics. RTCA DO-178B. Software Considerations in
Airborne Systems and Equipment Certification (1992)

23. Real Time Engineers Ltd. FreeRTOSTM web page: Stack Usage and Stack Overflow Check-
ing (2010), http://www.freertos.org/Stacks-and-stack-overflow-
checking.html

24. Regehr, J.: Random testing of interrupt-driven software. In: Proceedings of the 5th ACM
International Conference on Embedded Software, EMSOFT 2005, pp. 290–298. ACM, New
York (2005)

25. Regehr, J., Reid, A., Webb, K.: Eliminating stack overflow by abstract interpretation. ACM
Trans. Embed. Comput. Syst. 4(4), 751–778 (2005)

26. Theiling, H.: Extracting Safe and Precise Control Flow from Binaries. In: Proceedings of
the 7th Conference on Real-Time Computing and Applications Symposium (RTCSA 2000),
Cheju Island, South Korea, December 12-14, pp. 23–30. IEEE Computer Society Press
(2000)

27. Thesing, S.: Safe and Precise WCET Determinations by Abstract Interpretation of Pipeline
Models. PhD thesis, Saarland University (2004)

http://www.di.ens.fr/~mine/these/these-color.pdf
http://www.freertos.org/Stacks-and-stack-overflow-checking.html
http://www.freertos.org/Stacks-and-stack-overflow-checking.html

Trust-Based Intrusion Tolerant Routing

in Wireless Sensor Networks

Francesco Buccafurri2, Luigi Coppolino1, Salvatore D’Antonio1,
Alessia Garofalo1, Gianluca Lax2, Antonino Nocera2, and Luigi Romano1

1 University of Naples Parthenope,
Department of Engineering, Naples, Italy

{alessia.garofalo,luigi.coppolino,luigi.romano,

salvatore.dantonio}@uniparthenope.it
2 DIIES, University Mediterranea of Reggio Calabria,

Via Graziella, Località Feo di Vito, 89122 Reggio Calabria, Italy
{bucca,lax,a.nocera}@unirc.it

Abstract. Wireless Sensor Networks (WSNs) are being increasingly
adopted in several fields because of their advantages with respect to
classic sensor networks. However, nodes in a WSN cooperate and this
exposes them to several security threats. Trust-based systems consti-
tute an established solution to ensure security of distributed systems. In
this work, a trust-based approach is discussed to make WSNs tolerant
against attacks targeting their routing layer. We show how such attacks
are tolerated with low overhead in comparison to unprotected systems.
Preliminary experimental results are presented confirming the validity of
the proposed approach.

Keywords: Trust-based systems, trust, reputation, intrusion preven-
tion, Wireless Sensor Network, Ad hoc On-Demand Distance Vector.

1 Introduction

Wireless Sensor Networks (WSNs) are composed of battery-powered tiny sen-
sors with wireless connection capabilities. Sensor nodes in WSNs are capable of
connecting to each other, exchanging information, routing packets according to
the specific WSN technology chosen. Nodes in WSN can interact with computer
networks through a Base Station (BS).

WSN adoption in Critical Infrastructures (CIs) [4][1] has advantages as eas-
iness of deployment in hostile environments and no need for underlying infras-
tructures. However, their adoption is limited due to their security weaknesses;
for instance, the most widely adopted WSN routing protocols such as Ad hoc
On-Demand Distance Vector (AODV) [13], Collection Tree Protocol (CTP) [5],
Destination Sequenced Distance-Vector Routing (DSDV) [14] are designed with-
out considering security mechanisms.

Cyber defense of wireless transmissions in general is challenging because the
communication channel itself is easy tomonitorwithoutbeingdetected.Additional

A. Bondavalli and F. Di Giandomenico (Eds.): SAFECOMP 2014, LNCS 8666, pp. 214–229, 2014.
c© Springer International Publishing Switzerland 2014

Trust-Based Intrusion Tolerant Routing in Wireless Sensor Networks 215

issues are experienced inWSNs, since nodes are equipped with low computational
resources and limited energy supply, so computation-intensive defensemechanisms
(e.g. encryption with large key size, public key cryptography) that are typically
used in computer networks can hardly be adopted on an ’as is’ basis in WSNs. A
consequence is that WSNs are also exposed to cyber threats [8].

This work proposes a trust-based layer enhanced architecture designed to
tolerate intrusion attempts. In this context, by tolerance we mean the capability
of the WSN to keep providing the service it is intended to even when a malicious
entity compromises successfully a legitimate WSN node and then routing attacks
occur in the network. The proposed solution allows us to improve resilience to
cyber-attacks by incurring in little overhead in terms of additional messages
exchanged between WSN nodes. We focus on the sinkhole attack [8] since it
can have major consequences when successful, and also (importantly) because
it is often used as a preliminary attack to more severe intrusions. A preliminary
experimental campaign was performed, where the trust-based architecture was
tested against sinkhole attacks to AODV routing protocol, which is a widely
adopted WSN routing protocol (e.g., in ZigBee and Bluetooth). Preliminary
experimental results show the effectiveness of the proposed architecture.

The remainder of this paper is organized as follows. Section 2 provides back-
ground definitions needed for understanding of this work and details existing so-
lutions for ensuring cyber security in WSNs. Section 3 details the attack model
considered. Section 4 discusses the trust-based architecture designed to toler-
ate cyber attacks to WSNs routing protocols. Section 5 details the trust-based
model chosen. Section 6 provides a security analysis of the proposed architec-
ture including the robustness of the trust and reputation layer. Section 7 gives
some interesting implementation details and describes the testbed chosen for the
execution of the experimental campaign whose results are shown in Section 8.
Finally, in Section 9, we draw our conclusions.

2 Related Work

In WSNs different routing protocols exist. The most popular ones are Ad-hoc On
Demand Distance Vector (AODV)[13] and MultiHop. AODV is a reactive routing
algorithm. It is the routing scheme adopted by ZigBee and Bluetooth. When a
WSN node using AODV protocol receives a packet addressed to an unknown
destination, it starts to send ”‘route discovery”’ packets (Route Request message
- RREQ). A ”‘route discovery”’ message is propagated throughout the network
until a node finds an entry in its routing table matching the address, and responds
to the request with a Route Reply message (RREP). Each message brings the
receiving device to set a path in its routing table, if the sender of that message
is an in-sight node. When the message reaches its destination, a backward path
has been set along the intermediate nodes. In AODV, when two valid routes are
available to the same destination the ”‘freshness”’ of the route and the number
of hops to the destination (called hop count) are considered to choose which one
has to be used.

216 F. Buccafurri et al.

Different solutions have been introduced in literature to detect and tolerate
routing attacks against the WSN[4][11][9], some of which specifically focus on
sinkhole attack as [7][3]. In this paper we present a new solution which aims
at tolerating routing level attacks through a trust and reputation based proto-
col. In [20], the authors propose a Trust-Aware Routing Framework (TARF) for
protecting routing activities in WSNs. This is achieved by evaluating a tradeoff
between trust perceived and energy consumed for a specific route. When attacks
are not occurring in the system, the trust-aware framework proposed is shown
to have acceptable performances with reference to an unprotected system. An
experimental testbed shows that the behavior of the TARF-enabled system un-
der attack is comparable to the behavior of an unprotected system when attacks
are not occurring. The framework presented in this work makes use of several
information related to data delivery, loop detection, energy consumption. WSN
routing protocols may be natively able to provide a part of such information; in
some cases instead, most of the data required by TARF need to be estimated
by the framework itself, thus requiring an additional effort in terms of packets
overhead or computational resources. However, considerations about the effec-
tive deployment of this architecture on different WSNs are not provided by the
authors. The survey provided in [19] discusses works related to trust models
for secure routing and they are detailed in the following. The purpose of Re-
liable Adaptive serviCe-driven Efficient Routing (μRACER) [15] is to provide
a suite for sensor-actuator networks that provides different features at once, as
context-aware task scheduling and direction-aware routing. The suite is not de-
signed to ensure cyber security; however, in [19], μRACER is stated to resist to
attacks since trusted nodes are chosen by taking into account the ratio of mes-
sages forwarded. Since both the system design and experimental results do not
take into account cyber attacks, the effectiveness of this approach in presence of
malicious nodes cannot be estimated. In [10], a strategy called Efficient Moni-
toring Procedure In Reputation System (EMPIRE) is proposed. EMPIRE aims
to detect blackhole attacks, i.e. attacks where packets forwarded to a malicious
node are dropped. The solution proposed is only resilient to blackhole; our ar-
chitecture instead is capable of detecting both sinkhole and blackhole attacks. In
our work, trust measurements are used to estimate fast and successful delivery
of messages; those estimations are affected under different attacks, as sinkhole
and blackhole. In [17], a k-parent Flooding Tree Model is proposed. The model
provides resilience to Denial-of-Broadcast Message attacks, i.e. attacks where a
malicious user attempts to deny broadcast message to all nodes in the network.
The model is designed only for broadcast messages and it proposes a k-parent
tree model: each node is given k parents, and each parent is given a reputation.
The reputation is not estimated through interactions with neighbors, but only
through direct trust; also, the direct trust can only assume values 0 or 1. So, the
estimation of trust perceived is highly relevant when reputation is updated. If
such estimation is incorrect for any reason, there is no other mechanism available
to adjust such an error. This is prevented in our model because trust and reputa-
tion are both taken into account when computing the dependability of nodes [2].

Trust-Based Intrusion Tolerant Routing in Wireless Sensor Networks 217

In [18], a trust-based model for trusted routing called Trust Routing for Location-
Aware Sensor Networks (TRANS) is proposed. Such model assumes that knowl-
edge of geographic locations is available in the WSN routing protocol considered.
The trust model takes into account geographic information and considers trusted
geographic locations. The model proposed in our work instead is independent
of geographic locations. In [6] a framework is proposed called Reputation-based
Framework for Sensor Networks (RFSN) whose purpose is to mitigate wrong sen-
sor readings. Such errors are supposed to have any cause, as low energy available
on the mote or malicious nodes attacking the network. About the trust model,
a pessimistic approach is chosen, where the network does not trust unknown
nodes. This allows malicious nodes not to take advantage of the trust initially
granted. However, this approach incurs in an high overhead of packets especially
in the system setup, since all nodes need to exchange information until e.g. high
value of trust is estimated for legitimate nodes. Our work instead proposes an
optimistic approach; this is because: i) cyber attacks to WSNs are much less
frequent than normal, non-malicious activities; ii) initially, attackers are often
not present in the WSN (when the initial trust is set); iii) when attackers are
initially present in the WSN, they initially behave correctly so to gain trust of
the remaining nodes in the network.

To the best of our knowledge, trust-based models currently proposed onWSNs
use passive approaches, i.e. they only make use of information provided by the
routing protocol in use. This implies that the features of the routing protocol
in use pose limitations to the trust-based architecture. Our work instead pro-
poses a proactive, event-driven approach, so that relevant information can be
collected by the trust-based architecture independently of the specific features
of the considered routing protocol. Also, the choice of an event-driven approach
allows a significant reduction of the introduced overhead, with respect to the
one obtained by periodically exchanging collected measurements.

3 Attack Model

The trust-based architecture presented in this work aims at tolerating sinkhole
attack, where the attacker lures legitimate nodes to route their packets through
a malicious node. When this attack is successful, the malicious node is able to
launch more severe attacks such as altering or dropping packets sent from le-
gitimate nodes. In order to successfully perform a sinkhole attack, a malicious
node pretends that it represents a high quality route with reference to the rout-
ing protocol in use. As already mentioned, cyber defense mechanisms are not
provided in the most common WSN routing protocols (e.g. AODV). Thus, le-
gitimate nodes typically just receive routes advertised and no security check
is performed on them. After that, the advertised quality is compared with the
quality of an already known route (if any). So, if an old route is replaced with a
forged route (received by a malicious node), the attack is successful.

A way to perform sinkhole attack is the following:

1. The network is initially composed of legitimate nodes only, as shown in
Figure 1.a.

218 F. Buccafurri et al.

Fig. 1. Evolution of a sinkhole attack: (a) A WSN where nodes are not compromised
(BS = Base Station), (b) The hierarchy of routing data towards the Base Station, (c)
The WSN state when the attack is successfully performed by node 3, (d) The hierarchy
of routing data as obtained by the sinkhole attacker through forged packets

2. Each node establishes its own routing tables according to the routing proto-
col in use. The tree in Figure 1.b represents the routes established by nodes
to reach the BS when no attack is yet affecting the network. In the figure,
each node has chosen the closest node to the BS to route packets directed
to the BS itself. So, e.g. node 3 is a leaf of the routing tree since it has the
lowest quality link to the BS.

3. After that, a legitimate node is compromised e.g. through reprogramming
and sinkhole attack begins.

4. The compromised node requests a route to a given destination.
5. The compromised node sends a forged response to the previously sent re-

quest; the purpose of this message is to advertise a (false) high quality route
to the same destination as claimed at previous step. This misleads neigh-
boring nodes, which can choose to replace their older route with the new
advertised one.

Figures 1.c and 1.d show an example of topology and routes established after
a successful sinkhole attack. In the example, node 3 is a legitimate node that is
compromised by an attacker and so it forges information about the quality of
its link from the BS. After the attack succeeds, any packet can be compromised
by node 3 since all packets are forwarded through that node. In this way, more
severe attacks can be launched on the target system.

4 Trust and Reputation Layer

IP-based WSNs make use of a modified version of the OSI model, as an example
Figure 2.a shows AODV used as routing protocol, e.g. as in ZigBee Libelium
Waspmote1. Our architecture is designed as an additional layer on top of which
AODV is available (Figure 2.b). The purpose of this new layer is to provide

1 http://www.libelium.com/products/waspmote/

http://www.libelium.com/products/waspmote/

Trust-Based Intrusion Tolerant Routing in Wireless Sensor Networks 219

Fig. 2. (a) OSI stack protocol for IP-based WSNs; (b) the intrusion-tolerant trust and
reputation layer

functionalities required to ensure intrusion tolerant routing. Specifically, the
Trust and Reputation (T&R) layer in Figure 2.b makes use of the dependability
L, which represents a global estimation of all knowledge related to a node under
test, and acts as follows on any node in the WSN:

1. Data sent to the routing protocol from its underlying level (and vice versa)
are monitored.

2. When the T&R layer detects routing operations that could result in a topol-
ogy change, a test procedure is started to estimate the dependability of nodes
involved in the current operation. The test procedure is not triggered in two
cases: i) when the same test was already recently performed; ii) when the
dependability of the node triggering the test procedure is lower than a fixed
threshold. In both these conditions, current path is instead preserved. The
following steps refer to the case when the test procedure is allowed.
(a) Test results are used to estimate the trust of involved nodes.
(b) The evaluated trust is shared with neighboring nodes, which store the

information and compute the reputation of tested nodes.
(c) The T&R layer of the node that launched the test estimates the global

dependability of tested node/s. Subsequent routing interactions will be
performed with the most dependable node. When the tested node is
considered trustworthy, the event producing the topology change is for-
warded ’as is’ to the routing layer. Otherwise, such a change is masked
to the routing layer.

The test procedure should choose the most dependable node by taking into ac-
count the link quality Q, which represents the effective quality of the route the
tested node belongs to. However, estimations of Q cannot be assumed as trust-
worthy; so, the dependability L introduced is used as an unforgeable estimator
and it is defined as L = f(T,R). In this expression, T and R represent trust and
reputation; trust is measured through a test procedure, dependent on the kind
of attack that must be tolerated, instead reputation is obtained by combining
the trust measures received by neighboring nodes during previous tests of the
node currently tested.

220 F. Buccafurri et al.

Fig. 3. An example of WSN topology where a route update is requested and the trust-
based architecture estimates the most dependable source to be chosen. (Solid line =
route established and saved in the corresponding routing tables; dashed line = candi-
date route to replace the established route)

For the sinkhole attack, the purpose of the test procedure is to check the
quality of the route containing the node under test against the quality of the
route currently used by the node performing the test. Figure 3 provides an
example of the test procedure. In the figure, node A is initially aware of one
route to node D, and such route is composed of two intermediate nodes (B and
C). After that, node E advertises itself to node A as a single hop route to node
D. Assuming that the routing protocol considers the route with the minimum
hops to the destination as the best route; in that case, route R2 would be the
best candidate to reach node D. The T&R layer intercepts the potential change
of route and triggers a test: two packets are sent from node A to node D, each of
them through one of the candidate routes. When the packets are received back,
the round trip time of both packets is estimated. If the packet through node E
has the lower round trip time, the advertised route is indeed the best one and
so trust about node E is raised; on the contrary, E is punished (i.e., its trust
is reduced). Security aspects related to the testing procedure are discussed in
Section 6.

In a typical WSN deployment, nodes send data to the BS; in that case, the
purpose of the test procedure is to test candidate routes to the BS. BS authen-
tication has then to be ensured to guarantee the authenticity of the test. We
explicitly emphasize that our purpose is only to ensure integrity of the test pro-
cedure; however, packet integrity can be ensured with existing methods which
are orthogonal to our work. In the following section, more details are provided
about the T&R model designed to provide intrusion tolerance to sinkhole attack
for AODV routing protocol.

5 The Trust and Reputation Model

In this section, we discuss how node dependability is computed. We make use
of the concepts of trust and reputation: Trust measures the degree to which one
node trusts another on the basis of past interactions, reputation is based on a
collection of opinions that other nodes hold about a given node. Both scores
range in the interval [0, 1].

We assume given aWSN with a setN = n1, ..., nw of nodes. We show how trust
and reputation of nodes are computed and updated after each node interaction,
which consists in the execution of the test procedure described in Section 4.

Trust-Based Intrusion Tolerant Routing in Wireless Sensor Networks 221

Consider an interaction between the nodes ni and nj and let Fi,j be the score,
assigned by ni to nj , that quantifies the result of this interaction from the point
of view of trust [16]. Fi,j ranges in the interval [0, 1]: 0 (resp., 1) is the score
assigned to a bad (resp., good) interaction. After this interaction, the trust that
ni deserves to nj is: Ti,j = Fi,j .

At this point, ni forwards this score, say feedback about nj , to each of its
neighbors, which, in turn, update their reputation about nj . In particular, a
node nz that receives the d-th feedback F d

k,j (for any 1 ≤ j, k ≤ w, k �= j, d ≥ 1)
about nj , updates the reputation deserved to nj as follows:

Rd
z,j =

⎧⎨
⎩

(1 − α) ·Rd−1
z,j + α · F d

k,j if nd
j �= nd−1

j ∧ F d
k,j < Rd−1

z,j

Rd−1
z,j otherwise

(1)

where nx
j is the node providing the x-th feedback about nj, and R0

z,j is the

default value of reputation. We assume R0
z,j = 1 because, in normal conditions

(i.e., when no attack occurs), all nodes are trustworthy. This choice is aimed at
favoring the dynamic of the routing protocol, which, otherwise, would be very
reluctant to route changes for a long working time (until reputation values grow
sufficiently).

In Equation 1, the new value of the reputation of a node is computed weight-
ing, by means of the parameter α ∈ [0, 1], two contributions: (1) the reputation
value computed on the basis of the previous feedback, and (2) the current feed-
back. α allows us to modulate the weight of the two components.

Once trust and reputation of a node are computed, the (global) dependability
that the node nz deserves to nj is computed as:

Lz,j = (1 − β) · Tz,j + β ·Rz,j (2)

where Tz,j and Rz,j are the current values of trust and reputation, resp., com-
puted by the node nz towards nj . In words, dependability is computed weighting
in a complementary way, by means of β, trust and reputation. β lies in the in-
terval [0, 1] and modulates the importance given to trust w.r.t. reputation.

The parameters α and β need to be set on the basis of simulation, once security
policies are established (this issue is addressed in Section 7). Here, we provide
some general considerations. As for the parameter α, we argue that its value
should depend on the dependability of the node (say nf) providing the feedback.
For instance, when nz receives a feedback from a node nf whose dependability
Lz,f is zero, the value of reputation should not be affected by this feedback.
Thus, α should be 0. Conversely, if Lz,f = 1 (i.e., maximum dependability), we
have to take into account the feedback for updating dependability (so, α > 0),
and depending on how much the system has to keep memory of the past, the
value of α will be close to 1. The higher the value of α, the lower the inertia of
the update mechanism of reputation. We may set α = γ · Lz,f with γ ∈ (0, 1],
and use as starting value γ = 0.5, in such a way that, at most, feedbacks are
weighted in the same way as reputation. The parameter β balances trust and

222 F. Buccafurri et al.

reputation: its value should be low (β ≤ 0.5) so to prevent attackers from forging
reputation of non-malicious nodes.

A final observation is that, according to our model, only feedbacks able to
reduce reputation produce effects. Hence, to save traffic, feedbacks with score 1
are not forwarded. The negative role of feedbacks (w.r.t. the reputation values)
results in pushing node reputation towards low values. To contrast this effect, we
introduce an aging mechanism producing a bonus: the reputation of each node is
increased (up to 1) by δ each τ time, where δ and τ are parameters suitably fixed.
For example, setting δ = 0.1 and τ = 360 seconds, a node that has reputation
score 0 (for example, because of a network problem occurred) and that does not
interact with other nodes recovers a reputation score equal to 1 after 1 hour.

We explicitly note that the optimal tuning of parameters α, β, γ, δ, τ is outside
the scope of this work and will be the object of a future work. Thus the exper-
imental campaign of Section 7 will be using for such parameters the reference
values reported in this section.

6 Security Analysis

In this section, we analyze the security of our approach against the attack model
presented in Section 3. We proceed by analyzing a number of significant security
aspects.

Security of the Test. Suppose node z receives a malicious advertisement from
node j (assumed compromised) aimed at forcing z to update its routing path to
the BS in favor of j. Let i be the node currently included in the routing table of z.
Recall that our approach is based on the triggered execution of a test consisting
in the measurement, by z, of the round trip time of two messages from z to the
BS through two different routes, of which only one includes the tested node j
(the other includes the node i). The aim of the test is estimating the quality
of the two routes, to evaluate the trustworthiness of the advertisement of j in
promoting itself as a better route towards the BS.

The test procedure can be compromised by an attacker that replies to a test
message pretending to be the BS. This requires that the testing procedure uses
authentication of the destination node. It is worth noting that such an authen-
tication would not avoid routing level attacks such as the sinkhole attack. Also
with destination authentication, the testing procedure is vulnerable to a replay
attack, that is the reply message to the testing procedure can be recorded by
the attacker and reused later. To avoid the replay attack the testing procedure
must guarantee the freshness of messages (e.g. by using a challenge/response
protocol). Observe that the overhead introduced by the authentication is lim-
ited to the testing procedure while the remaining messages do not require any
authentication or encryption.

Obviously, the compromised node j could selectively delay the round-trip
message routed through i, but only in case j belongs to both the routes of the
test. If we consider the case in which there is a single node compromised that
performs the attack, and assuming that no successful step of j towards sinkhole

Trust-Based Intrusion Tolerant Routing in Wireless Sensor Networks 223

has been already done, this is impossible, as both j and i are neighbors of z, and
thus i cannot see j as an ancient node towards the BS because this would mean
that i has been already deceived by j (contradiction). Thus, j cannot belong to
both routes of the test and then cannot delay the message routed through i. In
general, assuming that a partial sinkhole is done by the node j, it is easy to see
that the breaking of the test cannot add new victim nodes.

Lack of Memory of Trust. Assume that both trust and reputation of z towards
j are 1. Our protocol requires that z, before deciding whether j may replace i
in its routing table, runs a test (see Section 4) involving nodes i and j. The
feedback Fz,j is obtained from the result of the above test so that, in case of
failure, the update rule Tz,j = Fz,j decreases the trust value of j, drastically
reducing the chance of j to be selected by z, as the dependability function is
strongly dependent on the trust. This positive effect is obtained because trust is
computed only on the basis of the last interaction, meaning that this measure has
no memory of the past. The reason of this choice is that even one bad interaction
with a node could be the symptom of a malicious behavior of this node.

Self-Promoting Attacks. This attack occurs when an attacker manipulates its
own reputation by falsely increasing it. As in our model positive feedbacks are
uninfluential, there is no way for a node to force self-promoting.

Whitewashing Attacks. In this family of attacks, attackers try to repair ma-
liciously their reputation. Once they restore their reputation, the attackers can
continue the malicious behavior. As in our system positive feedbacks are unin-
fluential, the only way to whitewash reputation is to use the aging mechanism of
the bonus, which increases periodically (but slowly) the reputation of nodes. This
succeeds only if, for a long time, the node stops any action that can generate
new negative feedbacks. This means that the reputation system keeps memory
of a malicious behavior only for a (large) time window. After that, this memory
is erased, but it is decreased again (i.e., the reputation is drastically reduced)
as soon as another malicious action is done. The long time period required to
whitewash the reputation and the high dinamics of the network make the attacks
that can be performed periodically (i.e., each time the reputation is whitewashed)
uneffective. This prevents the attacker to have benefits from the whitewashing
attack because no escalation is allowed.

Slandering Attacks. In this case, attackers manipulate the reputation of other
nodes by reporting false data to lower the reputation of the victim nodes. In this
case, the attacker, say j, generates false negative feedbacks about a victim node,
say i, to increase its relative value of dependability and emerge w.r.t. the other
nodes. Suppose that the false feedback is provided by j to z and regards node
i. The reputation value is changed by the d-th feedback F d

j,i only if nd
i �= nd−1

i ,

where nd
i is the node that provided the d-th feedback about i. Thus, if the pre-

vious and current feedbacks come from the same node, the latter is ignored. So,
the effect of a slandering attack is seriously limited (in practise, cancelled) by
the combination of this strategy with the aging mechanism of the bonus recalled
above. Indeed, after a false feedback about the victim node i is given, the at-
tacker should wait the arrival of another feedback concerning i coming from a

224 F. Buccafurri et al.

different node, which is not controllable by the attacker. In the meantime, the
aging mechanism will vanish the attempt by restoring the reputation of the vic-
tim node. Observe that, in our attack model, we assume that suitable strategies
are already applied in the network in order to prevent sybil attacks. Therefore,
the above countermeasure cannot be vanished by the generation of multiple iden-
tities corresponding to the compromised physical node. It remains to consider
change-identity and re-entry techniques. Actually, in these cases the attacker
may successfully perform slandering attacks by generating unfair ratings about
a victim node. This vulnerability can be eliminated by relying on authentication
and integrity services of the network. In particular, it suffices to require that
feedbacks are processed only if authenticated by the BS. Even though this issue
is out of the scope of the paper, we may highlight that the message authentica-
tion mechanism here required is very little expensive. Indeed, it is needed only for
the messages generated by the BS for the test procedure. Moreover, even cheap
hash-based methods can be used requiring only that every node shares with the
BS a secret key. Thus, the BS may send the result of the test equipped with
a number of message authentication codes, one for each neighbor of the tester
node. To do this, the tester node includes the list of its neighbors in the starting
message of the test procedure. Once the tester node receives the authenticated
result of the test from the BS, it forwards this to its neighbors according to our
model.

Sleep Deprivation Attacks. In this case, the target of the intruder is to max-
imize the power consumption of a victim, so that its lifetime is minimized. In
particular, a power-consuming action is required every time a node is called to
perform the test. Therefore, the compromised node could force continuously a
victim node z to perform the test, thus implementing a sleep deprivation at-
tack against it. This attack is prevented in two ways. The first is that the test
is executed by a node z on the basis of the advertisement of a node j only if
the reputation of j is greater than a suitable threshold. But, after the first test
failures, the reputation of j will go under the threshold. The second way is that,
as described in Section 4, each node keeps the timestamp of the last performed
test on a node. The test can be repeated only if the new request arrives at a
time not too close to that of the last request.

7 Implementation Details and Testbed Setup

The proposed T&R layer was implemented in the network simulator NS-3 [12],
whose source code is open and available and where a WSN on AODV routing
protocol can be simulated.

With respect to Figure 2, the new layer was placed at routing level. So, in-
formation useful to the trust mechanism has to be added to standard routing
information provided by AODV. In particular, AODV [13] allows us to do this
through extensions to standard packets. Extensions format is defined by the
RFC. They are aimed at creating custom data types with custom length and
transmitting their values to nodes in the network. At the time of writing this

Trust-Based Intrusion Tolerant Routing in Wireless Sensor Networks 225

Table 1. AODV extensions implemented (for IPv4)

Extension Fields Type Extension Length
Test request Test ID, Tested IP Address 1 80 bit
Test response Test ID, Tested IP Address 2 80 bit
Trust propagation Measured Node,Trust value 3 64 bit

paper, NS-3 does not implement extensions2, so we implemented this feature
by modifying the simulator and used it to exchange trust information; Table
1 shows the AODV extensions implemented. It is worth noting that encryp-
tion is not included in our implementation because the key size to be used
is highly application-dependent and resources-dependent on limited devices as
WSN nodes. The testbed in Table 2 simulates a WSN on top of NS3 where nodes
perform environmental monitoring and they periodically send sensed data to the
BS. The architecture proposed was tested by simulating a dense WSN, where
different couples of nodes could reach each other directly. A dense (but not fully
meshed) configuration was chosen in order to simulate a deployment where e.g.
a node A needs to reach the BS but: i) A cannot communicate directly with
the BS and so a route with intermediate nodes has to be established; ii) A has
different neighbors, so it may obtain different routes to the same destination.
This forces A to choose a trusted node to send sensed data.

Table 2. Testbed configuration for simulation of the trust-based architecture

Network Simulator NS-3 [12]
Implemented Attack Sinkhole [8]
Number of devices w = 10
Routing Protocol Ad hoc On-Demand Distance Vector [13]
Feedback levels allowed Fmin = 0, Fmax = 1
Initial trust, reputation, Ti,j |t=0 =1, R0

i,j |t=0 = rs =1,
dependability Li,j |t=0 =1 ∀ 1 ≤ i, j ≤ w, i �= j
Avg. no. of neighbors per node 4.2
T&R Model Parameters β = 0.5, γ = 0.5, α = γ ∗ Li,j

8 Experimental Results

This section provides the results of a preliminary experimental campaign con-
ducted with respect to settings detailed in Table 2. In our experiments we com-
pared the behavior of the network in safe conditions and under the attack, both
in the case of an unmodified AODV stack and when the T&R layer is deployed.
It is worth noting that to make measurements comparable we implemented a
“passive” sinkhole attack. In a passive attack, the attacker does not inject addi-
tional packets, rather it executes the attack by modifying legitimate traffic.

2 http://www.nsnam.org/docs/release/3.19/models/html/aodv.html

http://www.nsnam.org/docs/release/3.19/models/html/aodv.html

226 F. Buccafurri et al.

Fig. 4. Average data packets exchanged by the attacker in the WSN testbed

The effectiveness of the proposed approach against sinkhole attacks is demon-
strated by the experimental results illustrated in Figure 4, where the number
of packets traversing the attacker node before and after the attack is shown. It
should be noted that in the unmodified AODV stack (solid line) after the launch
of the attack (starting after about 800 seconds) the number of packets traversing
the attacker node suddenly increases. This is a direct effect of the success of the
attack, since a number of neighbor nodes are now using the attacker node to
forward their traffic. In the same conditions, when the AODV stack is enhanced
with the T&R layer (dashed line), the traffic traversing the attacker node does
not present any significant change, indicating that the attack has been tolerated
by the WSN.

Figure 5 shows the behavior of some nodes during the sinkhole attack when
the T&R layer is deployed. First of all, it is worth noting that the attacker node
is located at the edge of the network. As such, it handles a small number of
routing packets (since it does not have any child node). We can also note that
when the sinkhole attack is launched (after about 800 seconds), there is a peak
in the number of routing packets exchanged. This overhead can be easily tied
to the start of the test procedure. After the test procedure is completed, the
routing packets profile of nodes returns to its normal behavior.

Finally, we evaluated the overhead introduced by the adoption of the T&R
layer. It is worth noting that since cryptographic procedures are only used once
during every test (while common traffic does not need cryptography) the overhead

Fig. 5. Average routing packets exchanged per node in the WSN testbed

Trust-Based Intrusion Tolerant Routing in Wireless Sensor Networks 227

due to the T&R layer is mainly represented by the additional packets exchanged.
To get an estimate of such an overhead, we modified the T&R layer so that the
test procedure is performed every time a potential change of topology is detected
by the T&R layer. This allowed us to consider the measured overhead as an up-
per bound of the one due to the introduction of the T&R layer. We simulated the
network in three different conditions (Figure 6): i) without attacks and without
deployment of the T&R layer (dash-dot line); ii) T&R layer is deployed, but no
attack is performed on the WSN (dashed line); iii) T&R layer is deployed and
sinkhole attack is performed (solid line). During the time window (t ∈ [0, 780]s),
the T&R layer was not activated. In this initial time window, nodes start send-
ing data to the BS and they populate their own routing tables; also, each node
establishes its best route to the BS with respect to all information known to
the node itself. During this initial time window, all of the three conditions con-
sidered are characterized by the same amount of routing packets exchanged. At
time 780s the T&R layer is activated and an overhead of packets is experienced
with respect to normal operating conditions. Specifically, an approximately con-
stant overhead of 1% was measured. When the sinkhole attack is launched, the
compromised node tries to force the update of routing tables and so an average
additional overhead of 0.3% is detected. Such additional overhead is related to
the additional tests performed in the network and can be considered acceptable.

Fig. 6. The routing packets exchanged over time by nodes in the WSN testbed

9 Conclusions

In this work, a trust-based approach was proposed to ensure intrusion tolerant
routing in WSNs. For this purpose, an additional layer was introduced in the
WSN protocol stack; such layer performs intrusion tolerance activities and masks
information to routing layer when more dependable information are estimated
to be already available. The layered approach proposed allows us to provide tol-
erance capabilities to existing protocols. This cannot be ensured when instead

228 F. Buccafurri et al.

the routing protocol is improved or when a new protocol is proposed; in those
cases, the protocols proposed are not compliant to RFCs or instead a corre-
sponding standard is not defined. The Trust and Reputation layer proposed also
presents a proactive approach, where a potentially not trusted node is explicitly
tested so to obtain a direct measurement of corresponding trustworthiness. A
specific trust and reputation model was designed for tolerating sinkhole attack
on AODV routing protocol, and it was implemented on NS3. Preliminary ex-
perimental results show the low packets overhead when the proposed layer was
added to the WSN protocol stack. In the future we plan to include further tests
and to validate the behavior of the layer proposed under different conditions,
e.g. a different deployment of nodes and a different traffic pattern. Moreover a
thorough experimental campaign will be performed to show the best tuning of
the threshold values characterizing the proposed trust and reputation model.

Acknowledgements. This work has been partially supported by the TENACE
PRIN Project (n. 20103P34XC) funded by the Italian Ministry of Education,
University and Research. This project has received funding from the European
Union’s Seventh Framework Programme for research, technological development
and demonstration under grant agreement no 313034 (SAWSOC Project).

References

1. Afzaal, M., Di Sarno, C., Coppolino, L., D’Antonio, S., Romano, L.: A resilient
architecture for forensic storage of events in critical infrastructures. In: 2012 IEEE
14th International Symposium on High-Assurance Systems Engineering (HASE),
pp. 48–55 (October 2012)

2. Bondavalli, A., Ceccarelli, A., Falai, L., Vadursi, M.: Foundations of measure-
ment theory applied to the evaluation of dependability attributes. In: 37th Annual
IEEE/IFIP International Conference on Dependable Systems and Networks, DSN
2007, pp. 522–533 (2007)

3. Coppolino, L., D’Antonio, S., Garofalo, A., Romano, L.: Applying data mining
techniques to intrusion detection in wireless sensor networks. In: 2013 Eighth Inter-
national Conference on P2P, Parallel, Grid, Cloud and Internet Computing (3PG-
CIC), pp. 247–254 (2013)

4. Coppolino, L., Romano, L., Bondavalli, A., Daidone, A.: A hidden markov model
based intrusion detection system for wireless sensor networks. Int. J. Crit. Comput.-
Based Syst. 3(3), 210–228 (2012)

5. Fonseca, R., Gnawali, O., Jamieson, K., Kim, S., Levis, P., Woo, A.: The collection
tree protocol (ctp) (2006)

6. Ganeriwal, S., Balzano, L.K., Srivastava, M.B.: Reputation-based framework for
high integrity sensor networks. ACM Trans. Sen. Netw. 4(3), 15:1–15:37 (2008)

7. Garofalo, A., Di Sarno, C., Formicola, V.: Enhancing intrusion detection in wireless
sensor networks through decision trees. In: Vieira, M., Cunha, J.C. (eds.) EWDC
2013. LNCS, vol. 7869, pp. 1–15. Springer, Heidelberg (2013)

8. Karlof, C., Wagner, D.: Secure routing in wireless sensor networks: attacks and
countermeasures. In: Proceedings of the First 2003 IEEE International Workshop
on Sensor Network Protocols and Applications, pp. 113–127 (2003)

Trust-Based Intrusion Tolerant Routing in Wireless Sensor Networks 229

9. Li, Z., Gong, G.: A survey on security in wireless sensor networks. Depart-
ment of Electrical and Computer Engineering. University of Waterloo, Canada,
pp. 2008–2020 (2011)

10. Maarouf, I., Baroudi, U., Naseer, A.: Efficient monitoring approach for reputation
system-based trust-aware routing in wireless sensor networks. IET Communica-
tions 3(5), 846–858 (2009)

11. Min, W., Kim, K.: Intrusion tolerance mechanisms using redundant nodes for wire-
less sensor networks. In: 2014 International Conference on Information Networking
(ICOIN), pp. 131–135 (2014)

12. National Science Foundation, Planète group: ns-3 (2012)
13. Perkins, C., Belding-Royer, E., Das, S.: et al.: Rfc 3561-ad hoc on-demand distance

vector (aodv) routing. Internet RFCs, pp. 1–38 (2003)
14. Perkins, C.E., Bhagwat, P.: Highly dynamic destination-sequenced distance-vector

routing (dsdv) for mobile computers. In: Proceedings of the Conference on Commu-
nications Architectures, Protocols and Applications, SIGCOMM 1994, pp. 234–244.
ACM, New York (1994)

15. Rezgui, A., Eltoweissy, M.: μRACER: A reliable adaptive service-driven efficient
routing protocol suite for sensor-actuator networks. IEEE Transactions on Parallel
and Distributed Systems 20(5), 607–622 (2009)

16. Schillo, M., Funk, P., Stadtwald, I., Rovatsos, M.: Using trust for detecting deceitful
agents in artificial societies (2000)

17. Srinivasan, A., Wu, J.: Secure and reliable broadcasting in wireless sensor networks
using multi-parent trees. Security and Communication Networks 2(3), 239–253
(2009)

18. Tanachaiwiwat, S., Dave, P., Bhindwale, R., Helmy, A.: Location-centric isolation
of misbehavior and trust routing in energy-constrained sensor networks. In: 2004
IEEE International Conference on Performance, Computing, and Communications,
pp. 463–469 (2004)

19. Yu, Y., Li, K., Zhou, W., Li, P.: Trust mechanisms in wireless sensor networks:
Attack analysis and countermeasures. Journal of Network and Computer Applica-
tions 35(3), 867–880 (2012); special Issue on Trusted Computing and Communica-
tions

20. Zhan, G., Shi, W., Deng, J.: Design and implementation of tarf: A trust-aware
routing framework for wsns. IEEE Transactions on Dependable and Secure Com-
puting 9(2), 184–197 (2012)

A Petri Net Pattern-Oriented Approach

for the Design of Physical Protection Systems

Francesco Flammini1, Ugo Gentile2, Stefano Marrone3,
Roberto Nardone2, and Valeria Vittorini2

1 AnsaldoSTS, Naples, Italy
francesco.flammini@ansaldo-sts.com

2 Università di Napoli “Federico II”, DIETI, Italy
{ugo.gentile,roberto.nardone,valeria.vittorini}@unina.it
3 Seconda Università di Napoli, Dip. di Matematica e Fisica, Italy

stefano.marrone@unina2.it

Abstract. The design of complex Physical Protection Systems (PPSs)
still raises some challenges despite the high number of technologies for
smart surveillance. One reason is the lack of effective methodologies able
to support the PPS designer in evaluating the effectiveness of the system
on varying design choices. Indeed, an estimation of the system vulnera-
bility should be performed in the early phases of the PPS design. This
paper introduces a model-based methodology for the quantitative esti-
mation of the vulnerability of a PPS. The proposed methodology clearly
defines a compositional approach which takes advantage from the us-
age of predefined patterns for the creation of vulnerability models. In
particular, the paper proposes some Petri Net patterns able to capture
the behavioural aspects of several assets and actors involved in attack-
ing/defending scenarios.

Keywords: Pattern Oriented Modelling, Model-Based Vulnerability
Assessment, Generalized Stochastic Petri Nets, Physical Protection Sys-
tems Design.

1 Introduction

Nowadays, there is an increasing interest in system protection against intentional
threats of physical nature [8,19]. On those regards, model-based vulnerability as-
sessment is a crucial phase in the risk analysis of critical infrastructures. In fact,
typical risk models include the computation of three logically sequential factors:
probability or frequency of threats (P); probability that threats are successful
in their intent (i.e., vulnerability, V); consequences of successful threats (i.e.,
expected damage, D). Therefore, in order to evaluate infrastructure risks (R), it
is essential to be able to compute the vulnerability of the system with respect
to the threats [11]. One of the most widespread and intuitive model for the
evaluation of the risk is [21]: R = P ∗ V ∗D. This model is based on a quantita-
tive notion of vulnerability, different from other definitions also commonly used,

A. Bondavalli and F. Di Giandomenico (Eds.): SAFECOMP 2014, LNCS 8666, pp. 230–245, 2014.
c© Springer International Publishing Switzerland 2014

A Petri Net Pattern-Oriented Approach 231

both in information system security and physical security [3,14]. We will return
on this point in the related work.

While threat occurrence rates and expected damages are rather easy to eval-
uate basing respectively on historical threat data and cause-effect analysis, vul-
nerability is often very difficult to account for since it requires the evaluation
of the effectiveness/efficiency of possibly novel technological countermeasures.
Unfortunately, it is not rare that new security technologies and related man-
agement procedures are justified only by intuition, and reveal in practice to be
much less effective than expected or advertised. In order to quantitatively assess
the effectiveness of protection systems, stochastic models are needed that are
able to represent the dynamic/temporal aspects of threat and countermeasure
evolution in the specific installation context.

Other essential requirements for such models to be usable in real industrial
settings is the ease of use, maintainability and scalability to large problems.
The Stochastic Petri Net (SPN) model we have proposed in [13] in order to
cope with vulnerability assessment had the advantage of being simple and easy
to customise in terms of parameters; however, it was much less suited to be
customised in terms of structure due to the underlying formalism constraints
that prevent the modeller from easily performing some structural modifications
that could be required in real-word analyses, like addition of attack/defence
phases, concurrent threats, fail-prone/redundant countermeasures, etc.

To cope with those issues, in this paper we propose a modular and composi-
tional approach for quantitative vulnerability assessment based on SPNs using
the ORIS tool [6]. The justification for adopting the SPN formalism has already
been given in [13] and relates to the very high expressive power that allows
modellers to easily overcome the limitations of other formalisms (e.g. Bayesian
Networks) in modelling dynamic aspects of the system. Despite of the expres-
sive power, modelling with SPN is also easier with respect to other suitable
formalisms (e.g. Continuous Time Markov Chains) since it allows to easily rep-
resent the possibly concurrent phases of activity diagrams when used as scenario
views. On the other hand, Petri Nets (PNs) have demonstrated their capabil-
ity to cope with extensible and compositional modelling. Compositionality and
model reuse are two crucial aspects in order to deal with heterogeneous problems
as the ones considered in this paper: this is the main motivation of the pattern
based approach here proposed. ORIS is one of the most recent tools for SPN
modelling, featuring several advantages ranging from the user-friendly GUI to
a wide range of possible analyses. Furthermore, the combination of the formal-
ism and the tool enables the possibility of instantiating and composing reference
patterns by means of an automatic process based on model-driven techniques
and to optimise design parameters by techniques like evolutionary algorithms.

Hence, with respect to our previous work [13] in which a single model is de-
scribed, this paper introduces a methodology for model-based vulnerability anal-
ysis and provides guidelines for vulnerability modelling, also in the direction of
enabling the automated generation of the models within a more general model-
driven process supporting the design of Physical Protection Systems (PPSs).

232 F. Flammini et al.

The ideas on which the methodology is founded are not new if separately con-
sidered (e.g., the usage of patterns, models composition, component based model
development). Nevertheless, they are integrated and applied to the quantitative
evaluation of physical vulnerability leading to an original way of addressing this
problem.

The approach is demonstrated by evaluating the vulnerability of a metro
station against a typical attack event. This case study has been already described
in other papers (see e.g. [12]) and constitutes a non-trivial scenario involving
several smart-sensors integrated in a Physical Security Management System [18].

The rest of this paper is organised as follows. Section 2 and Section 3 respec-
tively contain related work and a brief introduction to the the class of SPNs
used in the paper (namely Generalized Stochastic Petri Nets). Section 4 sets the
approach in the general context of physical protection system design and fine
tuning. Section 5 describes the reference high-level model and the compositional
approach addressed in this paper. Section 6 provides details on constituent sub-
models and some GSPN patterns for recurrent behaviours. Section 7 applies the
methodology on a realistic example coming from mass transit security. Finally,
Section 8 draws conclusions and provides some hints about future developments.

2 Related Work

Vulnerability assessment mainly relies on compliance-based approaches (presence
of proper components) and performance-based approaches (effectiveness evalu-
ation of PPS against the consequences of a successful attack). Two well-known
definitions of vulnerability, which well pertain to information system security, say
that vulnerability is a flaw or weakness (in any aspect of the system) that can
be exploited by a threat [3,28]. These definitions are widely used in risk assess-
ment methodologies designed to be qualitative and based on the work of skilled
security analysts. In fact, vulnerability is commonly qualitatively evaluated, also
relying on the availability of historical data related to past threat events. In this
paper we rather adopt a quantitative notion of vulnerability, in order to define
a model-driven process supporting PPS design and evaluation. Several concepts
are borrowed from model-based dependability and security evaluation [24] and
applied to vulnerability analysis. We consider a definition similar to the one
provided by the The Open Group [16] where vulnerability is the probability
that an attacker exceeds the defensive capabilities of the targeted asset. In other
word, the (conditional) probability that an attack is successful. The process is
based on a modeling approach that specifies the three main aspects involved
in effective physical protection system design, according to what stated in the
Mary Linn Garcia’s work [14,15], i.e., attacks, assets and protection technologies
and devices. Hence, our approach considers vulnerability with the respect to the
threats, as also in [20] where a complete attack tree-based language is proposed.
Specifically, with reference to a specific threat, our work is based on the following
quantitative definition of risk (R) [21]: R = P ∗ V ∗D, where: P is the expected
frequency of occurrence of the threat, which can be measured in [events/year];

A Petri Net Pattern-Oriented Approach 233

“V” is the vulnerability of the asset with respect to the threat, that is to say
the likelihood that an attack is successful, given that it is attempted; D is an
estimate of the expected damage occurring after a successful attack, which can
be quantified and expressed in any currencies, e.g. Euros. The vulnerability “V”
is a non-dimensional parameter, since it represents the conditional probability
P(success|threat). Therefore, a quantitative way to express the risk associated
to a specific threat is to measure it in lost Euros per year: [e/year]. Though sub-
ject to criticism in some applications [10], the risk model defined above has been
widely accepted by risk analysts, including the ones belonging to US national
laboratories [1]. In this paper we propose a model-based approach to the evalu-
ation of the vulnerability term, with the ultimate goal of supporting the design
and the evaluation of PPSs. Our approach also exploits the usage of Petri Net
(PN) patterns. Several works in the literature present PN patterns. In particular,
in [23] the definition of some design patterns is given (e.g., event sequence, token
multiplier and token removal); other works focus on specific contexts, such as
Van der Aalst’s workflow patterns [29]. We re-use some design solutions from [23]
to define a PN security-oriented set of patterns.

3 An Overview of Generalized Stochastic Petri Nets

Generalized Stochastic Petri Nets (GSPNs) are a well known modeling paradigm
introduced in 1984. GSPNs extend Petri Nets with a temporal specification al-
lowing the description of both the temporal and logical evolution of a system
within the same model. A GSPN consists of places, transitions and arcs. Graph-
ically a GSPN model is a directed bipartite graph in which places are drawn
as circles and transitions are drawn as bars or boxes. The arcs are the oriented
edges of the graph. Tokens are markers within places and are used to specify the
state of a PN. They are drawn as black dots. The dynamic behavior of the PN
is defined by the firing rule. If a transition may fire (i.e., if all its input places
contain at least as many tokens as the multiplicities of the corresponding arcs
from the places to the transition) the transition is said to be enabled. Its firing
removes a number of tokens from all its input places and generates a number of
tokens in each output place according to the multiplicity of the arcs connecting
the places and the transition. An inhibitor arc is a circle-headed arc from a place
to a transition which prevents the transition to be enabled if the place contains
a number of tokens equal or greater than the multiplicity of the arc. Timing is
associated with transitions. They belong to two classes: timed transitions (repre-
senting timing consuming activities) whose delays are exponentially distributed
random variables (here drawn as empty boxes), and immediate transitions with
a null delay which fire as soon as they become enabled (here drawn as thin
bars). An immediate transition always has precedence over a timed transition if
they are concurrently enabled. The reader may refer to [9] for an introduction
to GSPN modeling.

234 F. Flammini et al.

4 Designing Physical Protection Systems

In this Section we introduce the overall PPS model-driven design process which
is the frame where the proposed pattern-based modelling approach is situated.

The process presented in this paper moves from Garcia’s work, trying to take
advantage of the integration of the available information about the infrastruc-
ture, the threats and the features of the protection devices.

The design process is represented in Fig. 1. The ultimate goal is to automate
the generation of a suitable vulnerability model and the optimisation of the PPS
design, starting from a tentative configuration, according to given objectives.
The process starts with the development of high level specification models of the
three main components to be considered in evaluating the system vulnerability:
the infrastructure to protect, the configuration of its protection system and the
attack scenarios to cope with. The activity System definition represents the anal-
ysis phase which must be performed to enable the High Level Modelling activity.
The high level models are UML models or they may be expressed by means of a
Domain Specific Modeling Language (DSML, in [22] a UML profile is proposed),
then proper model transformations [26] are defined and applied to automate the
generation of a formal vulnerability model (Formal Modelling) and the set of
parameters to be used in the optimisation phase (Tuning Problem Definition
and Problem Tuning). Hence, the defined process is formalism-independent as
different formal modelling languages may be used to express the vulnerability
model, depending from the indices the user wants to evaluate and the objec-
tives he wants to reach (Indices choice). For example, a PPS designer could be
interested in minimising both the probability that a threat is not detected and
the cost of the protection system. The vulnerability model takes into account
the three components specified above; the set of parameters gathered from the
high level models contains the attributes which have to be considered by the
optimisation algorithms and used to instantiate the vulnerability model (e.g.,
MTTF of devices, rates, delays, etc.). This set of parameters is the input for
the Tuning Problem Definition phase as well as the vulnerability model. The
last is used in the Problem Tuning phase as it was an heuristic function: an
optimisation algorithm explores the design space by varying the parameter val-
ues and it is guided by the results obtained by solving the vulnerability model.
The optimisation algorithm may be a Multi-Objective Evolutionary Algorithm
(MOEA) such as Particle Swarm Optimization (PSO), Multi-Objective Genetic
Algorithms (MOGAs) or Firefly Algorithm (FA) [30].

The automated generation of the vulnerability model is a tricky step as we be-
lieve that it may be successfully implemented only if proper modelling guidelines
and patterns are defined and implemented within the transformational approach,
in order to guarantee both the feasibility of the translation and the correctness
of the resulting model. Hence, in the next Section a general structure for the
vulnerability model is proposed, and a specific realisation by means of Petri Net
patterns is described. Of course, the sub-nets convey the fact that they must
be used within an automated process, as a trade-off must be made between the
modelling style and the effectiveness of the model transformation.

A Petri Net Pattern-Oriented Approach 235

Fig. 1. A model-driven process supporting the PPS design

5 A Generic Vulnerability Model

This Section introduces the structure of the vulnerability model that should
be used in the transformation step to generate a specific formal model. The
model is influenced by the work of Mary Linn Garcia [14,15] and it is defined
as a composition of five modules, each of them consisting of one or more sub-
models expressed through the target formal language. It is shown in Fig. 2
where four modules (the white boxes) contain the sub-models whose composition
describes the dynamics of the overall system in case of attack, the fifth module
(the grey box) plays the role of a supervisor. The data flow among the modules
is represented by oriented arcs (solid lines). The dashed arrows model a control
flow enabling the possibility of monitoring and resetting the state of the entire
model.

The Attack module is in charge of modelling the evolution of the attack inside
the physical infrastructure to protect. As the occurrence of an attack may be de-
tected by sensing devices (security cameras, chemical sniffers, etc.), the Sensing
module is responsible of modelling the devices (that may be activated by trig-
gers) and generating events. The Assessment module may model the presence of
a security management system capable of assessing (and in case of correlating)
the events produced by the sensing devices and generating alarms. The Interven-
tion module models the actions performed in order to block the attack (e.g., the
intervention of guards or other countermeasures). This model receives as input
the assessed alarms from the Assessment module. The Supervisor module also
acts as an observer and evaluates the vulnerability of the system by taking into
account the information coming from both the Attack and Intervention modules
(i.e., the percentage of successful attack events).

At the state, we have chosen the GSPN formalism to instantiate the modules
defined above, because the proposed vulnerability model requires to describe
both static and dynamic features of the system as well as timing information.

5.1 Sub-models Composition

An agent-based paradigm is adopted in order to realize a loosely coupled com-
munication between the components of the model. This approach is not new in

236 F. Flammini et al.

Fig. 2. Structure of the vulnerability model

security modeling: several scientific works use agent-based paradigm for both
methodologies and practical tools [25]. The application of this communication
and interaction mechanism to the generic model previously described fits the
distributed and asynchronous nature of infrastructures, attacking scenarios and
PPSs: attacking and defending activities run concurrently. The sub-models ex-
pose proper interfaces and they are composed by connecting the output to the
input interfaces.

We use the Communicative Networks principles described in [27] in order to
realize the communication between modules. According to this approach, output
interfaces are transitions while input interfaces are places.

Fig. 3 depicts the composition to realize the ModelA − to − ModelB com-
munication by using a composition network. The composition is performed by
superposing the transition outInterface of the Model A with the transition T
of the composition network, and the place P of the composition network with
the place inInterface of the Model B. The communication is guaranteed by the
added arc. Superposition techniques are described in the literature, e.g. in [4].

Fig. 3. Composition of GSPNs

6 Petri Net Patterns for the Vulnerability Model

In this Section, the definition of GSPN patterns capturing the behaviours of
some actors of Physical Protection Systems is provided. In the graphical repre-
sentations of patterns, the dashed elements and their names in italics represent
the model elements to superpose with interface elements according to the Sub-
section 5.1.

A Petri Net Pattern-Oriented Approach 237

6.1 Attack Model

Fig. 4 defines the interface of the Attack model; it is constituted by the init
input place (that means the phase may start), the start output transition (the
action has started) and the end output transition (the action has ended). Fig. 5
proposes a simple GSPN pattern for a single-phase attack.

Fig. 4. Interface of the Attack model

init start end

Fig. 5. The single phased attack

As it is clearer by the case of multiple phased attack, the end transition of a
single phase submodel can be connected to the init place of another one. More-
over, the output interfaces serve as starting conditions for the Sensing model.

6.2 Sensing Model

The Sensing model represents an abstraction of the layer of sensors that monitor
a sensitive target. Fig. 6 shows the interfaces exposed by the Sensing model:
event and reset that are input interfaces detected that is the output interface.

Fig. 6. Interface of the Sensing model

One of the simplest GSPN pattern Sensing model can be constituted by is
depicted in Fig. 7. In this model, the InputEvent is the destination place of a
token when a detectable attacking event is conducted. According to the Attack
model, InputEvent is coupled with the start output transition. Regarding the
output interface, the NoFalseNegative represents the normal functioning of the
sensor; nevertheless, this GSPN pattern also considers the possibility of unde-
tected events (false negatives) that are modelled by the FalseNegative transition.

This simple GSPN pattern can be extended by introducing, as example, tradi-
tional up-down SPN cycles modelling the failure-repair evolution of real compo-
nents. This second solution is depicted in Fig. 8. This pattern uses an inhibitor
arc, so that the transition “Detecting” is not enabled if the sensing device is not

238 F. Flammini et al.

working. The addition of inhibitor arcs makes PN systems Turing equivalent,
in case the reachability set is not finite they enhance the expressive power of PNs
but they prevent some analysis techniques [7]. In case the PN system is bounded
they just allow for a compact representation and might be avoided. Here we deal
with bounded systems, the inhibitor arc may be automatically removed and
replaced by a proper sub-net according to the pattern-based approach within an
automated process, if needed.

Fig. 7. Simple Sensing Fig. 8. The Faulty Sensor

6.3 Assessment Model

The assessment model is in charge of elaborating the events raised by the Sensing
layer in order to assess them into real alarms. Fig. 9 depicts the interface of this
model: there are n input places in 1, ..., in n, one for each Sensing model in
input to this model. The other element is the out transition that communicates
with Intervention model giving (assessed) alarms.

Three GSPN patterns are proposed fulfilling the scope of this model:

– dummy assessment : the assessment phase is constituted by the simple prop-
agation of the events detected by the Sensing model (see Fig. 10);

– logical assessment : the assessment is provided by combining input events by
means of logical operators (Fig. 11 represents the AND assessment but OR
and KooN are easily implementable);

– human assessment : the assessment is provided by guard who controls peri-
odically the sensor: in case of event, he spends some time raising the alarm
(see Fig. 12).

Fig. 9. Interface of the Assessment model

in end

Fig. 10. Dummy assessment

A Petri Net Pattern-Oriented Approach 239

in_1

end

in_2

Fig. 11. AND based assessment

in end

Fig. 12. Human based assessment

6.4 Intervention Model

The Intervention model is in charge of modelling the defending process (i.e. the
movement of the guards towards the place of the threat, or the procedure of
activation of the countermeasures). The interface of this model is represented
in Fig. 13. The model has two interfaces: an input start place and an output
end transition. As for the Attack model, we can structure a defending process
in phases. Thus, Fig. 14 depicts the GSPN pattern for a single simple phase.
Composition of phases (and of GSPNs) is possible as for the Attack model is
Subsection 6.1.

start

end

Fig. 13. Interface of the Intervention
model

Start End

Fig. 14. Single phase intervention

6.5 Supervisor Model

The Supervisor model exposes three interface elements as depicted in Fig. 15.
The interface elements are the input places defender and attacker, that receive
tokens respectively from the Intervention and the Attack submodels, and the
reset output transition, in charge of restoring the initial state of the entire net-
work.

A possible implementation of this module is detailed in Fig. 16: the PN sub-net
is a slight modification of the A-before-B pattern from [23] (an event sequencing
pattern). According to [23], this pattern addresses the case that “on synchroniz-
ing two concurrent subnets it may be interesting to know the order in which the
enabling tokens arrive at the synchronization point”. Here, the events A and B
are the conclusion of the attacking and defending sequences of actions; it is nec-
essary to know which sequence ends first in order to evaluate the success/failure

240 F. Flammini et al.

defender

attacker

reset

Fig. 15. Interface of the
Supervisor model

Fig. 16. Supervisor model

of the protection system. This evaluation is made as follows. Starting from the
definition of vulnerability in [13], V = 1 − PE where PE is the probability that
the physical protection system is effective against the threat and by interpreting
probability in a frequentist way:

PE = tk(Neutralization)/[tk(Neutralization) + tk(ThreatSuccess)]

Where tk(p) is the mean number of tokens over time in p. Hence, it holds:

V = tk(ThreatSuccess)/[tk(Neutralization) + tk(ThreatSuccess)]

The initial marking of the sub-net (one token in Initial place) represents the
state where no attack has started yet: when the Reset timed transition fires, the
Supervisor module passes the token to the Attack module (see Fig. 2). Reset
(labeled reset) is the output interface of the Supervisor model: its timing nature
is due to the necessity to have an initial tangible state. Moreover, the model is
characterized by two arcs: from Neutralization to End and from ThreatSuccess
to End. If we consider NA the number of the different ways the modelled attack
can success, attMult = NA− 1 is the multiplicity of the arc from ThreatSuccess
to End; in a similar way, if ND is the number of the ways an attack may fail,
defMult = ND − 1 is the multiplicity of the arc from Neutralization to End.
This mechanism is necessary to consume all the tokens representing attacking
and defending “threads”. The arcs also restore the initial marking of the network
enabling a steady state analysis of the network.

7 Applications to Mass-Transit Transportation

The effectiveness of the modelling approach described in the previous Sections
is demonstrated using a case-study in the mass transit domain, whose assets are
vulnerable to several threats, including terrorist attacks. Therefore, surveillance
systems for mass transit feature a growing number of heterogeneous sensing
devices. In such a context, the quantitative evaluation of the PPS effectiveness
is very important to design robust surveillance systems and to reduce the overall
risk associated to the considered threats.

A Petri Net Pattern-Oriented Approach 241

Let us consider a threat scenario similar to the chemical attack with Sarin
agent occurred in the Tokyo subway on March 20, 1995, which caused 12 fatal-
ities and 5500 injured [2]. The available technologies to early detect and assess
the threat include intelligent cameras, audio sensors and specific standoff CWA
(Chemical Warfare Agents) detectors. The main CWA detection technologies in-
clude Ion Mobility Spectroscopy (IMS), Surface Acoustic Wave (SAW), Infrared
Radiation (IR), etc. They are employed in ad-hoc standoff detectors, charac-
terised by different performances. One of the most accurate devices, the auto-
matic passive IR sensor, can recognize a vapor cloud from several kilometres.
Obviously, it is possible to combine heterogeneous detectors (e.g. IMS/SAW and
IR) and to correlate their alarms according to different criteria (e.g. logic, tem-
poral, and spatial), in order to increase the CWA detection reliability. The same
considerations apply to the alarms detected by the other sensing devices. The
threat scenario consists of a simultaneous drop of CWA in subway platforms. Let
us assume the following set of events: (1) attackers enter in the atrium bringing
chemical agents; (2) attackers enter on the platform and free chemical agents:
(3) first contaminated persons fall down on the floor; (4) people around the con-
taminated area run away and/or scream; (5) the chemical agent spreads in the
platform level and possibly reaches higher levels.

In order to show the effectiveness of the approach, we compare some possible
defensive scenarios counteracting such an attack:

– S1 : a smart-camera, a microphone and a IMS/SAW sensor are present only
on the platform, an alarm is raised if all the three sensors detect events;

– S2 : a smart-camera, a microphone and a IMS/SAW sensor are present only
on the platform, an alarm is raised only if at least two of the three sensors
detect events;

– S3 : only IMS/SAW and IR sensors are in the atrium, an alarm is raised if
all the three sensors detect events;

– S4 : only IMS/SAW and IR sensors are on the platform, an alarm is raised
if all the three sensors detect events.

To build all the scenario models, we considered a two-phase pattern for the
Attack model. Each sensor is modelled by a simple sensing pattern. AND-based
models are proposed to implement the Assessment model (scenarios S1, S3, S4)
while a 2-out-of-3 GSPN pattern is used with reference to scenario S2. As In-
tervention model, we choose a single phased pattern. For the sake of the space,
only the first scenario is shown: Fig. 17 represents high level model as an instan-
tiation of the formalism independent schema in Fig. 2; Fig. 18 shows the GSPN
resulting from the substitution of the specified patterns.

The models have been populated with the realistic values listed in Table 1. The
analyses have been conducted using the ORIS tool [6] and the results, computed
by means of the formula in Subsection 6.5 are reported in Table 2. For this
specific case study, the results may (quantitatively) show us that:

– early detection dramatically improve the effectiveness of the PPS: comparing
the S3 and S4 scenarios, vulnerability varies from 0.8974 to 0.4074 by moving
the sensors from the platform to the atrium;

242 F. Flammini et al.

Fig. 17. The S1 scenario formalism independent model

Fig. 18. The S1 scenario GSPN model

– assessment method does not play a crucial role for the three sensors cases:
the difference between S1 and S2 scenarios is of 1 point percent.

Table 2 also indicates the feasibility of the approach in terms of computational
complexity by illustrating the dimension of the state spaces for the scenarios.

After evaluating the vulnerability, it is rather straightforward to obtain risk
estimation. For instance, if the frequency of the specific threat is estimated to
be 0.1 events per year (P) and the expected damage is estimated to be 10M (D),
then we get the following risk estimations:

A Petri Net Pattern-Oriented Approach 243

Table 1. Description of model parameters

Description Value

Attack

Atrium crossing time 20 s

Attack accomplishment time on platform 10 s

IMS/SAW

Detection time 5 s

False Negative Probability 0.05

IR

Detection time 2 s

False Negative Probability 0.03

Smart camera

Detection time 3 s

False Negative Probability 0.1

Microphone

Detection time 2 s

False Negative Probability 0.1

Intervention

Intervention time 20 s

Table 2. Analyses results

Scenario Vulnerablity Vanishing markings Tangible markings

S1 0.0579 19 17
S2 0.0454 82 42
S3 0.4074 15 9
S4 0.8974 11 9

Scenario S2: R = 0.1 * 0.0454 * 10.000.000 = 45.400 e/ year
Scenario S3: R = 0.1 * 0.4074 * 10.000.000= 407.400 e/ year

Of course, while for rare events like terrorist strikes those values provide rel-
ative yet useful indications, for less rare events like thefts and vandalism, those
values correspond more realistically to the expected/average annual loss in mon-
etary terms.

8 Conclusions and Future Developments

In this paper we have presented an extensible model-driven approach to formal
modeling for the quantitative evaluation of physical vulnerability. The approach
first introduces some GSPN security oriented patterns that can be instanciated
and composed to build security models: this allows a good balance between
flexibility and usability.

244 F. Flammini et al.

This work started on the track laid down by the METRIP project1 where
the problem of vulnerability evaluation in the context of physical security has
been approched by means of an UML model annotated with the CIP VAM UML
Profile [22] and automatic generation of a Bayesian Network model. Moving to
GSPNs was necessary in order to capture dynamical aspects.

Further research effort will be addressed in the following directions. First,
this work is a starting point to build libraries of PN patterns able to consider
more complex situations. The usage of these patterns will also be supported
by transformational approaches for their automatic generation from high level
models as successfully done in the reliability field [5]. Moreover, optimization
algorithms may exploit the solution of vulnerability models as heuristics [17] in
order to tune the parameters of protection mechanisms (response times, failure
rates, number of replicas, etc.).

References

1. A risk assessment methodology for physical security. white paper. Technical report,
SANDIA National Laboratories (2008)

2. Global terrorism database [199503200014]. Technical report, National Consortium
for the Study of Terrorism and Responses to Terrorism, START (2012)

3. Information technology security techniques information security management sys-
tems overview and vocabulary. Technical report, ISO/IEC (2014)

4. Bernardi, S., Donatelli, S., Horvath, A.: Compositionality in the GreatSPN tool
and its application to the modelling of industrial applications. In: DAIMI PB:
Workshop Proceedings Practical Use of High-level Petri Nets, University of Aarhus,
Department of Computer Science, pp. 127–146 (2000)

5. Bernardi, S., Flammini, F., Marrone, S., Merseguer, J., Papa, C., Vittorini, V.:
Model-driven availability evaluation of railway control systems. In: Flammini, F.,
Bologna, S., Vittorini, V. (eds.) SAFECOMP 2011. LNCS, vol. 6894, pp. 15–28.
Springer, Heidelberg (2011)

6. Bucci, G., Carnevali, L., Ridi, L., Vicario, E.: Oris: a tool for modeling, verification
and evaluation of real-time systems. International Journal on Software Tools for
Technology Transfer 12(5), 391–403 (2010)

7. Busi, N.: Analysis issues in petri nets with inhibitor arcs. Theor. Comput.
Sci. 275(1-2), 127–177 (2002)

8. Carney, J.: Why integrate physical and logical security? Technical report, Cisco
(2011)

9. Chiola, G., Ajmone-Marsan, M., Balbo, G., Conte, G.: Generalized stochastic petri
nets. a definition at the net level and its implications. IEEE Transactions on Soft-
ware Engineering 19(2), 89–107 (1993)

10. Cox Jr, L.A.: Some limitations of risk = threat × vulnerability × consequence for
risk analysis of terrorist attacks. Risk Analysis 28(6) (2008)

11. Flammini, F., Gaglione, A., Mazzocca, N., Pragliola, C.: Optimisation of security
system design by quantitative risk assessment and genetic algorithms. Int. J. of
Risk Assessment and Management 15, 205–221 (2011)

1 http://metrip.unicampus.it

http://metrip.unicampus.it

A Petri Net Pattern-Oriented Approach 245

12. Flammini, F., Marrone, S., Mazzocca, N., Pappalardo, A., Pragliola, C.,
Vittorini, V.: Trustworthiness evaluation of multi-sensor situation recognition in
transit surveillance scenarios. In: Cuzzocrea, A., Kittl, C., Simos, D.E., Weippl, E.,
Xu, L. (eds.) CD-ARES Workshops 2013. LNCS, vol. 8128, pp. 442–456. Springer,
Heidelberg (2013)

13. Flammini, F., Marrone, S., Mazzocca, N., Vittorini, V.: Petri net modelling of
physical vulnerability. In: Bologna, S., Hämmerli, B., Gritzalis, D., Wolthusen, S.
(eds.) CRITIS 2011. LNCS, vol. 6983, pp. 128–139. Springer, Heidelberg (2013)

14. Garcia, M.L.: Vulnerability Assessment of Physical Protection Systems.
Butterworth-Heinemann (December 2005)

15. Garcia, M.L.: Design and Evaluation of Physical Protection Systems. Butterworth-
Heinemann (October 2007)

16. The Open Group. Risk taxonomy. Technical report, The Open Group (2009)
17. Güdemann, M., Ortmeier, F.: Model-based multi-objective safety optimization. In:

Flammini, F., Bologna, S., Vittorini, V. (eds.) SAFECOMP 2011. LNCS, vol. 6894,
pp. 423–436. Springer, Heidelberg (2011)

18. Hunt, S.: Physical security information management (PSIM): The basics. Technical
report, Cisco (2011)

19. Johnson, R.G.: Physical Security Assessment. Critical Infrastructure Security -
WIT Press (2011)

20. Kordy, B., Mauw, S., Radomirović, S., Schweitzer, P.: Foundations of attack–
defense trees. In: Degano, P., Etalle, S., Guttman, J. (eds.) FAST 2010. LNCS,
vol. 6561, pp. 80–95. Springer, Heidelberg (2011)

21. Lewis, T.G., Darken, R.P., Mackin, T., Dudenhoeffer, D.: Model-Based Risk Anal-
ysis for Critical Infrastructures. Critical Infrastructure Security - WIT Press (2011)

22. Marrone, S., Nardone, R., Tedesco, A., D’Amore, P., Vittorini, V., Setola, R.,
Cillis, F.D., Mazzocca, N.: Vulnerability modeling and analysis for critical infras-
tructure protection applications. International Journal of Critical Infrastructure
Protection 6(34), 217–227 (2013)

23. Naedele, M., Janneck, J.W.: Design patterns in petri net system modeling. In: Pro-
ceedings of the Fourth IEEE International Conference on Engineering of Complex
Computer Systems, ICECCS 1998, pp. 47–54 (1998)

24. Nicol, D.M., Sanders, W.H., Trivedi, K.S.: Model-based evaluation: from depend-
ability to security. IEEE Transactions on Dependable and Secure Computing 1(1),
48–65 (2004)

25. Pederson, P., Dudenhoeffer, D., Hartley, S., Permann, M.: Critical infrastructure
and interdependency modeling: A survey of US and international research. Tech-
nical report, Idaho National Laboratory (2006)

26. Sendall, S., Kozaczynski, W.: Model transformation: the heart and soul of model-
driven software development. IEEE Software 20(5), 42–45 (2003)

27. Sibertin-Blanc, C.: Cooperative nets. In: Valette, R. (ed.) ICATPN 1994. LNCS,
vol. 815, pp. 471–490. Springer, Heidelberg (1994)

28. Stoneburner, G., Goguen, A.Y., Feringa, A.: Sp 800-30. risk management guide
for information technology systems. Technical report, Gaithersburg, MD, United
States (2002)

29. Van der Aalst, W.M.P., Ter Hofstede, A.H.M., Kiepuszewski, B., Barros, A.P.:
Workflow patterns. Distributed and Parallel Databases 14(1), 5–51 (2003)

30. Zhou, A., Qu, B.-Y., Li, H., Zhao, S.-Z., Suganthan, P.N., Zhangd, Q.: Multi-
objective evolutionary algorithms: A survey of the state of the art. Swarm and
Evolutionary Computation 1(1), 32–49 (2011)

On Two Models of Noninterference:

Rushby and Greve, Wilding, and Vanfleet

Adrian Garcia Ramirez1, Julien Schmaltz1, Freek Verbeek2,
Bruno Langenstein3, and Holger Blasum4

1 Department of Computer Science
Eindhoven University of Technology

Postbus 513, MB 5600, Eindhoven, The Netherlands
2 School of Computer Science

The Open University of The Netherlands
Postbus 2960 6401 DL Heerlen, The Netherlands

3 German Research Center for Artificial Intelligence (DFKI GmbH)
Saarbrücken, Germany

4 SYSGO AG
Klein-Winternheim, Germany

Abstract. We formally compare two industrially relevant and popular
models of noninterference, namely, the model defined by Rushby and the
one defined by Greve, Wilding, and Vanfleet (GWV). We create a map-
ping between the objects and relations of the two models. We prove a
number of theorems showing under which assumptions a system identi-
fied as “secure” in one model is also identified as “secure” in the other
model. Using two examples, we illustrate and discuss some of these as-
sumptions. Our main conclusion is that the GWVmodel is more discrimi-
nating than the Rushby model. All systems satisfying GWV’s Separation
also satisfy Rushby’s noninterference. The other direction only holds if
we additionally assume that GWV systems are such that every partition
is assigned at most one memory segment. All of our proofs have been
checked using the Isabelle/HOL proof assistant.

Keywords: Noninterference, information flow security, formal models.

1 Introduction

Critical devices found in cars, aircrafts and medical devices are becoming more
and more interconnected. In this context, a design and validation environment
offering secure decomposition of embedded systems becomes key to safety and
security [11,3]. A key issue is to control failure propagation when multiple func-
tions share a processor. In an ideal environment, every function should have its
own processor with controlled communication channels with the other proces-
sors running other functionalities. The left part in Figure 1 shows an example
of a gateway application running on three different processors. A function with
a high level of criticality (H) sends information to a function with a low level of
criticality(L) via a downgrader (D). Every function has its own processor and

A. Bondavalli and F. Di Giandomenico (Eds.): SAFECOMP 2014, LNCS 8666, pp. 246–261, 2014.
c© Springer International Publishing Switzerland 2014

On Two Models of Noninterference 247

Fig. 1. Gateway example with dedicated vs. shared resources

communications happen via explicit dedicated channels. Instead of having sep-
arate processors for separate functions, modern systems integrate several func-
tions on a single shared processor, e.g., Integrated Modular Avionics. Separation
kernels are at the heart of these modern safety and security critical systems [18].
Their main purpose is to provide an operating system foundation simulating
the ideal multiple processor environment on a single shared one. The right part
in Figure 1 shows the same gateway example implemented on one processor.
Both security and safety require the assurance that one function only affects
the others using specified communication channels. In the integrated case, the
separation kernel provides this assurance. Noninterference is a model used to
extract verification requirements for the separation kernel. Such a model allows
the expression that application H can interfere with D and that D can interfere
with L. In the transitive case, H can also interfere with L. Intransitive noninter-
ference is required to express the requirement that H cannot directly interfere
with L. The definition and study of transitive and intransitive noninterference
has been an active research field for the last three decades. Several definitions
have been proposed together with verification methodologies. These definitions
are all slightly different. Today, these differences mostly remain unexplored. Still,
knowing these details is key in selecting a particular definition and methodology.

Rushby and GWV are two popular models of noninterference. Both have
been applied in practice. To the best of our knowledge, there exist only informal
comparisons between these models. In contrast, we take a precise and formal
approach. We give formal proofs expressed in the logic of a proof assistant,
namely, Isabelle/HOL [15]. These proofs show in detail where these models dif-
fer and where they coincide. Our main contribution is to show that all systems
satisfying GWV’s definition of Separation are secure under the Rushby model
of noninterference. The other direction requires the additional assumption that
GWV systems are such that partitions are assigned at most one memory seg-
ment. The source of this difference mainly originates from the granularity of the
two models. GWV expresses security at the level of memory segments, while
Rushby considers security at the level of partitions. Different assignments be-
tween partitions and segments may yield the same security policy. Our proofs
consider both transitive and intransitive policies. For each type of policy, we
prove theorems showing under which conditions a system satisfying GWV’s

248 A.G. Ramirez et al.

notion of Separation also satisfies Rushby’s notion of noninterference, and vice
versa. Using two examples, we illustrate the differences between the two models
and the necessity of some of our assumptions.

2 Related Work

The concept of noninterference is a very abstract formalization aimed at solving
the problem of confidentiality and integrity in computer systems. The original
definition of transitive noninterference was introduced by Goguen and Meseguer
in 1982 [5]. Subsequently, John Rushby [19] proposed the first widely accepted
definition of noninterference for intransitive policies based on the idea of an
ipurge function, originally introduced by Haigh and Young [9]. Since its intro-
duction noninterference definitions have been widely discussed, and some mod-
ifications have been proposed. Van der Meyden argued that the classic notion
of intransitive noninterference (ipurge) allows some cases where a low security
domain can infer information from higher security domains without the interme-
diation of the trusted downgraders [13]. He proposed new definitions of security
to overcome this limitation and manually proved relations between his new defi-
nitions and purge-based ones [14,4]. Von Oheimb [16] proposed a generalization
of the original Rushby’s model to ensure noninterference in non-deterministic
state machines.

Schellhorn et al. have applied Rushby’s definition to smart cards that run
multiple applications that may not interfere which each other [21]. Their ap-
proach applies to, e.g., IBMs SmartXA, a smart card with both a supervisor-
and a user-mode, but to other multiapplicative systems such as cell phones or
PDAs as well. Krohn and Tromer adopt a process algebraic version of Rushby’s
definition formulated by Ryan and Schneider [12,20]. They prove noninterfer-
ence for Flume, a 30,000-line extension to a standard Linux kernel that provides
decentralized information flow control.

The model proposed by Greve, Wilding and Vanfleet (GWV [7]) ensures a se-
curity property called Separation. Greve proposed a later revision of the GWV
model called GWVr1 [1]. GWVr1 defines the notion of agents with the purpose
of adding accountability properties into the original model. Another generaliza-
tion called GWVr2 [6] was defined to cover security policies for dynamic and
distributed systems. A description and comparison between the GWV variants
was published by Greve [8]. Alves-Foss and Taylor clarified some of the concepts
proposed in the GWV model [2]. After informally comparing the GWV model
concepts and the notions of noninterference, they suggested that the GWVmodel
is at least as strong as the noninterference definition. We show in this paper that
the GWV model is stronger.

The GWV model has been applied to several industrial systems. Whalen et
al. use model checking to verify the Turnstile high-assurance cross-domain guard
platform of Rockwell Collins [1]. Richards applies GWVr2 to verify INTEGRITY-
178B, an operating system developed by Green Hills Software [17]. Wilding et
al. use the GWV framework in the ACL2 theorem prover to verify partition
management for the AAMP7G microprocessor [22].

On Two Models of Noninterference 249

3 Two Models of Noninterference

We give a brief presentation of the Rushby and the GWV models. All proofs are
omitted in this section. They are available in the original publications [19,7] and
in our Isabelle proof scripts1.

3.1 Rushby Transitive Noninterference

We consider Rushby’s model of noninterference with access control [19]. We
first define the system model and Rushby’s notion of “secure”. After that, we
introduce the elements needed for access control and define noninterference for
intransitive policies and the definition of “isecure”.

Systems are modelled using Moore machines. A Moore machine is a 6-tuple
(S, s0,A,O, step, output), where S is a finite state of states, A is a finite set
of actions which are the inputs of the machine, O is a finite set of outputs,
step : S ×A → S is a finite transition relation, and output : S → O computes
the current outputs from the current states.

Please note that from this point on, the first letters of the alphabet (a, b, ...)
are used to denote actions, the letters s, t, .. to represent states and the letters
of the Greek alphabet α, β, ... to indicate sequences of actions.

Function run computes the state reached after executing a sequence of actions.
Let [] be the empty sequence of action, α[0] the first action, and α[1...] be α
without the first action.

run(α, s) = if (α = []) s else run(α[1...], step(s, α[0]))

A security policy is defined as a relation between domains. The security policy
defines which domains are allowed to interfere with other domains. Intuitively
two domains u and v have an “interference” relation if u is allowed to flow
information to v. Let D be the set of domains. Interference is defined as the
relation �: D ×D. Noninterference is simply defined by its negation, noted ��.

Rushby’s definition of security is based on function purge(α, u). This function
returns a subsequence of α, resulting of deleting all the actions of the domains
that are not allowed to interact with v. In other words, it removes all actions of
domains u that have a “noninterference” relation with v (u �� v).

purge(α, u) = if (dom(α[0]) �� u) purge(α[1...], u) else α[0]; purge(α[1...], u)

A system being “secure” is then defined as the equality between a run and its
purged version. The intuition is that from the point of view of a given domain,
running the entire system or running this system without the actions of the
domains not interfering with this domain should not be distinguishable. This
notion of secure is defined by the following equation:

∀a, α.output(run(α, s0), a) = output(run(purge(α, dom(a)), s0), a) (1)

1 http://www.win.tue.nl/~jschmalt/publications/safecomp14/safecomp14.html

http://www.win.tue.nl/~jschmalt/publications/safecomp14/safecomp14.html

250 A.G. Ramirez et al.

A system is view-partitioned if for any domain u there exists an equivalence
relation – noted

u∼ – on the set of state S. Related to this view partition equiv-
alence relation, three unwinding conditions are introduced:

– Output Consistency: s
dom(a)∼ t → output(s, a) = output(t, a)

– Step Consistency: s
u∼ t → step(s, a)

u∼ step(t, a)

– Locally Respects: dom(a) �� u → s
u∼ step(s, a)

The main theorem in Rushby’s theory is the “Unwinding Theorem”. The
latter shows that security follows from the three unwinding conditions.

Theorem 1. Unwinding Theorem. Let � be a security policy and M a view
partitioned system that is

1. output consistent,
2. step consistent,
3. locally respects �,

then M is secure for �.

The Unwinding Theorem can be used to represent systems with access control
mechanisms. In this context, the state is assumed to be composed of individual
storage locations, called “objects”. Each object has a name and a value. Ac-
cess control functions determine for each domain which locations can be read
or written. This read and write accesses are defined using functions observe

and alter, with the interpretation that observe(u) returns the locations that
domain u can read, and alter(u) returns the locations that domain u can write.

Definition 1. Structured State. A machine has a structured state if there
exist:

– a set N of names
– a set V of values
– a function contents : S ×N → V

with the interpretation that contents(s, n) is the value of the object named n in
state s.

An access control policy is enforced when the behavior of the system matches
the intended interpretation of the observe and alter functions. This requires
the following conditions – called the “Reference Monitor assumptions” – to be
satisfied.

Definition 2. Reference Monitor Assumptions

– Reference Monitor 1 (RMA1):

s
u∼ t ≡ ∀n ∈ observe(u).contents(s, n) = contents(t, n)

On Two Models of Noninterference 251

– Reference Monitor 2 (RMA2):

s
u∼ t ∧

(contents(step(s, a), n) �= contents(s, a) ∨
contents(step(t, a), n) �= contents(t, a))

→ contents(step(s, a), n) = contents(step(t, a), n)

– Reference Monitor 3 (RMA3):

contents(step(s, a), n) �= contents(s, n) → n ∈ alter(dom(a)))

From these reference monitor assumptions, Rushby shows that the three un-
winding conditions can be derived. These conditions are therefore sufficient to
ensure security. For transitive security policies, the main theorem in the Rushby
model is the following:

Theorem 2. A system with structured state that satisfies the Reference Monitor
Assumptions and the following two conditions

1. u� v → observe(u) ⊆ observe(v)
2. n ∈ alter(u) ∧ n ∈ observe(v) → u� v

is secure for the policy �.

3.2 Rushby Intransitive Noninterference

In the case of intransitive policies, function purge is re-defined to purge actions
with no indirect interference with a given domain. From this new definition of
purge, called ipurge, the definition of security is obtained by replacing occur-
rences of purge with ipurge. Let us call this definition isecure.

After several technical lemmas, Rushby proves an Unwinding Theorem for
intransitive policies. The only difference to the transitive case (Theorem 1) is
the assumption of weak step consistency instead of step consistency. Formally,
weak step consistency is defined as follows:

s
u∼ t ∧ s

dom(a)∼ t → step(s, a)
u∼ step(t, a)

It basically adds the requirement of view partition equivalence for the current
active domain. This is needed to ensure that information only flows between
domains with an indirect interference relation.

From this Unwinding Theorem, Rushby proves that the Reference Monitor
Assumptions are also sufficient to ensure isecure.

Theorem 3. A system with structured state that satisfies the Reference Monitor
Assumptions and the following condition

1. n ∈ alter(u) ∧ n ∈ observe(v) → u� v

is isecure for the policy �.

252 A.G. Ramirez et al.

3.3 Greve, Wilding, Vanfleet

In the Rushby model, the current action is an input to the system. In the GWV
model, the current action is part of the system state. We define a GWV state as
a tuple made of a Rushby state and an action. Let Sg denote the set of GWV
states. Given sg ∈ Sg, we let sg.s denote the Rushby state part of sg and sg.a
the action part of sg.

The GWV model uses the term partitions to denote what Rushby calls do-
mains. Both terms denote the same concept. We keep notation D to denote the
set of partitions. Function current returns the current active partition from a
GWV state: current : Sg → D. A number of memory segments is associated to
each partition. Function segs takes as input a partition and returns the mem-
ory segments associated to it: segs : D → P(M). The values stored in memory
segments are given by function select. Let V be the set of possible values of
memory segments. Function select takes as input a state and a memory seg-
ment. It returns the value of this segment in the state: select : Sg ×M → V .
Finally, function next models one system execution step, that is, the execution
of one action and the computation of the next state: next : Sg → Sg.

The security policy is defined by function dia. This function takes a memory
segment – say n – as input and returns all memory segments allowed to directly
affect memory segment n. Function dia is formally defined as follows:

dia : M → P(M)

In the GWV model, separation denotes the notion of “secure”.

Definition 3. Separation. Let s, t ∈ Sg and n ∈ M,

current(s) = current(t)∧
select(s, n) = select(t, n)∧
∀m ∈ dia(n) ∩ segs(current(sg)).select(s,m) = select(t,m)
→
select(next(s), n) = select(next(t), n)

This definition states that for any segment n, its value is only affected by
the memory segments that (1) are allowed to directly interfere with it and (2)
are part of the current active partition. In our comparison, we need a variant,
which also assumes equality of the action in states s and t. We shall denote by
“Separation with Action Equality” the definition above where s.a = t.a is added
to the assumptions.

4 Formal Comparison

4.1 Proof Overview

Figure 2 gives an overview of the comparison between the two models. Lemma 2
shows that Separation implies weak step consistency. From this lemma, The-
orem 6 shows that for any GWV system satisfying Separation there exists a

On Two Models of Noninterference 253

weak
step consistency step consistencyisecure secure

Separation
with

Action Equality

Separation
Theorem 6

Lemma 2

Lemma 1

Theorem 7

Theorem 2Theorem 3

Rushby systems

GWV systems

GWV systems Theorem 8Theorem 9

Fig. 2. Relation between the GWV and the Rushby models

corresponding Rushby system that is isecure. Lemma 1 shows which additional
assumptions are required to recover step consistency from weak step consis-
tency. Using these additional assumptions, Theorem 7 shows that Separation
also implies a Rushby system that is secure. Theorems 8 and 9 show under
which assumptions Separation with Action Equality can be derived from a se-
cure or isecure Rushby system. The main assumption requires that any segment
is assigned to a partition and that all partitions have at most one segment. In
Section 5, we discuss these assumptions in more details.

4.2 Mapping between the Two Worlds

We give a mapping between the objects and relations defined in the two mod-
els. We first show how we map states and the transition functions. After that,
we show mappings for the security policy and the view partition equivalence
relation. Table 1 gives an overview of this mapping.

In the Rushby model, systems are modelled using Moore machines. From such
a machine, the corresponding GWV system model is defined as the following 5-
tuple (Sg, sg0 ,O, next, outputg), where:

– Sg : S×A: a GWV state is a tuple composed of a Rushby state and a Rushby
action.

– next : Sg → Sg: computes the next state. We assume that next(sg).s =
step(sg.s, sg.a) for all state sg.

– outputg : Sg → O: computes the observable output from the current state.
We assume that outputg(sg) = output(sg.s, sg.a) for all state sg.

We assume that the set of memory segments of the GWV model equals the set
of objects of the Rushby model, that is, we have M = N . We then identify func-
tion select with function contents, that is, select(sg, n) = contents(sg.s, n)
for all states sg and memory segment n.

254 A.G. Ramirez et al.

Table 1. Mapping between the elements of the GWV and Rushby models

GWV Rushby

Sg : S ×A, with sg.s ∈ S and sg.a ∈ A states in S , actions in A
Partition,D Domain, D
Memory segment, M Object, N
outputg output

current(sg) dom(sg.a)

segs(p) alter(p)

select(sg, n) contents(sg.a, n)

next(sg).s step(sg.s, sg.a)

{s|∃s′ ∈ segs(u).s ∈ dia(s′)} observe(u)

s
u∼g t s

u∼ t

u�g v u� v

We assume that a GWV partition can write to all its segments, that is, we
have alterg(u) = segs(u) for all partition u. A partition can read all segments
in direct interference with its own segments, that is, we define observeg(u) =
{s|∃s′ ∈ segs(u).s ∈ dia(s′)}. Assuming reflexivity of dia, we can easily prove
that segs(u) ⊆ observeg(u).

The definition of dia induces a security policy at the level of partitions. Such
a policy is defined such that two domains have an interference relation if there
exists a pair of segments that are in direct interaction. We can phrase this
definition using alterg and observeg as follows:

u�g v � alterg(u) ∩ observeg(v) �= ∅ (2)

This definition implies the condition corresponding to Condition 2 in Theorems 2
and 3. The following equation directly follows from this definition:

∀u, v.n ∈ alterg(u) ∧ n ∈ observeg(v) → u�g v (3)

Finally, the GWV model does not define a view partition equivalence relation.
This is a central concept in the Rushby model and we need to define such a
concept for the GWVmodel. We say that two states are view partition equivalent
for domain u in the GVW model if and only if the value of the segments of u
and the current active partition are equal in these two states. We define relation
s

u∼g t as follows:

(∀m ∈ segs(p).select(s,m) = select(t,m)) ∧ current(s) = current(t) (4)

4.3 Reformulation of Rushby’s Theorems

In its original formulation, Rushby defines three reference monitor assumptions.
The second monitor assumption is mainly used to derive (weak) step consis-
tency. In our formulation, we replace this assumption with weak step consistency.
We now prove a lemma showing how to recover step consistency from weak step

On Two Models of Noninterference 255

consistency. We show that any system that is weak step consistent and that satis-
fies the third reference monitor assumption and the two conditions in Theorem 2,
is also step consistent.

Lemma 1. Let M be a system that is weak step consistent and satisfies the
following conditions:

1. u� v → observe(u) ⊆ observe(v)
2. n ∈ alter(u) ∧ n ∈ observe(v) → u� v
3. RMA3: contents(step(s, a), n) �= contents(s, n) → n ∈ alter(dom(a)))

then, M is step consistent.

Using this lemma, we can reformulate the main theorem of the Rushby model
for transitive and intransitive security policies.

Theorem 4. A system with structured state that satisfies weak step consistency,
the first and third Reference Monitor Assumptions and the following conditions

1. u� v → observe(u) ⊆ observe(v)
2. n ∈ alter(u) ∧ n ∈ observe(v) → u� v

is secure for the policy �.

Theorem 5. A system with structured state that satisfies weak step consistency,
the first and third Reference Monitor Assumptions and the following condition

n ∈ alter(u) ∧ n ∈ observe(v) → u� v

is isecure for the policy �.

4.4 From GWV to Rushby

Our main lemma is to show that the GWV view partition equivalence is weakly
step consistent. This lemma is key in proving implication to the transitive and
intransitive models of Rushby. To prove this lemma, we introduce the notion
of “current respects”, which states that if two states are equivalent, the next
current active partition is the same in these two states.

CurrentRespects ≡ s
u∼g t → current(next(s)) = current(next(t))

We now state and prove our main lemma. A system satisfying the definition of
Separation (Definition 3) also satisfies weak step consistency.

Lemma 2. Given a system M satisfying the definition of separation by GWV
and Current Respects, then

u∼g is weakly step consistent, that is,

s
u∼g t ∧ s

current(s)∼ g t → next(s)
u∼g next(t)

256 A.G. Ramirez et al.

Proof. Assume s
u∼g t∧s

current(s)∼ g t. We then need to derive two facts to obtain
our conclusion: (1) equality of the segments in the next states and (2) equality
of the next current active partition. The second fact directly follows from the
assumption s

u∼g t and Current Respects. We are left with proving the first fact.
Let n be a memory segment such that n ∈ segs(u). From the assumptions

s
u∼g t and s

current(s)∼ g t, we derive the three conditions of the definition of GWV

secure. By definition, s
u∼g t gives us the equality of the value of n in states s and

t and the equality of the current partition in s and t. By definition, s
current(s)∼ g t

gives us equality in states s and t of all the segments of the current active
partition. Hence, the segments at the intersection of dia(n) with the segments
of the current active partition are also equal. We just derived the following:

1. select(s, n) = select(t, s)
2. current(s) = current(t)
3. ∀n′ ∈ dia(n) ∩ segs(current(s)).select(s, n′) = select(t, n′)

Then, Definition 3 gives us select(next(s), n) = select(next(t), n). �

Using this Lemma, we prove that any GWV system that is secure for an
intransitive policy� is also Rushby secure for this security policy. In this proof,
we assume that GWV systems satisfy reference monitor assumptions similar to
the first and third assumptions in the Rushby model. Formally, we define the
following properties:

Definition 4. GWV Reference Monitor Assumptions

– GWV Reference Monitor 1 (GWVRMA1):

s
u∼g t ≡ ∀n ∈ observeg(u).select(s, n) = select(t, n)

– GWV Reference Monitor 3 (GWVRMA3):

select(next(s), n) �= select(s, n) → n ∈ alterg(current(s))

The first assumption is needed to provide a definition of
u∼g. The second

assumption states that only the current active partition is allowed to write a
memory segment. This is a basic underlying assumption of the GWV model,
which is often left implicit. In our formal comparison, we need it to be explicit.
Using our mapping, it is easy to check that these two assumptions map to RMA1
and RMA3 (Definition 2) of the Rushby model.

Theorem 6. Let Mg be a GWV system satisfying the GWV Reference Monitor
Assumptions and Current Respects. Let M be the Rushby system corresponding
to Mg. Then M is isecure for �g.

Proof. From the assumptions, the mapping from the GWV model to the Rushby
model, and Equation 3, we obtain all assumptions of Theorem 5. �

On Two Models of Noninterference 257

We now show any GWV secure system is also Rushby secure for transitive
policies. The proof uses our reformulations of the main theorems of the Rushby
model.

Theorem 7. Let Mg be a GWV system that satisfies Current Respects, weak
step consistency, the GWV Reference Monitor Assumptions, and the following
condition:

∀u, v.u�g v → observeg(u) ⊂ observeg(v)

Let M be the Rushby system corresponding to Mg. Then, M is secure for �g.

Proof. From the assumptions, the mapping from the GWV model to the Rushby
model, and Equation 3, we obtain all assumptions of Theorem 4. �

4.5 Rushby Step Consistency Implies GWV Secure

We now prove that for any Rushby system satisfying step consistency there
exists a GWV system satisfying Separation with Action Equality. The main
assumption states that in the GWV system partitions are assigned at most one
segment and that all segments are assigned to a partition.

Theorem 8. Let M be a view partitioned system that is step consistent. Let
Mg be the mapping of M to the GWV model such that in Mg all partitions
have exactly one segment and all segments have a partition, i.e., the following
condition holds:

∀n ∈ M.∃p ∈ D.n ∈ segs(p) ∧ ∀n′ ∈ M.n′ ∈ segs(p) → n′ = n

Then, Mg satisfies Separation with Action Equality.

Proof. The main idea of the proof is to show that the hypotheses of Separation

with Action Equality implies
p∼g for some partition p. From this fact, we use the

assumption that the system is step consistent to derive segments equality after
execution of an action. We then map this back to the GWV world.

Let sg, tg ∈ Sg and n ∈ M. The hypothesis of our conclusion for n gives:

current(sg) = current(tg)

∧select(sg, n) = select(tg, n)

∧sg.a = tg.a

∧∀m ∈ dia(n) ∩ segs(current(sg)).select(sg,m) = select(tg,m)

From the second condition and the assumption that all partitions have exactly
one segment, it follows that all segments of p have the same value in states sg
and tg, i.e., we obtain: ∀m ∈ segs(p).select(sg,m) = select(tg,m).

From the third condition, we derive equality of the current active partition,
i.e., current(sg) = current(tg).

We now have obtained that sg and tg are GWV view partition equivalent for

partition p, i.e., sg
p∼g tg. Using the mapping, we translate this condition to

258 A.G. Ramirez et al.

Fig. 3. Rushby secure but GWV insecure system

the Rushby model and obtain sg.s
p∼ tg.s. From step consistency, we obtain view

partition equivalence for the successor states: step(sg.s, sg.a)
p∼ step(tg.s, sg.a).

By definition of
p∼ for structured states, it follows that the observable contents

of partition p is equal in the two successor states, i.e.:

∀m∈observe(p).contents(step(sg.s, sg.a),m)=contents(step(tg.s, sg.a),m)

The mapping translates this statement to the GWV model:

∀m ∈ observeg(p).select(next(sg),m) = select(next(tg.s),m)

Let p be the partition to which n is assigned. We then derive the right hand side
of our conclusion, i.e., select(next(sg), n) = select(next(tg), n). �

4.6 Rushby Weak Step Consistency Implies GWV Secure

For the intransitive case, the relation between Rushby and GWV is similar. The
only difference in the statement is that Rushby systems are weak step consistent.
The main difference with the previous proof is that one needs to also derive GWV
view partition equivalence for the current active partition.

Theorem 9. Let M be a view partitioned system that is weakly step consistent.
Let Mg be the mapping of M to the GWV model such that in Mg all partitions
have exactly one segment and all segments have a partition, i.e., the following
condition holds:

∀n ∈ M.∃p ∈ D.n ∈ segs(p) ∧ ∀n′ ∈ M.n′ ∈ segs(p) → n′ = n (5)

Then, Mg satisfies Separation with Action Equality.

5 Counter-Examples and Discussion

5.1 On the Direction Rushby to GWV

We justify the assumption that partitions must have no more than one segment.
Consider the example in Figure 3. There are three partitions, namely, u, v, and
w. Partition u has two segments, named 0 and 1. Partition v has segment 2,

On Two Models of Noninterference 259

and partition w has segment 3. Consider the following assignments in the GWV
model. We have segs(u) = {0, 1}, segs(v) = {2}, and segs(w) = {3}. We
consider two different assignments for dia. First, we define dia1(0) = dia1(1) =
∅, dia1(2) = {0}, and dia1(3) = {1}. We then define dia2 to be equal to dia1,
except for segment 3, where we define dia2(3) = {0}. Using our definition of
�g, these two definitions of dia imply the following security policy: u �g v,
u�g w. Let us call this policy �e

g.
In the Rushby model, the two different assignments of dia would produce two

different definitions of observe(w): observe1(w) = {0, 3} and observe2(w) =
{1, 3}. Assume these two systems are secure in the Rushby model. This means
that they are secure for policy �e

g. Assume that in the GWV model a system
satisfying dia1 satisfies Separation, but a system with dia2 does not. Then, we
have two secure systems in the Rushby model, but only one of them maps to a
GWV secure system. Therefore, to map Rushby secure systems to GWV secure
systems, it is required that GWV partitions have at most one memory segment.

The intuition behind this assumption is that defining interactions between
segments is more fine-grained than defining interactions between partitions. In
that sense, the GWV model is more expressive than the Rushby one. This might
be of interest for hardware which allows to directly specify access control between
memory segments. However, most commercial off-the-shelf Memory Management
Units (MMUs) only allow to assign memory segments to address spaces. They
do not support direct control mechanisms between memory segments.

All segments must be assigned to a partition. The reason is that a segment
not under control of a partition may contain secret data, but there is no way to
control the flow of this data. This secret segment may influence any other one
without violating the security policy.

5.2 Transitive GWV Security Policy

For transitive policies, the proof going from a GWV secure system to a Rushby
secure one needs an assumption, which is not needed in the case of intransitive
policies. This condition states that if two domains u and v have an interference
relation, the set of observable objects of u must be a subset of the observable
objects of v. This is condition 1 in Theorem 4. We give a counter-example of a
GWV system from which the derived Rushby system violates this condition.

Consider the system pictured in Figure 4. Partition V is assigned one segment.
It can write this segment using information from segments 2 and 3. Partition
U is assigned segments 2 ,3, 4, and 5. Let consider the following definition of
dia: dia(4) = {5}, dia2 = {3}, and dia1 = 2. For any other segment, its
dia is the empty set. The issue is that our mapping defines observeg(v) =
{1, 2, 3} and observeg(u) = {2, 3, 4, 5}. Also, our mapping gives v �g u. Hence,
¬(observeg(u) ⊆ observeg(u)). Here again, the different granularity of the
two models prevents the translation of some GWV systems to Rushby ones. In
this example, the Rushby model cannot express the fact that within a partition
some segments may not flow information to other ones. Note that supporting
this notion of intra-partition flow restrictions is in practice difficult to ensure.

260 A.G. Ramirez et al.

Fig. 4. Transitive Rushby secure but GWV insecure system

A reason for this is that all memory segments of a partition are loaded in the
same kernel working area. Special hardware is then needed to restrict information
flows between two particular segments of the same partition.

6 Conclusion and Future Work

We formally compared the GWV and the Rushby models by proving theorems
showing under which conditions a system satisfying the notion of Separation de-
fined by GWV also satisfies the notion of noninterference defined by Rushby, and
vice versa. We proved that from any system satisfying Separation, one can con-
struct a system satisfying Rushby’s noninterference. The other direction only
holds for GWV systems such that partitions have at most one segment. This
assumption lifts the granularity of the GWV model to the granularity of the
Rushby model. We provided a counter-example showing that without this as-
sumption, Rushby systems which are secure may not satisfy Separation. If a
separation kernel allows partitions to have several non-contiguous memory seg-
ments, the GWV model must be used. Otherwise, the two models are equivalent.

There are many different definitions of noninterference. The formal relations
between these definitions is mostly unexplored. In particular, we still need to
study of the relation of the Rushby and GWV models to the one of Van der
Meyden. In the future, our plan is to extend our formal comparison to other
definitions of noninterference.

Acknowledgment. We acknowledge funding from the European Union’s Sev-
enth Framework Programme (FP7/2007-2013) under grant agreement no 318353
(EURO-MILS project: http://www.euromils.eu).

References

1. Hardin, D.S. (ed.): Design and Verification of Microprocessor Systems for High-
Assurance Applications (2010)

2. Alves-Foss, J., Taylor, C.: An analysis of the GWV security policy. In: Fifth Inter-
national Workshop on ACL2 Prover and its Applications (2004)

http://www.euromils.eu

On Two Models of Noninterference 261

3. Brygier, J., Fuchsen, R., Blasum, H.: PikeOS: Safe and secure virtualization in a
separation microkernel. Technical report, SYSGO (2009)

4. Eggert, S., van der Meyden, R., Schnoor, H., Wilke, T.: Complexity and unwinding
for intransitive noninterference. CoRR abs/1308.1204 (2013)

5. Goguen, J.A., Meseguer, J.: Security policies and security models. In: IEEE Sym-
posium on Security and Privacy, pp. 11–20 (1982)

6. Greve, D., Wilding, M., Richards, R., Vanfleet, W.M.: Formalizing security
policies for dynamic and distributed systems (September 2004) (unpublished),
http://hokiepokie.org/docs/sstc05.pdf

7. Greve, D., Wilding, M., Vanfleet, W.M.: A separation kernel formal security policy.
In: Fourth International Workshop on the ACL2 Theorem Prover and its Applica-
tions, ACL2 2003 (July 2003)

8. Greve, D.: Information security modeling and analysis. In: Hardin, D.S. (ed.) De-
sign and Verification of Microprocessor Systems for High-Assurance Applications,
pp. 249–299. Springer, US (2010),
http://dx.doi.org/10.1007/978-1-4419-1539-9_9

9. Haigh, J.T., Young, W.D.: Extending the noninterference version of mls for sat.
IEEE Trans. Software Eng. 13(2), 141–150 (1987)

10. Hardin, D.S. (ed.): Design and Verification of Microprocessor Systems for High-
Assurance Applications. Springer (2010)

11. Kaiser, R., Wagner, S.: Evolution of the PikeOS microkernel. In: First International
Workshop on Microkernels for Embedded Systems, p. 50 (2007)

12. Krohn, M., Tromer, E.: Noninterference for a practical DIFC-based operating sys-
tem. In: IEEE Symp. Security & Privacy, pp. 61–76 (2009)

13. van der Meyden, R.: What, indeed, is intransitive noninterference? In: Biskup,
J., López, J. (eds.) ESORICS 2007. LNCS, vol. 4734, pp. 235–250. Springer,
Heidelberg (2007)

14. van der Meyden, R., Zhang, C.: A comparison of semantic models for noninterfer-
ence. Theor. Comput. Sci. 411(47), 4123–4147 (2010)

15. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL. LNCS, vol. 2283. Springer,
Heidelberg (2002)

16. von Oheimb, D.: Information flow control revisited: Noninfluence = Noninterfer-
ence + Nonleakage. In: Samarati, P., Ryan, P.Y.A., Gollmann, D., Molva, R. (eds.)
ESORICS 2004. LNCS, vol. 3193, pp. 225–243. Springer, Heidelberg (2004)

17. Richards, R.J.: Modeling and security analysis of a commercial real-time operating
system kernel. In: Hardin (ed.) [10], pp. 301–322

18. Rushby, J.: Design and verification of secure systems. ACM SIGOPS Operating
Systems Review 15, 12–21 (1981)

19. Rushby, J.: Noninterference, transitivity and channel-control security policies.
Tech. rep., Computer Science Laboratory, SRI International (1992)

20. Ryan, P.Y.A., Schneider, S.A.: Process algebra and non-interference. Journal of
Computer Security, 214–227 (1999)

21. Schellhorn, G., Reif, W., Schairer, A., Karger, P., Austel, V., Toll, D.: Verifica-
tion of a formal security model for multiapplicative smart cards. In: Cuppens, F.,
Deswarte, Y., Gollmann, D., Waidner, M. (eds.) ESORICS 2000. LNCS, vol. 1895,
pp. 17–36. Springer, Heidelberg (2000)

22. Wilding, M., Greve, D., Richards, R., Hardin, D.: Formal verification of partition
management for the AAMP7G microprocessor. In: Hardin (ed.) [10], pp. 175–191

http://hokiepokie.org/docs/sstc05.pdf
http://dx.doi.org/10.1007/978-1-4419-1539-9_9

Specifying Safety Monitors for Autonomous
Systems Using Model-Checking

Mathilde Machin1,2, Fanny Dufossé1,2, Jean-Paul Blanquart3,
Jérémie Guiochet1,2, David Powell1,2, and Hélène Waeselynck1,2

1 CNRS, LAAS, 7 avenue du colonel Roche, F-31400 Toulouse, France
2 Univ de Toulouse, LAAS, F-31400 Toulouse, France

firstname.lastname@laas.fr
3 Airbus Defence and Space, 31 rue des cosmonautes, 31402 Toulouse, France

jean-paul.blanquart@astrium.eads.net

Abstract. Autonomous systems operating in the vicinity of humans
are critical in that they potentially harm humans. As the complexity of
autonomous system software makes the zero-fault objective hardly at-
tainable, we adopt a fault-tolerance approach. We consider a separate
safety channel, called a monitor, that is able to partially observe the sys-
tem and to trigger safety-ensuring actuations. A systematic process for
specifying a safety monitor is presented. Hazards are formally modeled,
based on a risk analysis of the monitored system. A model-checker is
used to synthesize monitor behavior rules that ensure the safety of the
monitored system. Potentially excessive limitation of system functional-
ity due to presence of the safety monitor is addressed through the notion
of permissiveness. Tools have been developed to assist the process.

Keywords: Safety Monitoring, Safety Rules, Autonomous Robotics.

1 Introduction

Autonomous systems such as robots and unmanned vehicles are widely studied
and technically feasible. An important bottleneck for their effective deployment
in human environments is the safety concerns of both users and certification
authorities. Various ad-hoc safety measures have been designed, often focused
on particular risks, such as collision. However, if autonomous systems are to be
certified, the method needs to be generalized. We propose here a general method
to build high-level safety specifications based on hazard analysis.

The autonomous systems of interest to us offer a wide range of features and op-
erate in a diverse unstructured environment. They can thus be complex, which
makes them difficult to verify. Moreover, diversity of the environment implies
that testing cannot significantly cover the situations that the system will face.
Here, we choose a classical fault tolerance approach by considering online safety
measures implemented in a device called a safety monitor, that is simple and
independent from the main control channel, and thus easier to verify. The mon-
itor is solely responsible for safe system behavior. To this end, the monitor is

A. Bondavalli and F. Di Giandomenico (Eds.): SAFECOMP 2014, LNCS 8666, pp. 262–277, 2014.
c© Springer International Publishing Switzerland 2014

Specifying Safety Monitors for Autonomous Systems 263

equipped with means for context observation (i.e., sensors) and is able to trigger
safety interventions. The monitor behavior is specified declaratively by a set of
safety rules, each defining one intervention to apply in certain observation condi-
tions. However, safety interventions may also prevent the system from fulfilling
its functions. For instance, a vehicle whose emergency brakes are permanently
engaged is useless. We require the monitor to be permissive with respect to the
possibility for the system to perform useful tasks.

Continuing the work of Mekki-Mokhtar et al. [1], we propose a process based
on hazard analysis to specify safety monitors and extend it by means of formal
methods. Once a hazard is identified, it is necessary to specify what the monitor
has to do to avoid it, i.e., the safety rules. We aim to explore solutions very
early in the autonomous system design process. Thus, many observations and
interventions can be considered in a first design iteration, whereas only the most
appropriate ones are actually developed and implemented. We propose to use
model-checking to explore and check the specifications.

The main contributions of this paper are:
– A method to explore possible safety specifications by using model-checking.
– A method for modeling permissiveness in temporal logic.
– A set of tools to support the methodology1.
First, we present the overall concepts and process in Section 2. Section 3

details the exploration of possible safety rules in a discrete model, which is
applied in Section 4 to a mobile manufacturing robot. Related work is discussed
in Section 5 and Section 6 presents conclusions and future work.

2 Baseline and Concepts

We introduce here the underlying concepts of our work, based on definitions
adapted from [1], and then present the overall process.

2.1 Concepts

Taking inspiration from the IEC 61508 standard [2], we define a safety monitor
as a device responsible for safety, in opposition to the main control channel
which is responsible for all other functional and non-functional requirements
of the system. The monitor is equipped with means for context observation
(i.e., sensors) and able to trigger safety interventions. The safety monitor is
independent from the main control channel, as regards its means of observation,
computation and intervention. It is required to protect against all faults that
adversely affect safety, including interaction faults. The whole safety channel is
assumed fault-free (for example, we consider that the sensors available to the
monitor are perfect, without uncertainty.) In practice, this must be achieved
through classical redundancy and verification techniques. We focus in our work
on the upstream task of obtaining a correct high-level specification with respect
to safety and permissiveness.
1 Available at http://webhost.laas.fr/TSF/archives/safety_rule_synthesis

http://webhost.laas.fr/TSF/archives/safety_rule_synthesis

264 M. Machin et al.

Warning states

Catastrophic states

Safe states
Path aborted

by action Path aborted
by inhibition

safety '
action

xs
xc xw

¬ STC

SI

safety
inhibition

Fig. 1. Partition of system states in catastrophic, warning and safe states

A safety invariant (SI) is a necessary and sufficient condition to avoid a
hazardous situation. If a safety invariant is violated, we assume that damage
is immediate and irreversible, with no possible recovery. We refer to any state
violating the safety invariant as a catastrophic state.

Example: “the robot speed shall not exceed 3 m/s” (where 3 m/s is the
speed beyond which harm is considered to be inevitable).

A safety intervention is an activity carried out explicitly to prevent the sys-
tem from violating a safety invariant by constraining the system behavior. An
intervention is only applicable in states satisfying its associated precondition. We
distinguish two types of interventions: inhibitions and actions.
A safety inhibition prevents a change in system state. When triggered, an
inhibition is assumed to be immediately effective.

Example : “lock the wheels” (with “robot stationary” as precondition).

A safety action triggers a change in system state (and implicitly prevents other
state changes).

Example : “apply emergency brake”.

A safety trigger condition (STC) is a condition that, when asserted, triggers
a safety intervention. The intervention is applied when the STC is true. The STC
is chosen such that it becomes true before the safety invariant is violated.

Example: “the robot speed is greater than 2 m/s (i.e., less than the safety
invariant threshold of 3m/s)”.

A safety rule defines a way of behaving in response to a hazardous situation.
A safety rule can be operationalized as an if-then rule:
Safety rule � if [safety trigger condition] then [safety intervention].

Example: “if the robot speed is greater than 2 m/s then apply emergency
brake.”

As illustrated in Figure 1, the safety invariant defines the partition between
catastrophic states and non-catastrophic states of the monitored system. In-
terventions have to be applied before the catastrophe, i.e., in non-catastrophic

Specifying Safety Monitors for Autonomous Systems 265

Discrete model analysis

Safety invariants

HazOp/UML

Margin analysis

Variables observable
by the monitor

Interventions
effects and preconditions

Discrete model of 1 safety invariant

Synthesis of safety rules
of 1 safety invariant

Analysis of consistency
between rules of all the invariants

Fig. 2. Overview of the process

states. Now, interventions add constraints to the system behavior. So the set of
non-catastrophic states is partitioned into warning states, where interventions
are applied, and safe states, in which the system operates without constraint.
The warning states are defined such that every path from a safe state (e.g., xs

on Figure 1) to a catastrophic state, e.g., xc, passes through a warning state,
e.g., xw. The warning state enables triggering of an intervention to abort the
path to the catastrophic state.

We assess the monitor and its safety rule set according to the following three
properties:
Safety is the ability to ensure that the safety invariants are never violated, i.e.,
that catastrophic states are unreachable.
Permissiveness is the ability to allow the system to perform its tasks.
Validity specifies that no intervention is applied while its precondition is false.

Safety and permissiveness are antagonistic. We take this antagonism into ac-
count by designing the monitor to be maximally permissive with respect to safety,
i.e., to restrict functionality only to the extent necessary to ensure safety.

2.2 Process Overview

Figure 2 presents the overall process. We base our process on a HAZOP-UML
hazard analysis, which outputs safety invariants expressed in natural language.
We consider as a running example a mobile robot with a manipulator arm and
the informal safety invariant The arm must not be extended beyond the base when
the speed is greater than V0.

The safety invariant is then expressed formally with predicates on variables
that are observable by the monitor. We focus for now only on predicates involv-
ing a variable compared to a fixed threshold. This type of safety threshold is
amenable to formal verification and is used in many real systems. Considering
the two monitor observations: the absolute speed v, and a Boolean observation

266 M. Machin et al.

of the arm position a (true when the arm is above the base, false, when the arm
is extended), the example safety invariant is formalized as v < V0 ∨ a = true.

The margin analysis partitions non-catastrophic states into safe states and
warning states by splitting variable value intervals or sets. This is done one
variable after another. For example, the speed interval [0, V0[from the safety
invariant is partitionable according to a margin m in two intervals [0, V0 − m[
and [V0 − m,V0[. In the case of arm position, the observation is Boolean. The
singleton value set {true} cannot be partitioned, hence no margin exists. Formal
conditions for the existence of a margin are studied in [1].

From the margin analysis, we can discretize variables involved in the safety
invariant in order to synthesize safety rules. We call this the discrete model
analysis, which is detailed in Section 3. It is composed of three main steps: cre-
ation of a discrete model, rule synthesis, and rule consistency checking. In order
to keep models simple enough to be validated, each safety invariant is modeled
separately. The state variables of the model are the observable variables dis-
cretized by intervals according to the thresholds of the safety invariant and the
existing margins. The discrete model (e.g., Figure 3) is the Cartesian product of
the variable partitions. A catastrophic state is one that violates the safety invari-
ant (there is one catastrophic state on Figure 3, labeled C). The warning states
(W) are those that lead the system to the catastrophe in one step. Interventions
are modeled using the same discretized variables. In the example the monitor is
able to brake (action) and to prevent the arm from extending (inhibition).

The monitor is responsible for neutralizing every transition leading to a catas-
trophic state. For instance, Figure 4 illustrates a satisfying safety rule set, which
applies braking in s3 and arm inhibition in s1 and s2. Additionally to the tran-
sitions leading directly to the catastrophic state, several other transitions are
deleted. The safety rule set respects the safety properties, as the system cannot
enter the catastrophic state. All non-catastrophic states are reachable. Never-
theless, there is some loss of permissiveness as the system cannot stay in s3. We
consider this to be acceptable. In Sections 3.4 and 3.5, we propose two methods
to find systematically such safety rule sets.

As safety invariants are processed separately, the final step is to check the
consistency between the safety rule sets from different safety invariants. This is
addressed in Section 3.6.

3 Discrete Model Analysis

Given a safety invariant, several safety rules are usually needed to avoid violation
of the safety invariant. We call a safety strategy a set of rules applied with respect
to a single safety invariant. In this section, we aim to synthesize a safe, permissive
and valid strategy based on the discrete model.

We propose two approaches to synthesize strategies (Figure 5). The automatic
method finds strategies fast, given permissiveness requirements, by exploring
automatically the various combinations of safety rules. The interactive method
enables the user to adapt permissiveness requirements, and to build or modify
a strategy rule by rule.

Specifying Safety Monitors for Autonomous Systems 267

W

W

W

C

S

S

v < V0-m
⋀ a = true

v=0&a=1

V0-m
≤ v < V0

⋀ a = true

v=1&a=1

v ≥ V0
⋀ a = false

v=2&a=0

v ≥ V0
⋀ a = true

v=2&a=1

V0-m
≤ v < V0

⋀ a = false

v=1&a=0

v < V0-m
⋀ a = false

v=0&a=0

Fig. 3. The example discrete model from the partitions {true, false} for arm position,
and {[0, V0 −m[, [V0 −m,V0[, [V0, Vmax[} for speed

W

W

W

C

S

S

v < V0-m
⋀ a = true

v=0&a=1

V0-m
≤ v < V0

⋀ a = true

v=1&a=1

v ≥ V0
⋀ a = false

v=2&a=0

v ≥ V0
⋀ a = true

v=2&a=1

V0-m
≤ v < V0

⋀ a = false

v=1&a=0

v < V0-m
⋀ a = false

v=0&a=0

s1 s2

s3

t1
inhibition

action

Fig. 4. The example model with a safety rule set

The interactive method is used whenever there is no solution to the given
model and requirements. It informs the user on how to adapt the submitted
problem. The automatic method can then be used on the new problem to find
all possible strategies

3.1 Tools

We use the modeling language SMV and the model-checker NuSMV2 [3]. SMV
enables the declaration of integer variables and constraints on their behavior.
NuSMV builds transparently the Cartesian product of the ranges of all variables.
When no constraint is declared, all the combinations of variable values (i.e.,
states) are possible and all transitions between each pair of states are implicitly
declared. Constraints are then added to delete undesired states and transitions.
As for variables, time is discrete. It is modeled by the operator next(). NuSMV is
well-adapted to our variable-oriented modeling approach. Moreover, the implicit
transition declaration is convenient for modeling the whole physically possible
behavior.

268 M. Machin et al.

Interactive synthesisAutomatic synthesis

Generate a strategy

no

Check Safety

Choose state in path
as warning state Remove

safety
rule

Path to cata
Safe
= No path to cata

Not permissive
Permissive

Strategy

Choose an intervention

Suggest interventionsCheck Reduced
permissiveness

Check Safety

Check Validity

Save strategy
Compute criteria

The user chooses a
strategy

no

no

End of tree

User choice

Accept permissiveness
reduction

Discrete model

Check
Permissiveness

no

Fig. 5. The two methods for safety strategy synthesis

In the following, SMV code and output of NuSMV are given in typewriter
font. We have developed a template file to facilitate the modeling and to allow
the process to be automated.

3.2 System and Intervention Modeling

The domain of each variable of the safety invariant is partitioned according to the
thresholds of the safety invariant and the margin (if it exists), and the resulting
elements are numbered. For instance {[0, V0 − m[, [V0 − m,V0[, [V0, Vmax[} is
encoded as {0,1,2} (see Figure 3). Continuity of variables, i.e., contiguity of
partition elements, is modeled as the constraint: next(x) = x | x+1 | x-1,
i.e., a variable x can stay in the same interval or move to an adjacent interval,
but it cannot jump from one interval to another that has no common boundary.

We then model possible dependencies between variables. Nevertheless, some
dependencies cannot be modeled in a discrete way or with a given partition.
If a dependency is not modeled, the discrete model has less constraints than it
should, or from another point of view, it has too many transitions. If this “super-
graph” is safe, so is the “true” model. On the contrary, the permissiveness results
of the super-graph are not trustworthy. The resulting strategies are always safe;
but their level of permissiveness depends on the dependency modeling effort.

Interventions are always effective (when their preconditions are true), provided
some environmental and dimensioning assumptions. A safety braking action

Specifying Safety Monitors for Autonomous Systems 269

requires to consider for example a maximum slope rate, a maximum torque
from the motors. Safety interventions are then modeled as constraints that may
be applied or not. Consider a discretized speed v. The braking action and the
acceleration inhibition can be modeled by:

braking -> ((v!=0 -> next(v)=v-1) & (v=0 -> next(v)=0))
acc_inhibition -> next (v)!=v+1

As these examples show, an intervention usually adds a constraint on only one
variable, and leaves the others free. For example, at the same time step: speed can
be decreased by braking, and the arm can fold (as in transition t1 in Figure 4).

We make no restrictive assumption about the behavior of the main control
channel. The system model represents what is physically possible in the system
without a monitor. Therefore, safety interventions only remove transitions, i.e.,
possible behaviors, and cannot add transitions, i.e., add physically impossible
behaviors.

Unlike classical model-checking, an integer value does not model a single in-
terval width of an observable variable. Consequently, the time step has no de-
termined value. The next operator models an elastic future, which can be very
close or far away.

3.3 Safety, Permissiveness and Validity Modeling

Monitor properties are expressed in CTL (Computation Tree Logic), which is
entirely supported by NuSMV without any syntax change. Time along paths is
modeled by three operators: X for a property to hold in the next state, G to hold
on the entire path, F to hold eventually. The branching aspect is modeled by A,
all the branches, and E, there exists a branch. A CTL operator is composed of
one branching operator and one time operator. It is applied on states, or more
generally on statements on the system state.

To model safety, we use the atomic property cata to denote the catastrophic
states. cata is the negation of the safety invariant, e.g., cata := speed=2 &
arm_pos=0. Safety is modeled as the unreachability of the catastrophic states,
i.e., in CTL, AG ¬ cata. The expression of cata is the only user task in the
initial property modeling. Permissiveness and validity properties are generated
automatically. During the synthesis, the user is supposed to remove some per-
missiveness properties according to the accepted permissiveness loss choices.

Permissiveness is translated by three liveness properties applied to each non-
catastrophic state snc:

– Simple reachability EF snc
The state is reachable from the initial state.

– Universal reachability AG EF snc
The state is reachable from any reachable state.

– Continuous (and universal) reachability AG EF
(
snc ∧ EG snc

)
The state is reachable and the automaton can stay (indefinitely) in this state.
If an action is applied to the state, the system cannot stay in the state. It is
only a transient state, so the system cannot carry out tasks in this state.

270 M. Machin et al.

Continuous reachability is stronger than universal reachability, which is stronger
than simple reachability. The three properties checked separately on each warn-
ing state enable permissiveness to be assessed in a more detailed way than with
a single binary value. It is usually impossible to obtain safety without some loss
of permissiveness, and particularly with respect to continuous reachability.

It is possible but highly unlikely for variables to change their values simul-
taneously and independently. Such changes are called diagonal transitions by
reference to the two variable case (cf. Figure 3). As permissiveness should not
depend on such unlikely transitions, we choose to ignore diagonal transitions
when checking permissiveness. diag denotes that the immediately fired transi-
tion was a “diagonal” transition. mem(diag) is the memorization of diag, i.e.,
diag and mem(diag) are initially false and as soon as diag is true, mem(diag)
becomes true and stays true even if the value of diag changes. To ignore diago-
nal transitions during permissiveness checking, the properties are modified using
mem(diag) as follows:

– Simple reachability EF (snc ∧ ¬mem(diag))
The state is reachable by a path that always satisfies ¬diag , i.e., a path
that has no simultaneous value changes of independent variables.

– Universal reachability AG

(
¬mem(diag) → EF

(
snc ∧¬mem(diag)

))

The implication selects the part of the model without diagonal transitions
and checks the reachability property only in this part. From the previous
simple reachability property, we already know that this part is non-void.

– Continuous (and universal) reachability

AG

(
¬mem(diag) → EF

(
snc ∧ ¬mem(diag) ∧ EG

(
snc

)))

The automaton without any safety rule is usually permissive because it is only
a structure without specified behavior. Variables can change freely their values.
Similarly, it is unsafe, as catastrophic states are reachable.

Validity specifies that interventions are not applied in states that violate their
preconditions. We express this as:

AG
∧

i∈Interventions

i → preconditioni

where Interventions is the set of the candidate interventions and preconditioni

is the precondition associated to intervention i.
Once the safety invariant and the interventions have been defined, and the

properties have been generated, we can synthesize a strategy using either the
interactive method (Section 3.4) or the automatic method (Section 3.5).

3.4 Interactive Method

The interactive method (right side of Figure 5) uses the command-line interface
of NuSMV and alias commands. The model-checker finds a path to a catas-
trophic state as a counter-example to the safety property. The user chooses

Specifying Safety Monitors for Autonomous Systems 271

a warning state in this path to apply an intervention. The warning state is
by default the state immediately preceding the catastrophic state. Then the
model-checker determines whether each intervention is locally relevant. To this
end, the warning state is declared as the initial state and additional properties,
called suggestion properties, are checked. Suggestion properties are of the form
i → (preconditioni ∧ AX¬cata) where i is the intervention. The intervention is
suggested if its precondition is satisfied (i.e., the rule is valid) and if it renders
the catastrophic state unreachable in one step. If the state immediately preced-
ing the catastrophic state is not suitable (e.g., no intervention can be applied),
the user chooses an earlier state. When the nth state before the catastrophic
state is selected, the property has to be modified to apply the AX operator n
times to check that the catastrophic state is unreachable in n steps.

The user chooses an intervention among those suggested. The model-checker
checks the permissiveness of the system with the new safety rule.

This is done iteratively until there are no more paths to catastrophic states,
i.e., the system is safe. The selected safety rules constitute a satisfying strategy.

If the permissiveness test returns false, the user has three choices: accept the
loss of permissiveness; try another intervention; or try another warning state.
Selecting an earlier warning state in the path implies that downstream states
will be unreachable, which negatively impacts permissiveness. It may however
be relevant if a combination of safety rules makes many states unreachable.

The interactive method enables the user to customize in what states and to
what extent permissiveness is required. But exploration can be slow, which is
the reason why we have also developed an automatic method.

3.5 Automatic Method

The automatic method (left side of Figure 5) runs on the same model. It outputs
all safe and valid strategies that satisfy the permissiveness requirements (if any
such strategies exist). If full permissiveness is required, no result is obtained. On
the contrary, the lower the requirements, the more results there are. We thus
consider by default only simple and universal reachability, and compute criteria
that help the user to choose. When there is no solution, the interactive method
enables the user to find the blocking point and locally reduce the permissiveness
requirement. The automatic method is then run with customized requirements.

The automatic method is based on the enumeration of the strategies through
a branch-and-cut algorithm and the verification of properties by NuSMV [4].
The method is implemented using NuSMV scripts and a C program.

3.6 Consistency between Strategies

Different strategies may apply interventions simultaneously, which may be in-
compatible, e.g., braking and acceleration. To check strategy consistency, the
previous models (with their strategies) are merged into a single model. When
observable variables are common to several models but with different domain
partitions, a new domain partition is defined by taking the union of the thresh-
olds from the different models.

272 M. Machin et al.

There are two types of inconsistency. For example, braking and acceleration
impose incompatible constraints on speed, so the model-checker cannot compute
a next state. This type of inconsistency is detected by a basic command. Other
inconsistencies are not visible in the model because they cannot be modeled
with the chosen partition or there is no impact on an observable variable. In
these cases, we propose to list concurrent interventions to enable an expert to
determine inconsistencies.

4 Case Study

Our case study is part of the SAPHARI (Safe and Autonomous Physical Human-
Aware Robot Interaction) project [5]. The robot is composed of a mobile base
and an articulated arm. It is an industrial co-worker in a manufacturing setting.
It takes and places part boxes on shelves, work stations, or on the robot base in
order to convey them. It operates in the human workspace. We study here two
safety invariants from this robot.

4.1 Human/Arm Collision during Base Motion

Collision avoidance of the base trajectory relies only on base-to-obstacle distance
sensor. Consequently, if the arm is unfolded and extends beyond the base during
base motion, a collision between the arm and a human is possible. A very slow
base movement is tolerated. This case is the same as the example of Section 2.2.
The safety invariant is: The arm must not be extended beyond the base when the
base is moving (with speed higher than V0).

Discrete Model. The available observations are: 1) a Boolean observation
of the arm position a; 2) linear absolute base speed v (to simplify we ignore
rotation speed). a and v are independent. The safety invariant is formalized as
a = true∨v < V0. The considered interventions are: 1) braking (of base wheels);
2) inhibit the arm motion to prevent it from extending beyond the base, this is
possible only when the arm is above the base. A margin exists for the speed. The
following excerpt of the SMV module encodes the discrete model of Figure 3.
No other template modification is required.

MODULE Collision_SI
VAR -- Variable declarations
-- Continuity (low bound , high bound , initial value , mode)
base_speed : Continuity (0,2,0, mode);

-- 0:<V0 -m, 1:V0 -m<v<V0 , 2:>V0
arm_pos : Continuity (0,1,1,mode);

-- 1: above the base , 0: extended beyond

DEFINE cata := (base_speed .v=2 & arm_pos .v=0);

VAR -- Intervention declarations

Specifying Safety Monitors for Autonomous Systems 273

--Interv(precondition , flag to apply interv , effect , mode)
brake_base : Interv(base_speed .v!=0, flag_brake_base , next

(base_speed .v)=base_speed .v - 1, mode);
inhib_arm : Interv(arm_pos .v=1, flag_inihb_arm , next (

arm_pos .v)=1, mode);

The effect of brake_base is to decrease the speed. However, when speed.v=0,
decreasing it violates the variable range, so speed!=0 is set as precondition.

Interactive Method. We apply the algorithm of the right side of Figure 5.
Checking for safety returns a path to the catastrophic state. The state imme-
diately preceding the catastrophic state, chosen as a warning state, is defined
by base_speed.v = 1 & arm_pos.v = 0. With this state as initial, suggestion
properties are checked. The only suggested intervention is brake_base. We thus
define its trigger flag_brake_base in a safety rule:

DEFINE flag_brake_base := base_speed .v=1 & arm_pos.v=0;

Permissiveness properties are true except for the continuous reachability of
the warning state. This is expected since braking is an action intervention.

Another path to the catastrophic state results in defining base_speed.v = 1
& arm_pos.v = 1 as a warning state. Both possible interventions are suggested.
The inhibition inhib_arm is chosen since it does not decrease permissiveness:

DEFINE flag_inhib_arm := base_speed .v=1 & arm_pos.v=1;}

We check that permissiveness is indeed unchanged.
A third path to catastrophe defines the warning state base_speed.v = 2

& arm_pos.v = 1 where both interventions are again suggested. We choose
inhib_arm again and therefore add the warning state to flag_inhib_arm.

DEFINE flag_inhib_arm := (base_speed .v=1 & arm_pos.v=1) | (
base_speed .v=2 & arm_pos .v=1);}

Checking for safety now returns true. The strategy so defined is valid, safe, and
acceptably permissive. It is the same strategy as in Figure 4.

Automatic Method. From the same model Collision_SI the automatic
method returns three strategies. Among the three generated strategies, two have
two non-continuously reachable states and the last has only one such state.
To minimize loss of permissiveness we choose the strategy with only one non-
continuously reachable state.

STRATEGY #2
--Criteria
non continuously reachable states 1
states with intervention 3
states with combined interv 0
total nb of interv 3
interv_brake_base used in 1 states

274 M. Machin et al.

interv_inhib_arm used in 2 states
--Strategy definition
DEFINE flag_brake_base := flag_cinterv_1 | flag_cinterv_3 ;
DEFINE flag_inhib_arm := flag_cinterv_2 | flag_cinterv_3 ;
DEFINE flag_st_1 := base_speed .v = 1 & arm_pos.v = 0;
DEFINE flag_st_4 := base_speed .v = 1 & arm_pos.v = 1;
DEFINE flag_st_5 := base_speed .v = 2 & arm_pos.v = 1;
DEFINE flag_cinterv_1 := flag_st_1 ;
DEFINE flag_cinterv_2 := flag_st_4 | flag_st_5 ;
DEFINE flag_cinterv_3 := FALSE ;

The other computed criteria are: number of states where an intervention is
applied, use of combined interventions, i.e., application of several interventions
on the same state, the type of intervention. For example, our strategy makes
use of the two defined interventions brake_base and inhib_arm and uses no
combination of interventions. This strategy is the same as in Figure 4.

Our modeling and synthesis methods find the same strategy that was previ-
ously found intuitively on the graphical representation. Interventions are clearly
modeled, contrary to the graphical method. Moreover, as our modeling is textual
we can solve the same problem type with three or more variables.

4.2 Boxes Sliding from the Base

The robot arm has an impactive gripper as an end-effector that takes and places
boxes on its base, which can be used to convey part boxes. In this case, the robot
must respect a speed limit V1 that is less than the general speed limit.

Discrete Model. The available observations are: 1) box, a Boolean (true in
presence of box), and 2) base speed v (the same as in Section 4.1). The safety
invariant is box = false∨v ≤ V1. A safety margin value can be placed on speed.
The resulting integer ranges are [[0,1]] for box and [[0,2]] for speed (with cata:=
box=1 & speed=2). The only possible intervention is braking, since the presence
of boxes is not controllable.

Synthesis. Running the automatic method returns no strategy. During interac-
tive exploration, braking is suggested and applied, leading to a complete loss of
permissiveness in the state box=0 & speed=2. In other words, the robot cannot
go faster than V1 even if there is no box on the base. This is clearly not accept-
able. The user can choose either another suggested intervention (not possible
in this example) or an earlier state in the path (which brings here no benefit).
The current model and requirements admit no satisfying strategy. The intuitive
cause is that the presence of a box is uncontrollable.

Now, according to the robot service hypotheses only the robot arm is allowed
to place a box on the base. We add to the model the observable variable gripper
with values {closed_empty, open, closed_with_box} and the associated inter-
ventions: inhibit_opening and inhibit_closing. The variable is continuous
in the sense that from the value closed_empty to closed_with_box, the grip-
per always transits by open. We model that a box cannot arrive on the base

Specifying Safety Monitors for Autonomous Systems 275

without being in the gripper, and symmetrically a box can only be removed by
the (open) gripper.2

TRANS box.v=0 & next (box.v)=1 -> gripper .v=closed_with_box
TRANS box.v=1 & next (box.v)=0 -> gripper .v=open

Due to perception latency, gripper and box sensors may not be synchronized.
Therefore, the likely next gripper values (open in the first constraint) are not
specified.

The automatic method returns 32 strategies (which is a lot, so the selectivity of
the method should be improved). For every strategy, 5 states are not continuously
reachable and braking is applied in every warning state. One strategy uses only
braking. The other strategies add some inhibitions to this minimal strategy. For
instance, we consider the strategy that adds inhibit_opening in warning states
with no box on the base (inhibit_closing is not used).

In this example, the safety invariant is first ensured, with a high impact on
permissiveness. The gripper hypothesis makes the safety invariant feasible with-
out any impact on permissiveness at the expense of lower safety coverage. Even
if modeled safety is fully checked, the strategy does not cover all cases, e.g., when
workers disobey service regulations and place boxes on the robot base.

4.3 Consistency between Strategies

The two models with their strategies make every intervention pair reachable.
By modeling that V0 < V1 − m, the braking triggered by the first strategy is
no longer concurrent with interventions of the second invariant. In our example,
inhib_arm is compatible with brake and inhibit_opening.

5 Related Work

Several safety monitoring approaches have been proposed in the literature. For
instance [6] argues for a small and simple component in charge of guaranteeing
system safety, in particular with respect to hazardous sequences of function
invocations. We actually extend this conceptual approach proposing a systematic
methodology for the identification of the properties to ensure, while focusing only
on invariants.

Runtime verification (RV) typically generates code instrumentation from tem-
poral logic properties to verify execution traces at runtime [7]. Runtime verifi-
cation can be seen as a downstream process of our workflow: it could implement
the monitor from the specification that we generate. Some runtime verification
work explores the issue of independence between the monitor and the monitored
system. For example, Pike et al. [8] consider time-triggered monitoring of a set of
global variables, which avoids code instrumentation, achieves time-isolation, and
consequently does not require re-certification of the system due to the presence
of the monitor. A concept close to permissiveness is defined as functionality:
“the monitor cannot change the monitored system’s behavior, unless the latter
2 For clarity, the gripper variable is given textual values rather than integer values.

276 M. Machin et al.

has violated its specification.” Another relation between RV and our work is the
use of formal verification for monitoring purposes. We check offline the tree of
all possible executions (of the model) by using the branching logic CTL whereas
RV checks concrete executed traces with respect to linear temporal properties.
The reaction to trigger when detecting an error is called the steering problem in
the runtime verification community. It is a potential feature of monitors, but it
remains much less developed than the detection part. Error detection typically
returns information to the monitored program or raises an exception. Other pos-
sible reactions are considered as ad-hoc to particular systems because they are
not formally captured.

A parallel can be established between game theory and the way the system
is modeled, as possible physical behaviors. The monitor player is able to fire
or inhibit some transitions whereas the opponent, which can be regarded as
the environment or the main controller, is able to fire any transitions. Safety
rules are then the monitor strategy to achieve the winning condition (safety,
permissiveness and validity) whatever the opponent plays. In particular, we take
inspiration from supervisor synthesis [9], which is close to game theory.

Supervisor synthesis is based on language theory. It outputs directly the max-
imally permissive monitor, i.e., the monitor resulting in the system automaton
that recognizes the largest language. Therefore, permissiveness is taken into ac-
count but the user cannot customize it, by preferring one state instead of another.
In [10], Fotoohi et al. use supervisor synthesis to check the safety requirements
of a semi-autonomous wheel-chair.

Woodman et al. [11] present a very similar workflow to monitor autonomous
systems. They use HAZOP to identify hazards and determine (intuitively) the
corresponding safety rules, which are if-then-else rules. From sensor observations,
the monitor (safety layer) sends actuation inhibitions to both the controller and
the software actuator interface. The strong point of the method is to take into
account sensor uncertainty. Permissiveness is implicit.

6 Conclusion

We have described a method for obtaining a high-level safety monitor specifica-
tion, taking into account the specific features of autonomous systems. We base
it on hazard analysis, which is non-formal. Thanks to formal methods, we en-
sure that the derivation from formal safety invariants to safety rules is correct,
provided the modeling of safety invariants is valid. Safety invariants are modeled
separately in order to maintain model validability and to ensure scalability.

Our method justifies the modeling effort in that it does not only check the
specification but also guides the user in building it. Compared with related work,
both actions and inhibitions are allowed, resulting in a more generic method. An-
other strong point is the explicit modeling of permissiveness. The user has no
permissiveness requirement to provide and can choose precisely the permissive-
ness trade-off (provided variable dependency is modeled). By using the template,
the modeling approach is scalable to many variables and interventions.

Specifying Safety Monitors for Autonomous Systems 277

As future work, the algorithm selectivity is to be improved and the method
extended to process safety invariants other than those based on thresholds. The
method has yet to be applied on real and complete systems. Implementation
of the monitor would show how to adapt our hypotheses to the real system,
or vice versa. The implemented safety interventions have to comply with the
temporal hypothesis of the method taking into account the system dynamics and
the environment: 1) inhibitions have to be effective “instantaneously”; 2) margin
values have to cater for possible action latency. Note that the permissiveness
analysis always prefers inhibitions to actions whereas actions may be preferred
from an implementation viewpoint. Future work concerns customization of the
fault independence assumption by implementing safety rules at different levels
in the system architecture, resulting in several safety monitors instead of one.

Acknowlegment. This work is partially supported by the SAPHARI Project,
funded under the 7th Framework Programme of the European Community.

References

1. Mekki-Mokhtar, A., Blanquart, J.P., Guiochet, J., Powell, D., Roy, M.: Safety
trigger conditions for critical autonomous systems. In: 18th Pacific Rim Int’l Symp.
on Dependable Computing (PRDC), pp. 61–69. IEEE (2012)

2. ISO/IEC 61508-7: Functional safety of electrical / electronic / programmable elec-
tronic safety-related systems - part 7: Overview of techniques and measures (2010)

3. Cimatti, A., Clarke, E., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri, M.,
Sebastiani, R., Tacchella, A.: Nusmv 2: An opensource tool for symbolic model
checking. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp.
359–364. Springer, Heidelberg (2002)

4. Dufossé, F., Machin, M., Guiochet, J., Powell, D., Roy, M., Waeselynck, H.: Safety
strategy synthesis: Game theory versus model-checking. LAAS-CNRS, Tech. Rep.
14059 (2014)

5. Saphari project, http://www.saphari.eu
6. Rushby, J.: Kernels for safety. Safe and Secure Computing Systems, 210–220 (1989)
7. Leucker, M., Schallhart, C.: A brief account of runtime verification. Journal of

Logic and Algebraic Programming 78(5), 293–303 (2009)
8. Pike, L., Niller, S., Wegmann, N.: Runtime verification for ultra-critical systems.

In: 2nd Int’l Conf. on Runtime Verification, San Francisco, California, USA (2011)
9. Wonham, W.M.: Supervisory control of discrete event systems (2005)

10. Fotoohi, L., Gräser, A.: A supervisory control approach for safe behavior of service
robot case study: Friend. In: Proceedings of the 2010 ACM Symposium on Applied
Computing, pp. 1305–1306. ACM (2010)

11. Woodman, R., Winfield, A.F., Harper, C., Fraser, M.: Building safer robots: Safety
driven control. Int’l J. Robotics Research 31(13), 1603–1626 (2012)

http://www.saphari.eu

Automatically Generated Safety Mechanisms

from Semi-Formal Software Safety Requirements

Raphael Fonte Boa Trindade, Lukas Bulwahn, and Christoph Ainhauser

BMW Car IT GmbH
Petuelring 116, 80809 München

{raphael.trindade,lukas.bulwahn,christoph.ainhauser}@bmw-carit.de

Abstract. Today’s automobiles incorporate a great number of functions
that are realized by software. An increasing number of safety-critical
functions also follow this trend. For the development of such functions,
the ISO 26262 demands a number of additional steps to be performed
compared to common software engineering activities. We address some
of these demands with means to semi-formally express software safety
requirements, tools to automatically implement these requirements, and
artifacts and traceability information that can be used for safety case doc-
umentation. Through a hierarchical classification of safety mechanisms, a
semi-formal specification language for requirements, a generation engine
and a case study on a production-model automotive system, we demon-
strate: first, how expert knowledge of the functional safety domain can
be captured, second, how the tedious and error prone task of manually
implementing safety mechanisms can be automated, and third, how this
serves as a basis for formal safety argumentation.

1 Introduction

Today’s automobiles incorporate an increasing number of functions that are
realized by software. Developers design, implement and integrate the software-
based functions using, amongst others, model-driven development.

Following this trend, an increasing number of safety-critical functions are im-
plemented in software as well. To ensure the functional safety of these software
implementations, the safety engineering workflow defined by the safety standard
for road vehicles, ISO 26262 [8], requires that safety engineers perform a num-
ber of steps during the development of a specific safety-critical function. Safety
engineers analyze possible hazards that a system can cause, define high-level
safety goals to prevent hazards and analyze malfunctions that can lead to the
violation of safety goals. They then develop the functional and technical safety
concepts for a specific system, where the safety goals are refined to functional
and technical safety requirements. The technical safety requirements are written
in informal prose, consisting of software and hardware safety requirements, and
specify how the system implementation realizes the high-level safety goals.

Software developers realize the software safety requirements using mechanisms
for error detection and error handling. They ensure their correct implementa-
tion by well-established design and implementation principles and by diligent

A. Bondavalli and F. Di Giandomenico (Eds.): SAFECOMP 2014, LNCS 8666, pp. 278–293, 2014.
c© Springer International Publishing Switzerland 2014

Automatically Generated Safety Mechanisms 279

verification activities. In today’s safety engineering, the realization of software
safety requirements is done by software developers. Although developers work
carefully, development remains susceptible to human error. Moreover, the link
towards technical safety requirements is mostly established through verbal com-
munication and usually some informal documentation. This makes it difficult to
argue on traceability of implementation and specification artifacts.

We address these issues with means to semi-formally express software safety
requirements and with tools to automatically implement these requirements.
Moreover, the tools provide semi-formal artifacts and traceability information
that can be used for safety case documentation.

Our first contribution is a hierarchical classification of safety mechanisms
(Section 3.1) based on the properties inherent to different kinds of mechanisms.
Our second contribution is a semi-formal specification language (Section 3.2)
for software safety requirements. Our third contribution is a generation engine
(Section 3.3) for transforming semi-formal software safety requirements into soft-
ware and system architecture enhancements, such as model elements and source
code. Furthermore, we evaluate our approach on a case study (Section 4) of
a production-model automotive system. Finally, we discuss related work (Sec-
tion 5) and show how our approach can be applied to automate the realization
of more complex safety requirements (Section 6).

In sum, our contributions automate a laborious step of the safety engineering
workflow. Thereby, we reduce the manual effort of safety verification steps, and
make iterative safety-critical software development more efficient.

2 The AUTOSAR Standard and Tooling

To integrate our contributions smoothly into the existing automotive tooling,
we base our work on the widely-used and commonly-accepted AUTOSAR stan-
dard [4]. AUTOSAR is an open system architecture providing a meta-model
implementation, which allows car manufacturers and their software suppliers to
collaborate and standardize several elements of automotive platforms, such as
scheduling, communication paradigms and system services.

The AUTOSAR architecture abstracts from the low-level details of electronic
control units (ECUs) using a component model and a virtual function bus (VFB),
which provides abstract communication concepts between components. The com-
ponent model allows developers to specify software modules, compositions of
modules, ports, and port interfaces.

The VFB enables the interconnection of these modules via ports indepen-
dent of the actual hardware topology and system deployment, which is not
known at the VFB level. Furthermore, ports can provide different communi-
cation paradigms, such as sender-receiver or client-server.

The system model defines a concrete layout of ECUs and the buses connect-
ing them. Additionally, software components are deployed to specific ECUs in
the system model and the component interconnections are mapped to concrete
communication channels, such as a CAN or FlexRay bus.

280 R.F.B. Trindade, L. Bulwahn, and C. Ainhauser

Fig. 1. Workflow for the automatic generation of software safety mechanisms

To develop AUTOSAR-compliant systems, the model authoring tool Artop [2]
provides basic functionality to create AUTOSAR system models, software archi-
tecture models, and ECU configurations. Furthermore, the ARText framework [3]
supports the definition of textual languages for AUTOSAR. For example, AR-
Text’s software component language allows developers to describe software ar-
chitectures at the VFB level. We use ARText’s capabilities to define a textual
language for software safety requirements.

3 Safety Model Transformation

In this section, we describe our approach for automatic realization of software
safety requirements based on semi-formal specifications and model transforma-
tions. We briefly show how it fits into typical safety-critical software development
workflow and we describe the three steps for its realization.

Figure 1 depicts how our solution fits into a typical automotive system en-
gineering workflow. Note that this figure shows the artefact evolution, and not
the related process steps. On the one hand, functional engineering is responsible
for a software/system architecture that satisfies customer requirements. On the
other hand, safety engineering is responsible for defining the safety goals and the
requirements to fulfill these goals, among which are software safety requirements.
The software safety requirements (expressing what shall be done) lead to the en-
hancement of the pre-existing software architecture through safety mechanisms
implementing these requirements (expressing how it shall be done).

3.1 Classification of Safety Mechanisms

As a first step towards the automated realization of software safety requirements,
we identified and classified existing safety mechanisms in a hierarchy. Our clas-
sification in Figure 2 is based on Wu and Kelly’s classification [19], the ISO
26262 recommendations, literature and expert knowledge from the functional
safety domain. This classification serves as the foundation for the requirements
language and model transformations discussed in Sections 3.2 and Section 3.3.

Automatically Generated Safety Mechanisms 281

Fig. 2. Hierarchical classification of safety mechanisms

It groups mechanisms by provided functionality and by properties related to
the functionality. For example, the program control-flowmechanism has the func-
tionality of detecting errors by observing the logical order of program execution.
Our classification has three main categories: fault avoidance, error detection and
error handling. We focus on error detection and error handling.

Error detection is further divided into stateless and stateful detection. The
stateless safety mechanism subcategory contains, for instance, checksum mech-
anisms, such as CRC and parity checks, software or hardware based self-test
algorithms, and read-back mechanisms such as message read-back or challenge
response. The stateful subcategory contains, for example, elements for logical
monitoring, such as message counters or control-flow monitoring, as well as for
temporal monitoring, such as aliveness supervision, and data maximum age.

Moreover, the error handling category is also subdivided into masking, re-
covery and reporting. Corresponding elements of these subcategories are, for
example, filtering, voting, defaulting, and correction codes for masking; device
reset, memory partition reset, and degradation for recovery.

Our complete classification contains more than thirty mechanisms. Based on
this classification, we have also assessed which mechanisms are realizable in
software in the context of an AUTOSAR-compliant system. The classification
and assessment is described in detail in the deliverable D3.6.b [9] developed
within the SAFE project [10].

As previously mentioned, software safety mechanisms implement software
safety requirements. Our classification of mechanisms and their formalization has
taken into account their attributes, semantics, and also the technology platform
in which they are realized (i.e. AUTOSAR). This resulted in patterns that can
be applied by safety engineers in order to satisfy technical safety requirements.
These patterns are closely related to safety mechanisms. This is consistent with
traditional engineering methods, since engineers tend to specify implementation
requirements very close to the solution domain. We use these patterns to define
our specification language and meta-model relations from the identified patterns
to AUTOSAR elements.

3.2 Semi-Formal Specification of Software Safety Requirements

The approach proposed in this paper enables engineers to define requirements
intuitively and consists of three main elements: a meta-model, a textual modeling
language and a generation engine.

282 R.F.B. Trindade, L. Bulwahn, and C. Ainhauser

The meta-model is a semi-formal structure to capture software safety require-
ments for AUTOSAR-compliant systems, described in detail in the SAFE deliv-
erable D3.6.b [9]. Each software safety requirement has a specified semantics, also
defined in this deliverable. The semantics for the different safety requirements
is defined in natural language. Through the meta-model and the semantics, we
achieve the formalization of our software safety requirements.

With this semantics, we capture the generally-accepted intuitions about the
safety mechanisms in a semi-formal manner. As we focus on the application of
this language for writing software safety requirement and realizing them auto-
matically in software, this semi-formal semantics suffices to establish a common
understanding for language designers, tool developers and users. Investigation of
the meta-theory, the formal verification of properties and the proof of correctness
of tool implementations are not the focus of this work.

The meta-model defines the structure and attributes of our requirements in
a machine-friendly format. The textual modeling language is a human-friendly
interface to the meta-model. It provides access to all meta-model attributes, and
its simple textual form makes it easier for safety engineers to use. The genera-
tion engine applies model transformations to generate source code, AUTOSAR
models and traceability artifacts.

Meta-Model. Our current meta-model is limited to a selection of nine types of
software safety requirements, which we derived from the mechanisms captured in
our classification, briefly described in Section 3.1. This selection of software safety
requirements was driven by our evaluation scenario and it covers all relevant
mechanisms for our case study described in Section 4. Each requirement from
our selection corresponds to one mechanism in our classification, but not all
mechanisms in our classification have been included in the meta-model. For the
formalization of this selection, we captured the necessary attributes in a meta-
model and specified their semantics in natural language.

Our approach assumes that technical safety requirements are specified semi-
formally. This means that these requirements can be individually referenced
within a model. Our meta-model in turn allows traces from software safety re-
quirements to technical safety requirements and software safety requirements
to architectural elements to be established, as recommended by the ISO 26262
norm, part 8, clause 8.4.5.

The formalization of software safety requirements using our meta-model and
their semantics is the first step towards our approach of automatically realizing
such requirements. The graphical UML class diagrams of meta-model are bulky
and their proper presentation would exceed the limits of this paper. Hence, we
limit ourselves to the description of the textual language, which nevertheless
contains all attributes of the meta-model. A proper and detailed description of
the meta-model can be found in the SAFE deliverable D3.6.b [9].

Textual Modeling Language. In this section, the basic building blocks of our
textual modeling language are described. These building blocks allow engineers

Automatically Generated Safety Mechanisms 283

ssr limitRangeOfBrakeTemperature satisfies brakeTemperatureRequirement
using {

check range of root::ptSensorAbstraction::ppSensorTPC → brakeTemp
within {

(min := -20.0 , max := 120.0 , tolerance := 0.2)
}
handle {
VALUE ABOVE RANGE ⇒ default (120)
VALUE BELOW RANGE ⇒ default (-20)

}
}

Fig. 3. Range check software safety requirement

to specify formalized software safety requirements that fulfill technical safety
requirements. Figure 3 shows an exemplary software safety requirement for a
range checker. The range checker is an error-detection requirement, protecting
the value range of a given variable or interface.

The basic building block of the language is a software safety requirement
statement. This statement is the formalization of a requirement that realizes the
related technical safety requirements. The syntax is:

ssr 〈name〉 satisfies 〈reference to technical safety requirement〉 using
{〈expectation〉 handle 〈reaction〉}

The reference to the corresponding technical safety requirement that is realized
by the software safety requirement enables traceability and can be used in the
safety case argumentation.

The 〈expectation〉 describes the expected behavior, e.g., timing, input-output
relations, and internal state of elements, for a given element. A deviation from the
expectation triggers the corresponding 〈reaction〉 statement. In the range checker
example, it is expected that the value range of the data element brakeTemp lies
between −20 and +120. The value is provided by the port ppSensorTPC of
the software component ptSensorAbstraction in the software composition root ;
our language references the AUTOSAR model through the pattern 〈software
composition〉 :: 〈software component〉 :: 〈port〉 → 〈data element〉.

In the case of violation of the expected behavior, the 〈reaction〉 handles the
resulting errors. Within the 〈reaction〉 block, a set of 〈malfunction〉 ⇒ 〈action〉
pairs can be specified. The malfunctions determine which corresponding 〈action〉
shall be executed. Malfunctions are derived from the specific effects of errors
detected by the software safety requirement. For example, the malfunctions
detected by a range checker are lower and upper limits violations, denoted
by VALUE BELOW RANGE and VALUE ABOVE RANGE, resp. Similarly,
a control-flow requirement has temporal and logical state-transition violations
as malfunctions.

284 R.F.B. Trindade, L. Bulwahn, and C. Ainhauser

For each malfunction specified, the following action statements are available
in our language: (i) produce a default value, (ii) produce a value according to a
given formula, (iii) send a signal to the AUTOSAR diagnostics event manager,
(iv) invoke an operation on an AUTOSAR server port prototype or (v) reset the
ECU. These actions have shown to be sufficient for our purposes. Nevertheless,
the list of actions can be extended if necessary. For some of the 〈action〉 state-
ments, further parameters are needed. For example, in Figure 3, the engineers
must provide default values for each default value action.

Moreover, engineers are allowed to specify further nested error handling re-
quirements within actions. Hence, a software safety requirement can nest error
detection and error handling requirements. This allows engineers to define chains
of detection and handling requirements for realizing a given technical safety re-
quirement within the structure of a single software safety requirement.

In general, software safety requirements are directly related to specific model
elements, e.g., ports or components. Therefore, these cannot be reused by other
requirements. However, some software safety requirements can be reused, e.g., a
filtering requirement. A filtering requirement defines that value errors are masked
from the receiving component during a given time interval. If two software safety
requirements need the same filtering behavior, they can reuse the same filter-
ing requirement. The reuse is achieved by defining an action referring to the
same filtering requirement within the reaction block of the two software safety
requirements. The syntax for filtering software safety requirements is:

filter 〈name〉 { previous := 〈identifier list〉, current := 〈identifier〉,
tolerance := 〈integer〉, value := 〈expression〉 } handle { 〈reaction〉 }

The filter 〈name〉 is used to refer to a given filter within the reaction block of
other requirements, e.g., as shown in Figure 5. The 〈identifier list〉 defines how
many previous values shall be stored for the filter, the current identifier refers
to the current value received by the filter, tolerance defines how many times
the filter is allowed to be consecutively triggered before the reaction block is
executed and the value expression defines how the masked value is computed by
the filter. The reaction block of the filter has the same syntax and semantics as
described previously.

With the support of our textual modeling language engineers can define soft-
ware safety models. The definition of software safety models is the second step
towards the automated realization of software safety requirements.

3.3 Model Transformations

The third step towards the automated realization of software safety requirements
are the model transformations. There are two model transformations provided
by our safety model transformer, a model-to-model (M2M) transformation and
a model-to-text (M2T) transformation. The M2M transformation produces AU-
TOSAR model artifacts and SAFE model artifacts. The M2T transformation
generates C source code. Both transformations take the semi-formally defined
software safety requirements and the AUTOSAR software architecture as input.

Automatically Generated Safety Mechanisms 285

The safety model transformation uses the M2M transformation to enhance
the pre-existing AUTOSAR software architecture by adding the new architec-
tural elements: software components, wrapper software components, software
component interconnections, executable entities, and system and basic software
(BSW) configurations. In addition, it uses the M2T transformation to generate
the source code implementing the required executable entities.

The integration of the generated elements requires the software design to
be adapted in different ways. In the following, the result of adding some of
the elements listed previously is described using the exemplary range checker
software safety requirement.

Following the workflow depicted in Figure 1, the safety engineer defines soft-
ware safety requirements according to the formalism proposed in Section 3.2. At
this point, the software architecture is known but not yet enhanced with safety
mechanisms. The software safety requirement in Figure 3 states that a range
check shall be implemented for a specific data element of a sender-receiver port.

The realization of the range check for the given port is independent from
the behavior of the component providing data and also from the one requiring
data. Therefore, the M2M transformation generates a modular AUTOSAR solu-
tion composed of a software component, the executable entities of this software
component and a connector adaptation.

The generated solution is modular since the safety requirement is realized as a
single component, instead of being generated as part of a pre-existing component.
It is important to note that such a solution might not be suitable for all cases and
might impose requirements on the hardware platform, for example, a safe com-
munication between the component implementing the safety requirement and
the pre-existing component. The presented solution exemplarily describes one
possible realization of a safety requirement and highlights all elements created
in the generation process.

The software component created by the M2M transformation represents the
range checker mechanism and contains a required port for the incoming data
and a provided port for forwarding the checked value.

Two executable entities for the range checker software component are gener-
ated: one for initializing the software component and another one for performing
the range check.

The software component interconnections require the software architecture to
be adapted and pre-existing elements related to the software safety requirement
are affected. In this example, the existing connector for the sender-receiver port
pair is re-routed through the range checker software component instance.

The system configuration is enhanced to map the range checker software com-
ponent instance to the ECU instance where the receiver software component is
executed. This information is obtained from the models provided as input to the
transformation.

The M2T transformation then generates the source code for the two exe-
cutable entities of the range checker. The code is responsible for initializing the

286 R.F.B. Trindade, L. Bulwahn, and C. Ainhauser

safety mechanism and for checking the value range as well as triggering the
specified reactions in case of an error.

The source code is generated from C-code templates. The templates were im-
plemented manually by a software engineer and capture the typical implementa-
tion patterns for software safety requirements. They take into account properties
of the software safety requirements, e.g., buffers, ranges and specified reactions
and are defined having in mind properties such as ISO 26262 requirements on
coding standards (i.e., MISRA C [15]).

Moreover, there are other possible adaptations to the initial software architec-
ture than the ones described in the range checker example. Simple mechanisms
only require adding a new executable entity to a pre-existing software compo-
nent. However, for more intrusive safety mechanisms, e.g., control-flow moni-
toring, the monitored executable entities or software components are adapted
to provide interfaces for the reporting of checkpoints. Furthermore, if no mod-
ification to the application software level is allowed, specific configuration or
enhancement of basic software modules are required. Such more complex en-
hancements of the architecture require more contextual information (e.g., the
AUTOSAR system configuration).

While our approach automates the realization of software safety requirements,
it does not automate the task of validation and verification. For validating the
implementation of software safety requirements, regular software engineering
efforts, as recommended by the ISO 26262, are still required.

4 Evaluation

In order to demonstrate our approach, we have applied it to a real-world exam-
ple. We have partially re-engineered the existing realization of a torque-vectoring
rear axle system by replacing pre-existing software safety mechanisms with au-
tomatically generated mechanisms.

We have conducted a preliminary comparison of the regular development ef-
forts and the efforts required by our approach. The full results of this comparison
are described in SAFE project deliverable [11] to be released at the end of 2014.
It indicates that significant effort reductions during the development and inte-
gration phases are possible in some cases. In the comparison, the benefits of
fulfilling the traceability and formalism requirements of the ISO 26262 could
not be quantified; only a more extensive evaluation in future projects allows a
quantitative comparison.

The torque-vectoring system has the task of applying different torques to
the rear axle to reduce the risk of under-steering and to increase agility while
cornering. For this purpose, the technical system architecture is realized with the
three main modules: torque handling, torque position calculation and position
control. In order to perform its functionality, the three modules together read
several data sources, either sensor, e.g., the disk temperature, or external units,
e.g., the nominal torque value, realize a set of computations and finally operate
the actuators to distribute the calculated torque to both wheels of the rear axle.

Automatically Generated Safety Mechanisms 287

Fig. 4. Torque Vectoring System Software Architecture: a) without safety mechanisms
b) enriched with safety mechanisms

The technical safety concept contains more than 100 requirements that shall
be realized in software. In the following, we apply our proposed approach for one
concrete technical safety requirement:

TSR1: “In case of errors during sensor data acquisition of the disk
temperature, the torque-vectoring system shall be disabled within 100 mil-
liseconds (ms)”

This requirement has several implications on the technical solution. First,
some kind of error detection during data acquisition shall be performed. Second,
a corresponding error handling strategy (disable the system) has been defined.
Our approach supports safety engineers during the refinement and fulfillment
of technical safety requirements providing patterns that safety engineers select
while taking their domain expertise and the system’s properties into account.

In the software architecture shown in Figure 4 (a), the input data named S1,
provided by the “Sensor Abstraction” component, is carrying the disk temper-
ature referenced by TSR1. We assume the safety engineer defines two software
safety requirements according to the formalism we have proposed in Section 3.2,
in order to assure that the technical safety requirement TSR1 is fulfilled. Firstly,
a range checker shall detect possible violations of lower and upper value bound-
aries of S1. Secondly, a gradient checker shall detect improper value changes
from S1 within a given time window, i.e., more than 2 degrees within 10 ms.

Both software safety requirements lead to the degradation of the torque-
vectoring system if sensor data is invalid for more than 50 ms. The approach
chosen by the safety engineer is to fulfill the 50 deadline by scheduling the range
check and gradient check tasks with a period of 10 ms. After detecting the error
within 50 ms, the system disables the torque-vectoring during the subsequent 50
ms, and hence, satisfies the time interval required by TSR1.

Figure 5 depicts the software safety requirements for the range and gradient
checkers as well as the filtering requirement. The filter reacts if five consecutive
errors in the 10-ms-period task occurs, and therefore, reacts within 50 ms as
required.

Using both software safety requirements, the AUTOSAR software design and
system deployment information, the generative approach adapts the software
architecture as shown in Figure 4 (b).

According to the software safety requirements, the software component Range
Checker obtains the disk temperature from the providing software component

288 R.F.B. Trindade, L. Bulwahn, and C. Ainhauser

filter diskTempFilter {
previous := prev, current := cur, tolerance := 5, value := cur + prev / prev

} handle {
FILTER ERROR ⇒ call root::ptTorqueSystem→
ptSafeStateManager::spSafeStateManager→error gradient diskTemp

}

ssr limitGradientOfDiskTemperature satisfies TSR1 using {
limit gradient of root::ptSensorAbstraction::ppSensorTPC→diskTemp {
min := −2.0, max := 2.0,tolerance := 0.001, period := 10 ms

} handle {
GRADIENT TOO HIGH ⇒ diskTempFilter()

GRADIENT TOO LOW ⇒ diskTempFilter()

}
}
ssr limitRangeOfDiskTemperature satisfies TSR1 using {

check range of root::ptSensorAbstraction::ppSensorTPC → diskTemp within {
(min := -20.0 , max := 120.0 , tolerance := 0.2)

} handle {
VALUE ABOVE RANGE ⇒ diskTempFilter()

VALUE BELOW RANGE ⇒ diskTempFilter()

}
}

Fig. 5. Gradient and range check and corresponding filtering for the disk temperature

Sensor-Abstraction, performs the necessary value range validations and forwards
the value to the Gradient Checker component. The Gradient Checker component
gathers the disk temperature provided by the Range Checker, performs the plau-
sibility check and provides a filtered value to the receiving software component
Torque-Pos Calculation.

The decision made by the safety engineer refining the technical safety require-
ment implies that, in case of invalid data, both requirements filter erroneous
values for the specified time interval (five erroneous values for the range checker
and 50 ms divided into five 10 ms cycles for the gradient checker). If the in-
valid data persists for more than five range checks or 50 ms for the gradient
check, the checkers invokes the software component Safe State Manager, which
is responsible for the degradation of the actuator.

Figure 6 provides a small excerpt of the code corresponding to the implemen-
tation of the gradient checker safety mechanism. The generated code has been
integrated into the production software of the rear axle torque-vectoring system
and its functionality has been tested against the real mechanical system and on
the real target ECU. In the evaluation scenario, the generator focuses on the rel-
evant adaptations of the software architecture, the system configuration and the
C-code implementation. The generated artifacts provide traceability information
and support the safety case argumentation.

Automatically Generated Safety Mechanisms 289

//runnable for AUTOSAR

void swcGradientChecker_check_rp_ptRestECU_ppSensorTPC_diskTemp () {

SInt16 current_value;

int check_gradient_result;

//read current value

Rte_Read_rp_ptRestECU_ppSensorTPC_diskTemp(¤t_value);

if (b_swcGradientChecker_check_rp_ptRestECU_ppSensorTPC_diskTemp_init == TRUE) {

b_swcGradientChecker_check_rp_ptRestECU_ppSensorTPC_diskTemp_init = FALSE;

state.last_value = current_value;

Rte_Write_pp_ptRestECU_ppSensorTPC_diskTemp(current_value);

} else {

check_gradient_result = swcGradientChecker_check_rp_ptRestECU_ppSensorTPC_diskTemp_check_gradient(current_value);

if (check_gradient_result == FALSE){

//set error

b_swcGradientChecker_check_rp_ptRestECU_ppSensorTPC_diskTemp_gcError = TRUE;

if (state.error & swcGradientChecker_check_rp_ptRestECU_ppSensorTPC_diskTemp_ERROR_GRADIENT_TOO_HIGH){

SInt16 _filterReturnValue = swcGradientChecker_check_rp_ptRestECU_ppSensorTPC_diskTemp_diskTempFilter

(current_value);

Rte_Write_pp_ptRestECU_ppSensorTPC_diskTemp(_filterReturnValue);

state.last_value += swcGradientChecker_check_rp_ptRestECU_ppSensorTPC_diskTemp_MAX_VALUE;

SetStateMessage(DBG_ID_swcGradientChecker_check_rp_ptRestECU_ppSensorTPC_diskTemp,

swcGradientChecker_check_rp_ptRestECU_ppSensorTPC_diskTemp_ERROR_GRADIENT_TOO_HIGH,current_value);

}

if (state.error & swcGradientChecker_check_rp_ptRestECU_ppSensorTPC_diskTemp_ERROR_GRADIENT_TOO_LOW){

Rte_Call_cp_ptTVHAG2_ptSafeStateManager_spSafeStateManager_error_gradient_swcRestECU_ppSensorTPC_diskTemp();

state.last_value += swcGradientChecker_check_rp_ptRestECU_ppSensorTPC_diskTemp_MIN_VALUE;

SetStateMessage(DBG_ID_swcGradientChecker_check_rp_ptRestECU_ppSensorTPC_diskTemp,

swcGradientChecker_check_rp_ptRestECU_ppSensorTPC_diskTemp_ERROR_GRADIENT_TOO_LOW,current_value);

}

} else {

if (b_swcGradientChecker_check_rp_ptRestECU_ppSensorTPC_diskTemp_gcError) {

//reset all handling mechanisms used

swcGradientChecker_check_rp_ptRestECU_ppSensorTPC_diskTemp_diskTempFilter_reset();

b_swcGradientChecker_check_rp_ptRestECU_ppSensorTPC_diskTemp_gcError = FALSE;

}

Rte_Write_pp_ptRestECU_ppSensorTPC_diskTemp(current_value);

state.last_value = current_value;

SetStateMessage(DBG_ID_swcGradientChecker_check_rp_ptRestECU_ppSensorTPC_diskTemp,

swcGradientChecker_check_rp_ptRestECU_ppTPC_diskTemp_ERROR_NOERROR,current_value);

}

}

}

Fig. 6. Excerpt of generated code realizing the gradient checker requirement

The final result of artefacts and architectural adaptations largely depends on
the implementation of the generator and is also influenced by the system config-
uration. The results are mainly driven by design decisions of the safety engineer,
software developer, or system integrator. For example, for certain patterns, they
might prefer the generation of new runnables instead of the generation of new
software components.

5 Related Work

Much literature and research addresses the safety engineering process from safety
goals to software safety requirements, but the realization of software safety re-
quirements has only been addressed sparsely.

The structure of our safety mechanisms classification for the specific classes
of technical safety requirements is influenced by Wu and Kelly’s hierarchy [19].
Guidelines on safety-critical and fault-tolerant systems [7,12,16] were important
sources during the development of our safety-mechanism hierarchy.

Our M2M/M2T approach exploiting a formalized structure for software safety
requirement specification was mainly driven by software safety mechanisms in

290 R.F.B. Trindade, L. Bulwahn, and C. Ainhauser

existing implementations of current safety-critical systems. Contrary to our
pattern-based solution, Erkkinen and Conrad [6] assume a general-purpose mod-
eling language including a code generation engine, and restrict the use of blocks
of the language and configuration settings of the code generator, to fulfill safety-
relevant properties. Mader et al. [13] propose a generation environment that,
given a static system model, generates Simulink [17] models for specified safety
mechanisms. In this approach, the generator does not produce the dynamic be-
havior of the safety mechanism, but requires the engineer to manually refine the
model in a subsequent step providing the implementation of the behavior.

Arora and Kulkarni [1] describe a theory of how the combination of detectors
and correctors lead to fault-tolerant systems. Roughly, our approach makes their
theoretic considerations practically applicable, as using our approach, engineers
combine and nest detection and handling requirements in similar way and our
tools provide argumentation on certain fault-tolerance aspects.

The Mbeddr tool platform [18] supports different aspects of embedded
software development. For example, it allows its users to customize the C pro-
gramming language for certain industrial domains, and to integrate further in-
formation, such as requirements, into the programming language. While Mbeddr
focuses on programming language extensions in general, our approach focuses
specifically on formalizing safety requirements and safety mechanisms. It is
worthwhile to use Mbeddr’s functionality for integrating our specific approach
into the C programming language. This makes our approach also applicable in
a non-AUTOSAR context. As a result, any developer using Mbeddr can easily
realize safety mechanisms using our textual description language.

Masci et. al. [14] describe an approach to formally specify the user interface of
PCA infusion pumps that also supports verification and demonstration of proof
obligations. While our approach assumes that the safety engineer realizes the
refinement of technical safety requirements through the use of our formalized
software safety requirements, Masci et. al. relies on the formalization of natu-
ral language requirements using higher-order logic together with an executable
model of the system based on finite state machines. Formal languages, such as
higher-order logic, provide a flexible and extendable language to formalize the
requirements. However, this requires in-depth experts for the use of the formal
language. In contrast, in our work, we aim for a simple domain-specific language
tailored for safety engineers untrained in formal specification.

6 Outlook: Freedom from Interference

One challenging aspect of safety-critical software in the automotive domain is
the coexistence of software components with different criticality on the same
system. This is often called mixed-criticality. The ISO 26262, part 6, clauses
7.4.10 and 7.4.11 requires such cases to be analyzed and to provide sufficient
evidence of freedom from interference, namely, the absence of cascading faults
between components. In this section, we consider this aspect from the software
perspective and describe an approach to address mixed criticality.

Automatically Generated Safety Mechanisms 291

ISO 26262, part 6, Annex D provides guidance regarding faults whose oc-
currence could lead to the violation of freedom-from-interference requirements.
In this case, the main aspects to consider are timing, execution, memory and
communication.

We investigated approaches to automatically guarantee the fulfillment of free-
dom from interference requirements based on this paper’s work and on the ISO
26262 recommendations. Our approach involves the analysis of AUTOSAR soft-
ware architectures where safety requirements are allocated to software compo-
nents and are enhanced with ASIL annotations. After the analysis, a set of
software safety requirements for the architecture is defined and proposed to the
safety engineer. This set of requirements can be automatically realized by our
approach, as described in Section 3.

The ASIL annotations are used to check for mixed-criticality situations be-
tween components. In such case, the highest ASIL of the components being
checked is taken as basis and all other software components are analyzed regard-
ing this highest ASIL.

First, the analysis takes into account communication. The required ports of
each software component are analyzed and, whenever data is being provided by
a component with lower ASIL, requirements for safety mechanisms to deal with
communication faults are suggested. Examples of such requirements are default
value, checksums and filters. Furthermore, temporal properties of communica-
tion, i.e., time outs, are considered as well. If components with the same ASIL
are deployed to different ECUs, the analysis adds safety requirements related to
the configuration of the AUTOSAR Communication Stack, which ensures safe
inter-ECU communication between components through the end-to-end protec-
tion (E2E) library.

Second, the analysis continues with software execution aspects. For this as-
pect, the analysis checks if components with different ASIL share ECU partitions
or ECUs. For different ASIL components sharing only the same ECU, but exist
in different partitions, mechanisms, such as aliveness monitoring, are suggested.
If components with different ASIL share the same ECU partition, more care
shall be taken regarding execution, since a fault in a software component can
change the flow of another one. In this case, requirements, such as control-flow
monitoring, are suggested for error detection. Alternatively, such errors can also
be avoided by defining requirements on the operating system scheduler; however,
our analysis currently does not take this solution into account.

Last, the analysis considers the use of dynamic storage (main memory) in
the software architecture. If components with different ASIL share the same
partition, the analysis suggests, among other solutions, storing the component
data inversely in the memory. This is relevant if the components interfere with
components having a lower ASIL. In case the ECU supports partitions, allocating
components with the same ASIL to a common partition is suggested. This avoids
cascading faults between software components through memory.

The suggestions from the analysis refer directly to the software mechanisms
identified in our classification (Section 3.1). Since the analysis currently does

292 R.F.B. Trindade, L. Bulwahn, and C. Ainhauser

not take into account any extra information about the system, the number of
suggested requirements become quite large and can become a burden to the
safety engineer instead of supporting safety activities. A possibility for improve-
ment is to take into account the error model of the system. Such an error model
would describe the static malfunction propagation through system components,
as described in Cuenot et. al.’s work[5]. This allows the analysis to suggest ex-
tra requirements exploiting information about the system architecture and the
errors that actually occur in the system.

7 Conclusion

The realization of safety-critical software functions consists of more than just
implementing a few lines of code for the error detection and error handling
mechanisms, it rather requires that developers and engineers provide evidence
of the correctness of those lines and fulfillment of safety requirements.

Our approach captures expert knowledge of the functional safety domain and
automates the tedious and error prone task of manually implementing safety
mechanisms, while providing a basis for formal safety argumentation. Hence,
developers and engineers can focus on the adequacy of the software safety mech-
anism rather than the technical matter of its implementation. Furthermore, ex-
tending our approach to other platforms can be achieved by simply extending
the meta-model and providing corresponding generators.

In future work, we want to further investigate how complex software safety
requirements, such as freedom from interference, are formalized using our ap-
proach, and we want to identify suitable safety patterns for them. These complex
safety patterns are challenging, since they are composed by different mechanisms
and ensure safety through their collaborative behavior. Moreover, we want to
conduct a controlled experiment to quantify the benefits our approach and un-
derstand the concrete benefits in terms of effort saving when applying it to the
development of the complete software for a given safety-critical function.

Regarding formal verification, we want to better understand the required for-
malization of the AUTOSAR meta-model and programming language for provid-
ing a formal proof of correctness of software safety requirements’ implementations.
Moreover,wewant to investigate the integration ofmore expressive formalisms and
use of interactive theorem provers, as described by Masci et al. [14].

Furthermore, to enhance our analysis for freedom from interference, we want
to investigate the benefits of integrating error model information into the deci-
sions when suggesting safety requirements.

Acknowledgements. We thank Andreas Baak, Michael Knapp, Tilmann Ochs,
Thomas Schutzmeier and Kazi Zahid for their valuable contributions. We express
our gratitude to the anonymous reviewers for their constructive comments. We
gratefully acknowledge the full support from Harald Heinecke, Michael Rudorfer,
Tillmann Schumm, Reinhard Stolle and Michael Würtenberger. This work has
been conducted within the SAFE project in the ITEA2 framework, EUREKA

Automatically Generated Safety Mechanisms 293

cluster program Σ!3674, and has been funded by the German Ministry for Edu-
cation and Research (BMBF) through ID 01|S11019, and by the French Ministry
of the Economy and Finance (DGCIS).

References

1. Arora, A., Kulkarni, S.S.: Detectors and correctors: A theory of fault-tolerance
components. In: Int. Conf. on Distributed Computing Systems, pp. 436–443 (1998)

2. Artop User Group: Artop – AUTOSAR tool platform, http://www.artop.org
3. Artop User Group: Artext – an AUTOSAR textual language framework (2013),

http://www.artop.org/artext

4. AUTOSAR Development Partnership: Main requirements (v 2.1.0, rel 4.0, rev 1)
5. Cuenot, P., Ainhauser, C., Adler, N., Otten, S., Meurville, F.: Applying model

based techniques for early safety evaluation of an automotive architecture in com-
pliance with the ISO 26262 standard. In: Embedded Real-Time Software and Sys-
tems, ERTS (2014)

6. Erkkinen, T., Conrad, M.: Safety-critical software development using automatic
production code generation (technical paper). In: SAE World Congress 2007 (2007)

7. ISO: ISO/FDIS 26262, Part 6 - product development at the software level (2011)
8. ISO: ISO/FDIS 26262 road vehicles – functional safety (2011)
9. ITEA2 Project SAFE: Deliverable D3.6.b: Safety code generator specifi-

cation (2013), https://itea3.org/project/workpackage/document/download/

1556/10039-SAFE-WP-3-SAFED36b.pdf

10. ITEA2 Project SAFE: Safe - Safe Automotive software architecture (2013),
http://www.safe-project.eu/

11. ITEA2 Project SAFE: Deliverable D5.6.c: Evaluation of safety code generation,
http://www.safe-project.eu/SAFE-Download.html (to be published, 2014)

12. Kirrmann, H., Grosspietsch, K.: Fault-tolerant control systems (survey paper).
Automatisierungstechnik 50(8), 362–374 (2002)

13. Mader, R., Griessnig, G., Armengaud, E., Leitner, A., Kreiner, C., Bourrouilh, Q.,
Steger, C., Weiss, R.: A bridge from system to software development for safety-
critical automotive embedded systems. In: 38th EUROMICRO Conference on Soft-
ware Engineering and Advanced Applications, SEAA 2012, pp. 75–79 (2012)

14. Masci, P., Ayoub, A., Curzon, P., Lee, I., Sokolsky, O., Thimbleby, H.: Model-based
development of the generic PCA infusion pump user interface prototype in PVS.
In: Bitsch, F., Guiochet, J., Kaâniche, M. (eds.) SAFECOMP. LNCS, vol. 8153,
pp. 228–240. Springer, Heidelberg (2013)

15. MIRA Ltd.: MISRA-C:2004 Guidelines for the use of the C language in critical
systems (2004), http://www.misra.org.uk

16. NASA: NASA software safety guidebook. NASA (2004)
17. The MathWorks Inc.: Simulink (2013)
18. Voelter, M., Ratiu, D., Schätz, B., Kolb, B.: mbeddr: An extensible C-based pro-

gramming language and IDE for embedded systems. In: Proc. of the 3rd Ann.
Conference on Systems, Programming, and Applications: Software for Humanity,
SPLASH 2012, pp. 121–140. ACM (2012)

19. Wu, W., Kelly, T.: Safety tactics for software architecture design. In: Proc. of the
28th Annual Int. Computer Software and Applications Conference, COMPSAC
2004, pp. 368–375. IEEE (2004)

http://www.artop.org
http://www.artop.org/artext
https://itea3.org/project/workpackage/document/download/1556/10039-SAFE-WP-3-SAFED36b.pdf
https://itea3.org/project/workpackage/document/download/1556/10039-SAFE-WP-3-SAFED36b.pdf
http://www.safe-project.eu/
http://www.safe-project.eu/SAFE-Download.html
http://www.misra.org.uk

Querying Safety Cases

Ewen Denney1, Dwight Naylor2, and Ganesh Pai1

1 SGT / NASA Ames Research Center
Moffett Field, CA 94035, USA

{ewen.denney,ganesh.pai}@nasa.gov
2 Rensselaer Polytechnic Institute

Troy, NY 12180, USA
naylod@rpi.edu

Abstract. Querying a safety case to show how the various stakeholders’ con-
cerns about system safety are addressed has been put forth as one of the bene-
fits of argument-based assurance (in a recent study by the Health Foundation,
UK, which reviewed the use of safety cases in safety-critical industries). How-
ever, neither the literature nor current practice offer much guidance on querying
mechanisms appropriate for, or available within, a safety case paradigm. This pa-
per presents a preliminary approach that uses a formal basis for querying safety
cases, specifically Goal Structuring Notation (GSN) argument structures. Our ap-
proach semantically enriches GSN arguments with domain-specific metadata that
the query language leverages, along with its inherent structure, to produce views.
We have implemented the approach in our toolset AdvoCATE, and illustrate it
by application to a fragment of the safety argument for an Unmanned Aircraft
System (UAS) being developed at NASA Ames. We also discuss the potential
practical utility of our query mechanism within the context of the existing frame-
work for UAS safety assurance.

Keywords: Safety cases, Queries, Views, Formal methods, Automation.

1 Introduction

A safety case essentially provides an audit trail, which can assist in convincing the vari-
ous stakeholders of a system, including regulators, that the system is acceptably safe [1].
One of the motivations to use structured arguments in developing a safety case is to pro-
vide a means to explicitly justify safety considerations from concept, through require-
ments, to the evidence of risk mitigation/control. Additionally, argument structures are
intended to make a safety case easier to comprehend and, thereby, more efficient to re-
view critically [2]. To improve clarity in presenting the underlying reasoning, the Goal
Structuring Notation (GSN) [3] provides a graphical syntax with which to specify the
appropriate argument structures.

Previously [4], we identified the need to present role-specific information to subject-
matter experts to improve the comprehensibility of a safety argument. Furthermore, as
a system evolves through its lifecycle, so should its safety case, i.e., system changes,
assumptions that are validated/invalidated, and observations of safety performance, for
example, should translate into updates of the safety case so that the system and its safety

A. Bondavalli and F. Di Giandomenico (Eds.): SAFECOMP 2014, LNCS 8666, pp. 294–309, 2014.
c© Springer International Publishing Switzerland 2014

Querying Safety Cases 295

case are mutually consistent. We believe that one of the first steps to address these needs
is through an approach for safety case queries. Although the potential to query a safety
case has been put forth previously as one of the benefits of using safety cases, and as a
way for stakeholders to understand how safety concerns have been addressed [5], to the
best of our knowledge there is scant guidance on a principled way for querying safety
cases.1

The application domain motivating our work is Unmanned Aircraft Systems (UASs).
We are interested in creating a framework for argument-based assurance of airworthi-
ness and flight safety of UAS, which augments the existing processes and reuses the
artifacts produced to the extent possible, so as to ease its adoption in practice. A broad
goal is to be able to address the requirements from the relevant regulations/standards.
An additional goal is to be able to support safety case development. In general, safety
engineers and system developers need to understand and communicate what they (or
others) have already done, that which remains to be done, and how different parts of the
argument may relate to each other and to the system.

These issues are also critical for safety/assurance case assessors. To determine safety
case fitness for purpose, it is necessary to involve all the relevant stakeholders so that
they may understand the (safety) claims made, and challenge the reasoning and evi-
dence presented. However, safety cases typically contain heterogeneous reasoning [6]
and a wide variety of evidence, e.g., the mandated work products which show compli-
ance to the relevant regulations and standards, the results of analyses (safety, system,
and software), various inspections, audits, reviews, simulations, verification activities
including various kinds of subsystem/system tests, and, if applicable, also the evidence
of safe performance from prior operations. In other words, safety cases can easily amass
a large amount of information. For example, the preliminary safety case for ADS-B air-
port surface surveillance applications [7] is about 200 pages long. Thus, partly due to
the size and diversity of information contained in a safety case it may not be straight-
forward (or possible) for all stakeholders to locate and/or understand all the arguments
presented along with their different elements.

In this paper, our main contribution is a preliminary approach (Section 2), and a
formal basis for querying GSN safety case argument structures (Section 3). We define
queries as properties of GSN nodes, constructed from unary and binary relations, and
take the result of executing a query to be an argument structure view, rather than simply
the list of nodes which satisfy the query. We also describe the Argument Query Lan-
guage, AQL2, and give formal semantics for both queries and views based on an earlier
semantics for argument structures. We have implemented the approach in our toolset
AdvoCATE [8], and illustrate its application on a fragment of a safety case argument
structure for the Swift UAS, under development at NASA Ames (Sections 4 and 5).

In this first implementation, we have limited ourselves to querying the argument
structure, rather than the entire assembly of artifacts comprising a safety case. Next,
we describe our approach for querying and how it can help to address the problem of
accessing (and understanding) the rich variety of information contained in a safety case.

1 However, we acknowledge that existing safety case tools may provide a search functionality
to locate the information of interest.

2 In Islamic philosophy, ’aql is the use of logical inquiry as a basis for law.

296 E. Denney, D. Naylor, and G. Pai

Requirement

InformalRequirement FormalRequirement

is-a is-a

formalizes some

xsd:string

rID exactly 1

isFormalizedBy some

Assumption
usesAssumption

aID exactly 1 Specification

verifiedByTool some

specifiedIn some

is-a
owl:ObjectProperty of Hierarchy kind
All other kinds of owl:ObjectProperty
owl:DatatypeProperty

FormalVerificationTool

TheoremProverTool AbstractInterpretationTool

is-a

AutoCert

is-a

IKOSMicroBoa

is-a

ToolInput
is-a

Tool

is-a

xsd:positiveInteger
lineNumber

xsd:string
fileName exactly 1

description

isUsedByRequirement

SourceCodeAnalysisTool

is-a

xsd:string

Domain Ontology
NL Query:
Argument fragment starting from a formal requirement

Query in AQL:
type has goal & (attributes has formalRequirement) |
<isBelow>(attributes has formalRequirement)

Provides metadata semantics

View of

Source of

Models

GSN Argument Structure

Domain Knowledge

Applied to

•  Standards
•  Guidelines
•  Regulations
•  Artifacts &

documentation
•  Development &

review processes
 …

GSN Argument Structure View

Result of

AdvoCATE

Specify
queries

Create GSN Argument
Specify Attributes

Generate
View

references

Fig. 1. Methodology for querying safety cases using AdvoCATE: Enrich GSN argu-
ment structures with metadata drawn from domain ontologies and use Argument Query
Language (AQL) queries to create views. The dotted lines give the role of each element
in relation to the others, while the solid lines give the role of the tool.

2 Methodology

We describe our approach mainly with respect to the GSN argument structures created
using our tool AdvoCATE (although the principles can be applied more generally).
AdvoCATE already offers several features: filtering and searching the argument, and
showing/hiding sub-arguments relative to a node. The search mechanism allows a string
search on different node fields (e.g., identifier, description, etc.), which can also be
filtered by node type. However, our requirement is to develop a mechanism to query
arguments in a much richer way, making use of both syntactic (i.e., structural) and
semantic information. Fig. 1 shows our methodology for using the Argument Query
Language (AQL) to query safety case argument structures and create views.

2.1 Semantic Enhancement

The main idea is first to semantically enrich the GSN nodes in the argument structure.
Thus, in addition to the descriptive text, e.g., the actual claim for a goal node, we asso-
ciate nodes with metadata, given as a set of attributes.

Querying Safety Cases 297

For example, we can use metadata to relate nodes containing informal claims, with
those containing the formal equivalents. We can also use metadata to indicate an asso-
ciation between an instance node in an argument, and the source node in the pattern
from which it was generated. Another type of metadata can be used to indicate that
a node is linked to some external artifact(s). More generally, we can use metadata to
give provenance information, such as representing how a node was constructed (e.g.,
via some formal method) or tracing information (e.g., to a system or standard).

In general, metadata are meant to reflect a variety of domain knowledge. Thus, we
use different domain ontologies, which capture the relevant concepts and their inter-
relations in a domain, to give the semantics of the attributes. For example, from a
requirements ontology, we can provide attributes to goal nodes that reflect not only
concepts such as requirement, formal requirement, safety requirement, etc., but also
relations such as formalizes or is allocated to. Then, by drawing from a system orga-
nization ontology, we can add more information about the specific system, subsystem
or component to which the requirement applies. In the absence of an ontology, we can
rely on terminological information, such as a glossary from a standards document, or
procedural guidance documents.

2.2 Sources of Queries

We see queries and views as a means to express, respectively, specific questions relevant
for argument structure creation, review, or modification, and their responses. Potential
sources of queries, besides the experience of the safety engineer or the assessor, in-
cludes domain knowledge, such as that contained in regulations, standards, guidance
documents, artifact documentation, documentation for processes and procedures, etc.
To illustrate, we give some scenarios:

Supporting Safety Argument Development and Change: When developing a safety
argument for a complex system, arguments addressing all parts of the system may not
all be created at the same time. These present some simple query needs, e.g., determin-
ing the claims that remain to be supported or how/if high-risk hazards have been ad-
dressed. Similarly, a developer may want to view specific fragments, e.g., how a formal
method was applied to develop a claim or how a specific pattern has been instantiated.
Furthermore, when redesign/replacement of some components is required, we can use
queries also to identify those argument fragments that ought to be updated to reflect the
revised safety analysis, and, in turn, to understand the impact of those changes on the
overall safety argument.

Addressing Traceability Concerns: In general, demonstrating traceability is a re-
quirement during certification, e.g., as part of the software approval process [9]. An
important form of traceability is to show how requirements from regulations, standards
and other relevant guidance documents are linked to the appropriate evidence items. For
instance, item 5.b.(5) of the safety checklist in FAA Order 8130.34B, Appendix D [10],
requires describing how software requirements are validated and the means for software
verification. In addition to providing descriptive text—as is the case in practice—we be-
lieve that an informative response also could include an appropriate slice or view of the
airworthiness assurance argument structure, showing the claims relevant to software
requirements, the applicable context under which validity can be claimed, the relevant

298 E. Denney, D. Naylor, and G. Pai

assumptions and justifications, the strategies for verification and validation (e.g., formal
verification, and inspection against domain knowledge, respectively), and how these
have been applied to refine the claims made.

Supporting Assessment and Review: As part of the different milestones of the sys-
tems engineering process [11], engineering artifacts (as well as the safety case) are to
be reviewed and accepted before development proceeds. Simple queries on the safety
argument can be used to determine whether the relevant obligations have been met. For
example, during a Preliminary Design Review (PDR), we can query the safety case to
establish whether or not all the identified safety requirements have been allocated.

2.3 Components of Queries and Views

For this paper, we mainly focus on queries that operate on GSN arguments although,
eventually, we want to expand the scope of queries to include the entire safety case.

Conceptually, queries in AQL comprise a combination of properties of both the se-
mantic and the syntactic information in the argument structure. As described earlier
(Section 2.1), metadata, i.e., attributes on nodes, provide a way to access the semantic
information. To access the structure, AQL queries contain expressions referencing GSN
syntax. The language (described subsequently in Section 3) itself consists of a selection
of atomic queries that can be grouped with the usual logical connectives (and, or, xor,
not), as well as the path quantifiers [] (all), and 〈 〉 (some), to specify query rela-
tions. The language also contains constructs to access structure in terms of the relative
arrangement of nodes, e.g., above, below, directly above, etc.

Taken together, we can express some relatively complex queries in the form of con-
cepts that AdvoCATE can understand, so that an informal, natural language query in
the domain can be expressed as a formal AQL query over the GSN argument struc-
ture. Here, we note that the translation of an informal query into a formal one, and the
resulting view generated, depends on the purpose of the query. For instance, consider
querying for an incomplete argument. If the purpose were simply to locate a set of unde-
veloped nodes, so that the safety case author(s) can further develop them, it suffices to
specify a formal query whose result is exactly the set of undeveloped nodes of interest,
e.g., goals nodes marked to be developed. Alternatively, if the purpose were to assess,
say, whether or not a claim has been supported by evidence, or the extent to which it
has been developed, then a view containing greater details is more useful. Then, we can
specify an appropriate formal query in AQL which will result in an argument structure
view containing any goal or strategy not immediately (or eventually) followed by other
goals, strategies or evidence (See Section 5 for a concrete example).

The outcome of executing a query on an argument structure is an argument structure
view. A view is a diagram showing the fragment(s) of the (source) argument that sat-
isfy the query. In our implementation, we collapse those nodes that do not satisfy the
query into concealment nodes (C-nodes, for short), which we annotate with the number
of hidden nodes. A C-node can be (temporarily) expanded to show the corresponding
fragment in the source argument. To reduce visual clutter, by default we only show C-
nodes that appear between two regular nodes. So, for example, if a context node does
not satisfy a query, it does not appear in the view. One consequence is that if the root

Querying Safety Cases 299

node does not satisfy the query, the view will consist of several unconnected fragments,
though this preference can be changed.

We allow multiple views for a given argument structure, reflecting the application of
different queries. The views and the queried structure are kept consistent with each other
in our implementation, so that a change in any one of the views/argument structure is
either propagated to the rest or, in the case of an inconsistent change (due to independent
unsaved edits, say), the user is alerted.

3 Foundations

3.1 Metadata

Metadata is associated with individual nodes (rather than globally with the entire ar-
gument). Each node has a set of associated attributes, which are declared and can be
parameterized over parameters of specific types. Nodes have instances of attributes
with values that comply with the type of the parameter (which can itself depend on
the node). In general, we draw these parameter values from a domain ontology (See
Fig. 3 in Section 5, for an example). The grammar of an attribute declaration is:

attribute ::= attributeName param*
param ::= String | Int | Nat | nodeID | sameNodeTypeID | goalNodeId | strategyNodeId |

evidenceNodeId | assumptionNodeId | contextNodeId | justificationNodeId |
userDefinedEnum

The type of a parameter can either be:
– a basic type, i.e., a string (String), an integer (Int), or a natural number (Nat)
– a node type, which can be used as parameters in three different ways:

• NodeID: any kind of node
• sameNodeTypeID: the parameter must be the identifier of a node of the same

type as the node with the attribute.
• Specific node parameter types, which allow specification of a node of a given

type: assumptionNodeID, contextNodeID, evidenceNodeID, goalNodeID, justifi-
cationNodeID, strategyNodeID.

– A user-defined enumeration (userDefinedEnum): for example, we can define the
parameter types

severity ::= catastrophic | hazardous | major | minor | noSafetyEffect
likelihood ::= frequent | probable | remote | extremelyRemote |

extremelyImprobable
to define the parametrized attribute risk(severity, likelihood). Then, we can give an
attribute instance as: risk(severity(catastrophic), likelihood(extremelyImprobable)).
We will just use “attribute” when it is clear from the context whether we mean
attribute instance or attribute declaration. Note that we do not force the values of
different enumerations to be distinct.

3.2 Syntax and Semantics

Query Syntax. Queries are defined with respect to a signature given by the declared
metadata. Henceforth, we will assume that this signature is fixed, and let A range over

300 E. Denney, D. Naylor, and G. Pai

attribute instances and N range over node identifiers. We will also use F to indicate a
node field and write F has v where F is one of the fields id, type (t), description (d),
attributes (m), status (s), and v is an appropriately typed concrete value.

The node identifier (id) and description (description) must be strings; node type is one
of goal g, strategy s, evidence e, context c, assumption a, and justification j; attributes
takes an attribute instance(A), and status takes tbd (to be developed). For the fields id
and type, has means equality; for the field description, has means sub-string, and for
the fields attributes and status, has means set membership.

Definition 1 (Pre-query). A pre-query is a term constructed according to the following
grammar:
Q ::= true | F has v | isAbove | isBelow | isDirectlyAbove | isDirectlyBelow |
Q(N) | notQ |Q andQ′ | 〈Q〉Q′

Now we define well-formedness rules on pre-queries, which will allow us to define
queries. We give these as inference rules for the arity of a query:

F has v : 1
v well-typed for F

isBelow : 2 isAbove : 2 isDirectlyBelow : 2 isDirectlyAbove : 2

Q : 2

Q(N) : 1
Q : n

notQ : n

Q : n Q′ : n
Q andQ′ : n

Q : 2 Q′ : n
〈Q〉Q′ : n

Here Q : n means that query Q is well-formed and represents a property of n node
arguments. An inference rule states that if the hypotheses hold (i.e., the queries above
the line are well-formed with the specified arities) then the conclusion holds (i.e., the
stated query below the line is well-formed with given arity).

Definition 2 (Query). We define a query to be a pre-query Q such that Q : 1 according
to the pre-query well-formedness rules.

We do not need to supply all the parameters in an attribute instance in a query. For
example, we can write attributes has risk(likelihood(probable)) to mean: find a node with
an attribute risk whose likelihood is probable and with any severity. We can abbreviate
this further by writing attributes has risk(probable), which will look for any parameter
with value probable, or even attributes has risk with which to find nodes tagged with
any risk values. We can omit the second argument of a top-level quantifier, in which
case it is taken to be true. For example, a root node can be queried by not〈isBelow〉,
which is equivalent to not〈isBelow〉true. A derived syntax for queries is given as:

false = not true
(or) Q orQ′ = not (notQ and notQ′)

(xor) Q xorQ′ = (Q andQ′) or (notQ and notQ′)
(all) [Q]Q′ = not 〈Q 〉 notQ′

Semantics of Queries. In order to give semantics to queries, we first give semantics to
argument structures.

Querying Safety Cases 301

Definition 3 (Safety Case Argument Structure). A safety case argument structure is
a 3-tuple 〈N, f,→〉 where N is a set of nodes; fX (where X ∈ {t, d,m, s}) gives
the node fields: type, description, attributes, status; and → is the connector relation
between nodes. Various restrictions3 must be placed on → to ensure that an argument
structure is well-formed. We have ft : N → {s, g, e, a, j, c} gives node types, fd :
N → string gives node descriptions, fm : N → A∗ gives node instance attributes,
and fs : N → P({tbd}) gives node development status.

Note that, here, we equate nodes with their identifiers. Also, it is possible to give
many variants on this definition (as we have done previously [12], [13]), depending
on the information that we want to associate with the argument. Here, we include all
information that is relevant to the definition of the queries. Next, we give semantics to
queries, as:
N � true
N � id has v ⇐⇒ N = v N,N ′ � isAbove ⇐⇒ N →+ N ′

N � type has v ⇐⇒ ft(N) = v N,N ′ � isBelow ⇐⇒ N ′ →+ N
N � description has v ⇐⇒ v substring fd(N) N,N ′ � isDirectlyAbove ⇐⇒ N → N ′

N � attributes has v ⇐⇒ v ∈ fa(N) N,N ′ � isDirectlyBelow ⇐⇒ N ′ → N
N � status has v ⇐⇒ v ∈ fs(N) N � Q(N ′) ⇐⇒ N,N ′ � Q

For compound query terms, we need to give rules for either one or two nodes. Write
N̄ to mean either N1 or N1, N2. Then,

N̄ � not Q ⇐⇒ N̄ �� Q
N̄ � Q andQ′ ⇐⇒ N̄ � Q and N̄ � Q′

For quantifiers, it is simpler to give the two cases separately:

N � 〈Q 〉Q′ ⇐⇒ ∃N ′ such that N,N ′ � Q and N ′ � Q′

N,N ′ � 〈Q 〉Q′ ⇐⇒ ∃N ′′ such that N,N ′′ � Q and N ′′, N ′ � Q′

Semantics of Views. There are two (equivalent) ways to define views, depending on
whether we treat concealment nodes as a special kind of node or as part of a link.
Though each definition has some advantages, the simplest is to use nodes.

Definition 4 (Argument View). An argument view is a 5-tuple 〈N,C, f, γ,→〉 where
N is the set of argument nodes, C is the set of C-nodes, f gives node fields for N ,
γ : C → nat+ gives C-node counts, and the connector relation → is subject to the
same restrictions as in Definition 3 (that is, if x, x′ ∈ N and x → x′, then there are
restrictions on the types of x, x′ to prevent illegal links). Moreover, if x′ ∈ C then
ft(x) ∈ {g, s}; if x ∈ C, then x′ can have any type; we cannot have both x, x′ ∈ C.

In practice, to reduce clutter, the tool allows additional restrictions to be placed when
creating C-nodes. For the examples in this paper (Section 5), we also require that ∀γ ∈
C . ∃n, n′ ∈ N .n → γ → n′. We can also relax this condition so that C-nodes are
added as root. The last condition prevents C-nodes at the edge of the view, since they
can only appear between regular nodes (as mentioned in Section 2.3). Next, we relate
views to arguments.

3 See [12] for details.

302 E. Denney, D. Naylor, and G. Pai

Definition 5 (A-view). Let A = 〈NA, fA,→A〉 and V = 〈NV ,C, fV , γ,→V 〉 be an
argument and a view, respectively. We say that V is an A-view if NV ⊆ NA, NA∩C =
∅, fV = fA � NV , →A� NV ⊆→V , and there exist mappings f : NA → NV ∪ C and
g : NV ∪ C → A such that g; f = id, and f ; g(x) →∗

A x.

The latter condition forces the map from a C-node to be to the root of a concealed sub-
DAG. Note that, in general, f is partial and so, therefore, is f ; g. However, g and g; f
are total.

Now, we define the views which result from queries. First, we need to define those
fragments of an argument which are concealed by a query. Let Q be a query and define
SQ = {n ∈ N |n �� Q and ∃n1, n2 . (n1 → n → n2 and n1, n2 �� Q)}. A path, p, is
a sequence of connected nodes. If p connects nodes n and n′ we write p : n →∗ n′.
Then, define the relation RQ as n RQ n′ ⇐⇒ ∀p : n →∗ n′ . ∀n′′ ∈ p . n′′ �� Q.

R relates nodes which are in the same concealed fragment. It is easily seen that RQ

is an equivalence relation, and so we can form the partition SQ\RQ, i.e., the set of
concealed fragments.

Definition 6 (Q-view). Given argument A = 〈N, f,→〉, and query Q, we define the
Q-view of A as 〈Nv,C, fv, γ,→v〉, where the components are defined as follows:
(a) Nv = {n ∈ N | n � Q}
(b) Let SQ\RQ = {H1, . . . , Hm}, and defineC as a fresh set of elements {c1, . . . , cm}.
(c) fv = f � Nv

(d) c(ci) = |Hi|
(e)

n →v n′ ⇐⇒

⎧⎨
⎩

n, n′ ∈ N and n → n′, or
n ∈ N,n′ = ci ∈ C and ∃n′′ ∈ Hi . n → n′′, or
n = ci ∈ C, n′ ∈ N and ∃n′′ ∈ Hi . n

′′ → n′

We now state (without proof) that queries give rise to well-formed views. Recall that
we assume that queries and arguments are defined over a common attribute signature.

Theorem 1. Let Q and A be a query and argument, respectively. Then, the Q-view of
A is an A-view.

4 Implementation

We have implemented the query/view mechanism in our toolset, AdvoCATE [8]. The
tool stores the views associated with a diagram as special properties of the diagram,
in particular as two lists in the diagram file itself: (a) all the view names associated
with the diagram, and, (b) correspondingly, the query that maps to each name. In the
interface, views appear by name as sub-items in the project explorer, under the corres-
ponding diagram, e.g., as shown in Fig. 2. The figure also shows how node attributes are
displayed (in the properties panel) along with other node fields. We draw the attributes
from a domain-specific grammar, an excerpt of which is given in Fig. 3.

Although not shown in Fig. 2, we have implemented some additional usability fea-
tures, such as the ability to open multiple views simultaneously in separate tabs, i.e.,
multiple canvases. The end-user can save changes either to the argument structures,

Querying Safety Cases 303

Fig. 2. Screenshot of AdvoCATE: (a) queries appear as sub-items of the argument struc-
ture file, in the project explorer panel on the left (b) the canvas is used to create GSN
argument structures using the palette on the right, which provides the different GSN
nodes and links (c) queries are run by entering them in the query text-box in the toolbar.

the queries, or both. Users will also be shown the current query, and can edit it further
before saving. When any change is made either to the source diagram or a view, it is
reflected in all views and the original diagram.

Due to space limitations, we only briefly describe the algorithm underlying the
query/view mechanism. Let A be an argument structure, Q be a well-formed query,
N be a node in A, and τ be a table of query results. If τ contains the result of applying
Q to A then, using the function computeView(A,Q), create a view as the conjunc-
tion of the nodes and links in τ . Then, according to the restrictions of Definition 4,
create and link C-nodes to hide all nodes in A absent in τ . Otherwise use the func-
tion satisfiesQuery(A,Q,N) on all nodes of A to locate those nodes that satisfy
Q, store the result to τ , and call computeView(A,Q) to create the view as earlier. The
satisfiesQuery(A,Q,N) function recursively evaluates the syntax tree of Q, iter-
atively locating the nodes in A such that the function returns true. We now state the
correctness of the algorithm (without proof) as:

If satisfiesQuery(A,Q,N) returns true then N � Q and
If computeView(A,Q) = V then V is the Q-view of A

Query execution is reasonably fast, taking under a second to process large diagrams
containing upwards of 500 nodes.

304 E. Denney, D. Naylor, and G. Pai

requirement(id, hierarchyLevel, assuranceConcern)
formalClaim(id), informalClaim(id), hazard(id)

id ::= int | string
hierarchyLevel ::= highLevel | lowLevel
assuranceConcern ::= functional | safety | reliability | availability | maintenance

requirementAppliesTo(elementLevel, elementType, element)
elementLevel ::= system | subsystem | component | module | function | model | signal
elementType ::= hardware | software
element ::= aileron | elevator | flaps | propulsionBattery | avionicsBattery | actuatorBattery |

avionics | autopilot | FMS | AP | aileronPIDController | elevatorPIDController |
propulsion | engine | propeller | engineMotorController | actuator |
flightComputer | wing | actuatorMotorController pilotReceiver | IMU

references(variable)
variable ::= aileronValue | pitchAttitude | flareAltitude | vRef | vNE | thrust | vS1

regulation(part)
part ::= 14CFR23.73 | 14CFR23.75

risk(severity, likelihood)
severity ::= catastrophic | hazardous | major | minor | noSafetyEffect
likelihood ::= frequent | probable | remote | extremelyRemote | extremelyImprobable

isFormalizedBy(sameNodeTypeID)

Fig. 3. Excerpt of domain specific grammar for metadata

5 Application

We illustrate our query mechanism and its utility by application to a fragment of the
Swift UAS safety argument (See Fig. 4a for a bird’s eye view): in particular, we de-
scribe some queries based on the motivating scenarios described earlier (Section 2.2)
and show the resulting views. The argument structure (in Fig. 4a) concerns, in brief,
the mitigation of a specific safety hazard—unanticipated nose pitch down during des-
cent and landing—that can result in a loss of the aircraft and damage to the runway.
The argument develops the root claim of hazard mitigation into sub-claims concerning
the various contributory system functions, including software/hardware, components,
and operations, which are then linked to the evidence, e.g., available from experimental
data, procedures, and verification activities. In preparation for querying the argument,
we added metadata to the nodes using user-defined enumerations (see Section 3) and a
domain-specific grammar (Fig. 3).

Requirements address an assurance concern at a particular level of hierarchy, and can
be applied to system elements of various types. As motivated earlier, (Section 2.2), an
assessor might want to examine whether traceability exists from hazards to all relevant
system safety requirements, high-level and low-level requirements, down to software
requirements. We can specify such a traceability query in AQL in a straightforward
way, as shown in Fig. 4b. As mentioned earlier (Section 3.2), some of the parameters
of the metadata can be omitted in the query. The resulting (bird’s eye) view (Fig. 4c)
contains goal nodes with metadata about the hazard and requirements to which they
are related. These goal nodes, in turn, are linked using C-nodes. Fig. 4d shows the top
right leg of the view (Fig. 4c), showing traceability from a high-level requirement on the
avionics system, to the high-level and low-level avionics software requirements relevant
for the mitigation of the descent phase hazard.

Note that we can create the view shown in Fig. 4d by constraining the traceability
query, e.g., by including attributes about the avionics software. We can further constrain
the query to only consider hazards with a certain risk level. For example, by including

Querying Safety Cases 305

(a) Bird’s eye view of a fragment of the Swift UAS safety case in GSN.
type has goal and (attributes has hazard or (attributes has requirement(safety) and

attributes has requirementAppliesTo(system)) or attributes has requirement(highLevel) or
attributes has requirement(lowLevel) or attributes has requirementAppliesTo(software))

(b) AQL traceability query.

(c) Bird’s eye view showing the result of a
traceability query applied to Fig. 4a.

(d) Goal and C-nodes showing links from a
high-level requirement to software require-
ments for the avionics.

Fig. 4. GSN argument fragment for the Swift UAS, AQL query and the resulting view

306 E. Denney, D. Naylor, and G. Pai

(type has goal) and (attributes has regulation(14CFR23.73) or attributes has regulation(14CFR23.75))
or <isBelow>(attributes has regulation(14CFR23.73) or attributes has regulation(14CFR23.75))

(a) Query in AQL to locate references to regulatory requirements.

(b) View resulting from the query in Fig. 5a, showing disconnected argument structure fragments.

Fig. 5. AQL query and view showing those parts of the argument fragment of Fig. 4a
referencing regulatory requirements

[isAbove] (not (type has goal or type has strategy) or <isAbove>(type has goal or
type has strategy or type has evidence)) and (<isAbove> type has evidence or type has evidence)

(a) AQL query using only structural references.

(b) View produced by applying the query in Fig. 6a to the fragment in Fig. 4a.

Fig. 6. Query and View: All nodes from which all paths lead to evidence

Querying Safety Cases 307

the AQL expression attributes has risk(severity(catastrophic), likelihood(remote)) in the
query of Fig. 4b, we can generate a view (not shown here) of traceability to only those
hazards whose likelihood of occurrence is remote, and whose severity is catastrophic.

Another query on the argument structure can be to identify those parts that address
concerns from regulations, standards, and guidance documents. For example, Part 23
of the Federal Aviation Regulations (FARs) specifies requirements concerning aircraft
performance during landing, e.g., approach speeds (14 CFR §23.73), the conditions
to be met for accomplishing a safe landing within the required landing distance (14
CFR §23.75), etc. To formulate an appropriate query, first we locate all goal nodes with
the attributes regulation(14CFR23.73) or regulation(14CFR23.75), using the grammar
of Fig. 3. Then, to determine the extent to which the corresponding claims have been
addressed in the argument, we locate those fragments whose roots are the located goal
nodes and show the entire structure to highlight the relevant context, assumptions and
justifications, if any, and the reasoning used. Fig. 5a and Fig. 5b show the relevant AQL
query and its corresponding view respectively. From the latter, we can infer that there
are claims in the structure that reference the regulatory requirements, but that they are
yet to be fully developed. To determine the exact extent of how the regulations are met,
an assessor could navigate to, and examine, the external documentation referenced from
the nodes shown in the view.

Thus far, our queries have shown how we use simple combinations of structure and
metadata to produce views that address domain specific scenarios: namely, establishing
if and how some regulatory requirements have been addressed, and showing the trace-
ability concerns that may be required by assurance standards. However, we can also use
AQL to specify more complex queries that produce meaningful views and operate on
the structure alone. One such example concerns querying for those fragments which are
completely developed, i.e., all nodes from which all paths lead to an evidence node.

In fact, this query gives a way to determine the internal completeness of an argument
structure from a purely structural standpoint. That is, the property that—assuming valid
reasoning from premises to conclusions, and not considering the confidence needed to
accept a claim/argument—there exists no claim (i.e., goal node) in the argument such
that a path from it does not end in evidence. We specify this query in AQL as given in
Fig. 6a, and the resulting view is shown in Fig. 6b. Thus, an argument structure that is
identical to the view produced by applying this query is internally complete.

To understand this query (Fig. 6a), we include some basic notions for explanation
purposes: An end node here is a goal or strategy with no goals or strategies beneath it,
effectively making it the end of an is supported by chain. A middle node here is a node
with goals or strategies beneath it; since only goals or strategies satisfy this condition,
all middle nodes are goals or strategies). There are three types of nodes the query seeks
to find: (i) end nodes that have some evidence node beneath them; (ii) middle nodes
that only have other middle nodes and nodes of type (i) beneath them; (iii) the evidence
nodes at the end of the argument. To express these three possibilities, we combine the
three using the or operator, and simplify. Note that the simplification includes facts
(expressed in AQL), e.g., an evidence node can never be above a goal.

Queries can also be used to identify parts of argument that, though complete, might
not engender sufficient confidence. For example, goals associated with high risk may

308 E. Denney, D. Naylor, and G. Pai

need to be supported by particular forms of evidence. We can then use an appropriate
query to identify those argument fragments that do not meet these criteria.

6 Concluding Remarks

We have described a methodology and a formal foundation to query safety cases. Speci-
fically, we have described how to enrich GSN argument structures with domain-specific
metadata, and how to produce argument structure views by querying arguments using
the Argument Query Language (AQL). We have implemented and tested a prototype of
our query/view mechanism in our toolset, AdvoCATE. Using a fragment of the Swift
UAS safety case argument structure as a driving example, we have demonstrated the
creation of a simple set of domain concepts, its use in querying an argument, and how
queries can produce specific perspectives on that argument.

The closest counterpart to our work proposes multi-view safety cases [14] and also
operates on GSN argument structures. Here, a view is produced from, effectively, an
a priori encoding of the elements of the argument that correspond to a specific, static,
stakeholder viewpoint, e.g., a process view. In contrast, our notion of view is dynamic
since it is determined upon evaluating the query applied to the argument structure.
Queries have been used in safety-critical applications by [15], wherein visual queries
are applied to traceability information models to show traceability. Our work is com-
paratively much broader in scope and considers a variety of queries (Section 2.2)
including, and in addition to, traceability in safety assurance. For instance, a useful
perspective to present during software approval would be showing, say, only the soft-
ware aspects in an argument, or the software contributions to different hazards. We can
specify these kinds of queries and generate the relevant views in a straightforward way.

Query languages exist for a variety of frameworks, e.g., databases, knowledge bases,
ontologies, etc. For example, SQWRL [16] is an ontology query language, which offers
richer logical expression than AQL (currently) does, but is more generic. PrQL [17] is
a specialized proof query language with some similarities to AQL, though it targets a
different domain. The data comprising a safety case, potentially, can be organized into
a (relational) database and then queried. However, we are unaware of approaches/tools
that either query argument structures in this manner, or are similar to ours.

We believe that our approach for querying safety cases can be useful to address
stakeholder-specific concerns, and can help in argument comprehension by locating
and displaying the relevant information of interest. However, we can do more to further
improve the practical usefulness of our approach. For instance, currently we specify
attributes through an interface in which the end-user relies on an external ontology or
glossary of terms. We plan to integrate an ontology tool and import the relevant ontolo-
gies. In addition to enriching the underlying domain theory, we can enhance the query
language in several ways: First, we can make several simple extensions to the atomic
predicates on which the query language is built, e.g., distinguishing the different link
types, in context of and is supported by. Next, a more significant extension would be
the implementation of named queries, i.e., allowing queries (as opposed to views) to
be saved to a library and referenced by name within other queries. This would greatly
simplify the use of larger, more complex queries. We will also provide a range of use-
ful library queries by default, e.g., finding undeveloped nodes. The current query/view

Querying Safety Cases 309

mechanism is limited to the core GSN, and it works primarily on the argument struc-
ture. We intend to develop suitable interfaces to linked artifacts, which will allow us to
query the entire assembly of artifacts comprising a safety case.

Acknowledgement. This work has been funded by the Assurance of Flight-Critical
Systems element of the SSAT project in the Aviation Safety Program of NASA ARMD.

References

1. UK Ministry of Defence (MOD): The ‘White Booklet’: An Introduction to System Safety
Management in the MOD. Issue 3 (January 2011)

2. Hawkins, R., Habli, I., Kelly, T.: Principled Construction of Software Safety Cases. In: 2013
SAFECOMP Workshops–Next Generation of System Assurance Approaches for Safety-
Critical Systems (SASSUR) (September 2013)

3. Goal Structuring Notation Working Group: GSN Community Standard Version 1 (2011)
4. Denney, E., Habli, I., Pai, G.: Perspectives on Software Safety Case Development for Un-

manned Aircraft. In: Proc. 42nd Annual IEEE/IFIP Intl. Conf. Dependable Systems and Net-
works (DSN 2012), pp. 1–8 (June 2012)

5. Bloomfield, R., Chozos, N., Embrey, D., Henderson, J., Kelly, T., Koornneef, F., Pasquini,
A., Pozzi, S., Sujan, M., Cleland, G., Habli, I., Medhurst, J.: Evidence: Using Safety Cases
in Industry and Healthcare. The Health Foundation (December 2012)

6. Denney, E., Pai, G., Pohl, J.: Heterogeneous Aviation Safety Cases: Integrating the Formal
and the Non-formal. In: 17th IEEE Intl. Conf. Engineering of Complex Computer Systems
(ICECCS), pp. 199–208 (July 2012)

7. EUROCONTROL: Preliminary Safety Case for ADS-B Airport Surface Surveillance Appli-
cation. PSC ADS-B-APT (November 2011)

8. Denney, E., Pai, G., Pohl, J.: AdvoCATE: An Assurance Case Automation Toolset. In:
Ortmeier, F., Daniel, P. (eds.) SAFECOMP Workshops 2012. LNCS, vol. 7613, pp. 8–21.
Springer, Heidelberg (2012)

9. FAA: Software Approval Guidelines. FAA Order 8110.49 Chg 1 (September 2011)
10. U.S. Dept. of Transportation, FAA: Airworthiness Certification of Unmanned Aircraft Sys-

tems and Optionally Piloted Aircraft. FAA Order 8130.34B (November 2011)
11. Denney, E., Ippolito, C., Lee, R., Pai, G.: An Integrated Safety and Systems Engineering

Methodology for Small Unmanned Aircraft Systems. In: Infotech@Aerospace. AIAA 2012-
2572 (June 2012)

12. Denney, E., Pai, G.: A Formal Basis for Safety Case Patterns. In: Bitsch, F., Guiochet, J.,
Kaâniche, M. (eds.) SAFECOMP. LNCS, vol. 8153, pp. 21–32. Springer, Heidelberg (2013)

13. Denney, E., Pai, G., Whiteside, I.: Hierarchical Safety Cases. In: Brat, G., Rungta, N., Venet,
A. (eds.) NFM 2013. LNCS, vol. 7871, pp. 478–483. Springer, Heidelberg (2013)

14. Flood, M., Habli, I.: Multi-view Safety Cases. In: 6th IET Intl. Conf. System Safety, pp. 1–6
(September 2011)

15. Maeder, P., Jones, P.L., Zhang, Y., Cleland-Huang, J.: Strategic Traceability for Safety-
critical Projects. IEEE Software 30(3), 58–66 (2013)

16. O’Connor, M., Das, A.: SQWRL: A query language for OWL. In: Proc. 6th International
Workshop on OWL: Experiences and Directions, OWLED 2009 (2009)

17. Aspinall, D., Denney, E., Lüth, C.: Querying proofs. In: 18th Intl. Conf. Logic for Program-
ming Artificial Intelligence and Reasoning (2012)

A. Bondavalli and F. Di Giandomenico (Eds.): SAFECOMP 2014, LNCS 8666, pp. 310–325, 2014.
© Springer International Publishing Switzerland 2014

Security Application of Failure Mode and Effect Analysis
(FMEA)

Christoph Schmittner1, Thomas Gruber1, Peter Puschner2, and Erwin Schoitsch1

1 Austrian Institute of Technology, Safety & Security Department, Vienna, Austria
{christoph.schmittner.fl,thomas.gruber,

erwin.schoitsch}@ait.ac.at
2 Vienna University of Technology, Department of Computer Engineering, Vienna, Austria

peter@vmars.tuwien.ac.at

Abstract. Increasingly complex systems lead to an interweaving of security,
safety, availability and reliability concerns. Most dependability analysis
techniques do not include security aspects. In order to include security, a
holistic risk model for systems is needed. In our novel approach, the basic
failure cause, failure mode and failure effect model known from FMEA is used
as a template for a vulnerability cause-effect chain, and an FMEA analysis
technique extended with security is presented. This represents a unified model
for safety and security cause-effect analysis. As an example the technique is
then applied to a distributed industrial measurement system.

Keywords: Safety analysis, security analysis, combined analysis, FMEA,
vulnerabilities, cause effect chain for security.

1 Introduction

With interconnected and software intensive systems, availability and safety depend
increasingly on security aspects. Threats to information security also threaten the
availability or safety of a system [1]. Dependability of software intensive systems
depends not only on the reliability of the used software but also on the security of the
Information System. Information security is increasingly interwoven with all aspects
of dependability [2]. Recent events like Stuxnet 1 or Duqu 2 demonstrated
vulnerabilities in industrial or embedded IT-Systems. In order to remove or reduce
these risks holistic analytical methods are necessary.

The Failure Mode and Effect Analysis (FMEA) is a structured technique which
investigates failure modes and their effects. The aim is to identify potential
weaknesses and improve reliability, availability or safety. A system or process is
hierarchically decomposed into its basic elements and then the failure modes of the
elements are examined for causes and effects [3]. FMEA was developed in the 1950s

1 http://www.symantec.com/content/en/us/enterprise/media/security

_response/whitepapers/w32_stuxnet_dossier.pdf
2 http://www.symantec.com/connect/w32_duqu_precursor_next_stuxnet

 Security Application of Failure Mode and Effect Analysis (FMEA) 311

by the US Department of Defense to improve the reliability of military equipment[4].
Originally, FMEA was aimed at the reliability or safety of hardware.

The failure modes and probabilities for hardware components are normally well
known. Although failure modes of software are more complex and coupled with a
certain degree of uncertainty, Reifer and others [5], [6] showed the benefits of
performing a Software-FMEA (SFMEA). As explained in [7] when an SFMEA is
performed early in the design phase of software, activities for verification and
validation of software are easier to execute and a more focused use of development
effort is possible.

This paper describes an approach for the combined analysis of safety and security.
The basic FMEA concept is extended to include vulnerabilities and attacks
concerning the security of a system. A unified cause and effect model allows
examining the combined risks for a system. The following method for a Failure
Mode, Vulnerabilities and Effects Analysis (FMVEA) enables the analysis of
complex mission critical systems. Similar to a Software-FMEA the benefits are the
easier verification and validation and the ability to focus the development effort on
critical areas.

After an overview of the state of the art, chapter 3 describes the new method in
detail. Chapter 4 tries to prove the applicability of the FMVEA based on an example.
Finally, Chapter 5 discusses the limitations and gives an outlook on further work.

2 State of the Art

For safety, IEC 61508 [8] is the basic functional safety standard, which covers the
complete safety life cycle. It describes techniques and procedures for analysis,
realization and operation of safety critical systems. With respect to security, IEC
61508 Ed 2.0 (2010) contains only a few requirements: Security threats are to be
considered during hazard analysis in the form of a security threat analysis (IEC
61508, Part 1, 7.4.2.3). The ISO/IEC 27000-series describes best-practices advice for
information security management. They consider classic security-critical systems
such as databases, servers and corporate networks. Nevertheless, we use the terms as
they are defined in the ISO/IEC 27000-series for this publication and those from IEC
61508 for safety.

Although IEC 62443 “Network and system security for industrial-process
measurement and control” [9] is partially aimed at industrial security, safety concerns
are outside its scope.

Summarizing, a standards review shows that critical control systems have been
treated by well-established safety-standards for many years, while most available
security standards aim at business applications with few exceptions. The analyzed
effects and causes are, indeed, different in safety and security. So, what is definitively
missing is a standard which considers both safety and security equally. Without a
combined approach, there is a risk to miss critical and undesirable events: Security
vulnerabilities which potentially lead to safety critical events could be overlooked.

In [10] FMEA was used for the dependability analysis of web services. The approach
was based on a high level design FMEA. We propose here to extend the functional
FMEA [11] in order to base the analysis on a functional system model. This enables a
model based analysis of all the functions at the considered abstraction level.

312 C. Schmittner et al.

In addition, we propose a generic set of security based failure modes (named threat
modes), based on [12] and explain the correlations between the threat modes and the
system quality attributes [13]. Generic threat modes allow anticipating potential
threats first, assess the consequences and then identify potential causes.

3 FMVEA Concept

The basic approach to carry out an FMEA is described in IEC 60812. Based on this
description, the flow chart includes the following steps.

Fig. 1. FMEA - analysis flow chart, based on [3]

A system is divided into components, and failure modes for each component are
identified. For each failure mode the effects, the severity of the final effect on the
system and potential causes are examined. As far as possible, frequency or probability
of the failure modes are estimated.

Fig. 2. FMEA - cause-effect chain

 Security Application of Failure Mode and Effect Analysis (FMEA) 313

The cause-effect chain analyzed with an FMEA is shown in Figure 2. Each failure
mode has a failure cause, and each failure effect is associated with a failure mode that
causes the effect. A failure effect leads to an unintended scenario. The severity
describes the significance of the scenario. The frequency relates to failure cause and
effect, and it describes how likely the event is.

Definitions according to IEC 60812 [3]:

• Failure cause: why did the item fail
• Failure mode: manner in which an item fails
• Failure effect: consequence of a failure mode in terms of the operation,

function or status of the item
• Failure severity: significance or grading of the failure mode’s effect on item

operation, on the item surrounding, or on the item operator; failure mode
effect severity as related to the defined boundaries of the analyzed system

• Failure criticality: combination of the severity of an effect and the
frequency of its occurrence or other attributes of a failure as a measure of the
need for addressing and mitigation

To include security in the analysis, a comparable cause-effect chain is necessary. It is
possible to divide security-critical events into similar steps. The suggested parts of a
security cause-effect chain are the following elements.

• Vulnerabilities
• Threat Agent
• Threat Mode
• Threat Effect
• Attack Probability

3.1 Vulnerabilities

The essential precondition for a successful security breach of a system is a weak spot
or vulnerability. A vulnerability is comparable to a failure cause and represents the
basic prerequisite in security. ISO/IEC 27002 defines vulnerability as “a weakness of
an asset or group of assets that can be exploited by a threat” [14]. For information
security ISO/IEC 27005 [15] divides vulnerabilities into categories:

• Hardware vulnerabilities
• Software vulnerabilities
• Network vulnerabilities

Additional vulnerability classifications are the Microsoft Security Development
Lifecycle (SDL) [16] and the CWE3 (Common Weakness Enumeration). The CWE is
a detailed and community-developed list of common software weaknesses.
Figure 3 shows an overview of a possible categorization based on ISO/IEC 27005
[15].

3 http://cwe.mitre.org/data/index.html

314 C. Schmittner et al.

Following a top-down approach, vulnerabilities at a lower design level get more
specific. The list is non-exhaustive. For software vulnerabilities the CWE lists
additional software weakness types.

Fig. 3. Classification of vulnerabilities

Vulnerabilities can be located at network, hardware and software level. Hardware
vulnerabilities are especially a challenge for security engineering if parts of the
embedded systems are employed in a potentially not trustworthy environment. In
addition, hardware could generally be equipped with additional malicious components
[17]. Reconfigurable means a microcontroller is reprogrammable. This could be
because one step in the commissioning process has not been executed. With not
tamper proof hardware, an attacker could access hardware components and execute
direct attacks on the hardware.

If an attacker (= threat agent) exploits a vulnerability, the security of the system is
at risk. Vulnerabilities without a threat agent do not lead to an effect and have a
negligible risk attached. A threat agent is a necessary extension for the safety cause-
effect chain.

3.2 Threat Agents

Threat agents represent the active element which is trying to exploit the vulnerability.
Examples for possible threat agents are hacker, computer criminals, terrorists,
industrial espionage or insiders [15]. For now, inmate threat agents like viruses are
not considered.

The closest corresponding element in safety would be the random event that causes
an element to fail. In contrast to the random element a threat agent has a motivation
and an objective. Table 1 lists different threat agents with objectives and
characteristics.

Table 1. Threat agents, based on [15]

Threat agent Objective / Aim Characteristic
Hacker, Cracker Challenge, Ego, Rebellion, Status, Money Limited resources

Random attacker
Computer criminal Destruction of information,

Illegal information disclosure,
Monetary gain, Unauthorized data alteration

Monetarily motivated

Terrorist Blackmail, Destruction, Exploitation,
Revenge, Political Gain, Media Coverage

Ideologically motivated

Industrial espionage Competitive advantage,
Economic espionage

Purposeful attacker

Insiders Curiosity, Ego, Intelligence, Monetary gain,
Revenge, Unintentional errors and omissions

Internal knowledge
Easy access

 Security Application of Failure Mode and Effect Analysis (FMEA) 315

3.3 Threat Mode

Threat mode classifies the way in which vulnerabilities are exploited. Vulnerabilities
can be exploited in various ways, each with different effects and prerequisites.
Potential threat modes depend on the system and on the capabilities of the threat
agent. Threat modes can be simple like jamming a connection or elaborate operations
such as exploiting an injection flaw vulnerability, which requires access to the input
system and sending an exactly formulated input signal. In general, this can be mapped
to a violation of a security attribute.

The mapping of security attribute to system quality attribute varies for each
individual system. Depending on the system, every threat mode could affect any
dependability attribute (Reliability, Availability, Maintainability, and Safety) - or not.

A common model for the categorization of threats is STRIDE [18]. As described in
Table 2, an exploited vulnerability leads to one of the following generic effects.

Table 2. Threat modes

Threat mode Description Violated security attribute
(generic effect)

Spoofing identity Accessing a system, disguised as another
actor

Authenticity

Tampering with
Data

Unauthorized modification of data Integrity

Repudiation Actions can be assigned to one actor Non-repudiation
Information
disclosure

Accessing restricted data Confidentiality

Denial of Service Restricting or preventing access to a service
or function

Availability

Elevation of
privilege

Actors may perform actions with a higher
authority level

Authenticity

A threat mode is similar to the failure mode of safety and describes the manner in

which the security fails.
For a classification of threat and failure modes the approach described in [19]

could be used. Different properties of failure modes are described and sorted.

3.4 Threat Effect

Similar to the failure effect in safety the threat effect is the consequence in terms of
the operation, function or status. While the threat mode characterizes the violated
security attribute, the threat effect describes the violated system quality attribute [13].
Violated attributes are not limited to security. All dependability attributes may be
affected. Which attribute is actually violated in a particular case depends on the
system, its environment and the operational state.

316 C. Schmittner et al.

3.5 Attack Probability

In order to assess the criticality of a security attack, severity and probability of the
attack needs to be evaluated. While the severity can be assessed with the help of
domain experts, probability is defined differently for safety and security.

For a safety based event the probability describes the probability of failure of
hardware or software. For a security based element the attack probability describes
the probability of the threat agent to accomplish the threat effect. This depends not
only on the threat agent itself but also on system properties and the system
environment. If a system is not connected to a public network and located in a
restricted area, a successful attack is relatively improbable. In addition to the technical
probability of an attack, each threat agent has different motivating factors and
capabilities. Capabilities are an umbrella term for financial resources and knowledge
or possibly other resources of the threat agent used to exploit the vulnerability.
Motivation and capabilities characterize the threat agent and their sum constitutes the
threat properties.

• Motivation (1 = opportunity target, 2 = mildly interested, 3 = main
target)

• Capabilities (1 = low, 2 = medium, 3 = high)

In addition to the properties of the threat agent, different system properties influence
the probability of an attack. Reachability is characterized by a number between 1 and
3 and describes how easy it is to connect to the system. Examples for reachability 3
are systems which are directly connected to the internet and discoverable with tools
like SHODAN4. If a system is not directly connected to the internet but accessible by
an internet connected network, then it is assigned reachability 2. Systems with no
network connection at all have reachability 1.

In addition to reachability, another factor that describes the susceptibility of a
system is the unusualness of its components and architectures. It can be assumed that
potential threat agents have less knowledge about unusual systems and the effort to
find flaws and exploit them is higher. The sum of both properties characterizes the
system susceptibility.

• Reachability (1 = no network, 2 = private network, 3 = public network)
• Unusualness (1 = restricted, 2 = commercially available, 3 = standard)

The combination of system susceptibility and threat properties for attack probability
is influenced by the DREAD Risk assessment model [12] and the OWASP Likelihood
assessment method. Like in the DREAD approach, we estimate the probability by
summing up system susceptibility and threat property values. In combination, the four
properties allow a semi-quantitative assessment of the probability.

It should be noted that the probability table lacks a calibration with the failure
probability in order to introduce it in a common safety and security method.
While this approach should bring reasonable results, the results are based on an
assumption about attack frequency and not on empirical data. In order to get better
estimates for frequency or probability, empirical values for attack probabilities for

4 SHODAN is a search engine for internet connected SCADA systems.

 Security Application of Failure Mode and Effect Analysis (FMEA) 317

Table 3. Estimation table for attack probability

System
Susceptibility

6 8 9 10 11 12
5 7 8 9 10 11
4 6 7 8 9 10
3 5 6 7 8 9
2 4 5 6 7 8
 2 3 4 5 6 Threat properties

different systems could be useful. Since security for industrial information systems is
a relatively new area there is not much empirical data. Besides historical incident
data, different projects try to collect information about attack probability [20]. To
gather information about attack probability or frequency, honeypot systems are used.
A honeypot is a closely monitored decoy system which acts as a trap for potential
threats. In a research experiment from Trend Micro Inc. three different honeypot
systems were used [21]. One was a simulated water supply facility with connected
pumps and purification systems running on Apache web server. For the next setup an
internet connected programmable logic controller (PLC) was set up to imitate a
temperature controller in a factory which had temperature, fan speed, and light
settings. The last Honeypot Setup was a server running PLC control software and a
web server to imitate a human machine interface (HMI) connected to a PLC.

Trend Micro Inc. concentrated on planned and targeted attacks and integrated
measures like firewalls in order to filter automated “drive-by” attacks. In the first 28
days of the experiment 39 attacks were reported [21]. Unfortunately no long-term
study for industrial information systems is known at this time. Therefore all results
should be taken with a pinch of salt. They may help in estimating the magnitude of
threats but for now they shouldn’t be used as valid numbers for quantitative analysis.
But in the future both approaches will yield better estimations for attack probability.
In any case, probability and frequency of successful attacks my change over time
depending on the evolution of methods, the increase of knowledge about control and
protection systems, and other causes. Therefore, security measures have a much
shorter lifetime than safety measures and need unfortunately more frequent updates.

3.6 FMVEA Cause-Effect Chain

With the single components for a security cause-effect chain described in the previous
sections, we are able to generate a combined cause-effect chain for safety and
security. The combined approach includes safety and security causes for a negative
effect on system quality attributes.

The extended flow chart for an FMVEA in Figure 5, includes security in the
analysis. As described in [1] there are different ways in which security or safety
properties of a system can influence security or safety risks. Therefore, while the
consideration of failure or threat modes of an item is split, the analysis of effects and
causes combines both viewpoints.

318 C. Schmittner et al.

Fig. 4. FMEVA – cause-effect chain

Fig. 5. FMVEA - analysis flow chart

4 Example Application of the FMVEA

As an example, an engine test stand in an industrial plant is analyzed. The engine test
stand consists of one or more measurement devices with smart maintenance features.
The measuring devices are configurable for different engines. The measurement and

 Security Application of Failure Mode and Effect Analysis (FMEA) 319

configuration data should be only locally readable and writeable. For maintenance,
lifetime data (= device conditions) is stored on the measurement device. The device
itself can check its conditions in order to schedule maintenance activity. The device
conditions can also be checked from a remote side. In order to check the conditions
remotely the measurement devices are directly connected to a public network like GSM.
Mission statement for the system is: Dependable measurements of different systems

4.1 Functional Analysis

In order to get the individual components, a functional analysis [22] at system level is
conducted. Useful results for the FMVEA of a functional analysis are the functional
tree, the functions / device matrix and the connection matrix. The functional tree (see
Figure 6) identifies the functions of the system based on the mission statement.

Fig. 6. Functional tree of the example system

Table 4. Functions / Device Matrix

 Devices
 Measurement Device Local HMI Backend System

Functions

Perform measurement X
Send measurement data X
Read measurement data X
Send configuration parameter X
Store configuration parameter X
Load configuration parameter X
Send approved device conditions X
Store approved device conditions X
Store device condition X
Allow remote access X
Send device conditions X
Read device conditions X
Automatic check of device conditions X

320 C. Schmittner et al.

The functions / device matrix (see Table 4) maps the system functions to physical
devices. In our example, the system consists of Measurement Devices, the Local HMI
and the Backend System.

With the connection matrix (see Figure 7), necessary connections between devices
are identified and marked with “x”.

Fig. 7. Connection Matrix

The analyzed system (see Figure 8 for a system overview) has connections
between Measurement Device and Local HMI and between Measurement Device and
Backend System.

Fig. 8. System overview

4.2 Failure and Vulnerability Analysis

The system is analyzed according to the flowchart of Figure 5. The first chosen
component is the measurement device. In order to identify potential threat modes the
generic threat modes from STRIDE [18] are used. Applying the general concept of
“spoofing of identity” to the Measurement Devices, a potential threat mode is that an
attacker masks himself as the measurement device and communicates with other
devices.

FMVEA Table. Table 5 shows a short excerpt from the FMVEA table for the
described system.

 Security Application of Failure Mode and Effect Analysis (FMEA) 321

Table 5. FMVEA example

ID

V
ulnerability

T
hreat m

ode

T
hreat effect

System
 status

System
 effect

Severity

System

susceptibility

T
hreat

properties

A
ttack

probability

m
easurem

ent device

1 No device
verification,
man in the
middle attack
with physical
access to
measurement
device or
connection

Attacker is
pretending
to be the
measurem
ent device

send false
measurement
data

Normal
operation

System is no
longer
reliable

C
ritical

4 Insider:
4

8

Hacker:
3

7

2 GSM
connection,
Base station
emulation,
man in the
middle attack

Attacker is
pretending
to be the
measurem
ent device

send false
device
condition
data

Remote
query of
device
status

System is no
longer
available
(unnecessary
maintenance)

M
arginal

5 Insider:
4

9

Hacker:
3

8

3 GSM
connection,
Base station
emulation,
man in the
middle attack

Attacker is
pretending
to be the
measurem
ent device

intercept user
credentials

Remote
query of
device
status

System
integrity is
hurt

Insignificant

5 Insider:
4

9

Hacker:
3

8

4 No device
verification,
man in the
middle attack
with physical
access to
measurement
device or
connection

Attacker is
pretending
to be the
measurem
ent device

Intercept
configuration
changes

Configura
tion
change

System is
unreliable
and
potentially
unsafe

C
atastrophic

4 Insider:
4

8

Hacker:
3

7

In the following section, the elements of the table are explained in detail. If an ID is
used it refers to the ID column.

Threat Mode:
• The Attacker is pretending to be the measurement device. Spoofing of

identity attacks only work at connected devices and for functions with a
communication aspect. Potential effects are submitting wrong
measurement data, submitting wrong device condition data, intercepting
user credentials or blocking out configuration changes.

Threat Effects:
1. The attacker is able to send false measurement data to the Local HMI. This

leads to wrong measurements and an unreliable system.
2. While the Backend System executes a remote query of the device

conditions, the attacker is able to send wrong device conditions. If the sent
device conditions are worse than reality, unnecessary maintenance is

322 C. Schmittner et al.

caused. If the sent device conditions are better than reality, a defect of a
Measurement Device may remain undetected.

3. While the backend system tries to login on the Measurement Device an
attacker disguised as the Measurement Device is able to intercept the login
credentials. This may cause no direct severe consequences but it hurts
system integrity and enables a malicious user to access the measurement
device.

4. The attacker intercepts configuration data and acknowledges the
configuration change to the Local HMI. If multiple measurement devices
are employed for one test stand different configurations could lead to
inconsistent and incompatible demands

Severity:
For the severity assessment, the classification from IEC 61812 was used. This
classification does not include privacy as a factor, only consequences for the
dependability are considered.

1. Wrong measurement data means that the reliability of the whole
measurement system is endangered. The attacker has the choice to send
positive data for bad devices or negative data for good devices. This could
lead to an increased rate of misproduction or to an increased liability for
defective products. (Severity = critical)

2. Submitting of wrong device condition data. While wrong device condition
data does not directly influence the measurement data, the attacker could
use it to trigger or delay maintenance. A prematurely triggered
maintenance reduces the availability of the whole system. While an early
maintenance leads to production downtime, it does not endanger the
quality of the products. (Severity = marginal)

3. Intercepted login credentials could be used as a first step enabling further
attacks. But they do not cause immediate danger to dependability
attributes. (Severity = insignificant)

4. Different configuration on measurement devices could lead to a potentially
dangerous situation5. Incompatible demands and commands on the engine
under test could potentially destroy the engine and the test stand. (Severity
= catastrophic)

Vulnerabilities:
Different vulnerabilities can give an attacker the opportunity to masquerade as a
Measurement Device. In order to pose for the Backend System, an attacker could
exploit vulnerabilities in the connection between these devices and conduct a man-in-
the-middle attack.

5 The engine test stand is able to test lubrication in curves. For this the engine is tilted. If a

measurement device performs other measuring cycles at this time the engine and the test
stand could be destroyed.

 Security Application of Failure Mode and Effect Analysis (FMEA) 323

1&2. The attacker could exploit flaws in the GSM connection and intercept the
GSM connection with his own fake base station [23] (= “International
Mobile Subscriber Identity (IMSI) catcher”). After this, any
communication between Backend System and Measurement Device will
be routed via his system.

3&4. In order to pretend to be the Measurement Device in a connection with the
Local HMI physical access to the device or the connection is necessary.
This reduces potential threat agents to insiders or intruding attackers. Then
the attacker could integrate his own device in the communication or
intercept and replay commands. Most field buses have negligible security
features or none at all; if an attacker achieves physical access to it, this part
of the system is endangered. Possible solutions would be a change to a
protocol with integrated security features or a physical protection of the
connection.

Probability:
Attack probability depends not only on the attacked system element but also on the
attacker. In order to quantify threat properties two different threat agents are
described:

• Insider: Inside attacks are among to the most dangerous attacks. While they
may not have hacking experience they have knowledge of the system and
easy access to critical elements of a system. In addition they are highly
determined and focused on their target.

o Motivation (3 = main target)
o Capabilities (1 = low)
o Threat Properties: 4

• Hacker: Hacker describes a person who seeks and exploits weaknesses in
different information systems. While they are motivated by a multitude of
factors and mostly don’t aim to cause direct harm their action may have
negative consequences. They have good technological knowledge and other
resources useful for an attack.

o Motivation (1 = opportunity target)
o Capabilities (2 = medium)
o Threat Properties: 3

For a spoofing threat mode the attacker needs to target a connection. In case of the
Measurement Device a threat agent could either aim at the GSM connection between
Measurement Device and Backend System or at the internal connection between
Measurement Device and Local HMI.

• GSM connection: While a GSM connection is not that common for non-
commercial applications components are commercially available. As a
wireless connection a GSM connection is publicly accessible.

o Reachability of the system (3 = public network)
o Unusualness (2 = commercially available)
o System Susceptibility: 5

324 C. Schmittner et al.

• Internal connection: internal connections are not publicly accessible and best
described as a private network. Most fieldbus systems are not common for
non-commercial applications but components are commercially available.

o Reachability of the system (2 = private network)
o Unusualness (2 = commercially available)
o System Susceptibility: 4

5 Limitations and Further Work

Similar to the SFMEA a FMVEA is best suited for a qualitative high level analysis of a
system in the early design phases. A general limitation of the failure mode and effects
analysis is the restriction to analyze only single causes of an effect. Because of this
some multi-stage attacks could be overlooked. This concern could be particularly
relevant for security event chains, if several systems have to be compromised in order to
reach a target system. Recent developments in combining FTA with Attack-Trees for a
combined analysis could support a FMVEA in considering all security risks [24].

Further research is also needed to achieve a reliable assessment of the risk related
to security concerns. Especially proven data for attack probability or frequency is
needed. This would allow a calibration of the criticality of security threats in order to
obtain results comparable with safety criticality. The semi-quantitative approach
which distinguishes four factors for probability, split into system and attacker
properties which influence attack probability is only a first approach to tackle this
challenge. The attacker properties also only works for human threat agents,
approaches to include inmate threat agents need further research.

Acknowledgment. The work presented in this paper has been supported by the
European Commission through the FP7 Joint Technology Initiatives (Call ARTEMIS-
2012-1, Project Arrowhead, Grant Agreement Number 332987).

References

1. Dong-bo Pan, F.L.: Influence between Safety and Security. In: 2nd IEEE Conference on
Industrial Electronics and Applications, ICIEA 2007, pp. 1323–1325 (2007)

2. Lautieri, S.: De-risking safety [military safety systems]. Computing and Control
Engineering 17, 38–41 (2006)

3. IEC 60812: Analysis Techniques for System Reliability – Procedure for Failure Mode and
Effects Analysis (FMEA). International Electrotechnical Commission

4. MIL-P-1629: Procedures for Performing a failure mode, effects and Criticality analysis.
Department of Defense (US)

5. Reifer, D.J.: Software Failure Modes and Effects Analysis. IEEE Transactions on
Reliability 28(3), 247–249 (1979)

6. Jacob, N.J.S., Stadler, J.: Software Failure Modes and Effects Analysis. In: 2013
Proceedings-Annual Reliability and Maintainability Symposium (RAMS), pp. 1–5 (2013)

7. Haapanen Pentti, H.A.: Failure Mode and Effects Analysis of Software-Based Automation
Systems. STUK-Y TO-TR-19 0, vol. 2, p. 2 (August 2002)

 Security Application of Failure Mode and Effect Analysis (FMEA) 325

8. IEC 61508, Functional Safety of Electrical/Electronic/Programmable Electronic Safety-
related Systems (E/E/PE, or E/E/PES). International Electrotechnical Commission (2010)

9. IEC 62443: Industrial communication networks - Network and system security.
International Electrotechnical Commission

10. Gorbenko, A., Kharchenko, V., Tarasyuk, O., Furmanov, A.: F(I)MEA-technique of web
services analysis and dependability ensuring. In: Butler, M., Jones, C.B., Romanovsky, A.,
Troubitsyna, E. (eds.) Rigorous Development of Complex Fault-Tolerant Systems. LNCS,
vol. 4157, pp. 153–167. Springer, Heidelberg (2006)

11. Haapanen, P., Helminen, A.: Failure mode and effects analysis of software-based
automation systems. In: Radiation and Nuclear Safety Authority, Helsinki, Finland (2002)

12. Frank Swiderski, W.S.: Threat Modeling. Microsoft Press (2004)
13. Laprie, J.-C.: Dependable Computing: Concepts, Limits, Challenges. Digest of Papers

FTCS-15, 2–11 (1985)
14. ISO/IEC:27002: Information technology - security techniques - Code of practice for

information security management. International Organization for Standardization (ISO),
International Electrotechnical Commission (IEC)

15. ISO/IEC 27005, Information technology — Security techniques — Information security
risk management. International Organization for Standardization (ISO), International
Electrotechnical Commission, IEC (2008)

16. Microsoft, “Security Development Lifecycle,” Microsoft (2010)
17. Tehranipoor, M., Koushanfar, F.: A survey of hardware Trojan taxonomy and detection

(2009)
18. Shostack., A., Lambert., S., Ostwald., T., Hernan, S.: Uncover Security Design Flaws

Using The STRIDE Approach. MSDN Magazine (2006)
19. Powell, D., Stroud, R., et al.: Conceptual model and architecture of MAFTIA. Technical

Report Series-University of Newcastle Upon Tyne Computing Science (2003)
20. Eric Byres, J.L.: The Myths and Facts behind Cyber Security Risks for Industrial Control

Systems. British Columbia Institute of Technology (2004)
21. Wilhoit, K.: Who’s Really Attacking Your ICS Equipment. Trend Micro Incorporated

(2013)
22. Viola, N., Corpino, S., Stesina, F., Fioriti, M.: Functional Analysis in Systems

Engineering: methodology and applications (2012)
23. Meyer, U., Wetzel, S.: On the impact of GSM encryption and man-in-the-middle attacks

on the security of interoperating GSM/UMTS networks. In: 15th IEEE International
Symposium on Personal, Indoor and Mobile Radio Communications, PIMRC 2004, vol. 4,
pp. 2876–2883 (2004)

24. Steiner, M., Liggesmeyer, P.: Combination of Safety and Security Analysis - Finding
Security Problems That Threaten The Safety of a System. In: SAFECOMP 2013 -
Workshop DECS (ERCIM/EWICS Workshop on Dependable Embedded and Cyber-
physical Systems) of the 32nd International Conference on Computer Safety, Reliability
and Security (2013)

Safety and Security Interactions Modeling Using
the BDMP Formalism: Case Study of a Pipeline

Siwar Kriaa1,2, Marc Bouissou1,2, Frederic Colin1,
Yoran Halgand1, and Ludovic Pietre-Cambacedes1

1 Electricité de France (EDF) R&D
2 Ecole Centrale Paris

{siwar.kriaa,frederic-ep.colin,yoran.halgand,
ludovic.pietre-cambacedes}@edf.fr, marc.bouissou@ecp.fr

Abstract. The digitalization of industrial control systems (ICS) raises
several security threats that can endanger the safety of the critical in-
frastructures supervised by such systems. This paper presents an analysis
method that enables the identification and ranking of risks leading to a
safety issue, regardless of the origin of those risks: accidental or due to
malevolence. This method relies on a modeling formalism called BDMP
(Boolean logic Driven Markov Processes) that was initially created for
safety studies, and then adapted to security. The use of the method is
first illustrated on a simple case to show how it can be used to make
decisions in a situation where security requirements are in conflict with
safety requirements. Then it is applied to a realistic industrial system: a
pipeline and its instrumentation and control system in order to highlight
possible interactions between safety and security.

Keywords: Safety, security, interdependencies, modeling, industrial
control systems.

1 Introduction

Modern industrial control systems are becoming increasingly complex and inter-
connected due to the integration of new information and communication tech-
nologies. The remote supervision and control of infrastructures means that these
control systems are increasingly connected to external networks. Moreover, the
migration towards standard communication protocols such as TCP/IP and the
use of off the shelf components enables cost reduction, faster deployment and
provides more flexibility. This radical transformation of control systems however
introduces many security-related vulnerabilities such as software design flaws
or vulnerabilities in publicly available protocols; that may endanger the overall
infrastructure safety.

Safety and security risks converge when industrial infrastructures are super-
vised and controlled by digital control systems such as SCADA systems. It is
consequently important to consider possible interdependencies between safety
and security for a complete risk assessment and management. Typically we are
interested in demonstrating how security issues impact safety and vice versa.

A. Bondavalli and F. Di Giandomenico (Eds.): SAFECOMP 2014, LNCS 8666, pp. 326–341, 2014.
c© Springer International Publishing Switzerland 2014

Safety and Security Interactions 327

In this paper, we propose to model safety and security interdependencies for an
industrial case study using the Boolean logic Driven Markov Processes (BDMP)
formalism. The approach used in this paper was first introduced in [12] where it
was illustrated on a pedagogical use case. In this paper we apply it on a realistic
industrial case study taking into account the system architecture. We discuss
in Section 2 the convergence of security and safety issues in industrial control
systems and their possible interdependencies. We give in Section 3 an overview of
the BDMP formalism and the associated KB3 platform. We explain in Section 4
the benefits of BDMP on a simple example where safety and security are in
contradiction. We provide in Section 5 the description of a pipeline case study
architecture, the associated BDMP model and give qualitative and quantitative
results obtained from it. Section 6 concludes the paper and introduces future
work.

2 Safety and Security Interdependencies in ICS

2.1 Scope and Definitions

Safety and security can have different meanings according to the context and the
technical communities; for instance safety is not defined in the same manner in
the aerospace and nuclear communities. Consequently, it is important to clarify
the signification of these terms in each context to avoid ambiguities. The SEMA
referential proposed in [16] enables to frame the use of the terms “safety” and
“security” based on two distinctions: System vs. Environment (S-E) and Mali-
cious vs. Accidental (M-A). The first distinction is based on the origin of the
threat or event leading to the considered risk and what it impacts (whether risk
originates in the system and impacts the environment or vice-versa). The second
distinction defines the nature of the threat or event giving birth to the consid-
ered risk, whether it is malicious or accidental. A system to system dimension is
added to complete the coverage. In the frame of this paper, security is related to
risks originating from or exacerbated by malicious intent, independently from the
nature of the related consequence, whereas safety addresses accidental ones, i.e.
without malicious intent, but with potential impacts on the system environment.

2.2 Related Work

In the literature, many authors raise awareness about the new security risks
introduced by digitalized control systems and their potential impact on critical
infrastructures safety in different industrial areas: aerospace [1], automotive [7],
rail [17], building [10], energy [3]. These risks are also considered in emerging
and dedicated industrial standards, like the IEC 64443 international standards
series.

Historically separated, safety and security have long been treated by two dif-
ferent communities and with different methodologies. The need for a common
framework integrating both safety and security issues is today becoming urgent

328 S. Kriaa et al.

with the increasing number of cyber-attacks targeting critical infrastructures.
A common framework was addressed by Eames and Moffet in 1999 [4]. Much
research has recently been carried-out triggering multiple cross-fertilizations be-
tween the two domains [13] but also several new approaches that propose to
combine safety and security analysis in risk assessment [10,9,18,12,6].

2.3 Types of Safety and Security Interdependencies

In the literature some papers [4,10] outline possible interactions between safety
and security requirements that can be either synergies or conflicts. In [12], Pietre-
Cambacedes identifies four kinds of interdependencies:

– Conditional dependency: fulfillment of security requirements conditions safety
or vice-versa;

– Mutual reinforcement: safety requirements or measures contribute to secu-
rity, or vice-versa. Such situations enable resources optimization and cost
reduction;

– Antagonism: safety and security requirements or measures lead, when con-
sidered together, to conflicting situations (cf. example in Section 4.1);

– Independence: no interaction.

These four kinds of relationship will be the basis of our study in the sequel.

3 Presentation of the BDMP Formalism and the KB3
Modeling Platform

The BDMP formalism enables graphical modeling of safety [2] and security
[11,14,15,8]. BDMP models integrating both aspects are introduced in [12]. Vi-
sually similar to fault trees (or attack trees), BDMP provide good readability
and a hierarchical representation. BDMP model the different combinations of
events (leaves of the tree) that lead to the top event (system failure/damage).
Additionally BDMP enable dynamical modeling with a special type of link called
a “trigger”. Each basic event of a BDMP is associated with two distinct Markov
processes corresponding to two possible modes of the basic event. The mode
chosen for a given leaf at a given instant depends on the realization of other
leaves, which is modeled with triggers (see example in Section 4.1). BDMP have
interesting mathematical properties enabling an efficient processing for BDMP
that specify Markov processes with very large state spaces [2]. The relevance of
using Markov processes for security modeling is discussed in [11].

The KB3 platform [14] enables to input graphically BDMP models and gen-
erates textual models (in the Figaro modeling language) describing them. These
latter are used as input to the KB3 quantification tools (FigSeq and Yams)
in order to compute the probability of the top event and the different possi-
ble scenarios leading to it, sorted by decreasing contribution to the top event
probability.

Safety and Security Interactions 329

Table 1. Basic BDMP leaves for safety modeling

Representation Modeled behavior

 ! This leaf is used to model a failure in operation, when the mod-
eled component is active. Failure occurs after a time exponen-
tially distributed (parameter λ) and can also be repaired in a
time exponentially distributed (parameter μ).

This leaf is used to model a failure on demand, likely to arise
instantaneously when the leaf changes of mode (activated or
not), with a probability γ. Failure can be repaired in a time
exponentially distributed (parameter μ).

Table 2. Basic BDMP leaves for security modeling

Representation Modeled behavior

The “Attacker Action” (AA) leaf models an attacker’s step to-
wards the realization of his/her objective. In Idle mode, the ac-
tion has not yet been tried. Active mode corresponds to attempts
with a time to success exponentially distributed with a param-
eter λ. The Mean Time To Success (MTTS) for this action is
equal to 1/λ.

ISE! “Instantaneous Security Event” (ISE) leaf models a security
event that can happen instantaneously with a probability γ
when the leaf switches from the Idle mode to the Active mode.

BDMP are used in the process of risk evaluation. Thanks to extensions de-
scribed in [15], BDMP also allow detection and reaction modeling. We illustrate
is Section 5 this ability and its utility to optimize the choice of countermeasures
against attacks.

The details of the formal definition of BDMP are given in [15]. For reference,
we show in Tab. 1 and Tab. 2 the main leaves used to build the BDMP models
in the following and the behavior they model.

Besides the classical links used to connect a gate to its sons (represented as
solid black lines), BDMP contain two special kinds of links described in Tab. 3.

BDMP have advantages both for building models and processing them. They
are hierarchical, which means that in order to build a BDMP, the analyst starts
from a high level of abstraction and progressively refines into detail levels. Ab-
straction is a fundamental mechanism used by the human mind for dealing with
complexity. At each step in the reasoning (i.e. at each construction of a gate),
the number of manipulated elements is small enough to reduce the possibility of
errors. This process is also traceable, which implies that a model can easily be
reviewed and checked, looking for potential incompleteness.

330 S. Kriaa et al.

Table 3. Special links used in BDMP models

Representation Modeled behavior

Defines the dynamic aspect of BDMP. The element pointed by
the trigger link is not activated until the realization of the origin
gate/leaf of the trigger. When this element becomes activated,
it transmits the activation signal it receives from its parents to
the sub-tree targeted by the trigger.

Creates a constraint in the order of realization of instantaneous
events (on-demand failure leaves), in the case where they are
required simultaneously.

The processing of BDMP is facilitated by the concept of “relevant events”.
The transition from false to true of a leaf (due to accidental failure or attack
success) is said to be relevant if it changes the distribution of the instant where
the top event will be realized. BDMP use a trimming mechanism of irrelevant
events that considerably reduces the number of sequences explored by FigSeq
and makes the explored sequences more interesting qualitatively (all the events
listed in sequences are relevant). This concept and its advantages are described
in details in the seminal paper on BDMP [2].

4 Illustration of Safety and Security Interdependencies

We propose in this section to show the importance of considering together secu-
rity and safety aspects for an accurate risk evaluation and for decision-making
in system design or exploitation.

4.1 Example of an Antagonism

We consider a person being at home and choosing whether to keep the house
door locked or unlocked. When considering fire hazard and for safety reasons
the door must be kept unlocked in order to facilitate evacuation. However, when
considering potential attacks and for security reasons the door must be kept
locked. This example is similar to the case of the exit door addressed by the
literature in [19,4,5].

The undesirable event of our use case is some form of harm to the person,
called later person integrity affected. We start our study by making a pure safety
analysis considering only accidental events. The person can be harmed if a fire
is accidentally initiated in the house and it is impossible for him to escape as
the door is initially locked and the person cannot open it (lock blocked, keys not
found). The BDMP given in Fig. 1 models this scenario. Here the door locked
leaf corresponds to an instantaneous event which can happen with a probability
of 0.5. The two triggers define the dependencies between the events associated to

Safety and Security Interactions 331

the leaves. When the fire leaf becomes true it creates, thanks to the first trigger,
a mode change for the leaf door locked. Consequently, the latter can either stay
false or switch to the true value (with probability of 0.5 for each alternative). If
the door locked leaf becomes true it creates in turn a mode change for the leaf
door impossible to open. According to the same mechanism, this leaf can instantly
either remain false or take the value true. With this model, it is possible to see
that the top event can never happen if the door is unlocked (i.e. when door locked
takes the value false).

Fig. 1. BDMP modeling only
safety hazards

Fig. 2. BDMP modeling safety and security
hazards

We consider in a second stage security-related events that may lead to the
same undesirable event: a burglar can attack the person in the house to get the
combination of a safe. The burglar can enter the house directly if the door is
unlocked or he can force it if it is locked. We give in Fig. 2 the BDMP model
covering both safety and security hazards. The Petri net models the fact that
the door can be initially locked or unlocked with a probability of 0.5 for each
alternative. Initially, a token is placed in p1. This token enables to activate at
t=0 the transition locked door and at t > 0, the token is definitively either in
place locked or in place unlocked. The Petri leaf door locked (resp. door unlocked)
is true when there is a token in the locked (resp. unlocked) place (this is ensured
through a non-graphical link between Petri leaves and the places).

Using the FigSeq tool we calculate for one month of mission time, the events
realization probabilities (Pr) based on an estimation of the probabilistic param-

332 S. Kriaa et al.

Table 4. Scenarios probabilities when the door is locked/unlocked

Pr(attack scenario) Pr(fire and impossi-
ble escape)

Pr(person integrity
affected)

Locked 7.06e-02 7.85e-04 7.14e-02
Unlocked 7.06e-01 0 7.06e-01

eters of each BDMP leaf (fire estimated once a year, attack estimated once per
6 months, Pr(forced door)=0.1 and Pr(door impossible to open)=0.01). These
parameters were chosen arbitrarily. The purpose of this example is not to give
realistic estimates, but rather to show the reasoning. Results show that the prob-
ability of affecting the person integrity increases from 4.17e-4 when considering
only safety hazards to 0.388 when considering additionally the attack scenario.

We give in Tab. 4 the probability of respectively the attack scenario, the ac-
cidental scenario (fire and impossible escape) and the top event (person integrity
affected) in cases when the door is kept locked and when it is kept unlocked. The
antagonism between safety and security is quantitatively verified: the probabil-
ity of the attack scenario is lower when the door is locked while the accidental
scenario is not possible when the door is unlocked. However, we can see that the
top event probability is clearly higher when the door is unlocked. The optimal
decision under the assumptions made here (this includes four parameters: the
frequency of fire and attacks, and the probabilities of a burglar forcing the door
and of the house occupant not being able to evacuate if needed) is to lock the
door. If the parameters were radically different (house occupant is an old and
blind heavy smoker, living in a very secure district, next to a police station), the
quantification of the same model could lead to unlock the door.

Although elementary, this example shows the importance of considering safety
and security together in the risk evaluation phase in order to identify possible
conflicts between the two disciplines. Using BDMP we can not only identify
the conflicts between safety and security measures, but also help choosing the
most appropriate combination of security and safety measures for minimizing
the global risk.

4.2 Example of Synergetic Interdependencies

We give in Section 5 a detailed case study inspired from the industrial domain.
We do the same kind of analysis on this complex system in order to demonstrate
possible synergies between safety and security measures.

5 Case Study

5.1 System Architecture Description

The system considered in the sequel is a hypothetical cyber-physical system used
to transport a polluting substance. It is composed of a pipeline equipped with

Safety and Security Interactions 333

pumps used to force the stream and valves used to allow or block the stream.
Throughout the pipeline sensors measure the pressure and flow inside each sec-
tion of the pipeline. Each piece of equipment (pump or valve) is controlled by a
Remote Terminal Unit (RTU) that communicates with a remote Control Center
(CC). The tasks of the RTU are to:

– Collect data from sensors used to measure the pressure and the flow in the
vicinity of each pump and valve;

– Control the operation/speed of pumps and the opening/closing of valves;
– Send data and alarm signals to the CC and receive instructions from it;
– Exchange with neighboring RTUs pressure measures and shutdown signals.

Safety requires RTUs to verify that the pressure in the pipeline does not exceed a
maximum value Pmax. Each RTU also calculates the pressure difference between
the neighboring RTU and its own sensors: ΔP = |Pn − Pn−1|. If ΔP exceeds a
threshold ΔPmax, the RTU sends an alarm signal to the CC, which sends back
an order to all RTUs to stop pumps and close valves. In addition the RTU sends
a shutdown signal to its neighboring RTUs. The pressure difference threshold
is generally reached when the pipeline is broken; this implies that the pressure
measured before the break is too high compared to the pressure measured after
the break, which makes the pressure difference large. A safety requirement en-
ables each RTU to stop the pump or close the valve it controls when ΔPmax is
reached or when it receives a shutdown order from other RTU without waiting
for CC instructions. This action is called later the “Reflex Action” and provides
redundancy with CC instructions, with a higher priority. The architecture of the
case study is given in Fig. 3. We assume RTUs are locally installed on pumps and
valves and communicate with them via a wired link. Sensors which are relatively
distant and scattered all through the pipeline use a wireless link to communicate
with RTUs. Supposing that the pipeline is hundreds of kilometers long and that
it is a hundred kilometers distant from the CC, we assume that communication
is ensured by a GSM network. The industrial protocols used are Modbus/TCP
for RTU-CC communication, Modbus/RTU for inter-RTUs communication and
WirelessHART for sensor-RTU communication. These assumptions will be used
later to estimate security events parameters.

5.2 System Modeling

The BDMP supporting a risk analysis of this system is given in Fig. 5. It models
the different scenarios that lead to pollution of the environment (the top event).
There are three types of possible scenarios: attack scenarios, accidental scenarios
or hybrid scenarios. The first type of scenarios is a successful attack initiated by a
malicious person, the second type is based on mere accidental events like failures
of the system’s components and the third type is a combination of attacks and
components failures. This latter type best characterizes the possible interactions
between safety and security events.

As explained in Section 3, BDMP use hierarchical reasoning in order to cover
all the possible scenarios. The top event: pollution can be realized if and only

334 S. Kriaa et al.

pp pp pp p
FF F F

RTURTU

Master CC

HMI

p
F

RTU

Unidirectional Wired Link
Unidirectional Wireless Link
Bidirectional Wireless Link

pump Shut-off valve

Possible access of attacker

Pressure meter

Flow meterF

p

Fig. 3. Architecture of the case study

if the pipeline breaks and the protection system fails to react. The protection
system refers to the detection of the pipeline break by RTUs and the system
shutdown either thanks to the reflex action or by orders sent by the CC. The
protection system can fail to react for two different reasons: either it was deac-
tivated before the break by an attacker, or it accidentally does not work.

This reasoning corresponds to the top level of the BDMP. The gate named
attack protection syst then pipeline break is a “PAND” gate, which becomes true
only if its left input is true before the right input becomes true. If an attack is
perpetrated after the pipeline break, this will not worsen the situation.

The Attack Scenario: We suppose that attacks for such an industrial infras-
tructure follow a Poisson process with an occurrence rate of once every 3 years.
We assume that in the case of this pipeline, such a value can be defined based
on the organization security historical data and on intelligence reports. The at-
tack scenario starts by deactivating the protection system before provoking the
pipeline breach by using the water-hammer phenomenon (closing suddenly a
valve downstream when high velocity associated with a high pressure is propa-
gating in the pipeline which causes a shock). In the attack preparation phase the
attacker starts by getting access to the SCADA system: either by taking control
over the CC (physically or remotely) or accessing physically to the RTU or creep-
ing into the network via the communication link (between the RTU and the CC
or between the sensors and the RTU). Secondly, the attacker must understand
the system operation in order to be able to deactivate the protection system.
Depending on what the attacker has gained access to, he will act differently in
order to deactivate the protection. The attack steps in this phase will be quasi
instantaneous (ISE security leaves) as the attacker has previously understood
the system operation and is able to manipulate it. In order to deactivate the
reflex action of RTUs the attacker can simply jam the communication between
the RTUs so that the pipeline breach cannot be detected. The house event No
reflex action models the existence or the non-existence of the reflex action as a
safety measure implemented locally in the system; this leaf is set either to true or
to false prior to any quantification. After preparing for his attack, the attacker is

Safety and Security Interactions 335

ready to break the pipeline with a water-hammer by provoking a high pumping
pressure in the pipeline and closing suddenly the valve downstream which causes
a pressure surge able to create a breach at the weakest point in the pipeline.

The Accidental Scenario: In this case pollution is caused if the pipeline
breaks accidentally then the protection system fails to react. The protection
failure is realized in two cases: no instructions given by the RTU or the on-
demand failure of the equipments (valves and pumps) to react properly. The
first case is realized if the RTU fails or if it doesn’t react which implies that it
receives no instruction from CC and it does not activate its reflex action. Safety
leaves of the BDMP detail the accidental events leading to such scenarios.

The Hybrid Scenario: This scenario is built up from both accidental and
malicious events. We can imagine that the attacker can remotely deactivate the
protection system then give up the attack because he does not succeed in creat-
ing the water hammer. Then he can just wait until the pipeline breaks acciden-
tally instead of trying another attack. This scenario has a very low probability
and supposes that the protection system deactivation is not detected until the
pipeline breaks.

5.3 Qualitative and Quantitative Analysis

To make the quantification, we associate the model leaves with parameters based
on the estimation of the MTTS for security events, the MTTF for safety events
and the probability for instantaneous events (see Tab. 1 and Tab. 2). These pa-
rameters are estimated by security and safety experts based on the assumptions
we made on the protocols and the network (see Section 5.1). We also suppose
that the attacker has a minimum knowledge of SCADA systems and protocols
without necessarily being an insider. These parameters are marked on the model
in Fig. 5 with comment boxes.

Results given below were obtained with FigSeq, as explained in Section 4.1.
Based on the given parameters the pollution probability is estimated to about
2e-2 for a mission time of one year. We can see that attack scenarios are situated
at the top of the list of scenarios. The most probable attack scenario given in
Tab. 5 is the one in which the attacker gets access to the RTU, takes control over
the equipments and sends false data to the CC and to the neighboring RTUs.

We give in Tab. 6 the probability of the most probable attack sequences
according to the type of access. We infer from results that the RTU is the most
critical and vulnerable component in our case study. Being left on the pipeline
with little physical protection it is easy to attack. These results are of course
based on the estimations we give to parameters, for instance we supposed that
sensors communicate with RTUs using the WirelessHART protocol which is a
secured protocol using authentication and encryption. The attacker must first
find a vulnerability before gaining access to the communication link. On the
other hand, the Modbus/TCP protocol used for RTUs and CC communication
is not secured and data can be clearly read once the attacker accesses the GSM
network.

336 S. Kriaa et al.

Table 5. Most probable attack scenario from the BDMP model

Transitions MT Proba Contrib.Name Rate
failF(attack occurence) 2.28e-5

1.31e-2 0.67

aa success(access to RTU) 0.0208
aa success(understand syst operation) 0.0208
ise nd real(falsify data sent to CC) 0.6
ise nd real(falsify data sent to other RTUs) 0.6
ise nd real(falsify instructions sent to equipments) 0.7
ise nd real(high pumping pressure activation) 0.7
ise nd real(closing valve) 0.7

Table 6. Probability of attack sequences according to the type of access

Type of access RTU CC CL(RTU & CC) CL(sensors & RTU))
Pr(pollution) 1.31e-2 2.92e-3 7.85e-04 1.62e-4

The first hybrid scenario given in Tab. 7 has a probability of 4.03e-4, in which
the attacker deactivates the protection system then gives up the attack before
the pipeline breaks accidentally.

The first accidental scenario given in Tab. 8 appears with a probability of
1.98e-5 and consists of accidental break of the pipeline and failure of the sensors
to communicate correct measures to RTUs. Redundancy among sensors and the
elimination of single points of failure could be considered to prevent such acci-
dental scenarios. Results demonstrate that the hybrid scenario is more probable
than the accidental scenario. Security events accelerate very much the realization
of the undesired event (pollution).

5.4 Safety and Security Interdependencies

We propose in this section to highlight the possible interdependencies between
safety and security in the use case, and to illustrate how the model can be used
to choose appropriate detection and reaction measures.

Mutual Reinforcement: The reflex action is a safety module implemented
locally at each RTU in order to act in case of accidental pipeline break. In order
to assess its influence on the system we calculate the pollution probability with
and without reflex action (No reflex action leaf activated/deactivated). Results
demonstrate that the pollution probability increases by 13 % if no reflex action
is implemented at the RTUs (1.95e-2 with reflex action to 2.2e-2 without reflex
action). The reflex action represents an additional barrier for the attacker to
overcome. If the attacker causes the pipeline breach without deactivating the
reflex action this latter would react to prevent pollution as the breach would be

Safety and Security Interactions 337

Table 7. The most probable hybrid scenario

Transitions MT Proba Contrib.Name Rate
failF(attack occurence) 2.28e-5

4.03e-4 0.026

aa success(access to RTU) 0.0208
aa success(understand syst operation) 0.0208
ise nd real(falsify data sent to CC) 0.6
ise nd real(falsify data sent to other RTUs) 0.6
ise nd real(falsify instructions sent to equipments) 0.7
no realization(high pumping pressure activation) 0.3
failF(pipe break accidentally) 1.14e-5
failF(pipe break accidentally) 1.14e-5

Table 8. Most probable accidental scenario

Transitions MT Proba Contrib.Name Rate
failF(pipe break accidentally) 1.14e-5 1.98e-5 1.01e-3good(CC RTU communication lost) 0.99954
good(Control Center) 0.999886
good(RTU) 0.999862
good(faulty operator) 0.99977
failI(faulty sensor measure) 0.00023
good(inter RTU communication lost) 0.9993

detected by RTUs. We can infer consequently that this safety measure reinforces
the system security.

Conditional Dependency: This kind of interdependency is the most com-
mon and implies that the safety level is dependent on the security level. This is
more straightforward as, generally, the attackers’ goal is to cause safety accidents
through compromising the system security. This interaction is illustrated in the
two following situations:

– As modeled in Fig. 5 the attacker can access the system via the wireless com-
munication link between sensors and RTUs which is more difficult when the
communication is secured. In this case the attacker can manipulate data sent
by the sensors to RTUs in order to deactivate the reflex action. The attacker
can even exploit the normal functioning of the reflex action to cause the
pipeline breach; typically send low pressure measures to the RTU control-
ling the pump to activate high pumping speed and then when high pressure
is reached the attacker can send false low pressure measures to the RTU
controlling the valve downstream. This RTU will calculate a high ΔP (high
Pn−1 received from the previous RTU and low Pn given by the attacker)

338 S. Kriaa et al.

and close the valve leading to a water-hammer. We remind that the reflex
action is considered to have a higher priority as a safety module over CC
instructions as this latter might detect inconsistencies in the RTUs measures.

– Strengthening the system security by adding detection and defense measures
enhances the system safety as it contributes to the reduction of pollution
probability. It is possible to include detection aspects in the BDMP model.
The general idea is that each attack step can be detected at various moments:
when it begins, during its progress, when it succeeds, or after completion.
Whenever detection occurs, this changes all success rates or probabilities for
attack steps which are still to be completed. The only thing the analyst has
to do to take detection into account in the BDMP model is to change a
global option in the model and add in each security leaf the detection rate
and the realization rate after detection. This does not require any change
in the BDMP structure. These detection parameters are taken into account
in the quantitative processing. This increases considerably the number of
sequences to explore, because each scenario of the model without detection
can lead to many variants with detection occurring at various stages.

In order to evaluate the efficacy of detection we have done a sensitivity analysis;
the results obtained are given in Fig. 4. We first assess the pollution probability
evolution in two extreme cases: without any attack and with attacks but without
any detection mechanism. Then we take into account detection and response
measures and compare two detection strategies. We can model in the BDMP
many detection strategies and various responses for each of them; we have chosen
a simple scenario in order to be able to explain it concisely. We suppose that
in the so-called “good detection” strategy, the RTU attack is detected at the
instant where it succeeds with a probability γ (γ ∈ [0.5 , 0.9]). No other detection
mechanism is implemented. The reaction is the fact that the subsequent attack
step becomes impossible: the attack is completely blocked. To obtain the “bad
detection” strategy, one simply has to replace “RTU” by “communication link
between sensors and RTUs”’ in the previous description. We have chosen here
to place detection measures at the beginning of the attack on the components
that are most and least likely to be attacked (cf. Tab. 6).

Fig. 4. Comparison of various detection strategies

Safety and Security Interactions 339

Fig. 5. BDMP model of the pipeline and its control system

340 S. Kriaa et al.

We can infer from results that security related scenarios increase considerably
the pollution probability (factor of 400 between the two extreme cases). We can
also see that the influence of a bad detection strategy on the pollution proba-
bility is negligible whatever the detection probability (γ). However introducing
a good detection strategy decreases significantly the pollution probability espe-
cially when the detection probability is high (almost 43% of pollution reduction
when detection probability passes from 0.5 to 0.9). We infer from this sensitivity
analysis the importance of the qualitative analysis given in Section 5.3 in the
identification of the weakest point of the whole system and consequently the
right detection strategy.

In this second example we have been able to put into evidence synergetic
interactions between safety and security by modeling safety and security events
in an industrial architecture. The qualitative and quantitative analyzes enable
to rank the scenarios leading to the undesirable event and to identify the most
probable scenarios. It is consequently possible to point out the most vulnerable
items in the system and take preventive measures accordingly.

6 Conclusion and Future Work

We have illustrated in this paper the interest of considering safety and security
aspects in a more integrated fashion in the risk evaluation process. Using the
BDMP formalism we have modeled two examples: a simple common example and
a more elaborated industrial case study. Thanks to the qualitative and quantita-
tive capacities of the formalism one can characterize different interdependencies
between safety and security: antagonism, conditional dependency and mutual
reinforcement.

The main limitation of this work comes from the difficulty to evaluate the
parameters associated to the security leaves of the model. Therefore we intend
to work on the robustness of the decisions that can be taken, based on such
analyzes. Our aim it to be able to determine decisions that remain valid for a
wide range of values of the most uncertain parameters.

References

1. Bieber, P., Blanquart, J.P., Descargues, G., Dulucq, M., Fourastier, Y., Hazane, E.,
Julien, M., Leonardon, L., Sarouille, G.: Security and safety assurance for aerospace
embedded systems. In: Proceedings of the 6th International Conference on Embed-
ded Real Time Software and Systems, Toulouse, France, pp. 1–10 (2012)

2. Bouissou, M., Bon, J.-L.: A new formalism that combines advantages of fault-trees
and markov models: Boolean logic driven markov processes. Reliability Engineering
& System Safety 82(2), 149–163 (2003)

3. Chiaradonna, S., Di Giandomenico, F., Lollini, P.: Case study on critical infrastruc-
tures: Assessment of electric power systems. In: Wolter, K., Avritzer, A., Vieira,
M., van Moorsel, A. (eds.) Resilience Assessment and Evaluation of Computing
Systems, pp. 365–390. Springer, Heidelberg (2012)

Safety and Security Interactions 341

4. Eames, D.P., Moffett, J.D.: The integration of safety and security requirements.
In: Felici, M., Kanoun, K., Pasquini, A. (eds.) SAFECOMP 1999. LNCS, vol. 1698,
pp. 468–480. Springer, Heidelberg (1999)

5. Hunter, B.: Integrating safety and security into the system lifecycle. In: Improving
Systems and Software Engineering Conference (ISSEC), Canberr, Australia, p. 147
(August 2009)

6. Kornecki, A., Subramanian, N., Zalewski, J.: Studying interrelationships of safety
and security for software assurance in cyber-physical systems: Approach based on
bayesian belief networks. In: 2013 Federated Conference on Computer Science and
Information Systems (FedCSIS), pp. 1393–1399 (2013)

7. Koscher, K., Czeskis, A., Roesner, F., Patel, S., Kohno, T., Checkoway, S., McCoy,
D., Kantor, B., Anderson, D., Shacham, H., Savage, S.: Experimental security anal-
ysis of a modern automobile. In: 2010 IEEE Symposium on Security and Privacy
(SP), pp. 447–462 (2010)

8. Kriaa, S., Bouissou, M., Pietre-Cambacedes, L.: Modeling the stuxnet attack with
BDMP: towards more formal risk assessments. In: 2012 7th International Confer-
ence on Risk and Security of Internet and Systems (CRiSIS), pp. 1–8 (2012)

9. Nai Fovino, I., Masera, M., De Cian, A.: Integrating cyber attacks within fault
trees. Reliability Engineering & System Safety 94(9), 1394–1402 (2009)

10. Novak, T., Gerstinger, A.: Safety- and security-critical services in building au-
tomation and control systems. IEEE Transactions on Industrial Electronics 57(11),
3614–3621 (2010)

11. Pietre-Cambacedes, L., Bouissou, M.: Beyond attack trees: Dynamic security mod-
eling with boolean logic driven markov processes (BDMP). In: Dependable Com-
puting Conference (EDCC), 2010 European, pp. 199–208 (2010)

12. Pietre-Cambacedes, L., Bouissou, M.: Modeling safety and security interdependen-
cies with BDMP (boolean logic driven markov processes). In: IEEE International
Conference on Systems Man and Cybernetics (SMC), pp. 2852–2861 (2010)

13. Pietre-Cambacedes, L., Bouissou, M.: Cross-fertilization between safety and secu-
rity engineering. Reliability Engineering & System Safety 110, 110–126 (2013)

14. Pietre-Cambacedes, L., Deflesselle, Y., Bouissou, M.: Security modeling with
BDMP: from theory to implementation. In: 2011 Conference on Network and In-
formation Systems Security (SAR-SSI), pp. 1–8 (2011)

15. Pietre-Cambacedes, L., Bouissou, M.: Attack and defense dynamic modeling with
BDMP (extended version). Tech. rep., Technical Report, Telecom ParisTech (2010)

16. Pietre-Cambacedes, L., Chaudet, C.: The SEMA referential framework: Avoiding
ambiguities in the terms “security” and “safety”. International Journal of Critical
Infrastructure Protection 3(2), 55–66 (2010)

17. Smith, J., Russell, S., Looi, M.: Security as a safety issue in rail communications. In:
Proceedings of the 8th Australian Workshop on Safety Critical Systems and Soft-
ware, SCS 2003, vol. 33, pp. 79–88. Australian Computer Society, Inc., Australia
(2003)

18. Steiner, M., Liggesmeyer, P.: Combination of safety and security analysis-finding
security problems that threaten the safety of a system. In: Proceedings of Workshop
DECS (ERCIM/EWICS Workshop on Dependable Embedded and Cyber-physical
Systems) of the 32nd International Conference on Computer Safety, Reliability and
Security (2013)

19. Sun, M., Mohan, S., Sha, L., Gunter, C.: Addressing safety and security contradic-
tions in cyber-physical systems. In: 1st Workshop on Future Directions in Cyber-
Physical Systems Security (CPSS 2009), Newark, United States (2009)

A. Bondavalli and F. Di Giandomenico (Eds.): SAFECOMP 2014, LNCS 8666, pp. 342–353, 2014.
© Springer International Publishing Switzerland 2014

A Pragmatic Approach towards Safe and Secure Medical
Device Integration

Christoph Woskowski

Zühlke Engineering GmbH
Landshuter Allee 12

80637 München, Germany
christoph.woskowski@zuehlke.com

Abstract. Compared to other safety-related domains, harmonizing efforts re-
garding electronic device integration and interaction – in terms of real-time and
remote control – are conducted less ambitious in the medical device sector.
There are a couple of reasons for this restrained progress. Traditionally, medical
devices are either both small-sized and self-sufficient or they are highly inte-
grated parts of a complete setup provided by one vendor. Especially when
equipping critical care facilities such as intensive care units, producer and brand
diversity is low, whereas the pressure of competition is high. The results are
proprietary communication and control solutions when connecting devices in
order to interact. On the other hand, any modern hospital heavily relies on high-
ly available critical medical devices providing and sharing data but also on con-
fidentiality and integrity of vitally important information.

This paper discusses a pragmatic risk-based approach to handle integration
problems facing the current situation described above, while focusing on future
development challenges. The background of this paper is a project for defining
a safe and secure integration interface that – open to integration partners –
enables to monitor and remote-control a critical medical device.

Keywords: medical device integration, remote control, safety-critical, cyberse-
curity, risk-based approach.

1 Introduction

Who bears the risk of connecting medical devices with each other or with other hos-
pital IT?

In an increasingly connected environment, underdeveloped harmonization regard-
ing medical device interaction and integration leads to incompatibilities as well as to
increased safety and security risks. Those risks become evident at boundaries between
two or more devices from different vendors to be integrated. Because of the unavaila-
bility of an obligatory standard – IEC 80001-1 [1] is not harmonized – the responsi-
bilities are not sufficiently defined. There are commonly accepted standardized
protocols and interchange formats like DICOM [2]. But those are only applicable for
special niches like storing and transmitting information in medical imaging.

 A Pragmatic Approach towards Safe and Secure Medical Device Integration 343

However, it is not possible to prevent electronic devices containing a communica-
tion or connectivity option from getting directly or indirectly connected to an IP-
based network. Off-the-shelf solutions are available for most interfaces and protocols,
enabling conversion to Ethernet, WiFi or GSM. Many of those adapters even are
equipped with a – very often vulnerable – web server, making any attached device
available and thus attackable via the internet. Any present-day vendor producing criti-
cal electronic devices would be well advised to consider this possibility.

Of course in today’s critical care units and other vital parts of a modern hospital,
there are already a lot of devices that innately are equipped with Ethernet or wireless
interfaces (WiFi, Bluetooth, GSM etc.) and by those means are connected to protected
parts – so called VLANs – of the hospital IT network. Version 3.0 of the IEC 60601-1
standard (IEC 60601-1:2005) [3] requires critical medical networks to have no physi-
cal connection with other parts of the hospital network. This apparently has changed,
since the newest version 3.1 of IEC 60601-1 (IEC 60601-1:2005 + Cor.:2006 +
Cor.:2007 + A1:2012) [4] does not contain this passage anymore. Actually, there can
be no guarantee, since there is no assurance of physical disconnection – not in case of
an intended wired-only solution and even more so in the wireless case. Still many
vendors developing today’s critical care systems seem to be unaware of the fact, that
internal or external proprietary communication protocols and interfaces might get
exposed and be accessible from outside a considered closed system. It is not even
necessary to think in terms of hackers or attackers. Just unintended “flooding” of a
critical considered-private communication channel, for example caused by a miscon-
figured Ethernet switch or a private device carelessly brought into the network might
have an impact on availability and integrity of vital data and services – with potential-
ly fatal consequences.

Against this background the paper proposes a pragmatic, risk-based approach to-
wards safe and secure critical medical device interfaces:

Fig. 1. Proposed extended risk management

344 C. Woskowski

Since device manufacturers have to take increased responsibility for the interopera-
bility and external interfaces of their critical products, they might do so by extending
the required IEC 14971 - compliant risk management [5] beyond device boundaries.
The extended risk management covers interface safety, interface usage and network
security aspects as well as definition and application of appropriate risk mitigation
techniques (see Fig. 1).

2 Initial Situation

The critical medical equipment considered here, is a successful product in the inten-
sive care market and predominantly being sold as stand-alone device. It is capable of
moving automatically in preprogrammed ways into predefined positions. The human
operator is able to operate the device using the control panel mounted on the device’s
casing as well as via cable remote control and wireless remote control.

Alternatively, the device can be part of a larger system. As a deeply integrated
component, it is then controlled by an external control unit and being moved together
and in coordination with other intensive care equipment. In this case, the whole sys-
tem of systems is being sold as one product of an integrator or of a different medical
device vendor. The only role left for the original producer of the critical component
is to be junior integration partner and Original Equipment Manufacturer (OEM)
respectively.

Considering this, the producer and vendor of the moveable medical device decided
to develop and provide a generic integration interface – open to all integration part-
ners. Thus, besides continuing the OEM business, this enable the producer to present
the own brand as well as the own product as equal partner in one-to-one integration
solutions.

3 Safety Considerations

From a regulatory point of view, for this project the general standard IEC 60601-1 is
applicable, whereas general requirements of 60601-1 may be overwritten or bypassed
by specific requirements in the standards for a specific product (IEC 60601-2-XX).
The analysis of the standards as well as the existing risk management file (as required
by IEC 14971) and other available documentation delivers the following functions to
be considered safety-critical:

• Every movement must be intended by the human operator. Unintended movement
has to be prevented by all means.

• In any imaginable situation, the instance currently controlling the device and its
movements has to be identifiable. Thus a clear assignment of remote controlling
devices needs to be ensured.

• In case of an emergency, the patient has to be reachable and positionable for treat-
ment. Thus even in a single-fault condition it has to be possible to return the device
into an emergency position.

 A Pragmatic Approach towards Safe and Secure Medical Device Integration 345

The safety concept of the stand-alone variant of the critical medical device already
takes those safety-critical functions into account. Via the control panel mounted on
the device’s casing – exhibiting highest control priority and diverse power and com-
munication sources – the human operator is always able to stop and overrule any
movement. Additionally, the operator can always return the device into a position,
which enables emergency treatment of the intensive care patient. Several imple-
mented measures make sure, that the system in itself is single fault proof against un-
wanted movement. Every remote control is clearly assigned to the device it controls
by applying a pairing procedure. A range- and direction-restricting mechanism en-
sures line-of-sight between the human operator using a remote control and the move-
able intensive care equipment.

With respect to the whole system safety, the integration interface to be developed
must not undermine the safety concept stated above. Although a separate risk man-
agement file will be generated for the integration interface in order to provide neces-
sary input for the risk management process of an integration partner (as required by
IEC 60601-1 and IEC 80001-1), there is no separation of risk management of the
critical device and its external interface. Quite contrary, the interface has to rely on
and support the already implemented risk measures as well as to use concepts similar
to the proven solutions. Since a new interface always means to open at least parts of a
system and in case of remote control even to give up and lose some internal control,
there is always the risk of reducing the overall system safety and security. Managing
and mitigating those risks therefore has to be an essential part of the project at hand.

4 Security Considerations

Down to the present day the medical device sector lacks in specifications and legally
binding standards on how to address the security question in the medical device de-
velopment process. This is especially a problem for design and implementation of
security-aware communication interfaces and protocols for critical medical equip-
ment. After all, the Medical Device Directive [6] (MDD, Directive 93/42/EEC) at
least demands that medical device manufacturers have to show that the applied solu-
tions take “account of the generally acknowledged state of the art”.

But what is state of the art? As a general rule – besides the directly applicable med-
ical standards – it is the state of the scientific and technical knowledge. This explicitly
includes draft versions, not yet harmonized standards and guidelines by the authorities
– especially if already applied by comparable products. Referring to its own guide-
lines, the American Food and Drug Administration (FDA), which is also in authority
for the medical device sector, states that: “Although guidance documents do not legal-
ly bind FDA, they represent the agency's current thinking. Therefore, FDA employees
may depart from guidance documents only with appropriate justification and supervi-
sory concurrence.” [7] In order to find some guidance and hints on how to address
security in the project at hand – considering its objective to develop a generic and
open integration interface for a critical medical device – the following documents and
statements have been considered relevant:

346 C. Woskowski

• Draft ISO 80001-1:2009, Introduction: “The manufacturer of a medical device
intended to be incorporated into an IT-network might need to provide information
about the medical device that is necessary to allow the responsible organization to
manage risk according to this standard. […] risk management should be applied to
address the following key properties appropriate for the IT-network incorporating a
medical device: […] – data and system security.” [1]

• Draft ISO 80001-1:2009, chapter 3.5: “For a medical device whose intended use
includes connection to an IT-network, the medical device manufacturer shall pro-
vide […] the technical specifications of the network connection of the medical de-
vice including security specifications” [1]

• FDA draft guidance (Nonbinding Recommendations) “Content of Premarket Sub-
missions for Management of Cybersecurity in Medical Devices”, chapter 4:
“Ensure secure data transfer to and from the device, and when appropriate, use ac-
cepted methods for encryption” [8]

The above mentioned draft guidance released in June 2013 by the FDA, also demands
that medical device manufacturers should define and document their cybersecurity
risk analysis and management plan as part of the required risk analysis. Although the
IEC 14971 risk management process never is mentioned explicitly, the idea of extend-
ing the required analysis towards security-induced hazardous situations obviously
would satisfy the intention of the FDA guidance.

5 Non-functional Requirements

Non-functional requirements generally have the greatest impact on architecture and
design of a system or a sub-component like an external interface. During the require-
ments elicitation phase those anchor points are collected and documented with ade-
quate care. The following listing displays the “guardrail” of the integration interface
architecture and thus also influences the available options for risk mitigation, as stated
later on:

• Safety: The interface must fulfill the general (IEC 60601-1) and product specific
(IEC 60601-2-XX) safety requirements: prevent unwanted movement, ensure clear
assignment of remote controlling devices and enable emergency positioning for pa-
tient treatment.

• Correctness: The interface should handle the possibility of multiple simultaneous
and concurrent attempts to control the (movement of) the critical device.

• Reliability: The interface should provide either real-time control of the devices’
movements or it should fail gracefully without affecting the rest of the system.

• Usability: Design and documentation of the interface should enable fast imple-
mentation of integration solutions containing the critical moveable device.

• Efficiency / Scalability: The communication protocol should support narrow-band
serial connections, unreliable wireless connections as well as broadband Ethernet.

• Maintainability: In order to facilitate integration and support, the communication
protocol should have a human readable and comprehensible format.

 A Pragmatic Approa

• Portability: Since parts
mented on client side, to
libraries shall be used.

• Security: A pragmatic
measures for mitigating
ble but only as complex,

6 Adapted Risk A

Any risk-based approach ha
tem may be posing to its en
device sector, like in othe
regarding risks is a task for
tise, their experience as we
geous though, to additiona
security experts, especially
Following the adapted IEC
[Fig. 2], intended use and s
with one or more foreseeab
more corresponding hazard

Fig. 2. Detail of

The risks regarding a haza
nents, severity and probabi
of people, damage to prope
are unacceptable, then risk

ach towards Safe and Secure Medical Device Integration

s of the communication protocol will have to be imp
oo, standard solutions, platform independent languages

risk-based approach has to ensure that the implemen
security risks are as comprehensive and effective as po
 limiting and restrictive as necessary.

Analysis

as to start with identifying the potential risks a critical s
nvironment and especially to human beings. In the med
er safety-related domains, the identification and analy
r domain experts. These specialists can rely on their exp
ell as on available standards and guidelines. It is advan
ally consult safety experts from other domains, but a
if security aspects have not been addressed before.

C 14971 workflow describing risk management activi
safety-critical functions of a medical device are confron
ble hazards (potential sources of harm) as well as one
ous situations (circumstances of exposure to hazards).

the adapted IEC 14971 workflow (changes in bold)

ardous situation are finally expressed by the two com
ility of occurrence of harm (injury or damage to the hea
erty / environment). If this combination and thus the ri
mitigation is required. Afterwards, severity and probabi

347

ple-
and

nted
ossi-

sys-
dical
ysis
per-
nta-
also

ities
nted
e or

mpo-
alth
isks
ility

348 C. Woskowski

are estimated again in orde
risks are acceptable or not.

In most cases it is not p
stead qualitative severity le
and semi-quantitative prob
improbable) are used [Fig.
priate attributes based on
security risks, this is a very
are missing but also becaus

Fig. 3. Three

It is still helpful and valid t
14971 standard in order to
safety-critical functions of
sibly induce harm is identi
hazards. The difference is
environment in general are

In the safety sense, haza
or they can occur because o
to try at least an educated g
bility.

This is different in case
safety-related hazardous sit
circumstances of exposure
losses and reputation decre
safety cannot be neglected.
ment might be no different
bility of occurrence definit
vulnerable system connecte
already explained in the in
not be connected to the inte

er to evaluate whether after applying mitigating measu

possible to exactly measure the risk or its components.
evels (negligible, minor, serious, critical and catastroph
bability levels (frequent, probable, occasional, remote

3]. It is the task of the domain experts to assign the app
their knowledge and experience. Especially consider

y difficult task, since not only reliable statistical numb
e of lack of experience.

e-region risk evaluation matrix after IEC 14971

though, to follow the work flow recommended by the I
o identify foreseeable hazards based on intended use
the system, since the critical functionality that might p

ical for safety- and security analysis. The same applies
the hazardous situation, meaning the way people and
exposed to hazards.

ardous situations can arise from slips, lapses and mista
of random or systematic faults. It is possible for an exp
guess in order to qualitatively estimate severity and pro

of hazardous situations in the security sense. In contras
tuations, an attack might deliberately create those crit

e to hazards. Even when disregarding potential finan
ease for manufacturer and vendor, the impact on syst
. In that case, the severity of harm to people and envir
t from a comparable safety-related incident but the pro
tely is not the same. The probability of an unprotected
ed to the internet being scanned or attacked is one [9].
ntroduction, even though a critical medical system sho
ernet, this is in practice hard to prevent.

ures

In-
hic)
and
pro-
ring
bers

IEC
and

pos-
s to
the

akes
pert
oba-

st to
tical
ncial
tem
ron-
oba-
d or
 As

ould

 A Pragmatic Approach towards Safe and Secure Medical Device Integration 349

Thus for the project at hand, the probability of occurrence of harm for a security-
related hazardous situation – before mitigation – is considered at least medium level
(occasional). This means, mitigation is required for all security-induced hazardous
situations with serious, critical or catastrophic severity of harm.

7 Risk Mitigation Example

The following example illustrates the proceeding of risk analysis based on the adapted
IEC 14971 workflow [Fig. 2]. The example starts with the identification of one in-
tended use, specifically a single safety-critical function: the prevention of unwanted
movement, or – formulated in the positive sense – the maintenance of the intended
and adjusted position. The corresponding hazard is the leaving of this intended and
adjusted position by means of an unwanted movement.

Safety-Related Hazardous Situation. The occurrence of an unwanted movement
trigger is a hazardous situation now briefly considered solely from a safety standpoint.

There are a number of corresponding circumstances imaginable – starting from op-
erating error, over electromagnetic impact to effects of an implementation bug. Al-
though the probability of occurrence of harm may be considered occasional or even
remote – the exact values are not relevant for this example – the consequences of
uncontrolled movement in an intensive care environment may range from permanent
impairment or life-threatening injury of any attendant human being to the worst case
of patient death. The corresponding severity level is “critical” or even “catastrophic”.
This indicates an unacceptable risk, so applying mitigating measures is mandatory.
The following exemplary measures are already implemented by the critical device
itself and thus only mentioned briefly:

• No movement can be started by a single trigger. In order to start motor activity,
two independent triggers (electrical signals, protocol messages etc.) are necessary.

• A human operator has to authorize every movement before it starts and continuous-
ly as long as the movement lasts.

• Any movement trigger must be reactivated repeatedly – re-send the message or
pulse the signal - in a tight interval in order to continue motor activity (keep-alive).

Quality assurance has to evaluate whether the measures taken are effective in order to
mitigate risks or not.

Security-Related Hazardous Situation. The mitigation strategy for security risks in
this example is more complex and requires balancing of seemingly conflicting de-
mands and requirements. In order to demonstrate this, the following security-related
hazardous situation, which is very similar to the safety-induced situation above, is
used: movement triggers – unwanted by the human operator in authority – are delibe-
rately injected into a valid connection.

Several kinds of attacks could realize the injection of a critical protocol message,
among them the well-known man-in-the-middle attack and the replay attack.

350 C. Woskowski

The former is necessary in order to tap or hijack a valid connection or session and the
latter enables to capture and resend valid protocol messages – with potentially cata-
strophic outcome (severity).

Since all security-induced hazardous situations have been assigned a probability of
occurrence of “occasional” (see chapter Risk Analysis) the resulting risk is unaccept-
able and requires mitigation.

So how does a possible mitigation strategy look like? Considering both mentioned
attacks man-in-the-middle and replay, it is noteworthy, that replay is not possible
without tapping and hijacking the connection first. One part of the risk-mitigation
strategy would be to hinder capturing of a session or connection. There is no way to
completely eliminate the possibility of a man-in-the-middle attack though, since it is
part of the interface’s function to facilitate an Ethernet connection. Ethernet inherent-
ly allows traffic-monitoring for any connected participant and even re-routing of net-
work traffic.

One obvious solution for protecting communication over an insecure or vulnerable
channel against eavesdropping or capturing would be encryption. The FDA even en-
courages encrypting data transfer to and from a medical device [8].

Encrypted communication though contradicts with the maintainability requirement
of a human readable and comprehensible protocol format. Additionally, it does not
solve the problem of establishing communication with the correct partner in the first
place. And finally, it is not necessary to hide the communication contents, since no
patient health information deserving protection will be transmitted.

Actually the first part of this security risk mitigation strategy only has to make
sure, that communication solely is established and maintained with the correct partner
and that any protocol message can be unambiguously correlated to its source. In the
security domain it is best practice to use standard- and proven solutions to common
problems. The proven solution for the current problem is standard authentication.

Authentication is the process of one communication partner proving its identity to
the other one, in this case of the controlling system to the one to be controlled. There
are different ways for proving an identity to a remote instance. Although a hard-coded
identifier might suffice in order to authenticate the external system claiming control
of the critical moveable device, there are some downsides:

• How to transfer a secret ID using a human readable protocol?
• How to add new or remove invalid external systems to / from the list of accepted

and well-known devices (scalability)?
• How to ensure line-of-sight of controlling system and controlled device (as

claimed by the critical devices’ safety concept)?

There are also already proven solutions for these problems. A common HTTP scheme
based on a Hash Message Authentication Code (HMAC, RFC 2104) [10] may be used
for authentication.

Instead of a hard-coded identifier, a so called “shared secret” enables to prove the
identity of the requesting device. Like for example in a pairing process of Bluetooth
devices or when using a security token for logging into a company network, a period-
ically generated PIN is displayed on one device to be entered manually at the other
device.

 A Pragmatic Approach towards Safe and Secure Medical Device Integration 351

This shared secret (the PIN) is then used to calculate the HMAC for each message
to be sent. This process based on a hash algorithm is comparable to calculating a
checksum that includes both message and secret key. As a side effect, using HMAC
also enables to detect manipulation of the message content. Since the output of the
HMAC algorithm in this case fulfills the same function as a signature, the whole
process of calculating and adding a HMAC to a message might be seen as “signing”
the message.

The HMAC solution enables authentication even for a human-readable message
format, is scalable using a generated shared secret and enforces a line-of-sight at least
during connection establishment (reading and manually entering the PIN code). Thus
it fulfills the first part of the risk-mitigation strategy – it complicates capturing of a
session or connection and thus the so-called man-in-the-middle attack. It is not able to
eliminate the possibility though, since brute force or social engineering methods
might still enable to determine the shared secret. In the end, the mitigating measure
makes it hard to generate a valid protocol message from scratch in order to inject it
into an existing connection.

A replay attack is still possible though, without limitation. An attacker with access
to the corresponding network is able to capture a valid and correctly signed movement
command and to inject copies of it (replay) into the same ongoing communication.

A proven solution for hindering replay attacks is called “salting”. An ever-
changing factor like a timer, a continuous index or counter (the “salt”) added to the
secret key (PIN) used by the HMAC algorithm, makes every signature quasi-unique.
Even for an identical message contents the calculated HMAC – and thus the “signa-
ture” of the message – differs and thus enables to detect and handle untimely or co-
pied messages.

Thus the final mitigation strategy in this example has three major components:

• A shared secret enables to prove and validate the identity of an external system.
• A signature-like mechanism (HMAC) ensures authenticity of received messages.
• “Salting” of the generated signature enables the detection of copied messages.

This example solution only uses proven and standard mechanisms as advocated by
security best practices.

8 Related Work

There are already a number of approaches towards medical device integration and
interoperability. Starting an integration project, available standardized solutions of
course would be the first choice for implementation. Because of their different focus
on mere imaging and medical data exchange, some standards like DICOM [2] and
HL7 [11] are not suitable for remote and real-time control of critical systems, though.
Arney et al. [12] propose an Open Source middleware solution – following ASTM
F2761-09(2013) [13] and ISO/IEEE 11073 [14] design and architecture principles –
for solving interoperability problems of critical medical devices. The ISO/IEEE
11073 medical device communication standards directly address interoperability

352 C. Woskowski

problems. Because of an inherent complexity, lack of easily adaptable reference im-
plementations and strong references to out-of-date technologies (infrared wireless)
most vendors did not adopt the ISO/IEEE 11073 standards so far [15]. The “Design
Pillars for Successful Interoperability” presented by Arney et al. [12] on the other
hand strengthen the argument for establishing a standardized solution.

Other generic solutions – such as the application of SOA-principles (Service
Oriented Architecture) for medical device integration [15, 16] – as well are costly to
implement and hard to establish as a standard by a single vendor. It is possible
though, to adopt parts of the underlying standard technology; for example XML as
messaging format.

Kühn et al. [17] suggest a risk based approach for bridging the gap between the re-
sponsibilities of different medical device vendors according to IEC 14971 in case of
an integrated solution. In compliance with (to be harmonized) IEC 80001-1 the inte-
grator / clinic operator performs a gap analysis based on the risk management files of
the manufacturers. The deployment of the above proposed extended risk management
[Fig. 1] by all involved vendors would help to minimize the gap a priori.

9 Conclusion

According to IEC 60601-1 and IEC 80001-1 it is the responsibility of the medical
device manufacturer to provide information and input to the integrator in order to
facilitate the overall risk analysis, which is required when integrating a critical medi-
cal device into a larger system of systems. Only delegating or forwarding the integra-
tion risks though puts a heavy burden on the partner who is responsible for the inte-
gration. If additional risk mitigating measures are required and to be implemented by
the integration partner, the costs might outweigh the benefits or it might not even be
possible to implement required measures outside of the critical device.

The presented example shows that it is beneficial for a medical device manufactur-
er to think in a risk-based way about interoperability and integration during device
development or alternatively in a separate device integration interface project. Meas-
ures that can be applied during development and within extended boundaries and
responsibilities of the device and its external interfaces may reduce risks and thus
costs for an integrator. Although some measures (like HMAC-based authentication)
will have to be implemented by the connected systems too, the usage of proven and
standard solutions and libraries reduces the effort considerably.

The example also shows that it is possible to take a risk-based approach towards
security, especially if security vulnerabilities also pose a safety risk for patient and
personnel. In this sense, the described solution already complies with a draft version
of an FDA guideline, presumably to be accepted in the near future.

Although many of the presented technical aspects are indeed very specific and
form in a sense a proprietary solution – developed and maintained by one vendor –,
the pragmatic approach of extending risk management beyond the currently required
boundaries are a generic concept. Also, for many safety-related products it might be
beneficial to consider security vulnerabilities to be a safety threat that can be explicit-
ly addressed by the overall risk management process.

 A Pragmatic Approach towards Safe and Secure Medical Device Integration 353

References

1. IEC 80001-1 Ed. 1.0, Application of Risk Management for IT-Networks incorporating
Medical Devices - Part 1: Roles, responsibilities and activities. IEC Geneva (2010)

2. Digital Imaging and Communications in Medicine (DICOM), Part 1: Introduction and
Overview, National Electrical Manufacturers Association (2011)

3. IEC 60601-1:2005 Ed. 3.0, Medical electrical equipment - Part 1: General requirements for
basic safety and essential performance, IEC Geneva (2005)

4. IEC 60601-1:2005 + Cor. :2006 + Cor. :2007 + A1:2012 Ed. 3.1, Medical electrical
equipment - Part 1: General requirements for basic safety and essential performance, IEC
Geneva (2012)

5. IEC 14971 Ed. 2.0, Medical Devices: Application of Risk Management to Medical Devic-
es, IEC Geneva (2007)

6. Council Directive 93/42/EEC of 14 June 1993 concerning medical devices, Official Jour-
nal of the European Communities 1993., L169

7. Code of Federal Regulations (CFR) Title 21, § 10.115 (d) (3), U.S. Office of the Federal
Register (2000)

8. FDA draft guidance “Content of Premarket Submissions for Management of Cybersecurity
in Medical Devices”, U.S. Food and Drug Administration (2013)

9. Zeng, Y., Coffey, D., Viega, J.: How Vulnerable are Unprotected Machines on the Inter-
net?, Passive and Active Measurement (PAM) Proceedings (2014)

10. Krawczyk, H., Bellare, M., R. Canetti, HMAC: Keyed-Hashing for Message Authentica-
tion, RFC 2104 (1997)

11. Hettinger, B. J., Brazile, R. P., Health Level Seven (HL7): standard for healthcare elec-
tronic data transmissions. Comput. Nurs. 12(1): 13–16 (1994)

12. Arney D., Plourde J., Schrenker R.,Mattegunta P., Whitehead S.F., Goldman J.M., Design
Pillars for Medical Cyber-Physical System Middleware, In Medical Cyber Physical Sys-
tems Workshop, MCPS (2014)

13. ASTM F2761-09(2013). Medical Devices and Medical Systems – Essential safety re-
quirements for equipment comprising the patient-centric integrated clinical environment
(ICE) – Part 1: General requirements and conceptual model. http://www.astm.org/
Standards/F2761.htm

14. ISO/IEEE 11073, Health informatics - Medical / health device communication standards,
ISO Geneva (2006)

15. Pöhlsen S., Entwicklung einer Service-orientierten Architektur zur vernetzten Kommuni-
kation zwischen medizinischen Geräten, Systemen und Applikationen, Dissertation,
Universität zu Lübeck (2010)

16. Mauro C., Serviceorientierte Integration medizinischer Geräte, Dissertation, Technische
Universität München (2012)

17. Kühn F., Leucker M., Mildner A., OR.NET – Approaches for Risk Analysis and Measures
of Dynamically Interconnected Medical Devices, In Medical Cyber Physical Systems
Workshop, MCPS (2014)

Author Index

Aichernig, Bernhard K. 49
Ainhauser, Christoph 278
Alexander, Rob 33
Arts, Thomas 81
Ayestaran, Iban 1

Beckers, Kristian 65
Bishop, Peter 186
Blanquart, Jean-Paul 262
Blasum, Holger 246
Borchert, Christoph 17
Bouissou, Marc 326
Buccafurri, Francesco 214
Bulwahn, Lukas 278

Carlson, Jan 170
Cavalcanti, Ana 155
Colin, Frederic 326
Coppolino, Luigi 214
Côté, Isabelle 65

D’Antonio, Salvatore 214
Denney, Ewen 294
Dorigatti, Michele 81
Dufossé, Fanny 262

Ferdinand, Christian 202
Flammini, Francesco 230
Frese, Thomas 65

Gallina, Barbara 170
Garofalo, Alessia 214
Gentile, Ugo 230
Graydon, Patrick John 139
Gruber, Thomas 310
Guiochet, Jérémie 262

Halgand, Yoran 326
Hansson, Hans 170
Hatebur, Denis 65
Hawkins, Richard 155
Heisel, Maritta 65
Hörmaier, Klaus 49

Kästner, Daniel 202
Kelly, Tim 155
Kleberger, Pierre 93
Kriaa, Siwar 326

Langenstein, Bruno 246
Larrucea, Asier 1
Lax, Gianluca 214
Lorber, Florian 49

Machida, Fumio 109
Machin, Mathilde 262
Maeno, Yoshiharu 109
Marrone, Stefano 230
McDermid, John 33
Miyazawa, Alvaro 155

Nardone, Roberto 230
Naylor, Dwight 294
Nicolas, Carlos F. 1
Ning, Hong 125
Nocera, Antonino 214

Olovsson, Tomas 93

Pai, Ganesh 294
Perez, Jon 1
Pietre-Cambacedes, Ludovic 326
Powell, David 262
Puschner, Peter 1, 310

Ramirez, Adrian Garcia 246
Romano, Luigi 214
Rowlands, John 155

Schirmeier, Horst 17
Schmaltz, Julien 246
Schmittner, Christoph 310
Schoitsch, Erwin 310
Shao, Zeming 125
Sljivo, Irfan 170
Spinczyk, Olaf 17
Strigini, Lorenzo 186

356 Author Index

Tadano, Kumiko 109
Tan, Qingping 125
Tonetta, Stefano 81
Trindade, Raphael Fonte Boa 278

Verbeek, Freek 246
Vittorini, Valeria 230

Waeselynck, Hélène 262
Woskowski, Christoph 342

Xiang, Jianwen 109
Xu, Jianjun 125

Zou, Xueyi 33

	Preface
	Organization
	Quantitative Safety Assessment: Experimentsand Field Measurements (Invited Talk)
	Key Challenges for the Automotive Industry and Renault (Invited Talk)
	Software Quality, Dependability and Safety inEmbedded Systems (Invited Talk)
	Cyber-Physical Systems in Horizon 2020 –Trends in EU research and innovation activities(Invited Talk)
	Table of Contents
	Fault Injection Techniques
	A Simulated Fault Injection Frameworkfor Time-Triggered Safety-Critical EmbeddedSystems
	1 Introduction
	2 Related Work
	3 The PS-TTM Modeling and Simulation Platform
	4 Testing and Simulated Fault Injection Framework
	4.1 Test Case Interpreter (TCI)
	4.2 Fault Injection Unit (FIU)
	4.3 Test Point Manager (TPM)

	5 Case Study
	5.1 Platform Independent Model
	5.2 Platform Specific Model

	6 Reliability Assessment
	6.1 Platform Independent Model
	6.2 Platform Specific Model

	7 Conclusion
	References

	Rapid Fault-Space Exploration by Evolutionary Pruning
	1 Introduction
	2 Background and Related Work
	2.1 Conservative Def/use Analysis
	2.2 Fault Equivalence Heuristics

	3 A Generic Fault-Equivalence Heuristic
	3.1 Fault Similarity, and a Generalization of Fault Equivalence
	3.2 A Flexible Fault-Similarity Heuristic
	3.3 Applying the Similarity Heuristic

	4 Implementation
	5 Evaluation
	5.1 Evaluation Setup and Ground Truth
	5.2 Heuristic Training and Test
	5.3 Experiment Outcome Breakup and Comparison with Sampling

	6 Conclusions and Future Work
	References

	Verification and Validation Techniques
	Safety Validation of Sense and Avoid Algorithms Using Simulation and Evolutionary Search
	1 Introduction
	2 Challenges for an Automated Safety Validation Approach
	3 Proposed Method
	4 Experiments and Findings
	4.1 Case Study Introduction
	4.2 Experiment 1: Perfect Sensing Ability
	4.3 Experiment 2: Sensor Value Uncertainty
	4.4 Findings

	5 Conclusions and Future Work
	References

	Debugging with Timed Automata Mutations
	1 Introduction
	2 Model-Based Mutation Debugging
	3 Running Example
	4 Timed Automata with Inputs and Outputs
	5 Model Mutation
	6 ConformanceCheck
	6.1 tioco Conformance
	6.2 Conformance Checks within Model-Based Mutation Debugging

	7 Results
	7.1 Experiment 1
	7.2 Experiment 2
	7.3 Average Results

	8 Conclusion and Future Work
	References

	Automotive Systems
	Systematic Derivation of Functional SafetyRequirements for Automotive Systems
	1 Introduction
	2 Background
	2.1 Goal Structuring Notation
	2.2 ISO 26262

	3 Method for Functional Safety Concept
	4 Tool Support
	5 Case Study
	6 Related Work
	7 Conclusions and Future Work
	References

	Making Implicit Safety Requirements ExplicitAn AUTOSAR Safety Case
	1 Introduction
	2 AUTOSAR E2E Protection
	2.1 AUTOSAR
	2.2 ISO26262 Requirements and E2E Protection

	3 Background Techniques
	3.1 OCRA and CBD
	3.2 QuickCheck and MBT

	4 Making Implicit Safety Requirements Explicit
	4.1 The Airbag Example
	4.2 Integration of CBD and MBT
	4.3 FormalModel of the E2E ProtectionMechanism
	4.4 Contract-Based Refinement of the Airbag Requirements
	4.5 FormalModel and Verification of the E2E Check Implementation
	4.6 Discussion

	5 Related Work
	6 Conclusions and Future Work
	References

	Securing Vehicle Diagnostics in Repair Shops
	1 Introduction
	2 Vehicle Diagnostics
	2.1 ISO 13400 — Diagnostics over IP (DoIP)
	2.2 ISO 14229 — Unified Diagnostic Services (UDS)

	3 Requirements for Secure Vehicle Diagnostics
	3.1 Threat Model
	3.2 Digital Certificates
	3.3 Security Requirements
	3.4 Implementation Challenges

	4 Approaches to Secure Diagnostics Communication
	4.1 Possible Approaches to Secure Vehicle Diagnostics
	4.2 Evaluation of Approaches: Possibilities to Fulfil Required Security Requirements
	4.3 Evaluation of Approaches: Possibilities to Provide the Desirable Security Requirements
	4.4 Implementation Aspects

	5 A Repair Shop Security Architecture
	5.1 Meeting the Security Requirements
	5.2 Secure Vehicle Diagnostics

	6 Related Work
	7 Conclusion
	References

	Coverage Models and Mitigation Techniques
	Analysis of Persistence of Relevance in Systemswith Imperfect Fault Coverage
	1 Introduction
	2 Preliminaries
	2.1 Functions and Fault Trees
	2.2 Imperfect Fault Coverage Model

	3 Persistence and Irrelevance Trigger
	4 Irrelevance Coverage Model (ICM)
	5 Case Study
	5.1 LEF System Description
	5.2 LLEF Fault Tree
	5.3 Assumptions and Parameters
	5.4 Qualitative Analysis
	5.5 Quantitative Analysis

	6 Related Work
	7 Conclusions
	References

	Exploiting Narrow Data-Width to Mask SoftErrors in Register Files
	1 Introduction
	2 Motivation
	3 The MASER Approach
	3.1 Masking Ranges Analysis
	3.2 Covered Masks Analysis
	3.3 Optimal Masks Selection

	4 Experiments
	4.1 Dependability
	4.2 Performance

	5 Related Works
	6 Conclusion
	References

	Assurance Cases and Arguments
	Towards a Clearer Understanding of Contextand Its Role in Assurance Argument Confidence
	1 Introduction
	2 Context in the Goal Structuring Notation
	2.1 Kelly’s Arguing Safety
	2.2 The GSN Community Standard
	2.3 Interpreting GSN’s Definition of Context

	3 Assured Safety Arguments
	3.1 Structure of an Assured Safety Argument
	3.2 Confidence Argument Structure
	3.3 Context as Used in Assured Safety Arguments

	4 The Problem of Conflicting Definitions of Context
	5 Proposed Treatment of Context and Confidence
	5.1 Our Proposal: GSN Context Elements as Explications
	5.2 An Illustrative Example
	5.3 Assessing the Proposal: Performing All Context Functions
	5.4 Assessing the Proposal: The Effect on Confidence
	5.5 Impact on Assured Safety Arguments
	5.6 Further Recommendations: Update Review Processes

	6 Related Work
	7 Conclusion
	References

	Assurance Cases for Block-Configurable Software
	1 Introduction
	2 Block-Configurable Software
	3 An Assurance Case for Block-Configurable Software
	4 Termination
	5 Managing Changes to Block-Configurable Software
	6 Validity of Configuration Data
	7 RelatedWork
	8 Conclusions
	References

	Generation of Safety Case Argument-Fragmentsfrom Safety Contracts
	1 Introduction
	2 Background
	2.1 Illustrative Example: The Fuel Level Estimation System
	2.2 Strong and Weak Contracts
	2.3 Goal Structuring Notation

	3 Composable Arguments Generation
	3.1 Rationale of the Approach
	3.2 Component Meta-Model
	3.3 Conceptual Mapping of the Component Meta-Model to GSN
	3.4 Overview of the Architecture of the Resulting Argument-Fragment
	3.5 Rules for Generation of Component Argument-Fragments

	4 Argument-FragmentforFLES
	4.1 The Safety Contracts
	4.2 The Resulting Argument-Fragment for the Estimator Component

	5 Discussion
	6 Related Work
	7 Conclusion and Future Work
	References

	System Analysis
	Estimating Worst Case Failure Dependency with Partial Knowledge of the Difficulty Function
	1 Introduction
	2 The Difficulty Function
	3 Estimating the Worst Case Expected pfd
	3.1 Case where θ(hi) and θ(lo) are Known
	3.2 Case Where Only θ(hi) is Known
	3.3 Case Where θ(hi) and θ(lo) are not Known
	3.4 Case Where the Ratio between θ(hi) and θ(lo) is Known

	4 Numerical Illustration
	5 Parameter Estimation
	5.1 Estimating k
	5.2 Estimating θ(hi) and θ(lo)
	5.3 Empirical Data Analysis

	6 Example Application
	7 Discussion
	8 Conclusions
	References
	Appendix A Worst Case Pfd Model Details

	Proving the Absence of Stack Overflows
	1 Introduction
	2 Methodology Overview
	3 Static Analysis
	4 Stack Usage Analysis by Abstract Interpretation
	4.1 Decoding
	4.2 Value Analysis

	5 Refining the Analysis
	5.1 Indirect Calls and Branches
	5.2 Loop Bounds

	6 The System Level
	7 Practical Experience
	8 Summary
	References

	Security and Trust
	Trust-Based Intrusion Tolerant Routingin Wireless Sensor Networks
	1 Introduction
	2 Related Work
	3 Attack Model
	4 Trust and Reputation Layer
	5 The Trust and Reputation Model
	6 Security Analysis
	7 Implementation Details and Testbed Setup
	8 Experimental Results
	9 Conclusions
	Acknowledgements.

	References

	A Petri Net Pattern-Oriented Approachfor the Design of Physical Protection Systems
	1 Introduction
	2 Related Work
	3 An Overview of Generalized Stochastic Petri Nets
	4 Designing Physical Protection Systems
	5 A Generic Vulnerability Model
	5.1 Sub-models Composition

	6 Petri Net Patterns for the Vulnerability Model
	6.1 Attack Model
	6.2 Sensing Model
	6.3 Assessment Model
	6.4 Intervention Model
	6.5 Supervisor Model

	7 Applications to Mass-Transit Transportation
	8 Conclusions and Future Developments
	References

	On Two Models of Noninterference:Rushby and Greve, Wilding, and Vanfleet
	1 Introduction
	2 Related Work
	3 Two Models of Noninterference
	3.1 Rushby Transitive Noninterference
	3.2 Rushby Intransitive Noninterference
	3.3 Greve, Wilding, Vanfleet

	4 Formal Comparison
	4.1 Proof Overview
	4.2 Mapping between the Two Worlds
	4.3 Reformulation of Rushby’s Theorems
	4.4 From GWV to Rushby
	4.5 Rushby Step Consistency Implies GWV Secure
	4.6 Rushby Weak Step Consistency Implies GWV Secure

	5 Counter-Examples and Discussion
	5.1 On the Direction Rushby to GWV
	5.2 Transitive GWV Security Policy

	6 Conclusion and Future Work
	References

	Notations/Languages for Safety-Related Aspects
	Specifying Safety Monitors for AutonomousSystems Using Model-Checking
	1 Introduction
	2 Baseline and Concepts
	2.1 Concepts
	2.2 Process Overview

	3 Discrete Model Analysis
	3.1 Tools
	3.2 System and Intervention Modeling
	3.3 Safety, Permissiveness and Validity Modeling
	3.4 Interactive Method
	3.5 Automatic Method
	3.6 Consistency between Strategies

	4 Case Study
	4.1 Human/Arm Collision during Base Motion
	4.2 Boxes Sliding from the Base
	4.3 Consistency between Strategies

	5 Related Work
	6 Conclusion
	References

	Automatically Generated Safety Mechanismsfrom Semi-Formal Software Safety Requirements
	1 Introduction
	2 The AUTOSAR Standard and Tooling
	3 Safety Model Transformation
	3.1 Classification of Safety Mechanisms
	3.2 Semi-Formal Specification of Software Safety Requirements
	3.3 Model Transformations

	4 Evaluation
	5 Related Work
	6 Outlook: Freedom from Interference
	7 Conclusion
	References

	Querying Safety Cases
	1 Introduction
	2 Methodology
	2.1 Semantic Enhancement
	2.2 Sources of Queries
	2.3 Components of Queries and Views

	3 Foundations
	3.1 Metadata
	3.2 Syntax and Semantics

	4 Implementation
	5 Application
	6 Concluding Remarks
	References

	Safety and Security
	Security Application of Failure Mode and Effect Analysis (FMEA)
	1 Introduction
	2 State of the Art
	3 FMVEA Concept
	3.1 Vulnerabilities
	3.2 Threat Agents
	3.3 Threat Mode
	3.4 Threat Effect
	3.5 Attack Probability
	3.6 FMVEA Cause-Effect Chain

	4 Example Application of the FMVEA
	4.1 Functional Analysis
	4.2 Failure and Vulnerability Analysis

	5 Limitations and Further Work
	References

	Safety and Security Interactions Modeling Usingthe BDMP Formalism: Case Study of a Pipeline
	1 Introduction
	2 Safety and Security Interdependencies in ICS
	2.1 Scope and Definitions
	2.2 Related Work
	2.3 Types of Safety and Security Interdependencies

	3 Presentation of the BDMP Formalism and the KB3Modeling Platform
	4 Illustration of Safety and Security Interdependencies
	4.1 Example of an Antagonism
	4.2 Example of Synergetic Interdependencies

	5 Case Study
	5.1 System Architecture Description
	5.2 System Modeling
	5.3 Qualitative and Quantitative Analysis
	5.4 Safety and Security Interdependencies

	6 Conclusion and Future Work
	References

	A Pragmatic Approach towards Safe and Secure Medical Device Integration
	1 Introduction
	2 Initial Situation
	3 Safety Considerations
	4 Security Considerations
	5 Non-functional Requirements
	6 Adapted RiskAnalysis
	7 Risk Mitigation Example
	8 Related Work
	9 Conclusion
	References

	Author Index

