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15.1            Introduction 

 Genetic transformation and targeted gene disrup-
tion are essential for studying and understanding 
gene function in fi lamentous fungi. Targeted 
gene disruption in fi lamentous fungi can be trou-
blesome because of low frequencies of homolo-
gous integration (Bird and Bradshaw  1997 ; 
Chung et al.  1999 ; Pratt and Aramayo  2002 ; 
Segers et al.  2001 ; Idnurm et al.  2003 ). In addi-
tion, integration of foreign genes in fi lamentous 
fungi often occurs via non-homologous integra-
tion, resulting in a large number of false-positive 
transformants. The frequency of targeted gene 
disruption can be improved by a split-marker dis-
ruption strategy by fusing the target DNA frag-
ments with truncated but overlapping within the 
selectable marker gene (Fairhead et al.  1996 ; Fu 
et al.  2006 ). Only transformants harboring a 
functional dominant marker gene will grow on a 
medium containing the selection agent. Split-
marker- based transformation decreases the 
occurrence of multiple and tandem integrations 
so as to decrease the overall numbers of transfor-
mants being screened. Split-marker approach has 

been shown to increase the frequency of targeted 
gene disruption and homologous integration as 
high as 100 % in  Alternaria alternata  and 
 Cercospora  spp. (Choquer et al.  2005 ; You et al. 
 2009 ; Lin and Chung  2010 ). Two truncated, over-
lapping marker gene fragments are joined with a 
gene of interest by fusion PCR without the need 
for cloning and the PCR products used directly 
for transformation. The methods described in this 
article could provide better tools to analyze gene 
functions in fi lamentous fungi.  

15.2    Materials and Methods 

15.2.1    Solution and Medium 

15.2.1.1    Wash Solution 
 Dissolve 58.4 g NaCl and 1.47 g CaCl 2  · H 2 O in 
water, bring the fi nal volume to 1 L, and sterilize 
using an autoclave.  

15.2.1.2    STC Solution 
 Dissolve 218.6 g sorbitol in 980 mL water, add 
10 mL each of 1 M Tris–HCl (pH 7.5) and 1 M 
CaCl 2  · H 2 O, and sterilize.  

15.2.1.3     50  %  PEG Solution  
 Dissolve 50 g polyethylene glycol (M.W. 3,350) 
in a pre-heated water (98 mL), add 1 mL each of 
1 M Tris–HCl (pH 7.5) and 1 M CaCl 2  · H 2 O, and 
fi lter sterilize. Discard after 4 months.  
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15.2.1.4    Enzyme Solution 
 Mix 0.2 mL β-glucuronidase (type H2, Sigma), 
0.16 g β- d -glucanase, and 6 mg lyticase with 
0.5 mL of 0.4 M Na 2 PO 4  (pH 5.8), 0.4 mL of 1 M 
CaCl 2  · H 2 O, and 1.4 g NaCl in water (fi nal vol-
ume 20 mL), fi lter sterilize, and store at −20 °C 
(Chung et al.  2002 ).  

15.2.1.5    Solution A 
 Dissolve 10 g Ca(NO 3 ) · 4H 2 O in 100 mL water.  

15.2.1.6    Solution B 
 Dissolve 2 g KH 2 PO 4 , 2.5 g MgSO 4  · 7H 2 O and 
1.5 g NaCl in 100 mL water (pH 5.3).  

15.2.1.7    Regeneration Medium 
 Regeneration medium (RM) is prepared in both 
liquid and solid forms. In a 1-L bottle, add 10 mL 
each of Solution A and Solution B to 480 mL 
water. Add 15 g agar per liter for solid medium. 
In a 2-L bottle, dissolve 342.3 g sucrose and 10 g 
glucose in water (fi nal volume 500 mL). Sterilize 
two solutions separately, mix, and dispense into 
sterile bottles.   

15.2.2    Growth Conditions 

 Start culture by grinding fungal mycelium with 
0.5 mL sterile water in a 1.5-mL centrifuge tube 
using a disposable mini pestle (Fisher Scientifi c) 
and adding the resulting suspension to 50 mL 
medium (potato dextrose broth or a synthetic 
medium). Incubate fungal culture on a rotary 
shaker at room temperature ( ca . 25 °C) for 3–4 
days. Blend the culture in a sterile blender cup 
(Fisher Scientifi c) for three or four 10 s pulses, 
add to 200 mL fresh medium, and incubate on 
shaker for an additional 16–18 h. Harvest fungal 
mycelium by low-speed centrifugation at 
6,000 rpm for 10 min in an Allegra 21R centri-
fuge (Beckman Culter). Carefully remove 
supernatant using a disposable polyethylene 
transfer pipet. Resuspend fungal mycelium in 
10 mL of wash solution, spin again, and discard 
supernatant.  

15.2.3    Preparation of Protoplasts 

 Successful transformation of fungi requires com-
petent protoplasts. Resuspend fungal mycelium 
in 20 mL of enzyme solution by pipetting up and 
down with a disposable polyethylene pipet and 
transfer to a 100-mL fl ask. Incubate the resulting 
suspension at 30 °C on a rotary shaker set at 
100 rpm. Check protoplast release under micro-
scope regularly. After 2 h digestion, passage the 
solution through Miracloth. Harvest protoplasts 
by low-speed centrifugation at 4,000 rpm in a 
F0850 Beckman rotor at 4 °C for 5 min. Discard 
supernatant. Wash protoplasts twice with 10 mL 
of STC solution. Collect protoplasts by centrifu-
gation between washes. Discard supernatant. 
Gently resuspend protoplasts in 1 mL of STC and 
check concentration with a hemacytometer. 
Adjust the concentration to 10 7  protoplasts per 
mL in four parts of STC and one part of 50 % 
PEG solution (polyethylene glycol 3,350). 
Dispense protoplasts into a small volume 
(100 μL) and store them at −80 °C.  

15.2.4     Generation of Split-Marker 
Fragments 

 The split-marker gene fragments fl anked with a 
gene of interest are constructed using a fusing 
PCR approach (Fig.  15.1 ). This method com-
pletely eliminates tedious cloning procedures and 
allows quick generation of split-marker frag-
ments for targeted gene disruption. Two trun-
cated but overlapping gene fragments (WY/ and /
YZ) are fi rst amplifi ed from a plasmid containing 
a suitable gene cassette. A bacterial phos-
photransferase gene conferring resistance to 
hygromycin is often used a dominant selectable 
marker in fi lamentous fungi. Primers S1 and S2 
are designed to amplify the WY/ fragment; prim-
ers S3 and S4 are used to amplify the /YZ frag-
ment using a GoTag DNA polymerase (Promega) 
in a 50-μL solution using a standard PCR proto-
col. Two DNA fragments (0.5–1.5 kb) of a gene 
of interest are amplifi ed separately by PCR with 
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two gene-specifi c primers from fungal genomic 
DNA. The length of homologous sequences can 
be varied depending on the desired extent of dele-
tion of target gene sequences. Using longer 
homologous sequences may increase the effi -
ciency of homologous integration.

   As illustrated in Fig.  15.1 , primers P1 and P2 
are designed to amplify the 5’ region of the target 
gene; primers P3 and P4 are used to amplify the 
3’ region of the gene. The tail sequence of the P2 
primer is designed to be completely complemen-
tary to the sequence of S1 and the tail sequence of 

  Fig. 15.1    Schematic illustration of fusion PCR for gener-
ating overlapping truncation of a dominant selectable 
marker gene (WYZ) fused with homologous sequence of 
a gene of interest. PCR is used to amplify two overlapping 
fragments WY/ and /YZ with the primers S1 pairing with 
S2 and S3 pairing with S4, respectively. Primer P2 con-
tains a tail sequence completely complementary to the 

sequence of S1 and primer P3 contains partial sequence 
completely complementary to the sequence of S4. The 5’ 
truncation of the target gene is amplifi ed with the primers 
P1 and P2 and joined to the WY/ fragment. The 3’ trunca-
tion of the target gene is amplifi ed with the primers P3 and 
P4 and joined to the /YZ fragment       
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P3 is completely complementary to the sequence 
of S4. This is designed so that the marker gene 
fragment (WY/) is fused with the 5’ truncation of 
a gene of interest with the primers P1 and S2 and 
the /YZ fragment fused with the 3’ truncation 
with the primers P4 and S3 to form two chimeric 
DNA fragments. Note: It is not necessary to clean 
up PCR fragments prior to second-round amplifi -
cation. The cycling profi le for PCR amplifi cation 
begins with a cycle of 95 °C for 3 min, immedi-
ately followed by 30 cycles of 95 °C for 30 s, 
56 °C for 30 s, 72 °C for 1.5–3 min and com-
pleted by incubating at 72 °C for 10 min.  

15.2.5    Transformation 

 PCR-generated DNA fragments are directly 
transformed into fungal protoplasts without 
any additional cleanup. Transformation of fungal 
protoplasts was performed using CaCl 2  and poly-
ethylene glycol (Chung et al.  2002 ). Protoplasts 
frozen at −80 °C in 100 μL of STC: 50 % PEG 
(4:1, v/v) are placed in ice for at least 10 min. 
Mix split-marker DNA fragments (10 μL each) 
with 100 μL protoplasts in a sterile 15-mL centri-
fuge tube (Falcon). Leave at room temperature 
for 20 min. Add 1 mL of 50 % PEG gradually 
into the centrifuge tube, mix gently, and leave at 
room temperature for an additional 20 min. Add 
3 mL liquid RM and place on a shaker set at 
100 rpm at room temperature for 2–4 h. Add a 
selectable agent into each tube except the no 
selection control. Mix gently with molten solid 
RM (45 °C), pour into petri dish, and swirl 
gently. The plates are incubated at 28 °C. 
Examine daily for colony formation. Pick colo-
nies and transfer to fresh medium. Successful 
disruption of a given gene in a wild-type strain 
can be identifi ed quickly if the mutant strain 
shows any phenotypes, otherwise PCR verifi ca-
tion is needed to confi rm the disruption.  

15.2.6    Homologous Integration 

 Because the dominant marker gene is split in 
separate fragments, the gene is not functional 

unless homologous recombination occurs between 
two overlapping fragments (Fig.  15.2 ). Fungal 
transformants will not grow on a medium con-
taining the selection agent unless homologous 
recombination occurs between the overlapping 
regions of the dominant marker gene. The marker 
gene cassette fused with homologous fl anking 
sequences is integrated into the target locus via 
double cross over recombination (Fig.  15.2 ). 
Successful integration of a marker gene fragment 
within a gene of interest can be validated by ana-
lytical PCR with the primers located just outside 
the targeted region (e.g., primers P5 and P6 in 
Fig.  15.1 ) and by Southern blot hybridization 
of fungal genomic DNA, digested with various 
endonucleases, to a gene- specifi c probe. For a 
given gene, six oligonucleotide primers are 
needed for generation of split-marker fragments 
and for verifi cation of locus-specifi c integration.

   Transformation of split-marker fragments in 
phytopathogenic fungi,  Cercospora nicotianae , 
 C. beticola ,  Elsinoë fawcettii ,  Colletotrichum 
acutatum,  and  A. alternata , has been shown to 
increase homologous integration frequency (You 
et al.  2007 ,  2009 ; Chen et al.  2007 ; Liao and 
Chung  2008 ; Weiland et al.  2010 ; Lin et al.  2010 ; 
Yang and Chung  2013 ). The split-marker 
approach could be useful for identifying disrup-
tants with no obvious phenotypes because a high 
frequency of targeted gene disruption via homol-
ogous recombination can be achieved by screen-
ing less than 20–30 independent transformants. 
The target gene can be disrupted or completely 
replaced by the marker gene fragment, depending 
on the homologous DNA sequence within the 
gene of interest. Because the fl anking fragments 
are generated by PCR, the deleted region can be 
precisely determined. The minimum fl anking 
sequence required for effi cient homologous inte-
gration varies among fungal species. However, 
we have observed that disruption frequency 
increases as the lengths of the fl anking sequence 
on one end or both ends of the target gene increases 
(You et al.  2009 ). It is critical to have suffi cient 
lengths of the fl anking DNA sequence (>0.5 kb) 
when employing the split-marker approach for tar-
geted gene disruption. The minimum overlapping 
sequence required for effi cient recombination at 
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the selectable marker gene remains uncertain. 
However, fungal disruptants have been success-
fully identifi ed using two DNA fragments over-
lapping 200–450 bp at the selectable marker gene 
(Yang and Chung  2013 ).   

15.3    Conclusion 

 Targeted gene disruption via homologous recom-
bination has had a major impact on modern 
fungal biology. This split-marker-based transfor-
mation approach increases the frequency of 
recovering disruptants, presumably by increasing 
the frequency of homologous integration and/or 
by decreasing ectopic and tandem integration 

events in fungi. This approach was originally 
developed for rapid, gap repaired-mediated clon-
ing in the budding yeast  Saccharomyces cerevi-
siae  (Fairhead et al.  1996 ). The split-marker 
fragments fl anking by homologous sequences of 
target gene can be obtained by fusion PCR with-
out the need for cloning, allowing a faster and 
more effi cient method of generating disruption 
constructs. Effi cient gene disruption strategies 
along with the other molecular techniques shall 
facilitate functional genomic analysis in fi lamen-
tous fungi.     
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  Fig. 15.2    Schematic illustration of targeted gene disrup-
tion by split-marker-based transformation. Two truncated, 
overlapping marker gene fragments fl anked with the trun-
cation of a target gene are directly transformed into proto-
plasts prepared from a wild-type fungal strain. Three 
cross-over events are required to generate functional 

marker gene and homologous integration. Only transfor-
mants containing a functional marker gene cassette will 
grow on a medium containing the selection agent. 
Employing split-marker-based gene disruption could 
enhance homologous recombination       
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