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Abstract. A 3D+t description of the coronary tree is important for
diagnosis of coronary artery disease and therapy planning. In this pa-
per, we propose a method for finding 3D+t points on coronary artery
tree given tracked 2D+t point locations in X-ray rotational angiogra-
phy images. In order to cope with the ill-posedness of the problem, we
use a bilinear model of ventricle as a spatio-temporal constraint on the
nonrigid structure of the coronary artery. Based on an energy minimiza-
tion formulation, we estimate i) bilinear model parameters, ii) global
rigid transformation between model and X-ray coordinate systems, and
iii) correspondences between 2D coronary artery points on X-ray images
and 3D points on bilinear model. We validated the algorithm using a
software coronary artery phantom.

1 Introduction

Coronary artery disease (CAD) is a serious condition, responsible for almost 1.8
million deaths in the Europe alone [10]. Current clinical practice for interpre-
tation and assessment of the disease still relies on the anatomical information
derived from coronary angiography [5]. However, a considerable amount of 3D
information of the coronary arteries is lost during 2D projection. It is also hard
to study dynamic variation of coronary arteries through 2D projection images
[2]. Therefore, providing a clinician with a quantitative 3D+t description of the
arterial tree is of utmost importance to aid the diagnosis of CAD and improve
therapy planning and catheter-based interventions.

In recent years, a vast amount of research has been carried out to obtain
a 3D/3D+t representation of the coronary tree from medical imagery. Among
these methods, a class of methods try to build a 3D symbolic model of coronary
arteries, which consists of a 3D centerline and, occasionally, the vessel diameter.
Most of the modeling based reconstruction methods uses ECG gating to select
two or more (4-5) projections from over a hundred images [8,9]. Consequently, a
considerable amount of acquired information is discarded by these methods. Ad-
ditionally, obtaining 3D+t reconstruction via ECG-gated reconstruction meth-
ods is a tedious task. This is mainly because 3D reconstructions for different

P. Golland et al. (Eds.): MICCAI 2014, Part II, LNCS 8674, pp. 619–626, 2014.
c© Springer International Publishing Switzerland 2014
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cardiac phases must be generated separately. However, not all the segments of
the coronary arterial tree are visible in all the rotational angiographic views.

In this paper, we propose a novel method to reconstruct 3D+t points of coro-
nary arterial trees from rotational X-ray angiography, which generally constitutes
the initial step in a coronary artery reconstruction workflow. Our method uses all
the images collected during the angiographic study and outputs the 3D+t points
of the coronary arteries by utilizing a spatio-temporal model of the epicardial
surface. We validated our method with a software phantom of the left coronary
artery tree and a spatio-temporal model of the left ventricular epicardium.

2 Method

Our method assumes that the coronary arteries are attached to and move to-
gether with the ventricular epicardium. Therefore, a statistical model of the
epicardial surface could implicitly describe the non-rigid structure of coronary
arteries if the arterial locations on the model are known. Our method employs
a bilinear model of the left ventricle (Section 2.1) as the statistical model.

Given 2D points tracked over sequence of X-ray images, we formulate an
energy that consists of two terms: namely, a distance and a regularization term.
By minimizing this energy, we find the bilinear model parameters that best
describe the observed 2D points. In order to iteratively minimize the energy
and estimate the correspondences between 2D coronary artery points obtained
from X-ray images and 3D points on the bilinear model of the left ventricle, we
adopted an EM-like method, which combines EM with a deterministic annealing
scheme [3] (Section 2.2).

2.1 Construction of a Bilinear Ventricle Model

A bilinear statistical model [12] is a natural candidate to model observations,
which possess variations due to two independent factors. In [7], it was shown
that a bilinear model could provide a way to model the shape of the human
heart by separating inter-subject from temporal variations. Here, we constrain
shape and motion of the coronary arteries by a bilinear model of the ventricular
epicardium, assuming approximate correspondence between 2D coronary points
on the X-ray images and 3D epicardial points on the bilinear model.

Suppose our training set consists of temporally and spatially aligned ventricle
surfaces of S subjects in C cardiac phases. Each training ventricle surface is
represented by N landmark points in a d-dimensional Euclidean space. Those
landmark points are concatenated to form K(= N × d) dimensional observation
vector, ysc. By using a bilinear model, each element of ysc is written as ysck =
asTWkb

c. Here, as, bc denotes bilinear model parameters of subject and phase,
which are I and J dimensional vectors, respectively. Wk is an I × J matrix
determining the interaction of two factors.

Model building is carried out through a training process by which we find
parameters, as, bc, for each subject class s and phase class c and the interaction
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matrices, Wk’s, by minimizing the total squared error. To this end, we use an
efficient iterative method based on SVD [12]. Model training provides I × S
matrix A = [a1 · · ·aS ], J × C matrix B = [b1 · · · bC ] and IK × J matrix W .

2.2 Energy Formulation and Minimization

We assume that we are given M 2D points (M � N), which are assumed
to lie on the surface of the bilinear model for each of F X-ray images. The
corresponding ECG signal is used to assign each X-ray image to a cardiac phase
in a canonical cycle. From the time-stamped point set we estimate i) the bilinear

model parameters, â and ̂B, ii) the rotation matrix and the translation vector

between the bilinear model and the X-ray coordinate systems, ̂R and ̂t, and iii)
the correspondences between the 2D points on the X-ray images and the 3D
points on the bilinear model, denoted by a M ×N correspondence matrix G.

We consider the problem as a point set alignment problem. Assuming that the
projections of the points in the bilinear model of the ventricle specifies Gaussian
cluster centers, the distribution of ventricle points could be represented by a
Gaussian mixture model (GMM). We find â, ̂B, ̂R, ̂t and G by minimizing a log-
posterior energy function. This energy function can be written as the weighted
sum of a distance and a regularization term [3].

The distance term measures the sum of squared distances between 2D ob-
servations and 2D projections of the bilinear model point estimates. It can be
written as

Edist =
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where P f is the projection matrix, which is extracted from X-ray image tags
and superscript V T denotes vector tranpose operation [12]. Note in the above
equation W is a 3I × J matrix made of the rows of W , which corresponds to
one of the landmark point. It is also important to note that ̂b given above is the
column of ̂B corresponding to the phase of fth X-ray image. When the phase of
an X-ray image does not coincide with the discrete cardiac phases of the bilinear
model training set, we form point estimates at two neighboring discrete time
points and linearly interpolate to find ŷf

n.
The regularization term is defined as the negative log-likelihood of the prior

distribution of bilinear model parameters. To this end, the bilinear model pa-
rameters, which are learned during training are used to perform kernel density
estimations of the components of the parameter vector as and matrix B. The
regularization term can be written as
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where h denotes the bandwidth and k(·) is a Gaussian kernel.

Finally, total energy to minimize is written as

Etot = Edist + τλEreg (4)

where λ determines the weighting between two energy terms and τ is the an-
nealing parameter.

We adopted anEM-likemethod [3] to find the bilinearmodel parameters, trans-
formation and correspondences by an alternating scheme. The EM-like method
combines the EM algorithm with a deterministic annealing scheme. Compared to
the EM algorithm, we do not estimate covariance matrices for Gaussian cluster.
Instead, we use an annealing parameter to decrease the isotropic variance of the
Gaussian clusters in every iteration.

Since the probability of corresponding to an artery point is not equal for each
landmark point, we used different mixing coefficients, pn, for Gaussian clusters.
We used the coronary arteries from an atlas of the human heart [6] to determine
pn for every landmark of the bilinear model. Because the same atlas was used to
generate the bilinear model training data, correspondences of landmark points
between the atlas segmentation and bilinear model are known. We determine the
points on the surface of the atlas segmentation that are closest to the centerlines
of the segmented coronary arteries. Using these closest points, we find a signed
distance function on the atlas segmentation and assign pn values according to

pn = exp−(dn/ζ)2

∑

N
n=1 exp−(dn/ζ)2

, where dn is the distance of nth landmark to the nearest

point and ζ is a constant. A large ζ value avoids strict correspondences due to
pn values and provides robustness against the anatomical variability.

In order to cope with the outlier data points, we used two outlier rejection
strategies. First, we model the outlier observation points by adding a uniform
distribution to the mixture model with a weight, w. Second, we discard the
projected bilinear model points and the corresponding Gaussian cluster if the
sum of the membership probabilities for all the M observed points are smaller
than a threshold, β.

The algorithm can be simply described as follows: In the E step, we update
the entries of the correspondence matrix, G, using the membership probabilities

Gmn =

(

pn exp

(
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where pn denote the mixing coefficient for the nth Gaussian cluster, τ is the

annealing parameter and constant c is given by w
1−w

√
2Πτ
M . In the M step,

we minimize the total energy (Equation 4). The overall algorithm is given in
Algorithm 1.
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Algorithm 1. 3D+t Coronary Artery Reconstruction Algorithm

Input: 2D points tracked over X-ray sequence, projection matrices, initial transforma-
tion (Rini, tini), initial parameters for the bilinear ventricle model (aini,Bini),
annealing parameters (τini, τup and τfin) and other parameters (λ, β and ζ)

Output: Estimates for bilinear model parameters (â, ̂B), global transformation ( ̂R, ̂t)
and correspondence matrix (G)

1: ̂R← Rini, ̂t← tini, â← aini, ̂B ← Bini and τ ← τini

2: repeat
3: Compute G (Equation 5)
4: if

∑M
m=1 Gmn < β then

5: Discard x̂f
n, and its Gaussian cluster

6: end if
7: Update ̂R, ̂t, and â by minimizing Etot (Equation 4)

8: Update ̂B by minimizing Etot (Equation 4)
9: τ ← τup × τ
10: until τ < τfin

3 Experiments and Results

Training surface meshes describing the left ventricular epicardium (N = 2044)
are obtained using an atlas based segmentation algorithm [6] from 134 retrospec-
tively ECG-gated multi-slice CT images. These meshes are temporally aligned
as in [7] to compensate for heart rate differences between patients. Procrustes
alignment [4] is performed to align training surfaces spatially. During Procrustes
alignment, we opted for rigid transformations without scaling and incorporated
the scaling effects into our statistical model.

In order to quantitatively evaluate our algorithm, we generated synthetic rota-
tional angiography data using the single left coronary artery geometry of the 4D
XCAT phantom [11]. The cardiac cycle was set to be 1000ms, with no respiratory
motion present. X-ray imaging parameters, including projection matrices, num-
ber of images (117) and frame rate (30 fps) were derived from a clinical dataset.
Since we have the 4D ground truth information for the centerlines, we created
a total of 208 corresponding coronary artery points (one center point for each
longitudinal knot of non-uniform rational B-spline surface [11]) and projected
these to generate the 2D observation points in 117 projection images.

We used the phantom data to evaluate the algorithm’s robustness to missing
data and noise. In the first experiment (Experiment 1 ), we randomly removed
0% to 50% of 2D observation points which describe the projected 2D trajectory
of each tracked coronary artery point along the sequence of projection images. In
the second experiment (Experiment 2 ), we removed the 2D observation points
according to a sampling scheme that mimics the sparsity associated to missing
detail in the detection of centerline points in the 2D views. To this end, we
selected a set of points, P1, which consisted of a starting point, bifurcations and
end points. Similarly, we defined P2 as the set of points, which are the midpoints
of the segments described by the points in the set P1 and defined P3 as the set
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Fig. 1. 3D+t reconstruction results on phantom data. See text for the details of the
experiments. (a) Results of the Experiment 1, (b) results of the Experiment 3, (c)
results of the Experiment 1 for all cardiac phases, (d) results of the Experiment 2 for
all cardiac phases , (e) qualitative results of the Experiment 1 for end-diastolic and
end-systolic phases, (f) qualitative results of the Experiment 2 for P1 and P1∪P2∪P3.
For the qualitative results, the ground truth centerline of the coronary artery tree is
shown in green. Reconstructed points are given in red if 2D observation is available in
the corresponding image and in blue if the 2D observation is removed.

of points, which are the midpoints of the segments described by the points in
the set P1 and P2. We applied our reconstruction algorithm given the points in
the sets P1 ( 9.13% of all points), P1 ∪ P1 (16.35% of all points) and P1 ∪ P2 ∪
P3 (28.37% of all points). We also evaluated the performance under uncertain
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measurements by adding zero mean Gaussian noise (σ 0.25 to 1.25 mm) to the
2D points (Experiment 3 ). In all of the experiments, the reconstruction errors
were measured as the root-mean-square errors in 3D between the reconstructed
points and the true 3D positions.

The parameters of the algorithm are set empirically. The annealing parame-
ters, τini, τfin and τup were set to 500, 3 and 0.95, respectively (cf. [3] for details).
The threshold for rejecting projected bilinear point, β, was set to 0.05 and the
weighting, λ, of the regularization term was set to 2.5× 105. Finally, the weight
for the uniform outlier cluster in the GMM, w, was set to 1.0 × 10−8 since we
assume that there are no outliers in 2D observations.

The results show that the 3D+t reconstruction performance of our algorithm
stays stable even under 1.25 mm 2D observation noise, which is approximately
6-7 times of the pixel resolution of the rotational angiography (Figure 1(b)).

Although there are some outliers, the results indicate that the proposed
method is able to handle missing data (Figure 1(a)). In particular, the quali-
tative results shows that the 3D reconstruction of missing data points are re-
covered satisfactorily. There are two sources of the outliers. First, the method
is not able to accurately reconstruct the points near the LAD-LCX branching.
It is possible that this region could not be modeled solely by the left ventricu-
lar epicardium. Second, the algorithm returned suboptimal results for the phase
related bilinear model parameters, which affects its performance in some car-
diac phases. This could be related to our current stopping criteria and requires
further experiments.

The accuracy of the algorithm quickly increases with addition of a small num-
ber of points to the base set, P1 and continue to increase as more 2D observations
points are added (Figure 1(d)).

4 Conclusion

In this paper, we present a method to reconstruct the 3D+t points of the coro-
nary tree from rotational angiography images. The regularization is achieved
by constraining the motion and the shape of the coronary arteries by a spatio-
temporal model of the epicardial surface of the ventricle. Although it is not
discussed in this paper, the reconstructed 3D+t points could be converted to
3D+t centerlines by a linking procedure [9] or 3D+t vascular surface [13] by
incorporating the radius information.

Currently, we assume that the 2D points tracked over the sequence of X-
ray images are provided. However, automatic methods to determine the point
correspondences must be explored.

A temporal mapping between the cardiac cycle of the bilinear model and the
angiography images is required to consider the mismatch of cardiac phases due
to heart rate differences. A simple solution would be to employ a piecewise linear
mapping function [1].

Our method assumes that the angiography images are collected during a
breath hold. To overcome this drawback, a respiratory motion model could be
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incorporated into the energy minimization formulation at the expense of esti-
mating more parameters.
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8. Jandt, U., Schäfer, D., Grass, M., Rasche, V.: Automatic generation of 3D coronary
artery centerlines using rotational x-ray angiography. Med. Image Anal. 13(6), 846–
858 (2009)

9. Liao, R., Luc, D., Sun, Y., Kirchberg, K.: 3-D reconstruction of the coronary artery
tree from multiple views of a rotational x-ray angiography. Int. J. Cardiovasc.
Imaging 26, 733–749 (2010)

10. Nichols, M., Townsend, N., Scarborough, P., Rayner, M.: Cardiovascular disease
in europe: epidemiological update. Eur. Heart. J. 34(39), 3028–3034 (2013)

11. Segars, W.P., Sturgeon, G., Mendonca, S., Grimes, J., Tsui, B.M.W.: 4D XCAT
phantom for multimodality imaging research. Med. Phys. 37(9), 4902–4915 (2010)

12. Tenenbaum, J.B., Freeman, W.T.: Separating style and content with bilinear mod-
els. Neural. Comput. 12(6), 1247–1283 (2000)

13. Yang, J., Wang, Y., Liu, Y., Tang, S., Chen, W.: Novel approach for 3-D recon-
struction of coronary arteries from two uncalibrated angiographic images. IEEE
Trans. Image Process. 18(7), 1563–1572 (2009)


	Reconstruction of Coronary Trees from 3DRA
Using a 3D+t Statistical Cardiac Prior

	1 Introduction
	2 Method
	2.1 Construction of a Bilinear Ventricle Model
	2.2 Energy Formulation and Minimization

	3 Experiments and Results
	4 Conclusion
	References




