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Abstract In this study, projections of temperature and precipitation in future periods
and their impacts on hydrology andwater resources of the Koshi River Basin in Nepal
were investigated. The statistical downscaling model Long Ashton Research Station
Weather Generator (LARS-WG) was used to downscale low-resolution data from ten
general circulation models (GCMs) and three IPCC SRES scenarios (B1, A1B, and
A2). The physically based hydrological model Soil and Water Assessment Tool
(SWAT)was used to analyse the impacts of climate change on hydrology. LARS-WG
simulated the baseline period (1981–2000) climate quite satisfactorily. Changes in
climate and hydrological variables are presented at monthly and annual scales for
three future periods: 2011–2030, 2046–2065, and 2080–2099. The results indicate
that the Koshi basin tends to become warmer in the future as projected by all GCMs
under three SRES scenarios. Changes in precipitation and streamflow are not univocal
and vary depending on the GCM, GHGES. The difference in the projection of flow
varies by as much as −35 to 51 % under the A1B scenario during the 2055s. The
maximum increase in flow is projected during spring season with increase of 23 and
25%during the 2055s and 2090s, respectively, under theA1B scenario. Similarly, the
range of projections for all water balance components is very large. The water balance
components: surface flow, baseflow, and water yield may decrease or increase in
future periods, as GCMs do not agree on the direction of change. The potential ET and
actual ET are projected to increase as projections from all GCMs and scenarios
indicate, although a great deal of uncertainty exists in the magnitude of change.
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The potential ET is projected to increase in the range of 6–24% in the 2090s. There is
high variability among the models and scenarios for projections, and the variability
increases with future time periods.

Keywords Climate change � GCM � GHGES � LARS-WG � SWAT � Uncertainty

1 Introduction

The global climate projections in the Fourth Assessment Report of IPCC 2007
concluded that global mean atmospheric temperature is likely to increase between
1.8 and 4.0 °C by the end of this century. This projected change in temperature is
likely to intensify the hydrological cycle and average mean water vapour, and
precipitation is likely to increase. As a result, hydrological systems are anticipated
to experience, not only changes in the average availability of water, but also
changes in extremes (Zhang et al. 2011). Mountains being repositories of biodi-
versity, water and other ecosystem services are among the most fragile environ-
ments. The various global changes are creating enormous pressures on the
mountains (Sharma et al. 2007). The assessment of future climate is based on
different greenhouse gas (GHG) emission scenarios which are the product of very
complex dynamic systems, determined by driving forces such as demographic
growth, socio-economic development, and technological change (Anandhi et al.
2008). Global climate models (GCMs) are used to estimate the consequences of
these developments on the climate in future periods. The outputs of GCMs are
usually available at resolutions of 100’s of km, and thus, they do not resolve sub-
grid scale features and topographic effects that are of significance to many impact
studies (Moriondo and Bindi 2006). Future climate projections on a much finer
scale are required for impact studies at regional scales (Tisseuil et al. 2010).

To bridge the gap between scales of climate information provided by GCMs and
those required for impact studies at regional or local scales, downscaling is used.
Basically, two fundamental approaches exist for downscaling: dynamical down-
scaling (DD) and statistical downscaling (SD). In the dynamical approach, a higher
resolution climate model (RCM) is embedded within a GCM. In the statistical
approach, various statistical methods are used to establish empirical relationships
between GCM output, climate variables, and local climate (Maraun et al. 2010). SD
methods are easier and more readily applied to develop higher resolution climate
scenarios for impact studies and thus more widely adopted (Chiew et al. 2010). The
SD techniques can be grouped into three categories: weather typing method, sto-
chastic weather generators, and regression methods.

The Long Ashton Research Station Weather Generator (LARS-WG) is a sto-
chastic weather generator developed by Semenov and Barrow (1997) for statistical
downscaling. Several studies (such as Hashmi et al. 2011) have compared the
performance of LARS-WG with other statistical downscaling techniques and have
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concluded that LARS-WG can be adopted with confidence for climate change
studies. LARS-WG has been applied in climate change impact studies in many
research studies, such as in the Saguenay watershed in northern Quebec, Canada
(Dibike and Coulibaly 2005); in Montreal, Canada (Nguyen 2005) and in different
locations in Europe (Semenov and Stratonovitch 2010). The description of the latest
version of LARS-WG, called LARS-WG 5 and its capabilities, is given in Semenov
and Stratonovitch (2010). LARS-WG 5 incorporates climate projections from 15
GCMs used in the IPCC-AR4.

A large number of uncertainties exist at the various stages of future climate
projections and hydrological analysis, which impose a challenge for impact analysis
studies. Uncertainty in climate projections comes mainly from GCMs, SRES sce-
narios, downscaling methods, and the internal variability of climates (Hawkins and
Sutton 2010). The models used for impact analysis (e.g. hydrological models) also
bring uncertainty to the assessment of the impacts of climate change (Bastola et al.
2011; Minville et al. 2008). An estimate of the uncertainty in climate projections is
potentially valuable for policy makers and planners (Stott and Kettleborough 2002).

This study was conducted in the Koshi River Basin. The Koshi flows through
China, Nepal, and India and is one of the largest tributaries of the Ganges. The
Koshi River Basin consists of seven major sub-basins (Sun Koshi, Indrawati, Dudh
Koshi, Tama Koshi, Bhote Koshi, Arun, and Tamor) all originating from the
Himalayas. The Sun Koshi joins the Indrawati and then moves on south-eastwards
to collect the following rivers: Tama Koshi, Bhote Koshi, Dudh Koshi and join with
Arun and Tamor at Tribeni. About 82 % of the Arun catchment lies in the Tibet
Autonomous Region of China. The Sun Koshi and Tama Koshi also have
remarkably large catchment areas in the Tibet Autonomous Region of China (WWF
2009). The Koshi basin, characterised as highly varied in climate and geographical
features, spans latitudes between 26° 51′N and 29° 79′N and longitudes between
85° 24′E and 88° 57′E. The elevation of the basin ranges from about 65 m in the
Terai to over 8,000 m in the high Himalayas (Fig. 1). A large part of the Koshi
basin (almost 65 %) is above 4,000 m in elevation.

Many studies confirm that major parts of the Koshi and other river basins in Nepal
are undergoing warming trends as well as changes in the precipitation pattern
(Agrawala et al. 2003; Bartlett et al. 2010; Chhetri 2010; Shrestha and Devkota
2010). Despite progress in understanding the impact of climate change on water
resources, there has been a lack of research in investigating the element of uncer-
tainty. To address the issue, this study analysed future climates using projections
from multi-models and multi-scenarios. Projections from different GCMs for various
scenarios were then used to investigate the climate change impacts on water
resources. This analysis will help in managing water more efficiently and making the
necessary plans for adaptation to changing climatic conditions in the Koshi basin.

In this study, the climate projections for the Koshi River Basin were investigated
using data from multiple GCMs for three emission scenarios. The impact of climate
change on the hydrology of the Koshi basin was analysed using the Soil and Water
Assessment Tool (SWAT) model. The uncertainty of GCMs and SRES scenarios in
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future climate projections and the hydrology of the Koshi basin were then esti-
mated. The uncertainty resulting from downscaling methods and hydrological
model parameters were not analysed in this study.

2 Materials and Methods

The observed daily climate data for the period 1971–2008 were obtained from the
Department of Hydrology and Meteorology (DHM), Nepal. The future climate data
were downloaded from the IPCC-data distribution centre website.1 Data from ten
GCMs included in IPCC AR4 were considered in this study. The data for these
GCMs for selected SRES scenarios are available through LARS-WG5. The GCMs
used in the study are listed in Table 1.

Three emission scenarios (B1, A1B, and A2), which represent low, medium, and
high emissions of GHG with respect to the prescribed concentrations relative to
SRES, were considered in this study. A stochastic weather generator LARS-WG

Fig. 1 Elevation range and meteorological stations in the Koshi basin

1 http://www.ipcc-data.org/.
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(Semenov and Barrow 1997) was used in this study. A description of the latest
version of model LARS-WG 5 and its capabilities is given in, Semenov and
Stratonovitch (2010). The model was downloaded from Rothamsted Research.2

LARS-WG can generate synthetic daily datasets of precipitation, minimum and
maximum temperature, and solar radiation based on observed weather, and gen-
erally 20 or 30 years of daily climate data are used in order to capture real climate
variability and seasonality. Based on the relative monthly changes in mean daily
precipitation, wet and dry series duration, temperature and temperature variability
between current and future periods predicted by the GCM, and local station climate
variables are adjusted proportionately to represent climate change.

The data required to develop the SWAT model for the Koshi basin were com-
piled using global data sources. A Digital Elevation Model (DEM) of 90 m reso-
lution was obtained from the Shuttle Radar Topography Mission (SRTM). The soil
map used was from the Soil Terrain Database (SOTER), which shows that the
Koshi basin has 11 soil types, with Gleyic Leptosols (soil texture clay loam) and
Gleyic Phaeozems (soil texture sand) as the dominant soil types. Land cover data
were obtained from MODIS land cover type products MCD12Q1 available at the
spatial resolution of 500 m for the period 2001–2010. The weather data used for
developing the SWAT model is: daily precipitation, minimum and maximum
temperature, relative humidity, solar radiation, and wind speed. A large part of the
Koshi basin lies in an elevation above 3,000 m where observation stations are not
available. To overcome this deficit, a temperature lapse rate of −5.7 °C/km was

Table 1 Global climate models used in the study

No. Model Research
centre

Resolution Scenarios Vintage

Atmospheric Ocean

1 ECHAM 5 MPI,
Germany

1.870 × 1.870 1.50 × 1.50 B1, A1B, A2 2005

2 MRI-
CGCM2.3

MRI, Japan 2.80 × 2.80 2.50 × 2.00 B1, A1B 2003

3 HadCM3 Hadley Centre
UK

2.50 × 3.750 1.250 × 1.250 B1, A1B, A2 2000

4 CGCM 3.1 CCCMA
Canada

2.80 × 2.80 1.40 × 1.00 A1B 2005

5 MK3 CSIRO,
Australia

1.90 × 1.90 1.90 × 1.90 B1, A1B 2001

6 CNCM3 CNRM,
France

1.90 × 1.90 2.00 × 2.00 A1B, A2 2004

7 IPCM4 IPSL, France 2.50 × 3.750 2.00 × 2.00 B1, A1B, A2 2005

8 GFCM21 GFDL, USA 2.00 × 2.50 1.00 × 1.00 B1, A1B, A2 2005

9 CCSM3 NCAR, USA 1.40 × 1.40 1.00 × 1.00 B1, A1B, A2 2005

10 INCM3 INM, Russia 4.00 × 5.00 2.50 × 2.00 B1, A1B, A2 2004

2 http://www.rothamsted.ac.uk/mas-models/larswg/download.php.
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incorporated and precipitation data was used from Asian Precipitation Highly
Resolved Observational Data Integration Towards Evaluation of Water Resources
(APHRODITE) which contains gridded data and is available at a spatial resolution
of 25 km.

The SWAT model was developed for the Koshi basin using the data mentioned
above. Themodel performance to simulate the flowwas evaluated for the Koshi River
and three major tributaries, Sun koshi, Arun, and Tamur. The hydrological data from
the DHM, Nepal was available for the years from 1990 onwards. Data for the period
1990–2000 were considered for model calibration and 2001–2008 were considered
for model validation. Three statistical parameters: coefficient of determination (R2),
percentage volume error (VE), and Nash–Sutcliffe efficiency (NSE) were used in this
study to analyse model performance during calibration and validation.

The calibrated and validated SWAT model was used to analyse the impacts of
future climate change on hydrology and water resources in the Koshi basin. The
minimum and maximum temperature and precipitation was downscaled using
LARS-WG for 10 temperature and 60 precipitation stations located in the Koshi
basin were used to evaluate the hydrological parameters and water balance com-
ponents in the future periods. The solar radiation and relative humidity for the future
periods were simulated in SWAT using the WXGEN weather generator. WXGEN
uses rainfall and temperature data from each scenario based on the assumption that
the occurrence of rain on a given day has a major impact on the relative humidity and
solar radiation on that day (Ficklin et al. 2009). The analysis in this study focuses on
three periods over the twenty-first century; an early-century period 2011–2030
(2020s), a mid-century period 2046–2065 (2055s), and a late-century period
2080–2099 (2090s). The period 1981–2000 is considered as the baseline period.

3 Results and Discussion

3.1 Model Calibration and Validation

3.1.1 LARS-WG

The performance of the LARS-WG model was tested against the historical data
(daily Tmin and Tmax) for the baseline period (1971–2000). The mean monthly bias
values for Tmin, Tmax, and precipitation for ten meteorological stations located in the
Koshi basin (Fig. 1) are presented in Fig. 2. The LARS-WG performance was
evaluated for all 60 precipitation stations used in this study although results are
presented here for only ten stations. The bias values for Tmin and Tmax were mostly
close to zero, with a narrow range of ±0.5 °C. The mean monthly bias for pre-
cipitation was also found to be satisfactory for all the stations. The higher bias
values were obtained during the months of the monsoon season (JJAS) compared to
the remaining months. The mean annual bias was close to zero, which may be
because of the positive bias in certain months being balanced out by the negative
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bias. The results indicate that LARS-WG simulated temperature and precipitation
agreed well with the observed values, and thus, the model can be used for down-
scaling future climate data in this study.

3.1.2 SWAT

The SWAT model was calibrated using streamflow measured at the Saptakoshi
outlet (Chatara) and its major tributaries (Arun, Tamor, and Sun Koshi) (Fig. 3).
The available observed flow data were split for calibration (1990–2000) and vali-
dation (2001–2008) purposes. The most sensitive parameters were chosen in the
calibration procedure based on literature review and a preliminary sensitivity
analysis of the parameters. The sensitive parameters for the Koshi basin are pre-
sented in Table 2. The value of the sensitive parameters was adjusted within the
appropriate ranges as defined in SWAT documentation to obtain the best calibration
for the model. The calibration and validation results for the SWAT model are

Fig. 2 Bias in mean monthly Tmin (°C), Tmax (°C), and precipitation between the observed and
LARG-WG simulated data for the baseline period (1971–2000) for ten stations in the Koshi basin.
The bias is calculated as observed minus simulated
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presented in Table 3. The values of performance indicators R2, NS, and PVE were
well under the acceptable limit of R2 > 0.60, NS > 0.50, and PVE < 15 % (rec-
ommended by Santhi et al. (2001) and Van Liew et al. (2007)) during calibration
and validation periods. The PVE in Tamur was higher, as the flow in Tamur was
under predicted during both calibration and validation periods. The hydrographs for
observed and simulated flow of the Saptakoshi outlet (Chatara) is shown in Fig. 4.
These results indicate that the model performance was satisfactory, and thus, it can
be extended to study the effect of climate change on water balance and streamflow
of the Koshi basin. The model parameters calibrated for the past periods are
assumed to remain valid for the future period simulations. The land use in the Koshi
basin is also assumed to remain unchanged in the future periods for this study.

Fig. 3 River network of the
Koshi basin and calibration
points considered in this study

Table 2 Parameters considered for the SWAT model calibration

Parameters Description Default
value

Range

CN2 Curve number 38–91 35–98

ESCO Soil evaporation compensation factor 0 0–1

SOL_AWC Available water capacity of the soil layer (mm
H2O/mm soil)

0.21 0–1

RCHRG_DP Deep aquifer percolation fraction 0.05 0–1

GW_REVAP Groundwater “revap” coefficient 0.02 0.02–0.20

GW_Delay Groundwater delay from soil to channel (days) 31 0–500

GWQMN Threshold depth of water in the shallow aquifer
required for return flow to occur (mm H2O)

0 0–500

Alpha_bf Baseflow alpha factor (days) 0.048 0–1

CH_K2 Channel effective hydraulic conductivity (mm/h) 0 0–500

SOL_K Saturated hydraulic conductivity (mm/h) 51.6 0–2,000
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3.2 Baseline Period Simulations

The performance of the SWAT model was analysed using the baseline period
observed and simulated data. This analysis helps to check the consistency of
weather data simulated using LARS-WG for its application to simulate the
hydrological parameters of the Koshi basin. The annual water balance components
of the Koshi basin using observed and simulated weather data are presented in
Table 4. The annual surface runoff and baseflow were simulated with a difference of
0.2 and 1.5 %, respectively. The total water yield was simulated with a difference of
less than 1 %. The difference between observed and simulated values of actual ET
and potential ET is also less than 1 %. This indicates that the baseline period
weather data simulated from LARS-WG performs well for the Koshi basin. This
increases the confidence of using LARS-WG simulated climate data to analyse
impacts of climate change on the water resources of the Koshi basin. The annual
water balance of the Koshi basin suggests that the total water yield accounts for
nearly 67 % of the total precipitation. The evapotranspiration and deep percolation
represent 23 and 10 % of the annual precipitation. The monthly water balance of the
Koshi basin presented in Table 5 indicates that the majority of precipitation (75 %),
surface runoff (65 %), and water yield (76 %) are concentrated during the four
months of the monsoon season (JJAS). Minimum flow is observed during the
winter season (DJF), which is less than 5 % of the total annual flow.

Table 3 Calibration and validation statistics for the Koshi River Basin and its tributaries

Calibration (1990–2000) Validation (2001–2008)

R2 NS PVE (%) R2 NS PVE (%)

Sun Koshi 0.84 0.82 3.3 0.85 0.83 −2

Arun 0.60 0.58 −12 0.61 0.51 0

Tamur 0.84 0.57 −39 0.88 0.66 −36.4

Saptakoshi 0.87 0.85 −12.3 0.84 0.83 −10.7

Fig. 4 Observed and simulated monthly streamflow at the Saptakoshi outlet during calibration
and validation periods
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3.3 Climate Projections for Future Periods

The climate projections for three future periods (2020s, 2055s, and 2090s) relative
to the baseline period (1981–2000) are presented in this section. The downscaled
temperature and precipitation projections of 25 ensembles were used to analyse the
range of projections for three future periods. The box-whisker plots are used to
represent the uncertainty arising in projections from GCMs and the scenarios. The
upper and lower boundaries of the boxes represent the 25th and 75th percentiles
respectively, while the line in the box shows the median values. The ticks outside
the boxes show the maximum and minimum value of the projected changes. The
results are presented and discussed for changes in mean monthly values of climate
variables (Tmin, Tmax, and precipitation) projected by ten GCMs under the A1B
scenario, and in annual values projected by all GCMs under the three scenarios.

Table 4 Annual average water balance components of the Koshi basin simulated using observed
and LARS-WG simulate climate for the baseline period (1981–2000)

Rain Surf
Q

Baseflow WY ET PET

Simulated using observed
climate

1,033.9 244.7 431.6 676.3 274.8 747.1

Simulated using LARS-WG
simulated climate

1,041.9 243.1 425.5 668.6 276.7 754.2

Difference (%) −0.8 0.7 1.4 1.1 −0.7 −1.0

Table 5 Monthly water balance components of the Koshi basin simulated using LARS-WG
simulated climate for the baseline period (1981–2000)

Precipitation (mm) Surf Q (mm) Water Yield (mm) ET (mm) PET (mm)

Jan 12.2 0.45 9.62 4.25 30.7

Feb 15.74 0.36 7.11 5.57 38.01

Mar 26.72 2.91 11.64 11.95 64.33

Apr 46.29 7.47 22.82 21.3 80.7

May 79.33 15.23 44.9 32.79 91.08

Jun 153.28 33.33 91.38 39.64 85.18

Jul 248.33 66.05 156.26 46.66 83.36

Aug 236.67 66.91 154.62 44.46 79.42

Sept 148.48 38.26 100.15 33.72 67.74

Oct 51.73 10.14 39.87 21.06 58.86

Nov 13.12 1.43 17.4 10.19 42.31

Dec 9.98 0.55 12.79 5.14 32.54
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3.3.1 Temperature

The change in mean monthly temperature projected by ten GCMs under the A1B
scenario, relative to the baseline period, is shown in Fig. 5. The change in annual
temperature, as projected by the GCMs under the three scenarios: B1, A1B, and A2
for three future periods (relative to the baseline period), is shown in Fig. 6. Pro-
jections of all the GCMs under the A1B scenario (Fig. 5) indicate an increase in
both Tmin and Tmax in each month for all three future periods. While the GCMs do
not agree on the magnitude of change, they do project that the range of temperature
change within each month will increase with the time horizon. The projections of
annual Tmin and Tmax during the 2020s, as shown in Fig. 6, are within the narrow
range of 0.5–1.5 °C with almost similar median values. This indicates that Tmin and
Tmax projections during the 2020s are expected to be similar, irrespective of the
scenario that may follow. The differences between projected values of Tmin and
Tmax become greater in accordance with the choice of the scenario during the mid-
century and the late-century periods. This heightened difference is because of the
significant increase in differences among the different emission scenarios them-
selves. The differences among the median values of projections justify this finding:
during the 2090s for Tmax, the median value as projected under the A2 scenario is
1.6 °C higher than as projected under the B1 scenario. This may influence runoff in
the basin and monthly water availability especially during the dry season.

Fig. 5 Changes in average monthly Tmin and Tmax under the A1B scenario for the 2020s, 2055s,
and 2090s relative to the baseline period
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3.3.2 Precipitation

The relative changes in mean monthly precipitation for the three future periods
relative to the baseline period, as projected by the ten GCMs under the A1B
scenario, are shown in Fig. 7. The changes in annual precipitation, as projected by
the GCMs for all three scenarios (B1, A1B, and A2), are shown in Fig. 8. From
Figs. 7 and 8, it can be gleaned that there is a wide variation among the GCMs
regarding the projected change in precipitation. The range of projected change in
monthly and annual precipitation increases with an increase in the time horizon.
The changes in precipitation are not univocal and range from negative to positive
for all three future periods. Figure 7 indicates that no clear pattern in the precipi-
tation change is evident in any month. This may be due to the complexity that arises
when interpreting precipitation projections, since different GCMs often do not agree
on whether precipitation will increase or decrease at a specific location; they agree
even less on the magnitude of that change (Girvetz et al. 2009). A higher difference
is projected during the four months of the summer season (JJAS), perhaps because
more than 70 % of the total annual rainfall is concentrated during this time. The
relative change for all the months is almost similar to what is shown in Fig. 7, but
the absolute change in the eight months of the non-monsoon period (October to
May) is very small compared to the change in the monsoon period itself (June to
September). The median values in Fig. 7 also indicate that a positive change is more

Fig. 6 Changes in annual average Tmin and Tmax for the 2020s, 2055s, and 2090s relative to the
baseline period
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likely in the summer season while a negative change is more likely in the winter
season (DJF). The changes in annual precipitation, as projected under the three
scenarios (Fig. 8), also indicate that the difference in projections increase with the
time horizon. The median value indicates a positive change in annual precipitation
under all three scenarios. Also, the median value for the three scenarios is closer to
each other during the early-century period but shows significant differences during
the mid- and late-century periods. It is important to note here that the scenario
uncertainty is estimated based on three IPCC SRES scenarios, and with the

Fig. 7 Changes in average monthly precipitation under the A1B scenario for the 2020s, 2055s,
and 2090s relative to the baseline period

Fig. 8 Changes in annual precipitation for the 2020s, 2055s, and 2090s relative to the baseline
period
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development of new RCP scenarios, the estimates could be improved. For longer
lead-time predictions, assessments of the relative importance of model and uncer-
tainty scenarios may change as a result of including new processes in climate
models (e.g. better representation of biogeochemical and ice-sheet feedbacks) and
improved understanding of scenarios (Hawkins and Sutton 2010).

3.4 Impacts on Hydrology and Water Balance Components

The calibrated and validated SWAT model was used to analyse the impacts of
climate change in three future periods of the 2020s, 2055s, and 2090s. The future
climate data from all 25 ensembles were used to analyse the range of projections of
hydrological and water balance components. The change in hydrological parame-
ters and water balance components in future periods relative to the baseline period
(1981–2000) is presented and discussed here.

3.4.1 Mean Monthly Flow

The flow during the baseline period and the change (in percentage) in the flow
during the three future periods are presented in Table 6. The values in Table 6
represent the mean value of change from all GCMs under the respective scenarios.
It has been found that the flow increases in all the months during all three future
periods, except for June and November in the 2020s, where the flow slightly
decreases (less than 1 %). The increase in flow is higher during the summer season
(June to September). This indicates that the change in flow is directly related to the
change in precipitation. The highest increase in flow is projected during the month
of August, and subsequently, the peak flow is expected to shift from the month of
July to August under all three scenarios. The maximum increase (of 48 %) is
projected under the A2 scenario in August during the 2090s. During the autumn
season, the change in flow is not significant in the 2020s, but a high increase is
projected in the 2055s and 2090s especially for the month of October. The flow is
also projected to increase during all three months of the winter season. The max-
imum increase of flow (9 %) is projected during the winter season months under the
A2 scenario during the 2090s. The spring season flow shows a significant increase
during all three future periods. This increase might be due to the increase in tem-
perature, which in turn may cause early snow melt.

3.4.2 Changes in Seasonal and Annual Flow

The changes in seasonal and annual flows, as projected by ten GCMs under the
A1B scenario, for all three future periods (with respect to the baseline period’s
seasonal and annual flow), are shown in Fig. 9. The solid blue bar in this figure
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represents the mean of the ten GCMs under the A1B scenario. The results indicate
that there are likely chances of an increase in seasonal as well as annual runoff in all
three future periods as the majority of GCMs and their mean indicates. Among the
ten GCMs considered here, only two CSMK and IPCM indicate a decrease in flow.
The maximum relative increase (of 12 %) is projected for spring during the 2020s,
while increases of 23 and 25 % are projected, respectively, for the summers of the
2055s and 2090s. The range of change in seasonal and annual flow (not shown
here) varies from negative to positive under all three scenarios. The uncertainty in
projection increases with the increase in time periods with much higher differences
during the 2090s compared to the 2020s.

3.4.3 Water Yield

The changes in monthly and annual water yield for the three future periods relative
to the baseline period are shown in Figs. 10 and 11. Both monthly and annual water
yield during the early-century period (2020s) are expected to change by only a
small amount as median values indicate. The middle 50 % range (box in Figs. 10
and 11) indicates that the differences in the GCMs’ projections are within the
narrow range, with a maximum difference projected for April during the 2020s. The
difference in projections of water yield increases with the time horizons. The
median value indicates a positive change during the 2055s and 2090s with the
exception of April and May in the 2090s. A smaller difference between the median
values and narrow range of projections in Fig. 11 also indicates that the relative
annual change is dominantly affected by GCMs rather than by SRES scenarios

Table 6 Mean monthly flow at Chatara during the baseline period and changes in the flow (in
percentage) during the three future periods

Baseline
(m3/s)

2020s 2055s 2090s

B1 A1B A2 B1 A1B A2 B1 A1B A2

% change with respect to baseline

Jan 380.6 3.3 3.3 4.9 6.2 6.0 4.3 5.1 7.5 8.9

Feb 340.5 3.3 3.6 5.1 4.7 5.6 3.8 6.9 6.7 8.7

Mar 364.5 1.8 4.1 3.5 4.6 8.0 4.4 5.5 8.3 12.2

Apr 524.1 5.9 12.3 7.7 8.5 14.2 11.1 12.6 14.1 16.8

May 928.4 8.3 14.4 3.1 9.3 12.4 13.0 9.9 20.1 12.1

Jun 2,002.2 2.9 6.9 −0.9 6.8 17.4 6.7 7.4 20.9 14.4

Jul 3,286.8 4.2 5.1 8.4 12.3 26.3 6.6 16.5 25.3 34.9

Aug 3,249.3 9.8 10.5 13.6 25.6 27.7 12.0 25.6 29.7 48.4

Sep 2,307.6 0.7 4.8 3.0 12.0 17.1 3.9 11.8 20.9 33.0

Oct 1,001.8 1.7 4.0 1.5 10.3 12.2 4.4 11.2 19.6 27.4

Nov 546.2 0.3 −0.9 −1.0 4.2 3.2 0.9 2.9 6.6 11.5

Dec 441.4 3.2 1.5 3.3 6.2 5.3 5.0 4.1 6.7 9.0
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during the 2020s. During the 2055s, both scenarios and GCMs are affected by the
change in water yield. The median value indicates an increase during the 2055s
under all three scenarios with the highest increase under the A1B scenario. The
projections for precipitation as shown in Figs. 7 and 8 also indicate a higher chance
of increase during the 2055s. During the 2090s, both GCMs and scenarios show a
dominant effect on the water yield in the basin, with a more likely chance of
increase.

3.4.4 Potential ET

The relative changes in potential ET for three future periods with respect to the
baseline period are shown in Fig. 12. The PET value is projected to increase during
all three future periods according to all the GCMs, with the exception of INCM
during the monsoon season. INCM indicates a decrease in PET which might be
because of its temperature projections which show the least increase during the
monsoon season among all the GCMs under the A1B scenario. Temperature
increase, as projected by all the GCMs, is the main factor causing an increase in
PET. The average monthly PET varies significantly with the change in temperature.
Results indicate that the increase in PET is highest in the months of the winter
season (DJF) which are also expected to show a maximum increase in temperature,

Fig. 9 Projected changes in seasonal and annual runoff at the Saptakoshi outlet according to ten
GCMs under the A1B scenario for three future periods relative to the baseline period. The blue
solid bar represents the mean of ten GCMs
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while the minimum increase is projected for the summer season (JJAS) during all
three future periods. The relative change in average annual PET (Fig. 13) also
indicates an increase during all three future periods. All GCMs under three

Fig. 10 Changes in average monthly water yield under the A1B scenario for the 2020s, 2055s,
and 2090s relative to the baseline period

Fig. 11 Changes in annual average water yield for the 2020s, 2055s, and 2090s relative to the
baseline period
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scenarios indicate an increase in PET value although uncertainty exists as to the
magnitude of change. During the 2020s, uncertainty in the projected change in PET
varies in the narrow range from 1.7 to 5.5 % compared to the value of baseline
period. The range of projections increases with the time horizons: 4.2–13.7 % in the
2055s and 6.8–24 % in the 2090s.

3.4.5 Actual ET

The relative change in mean monthly and annual value of actual ET is more likely to
increase during all the three future periods, as middle 50 % values indicate in Figs. 14
and 15. Two GCMs (INCM and IPCM) indicate a decrease in ET values in certain
months, especially during the summer season. An analysis of the change in tem-
perature and precipitation shows INCM’s projectedminimum increase in temperature
and IPCM’s projected maximum decrease in precipitation among the ten GCMs

Fig. 12 Changes in average monthly potential ET under the A1B scenario for the 2020s, 2055s,
and 2090s relative to the baseline period
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Fig. 13 Changes in annual average potential ET for the 2020s, 2055s, and 2090s relative to the
baseline period

Fig. 14 Changes in average monthly actual ET under the A1B scenario for the 2020s, 2055s, and
2090s relative to the baseline period
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under the A1B scenario. The highest relative change in ET is projected during the
months of February,March, andApril. The increase in ET is also higher duringwinter
than summer. The projections from all GCMs under three scenarios (B1, A1B, and
A2) indicate an increase in annual ET during all three future periods. The median
value of change in ET indicates maximum increase under the A1B scenario during the
2020s and 2055s and under the A2 scenario during the 2090s.

4 Conclusions

This study used a multi-model, multi-scenario approach to analyse the impacts of
climate change on the hydrology of the Koshi River Basin. Three SRES scenarios
(B1, A1B and A2) assuming a distinctly different direction for future development
were selected for this study. Multiple GCM projections for each of the three sce-
narios were used. A statistical downscaling model (LARS-WG) was selected to
downscale the global scale projections to the basin scale. The physically based
hydrological model Soil and Water Assessment Tool (SWAT) was used to analyse
the impacts of climate change on hydrology.

LARS-WG-simulated climate data for the baseline period (1971–2000) showed
good performance with the historical climate of the Koshi basin. Calibration and
validation results of the SWAT model suggest that it can be applied with confidence
in this study. The results indicate that the Koshi basin will tend to become warmer
in the future as projected by all GCMs under three SRES scenarios. Annual average
Tmax will rise by 2.6, 3.6, and 4.2 °C in the 2090s as per B1, A1B, and A2
scenarios, respectively, considering the mean of all GCMs under each of the sce-
narios. The projected change in precipitation is not uni-directional which might
increase or decrease in future periods. The majority of the GCMs (8 out of 10)
considered here and the mean value of projections from all GCMs under each of the
three scenarios indicated an increase in future precipitation. The maximum differ-
ence in precipitation projections is simulated under the A1B scenario with a range

Fig. 15 Changes in annual average actual ET for the 2020s, 2055s, and 2090s relative to the
baseline period
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varying from 38 to 50 % in the 2055s. A large uncertainty range exists in the
projections of flow with results indicating both decrease and increase for all three
future periods. The mean monthly and annual flow is expected to increase as
projections from the majority of GCMs and the mean value of all GCMs indicates.
The maximum increase in flow is projected during the spring season with increases
of 23 and 25 % during the 2055s and 2090s, respectively, under the A1B scenario.
This high increase in spring flow indicates the need for more flood control measures
in the Koshi basin. The water balance components: surface flow, baseflow, and
water yield may decrease or increase in future periods, as GCMs do not agree on the
direction of change. The potential ET and actual ET are projected to increase as
projections from all GCMs and scenarios indicate, although major uncertainty
exists as to the magnitude of change. The potential ET is projected to increase in the
range of 6–24 % in the 2090s.

There is high variability among the models and scenarios for projections, and the
variability increases with future time periods. Although inter-model variability
exists in each of the scenarios, for the early-century period, the differences among
the scenarios are much less. During the mid- and late-century periods, inter-model
variability in all climatic and hydrological variables increases, resulting in higher
projection uncertainty. The multi-model and multi-scenario approach presented in
this paper helps in understanding the uncertainty linked to future climate projec-
tions and the impact on water resources. Although different downscaling techniques
and hydrological model parameters also bring uncertainty in projections, it is
expected that the large variability induced by different GCMs and GHG emission
scenarios, as shown in this paper, will dwarf those induced by other sources. The
impacts of climate change on the hydrology and water resources of the Koshi basin
will further affect all water use sectors which may be analysed considering the
findings from this study.
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