
Chapter 9
Other Estimation Methods

9.1 Estimation Using Empirical Distributions

9.1.1 Empirical Distribution Functions

Suppose that we have sample data x1, x2, . . . , xn assumed to be observed values of
independent random variables each having the same distribution function F where

F (x) = P(X ≤ x)

Define new random variables Zi as the indicator functions of the interval
(−∞, x], i.e.,

Zi(x) =

{
1 Xi ≤ x

0 otherwise

Note that the Zi(x) are independent and are Bernoulli random variables with
parameter F (x), i.e.,

P(Zi(x) = 1) = P(Xi ≤ x) = F (x)

It follows that, for any fixed x, we have that

Sn(x) =
n∑

i=1

Zi(x)

has a binomial distribution with parameters F (x) and n.
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102 9 Other Estimation Methods

Definition 9.1.1. The empirical distribution function, F̂n(x) is defined as

F̂n(x) =
Sn(x)

n

The empirical distribution function is the natural estimator of F , the population
distribution function, for the following reasons:

1. F̂n(x) is unbiased, i.e.,

E[F̂n(x)] = F (x) for any x

2. The variance of F̂n(x) is given by

V

[
F̂n(x)

]
=

F (x)[1− F (x)]

n

3. F̂n(x) is consistent, i.e.,

F̂n(x)
p−→ F (x) for any x

The above results follow from the fact that nF̂n(x) = Sn is binomial with
parameters n and F (x).

There are two important additional properties of F̂n(x):

1. Glivenko–Cantelli Theorem
Under the assumption of iid Xi’s we have

sup
x

∣∣∣F̂n(x)− F (x)
∣∣∣ p−→ 0

i.e., the maximum difference between F̂n(x) and F (x) is small for large n.
2. Dvoretzky–Kiefer–Wolfowitz (DKW) Inequality

Under the assumption that the Xi’s are iid

P

(
sup
x

|F̂n(x)− F (x)| > ε

)
≤ 2e−2nε2 for any ε > 0

The implication of the last result is that if we define

L(x) = max{F̂n(x)− εn, 0} and U(x) = min{F̂n(x) + εn, 1}

where

εn =

√
ln(2/α)

2n
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then we have that

P {L(x) ≤ F (x) ≤ U(x) for all x} ≥ 1− α

i.e., we have a 100(1− α)% confidence interval for F (x).

1. The previous two results, particularly the first, have been called the fundamental
theorems of mathematical statistics because they show that we can, with high
probability, learn about F using a random sample from a population assumed to
have distribution F .

2. In most statistical applications we can do better (use smaller n) since we assume
that F is specified by a small number of parameters.

3. In fact, in many cases, we are not interested in F itself but some other function
such as the mean or variance of the population.

9.1.2 Statistical Functionals

In mathematics a functional is a function whose domain is a set of functions.

Definition 9.1.2. A statistical functional, θ = T (F ), is any function of the
distribution function F .

Almost any parameter of interest is a statistical functional, e.g., the mean,
median, and quantiles. Since the sample distribution function is the natural estimate
of the distribution function the following gives the natural estimates of statistical
functionals.

Definition 9.1.3. The plug-in estimator of the statistical functional θ = T (F ) is

θ̂n = T (F̂n)

i.e., to estimate T (F ) plug in (substitute) F̂n for F .

9.1.3 Linear Statistical Functionals

One important class of statistical functionals are the linear statistical functionals.

Definition 9.1.4. A linear statistical functional is a statistical functional of the
form

T (F ) =

∫
r(x)dF (x) for some function r
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where by
∫
r(x)dF (x) we mean

∑
x∈X

r(x)f(x) or
∫
x∈X

r(x)f(x)dx

depending on whether F is discrete or continuous.

For linear functionals we have the following two important results:

(i) The plug-in estimator for a linear functional is

T (F̂n) =
1

n

n∑
i=1

r(Xi)

(ii) Assuming that we can find an estimate, ŝ.e., of the standard error of T (F̂n), an
approximate 100(1− α) confidence interval for T (F ) is given by

T (F̂n) ± z1−α/2ŝ.e.

The reason for the second statement is that it is often true that

T (F̂n − T (F ))

ŝe
d−→ N(0, 1)

We then use the standard pivotal argument for the normal distribution to obtain
the approximate confidence interval for T (F ).

9.1.4 Quantiles

One other class of statistical functionals is of major importance, the quantiles of a
distribution.

Definition 9.1.5. If F has a density function f then the pth quantile of F is
defined by

T (F ) = F−1(p)

The plug-in estimate of the p quantile is

T (F̂n) = inf
x
{x : F̂n(x) ≥ p}

and is called the pth sample quantile.
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The following are important quantiles:

p Name Estimate
1
10

− 9
10

Deciles Sample deciles
1
4
, 3

4
Quartiles Sample quartiles

1
2

Median Sample median

9.1.5 Confidence Intervals for Quantiles

Let X1, X2, . . . , Xn be independent with distribution function F . Suppose that we
want a confidence interval for ηp, the pth quantile of F , i.e.,

p = F (ηp) = P(Xi ≤ ηp)

Define Z1, Z2, . . . , Zn by

Zi =

{
1 if Xi < ηp
0 otherwise

The Zi are independent Bernoulli with

P(Zi = 1) = P(Xi < ηp) = p

It follows that

Sn =
n∑

i=1

Zi is binomial (n, p)

Now define the order statistics, Xn1, Xn2, . . . , Xnn, as the ordered values of
X1, X2, . . . , Xn from smallest to largest.

Note that

Sn ≥ j ⇐⇒ Xnj < ηp

and

Sn ≤ k − 1 ⇐⇒ Xnk ≥ ηp

These last two facts allow us to determine confidence limits for ηp since

P(Xnj < ηp ≤ Xnk) = P(j ≤ Sn ≤ k − 1)
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The last probability can be obtained from the binomial distribution with
parameter p, i.e.,

P(j ≤ Sn ≤ k − 1) = P(Sn ≤ k − 1)− P(Sn ≤ j − 1)

Thus all we need to do is find j and k such that

P(Sn ≤ k − 1)− P(Sn ≤ j − 1) ≥ 1− α

and we will have a 100(1− α)% confidence interval for ηp.
This interval is nonparametric since we do not need to assume the specific form

of F . In cases where we are willing to assume a specific form for F we can do
better, i.e., have a shorter confidence interval.

Where to start for j and k? Note that

Sn − np√
np(1− p)

≈ N (0, 1)

so that

P(Sn ≤ k − 1) ≈ P

(
Z ≤ k − 1− np√

np(1− p)

)

i.e.,

k − 1 ≈ np+ z1−α/2

√
np(1− p)

Similarly

j − 1 ≈ np− z1−α/2

√
np(1− p)

Start with this j and k and iterate.

9.2 Method of Moments

The method of moments is related to the plug-in method. If

αj = E(Xj)

the plug-in method of estimation equates αj to the sample moment

α̂j =
1

n

n∑
i=1

xj
i

where xi denotes the ith observation from a random sample. This defines the
estimate of αj
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The method of moments uses the fact that the population moments are functions
of the parameters θ and solves the equations

αj(θ) = α̂j for j = 1, 2, . . . , k

assuming that there are k parameters

θ1, θ2, . . . , θk

The method of moments enjoys some reasonable properties in the frequentist
paradigm:

1. Consistency, i.e., θ̂n
p−→ θ

2. Asymptotic normality, i.e.,

√
n(θ̂n − θ)

d−→ N(0,Σ)

where Σ is determined by the solution to the equations defining the estimates.

9.2.1 Technical Details of the Method of Moments

Consider n iid random variables X1, X2, . . . , Xn and define the sample moments by

X
1
=

1

n

n∑
i=1

Xi, X
2
=

1

n

n∑
i=1

X2
i , . . . , X

k
=

1

n

n∑
i=1

Xk
i

and let

αr = E(Xr) and μr = E(X − μ)r where μ = E(X)

be the corresponding population moments (moments of the distribution of X).
Provided that the expected value of X2k exists the central limit theorem

guarantees that

Y = (X
1
, X

2
, . . . , X

k
)

are jointly asymptotically normal. More precisely,

√
n[Y − E(Y)]

d−→ N (0 , Σ)
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where

E(Y) =

⎡
⎢⎢⎢⎣

E(X)

E(X2)
...

E(Xk)

⎤
⎥⎥⎥⎦

and Σ is given by

⎡
⎢⎢⎢⎣

var(X) cov(X,X2) · · · cov(X,Xk)

cov(X2, X) var(X2) · · · cov(X2, Xk)
...

...
. . .

...
cov(Xk, X) cov(Xk, X2) · · · var(Xk)

⎤
⎥⎥⎥⎦

To obtain approximations to the sampling distributions of method of moment
estimators we use the Delta method. Let g be a continuous and differentiable
function and define

∇g(α) =

⎡
⎢⎢⎢⎢⎣

∂g(y1,y2,...,yk)
∂y1

∂g(y1,y2,...,yk)
∂y2

...
∂g(y1,y2,...,yk)

∂yk

⎤
⎥⎥⎥⎥⎦
y1=α1,y2=α2,...,yk=αk

then the Delta method applies and we have that

√
n[g(X

1
, X

2
, . . . , X

k
)− g(α1, α2, . . . , αk)]

converges in distribution to a

N
(
0, θ2

)
distribution where

θ2 = ∇�
g (α)Σ∇g(α)

More generally if g1, g2, . . . , gr are continuous and differentiable functions let
g = (g1, g2, . . . , gr) and let

∇g(y) =
∂g(y)

∂y
=

⎡
⎢⎢⎢⎢⎣

∂g1(y)
∂y1

∂g2(y)
∂y1

· · · ∂gr(y)
∂y1

∂g1(y)
∂y2

∂g2(y)
∂y2

· · · ∂gr(y)
∂y2

...
...

. . .
...

∂g1(y)
∂yk

∂g2(y)
∂yk

· · · ∂gr(y)
∂yk

⎤
⎥⎥⎥⎥⎦

be evaluated at
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y1 = α1, y2 = α2, . . . , yk = αk

to obtain ∇g(α), then

√
n

⎡
⎢⎢⎢⎢⎣

g1(X
1

n, X
2

n, . . . , X
k

n)− g1(α1, α2, . . . , αk)

g2(X
1

n, X
2

n, . . . , X
k

n)− g2(α1, α2, . . . , αk)
...

gr(X
1

n, X
2

n, . . . , X
k

n)− gr(α1, α2, . . . , αk)

⎤
⎥⎥⎥⎥⎦

converges in distribution to a

N (0,V)

distribution where

V = ∇�
g (α)Σ∇g(α)

9.2.2 Application to the Normal Distribution

The following are some general relationships between the central moments (the μ’s)
and the moments (the α’s) which are valid for any distribution.

μ1 = 0

α1 = μ

μ2 = α2 − μ2

α2 = μ2 + μ2

μ3 = α3 − 3α2 + μ3

α3 = μ3 + 3α2μ− μ3

μ4 = α4 − 4α3μ+ 6α2μ
2 − 3μ4

α4 = μ4 + 4α3μ− 6α2μ
2 + 3μ4

Suppose now that X is normal with mean μ and variance σ2. Then we have

μ1 = 0

μ2 = σ2

μ3 = 0

μ4 = 3σ4
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and hence for the normal distribution

α1 = μ

α2 = σ2 + μ2

α3 = 3σ2μ+ μ3

α4 = μ4 + 6μ2σ2 + 3σ4

It follows that

var(X) = σ2

cov(X,X2) = E(X3)− E(X2)E(X)

= 3σ2μ+ μ3 − (σ2 + μ2)μ

= 2μσ2

var(X2) = E(X4)− [E(X2)]2

= μ4 + 6μ2σ2 + 3σ4 − (σ2 + μ2)2

= 2σ4 + 4μ2σ2

Thus

√
n

[
X

1 − E(X)

X
2 − E(X2)

]

converges in distribution to

N

([
0

0

]
,

[
σ2 2μσ2

2μσ2 2σ4 + 4μ2σ2

])

Example 1. Asymptotic distribution of s2. If we let

g(x1, x2) = x2 − [x1]2

Then

g(x1, x2) =
1

n

n∑
i=1

x2
i − (x)2 =

1

n

n∑
i=1

(xi − x)2

and hence

∂g(x1, x2)

∂x1 = −2x1

∂g(x1, x2)

∂x2 = 1
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Evaluating at x1 = μ and x2 = σ2 + μ2 yields

∂g(μ, σ2)

∂μ
= −2μ

and

∂g(μ, σ2)

∂σ2
= 1

It follows that the asymptotic distribution of S2 satisfies

√
n(S2 − σ2)

d−→ N(0, v2)

where

v2 = [−2μ, 1]

[
σ2 2μσ2

2μσ2 2σ4 + 4μ2σ2

] [−2μ

1

]

=
[
0, 2σ4

] [−2μ

1

]

= 2σ4

Since X
1
= X and S2 are independent it follows that their joint distribution

satisfies

√
n

[
X − μ

S2 − σ2

]
d−→ N

([
0

0

]
,

[
σ2 0

0 2σ4

])

Example 2 (Effect size). The effect size is defined as

μ

σ

It is a widely used measure of the importance of a variable. If we let

g(x, s2) = x1(s
2)−1/2

then we have a natural estimate of the effect size based on the method of moments.
Note that

∂g(x, s2)

∂x
= (s2)−1/2

∂g(x, s2)

∂s2
= −x(s2)−3/2/2
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Evaluating these at x = μ and s2 = σ2 we have

∂g(μ, σ2)

∂μ
=

1

σ

and

∂g(μ, σ2)

∂σ2
= − μ

2σ3

It follows that

√
n

(
x

s
− μ

σ

)
d−→ N(0, v2)

where

v2 =
[

1
σ − μ

2σ3

] [σ2 0

0 2σ4

] [
1
σ

− μ
2σ3

]

which reduces to

v2 = 1 +
μ2

2σ2

Example 3 (Coefficient of variation). The coefficient of variation is defined as

σ

μ

and is a widely used measure of variability.
If we let cv = 1

x/s then we have a natural estimate of the coefficient of variation.
It follows that

√
n

(
s

x
− σ

μ

)
d−→ N(0, v21)

where

v21 =

(
−σ2

μ2

)(
1 +

μ2

2σ2

)(
−σ2

μ2

)

which reduces to

v21 =
σ2

μ2

(
1

2
+

σ2

μ2

)
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9.3 Estimating Functions

The method of moments and maximum likelihood are examples of obtaining
estimates using estimating functions.

Definition 9.3.1. A function g such that the equation

g(y; θ̂) = 0

defines θ̂ as an estimate of θ is called an estimating function. The equation itself
is called an estimating equation.

Definition 9.3.2. The estimating function g is an unbiased estimating function if

E[g(Y;θ)] = 0 for all θ

9.3.1 General Linear Model

Example 1. In a general linear model, i.e.,

E(Y) = Xβ ; var (Y) = σ2I

where Y is n× 1, X is n× (p+ 1), the estimating function

g(y;β) = X�(y −Xβ)

defines the least squares estimate of β.

9.3.2 Maximum Likelihood

Example 2. If Y has density f(y ; θ) the estimating function

g(y ; θ) =
∂ ln[f(y ; θ)]

∂θ

defines the maximum likelihood estimate of θ.
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9.3.3 Method of Moments

Example 3. Let Y1, Y2, . . . , Yn be iid f(y ; θ) and define

ȳr =

∑n
i=1 yi
n

; μr(θ) = Eθ(Y
r)

Then the estimating function g(y;θ) with rth component equal to

ȳr − μr(θ)

defines the moment estimator of θ.

9.3.4 Generalized Linear Models

Example 4. Let Y1, Y2, . . . , Yn be independent where fi is of the exponential
type, i.e.,

fi(yi ; θ) = exp

{[
yiθi − b(θi)

ai(φ)

]
+ ci(yi ; φ)

}

Then it is easy to show that

μi = E(Yi) = b(1)(θi)

A function h such that

h(μi) = h[b(1)(θi)] = x�
i β

is called a link function and ηi = h(μi) is called a linear predictor.
The link is called canonical if

ηi = xT
i β = θi

and in this case

μi(β) = b(1)(θi)

For canonical links the maximum likelihood estimating equations are given by

n∑
i=1

[
yi − μi(β)

ai(φ)

]
∂θi
∂βj

= 0

for j = 1, 2, . . . , p
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Note that

∂μi(β)

∂βj
= b(2)(θi)

∂θi
∂βj

so that

∂θi
∂βj

=

∂μi(β)
∂βj

b(2)(θi)

Thus the maximum likelihood equations are

n∑
i=1

[
yi − μi(β)

vi

]
∂μi(β)

∂βj
for j = 1, 2, . . . , p

where vi is the variance of Yi. In matrix form the maximum likelihood equations are

n∑
i=1

[
∂μi(β)

∂β

]� [
yi − μi(β)

vi

]
= 0

These equations specialize to the general linear model, the logistic regression
model, the log linear model, and many other commonly used models.

Each of the above examples yields an unbiased estimating function. In R we have
the packages LM and GLM.

9.3.5 Quasi-Likelihood

Example 5. The estimating function

n∑
i=1

[
∂μi(β)

∂β

]�
v−1
i (yi − μi(β))

where vi is the variance of Yi defines the quasi-likelihood estimator and it can be
used regardless of whether the family is of the exponential type since it depends
only on the mean and variance of Yi.

9.3.6 Generalized Estimating Equations

Example 6. Consider clustered data (either defined as repeated measures over time
on the same individual or as clusters defined by family or environmental facts).
Specifically let the observations (responses) from the ith cluster be

(yi1, yi2, . . . , yini
) for i = 1, 2, . . . ,m
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Let

E(Yij) = μij where h(μij) = x�
ijθ

where h is a link function and let

μi(θ)
� = (μi1(θ), μi2(θ), . . . , μini

(θ))

for i = 1, 2, . . . ,m.
The GEE estimating equations are defined by

m∑
i=1

[
∂μi(θ)

∂θ

]�
[V(Yi)]

−1
[yi − μi(θ)] = 0

In R there is a package GEEpack (and others). These methods were introduced
by Liang and Zeger. See Diggle et al. [11] for details.

9.4 Generalized Method of Moments

Suppose there exists a function g X ×Θ �→ R
p such that

μg(θ0) = E {g(X, θ0)} = 0

where μg(θ0) �= 0 for θ �= θ0.
The generalized method of moments replaces E by Ê, the sample average, to

obtain

μ̂g(θ) =
1

n

n∑
i=1

g(Xi, θ)

Then θ̂ is chosen to minimize

μ̂g(θ)
�Wμ̂g(θ)

where W is a weighting matrix (assumed positive definite). The optimum choice of
W is Σ where

Σ = Varθ0

{
∂g(Y, θ)

∂θ

}
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Under weak conditions, such a θ̂ satisfies:

• Consistency
• Asymptotic normality, i.e.,

√
n(θ̂ − θ0)

d−→ MVN(0,G�ΣG)

where

G =
∂g(Y, θ)

∂θ

All of these facts arise from routine Taylor’s expansions. In R there is a package
GMM.

9.5 The Bootstrap

Most estimation methods have the property that they produce estimators which have
the property that

θ̂n − θ

s.e.(θ̂n)

d→ N(0, 1)

so that

θ̂n ± z1−α/2s.e.(θ̂n)

is an approximate 100(1− α)% confidence interval for θ.

9.5.1 Basic Ideas

The bootstrap, developed by Bradley Efron, is a method which can be used, with few
assumptions, to estimate the standard error of a statistic and to calculate approximate
confidence intervals for the parameter the statistic estimates.

Assume that Tn is a statistic, that is, Tn is some function of the observed data
which is a random sample from F . The variance of Tn and distribution of Tn is of
interest.

We write

VF (Tn)

to denote this variance and note that it depends on the unknown F .
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VF(Tn) VFn
^ (Tn) Vboot(Tn)E A

The Bootstrap

Fig. 9.1 The bootstrap

The following two steps constitute the basis of the bootstrap (Fig. 9.1):

1. Estimate VF (Tn) by V
̂Fn
(Tn)

2. Approximate V
̂Fn
(Tn) by simulation

1. The approximation error of F by the sample distribution function is the most
likely of the approximations to be large since it requires that the sample
distribution function be close, in some sense, to the true distribution function.

2. Thus it will work well if the sample is “representative” and if n is not too small.
3. The approximation error of the sampling distribution of Tn, assuming that F̂n is

the true distribution function, by simulation is expected to be small.

9.5.2 Simulation Background

1. If Y1, Y2, . . . , YB is a random sample from a population with distribution G then
the law of large numbers implies that

1

B

B∑
i=1

Yj
p−→ E(Y )

i.e., if we draw a (large) sample from population G we can approximate E(Y ) by
the sample mean.

2. This result is easily generalizable to any function of Y , say h(Y ), which has
finite mean, i.e.,

1

B

B∑
i=1

h(Yi)
p−→ E[h(Y )]

3. Assuming that variances exist it follows that

1

B

B∑
i=1

(Yi − Y B)
2 =

1

B

B∑
i=1

Y 2
i − (Y B)

2

converges in probability to E(Y 2)− [E(Y )]2, i.e., to V(Y ).
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4. Thus the sample variance of the Yi’s can be used to approximate the variance
of G. It follows that if we can simulate random samples from a population with
distribution G, then we can get a good approximation to the expected value and
variance of G.

R and other computer packages provide functions which allow selection of
random samples from a variety of distributions, e.g., rnorm, rgamma, rbinom, etc.
For other distributions and to understand how random samples are generated recall
the following basic result from probability theory.

If X is a random variable with a continuous distribution function F then the
random variable U = F (X) has a uniform distribution on the interval [0, 1].

Proof .

FU (u) = P(U ≤ u)

= P({x : F (x) ≤ u})
= P({x : x ≤ F−1(u)})
= F [F−1(u)]

= u

This result is called the probability integral transformation and provides,
among other things, a method of obtaining a random observation from any
continuous distribution. Simply generate a random uniform, then, F−1(U)has
distribution F . More generally, generate u1, u2, . . . , un, independent with each
observation on a uniform on [0, 1]. Then

x1 = F−1(u1), x2 = F−1(u2), . . . , xn = F−1(un)

is a random sample from F .
Computer scientists have discovered much more efficient ways to generate such

samples, but the above result is important because it shows that we can always
simulate from any distribution function.

9.5.3 Variance Estimation Using the Bootstrap

It is clear from the previous section that we can use simulation to approximate
V

̂Fn
(Tn). This requires the simulation of the distribution of Tn when the data are

assumed to have population distribution F̂n.
Note that F̂n puts probability mass 1/n on each sample point. Thus, drawing an

observation from F̂n is equivalent to drawing one point at random from the original
data set, i.e., to simulate
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X∗
1 , X

∗
2 , . . . , X

∗
n

from F̂n it is sufficient to draw n observations from the original data set
x1, x2, . . . , xn with replacement.

Assuming that F̂n adequately estimates F we thus have one sample from
the original distribution function. Hence we can, by simulation, approximate the
sampling variance of the statistic Tn.

Here is the bootstrap method for variance estimation.

1. Draw n observations x∗
1, x

∗
2, . . . , x

∗
n at random, with replacement from the

original data set.
2. Compute the statistic T ∗

n = g(x∗
1, x

∗
2, . . . , x

∗
n).

3. Repeat steps 1 and 2 a large number, B, of times to obtain

T ∗
n1, T

∗
n2, . . . , T

∗
nB

called the bootstrap replicates and their sample mean.

T
∗
n =

1

B

n∑
i=1

T ∗
ni

4. The bootstrap estimate of the variance of Tn is then given by

varbs =
1

B

B∑
i=1

(T ∗
ni − T

∗
n)

2

Note that T ∗
n1, T

∗
n2, . . . , T

∗
nB can be used to estimate the distribution function of

Tn (Fig. 9.2).

9.6 Confidence Intervals Using the Bootstrap

9.6.1 Normal Interval

There are many ways to find confidence intervals using the bootstrap.
If the distribution of Tn = θ̂n is approximately normal, then use

θ̂n ± z1−α/2ŝ.e.bs

In the R function boot.ci this method is called “norm.”
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F

X1 X2 Xi Xn−1 Xn

bst(1) bst(2) bst(i) bst(B−1) bst(B)

Random Sample of Size n from F

B Random Samples of Size n with Replacement from
XiX1( X2 Xn−1 Xn )... ...

Compute

g[bst(1)] g[bst(2)] g[bst(i)] g[bst(B−1)] g[bst(B)]

Approximate Distribution of g(X)

The Bootstrap Process

Fig. 9.2 The bootstrap process

9.6.2 Pivotal Interval

Recall that a pivot, p(Y, θ), is any function of a random variable Y and a parameter
θ such that the distribution of p(Y, θ) does not depend on θ.

Example. The best known example of a pivot is

Zn =

√
n(Y n − θ)

σ

where

Y n =
1

n

n∑
i=1

Yi

and the Yi’s are iid each normal with mean μ and known variance σ2. The
distribution of Zn is normal with mean 0 and variance 1 and does not depend on μ.

The standard inversion shows that

yn ± z1−α/2se

is a 100(1− α)% confidence interval for μ.
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The pivotal method for the bootstrap defines

Rn(θ̂, θ) = θ̂n − θ

and assumes that it is a pivot with distribution function H . If H is known, standard
inversion gives the confidence interval. Since H is unknown, it is estimated from
the quantiles of the bootstrap.

In the R function boot.ci, this interval is called “basic.”

9.6.3 Percentile Interval

Given the bootstrap replicates

θ̂∗n1, θ̂
∗
n2, . . . , θ̂

∗
nB

The percentile interval is simply defined as

[
θ∗α/2 , θ∗1−α/2

]

where θ∗α/2 is the α/2 quantile of the set of bootstrap replicates and θ∗1−α/2 is the
1− α/2 quantile of the set of bootstrap replicates.

In the R function boot.ci this interval is called “perc.”
The R library boot has a wide variety of bootstrap functions.

9.6.4 Parametric Version

There is also a parametric version of the bootstrap in which we

1. Assume the model density is known.
2. Estimate parameters by maximum likelihood or some other methods.
3. Use the estimates to draw random bootstrap samples from the known distribution,

substituting the estimated parameter values for the parameters.
4. Use the resulting bootstrap distribution to assess standard errors, confidence

limits, etc.
5. This version is particularly useful to check on approximations such as the delta

method.
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9.6.5 Dangers of the Bootstrap

All you ever learn using the bootstrap, without further modeling assumptions, are properties
of ̂Fn. Unless you have a way of saying how much and/or in what ways knowledge of ̂Fn

can be transformed into knowledge of F , the bootstrap can only tell you about ̂Fn, not
about F [46].

9.6.6 The Number of Possible Bootstrap Samples

If we have a sample size of n there are only
(
2n− 1

n− 1

)

possible bootstrap samples. To see this imagine n boxes defined by n− 1 lines

| | · · · | |
The first bootstrap observation can be put one of the n boxes, the second into n+ 1
possible positions, the third n+ 2, . . ., the nth into 2n− 1 positions.

1. The total is

n(n− 1) · · · (2n− 1) = (2n− 1)(n−1) =
(2n− 1)!

(n− 1)!

2. The balls can be ordered in n! ways so that the total number of possible samples is

(2n− 1)!

(n− 1)!n!
=

(
2n− 1

n− 1

)

3. Thus it would be possible to enumerate all the possible samples.

Recalling that (Stirling’s Approximation)

r! ≈ (2πr)−1/2rre−r

we have that (
2n− 1

n− 1

)
≈ [2π(2n− 1)]−1/2(2n− 1)2n−1e−(2n−1)

[2πn]1/2nnen[2π(n− 1)]1/2(n− 1)n−1

=

[
2n− 1

2πn(n− 1)

]1/2 {
n
[
2− 1

n

]}2n−1

nn
{
n
[
1− 1

n

]}n−1
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=

√
2− 1

n

2πn(1− 1
n )

[
2− 1

n

]2n−1

[
1− 1

n

]n−1

≈ (πn)−1/222n−1

Thus we have

n 5 10 15 20 30

Samples 102 105 108 1011 1017

One can also show that the original sample is the most probable of these to occur.
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