
Chapter 8
Linear Models

8.1 Introduction

There is no doubt that the linear model is one of the most important and useful
models in statistics. In this chapter we discuss the estimation problem in linear
models and discuss interpretations of standard results.

While some of the detailed formulas appear complex they are based on two
simple ideas:

1. The Pythagorean theorem
2. Solving two or three linear equations

8.2 Basic Results

Suppose we have a response y, an n× 1 vector, and a set of covariates

1,x1, . . . ,xp

which we collect in an n× (p+ 1) matrix Z.
If we represent yi as a linear combination of the covariates we have

yi =
∑

j=0

zijαj or y = Zα

where zi0 ≡ 1 for all i.

Assumption 1. y is a realized value of a random vector Y where

E(Y) = Zα and Var(Y) = Iσ2
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86 8 Linear Models

Assumption 2. y is a realized value of a random vector Y where

Y
d∼ MVN(Zα , Iσ2)

Definition 8.2.1. The least squares estimate of α is the minimizer over α of

SSE(α;y) =

n∑

i=1

⎛

⎝yi −
p∑

j=0

zijαj

⎞

⎠
2

= (y − Zα)�(y − Zα)

Theorem 8.2.1. The least squares estimate of α is given by

α̂ = (Z�Z)−1Z�y

Moreover the minimum value can be expressed as

(y−Zα̂)�(y−Zα̂) = y�y−α̂�Z�Zα̂ = y�y−y�Z(Z�Z)−1Z�y = y�DZy

where

DZ =: I− Z(Z�Z)−1Z�

Proof .

SSE(α;y) = (y − Zα)�(y − Zα)

= [(y − Zα̂) + (Zα̂− Zα)]�[(y − Zα̂) + (Zα̂− Zα)]

= (y − Zα̂)�(y − Zα̂) + (Zα̂− Zα)�(Zα̂− Zα)

+2(Zα̂− Zα)�(y − Zα̂)

= (y − Zα̂)�(y − Zα̂) + (α̂−α)�Z�Z(α̂−α)

The conclusion follows if the “cross-product” term vanishes.
To show that the “cross-product” term vanishes we note that

2(Zα̂− Zα)�(y − Zα̂) = 2(α̂−α)�Z�(y − Z(Z�Z)−1Z�y) = 0

For the minimum value note that

(y − Zα̂)�(y − Zα̂) = y�y − 2y�Zα̂+ α̂�Z�Zα̂

= y�y − α̂�Z�Zα̂

= y�y − y�Z(Z�Z)−1Z�y

= y�[I− Z(Z�Z)−1Z�]y

= y�DZy
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Under Assumption 2 the density of y is given by

f(y;α, σ2) = (2πσ2)−n/2 exp

{
− 1

2σ2
(y − Zα)�(y − Zα)

}

= (2πσ2)−n/2 exp

⎧
⎪⎨

⎪⎩
− 1

2σ2

n∑

i=1

⎛

⎝yi −
p∑

j=0

zijαj

⎞

⎠
2
⎫
⎪⎬

⎪⎭

It is obvious that the least squares and maximum likelihood estimates are
equal:

1. α̂ is unbiased since

E(α̂) = E[(Z�Z)−1Z�Y

= (Z�Z)−1Z�
E[Y]

= (Z�Z)−1Z�Zα

= α

2. The variance of α̂ is (Z�Z)−1σ2 since

Var(α̂) = Var[(Z�Z)−1Z�Y]

= (Z�Z)−1Z�Var(Y)Z(Z�Z)−1

= (Z�Z)−1σ2

3. If Assumption 2 is satisfied then since α̂ is a linear combination of normally
distributed random variables it follows that

α̂
d∼ MVN[α , (Z�Z)−1σ2]

8.2.1 The Fitted Values and the Residuals

The fitted values are defined as

ŷ = Zα̂ = Z(Z�Z)−1Z�y = HZy

where

HZ =: Z(Z�Z)−1Z� is called the hat matrix
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and the residuals are defined as

e = y − ŷ = [I−HZ ]y = DZy

where

DZ =: I− Z(Z�Z)−1Z�

Note that HZ and DZ are symmetric and idempotent and that

HZDZ = O

Note that

y = e+ ŷ and e�ŷ = 0

so that

y�y = ŷ�ŷ + e�e

which is just the Pythagorean theorem.
Note that

SSE = Y�DZy

so that the residual or error sum of squares is a quadratic form.
If Y�QY is a quadratic form then it is known that

E(Y�QY) = tr[QVar(Y)] + E(Y)�QE(Y)

where tr(A) is the trace of A, i.e.,
∑n

i=1 aii.
Since the error sum of squares is a quadratic form we have that

E[SSE] = tr[DZIσ
2] + (Zα)�DZZα

Clearly

tr[DZIσ
2] = σ2tr[I− Z(Z�Z)−1Z�] = σ2[tr(I)− tr{Z(Z�Z)−1Z�}]

= (n− p− 1)σ2

and since

DZZ = O
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we have that

SSE
n− p− 1

is an unbiased estimator of σ2

8.3 The Basic “Regression” Model

If we write Z = [1,X], α0 = β0, and αj = βj then the equations Z�Zα̂ = Z�y
become

[
n 1�X

X�1 X�X

] [
β̂0

β̂

]
=

[
1�y
X�y

]

It follows that

β̂0 =
1

n
1�(y −Xβ̂)

Substituting into the second equation we get

X�1
{
1

n
1�(y −Xβ̂)

}
+X�Xβ̂ = X�y

or

X�D1Xβ̂ = X�D1y

where D1 = I− 1
n11

�

Thus

β̂ = (X�D1X)−1X�D1y

Note that for any vectors z and w we have

z�D1w = z�
[
I− 1

n
11�

]
w

= z�w − 1

n
z�1w�1

=

n∑

i=1

ziwi − nzw

=

n∑

i=1

(zi − z)(wi − w)
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i.e., z�D1w is n − 1 times the sample covariance of z and w. It follows that the
estimates of the regression coefficients are determined by the sample covariances
(correlations) of the covariates and the sample covariances (correlations) of the
covariates with the response.

If X = x, i.e., p = 1, we have a simple linear regression model and

β̂ =
x�D1y

x�x
=

∑n
i=1(xi − x)(yi − y)∑n

i=1(xi − x)2

Note that

y − 1β̂0 −Xβ̂ = y − 1y −D1Xβ̂ = D1y −D1Xβ̂

so that

(y − 1β̂0 −Xβ̂)�(y − 1β̂0 −Xβ̂) = y�D1y − β̂
�
X�D1Xβ̂ = y�D1Xy

where

D1X = D1 −D1X(X�D1X)−1X�D1

The previous equation may be written as

SSE = y�D1y − β̂
�
X�D1Xβ̂

so that

n∑

i=1

(yi − y)2 = SSE + β̂
�
X�D1Xβ̂

It follows that

R2 =:
β̂
�
X�D1Xβ̂∑n

i=1(yi − y)2

is the proportion of variability in y “explained by” regression on X. It is called R2.
Recall that y has mean y and that ŷ has mean y since

ŷ = 1β̂0 +Xβ̂ = 1y +D1Xβ̂
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It follows that

y�D1y =
n∑

i=1

(yi − y)2

y�D1ŷ = β̂
�
X�D1Xβ̂

ŷ�D1ŷ = β̂
�
X�D1Xβ̂

Thus the square of the sample correlation between y and ŷ is

[y�D1ŷ]
2

y�D1yŷ�D1ŷ
=

[β̂
�
X�D1Xβ̂]2

[β̂
�
X�D1Xβ̂]

∑n
i=1(yi − y)2

= R2

which is the reason for the expression R2.

8.3.1 Adding Covariates

Suppose now that we add some covariates c1, c2, . . . , cq to the model. Then we have

Z = [1, c1, c2, . . . , cq,x1,x2, . . . ,xp] = [1,C,X]

and

α� = [β0,γ,β]

The equations Z�Zα̂ = Z�y become

⎡

⎣
1�1 1�C 1�X
C�1 C�C C�X
X�1 X�C X�X

⎤

⎦

⎡

⎢⎣
β̂0

γ̂

β̂

⎤

⎥⎦ =

⎡

⎣
1�y
C�y
X�y

⎤

⎦

Solving for β̂0 gives

β̂0 =
1

n
1�[y −Cγ̂ −Xβ̂]

Substituting into the second equation gives

C�1
{
1

n
1�[y −Cγ̂ −Xβ̂]

}
+C�Cγ̂ +C�Xβ̂ = C�y



92 8 Linear Models

or

C�D1Cγ̂ +C�D1Xβ̂ = C�D1y

Substituting into the third equation gives

X�1
{
1

n
1�[y −Cγ̂ −Xβ̂]

}
+X�Cγ̂ +X�Xβ̂ = X�y

or

X�D1Cγ̂ +X�D1Xβ̂ = X�D1y

Thus the equations to be solved for γ̂ and β̂ are

C�D1Cγ̂ +C�D1Xβ̂ = C�D1y

X�D1Cγ̂ +X�D1Xβ̂ = X�D1y

Solving for γ̂ yields

γ̂ = (C�D1C)−1C�D1[y −Xβ̂]

Substituting into the second equation yields

X�D1C
{
(C�D1C)−1C�D1[y −Xβ̂]

}
+X�D1Xβ̂ = X�D1y

or

X�D1CXβ̂ = X�D1Cy

where

D1C = D1 −D1C(C�D1C)−1CD1

It follows that

β̂ = (X�D1CX)−1X�D1Cy

8.3.2 Interpretation of Regression Coefficients

Suppose now that X = x, i.e., we are interested in one covariate in the presence of
some other covariates C. The estimate is given above and is

β̂ = (x�D1Cx)
−1x�D1Cy =

x�D1Cy

x�D1Cx
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The residuals for the model which has just C are given by eC = D1Cy and if
we fit x onto [1,C] the residuals are xC = D1Cx.

The simple linear regression coefficient of a regression of eC onto XC is then

e�CxC

x�
CxC

=
y�D1CD1Cx

x�D1CD1Cx
=

y�D1Cx

x�D1Cx
= β̂

Thus the regression coefficient in a model can be interpreted as follows:

1. Fit (regress) the response y onto [1,C] and obtain the residuals eC .
2. Fit (regress) the covariate x onto [1,C] and obtain the residuals xC .
3. The regression coefficient of X in the full model based on [1,C,x] is the simple

linear regression coefficient in a model which fits eC onto xC .

Thus we “adjust”, remove the effect of C on both y and x. The association which
remains is what is measured by the regression coefficient of x in the full model.

8.3.3 Added Sum of Squares

Now note that

y − 1β̂0 −Cγ̂ −Xβ̂ = y − 1
{
1

n
1�[y −Cγ̂ −Xβ̂]

}
−Cγ̂ −Xβ̂

= D1y −D1Cγ̂ −D1Xβ̂

= D1y −D1C
{
(C�D1C)−1C�D1[y −Xβ̂]

}
−D1Xβ̂

= D1y −D1C(C�D1C)−1CD1y −D1CXβ̂

= [D1C −D1CX(X�D1CX)−1X�D1C ]y

It follows that

(y − 1β̂0 −Cγ̂ −Xβ̂)�(y − 1β̂0 −Cγ̂ −Xβ̂) = y�D1Cy − β̂
�
X�D1CXβ̂

Note that y�D1Cy is the error sum of squares for the model which has only the
covariates C. Thus

β̂
�
X�D1CXβ̂

is the additional sum of squares explained by the covariates X in the presence of C.
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8.3.4 Identity of Regression Coefficients

Also note that the estimates of β are the same without C in the model if and only if
C�D1X = O, i.e., the covariates in C are uncorrelated with the covariates in X.

8.3.5 Likelihood and Bayesian Results

The likelihood for α is given by

L (α;y) =
f(y;α, σ2)

f(y; α̂, σ2)
=

(2πσ2)−n/2 exp
{− 1

2σ2 (y − Zα)�(y − Zα)
}

(2πσ2)−n/2 exp
{− 1

2σ2 (y − Zα̂)�(y − Zα̂)
}

This reduces to

L (α;y) = exp

{
− 1

2σ2
(α− α̂)�Z�Z(α− α̂)

}

It can be shown that the likelihood for, say, αq is

exp

{
− (αq − α̂q)

2z�q DZ1
zq

2σ2

}

It follows that the likelihood function for any regression coefficient is of the form

exp

{
− (β − β̂)2

2var(β̂)

}

which is simply based on the sampling distribution of β̂.
This result holds exactly for the linear regression model but only approximately

for other generalized linear models.
For Bayesian inference on regression parameters the likelihood result just

obtained along with the assumption that the priors are relatively flat yields the result
that the posterior distribution of β is normal with center at β̂ and variance equal to
the sampling variance of β̂.

The last two results explain why there is little numerical difference in the results
obtained for frequentist, likelihood, and Bayesian approaches to linear models
despite the enormous conceptual and interpretation differences.
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8.4 Interpretation of the Coefficients

Consider a regression model with just two covariates, x1 and x2, and an inter-
cept, i.e.,

E(Y ) = β0 + β1x1 + β2x2

If x2 is increased by 1 unit the expected response is

E(Y ) = β0 + β1x1 + β2(x2 + 1)

and hence the difference between the expected responses is β2. A similar result
holds for β1.

Thus the interpretation of the coefficient of covariate x in a regression model is
that it represents the change in the expected response if that covariate is increased
by one unit and all other covariates are unchanged.

8.5 Factors as Covariates

A special role in regression models is played by covariates which define a
categorization of the response variable, i.e., gender, ethnicity, income level, disease
status, exposure status, etc.

In such cases it makes no sense to fit the covariate as is. Instead we assume that
the covariate has been coded so that its values are 1, 2, . . . , q.

The covariate in this case is called a factor and the values 1, 2, . . . , q are called
its levels. q new covariates f1x, f2x, . . . , fqx are now constructed of the form

f1x =

{
1 xi = 1

0 otherwise
, f2x =

{
1 xi = 2

0 otherwise
, · · · fqx =

{
1 xi = q

0 otherwise

Obviously if an intercept is included in the model we need only include q − 1 of
these covariates. It is customary and useful in subsequent interpretations to let level
1 of the factor be the control against which all other levels will be compared. Under
the model with x coded as a factor the expected response for observations at level 1
of the factor is

E(Y ) = β0

and the expected response for observations at level j of the factor is

E(Y ) = β0 + γj
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Hence the coefficient of a covariate corresponding to a level of a factor represents
the difference between the expected response at level j and the expected response
at level 1; all other covariates held constant.

If we have two covariates x1 and x2, both of which are factors with q1 levels for
x1 and q2 levels for x2, the situation is slightly more complicated. We first set up q1
new covariates for x1 and q2 covariates for x2. We use in the model only q1 − 1 of
the covariates for x1 and q2 − 1 covariates for x2.

In addition we recognize that the difference between the expected response for
the jth level of factor x1 and the first level of factor x1 may depend on the level
of x2. For example, the effect of a hormone supplement (high or low) may differ
between males and females. This is called interaction and is captured in the model
by defining (q1 − 1)(q2 − 1) new covariates as the product of the covariates for
each factor. The regression coefficients of these covariates are called interaction
coefficients.

The resulting model can be summarized in the following table of expected
responses.(In the table α’s indicate factor x1, the γ’s indicate factor x2, and the
αγ’s indicate the interaction coefficients.)

Level of Level of factor x2

factor x1 1 2 · · · q2
1 β0 β0 + γ2 · · · β0 + γq2
2 β0 + α2 β0 + α2 + γ2 + (αγ)22 · · · β0 + α2 + γq2 + (αγ)2q2
...

...
...

. . .
...

q1 β0 + αq1 β0 + αq1 + γ2 + (αγ)22 · · · β0 + αq1 + γq2 + (αγ)q1q2

It is obvious that the interaction coefficients are the difference between two
differences, i.e.,

(αγ)jk = [E(Y )jk − E(Y1k)]− [E(Yj1)− E(Y11)]

and measures the extent to which the effect of x1 differs between level k of factor
x2 and level 1 of factor x2.

Example. For two factors x1 and x2, each at two levels with x1 representing disease
status and x2 representing exposure status, we the table of expected responses is

Disease Exposure status
status Not exposed Exposed
No disease β0 β0 + γ2
Disease β0 + α2 β0 + α2 + γ2 + (αγ)22

In this table the effect of exposure in the no disease group is

E(Y |E,ND)− E(Y |NE,ND) = [β0 + γ2]− [β0] = γ2
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The effect of exposure in the diseased group is

E(Y |E,D)−E(Y |NE,D) = [β0+α2+γ2+(αγ)22]− [β0+α2] = γ2+(αγ)22

It follows that the difference is

exposure effect in D − exposure effect in ND = (αγ)22

The interaction coefficient (αγ)22 thus measures whether exposure has the same
effect in the diseased group as it does in the not diseased group.

8.6 Exercises

1. Let Y1, Y2, . . . , Yn be normal with

E(Yi) = μ ; i = 1, 2, . . . , n

and

C(Yi, Yj) =

{
σ2 j = i

ρσ2 j �= i

where ρ > −1/(n− 1).

(a) Find the expected value and variance of Y .
(b) What implications does this have for confidence intervals, on μ, etc.?
(c) Why does ρ, the correlation between Yi and Yj , have to be larger than

− 1/(n− 1)?

2. In a regression model it is commonly said that the interpretation of β2 is the
change in the expected response if the covariate x2 changes by 1 unit with all
other covariates held fixed.

(a) Suppose that the regression model is

E(Yi) = β0 + β1xi + β2x
2
i

i.e., x1 = x and x2 = x2. Obviously we can’t hold x fixed and change x2 by
1 unit. How do we interpret β2 in this case?

(b) Suppose the regression model is

E(Yi) = β0 + β1x1i + β2x2i + β3x1ix2i

Obviously we can’t hold x1 and x2 fixed and change x1x2 by 1 unit. How do
we interpret β3 in this case?
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3. Let Y1, Y2, . . . , Yn be independent and normally distributed with

E(Yi) = μi and V(Yi) = σ2

Let x11, x22, . . . , xn1 and x12, x22, . . . , xn2 be the values of two covariates
x1 and x2.

(a) Let the large model be defined by

μi = β0 + β1xi1 + β2xi2

Show that the maximum likelihood estimates of β0, β1, β2 and σ2 in the large
model are given by

β̂lm
0 = y − β̂lm

1 x1 − β̂lm
2 x2

σ̂2
lm =

n∑

i=1

(yi − β̂lm
0 − β̂lm

1 xi1 − β̂lm
2 xi2)

2/n

where β̂lm
1 and β̂lm

2 satisfy

c11β̂
lm
1 + c12β̂

lm
2 = c1y

c12β̂
lm
1 + c22β̂

lm
2 = c2y

and

c11 =
∑n

i=1(xi1 − x1)
2

c22 =
∑n

i=1(xi2 − x2)
2

c12 =
∑n

i=1(xi1 − x1)(xi2 − x2)

c1y =
∑n

i=1(xi1 − x1)(yi − y)

c2y =
∑n

i=1(xi2 − x1)(yi − y)

Hence show that the maximized likelihood for the large model is given by

(2πσ̂2
lm)−n/2 exp

{
−n

2

}

(b) Now consider the small model defined by

μi = β0 + β1xi1

Show that the maximum likelihood estimates of β0, β1, and σ2 under the small
model are given by

β̂sm
0 = y − β̂sm

1 x1

σ̂2
sm =

n∑

i=1

(yi − β̂sm
0 − β̂sm

1 xi1)
2/n
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where β̂sm
1 satisfies

c11β̂
sm
1 = c1y

Hence show that the maximized likelihood for the small model is given by

(2πσ̂2
sm)−n/2 exp

{
−n

2

}

(c) From parts (a) and (b) show that the likelihood ratio for the small model vs
the large model is given by

(
σ̂2
lm

σ̂2
sm

)n/2

(d) From (a) show that

β̂lm
1 = β̂sm

1 − c12
c11

β̂lm
2

(e) Also from (a) show that

β̂lm
2 =

c2y − c12
c11

c1y

c22 − c212
c11

(f) Using (d) and (e) show that

rlmi =: yi − β̂lm
0 − β̂lm

1 xi1 − β̂lm
2 xi2

reduce to

rlmi = yi − y − β̂lm
1 (xi1 − x1)− β̂lm

2 (xi2 − x2)

= yi − y − β̂sm
1 (xi1 − x1) + β̂lm

2

[
xi2 − x2 − c12

c11
(xi1 − x1)

]

Thus show that

SSElm =:

n∑

i=1

[rlmi ]2 =

n∑

i=1

(yi − y)2 − [β̂sm
1 ]2c11 − [β̂lm

2 ]2
[
c22 − c212

c11

]

(g) Show that

yi − β̂sm
0 − β̂sm

1 xi1 = yi − y − β̂sm
1 (xi1 − x1)
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and hence that

SSEsm =:

n∑

i=1

(yi − β̂sm
0 − β̂sm

1 xi1)
2 =

n∑

i=1

(yi − y)2 − [β̂sm
1 ]2c11

(h) From (f) and (g) it follows that

σ̂2
lm

σ̂2
sm

=
SSElm

SSEsm
=

SSElm

SSElm + [β̂lm
2 ]2

[
c22 − c212

c11

]

Explain why rejecting when the likelihood ratio is small is equivalent to
rejecting when β̂lm

2 is large relative to σ̂2
lm.

(i) Find the expected value, variance, and distribution of β̂lm
2

(j) It can be shown that

SSElm

(n− 3)σ2

d∼ χ2(n− 3)

and is independent of β̂lm. Explain why the likelihood ratio test of β2 = 0
is equivalent to rejecting using a Student’s t statistic with n − 3 degrees of
freedom.
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