
Chapter 7
Maximum Likelihood: Basic Results

7.1 Basic Properties

As we have seen once we have an estimator and its sampling distribution we can
easily obtain confidence intervals and tests regarding the parameter. We now develop
the theory of estimation focusing on the method of maximum likelihood, which for
parametric models is the most widely used method. This will also supply us with a
collection of statistical methods for important problems.

For comparing two values of a parameter, θ2 vs θ2, a natural role is played by the
likelihood ratio

LR(θ2, θ1;x) =
f(x; θ2)

f(x; θ1)

According to the Law of Likelihood the likelihood ratio represents the statistical
evidence in the data for comparing θ2 to θ1.

The score function is defined by

s(θ;x) =
∂ ln[f(x; θ)]

∂θ

The score function plays a major role in the theory of maximum likelihood
estimation.

Example. Consider n iid normal random variables with parameters θ, σ2 where σ2

is known. Then

f(x; θ) = (2πσ2)−n/2 exp

{
− 1

2σ2

n∑
i=1

(xi − θ)2

}
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and

f
′
(x; θ) = f(x; θ)

1

σ2

n∑
i=1

(xi − θ)

It follows that

f
′
(x; θ)

f(x; θ)
=

n(x− θ)

σ2

As a random variable we have that the score function has expected value 0 and
variance n/σ2 when evaluated at the true θ.

Because of the Law of Likelihood a natural estimate of θ is that value of θ which
maximizes the likelihood or the log of the likelihood.

Assuming that ln[f(x; θ)] is differentiable with respect to θ the maximum
likelihood estimate is then the solution to

∂ ln[f(x; θ)]

∂θ
= 0

which is called the likelihood or score equation. If there are r parameters we
differentiate with respect to each and equate to 0, obtaining r equations. Note that
one needs to check the second derivative to ensure a maximum.

Example 1 (Binomial). . If X is binomial with parameter θ then

f(x; θ) =

(
n

x

)
θx(1− θ)n−x x = 0, 1, . . . , n

First note that if x = 0 then f(0; θ) = (1 − θ)n and in this case θ̂ = 0. If x = n

then f(n; θ) = θn and in this case θ̂ = 1.

For x = 1, 2, . . . , n− 1 we have that

ln[f(x; θ)] = ln[

(
n

x

)
] = x ln(θ) + (n− x) ln(1− θ)

and

∂ ln[f(x; θ)]

∂θ
=

x

θ
− n− x

1− θ
=

x− nθ

θ(1− θ)

It follows that

θ̂ =
x

n
for x = 0, 1, . . . , n
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Note that it is unbiased with variance θ(1− θ)/n so that it is also consistent.

Example 2.. Let Y1, Y2, . . . , Yn be iid each normal with mean μ and variance σ2.
Then we have

f(y; θ) =

n∏
i=1

(2πσ2)−1/2 exp

{
− (yi − μi)

2

2σ2

}

= (2πσ2)−n/2 exp

{
−
∑n

i=1(yi − μ)2

2σ2

}

It follows that the log likelihood is given by

ln[f(y; θ) = −n

2
ln(2π)− n

2
ln(σ2)− 1

2σ2

n∑
i=1

(yi − μ)2

Thus we have that

∂ ln[f(x; θ)]

∂μ
=

1

σ2
n(y − μ)

and

∂ ln[f(x; θ)]

∂σ2
= − n

2σ2
+

∑n
i=1(yi − μ)2

2σ4

and it follows that

μ̂ = y and σ̂2 =
1

n

n∑
i=1

(yi − y)2

7.2 Consistency of Maximum Likelihood

1. Consider the case where there are only two possible values of the parameter θ2
and θ1.

2. Also suppose that we have n observations which are realized values of
independent and identically distributed random variables having density f(x; θ2)
or f(x; θ1).

The maximum likelihood estimate is defined by

θ̂ =

{
θ2 if f(x1, x2, . . . , xn; θ2) ≥ f(x1, x2, . . . , xn; θ1)

θ1 otherwise
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1. Assume with no loss of generality that θ2 is the true value of the parameter.
2. The maximum likelihood estimator is consistent if

Pθ2(θ̂ = θ2) −→ 1

We note that θ̂ = θ2 if and only if

f(x1, x2, . . . , xn; θ2)

f(x1, x2, . . . , xn; θ1)
=

n∏
i=1

f(xi; θ2)

f(xi; θ1)
> 1

Equivalently

n∑
i=1

ln

[
f(xi; θ2)

f(xi; θ1)

]
> 0

Now note that the random variables

Yi = ln

[
f(Xi; θ2)

f(Xi; θ1)

]
i = 1, 2, . . . , n

are independent and identically distributed.
Moreover

Eθ2(Yi) =

∫
ln

[
f(x; θ2)

f(x; θ1)

]
f(x; θ2)λ(dx)

= −
∫

ln

[
f(x; θ1)

f(x; θ2)

]
f(x; θ2)λ(dx)

> −
∫ [

f(x; θ1)

f(x; θ2)
− 1

]
f(x; θ2)λ(dx)

= 0

By the law of large numbers we have that

1

n

n∑
i=1

Yi
p−→ Eθ2(Y ) > 0

and hence

Pθ2(θ̂ = θ2) −→ 1

i.e., θ̂ is consistent:

1. The same proof holds provided the parameter space Θ is finite.
2. The more general case where Θ is an interval requires more delicate arguments

and is of technical, not statistical interest.
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7.3 General Results on the Score Function

We know that ∫
f(x; θ)dλ(x) = 1

for any density function f(x; θ). Recall that for a function g we write

∫
g(x; θ)dλ(x) =

{∫
g(x; θ)dx g continuous∑

g(x; θ) g discrete

Assuming that we can differentiate under the integral or summation sign, we
have that ∫

∂f(x; θ)

∂θ
dλ(x) = 0

Now note that

∂f(x; θ)

∂θ
=

∂ ln[f(x; θ)]

∂θ
f(x; θ)

It follows that

Eθ

{
∂ ln[f(x; θ)]

∂θ

}
= 0

Thus the expected value of the score function is 0.
If we differentiate again we have that

∫
∂2f(x; θ)

∂θ2
λ(x) = 0

Noting that

∂2f(x; θ)

∂θ2
=

∂

∂

[
∂f(x; θ)

∂θ

]

=
∂

∂

[
∂ ln[f(x; θ)]

∂θ
f(x; θ)

]

we see that

∂2f(x; θ)

∂θ2
=

[
∂2 ln[f(x; θ)]

∂θ2

]
f(x; θ)
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+

[
∂ ln[f(x; θ)]

∂θ

]
∂f(x; θ)

∂θ

The right-hand side may be written as

[
∂2 ln[f(x; θ)]

∂θ2

]
f(x; θ) +

[
∂ ln[f(x; θ)]

∂θ

]2
f(x; θ)

It follows that

Eθ

{[
∂ ln[f(x; θ)]

∂θ

]2}
= −Eθ

{[
∂2 ln[f(x; θ)]

∂θ2

]}

and hence

Vθ

{
∂ ln[f(x; θ)]

∂θ

}
= −Eθ

{[
∂2 ln[f(x; θ)]

∂θ2

]}

The quantity

−Eθ

{[
∂2 ln[f(x; θ)]

∂θ2

]}

is called the (expected) Fisher information and

−
[
∂2 ln[f(x; θ)]

∂θ2

]

is called the (observed) Fisher information.

7.4 General Maximum Likelihood

1. Let X be a random variable with density f(x; θ).
2. Assume that the parameter space Θ is an interval and that f(x; θ) is sufficiently

smooth so that derivatives with respect to θ are defined and that differentiation
under a summation or integral is allowed.

3. Finally assume that the range of X does not depend on θ.

Under weak regularity conditions it follows from the previous section that

Eθ

{[
∂ ln[f(X; θ)]

∂θ

]}
= 0

Eθ

{[
∂ ln[f(X; θ)]

∂θ

]2}
= −Eθ

{[
∂2 ln[f(X; θ)]

∂θ2

]}
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Thus the random variable

U(θ) =

[
∂ ln[f(X; θ)]

∂θ

]

i.e., the score function has expected value and variance given by

Eθ[U(θ)] = 0 ,Vθ[U(θ)] = i(θ)

where

i(θ) = −Eθ

{[
∂2 ln[f(X; θ)]

∂θ2

]}

is the expected Fisher information for a sample size of one.

Example. If X is normal with mean θ and variance σ2 with σ2 known then

ln[f(x; θ)] = −1

2
ln[2πσ2]− 1

2σ2
(x− θ)2

and hence

∂ ln[f(x; θ)]

∂θ
=

x− θ

σ2

and

∂2 ln[f(x; θ)]

∂θ2
= − 1

σ2

so Fisher’s information is

i(θ) =
1

σ2

Example. If X is Bernoulli θ then

f(x; θ) = θx(1− θ)1−x

and hence

ln[f(x; θ)] = x ln(θ) + (1− x) ln(1− θ)

It follows that
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∂ ln[f(x; θ)]

∂θ
=

x

θ
− 1− x

1− θ

and

∂2 ln[f(x; θ)]

∂θ2
= − x

θ2
− 1− x

(1− θ)2

so Fisher’s information is

i(θ) =
1

θ
+

1

1− θ
=

1

θ(1− θ)

If we have a random sample X1, X2, . . . , Xn from f(x; θ) and if

ui(θ) =
∂ ln[f(xi; θ)]

∂θ

then

U(θ) =
1

n

n∑
i=1

Ui(θ)

is the sample mean of n iid random variables with expected value 0 and vari-
ance i(θ). It follows that

√
n U

d−→ N[0, i(θ)]

by the central limit theorem.
Define the maximum likelihood estimate of θ as that value of θ which maximizes

f(x; θ) or equivalently ln[f(x; θ)].
Thus we solve

∂ ln[f(x; θ)]

∂θ
= 0

or when f(x; θ) =
∏n

i=1 f(xi; θ) we solve

u(θ) =

n∑
i=1

ui(θ) = 0

Since we can write, using Taylor’s theorem,

u(θ̂) = u(θ) +
du(θ)

dθ
(θ̂ − θ) + v(θ∗)

(θ̂ − θ)2

2

where
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v(θ∗) =
d2u(θ)

dθ2

∣∣∣∣∣
θ=θ∗

and θ∗ is between θ and θ̂.
Since u(θ̂) = 0 we have

(θ̂ − θ)

[
du(θ)

dθ
+ v(θ∗)

(θ̂ − θ)

2

]
= −u(θ)

It follows that

√
n(θ̂ − θ) =

1√
n
u(θ)[

− 1
n

du(θ)
dθ − 1

nv(θ
∗) (

̂θ−θ)
2

]
Application of the results of the preceding section shows that

√
n(θ̂ − θ)

d−→ N(0, [i(θ)]−1)

where i(θ) is Fisher’s information for a sample of size 1.

7.5 Cramer-Rao Inequality

If t(x) is any unbiased estimator of θ i.e.

E[t(X)] = θ

then ∫
t(x)f(x; θ)dλ(x) = θ

Assuming that we can differentiate under the integral or summation sign, we
have that ∫

t(x)
∂ ln[f(x; θ)]

∂θ
f(x; θ)dλ(x) = 1

and hence

C

{
t(X),

[
∂ ln[f(X; θ)]

∂θ

]}
= 1
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It follows that

V[t(X)]V

{
∂ ln[f(X; θ)]

∂θ

}
≥ 1

or

V[t(X)] ≥ 1

I(θ)

where I(θ) is the expected Fisher information. Thus the smallest variance for an
unbiased estimator is the inverse of Fisher’s information. This result is called the
Cramer–Rao inequality.

Since 1/I(θ) is the large sample variance of the maximum likelihood estimator
we have the result that the method of maximum likelihood produces estimators
which are asymptotically efficient, i.e., have smallest variance.

7.6 Summary Properties of Maximum Likelihood

1. Maximum likelihood have the equivariance property: i.e., the maximum likeli-
hood estimate of g(θ), ĝ(θ), is g(θ̂).

2. Under weak regularity conditions maximum likelihood estimators are
consistent, i.e.,

θ̂
p−→ θ

3. Maximum likelihood estimators are asymptotically normal:

√
n(θ̂ − θ0)

d−→ N(0, v(θ0))

where v(θ0) is the inverse of Fisher’s information.
4. Maximum likelihood estimators are asymptotically efficient, i.e., in large

samples

V(θ̂) ≤ V(θ̃)

where θ̃ is any other consistent estimator which is asymptotically normal.

The regularity conditions under which the results on maximum likelihood
estimators are true consist of conditions of the form:

(i) The range of the distributions cannot depend on the parameter.
(ii) The first three derivatives of the log likelihood function with respect to θ exist

are continuous and have finite expected values as functions of X .
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7.7 Multiparameter Case

All of the results for maximum likelihood generalize to the case where there are p
parameters θ1, θ2, . . . , θp. Let

θ =

⎡
⎢⎢⎢⎣
θ1
θ2
...
θp

⎤
⎥⎥⎥⎦

If the pdf is given by

f(x;θ)

the maximum likelihood or score equation is

∂ ln[f(x;θ)]

∂θ
=

⎡
⎢⎢⎢⎢⎣

∂ ln[f(x;θ)]
∂θ1

∂ ln[f(x;θ)]
∂θ2
...

∂ ln[f(x;θ)]
∂θp

⎤
⎥⎥⎥⎥⎦ = 0

Fisher’s information matrix

I(θ)
has i− j element given by

− ∂2 ln[f(x;θ)]

∂θi∂θj

Note that it is a p× p matrix.
Under regularity conditions, similar to those for the single parameter case we

have

1. The maximum likelihood estimate of g(θ), ĝ(θ), is g(θ̂).
2. Maximum likelihood estimators are consistent, i.e.,

θ̂
p−→ θ

3. Maximum likelihood estimators are asymptotically normal:

(θ̂ − θ0) ≈ N(0,Vn(θ0))

where Vn(θ0) is the inverse of Fisher’s information matrix. We can replace θ0

by θ̂ to use this result to determine confidence intervals.
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7.8 Maximum Likelihood in the Multivariate Normal

Let y1,y2, . . . ,yn be independent each having a multivariate normal distribution
with parameters μ and Σ, i.e.,

fYi
(yi;μ,Σ) = (2π)−

p
2 [det(Σ)]−

1
2 exp

{
−1

2
(yi − μ)�Σ−1(yi − μ)

}

The joint density is thus

fY(y;μ,Σ) = (2π)−
np
2 [det(Σ)]−

n
2 exp

{
−1

2

n∑
i=1

(yi − μ)�Σ−1(yi − μ)

}

We will show that the maximum likelihood estimates of μ and Σ are

μ̂ = y =
1

n

n∑
i=1

yi

and

Σ = S =
1

n

n∑
i=1

(yi − y)(yi − y)�

i.e., the j − k element of S is

1

n

n∑
i=1

(yij − yj)(yik − yk)

essentially the sample covariance between the jth and kth variable.
The first step is to note that

n∑
i=1

(yi − μ)�Σ−1(yi − μ)

can be written as

n∑
i=1

(yi − y)�Σ−1(yi − y) + n(y − μ)�Σ−1(y − μ)

or

ntr
[
Σ−1S

]
+ n(y − μ)�Σ−1(y − μ)
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where the trace of a square matrix, tr(A), is the sum of the diagonal elements, i.e.,

tr(A) =
p∑

i=1

aii

Thus the joint density fY(y;μ,Σ) = can be written as

(2π)−
np
2 [det(Σ)]−

n
2 exp

{
−n

2
tr
[
Σ−1S

]− n

2
(y − μ)�Σ−1(y − μ)

}

It follows immediately that the maximum likelihood estimate of μ is y and the joint
density at μ̂ and Σ̂ = S is thus

fY(y; μ̂, Σ̂) = (2π)−
np
2 [det(S)]−

n
2 exp

{
−np

2

}

The ratio

fY(y; μ̂, Σ̂)

fY(y;μ,Σ)

is thus equal to

[det(S)]−
n
2 exp

{−np
2

}
[det(Σ)]−

n
2 exp

{−n
2 tr

[
Σ−1S

]− n
2 (y − μ)�Σ−1(y − μ)

}
which is greater than or equal to

det(Σ−1S)−
n
2 exp

{
−np

2
+

n

2
tr
[
Σ−1S

]}

This ratio is greater than or equal to 1 if and only its logarithm is greater than or
equal to 0. The logarithm is

n

2

{− ln
[
det(Σ−1S)

]− p+ tr
[
Σ−1S

]}
If λ1, λ2, . . . , λp are the characteristic roots of Σ−1S then it can be shown that

1. λi ≥ 0 for each i
2. det(Σ−1S) =

∏p
i=1 λi

3. tr(Σ−1S) =
∑p

i=1 λi

It follows that the log of the ratio is greater than or equal to

n

2

{
−

p∑
i=1

ln(λi)− p

2
+

p∑
i=1

λi

}



80 7 Maximum Likelihood: Basic Results

or

n

2

{
p∑

i=1

[λi − 1− ln(λi)]

}

which is greater than or equal to zero since

a− 1− ln(a) ≥ 0 for any positive real number

Thus the maximum likelihood estimators for the multivariate normal are

μ̂ = y and Σ̂ = S

We usually use

n

n− 1
S

as the estimator so that the estimated components of Σ are exactly the sample
covariances and variances.

7.9 Multinomial

Suppose that X1, X2, . . . , Xk have a multinomial distribution, i.e.,

f(x1, x2, . . . , xk; θ1, θ2, . . . , θk) = n!

k∏
i=1

θxi
i

xi!

where

0 ≤ xi ≤ n each i = 1, 2, . . . , k and
k∑

i=1

xi = n

and

0 ≤ θi ≤ 1 each i = 1, 2, . . . , k and
k∑

i=1

θi = 1

Note that

θk = 1−
k−1∑
i=1

θi and xk = n−
k−1∑
i=1

xi
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The maximum likelihood estimates of the θi are found by taking the partial
derivatives of the log likelihood with respect to θi for i = 1, 2, . . . , k − 1 where
the log likelihood is

ln[f(x,θ] = ln(n!)−
k∑

i=1

ln(xi!) +
k∑

i=1

xi ln(θi)

Since θk = 1− θ1 − θ2 − · · · − θk−1 we have

∂ ln[f(x,θ)]

∂θi
=

xi

θi
− xk

θk

for i = 1, 2, . . . , k − 1. It follows that the maximum likelihood estimates satisfy

xiθ̂k = θ̂ixk for i = 1, 2, . . . , k − 1

Summing from i = 1 to k − 1 yields

(n− xk)θ̂k = (1− θ̂k)xk

and hence

nθ̂k = xk

so that

xixk

n
= θ̂ixk or θ̂i =

xi

n

The second derivatives of the log likelihood are given by

∂2 ln[f(x,θ)]

∂θ2i
= −xi

θ2i
− xk

θk

which has expected value

−nθi
θ2i

− nθk
θ2k

= − n

θi
− n

θk

and

∂2 ln[f(x,θ)]

∂θi∂θj
= −xk

θ2k
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which has expected value

−nθk
θ2k

= − n

θk

Thus Fisher’s information matrix, I(θ), is given by

I(θ) = n

⎡
⎢⎢⎢⎢⎣

1
θ1

+ 1
θk

1
θk

· · · 1
θk

1
θk

1
θ2

+ 1
θk

· · · 1
θk

...
...

. . .
...

1
θk

1
θk

· · · 1
θk−1

+ 1
θk

⎤
⎥⎥⎥⎥⎦

Fisher’s information can be written in matrix form as

n

[
D(θ)−1 +

1

θk
11�

]

where D(θ) is a k − 1× k − 1 matrix with diagonal elements θ1, θ2, . . . , θk−1 and
1 is a k − 1 column vector with each element equal to 1.

The general theory of maximum likelihood then implies that

√
n(θ̂ − θ)

d−→ N
(
0, [i(θ)]−1

)
where i(θ) is Fisher’s information matrix with n = 1.

It is easy to check that

[i(θ)]−1 = D(θ)− θθ�

or

[i(θ)]−1 =

⎡
⎢⎢⎢⎣
θ1(1− θ1) −θ1θ2 · · · −θ1θk−1

−θ2θ1 θ2(1− θ2) · · · −θ2θk−1

...
...

. . .
...

θk−1θ1 −θk−1θ2 · · · θk−1(1− θk−1)

⎤
⎥⎥⎥⎦

which we recognize as the variance covariance matrix of X1, X2, . . . , Xk−1

Standard maximum likelihood theory implies that

n(θ̂ − θ)�[i(θ] (θ̂ − θ)
d−→ χ2(k − 1)

Now note that

n(θ̂ − θ)�[i(θ](θ̂ − θ)
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is equal to

n(θ̂ − θ)�
[
D(θ)−1 +

1

pk
11�

]
(θ̂ − θ)

and hence to

n(θ̂ − θ)�D(θ)−1(θ̂ − θ) +
n

θk
(θ̂ − θ)�11�(θ̂ − θ)

This last expression simplifies to

n
k−1∑
i=1

(θ̂i − θi)
2

θi
+

n

θk

[
k−1∑
i=1

(θ̂i − θi)

]2

which in turn simplifies to

k−1∑
i=1

(xi − nθi)
2

nθi
+

n

θk
(θk − θ̂k)

2

and to

k−1∑
i=1

(xi − nθi)
2

nθi
+

(xk − nθk)
2

nθk

This finally reduces to

k∑
i=1

(xi − nθi)
2

nθi

Noting that E(Xi) = nθi = Ei this last formula may be written as

k∑
i=1

(Xi − Ei)
2

Ei

which is called Pearson’s chi-square statistic. For large n, it has a chi-square
distribution with k − 1 degrees of freedom.
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