
Chapter 2
The Statistical Approach

2.1 The Setup

Assume that we have observed data D = x which was the result of a random
experiment X (or can be approximated as such). The data are then modelled using

1. A sample space, X for the observed value of x
2. A probability density function for X at x, f(x; θ)
3. A parameter space for θ, Θ

The inference problem is to use x to infer properties of θ.

2.2 Approaches to Statistical Inference

The major approaches to statistical inference are:

1. Frequentist or classical
2. Bayesian
3. Likelihood

2.3 Types of Statistical Inference

There are four major statistical inferences:

1. Estimation: Select one value of θ, the estimate, to be reported. Some measure of
reliability is assumed to be reported as well.
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2. Testing: Compare two values (or sets of values) of θ and choose one of them
as better.

3. Interval Estimation: Select a region of θ values as being consistent, in some
sense, with the observed data.

4. Prediction: Use the observed data to predict a new result of the experiment.

Note that the first three inferences can be defined as functions from the sample
space to subsets of the parameter space. Thus estimation of θ is achieved by defining

̂θ : X �→ Θ

Then the observation of x results in ̂θ(x) as the estimated value of θ for the observed
data. Similarly hypothesis testing maps X into {Θ0,Θ1} and interval estimation
maps X into subsets (intervals) of Θ.

2.4 Statistics and Combinants

2.4.1 Statistics and Sampling Distributions

Since inferences are defined by functions on the sample space it is convenient to
have some nomenclature.

Definition 2.4.1. A statistic is a real or vector-valued function defined on the
sample space of a statistical model.

The sample mean, sample variance, sample median, and sample correlation are
all statistics.

Definition 2.4.2. The probability distribution of a statistic is called its sampling
distribution.

A major problem in standard or frequentist statistical theory is the determination
of sampling distributions:

1. Either exactly (using probability concepts)
2. Approximately (using large sample results)
3. By simulation (using R or similar statistical software)

2.4.2 Combinants

Definition 2.4.3. A combinant is a real or vector-valued function defined on the
sample space and the parameter space such that for each fixed θ it is a statistic.
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Thus a combinant is defined for pairs (x, θ) where x is in the sample space and
θ is in the parameter space. For each θ it is required to be a statistic.

The density function f(x; θ) is a combinant, as are the likelihood and functions
of the likelihood.

Definition 2.4.4. If f(x; θ) is the density of x the score function is the combinant
defined by

s(θ;x) =
∂f(x : θ)

∂θ

(This assumes differentiation with respect to θ is defined.)

Definition 2.4.5. The score equation is the equation (in θ) defined by

s(θ;x) =
∂f(x : θ)

∂θ
= 0

The solution to this equation gives the maximum likelihood estimate, MLE, of θ.

Combinants are used to determine estimates, interval estimates, and tests as well as
to investigate the frequency properties of likelihood-based quantities.

2.4.3 Frequentist Inference

In the frequentist paradigm inference is the process of connecting the observed
data and the inference (statements about the parameters) using the sampling
distribution of a statistic. Note that the sampling distribution is determined by the
density function f(x; θ).

2.4.4 Bayesian Inference

In the Bayesian paradigm inference is the process of connecting the observed
data and the inference (statements about the parameters) using the posterior
distribution of the parameter values. The posterior distribution is determined
by the model density and the prior distribution of θ using Bayes theorem (this
implicitly treats f(x; θ) as the conditional f(x|θ) of X given θ):

p(θ|x) = f(x; θ)prior(θ)
f(x)



14 2 The Statistical Approach

where f(x) is the marginal distribution of X at x.

f(x) =

∫

Θ

f(x; θ)prior(θ)dθ

2.4.5 Likelihood Inference

In the likelihood paradigm inference is the process of evaluating the statistical
evidence for parameter values provided by the likelihood function.

The statistical evidence for θ2 vis-a-vis θ1 is defined by

Ev(θ2 : θ1;x) =
f(x; θ2)

f(x; θ1)

Values for this ratio of 8, 16, and 32 are taken as moderate, strong, and very strong
evidence, respectively.

Note that if we define the likelihood of θ as

L (θ;x) =
f(x; θ)

f(x; ̂θ)

where ̂θ is the maximum likelihood estimate of θ, then the statistical evidence for
θ2 vs θ1 can be expressed as

Ev(θ2 : θ1;x) =
L (θ2;x)

L (θ1;x)

and the posterior of θ can then be expressed as

p(θ|x) = L (θ;x)prior(θ)
f(x)

i.e., the posterior is proportional to the product of the likelihood and the prior.

2.5 Exercises

As pointed out in the text if f(x; θ) is the density function of the observed data
(x1, x2, . . . , xn) and θ is the parameter, then

(a) The likelihood, L (θ;x), is

L (θ) =
f(x; θ)

f(x; ̂θ)

where ̂θ maximizes f(x; θ) and is called the maximum likelihood estimate of θ.
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(b) The score function is

∂ ln[f(x; θ)]

∂θ

(c) The observed Fisher information is

J(θ) = − ∂2 ln[f(x; θ)]

∂θ2

evaluated at θ = ̂θ.
(d) The expected Fisher information, I(θ), is the expected value of J(θ), i.e.,

I(θ) = −E

{

∂2 ln[f(x; θ)]

∂θ2

}

1. Find the likelihood, the maximum likelihood estimate, the score function, and
the observed and expected Fisher information when x1, x2, . . . , xn represent the
results of a random sample from

(i) A normal distribution with expected value θ and known variance σ2

(ii) A Poisson distribution with parameter θ
(iii) A Gamma distribution with known parameter α and θ

2. For each of the problems in (1) generate a random sample of size 25, i.e.:

(i) Take σ2 = 1 and θ = 3.
(ii) Take θ = 5.

(iii) Take α = 3 and θ = 2.

For (i)–(iii) plot the likelihood functions.
3. Suppose that Yi for i = 1, 2, . . . , n are independent, each normal with expected

value βxi and variance σ2 where σ2 is known and the xi are known constants.

(i) Show that the joint density is

f(y;β) = (2πσ2)−n/2 exp

{

− 1

2σ2

n
∑

i=1

(yi − β xi)
2

}

(ii) Find the score function.
(iii) Show that the maximum likelihood estimate for β is

̂β =

∑n
i=1 xiyi

∑n
i=1 x

2
i

(iv) Find the observed Fisher information.
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(v) Using (iii) find the likelihood for β.
(vi) Find the sampling distribution of ̂β. Remember that the sum of independent

normal random variables is also normal.
(vii) Show that the sampling distribution of −2 ln[L (β;y)] is chi-square with 1

degree of freedom.
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