
Chapter 19
Other Inference Methods and Concepts

19.1 Fiducial Probability and Inference

R.A. Fisher introduced the concept of fiducial probability and used in to develop
fiducial inference. Counterexamples though the years have lead to its lack of use in
statistics.

Example. Consider a deck of N cards numbered 1, 2, . . . , N . One card is drawn at
random, its number denoted by U . Then

P(U = u) =
1

N
u = 1, 2, . . . , N (19.1)

Suppose now that we add an unknown number θ to U . We are not told the observed
value of U , uobs, or the value of θ but we are told the observed value, tobs = uobs+θ,
of the total T = U+θ. Note that we could see tobs if and only if one of the following
outcomes occurred:

(U = 1, θ = tobs − 1), (U = 2, θ = tobs − 2), . . . , (U = N, θ = tobs −N)

1. Given the value of tobs there is a one-to-one correspondence between the values
of U and θ. If we knew θ then we could determine the value of uobs.

2. If we do not know the value of θ then observing T = tobs will tell us nothing
about uobs.

3. Thus the state of uncertainty regarding uobs will be the same after the observation
of tobs as it was before.
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238 19 Other Inference Methods and Concepts

Therefore we assume that (19.1) holds, and we can write

P(θ = tobs − u) = P(U = u) =
1

N
u = 1, 2, . . . , N

which we call the fiducial probability distribution of θ.

Example. Assume that X
d∼ N(θ, 1) and define U = T − θ. Then U

d∼ N(0, 1). If
we observe T = tobs then tobs arises from a pair of values (U = u, θ = tobs−u) so
that given tobs there is a one-to-one correspondence between the possible values of
U and θ. Again, since θ is unknown we will learn nothing about which value of U

occurred. Thus we may assume that U
d∼ N(0, 1) even after T = tobs is observed.

Thus we can calculate (fiducial) probabilities about θ by transforming them into
probability statements about U , i.e.,

θ ≤ y ⇐⇒ U ≥ tobs − y

so that

PF (θ ≤ y) = P(U ≥ tobs − y) = Φ(y − tobs)

where Φ(w) =
∫ w

−∞ e−z2/2/
√
2πdz. Note that such probability statements are the

same as if we treated θ as a random variable with a normal distribution with mean t
and variance 1. Thus the fiducial distribution of θ is N(tobs, 1). The fiducial density
is the derivative with respect to θ, i.e.,

pF (θ; tobs) =
1√
2π

exp

{

− (θ − tobs)
2

2

}

Kalbfleisch lists sufficient conditions for the fiducial argument to apply:

1. A single real-valued parameter.
2. A minimal sufficient statistic T exists for θ.
3. There is a pivot U(T, θ) such that

(i) For each θ, U(t, θ) is a one-to-one function of t
(ii) For each t, U(t, θ) is a one-to-one function of θ

These assumptions which are compounded when we move to more than one
parameter mean that the scope of fiducial inference is severely limited. In fact it
is largely ignored in most modern treatments of statistics.

Suppose that X1, X2, . . . , Xn are iid each N(μ, σ2) where σ2 is known. Then,
whatever the value of μ, we know that for every value of α ∈ [0, 1] we can find an
upper 100(1− α)% confidence interval for μ, namely

X + z1−α
σ√
n
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which we know has the property that

P

{

μ ≤ X + z1−α
σ√
n

}

= 1− α

considered as a function of the random variable X . Fisher noted that the left hand-
side has all of the properties of a distribution function defined over the parameter
space and thus proceeded to define the fiducial distribution of μ for fixed X = xobs

and its derivative as the fiducial density of μ given xobs. Thus we can speak of the
fiducial probability, PF (A) that μ ∈ A calculated as

PF (μ ∈ A) =

∫

A

1√
2π

exp

{

−
√
n(μ− xobs)

2

2σ2

}

dμ

As another example let X1, X2, . . . , Xn be iid each uniform on (0, θ). Then
Y = max {X1, X2, . . . , Xn} is the minimal sufficient statistic which has distri-
bution function

FY (y; θ) = Pθ(Y ≤ y) = [Pθ(X ≤ y)]
n
=

[y
θ

]n

It follows that

P

(
Y

θ
≤ y

)

= P (Y ≤ yθ) = yn

19.1.1 Good’s Example

Suppose that X is a random variable with density function

fX)(x; θ) =
θ2(x+ a)e−xθ

aθ + 1
where a > 0, θ > 0, x ≥ 0

which has distribution function

F (x; θ) =

∫ x

0

f(t; θ)dt

=

∫ x

0

θ2(t+ a)e−tθ

aθ + 1
dt

=
θ2

aθ + 1

∫ x

0

(t+ a)e−tθdt
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Now note that
∫ x

0

(t+ a)e−tθdt =

∫ x

0

te−tθdt+ a

∫ x

0

e−tθdt

= − te−tθ

θ

∣
∣
∣
∣
∣

x

0

+
1

θ

∫ x

0

e−tθdt+ a

∫ x

0

e−tθdt

= −xe−xθ

θ
+

1 + aθ

θ

∫ x

0

e−tθdt

= −xe−xθ

θ
+

1 + aθ

θ2
[
1− e−xθ

]

It follows that

FX(x; θ) = 1− e−xθ

[

1 +
xθ

aθ + 1

]

The fiducial density of θ is the derivative of FX(x; θ) with respect to θ or

Fx(θ) =
xθe−xθ

(aθ + 1)2
[a+ (a+ x)(1 + aθ)]

Suppose we now observe, independently of X , another random variable Y with
density

fY (y; θ) =
θ2(y + b)e−xθ

bθ + 1
where b > 0, θ > 0, x ≥ 0 and b 	= a

If we use the fiducial density based on X as a “prior” for θ and combine it with
the density for Y the resulting posterior would be

PXY (θ;x, y) = Fx(θ)fY (y; θ)

which is equal to

xθe−xθ

(aθ + 1)2
[a+ (a+ x)(1 + aθ)]

θ2(y + b)e−yθ

bθ + 1

If fiducial probabilities behaved like true probabilities it should make no difference
whether we observed X or Y first. If we used the fiducial density for θ based on Y
and combined it with density of X the resulting posterior would be

PY X(θ; y, x) = Fy(θ)fX(x; θ)
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which is equal to

yθe−yθ

(bθ + 1)2
[b+ (b+ x)(1 + bθ)]

θ2(x+ a)e−xθ

aθ + 1

The laws of probability would say that these two expressions should be equal. They
are clearly not. So fiducial probabilities are not compatible with Bayes theorem and
hence are not warranted.

19.1.2 Edward’s Example

Consider two hypotheses θ = +1 or θ = −1 and suppose that there are two possible
outcomes of a random variable X , X = +1 or X = −1. The probability model
for X is

Pθ=+1(X = x) =

{
p x = +1

q x = −1
; Pθ=−1(X = x) =

{
q x = +1

p x = −1

Since when θ = +1, X = +1 with probability p, and when θ = −1, X = −1 with
probability p, we have that

P(Xθ = +1) with probability p.

This statement is true in general and when X = +1 is equivalent to the statement

P(θ = +1|X = +1) = p

which is the fiducial probability statement about θ following from observing that
X = +1.

Thus starting with no prior information and performing an experiment which is
uninformative we arrive at a statement of probability for θ.

Suppose now that p = q = 1
2 . Then

(i) There is no information about θ a priori
(ii) The observation of X is totally uninformative about θ

(iii) The likelihood ratio for comparing θ = +1 to θ = −1 is 1 indicating that,
based on the observation, we have no preference for θ = +1 vs θ = −1

However we find, using the fiducial argument, that

PF (θ = +1) =
1

2
whatever the value of X

Thus we have another example which casts doubt on the veracity of the fiducial
argument.
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19.2 Confidence Distributions

Recently there has been a great deal of research on confidence distributions which
reduce, in many cases, to fiducial distributions, but which are solidly in the
frequentist camp.

Definition 19.2.1. A function Cn(θ;xn : X × Θ 
→ [0, 1] is called a confidence
distribution if

(i) Cn(θ;xn) is a distribution function over Θ for each fixed xn ∈ X
(ii) At the true parameter point Cn(θ0,xn) as a function of xn ∈ X has a uniform

distribution over [0, 1]

Cn(θ;xn : X × Θ 
→ [0, 1] is an asymptotic confidence distribution if (ii) is
satisfied only asymptotically.

The paper by Xie and Singh [55] provides a useful review of the ideas. The following
graph shows the unification of frequentist ideas using the confidence density:

Confidence Density Example

Point Estimates

θ

95% CI

P-Value

M m m

M=mode
m=median
m=mean

19.2.1 Bootstrap Connections

If θ̂ is an estimator of θ let the bootstrap estimator be θ̂∗. When the asymptotic
distribution of θ̂ is symmetric then the sampling distribution of θ̂−θ is estimated by
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the bootstrap distribution of θ̂−θ̂∗. In this case an asymptotic confidence distribution
is given by

Cn(θ) = 1− P(θ̂ − θ̂∗ ≤ θ̂ − θ|x) = P(θ̂∗ ≤ θ|x)

the bootstrap distribution of θ̂.

19.2.2 Likelihood Connections

If we normalize a likelihood function L (θ;x) so that the area under the normalized
likelihood function is 1, i.e., we form

L ∗(θ;x) =
L (θ;x)

∫
Θ
L (θ;x)dθ

then, under certain conditions, we obtain an asymptotic normal confidence
distribution.

Similarly, under the usual regularity conditions for maximum likelihood, we can
use the normalized profile likelihood as an asymptotic confidence distribution for a
parameter of interest.

It is also possible to construct approximate likelihoods using confidence dis-
tributions. Efron considered a confidence density c(θ;x) for the parameter of
interest. He then considered doubling the data set by introducing another data
set, considered independent of the first but having exactly the same data x. Then
construct the confidence density c(θ,x,x) based on the doubled data set using
the same confidence intervals to define the density. Then the implied likelihood
function is

Limp(θ;x) =
c(θ;x,x)

c(θ;x)

19.2.3 Confidence Curves

Birnbaum introduced the idea of a confidence curve to summarize confidence
intervals and levels of tests in one curve. In terms of confidence distributions the
confidence curve is given by

CC(θ) = 2min{Cn(θ;x), 1− Cn(θ;x)}

Thus a confidence distribution is simply a combinant such that for each xn ∈ X
it is a distribution function as θ varies over Θ and for fixed θ = θ0 it has a uniform
distribution as xn varies over X .
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Example. Let

Xi
d∼ N(μ, σ2) i = 1, 2, . . . , n

be independent with σ2 known. Then

Cn(μ;xobs) = Φ

(
μ− xobs

σ/
√
n

)

where Φ(y) =

∫ y

−∞

e−z2/2

√
2π

dz

is a confidence distribution for μ.

19.3 P-Values Again

Given the widespread importance of genomics P-values are now used more than
ever. It is important to remember that P-values are observed values of a random
variable and hence have intrinsic variability.

19.3.1 Sampling Distribution of P-Values

The P-value is defined, for a test statistic T , with distribution function FH0
(t)

assuming the null hypothesis is true as

PH0
(T ≥ tobs) where tobs is the observed value of T

Note that the P-value is given by 1−FH0
(tobs) and can be considered as an observed

value of the random variable Y = 1 − FH0
(T ). The distribution function of Y

assuming the null hypothesis is true is

FY (y) = PH0
(Y ≤ y)

= PH0
{1− FH0

(T ) ≤ y}
= PH0

{FH0
(T ) ≥ 1− y}

= 1− PH0
{FH0

(T ) ≤ 1− y}
= 1− PH0

{
T ≤ F−1

H0
(1− y)

}

= 1− FH0

{
F−1
H0

(1− y)
}

= 1− (1− y)

= y
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for 0 < y < 1. That is, the P-value under the null hypothesis has a uniform
distribution. This fact has been known for decades, but P-values are not reported
with a standard error as other statistics are.

If the alternative hypothesis is true assume that T has a distribution function
GH(t). Then

FY (y) = PH(Y ≤ y)

= PH {1− FH0
(T ) ≤ y}

= PH {FH0
(T ) ≥ 1− y}

= 1− PH {FH0
(T ) ≤ 1− y}

= 1− PH

{
T ≤ F−1

H0
(1− y)

}

= 1−GH

{
F−1
H0

(1− y)
}

Under suitable regularity conditions the density of Y under the alternative
hypothesis is

fY (y) =
dFY (y)

dy

=
d
[
1−GH

{
F−1
H0

(1− y)
}]

dy

= −gH
{
F−1
H0

(1− y)
} 1

−fH0

{
F−1
H0

(1− y)
}

=
gH

{
F−1
H0

(1− y)
}

fH0

{
F−1
H0

(1− y)
}

Note that for the observed value of T , tobs, we have y = 1−FH0
(tobs) and hence

the density evaluated at the observed value of T , tobs, is given by

gH
{
F−1
H0

(1− y)
}

fH0

{
F−1
H0

(1− y)
} =

gH
{
F−1
H0

[FH0
(tobs)]

}

fH0

{
F−1
H0

[FH0
(tobs)]

} =
gH(tobs)

fH0
(tobs)

the likelihood ratio!
P-values have been under heavy fire in the last few years for overstating the

importance of effects observed in clinical and other investigations [48]. The results
above due to Donahue [12] and others have been used by Boos and Stefanski [5] to
explain why P-values overstate the conclusions of studies. The results of Goodman
[21] are also relevant. The bottom line appears to be that use of P-values is not the
way to present the evidence from studies that rely on statistical analysis to report
their conclusions.
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19.4 Severe Testing

Severe testing is a concept claimed to be useful for post-data inference. The ideas are
best illustrated through an example and I follow the example in Mayo and Spannos
[33]. Suppose that X1, X2, . . . , Xn are iid each N(μ, σ2) where σ = 2, that n =
100, and we choose α = 0.025 for a one-sided test of

H0 : μ ≤ 12 vs μ > 12

Since, under H0, Xn
d∼ N(12, 2/10), we reject using the Neyman-Pearson theory if

d(xobs) =

√
n(xobs − 12)

2
≥ 1.96 ⇐⇒ xobs ≥ 12.4

Suppose now that we observe xobs = 11.8. Then we would not reject H0 :
μ = 12. If a value of μ equal to 12.2 was deemed to be of scientific or substantive
importance we can ask the question do we have evidence that μ < 12.2? Mayo
suggests calculating the severity with which μ < 12.2 passes the test. The severity
with which μ = 12.2 passes the test in cases where H0 is accepted is defined in this
situation as

Pμ(X > xobs) = Pμ=12.2

{
X > 11.8

}

= Pμ=12.2

{√
100(X − 12.2)

2
>

√
100(11.8− 12.2)

2

}

= P {Z > −2}
= 0.977

Note that the power of the test at 12.2 is

Pμ=12.2

{
X > 12.4

}
= Pμ=12.2

{√
100(X − 12.2)

2
>

√
100(12.4− 12.2

2

}

= P {Z > 1}
= 0.159

Mayo and Spannos define the attained power in this situation as

Pμ

{
X > xobs

}

so that the severity with which μ passes the test is simply the attained power at μ
when the observed outcome leads to acceptance of the null hypothesis.
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Suppose now that the null hypothesis is rejected. In the example suppose that
xobs = 12.6. The null hypothesis that μ = 12 is rejected. Again, assuming that
μ = 12.2 is of scientific or substantive interest, do we have evidence of a value
of μ of scientific interest? Mayo and Spannos suggest calculating the severity of
μ > 12.2 defined by

Pμ

{
X ≤ xobs

}
= Pμ=12.2

{
X ≤ xobs

}

= Pμ=12.2

{
X ≤ 12.6

}

= Pμ=12.2

{√
100(X − 12.2)

2
≤

√
100(12.6− 12.2)

2

}

= P {Z ≤ 2}
= 0.977

Note that in the case of a hypothesis which is rejected the severity is simply 1 minus
the attained power.

Severe testing does a nice job of clarifying the issues which occur when a
hypothesis is accepted (not rejected) by finding those values of the parameter (here
mu) which are plausible (have high severity) given acceptance. Similarly severe
testing addresses the issue of a hypothesis which is rejected by finding those values
of the parameter μ which are plausible (have high severity) given rejection. Note
that severity is a function of the test, T , the hypothesis, H , and the observed data,
xobs. Thus it is inherently a random variable and the standard results on p-values
and their distributions apply to severity as well. Also note that conventions need to
be established for when severity is judged to be high.

Finally note that most of the existing examples implicitly seem to require a
monotone likelihood ratio so that members of the exponential family are included,
but whether or not other distributions are covered under the existing theory is
unknown.

19.5 Cornfield on Testing and Confidence Intervals

The following quotes by Jerry Cornfield (1966) indicate that the problems with
frequentist statistics have been known for a long time.

Cornfield defines the α-postulate as “All hypotheses rejected the same critical
level have equal amounts of evidence against them.”

The following example will be recognized by statisticians with consulting
experience as a simplified version of a very common situation. An experimenter,
having made n observations in the expectation that they would permit the rejection
of a particular hypothesis, at some predetermined significance level, say 0.05,
finds that he has not quite attained this critical level. He still believes that the
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hypothesis is false and asks how many more observations would be required to
have reasonable certainty of rejecting the hypothesis if the means observed after n
observations are taken as the true values. He also makes it clear that had the original
n observations permitted rejection he would simply have published his findings.
Under these circumstances it is evident that there is no amount of additional
observations, no matter how large, which would permit rejection at the 0.05 level. If
the hypothesis being tested is true, there is a 0.05 chance of it having been rejected
after the first round of observations. To this chance must be added the probability
of rejecting after the second round, given failure to reject after the first, and this
increases the total chance of erroneous rejection to above 0.05. In fact as the total
number of observations in the second round is indefinitely increased the significance
approaches 0.0975 (=0.05 +0.95 ×0.05) if the 0.05 criteria is retained. Thus no
amount of additional evidence can be collected which would provide evidence
against the hypothesis equivalent to rejection at the P = 0.05 level and adherents of
the α-postulate would presumably advise him to turn his attention to other scientific
fields. The reasonableness of this advice is perhaps questionable (as is the possibility
that it would be accepted). In any event it does not seem possible to argue seriously
in the face of this example that all hypotheses rejected at the .05 level have equal
amounts of evidence against them.

The confidence set yielded by a given body of data is the set of all hypotheses
not rejected by the data, so that the relation between hypothesis test and confidence
limits is close. In fact the confidence limit equivalent of the α-postulate is “All
statements made with same the confidence coefficient have equal amounts of
evidence in their favor.” That this may be seen no more reasonable the α-postulate
is suggested by the very common of inference about the ratio of two normal means.
The most selective unbiased confidence set for the unknown ratio has the following
curious characteristic: for every sample point there exists an α > 0 such that
all confidence limits with coefficients ≥ 1 − α are plus to minus infinity. But to
assert that the unknown ratio lies between plus and minus infinity with confidence
coefficient of only 1 − α is surely being overcautious. Even worse, the postulate
asserts that there is less evidence for such an infinite interval than there is for a finite
interval about a normal mean, but made with coefficient 1 − α

′
where α

′
< α.

The α-postulate cannot therefore be considered anymore reasonable than it is for
hypothesis testing.

It has been proposed by proponents of confidence limits that this clearly
undesirable characteristic of the limits on a ratio be avoided by redefining the sample
space so as to exclude all sample points that lead to infinite limits for given α. This
is equivalent to saying that if the application of a principle to given evidence leads
to an absurdity then the evidence must be discarded. It is reminiscent of the heavy
smoker, who, worried about the literature relating smoking to lung cancer, decided
to give up reading.
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