
Chapter 17
Pure Likelihood Methods

17.1 Introduction

As we have seen in previous chapters use of the likelihood is important in frequentist
methods and in Bayesian methods. In this chapter we explore the use of the
likelihood function in another context, that of providing a self-contained method of
statistical inference. Richard Royall in his book, Statistical Evidence: A Likelihood
Paradigm, carefully developed the foundation for this method building on the work
of Ian Hacking and Anthony Edwards. Royall lists three questions of interest to
statisticians and scientists after having observed some data

1. What do I do?
2. What do I believe?
3. What evidence do I now have?

In the context of the usual parametric statistical model where we have an
observed value xobs of random X having sample space X , parameter space Θ,
and probability density function f(xobs; θ) at the observed value, xobs of X the
first question is a decision theoretic problem re the actions to be taken on the basis
of the model and the observed data and the second concerns what do I believe about
θ given the observed data and presumably some prior knowledge about θ. The third
question concerns characterizing what evidence the data has provided us about θ
and requires no actions or beliefs. It is simply a question of “what do the data say”
(about θ).

We have already stated the Law of Likelihood:

Axiom 17.1.1. (Law of Likelihood). For two parameter values, θ1 and θ0, in the
model X , f(x; θ),Θ), the magnitude of the likelihood ratio

L(θ1, θ0;xobs) =
f(xobs; θ1)

f(xobs; θ0)
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198 17 Pure Likelihood Methods

measures the statistical evidence for θ1 vs θ0. If the ratio is greater than 1 we have
statistical evidence for θ1 vs θ0 while if less than 1 we have statistical evidence for
θ0 vs θ1.

I have used the term statistical evidence so as to not conflict with the use of the
word evidence in other contexts, e.g., in P-values. We say the statistical evidence for
θ1 vs θ0 is of strength k > 1 if L(θ1, θ0;xobs) > k.

17.2 Misleading Statistical Evidence

Since we are dealing with probability models it is possible to observe a value, xobs,
for which L(θ1, θ0;xobs) > k, and yet θ0 is true. This is called misleading evi-
dence. The following is called the universal bound and shows that the probability
of misleading evidence can be kept small by choice of k.

Theorem 17.2.1. The probability of misleading evidence is bounded by 1/k, i.e.,

Pθ0

{
f(X; θ1)

f(X; θ0)
≥ k

}
≤ 1

k

Proof . Let M be the set

M =

{
x :

f(X; θ1)

f(X; θ0)
≥ k

}

Then
∫
M

f(x; θ0)dμ(x) ≤
∫
M

1

k
f(x; θ1)dμ(x)

≤ 1

k

∫
X
f(x; θ1)dμ(x)

=
1

k

In fact a much stronger result is true. Consider a sequence of observations

Xn = (X1, X2, . . . , Xn)

such that if A is true then Xn ∼ fn and when B is true Xn ∼ gn. The likelihood
ratio

gn(xn)

fn(xn)
= zn
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is the LR in favor of B after n observations. Then we have the following theorem.

Theorem 17.2.2. If A is true then

PA(Zn ≥ k for some n = 1, 2, . . .) ≤ 1

k

Robbins [41]
In many circumstances the universal bound is far too conservative. Consider the

situation where we have X1, X2, . . . , Xn where the Xi are iid as N(μ, σ2) where,
for simplicity, σ2 is assumed known. The joint density is given by

f(y;μ) =

n∏
i=1

(2πσ2)−
1
2 exp

{
− (yi − μ)2

2σ2

}

After some algebraic simplification the likelihood ratio for comparing μ1 vs μ0

is given by

exp

{(
x̄− μ0 + μ1

2

)
n(μ1 − μ0)

σ2

}

It follows that the likelihood ratio exceeds k if and only if

n(μ1 − μ0)

σ2

(
x̄− μ1 + μ0

2

)
≥ ln(k)

Thus, without loss of generality, if μ1 − μ0 > 0, the likelihood ratio exceeds k if
and only if

x̄ ≥ μ1 + μ0

2
+

σ2

n(μ1 − μ0)
ln(k)

Thus the probability of misleading statistical evidence when H0 = μ0 is assumed
true is given by

PMLEV1 = Pμ=μ0

{
f(X;μ1)

f(X;μ0
≥ k

}

= Pμ=μ0

{
X ≥ μ1 + μ0

2
+

σ2

nμ1 − μ0
ln(k)

}

= Pμ=μ0

{√
n(X − μ0)

σ
≥

√
n(μ1 − μ0)

2σ
+

σ ln(k)√
n(μ1 − μ0)

}

= P

(
Z ≥

√
nc

2
+

ln(k2)√
nc

)
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= Φ

(
−c

√
n

2
− ln(k)

c
√
n

)

where Φ(z) is the standard normal distribution function evaluated at z and

c =
|μ1 − μ0|

σ

If μ1 − μ0 < 0 similar calculations show that the probability of misleading
evidence when μ0 is assumed true is given by the same expression. It follows that
the probability of misleading evidence when H0 = μ0 is true is

PMLEV = Φ

(
−c

√
n

2
− ln(k2)

c
√
n

)

where

c =
|μ2 − μ1|

σ

and Φ is the standard normal distribution function. The function

B(c, k, n) = Φ

(
−c

√
n

2
− ln(k)

c
√
n

)

has been called the bump function by Royall.
Also note that c is often called the effect size in the social science literature

and represents the difference between μ0 and μ1 in standard deviation units. The
following are rules of thumb for judging the magnitude of the effect size:

• c ≤ 0.1 trivial
• 0.1 < c ≤ 0.6 small
• 0.6 < c ≤ 1.2 moderate
• c ≥ 1.2 large

Note that the derivative with respect to c of the bump function is

φ

(
−c

√
n

2
− ln(k)

c
√
n

)(
−
√
n

2
+

ln(k)

c2
√
n

)

which vanishes when
√
n

2
=

ln(k)

c2
√
n

i.e., when
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c =

√
2 ln(k)

n
= c∗

The second derivative with respect to c is

φ
(
− c

√
n

2 − ln(k)
c
√
n

)(
−

√
n
2 + ln(k)

c2
√
n

)2

φ
(
− c

√
n

2 − ln(k)
c
√
n

)
+
(
− 2 ln(k)

c3
√
n

)

which is negative when c = c∗ so that the bump function has a maximum at c = c∗

given by

B(c∗, k, n) = Φ

(
−c∗

√
n

2
− ln(k)

c∗
√
n

)
= Φ(−

√
2 ln(k))

It is well known that

t

1 + t2
φ(t) ≤ Φ(−t) ≤ 1

t
φ(t)

so that

Φ(−
√

2 ln(k)) ≤ 1√
2 ln(k)

φ(
√

2 ln(k))

=
1

2
√
π ln(k)

exp
{
−(

√
2 ln(k))2/2

}

=
1

2
√
π ln(k)

exp {− ln(k)}

=
1

k2
√
π ln(k)

which is considerably less than the universal bound of 1/k.

17.2.1 Weak Statistical Evidence

Again, since we are dealing with probability models, it is possible to observe a
value, xobs, for which

1

k
< L(θ1, θ0;xobs) < k
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This is called weak statistical evidence. We have weak evidence in the example of
normally distributed observations if and only if

− ln(k) ≤
(
x̄− μ1 + μ0

2

)
n(μ1 − μ0)

σ2
≤ ln(k)

If μ1 − μ0 > 0 the condition for weak statistical evidence is that x must lie
between

μ1 + μ0

2
− σ2

n(μ1 − μ0)
ln(k)

and

μ1 + μ0

2
+

σ2

n(μ1 − μ0)
ln(k)

If we define

gn(μ0, μ1, k) =
μ1 + μ0

2
+

σ2

n(μ1 − μ0)
ln(k)

then the condition for weak evidence becomes

gn(μ0, μ1, 1/k) ≤ x̄ ≤ gn(μ0, μ1, k)

and the probability of weak evidence is given by

Pr
{
gn(μ0, μ1, 1/k) ≤ X̄ ≤ gn(μ0, μ1, k)

}

which is easily evaluated under H0 and H1 since X̄ has an N
(
μ, σ2

n

)
distribution.

Now we note that
√
n

σ
[gn(μ0, μ1, k)− μ0] =

c
√
n

2
+

ln(k)

c
√
n

It follows that the probability of weak evidence, Pμ=μ0
(WEV), is given by

Φ

(
c
√
n

2
+

ln(k)

c
√
n

)
− Φ

(
c
√
n

2
− ln(k)

c
√
n

)

Similarly

√
n

σ
[gn(μ0, μ1, k)− μ2] =

−c
√
n

2
+

ln(k)

c
√
n
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It follows that the probability of weak evidence Pμ=μ1
(WEV) is given by

Φ

(
c
√
n

2
+

ln(k)

c
√
n

)
− Φ

(
c
√
n

2
− ln(k)

c
√
n

)

If we define

W (x, y) = Φ

(
c
√
n

2
+

ln(k1)

c
√
n

)
− Φ

(
c
√
n

2
− ln(k2)

c
√
n

)

then the two probabilities are given by

W1 = P1(WEV) = W (k2, k1)

and
W2 = P2(WEV) = W (k1, k2)

There is nothing that requires the same level of statistical evidence be the same
for μ1 vs μ0 as for μ0 vs μ1. That is we say we have statistical evidence for μ1 vs
μ0 of level k1 if L(θ1, θ0;xobs) > k1 and statistical evidence for μ0 vs μ1 of level
k0 if L(θ0, θ1;xobs) > k0.

We then have the following summary of results for the normal distribution
example.

• When H0 is true the probability of misleading evidence for H1 at level k1 defined
by (L1/L0 ≥ k1) is

M0 = Φ

(
−c

√
n

2
− ln(k2)

c
√
n

)

• When H0 is true the probability of weak evidence is

W0 = Pμ=μ0

(
1

k0
≤ L1

L0
≤ k1

)

= Φ

(
c
√
n

2
+

ln(k1)

c
√
n

)
− Φ

(
c
√
n

2
− ln(k0)

c
√
n

)

• When H1 is true the probability of misleading evidence for H0 at level k0 defined
by (L0/L1 ≥ k0 is

M1 = Φ

(
−c

√
n

2
− ln(k1)

c
√
n

)
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• When H1 is true the probability of weak evidence is

W1 = Pμ=μ1

(
1

k0
≤ L2

L1
≤ k1

)

= Φ

(
c
√
n

2
+

ln(k0)

c
√
n

)
− Φ

(
c
√
n

2
− ln(k1)

c
√
n

)

17.2.2 Sample Size

There is no doubt that one of the questions most asked of a statistician is

How many observations do I need?

Actually the usual question is how many subjects do I need to get a statistically
significant result that is publishable? This question is easily answered, so let us
consider refining the question.

Suppose that we will observe X1, X2, . . . , Xn assumed independent and identi-
cally distributed as normal with mean μ and variance σ2 assumed known (usually
based on past work with similar instruments, and so on). Of interest is a (null)
hypothesis H0 : μ = μ0 and an alternative H1 : μ = μ1 where without loss
of generality we assume that μ1 > μ0. It is assumed that μ1 represents a value of
μ which is of scientific importance,i.e., if μ1 is true then a result of scientific or
practical importance has been discovered.

The Neyman–Pearson theory has been used for decades to determine sample size
is the default method. It is required in submitting grants to NIH, NSF, FDA, etc., as
well as in reporting the results of published studies and dissertations. The Neyman–
Pearson approach to sample size selection is as follows:

1. Choose a value α for the significance level (usually α = 0.05).
2. Choose a value 1− β for the power (usually β = 0.20 so that the power is 0.8).
3. Select the sample size n so that

P (Type I error) = P (reject H0|H0 true) = α

1− P (Type II error) = P (reject H0|H1 true) = 1− β

In the case of a normal distribution with known variance we have that

P (Type I error) = P (X ≥ C|μ = μ0)

= P

(√
n(X − μ0

σ
≥

√
n(C − μ1)

σ

∣∣∣∣∣μ = μ0

)

= 1− Φ

(
C − μ1

σ

)
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and it follows that

C = μ0 + z1−α/2
σ√
n
= μ0 + 1.645

σ√
n

if α = 0.05

and

Power = P (X ≥ C|μ = μ1)

= P

(
X ≥ μ0 + z1−α/2

σ√
n

∣∣∣∣∣μ = μ1

)

= P

(√
n(X − μ1)

σ
≥ z1−α/2 − (μ1 − μ0)

√
n

σ

∣∣∣∣∣μ = μ1

)

= 1− Φ

(
z1−α/2 − (μ1 − μ0)

√
n

σ

)

= 1− Φ(z1−α/2 − c
√
n)

In order to have power 1− β we must have

Φ

(
z1−α/2 − (μ1 − μ0)

√
n

σ

)
= β

i.e.,

z1−α/2 − (μ1 − μ0)

√
n

σ
= zβ

or

z1−α/2 − zβ = (μ1 − μ0)

√
n

σ

and it follows that

n =
(z1−α/2 + z1−β)

2

c2

where

c =
μ1 − μ0

σ

This is the prototype of sample size formulas.
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The Neyman-Pearson approach is inadequate when we want to quantify statisti-
cal evidence for H1 vs H0 we now consider the selection of sample size necessary
to quantify statistical evidence. Recall that there are four probabilities involved:

1. The probability of misleading statistical evidence for H1 when H0 is true
2. The probability of misleading statistical evidence for H0 when H1 is true
3. The probability of weak statistical evidence when H0 is true
4. The probability of weak evidence when H1 is true

The analogue to the Type I error probability is the probability of finding
misleading evidence for H1 when H0 is true. For the normal distribution we have
the correspondence for α = 0.05 and M0 given by

α = 0.05 M0 = Φ

(
−c

√
n

2
− ln(8)

c
√
n

)

and if we take c = 0.5, a moderate effect size, we have the correspondence

α = 0.05 M0 = Φ

(
−
√
n

4
− 4 ln(8)√

n

)

For the analogue to the Type II error we must be more careful. The probability of
failing to find evidence supporting H1 when H0 is true is composed of two parts:

1. The probability of misleading evidence in favor of H0 when H1 is true
2. The probability of weak evidence when H1 is true

For the normal distribution we have the correspondence

β = P (Type II error) = Φ

(
z1−α/2 − (μ2 − μ1)

√
n

σ

)

M1 +W1 = Φ

(
− c

√
n

2
− ln(k1)

c
√
n

)
+Φ

(
c
√
n

2
+

ln(k1)

c
√
n

)
− Φ

(
c
√
n

2
− ln(k2)

c
√
n

)

= 1− Φ

(
c
√
n

2
− ln(k2)

c
√
n

)

= Φ

(−c
√
n

2
+

ln(k2)

c
√
n

)

and if β = 0.2, c = 0.5 and k2 = 8 we have

β = 0.2 ; M2 +W2 = Φ

(
−
√
n

4
+

2 ln(8)√
n

)

For the Neyman Pearson sample size formula for α = 0.05, β = 0.20 and
c = 0.5 we get a sample size of

n =
(1645 + 0.84)2

0.52
= 25
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For this sample size we find that M1 +W1 is equal to

M1 +W1 = Φ

(
−
√
25

4
+

2 ln(8)√
25

)
= Φ(−0.418) = 0.34

Thus the conventional sample size formula does not lead to a small probability of
finding weak evidence.

Exercises in Royall’s book show that the this is true in general, i.e., conventional
sample size formulas do not guarantee finding strong evidence.

17.3 Birnbaum’s Confidence Concept

Recall Birnbaum’s confidence concept which he advocated after becoming skeptical
of the likelihood principle.

A concept of statistical evidence is not plausible unless it finds “strong evidence”
for H2 as against H1 with small probability (α) when H1 is true and with much
larger probability (1− β) when H2 is true.

What the results in the sample size section show is that it is possible in certain
cases to satisfy the confidence concept with sufficient observations.

17.4 Combining Evidence

Suppose that we have two independent estimators, t1 and t2 of a parameter θ where
t1 is normal with expected value θ and variance v1 and t2 is normal with expected
value θ and variance v2. Assume that v1 and v2 are known.

The joint density of t1 and t2 is

f(t1, t2; θ) =
1

2π
√
v1v2

exp

{
− (t1 − θ)2

2v1
− (t2 − θ)2

2v2

}

which has logarithm

−ln[2π
√
v1v2]− (t1 − θ)2

2v1
− (t2 − θ)2

2v2

The derivative with respect to θ is thus

(t1 − θ)

v1
− t2 − θ

v2
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and hence the maximum likelihood estimate of θ is

θ̂ =
t1
v1

+ t2
v2

1
v1

+ 1
v2

At this value of θ the joint density is

f(t1, t2; θ̂) =
1

2π
√
v1v2

exp

{
− (t1 − θ̂)2

2v1
− (t2 − θ̂)2

2v2

}

and hence the likelihood for θ is

L (θ; t1, t2) =
f(t1, t2; θ)

f(t1, t2; θ̂)
=

1
2π

√
v1v2

exp
{
− (t1−θ)2

2v1
− (t2−θ)2

2v2

}
1

2π
√
v1v2

exp
{
− (t1−̂θ)2

2v1
− (t2−̂θ)2

2v2

}

or

L (θ; t1, t2) = exp

{
t1θ

v1
+

t2θ

v2
− θ2

2v1
− θ2

2v2
− t1θ̂

v1
− t2θ̂

v2
+

θ̂2

2v1
+

θ̂2

2v2

}

= exp

{
θ

(
t1
v1

+
t2
v2

)
− θ2

2

(
1

v1
+

1

v2

)
− θ̂

(
t1
v1

+
t2
v2

)

+
θ̂2

2

(
1

v1
+

1

v2

)}

= exp

{
θθ̂

(
1

v1
+

1

v2

)
− θ2

2

(
1

v1
+

1

v2

)
− θ̂2

2

(
1

v1
+

1

v2

)}

= exp

{
−1

2

(
1

v1
+

1

v2

)(
θ2 − 2θθ̂ + θ̂2

)}

= exp

{
−
(

1

v1
+

1

v2

)
(θ − θ̂)2

2

}

= exp

{
(θ − θ̂)2

2v

}

where

v =
1

1
v1

+ 1
v2

which is a normal likelihood centered at θ̂ and curvature v.
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This is a likelihood version of the standard result that to combine unbiased
uncorrelated estimators weight inversely as their variance and divide the result by
the sum of the weights.

In general note that if we have x1 observations from f(x; θ) and independent
observations x2 from f(x; θ) then the evidence for θ1 vs θ0 based on (x1,x2) is

f(x1,x2; θ1)

f(x1,x2; θ0)
=

[
f(x1; θ1)

f(x1; θ0)

] [
f(x2; θ1)

f(x2; θ0)

]

i.e., evidence is multiplicative.

17.5 Exercises

1. Suppose that X1, X2, . . . , Xn are iid, each Poisson with parameter λ. Let k = 8,
n = 1, 10, 25. Draw graphs of the probability of misleading evidence for λ1 = 2
vs λ0 = 1.

2. Repeat Exercise 1 for the binomial with n = 10, 25, 100, 1000 and p = 0.6 vs
p = 0.5.
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