
Chapter 12
Conditionality

12.1 Ancillarity

Conditioning arguments are at the center of many disputes regarding the foundations
of statistical inference. We present here only some simple arguments and examples.

Definition 12.1.1. A statistic A is ancillary (for θ) if its distribution does not
depend on θ.

The basic idea in conditioning is that, since A provides no information on θ,
we should use the conditional distribution, given A, for inference on θ. The idea
originated with R.A. Fisher and has been discussed and disputed for decades. In
some problems most statisticians condition on A, in other problems they do not.

In most problems the sample size is considered fixed, i.e., ancillary even though
it may be determined by availability of funds or other considerations not related
to the problem (θ) of interest. Similarly in regression type problems (linear models,
generalized linear models, etc.) most statisticians condition on the covariates (design
matrix). There seems to be no definite guidelines for when to condition and when
not to condition.

Example. Cox introduced the following example. Consider two measuring devices.
Device P produces measurements which are normal with mean θ and variance σ2

and device I produces measurements which are normal with variance k2σ2 where k
is much larger than 1. Which instrument is used is decided by the flip of a fair coin
so that the precision of the measurement (i.e., what instrument is used) is ancillary.

Thus we would report the value of the measurement and the associated value of
precision σ2 or k2σ2 depending on the instrument actually used. However, if we do
not condition, the true variance of X is
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V(X) = E [V(X|F )] + V [E(X|F )]

=
σ2

2
+

k2σ2

2

Note that

σ2 < σ2

(
1

2
+

k2

2

)
< k2σ2

so that the reported standard error will be either too small or too large.

Example (Valliant, Dorfman and Royall). There is a population of size 1,000 from
which we have selected a random sample of size 100 without replacement. The
population mean is estimated by the sample mean which has variance estimated by

V(Y s) =

(
1− 100

1000

)
s2

100
where s2 =

∑
i∈s(yi − ys)

2

99

and s denotes the set of items selected.
Before we drew the sample, we considered doing a complete census of all 1,000

objects, but we had another study of interest. To decide whether to do the complete
census or a sample of size 100 and the other study we flipped a coin. If the result
was a head we did the complete census; if the result was a tail we took the sample
of size 100.

The variance of the sample mean is

V(Y s) =
1

2
V(Y s|n = 100) +

1

2
V(Y s|n = 1000) =

1

2
V(Y s|n = 100)

Using this an estimate of variability is clearly wrong, yet it is correct from a
frequentist point of view. Note that the same variance would be required if we had
done the complete census. In this case any confidence interval would consist of a set
of points whereas we know the population mean exactly! Clearly there is need for
conditioning in situations like this.

12.2 Problems with Conditioning

Examples in the previous section indicate that we should condition whenever there
is an ancillary statistic. Unfortunately this is not always so easy. An excellent review
article by Ghosh et al. [19] provides many examples and extensions. In particular
there are examples given where there is no unique ancillary statistic.
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Some authors have suggested that there are really two major types of
ancillarity:

1. Experimental
2. Mathematical

Experimental ancillaries are those such as sample size, covariates, etc., i.e.,
situations where most statisticians routinely condition. Mathematical ancillaries are
those that arise because of the specific nature of the statistical model.

Example (Continuous uniform). Let X1, X2, . . . , Xn be iid with pdf

f(x; θ1, θ2) =

{
1
Δ θ1 ≤ x ≤ θ2
0 elsewhere

(12.1)

where Δ = θ2 − θ1.

The joint density is given by

f(x1, x2, . . . , xn ; θ1, θ2) =

{
1

Δn all xi ∈ [θ1, θ2]

0 elsewhere
(12.2)

It follows that the minimum and maximum of X1, X2, . . . , Xn are minimal
sufficient statistics for θ1 and θ2.

The joint distribution of the minimum and maximum from a random sample with
distribution function F and density function f is easily shown to be

f(y1, yn) = n(n− 1)[F (yn)− F (y1)]
n−2f(y1)f(yn) (12.3)

where Y1 is the minimum of the Xi’s and Yn is the maximum
For the uniform distribution, we have that

F (y; θ1, θ2) =
1

Δ

∫ y

θ1

dx =
y − θ1
Δ

so that the joint pdf of Y1 and Yn is given by

f(y1, yn; θ1, θ2) =
1

Δn
n(n− 1)(yn − y1)

n−2 θ1 ≤ y1 ≤ yn ≤ θ2

Let θ1 = θ − ρ and θ2 = θ + ρ, then we have that Δ = 2ρ and hence the joint
density is

f(y1, yn; θ) =
n(n− 1)(yn − y1)

n−2

ρn
; θ − ρ ≤ y1 ≤ yn ≤ θ + ρ
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If we assume that ρ is known, then the likelihood function for θ is

L (θ) = 1 ; yn − ρ ≤ θ ≤ y1 + ρ

For the special case where ρ = 1/2 it is easy to show that [Y1, Yn] is a
100

(
1− 1

2n−1

)
confidence interval for θ.

Suppose now that

n = 5 and y1 = 0.01, yn = 0.99

Then the 100(1− 1
16 )% = 93.75% confidence interval for θ is .01 to .99. But since

y1 ≥ θ − 1

2
; yn ≤ θ +

1

2

if and only if

0.51 = 0.01 + 0.5 ≥ θ and 0.49 = 0.99− 0.5 ≤ θ

with certainty.
Thus with these observed values of y1 and yn we are certain that

0.49 ≤ θ ≤ 0.51

and yet our 93.75 % confidence interval is

0.01 ≤ θ ≤ 0.99

This is silly.
As Cox points out it is imperative to condition on the ancillary statistic in this

example which is the range R = Yn − Y1.
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