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Preface

The 17th International Conference on Medical Image Computing and Computer-
Assisted Intervention (MICCAI 2014) was held in Boston, USA, at the Mas-
sachusetts Institute of Technology (MIT) and Harvard Medical School during
September 14-18, 2014. We were delighted to welcome the conference back to
the location of the very first MICCAI meeting that took place on MIT campus
in 1998. Over the last 16 years, the MICCAI conferences have become a premier
international event, with papers of high standard addressing open problems in
the multidisciplinary fields of biomedical image computing, computer-assisted
intervention, and medical robotics. The conference attracts leading scientists,
engineers, and clinicians from a wide range of disciplines.

This year, we received a record number of 862 submissions. These covered
medical image computing (functional and diffusion image analysis, segmentation,
physical and functional modeling, shape analysis, atlases and statistical models,
registration, data fusion and multiscale analysis), computer-assisted interven-
tions and robotics (planning and image guidance of interventions, simulation
and training systems, clinical platforms, visualization and feedback, robotics
and human–robot interaction), and clinical imaging and biomarkers (computer-
aided diagnosis, organ/system specific applications, molecular and optical imag-
ing and imaging biomarkers). A careful systematic review process was carried
out to create the most exciting scientific program for MICCAI 2014. The Pro-
gram Committee (PC) of the conference was composed of 52 experts recognized
internationally in the main topics of the conference. Each submission was as-
signed to a primary PC member who recruited between three and four external
reviewers for each paper based on their expertise and the topic of the paper. The
external reviewers provided double-blind reviews of the papers. Each submission
without consensus among the external reviewers was assigned to two secondary
PC members and was invited to submit a rebuttal followed by discussion among
the external reviewers. Each secondary PC member made recommendations to
the PC while taking into account the external reviews, the rebuttal, and the dis-
cussion. The list of accepted papers was finalized during a two-day PC meeting
held at MIT during May 17-18, 2014, based on the scores and rankings provided
by the PC members and external reviewers and on the discussion among the PC
members. In all, we accepted 253 papers (29%) to be included in the proceedings
of MICCAI 2014 and presented as posters during the meeting. Of these, 36 were
selected for podium presentation (4%). We congratulate those who had papers
accepted and encourage those who did not to persevere and submit again next
year. Selection of papers for MICCAI is a competitive process and with such
a strong submission pool it is inevitable that many good papers could not be
included in the final program. We sympathize with the authors whose papers
were rejected; we had our own share of rejected papers this year!



VI Preface

In addition to the main conference, MICCAI 2014 offered a rich program of
workshops, computational challenges, and tutorials. We received a fantastic set
of proposals that resulted in an exciting, diverse, and high-quality program. The
workshops provided a comprehensive coverage of topics not fully explored during
the main conference and of emerging areas of MICCAI; the computational chal-
lenges explored empirical solutions to hard open problems; the tutorials provided
educational material for training new professionals in the field. We are grateful
to all workshop, challenge, and tutorial organizers for making these events a
success and to the workshop chairs for creating such a great program.

MICCAI 2014 introduced a completely new Educational Challenge, con-
ceived, organized, and run by the MICCAI Student Board. The long-term goal
is to create a video library of educational presentations for students entering
the fields. The Educational Challenge was a great step in that direction, and
we hope MICCAI will continue to support this effort. Our many thanks go out
to the students who organized the challenge. We would also like to thank our
invited speaker Neville Hogan (MIT, USA) for his presentation on the use of
robots for rehabilitation.

We thank the external reviewers and the PC for volunteering their time
and judgement to provide high-quality reviews and ensure a fair paper selection
process. The continued improvement in the quality of the conference depends
entirely on this tremendous effort. We thank James Stewart of precisioncon-
ference.com for the efficient organization of the website and amazingly fast re-
sponses to our questions and requests for changes. The conference would not be
possible without the commitment and hard work of the MIT Conference Ser-
vices staff that contributed tremendous amount of effort and energy to make
sure all the logistics of the meeting ran smoothly. Our special thanks go out
to Amy Hansen, who singlehandedly compiled the conference proceedings and
conference program brochures, spent many hours in communications with the
authors to ensure their papers are properly included in the proceedings, and
handling many other aspects of the paper submission process. We also thank all
the session chairs for managing and coordinating the presentations during the
conference.

We thank the MICCAI Society for providing valuable input and support
for the conference. We were delighted to have had a chance to organize a 10th
anniversary celebration for the society. Many happy returns! Last but not least,
we would like to thank all our sponsors for their kind support. Their generosity
ensured the highest quality of the conference and essential support to students
and young researchers.

It was our pleasure to welcome MICCAI 2014 participants to Boston. We
look forward to seeing you all again next year in Munich, Germany!

September 2014 Polina Golland
Nobuhiko Hata

Christian Barillot
Joachim Hornegger

Robert Howe
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Abstract. Point Distribution Models (PDM) are some of the most popular 
shape description techniques in medical imaging. However, to create an accu-
rate shape model it is essential to have a representative sample of the underlying 
population, which is often challenging. This problem is particularly relevant as 
the dimensionality of the modeled structures increases, and becomes critical 
when dealing with complex 3D shapes. In this paper, we introduce a new gen-
eralized multiresolution hierarchical PDM (GMRH-PDM) able to efficiently 
address the high-dimension-low-sample-size challenge when modeling complex 
structures. Unlike previous approaches, our new and general framework extends 
hierarchical modeling to any type of structure (multi- and single-object shapes) 
allowing to describe efficiently the shape variability at different levels of reso-
lution. Importantly, the configuration of the algorithm is automatized thanks to 
the new agglomerative landmark clustering method presented here. Our new 
and automatic GMRH-PDM framework performed significantly better than 
classical approaches, and as well as the state-of-the-art with the best manual 
configuration. Evaluations have been studied for two different cases, the right 
kidney, and a multi-object case composed of eight subcortical structures. 

Keywords: Shape models, multiresolution, hierarchical models, PDM. 

1 Introduction 

Since their inception in the early 1990s, active shape models (ASM) [1] have proven 
effective for addressing a number of problems where the target structures are con-
sistent in shape but poorly defined by image features, as is often the case in medical 
images. The success of point distribution models (PDM)-based matching approaches 
depends on an accurate description of the shape class, the expected shape instances, 
and their variations. While a limited number of examples may be sufficient when 
working with relatively simple objects, an adequately large training set is not always 
available as the dimensionality and complexity of the structures increase, as is usually 
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the case when working with 3D multi-object structures. This issue is known as the 
high-dimension-low-sample-size (HDLSS) problem. Trying to overcome this ques-
tion, some authors have proposed interesting versions of the classical PDM, exploit-
ing the possibilities of incorporating multiresolution-based hierarchical analysis to 
shape modeling. Davatzikos et al. [2] proposed the hierarchical decomposition of the 
shape into small pieces of information via the wavelet transform. However, whereas 
the independent modeling of these bands allows reducing the dimensionality of the 
problem, and thus the HDLSS effect, it also reduces the robustness of the model as 
shown in [3]. An interesting attempt to describe the interrelationships between objects 
at different scales statistically is the multiscale framework proposed by Lu et al. [4], 
using m-reps as the geometric representation of shapes. In spite of the valuable 
multiscale properties of m-reps, they are less intuitive than the landmarks-based rep-
resentation used in PDMs, which is probably one of the simplest and most generic 
methods used to represent shapes. Yokota et al. [13] proposed an interesting hierar-
chical statistical model of the femur and pelvis, imposing additional connectivity 
constraints to control the matching between different subparts. In the recent work of 
Cerrolaza et al. [3,5], a new multiresolution hierarchical variant of PDM (MRH-
PDM) was introduced, able to efficiently characterize the different inter-object rela-
tionships, as well as the particular locality of each element separately. Even though 
the potential of this new method in terms of accuracy and robustness improvement 
was successfully verified, there are two main drawbacks that limit its practical appli-
cation. First, the absence of an automatic grouping approach can hinder its use when 
working with complex data with a large number of objects. On the other hand, the 
hierarchical decomposition is limited to multi-object structures, since no intra-object 
analysis is considered within the original framework.  

In this paper, we propose a new Generalized Multiresolutoin Hierarchical PDM 
(GMRH-PDM) that addresses these two important issues, automatic grouping and 
intra-object analysis. The new notation introduced in Section 2 extends the hierar-
chical modeling of PDM even to single-object structures, which leads to a more ver-
satile and generalizable framework. Finally, the configuration of the algorithm (i.e., 
the definition of clusters at each resolution) is automatized thanks to the new agglom-
erative landmark clustering approach described in Section 3. The performance of the 
new GMRH-PDM method is studied for two different cases, the right kidney, and a 
multi-object case composed of eight subcortical structures. 

2 Generalized Multiresolution Hierarchical PDM 

In this section we present a new generalization of the original MRH-PDM formula-
tion described by Cerrolaza et al. [3]. In their work the capability to model variability 
in subparts of a single object was limited, as they considered the single objects as the 
simplest structure to model at the finest resolution levels. Relaxing this condition, we 
go one step further in the development of hierarchical PDMs, introducing a more 
general framework where any possible grouping of landmarks is considered.  
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Let  be the vector form of a 3D shape defined by ∈ ℕ landmarks. In the gen-
eral case of a multi-object shape composed of  ( ∈ ℕ) single-object structures,  
(1 ≤ ≤ ),  is defined by the concatenation of the 3 coordinates of the ∈ ℕ 
landmarks =  ∑  that define each object, i.e. = ( ; … ; ) . Using the 
multi-object generalization [5] of the matrix notation initially proposed by Lounsbery 
et al. [6], the multiresolution analysis of  can be formulated as: 

 =  (1) 

 =  (2) 

where ∈ ℕ indicates the level of resolution (in particular = 0 defines the finest 
level of resolution, and thus, = ), and  and  represent the analysis filters. 
Equation (1) implements the filtering and downsampling of , providing a lower 
resolution version of it (i.e., > , where ∈ ℕ  represents the number of 
landmarks at the resolution level ), while  (2) captures the lost detail between  
and . An optimal selection of these analysis filters guarantees that no information 
is lost during the process, being possible to reverse the analysis process with synthesis 
equation: = + . Lounsbery et al. [6] provide a general multiresolution 
framework to compute the analysis and synthesis filters ( , , , and ) for meshes with 
subdivision connectivity and arbitrary topology. In this work, we define the 
multiresolution domain using the octahedron as the reference mesh [8], with a 4-to-1 
splitting step, and a lifter butterfly scheme for triangular meshes [7]. 

With this method described above, it is possible to decompose any multi object 
structure into different levels of resolution. Whereas MRH-PDM established a specif-
ic division of the  objects into ∈ ℕ disjoint subsets at each level or resolution 
(i.e., only complete objects can be part of a subset), here we propose a more general 
definition of the disjoint subsets allowing any type of groping between the total set of 
landmarks. Thus, at each level of resolution  we define a particular division of the 

 landmarks into  separate clusters, , … , , where  ( = 1, … , ) is 
formed by the indices of the landmarks contained in this subset, and therefore, = ∅ and = (1, … , ). In addition, we impose the following condi-
tion. Suppose  ( ) represents the -th element of the -th subset defined at 
the -1-th resolution level, and  be the propagation of  to -1, then 

 ( ) ⊆  ⟹  ∀ ⊆  (3) 

That is, two sets of landmarks that have been grouped separately at a specific level of 
resolution, should not be jointly modeled at finer levels; or equivalently, the clusters 
created in the resolution -th derived from the fragmentation of clusters in resolution + 1-th (see Fig. 1). Despite the intuitive meaning of (3), there is a challenge yet to be 
resolved: the propagation of the clusters between two consecutive resolutions. Let  be 
a (3 × 1) vector (i.e., the same size as ) containing the labels of the subset to 
which each landmark of  belongs; i.e., if ( )  then ( ) = . With this nota-
tion, we can estimate , the propagation of the subdivision defined by  to the 
landmarks of the following resolution,  -1, by means of the synthesis matrix, . 



4 J.J. Cerrolaza et al. 

 

3 Automatic Landmark Clustering Using Vector Fields 

In this section we introduce a new landmark clustering approach that allows to define 
automatically the division of the landmarks into separate clusters at each resolution. 
The clustering process was initially inspired by the work presented by Roy et al. [9], 
which was originally conducted for vector field segmentation of moving objects in 2D 
videos, and extended to 3D objects by Reyes et al. [10] to study the anatomical varia-
bility of single organs via principal factor analysis. Here we propose a more general 
approach based on the agglomerative hierarchical clustering method presented by 
Ward [11], where the criterion for choosing the pair of clusters to merge at each step 
is based on the minimum value of the tailored objective function:  

 ( ) =  | × || | | | + 1 −   + ( ) (4) 

where ,  and  are real values such that ∑ = 1. ⊆  represents a region 
or subdomain within the set of landmarks  we want to divide into an optimal set of 
clusters. The first component of (4) takes into account the colinearity between defor-
mation vectors within the domain  and the predominant vector direction  in . 
Here, we define the deformation vector of landmark ∈ ,  as the sum of the 
eigenvectors obtained via PDM over , and weighted by their corresponding eigen-
values. Then = { }, and  is defined as the highest eigenvalue of 
the matrix ( ) =   

. The second term in (4) acts as a maximal area con-
straint. The aim of the third term, ( ), defined as the Hausdorff distance between 
the objects that compose  normalized by the maximum distance among objects in 

, is to promote the grouping of objects that are spatially close. When minimizing 
equation (4), it is desirable that the colinearity between deformation vectors be the 
dominant term in the generation of clusters, while the second and third term act as 
additional constraint to guarantee the consistency of the final results, i.e. ≫( , ).  

From the family of partitions provided by Ward’s [11] algorithm, we define the op-
timal landmark division based on a tailored version of the Silhouette coefficient de-
fined below. Suppose landmark  is assigned to cluster . Then, it is possible to 
define how well  is assigned to its cluster as = ( ) − ( \ ), where \  
represents the cluster  after removing . Thus, large  represents a high dissimi-
larity between  and . In the same way, we define the dissimilarity of  to any 
other cluster ( ≠ ) to which  is not member as = , , where , = − ( ), and  represents the union of  and . Constraining the value 
of  and  to the range [0,1] by means of the logistic function, (∙), we define 
the Silhouette coefficient for landmark , , as  

 = ( ) ( ){ ( ),   ( )} (5) 

Since a value of  close to 1 means that  is appropriately clustered in , the 
optimal clustering of  will be the one that maximizes the average . 
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the corresponding PDM. This process is repeated at each resolution until r = R. In 
the transition of each resolution, the high frequency component of the new con-
strained shape, , will be used to recover the original resolution at the end of the 
process using the synthesis equation presented in Section 2. 

5 Results and Discussion 

To evaluate the performance of the new automatic GHMR-PDM approach we use two 
different datasets. First we use a set of 18 T1-weighted brain MRI volumes obtained 
from the Internet Brain Segmentation Repository (IBSR) [12] (pixel resolution 0.94 × 0.94 × 1.5 mm; volumes: 256 × 256 × 128 voxels). In particular, we work 
with a multi-object structure composed of eight subcortical structures ( , … , ), 
corresponding to the left and right lateral ventricles, left and right caudate nuclei, left 
and right putamens, and left and right globus pallidi, respectively (Fig. 1). The per-
formance of the new GMRH-PDM is also tested over a single-object database. We 
use a proprietary dataset of right kidneys from 18 CT abdominal studies (pixel resolu-
tion: 0.58 × 0.58 × 1.00  mm; 512 × 512 × 360  voxels). Following the general 
guidelines described in Section 3, the three configuration parameters of GMRH-PDM, ,  and , are set to 0.8, 0.1 and 0.1, respectively. Experimentally, we observed 
great similarity between the clusters obtained when = [0.7 – 0.9] (using = =(1 − )/2). For < 0.7, the landmarks grouped into a single large cluster, being 
the second and third term of (4) which control the clusterization process. For >0.9 landmarks are over-clustered due to the under-penalization of partitions.  

The resulting automatic configurations for the multi-object and single-object case 
are shown in Figs. 1 and 2 respectively. The behavior of the new modeling approach 
is compared with two alternative methods for the multi-object case: the classical PDM 
[1], and the previous multiresolution hierarchical approach, MRH-PDM, proposed in 
[3, 5]. In particular, we chose the configuration that exhibited best results from all the 
hierarchical configurations manually defined in [5]. Due to the inability of MRH-
PDM to deal with single-object structures, only PDM is considered in the comparison 
for the second/kidney data under study. The accuracy of the different methods to 
model new instances of the underlying population is evaluated in terms of the average 
landmark-to-landmark distance (L2L), and the Dice coefficient (DC), using leave-
one-out cross-validation. Table 1 shows the results obtained for the multi-object case. 
Compared with the classical PDM (avg. L2L error: 1.20 ± 0.49  vox.; avg. DC: 0.87 ± 0.06), both multiresolution hierarchical approaches provide substantial im-
provements in accuracy for all the subcortical structures. With the exception of globus 
pallidi, all improvements over PDM are statistically significant according to the Wil-
coxon signed rank test (p-value < 0.05 for all). Although the new GMRH-PDM per-
formed similarly to the previous hierarchical version, MRH-PDM, in terms of accura-
cy (avg. L2L error:  0.94 ± 0.19  vs.  0.95 ± 0.39  and avg. DC: 0.90 ± 0.04  vs. 0.90 ± 0.05, respectively), it provides a significant advantage over the latter. The 
GMRH-PDM framework introduced in this paper is fully automatic, while the origi-
nal MRH-PDM requires the hierarchical configuration to be manually defined by the 
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user. As the number of possible configurations can be considerably high when work-
ing with large number of objects, it is a nontrivial challenge to find an optimal one by 
simple manual supervised selection. Thanks to the landmark clustering approach pre-
sented in Section 3, GMRH-PDM is able to automatically provide an optimal hierar-
chical decomposition of the structure, while performing as well as the best manual 
configuration of MRH-PDM. But GMRH-PDM has an additional major advantage 
over MRH-PDM as it allows single-object and intra-object analysis. 

Table 1. Accuracy Evaluation. Landmark-to-landmark (L2L) distance and Dice’s coefficient 
(DC) (average / standard deviation) for the three studied methods (PDM, MRH-PDM, and 
GMRH-PDM) over eight subcortical structures ( , … , ) (see Fig. 1). (•)  marks significant 
improvements over classic PDM. 

L2L (vox.)    Avg. 

PDM 1.63/0.41 1.60/0.56 1.30/0.69 1.21/0.39 1.13/0.30 0.97/0.19 0.86/0.24 0.93/0.25 1.20/0.49 

MRH-PDM • 1.28/0.50 • 1.24/0.49 • 0.98/0.48 • 0.86/0.37 • 0.88/0.18 • 0.77/0.20 0.79/0.21 0.82/0.19 • 0.95/0.39 

GMRH-PDM • 1.26/0.45 • 1.23/0.50 • 0.97/0.47 • 0.85/0.36 • 0.88/0.17 • 0.77/0.19 0.78/0.20 0.82/0.20 • 0.94/0.19 

 

DC    Avg. 

PDM 0.80/0.05 0.80/0.07 0.86/0.04 0.86/0.04 0.89/0.02 0.91/0.02 0.91/0.02 0.90/0.03 0.87/0.06 

MRH-PDM • 0.84/0.05 • 0.85/0.06 • 0.88/0.04 • 0.90/0.04 • 0.92/0.02 • 0.93/0.02 0.91/0.02 0.91/0.02 • 0.90/0.05 

GMRH-PDM • 0.85/0.04 • 0.87/0.06 • 0.89/0.03 • 0.90/0.03 • 0.93/0.03 • 0.94/0.02 0.91/0.02 0.92/0.03 • 0.90/0.04 

 
The superiority of GMRH-PDM over PDM to model subparts in single-object 

structures was also proven in the kidney database. In this case, the average L2L errors 
were 0.35 ± 0.19  vs. 0.47 ± 0.2 , and the average DCs were 0.99 ± 0.05  vs. 0.97 ± 0.05 for GMRH-PDM and PDM, respectively (p-value = 0.03 and  0.02 re-
spectively). 

The computational complexity of the new landmark clusterization is ( ), taking ~100 min. to process the most complex multi-object case with 8208 landmarks (code 
written in Matlab®).  However, this is not a determining factor for the practical ap-
plication of the method, since the clusterization can be performed off-line. 

6 Conclusions 

In this paper, we present a new Generalized Multiresolutoin Hierarchical PDM 
(GMRH-PDM) to address the high-dimension-low-sample-size challenge of great 
relevance when modeling complex structures with the classical PDM. The general 
framework introduced here creates different statistical models that allow to describe 
efficiently the variability of the shape at different levels of resolution. The new 
GMRH-PDM also tackles the two main drawbacks observed in previous hierarchical 
approaches: the difficulty of manually defining the hierarchical configuration that 
provides optimal performance, and the impossibility of dealing with single-object 
structures by considering entire objects as the minimum modeling unit. The general 
notation used in GMRH-PDM extends the hierarchical modeling of PDM to any set of 
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landmarks, leading to a more versatile framework able to deal with all types of struc-
tures, even single-object shapes. Finally, the hierarchical configuration of the algo-
rithm is automatically defined by means of a new agglomerative landmark clustering 
approach, whose optimization is controlled by a tailored definition of the Silhouette 
coefficient. The algorithm is compared with two different alternatives, PDM and the 
MRH-PDM. The results show how the new automatic GMRH-PDM significantly 
outperform the classical PDM in terms of accuracy, while providing similar results to 
the best manual configuration of MRH-PDM. GMRH-PDM allows the automatic 
hierarchical modeling of structures, from the multi-object level to the inter- and intra-
object resolution, which can be of great interest in the context of full body computa-
tional anatomy.  In the near future, we plan to continue exploring this capability to 
study population variability and the temporal anatomical variability of organs. 
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Abstract. This paper proposes a novel method for the analysis of anatomical
shapes present in biomedical image data. Motivated by the natural organization of
population data into multiple groups, this paper presents a novel hierarchical gen-
erative statistical model on shapes. The proposed method represents shapes using
pointsets and defines a joint distribution on the population’s (i) shape variables
and (ii) object-boundary data. The proposed method solves for optimal (i) point
locations, (ii) correspondences, and (iii) model-parameter values as a single opti-
mization problem. The optimization uses expectation maximization relying on a
novel Markov-chain Monte-Carlo algorithm for sampling in Kendall shape space.
Results on clinical brain images demonstrate advantages over the state of the art.

Keywords: Shape analysis, hierarchical Bayes, sampling in shape space.

1 Introduction and Related Work

Shape analysis [6,9] entails the inference of shape models from population data and as-
sociated statistical analyses, e.g., hypothesis testing for comparing groups. The natural
organization of biomedical data into groups, and possibly subgroups, calls for a hier-
archical modeling strategy. Previous works on hierarchical shape modeling typically
concern (i) multi-resolution models, e.g., a face model at fine-to-coarse resolutions, or
(ii) multi-part models, e.g., a car decomposed into body, tires, and trunk. In contrast,
the proposed framework deals with population data comprising multiple groups, e.g.,
the Alzheimer’s disease (AD) population comprising people with (i) dementia due to
AD, (ii) mild cognitive impairment due to AD, and (iii) preclinical AD.

Figure 1 outlines the proposed generative model, where (i) top-level variables cap-
ture the shape properties across the population (e.g., all individuals with and without
medical conditions), (ii) variables at a level below capture the shape distribution in dif-
ferent groups within the population (e.g., clinical cohorts based on gender or type of
disease within a spectrum disorder), and (iii) variables at the next lower level capture
individual shapes, which finally relate to (iv) individual image data at the lowest level.
Moreover, the top-level population variables provide a common reference frame for the
group shape models, which is necessary to enable comparison between the groups.

This paper makes several contributions. (I) It proposes a novel hierarchical genera-
tive model for population shape data. It represents a shape as an equivalence class of
pointsets modulo translation, rotation, and isotropic scaling [6]. This model tightly cou-
ples each individual’s shape (unknown) to the observed image data by designing their

P. Golland et al. (Eds.): MICCAI 2014, Part III, LNCS 8675, pp. 9–16, 2014.
c© Springer International Publishing Switzerland 2014
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joint probability density function (PDF) using current distance or kernel distance [8,17].
The current distance makes the logarithm of the joint PDF a nonlinear function of the
point locations. Subsequently, the proposed method solves a single unified model-fitting
optimization problem to estimate optimal point locations, correspondences, and param-
eter values. (II) The proposed model fitting relies on expectation maximization (EM),
treating the individual-shape and group-shape variables as hidden random variables,
thereby integrating them out while estimating parameters (e.g., the population shape
mean and covariance). In this way, the proposed EM algorithm improves over typi-
cal methods that use mode approximation for shape variables. (III) The EM algorithm
entails evaluating an expectation over the posterior PDF of the shape variables. For
instance, the posterior PDF for individual-shape variables involves the (i) likelihood
PDF designed using the current distance and (ii) prior PDF conditioned on the group
shape model. To compute the expectation, the proposed EM algorithm relies on a novel
adaptation of Hamiltonian Monte Carlo (HMC) [5] sampling in Kendall shape space.
(IV) The results show that the hierarchical model leads to more compact model fits and
improved detection of subtle shape variations between groups.

Early approaches [2,6] to statistical shape modeling rely on manually defined ho-
mologous landmarks. Later approaches optimize point positions or correspondences
using statistical compactness criteria such as the (i) logarithm of the determinant of the
model covariance matrix [10], (ii) minimum description length [4,16], or (iii) minimum
entropy [1]. However, these approaches (i) do not incorporate a generative statistical
model, (ii) introduce adhoc terms in the objective function to obtain correspondences,
and (iii) do not estimate shape-model parameters within the aforementioned optimiza-
tion. Some generative models for shape analysis do exist [3,7,12,14], but these models
rely on a pre-determined template shape with manually placed landmarks.

2 Hierarchical Bayesian Shape Model

We first describe the proposed hierarchical model for multigroup shape data (Figure 1).
Data: Consider a group of I vector random variables X := {Xi}Ii=1, where Xi is a

vector random variable denoting a given set of points on the boundary of an anatomical
structure in the i-th individual’s image data. That is, Xi := {Xi(n)}Ni

n=1 where Xi(n) ∈
RD is the D-dimensional spatial coordinate of the n-th point in the pointset. Such points
can be obtained from a given segmentation or delineation of the anatomical structure.
In this paper, D = 3. In any individual’s image data, the number of boundary points
Ni can be arbitrary. Similarly, consider other groups of data, e.g., data Y := {Yj}Jj=1

derived from a group of J individuals, data {Zk}Kk=1, etc.
Individual Shape Variables: For the first group (corresponding to data X), consider

a group of I hidden random variables U := {Ui}Ii=1, where Ui is a vector random
variable representing the shape of the anatomical structure of the i-th individual. That
is, Ui := {Ui(t)}Tt=1 where Ui(t) ∈ RD is the D-dimensional coordinate of the t-
th point in the shape representation of the i-th individual’s structure. We assume the
observations Xi to be derived from the individual shape Ui. Similarly, we consider
hidden random variables, i.e., V , W , etc., representing shapes for the other groups. To
enable intra-group and inter-group statistical analysis, we ensure that all shape models
lie in the same space by enforcing the same number of points T in all shape models.
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Fig. 1. Proposed Hierarchical Generative Statistical Model for Multigroup Shape Data

Group Shape Variables: Consider the first group of shapes U to be derived from
a shape PDF having a mean shape M1 and a shape covariance C1. Consider other
groups of shapes modeled analogously, i.e., V derived from a group with shape mean
and covariance (M2, C2), W derived from a group with shape mean and covariance
(Mn, Cn), etc. This paper treats the group means, i.e., M1, M2,· · · ,Mn, as hidden ran-
dom variables and the group covariances, i.e., C1, C2,· · · ,Cn, as parameters. The pro-
posed method can be generalized to treat the group covariances as random variables.

Population Shape Variables: Consider all group shape means, i.e., M1, M2,· · · ,
Mn, to be derived from a single population of shapes with mean M and covariance
C. In this paper, without loss of generality, we only consider two groups (n = 2) for
simplicity.

Joint PDF: We model the joint PDF with (i) parameters M,C,C1, C2, (ii) group
shape variables M1,M2, (iii) individual shape variables U, V , and (iv) data X,Y as:

P (M1,M2, U, V,X, Y |M,C,C1, C2) := (1)

P (M1|M,C)P (M2|M,C)ΠI
i=1P (Ui|M1, C1)P (Xi|Ui)Π

J
j=1P (Vj |M2, C2)P (Yj |Vj).

PDF of Individual Data given Individual Shape: We model P (Xi|Ui), P (Yj |Vj)
using current distance. Between pointsetsA := {ai}Ii=1 and B := {bj}Jj=1, the squared

current distance is d2K(A,B) :=
∑I

i=1

∑I
i′=1 K(ai, ai′) +

∑J
j=1

∑J
j′=1 K(bj, bj′)−

2
∑I

i=1

∑J
j=1 K(ai, bj), where K(·, ·) is a Mercer kernel. In this paper, K(·, ·) is the

Gaussian kernel with isotropic covariance σ2ID. We use the current distance to define
P (Xi|Ui) := (1/γ) exp

(
−d2K(Xi, Ui)

)
, over finite support, where γ is the normal-

ization constant. The current-distance model allows the number of points in the shape
models Ui to be different from the number of boundary points in the data Xi.

Group Shape PDF: We model P (Ui|M1, C1) as Gaussian with mean M1 and co-
variance C1 and P (Vj |M2, C2) as Gaussian with mean M2 and covariance C2.

PDF of Group Variables given Population Parameters: We model P (M1|M,C)
andP (M2|M,C) as Gaussian with mean M and covarianceC; we choose the Gaussian
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(i) to be maximally non-committal during model design and (ii) as the conjugate prior
for the Gaussian means M1,M2. Under the Gaussian model, strange-looking shapes
can be avoided by preventing over-regularization of the covariance estimate and pre-
venting very large deviations from the mean (which are rare events under the Gaussian).
More importantly, the hierarchical model alleviates this issue by producing covariance
estimates that are more compact and restrict variation over fewer modes (see Figure 3).

3 Fitting the Shape Model to Data Using Monte-Carlo EM

This section presents the EM algorithm for the model-fitting optimization problem. The
parameters in our model are: (i) the population mean M and covariance C and (ii) the
group covariances C1, C2. Denoting θ := {M,C,C1, C2}, the optimal model fit is:

argmax
θ

P (x, y|θ) = argmax
θ

∫
P (u, v,m1,m2, x, y|θ)dudvdm1dm2. (2)

3.1 E Step: Sampling in Shape Space by Adapting the Hamiltonian Monte Carlo

In the i-th iteration, with parameter estimate θ̂i, the E step constructs the Q function as

Q(θ|θ̂i) := EP (U,V,M1,M2|x,y,θ̂i) logP (U, V,M1,M2, x, y|θ). (3)

Because of the analytical intractability of this expectation, we approximate Q(θ|θ̂i) .
=

Q̂(θ|θ̂i) :=
∑S

s=1(1/S) logP (us, vs,ms
1,m

s
2, x, y|θ) using Monte-Carlo simulation.

To sample the set of individual shapes us, vs and the group-mean shapes ms
1,m

s
2 from

P (U, V,M1,M2|x, y, θ̂i), we propose Gibbs sampling coupled with a novel adaptation
of the HMC sampler [5]. Before describing the adapted HMC sampler, we outline the
proposed shape-sampling algorithm for generating a sample of size S:

1. Set the sample index variable s to 0. Initialize the sampling algorithm with the sam-
ple point s = 0 denoted by u0 := {u0

i }Ii=1, v
0 := {v0j }Jj=1,m

0
1,m

0
2.

Given sample point s, sample the (s+ 1)-th sample point as follows.
2. Initialized with us

i , ∀i sample us+1
i ∼ P (Ui|vs,ms

1,m
s
2, x, y, θ̂

i).
3. Initialized with vsj , ∀j sample vs+1

j ∼ P (Vj |us+1,ms
1,m

s
2, x, y, θ̂

i).

4. Initialized with ms
1, sample ms+1

1 ∼ P (M1|us+1, vs+1,ms
2, x, y, θ̂

i).
5. Initialized with ms

2, sample ms+1
2 ∼ P (M2|us+1, vs+1,ms+1

1 , x, y, θ̂i).
6. If s+ 1 = S, then stop; otherwise increment s by 1 and repeat the previous 4 steps.

We ensure the independence of samples between Gibbs iteration s and the next s + 1,
by running the HMC algorithm sufficiently long and discarding the first few samples s.

HMC is a Markov-chain Monte-Carlo sampling algorithm. HMC exploits the gradi-
ent of the log PDF for fast exploration of the space of the random variables. The HMC
approach first augments the original random variables with auxiliary momentum vari-
ables, then defines a Hamiltonian function combining the original and auxiliary vari-
ables, and, subsequently, alternates between simple updates for the auxiliary variables
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Fig. 2. Gradient Projection within HMC for Sampling in Shape Space Left: shows Kendall’s
pre-shape space [9] (dotted hypersphere) that is the intersection of the (bold) hypersphere of
fixed radius ρ (i.e.,

∑
t‖ui(t)‖2 = ρ2; fixes scale) and the hyperplane through the origin (i.e.,∑

t ui(t) = 0; fixes translation). For a pointset ui, log-posterior gradients r1 are projected onto
the hyperplane to produce r2 that eliminates translation. Right: To remove changes in scale, the
resulting projection r2 is then projected onto the tangent space at ui, tangent to the pre-shape
space, and the resulting tangent-space projection r3 is mapped to the pre-shape space via the
manifold exponential map to give r4. The text describes the last part of the projection.

and Metropolis updates for the original variables. HMC proposes new states by com-
puting a trajectory according to the Hamiltonian dynamics implemented with a leapfrog
method and guarantees the new proposal states to be accepted with high probability. In
our case, HMC requires gradients of logP (U, V,M1,M2|x, y, θ̂i) with respect to the
hidden variables {Ui}Ii=1, {Vj}Jj=1,M1,M2.

Using HMC naively leads to pointset updates that can change the location, scale, and
pose of the pointset, thereby making the sampler very inefficient. For this problem, we
propose to modify HMC by replacing the gradient of the log posterior by a projected
gradient that restricts the updated shape to Kendall shape space. As shown in Figure 2,
starting with pointset ui, the log-posterior gradient r1 is first projected onto the preshape
space to produce r4 that has the same centroid and scale as ui. Then, to remove rotation
effects, the resulting pre-shape r4 is rotationally aligned with the ui, yielding r5 (not
shown in figure). These steps project the log-posterior gradient at ui, within HMC, to
generate an updated shape r5 as part of the trajectory within HMC.

3.2 M Step: Parameter Estimation

In iteration i of the EM optimization, the M step maximizes Q̂(θ|θ̂i) over θ and sets
θ̂i+1 ← argmaxθ

∑S
s=1 logP (us, vs,ms

1,m
s
2, x, y|θ). Equating the gradient of this

objective function to zero gives closed-form optimal estimates for all parameters.

4 Group Comparison Using Permutation Testing

After the model is fit to the data, we can perform hypothesis testing to compare any pair
of groups; the null hypothesis is that the two groups of data were drawn from the same
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PDF. Since the shape PDF in each group is modeled using Mahalanobis distances based
on means M1,M2 and covariances C1, C2, we use Hotelling’s two-sample T 2 statistic
to measure dissimilarity between any pair of groups. However, in 3D medical image
data, the dimensionality TD can be very high compared to the number of individuals.
Low sample sizes can render the F-distribution unusable. Simulating shapes with sam-
ple sizes higher than the dimensionality TD can be computationally expensive. Thus,
we propose to employ distribution-free hypothesis testing, namely, permutation testing,
using Hotelling’s T 2 as the test statistic. Permutation testing is conservative in reject-
ing the null hypothesis and enhances robustness to specific modeling choices, e.g., the
cardinality of the shape-model pointsets and internal model free parameters.

5 Results and Discussion

This section shows results on simulated and real data. We assume the input images,
undergoing shape analysis, to be binary or soft masks, having intensities in the range
[−1, 1], that segment the image into the object of interest and the background. For
hypothesis testing, it is less interesting to compare the performances of methods when
the two groups are (i) exactly similar or (ii) differ extremely. The real challenge is in
being able to reject the null hypothesis when the two groups differ in subtle ways.

For the proposed hierarchical model, we initialize the pointsets that model shape as
follows. First, we solve a groupwise registration problem on the mask images, using a
similarity transform, to (i) register the images, representing shape, to a common space
and (ii) find an average (mask) image in that space. We assume the data to be the set of
voxels on the zero crossing of the mask images warped to the common space. Then, we
(i) threshold the average mask to get an object boundary, (ii) embed it as the zero level
set of a signed distance-transform image, and (iii) generate a 3D triangular mesh for the
zero level set using [13]. Finally, we use this mesh-vertex pointset as the initial value for
M , m0

1, m0
2, {u0

i }Ii=1, and {v0j }Jj=1. We set C,C1, C2 to (scaled) identity. We set the σ
for the Gaussian kernel, underlying the current distance, to be the average edge length
in the mesh. With this initialization, we compare the proposed method with a state-of-
the-art algorithm [1], implemented in the open-source software ShapeWorks [15].

5.1 Validation on Simulated 3D Shapes

We simulate 2 groups of ellipsoidal shapes (ellipsoids in canonical form; 20 pointsets
per group), where the groups are subtly different from each other. Two of the axes have
length 1. The lengths of the third axis for the (i) 1st group are drawn from a Gaussian
with mean 0.9 and variance 0.01 and (ii) 2nd group are drawn from a Gaussian with
mean 1.1 and variance 0.01. The pointsets are then rescaled to constant norm.

The proposed method as well as ShapeWorks (i) both employ T = 64 points per
pointset for shape modeling and (ii) both take as input equivalent information, i.e., while
ShapeWorks takes as input a signed-distance-transform image (Figure 3) representing
the ellipsoids implicitly, the proposed method takes as input the corresponding zero-
crossing image. With T = 64, the average distance between a point and its nearest
neighbor, in the shape pointset, is around 10 voxels. For both methods, the covariance
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Fig. 3. Results. Top Row: Ellipsoidal Shapes in Simulated Data. Bottom Row: Hippocampal
Shapes in Clinical Brain MR images. Left to Right: Distance transform image data (2D slice);
Eigenspectra of the population covariance C and the group covariances C1, C2; Permutation
distribution of Hotelling’s T 2 test statistic for ShapeWorks (green) and the proposed method
(blue); the red circle shows the value of the test statistic for the unpermuted group labeling.

estimates are regularized by addition of a scaled identity matrix δI , where δ is a free
parameter; the experiments explore the robustness of both approaches to changes in δ.

Figure 3 (Top Row) shows the results from the proposed method compared to Shape-
Works, for the regularization parameter δ set to 10−4. The proposed method leads to
a fitted model that has smaller variances, at the group level as well as the population
level. This indicates that the proposed method leads to a model that is more compact
and fits the data better; this stems from improvements in optimal point placement and
estimation of correspondences/parametrization. For the permutation distribution of the
Hotelling’s T 2 statistic, the p value for ShapeWorks is 0.05 and that for the proposed
method is 0.001. Varying δ over 10−3, 10−4, · · · , 10−10, we find that the p value for the
proposed method stays at 0.001, but the p value of ShapeWorks varies and is never lower
than 0.05. These results were unchanged when value of the current-distance parameter
σ was multiplied by factors ∈ [0.5, 2]. This indicates that, compared to ShapeWorks,
the proposed method was more robust to changes in δ and consistently produces a p
value that tends to (correctly) reject the null hypothesis significantly more strongly.

5.2 Results on Clinical Brain MR Images: Hippocampal Shapes in Dementia

This section employs clinical brain magnetic resonance (MR) images from the OA-
SIS [11] dataset. We use 10 randomly selected OASIS brains that uniformly sample
the age span, including 4 cases with very-mild to mild Alzheimer’s dementia and 6
controls, having hippocampus segmentations manually performed by a radiologist.

The proposed method and ShapeWorks, both, employ T = 128 points per pointset;
the average distance between a point and its nearest neighbor is around 5 voxels. Fig-
ure 3 (Bottom Row) shows the results using δ = 10−4. These results were unchanged
when value of the current-distance parameter σ was multiplied by factors∈ [0.5, 2]. The
proposed method leads to a fitted model that has smaller variances, indicating a compact
better-fitting model. The p value for ShapeWorks is 0.07. The p value for the proposed
method is 0.03 that indicates a relatively stronger rejection of the null hypothesis.

Discussion: The results show that the proposed hierarchical model and unified-
optimization approach leads to compact-fitting shape models that can differentiate
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subtle variations in hippocampal shapes (open-access data) better than the state of the
art (open-source software). The main originality in the paper is in being able to solve
the three problems of point placement, correspondence, and model-parameter estima-
tion (given data from one or more groups) as a single optimization problem. Another
key originality is in being able to sample in Kendall shape space, using a novel adapta-
tion of HMC sampling using restricted gradients. The proposed framework can benefit
from more accurate and efficient schemes for modeling and estimation.
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Abstract. In this paper we propose a new method for shape analysis
based on the depth-ordering of shapes. We use this depth-ordering to
non-parametrically define depth with respect to a normal control popu-
lation. This allows us to quantify differences with respect to “normality”.
We combine this approach with a permutation test allowing it to test for
localized shape differences. The method is evaluated on a synthetically
generated striatum dataset as well as on a real caudate dataset.

1 Introduction

Population-based shape analysis is of high importance to discriminate for ex-
ample normal subjects from subjects with a particular disease. Many methods
for shape analysis exist. They can be subdivided into global and local analysis
methods. Global analysis methods are designed to detect whether population
shape differences exist [5], but cannot generally locate where these shape dif-
ferences may be, which limits their ability to provide intuitive insights into the
underlying biological mechanism. The main attraction of such methods is that
they often avoid establishing dense correspondences between shapes through
registration. In contrast, while point-to-point correspondences between shapes
allow precise local shape analysis, establishing these correspondences is one of
the main sources of inaccuracy as any misregistration may create artifacts with
respect to the final shape analysis results. Nevertheless, a variety of methods
for local shape analysis have been proposed and successfully used [8,7,1]. In this
work, we explore an alternative method that allows for localized shape analysis,
but only needs very limited (e.g., rigid or affine) spatial alignment of shapes. Our
method uses a depth-ordering of shapes to allow to compare shape populations.

Our Main Contributions in This Paper Are:

1) We propose using depth-ordering on shapes for statistical shape analysis.
2) We develop an algorithm for the fast computation of band-depth for shapes

represented through binary indicator functions.
3) We define statistical tests to differentiate shape populations globally and

locally without an explicit computation of dense correspondences.
4) We demonstrate the method on synthetic and real datasets.

P. Golland et al. (Eds.): MICCAI 2014, Part III, LNCS 8675, pp. 17–24, 2014.
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Sec. 2 describes how to depth-order shapes and discusses how to compute such
a depth-ordering fast. Sec. 3 proposes statistical approaches using depth-ordering
for shape analysis. In Sec. 4, we present experimental results for synthetic and
real datasets. Sec. 5 concludes the paper with a summary.

2 Depth-Ordering of Shapes

A challenge in shape analysis is that there is no canonical ordering of shapes.
Here we leverage the work on ordering of functions from the statistics literature
and extend it to shapes [6]. Once defined the ordering can be used to generalize
traditional order statistics, such as the median or the inter-quartile range, to
shape ensembles. Recently, band-depth has been proposed as one possible way for
ordering functions [9]. Intuitively, the deeper a function is buried within a dataset
the more central it is. The deepest function corresponds to the within-sample
median function. Band-depth has been used to define a functional boxplot [9]. It
has also been extended to contour boxplots [11] defining band-depth on contours
for the visualization of ensemble data. What makes band-depth attractive for
shape-ordering is that shapes can be analyzed as functions if they are represented
by indicator functions, i.e., by binary functions that are 1 inside and 0 outside
of a shape [3]. Band-depth for binary shape representations relates to set unions
and intersections, and it is a natural functional representation of shape.

Given a set of shapes as binary functions, {y1, y2, ..., yn}, with dimension of
(sx, sy, sz), we vectorize them and obtain binary vectors yi ∈ {0, 1}p, where
p = sx × sy × sz. The band-depth for each shape y is defined as follows:

BD(j)
n (y) =

1

C

∑
1≤i1<i2<···<ij≤n

I{G(y) ⊆ B(yi1 , · · · , yij )}. (1)

Here, 1 ≤ j ≤ J , and J is the number of observations used for defining the band,
C is a normalization constant equal to the number of admissible permutations.
G(y) is the graph of the function, G(y) = {(x, y(x)) : x ∈ I}. B is the band
delimited by the observations given as its arguments. That is, B(yi1 , · · · , yij ) =
{(x, y(x)) : x ∈ I,minr=i1,··· ,ij yr(x) ≤ y(x) ≤ maxr=i1,··· ,ij yr(x)}. I{.} de-
notes the indicator function, which evaluates to 1 if the graph of the function is
within the band, or to 0, otherwise. Since the band depth on binary functions
may result in many ties for the resulting depth, it can be modified [9] to

MBD(j)
n (y) =

1

C

∑
1≤i1<i2<...<ij≤n

λm{A(y; yi1 , ..., yij )} (2)

where Aj(y) ≡ A(y; yi1 , ..., yij ) and Aj(y) ≡ {x ∈ I : minr=i1,...,ijyr(x) ≤
y(x) ≤ maxr=i1,...,ijyr(x)}, m is the observation’s dimension, λm(y) =
λ(Aj(y))/λ(I) and λ is the Lebesgue measure on Rm.

However, albeit its conceptual simplicity, one of the main limitations of the
band-depth computation is its computational complexity. Therefore, recently a
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fast method to compute band-depth has been proposed [10] which is based on
computing local curve ranks. However, the proposed algorithm is ill-suited for
binary shape representations as it does not consider ranking ties for the modified
band-depth (MBD) nor special cases where curves can change ordering without
affecting the rank of a specific curve. For binary representations ranking can be
avoided as at any point only two values are possible. The computation of MBD
can then be accomplished efficiently for J = 2. Our algorithm is as follows:

Step 0) Given n binary volumes, {yi}ni=1, vectorize them: yi ∈ {0, 1}p.
Step 1) At each location, k, for a given value v(k) ∈ {0, 1}, we count the number

of functions that have a value larger (na), smaller (nb) or equal (nt) to v:
• if v(k) = 0, then na =

∑n
i=1 yi(k), nb = 0, and nt = n− na − 1

• if v(k) = 1, then na = 0, nb =
∑n

i=1(1− yi(k)), and nt = n− nb − 1
Step 2) We then calculate the number of pairwise combinations containing v(k):

Ck(v(k)) = nanb + (na + nb)nt + nt(nt − 1)/2 + (na + nb + nt).

For binary functions na and nb cannot simultaneously be different from zero.
Furthermore, na + nb + nt = n− 1, which simplifies the expression to

Ck(v(k)) = (na + nb)nt + nt(nt − 1)/2 + n− 1.

Step 3) The modified band-depth for a curve yi is then

MBD(yi) =
1

p

(
n
2

)−1 p∑
k=1

Ck(yi(k)),

where the notation Ck(yi(k)) denotes computing Ck based on the coefficients
na, nb, nt given by the value of yi at location k.

In comparison to the original band-depth algorithm our computing complex-
ity is reduced from O(pn3) to O(pn). This makes the computation for large
populations and large multi-dimensional shapes (we will focus on 2D surfaces
in 3D here) possible. Furthermore, it enables us to perform permutation tests
based on band-depth computations as discussed in Sec. 3.

3 Statistics Using Depth-Ordering

Band-depth measures the relationship between a shape and a reference popula-
tion. A higher value indicates the shape is closer to the median, and a lower one
indicates the shape is a potential outlier with respect to the reference population.
Based on this property of band-depth we can perform global shape analysis as
described in Sec. 3.1 as well as local shape analysis as described in Sec. 3.2. For
all these analyses we assume that shapes have been pre-aligned as appropriate.
Typically this will either involve a rigid, similarity or affine alignment of shapes
to a template or some form of unbiased atlas-building method. The choice of
transform will depend on the objective of a given study. E.g., if size differences
should be included rigid alignment would be appropriate. The key ingredient
to performing statistics using depth-ordering is to compute depth-ordering with
respect to a reference population of shapes that are used as a non-parametric
model of shapes, with respect to which depth is measured.
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3.1 Global Shape Analysis
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(a) w.r.t. ref. (b) without ref.

Fig. 1. Global shape analysis using band-depth with
(a) and without (b) a reference population. A refer-
ence population allows detection of shape differences.

Given a dataset {Ri} con-
taining a reference popula-
tion of shapes, we compute
the band-depth for a given
datum D, from a set of input
test shapes {Dj}, by com-
puting the band-depth for all
the data in {Ri}

⋃
D and

assign the resulting band-
depth for D to D, denoted
as BD(D; {Ri}). This is sub-
stantially different from di-
rectly computing the band-depths for the dataset {Dj}. In the proposed method
the reference population forms a “yard-stick” by which to judge data-depth. In
the latter case data-depth is defined with respect to the dataset itself which
is problematic as band-depth does not have a sense of directionality, but only
a sense of how close a data-element is to the deepest data-element. For differ-
ent populations which should be discriminated this consequentially leads to a
data-mingling which no longer allows for a discrimination of the populations. To
illustrate this effect Fig.1 shows results for the two approaches for the synthetic
striatum data described in detail in Sec. 4.1. The proposed approach can clearly
differentiate the populations whereas a joint computation of the band-depth is
not successful.

3.2 Local Shape Analysis

The local analysis is based on the the central regions of the reference population.
By gradually adding the deepest shapes according to their band-depth, one can
assign α values, the proportion of the added reference shapes, describing the
“centrality” of a shape population at each point in the domain. A test shape can
be overlaid on this centrality map and the corresponding α values recorded on its
surface, thus providing a local measure of shape abnormality. Fig. 2 illustrates
this concept for a population of two-dimensional shapes. Given the reference
shapes shown in Fig. 2(a), we compute their α-central level sets based on the
band-depth. As shown in Fig. 2(b), the deepest shape has the lowest α value
(light blue) and the most outlying shape has the highest α value (dark blue).
A local measure of “belonging” to the population can then be computed for a
test shape by tracing the α-central region it traverses as shown in Fig. 2(c).
Note that some regions of the shape may not be covered by the reference shape
population, so we use a dilation procedure starting from the boundary of α = 1
central region, evolving at a constant speed until all voxels of the volume are
covered, e.g., the regions colored with the darkest blue in Fig. 2(c).
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(a) Reference and test shapes (b) α-central region levelsets (c) Local measure of shape

Fig. 2. (a) Reference shape population (blue contours) defines (b) α-central level sets
(light to dark blue corresponds to most to least central) that provides a local measure
(c) of how deeply a shape (red) is buried with respect to the reference population. The
dilated region is colored with the darkest blue and has a value greater than 1.

4 Experimental Results

4.1 Synthetic Data Experiments

Using synthetic data allows us to introduce a predefined shape change which we
wish to recover using our proposed approach. We used the technique described
in [2] to generate large data sets of realistic shapes with known deformations.
In short, a manifold learning technique is used to generate arbitrarily many
shapes from a small training sample. A joint clustering algorithm is then ap-
plied to parcellate each shape’s surface into small regions which are consistently
located across all shapes. Finally, a Log-Euclidean framework is used to introduce
smooth, invertible and anatomically realistic deformations to one or multiple re-
gions as defined by the clustering. For this application, we generated 160 shapes
based on 27 manually traced striatums. We then modified 80 of them by thick-
ening the putamen. We evenly divide 80 normal controls into two groups. One is
used for the reference group (NC-Train), and the other is for testing (NC-Test).
In the 80 abnormal subjects, we randomly pick 40 of them for testing.

Global Analysis. To test for group separability, we performed a permutation
test (10000 permutations) on the mean depth of the NC-Test versus the abnormal
group. When using the NC-Train to compute band depth, the resulting p-value
is 0, indicating the normal controls and the disease subjects are significantly
different. On the other hand, as shown in Fig. 1, when pooling all shapes together
to compute their band depths, no significant difference is detected.

Local Analysis. We used the NC-Train group to estimate the set of α central
regions of a “normal” population and tested the median shapes of the NC-
Test and abnormal population against it as shown in Fig. 3(a). In addition, to
displaying α values, we performed a non parametric statistical analysis, based on
a permutation test procedure. A template median shape is first computed, then
α regions are computed for each group and differences in α values are recorded at
each point of the template. 10000 permutations are performed and we count the
number of α values that are larger than the one computed with no permutation.
The p-values are shown in Fig. 3(b). Fig. 3(c) reveals the false discovery rate
(FDR) of p-values.
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4.2 Real Data Experiments

(a) Local measure with α value

(b) Raw p-values with 10000 permutations

(c) FDR of p-values

Fig. 3. Local analysis on synthetic striatum with α
values (a) on normal (left) and abnormal (right) me-
dian shapes, and corresponding p-values (b), as well
as the FDR of p-values (c)

Magnetic Resonance Images
(MRI) of the brains of 28
neuroleptic-näıve female sub-
jects diagnosed with Schizo-
typal Personality Disorder
(SPD) and of 25 female nor-
mal control subjects were ac-
quired on a 1.5-T General
Electric MR scanner. Spoiled-
gradient recalled acquisition
(SPGR) images (voxel dimen-
sions 0.9375 0.9375 1.5
mm) were obtained coro-
nally. The caudate nucleus
was delineated manually by
an expert. This data set
was used in previous vol-
umetric and shape analy-
sis studies [4]. All the cau-
date shapes are pre-aligned
using rigid transformation.

Global Analysis. Unlike our
synthetic data experiment, we
do not have enough controls
to have non overlapping train-
ing and testing data sets. We
thus use a leave-one-out method to compute the depth for normal controls, and
use the whole control group as the reference to compute the depth for the SPD
group. Fig. 4 demonstrates the global differences between normal controls and
SPDs, for both left and right caudate. We also use 10000 permutation tests to
measure the significant difference of depth for both normal controls and SPD
group, resulting in p-values, 0.48 for the left caudate and 0.21 for the right cau-
date. This indicates based on the global depth-based analysis, both left and right
caudates are not significantly different in the SPD and the NC populations.
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(a) Left caudate (b) Right caudate

Fig. 4. Band-depth for left and right caudate

Local Analysis. For the lo-
cal shape analysis, we com-
pute the local α values for
the median shape of the SPD
group, by using the normal
control group as the refer-
ence shape population. Sim-
ilar to the permutation test
for the synthetic data, the
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(a) left lateral, p-value (b) left medial, p-value

(c) right lateral, p-value (d) right medial, p-value

Fig. 5. Local p-values. Left caudate SPD median with respect to NC (top), right cau-
date SPD median with respect to NC (bottom).

p-values with 10000 permutations are shown in Fig. 5. Our method can cap-
ture the abnormal region, but based on the local p-values only relatively small
regions of the SPD group seem to be significantly different from normal controls.

5 Discussion and Conclusion

In this paper we presented a shape analysis framework that can provide both
global and local information, yet does not require complex processes to estab-
lish point-to-point correspondences. Instead we use the notion of band-depth of
functions to order shapes according to how well they “fit in” a shape ensemble.
This method allows for the definition of a median and α-central regions of a
population, which can then be used to compare different population of shapes.

Different from [3], which focuses on augmenting a population atlas with sta-
tistical information using weighted band depth, we proposed a fast algorithm
to compute the band-depth of shapes represented by binary maps, and most
importantly showed how band depth can be used to provide both global and
local statistical tests to differentiate between populations. In contrast to other
deformation based tools for shape analysis, our approach is non-parametric and
naturally captures the probability of a shape belonging to a population. Al-
though it does not provide physical measurements of displacement, these can be
computed by deformation or a distance transform to the population median.

Our method was successfully tested with synthetic data, where we were able
to clearly separate groups and localize an artificially induced shape change. In
addition, our real data experiment supports previous results on shape differences
in the caudate of females with SPD, namely, a right sided shape difference in
the body of the caudate.



24 Y. Hong et al.

Acknowledgements This work was supported by NIH grants R01-MH082918,
P41EB002025, and R01-HL105241.

References

1. Davies, R., Twining, C., Taylor, C.: Statistical Models of Shape: Optimisation and
Evaluation. Springer, London (2008) 17

2. Gao, Y., Bouix, S.: Synthesis of realistic subcortical anatomy with known surface
deformations. In: Levine, J.A., Paulsen, R.R., Zhang, Y. (eds.) MeshMed 2012.
LNCS, vol. 7599, pp. 80–88. Springer, Heidelberg (2012) 21

3. Hong, Y., Davis, B., Marron, J.S., Kwitt, R., Niethammer, M.: Weighted functional
boxplot with application to statistical atlas construction. In: Mori, K., Sakuma, I.,
Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013, Part III. LNCS, vol. 8151,
pp. 584–591. Springer, Heidelberg (2013) 18, 23

4. Levitt, J.J., Styner, M., Niethammer, M., Bouix, S., Koo, M.S., Voglmaier,
M.M., Dickey, C.C., Niznikiewicz, M.A., Kikinis, R., McCarley, R.W., Shenton,
M.E.: Shape abnormalities of caudate nucleus in schizotypal personality disorder.
Schizophrenia Research 110(1-3), 127–139 (2009) 22

5. Loncaric, S.: A survey of shape analysis techniques. Pattern Recognition 31(8),
983–1001 (1998) 17
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Abstract. This paper presents a novel algorithm to obtain landmark-based
genus-1 surface registration via a special class of quasi-conformal maps called
the Teichmüller maps. Registering shapes with important features is an important
process in medical imaging. However, it is challenging to obtain a unique and
bijective genus-1 surface matching that satisfies the prescribed landmark con-
straints. In addition, as suggested by [11], conformal transformation provides the
most natural way to describe the deformation or growth of anatomical structures.
This motivates us to look for the unique mapping between genus-1 surfaces that
matches the features while minimizing the maximal conformality distortion. Ex-
istence and uniqueness of such optimal diffeomorphism is theoretically guaran-
teed and is called the Teichmüller extremal mapping. In this work, we propose
an iterative algorithm, called the Quasi-conformal (QC) iteration, to find the Te-
ichmüller extremal mapping between the covering spaces of genus-1 surfaces.
By representing the set of diffeomorphisms using Beltrami coefficients (BCs),
we look for an optimal BC which corresponds to our desired diffeomorphism
that matches prescribed features and satisfies the periodic boundary condition on
the covering space. Numerical experiments show that our proposed algorithm is
efficient and stable for registering genus-1 surfaces even with large amount of
landmarks. We have also applied the algorithm on registering vertebral bones
with prescribed feature curves, which demonstrates the usefulness of the pro-
posed algorithm.

1 Introduction

Surface registration is increasingly used in morphometric analysis. By finding a mean-
ingful one-to-one correspondence between anatomical surfaces, statistical shape anal-
ysis, processing of signals on anatomical surfaces (e.g., denoising or filtering) and
age-related comparison can be achieved. In landmark-based registrations, landmarks
are extracted to guide the registration process to obtain a meaningful transformation.
Through labeling landmarks, medical experts and doctors can get involved in the pro-
cess to assure good correspondences between the surfaces. However, obtaining a unique
and bijective registration that matches features consistently is generally challenging,
especially when a large number of landmark constraints are enforced. Developing an
effective algorithm for registration is therefore very important.

Surface registration between simple surfaces, such as simply-connected open sur-
faces or genus-0 closed surfaces, has been extensively studied. However, as far as we
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know, very few literatures have been reported on the registration between genus-one
surfaces. The high-genus topology of the surfaces poses a great challenge to register
the surfaces. For example, the vertebral shape is commonly analyzed through simple
geometric measurements of dimensions, which only describe limited features of the
complex vertebral shape. In order to provide a more comprehensive description, a more
sophisticated landmark-based surface registration is essential for analyzing both local
and global geometric information of a vertebral shape.

Motivated by this, we are interested in searching for the unique and bijective
landmark-matching diffeomorphism which minimizes the maximal conformality distor-
tion. The conformality distortion measures how far the mapping is deviated from a con-
formal mapping, and hence it measures the local geometric distortion.. The existence
and uniqueness of such a mapping is theoretically guaranteed by the Quasi-conformal
Teichmüller theory [2], and is named the Teichmüller extremal map. In this paper, we
propose a novel algorithm to compute the Teichmüller extremal map between genus-1
surfaces. Experiments on vertebral bones are also reported to show the accuracy and
effectiveness of the proposed algorithm.

2 Previous Work

Landmark-based registration has been widely studied in medical imaging, computer
graphics and computer visions. Various algorithms have been proposed to match fea-
ture landmarks consistently. For example, Bookstein et al.[1] proposed to obtain a reg-
istration that matches landmarks as much as possible using a thin-plate spline regular-
ization (or biharmonic regularization). Gu et al. [4,5] proposed to compute the confor-
mal parameterizations of human brain surfaces for registration using harmonic energy
minimization and holomorphic 1-forms. Conformal registration is advantageous for the
preservation of the local geometry. However, it cannot align landmark features, such as
sulci landmarks on brain surfaces, consistently. Sometimes, deformation between ob-
jects might not be conformal. Instead, certain amount of angular distortion could be
introduced. To tackle with this problem, quasi-conformal mappings have been applied
to obtain surface registration with bounded conformality distortion [8,9]. Introduction
of time-dependent vector fields for registration is also proposed [7,3]. For example,
Glaunés et al. in [3] presented to generate large deformation diffeomorphisms of a
sphere, with given displacements of a finite set of template landmarks. The time de-
pendent vector fields facilitate the optimization procedure, but the computational cost
of the algorithm is comparatively more expensive.

3 Mathematical Background

3.1 Quasi-Conformal Map

Quasi-conformal maps are orientation preserving homeomorphisms between Riemann
surfaces with bounded conformality distortion. Intuitively, they take infinitesimal
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circles to infinitesimal ellipses of bounded eccentricity. Mathematically, f : C → C is
quasi-conformal provided that it satisfies the Beltrami equation:

∂f

∂z̄
= μ(z)

∂f

∂z
(1)

for some complex-valued function μ satisfying ‖μ‖∞ < 1. The function μ is a measure
of non-conformality and is named the Beltrami coefficient. In particular, a map f is
conformal at p if μ(p) = 0. Denote i =

√
−1 and f = u + iv. From the Beltrami

equation (1),

μ(f) =
(ux − vy) + i(vx + uy)

(ux + vy) + i(vx − uy)
(2)

Let μ(f) = ρ+ iτ . We have the following linear combinations between ux, uy, vx and
vy: {

−vy = α1ux + α2uy

vx = α2ux + α3uy
;

{
−uy = α1vx + α2vy
ux = α2vx + α3vy

(3)

where α1 = (ρ−1)2+r2

1−ρ2−r2 ; α2 = 2r
1−ρ2−r2 ; α3 = 1+2ρ+ρ2+r2

1−ρ2−r2 . By taking divergence on
both sides of equations (3), we obtain

∇ ·
(
A

(
ux

uy

))
= 0; ∇ ·

(
A

(
vx
vy

))
= 0, where A =

(
α1 α2

α2 α3

)
(4)

According to the Quasi-conformal Teichmüller theory, a quasi-conformal map can be
uniquely determined up to Mobiüs transformations. Ambiguity of the Mobius transfor-
mation can be eliminated by providing three points correspondence, in which a unique
solution can be obtain from equation (4).

3.2 Teichmüller Extremal Map

Let μ(f) be the Beltrami coefficient of f . Define the maximal dilation of f to be:

K(f) =
1 + ‖μ(f)‖∞
1− ‖μ(f)‖∞

. (5)

Using maximal dilation, we can define extremal map as:

Definition 1 Let f : S1 → S2 be a quasi-conformal mapping between S1 and S2. f
is said to be an extremal mapping if for any quasi-conformal mapping h : S1 → S2

isotopic to f relative to the boundary,

K(f) ≤ K(h) (6)

It is uniquely extremal if the inequality (6) is strict when h = f .

Another kind of mapping, called the Teichmüller mapping, is closely related to the
extremal mapping. Teichmüller mapping is defined as follows:
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Definition 2 Let f : S1 → S2 be a quasi-conformal mapping. f is said to be a
Teichmüller mapping associated to the quadratic differential q = ϕdz2 where ϕ : S1 →
C is a holomorphic function if its associated Beltrami differential is of the form:

μ(f) = k
ϕ

|ϕ| (7)

for some constant k < 1 and quadratic differential q = 0 with ||q||1 =
∫
S1
|ϕ| <∞.

Let S1 and S2 be Riemann surfaces with the same topology. Let {pi}ni=1 ∈ S1 and
{qi}ni=1 ∈ S2 be the corresponding interior landmark constraints. A Teichmüller map-
ping f between S1 and S2, which satisfies the landmark constraints, is actually the
unique extremal map. With this, both uniqueness and existence of landmark match-
ing Teichmüller extremal map can be guaranteed. We can therefore obtain a unique
landmark matching registration by searching for an optimal Beltrami coefficient whose
maximal dilatation is the minimum. For details, please refer to [2].

4 Proposed Algorithms

In this section, we explain our algorithm for obtaining a feature aligned Teichmüller
extremal mapping between genus-1 surfaces. The basic idea is to first embed the sur-
faces into their universal covering spaces and find the Teichmüller extremal mapping
between their conformal parameterizations.

Fig. 1. Torus & Ω Fig. 2. Vertebral bone 1 Fig. 3. Vertebral bone 2

4.1 Embed Genus-One Surface into the Euclidean Plane

The embedding of the genus-1 surface is computed using the Ricci flow method intro-
duced by Gu et al. [6]. The basic idea of Ricci flow is to conformally deform the metric
g = (gij(t)) according to its induced Gaussian curvature K(t). Mathematically, we
have

dgij(t)

dt
= −2(K(t)− K̄)gij(t) (8)

where we set K̄ = 0 for genus-one to be the target curvature. Convergence of this pro-
cess is guaranteed by Hamilton’s theorem. g(∞) is the desired uniformization metric.
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Let S be a genus-1 surface and p be a base point for S. Two closed loops based at p
are introduced to slice the genus-1 surface into the fundamental domain. With the uni-
formization metric, the fundamental domain can be conformally embedded onto a 2D
domain Ω ∈ R2, called the fundamental polygon (See Figure 1). Denote the boundaries
and vertices of the polygon as {a1, a2, a−1

1 , a−1
2 } and {pi} respectively. The boundary

pairs {a1, a−1
1 },{a2, a−1

2 } and vertices {pi} correspond to the closed loop and the sin-
gle based point introduced. Note that ai and a−1

i , i = 1, 2 are related by ϕi(ai) = a−1
i ,

where ϕi are translations in R2. Therefore, periodic constraints are enforced in the
boundaries of the fundamental polygon. With this conformal parameterization, registra-
tion can be done on the fundamental domains instead of the complex genus-1 surfaces.
For details, please refer to [6,10].

4.2 Computing the Teichmüller Extremal Mapping between Parameter
Domains

Let Ω1 and Ω2 be the fundamental polygons of two genus-1 surfaces S1 and S2 re-
spectively. Denote the boundaries and vertices of Ω1 and Ω2 by {a1, a2, a−1

1 , a−1
2 },

{pS1

i } and {b1, b2, b−1
1 , b−1

2 }, {pS2

i } respectively. As the boundary cuts of S1 and S2

may not be consistent, only periodic constraints are considered during the registration.
Let {rk}nk=1 and {qk}nk=1 be the landmark correspondences on Ω1 and Ω2 respec-
tively. Mathematically, the problem of finding Teichmüller extremal mapping between
the fundamental domains can be formulated as follows:

f = argminf :Ω1→Ω2
‖μ(f)‖∞ (9)

subject to:

– μ(f) = k ϕ̄
|ϕ| where 0 ≤ k < 1 and ϕ : Ω1 → C is integrable holomorphic;

– ϕi(f(ai)) = f(a−1
i ) for i = 1, 2; (Periodic constraints) (10)

– f(pS1

i ) = pS2

i for i = 1, ..., 4; (Base points consistency) (11)
– f(rk) = qk for k = 1, 2, ..., n. (Landmark constraints) (12)

To solve the above minimization problem, we propose an iterative scheme called the
Quasi-conformal (QC) iteration. The basic idea is to find a path in the space of all
Beltrami coefficients, which approaches from μ = 0 to the unique admissible Beltrami
coefficient ν∗ of Teichmüller type. The process is summarized in Algorithm 1. For the
convergence of Algorithm 1, please refer to [12].

5 Experimental Results

To evaluate the proposed algorithm, we apply it on the vertebral bones to compute the
Teichmüller extremal map between 5 pairs of vertebral bones with prescribed feature
points and landmark curves as landmarks (See Figure 2 & 3). There are two landmark
curves labeled on the top and bottom side of the cortical rim and ten features marked
on other parts of each vertebral bone. To register between a pair of vertebral bones,
we first parameterize them into the fundamental domains Ω1 and Ω2 by the Ricci flow
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Algorithm 1: QC-iteration
Input: Ω1 and Ω2; landmark constraints {rk} and {qk}.
Output: Optimal Beltrami coefficient ν and the Teichmüller extremal map f

1 Initial: ν0 = 0;
2 repeat
3 Update f = (u, v) by solving (4) with νn+1 and constraints (10),(11) and (12);
4 Compute μn+1 := A(L(νn)), where L is the laplace smoothing operator and

A(μ) =

∫
Ω1

|μ|dΩ1

/∫
Ω1

dΩ1;

Update f = (u, v) by solving (4) with μn+1 and constraints (10),(11) and (12);
5 Set νn+1 := μ(f), where μ(f) is the Beltrami coefficients of f
6 until ‖νn+1 − νn‖∞ ≤ ε;

Fig. 4. Fundamental polygon Ω1 Fig. 5. Registered polygon and Ω2

Fig. 6. Vertebral bone S1 Fig. 7. Resultant registration Fig. 8. |μ| on surface

method. Using the QC iteration, the Teichmüller extremal mapping f : Ω1 → Ω2

which satisfies the landmark constraints is obtained. Since no hard constraints is en-
forced on the cutting boundaries in the algorithm, the cutting boundaries of Ω1 can
move freely on the universal covering space, which satisfy the periodic conditions. Fig-
ure 5 shows the obtained Teichmüller extremal map between the covering spaces. Once
the Teichmüller extremal map is computed, we can obtain the registration between the
vertebral bones S1 and S2 by a composition of functions φ−1

2 ◦ f ◦ φ1 = T : S1 → S2.
The resultant registration is shown in Figure 7. The mesh is obtained by deforming the
source vertebral bone (Figure 6) to the target surface (Figure 3). Landmark curves and
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Table 1. Summary of the comparison experiment

Method emax emean ‖μ‖∞ SD(|μ|) dH Time (s)
Proposed 0 0 0.4193 0.0147 0.82 10.91s
rigid ICP 0.1467 0.0389 1.08e−13 5.33e−15 12.44 4.46s

non-rigid ICP 0.0798 0.0402 0.9841 0.1710 4.55 223.07s

feature points are exactly matched after the registration process. Figure 8 also shows
|μ(f)| of the Teichmüller Extremal mapping, which is represented by the color on the
vertebral bone surface. An even color distribution on the surface and a small standard
deviation of the BC norm of 0.001823 indicate that the resultant mapping is actually
of Teichmüller type. By the properties of Teichmüller map, the registration obtained is
guaranteed to be bijective. This demonstrates that our proposed algorithm can effec-
tively provide the unique registration result which minimizes the maximal conformality
distortion. We have also computed the Teichmüller extremal mappings between a set
of vertebral bones to construct the mean surface (Figure 9). Both feature points and
the landmark curves are well-preserved, illustrating that the landmarks are consistently
matched under the proposed registration algorithm.

To validate the invariance of the choice of cutting boundaries during the embedding
process, we manually labeled two arbitrary simple closed loops (blue-red loops in Fig-
ure 10) with the same base point and run the proposed algorithm. Figure 11 shows the
histogram of the optimal Teichmüller type BCs |μg| and |μbr| from the cases of green
loops and blue-red loops respectively. Experiment shows that both registration results
are coincident, with ‖|μg| − |μbr|‖∞ = 0.0021, indicating that our proposed algorithm
is invariant to the initial choice of the cutting boundaries. We have also compared our
implementation with rigid ICP and non-rigid ICP. The result is summarized in Table 1.
For ease of comparison, we first normalize every vertebral bone to fit into a unit cube. In
terms of the mean and maximum landmark matching errors (emean, emax), our proposed
method outperforms the two point-based registration methods. The Hausdorff distance
dH between the registration result and the target also shows that our proposed method
has a better overlay percentage to the target object. With the sacrifice of the registra-
tion accuracy, almost no conformality distortion is introduced by the rigid ICP, while
the non-rigid ICP produces a large distortion of 0.9841. Our proposed algorithm thus
provides a balance between the computation requirement and the registration accuracy.

Fig. 9. Vertebral bone mean surface Fig. 10. Different loops Fig. 11. |μg | & |μbr|
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6 Conclusion and Future Works

This paper presents a novel method to compute the Teichmüller extremal mapping with
prescribed landmark correspondences between genus-1 surfaces, which minimizes the
maximal conformality distortion. By the Teichmüller theory, existence and uniqueness
of such mapping is guaranteed. We applied the proposed algorithm for the vertebral
bone registration and the construction of mean surface of vertebral bones. Experimental
results show that our method is effective in computing bijective feature aligned regis-
tration with smallest maximal conformality distortion. In the future, we plan to extend
the proposed method to higher-genus surfaces and apply the method to more real appli-
cations in medical imaging for disease analysis.

Acknowledgements. This research is supported by the HKRGC GRF (CUHK Project
ID: 404612).

References

1. Bookstein, F.L.: Principal Warps: Thin-Plate splines and the decomposition of deformations.
IEEE Trans. Pattern Anal. Machine Intell. 11(6), 567–585 (1989)

2. Gardiner, F., Lakic, N.: Quasiconformal Teichmuller Theory. American Mathematics Society
(2000)

3. Glaunès, J., Vaillant, M., Miller, M.I.: Landmark Matching via Large Deformation Diffeo-
morphisms on the Sphere. JMIV 20(1-2), 179–200 (2004)

4. Gu, X.F., Wang, Y., Chan, T.F., Thompson, P.M., Yau, S.T.: Genus zero surface confor-
mal mapping and its application to brain surface mapping. IEEE Trans. Med. Imag. 23(8),
949–958 (2004)

5. Hurdal, M.K., Stephenson, K.: Discrete conformal methods for cortical brain flattening. Neu-
roimage 45(1), 86–98 (2009)

6. Jin, M., Kim, J., Luo, F., Gu, X.F.: Discrete surface Ricci flow. IEEE Trans. Visual. Comput.
Graphics 14(5), 1030–1043 (2008)

7. Joshi, S., Miller, M.I.: Landmark matching via large deformation diffeomorphisms. IEEE
Trans. Image Processing 9(8), 1357–1370 (2000)

8. Lui, L.M., Thiruvenkadam, S., Wang, Y., Chan, T.F., Thompson, P.M.: Optimized confor-
mal parameterization of cortical surfaces using shape based matching of landmark curves.
In: Metaxas, D., Axel, L., Fichtinger, G., Székely, G. (eds.) MICCAI 2008, Part I. LNCS,
vol. 5241, pp. 494–501. Springer, Heidelberg (2008)

9. Lui, L.M., Wang, Y., Chan, T.F., Thompson, P.M.: Landmark constrained genus zero surface
conformal mapping and its application to brain mapping research. Appl. Numer. Math. 57(5),
847–858 (2007)

10. Lui, L.M., Wen, C.F.: Geometric Registration of High-Genus Surfaces. SIIMS 7(1), 337–365
(2014)

11. Thompson, D.W.: On growth and form (1942)
12. Lui, L.M., Gu, X.F., Yau, S.T.: Convergence analysis of an iterative algorithm for Teichmüller

maps via harmonic energy optimization. Math. Comp. (2014)



Subject-Specific Prediction Using Nonlinear

Population Modeling: Application to Early
Brain Maturation from DTI

Neda Sadeghi1, P. Thomas Fletcher1, Marcel Prastawa2, John H. Gilmore3,
and Guido Gerig1

1 Scientific Computing and Imaging Institute, University of Utah
2 GE Global Research

3 Department of Psychiatry, University of North Carolina

Abstract. The term prediction implies expected outcome in the future,
often based on a model and statistical inference. Longitudinal imaging
studies offer the possibility to model temporal change trajectories of
anatomy across populations of subjects. In the spirit of subject-specific
analysis, such normative models can then be used to compare data from
new subjects to the norm and to study progression of disease or to predict
outcome. This paper follows a statistical inference approach and presents
a framework for prediction of future observations based on past measure-
ments and population statistics. We describe prediction in the context of
nonlinear mixed effects modeling (NLME) where the full reference popu-
lation’s statistics (estimated fixed effects, variance-covariance of random
effects, variance of noise) is used along with the individual’s available ob-
servations to predict its trajectory. The proposed methodology is generic
in regard to application domains. Here, we demonstrate analysis of early
infant brain maturation from longitudinal DTI with up to three time
points. Growth as observed in DTI-derived scalar invariants is modeled
with a parametric function, its parameters being input to NLME popu-
lation modeling. Trajectories of new subject’s data are estimated when
using no observation, only the first or the first two time points. Leave-
one-out experiments result in statistics on differences between actual and
predicted observations. We also simulate a clinical scenario of prediction
on multiple categories, where trajectories predicted from multiple models
are classified based on maximum likelihood criteria.

1 Introduction

Longitudinal data analysis can provide further insight into growth, degeneration
or disease progression by analyzing change trajectories rather than snapshots in
time. In this setting, individual subjects’ trajectories can be compared to the
normative models computed via population modeling. One can then identify
the timing of deviation from typical trajectories, interventions can be targeted
toward a specific developmental period, or predicted trajectories can be used for
assessment of disease risk during prodromal stage or for measuring efficacy of
disease-modifying therapies, for example.
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Fig. 1. Prediction based on reference population and new individual’s scan(s). Left:
Population trajectory constructed based on the reference population. Middle: Popula-
tion trajectory along with predicted interval. Right: Can we predict the new individual’s
trajectory based on new scan(s) and the reference population?

The term prediction can be used in very different contexts and with different
goals. E.g., genetics may predict risk for disease, a patient score or disease status
may be predicted from imaging biomarkers, or physiological age is predicted
from sets of measurements. Here, we focus on the notion of statistical inference
to predict a future observation of a new subject given a model for the temporal
trajectory, comprehensive statistics from training on population data, and a set
of past observations from this subject (Fig. 1). The predicted observation with
confidence bounds, or more general the prediction of the whole trajectory with
variability, can then be used to estimate deviation from the norm. In addition,
given normative models for multiple groups, for example for different patient
categories and/or controls, one can derive prediction trajectories for each group
and classify based on the most likely category.

Prediction of an individual trajectory is possible even if not all the observa-
tions for all time points would be available for that subject by pooling the data
from other subjects in the study along with the available observations for the in-
dividual. Analysis of longitudinal data needs to take into account the correlation
due to repeated measures, variability between subjects, often unbalanced spacing
due to acquisitions at different time points and missing data. All these favor the
use of mixed effects models, which represent a class of statistical methods that
model the correlation of measurements of an individual along with modeling the
mean response of a population over time.

The proposed methodology is generic with respect to any type of data. Here,
we demonstrate proof of concept with a clinical infant neuroimaging study. Lon-
gitudinal brain imaging is increasingly used in clinical studies as it provides a su-
perior characterization of developmental trajectories compared to cross-sectional
studies [2,3]. Such studies have mostly focused on population analysis. However,
individuals would likely benefit from subject-specific assessments, comparing an
individual’s image-derived data at each given age to the norm, and predictions
of subject-specific growth trajectories and intervals based on measurements of
only one or two time points, predictions which may improve early detection and
therapeutic intervention.
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Key aspects discussed in this paper are the selection of optimal nonlinear
models to characterize temporal trajectories, building of normative models for
populations, and the development of a statistical inference framework to predict
future observations based on new scans’ data and statistics from a reference
population (Sec. 2). Predicted trajectories from multiple groups can then be
used for classification and the results are presented in (Sec. 3).

2 Method

Reference Population. To prepare discussion of the prediction scheme, we
briefly describe the nonlinear mixed effects model (NLME) [4]. In the mixed
effects model, the observed data are assumed to be a combination of both fixed
effects, β, parameters associated with the entire population (or at least within a
subpopulation), and random effects, b, that are specific to an individual drawn
at random from the population. Random effects account for the heterogeneity
that is present in the population as these effects vary among subjects. NLME is a
generalization of linear mixed effects and nonlinear regression, some or all of the
fixed or random effects enter the model nonlinearly. Each individual’s response
is modeled as:

yi = f(φi, ti) + ei, (1)

where φ = Aiβ+Bibi, and bi are random effects with distribution N ∼ (0, Ψ). Ai

and Bi are design matrices that indicate whether a specific fixed or random effect
should be included in the model. The function f can be any nonlinear function,
and ei is the measurement error and is assumed normally distributed N ∼
(0, σ2). Random effects and measurement errors are assumed to be independent.

The likelihood function for the mixed effects model is written as:

L(β, Ψ, σ2|y) =
M∏
i=1

p(yi|β, Ψ, σ2). (2)

Since non-observable random effects are part of the model, we must integrate
out random effects; thus, the marginal density of yi becomes:

p(yi|β, Ψ, σ2) =

∫
p(yi|β, bi, σ2)p(bi|Ψ, σ2)dbi. (3)

The population growth parameters β and variance components Ψ and σ2 are
estimated by maximizing the likelihood equation of (3). In general there is no
closed form solution to equation 3. We approximate the integral in (3) using
Taylor expansion of the model function f around conditional modes of random
effects b and the current estimate of β [4].

The distribution of the maximum likelihood estimator β of the fixed effects
based on the linear mixed effects approximation [4] is written as:

β̂ ∼ N

⎛⎝β,

[
M∑
i=1

X̂T
i V̂

−1
i X̂i

]−1
⎞⎠ , (4)

where V̂ = ẐiΨẐ
T
i + σ2Ini , X̂i =

∂fi
∂βT |β̂,b̂i , Ẑi =

∂fi
∂bTi
|β̂,b̂i .
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Choice of Nonlinear Function. The choice of the nonlinear function,f , is
to be seen as study and data specific. Nonlinear models provide a more parsi-
monious model compared to their linear counterparts (i.e. polynomials). More
important, as extrapolation of data beyond the observed range plays an im-
portant role in the prediction of future values, model parameters of nonlinear
schemes tend to have natural interpretations [5]. Data analyzed here are radial
diffusivity (RD) measurements of diffusion tensor imaging (DTI) of early brain
development and age is the covariate. White matter is known to mature more
rapidly in the first year of life than second, with continued maturation but at a
much slower rate into adulthood [1,6]. This favors functions that have asymptotic
behavior such as exponential, logistic, or Gompertz. We used Akaike Information
Criterion (AIC) [7] for model selection, where AIC = −2log(Li) + 2npar, Li is
the likelihood of model i and npar is the number of model parameters. Among the
tested models, the Gompertz function provided the lowest AIC measure, so that
this function was chosen for infant DTI modeling. Using the Gompertz function,
response y is modeled as y = αe−d e−rt

, where α is the final asymptotic value,
parameter r specifies the decay in the growth rate, and parameter d controls
the difference between the final and initial values of y. All the parameters of the
Gompertz function are used as fixed effects. Parameters α and d were chosen as
random effects as they provided the best model fit as measured by lower AIC.

Prediction of New Individual Trajectory. Upon availability of new data
for an individual, we can use the reference population parameters along with
the individual’s available data to predict a personalized growth trajectory. We
substitute β̂,ψ̂ and σ̂ of the reference population for the unknown parameters to
predict an approximate empirical Bayes’ estimate of bi. Once the subject’s ran-
dom effects are estimated, the individual’s growth trajectory and future values
can be predicted.

The prediction of bi can be calculated from the posterior distribution of
p(bi|yi) using Bayes’ rule:

p(bi|yi, β, Ψ, σ2) =
p(yi|β, bi, Ψ, σ2)p(bi|Ψ)

p(yi|β, Ψ, σ2)
. (5)

By maximizing the log of the posterior density of bi, we obtain the following
objective function:

l(bi) = −
1

σ2
(yi − f(β, bi))

T (yi − f(β, bi))− bTi Ψ
−1bi. (6)

Once b̂i is estimated, E[b̂i] � Ψ̂ ẐT
i V̂

−1
i (yi − f(Aiβ̂ + Bib̂i, ti) + Ẑib̂i), we

can construct continuous growth trajectories of the ith subject. The ith subject
prediction for the corresponding responses yi is: E [ŷi|bi] = f(xT

i β̂ + zTi b̂i, t),
where xi represents a vector of fixed effects covariates and zi represents a vector
of covariates corresponding to random effects.

Individual’s Prediction Interval. By knowing the sampling distribution bi ∼
N (b̂i, Ŵ ) and Ŵ = Ψ̂ − Ψ̂ ẐT

i V
−1
i ẐiΨ̂ , we can employ a Monte Carlo simulation
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to approximate the subject-specific prediction interval. One thousand samples

of β ∼ N
(
β̂,
[∑M

i=1 X̂
T
i V̂

−1
i X̂i

]−1
)
, b ∼ N (b̂i, Ŵ ), and e ∼ N (0, σ̂) were

generated from their respective distributions. Subsequently, 1000 trajectories
were constructed by the NLME model. The prediction interval for the “new”
subject can be calculated by constructing the 1 − α range of values for a given
time point, tij . At each tij , α/2 and 1 − α/2 percentiles were calculated as the
lower and upper limits of the subject-specific interval.

Classification of a New Individual. An individual’s predicted trajectory is
a combination of the estimated population parameters (fixed effects), and sub-
ject specific random effects. If multiple reference subpopulations are available,
denoted as c ∈ C, mixed effects modeling as described earlier can be used to
estimate fixed effects β̂c, variance-covariance of random effects Ψ̂c, and variance
of noise σ̂c for each subpopulation c. Upon availability of new scans for an indi-
vidual, random effects and individual’s subject’s trajectory can be predicted as
shown. Once random effects (trajectories) are predicted for the new individual,
we classify the subject to belong to the subpopulation that has the highest like-
lihood given the individual’s predicted random effects b̂ic and reference subpop-
ulation parameters Ψ̂c. We assign a subject to a subpopulation c where p(b̂ic|Ψ̂c)
has the highest value among C. This method takes into account not only the
subpopulation trajectory β̂c to predict b̂ic, but also the heterogeneity of subjects
Ψ̂c presented in the subpopulation for classification.

3 Validation and Results

The following discussion is based on clinical data from an ongoing infant DTI
study but focuses on validation by mimicking its potential clinical use via leave-
one-out experiments. We verify two aspects of the proposed methodology based
on two scenarios: 1) predicting a future observation for a new individual, does
it fall into the range of the norm and what is the difference between prediction
and observed value, and 2) having models for two reference populations and thus
two prediction trajectories for new individuals, what is the classification based
on the more likely population (Fig. 4).

We have access to DTI data of 26 subjects with a total of 59 DTI scans
(neonate: 23, year 1: 22, year 2: 14) from a normative study, with preprocessing
and unbiased atlas mapping following [6]. The reference population trajectory is
estimated using all subjects excluding the one used for testing. Fig. 2 shows the
estimated subject growth trajectory along with the subject-specific prediction
interval for RD values of a test subject, overlaid on the population model (gray).
The trajectory of the individual is predicted as discussed in section 2.

Figure 2 left shows the predicted trajectory based on only the first time point
(solid blue curve and light blue region) with the two left out measurements (red
dots). Upon availability of more time points, future observations are predicted
with increased precision (Fig. 2 right).
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Fig. 2. Subject prediction interval compared to the overall prediction for RD of PTR.
Left: subject-specific interval calculated based on only one time point (neonate). Right:
subject-specific interval calculated based on scans at neonate and 1 year. Blue dots
represent observations used for prediction, and red dots actual observed measurements.

Figure 3 shows the difference between observed and predicted values for RD of
posterior thalamic radiation (PTR). The population trajectory was constructed
using scans of 25 subjects. We then test our methodology for predicting RD
at years 1 and 2, i.e. closeness of the predicted trajectory (solid blue line) to
the observed measures (red dots) shown in Fig. 2. Predicting 1 year values was
based on 19 subjects with at least neonate and 1 year time points, whereas
prediction at 2 years was obtained from 9 subjects that have three time points
available. Without any observation available for a new individual, the predicted
RD value at years 1 and 2 are the population averages. However, as one obser-
vation becomes available the RD values at years 1 and 2 can be predicted with
more accuracy (Fig. 3 middle). With two observations, variability of differences
between predicted and observed RD values is further reduced (Fig. 3 right).

The predicted subject trajectories can also be used for classification. To il-
lustrate a clinical scenario with two populations (e.g. controls vs. disease), we
construct an example using two different regions representing two categories. Fig-
ure 4 illustrates the concept of classification into the categories PTR or splenium.
We construct the population trajectories for RD of both PTR and splenium of
25 subjects, and then predict left out subject’s RD trajectory for a test region
as if the region could be either splenium or PTR. Looking at the test region’s
first time point (Fig. 4), it seems that it would be splenium, but the second time
point is more similar to PTR; illustrating that analysis at single time points can
easily lead to contradictory results. We predict the RD trajectories of the test
region based on the PTR population (purple dashed line in Fig. 4) and splenium
(yellow dashed line). With the two predictions for the test region, we then use the
classification method of section 2 to assign the most likely category. The experi-
ment is repeated for all the subjects with available scans at neonate and year 1.
Overall, only one subject’s splenium was misclassified as PTR and vice-versa,
compared to the overlapping distributions and also conflicting classifications at
single time points.



Subject-Specific Prediction Using Nonlinear Population Modeling 39

−
1
5

−
5

0
5

1
0

1
5

P
re

d
ic

te
d
 R

D
 −

 O
b
s
e
rv

e
d
 R

D

−
1
5

−
5

0
5

1
0

1
5

−
1
5

−
5

0
5

1
0

1
5

−
1
5

−
5

0
5

1
0

1
5

−
1
5

−
5

0
5

1
0

1
5

Fig. 3. Distribution of differences between observed and predicted values for radial
diffusivity (RD) of PTR. Left two figures: using population mean as predicted value
for prediction at year 1 (left) and year 2 (right). Middle two figures: using RD at
neonate and reference population to predict RD at year 1 (left) and year 2 (right).
Right figure: using population reference and both neonate and year 1 RD to predict
year 2 RD. Note: the reference population was estimated based on 26 subjects with 59
scans (minus the test subject), but only 9 subjects had data for all three time points.
Plots illustrate increased prediction performance from using no observation over one
and then two observations (left, middle, right). RD differences displayed here have been
scaled up by 105.
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Fig. 4. Test if a new region’s RD measures are representing PTR or splenium. Left:
scatterplot of longitudinal measurements of radial diffusivity (RD) for the two cate-
gories. Middle: population trajectories for PTR and splenium. Right: trajectories of the
test region predicted for each category (dashed lines). The test regions’ trajectory with
highest likelihood determines the classification, here classified into the PTR category.
RD values displayed here have been scaled up by 105.

4 Discussion and Conclusion

This paper describes a framework for prediction based on a statistical inference
approach in the mixed-effects-modeling setting, with emphasis on its application
to discrete-time data, the use of nonlinear parametric temporal functions, and
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employing nonlinear mixed-effects-modeling (NLME). Given a new, unseen indi-
vidual, estimated subject-specific trajectories and prediction intervals not only
take into account parameter estimates of the normative population but also
consider existing observations from the new individual. Experimental tests with
a leave-one-out scheme clearly demonstrate that the resulting subject-specific
prediction interval, representing uncertainty, is steadily narrowing from using
no additional observation over the use of one and then two individual mea-
surements. Here, we are making the assumption that an individual will have
a temporal trajectory similar to that of the reference population. This allows
transfer of information from the estimated population model to the prediction
of a new individual trajectory, thus specifically tailored to the new subject.

Although current work focuses on application to clinical longitudinal neu-
roimaging studies, we here decided to demonstrate the potential use of prediction-
based classification in a simulation procedure. Whereas comparing trajectories
of two different anatomical regions may be seen somewhat artificial in view of
standard clinical studies with control and patient populations, it nevertheless
highlights the interesting properties and new potential of the proposed scheme.
Results clearly demonstrate that classification based on estimated trajectories
with use of reference population statistics and few observations is more powerful
than cross-sectional classification based on data at single time-points.

Acknowledgments. Supported by NIH grants: Conte Center MH064065, NA-
MIC EB005149, ACE HD055741, and CAMID NIDA DA022446-01.
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Abstract. Introducing BrainPrint, a compact and discriminative rep-
resentation of anatomical structures in the brain. BrainPrint captures
shape information of an ensemble of cortical and subcortical structures by
solving the 2D and 3D Laplace-Beltrami operator on triangular (bound-
ary) and tetrahedral (volumetric) meshes. We derive a robust classifier
for this representation that identifies the subject in a new scan, based on
a database of brain scans. In an example dataset containing over 3000
MRI scans, we show that BrainPrint captures unique information about
the subject’s anatomy and permits to correctly classify a scan with an
accuracy of over 99.8%. All processing steps for obtaining the compact
representation are fully automated making this processing framework
particularly attractive for handling large datasets.

1 Introduction

Is it possible to identify an individual based on their brain? Are cortical folding
patterns unique to a person, similar to a fingerprint? While the unique com-
plexity of the brain may indicate that an unambiguous identification should
be possible, there is currently little empirical research that can speak to these
questions. One difficulty for identifying the subject of a given brain is that lon-
gitudinal changes caused by aging or disease may significantly alter the brain
morphometry. Additionally, scanning artifacts, inhomogeneities, and different
imaging protocols can cause changes in intensity values in magnetic resonance
scans, further complicating the identification. Therefore, a subject-specific brain
signature must be both stable across time and insensitive to imaging artifacts.
Moreover, it needs to provide a holistic representation of the brain to ensure
subject identification even if certain parts change. Finally, small changes in the
brain should map to small changes in the representation to permit a robust
identification.

Here, we introduce BrainPrint, a holistic representation of the brain anatomy,
containing the shape information of an ensemble of cortical and subcortical struc-
tures. The inclusion of only shape information has the advantage to remain in-
dependent from the local intensity values in the scan. Moreover, the variety of
the different structures included in the BrainPrint yields an extensive character-
ization of the brain anatomy. We quantify the shape information by calculating
the spectrum of the Laplace-Beltrami operator (LBO) on both triangular meshes
that represent boundary surfaces, e.g., the white matter surface, and tetrahedral
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meshes for volumetric representations of individual structures. We then derive
a classifier that identifies a subject from an MRI scan based on its BrainPrint.
We achieve robustness in the identification by letting each brain structure vote
independently for the subject’s identity. Not only does our classifier identify pre-
viously encountered subjects with high accuracy, but it also determines whether
a query brain belongs to an unknown subject, not yet represented in the existing
database.

An alternative approach to calculate the similarity between scans could be
based on image registration [3,5]. However, real applications of such identification
methods require large datasets and the cost for aligning a new scan to all scans
in the database becomes prohibitive for a large number of scans. BrainPrint
introduces a new framework that is especially beneficial when working with
large datasets widely available today. The first step extracts information from
the image, based on the segmentation of anatomical structures. The second step
transfers this information into a compact and discriminative representation, the
BrainPrint. Any further processing is conducted on this representation, which
takes less memory and permits easier calculations and comparisons than the
original scan.

1.1 Related Work

A 3D object can be represented by the space that it occupies (3D volume repre-
sentation, e.g., voxels, tetrahedra meshes) or by representing its boundary (2D
surface representation, e.g., triangle meshes). Reuter et al. [10] introduced the
“shapeDNA” and demonstrated that the spectra of 3D solid objects and their
2D boundary surfaces contain complementary information: the spectra of the
2D boundary surface was capable of distinguishing two isospectral 3D solids
(GWW-prisms). Therefore, we propose to combine the information from both
the 3D solid and 2D boundary shape representations.

While there has been previous work analyzing the shapeDNA for single brain
structures [1,9,11], to the best of our knowledge this is the first study that
evaluates its application to cortical structures and a wide range of subcorti-
cal structures. Importantly, we investigate the joint modeling of the ensemble.
Additionally, most prior work computes the shapeDNA for triangular surface
meshes [1,8], while we also work with tetrahedral volume tessellations. Given
that the Laplace spectra are isometry invariant, the 2D boundary represen-
tation alone may yield a weaker descriptor, due to the large set of potential
(near-) isometric deformations. For example, a closed 2D surface with a pro-
trusion pointing inwards yields the same descriptor as one with the protrusion
pointing outwards, while the spectra of the enclosed 3D solids differ.

2 Shape Descriptor

We segment anatomical structures from brain scans with FreeSurfer [2]. Next, we
compute a compact shape representation that captures important shape infor-
mation and facilitates the further processing. Since image intensity varies across
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Fig. 1. Mean and standard deviation of the volume (left) and of the mean local gyrifi-
cation index (right) of the cortex for 40 subjects. Statistics are calculated over several
longitudinal scans per subject.

scans, we focus on geometrical properties. Example representations are the vol-
ume and the local gyrification index (LGI) of a structure. While volume will
be affected by brain atrophy, quantifying the gyrification may be more robust
to longitudinal changes, assuming that the folding patterns of the brain remain
stable. The LGI was used previously to identify gyral abnormalities [12]. We
transform this local measure into a global shape descriptor by computing the
mean LGI over the surface. Fig. 1 shows the mean and standard deviation of
these measures calculated from several longitudinal scans per subject. The large
variance and overlap across subjects indicates that such representations are not
well suited for identifying subjects.

In this work we use the shapeDNA [10] as a shape descriptor, which performed
among the best in a recent comparison of methods for non-rigid 3D shape re-
trieval [6]. The ShapeDNA is computed from the intrinsic geometry of an object
by calculating the Laplace-Beltrami spectrum. Considering the Laplace-Beltrami
operatorΔ, we obtain the spectrum by solving the Laplacian eigenvalue problem
(Helmholtz equation) Δf = −λf using the finite element method. The solution
consists of eigenvalue λi ∈ R and eigenfunction fi pairs (sorted by eigenvalues,
0 ≤ λ1 ≤ λ2 ≤ . . .). To be independent of the objects’ scale, we normalize

the eigenvalues λ′ = vol
2
D λ, where vol is the Riemannian volume of the D-

dimensional manifold (i.e., the area for 2D surfaces) [10]. The first l non-zero
eigenvalues form the shapeDNA: λ = (λ′

1, . . . , λ
′
l).

The eigenvalues are isometry invariant with respect to the Riemannian man-
ifold, meaning that length-preserving deformations will not change the spec-
trum. This important property permits the comparison of subjects by directly
comparing the shapeDNA, without the need for alignment. While isometric non-
congruent surfaces exist (e.g., bending a sheet of paper), two solid bodies embed-
ded in R3 are isometric if and only if they are congruent (translated, rotated and
mirrored). A second property is that the spectrum continuously changes with
topology-preserving deformations of the object boundary. Fig. 2 illustrates the
eigenfunctions of the cerebral cortex boundary. The eigenfunctions show natural
vibrations of the shape when oscillating at a frequency specified by the square
root of the eigenvalue.
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Fig. 2. Left cerebral cortex and first eigenfunctions of the LBO calculated on the
surface (yellow – positive, red – negative, and green – zero)

We compute the spectra for all cortical and subcortical structures on the
2D boundary surfaces (triangle meshes) and additionally on the full 3D solid
(tetrahedra meshes) for the cortical structures (white and pial surfaces in both
hemispheres), forming the BrainPrint Λ = (λ1, . . . ,λη). Triangle meshes of the
cortical surfaces are obtained automatically for each hemisphere using FreeSurfer.
Surface meshes of subcortical structures are constructed via marching cubes from
the FreeSurfer subcortical segmentation. To construct tetrahedral meshes, we re-
move handles from the surface meshes, uniformly resample the output to 60K
vertices, and create the volumetric mesh with the gmsh package [4]. We use
the linear finite element method [10] with Neumann boundary condition (zero
normal derivative) to compute the spectra of the tetrahedral meshes.

3 Classifier

We derive a classifier to assign a new scan to one of the subjects in the database.
Since the segmentation or tessellation of specific structures may fail in certain
cases, we propose a robust classifier that handles missing information. We build
a classifier by combining the results from weak classifiers operating on specific
brain structures.

Assuming n subjects C1, . . . , Cn and N scans in a database (N ≥ n, for re-
peated scans of subjects). Each scan has its associated BrainPrint Λ1, . . . , ΛN .
Let Sk ⊂ {1, . . . , N} denote scans for subject Ck. The probability that a the new
scan with BrainPrint Λ shows subject Ck is

p(Ck|Λ) =
p(Λ|Ck) · p(Ck)∑
ν p(Λ|Cν) · p(Cν)

∝
∏

s=1,...,η

p(λs|Ck), (1)

where we assume a uniform class probability p(Ck) ∝ 1 and the conditional inde-
pendence of structures given the subject. The likelihood is multivariate normal
distributed p(λs|Ck) ∼ N (λs;μ

k
s , Σs) with the subject mean μk

s = 1
|Sk|

∑
i∈Sk

λi
s

for structure s. Since we only have a few samples per class, we estimate a global
diagonal covariance matrix Σs across all scans for each structure. Weighting dis-
tances by the variance helps to prevent the domination by higher eigenvalues
that exhibit higher variation. The subject identity with the highest probability
is assigned to the scan

k∗ = argmax
k

p(Ck|Λ). (2)
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Fig. 3. Classification results for product classifier (left) and voting classifier (right)
under variable number of eigenvalues and feature sets

The posterior probability of this classifier is the product of the posterior proba-
bilities across all structures, cf. Eq. (1), which may be problematic for structures
with low discriminative power. Many subcortical structures do not carry much
distinctive shape information and can therefore negatively influence the overall
probability. We therefore propose a second classifier that is specifically adapted
to working with structures that are not very discriminative. Increased robustness
is achieved by voting for each structure independently

k∗s = argmax
k

p(λs|Ck), ∀s ∈ {1, . . . , η}, (3)

with the final vote set to the mode of the vote distribution.

4 Results

We perform experiments on data from the Alzheimer’s Disease Neuroimaging
Initiative (ADNI) [7]. We work with over 3000 scans from almost 700 subjects,
where each subject has between three and six longitudinal scans. Each T1-
weighted image from the dataset is processed independently with FreeSurfer.
We calculate 36 shape descriptors for subcortical structures and 8 descriptors
for cortical structures (left/right, white/gray matter, 2D/3D). Additionally, we
calculate the lateral differences of shapeDNA between left and right cortical
structures to quantify asymmetries, resulting in 4 additional descriptors.

We perform leave-one-out experiments by removing one scan from the dataset
and by aiming to recover the correct identity. Fig. 3 reports the classifica-
tion results for the product classifier in Eq.(2) and the structure-specific vot-
ing in Eq.(3). We report classification results as a function of the number of
eigenvalues used to represent the shape. Additionally, we vary the set of brain
structures in BrainPrint: cortical structures with triangular meshes (4), cor-
tical structures with tetrahedral meshes (4), cortical structures for both mesh
types (8), a selection of structures with the highest individual performances (15),
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Cortical structures in first 8 rows, subcortical features below. Optimal feature response
would show a color gradient from blue to red, since scans are sorted by subject. Right:
Number of votes for the winning subject identity when the correct subject is included
(blue) in the database and when it is excluded (green). Decision boundary at 4 votes
(red) yields a 0.49% false negative rate.

all structures (44), and all structures with the lateral differences of cortical
structures (48). The number of structures is shown in parentheses. The results
demonstrate a clear difference between the two classifiers. The product classifier
achieves the best performance when working with cortical triangular meshes.
Adding more features, especially when working with all features, dramatically
reduces the classification results. We observe an opposite behavior when working
with the structure-specific voting. Subcortical structures alone yield the worst
performance in this case. The combination of 3D solid and 2D boundary descrip-
tors leads to a clear improvement. A further improvement is gained by adding
subcortical structures.

To further study this behavior, we examine the candidate subject that each
structure votes for in Fig. 4. Each column corresponds to one scan and each
row to one structure. The color indicates the subject number. Scans were sorted
by subject; a perfect feature should show a color gradient from blue to red.
The first 8 rows correspond to cortical structures, which exhibit the best perfor-
mance. The remaining 36 rows show subcortical structures that perform worse
than cortical structures and vary in their discriminative power. This explains
the poor performance of the product classifier for the whole feature set, as weak
features can obscure good features. In contrast, weak features do not degrade
the performance of the voting classifier as long as weak features show no bias
for a specific subject. The best performance of over 99.8% is achieved for 50
eigenvalues on all features with the additional difference features. For compari-
son, the classification rate for the mean LGI on both hemispheres is 1.0% for the
product and 3.9% for the voting classifier. The classification rate for the volume,
calculated from all cortical and subcortical structures, is 0.03% for the product
and 0.6% for the voting classifier, confirming results from Fig. 1.

Fig. 5 shows the two scans for which BrainPrint does not correctly identify
the subject identity. These subjects show strong atrophy and imaging artifacts,
resulting in pronounced segmentation errors. Manual correction in FreeSurfer or
reacquisition to avoid motion artifacts may therefore improve the above results.
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Fig. 5. Coronal and axial slices from two misclassified scans. White matter segmenta-
tion is shown in yellow.

As an additional experiment, we evaluate the possibility to determine whether
a subject is not contained in the database. We study the number of votes the
winning subject receives in Fig. 4, once when the subject of the scan is included in
the database and once when the subject is excluded. If the subject in the current
scan exists in the database, the scan receives about 15 votes for the winning
subject class. If the subject is not contained in the database, the number of votes
for the winner does not surpass 4. Setting 4 votes as our decision boundary results
in only a 0.49% error (false negative) of concluding incorrectly that a subject is
not in the database. The false positive rate is zero.

5 Discussion and Conclusions

The high classification accuracy of BrainPrint suggests that brain structures
are unique to individuals and can be used for identification. Since our study
only includes data on subjects followed over a period of up to 36 months, we
cannot currently assess how the accuracy of BrainPrint changes across the entire
lifespan of a subject. Unfortunately, such data sets are not yet available. However,
since subjects with Alzheimer’s disease in our dataset demonstrate pronounced
neurodegeneration in a relatively short time, we are optimistic that BrainPrint
will remain robust for comparison across longer time periods.

The identification accuracy may raise concerns about privacy issues when pub-
licly distributing de-faced or skull-stripped brain scans together with diagnosis
and other sensitive information. Yet, we currently do not think that BrainPrint
interferes with anonymization because at least a second scan with knowledge of
the identity needs to be available to connect to the private information. In terms
of its practical applications, we see BrainPrint as an aid when handling large
datasets. Identifying similar images in an efficient way can provide the launchpad
for a more detailed follow-up analysis, e.g., calculation or prediction of localized
growth and shrinkage patterns. Since most of our retrieval errors are related
to incorrect segmentations, our approach could also be used as an automatic
quality control. Furthermore, BrainPrint can help identify anonymization errors
(mismatch of subject identity), which are difficult to detect and can impede lon-
gitudinal studies. Finally, the presented framework of image understanding and
compact characterization is relevant for handling large datasets in other fields
and not limited to neuroscience.
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Abstract. Longitudinal imaging studies involve tracking changes in individuals
by repeated image acquisition over time. The goal of these studies is to quantify
biological shape variability within and across individuals, and also to distinguish
between normal and disease populations. However, data variability is influenced
by outside sources such as image acquisition, image calibration, human expert
judgment, and limited robustness of segmentation and registration algorithms. In
this paper, we propose a two-stage method for the statistical analysis of longitu-
dinal shape. In the first stage, we estimate diffeomorphic shape trajectories for
each individual that minimize inconsistencies in segmented shapes across time.
This is followed by a longitudinal mixed-effects statistical model in the second
stage for testing differences in shape trajectories between groups. We apply our
method to a longitudinal database from PREDICT-HD and demonstrate our ap-
proach reduces unwanted variability for both shape and derived measures, such
as volume. This leads to greater statistical power to distinguish differences in
shape trajectory between healthy subjects and subjects with a genetic biomarker
for Huntington’s disease (HD).

1 Introduction

Statistical shape modeling and analysis is of critical importance for better understanding
of longitudinal imaging and shape data, especially in the context of dynamic processes
like aging and disease progression. To model evolution of shape, many regression ap-
proaches for cross-sectional data have been proposed [1–4]. However, regression has
limitations when applied to longitudinal analysis, since each individual could start at
a different point and evolve in a different manner. Longitudinal studies therefore en-
tail development of subject-specific spatiotemporal models, and also a way to compare
these models across different subjects [5–8].
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Longitudinal image data has several sources of variability. First, there is inherent
biological variability, both within a subject changing over time and also between sub-
jects in a population. The goal of longitudinal analysis is to quantify this variability and
make inferences about changes over time in a population. However, longitudinal imag-
ing data also include unwanted sources of variability, such as noise in image acquisition,
segmentation and registration errors, and human expert judgment, among others. These
extraneous errors tend to dampen statistical power, especially when trying to distinguish
between trajectories of two different populations, e.g., healthy and diseased.

In this paper, we propose a framework that first seeks to reduce this extraneous vari-
ability, thus improving consistency of longitudinal segmentations in the first stage. We
follow the procedure of [9] by estimating diffeomorphic geodesic trajectories of shape
evolution for each individual. The estimated trajectories are smooth, resulting in tem-
porally consistent and more biologically plausible shape evolution. We then employ a
mixed effects model for shapes [10, 7] to conduct longitudinal statistical shape anal-
ysis on the consistent shape trajectories. We demonstrate the benefit of our two stage
approach by a comparison of longitudinal mixed-effects analysis on cortical volumes
obtained from raw observed data against consistent measurements obtained from per-
sonalized spatiotemporal shape models. We also show our method reduces unwanted
variability for both shape and derived measures, such as volume. This leads to greater
statistical power to distinguish shape evolution between healthy subjects and subjects
with a genetic biomarker for Huntington’s disease (HD).

2 Methodology

We present here methodology for the statistical analysis of longitudinal shape com-
plexes. This is based on spatiotemporal modeling of diffeomorphic shape trajectories
(Section 2.1) to produce temporally consistent shape sequences. Estimated model tra-
jectories represent more biologically plausible and smooth shape changes associated
with anatomical evolution in time. Statistical measures and group hypothesis testing is
then conducted on both scalar measurements extracted from shape as well as the shape
complexes themselves. For measuring individual and group shape differences, we es-
timate a multivariate mixed-effects model (Section 2.2) for shapes, designed to take
advantage of longitudinal shape data.

2.1 Spatiotemporal Modeling for Consistency in Longitudinal Segmentation

Anatomical change over time associated with neurodevelopment or aging is assumed
to be a smooth process. That is, the trajectory of a particle on an anatomical surface
should be differentiable, with no instantaneous change of direction. The presence of
a disorder such as Huntington’s disease (HD) would not invalidate the smoothness as-
sumption. Rather, the neurodegeneration process associated with HD has been observed
as a temporally smooth process [11]. However, our anatomical measurements (medical
images and extracted anatomical shapes) are often not representative of samples from
a smooth process, due to the natural variability attributed to image acquisition, sub-
ject positioning, segmentation, etc. Without temporal consistency in our measurements,
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Fig. 1. Left: For one subject, volume of observed caudates (open circles) and temporally consis-
tent continuous volume extracted from diffeomorphic shape model (solid line). The difference in
caudate volume extracted from scans obtained on the same day highlights the need for consistent
segmentation. Right: Observed volume and volume extracted from diffeomorphic shape mod-
els for all 65 subjects. While the volume of the discrete shape observations show considerable
variation, volume extracted from personalized models are continuous and temporally consistent.

it becomes difficult to distinguish between anatomical change associated with disease
from changes due to noise.

One emerging model of smooth anatomical change is to consider continuous trans-
formations of the ambient space by differentiable and invertible deformations. We model
anatomical trajectories by a geodesic flow of diffeomorphisms that continuously de-
forms a given anatomical configurationX0 over time to closely match a set of observed
anatomical shapes Oti [9]. The initial anatomical configuration (baseline shape), as
well the flow of diffeomorphisms φt, are estimated by minimizing the criterion

E(X0, φt) =
∑
i

D(φti(X0)−Oti) + Reg(φt),

where D represents a distance metric on shapes and Reg(φt) is a measure of the regu-
larity of the geodesic flow of diffeomorphisms φt. For choice of D, we favor the met-
ric on currents, which is robust to topological differences and allows for comparison
between shapes without the need for point correspondence. Also, being in an infinite-
dimensional space of diffeomorphisms, geodesic trajectories have the flexibility to cap-
ture complex deformations.

The continuous geodesic flow of diffemorphisms φt is applied to the estimated
anatomical configuration to produce a continuous and temporally consistent sequence
of shapes. The improved temporal consistency is illustrated on the left side of Fig. 1
by comparing the volume of observed caudates with the volume extracted continuously
from the spatiotemporal model of caudate shape. Also note that we can now obtain
shapes or measurements extracted from shapes at any time point of interest, not just
those corresponding to observations.

2.2 Mixed Effects Model for Shapes

We now have a diffeomorphic flow of anatomical shapes for each individual, from
which we obtain shapes at time points corresponding to actual observations. These
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estimated shapes no longer represent independent (and potentially noisy) measure-
ments, but instead take into account correlation between repeated scans of the same
individual.

Statistical interpretation of longitudinal shape data is extremely useful in ascertaining
differences in repeated image scans of an individual and also between individuals within
and across populations. A compact statistical representation of shape was proposed
by [10], wherein the surface of a shape is represented by a collection of points, also
referred to as a particle system. Particle positions are optimized to be in correspondence
across an ensemble of shape configurations. A faithful shape representation is achieved
by minimizing a cost function, that balances a low residual error of model to data,
also seeking configurations of uniformly-distributed correspondence positions on shape
surfaces.

To analyze longitudinal data, [7] generalize the methods in [10] to incorporate a
linear mixed-effects model in the optimization framework. Let Yi be the longitudinal
response variable for the ith individual (a shape configuration), and Xi denote the ex-
planatory variable, typically time. The mixed-effects model for longitudinal correspon-
dences is given as

Yi = Xi(α+ bi) + εi,

where α are the fixed-effects parameters (group intercept, group slope), while bi are
random-effects parameters with εi being the error in correspondences for the ith indi-
vidual. For details on model parameter estimation, see [7].

Hypothesis Testing. In order to test the statistical significance of group-parameter
differences between two groups of longitudinal data, [7] also outline a statistical hy-
pothesis permutation test based on the Hotelling’s T 2 statistic.

Given two groups of data, {p1, . . . , pm} and {q1, . . . , qn}, with sample means p̄, q̄,
recall that Hotelling’s T 2 statistic is a test statistic to test for significant differences
between sample means, relative to the pooled sample covariance W:

W =

∑
i(pi − p̄)(pi − p̄)T +

∑
i(qi − q̄)(qi − q̄)T

m+ n− 2
.

The T 2 statistic can be thought of as a squared Mahalanobis distance between the
means, using the pooled covariance W . The sample T 2 statistic is given by

t2 =
mn

m+ n
(p̄− q̄)TW−1(p̄− q̄).

The permutation test procedure is as follows: (1) compute the t2 statistic, (2) ran-
domly permute (swap) data points between the p and q groups, computing a t2k statistic
for the permuted groups, (3) repeat step 2 for k = 1, . . . , P , (4) compute the p-value:
p = B/(P +1), where B is the number of t2k < t2. The final p-value can be interpreted
as the probability of finding a larger group difference by random chance under the null
hypothesis (that there is no difference between the means). The underlying assumption
of any permutation test is that the data should be exchangeable under the null distri-
bution. Our null hypothesis is that the groups (e.g., healthy and diseased) are from the
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same distribution. We permute individuals (keeping their timepoints all intact), which
under this null assumption is exchangeable.

To test for differences in anatomical trajectories between a healthy and disease group,
also note that it is important to distinguish if the shape differences are present at base-
line (intercept) or if they develop over time (slope). To make this distinction, we also
separate the above Hotelling’s T 2 test into these two components.

3 Experimental Validation

We study subcortical change associated with Huntington’s disease (HD), leveraging the
longitudinal study PREDICT-HD. The longitudinal database consists of 65 female sub-
jects: 23 controls (CTRL), 14 (LOW), 15 (MED), and 13 (HIGH). The LOW / MED /
HIGH categories represent probability of onset of manifesting signs of HD. All subjects
have had at least 3 MR images acquired approximately one year apart, with many sub-
jects undergoing multiple scans per visit. Six subcortical pairs (caudate, putamen, hip-
pocampus, thalamus, acumben, and pallidus) were segmented from each image (Fig. 2)
and manually verified and cleaned [12].

Fig. 2. Example of six sub-
cortical pairs extracted for
each subject and timepoint

The quality of each segmentation varies considerably for
each time point, even when scans are obtained on the same
day from the same scanner, as individual single-subject seg-
mentation is prone to errors related to variability of imag-
ing, image calibration, human expert judgment, and limited
robustness of segmentation algorithms. While the segmenta-
tion quality is not easily assessed by viewing the 3D anatom-
ical surfaces, the temporal inconsistency becomes clear by
investigating volume extracted from the shapes. The right
side of Fig. 1 shows the variability in segmentation, illus-
trated by the temporal inconsistency of observed caudate
volume, motivating the need for temporally consistent segmentations which properly
account for correlated longitudinal data.

Personalized Spatiotemporal Models of Subcortical Change. Continuous models of
shape trajectory are estimated for each subject using the methodology outlined in 2.1,
resulting in personalized and temporally consistent anatomical evolution. Model esti-
mation does not require point correspondence, facilitating the inclusion of all subcorti-
cal shapes simultaneously without imposing any topological constraints. Each subject’s
personalized model allows us to generate shapes at any instant in time, from which
desired shape properties, such as volume, can be extracted. We can therefore obtain a
continuous evolution of volume for all subcortical structures without any explicit mod-
eling of volume. Fig. 1 shows caudate volume extracted from each subject’s continuous
shape model, demonstrating the flexibility of the shape model to capture both linear and
non-linear volume trends with no prior assumption or constraint on linearity. Though
we only display caudate volume here, recall that each model is estimated by leveraging
all shape data simultaneously (Fig. 2), which respects shape boundaries and locations,
incorporating important geometric relationships between shapes.
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Fig. 3. Longitudinal mixed-effects analysis of striatal volumes obtained from observed shapes
(Left) and temporally consistent shapes (Right). Volume data are shown as filled black circles
with corresponding individual trends. Note the improvement of the model fit in the consistent
striatal volume over the observed striatal volume, which results in lower standard error of esti-
mated mixed-effects parameters. (See Table 1)

Longitudinal Analysis of Striatal Volume. Here we conduct a univariate analysis
of volume extracted from shape, as striatal volume loss has been shown to be asso-
ciated with the progression of HD [11]. We aim to evaluate the benefit of spatiotem-
poral shape modeling, by comparing striatal volume extracted from the temporally
consistent shapes with volume extracted from the raw shape observations. Figure 3
shows the results of linear mixed-effects analysis on striatal volumes for observed (left)
and temporally consistent shapes (right), testing for the interaction between age and
group membership. The estimated fixed-effects parameters for the temporally consis-
tent (smoothed) category were found to be significant, as shown in Table 1. This demon-
strates the benefit of spatiotemporal shape modeling, as striatal volumes extracted from
the temporally consistent shapes provide better separation between the control and
LOW groups, and also between the control and HIGH groups.

Another benefit of spatiotemporal shape modeling is seen in the standard error of
estimated parameters (Table 1). The standard error is consistently lower for temporally
consistent shapes, which implies a reduction in unwanted variability present in the orig-
inal segmentations. Further note in Fig. 3, the mixed-effects model fits the temporally
consistent data better than the observed striatal volume. We also performed separate
longitudinal mixed-effects analysis on the caudate and the putamen, and found a simi-
lar story in both cases.

Table 1. Comparison of the standard error and significance values of fixed-effects parameters of
longitudinal volumes obtained from observed and temporally consistent shapes

Parameter Std. error (obs.) Std. error (smoothed) p-value (obs.) p-value (smoothed)
Fixed-effects (slope) 26.23 14.10 0.002 < 0.001

Slope (high) 66.56 23.73 0.182 < 0.001
Slope (med) 36.43 22.14 0.003 < 0.001
Slope (low) 38.73 26.60 0.143 < 0.001
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Fig. 4. Left: Fixed-effects parameters for observed caudate shapes (Far Left-Control, Mid Left-
HD), Right: Fixed-effects parameters for temporally consistent caudate shapes (Mid Right-
Control, Far Right-HD); Fixed effects slope: Blue-Red indicates Local Contraction - Expansion

Table 2. p-values: Hypothesis test for differences in shape change (“slope”), between controls
and HD groups, for observed caudates (Left) and temporally consistent caudate shapes (right)

Structure Observed Temporally consistent
Left caudate 0.15 0.005

Right caudate 0.23 0.06

Longitudinal Analysis of Striatal Shape. We next perform a multivariate Hotelling’s
T 2 hypothesis test (Section 2.2) of the baseline shape (intercept) and trend (slope) be-
tween controls and the combined HD groups. We compare the results for analyses using
the original observed segmentations versus those obtained from spatiotemporal model-
ing as described in (Section 2.1). We represent these shapes in the particle optimization
framework to estimate longitudinal fixed and random effects. Note that we do not nor-
malize for size in these experiments, which means that we test for differences between
control and combined HD groups based on both shape and size.

Figure 4 shows the estimated fixed-effects parameters for both groups, i.e., the base-
line (intercept) shape with trajectory (slope) displayed as a color map. When comparing
baseline shapes, we don’t find significant difference between controls and HD in either
analysis. This is expected, as the onset of degeneration in HD is expected at a later age.
But when comparing shape trends, we find significant differences between controls and
HD for the temporally consistent shapes, but not in the case of raw shape observations.

Table 2 provides the p-values from the statistical hypothesis test between the control
and combined HD groups. In both the left and right caudate, the temporally consistent
shapes result in lower p-values. Specifically, the left caudate is statistically significant at
the 5% level. Similar to the volume analysis, this demonstrates that temporally consis-
tent shape trajectories result in greater ability to distinguish differences in longitudinal
trends between controls and HD groups.
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4 Conclusion

Diffeomorphic trajectories are good at capturing smooth anatomical shape changes,
while the particle optimization framework excels at finding compact statistical shape
representations with increased statistical power. The novelty of our work is to leverage
the strengths of both approaches, to provide an integrated solution, characterized by
improved statistical performance in the analysis of both scalar and shape trajectory
data derived from noisy segmentations. We demonstrate the advantages of our method
through improved statistics on temporally consistent shape and volume measures in the
analysis of the PREDICT-HD dataset.
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8. Durrleman, S., Pennec, X., Trouvé, A., Braga, J., Gerig, G., Ayache, N.: Toward a compre-
hensive framework for the spatiotemporal statistical analysis of longitudinal shape data. Int.
J. Comput. Vision 103(1), 22–59 (2013)

9. Fishbaugh, J., Prastawa, M., Gerig, G., Durrleman, S.: Geodesic Shape Regression in the
Framework of Currents. In: Gee, J.C., Joshi, S., Pohl, K.M., Wells, W.M., Zöllei, L. (eds.)
IPMI 2013. LNCS, vol. 7917, pp. 718–729. Springer, Heidelberg (2013)

10. Cates, J.E., Fletcher, P.T., Styner, M.A., Shenton, M.E., Whitaker, R.T.: Shape modeling and
analysis with entropy-based particle systems. In: Karssemeijer, N., Lelieveldt, B. (eds.) IPMI
2007. LNCS, vol. 4584, pp. 333–345. Springer, Heidelberg (2007)

11. Aylward, E., Mills, J., Liu, D., Nopoulos, P., Ross, C.A., Pierson, R., Paulsen, J.S.: Asso-
ciation between Age and Striatal Volume Stratified by CAG Repeat Length in Prodromal
Huntington Disease. PLoS Curr. 3, RRN1235 (2011)

12. Kim, E.Y., Johnson, H.J.: Robust multi-site mr data processing: Iterative optimization of bias
correction, tissue classification, and registration. Frontiers in Neuroinformatics 7(29) (2013)



Simulating Neurodegeneration through

Longitudinal Population Analysis of Structural
and Diffusion Weighted MRI Data

Marc Modat1,2, Ivor J.A. Simpson1,2, Manuel Jorge Cardoso1,2,
David M. Cash2,1, Nicolas Toussaint1,2, Nick C. Fox2, and Sébastien Ourselin1,2
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Abstract. Neuroimaging biomarkers play a prominent role for disease
diagnosis or tracking neurodegenerative processes. Multiple methods
have been proposed by the community to extract robust disease spe-
cific markers from various imaging modalities. Evaluating the accuracy
and robustness of developed methods is difficult due to the lack of a
biologically realistic ground truth.

We propose a proof-of-concept method for a patient- and disease-
specific brain neurodegeneration simulator. The proposed scheme, based
on longitudinal multi-modal data, has been applied to a population of
normal controls and patients diagnosed with Alzheimer’s disease or fron-
totemporal dementia. We simulated follow-up images from baseline scans
and compared them to real repeat images. Additionally, simulated maps
of volume change are generated, which can be compared to maps esti-
mated from real longitudinal data. The results indicate that the proposed
simulator reproduces realistic patient-specific patterns of longitudinal
brain change for the given populations.

1 Introduction

Imaging biomarkers have a strong potential to aid disease diagnosis, tracking
changes over time or to evaluate new treatments. Within neurodegenerative dis-
orders such as Alzheimer’s disease (AD) there are numerous robust techniques
routinely used to quantify atrophy [1, 2] or to characterise disease specific pat-
terns of brain changes [3]. There is however no method to assess the accuracy
and robustness of these techniques due to the lack of ground truth. Numerous
proposals have been made to simulate the longitudinal changes observed in struc-
tural MRI. Davatzikos et al. [4] simulated brain atrophy by introducing a 30%
uniform volume change in two specific gyri. Camara et al. [5] took advantage
of regional rates of atrophy reported in the literature to simulate the expected
change to a baseline T1 weighted (T1w) MRI scan that would be observed at
follow-up for an AD subject. In this work, a finite element representation of a
template brain was registered to a new subject scan in order to propagate the
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tetrahedral mesh. Regional volume changes are applied to the propagated mesh
to simulate through linear elasticity a transformation which is then applied to
the T1w MR image. Sharma et al. [6] propose to generate a learning database
from simulated images with various amounts of atrophy and noise, from which
they then assessed a ground truth atrophy.

All of these simulation methods [4–6] assume a common atrophy rate across all
subjects. Camara et al.’s method is specific to the simulation of an AD pattern of
atrophy, whereas the other methods do not relate specifically to a given disease
and only describe volume changes within a sub-region of the brain (specific gyri
for Davatzikos et al. and hippocampi for Sharma et al.).

We present a proof-of-concept method for a patient- and disease-specific neu-
rodegeneration simulator. Pattern of longitudinal changes are learned from a
template database that consists of MRI scans from normal controls, subjects
diagnosed with frontotemporal dementia or sporadic AD patients. For each sub-
ject in the database, we have access to baseline and 1 year follow-up scans. Using
multi-modal1 image based registration, we first extract velocity fields that char-
acterise the longitudinal changes occurring over a year for each subject. The
extracted information is then combined within the space of a new subject to
simulate a patient- and disease-specific flow of deformation. Here, we hypothe-
sise that brains with similar morphology evolve similarly. Image registration is
known to be an ill-posed problem and the obtained result are hence heavily de-
pendant of algorithmic choices such as transformation model and regularisation.
In order to reduce this bias and the variance of all possible solutions, we take
advantage of a registration scheme combining structural and diffusion MRI as
in Avants et al. [7] or Studholme [8].

2 Method

Within the proposed neurodegeneration simulator scheme, we extract informa-
tion from a template database containing MRI acquisitions from 40 normal con-
trols (NC), 17 patients diagnosed with frontotemporal dementia (FTD) and 17
patients diagnosed with Alzheimer’s disease (AD). The overall pipeline of the
proposed framework is presented in Figure 1.

2.1 Data and Pre-processing

Baseline and 1 year follow-up scans are available for each subject. Each time
point consists of a pair of images: a structural T1w MRI and a DWI scan both
acquired on a Siemens Tim Trio 3 Tesla scanner using a 32-channel head coil.
The DWI scans were acquired with 64 directions (b-value=1000) repeated twice
and 9 b0 images were acquired. On the diffusion images, we performed motion
and eddy current correction as well as EPI correction using a scheme combining
field maps and non-linear registration. Both 64 direction acquisitions were used

1 We should refer to multi-pulse sequences but use multi-modal for simplicity.
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Template database
Normal control 

database (N subjects)
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Propagation and local fusion
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Fig. 1. Framework of the overall pipeline. Starting from a template database contain-
ing longitudinal multi-modal MRI scans from normal controls (NC), subjects with
frontotemporal dementia (FTD) and Alzheimer’s disease (AD), intra-subject longitu-
dinal flow of deformations are extracted through non-linear registration. The flows are
then propagated and fused to create new flows of deformation simulating, for a given
subject, change over time as if the subject was NC, FTD or AD.

concurrently to fit a tensor per voxel. The geometry distortion due to gradi-
ent non-linearity on the structural image was corrected, as well as the intensity
nonuniformity [9]. The average b0 image was rigidly registered to its correspond-
ing structural T1w image and the obtained transformation was used to resample
the tensor image into the T1w space using a log-Euclidean interpolation scheme.

2.2 Multi-channel Intra-subject Registration Using Multi-modal
Information

As mentioned, non-linear registration lacks a unique optimal solution and usually
relies on mathematical formulations for regularisation. In order to decrease the
influence of such a formulation, we take advantage of multi-modal imaging to
increase the amount of information available to drive the transformation. As in
Avants et al. [7] and Studholme [8], we use structural and diffusion MRI images.

The proposed scheme for registration, implemented within the NiftyReg pack-
age [10], is based on a cubic b-spline parametrisation of a continuous stationary
velocity field, v, which yields a deformation field, u, through exponentiation
using a scaling-and-squaring approach [11]. We use a symmetric scheme where
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forward and backward deformation fields, u and u−1 , are concurrently opti-
mised. This is achieved thanks to the following property: exp(v) = exp(−v)−1

where both velocity fields, v and −v, are estimated concurrently from the pa-
rameters {μ}, the cubic b-spline coefficients. Using the T1w and DTI images for
both baseline, B, and follow-up image, F , the measure of similarity,M, used to
drive the registration is computed as:

M(B,F ;μ) = α×Ms(B
s, F s(u;μ)) + α×Ms(B

s(u−1;μ), F s) (1)

+ β ×Md(B
d, F d(u;μ)) + β ×Md(B

d(u−1;μ), F d),

where Ms(.) corresponds to the locally normalised cross correlation summed
over all voxels [12] and Md(.) corresponds to distance between the deviatoric
tensors also summed over all voxels as in Zhang et al. [13]. Bs and F s denote
the structural T1w image from the baseline and follow-up images whereas Bd

and F d denote their DTI components. The values α and β are set empirically
to 0.5 and 0.5. The overall cost function to be optimised by the registration
framework consists of the measure of similarity M and the sum over all voxels
of the bending energy of the velocity fields, v and −v. The spacing between the
control points was empirically set to 5 voxels and a pyramidal approach was
three levels was used. For all subjects n ∈ N , f ∈ F and a ∈ A with N , F and A
the number of NC, FTD and AD subjects respectively in the template database,
we obtained sets of stationary velocity fields {vn}, {vf} and {va} characterising
the intra-subject longitudinal changes.

2.3 Simulated Flow of Longitudinal Changes

Given a new subject i and its T1w and DTI combined image Bi, we register
all baseline images from the template database to Bi using the registration
scheme described in section 2.2. We thus obtain three sets of deformation fields
{ui

n}, {ui
f} and {ui

a}. These deformations are used to propagate the previously
obtained intra-subject longitudinal stationary velocity field into the space of
image Bi. Similarly to the concept of weighted label fusion, which characterises
the distance between the warped template image and the target image [14], we
create a subject- and disease-specific flow of deformation using an local weighted
average of multiple longitudinal flows. The distance D between a target image
Bi and a template image Bj with j ∈ [0, N + F +A[ is computed as:

D(Bi, Bj ;u
i
j) = α×Ds(B

s
i , B

s
j (u

i
j)) + β ×Dd(B

d
i , B

d
j (u

i
j)), (2)

where Bs and Bd denote the structural and the diffusion component respectively
of an image B. Ds and Dd correspond to the distances between the structural
and the diffusion component of Bi and Bj . Within the current experiment, we
set Ds = (2 −Ms) and Dd = G ∗Md, where G is a Gaussian kernel defined to
match the kernel used to compute the locally normalised cross-correlation and ∗
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is the convolution operator. Based on this distance the new flows of deformation
for subject i are computed as:

vgrp

i =

∑
n∈grp

(
ui
n ◦ vn

)
× e−D(Bi,Bn;ui

n)/t∑
n∈grp e−D(Bi,Bn;ui

n)/t
, (3)

where ◦ is the composition operator and t is the Gaussian kernel density, which
is set to 0.5 for the current experiment. The group under consideration: NC,
FTD or AD is denoted as grp. Note that the stationary velocity fields were here
resampled using a gradient reorientation scheme.

Finally, simulated follow-up images FNC
i , FFTD

i and FAD
i can be simulated

from an input image Bi as F
grp

i = exp(vgrp

i ) ◦Bi. Note that the transformation
is parametrised with a flow field enabling interpolation between 0 and 1 year
and extrapolation after 1 year. Figure 2 shows an example of simulated images
from the baseline of a normal control baseline scan.
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Fig. 2. Subject- and disease-specific longitudinal changes simulator result. Synthetic
normal control and Alzheimer’s disease structural and diffusion follow-up scans are
simulated from the baseline T1w/DTI of a normal control subject. The simulated
images are shown as well as the difference images between the simulated follow-up and
the original scans. Note that for visualisation purpose the fractional anisotropy maps
are used to visualise the diffusion information but DTI is used for the whole processing.

3 Evaluation

We performed a leave-one-out experiment where each subject from the aforemen-
tioned database was considered as a new subject and all the others composed
the template database in a leave-one-out fashion. For each subject we simulated,
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from its baseline scans, three T1w MR images and three DTIs, corresponding to
the three groups in the template database, NC, FTD and AD. We were then able
to evaluate, for each simulated scan its distance to the real one year follow-up
image. The global normalised cross-correlation was used to quantify the distance
between the real and the simulated structural follow-up images. This measure
was selected to accomodate for potential global intensity scaling between the
input images. The distance between the diffusion images was assessed using the
mean of squared difference (MSD) between the fractional anisotropy (FA) maps
derived from the real and the simulated DTIs. For both distance evaluations,
skull-stripped images were used in order to only consider the voxels in the brain
area. The result are presented in Figure 3. We also computed the distance,
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Fig. 3. Distance between the real and simulated follow-up structural (top) and dif-
fusion (bottom) scans. For each baseline scan, we simulated three follow-up images
corresponding to the three groups in the database: NC, FTD and AD. The distance
between the real and the simulated scans are reported here. For visualisation purpose,
distances have been sorted in an increasing order.
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defined as the SSD, between the simulated logarithm of the Jacobian maps and
the maps recovered by registering the real baseline and follow-up pairs of images.

It can be noticed that the differences between the different simulations are
relatively small when compared to the actual distances between simulated and
real data. This difference arises from other sources of variability such as im-
age noise, artefacts or tensor fit errors, not related to geometrical differences.
Moreover, the distances are computed over the full brain area whereas the sim-
ulated transformations impact largely on smaller regions such as the ventricles
and the cortex in the T1w and the tract areas in the DTI. This is illustrated
by the difference images between the real baseline and follow-up acquisitions
in Figure 2. Nonetheless, 77.5%, 75% and 100% of the simulated NC are the
closest to the real NC follow-up T1w/FA and estimated Jacobian maps. The
equivalent numbers for the AD and FTD subjects are 64.7%/52.9%/88.2% and
58.8.7%/58.8%/88.2% respectively. This indicates that the proposed methodol-
ogy captures disease specific patterns of longitudinal changes.

4 Discussion

We proposed a neurodegeneration simulator based on longitudinal and multi-
modal imaging data. We hypothesise that the use of multi-modal data decreases
the variance of all possible registration results and increases the biological plau-
sibility of the obtained transformations. However further assessment is needed to
fully investigate the added value of using multi-modal registration rather than
single modality registration. Using a local weighted scheme, we ensured subject
specific simulation where the information is propagated only between similar
morphologies. Due to the exploratory nature of the proposed work, further val-
idation will be performed to assess, for example, the influence of the different
algorithmic parameters, such as the weighting of the distance measure. The prop-
agation of flow from one image space to another space was here performed using
a gradient reorientation scheme. We will investigate the use of parallel transport
techniques, such as pole ladder [15]. Finally, as previously mentioned, this work
focused on the geometrical component of the longitudinal changes and not on
the metamorphic process of pathology, which we will also further investigate.
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Abstract. Recently, the HyperSPHARM algorithm was proposed to pa-
rameterize multiple disjoint objects in a holistic manner using the 4D
hyperspherical harmonics. The HyperSPHARM coefficients are global;
they cannot be used to directly infer localized variations in signal. In
this paper, we present a unified wavelet framework that links Hyper-
SPHARM to the diffusion wavelet transform. Specifically, we will show
that the HyperSPHARM basis forms a subset of a wavelet-based multi-
scale representation of surface-based signals. This wavelet, termed the
hyperspherical diffusion wavelet, is a consequence of the equivalence of
isotropic heat diffusion smoothing and the diffusion wavelet transform
on the hypersphere. Our framework allows for the statistical inference of
highly localized anatomical changes, which we demonstrate in the first-
ever developmental study on the hyoid bone investigating gender and age
effects. We also show that the hyperspherical wavelet successfully picks
up group-wise differences that are barely detectable using SPHARM.

1 Introduction

Studying and quantifying the development of anatomical structures over time is
important in medical image analysis. Anatomical development tends to exhibit
highly localized, complex growth [9]. Unfortunately, existing surface-based mor-
phometric techniques are based on global bases, and thus are unable to detect
subtle localized anatomical variations. For anatomical developmental studies,
there is then a real need for surface-based approaches with localization power.

Recently, the HyperSPHARM algorithm [7] was proposed to parameterize
multiple disjoint structures (e.g. hyoid bone) in a holistic manner. The under-
lying idea behind HyperSPHARM is to stereographically project n-dimensional
data onto the (n+ 1)-dimensional hypersphere and subsequenly parameterize it
with the (n+1)-dimensional hyperspherical harmonics (HSH). As with SPHARM
[5,8], the HyperSPHARM coefficients are global, so if they exhibit statistical dif-
ferences, interpreting which anatomical regions contribute to these variations is
difficult. Consequently, the HyperSPHARM coefficients cannot be used directly
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to infer localized variations in signal. Although this fact may seem to render Hy-
perSPHARM as a purely global inference algorithm, HyperSPHARM is actually
a feature of wavelet localization.

In this paper, a unified wavelet framework is developed that links Hyper-
SPHARM to the diffusion wavelet transform [4]. Specifically, we will show that
the HyperSPHARM basis forms a subset of a wavelet-based multi-scale repre-
sentation of surface-based signals. We will derive this wavelet, which we term
the hyperspherical diffusion wavelet. Our framework allows for the statistical
inference of highly localized anatomical changes, which we demonstrate in a de-
velopmental study on the hyoid bone investigating gender and age effects. We
will also show that the hyperspherical wavelet outperforms SPHARM in detect-
ing group-wise differences.

2 Theory
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for N=1 HSH recon of hyoid template

In this section, we will briefly review
HyperSPHARM, before deriving the
hyperspherical wavelet and its corre-
sponding coefficients.

4D Hyperspherical Harmonics
Consider the 4D unit hypersphere S3

existing in R4. The Laplace-Beltrami
operator on S3 is defined as ΔS3 =

1
sin2 β

∂
∂β sin2 β ∂

∂β + 1
sin2 β

ΔS2 , where
ΔS2 is the Laplace-Beltrami operator
on the unit sphere S2. The eigen-
fuctions of ΔS3 are the 4D HSH
Zm
nl(β, θ, φ): ΔS3Zm

nl = −l(l + 2)Zm
nl,

and we refer the reader to [7] for their exact functional form. The hyperspherical
angles (β, θ, φ) obey (β ∈ [0, π], θ ∈ [0, π], φ ∈ [0, 2π]), and the three integers
(n, l,m) obey the conditions n = 0, 1, 2, ..., 0 ≤ l ≤ n, and −l ≤ m ≤ l. The 4D
HSH form an orthonormal basis on S3.

Isotropic Heat Diffusion Smoothing on 4D Hypersphere
Consider an arbitrary 3D manifold M ⊂ R3 defined by surface coordinates
q = (q, θ, φ), and some real-valued functional measurement f(q) defined on the
manifold. The manifold M can be either multiple disjoint components such as
the hyoid bone, or a single connected component. We stereographically project
the 3D manifold onto a 4D hypersphere of radius ro in R4, whose coordinates are
denoted by the vector u = (β, θ, φ). Consequently, the functional measurement f
exists along the surface of the 4D hypersphere. Note that the measurement f(q)
on M is equivalent to its corresponding projection f(u) on the hypersphere.

We assume that f(u) is square-integrable along the surface of the hyper-
sphere. According to Fourier analysis, any square-integrable function defined on
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a sphere can be expanded in terms of the spherical harmonics. Thus, f(u) can
be expanded in terms of the 4D HSH:

f(u) =

N∑
n=0

n∑
l=0

l∑
m=−l

CnlmZm
nl(u), (1)

where N is the truncation order of the HSH expansion. Eq. (1) is simply the
HyperSPHARM basis.

Now lets have f(u) undergo isotropic heat diffusion smoothing. We want to
determine the function K(u, t) that describes the variation of f(u) with respect
to smoothing parameter t. Naturally, when no smoothing is applied, i.e. t = 0, we
haveK(u, 0) = f(u). The functionK(u, t) is then a solution to the isotropic heat
equation on the 4D hypersphere, subject to the aforementioned initial condition:

∂

∂t
K(u, t)−ΔS3K(u, t) = 0, K(u, t = 0) = f(u) (2)

Eq. (2) can be solved analytically by employing an ansatz solution of the form

K(u, t) =
∑∞

n=0

∑n
l=0

∑l
m=−l Cnlmhnlm(t)Zm

nl(u), where hnlm(t) is the smooth-
ing term. Upon substituting the ansatz solution into (2), we determine the
smoothing term to be hl(t) = ble

−l(l+2)t. Hence, the solution to Eq. (2) is

K(u, t) =

N∑
n=0

n∑
l=0

l∑
m=−l

Cnlme−l(l+2)tZm
nl(u), (3)

where all constants are absorbed into Cnlm.

Connection to Diffusion Wavelet
Diffusion wavelets are a multi-scale framework for the analysis of functions on
manifolds and graphs [1,6]. Consider the eigenfunctions ψj and eigenvalues λj

on an arbitrary d-dimensional manifoldMd, which satisfy �ψj = λjψj for some
self-adjoint operator � defined on Md. Following the notations in [1,6], the
diffusion wavelet Wt,p(s) at position p and scale t characterizing the manifold
Md is given by

Wt,p(s) =

k∑
j=0

g(λj , t)ψj(p)ψj(s), (4)

where g is some scaling function. The diffusion wavelet coefficients of a given
function ε(s) existing on the manifold Md is given by the inner product of the
wavelets and the given function:

〈Wt,p, ε〉 =
∫
M

Wt,p(s)ε(s)ds (5)
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If the manifoldMd is taken to be the 4D hypersphere, then � is the Laplace-
Beltrami operator on S3; ψj is the 4D HSH basis Zm

nl ; and λj = −l(l+2). Then
Eq. (4) becomes

Wt,u(v) =

N∑
n=0

n∑
l=0

l∑
m=−l

e−l(l+2)tZm
nl(u)Z

m
nl(v), (6)

where we have taken g(λj , t) = e−l(l+2)t. Eq. (6) is the 4D hyperspherical diffu-
sion wavelet. Substituting Eqs. (1) and (6) into Eq. (5) gives the hyperspherical
wavelet coefficients of any functional measurement f existing on the 4D hyper-
sphere:

〈Wt,u, f〉 =
N∑

n=0

n∑
l=0

l∑
m=−l

Cnlme−l(l+2)tZm
nl(u) (7)

Eq. (7) is equivalent to Eq. (3), i.e. the hyperspherical wavelet coefficients are
simply the functional measurement at different smoothing scales, which indicates
that isotropic heat diffusion smoothing and the diffusion wavelet transform are
identical operations on the hypersphere. It should be noted that a similar 3D
analysis will result in the SPHARM wavelet.

3 Application

Numerical Implementation
The numerical implementation follows that of the HyperSPHARM algorithm.
The task at hand is to estimate the HSH coefficients Cnlm in Eq. (1) for the
functional measurement f = (x1, x2, x3), where (x1, x2, x3) are the surface coor-
dinates of the 3D manifold M.

Suppose the manifoldM comprises M mesh vertices, and let Ωj = (βj , θj , φj)
denote the hyperspherical angles at the j-th mesh vertex. Denote xi as the M
x 1 vector representing each xi’s M vertices, Ci the Q x 1 vector of unknown
expansion coefficients Ci

nlm for each xi, and A the M x Q matrix constructed
with the HSH basis

A =

⎛⎜⎝ Z0
00(Ω1) Z0

10(Ω1) Z−1
11 (Ω1) Z0

11(Ω1) · · · ZN
NN (Ω1)

...
...

...
...

. . .
...

Z0
00(ΩM ) Z0

10(ΩM ) Z−1
11 (ΩM ) Z0

11(ΩM ) · · · ZN
NN(ΩM )

⎞⎟⎠ .

Thus, the general linear system representing Eq. (1) is described by xi = ACi,

and is solved via linear least squares, yielding Ĉi = (ATA)−1ATxi. Once the
HyperSPHARM coefficients have been estimated, heat diffusion smoothing is
applied to obtain the hyperspherical wavelet coefficients given by Eq. (7).
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CT Imaging Data and Preprocessng
The study consists of CT images of 70 normal subjects (33 female and 37 male),
whose age range is between 0 and 20 years. Subjects are binned into three age
categories: ages between 0 and 6 years (group I), 7 and 12 years (group II), and
13 and 19 years (group III). There are 26, 14, and 30 subjects in groups I, II, and
III, respectively. Using this dataset, we seek to address two issues: 1) whether
there are any localized hyoid bone growth spurts between these age groups and
2) whether there are any gender differences in the hyoid bone.

The hyoid bone was segmented manually. Correspondence for SPHARM and
HyperSPHARMwas established in a similarmanner as proposed in [3]. The 70 sub-
jects were first affinely aligned so to remove the overall size variablity. Since some
subjects may have a larger hyoid bone than others, it is necessary to remove the
global size differences in local shape modeling. For this reason, diffeomorphic non-
linear image registration was then performed on the affinely registered template
using Advanced NormalizationTools (ANTS) [2]. SPHARM andHyperSPHARM
are thenused to further register the surfacesvia surfaceflattening and stereographic
projection, respectively. Please note this approach avoids the surface alignment
done by coinciding the first order ellipsoid meridian and equator proposed in [5].

The HSH truncation order wasN = 1 and hypersphere radius ro = 12000. The
appropriate radius was determined by plotting the mean squared error as a func-
tion of radius and selecting the radius that minimized it (Fig. 1). The SPHARM
truncation order was L = 20. The appropriate wavelet scales t were determined
using cluster size inference. The hyperspherical and SPHARM wavelet coeffi-
cients are estimated for each vertex at scales t = [0.01 0.05] for gender and
t = 0.005 for age. The SPHARM estimation is special generate case of the
SPHARM wavelet at t = 0. Hotelling’s T 2 test was then carried out at the voxel
level at .05 significance level for group analysis with respect to age and gender.
The resulting p-value map was corrected for multiple comparisons across all ver-
tices using the false discovery rate (FDR) method.

Hotelling T 2 Statistical Results and Discussion
Only results related to gender and age groups I vs. II are presented. Figs. 2 and
3 summarize the results of our analysis using hyperspherical/SPHARM wavelets
and SPHARM, with non-red regions indicating statistical significance. All three
methods detect significant gender differences and growth spurts at several regions
along the right and left hyoid bones and near the regions that connect the discon-
nected hyoid bones. SPHARM, however, detects no significant gender and age ef-
fects in the middle hyoid bone, unlike the hyperspherical wavelet. The SPHARM
wavelet does detect significant gender differences in a few areas along the middle
hyoid bone, but no age effects. For both age and gender, the hypersphericalwavelet
had the largest number of significant vertices, followed by SPHARM wavelet, and
then SPHARM. For gender, the hyperspherical wavelet has a total of 8575 statisti-
cally significant vertices, whereas SPHARMwavelet has 6384 and SPHARM 2928.
For age, the hyperspherical wavelet detects 5394 statistically significant vertices,
followed by SPHARM wavelet with 5330, and SPHARM with 4854.
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SPHARM: Gender

SPHARM Wavelet: Gender

Hyperspherical Wavelet: Gender

Fig. 2. Testing for gender differences. p-values after FDR correction (i.e. q-value),
projected back onto hyoid bone template. For hyperspherical wavelet, q-value < 0.028
corresponds to significance; for SPHARMwavelet, q-value< 0.029 (LH),< 0.005 (MH),
and < 0.019 (RH); for SPHARM, q-value < 0.011 (LH) and < 0.014 (RH).
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SPHARM: Age Groups I & II

SPHARM Wavelet: Age Groups I & II

Hyperspherical Wavelet: Age Groups I & II

Fig. 3. Testing for age effects. p-values after FDR correction (i.e. q-value), projected
back onto hyoid bone template. For hyperspherical wavelet, q-value< 0.014 corresponds
to significance; for SPHARM wavelet, q-value < 0.028 (LH) and < 0.016 (RH); for
SPHARM, q-value < 0.026 (LH) and < 0.014 (RH).
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The hyperspherical diffusion wavelet’s outperformance of SPHARM is due to
the wavelet being a local basis whereas SPHARM employs a global basis. The
wavelet’s inherent localization power, therefore, enables it to infer localized shape
variations much better than globally-based methods like SPHARM. SPHARM
wavelet’s outperformance of SPHARM is for the same reason.

4 Conclusion

In this paper, we have introduced the hyperspherical diffusion wavelet, which
allows for the statistical detection of highly localized variations in anatomical
morphology. It was used in the first ever developmental study on the hyoid bone,
and subsequent statistical testing on the wavelet coefficients revealed localized
gender differences and growth spurts in the hyoid bone. We also showed that our
framework is more sensitive in signal detection, outperforming both SPHARM
wavelet and SPHARM in the discernment of group-wise differences.
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Abstract. We introduce a novel biologically inspired feature descriptor,
Co-occurrence of Local Anisotropic Gradient Orientations (CoLlAGe),
that captures higher order co-occurrence patterns of local gradient ten-
sors at a pixel level to distinguish disease phenotypes that have sim-
ilar morphologic appearances. A number of pathologies (e.g. subtypes
of breast cancer) have different histologic phenotypes but similar radio-
graphic appearances. While texture features have been previously em-
ployed for distinguishing subtly different pathologies, they attempt to
capture differences in global intensity patterns. In this paper we attempt
to model CoLlAGe to identify higher order co-occurrence patterns of gra-
dient tensors at a pixel level. The assumption behind this new feature
is that different pathologies, even though they may have very similar
overall texture and appearance on imaging, at a local scale, will have
different co-occurring patterns with respect to gradient orientations. We
demonstrate the utility of CoLlAGe in distinguishing two subtly different
types of pathologies on MRI in the context of brain tumors and breast
cancer. In the first problem, we look at CoLlAGe for distinguishing ra-
diation effects from recurrent brain tumors over a cohort of 40 studies,
and in the second, discriminating different molecular subtypes of breast
cancer over a cohort of 73 studies. For both these challenging cohorts,
CoLlAGe was found to have significantly improved classification perfor-
mance, as compared to the traditional texture features such as Haralick,
Gabor, local binary patterns, and histogram of gradients.

1 Introduction

A number of pathologies have different histologic phenotypes but similar
radiographic appearances. One such instance is the problem of discriminating
fibroadenoma (FA), a benign breast tumor from triple negative (TN), an aggres-
sive breast cancer [1]. Both FA and TN have distinct cellular and architectural
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Original MRI 
for 2 pathologies 

Identify localized 
dominant directions 

Compute entropy on 
gradient orientations  

Compute histogram of entropy 
of localized orientations 

Classification via SVM 
(a)  RN vs. rBT          

(primary, MET) 
(b) Breast cancer subtypes 

(TN, ER+, HER2+, FA) 

athologies 

rBT 
RN 

Fig. 1. Overview of CoLlAGe and overall workflow. The 1st module involves com-
puting localized gradient orientations, while in the 2nd module entropy of localized
gradient orientations is computed for every pixel. A histogram of entropy values is
then aggregated for every pixel and is subsequently used for classification.

arrangements when examined on a pathology slide under a microscope. How-
ever they have very similar morphologic appearances on MRI. In this paper,
we present a new biologically inspired feature descriptor, Co-occurrence of Lo-
cal Anisotropic Gradient Orientations (CoLlAGe), that captures higher order
co-occurrence patterns of local gradient tensors at a pixel level to distinguish
disease phenotypes that have similar morphologic appearances. While texture
features have emerged as a popular way of characterizing and distinguishing
subtly differing pathologies, these operators typically tend to capture global
textural patterns. One such class of texture features are grey-level co-occurrence
matrix (GLCM) [2] and Gabor steerable filters. These texture descriptors in-
volve computing global relationships between pixels by averaging responses to
various filter operators within the neighborhood of a single global descriptor.
While some texture features can provide pixel-level responses (e.g. local binary
patterns (LBP)) [3], these filters are often employed to provide pixel level or
patch based classification. LBP, unlike GLCM, provides a signature for every
pixel by capturing localized intensity variations across the pixel. However, LBP,
is highly dependent on the radius parameter, which is critical in extracting lo-
cal patterns. Additionally, both global and per-pixel texture representations are
based on intensity variations and are domain agnostic. When examined on a
histopathology slide under a microscope at a high magnification, the differences
between subtly different classes may be manifested in differently oriented nuclei,
lymphocytes, and/or glands. The differences in histologic architecture, which are
no doubt reflected on the imaging, hence need a new class of features to capture
subtle differences in image patterns on a local scale.

The rationale behind our approach, CoLlAGe, is that even though overall
the global textural patterns or even the filter responses at a majority of pixel
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locations might be similar between two differing pathologies (e.g. FA versus TN),
the organization of local gradients may differ across classes and will be relatively
consistent within a class.

2 Previous Work and Novel Contributions

A popular texture descriptor that captures orientation variations is histogram of
gradient orientations (HoG) [4]. HoG computes a global patch based signature by
computing histogram distribution of orientations computed on a per pixel basis.
However HoG, similar to the other texture descriptors, is domain agnostic and
is not designed to capture localized per voxel texture characteristics depicted
on imaging. A variant of HoG, called co-occurrence of histogram of gradient
orientations (Co-HoG) was recently presented by Watanabe et al. [5] where a
high-dimensional feature vector was computed for every pixel by accumulating
values from co-occurrence matrix computed on gradient orientations for pedes-
trian detection on a per-pixel basis. However, the approach in [5], (a) did not
capture localized variations across neighboring orientations, (b) is susceptible
to “curse of dimensionality” (due to a high dimensional feature space), and (c)
similar to its counterpart HoG, is domain agnostic.

Recently, deep learning (DL) has emerged as a powerful tool for learning al-
ternative representations of data for improved classification [6]. DL approaches
train multiple convolution layers on a large annotated dataset to learn abstract
but useful patterns between classes. Although DL has shown tremendous promise
in identifying complex differentiating patterns across diseases, the identified fea-
tures are not intuitive and cannot be used to understand the underlying dis-
ease characteristics. Additionally, DL strategies require large annotated training
dataset to obtain meaningful results.

CoLlAGe, on the other hand, is designed to be “biologically intuitive”. Firstly,
CoLlAGe captures neighborhood orientation variation via a localized gradient
tensor field that may reflect the underlying cellular arrangement of the pheno-
type on imaging. Secondly, CoLlAGe computes co-occurrence matrix on local-
ized gradient tensors to capture co-occurring patterns of orientation disorder
in a localized fashion. While co-occurrence matrices are commonly used to de-
scribe image texture, to our knowledge, this is the first attempt at employing
co-occurrences on localized gradient orientations to capture underlying orienta-
tion variations on imaging.

We demonstrate the utility of CoLlAGe in the context of two problems in-
volving brain tumors and breast cancer. The first application involves evaluating
radiation therapy response for distinguishing radiation necrosis (RN), a radiation
induced effect, from recurrent brain tumors (rBT) for primary and metastatic
(MET) brain tumors [7]. The second application involves identifying phenotypic
imaging signatures of molecular sub-types of breast cancer: triple negative (TN),
estrogen receptor positive (ER+), human epidermal growth factor receptor pos-
itive (HER2+), and benign fibroadenoma (FA) on dynamic contrast enhanced
(DCE)-MRI [1].
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3 Co-occurrence of Localized Gradient Orientations

A region of interest (ROI) on an MRI volume is defined as, C = (C, f), where
f(c) is the associated intensity at every pixel c on a 3D grid C. Computation of
CoLlAGe for every c ∈ C involves following steps,

1. Calculation of gradient orientations for every pixel: For every c ∈ C,

gradients along the X and Y directions are computed as, ∇f(c) = ∂f(c)
∂X î+

∂f(c)
∂Y ĵ . Here, ∂f(c)

∂X and ∂f(c)
∂Y are the gradient magnitudes along the X

and the Y axes respectively denoted by ∂fX(c) and ∂fY (c). The gradient

orientation θ of every c ∈ C is then calculated as θ(c) = tan−1 ∂fY (c)
∂fX (c) .

2. Computing local dominant orientations via principal component
analysis (PCA): A N×N window centered around every c ∈ C is selected.
We then compute ∂fX(ck) and ∂fY (ck), k ∈ {1, 2, . . . ,N 2}. The vector gra-

dient matrix
−→
F associated with every c is given by

−→
F = [

−→
∂fX(ck)

−→
∂fY (ck)],

where [
−→
∂fX(ck)

−→
∂fY (ck)], k ∈ {1, 2, . . . ,N 2} is the matrix of gradient vec-

tors in the X and Y directions for every ck. The most significant orientation
for each pixel ck within N × N is obtained by performing principal com-

ponent analysis on
−→
F . The dominant principal components in X and Y

directions are obtained as rkX and rkY for every k ∈ {1, 2, . . . ,N 2}. The most

significant orientation for every ck is then calculated as φ(c) = tan−1 rkY
rkX

.

3. Calculation of second-order statistics for most significant orien-
tations: The objects of interest for calculating CoLlAGe features are the
co-occurring directions given by discretization of the dominant orientation

φ̄(ck) for every pixel c, such that φ(ck) = ω × ceil( φ̄(ck)ω ), where ω is a dis-
cretization factor.
An N ×N co-occurrence matrixM subsequently captures orientation pairs
between pixels which co-occur in the neighborhood Wi, such that,

MWi(p, q) =

Wi∑
cj ,ck

N∑
p,q=1

{
1, if φ(cj)=p and φ(ck)=q

0, otherwise
(1)

where N = 360
ω is the number of discrete angular bins. Entropy measure,

E(c) is then computed from every co-occurrence matrix on every c as,

E(c) =
∑
p,q

−M(p, q)log(M(p, q)). (2)

4. A histogram of E is computed by aggregating E(ck), k ∈ {1, . . . , |C|},
where |.| is the cardinality of set C. The entropy histogram is divided into
bin size v, optimized on the training set via grid search optimization.
A CoLlAGe feature vector, F is then obtained for every C which consists of
the binned histogram values in the form of v×1 vectors. F is then employed
within a classifier for classification purposes.
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Data: ROI volume C
Result: CoLlAGe features, F

begin
for each pixel c ∈ C, do

Obtain gradients ∂fX(c) and ∂fY (c) along X- and Y - axes ;

Obtain gradient orientation θ(c) = tan−1 ∂fY (c)
∂fX(c)

;

end
for each pixel c ∈ C, do

Compute gradient vectors
−−→
∂fX(ck) and

−−→
∂fY (ck) in N ×N neighborhood;

Obtain localized gradient vector matrix
−→F = [

−−→
∂fX (ck)

−−→
∂fY (ck)];

Compute dominant orientation, φ(ck), k ∈ {1, . . . ,N 2} via PCA;
end
Compute Co-occurrence matrix M from φ(c);
Compute E(c) from M;
Obtain v×1 dimensional feature vector F from distribution of E ;

end

Algorithm 1. Computation of CoLlAGe features

4 Experimental Results and Description

4.1 Data Description

Dataset 1 comprised two cohorts of 20 primary (10 RN, and 10 rBT) and 20
MET (12 RN and 8 rBT) patient studies respectively. All the studies were ret-
rospectively acquired with 3 Tesla Gadolinium-constrast (Gd-C) T1-w MRI),
and were histologically confirmed on biopsy samples by an expert pathologist.
Dataset 2 comprised DCE-MRI studies from 65 women with 73 breast lesions
for whom pathology results and ER, PR, and HER2 results were available. Ref-
erence standard diagnosis was made by histopathologic examination of tissue
obtained by either core biopsy sampling or lumpectomy. Of the 73 lesions, 9
were benign FA, 21 were TN, 18 were HER2+, and 25 were ER+.

4.2 Implementation Details

Figure 1 shows the work-flow of CoLlAGe, and its implementation in the context
of clinical problems in brain tumors and breast cancer. We compared CoLlAGe
against GLCM, Gabor, HoG, and LBP features, and evaluated their performance
using a support vector machine (SVM) classifier [8] with a radial basis function
(RBF) kernel. A 3-fold cross-validation strategy was employed and the perfor-
mance of each of the texture descriptors was compared over different window,
N ∈ {3, 5, 7, 9}, and bin sizes, v ∈ {10, 20, 30, 40, 50} . v = 30, and N = 7 were
found to be optimal parameters across different descriptors and was employed
for further evaluation. The average accuracy values were reported over 100 runs
of 3-fold cross validation for both the cohorts. Wilcoxon’s rank sum test [9] was
performed to report statistical significance and corrected for multiple compar-
isons for the experiments performed for the two use-cases.
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Table 1. Summary of features and feature parameters used in this work

Descriptor # Feature setting Description

Haralick 26 N ∈ {3, 5, 7, 9} gray-level co-occurrence such as angular sec-
ond moment, contrast and entropy

LBP 59 radius R = 8 Histogram of intensity variations within R

HoG 20 bin-size=18◦ Histogram of gradient orientations

CoLlAGe 30 ω = 20; N ∈ {3, 5, 7, 9};
v ∈ {10, 20, 30, 40}

Entropy of localized gradients for N ×N

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

(p) (q) (r) (s) (t)

Fig. 2. Original DCE-MRI for ER+ (a), TN (f), HER2+ (k), and FA (p) with the
lesion outlined in red. 2(b), (g), (l), (q) correspond to Haralick, while 2(c), (h), (m),
(r) correspond to LBP representations of the lesion on ER+, TN, HER2+, and FA
images. 2(d), (i), (n), (s) represent localized gradient orientations, while 2(e), (j), (o),
(t) represent entropy heatmaps for the corresponding lesion on (a), (f), (k) and (p),
where red represents higher while blue represents low entropy values.
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4.3 Distinguishing RN from rBT for Primary and MET Patients

Figure 1 shows a representative RN, and rBT patient for primary brain tumor
cohort. The orientations shown in magenta correspond to rBT, while the ones
in green correspond to RN. The heatmaps represent entropy values obtained
from the localized orientations on a per-pixel basis, where higher values of en-
tropy are shown in red while lower values are shown in blue. It is interesting
to note that the entropy values for rBT on a per pixel basis are substantially
higher than those of RN suggesting orientation disorder in recurrent tumor. The
histogram plots shown in red (RN), and blue (rBT) seem to suggest a clear sep-
aration between entropy distributions across the two morphologies. Figure 3 (a)
demonstrates the quantitative results obtained for both primary as well as MET
patients in distinguishing RN from rBT. For both the cohorts, CoLlAGe (80.25
± 7.89% for primary cases, 77.55% ± 3.35 for MET) was found to significantly
outperform Haralick (62.19% ± 0.99% for primary, 63.83% ± 2.42% for MET),
Gabor (59.68% ± 5.8% for primary, 59.45% ± 1.73% for MET), LBP (63.63 ±
3.21% for primary, 65.75% ± 6.76% for MET), and HoG features (60.62 ± 3.21%
for primary, 72.99% ± 1.35 for MET).

4.4 Distinguishing TN from Other Breast Cancer Subtypes

Figure 2 illustrates the qualitative comparison of CoLlAGe with the other tex-
ture descriptors, Haralick, LBP, and HoG in differentiating molecular subtypes,
ER+ (2(a)), TN (2(f)), HER2+ (2(k)), and FA (2(p)) on DCE-MRI. Note the
apparent differences in entropy heatmaps across 2(e), (j), (o), and (t) correspond-
ing to ER+, TN, HER2+, and FA respectively. The most prominent difference is
reported between FA, a benign condition, from ER+, a subtype of breast cancer.
The results suggest that the orientations of cancer subtypes are more disordered
than the benign condition. Similarly, ER+ reported overall higher entropy val-
ues than TN, and HER2+ cancer subtypes. The accuracy values averaged over
100 runs of 3 fold cross-validation for different feature descriptors are shown in
Figure 3(b). It is interesting to note that although CoLlAGe significantly out-
performs the other texture descriptors (Haralick, Gabor, LBP, and HoG) for
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Fig. 3. Mean accuracy values obtained for different feature descriptors (Haralick, LBP,
HoG, Gabor, CoLlAGe) for (a) brain tumor, and (b) breast tumor datasets respectively.
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distinguishing the more difficult disease subtypes (TN vs. HER2+, TN vs. ER+
and TN vs. ER+/HER2+), the results of CoLlAGe were comparable to Haralick
descriptors for distinguishing TN vs. FA.

5 Concluding Remarks

In this work, we presented a new feature descriptor, Co-occurrence of Local
Anisotropic Gradient Orientations (CoLlAGe), that captures higher order co-
occurrence patterns of local gradient tensors at a pixel level to distinguish dis-
ease phenotypes that have similar morphologic appearances. We demonstrated
the utility of CoLlAGe in identifying MRI phenotypes for clinically challenging
problems in the context of breast and brain tumors for (a) distinguishing radia-
tion necrosis, a treatment related effect from recurrent brain tumors over a cohort
of 40 MRI studies, and (b) distinguishing breast cancer subtypes (ER+, HER2+,
TN, and FA) over a cohort of 73 DCE-MRI studies. CoLlAGe was found to sig-
nificantly outperform traditional texture descriptors such as Haralick, Gabor,
local binary patterns, and histogram of gradients for the two use-cases, except
for distinguishing FA from TN, where the results were found to be comparable
to Haralick texture descriptors. In future work, we will seek to understand the
correlation of CoLlAGE with pathologic correlates and evaluate its applicability
across other disease sites such as prostate cancer.
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Abstract. The entorhinal cortex (ERC) and the perirhinal cortex (PRC) are sub-
regions of the medial temporal lobe (MTL) that play important roles in episodic 
memory representations, as well as serving as a conduit between other neocorti-
cal areas and the hippocampus. They are also the sites where neuronal damage 
first occurs in Alzheimer’s disease (AD). The ability to automatically quantify 
the volume and thickness of the ERC and PRC is desirable because these local-
ized measures can potentially serve as better imaging biomarkers for AD and 
other neurodegenerative diseases. However, large anatomical variation in the 
PRC makes it a challenging area for analysis. In order to address this problem, 
we propose an automatic segmentation, clustering, and thickness measurement 
approach that explicitly accounts for anatomical variation. The approach is tar-
geted to highly anisotropic (0.4x0.4x2.0mm3) T2-weighted MRI scans that are 
preferred by many authors for detailed imaging of the MTL, but which pose 
challenges for segmentation and shape analysis. After automatically labeling 
MTL substructures using multi-atlas segmentation, our method clusters subjects 
into groups based on the shape of the PRC, constructs unbiased population 
templates for each group, and uses the smooth surface representations obtained 
during template construction to extract regional thickness measurements in the 
space of each subject. The proposed thickness measures are evaluated in the 
context of discrimination between patients with Mild Cognitive Impairment 
(MCI) and normal controls (NC). 

1 Introduction 

Quantification of the volume and thickness of ERC, PRC and other MTL cortical 
subregions from in vivo MRI has been increasingly pursued because these structures 
play important roles in episodic memory models [1] and are the earliest sites affected 
by AD pathology [2]. However, the PRC exhibits large anatomical variability, which 
complicates quantitative analysis [3]. By examining a large sample of autopsy brains, 
Ding et al. [4] conclude that three main variants of the PRC exist, defined by mor-
phology of the collateral sulcus (CS): 1) continuous CS; 2) discontinuous CS with 
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anterior CS shorter than the posterior; 3) discontinuous CS with anterior CS longer 
than the posterior. Failure to account for this variability can degrade the accuracy of 
morphometric analysis and reduce the utility of PRC as an imaging biomarker. This 
paper provides a novel approach for automatically quantifying the thickness of MTL 
substructures while explicitly accounting for anatomical variability.  

Typically, the first step in quantitative MRI analysis is to segment the structures of 
interest, preferably automatically. However, little work on automatic segmentation of 
the PRC has been reported in the literature [5]. In this paper, we use the multi-atlas 
approach [6] in conjunction with a set of expert-labeled atlases that include labels for 
the ERC, PRC (further partitioned into Brodmann areas BA35 and BA36) as well as 
the hippocampal subfields (cornu ammonis, dentate gyrus and subiculum) to perform 
automatic segmentation. The method takes T1-weighted whole-brain scan (1mm3 
isotropic resolution) as well as a specialized anisotropic oblique coronal T2-weighted 
scan of the MTL (0.4x0.4x2mm3 resolution) as inputs, and outputs a multi-label seg-
mentation that has the same resolution as the T2-weighted image. The T2-weighted 
MRI has high in-plane resolution that allows substructures in the hippocampal region 
to be distinguished visually in the way that 1mm3 isotropic T1-weighted MRI cannot. 
Similar T2-weighted MRI scans have been used for manual segmentation of MTL 
substructures by several authors, e.g. [7,8]. 

Regional thickness measurements are often preferred to volume in morphometric 
studies of cortical structures like ERC and PRC because 1) they capture localized 
changes and 2) they are more robust to the variability of the locations of the bounda-
ries in the automatic segmentation. While there is substantial prior work on measuring 
cortical thickness in MRI [9,10], most approaches do not provide a specific PRC 
thickness measurement. The notable exception is [5], who use a probabilistic template 
derived from postmortem MRI to label and measure the thickness of the PRC in the in 
vivo MRI. However, this single-template approach does not account for the anatomi-
cal variability described by Ding et al. [4]. In this paper, we propose a thickness 
measurement pipeline that attempts to automatically discover anatomical variants 
present in the population using a combination of deformable image registration and 
spectral clustering [11]. Our work is inspired by recent applications of clustering to 
atlas propagation and group-wise image registration [12], but is distinct in that clus-
tering is applied to the output of multi-atlas segmentation rather than raw MRI data. 
The main contribution of this paper is introducing this concept in the analysis of PRC, 
which is the perfect application for this technique. 

To demonstrate clinical utility, we evaluate our technique in a dataset from a re-
search study of MCI, often conceptualized as a prodromal stage of AD, and normal 
aging. The proposed clustering-based approach yields stronger statistical power in 
discriminating the MCI patients from NC group than volumetric measurements as 
well as alternative thickness measures. 

2 Materials 

MRI scans of 83 participants (40 with diagnosis of MCI, 43 controls) from a research 
study conducted at the Penn Memory Center at the University of Pennsylvania were 
used to evaluate the proposed technique. Scans were acquired on a 3T Siemens Trio 
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scanner. MRI protocols include a T1-weighted (MPRAGE) 1mm3 isotropic whole-
brain scan and a 0.4x0.4x2mm3 T2-weighted (TSE) scan with partial brain coverage 
and an oblique coronal slice orientation (Fig 1a,b).  

Automatic segmentation for each subject was generated by applying the multi-atlas 
approach in [6] to the subject`s T1-weighted and T2-weighted scans (Fig 1c). The 
output segmentations, consist of 7 labels (cornu ammonis, dentate gyrus, subiculum, 
ERC, BA35, BA36 and CS), were then used for our proposed pipeline. 

3 Method 

Given the automatic segmentation, which has large step edge discontinuities in the 
MRI slice direction, our goal is to approximate it with a smooth surface mesh repre-
sentation that is topologically consistent across all subjects sharing the same PRC 
anatomical subtype, and from which a regional thickness map can be extracted. Our 
proposed approach consists of three steps: 1) cluster subjects into groups based on 
their PRC anatomy; 2) build an unbiased population template for each group and gen-
erate a mesh in the template space; 3) warp the mesh back to the space of each subject 
and measure thickness for each vertex on the mesh. We treat each hemisphere inde-
pendently throughout the analysis. The computational complexity of clustering and 
thickness analysis is negligible compared to multi-atlas segmentation. The detail of 
each step is described below. 

3.1 Automatic Clustering of Anatomical Subtypes  

Spectral clustering [11] is used to divide subjects into groups with similar PRC anat-
omy. Spectral clustering is a dimension reduction algorithm that projects the pairwise 
similarity relationship onto a lower-dimensional space in which anatomical variants 
can be easily separated using k-means clustering [13]. 

To compute the pairwise similarity matrix (denoted as S), we first perform pairwise 
registration between all the multi-label segmentations using ANTs affine and high-
dimensional deformable algorithms [14]. The registration minimizes the sum of mean 
square intensity difference metrics computed separately for each label. Generalized Dice 
Similarity Coefficient (DSC) [15] is computed for labels BA35 and BA36 between the 
warped segmentation of subject  and the segmentation of subject , and denoted as 

. The underlying assumption is that after registration, overlap between multi-label 
segmentations will be greater when the pair of subjects have the same anatomical vari-
ant of the PRC than when they have different variants. In order to have a symmetric 
measurement and also exaggerate the similarity value between subjects with similar 
PRC anatomy, we compute similarity between subject  and subject  as: 
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where parameter σ controls the size of neighborhood in the graph (discussed below). 
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Based on S, we can construct a fully connected, undirected graph whose vertices 
are the subjects and weights are the similarity between subjects pairs. Then, the nor-
malized graph Laplacian [11] is computed as = . ( − ) . , where T is 
diagonal matrix with element = ∑  for = 1, … , 83. The k (number of clus-
ters) eigenvectors corresponding to the k smallest eigenvalues of L can be regarded as 
the feature vectors for all the subjects in the lower-dimensional space.  

We set the number of clusters k equal to three based on Ding`s observation in his 
study [4]. By doing this, all the subjects are projected onto a sphere in ℝ . Subse-
quently, k-means clustering [13] is applied to divide subjects into three groups. Con-
sidering both brain hemispheres, six groups in total are generated. Since the k-means 
algorithm is randomly initialized, and may yield different partitions, we repeat  
k-means clustering 20 times and choose the partition with the highest average gener-
alized DSC between the warped template segmentation and the subject`s segmenta-
tion (will be discussed in Sect. 3.3) to be the final partition. 

3.2 Unbiased Population Averaging and Surface Mesh Generation 

For each group, an unbiased population template is constructed from the multi-label 
segmentations by applying the iterative unbiased template building algorithm [14] and 
implementing the shape averaging approach in [16]. The metric optimized in this step 
during the subject-template registration is the same as the pairwise registrations 
above. Within each group, we choose the segmentation that is most similar to the 
others in its group (based on the pairwise similarity matrix) as the initial template to 
guide the template building process. The posterior probability maps for all the seven 
labels in the template space are used to vote to get the template segmentation. 

For each group, a surface mesh is then generated for the union of the ERC, BA35 
and BA36 labels, which are the structures of interest in this paper. As shown in Fig. 1 
(d) and (e), the surface mesh is much smoother than the multi-atlas segmentation. 

3.3 Thickness Measurement 

Surface meshes are then warped back to the space of each subject using the corre-
sponding diffeomorphic field computed in the template building step. Using this 
smooth surface approximation of the previous blocky labels (Fig. 1d,e), regional 
thickness can be computed by extracting the pruned Voronoi skeleton of the smooth 
mesh [17] and measuring the distance between each surface vertex and the closest 
point on the pruned Voronoi skeleton. 

To measure how faithful the smooth template-based mesh approximation is to the 
input segmentations, we compute the average DSC between the multi-atlas segmenta-
tion of each subject and the segmentation obtained by warping the corresponding 
template’s segmentation into the space of the subject. 
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Fig. 1. Sagittal slice of T1-weighted image (a) and T2-weighted image (b). (c) Automatic seg-
mentation. (d) Blocky automatic segmentation mesh. (e) Smooth surface mesh representation. 

4 Experiments and Results 

4.1 Volumetric and Thickness Measurements 

We apply our method to the clinical dataset in Sect. 2 and measure the discriminative 
ability of the thickness measured obtained using the proposed “three-group” (TG) 
approach to three quantitative measures. As the first alternative, we measure thickness 
using a “single-group” (SG), which assigns all the subjects in each hemisphere to the 
same group, and thus does not account for PRC anatomical variation. As additional 
comparison measures, we (a) compute the normalized volume (volume of structure 
divided by its length of segmentation in the anterior-posterior direction) for ERC, 
BA35 and BA36 for both hemispheres directly from the multi-atlas segmentation and 
(b) extract a cortical thickness map from the T1-weighted MRI using an established 
method [9], and integrate this map over the ERC, BA35 and BA36 labels, which are 
first mapped into the space of the T1-weighted MRI using rigid registration. 

4.2 Results 

Among the 83 subjects, 30, 20 and 33 of them were clustered into group 1, 2 and 3 
separately for the left hemisphere. On the right, the number of subjects in group 1, 2 
and 3 are 26, 26 and 31 respectively. Fig. 2 shows the smooth meshes for all the six 
templates (three per hemisphere) from the TG approach. Group 1 templates resemble 
the continuous CS variant. Discontinuous CS is observed in group 2 and 3 which 
differ, as expected, by the relative length of the anterior and posterior CS (i.e. anterior 
CS is shorter in group 2 while it is longer in group 3). This indicates spectral cluster-
ing is able to automatically identify the three anatomical variants [7]. Fig. 2 also 
shows the meshes for SG, which look like a blend of the three meshes from TG. The 
odd shape of BA36 of the left SG template (indicated by the white circle in SG tem-
plates) is likely the result of ignoring the anatomical variation. The shapes of the tem-
plates indicate that a single template is limited in its ability to represent all subject 
segmentations well. 

To evaluate this in a more quantitative way, we compute the average DSC for 
ERC, BA35, BA36 and CS between the warped template segmentation and subject`s 
segmentation in the space of each subject, which are shown in Table 1. As can be 
observed, the TG approach yields higher overlap for all the labels except ERC. Note 
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the dramatic increase in CS overlap, which indicates the warped meshes are better 
able to represent the segmentation using the TG approach. Another observation is the 
overlap remains almost the same for ERC. This demonstrates that TG approach does 
not degrade the measurement accuracy for a relatively consistent adjacent structure. 

Table 1. Average for ERC, BA35, BA36 and CS between warped template segmentation and 
subject`s automatic segmentation using “single-group” (SG) and “three-groups” (TG) 
approaches (computed in subject space) 

 
Left Hemisphere Right Hemisphere 

ERC BA35 BA36 CS ERC BA35 BA36 CS 

SG 
0.983 

(± 0.005) 
0.954 

(± 0.015) 
0.934 

(± 0.022) 
0.591 

(± 0.151) 
0.982 

(± 0.010) 
0.948 

(± 0.014) 
0.962 

(± 0.016) 
0.666 

(± 0.123) 

TG 0.983 
(± 0.005) 

0.965 
(± 0.016) 

0.959 
(± 0.018) 

0.803 
(± 0.082) 

0.983 
(± 0.010) 

0.958 
(± 0.010) 

0.970 
(± 0.012) 

0.749 
(± 0.133) 

 

 

Fig. 2. Left and right surface meshes for SG and TG approaches viewing from superior and 
inferior. White circle shows the odd shape at the left SG template. 

To further evaluate the proposed technique`s performance in clinical applications, 
we fit a general linear model to the thickness measurements with group membership, 
age, and intracranial volume as covariates, and report the t-statistic for the NC-MCI 
contrast. We also perform ROC analysis to the outputs of the four measurement ap-
proaches and report area under the curve (AUC) for group discrimination between 
MCI and NC groups.  Intracranial volume is computed the same way as that in [6]. 
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The thickness for each label is computed by integrating thickness value for all the 
vertices on the surface mesh belong to that label. The results are shown in Table 2. 

From Table 2, it can be observed that SG and TG demonstrate stronger effects in 
distinguishing the two groups in ERC and BA35 (especially left BA35). However, 
thickness measurement using T1-weighted MRI turns out to be the best performer for 
BA36. Importantly, based on the work of Braak and Braak [2], as well as others, 
greater discrimination in ERC and BA35 is more biologically plausible given the 
earlier and greater neurofibrillary tangle pathology in these regions than BA36 [1]. 
Poorer performance in BA36 of SG and TG may result from poorer localization in the 
T1 approach. Overall, the results of SG and TG are more consistent with the known 
early pathology of this region in AD [1]. Comparing to SG, which shows relatively 
good performance, the TG approach, which accounts for anatomic variability, does 
appear to boost further the statistical power of thickness measurement. Another inter-
esting observation is the left-right asymmetry in PRC, which shows up regardless of 
how we analyze the data (volumetry vs. thickness, T1 vs. T2) and might be explained 
by a bias towards verbal memory deficits in the MCI cohort. 

Table 2. Statistical analysis results for the four measurements conducted in this paper 

Label Measurement 
Left Hemisphere Right Hemisphere 

T-test P-value AUC T-test P-value AUC 

ERC 

T1 Thickness 2.34 0.022 0.61 2.23 0.029 0.61 
Volume 2.64 0.0099 0.67 1.22 0.23 0.58 

SG Thickness 2.99 0.0037 0.66 2.75 0.0073 0.67 
TG Thickness 3.36 0.0012 0.68 2.73 0.0078 0.66 

BA35 

T1 Thickness 2.19 0.031 0.63 1.95 0.055 0.66 
Volume 4.46 2.6e-5 0.77 1.91 0.060 0.64 

SG Thickness 5.39 6.8e-7 0.82 2.31 0.023 0.67 
TG Thickness 5.58 3.1e-7 0.83 2.32 0.023 0.65 

BA36 

T1 Thickness 4.01 1.3e-4 0.73 1.44 0.15 0.60 

Volume 3.18 0.0021 0.68 -0.01 0.99 0.49 
SG Thickness 2.96 0.0040 0.67 0.70 0.49 0.55 
TG Thickness 3.32 0.0014 0.67 1.27 0.21 0.58 

5 Conclusion 

In this paper, we proposed a novel automatic clustering and thickness measurement 
pipeline for PRC based on automatic segmentation. For evaluation, we applied our 
technique to dataset of patients with MCI, often enriched in individuals with prodro-
mal AD, and NC adults. The comparison between the surface meshes for TG and SG 
approaches demonstrates that group partitioning is a critical step to deal with anatom-
ical variation within PRC, a key for accurately measuring thickness based on automat-
ic segmentation. The statistical analysis supports the notion that the TG approach 
enhances power of discrimination between MCI and NC adults compared to volumet-
ric measurement, the SG approach, and thickness measurement based on T1-weighted 
scans. As such, this method may have important utility in the early diagnosis and 
monitoring of AD, as well as providing accurate measurements to enhance brain-
behavior studies of these regions. 
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Abstract. Cortical surface atlases play an increasingly important role for analy-
sis, visualization, and comparison of results across different neuroimaging  
studies. As the first two years of life is the most dynamic period of postnatal 
structural and functional development of the highly-folded cerebral cortex, lon-
gitudinal (4D) cortical surface atlases for the infant brains during this period is 
highly desired yet still lacking for early brain development studies. In this pa-
per, we construct the first longitudinal (4D) cortical surface atlases for the dy-
namic developing infant cortical structures at 1, 3, 6, 9, 12, 18 and 24 months of 
age, based on 202 serial MRI scans from 35 healthy infants. To ensure longitu-
dinal consistency and unbiasedness of the 4D infant cortical surface atlases, we 
first compute the within-subject mean cortical folding geometries by groupwise 
registration of longitudinal surfaces of each infant. Then we establish inter-
subject cortical correspondences by groupwise registration of the within-subject 
mean cortical folding geometries of all infants. More importantly, for the first 
time, we further parcellate the 4D infant surface atlases into developmentally 
and functionally distinctive regions based solely on the dynamic developmental 
trajectories of the cortical thickness, by using the spectral clustering method. 
Specifically, to deal with the problem that each infant has different number of 
scans, we first compute the within-subject affinity matrix of vertices’ cortical 
thickness trajectories of each infant, and then we use the averaged affinity  
matrix of all infants for parcellation. Our constructed 4D infant cortical surface 
atlases with developmental trajectories based parcellation will greatly facilitate 
the surface-based analysis of dynamic brain development in infants.    

Keywords: Infant, cortical surface, atlas construction, surface parcellation.  

1 Introduction 

A brain atlas is a representation of anatomical structures and other reference infor-
mation in a spatial framework, providing a useful repository of knowledge and also 
facilitating the analysis of spatially-localized experimental data [1]. In neuroimaging 
studies, brain atlases play an increasingly important role for analysis, visualization, 
and comparison of results across different studies [1]. Cortical surface-based analysis 
is particularly suitable for studying the highly folded cerebral cortex, as this type of 
methods respects the topology of the cortex and facilitates registration, analysis, and 
visualization of buried sulci [1, 2]. Moreover, cortical surface based measurements, 
e.g., cortical thickness, surface area, and gyrification, provide very detailed aspects of 
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the cortex. Accordingly, several cortical surface atlases have been developed [1-3]. 
For example, FreeSurfer surface atlas is built by landmark-free registration of spheri-
cal surfaces of 40 adult brains based on the cortical folding geometries [2]. PALS-
B12 and PALS-term12 surface atlases are built by using the sulcal-gyral landmarks 
constrained registration of 12 adult brains and 12 neonatal brains [3], respectively.  

The first two years of life is an exceptionally dynamic period for the structural and 
functional development of the cerebral cortex [4]. For cortical surface-based analysis 
of early brain development [3-6], longitudinal (4D) cortical surface atlases for charac-
terizing the dynamic developing infant cortical structures are highly desired yet still 
lacking. Meanwhile, the existing parcellation in cortical surface atlases is typically 
defined based on the sulcal-gyral landmarks [7], which, however, are problematic for 
reliable and precise localization of functional regions. This is because sulcal-gyral 
patterns are extremely variable and poorly match with the microstructurally defined 
borders [8]. The microstructures, reflecting the molecular organization and functional 
principles of the cortex, and their connectivity jointly determine the functional role of 
a cortex region [8]. Therefore, the microstructurally derived surface atlas parcellation 
is more ideally for studying the cortex. For example, the well-known Brodmann’s 
map and the recent JuBrain atlas are all defined based on cytoarchitecture [8]. Though 
the current MRI cannot reveal the cytoarchitecture, parcellation of the surface atlas 
based on the genetic correlations of cortical thickness has been developed using the 
MRI of adult twins, reflecting the genetic influences on cortical regionalization [9].  

Motivated by these works, in this paper, we construct the first longitudinal (4D) 
cortical surface atlases to characterize the dynamic developing cortical structures at 1, 
3, 6, 9, 12, 18 and 24 months of age, based on 202 serial MRI scans from 35 healthy 
infants. Meanwhile, the dynamic cortical developmental trajectories in infants reflect 
the underlying cytoarchitectonic changes of the cortex (e.g., increases in dendritic 
arborization, axonal elongation and thickening, synaptogenesis and glial proliferation 
[5]), and thus can help better define the microstructurally distinctive cortical regions 
than using sulcal-gyral landmarks. Therefore, for the first time, we further parcellate 
the 4D cortical surface atlases into developmentally and functionally distinctive re-
gions based solely on the developmental trajectories of cortical thickness in infants. 

2 Methods 

2.1 Data Acquisition and Image Processing 

Serial T1-, T2-, and diffusion-weighted MR images of 35 healthy infants (18 
males/17 females) were acquired using a Siemens 3T MR scanner. Each infant was 
scheduled to be scanned at every 3 months in the first year and then every 6 months in 
the second year. Due to insufficient-quality and uncompleted scans, each infant has 
different number of scans, ranging from 4 to 7 in the first two years. In total, 202 
quality scans from 35 infants were acquired, with each infant having 5.8 scans on 
average. The numbers of scans were 35 at 1 month, 28 at 3 months, 31 at 6 months, 
27 at 9 months, 29 at 12 months, 31 at 18 months, and 21 at 24 months, respectively.  

T1 images (144 sagittal slices) were acquired with the imaging parameters: TR/TE 
= 1900/4.38 ms, flip angle = 7, resolution = 1 × 1 × 1 mm3. T2 images (64 axial 
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slices) were acquired with the parameters: TR/TE = 7380/119 ms, flip angle = 150, 
resolution = 1.25 × 1.25 × 1.95 mm3. Diffusion-weighted images (DWI) (60 axial 
slices) were acquired with the parameters: TR/TE = 7680/82 ms, resolution = 2 × 2 × 2  mm3, 42 non-collinear diffusion gradients, and diffusion weighting 
b =1000s/mm2.  

T2 images and fractional anisotropy (FA) images, derived from distortion correct-
ed DWI, were rigidly aligned onto their T1 images and further resampled to 1 × 1 ×1 mm3. After removing non-cerebral tissues, tissue segmentation was performed us-
ing a 4D level-set method, which integrates the multimodal information of T1, T2 and 
FA images [10]. Non-cortical structures were filled, and each brain was separated into 
left and right hemispheres. For each hemisphere, inner and outer cortical surfaces 
were reconstructed with the following steps: (1) performing topology correction of 
white matter (WM); (2) tessellating the boundary of the corrected WM as an explicit 
triangular mesh representation; (3) applying a deformable surface method to obtain 
the refined inner and outer surfaces [4]. The cortical thickness of each vertex was 
computed as the mean of the minimum distance from inner to outer surfaces and that 
from outer to inner surfaces. The inner surface was further mapped to a standard 
sphere [2]. 

2.2 Constructing 4D Infant Cortical Surface Atlases  

One solution for 4D cortical surface atlases construction is to independently align the 
spherical surfaces of all infants at each age with groupwise registration. However, this 
ignores the within-subject longitudinal constraints and thus could lead to temporally 
inconsistent atlases. To ensure longitudinal consistency and unbiasedness of 4D infant 
cortical surface atlases, the proposed method makes use of the within-subject longitu-
dinal constraints and consists of the following 5 steps, as shown in Fig. 1. First, for 
each hemisphere, all longitudinal spherical surfaces of the same infant were 
groupwisely aligned using Spherical Demons [11], to establish the unbiased within-
subject cortical correspondences (step 1 in Fig. 1). Second, for each infant, the with-
in-subject mean cortical folding geometries were computed based on their cortical 
correspondences. As major cortical folding were present at term birth and were pre-
served during postnatal development [3, 4], the within-subject mean cortical folding 
geometries are sharp and contain detailed information of cortical folding. Third, the 
within-subject mean cortical folding geometries of all infants were groupwisely 
aligned using Spherical Demons, to establish unbiased inter-subject cortical  
correspondences (step 3 in Fig. 1). Fourth, for each age, the inter-subject cortical 
correspondences were established based on the correspondences defined by their 
within-subject mean cortical folding geometries, and each surface was resampled to a 
standard-mesh tessellation, leading to the consistent inter-subject cortical correspond-
ences across all ages. Finally, for each age, a surface atlas consisting of the mean and 
variance of cortical folding geometries, e.g., mean curvature, average convexity, and 
mean curvature of inflated surfaces [2], across all infants at this age was constructed 
on the spherical surface (step 5 in Fig. 1). Thus, the 4D infant surface atlases capture 
both the longitudinally-consistent changes and inter-subject variability of cortical 
folding.  
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Fig. 1. Illustration of the proposed method for 4D infant cortical surface atlas construction 

2.3 Parcellation of 4D Surface Atlases Using Developmental Trajectories  

As mentioned, the dynamic cortical developmental trajectories in infants reflect the 
underlying microstructural changes of the cortex [4], and thus could help better define 
the microstructurally and functionally distinctive regions than using sulcal-gyral 
landmarks. Accordingly, we proposed to parcellate 4D surface atlases based solely on 
the dynamic developmental trajectories of cortical thickness, which is well correlated 
with cognitive functions. Before performing parcellation, for each time point of each 
infant, the cortical thickness map was smoothed and normalized by the mean cortical 
thickness of the cortical surface to account for dynamic cortex changes in infants. 

We adopted the spectral clustering method [12] for 4D surface atlases parcellation. 
First, for each infant, we defined the subject-specific affinity matrix of the develop-
mental trajectories of cortical thickness between each pair of vertices using Pearson’s 
correlation, to address the problem that each infant had different number of scans and 
regional variations of cortical thickness. Specifically, for an infant subject  with  
time points, at a vertex , its cortical thickness trajectory was denoted as , , ∈ {1, … , }. For two vertices  and , Pearson’s correlation coefficient was com-

puted as: ( , ) = ∑ ( , )( , )∑ ( , ) ∑ ( , ) . Thus, for each infant, an affinity 

matrix  can be computed, with its element , = 1 + ( , ). The range of ,  
is between 0 and 2, indicating that two vertices are very different or very similar. Note 
that ,  was defined for each pair of vertices and relied solely on the developmental 
trajectories.  

Then, we computed the mean affinity matrix  by averaging the corresponding 
elements of affinity matrices of all infants. Next, we normalized the affinity matrix  
as = / / , where  was a diagonal matrix with , = ∑ , . The data 
was then represented in an eigenspace using top 30 eigenvectors of , which better 
captured the distributions of the original data points. Finally, we used Gaussian mix-
ture models, which was initialized by k-means method, to cluster the data into differ-
ent groups using the new data representation in the eigenspace.  
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3 Results 

We utilize 35 healthy infants with 202 MRI scans in total, for construction of 4D 
infant cortical surface atlases. Fig. 2 shows means and variations of the average con-
vexity and mean curvature on the spherical spaces of the constructed 4D infant corti-
cal surface atlases for the left hemisphere at 1, 3, 6, 9, 12, 18 and 24 months of age. 
The mean curvature reflects the fine-scale geometry of the cortical folding, while the 
average convexity, which records the accumulated movement for each vertex during 
surface inflation, reflects the large-scale geometry of the cortical folding [2]. As we 
can see, major cortical folding patterns are temporally quite consistent for both aver-
age convexity and mean curvature in the first 24 months. However, the magnitude of 
the average convexity increases considerably, though the mean curvature changes 
relatively subtly. The central sulcus consistently exhibits small inter-subject variations 
of cortical folding geometries, while the prefrontal and parietal cortices show large 
inter-subject variations. 

To demonstrate the advantage of the proposed method for 4D infant cortical sur-
face atlas construction, we compare it with the conventional case of constructing the 
4D surface atlases by independent groupwise registration of all surfaces at each time 
point. Fig. 3 provides a representative example of the close-up view of the mean cur-
vatures on 4D cortical surface atlases constructed by two different methods. As we 
can see, the proposed method generates longitudinally more consistent 4D cortical 
surface atlases, along with much shaper cortical folding patterns, than the counterpart 
method that uses independent groupwise registration of surfaces for each time point. 

 

Fig. 2. Longitudinal (4D) infant cortical surface atlases at 1, 3, 6, 9, 12, 18 and 24 months of 
age. (a) Average convexity. (b) Mean curvature. Blue color indicates gyri, and red color indi-
cates sulci. CS=central sulcus, PreCS=precentral sulcus, PostCS=postcentral sulcus. (c) Varia-
tions of average convexity. (d) Variations of mean curvature. 
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4 Conclusion 

Our contribution in this paper is threefold. First, we proposed a new method for 
building longitudinally-consistent 4D cortical surface atlases. Second, we constructed 
the first 4D infant cortical surface atlases for characterizing the dynamic developing 
cortex at 1, 3, 6, 9, 12, 18 and 24 months of age. Third, for the first time, we 
parcellated the 4D infant surface atlases into developmentally and functionally dis-
tinctive regions based solely on the dynamic trajectories of the cortical thickness. In 
our future work, we will also consider using the developmental trajectories of the 
local surface area and local gyrification for parcellation. We will make our 4D infant 
cortical surface atlases publically available for facilitating early brain development 
studies.  

References 

1. Van Essen, D.C., Dierker, D.L.: Surface-based and probabilistic atlases of primate cerebral 
cortex. Neuron 56, 209–225 (2007) 

2. Fischl, B., Sereno, M.I., Tootell, R.H., Dale, A.M.: High-resolution intersubject averaging 
and a coordinate system for the cortical surface. Human Brain Mapping 8, 272–284 (1999) 

3. Hill, J., Dierker, D., Neil, J., Inder, T., Knutsen, A., Harwell, J., Coalson, T., Van Essen, 
D.: A surface-based analysis of hemispheric asymmetries and folding of cerebral cortex in 
term-born human infants. J. Neurosci. 30, 2268–2276 (2010) 

4. Li, G., Nie, J., Wang, L., Shi, F., Lin, W., Gilmore, J.H., Shen, D.: Mapping region-
specific longitudinal cortical surface expansion from birth to 2 years of age. Cereb. Cor-
tex 23, 2724–2733 (2013) 

5. Rodriguez-Carranza, C.E., Mukherjee, P., Vigneron, D., Barkovich, J., Studholme, C.: A 
framework for in vivo quantification of regional brain folding in premature neonates. 
Neuroimage 41, 462–478 (2008) 

6. Xue, H., Srinivasan, L., Jiang, S., Rutherford, M., Edwards, A.D., Rueckert, D., Hajnal, 
J.V.: Automatic segmentation and reconstruction of the cortex from neonatal MRI. 
Neuroimage 38, 461–477 (2007) 

7. Desikan, R.S., Segonne, F., Fischl, B., Quinn, B.T., Dickerson, B.C., Blacker, D., Buck-
ner, R.L., Dale, A.M., Maguire, R.P., Hyman, B.T., Albert, M.S., Killiany, R.J.: An auto-
mated labeling system for subdividing the human cerebral cortex on MRI scans into gyral 
based regions of interest. Neuroimage 31, 968–980 (2006) 

8. Zilles, K., Amunts, K.: TIMELINE Centenary of Brodmann’s map - conception and fate. 
Nature Reviews Neuroscience 11, 139–145 (2010) 

9. Chen, C.H., Fiecas, M., Gutierrez, E.D., Panizzon, M.S., Eyler, L.T., Vuoksimaa, E., 
Thompson, W.K., Fennema-Notestine, C., Hagler Jr., D.J., Jernigan, T.L., Neale, M.C., 
Franz, C.E., Lyons, M.J., Fischl, B., Tsuang, M.T., Dale, A.M., Kremen, W.S.: Genetic to-
pography of brain morphology. Proc. Natl. Acad. Sci. U S A 110, 17089–17094 (2013) 

10. Wang, L., Shi, F., Yap, P.T., Gilmore, J.H., Lin, W., Shen, D.: 4D multi-modality tissue 
segmentation of serial infant images. PLoS One 7, e44596 (2012) 

11. Yeo, B.T., Sabuncu, M.R., Vercauteren, T., Ayache, N., Fischl, B., Golland, P.: Spherical 
demons: fast diffeomorphic landmark-free surface registration. IEEE Trans. Med. Imag-
ing 29, 650–668 (2010) 

12. Ng, A.Y., Jordan, M.I., Weiss, Y.: On spectral clustering: Analysis and an algorithm. Adv. 
Neur. In. 14, 849–856 (2002) 



Low-Rank to the Rescue – Atlas-Based Analyses

in the Presence of Pathologies

Xiaoxiao Liu1, Marc Niethammer2, Roland Kwitt3,
Matthew McCormick1, and Stephen Aylward1

1 Kitware Inc., USA
2 University of North Carolina at Chapel Hill, USA

3 Department of Computer Science, University of Salzburg, Austria

Abstract. Low-rank image decomposition has the potential to address
a broad range of challenges that routinely occur in clinical practice. Its
novelty and utility in the context of atlas-based analysis stems from its
ability to handle images containing large pathologies and large deforma-
tions. Potential applications include atlas-based tissue segmentation and
unbiased atlas building from data containing pathologies. In this paper
we present atlas-based tissue segmentation of MRI from patients with
large pathologies. Specifically, a healthy brain atlas is registered with
the low-rank components from the input MRIs, the low-rank compo-
nents are then re-computed based on those registrations, and the process
is then iteratively repeated. Preliminary evaluations are conducted using
the brain tumor segmentation challenge data (BRATS ’12).

1 Introduction

Image-based lesion detection and segmentation are needed to assess and plan
the treatment of patients suffering from traumatic brain injuries (TBI), brain
tumors, or stroke [2]. One popular method for such image analysis involves reg-
istering an atlas to the patient’s images to estimate tissue priors. However, if
the patient’s images contain large pathologies, then lesion-induced deformations
may inhibit atlas registration and confound the tissue priors. Furthermore, even
forming an appropriate, unbiased atlas for segmentation may be problematic.

In unbiased atlas building [3], when images with lesions are used to form the
atlas, the lesions propagate into and corrupt the atlas. However, particularly
for research projects with limited time and financial resources or involving a
new imaging protocol or children, it can be problematic to obtain a sufficient
number of protocol-matched scans from healthy subjects for atlas formation.
Hence, registration methods tolerant to such image corruptions are desirable.

The iterative, low-rank image registration framework presented in this pa-
per tolerates the presence of large lesions during image registration, and it can
thereby aid in atlas-based segmentation and unbiased atlas formation by mitigat-
ing the effects described above. While our approach is general, in this paper we
focus on registration in the presence of pathologies for the purpose of atlas-based
tissue segmentation for illustration.

P. Golland et al. (Eds.): MICCAI 2014, Part III, LNCS 8675, pp. 97–104, 2014.
c© Springer International Publishing Switzerland 2014
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The most straightforward method to eliminate a lesion’s influence during reg-
istration is to “mask” it so that the lesion’s voxels are not considered during the
computation of the image similarity metric. Other methods attempt to address
this problem by joint registration and segmentation which tolerates missing cor-
respondences [1], geometric metamorphosis that separates estimating healthy
tissue deformation from modeling tumor change [5], or personalized atlas con-
struction that accounts for diffeomorphic and non-diffeomorphic changes [9].
While effective, these methods require explicit lesion segmentations or initial
lesion localizations, which, in this case, is actually the goal of the process.

Contribution. We propose to exploit population information to assess which
parts of an image are likely lesions (they are inconsistent with the population)
and which parts of an image should be considered normal. We adopt a recent
machine learning technique, i.e., the decomposition of matrices into a low-rank
and sparse components [6], in an iterative registration process to achieve this
objective.

2 Low-Rank Plus Sparse Decomposition

In [6], Peng et al. propose to decompose a matrix of vectorized images into
the sum of a low-rank and a sparse component (containing residuals) in the
context of simultaneous image alignment. The intuition is that the portion of
each image that cannot be explained by the low-rank model is allocated to the
sparse part. Hence, the low-rank component could be interpreted as a blending of
recorded values and values inferred from the population; the sparse component
then contains each subject’s anomalous values. Technically, the allocation of
image intensities to each of those components is driven by the amount of linear-
correlation across the images. Given a collection of n images having m voxels,
we have:

D a m× n matrix in which each image Ii is a column vector that contains the
m spatially-ordered voxel intensities in Ii.

L a m× n matrix that contains the low-rank representations Li for each of the
images in the collection D.

S a m× n matrix that is the sparse component, s.t. Si = Di − Li.

The low-rank representation of D is then defined as

{L∗, S∗} = argmin
L,S

(‖L‖∗ + λ‖S‖1) s.t. D = L+ S , (1)

where ‖L‖∗ is the nuclear norm of L and ‖S‖1 is the 1-norm of S. Since the
problem is convex, a globally optimal solution {L∗, S∗} can be obtained using,
e.g., an augmented Lagrangian approach [4].

3 Integrate Low-Rank Decomposition into an Iterative
Registration Framework

We have integrated the low-rank plus sparse decomposition into an iterative
registration framework in which a group of input images, potentially containing
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large pathologies and deformations, are registered to a normal-control atlas. Our
premise is that by identifying the low-rank and sparse components of each input
image, its low-rank component, which contains reduced or eliminated patholo-
gies, can be more accurately registered with a normal-control atlas, compared
to the direct registration of an image containing a pathology to an atlas.

The low-rank plus sparse decomposition exploits the fact that lesions gen-
erally do not manifest in consistent locations or with consistent appearance in
populations. These inconsistencies result in lesions being reduced in the low-
rank component and allocated to the sparse component. Thereby, the sparse
component can be used to inform spatial and intensity priors for localizing and
segmenting lesions.

Our method also supports unbiased atlas formation using data containing
pathologies. Specifically, in the above framework the normal-control atlas IA
can be replaced by the mean low-rank image, at each iteration. In unbiased
atlas-building the goal is to estimate an atlas image such that it is central with
respect to the data population. This is achieved by minimizing

E({Φ−1
i }, IA) =

∑
i=1,...,N

Reg[Φ−1
i ] + σ−2Sim[Ii ◦ Φ−1

i , IA], (2)

with respect to the unknown atlas image IA and the unknown transformations
{Φ−1}. Here, Reg[Φ] denotes a regularity measure for the transformation Φ,
typically penalizing spatially non-smooth transformations and Sim[I, J ] is a
chosen similarity measure between the images I and J . This could simply be the
sum-of-squared intensity differences (SSD).

To optimize this energy using alternating optimization, we first keep IA fixed
while solving for {Φ−1

i } and subsequently keep the transformations {Φ−1
i } fixed

while solving for IA. The first part performs independent pairwise registrations
between {Ii} and the fixed image IA. The second part requires, for SSD, mini-
mizing

E(IA) =
∑

i=1,...,N

‖Ii − IA‖2 (3)

which is achieved by the mean image IA = 1/N
∑

i Ii. However, when lesions are
present in {Ii}, the mean image is degraded by the undesired involvement of the
lesions in the average. We can instead minimize Eq. (1) to obtain the low-rank
approximations {Li} of the warped images {Di = Ii ◦ Φ−1}, and then minimize

E(IA) =
∑

i=1,...,N

Sim[Li, IA] (4)

with respect to the unknown atlas IA. Again, for SSD, the solution will be the
mean over {Li}1. Other similarity measures, such as normalized cross corre-
lation, could be used for registration, but they may require more challenging
optimizations and may not be meaningful for atlas construction as they may

1 In case of SSD it is advisable to initially histogram-normalize each Ii.
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Fig. 1. An illustration of the proposed low-rank iterative image registration framework,
where Ii refers to the i-th input image, Di is the i-th vector of the input matrix D,
Li is low-rank component of the i-th input image and φi refers to the i-th registration
map generated from BSpline image registration at each iteration.

make the atlas-image non-unique. Also note that when fixing the atlas, IA, un-
biased atlas construction simplifies to group-wise registration. The group-wise
approach is essential because it allows for the population-based decomposition
of the images into low-rank/sparse components (cf. §2). A general framework for
our method is shown in Fig. 1. The algorithm proceeds as follows:

(1) Solve for affine transform (φ0
i )

−1 registering each Ii to the atlas image IA.

(2) For each iteration j, compute the low-rank image Lj
i by solving Eq. (1).

(3) Solve for deformable transform (φj
i )

−1 registering low-rank images Lj
i to IA.

(4) Compose and apply transforms to Ii, s.t. I
j+1
i = Ii ◦ (φ0

i )
−1 · · · ◦ (φj

i )
−1 .

(5) Set j ← j + 1 and continue with step (2) until convergence.

Given a low-rank plus sparse decomposition, the registration step can be
based on any standard deformable registration algorithm and its associated con-
vergence characteristics apply. In our experiments, BSpline transforms and the
Mattes mutual information (MMI) metric are used to register the low-rank im-
ages with the atlas, cf. step (3). The number of BSpline control points is increased
gradually over the iterations to effect a coarse-to-fine optimization strategy. At
each iteration we are maximizing the mutual information between the atlas im-
age and each individual low-rank image, cf. Eq. (4). As our algorithm alternates
between low-rank decomposition and registration, it can be considered a greedy
strategy. Convergence is reached when the total change in deformation is small.
In our experiments with the BRATS ’12 dataset (8 inputs), results converge
within 10 iterations. For the TumorSim data [7] (20 simulated T1 images), λ in
Eq. (1) is set to 0.5 and for the patient data (8 FLAIR images), λ is set to 0.8.

4 Experimental Study

We have conducted initial assessments of our method for atlas-to-image regis-
tration using two evaluation metrics with simulated and patient data.
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Quantitative Assessment of Atlas-to-Image Registration: The premise
of atlas-based segmentation is that by registering an atlas with a target image,
the tissue labels in the atlas provide spatial priors for the tissues in the target
image. When atlas-to-image registration is successful, the atlas’ tissue labels
should align with the corresponding tissues in the target image. Therefore we
compute the standard deviation of the target image intensities under each tissue
label in the atlas. Smaller tissue-class standard deviation (TCSD) values indicate
more accurate atlas-to-image registrations.

We calculate TCDS at each iteration to evaluate the convergence of the itera-
tive framework. We also use it to compare our method with traditional BSpline
atlas-to-image registration.

Qualitative Assessment for Lesion Segmentation: The iterative atlas-to-
image registration process can be examined by inspecting the parts of each image
allocated to its sparse component in each iteration. This sparse image at the
final iteration (after reaching convergence) should be sensitive and specific to
the lesion. By reviewing the sparse image’s evolution over the iterations, we can
qualitatively assess the effectiveness of our method in matching each patient’s
image to the healthy atlas, while not burdened by lesions.

Note that only a qualitative assessment of lesions is made. Sparse images will
contain some normal anatomic variation as well as the lesions. Over the itera-
tions, the variations between the individual patients and the healthy atlas are
minimized via the deformable registrations between the low-rank images and the
healthy atlas. The sparse images after convergence could then serve as a strong
prior for subsequent tumor segmentation algorithms, but lesion’s heterogene-
ity as well as ”normal” small-scale anatomic variations must be appropriately
handled by subsequent lesion segmentation algorithms.

4.1 Case Studies and Results

For the following case studies we used the SRI24 atlas [8] as the healthy at-
las for registration and to provide gray-matter (GM), white-matter (WM), and
cerebrospinal fluid (CSF) tissue labels after registration to compute the TCSD
metric.

Case 1 (simulation data): The training data in the BRATS ’12 challenge in-
cluded MRI scans into which simulated high-grade and low-grade glioma tumors
were injected using TumorSim [7]. We selected 20 cases containing large tumors
and large deformations to form a set of challenging image-to-atlas registration
tasks. Fig. 2(a) shows the first 4 subjects and their corresponding low-rank and
sparse components during the 1st iteration. Fig. 2(b) shows the TCSD values
for the GM and WM classes after each iteration. The tightening of the statistics
in Fig. 2(b) illustrates the convergence of the registration between each subject
and the healthy atlas over time.

Case 2 (clinical data): A subset of 8 FLAIR images from BRATS ’12 challenge
are tested using the same experimental setup as the simulated data. Fig. 3(a)
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(a) 4/20 simulated T1 brain volumes with the corresponding low-rank and
sparse components (during the 1st iteration).
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(b) Change in TCSD for WM and GM labels transcribed from the atlas.

Fig. 2. Results on TumorSim dataset from BRATS ’12

illustrates the input data and the results. We show the low-rank and sparse
components of the first three input FLAIR images at the initial iteration in
Fig. 3(a) (left). The low-rank plus sparse decomposition results at the 2nd and
the 10th (final) iteration of the first input patient are shown in Fig. 3(a) (middle).
On the right-hand side of Fig. 3(a), the top image is the normal-control SRI24
atlas T1 image that we used as the fixed normal-control image during each
registration. As we can see from the box plots in Fig. 3(b) , the overall TCSD
for the GM class improves over the iterations ( each box contains the TCDS
values of all 8 patients at each iteration).

To compare with a direct BSpline registration, we used the same BSpline pa-
rameters, e.g., number of control points, that are used in the final iteration of
our method. We exclude the tumor region when calculating TCDS for each tis-
sue class. The middle image of Fig. 3(a) is the atlas CSF label contour overlaid
on the direct BSpline-registered (i.e., deform the original input FLAIR image to
match the healthy atlas) image; the bottom image is the atlas CSF label contour
overlaid on top of the converged deformed input image. Much better alignments
are seen on the edges of the ventricles than it is the case for the middle image.
The direct BSpline registration produces larger TCSD values for the GM class
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(a) Left : first three FLAIR images and their initial low-rank and sparse compo-
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the first input. Right : SRI24 T1 atlas (top), atlas CSF label contour overlaid on
the direct BSpline registered image (middle), atlas CSF label contour overlaid
on the deformed input image at final iteration using our approach (bottom).
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Fig. 3. Results on TBI patient dataset from BRATS ’12

in most cases in this study, as shown in the table of Fig. 3(b). Our method
performs worse on two cases (patient 5 and 8). Different from others they both
have much narrower and distorted ventricles, which are high-contrast landmarks
for guiding the registration optimization. Due to their distinctive appearance,
the decomposed low-rank images contains very little truth geometries (mostly
assigned to the sparse images), therefore the registration based on the low-rank
component is not reliable. If more similar type datasets are included, the de-
composition would be more effective and registration would have been resolved.
Furthermore, only eight cases is not sufficient to represent a population, further
work is needed to determine if and how many additional cases would be needed
to represent a healthy population given subjects with pathologies.
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5 Discussion and Future Work

The novel contributions of this paper are 1) the integrated formulation of low-
rank image decomposition into atlas formation, 2) the use of low-rank image
decomposition in atlas-to-image registration, and 3) the use of low-rank image
decomposition as a prior for lesion identification and segmentation. These con-
tributions are significant, because they allow images containing pathologies to
drive atlas formation and they allow images containing pathologies (large lesions
and deformations) to nevertheless be well registered with normal-control atlases.
However, our current iterative registration framework needs to be better evalu-
ated on TBI data sets with ground truth tissue labels. A near-term extension of
this work is to form an unbiased atlas without a reference healthy atlas image,
which is useful when only data containing pathologies is available. Future work
will also focus on the development of a lesion segmentation pipeline using the
sparse image as a spatial and intensity prior and a non-greedy implementation.
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Abstract. Automatic segmentation methods are important tools for
quantitative analysis of magnetic resonance images. Recently, patch-
based label fusion approaches demonstrated state-of-the-art segmentation
accuracy. In this paper, we introduce a new patch-based method using
the PatchMatch algorithm to perform segmentation of anatomical struc-
tures. Based on an Optimized PAtchMatch Label fusion (OPAL) strat-
egy, the proposed method provides competitive segmentation accuracy in
near real time. During our validation on hippocampus segmentation of 80
healthy subjects, OPAL was compared to several state-of-the-art meth-
ods. Results show that OPAL obtained the highest median Dice coefficient
(89.3%) in less than 1 sec per subject. These results highlight the excellent
performance of OPAL in terms of computation time and segmentation ac-
curacy compared to recently published methods.

Keywords: PatchMatch, Patch-based Segmentation, Hippocampus.

1 Introduction

Automatic segmentation methods are efficient tools to produce accurate and reli-
able measurement dedicated to quantitative analysis of Magnetic Resonance Im-
ages (MRI). Over the past years, several paradigms were proposed to achieve the
challenging task of brain labeling. First, atlas-based methods involving nonlinear
registration of a labeled atlas to the subject to be segmented were proposed [1].
Then, multi-templates warping techniques based on training library of manually
labeled templates were introduced. Such methods fuse several similar training
templates to achieve better segmentation [2–4]. Multi-template matching ap-
proaches demonstrated competitive segmentation accuracies at the expense of
an important computational load resulting from multiple nonlinear registrations
(i.e., up to several hours). Recently, a nonlocal patch-based label fusion (PBL)
strategy [5] has been proposed. Requiring only linear registration, PBL involves
patch comparison where the weight assigned to each label depends on the sim-
ilarity between the current patch and the training patch. The search of similar
training patches is based on nonlocal strategy to better handle the inter-subject
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variability and to capture registration inaccuracies. In a limited computational
time (i.e., several minutes), this method achieves state-of-the-art segmentation
accuracy. Consequently, since its introduction, PBL is intensively studied and
many improvements have been proposed [6–9].

Despite these improvements, PBL still suffers from several limitations. First,
the search for similar patches is computationally expensive. Although template
preselection [5], patch preselection [5, 6] or multiscale strategies [7] have been
proposed, an important amount of computation remains dedicated to find sim-
ilar patches in the training library. Second, the use of preselection strategy can
prevent finding the most similar patches. In fact, similar patches can be found in
dissimilar training templates. By removing a priori relevant parts of the training
library, these preselection approaches can lead to sub-optimal results. Third, in
PBL a weight is assigned to a large number of training patches including dissim-
ilar patches. Therefore, resources are uselessly dedicated to estimate negligible
weights. Even worse, these dissimilar patches can decrease the segmentation
accuracy [8]. Sparsity-based methods can limit this aspect at the expense of
an important computational burden [8, 9]. These limitations may result in sub-
optimal segmentations and make the current implementations computationally
expensive.

In this paper, we introduce a new PBL method based on the PatchMatch
(PM) algorithm [10] to address these limitations. Originally, the PM algorithm
was introduced to efficiently find an approximate nearest neighbor (ANN) for all
patch correspondences between two 2D images. This method is based on a co-
operative and randomized strategy resulting in very low computational burden
that enables real time image processing. Recently, PM has been used for super-
resolution of cardiac MRI [11]. Here, we propose a new Optimized PAtchMatch
Label fusion (OPAL) method for anatomical structures segmentation by extend-
ing the PM approach. Compared to previous PBL methods, OPAL produces
segmentations in near real time thanks to the use of the PM scheme. Moreover,
OPAL does not require any pre-selection since the search of the most similar
patch is achieved over the entire training library leading to higher segmentation
accuracy. Finally, by using a very low number of highly similar patches, OPAL
limits the introduction of dissimilar patches during label fusion.

The main contributions of this work are: (1) Adaptation of the PM algo-
rithm to label fusion for anatomical structure segmentation in 3D MRI. (2)
Acceleration techniques including constrained initialization, parallel processing
and optimized distance computation. (3) Validation of OPAL on hippocampus
segmentation. (4) Comparison with several state-of-the-art results in terms of
computational time and segmentation accuracy.

2 Methods and Materials

2.1 The PatchMatch Algorithm

The original PM algorithm [10] is a fast and efficient approach that computes
patch correspondences between two 2D images (denoted A and B). The key



Optimized PatchMatch for Near Real Time and Accurate Label Fusion 107

point of this method is that good matches can be propagated to the adjacent
patches within an image. This method is based on three steps: initialization,
propagation and random search steps. The initialization consists in randomly
associating a neighbor for each patch in A with a patch in B to obtain an initial
ANN field. The propagation step tries to improve the patch correspondences
using the observation that when a patch located at p = (x, y) ∈ A matches well
with a patch located at q = (x′, y′) ∈ B then the adjacent patches of p ∈ A
should match well with the adjacent patches of q ∈ B. The random search step
consists in a random sampling around the current ANN to escape from local
minima. These two later steps are performed iteratively in order to improve the
patch correspondences.

2.2 Optimized PatchMatch Algorithm

In contrast to [10] where two 2D images are considered, OPAL finds the patch
correspondences between a 3D image S and a library of 3D templates L =
{T1, . . . , Tn} where n is the number of training templates. One advantage of the
PM approach is that the complexity of this algorithm only depends on the size
of image A and not on the size of the compared image B (i.e., L in the OPAL
case). This important fact allows OPAL to consider the entire image library L
without any template preselection step at constant complexity. Moreover, for
each patch in S, OPAL computes not only one match as done in [10] but the
best k-ANN matches in L.

OPAL is explained in detail below while Figure 1 proposes its schematic
overview. For the sake of clarity, only three templates are used in this figure
and 3D MRI volumes are displayed in 2D instead of 3D.
Constrained Initialization. In [10], the initialization consists in affecting for
each patch located at (x, y) ∈ A a random correspondence located at (x′, y′) ∈ B.
In the 3D case, the natural extension of this step would be to assign for each patch
located at (x, y, z) ∈ S a random patch correspondence located at {(x′, y′, z′), t}
where t ∈ {1, . . . , n} is the index of the template Tt within the library L. How-
ever, we can take advantage that all MRI volumes in L are linearly registered.
Consequently, we propose to constrain the random initial position (x′, y′, z′) to
be within a fixed search window centered around the current position (x, y, z).
Then, for each patch in S the index template t is assigned using i.i.d. random
variable within {1, . . . , n}. Figure 1(a) shows an illustration of this step, where
for each patch in S (only three are displayed) the fixed search window for the
random initialization is depicted in dotted lines in different training templates.

As in the PatchMatch algorithm, after this constrained initialization, prop-
agation and random search steps are performed iteratively in order to improve
the patch correspondence. Figure 1 also illustrates this iterative process.
Propagation Step with Fast Distance Computation. The OPAL propa-
gation step extends the one proposed by [10] for the 3D case. For each patch
located at (x, y, z) ∈ S, we try to improve its ANN by testing if the shifted ANN
of its 6 adjacent patches located at (x± 1, y, z), (x, y± 1, z) and (x, y, z± 1) pro-
vides a better match. Figures 1(b) and 1(d) illustrate this step, where the blue
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(a) CI (b) PS for iteration #1 (c) CRS for iteration #1

(d) PS for iteration #2 (e) CRS for iteration #2 (f) multiple PM

Fig. 1. OPAL main steps. (a) Constrained initialization (CI), (b) and (d) propagation
step (PS) for iteration #1 and #2, respectively (c) and (e) constrained random search
(CRS) for iteration #1 and #2, respectively and (f) multiple PM. See text for more
details.

dotted lines correspond to the test shifted adjacent neighbors in L in order to
improve the current blue patch correspondence. In this example, the best match
for the blue patch moves from template T1 to T2 with iteration #1 and from
T2 to T1 with iteration #2. The propagation step is a core stage since it allows
a patch correspondence to move over all the templates in L. Indeed, since the
ANN of the adjacent voxels are not necessarily in the same template, the ANN
of the current voxel can move from one template to another one.

Moreover, we propose an acceleration technique based on the observation that
the ANN of the adjacent patches are known. Indeed, instead of computing the
entire distance (the sum of the squared difference: SSD) between these patches,
we take benefit from the patch overlapping by using a sliced SSD where only the
non overlapping coordinates are considered. Finally, during the SSD computa-
tion, we test if the current sum is superior to the previous minimal SSD. By this
way, the SSD estimation can be stopped avoiding extra computation.
Constrained Random Search. In contrast to [10], OPAL deals with a library
of images. Therefore, we modify the random search step in order to take into
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account this aspect. Indeed, if we use the original PM algorithm, the random
search step should be performed on all the L dimensions, i.e., x, y, z and t.
However, to ensure spatial consistency, OPAL performs the random search only
in the current template that provides the current best patch correspondence (i.e.,
t is fixed, and we random on (x′, y′, z′) ∈ Tt) within a decaying search window
as in [11]. Figures 1(c) and 1(e) present examples of such fixed template random
search where the decaying search windows are represented in dotted blue lines.
Multiple PM and Parallel Computation. Finally, while in [10] only the
best match is estimated, OPAL computes k-ANN matches in L to perform label
fusion. In the literature, an extension of the original PM algorithm to k-ANN
case was proposed [12]. The suggested strategy is to build a stack of the best
visited matches to obtain the k-ANN. However, to parallelize such an approach,
the current image S must be split into several parts with problems of patch
boundaries overlapping between threads. Therefore, in OPAL, we decided to
based the k-ANN search on independent k-PM enabling a more efficient and
simple multi-threading. Figure 1(f) illustrates the result of the multiple PM step
where here k = 3 and, each PMi=1,2,3 denotes an individual PM.
Patch-Based Label Fusion. At the end the process, the k-ANN are estimated
for all the patches in S. Thus, the location and the SSD between the patches of
S and their k-ANN in L are known. Therefore, to obtain the final segmentation,
we used the PBL method presented in [5]. However, in OPAL only the k most
similar patches are used (limiting segmentation error) and the entire library is
considered (increasing segmentation accuracy). When the same ANN is selected
several times it will be considered several times during label fusion. Finally, to
further improve segmentation quality, label fusion is performed over the whole
patch as done in [6, 9] and not only using the central voxel.

2.3 Validation

Dataset. The proposed method was evaluated on the International Consortium
for Brain Mapping (ICBM) dataset. Part of this dataset consists of 80 MR
images of young and healthy individuals with manual segmentations following
the Pruessner’s protocol [13]. The MRI scans were acquired with a 1.5T Philips
GyroScan imaging system (1 mm thick slices, TR = 17 ms, TE = 10 ms, flip angle
= 30 ◦, 256 mm field of view). The estimated intra-class reliability coefficient was
of 0.90 for inter- (4 raters) and 0.92 for intra-rater (5 repeats) reliability.
Preprocessing. All the images were preprocessed through the following pi-
peline: estimation of the standard deviation of noise [14]; denoising using the
optimized nonlocal means filter [15]; correction of inhomogeneities using N3 [16];
registration to stereotaxic space based on a linear transform to the ICBM152
template (1×1×1 mm3 voxel size) [17]; linear intensity normalization of each
subject on template intensity; brain extraction using BEaST [7]; image cropping
around the structures of interest; and cross-normalization of the MRI intensity
between the subjects within the estimated brain mask with [18].
Quality Metric and Compared Methods. To validate the proposed method
a leave-one-out cross validation procedure was used. During our validation,
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we investigated the impact of the patch size and of the number of neighbors
(i.e., number of PM). Moreover, OPAL was compared with Atlas-Based Method
(ABM) [1], Multi-Templates Matching (MTM) [4], Patch-Based Label fusion
(PBL) [5], Sparse Representation Classification (SRC) [8], Discriminative Dic-
tionary Learning for Segmentation (DDLS) and Fixed Discriminative Dictionary
Learning for Segmentation (F-DDLS) [8] since all these methods were validated
on the same dataset. The segmentation quality was estimated with the Dice
coefficient by comparing the expert-based segmentations with the automatic
segmentations. The median Dice coefficients and computational times presented
in Table 1 are the published values. These values include segmentation of both,
left and right hippocampus. OPAL was implemented in MATLAB using multi-
threaded C-MEX code. Our experiments were carried out using a server of 16
cores at 2.6 GHz with 100 GB of RAM. The number of threads was equal to k
and the number of inner iterations of OPAL was set to 5 as in [10].

3 Results

Influence of Parameters. Figure 2 shows the influence of the number of neigh-
bors and of the patch size on the segmentation quality and on the computational
time. Similarly to previous PBL methods [5, 8], we found that patches of size
5×5×5 and 7×7×7 voxels provides the best results with a slight advantage for
patches of size 5×5×5 voxels (89.4% for k = 20). Moreover, we found that the
median Dice coefficient reached a plateau around 10-ANN. Interestingly, this
number is in line with the suggested number of templates in multi-templates
matching methods [4]. As expected, bigger patches and larger number of ANN
required higher computational time. Consequently, our experiments suggest that
using patch size of 5×5×5 and k = 10 offers a good trade off between segmen-
tation accuracy (89.3%) and computational time (0.89s).
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Fig. 2. Median Dice coefficient according to the patch size and the number of neighbors
(at left) and the corresponding computational time (at right)

Comparison with State-of-the-Art Methods. The comparison of OPAL
performance with 6 other methods is presented in Table 1. The presented values
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Table 1. Methods comparison in terms of segmentation accuracy and computational
time on the ICBM dataset

Method Median Dice Coefficient Computational Time by Subject

ABM [1] 86.4% 358s
PBL [5] 88.2% 662s
MTM [4] 88.6% 3974s
F-DDLS [8] 88.6% 193s
SRC [8] 88.7% 5587s
DDLS [8] 89.0% 943s
OPAL 89.3% 0.89s

are the results published by the authors for the segmentation of both hippocampi
on the ICBM dataset. The provided computational times do not include template
preselection while only OPAL does not require it. Therefore, the computational
times are under-estimated except for OPAL. Moreover, for the F-DDLS an offline
training step of 1781s is needed. However, OPAL obtained the highest median
Dice coefficient in the fastest manner. These results highlights the excellent per-
formance of OPAL in terms of both: segmentation accuracy and computational
time. Compared to the original PBL [5], OPAL obtained better accuracy 700×
faster. Moreover, OPAL obtained the highest Dice coefficient for a computa-
tional time 200× faster than the fastest published method on the used dataset
(F-DDLS [8]). Finally, compared to the most accurate method (DDLS [8]), OPAL
obtained higher Dice coefficient for a computational time 1000× faster.

4 Conclusion

In this paper, we propose a novel patch-based segmentation method based on
an optimized PatchMatch label fusion. The Opal method enables high quality
segmentation in near real time. Experiments show that the proposed method ob-
tained competitive results compared to the state-of-the-art approaches. Indeed,
the OPAL obtained the highest median Dice coefficient in a much faster man-
ner. In addition, the near real time capabilities of OPAL pave the way for new
applications for label fusion segmentation. For instance, OPAL can be used as
an efficient automatic or interactive segmentation tool in medical visualization
software. Finally, as future work, OPAL will be validated on multi-sites datasets
containing pathological cases and extended to multi-label segmentation.
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Abstract. Connectivity analysis of resting state brain has provided a
novel means of investigating brain networks in the study of neurodevel-
opmental disorders. The study of functional networks, often represented
by high dimensional graphs, predicates on the ability of methods in suc-
cinctly extracting meaningful representative connectivity information at
the subject and population level. This need motivates the development of
techniques that can extract underlying network modules that character-
ize the connectivity in a population, while capturing variations of these
modules at the individual level. In this paper, we propose a multi-layer
graph clustering technique that fuses the information from a collection of
connectivity networks of a population to extract the underlying common
network modules that serve as network hubs for the population. These
hubs form a functional network atlas. In addition, our technique pro-
vides subject-specific factors designed to characterize and quantify the
degree of intra- and inter- connectivity between hubs, thereby providing
a representation that is amenable to group level statistical analyses. We
demonstrate the utility of the technique by creating a population network
atlas of connectivity by examining MEG based functional connectivity
in typically developing children, and using this to describe the individu-
alized variation in those diagnosed with autism spectrum disorder.

1 Introduction

Computational techniques applied to neuroimaging data have helped charac-
terize brain connectivity anomalies in autism spectrum disorder (ASD) and
schizophrenia.While structural connectivity is based on tractography using diffu-
sion MRI [1], functional connectivity is investigated by using coherence measures
between regions [2] using fMRI or magnetoencephalography (MEG) [3].

The study of brain connectivity networks has recently gained considerable at-
tention. The high dimensionality of these networks as well as their variation at
the subject level within the population calls for methods that can elucidate the
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underlying network structure while reducing dimensionality. In this paper, we
present a novel approach that extracts the underlying network modules that de-
scribe the hubs of brain connectivity. Such modules are characterized by highly
inter-connected regions within the module, in comparison to their connectivity
to regions outside the module. This collection of network modules can serve as an
atlas of network variation in a population. In addition to extracting these neu-
rophysiological network hubs, our method provides representations of intra- and
inter-connectivity strength of these network hubs for each subject, facilitating
group-based statistical analysis.

The approach we take to extract these network hubs is based on multi-layer
graph clustering. The advent of graph-based clustering techniques has led to re-
cent growing interest in methods for clustering of multi-layer graphs in the area
of mobile phone networks and document clustering [4–6]. However, such meth-
ods are mainly concerned with the approximation of graph Laplacian to feed
the spectral clustering algorithm, and lack interpretability. In our approach, we
present a framework for multi-layer graph clustering for analysis of connectivity
in terms of splitting the brain network into hubs characteristic of a population
and their low-dimensional interaction weights amenable to group-wise statistics.
The connectivity network of each typically developing control (TDC) is repre-
sented as a graph, and all TDC graphs are stacked to form a multi-layer graph,
each layer representing an individualized variation of the underlying network
connectivity. A matrix factorization model is employed to decompose the set
of healthy connectivity graphs into clusters of network modules (hubs) shared
among all graph layers. These network hubs are learned by using a gradient
descent approach minimizing the reconstruction error of decomposition in the
healthy population network set. The network hubs obtained are then used adap-
tively to optimize hubs intra- and inter-connectivity weights for each subject.

While our method is generalizable to non-negative connectivity matrices ob-
tained from DTI or fMRI, we demonstrate its applicability to resting-state MEG
connectivity networks in alpha frequency-band for a population of ASD subjects.

2 Methods

Our framework is based on the premise that there are a few underlying sub-
networks that describe a population with variation demonstrated between each
subject. The method we present here determines the network hubs that charac-
terize the commonality across all subjects within a population (e.g. default mode
network), with the interaction within and between these hubs that captures the
individualized variation in each subject. Therefore, we capture not only the dom-
inant network hubs that describe a population, but also the subtle connectivity
between these hubs that describes the variation in each subject either due to
inherent heterogeneity or induced by pathology. This collection of network hubs
will be referred to as the network atlas.

Given a population, we create this network atlas using the connectivity matri-
ces from all the subjects. The connectivity is quantified by a non-negative simi-
larity measure between n regions leading to a non-negative connectivity matrix of
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subject m, i.e. S(m) ∈ Rn×n, represented by a graph with n vertices. We then use
a matrix factorization model S(m) ≈ UΛ(m)UT where U = [u1,u2, . . . ,uk] ∈
Rn×k is the common factor of the population characterizing the shared under-

lying connectivity modules of the population. Λ(m) =
[
λ
(m)
ij

]
∈ Rk×k is also the

symmetric subject-level factor capturing the weights of each subject’s network
modules. k � n is the number of network hubs (modules) to be identified. Due
to the symmetry of Λ(m), this decomposition model can be re-written as

S(m) ≈ UΛ(m)UT =

k∑
i=1

λ
(m)
ii uiu

T
i +

k∑
i=1

k∑
j=1
j>i

λ
(m)
ij

(
uiu

T
j + uju

T
i

)
. (1)

In this model, each network hub is identified by the first term in (1), i.e.
uiu

T
i , whose subject-level intra-connectivity strength is represented by coeffi-

cients λ
(m)
ii . On the other hand, the subject-level inter-connectivity strength

between hubs i and j is represented by λ
(m)
ij where the inter-connectivity pat-

tern is identified by uiu
T
j + uju

T
i , i.e. the second term of (1). Elements of U

are constrained to remain non-negative Uij ≥ 0, thus retain the interpretation
of its components (i.e. uiu

T
j ) as a connectivity matrix (i.e. hubs and their inter-

connectivity modules). Λ(m) is constrained to be non-negative λ
(m)
ij ≥ 0 and

symmetric λ
(m)
ij = λ

(m)
ji due to the symmetry of connectivity matrices S(m), but

no constraints are imposed on it to be diagonal, because this lets our model cap-
ture the inter- connectivity weights on off-diagonal elements, and not overlook
the interactions between network hubs in the study.

2.1 Objective Function

Since we would like to obtain the underlying network modules shared among all
subjects in the population, we stack the connectivity graph of all subjects to form
a multi-layer graph

{
S(m)

}
. The network hubs shared by the population is then

obtained by minimizing the reconstruction error of the decomposition across
layers. This can be obtained by minimizing the following objective function with
appropriate constraints on U and Λ(m) as explained in equation (1),

J
(
U ,Λ(m)

)
=

M∑
m=1

‖S(m) −UΛ(m)UT ‖2F + β

(
‖U‖2F +

M∑
m=1

‖Λ(m)‖2F

)
,

subject to Uij ≥ 0 , λ
(m)
ij ≥ 0 and Λ(m) = Λ(m)T

(2)

where M is the number of subjects within the population, and ‖.‖F denotes the
Frobenius norm. The regularization term, as the sum of the squared norm of U
and Λ(m), is added to improve the numerical stability, and β is a tunable param-
eter balancing the two terms of reconstruction error norm and regularization.
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2.2 Optimization Solution

Due to symmetry of S(m) and Λ(m), equation (2) can be rewritten as

J
(
U ,Λ(m)

)
=

M∑
m=1

trace

{(
S(m) −UΛ(m)UT

)2
}

+ β

(
trace

{
UUT

}
+

M∑
m=1

trace
{
Λ(m)2

})
,

subject to Uij ≥ 0 , λ
(m)
ij ≥ 0 and Λ(m) = Λ(m)T .

(3)

To minimize (3), we propose an iterative procedure in which U and Λ(m) are
alternately optimized by given multi-layer graph of the population

{
S(m)

}
. We

use the gradient decent approach, i.e. alternately updating Uij = Uij − ηij
∂J
∂Uij

and λ
(m)
ij = λ

(m)
ij − ζ

(m)
ij

∂J

∂λ
(m)
ij

with step-sizes ηij ≥ 0 and ζ
(m)
ij ≥ 0, where

∂J

∂U
= −4

M∑
m=1

[(
S(m) −UΛ(m)UT

)
UΛ(m)

]
+ 4βU , (4)

∂J

∂Λ(m)
= −2UT

(
S(m) −UΛ(m)UT

)
U + 2βΛ(m). (5)

Due to non-negativity of S(m), our non-negativity constraints will be guaran-
teed by positive initialization of U and (symmetric) Λ(m), and applying the step

sizes as ηij =
1
4Uij

(βU+
∑M

m=1 UΛ(m)UTUΛ(m))
ij

, ζ
(m)
ij =

1
2λ

(m)
ij

(βΛ(m)+UTUΛ(m)UTU)
ij

.

This results in the following multiplicative updating solutions

Uij = Uij

(∑M
m=1 S

(m)UΛ(m)
)
ij(

βU +
∑M

m=1 UΛ(m)UTUΛ(m)
)
ij

, (6)

λ
(m)
ij = λ

(m)
ij

(
UTS(m)U

)
ij(

βΛ(m) +UTUΛ(m)UTU
)
ij

, for 1 ≤ m ≤M. (7)

Starting with initial random positive elements on U and (symmetric) Λ(m),
the iterative procedures (6) and (7) are performed alternately until convergence.
Such initialization will guarantee non-negativity on U and Λ(m) as well as the
symmetry of Λ(m), which can be verified from equations (6) and (7).

2.3 Optimizing Subject-Level Factors

The above procedure is performed on the multi-layer graph of a population to
create an atlas of network hubs. The common factor U obtained from them is
employed to optimize equation (2) to compute subject-level factors Λ(m) from
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their connectivity matrices. Since the common factor U is given, (2) can be min-
imized by only performing the iterative procedure of (7) with random symmetric
non-negative initialization of Λ(m) for each subject, yielding the subject-specific
intra- and inter-connectivity weight of network hubs. It is worth noting that,
given U , equation (7) is iterated on both control and patient data so that both
populations undergo the same procedure to be comparable in statistics.

2.4 Statistical Analysis and Interpretation

As explained at the beginning of section 2, elements of the subject-level factors
Λ(m) represent weights of network hubs in that subject. The intra-connectivity

of network hubs is represented by the diagonal elements of Λ(m), i.e. λ
(m)
ii , and

their inter-connectivity is represented by the upper triangular elements (due to

symmetry of it). Hence, a significant group difference at a diagonal element λ
(m)
ii

interprets as an alteration in the communication within the ith network hub,

characterized by uiu
T
i , and a group difference at an off-diagonal element λ

(m)
ij

indicates changes in the interaction between the network hubs i and j, i.e. the
inter-connectivity pattern uiu

T
j + uju

T
i has been affected by disease.

3 Results

The proposed method provides a means to extract common population level
information while also capturing individual subject variation. We demonstrate
the applicability of this methodology to the study of resting-state (RS) MEG
functional connectivity in a population of ASD, in comparison to a network hub
atlas that has been learned on a TDC population. The connectivity of the entire
population is then represented in this more concise module representation.

In order to perform a preliminary test, we applied our method to a set of
synthetic noisy networks with known common modules (hubs), which were suc-
cessfully restored by the procedure explained in section 2.

Dataset Demographics. The dataset consisted of 77 male children, 37 ASD
and 40 TDCs, aged 6-14 years (mean=10.2 years, SD=1.8 in ASD, andmean=10.3
years, SD=1.7 in TDC, no significant difference in age p > 0.6). RS MEG was
acquired in a magnetically shielded room using a 306-channel Elekta scanner. Two
minutes of recorded datawere obtained after artifact removal, whichwere low-pass
filtered before downsampling to 500 Hz to avoid aliasing.

Source Localization and Connectivity Measures. RS eyes-closed data
were band-pass filtered to the alpha band activity (8–12 Hz). MEG data were
divided into 2.5-second epochs with 50% overlap and transformed into the fre-
quency domain. A 5mm isotropic source grid was obtained by sampling cortical
gray-matter areas from the T1-weighted MRI of each subject. The sensor-space
frequency-domain data were used by VESTAL [7] to obtain source amplitude at
each source location. From this spatial distribution of source amplitudes, an in-
verse operator was determined [7] and applied to the MEG data yielding source
time-courses at each location. 301 structurally meaningful regions of interest
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(ROIs) were determined using Freesurfer tools to subdivide the cortical surface
of a template subject and to map these ROIs into each of the 77 subjects. Of the
301 ROIs, we identified 202 ROIs that have at least one source assigned to them.
ROI dominant time-courses were then determined by using singular value de-
composition. Connectivity matrices were computed for the 202 regions yielding
77 matrices of size 202 × 202. Synchronization likelihood (SL), a non-negative
measure of synchronous activity between 0 (no connection) and 1 (completely
synchronous), was used to quantify the connectivity between two regions [3].

Connectivity Network Analysis. The SL connectivity matrices of 40 TDC
subjects were used to compute the network hubs as well as their 40 subject-level
weights. We set β = 0.1 and used k = 10 to obtain 10 network hubs. The iterative
procedure of (6) and (7) was performed that converged to the network atlasU of
size 202× 10. The resulting ten network hubs (i.e. the first term in equation (1),
uiu

T
i for 1 ≤ i ≤ 10) are shown together on a brain map in Fig. 1, thresholded

for binary visualization of their dominant edges.
Given the network hubs computed for the TDC population, the subject-level

weights Λ(m), each of size 10× 10, for the 40 TDC as well as 37 ASD connectiv-
ity matrices were obtained. These subject-level weights of the two groups were
then used to perform statistical group comparison for each of 10 diagonal and
45 upper-triangular elements of Λ across subjects, out of which five of upper-
triangular elements indicated significant group differences (p < 0.05). In Fig. 2,
we show the five inter-connectivity patterns that correspond to the significant
weights, by displaying their inter-connectivity maps generated by the second
term of equation (1), i.e. uiu

T
j + uju

T
i , as explained in section 2.4. The inter-

connectivity patterns which have larger weights in TDC are shown in blue (Fig.
2 (a) to (c)), while those larger in ASD are shown in orange (Fig. 2 (d) and (e)).

It is observed from Fig. 1 that our method has extracted modular brain func-
tional hubs that are spatially close but sparsely distributed on the cortex. The
arrangement of these network hubs may also define the default functional net-
work in MEG brain connectivity. As mentioned above, the statistical group com-
parison of ten diagonal elements of subject-level weights did not show significant
difference (with p < 0.05) indicating that the contribution of network hubs does
not substantially differ between ASD and TDCs. It is however worth noting that
Hub#5 demonstrated the most different intra-connectivity among the ten hubs
shown in Fig. 1. This network showed a group difference of p < 0.1 (with higher
weights in ASD) indicating hyperconnectivity in short-range communications in
the very frontal area of ASD brain, an observation consistent with the literature
of ASD frontal lobe overconnectivity [8]. It is interesting to observe that such
enhanced connectivity within this hub in ASD, coincides with underconnectiv-
ity in the interaction of this hub with bilateral hubs Hub#1 and Hub#6 (Fig.
2(a) and (c)) as well as the occipital hub Hub#4 (Fig. 2(b)). This may be an
indication that the local overconnectivity in the front of ASD brain has led to
long-distance underconnectivity, or vice versa.

Fig. 2 (a)–(c) shows that ASD brain has deficient long-range connectivity pri-
marily in fronto-occipital communications (connectivity pattern between Hub#4
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Fig. 1. The k=10 functional network hubs of brain MEG alpha activity obtained from
the 40 TDC connectivity matrices, displayed together with no specific order

Fig. 2. The five inter-connectivity (between-hub) patterns with significant group dif-
ference between ASD and TDC (axial and sagittal view). Blue and orange inter-
connectivity networks have higher weights in TDC and ASD, respectively. p < 0.05
and p < 0.01 are labelled with one and two stars, respectively.

and Hub#5 shown in Fig. 2 (b)) as well as in fronto-parietal connections (be-
tween Hub#1 and Hub#5 as well as Hub#6 and Hub#5 shown respectively in
Fig. 2 (a) and (c)), consistent with findings of fronto-posterior under-connectivity
in autism [9]. In addition, Fig. 2(d) shows that ASD has enhanced short-range
connectivity (between Hub#8 and Hub#6). Fig. 2(e) also shows increased inter-
connectivity between the frontal and temporal/subcortical regions in ASD (be-
tween Hub#3 and Hub#7).

The network hubs obtained here are clinically interpretable as they implicate
the regions associated with the known default mode network (DMN) which is
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the network most commonly elucidated in functional resting state literature.
We have also observed that the average weights of the intra-connectivity net-
works (i.e. hubs) are an order of magnitude larger than the inter-connectivity
weights. Therefore, the inter-connectivity network modules do not substantially
contribute to reconstructing subjects’ functional networks, but important in
characterizing the effect of disease. Finally, we tested the method on subsets
of healthy subjects and have obtained similar network hubs indicating the re-
peatability of the results.

4 Conclusion

We have presented a new analysis technique of connectivity matrices using a low-
rank matrix factorization model that extracts a set of population specific network
hubs shared by all the matrices in a multi-layer graph framework. Application to
a dataset of TDC subjects provided a set of functional network hubs and their
intra- and inter-connectivity weights. The network hubs obtained from TDC
were used to compute the subject-level weights for ASD subjects. Group-wise
analysis of intra- and inter-connectivity weights revealed significant long-range
connectivity deficiencies as well as short-range overconnectivity in ASD. The
proposed framework can be extended to any non-negative connectivity matrix,
and the weights obtained in the process can be exploited for statistical analysis.
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in Diffeomorphic Image Registration
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Abstract. Computing a concise representation of the anatomical vari-
ability found in large sets of images is an important first step in many
statistical shape analyses. In this paper, we present a generative Bayesian
approach for automatic dimensionality reduction of shape variability rep-
resented through diffeomorphic mappings. To achieve this, we develop a
latent variable model for principal geodesic analysis (PGA) that provides
a probabilistic framework for factor analysis on diffeomorphisms. Our key
contribution is a Bayesian inference procedure for model parameter es-
timation and simultaneous detection of the effective dimensionality of
the latent space. We evaluate our proposed model for atlas and principal
geodesic estimation on the OASIS brain database of magnetic resonance
images. We show that the automatically selected latent dimensions from
our model are able to reconstruct unseen brain images with lower error
than equivalent linear principal components analysis (LPCA) models in
the image space, and it also outperforms tangent space PCA (TPCA)
models in the diffeomorphism setting.

1 Introduction

Diffeomorphic image registration plays an important role in understanding
anatomical shape variability in medical image analysis. For example, analysis of
diffeomorphic shape changes can be linked to disease processes and changes in
cognitive and behavioral measures. In this setting, the high dimensionality of the
deformations, combined with the relatively small sample sizes available, make
statistical analysis challenging. However, the intrinsic dimensionality of brain
shape variability is much lower. Extracting these intrinsic dimensions before fur-
ther statistical analysis can improve the statistical power and interpretability of
results.

Motivated by Bayesian reasoning, current approaches in diffeomorphic atlas
building [6,12,14] are formulated as maximum a posteriori (MAP) optimization
problems. A set of input images are registered to a template, which is simultane-
ously estimated with the unknown deformations in an alternating optimization
strategy. In these approaches, the likelihood is defined by an image match term
which is a sum squared distance function between deformed atlas and input im-
age, and a prior on transformations that enforces smoothness. Allassonnière et
al. [1] proposed a fully generative Bayesian model of elastic deformation in which
estimation proceeds by marginalization over the latent image transformations.
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Ma et al. [7] introduced a Bayesian formulation of the diffeomorphic image atlas
problem by adding fixed hypertemplate information. Simpson et al. [10] inferred
the level of regularization in small deformation registration by a hierarchical
Bayesian model. Zhang et al. [18] develop a generative model for diffeomorphic
atlas formulation and regularization parameter estimation by using a Monte
Carlo Expectation Maximization (MCEM) algorithm.

Beyond estimation of an atlas, or mean image, several dimensionality reduc-
tion methods have been proposed for modeling shape variability in the diffeo-
morphism setting. Vaillant et al. [13] compute a PCA in the tangent space to
the atlas image. Later, Qiu et al. [9] used TPCA as an empirical shape prior
in diffeomorphic surface matching. Gori et al. [5] formulate a Bayesian model
of shape variability using diffeomorphic matching of currents. Their model in-
cludes estimation of a covariance matrix of the deformations, from which they
then extract PCA modes of shape variability. Even though these methods for-
mulate the atlas and covariance estimation as probabilistic inference problems,
the dimensionality reduction is done after the fact, i.e., as a singular value de-
composition of the covariance as a second stage after the estimation step. We
propose instead to treat the dimensionality reduction step as a probabilistic in-
ference problem on discrete images, in a model called Bayesian principal geodesic
analysis (BPGA), which jointly estimates the image atlas and principal geodesic
modes of variation. This Bayesian formulation has two advantages. First, com-
puting a PCA after the fact in the tangent space does not explicitly optimize the
fit of the principal modes to the data (this is due to the nonlinearity of the space
of diffeomorphisms), whereas we explicitly optimize this criteria intrinsically in
the space of diffeomorphisms, resulting in better fits to the data. Second, by
formulating dimensionality reduction as a Bayesian model, we can also infer the
inherent dimensionality directly from the data.

Our work is inspired by the Bayesian PCA model introduced in Euclidean
space by Bishop (BPCA) [2]. Recently, Zhang and Fletcher [17] introduced a
probabilistic principal geodesic analysis (PPGA) to finite-dimensional manifolds
based on PGA [3]. This work goes beyond the PPGA model by introducing the
automatic dimensionality reduction, as well as extending from finite-dimensional
manifolds to the infinite-dimensional case of diffeomorphic image registration.
We also mention the relationship of our work to manifold learning approaches
to dimensionality reduction [4]. The main advantage of the Bayesian approach
we present is that it is fully generative, and the principal modes of variation
can reconstruct shape deformation of individuals, information that is lost when
mapping to a Euclidean parameter space in manifold learning. We show ex-
perimental results of principal geodesics and parameters estimated from OASIS
brain dataset. To validate the advantages of our model, we reconstruct images
from our estimation and compare the reconstruction errors with TPCA of dif-
feomorphisms and LPCA based on image intensity. Our results indicate that
intrinsic modeling of the principal geodesics, estimated jointly with the image
atlas, provides a better description of brain image data than computing PCA in
the tangent space after atlas estimation.
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2 Background

We define a generative probabilistic model for principal geodesic analysis in
the setting of diffeomorphic atlas building. Before introducing our model, we
first briefly review the mathematical background of diffeomorphic atlas building
and its computations for geodesic shooting [11,15,16]. We use vector-valued mo-
menta [11], which unlike scalar momenta, decouple the deformations from the
atlas, leading to more efficient and stable estimation procedures.

In this framework, given input images I1, . . . , IN ∈ L2(Ω,R), a minimiza-
tion problem is solved to estimate the template image and the diffeomorphic
transformations between the template and each input image as

E(vk, I) =

N∑
k=1

1

2σ2

∥∥I ◦ (φk)
−1 − Ik

∥∥2 + ∫ 1

0

(Lvkt , v
k
t ) dt. (1)

Here σ2 represents noise variance, and the vk ∈ L2([0, 1], V ) are time-varying
velocity fields in a reproducing kernel Hilbert space, V , equipped with a metric,
L : V → V ∗, a positive-definite, self-adjoint, differential operator, mapping to
the dual space, V ∗. The dual to the vector vk is a momentum,mk ∈ V ∗, such that
mk = Lvk and vk = Kmk. The operator K is the inverse of L. The notation
(mk, vk) denotes the pairing of a momentum vector mk ∈ V ∗ with a tangent
vector vk ∈ V . The deformation φk is defined as the integral flow of vk, that
is, (d/dt)φk(t, x) = vk(t, φk(t, x)). We use subscripts for the time variable, i.e.,
vt(x) = v(t, x), and φt(x) = φ(t, x). When the energy above is minimized over
the initial momenta mk, the geodesic path φk is constructed via integration of
the following EPDiff equation [8]:

∂mk

∂t
= −ad∗vkmk = −(Dvk)Tmk −Dmk vk −mk div(vk), (2)

where D denotes the Jacobian matrix, and the operator ad∗ is the dual of the
negative Lie bracket of vector fields, advw = −[v, w] = Dvw −Dwv.

3 Bayesian Principal Geodesic Analysis

3.1 Probability Model

We formulate the random momentum for the kth individual as mk = Wxk,
where W is a matrix with q columns of principal initial momenta, x ∈ Rq is a
latent variable that lies in a low-dimensional space, with x ∼ N(0, I). Our noise
model is i.i.d. Gaussian at each image voxel, with likelihood given by

p(Ik |W, I, σ) =
1

(2π)M/2σM
exp

(
−‖I ◦ (φk)

−1 − Ik‖2
2σ2

)
, (3)

where M is the number of voxels, and the norm inside the exponent is the
L2(Ω,R) norm. Note that for a continuous domain, this is not a well-defined
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probability distribution due to its infinite measure on images. Therefore, we
consider the input images as well as diffeomorphisms to be defined on a finite
discretized grid.

The prior on W is given by the combination of a multivariate Gaussian dis-
tribution on the initial momenta m that guarantees smoothness of the geodesic
shooting path, and a Gaussian distribution on W to suppress small principal ini-
tial momenta to zero. This second term is analogous to the automatic relevance
determination (ARD) prior used in BPCA [2], with the difference that we use
the natural Hilbert space norm for the momenta. This prior induces sparsity in
the columns of W and automatically selects the dimensionality. The formulation
is given by

p(W |x, γ) ∝
(

q∏
i=1

( γi
2π

) d
2

)
exp

(
−1

2

N∑
k=1

‖mk‖2K −
q∑

i=1

γi
2
‖Wi‖2K

)
, (4)

where i denotes the ith principal initial momentum, and γi is a hyperparameter
which controls the precision of the corresponding Wi. Estimating γi induces
sparsity so that if it has a large value, then the corresponding Wi will become
small, and will be effectively removed in the latent space. In this work, we use
a metric of the form K = (−αΔ+ βI)−2, where Δ is the discrete Laplacian. In
this operator, α controls the smoothness of diffeomorphisms, and β is a small
positive number to ensure that the K operator is nonsingular.

3.2 Inference

After defining the likelihood (3) and prior (4) in the previous section, we now
arrive at the log joint posterior for the diffeomorphisms as

log

N∏
k=1

p
(
W | Ik; I, σ2, γ

)
∝ − 1

2

N∑
k=1

‖mk‖2K −
1

2σ2

N∑
k=1

‖I ◦ (φk)
−1 − Ik‖2

− MN

2
log σ −

q∑
i=1

[γi
2
‖Wi‖2K − log γi

]
− 1

2
‖xk‖2.

(5)

We use MAP estimation to determine the model parameters θ = I, σ. In order
to treat the xk as latent random variables with log posterior given by (5), we
would ideally integrate out the latent variables, which is intractable in closed
form. Instead, we use a mode approximation to the posterior distribution. Next,
we introduce a gradient ascent scheme to estimate W,xk, θ = (I, σ) and γ
simultaneously.

Gradient Ascent for W,xk: We need to compute the gradient with respect to
initial momentum mk of the diffeomorphic image matching problem in (1), and
then apply the chain rule to obtain the gradient term w.r.t. W and xk. Following
the optimal control theory approach in [15], we add Lagrange multipliers to
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constrain the kth diffeomorphism φk(t) to be a geodesic path. The following
equations are equivalent for the geodesic paths of each of the subjects, so for
notational simplicity, we drop the subject index k from the notation momentarily.
This is done by introducing time-dependent adjoint variables, m̂, Î and v̂, and
writing the augmented energy

Ẽ(m) =E(Km, I, Ik) +

∫ 1

0

[
〈m̂, ṁ+ ad∗vm〉+ 〈Î , İ +∇I · v〉+ 〈v̂,m− Lv〉

]
dt,

where E is the diffeomorphic image matching energy from (1), and the other
terms correspond to Lagrange multipliers enforcing: a) the geodesic constraint,
which comes from the EPDiff equation (2), b) the image transport equation,
İ = −∇I · v, and c) the constraint that m = Lv, respectively.

The optimality conditions form, I, v are given by the following time-dependent
system of ODEs, termed the adjoint equations :

− ˙̂m+ advm̂+ v̂ = 0, − ˙̂
I −∇ · (Îv) = 0, −ad∗m̂m+ Î∇I − Lv̂ = 0,

subject to initial conditions m̂(1) = 0, Î(1) = 1
σ2 (I(1) − Ik). Finally, after inte-

grating these adjoint equations backwards in time to t = 0, the gradient of Ẽ
with respect to the initial momentum is ∇mẼ = Km− m̂.

Applying the chain rule, the gradient term of (5) for updating W is

∇W Ẽ = −
N∑

k=1

(Kmk − m̂k)[xk]T −KWγ,

where γ is a diagonal matrix with diagonal element γi. The gradient with respect
to xk is

∇xkẼ = −WT (Kmk − m̂k)− xk.

Closed-Form Solution for θ, γ: We now derive the maximization for updating
the parameters θ. This turns out to be a closed-form update for the atlas I,
noise variance σ2, and dimensionality control parameter γ. For updating the
atlas image I, we set the derivative of the log posterior with respect to I to zero.
The solution for I, σ2 gives an update

I =

∑N
k=1 Ik ◦ φk|Dφk|∑N

k=1 |Dφk|
, σ2 =

1

MN

N∑
k=1

‖I ◦ (φk)
−1 − Ik‖2.

We use the similar approximation on ARD prior in BPCA [2] to get a closed-form
update for γi, as γi = q/‖Wi‖2K .

4 Results

4.1 OASIS Brain Dataset

To demonstrate the effectiveness of our proposed model and MAP estimation,
we applied our BPGA model to a set of axial slices of brain magnetic resonance
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Fig. 1. Top to bottom: shooting atlas by the first, second and third principal modes.
Left to right: BPGA model of image variation evaluated at ai = −3,−1.5, 0, 1.5, 3.

images (MRI) from the OASIS brain database. The data consists of MRI from
40 healthy subjects between the age of 60 to 95. The MRI have resolution 108×
128 × 128 and are skull-stripped, intensity normalized, and co-registered with
rigid transforms. We use α = 0.8, β = 0.4 estimated using the procedure in [18]
with 15 time-steps in geodesic shooting, and initialize the template I as the
average of image intensities, while W as the matrix of principal components
from TPCA.

The proposed BPGA model automatically determined that the latent dimen-
sionality of the data was three. Figure 1 displays the automatic estimated modes,
i = 1, 2, 3, of the brain MRI variation. We forward shoot the constructed at-
las, I, by the estimated principal momentum aiWi along geodesics. For visu-
alization purpose, here we demonstrate the brain variation from the atlas by
ai = −3,−1.5, 0, 1.5, 3. The first mode of variation clearly shows that ventricle
size change is a dominant source variability in brain shape. The algorithm also
jointly estimated the image noise standard deviation parameter as σ = 0.04.

Image Registration Accuracy. We validated the image registration accu-
racy of our BPGA model. After estimating the principal initial momenta and
parameters from the training subjects above, we used these estimates to recon-
struct another 20 testing subjects from the same OASIS database that were not
included in the training. We then measured the discrepancy between the recon-
structed images and the testing images. Note that our reconstruction only used
the first three principal modes, which were automatically selected by our algo-
rithm. We also compared our model with LPCA and TPCA, also using the first
three dimensions. Examples of the reconstructed images from these models are
shown in Figure 2. Table 1 shows the comparison of the registration accuracy
as measured by the average and standard deviation of the mean squared error
(MSE). It indicates that our model outperforms both LPCA and TPCA in the
diffeomorphic setting.
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(a) Observed (b) LPCA (c) TPCA (d) BPGA

Fig. 2. Left to right: original data, reconstruction by LPCA, TPCA, and BPGA

Table 1. Comparison of mean squared reconstruction error between LPCA, TPCA
and BPGA models. Average and standard deviation over 20 test images.

LPCA TPCA BPGA

Average MSE 2.8× 10−2 1.6× 10−2 1.1 × 10−2

Std of MSE 7.5× 10−3 2.3× 10−3 2.0 × 10−3

5 Conclusion

We presented a generative Bayesian model of principal geodesic analysis in dif-
feomorphic image registration. Our method is the first probabilistic model for
automatic dimensionality reduction for diffeomorphisms. We developed an infer-
ence strategy based on MAP to estimate parameters, including the noise variance
and image atlas, simultaneously. The estimated low-dimensional latent variables
provide a compact representation of the anatomical variability in a large image
database, and they can be used for further statistical analysis of anatomical
shape in clinical studies. Reducing the dimensionality to the inherent modes of
shape variability has the potential to improve hypothesis testing, classification,
mixture models, etc.
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Abstract. Magnetic resonance imaging (MRI) is commonly used as a medical
diagnosis tool, especially for brain applications. Some limitations affecting im-
age quality include receive field (RF) inhomogeneity and partial volume (PV)
effects which arise when a voxel contains two different tissues, introducing blur-
ring. The novel Magnetization-Prepared 2 Rapid Acquisition Gradient Echoes
(MP2RAGE) provides an image robust to RF inhomogeneity. However, PV ef-
fects are still an issue for automated brain quantification. PV estimation methods
have been proposed based on computing the proportion of one tissue with re-
spect to the other using linear interpolation of pure tissue intensity means. We
demonstrated that this linear model introduces bias when used with MP2RAGE
and we propose two novel solutions. The PV estimation methods were tested on
4 MP2RAGE data sets.

Keywords: MP2RAGE, Partial Volume Estimation, Bi-exponential model.

1 Introduction

Magnetic resonance imaging (MRI) is a commonly used modality for brain diagno-
sis and many morphometric methods have been developed to estimate brain atrophy
[1,2,3]. However MRI has some limitations, which may affect the performance of sev-
eral image processing steps and may hamper automated structural quantification if not
taken into account. Among them, noise, the receive field (RF) inhomogeneity and par-
tial volume (PV) effects.

The novel Magnetization-Prepared 2 Rapid Acquisition Gradient Echoes
(MP2RAGE) sequence [4] has good signal-to-noise and contrast properties and is there-
fore an excellent candidate for image processing methods. The sequence also tackles
the inhomogeneity of the signal across the scanned volume with a double acquisition
approach. Two co-registered images are obtained and both are identically biased. A
composite image is computed free of any RF inhomogeneity. MP2RAGE was also de-
signed to maximise contrast-to-noise ratio per unit of time between brain tissues to

P. Golland et al. (Eds.): MICCAI 2014, Part III, LNCS 8675, pp. 129–136, 2014.
c© Springer International Publishing Switzerland 2014
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facilitate segmenting the brain in main tissues: gray matter (GM), white matter (WM)
and cerebrospinal fluid (CSF).

However, PV effects remain an issue in MP2RAGE. They occur when two different
tissues, having different magnetic properties, contribute to the signal of a single voxel.
PV estimation (PVE) consists in assigning a fractional content, i.e. a proportion, to
each of the tissues composing a voxel labeled as a PV voxel. PVE has been shown
to be useful in cortical thickness estimation [5,6,7] as the cerebral cortex, the GM, is
surrounded by two different tissues: WM and CSF. Thus, the cortex is subject to two
types of PV effects at its two interfaces: GM/WM and GM/CSF. Additionally, cortical
thickness is of the same order of magnitude as the image resolution (typically a few
mm). Its size and its convoluted structure make the cortex very sensitive to PV effects.

As cortical thickness reduction has been shown to be a good biomarker for many
neurodegenerative diseases such as Alzheimer’s [1], we focus this paper at estimating
PV effects using MP2RAGE.

Previous works [8,9] rely on the same PV model [7] to estimate fractional contents
and calculate PV maps. This model has not been validated on the particular MP2RAGE
sequence yet. In this work, we evaluate the commonly used PV model on the composite
image computed with the two acquisitions in MP2RAGE.

2 MP2RAGE

MP2RAGE is a recent sequence based on the popular MPRAGE sequence [10]. It
starts with a magnetization preparation followed by two gradient echo blocks provid-
ing two co-registered and differently contrasted images S1 and S2 (Fig. 1(a) and (b)).
MP2RAGE has the advantage of being robust to the RF inhomogeneities as a composite
image U (Fig. 1(c)) is computed inline with the two images in a way that cancels the
RF inhomogeneity:

U =
Real(S∗

1S2)

|S1|2 + |S2|2
(1)

where the symbol ∗ stands for the complex conjugate, more details regarding this equa-
tion can be found in [4]. Eq. (1) constrains the possible values in U between −0.5 and
0.5. U is not linear with respect to S1 and S2. This sequence also has the advantage
of producing a high resolution T1 map (Fig. 1(d)). For tissues with a long longitudinal
relaxation time T1, the short first inversion time in MP2RAGE results in negative sig-
nals. The sign information associated with S1 was estimated by assuming that S2 has
positive signals due to the late second inversion time for the brain tissues considered,
and therefore the sign of U is a good estimator for the sign associated with S1. This
allows using the entire dynamic range of S1 in a new image called S±

1 (Fig. 1(e)).

S±
1 =

U(S2
1 + S2

2)

S2
(2)

3 Methods

PV classes are often modeled as a linear mixture of two normal distributions modeling
two pure tissues [11,7,5]. Under this assumption, the maximum likelihood estimation
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(a) S1 (b) S2 (c) U (d) T1 map (e) S±
1

Fig. 1. MP2RAGE images shown in a coronal plane. The sequence measures S1 and S2. U is
computed inline with the two acquisitions with Eq. (1). The T1 map is also estimated inline. Our
preprocessing includes reconstructing S±

1 with the sign information contained in U .

of the mixture coefficient is a linear interpolation of tissue intensity means. In this sec-
tion, the traditional linear model for PV effects will be investigated for the MP2RAGE
sequence. The purpose of this paper is PVE only, in other words, the fractional content
calculation. We assume that the brain tissues have already been segmented from the
composite image U into GM, WM and CSF using an established and well validated
method [11]. In this paper, we want to compare the GM fractional content estimated
with three PVE methods at the GM boundaries. The explanations on the PVE models
are concerned with a GM/WM voxel for the sake of clarity, but a similar reasoning can
be applied to a GM/CSF voxel. The unknown GM fractional content is called α ∈ [0, 1].

3.1 Linear Interpolation of Intensity Means (LIMe)

In the majority of previous works on PVE, regardless of the sequence, the signal sgw
of a voxel composed of GM and WM is modeled as a linear combination of intensity
means (μg and μw) of pure tissues

sgw = αμg + (1− α)μw (3)

The model is parameterized by pure tissue intensity means. The fractional content cal-
culation is done by interpolating the signal sgw as following. f restricts the value of α
in [0, 1]:

α = f(
μw − sgw
μw − μg

) (4)

The linear PV model could be independently applied to S2 or S±
1 but RF insensitivity

and the optimized contrasts between cerebral tissues obtained in U would not be ex-
ploited. Given that the composite image is not linearly obtained, the well-known linear
PV model (Eq.(3)) introduces errors. Assuming that partial voluming is linear in α in
images S±

1 and S2, the linear model could be applied independently to both images. We
call g1 and g2 (respectively w1 and w2) the intensity means of pure GM (respectively
WM) in S±

1 and S2. Thus, given Eq. (1) and neglecting the noise, the GM/WM PV
signal Ugw obtained in U can be expressed as:{

s1gw = αg1 + (1− α)w1

s2gw = αg2 + (1− α)w2
⇒ Ugw =

s1gws2gw
s21gw + s22gw

(5)
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Ugw =
α2(g1g2 + w1w2 − g1w2 − w1g2) +α(g1w2 + w1g2 − 2w1w2) + w1w2

α2((g1 − w1)2 + (g2 − w2)2) + 2α(g1w1 + g2w2 − w2
1 − w2

2) + w2
1 + w2

2
(6)

From Eq. (6), it is clear that partial voluming in U is not linear but quadratic in α.
Assuming a linear PV model for S±

1 and S2 results in a non-linear model for U . We
propose in the next sections new models that reduce this error.

3.2 Quadratic Interpolation of Intensity Means (QIMe)

The first solution that we propose to address PVE in U is an extension of LIMe, using a
Quadratic Interpolation of Intensity Means (QIMe). As the PV signal in U appears to be
quadratic, finding α is equivalent to solving a second order equation with the following
reformulation of Eq.(6):

Ugw =
Ngw(α)
Dgw(α) ⇔ Ngw(α) = UgwDgw(α)

⇔ Ngw(α)− UgwDgw(α) = 0
⇔ Pgw(α) = 0

Finding the fractional content is equivalent to finding the roots of a second order poly-
nom for every PV voxel. This polynom is parameterized by the signal Ugw and the
intensity means of pure tissue in S±

1 and S2. When the discriminant of Pgw (Δ) is
negative, there are no computable solutions so α is set to the closest tissue in terms of
intensity in U (0 for WM, 1 for GM). When Δ > 0, the closer root to the LIMe solution
is chosen as the evolution of α as a function of a PV signal appears to be almost linear.

3.3 Bi-Exponential Model (BiExp)

Duché et al. [12] proposed a bi-exponential model (BiExp) to estimate PV from
MP2RAGE. In BiExp, the parameters contributing to the signal are expressed: the tis-
sue properties and the sequence parameters. Hence, the signal measured in a voxel
is weighted by the longitudinal magnetization of the protons population M0. Conse-
quently, the two PV signals in S±

1 and S2 are defined as a linear combination of two
pure signals:{

s1gw = M0gs1(T 1g) +M0ws1(T 1w) = M0gs1g +M0ws1w
s2gw = M0gs2(T 1g) +M0ws2(T 1w) = M0gs2g +M0ws2w

(7)

where T 1g and T 1w are the T 1 values of pure GM and WM. They are estimated in
the T1 map produced by MP2RAGE. The signals s1 and s2 have been described by
Marques et al. [4], they are functions of the many sequence parameters and magnetic
properties of the tissues. The assumption of this model is the uniqueness of T1 value
per tissue. This simplifies the system as the signals s1 and s2 can then be computed for
particular T1 values, resulting in the estimation of the constant s1g, s2g, s1w, s2w. They
represent the pure GM and WM signals in S±

1 and S2 for M0 = 1.
This voxel-wise linear system can be solved for (M0g,M0w) which are the amounts

of respective pure tissues in the voxel, they represent the same physical information in
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both co-registered MP2RAGE images. The fractional content of GM is calculated as
α =

M0g

M0g+M0w
. This model is parameterized by the T1 values of pure tissues. T2 has

a limited impact on α and the proton density values of the tissues are taken from the
literature [13,14].

Table 1. Summary of the three presented PV estimation methods (first column). The second
column names the required parameters for the method and recalls the image(s) they are extracted
from. The last column contains the image(s) in which the PV estimation is done.

PVE Method Parameters (extracted from) PV estimated with
LIMe μg, μw, μc (U ) U

QIMe g1,2, w1,2, c1,2 (S±
1 , S2) U

BiExp T1g, T1w, T1c (T1 map) S±
1 , S2

4 Experiments

4.1 Simulations

The three tissues were simulated with the T1 measured in the experimental data. Each
GM interface was discretized with intermediate PV values where the signal was mod-
eled as a linear combination of two pure tissue signals. The noiseless two echoes and
composite signals were simulated. The three methods were applied to estimate the frac-
tional content α. PVE by the various methods was expressed as a function fs of the
ground truth (GT) α.

4.2 Experimental Data

Two healthy volunteers were scanned twice in a 3T Siemens Scanner with a 20-channel
head coil. A 3D isotropic (1mm3) MP2RAGE protocol was used. Each MP2RAGE
data underwent identical pre-processing that included brain extraction and automated
segmentation of GM, WM and CSF. These masks were eroded to estimate parameters
for the three PVE methods, the erosion allows to avoid a large number of voxels subject
to PV effects at the boundaries. The parameters estimations were done in the same
regions for the three methods. GM PV maps were calculated with the three methods
presented in section 3. Boundary masks (GM/WM and GM/CSF) were extracted by
taking the intersection of the dilated segmentations. This ensures to define regions in
which a majority of the voxels are subject to PV effects. In these boundaries voxels, the
three PV methods were compared with the same population of voxels.

Experimental results from the four scans were gathered for the analysis. The GM
voxels were separated in two classes resulting in about 1 million GM/WM voxels and
1.5 million GM/CSF voxels. Fractional content estimates from two different PV meth-
ods were plotted and treated as a joint probability distribution. These 2D histograms
were integrated to get an average function. These experimental functions fe were com-
pared with the function fs obtained in the simulation.
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5 Results and Discussion

Results from the simulations and experimental data are summarized in Fig. 2. The first
row shows the MP2RAGE U image and the extracted GM boundaries. In the second

Fig. 2. Summary of the results. The first row shows the input and the two GM interfaces of interest
where fractional content estimates are extracted from. The second row shows the results of the
simulations for LIMe. For the experimental results, every row is the comparison of two PVE
methods, the image is the difference of the PV maps.
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row, fs, expressing the LIMe PV GM fractional content estimate is plotted as a func-
tion of the GT α, is plotted in blue for the two boundaries. These graphs confirm the
systematic errors made on the fractional content estimate with the linear PV model. It
also suggests that the theoretical maximal cumulated error on both boundaries can go
up to 7% of the voxel resolution used. For a 1mm3 resolution and a cortical thickness
of 3mm, this represents a maximal error of 2.33%.

In the "Experiments" part of Fig. 2, each row represents the comparison of two PVE
methods as indicated on the left side by a vertical text. The image is the difference
between the computed GM PV maps. The graphs exhibit the plot of fe in red, expressing
the average fractional content estimate of the first method as a function of the fractional
content estimated with the second method for a large population of PV voxels.

For the GM/WM PV voxels, the experimental functions fe for QIMe and BiExp are
very similar to the noiseless simulated fs confirming the error that we expected from
using the linear model. Our results suggest that QIMe and BiExp are good PV models
for MP2RAGE. When comparing QIMe to BiExp (last row), almost no difference was
observed on the GM/WM boundary.

At the GM/CSF interface, the results obtained with QIMe are less consistent with the
simulations when α → 0, i.e. when the voxel tends to be pure CSF. We hypothesized
that this could be due to the low CSF SNR. BiExp seems more consistent with the
expected behaviour of a good PV model.

QIMe and BiExp use the two echoes and are not subject to RF inhomogeneity. QIMe
has the advantage of being self-contained, there are no assumptions on the T2 nor the
proton density of the tissues. BiExp has the advantage of taking into account MR acqui-
sition parameters and therefore could be extended to incorporate a model of a transmit
field (TF) inhomogeneity map. The knowledge of the actual flip angle induced to the
protons could be incorporated voxel-wise in the model as the signal equations are fully
expressed.

The unique processing of the information contained in U (LIMe) results in underes-
timating the GM proportion in PV voxels. This undererestimation is systematic in the
GM/WM interface. These results may explain the systematic measurement of a thinner
cortex with MP2RAGE compared to MEMPRAGE found in [15]. Our work may be an
answer to the missing tailored tissue segmentation method needed by MP2RAGE as
Fujimoto et al. pointed out.

6 Conclusion

We investigated the well known problem of PVE with the novel MP2RAGE sequence.
The well established linear model for PVE is prone to errors on both interfaces sur-
rounding cortical GM. Our experiments suggest that PV can not be correctly estimated
with the unique analysis of combined image U , the information contained in the two
images S±

1 and S2 must be exploited. We proposed two solutions which led to similar
results. Both methods provide a way forward to improve the accuracy of cortical surface
reconstruction with MP2RAGE. Future work will include measuring the impact of the
PVE error in GM with LIMe on cortical thickness estimation.
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136 Q. Duché et al.

References

1. Acosta, O., et al.: Cortical surface mapping using topology correction, partial flattening and
3D shape context-based non-rigid registration for use in quantifying atrophy in Alzheimer’s
disease. Journal of Neuroscience Methods (2011)

2. Rueda, A., et al.: Topology-corrected segmentation and local intensity estimates for improved
partial volume classification of brain cortex in MRI. Journal of Neuroscience Methods 188,
305–315 (2010)

3. Doré, V., et al.: Cross-sectional and longitudinal analysis of the relationship between Aβ
deposition, cortical thickness, and memory in cognitively unimpaired individuals and in
alzheimer disease. JAMA Neurology 70(7), 903–911 (2013)

4. Marques, J., et al.: MP2RAGE, a self bias-field corrected sequence for improved segmenta-
tion and T1-mapping at high field. Neuroimage 49(2), 1271–1281 (2010)

5. Ballester, A.M., et al.: Segmentation and measurement of brain structures in MRI including
confidence bounds. Convergence 4, 189–200 (2000)

6. Leemput, K.V., et al.: A Unifying Framework for Partial Volume Segmentation of Brain MR
Images 18(10), 897–908 (October 1999)

7. Shattuck, D.W., et al.: Magnetic resonance image tissue classification using a partial volume
model. NeuroImage M, 856–876 (2001)

8. Manjón, J., et al.: Improved estimates of partial volume coefficients from noisy brain MRI
using spatial context. Neuroimage 53(2), 480–490 (2010)

9. Tohka, J., et al.: Fast and robust parameter estimation for statistical partial volume model in
MRI. NeuroImage 23, 84–97 (2004)

10. Mugler, J.P., Brookeman, J.R.: Three-dimensional magnetization-prepared rapid gradient-
echo imaging (3D MP RAGE). Magnetic Resonance in Medicine 15(1), 152–157 (1990)

11. Acosta, O., et al.: Automated voxel-based 3D cortical thickness measurement in a com-
bined Lagrangian-Eulerian PDE approach using partial volume maps. Medical Image Anal-
ysis 13(5), 730–743 (2009)

12. Duché, Q., Acosta, O., Gambarota, G., Merlet, I., Salvado, O., Saint-Jalmes, H.:
Bi-exponential magnetic resonance signal model for partial volume computation. In: Ay-
ache, N., Delingette, H., Golland, P., Mori, K. (eds.) MICCAI 2012, Part I. LNCS, vol. 7510,
pp. 231–238. Springer, Heidelberg (2012)

13. Whittall, K.P., et al.: In vivo measurement of T2 distributions and water contents in normal
human brain. Magnetic Resonance in Medicine 37(1), 34–43 (1997)

14. Rooney, W.D., et al.: Magnetic field and tissue dependencies of human brain longitudinal
1H2O relaxation in vivo 318, 308–318 (2007)

15. Fujimoto, K., et al.: Quantitative comparison of cortical surface reconstructions from
MP2RAGE and multi-echo MPRAGE data at 3 and 7T. NeuroImage (2013)



Single-Subject Structural Networks

with Closed-Form Rotation Invariant Matching
Improve Power in Developmental Studies

of the Cortex

Benjamin M. Kandel1, Danny JJ Wang2, James C. Gee1, and Brian B. Avants1

1 Penn Image Computing and Science Laboratory, University of Pennsylvania,
Philadelphia, Pennsylvania

2 Department of Neurology, University of California,
Los Angeles, California

Abstract. Although much attention has recently been focused on
single-subject functional networks, using methods such as resting-state
functional MRI, methods for constructing single-subject structural net-
works are in their infancy. Single-subject cortical networks aim to de-
scribe the self-similarity across the cortical structure, possibly signifying
convergent developmental pathways. Previous methods for construct-
ing single-subject cortical networks have used patch-based correlations
and distance metrics based on curvature and thickness. We present here
a method for constructing similarity-based cortical structural networks
that utilizes a rotation-invariant representation of structure. The result-
ing graph metrics are closely linked to age and indicate an increasing
degree of closeness throughout development in nearly all brain regions,
perhaps corresponding to a more regular structure as the brain matures.
The derived graph metrics demonstrate a four-fold increase in power for
detecting age as compared to cortical thickness. This proof of concept
study indicates that the proposed metric may be useful in identifying
biologically relevant cortical patterns.

1 Introduction

Brain connectivity has emerged as a dominant trend in recent neuroimaging
research. Connectivity can be measured by correlation of function [6], diffusion-
based structural connections [7], and covariation of cortical structure across
populations [1]. Covariance patterns of cortical structure often recapitulate func-
tional connectivity patterns [11], although this analysis is complicated in part
because while functional networks can be derived on a per-subject basis, struc-
tural networks are commonly derived on a group basis, making statistical anal-
ysis of structural networks challenging [3]. Therefore, although [11] showed that
ICA components of cortical covariance are similar to ICA components of rs-fMRI
networks, statistical analysis on a per-subject basis is not straightforward.

As a result of these difficulties with group-wise structural networks, several
groups have begun to pursue single-subject cortical networks. These methods
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have coalesced around two camps: Those that generate a network based on the
difference between some derived scalar metrics from cortical morphology, such
as cortical thickness or curvature, and those that use a patch-based correlation
between two different voxels. In the first camp, [10] used a combination of corti-
cal thickness and curvature-based metrics to construct networks. Similarly, Dai
[5] used differences between regional cortical thickness measurements to create
cortical networks. In the second camp, Tijms et al. [12] construct similarity net-
works based on the correlation between patches centered around different voxels.

Previous methods for constructing single-subject cortical networks suffer from
several drawbacks. Fundamentally, cortical thickness, although an important
measure of cortical structure, does not capture all the information of the sur-
rounding neighborhood of a voxel; similarities in cortical thickness do not neces-
sarily imply similarities in structure as a whole. Furthermore, when combining
separate scalar values, such as thickness and one or several curvature measure-
ments, how to combine the features into a meaningful distance metric is not at
all straightforward, and previous methods have constructed complex and highly
specialized models for individual diseases [10]. Examining correlations of patches
centered around given voxels is an intuitive and straightforward approach; the
only parameter to choose is the patch size, which can be chosen based on prin-
cipled methods.

However, the method by Tijms for computing correlations between voxels has
some technical drawbacks. To obtain rotation invariance, the method rotated
cubes in increments of 45 degrees to obtain maximal correlation with the test
patch. This method suffers from several flaws: First, the choice of 45 degrees is
arbitrary; there is no fundamental reason to only rotate patches in increments
of 45 degrees. Second, it appears that [12] “rotates” cubes by permuting the
entries in the patch. This will lead to distortion in the shape, as the distance
from voxel in the center of a square to the voxel immediately above it is a factor
of
√
2 smaller than the distance between the center of the square to the corner.

Third, the operation is only defined for the somewhat arbitrary shape of cubes of
size 3×3×3 voxels. Finally, even if the rotation were defined for arbitrary angles,
an exhaustive search in three dimensions as [12] does would be computationally
infeasible.

As opposed to the previously proposed approaches, we propose a closed-form,
truly rotation-invariant approach to computing structural similarity across brain
regions. Reorienting two images so that their orientations match is a well-posed
problem that has known solutions. Leveraging these methods, we construct a
rotation-invariant representation of the patches surrounding individual voxels.
The correlation between different patches for different voxels give the adjacency
weights in the graph. An overview is shown in Figure 1.

We apply the method to tracking the network dynamics of cortical struc-
ture in a pediatric dataset. We find that network measurements increase the
power of detecting age changes by a factor of four as compared to using cortical
thickness. In sum, our contributions are: 1) Method for constructing rotation-
invariant structural similarity metrics; 2) Method for combining these sensibly
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Reorient

Reorient

Compute correlation 
to construct adjacency 

matrix

Fig. 1. Overview of adjacency matrix construction. The patches surrounding each voxel
are extracted and aligned to a common reference frame. The correlation between the
patches is entered into the adjacency matrix.

into a smaller-dimensional graph; 3) Demonstration that pediatric development
and gender is closely correlated with node closeness, which is more predictive
of age than scalar ROI values; and 4) Demonstration that the proposed method
is superior to thickness distance-based cortical networks for predicting age and
gender.

2 Methods

We consider a undirected graph G with edges K and nodes N . The edges in the
graph correspond to the strength of connection between different parts of the
brain. Given an image I with J scalar-valued voxels at locations xj ∈ I, j =
1, . . . , J , we seek a function d : I(xi)×I(xj) �→ R+ to map from the input image
space to graph edge weights. In fMRI, this function can simply be the correlation
of the time-series at the different voxels, but because we consider scalar voxels,
this option is not available to us. Instead, we consider the similarity between the
neighborhood surrounding the voxels of interest. We denote the neighborhood of
a voxel xi asNi = {xj | ‖xj−xi‖22 ≤ r}, where r is the radius of the neighborhood.
The edge weight between voxels xi, xj is then described by

Ki,j = d(Ni,Nj). (1)

A näıve approach to generating the function d(xi, xj) would be to simply com-
pute the correlation of the vector representation of Ni with Nj , but this would
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not account for the curved structure of the brain. Ensuring that the metric be-
tween two neighborhoods is rotation-invariant is not trivial.

Rotation-Invariant Correlation: We use a closed-form solution to align voxel
neighborhoods to a canonical reference frame. Although the choice of orientation
is arbitrary, we must choose one orientation as a base for reorienting all the
patches. Instead of choosing one patch, which could bias our results, we first
generate an n × m matrix, where each row i is the vector representation of
Ni, each of which consists of m voxels. For computational feasibility, we take a
random sampling of n voxels from around the cortex. We found that no benefit
was achieved by sampling more than 5000 sample voxels. The first singular vector
of the sample patch matrix serves as our canonical reference frame.

Aligning the orientation of two vectors has a well-known analytical solution
[9]. Aligning two images corresponds to aligning the orientations of the first
eigenvector (or two eigenvectors for a 3D image) of the covariance matrix of the
gradient of the image. We denote the gradient operator g : N �→ RD, where D is
the number of dimensions in the image. We compute the gradient by convolving
our image with the derivative of a Gaussian (σ = 1voxel). The covariance matrix
C (Ni) of the gradient of the neighborhood Ni is then given by

C (Ni) =
∑

xi∈Ni

g (I(xi)) g (I(xi))
T ∈ R

D×D. (2)

To align the patches of two voxels xi and xj , we denote the k’th eigenvector of
C (Ni) as wk and the k’th eigenvector of C (Nj) as vk and calculate the rotation
matrix Q that best aligns them:

argmin
Q

∑
k∈{1,2}

‖wk −Qvk‖2 (3)

Denoting B = wkv
T
k , we compute the singular value decomposition (SVD) of B:

B = USV T. Then the analytical solution to Equation 3 is given by Q = UMV T ,
where M = diag[1 1 det(U) det(V)]. We then rotate the voxel coordinates xi by
Q and use a linear interpolator to regenerate the neighborhood image after the
rotation. Because the eigenvalues are unsigned, they can sometimes result in an
alignment that is flipped by 180 degrees from the correct alignment. To elim-
inate this possibility, we check for a negative correlation between the sample
patch and the reference patch and flip the rotation matrix if necessary. A more
computationally expensive alternative is to use the Radon transform to estimate
orientation [8].

Correlation Matrix Construction: In most connectome construction
schemes, data is first averaged over some brain parcellation and those aver-
aged values are then used for calculating correlations [13]. In this case, however,
the average of a series of patches is ill-defined, and we found that constructing
correlation matrices in this manner did not yield meaningful results. Instead,
we first calculated the correlation of the vector representation of the reoriented
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neighborhood of each voxel in the cortex with every other voxel in the cortex.
As is standard, we constructed an I × I correlation matrix, where there are a
total of I regions (nodes) for each subject. The correlation between region i and
j was then calculated as the mean of the correlation of the vector representa-
tion of the reoriented neighborhood of each voxel in region i with each voxel in
region j. Once the correlation matrix was constructed, normalized closeness was
calculated using the igraph package in R [4]. For node i, closeness is defined as∑

j 
=i Ki,j, with the normalization running over all nodes.

We compared our results to the method of [5], which uses the difference in
cortical thickness between two regions to construct the network. Given I total
regions, each with cortical thickness t(i), we construct an I × I distance matrix

D, whereD(i, j) = exp−
(

(t(i)−t(j))2

σ

)
. We set σ to 0.015, as recommended in [5].

Clinical Pediatric Data: Our pediatric data consists of 119 subjects, with
mean age 12.42, range 7.07-17.99 years, 61 females and 58 males. Magnetization-
Prepared Rapid Acquisition Gradient Echo (MPRAGE) images were acquired
on a Siemens Trio Tim scanner (3T) using a 3D inversion recovery sequence with
TR/TE/TI = 2170/4.33/1100 ms. The resolution was 1x1x1mm2 with a matrix
size of 256x256x192. Flip angle = 7 ◦ and total scan time was 8:08 minutes. Im-
age preprocessing, including bias correction, skull-stripping, segmentation, and
warping of the AAL label set to the subject space was performed with ANTs
[2], and the AAL label set was used for generating ROI’s to construct the graphs.

Computation Considerations and Parameters: One of the advantages of a
correlation-based approach to similarity evaluation is the simplicity and lack of
parameters in the method. The only free parameter in this method is the patch
size, which can be set based on the scale of features to be matched. Matching
small patches will find similarities between small features, such as position on
sulcus or gyrus, whereas matching large patches will find regional similarities.
We found that downsampling images to 3mm and using a patch radius of 3 voxels
was appropriate for looking at correlations between ROI’s on the scale of AAL
labels. Reorientation of patches takes under 20 minutes on an Intel Xeon CPU at
2.40GHz with 2 GB of memory. The code for constructing the adjacency matrix is
open-source and is available at https://github.com/bkandel/PatchAnalysis.

3 Results

Validation of Rotation Invariance: We first checked that our output graph
metrics are indeed rotation invariant. We rotated the images of ten subjects
chosen at random in increments of ten degrees and constructed graphs from
the rotated images. We plotted the deviation of the closeness value from the
subject-wise mean closeness value vs. rotation (Figure 2 for a sample ROI).

https://github.com/bkandel/PatchAnalysis
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Fig. 2. Verification of rotation invariance: Difference between closeness of left hip-
pocampus and subject-wise mean vs. rotation. The means over all rotations did not
show a correlation with rotation, although there were slightly more low outliers at 90
and 270 degrees and slightly more high outliers at 0 and 180 degrees.

T-tests between the closeness values at each rotation and the mean closeness
did not reveal a significant difference from the mean for any rotation (minimum
FDR-corrected p-value 0.13). It may still be possible to achieve even less depen-
dence on angle by scaling the patches to minimize the effect of outlying voxels.

Sample Subject: A thresholded correlation matrix overlaid on the MNI tem-
plate brain shown in Figure 3. Cortical thickness-derived graphs tend to have
many cliques, corresponding to regions with similar cortical thickness, that are
not connected to each other; graphs using our method tended to have more
central nodes.

Pediatric Data: In pediatric data, graph closeness was found to be highly
correlated with age in most regions, whereas cortical thickness was not found
to be as correlated in as many regions. To evaluate correlation of closeness
with age in an ROI-wise basis, we performed an ANOVA comparing the mod-
els (in R notation) ROI.Closeness ∼ Sex + BrainVolume and ROI.Closeness ∼
Sex+BrainVolume+Age+Age:Sex+Age2+Age2:Sex, where : signifies an inter-
action term. Analogous ANOVA’s, using the same covariates, were performed for
the thickness-derived graphs and cortical thickness. Patch closeness was found
to be significantly correlated with age (after FDR correction) in 68 out of 68 cor-
tical regions, whereas for thickness, only 17 were found to be correlated, and for
thickness-derived structural graphs, 0 regions were correlated with age. Results
for global mean measurements, with p-values computed with the same models,
is shown in Figure 4. To recover the regression coefficient for age, with power
0.99 and alpha level 0.015, we would need 58 subjects using our method; 223
using cortical thickness; and 506 using cortical thickness-derived graph metrics.
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Fig. 3. Correlation between nodes (thresholded to reveal only top 2% of edges), over-
laid on MNI brain. Top: Representative subject graph using our method. Bottom:
Representative subject graph using cortical thickness-derived graph.
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Fig. 4. Upper left: Mean closeness vs. age using our method; p-value (details in text)
5.46×10−8. Upper right: Mean thickness vs. age, p-value 0.03. Bottom: Mean thickness-
derived graph closeness vs. age, p-value 0.29.
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4 Conclusion

We have presented a principled and closed-form method to generate single-
subject cortical graphs and shown that the graphs are more sensitive to age
changes than cortical thickness or cortical thickness-derived graphs are. This
method has only one free parameter and shows a biologically meaningful trend
with age. The method may also be used for tracking cortical changes in
Alzheimer’s disease and other neurodegenerative conditions.
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Abstract. Quantitative assessment of myelin density in the white mat-
ter is an emerging tool for neurodegenerative disease related studies such
as multiple sclerosis and Schizophrenia. For the last two decades, T2 re-
laxometry based on multi-exponential fitting to a single slice multi-echo
sequence has been the most common MRI technique for myelin water
fraction (MWF) mapping, where the short T2 is associated with myelin
water. However, modeling the spectrum of the relaxations as the sum of
large number of impulse functions with unknown amplitudes makes the
accuracy and robustness of the estimated MWF’s questionable. In this
paper, we introduce a novel model with small number of parameters to
simultaneously characterize transverse relaxation rate spectrum and B1

inhomogeneity at each voxel. We use mixture of three Wald distributions
with unknown mixture weights, mean and shape parameters to represent
the distribution of the relative amount of water in between myelin sheets,
tissue water, and cerebrospinal fluid. The parameters of the model are
estimated using the variable projection method and are used to extract
the MWF at each voxel. In addition, we use Extended Phase Graph
(EPG) method to compensate for the stimulated echoes caused by B1

inhomogeneity. To validate our model, synthetic and real brain experi-
ments were conducted where we have compared our novel algorithm with
the non-negative least squares (NNLS) as the state-of-the-art technique
in the literature. Our results indicate that we can estimate MWF map
with substantially higher accuracy as compared to the NNLS method.

Keywords: T2 Relaxometry, MWF, EPG, Wald, Variable projection.

1 Introduction

Myelin is a layer of dielectric material derived mainly from lipids that form a
sheath around neuronal axons and is well known to be crucial to support brain
function [1]. Myelin-related disorders affect an estimated 3 million people around
the world where this number is increasing every year. As such, the development of
myelin imaging holds out the potential of providing pathologically specific quan-
titative information about myelin content. Among myelin imaging techniques, T2

relaxometry is the most advantageous and effective non-invasive MRI approach
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for measuring alterations in myelin water content. The rationale is that the wa-
ter molecules bound between myelin sheets, tissue water, and cerebrospinal fluid
(CSF) have short, medium, and long T2 relaxation times, respectively. Conse-
quently, the fraction of water molecules with fast decay corresponds directly to
the density of the myelin at each voxel. Therefore, by measuring the MR signal
for multiple echo times and forming an estimate of the distribution of relaxation
rates at each voxel, the fraction of water molecules characterized by fast decay
can be estimated. The most well established approach for imaging of this T2 de-
cay is a Carr-Purcell-Meiboom-Gill (CPMG) sequence that collects many spin
echo samples of the T2 decay curve [2,3]. The standard CPMG sequence can
be extended to a multi-slice CPMG sequence by changing the 180 degrees RF
pulse to a slice selective RF pulses. Multi-slice T2 CPMG acquires several slices
simultaneously and allow dramatic acceleration of the acquisition [4].

Conventionally, the myelin-bound water and free water fractions are identified
by fitting a discrete mixture of impulse functions, each centered at pre-specified
T2 values across the range of anticipated T2 values. Each one of the impulse
functions represents a single relaxation rate. A linear weight for each impulse
function is fit to the multi-echo T2 data via non-negative least squares (NNLS).
The fraction of myelin-bound water is computed by summing the weights for
all of the short components (below 50ms), and dividing by the total weight for
all of the components [5,6]. Recently, an extension of the NNLS approach is
introduced where Extended Phase Graph (EPG) method is used to model the
imperfect refocusing in CPMG based sequences. EPG method can be used for
the precise calculation of observed echoes as the function of flip-angle, T1, T2,
and echo time [7]. The authors optimize the flip angle and weights in a two-step
optimization process where in the first step they estimate the flip angle and
in the second optimization stage the estimated flip angle is used to estimate
the weights of the EPG functions. However, this approach of fitting a discrete
mixture of impulse basis functions fails to exploit the continuity of the true
distribution of T2 in the tissue.

In this paper, we have developed an alternative representation in which we use
a finite mixture of continuous distributions to describe the complete T2 spectrum.
The fraction of the myelin-bound water is the area under the fast component
curve divided by the total area of each component curve. This representation has
the specific advantage that the number of parameters that must be estimated
from the data is much smaller. We simultaneously estimate 3 parameters per
component and the flip angle, for a total of ten parameters, where the NNLS
approaches estimates more than 40 parameters from 32 spin echoes.

This approach, which uses a more physically realistic model of the signal, is
also easier to estimate and leads to less noisy MWF estimates. The model we have
developed for the T2 distribution of each component is the Wald distribution,
which has parameters of volume of occupancy, mean and shape that completely
characterize the distribution [8]. The Wald distribution has a Gaussian-like dis-
tribution with positive support which makes it suitable for the representation
of transverse relaxation rate distribution. Robust and reliable estimation of the
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parameters of a mixture of Wald distributions can be achieved with a well-known
technique called the variable projection method, which allows us to rapidly solve
this nonlinear estimation problem [9,10]. We have compared our algorithm with
a well-known approach in the literature using both synthetic and real brain
images and have shown the superiority of our approach.

2 Methods

2.1 Problem Definition

In the most general form, the MR signal observed at a voxel as a function of
echo time is the sum of the signals from a population of spins where each one of
them contributes to the observed signal as a function of R2. Therefore, the i-th
observed signal at the echo time ti = i× TE can be expressed as:

Si = S0

∫ ∞

0

f(R2)EPG(R2, θ, TE, i)dR2 R2 > 0 (1)

where f(R2) is the probability density function (pdf) of the relaxivity rates,R2 =
1
T2
, S0 is a constant, EPG(R2, θ, TE, i) is the i-th stimulated echo for the spins

with the relaxation rate of R2 ,θ is the flip angle, and TE is the interecho
spacing. Since the impact of the T1 value on the stimulated echoes is negligible
in CPMG based sequences, we use a fixed T1 = 1s in all of the experiments.
Without loosing generality, we can assume that the density function f(R2) can
be expressed as a mixture of distributions of n components:

f(R2) =

n∑
j=1

ajfj(R2)

n∑
j=1

aj = 1 (2)

where fj(R2) is the pdf of the j-th component and aj ← S0aj for simplicity.
It is known that the spectrum of relaxivity rate has n ≤ 3 Gaussian-like com-
ponents [3]. There are variety of pdf’s with positive support which can be used
to model the distribution of the components such as truncated Gaussian, log-
normal, and Wald distributions. Since the pdf should satisfy f(R2 = 0) = 0,
truncated Gaussian is not appropriate distributions in the general case. Here,
we use Wald distribution to model fj(R2):

fj(R2) =

(
λj

2πR3
2

) 1
2

exp

(
−λj

2μ2
jR2

(R2 − μj)
2

)
R2 > 0 (3)

where μj > 0 and λj > 0 are mean and shape parameter of the distribution,

respectively and
μ3
j

λj
is the variance of the distribution. The Wald distribution

has several properties similar to the normal distribution. In addition, for small
standard deviations, it becomes very similar to the Gaussian distribution.
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2.2 Optimization

We are interested to estimate the parameters of the Wald distributions, their
mixture weights, and flip angle using the observed signals at different echo times.
However, in practice, we observe yi, a noisy version of the signal Si. We assume
that zero mean, additive white Gaussian noise is added to the signal Si.

Let, {Φ(α)}i,j = φj(μj , λj , θ; ti) be a matrix of size m× n where

φj(μj , λj , θ; ti) =

∫ ∞

0

(
λj

2πR3
2

) 1
2

exp

(
−λj

2μ2
jR2

(R2 − μj)
2

)
EPG(R2, θ, TE, i)dR2

(4)

and α = (μ1, λ1, . . . , μn, λn, θ) ∈ R2n+1 be the vector of the mean and shape
parameters of n Wald distributions, and the flip angle. Given data (ti, yi), i =
1, . . . ,m ≥ 3n + 1, we want to find set of parameters â = (â1, . . . , ân), α̂ =

(μ̂1, λ̂1 . . . , μ̂k, λ̂k, θ̂) which minimize the following functional:

r(a,α) = ||y −Φ(α)a||2 =
m∑
i=1

⎛⎝yi −
n∑

j=1

ajφj(μj , λj , θ; ti)

⎞⎠2

(5)

where a = (a1, . . . , an) ∈ Rn and y = (y1, . . . , ym) ∈ Rm are the vectors of
mixture weights and noisy observations, respectively.

This functional can be optimized using any Non-linear least squares (NLLS)
optimization algorithm. However, since, it has separable NLLS formulation, it is
possible to use a smart approach to improve the performance of the optimization
[10]. Let us assume that the nonlinear parameters α are known. Therefore, the
linear parameters which satisfies the minimal least square solution can be writ-
ten as â = Φ(α)+y where the matrix Φ(α)+ is the Moore-Penrose generalized
inverse of Φ(α). By replacing â = Φ(α)+y, the variable projection functional
can be constructed:

min
a

r(a,α) = r(â,α) = ||
(
I −Φ(α)Φ+(α)

)
y||2 = ||P⊥

Φ(α)y||2 = r2(α) (6)

where the matrix P⊥
Φ(α) = I − Φ(α)Φ+(α) is the projector on the orthogonal

complement of the column space of Φ(α).
This indicates that we can first optimize nonlinear parameters by eliminating

the linear parameters from the optimization problem. Then, we can use the ob-
tained non-linear parameters to estimate the linear ones using the minimal least
square solution. This approach has shown to be very effective in cases where the
number of linear parameters is substantial. To optimize the variable projection
functional without analytic derivatives, one needs to iteratively compute r2(α).
However, to improve the performance of the algorithm, it is possible to use the
analytical derivatives in a Levenberg-Marquardt type NNLS solver. Let Dk be

a matrix of size m × n where {Dk}i,j =
∂φj(μj ,λj ;ti)

∂αk
k = 1 . . . 2n + 1. It is
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known that Jk, k-th column of m× 2n+1 Jacobian matrix J =
∂P⊥

Φ(α)y

∂αk
, can be

computed as [10,9]:

Jk = −P⊥
Φ(α)DkΦ

+y − (Φ+)TDT
kP⊥

Φ(α)y (7)

Therefore, to derive Jacobian matrix, we only need to provide
∂φj(μj ,λj ,θ;ti)

∂αk

which can be computed using the following relation:

∂φj(μj , λj , θ; ti)

∂αk
= (8)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫∞
0

(
λj

2πR3
2

) 1
2
exp

(
−λj(R2−μj)

2

2μ2
j
R2

)
λjR2(R2−μj )

μ3
j
R2

EPG(R2, θ, TE, i)dR2 k = 2j − 1

∫∞
0

exp

(
−λj(R2−μj )

2

2μ2
jR2

) 1−
λj(R2−μj )2

μ2
j
R2

2(λj2πR3
2)

1
2

EPG(R2, θ, TE, i)dR2 k = 2j

∫∞
0

(
λj

2πR3
2

) 1
2
exp

(
−λj

2μ2
jR2

(R2 − μj)
2

)
∂EPG(R2,θ,TE,i)

∂θ
dR2 k = 2J + j

0 otherwise

where ∂EPG(R2,θ,TE,i)
∂θ can be computed recursively.

3 Results

3.1 Synthetic Data

We use synthetic data with the known ground truth to evaluate our developed
method and the NNLS algorithm. To demonstrate the impact of modeling R2

spectrum with a mixture of continuous distribution, we also evaluate a modified
version of our model where the Wald distribution is replaced with the impulse
function. Mixture of three Wald distributions is considered as the ground truth
with the peaks at 50Hz, 10Hz, and 1Hz, the shape parameters of 600Hz, 400Hz,
and 300Hz, and weights of 0.2,0.6, and 0.1, respectively.

Figure 1.a shows the normalized Cramer-Rao lower bound (CRLB) of MWF
estimated using our method where we normalized the CRLB by the true MWF
value. We have computed CRLB for all combinations of 5 equally spaced SNRs
between 30dB and 50dB and 5 equally spaced flip angles between 120o and 200o.
This figure indicates that MWF can be estimated with very high accuracy in
a clinical imaging scenario (SNR=40dB and flip angle larger than 120o). Next,
we evaluate our optimization algorithm for the same range of SNRs and flip
angles. We initialize our method with three Wald distributions with means at
30ms, 90ms, and 1500ms and with shape parameters of 500Hz. To have a more
robust optimization, we use constraints on the mean and shape parameters of
our model. We assume that the mean of the components are in the range of
15 − 40ms, 60 − 120ms, 200 − 2000ms and the shape parameters are between
0.01 − 10kHz. These are reasonable numbers without any strong assumption
about the R2 spectrum. We observe 32 echoes at the range of 8− 256ms and we
repeat each experiment 1000 times at each SNR. Figure 1.b shows the relative
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(a) (b)

(c) (d)

Fig. 1. Quantitative evaluation of mixture of Wald distributions. (a) CRLB of MWF
estimation using mixture of Wald distributions where the standard deviation is nor-
malized by the true MWF value. (b) Relative MAE of Wald distribution for a range
of SNRs and flip angles. (c) Estimated stimulated echoes using the mixture of Wald
distributions for SNR = 45dB and flip angle of 150o. (d) Relative MAE of the three
methods for the range of SNRs and flip angle of 180o. The results indicate that we can
estimate the MWF accurately for the practical flip angles and SNRs. It can also be
seen that our method has lower MAE as compared to the other methods for all the
SNRs in the range of 30− 50dB.

mean absolute error (MAE) of our method at different SNRs and flip angles. As
seen, for the practical flip angles and SNRs, our method estimates the MWF
with very small error. Figure 1.c shows a stimulated multicomponent decay
curve for SNR = 45dB and flip angle of 150o and the estimated curve using
our algorithm. This figure shows that we can accurately estimate both the R2

spectrum parameters and the flip angle, as the stimulated echoes are estimated
with very high accuracy. Finally, we compare the performance of our method,
NNLS, and our modified model with three impulse functions for a range of SNRs
and flip angle of 180o. For this experiment, we use inverse gamma distribution to
generate the ground truth with the same mean, standard deviation, and fractions
of the previous experiments. In this way, we will have a fair comparison between
the methods, as a different distribution is utilized to generate the ground truth
spectrum. For NNLS method we estimate the amplitude of 50 impulse functions
logarithmically spaced within the range of 15ms and 2s. For our model with
three impulse functions, we use the initialization and constraints of the mean
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parameters of the Wald distributions. Figure 1.d shows the relative MAE of
the estimation of MWF using three different methods. It can be seen that our
method has substantially smaller error as compared to the other methods for the
whole SNR range. This indicates that our approach can produce the performance
of NNLS method in the substantially lower SNR.

(a) (b)

Fig. 2. Qualitative comparison of algorithms. Estimated MWF map using mixture of
Wald distribution (a-left) and NNLS (a-right) indicates that the estimated map using
our approach is less noisy as compared to the NNLS algorithm. (b) The image of the
first echo.

3.2 Real Brain MRI

In addition, our method and the NNLS algorithm were tested on 10 volunteers.
T2 relaxation measurements were performed on a 3T Siemens TRIO scanner
with a multi-echo CPMG sequence acquiring 32 echoes with an echo spacing of
9 ms. A 21cm FOV was used with a matrix size of 192x192 (in plane resolution of
1.1mm) and the total scan time was 9 minutes and 41 seconds for acquisition of
3mm thick slices. Parameter initialization for each of the estimation procedures
was the same as the simulation experiment. For the NNLS algorithm the two-
step optimization approach in [6] was used to correct for the stimulated echoes.
Figure 2.a shows the MWF mapping of one slice of a subject using our method
and NNLS. For both models the components with T2 shorter than 50ms are
used to estimate the MWF. The results show that our approach estimated the
MWF more accurately as compared to the NNLS method, since the MWF map
is smoother and less noisy. Figure 2.b shows the image of the first echo.

4 Conclusions

In this paper, we have introduced a novel model to represent the spectrum
of the relaxation rate at each voxel. To this end, we have utilized a mixture
of three Wald distributions with unknown mixture weights, means and shape
parameters. We also used EPG method to model stimulated echoes. Finally, we
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have utilized variable projection method to optimize the unknown parameters
and used the estimated mean and mixture weights to identify the MWF at each
voxel. We have used both synthetic and real brain images for the validation of
our method. In addition, we have compared our method with the state-of-the-art
MWF extraction algorithm and showed the superiority of our method.
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Abstract. Resting state functional connectivity holds great potential
for diagnostic prediction of neurological and psychiatric illness. This
paper introduces a compact and information-rich representation of con-
nectivity that is geared directly towards predictive modeling. Our rep-
resentation does not require a priori identification of localized regions of
interest, yet provides a mechanism for interpretation of classifier weights.
Experiments confirm increased accuracy associated with our representa-
tion and yield interpretations consistent with known physiology.

1 Introduction

Resting state functional magnetic resonance imaging (fMRI), in conjunction
with multivariate pattern analyses, holds great promise for diagnostic predic-
tion of neurological and psychiatric illness [2]. For accurate predictive modeling,
it is necessary to have compact representations of functional connectivity. Such
representations are usually obtained by a judicious choice of nodes for assem-
bling the correlation matrix/connectivity network. Parcellation schemes based
on anatomical and/or functional features are used to yield regions of interest
(ROIs) that are identified as nodes of the network [10]. For network-based anal-
yses of anatomical and functional connectivity it is crucial to use nodes derived
from spatially localized ROIs that are functionally and biologically meaningful
[5]. On the other hand, for predictive modeling it is desirable to maximize the
information content of the reduced representation. For example, a priori iden-
tification of ROIs may obscure more subtle and complex phenomena that cross
the boundaries of ROIs and thus may lead to suboptimal prediction accuracy.

The goal of our work is to introduce a compact and informative representation
of functional connectivity that is geared directly towards predictive modeling
and does not require a priori identification of localized ROIs. Our approach
is based on the observation that a localized ROI can be fully captured by its
indicator function, which is simply a particular type of spatial map (i.e., real-
valued functions on the collection of voxels). The set of all possible spatial maps
is a very high-dimensional vector space, but since fMRI data is already subject
to smoothing, both in its acquisition and preprocessing, we choose to restrict
to the subspace of spatial maps exhibiting some smoothness. This subspace can
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be approximated by the span of low-frequency eigenvectors of an appropriate
graph Laplacian (in the same way as Fourier basis provides building blocks
for time signals, the Laplacian eigenvectors provide a basis for spatial signals).
Therefore, we build our representation from the spatial maps associated to low-
frequency eigenvectors, which replace ROIs as nodes of network. Namely, these
distributed and overlapping spatial maps are combined with blood oxygenation
level dependent (BOLD) signal to obtain the corresponding representative time
series. The matrix of correlations between these time series are then computed,
giving the sought representation of connectivity.

The proposed approach has a number of advantages. First, it leads to a com-
pact representation of functional connectivity that is hierarchical. Indeed, the
Laplacian eigenvectors are naturally ordered by their smoothness and a number
of smoother eigenvectors can be retained to obtain a connectivity matrix of de-
sired size. Second, the proposed representation is informative in that it allows
approximate reconstruction of correlations between any pair of traditional ROIs,
even if these ROIs were not specified a priori. This explains why our approach is
effective: in a sense, traditional ROIs are subsumed by our approach and a clas-
sifier applied to our representation is able to learn any information that could be
extracted from traditional ROIs. Finally, our representation is interpretable—it
provides a simple mechanism for mapping the weights learned by linear classifiers
back to the brain, allowing a detailed understanding of the predictive model.

2 Methods

Let X be the nTR×nvox matrix of the voxel-wise z-scored corrected BOLD signal
acquired in nvox grey matter voxels over nTR time points. The matrix C = X�X
captures the correlations between all pairs of voxels, but is impractically large.
Our goal is to obtain a computationally tractable reduced representation of C.

Motivation. To motivate our representation, let us analyze the commonly
used ROI-based approaches. For i-th ROI, consider an nvox × 1 column vector
whose entries correspond to voxels, with an entry of 1 for voxels that belongs to
the ROI, and 0 otherwise. Let us scale this vector so that its entries sum to 1,
and denote this normalized vector by φi; this is the indicator vector of the ROI.
Note that the product Xφi gives the averaged BOLD time series over the i-th
ROI, and so the product (Xφi)�Xφj = φi�X�Xφj = φi�Cφj gives the un-
normalized correlation between i-th and j-th ROIs. Denote by Φ the nvox×nROI

matrix whose i-th column is the vector φi. Now the matrix Φ�CΦ can be seen to
be an nROI × nROI matrix of un-normalized correlations between all the ROIs.

This process can be interpreted in the following manner. The large matrix C
defines a dot product (namely, 〈f, g〉 = f�Cg) over the space of all spatial maps.
The goal is to capture information about this dot product, and so about connec-
tivity, in a compact manner. The ROI based approach achieves this by restricting
the dot product to a much smaller subspace of spatial maps. Namely, the sub-
space in question is span{φ1, φ2, ..., φnROI}, and the matrix of the restricted dot
product is precisely the matrix Φ�CΦ above.



Representation of Functional Connectivity 155

Proposed Approach. In the light of the discussion above, the gist of our
approach is to choose a different subspace of spatial maps for restricting the
dot product. For multivariate pattern analyses it is desirable to maximize the
information content of the reduced representation and this can be achieved by
choosing a subspace that offers strong approximation properties. Since spatial
smoothing is applied to BOLD signal during preprocessing, it is natural to re-
strict the dot product to a subspace of smooth spatial maps.

We propose to use the subspace spanned by the low spatial frequency eigen-
vectors of an appropriate graph Laplacian. Here, we consider the grey matter
template voxels as nodes of a graph, and introduce an edge between voxels that
share a face. By solving the eigenvalue problem Lψi = λiψ

i, where L is the
nvox × nvox graph Laplacian [4], we obtain an orthonormal basis {ψi}nvox

i=1 . As-
suming the eigenvectors are ordered by increasing eigenvalue, it can be shown
(c.f. [1] Sec. 5.2) that in some precise mathematical sense the eigenvector ψ1 is
the smoothest spatial map, ψ2 the next smoothest, and so on. Since we would like
to obtain low-dimensional subspace of smooth spatial maps, we consider the sub-
space spanned by the first nev eigenvectors. Denoting by Ψ an nvox×nev matrix
whose i-th column is ψi, our reduced representation of the voxel-wise connectiv-
ity matrix C is given by D = Ψ�CΨ which is a matrix of size nev×nev. In prac-
tice, we first compute Xψi for i = 1, 2, ..., nev, which gives the BOLD time series
weighted by the spatial map ψi, and then we set the entries Dij = (Xψi)�Xψj .

Informativeness. The proposed representation is informative in the sense
that it allows approximate reconstruction of correlations between two given
ROIs. Indeed, let φ1 and φ2 be the indicator vectors of the two ROIs. As dis-
cussed in Motivation, the un-normalized correlation between the ROIs is given
by φ1�Cφ2. Let us write the vectors φ1 and φ2 in terms of the eigenvector
basis: φ1 = α1ψ

1 + α2ψ
2 + · · · = Ψα and φ2 = β1ψ

1 + β2ψ
2 + · · · = Ψβ;

here α (resp. β) is a column-vector with entries αi (resp. βi). Now we have,
φ1�Cφ2 = (Ψα)�C(Ψβ) = α�Ψ�CΨβ = α�Dβ, where we used D = Ψ�CΨ .
We can compute the correlations between the ROIs by appropriate normaliza-
tion, namely:

corr(ROI1, ROI2) =
α�Dβ

(α�Dα)1/2(β�Dβ)1/2
(1)

Note that since we have actually truncated the eigenvector basis, this equality
holds only approximately. This approximate reconstruction property shows that
despite its compactness, our representation is able to capture connectivity in a
richly informative manner, which is crucial for accurate predictive modeling.

Interpretability. The proposed representation is interpretable in the sense
that the feature weightings obtained from linear classification algorithms can be
mapped back to locations in the brain. Let ŷ = sign(b +

∑
i,j WijDij) be the

prediction model where Wij are the weights and b is the bias; this form can
capture commonly used linear classifiers such as Linear Discriminant Analysis
(LDA) and Support Vector Machines (SVM). Using D = Ψ�CΨ , we can rewrite∑

i,j WijDij =
∑

Wij

∑
p,q ΨipCpqΨjq =

∑
p,q Cpq

∑
i,j WijΨipΨjq ; here i, j run

over eigenvector indices, and p, q run over voxels. Thus, we can say that the
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coefficient of Cpq given by Rpq =
∑

i,j WijΨipΨjq captures the contribution of
connectivity between voxels p and q. It is easy to see that R = ΨWΨ�.

The matrix R is impractically big, but from it, we can derive a quantity that
measures the importance of the connectivity of a given voxel for classification.
For a voxel p, consider quantity ωp =

∑
q R

2
pq; note that squaring the coefficients

is appropriate here, as we would like to amplify importance of voxels whose
connectivity coefficients are larger. Letting ω be the vector with entries ωp, we
have:

ω = diag(R�R) = diag(ΨWΨ�ΨWΨ�) = diag(ΨWWΨ�) , (2)

where the last expression is nothing but the vector of row sums of squared entries
of WΨ�. Here we used that Ψ�Ψ is the identity matrix since the full eigenvector
basis is orthonormal; in practice since we truncate the basis, the equality above
is only an approximation, but it still gives a measure of how much each voxel’s
connectivity contributes to the classification.

Further Interpretability. Deeper insight into the learned prediction model
can be obtained if one uses so-called bilinear classifiers. To motivate their use,
recall that a quantity of the form u�Dv captures the un-normalized correlation
between BOLD signals weighted by spatial maps Ψu and Ψv (c.f. Informative-
ness). Assuming that a limited number of such pair-wise correlations should suf-
fice for prediction, one can seek a classifier of the form ŷ = sign(

∑
k σku

k�Dvk).
Here, we let k index the pair-wise terms; without loss of generality, we can
assume that vectors uk and vk have unit lengths, and to compensate, we intro-
duce a scalar factor σk. With this notation, one can think of σk as the impor-
tance of each pair-wise connectivity uk�Dvk to classification task. It is easy to
show that we can rewrite ŷ = sign(

∑
k σku

k�Dvk) = sign(
∑

i,j WijDij). Here
W =

∑
k σku

k�Dvk, which is exactly the singular value decomposition (SVD)
of W , and now it becomes clear that our assumption is equivalent to W being
a low-rank matrix. Classifiers satisfying low-rank constraints have been studied
in the machine learning literature, and we will use Bilinear SVM [8] in our ex-
periments. In practice, we find that the learned W is symmetric up to a small
error (presumably since D is symmetric), so we apply SVD to the symmetrized
matrix W + W�. Due to symmetry, we get uk = vk, and for visualization we
depict the spatial maps Ψuk ordered by the decreasing singular value σk.

3 Experiments and Results

Data and Preprocessing. We utilize the public dataset1 from Beijing Eyes
Open/Closed study [6]. The study included 48 healthy subjects who underwent
three resting state scanning sessions. In the first session, all of the subjects were
scanned with their eyes closed; the remaining two sessions were scanned one with
eyes open (EO) and the other with eyes closed (EC) in a random order counter-
balanced across subjects. Since our goal is to conduct analyses for distinguishing
EO and EC, we use the data from the second and third sessions only.
1 http://fcon_1000.projects.nitrc.org/indi/retro/BeijingEOEC.html
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The data is processed in the following manner. As in [6], we start by dis-
carding the first 10 volumes of each session. Next, we use SPM8 (The Well-
come Trust Centre for Neuroimaging) for spatial preprocessing. We then use the
CONN Toolbox [11] with default settings to obtain corrected BOLD signal. The
corrected BOLD signal is z-scored at every voxel, giving the final normalized
BOLD signal. This pipeline failed to process two of the subjects, and thus all of
our experiments are based on the remaining 46 subjects.

To obtain the proposed representation of resting state connectivity, we first
compute a number of low-frequency eigenvectors of the grey matter voxel grid
Laplacian. Next, we normalize the eigenvectors to have unit �1-norm. The nor-
malized BOLD signal is then weighted by the eigenvectors, and the resulting
time series are used to compute the dot product and correlation matrices. For
comparison, we also compute connectivity matrices based on the commonly used
Automated Anatomical Labeling (AAL) atlas [9] with 90 ROIs.

Experimental Results. Fig. 1 depicts the eigenvectors of the grey matter
template graph Laplacian that correspond to the indices 5, 25 and 75. For ease of
visualization, the eigenvectors are normalized to have maximum absolute value
of 1. The corresponding spatial maps can be seen to have varying weights, both
positive and negative, and are distributed across the entire grey matter volume.
We stress that no physiological meaning is associated with these eigenvectors.

The inset plot on the right depicts the error in-
curred when reconstructing correlations between
AAL ROIs from our representation. In this exper-
iment, we compute all unique non-diagonal corre-
lations between AAL ROIs for one subject. Next,
these ground truth values are approximated using
Eq. (1) from our representation. We varied the
number of eigenvectors used in our representation
from 1 to 512. The error is measured by the root-
mean-square error (RMSE) over pairs of ROIs. The plot shows the RMSE both
for correlations and their Fisher z-transformed versions. As expected, the recon-
struction error decreases with the growing number of eigenvectors.

Next, we exemplify our representation in a multivariate analysis task, where
our goal is to train classifiers that use resting state connectivity for predicting
whether the subject had their eyes open or closed for a particular scan. We train
three different classifiers: linear discriminant analysis (LDA) as implemented
in MATLAB, with default settings; a linear support vector machine (SVM) as
implemented in libsvm [3] with default parameters; and Bilinear SVM (maximum
rank set to d = 8) with our in-house implementation that directly follows the
algorithm description in [8]. LDA and SVM input a vector containing all of the
unique entries in connectivity matrices; Bilinear SVM inputs the connectivity
matrices directly. Each feature input to the linear SVM is z-scored over all
subjects as this improves the performance; LDA is completely insensitive to z-
scoring; the inputs to Bilinear SVM are not z-scored as this would potentially
destroy the low rank structure of the coefficient matrix.
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(a) (b) (c)

Fig. 1. Brain images corresponding to the eigenvectors of index (a) 5, (b) 25, and (c)
75 of the grey matter template graph Laplacian. Eigenvectors with higher indices have
higher frequencies; i.e., oscillate more frequently in the space.

(a) (b) (c)

Fig. 2. Images depicting importance of voxel connectivity (i.e., “importance” maps),
computed from (a) LDA, (b) SVM, and (c) Bilinear SVM classifier weights, respectively,
using Eq. (2). Please refer to the text for details.

(a) (b) (c)

Fig. 3. Images corresponding to the largest three singular values of the Bilinear SVM
weights, appearing left to right. Please refer to the text for details.
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Table 1. Average accuracy (%) of leave-one-out cross-validation over the two sessions.

Method
LDA SVM Bilinear SVM

corr dot corr dot corr dot
AAL 78.26 78.26 80.44 76.09 76.08 79.35

AALrz 80.44 73.92 79.35 72.83 77.18 69.57
Proposed 90.22 89.13 91.30 86.96 85.87 86.96

The classification experiments are conducted as follows. To avoid confound-
ing, we train and test the classifiers on each session (i.e., the second and third
sessions) separately. Due to the small sample size and standard practice in the
neuroimaging literature, classification performance is measured via leave-one-out
cross-validation accuracy. We report average accuracy over the two sessions.

Table 1 shows the performance of these classifiers in detecting EO vs. EC
for various representations of functional connectivity. We compare against two
versions of AAL ROI based approach—one using the voxel-wise z-scored cor-
rected BOLD signal (AAL) and the other using the corrected BOLD signal
that is z-scored region-wise (AALrz). Since there are 90 AAL ROIs, we build
our representation using 90 eigenvectors; thus, all connectivity representations
in this experiment have the same size (90 × 90). Columns marked with “dot”
use as features the un-normalized correlations (e.g. entries Dij directly) and
columns marked with “corr” use the usual correlation (e.g. the normalized en-
tries Dij/

√
DiiDjj). For all combinations, our proposed representation is seen

to improve classification accuracy over the AAL by a non-negligible amount.
Fig. 2 depicts the overall importance maps from Eq. (2), computed using

the weights from classifiers trained on the entire dataset. For visualization pur-
poses, the maps are scaled to have maximum absolute value of 1. The regions
highlighted in red correspond to the voxels whose connectivity is most help-
ful for classification. For example, the highlighted posterior regions coincide
roughly with the visual cortex, where visual sensory data is processed. Fig. 3
depicts the spatial maps corresponding to the first three singular values of the
Bilinear SVM’s symmetrized weight matrix, and provides an illustration of the
information content that can be extracted by our methods. The image corre-
sponding to the first singular value, which represents the component of largest
influence, shows prominently (in red) the contribution of the visual cortex to
the task of discriminating between EO and EC. Furthermore, the motor cortex
and orbitofrontal cortex—regions which are implicated in voluntary movement
and the conscious control of attention (often referred to as executive function),
respectively—are prominent (red) in the images corresponding to the second
and third singular values, respectively, consistent with their secondary roles in
the eyes open condition. These results are anatomically consistent with existing
analyses that interrogate network differences between these two states [7,12].
Note that classifier weights should be interpreted with caution, as they can re-
flect properties of the methods used rather than the data they are applied to;
yet the fact that they are consistent with known physiology is encouraging.
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4 Conclusion

We have introduced a novel information-rich compact representation of func-
tional connectivity based on using low-frequency Laplacian eigenvectors as the
spatial maps. The resulting maps only depend on the grey matter template
and so enjoy the kind of data-independent universality usually associated with
atlas-based methods. Experiments confirm increased classifier accuracy with our
representation and lead to plausible interpretations.
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Abstract. We present a framework for registering cortical surfaces based on 
tractography-informed structural connectivity. We define connectivity as a con-
tinuous kernel on the product space of the cortex, and develop a method for esti-
mating this kernel from tractography fiber models. Next, we formulate the kernel 
registration problem, and present a means to non-linearly register two brains’ con-
tinuous connectivity profiles. We apply theoretical results from operator theory to 
develop an algorithm for decomposing the connectome into its shared and indi-
vidual components. Lastly, we extend two discrete connectivity measures to the 
continuous case, and apply our framework to 98 Alzheimer’s patients and  
controls. Our measures show significant differences between the two groups. 

Keywords: Diffusion MRI, Cortical Surface Registration, Connectivity Analy-
sis, Data Fusion. 

1 Introduction 

With the advent of diffusion MRI, and the wealth of information contained within this 
modality, the subject of fusing structural connectivity information with anatomical 
knowledge has seen tremendous development. This fusion is straightforward if we 
restrict our diffusion analysis to summary voxel-wise measures such as Fractional 
Anisotropy (FA) or Mean Diffusivity. The problem becomes more difficult when we 
examine the connectivity information provided by tractography fiber models. Because 
fibers sets are not topologically equivalent across individual brains the usual solutions 
for image registration and segmentation problems cannot be trivially extended to the-
se objects. Thus, it is not obvious how to fuse them with anatomical image processing 
in a straight-forward manner.  

Several approaches have been proposed for fusing structural connectivity with 
anatomy. Perhaps the most common of these relies on the concept of a connectivity 
matrix or a graph between anatomically defined regions of interest (ROI). The 
strength of a connection between each region pair is estimated by counting the num-
ber of fiber models between the two ROI’s [1]. The resulting graph can be analyzed 
using the standard graph theory measures [2], which can reveal interesting global and 
region-specific features of the brain’s connectome, such as its “small-worldness,”  
or the degree to which the network is compartmentalized into sub-networks [2].  



162 B. Gutman et al. 

 

Alternatively, the DICCCOLs approach [3] seeks to identify small seed regions with-
in the cortex which contain fibers with a similar geometric signature. The idea is that 
a geometric signature of the connection paths points to similar functional role across 
brains. Another exciting approach clusters brain regions spectrally with only the 
tractography seed regions as an anatomical prior [4]. 

Fiber- and anatomy-based registration fusion has also seen some development both 
with surface and volumetric anatomy models. Siless et al. [5] developed a framework 
based on geometric currents to drive inter-fiber set registration in combination with 
T1-weighted MRI image registration. Alternatively, Petrovic [6] assumed cortical 
alignment and registered thalamic surfaces based on the cortical fiber projections. In 
all of these cases, the full fiber geometry plays an integral part in driving the corre-
spondence search, or some part of the brain is assumed to be perfectly aligned. The 
same is true for the region identification technique of DICCOLS: structural connectiv-
ity equivalence is estimated indirectly with a brief summary measure, defined as a 
histogram of orientations along the fiber. Unlike previous registration fusion ap-
proaches, we choose to apply the connectivity information supplied by the fiber mod-
el directly in a continuous registration setting, which significantly complicates the 
problem. Our goal is to find a correspondence between brains so that the correspond-
ing regions are similarly connected. As in [1], we treat fiber geometry as a secondary 
feature, useful only in identifying the implied connection between brain regions. In 
this approach, two fibers with different geometry connecting the same pair of cortical 
locations are deemed equivalent.  

Extending the discrete connectivity modeling of [2] to the continuous setting, we 
consider the connectome as a continuous kernel on the product space of the brain with 
itself. This is a natural extension of the graph representation for the discrete case. We 
treat each fiber as an instance of a connection on this space, with some possible geo-
metric error. This idea naturally leads to kernel density estimation on the connectome 
space based on the set of fibers. Next, we would like to find a smooth non-linear in-
vertible spatial warp that minimizes the difference between two brains’ connectomes. 
Direct optimization of this problem poses a significant computational challenge. In-
stead, we decompose the kernel into its corresponding eigenfunctions, here called 
“eigen-networks,” and use Mercer’s Theorem for kernel matching and reconstruction. 
This convenient decomposition allows us to estimate the shared and subject-specific 
components of the connectome prior to registration, while the minimization problem 
is reduced to the usual multi-channel registration on the original domain of the cortex. 
We restrict our search to cortico-cortical and cortico-thalamic connections, which 
allows us to use the white matter boundary surface of the cortex to compactly repre-
sent the domain of the brain. Finally, we propose two continuous graph theory 
measures based on their discrete equivalents, and compute group differences between 
48 Alzheimer’s patients and 50 control participants from the ADNI cohort. 

2 Continuous Connectome Estimation 

We define the continuous connectome as a symmetric non-negative real-valued func-
tion  : = Ω × Ω → ℝ     ( , ) ⟼ ( , ) from the product space of the corti-
cal domain to the non-negative real numbers. ( , ) represents the strength of the 
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connection between the points  and  in the brain. As we are dealing with cortical 
surface models, our cortical domain is itself a mapping from the two-sphere into 
space: Ω = ℳ: → ℝ . Since we perform our registration parametrically on , and 
because our  ℳ is diffeomorphic and area-preserving [7], we may equivalently set  Ω =  for convenience. While we do not have sufficiently resolved data to compute 
the true fiber-based connectivity, except using the coarsest resolution, we can apply 
the standard kernel density estimation. In this approach, we treat each fiber model as a 
representation of potentially many true fibers, with some possible error in its place-
ment in the space . Given  fiber models, we project the two ends of each 

model onto the gray-white matter boundary, resulting in sets of point pairs 1, 2 , 
discounting fibers that do not have both ends sufficiently close to the boundary. We 
apply the product of two Gaussian kernels on 2, [8] : 2 × 2 → ℝ+, resulting in 
our non-local connectome estimation: ( , ) = , , .                           (1) 

The parameter  is set empirically so that the spherical area within the half-

maximum of  is equal to .  

An aspect of brain connectivity which does not arise in the discrete approach is the 
modelling of local connections. Because tractography fiber models do not capture 
local connections at our cortical mesh resolution, we estimate local connectivity based 
on cortical geometry alone. We set local connectivity as  ( , ) = ( , ).                                              (2) 

A brief literature search [9] suggests we a golden ratio of local to global connectivity 
at = 1/3. Thus, we set the complete connectivity kernel as   

=  1 + ,                        (3) 

where =  ( , ) /
. 

3 Kernel Registration  

Given two connectomes ( , ), ( , ), we assume that  and  differ from 
their mutual connectivity profile by a scale s, a smooth invertible warp : Ω → Ω and 
an additive individual component:  

,   ( , ) =    ( [ ], [ ]) − ,   ( [ ], [ ])  .             (4) 

For convenience, we set = . The kernel norm defined in the previous section 
suggests a cost function analogous to the L2 fidelity in image registration: 
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C( , , ) =  [ ( , ) −  ( [ ], [ ])]                     (5) 

There are two issues with this formulation. First, while we have scaled the full kernels 
identically, we cannot know that their mutual connectomes will have the same scale. 
Second, a direct optimization of (5) is computationally expensive, as every point up-
date requires full domain integration. Instead, we would like to estimate the mutual 
and individual components of the kernels prior to registration, while decoupling the 
two instances of [ ]  in (5). To this end, we decompose the kernels into the 
eigenfunctions, or “eigen-networks,” of their linear operators, = , where  [ ] = ( , ) ( )Ω . According to Mercer’s Theorem [10], we can recon-
struct a symmetric positive definite (SPD) kernel by ( , ) =  ∑ ( ) ( ) . 
This well-known result from operator theory provides an unexpected utility towards 
solving the kernel registration problem. To use it, we must only satisfy the SPD con-
dition, which can be done by setting ( , ) = ( , )Ω .        

Since we assume that ,    is itself SPD, we can make the assumption in 
(4) slightly stronger, asserting that the eigen-networks of ,    and ,    
are orthogonal. On the other hand, because our non-linear correspondence search is 
local, we assume that some spatial overlap between the corresponding eigen-networks 
of   ,    and those of  and   must already exist. Note that a similar as-
sumption is prevalent in standard non-linear registration algorithms. This allows us to 
estimate the mutual connectome by projecting the eigen-networks of the target 
connectome onto the corresponding invariant subspaces of the moving template 
connectome. We estimate the likelihood that for some small  , the transformed net-
work of ,  ∗ , belongs to  by [{ ∗ }  ( )] =  , ,                                (6) 

where , ℎ = ℎΩ .  For networks passing a threshold, we estimate their eigenval-

ue for  as = , ,   , and project  onto the invariant subspace of  de-

fined by . Via this process, we identify the set of mutual eigen-networks of the 
target and the moving template connectomes, = , , . 

A major difference between spectral decomposition of matrices and infinite-
dimensional operators relates to eigenvalue multiplicity. In particular, it is possible to 
have non-isolated eigenvalues, and infinite-dimensional invariant subspaces. Howev-
er, because our operator kernels are finites sum of weighted basis functions, we can 
say that the operators are finite-rank, and therefore necessarily compact [10]. This fact 
has a nice practical implication: the multiplicity of the eigenvalues is at most counta-
ble with the only possible limit point at 0. This means that any neighborhood ( ), > , contains a finite number of eigenvalues counting multiplicity, which 
makes step 1 in the following search feasible even in the true continuous case: 
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Algorithm 1 (mutual connectome estimation) 
Given SPD kernels , , their corresponding operators ,  
and the ordered spectral decompositions { , }, , , set 

mutual networks = , , = . k = 1 
 
For i=1:N 

Compute = ,
 (6) 

 if(P > P_tol) 

    1. Set = , , set =  2 <  

Project  onto { },  = { }  

   if(  > proj_tol) 

    3. →  /  

      4. =  max ,   ∈ , set  =  

     5. Re-orthonormalize    , starting with   
      6. Estimate new eigenvalues = ,  ∈  

      7. =  , = ,   = .  

      8. Insert , ,  into , k = k + 1 
    endif 
   endif 
end 
Return  

The mutual connectome can now be estimated as ,   ( , ) = ∑ ( )∈ ( ) .  Finally, we define the mutual connectome mismatch cost:  

C( , ) =   ( ) − ( [ ]), ,  ∈ .Ω                       (7) 

The solution of this functional is straightforward, and has been described elsewhere. It 
is worth noting that the gradient direction (7) is invariant to kernel scale, as it is based 
on normalized eigen-networks. As our parametric domain is  , we use a recent 
spherical fluid registration algorithm [7], incorporating mean and Gaussian curvature 
mismatch in addition to (7). In this way we combine anatomical and connectivity 
information, registering brain connectivity structure directly across subjects.  

4 Continuous Connectomics 

Use of graph theory in brain connectivity studies has exploded in recent years; to this 
end, we contribute two weighted continuous analogues of the nodal degree and clus-
tering coefficient measures [2]. Nodal degree, defined for discrete weighted graphs as 
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( ) = ∑ ∈Ω ( , ), where the subscript d means the discrete analogue of previ-
ous definitions, is defined here as the connectedness map ( ) = ( , )Ω = ( , ).                                         (8) 

The discrete clustering coefficient is defined as ( ) = ( )( )( ( ) ), where  

is the binarisation of , and ( ) = ∑ [ ( , ) ( , ) ( , )] /, ∈Ω  is the 
geometric mean of triangles. Our analogue geometric triangle mean is defined as  ( ) = [ ( , ) ( , ) ( , )] /  ,                               (9) 

and the analogue of  is defined as the area of ’s support: ( ) = ( ){ ∈Ω| ( , ) } .                            (10) 

5 Implementation 

Our cortical surfaces are extracted with FreeSurfer, and mapped into correspondence 
on  by registering mean and Gaussian curvatures [7]. Tractography is performed 
by the Hough transform method [11], with fibers thresholded for length, resulting in 
8-10K fibers. About 90% of these pass the threshold for interior ends being sufficient-
ly close to the white matter surface, set at 10 mm. Connectome kernels are projected 
onto an equiangular spherical grid, with roughly 16.5K vertices per hemisphere, or 
33K total. We use the Galerkin method [12] to estimate the eigen-network. The 
Galerkin method reduces an operator eigenvalue problem to a finite matrix problem, 
projecting the operator onto a finite set of basis functions. Our basis functions are the 
step functions defined by the equiangular sampling. We compute up to N eigenvalues, 
where N is the minimum number needed to approximate the kernel within a tolerance: < − / , ( , ) =  ∑ ( ) ( ). We ignore the diagonal for 
this computation, as incorporating it gives optimistic error estimates. 

We concede that a continuous formulation on paper often leads to the same imple-
mentation as a discrete one. In this case, though, the continuous formalism leads to a 
basic implementation difference: the area weights of the samples are taken into con-
sideration. This is true both for the eigenvalue problem, which becomes generalized 
by the area matrix, and for continuous connectivity measures. In the latter case, we 
can think of the approximate kernel as a large weighted graph, with weighted nodes. 

6 Experiments 

We applied our method to 98 ADNI images. The participants were 48 AD patients 
and 50 controls. We chose an additional representative control subject to serve as the 
target. Following anatomical registration, we computed the connectome kernels and  
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Fig. 1. Corrected p-maps for AD-NC difference in (A) clustering coefficient (10), and (B) 
connectedness, a.k.a. continuous nodal degree (8). Although it is mostly occluded, the left 
medial temporal lobe contains the most significant differences. 

spectral decompositions of each subject. Each kernel had around 60M non-zero en-
tries, making the connectome roughly 95% sparse. We set the kernel approximation 
tolerance at 0.1, requiring between 800 and 1200 eigen-networks. Approximately one-
third of the target networks were matched to each moving kernel, depending on the 
participant. This set of networks was then registered to the target’s while maintaining 
low curvature mismatch for anatomically correct correspondence, taking roughly 30 
minutes for full combined connectivity registration. 

In the first experiment, we computed the change in kernel mismatch, using  
both full and mutual network sets for kernel approximation. Results are displayed in 
Table 1, showing improvement in connectome alignment due to connectivity registra-
tion. In the second experiment, we performed a mass-univariate t-test over the cortical 
surface comparing connectedness and clustering coefficient maps between AD and 
control participants. Both measures passed False Discovery Rate (FDR) correction. 
FDR threshold for connectedness was q = 1.0x10-3 for the right hemisphere, and q = 
1.9x10-3 for the left. For clustering coefficient, q = 1.7x10-3 for the right hemisphere 
and q = 2.5x10-5 for the left. In a related experiment, we made the same comparisons 
based only on anatomical registration. While the uncorrected p-maps were similar, 
right hemisphere connectedness and left clustering coefficient did not pass FDR. This 
suggests improved sensitivity due to the connectome registration. Corrected p-maps 
of these tests are displayed in Figure 1. 

7 Conclusion 

We have presented a framework for fusing connectivity information with cortical 
surface anatomy for a joint analysis. There are four distinct contributions: (1) the 
definition of a continuous connectome space and a method for estimating continuous 
kernels from fiber models; (2) an algorithm for defining a mutual connectome shared 
by two brains; (3) a spatial correspondence search between two connectome kernels, 
directly registering the brains’ structural connectivities; (4) an adaptation of graph 
theory measures to the continuous setting. The final result is a pipeline for joint corti-
cal surface and connectivity analysis that opens an exciting new way to explore the 
brain. Future work will ground our connectome estimation more strongly in biological 
knowledge and connect the eigen-network concept with functional connectivity. 
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Table 1. Relative difference between target and moving template connectomes before (Col. 1) 
and after (Col. 2) connectome registration (see section 5). Top row: full connectivity alignment. 
Bottom row: joint connectivity alignment. (Mean and standard deviation of 98 subjects). 

 Anatomy only Anatomy + connectivity Individual improvement 

Full 

kernel 

0.528 

+/-0.101 

0.43 

+/-0.12 

0.098 

+/-0.089 

Mutual 

kernel 

0.32 

+/-0.082 

0.12 

+/-0.099 

0.2 

+/-0.089 
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Abstract. Segmentation and parcellation of the thalamus is an impor-
tant step in providing volumetric assessment of the impact of disease
on brain structures. Conventionally, segmentation is carried out on T1-
weighted magnetic resonance (MR) images and nuclear parcellation us-
ing diffusion weighted MR images. We present the first fully automatic
method that incorporates both tissue contrasts and several derived fea-
tures to first segment and then parcellate the thalamus. We incorporate
fractional anisotrophy, fiber orientation from the 5D Knutsson representa-
tion of the principal eigenvectors, and connectivity between the thalamus
and the cortical lobes, as features. Combining these multiple information
sources allows us to identify discriminating dimensions and thus parcel-
late the thalamic nuclei. A hierarchical random forest framework with a
multidimensional feature per voxel, first distinguishes thalamus from back-
ground, and then separates each group of thalamic nuclei. Using a leave
one out cross-validation on 12 subjects we have a mean Dice score of 0.805
and 0.799 for the left and right thalami, respectively. We also report over-
lap for the thalamic nuclear groups.

Keywords: Brain imaging, diffusion MRI, magnetic resonance imaging,
machine learning, segmentation, thalamus parcellation.

1 Introduction

The thalamus is a sub-cortical gray matter (GM) structure in the brain of verte-
brates that is symmetric in the midline and located between the cerebral cortex
and midbrain [18]. Its principal function is the relaying of sensory and motor
signals to the cerebral cortex [18] and the regulation of consciousness, sleep,
and alertness. The thalamus consists of lamellae—myelinated fibers—which sep-
arate the thalamus into its components and are grouped based on the orienta-
tion and location of distinct clusters of neurons. The most well known of these
thalamic nuclear groups are the anterior nucleus (AN), medial dorsal (MD),
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ventral (VNG), pulvinar (PUL), lateral geniculate (LGN) and medial genicu-
late (MGN)—though each of these groups is made up of several smaller bundles
of fibers. These nuclear groups are differentially affected in neurodegenerative dis-
eases such as multiple sclerosis [8], Alzheimer’s disease [4], schizophrenia [6,10],
and Parkinson’s disease [12]. Unfortunately, much of our understanding of the
thalamus has come from neuropathological ex-vivo studies [6,10,12] which is not
surprising considering that thalamic nuclei present minimal contrast in conven-
tional MRI. Diffusion tensor imaging (DTI) presents a greater opportunity to
unlock the secrets of the thalamus, as distinct tract connectivities and cytoar-
chitectures [16] provide a platform to distinguish the nuclear groups in-vivo.
However, the exclusive use of DTI would make it impossible to distinguish the
thalamus from other adjacent structures.

Previous work [11,14,17,20,23,24] has been limited to methods dependent on
some level of manual interaction. This work presents two innovations: 1) it is the
first fully automatic multi-modal thalamus segmentation algorithm, and 2) it is
also the first fully automated thalamic nuclei parcellation—into AN, MD, VNG,
PUL, LGN, and MGN—using tensor-based features within the thalamus and
cortical connectivity features derived from tractography. Our method starts by
generating an estimate of the region of interest (ROI) of the thalamus. Within
this ROI, features are computed, including diffusion tensors and their principal
directions and probabilistic connectivities between each voxel and lobar labels
on the cerebral cortex. These features are used in a hierarchical random for-
est (RF) classifier framework, where the first RF segments the thalamus within
the ROI, and a second RF identifies the collection of nuclear groups. The method
is tested against manual delineation and its two phases (thalamic segmentation
and nuclear group identification) are compared to other methods.

2 Method

2.1 ROI Identification

To reduce the computational burden of training an RF we estimate bounding
boxes for the left and right thalami, denoted BL and BR respectively. These
ROIs are identified using a tissue segmentation and labeling approach based
on topology preservation and fuzzy classification [1]. For voxel j with spatial
position xj in the image domain Ω and with MR intensity Ij , there are functions
ujk which represent the membership of the voxel with respect to structure k. The
structures k have an intensity centroid of ck. We introduce rjk as a penalty term
that discourages unrealistic configurations such as the thalamus touching the
cerebellum. We have prior probabilities pjk coming from a statistical atlas and
weights wkm on the intensity difference between the centroids of two classes ck
and cm. These terms are combined to form the following energy minimization
problem,

E (ujk) =
∑
jk

uq
jk

rjk
||Ij − ck||2 + β

∑
l∈Nj,m 
=k

uq
jk

rjk
uq
lm + γ

∑
m 
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uq
jk

rjk
wkmpqjm, (1)
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where q is a fuzziness parameter. The first term, on the right hand side of Equa-
tion (1) ensures voxels in the same structure have similar intensity values, while
the second term controls the smoothness of the memberships, and the final term
regulates the influence of the prior probability. β and γ are weights that balance
the relative influence of the terms. The energy is minimized while simultaneously
maintaining the topological arrangements of the objects achieved through max
membership assignment.

Given a fuzzy segmentation estimate of the left thalamus TL, BL is defined as

BL = {xj |(lL − rL) ≤ xj ≤ (hL + rL),xj ∈ Ω} (2)

where lL = argminxj∈TL
xj , hL = argmaxxj∈TL

xj , and rL = 0.1 × (hL − lL),
which pads TL by 10% along each axes. This process is repeated for BR from
its corresponding fuzzy segmentation TR. Henceforth, when we refer to B it is
implied that the process is repeated for both BL and BR, independently.

2.2 Knutsson Space and Edge Maps

DTI is acquired from diffusion weighted MRI, using a gradient spin echo pulse
sequence with a known b-value b and gradient direction g. The diffusion signal,
S(b,g), at each voxel is an attenuated version of the signal S0 that would be
recorded in the absence of diffusion weighting. The relationship can be specified
using the Stejskal-Tanner equation,

S(b,g) = S0e
−bgTDg (3)

where D is the 3× 3 symmetric diffusion tensor,

D =

⎡⎣Dxx Dxy Dxz

Dxy Dyy Dyz

Dxz Dyz Dzz

⎤⎦ = [u1 u2 u3]

⎡⎣λ1 0 0
0 λ2 0
0 0 λ3

⎤⎦ [u1 u2 u3]
T
. (4)

The eigenvalues (λ1, λ2, λ3) from Equation (4) have eigenvectors (u1,u2,u3).
Two common quantities computed from the eigenvalues are the mean diffusiv-

ity (MD) and fractional anisotrophy (FA), denoted M and F , respectively. The
principal eigenvector (PEV) u1 represents the direction of maximum diffusion.
As the diffusion occurs either in the direction of u1 or in the opposite direction
−u1 with equal probability, it is convenient to represent the direction u as an
orientation using the Knutsson map [15], which transforms the eigenvector u
from S

2 to K ⊂ R
5 by

K (u = (u1, u2, u3)) =

(
u2
1 − u2

2, 2u1u2, 2u1u3, 2u2u3,
1√
3

(
2u2

3 − u2
1 − u2

2

))
.

(5)
This mapping takes opposing Cartesian vectors and sends them to the same
location in Knutsson space K—that is both length and direction are crushed in
the transformation to K. We can now generate an edge map using orientations
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(a) (b) (c) (d) (e) (f)

Fig. 1. Shown are (a) the MPRAGE I, (b) the FA F , and (c) the edgemap ‖G‖F .
Thalami estimates from (d) FreeSurfer [9], (e) our method (OM 18F), and (f) a manual
delineation.

in K. For v = (v1, . . . , v5) ∈ K we have the gradient matrix G and its Frobenius
norm ‖G‖F given by

G(v) =

⎡⎢⎢⎢⎣
∂v1
∂x

∂v1
∂y

∂v1
∂z

...
...

...
∂v5
∂x

∂v5
∂y

∂v5
∂z

⎤⎥⎥⎥⎦ ‖G(v)‖F =

√∑
j

∑
i

G2
ij . (6)

This is an edge map representing a change in the direction of the PEV, which
will allow us to distinguish thalamic nuclei.

2.3 Connectivity to the Cortical Mantle

Connectivity to the cortical mantle is calculated using probabilistic tractogra-
phy [3] implemented in the FSL toolkit. Six cortical masks corresponding to
thalamic connection sites are used as the targets for the tractography algorithm.
Ml is the set of voxels in a cortical mask and l is the cortical mask label. The six
labels for the cortical masks are {frontal, occipital, parietal, temporal, precentral,
postcentral}.

Connectivity Cl(x) is defined as the number of times a sample starting at the
voxel x forms a pathway connecting to any voxel y belonging to the cortical
mask with label l,

Cl(x) =
|{y|∃x→ y ∈Ml}|

|Ml|
. (7)

5000 samples are initiated per voxel in B and the path direction is determined
by local fiber directions.

2.4 Features and Random Forest Framework

The first features input into our RF framework are the relative position of xj ∈ B
and the MR intensity value at xj , Ij . These intensities provide clues about the
boundary of the thalamus with non-thalamus structures. The core distinguishing
features of the nuclear groups are fiber orientation and strength. Thus the next
set of features are the FA, MD, Knutsson mapping, and Frobenius norm, denoted
as Fj ,Mj, {K(xj)}, and ‖G(K(xj))‖F , respectively. The final features are the
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WHOLE THALAMUS SEGMENTATION
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Fig. 2. A comparison between our thalamus segmentation (OM 18F) and those of
Bazin and Pham [1] (TOADS) and Dale et al. [9] (FreeSurfer 5.3.0). The notches give
a 95% confidence interval for the difference in two medians.

connectivity between the position xj and the six cortical labels (i.e., the Cl(xj)’s),
denoted {C(xj)}. The complete feature vector fj is

fj = (xj , Ij , Fj, Mj , {K(xj)}, ‖G(K(xj))‖F , {C(xj)}) (8)

which gives us an 18-dimensional feature space.
Our hierarchical RF [5] approach uses fj for each voxel in the available training

data to build a collection of trees that first distinguishes the thalamus within B
from other tissues. This is a binary classification task identifying thalamus from
background. A second RF is then built using the same feature vector, trained to
provide a membership for each of the six thalamic nuclear groups given that we
know the thalamus from the first stage. The first stage thalamus identification
can be quite noisy due to peripheral objects have a thalamus-like appearance.
To reduce this artifact, we select the largest connected component foreground
object which we then close with a 3× 3× 3 structuring element. The learnt RFs
can be applied to a new subject, with the classification scores determining the
segmentation of the thalamus and subsequent parcellation of the nuclear groups.

3 Results

3.1 Data

Our data consists of 12 subjects from a study of cerebellar ataxia. The subject
images were acquired on a 3T MR scanner (Intera, Philips Medical Systems,
Netherlands) and have undergone standard neuroimaging processing: inhomo-
geneity correction [19], skull stripping [7], isotropic resampling [22] to 0.828 mm,
distortion correction [21], and probabilistic tractography [13]. A subject is shown
in Fig. 1 showing some of the input contrasts. We refer to our method as OM 18F,
as in our method using 18 features.

A manual rater first used the FA to find the thalamus boundary, then used the
Knutsson edge map to delineate nuclear structures that we identify as the AN,
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Fig. 3. The plot on the left is a comparison of the Dice score between our implemen-
tation of Behrens et al. [2] (B) (shades of brown) and our method (OM 18F) (shades
of green), see the text for details. On the right is the remaining nuclear groups we
can generate. Both plots are for our 12 subjects. Results for left and right thalami
are denoted L and R, respectively. The notches give a 95% confidence interval for the
difference in two medians.

MD, PUL, LGN, and MGN nuclei. VG is the complement of these structures,
within the thalamus boundary. We use these reproducible manual delineations
as a ground truth for our training and testing.

3.2 Thalamus Boundary

Our first results compare our estimate of the thalamus with those from two whole
brain segmentation software tools [1,9]. We used leave-one-out cross-validation
to train both our RFs, the results are averaged over the different cross-validation
runs and Dice scores are shown in Fig. 2. A paired Wilcoxon rank sum test com-
paring our method with Bazin and Pham [1] (TOADS) had a p-value < 0.001 for
both the left and right thalami (computed independently), indicating significant
improvement. A similar test between our method and Dale et al. [9] (FreeSurfer)
gives a p-value < 0.001 for the right thalamus; however for the left thalamus the
p-value is 0.00684, which is just shy of statistical improvement. We note that in
this stage, as in the next, there are two RFs one for the left thalamus and the
other for the right stemming from BL and BR, respectively. Example results and
comparison to our ground truth is shown in Fig. 1.

3.3 Thalamic Nuclei Segmentation

The second step in our hierarchical RF framework distinguishes thalamic nu-
clei assuming that the thalamus boundary is known from the first stage. The left
and right thalami were those identified in Section 3.2, which were passed through
their respective trained RFs to predict the nuclear groups. We also implemented
an automated algorithm based on Behrens et al. [2], which used only the cortical
labels to parcellate the thalamus. The fiber groupings in Behrens et al. [2] are
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(a) (b) (c) (d)

Fig. 4. Shown are axial slices of (a) a manual delineation and (b) our parcellation for
a right thalamus on one of our better results and (c) a manual delineation and (d) our
parcellation of a left thalamus for a bad result. The AN is shown in a slate blue anterior
to the thalamus, the VNG is the large blue body in the center of the thalamus, while
MD and PUL are shown in purple and orange, respectively.

different to ours, thus for comparison we merged AN & MD (AN+MD). Behrens
et al. [2] also excluded LGN and MGN from their parcellation. The compara-
ble nuclear groups—AN+MD; VNG; PUL—are shown in Fig. 3, as well as the
additional nuclear groups we can parcellate. A paired Wilcoxon rank sum test
comparing the results has a p-value < 0.001 for the VNG and PUL on both
thalami. We fail to reach significance when comparing for AN+MD, because
we train for AN and MD separately; training on the merging of these groups
would perform better. Examples of our parcellation for two subjects are shown
in Fig. 4.

4 Conclusion

In this paper we have presented the first fully automatic thalamic parcellation
method using multi-modal imaging data, and we make two important contribu-
tions. Firstly we use a multi-channel framework to segment the thalamus—the
first such method. Secondly, we provide a parcellation of the six core nuclear
groups of the thalamus in a fully automated fashion.
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Abstract. Characterization of disease using stationary resting-state functional
connectivity (FC) has provided important hallmarks of abnormal brain activation
in many domains. Recent studies of resting-state functional magnetic resonance
imaging (fMRI), however, suggest there is a considerable amount of additional
knowledge to be gained by investigating the variability in FC over the course of
a scan. While a few studies have begun to explore the properties of dynamic FC
for characterizing disease, the analysis of dynamic FC over multiple networks
at multiple time scales has yet to be fully examined. In this study, we combine
dynamic connectivity features in a multi-network, multi-scale approach to eval-
uate the method’s potential in better classifying childhood autism. Specifically,
from a set of group-level intrinsic connectivity networks (ICNs), we use slid-
ing window correlations to compute intra-network connectivity on the subject
level. We derive dynamic FC features for all ICNs over a large range of window
sizes and then use a multiple kernel support vector machine (MK-SVM) model
to combine a subset of these features for classification. We compare the perfor-
mance our multi-network, dynamic approach to the best results obtained from
single-network dynamic FC features and those obtained from both single- and
multi-network static FC features. Our experiments show that integrating multiple
networks on different dynamic scales has a clear superiority over these existing
methods.

1 Introduction

Resting-state functional connectivity (FC) has been proven to be a critical tool in under-
standing different disease mechanisms and has great potential to provide biomarkers for
disease diagnosis and monitoring [6]. Canonical models of altered connectivity among
specific regions of the brain have been proposed for a wide range of neurological dis-
eases, including Alzheimer’s Disease [8], schizophrenia [7], and autism [12]. In the
past, many of these functional characterizations of mental disease have assumed that
connectivity patterns in the brain do not change over the course of a resting-state fMRI
scan. There is a growing consensus in the neuroimaging community, however, that
FC fluctuates in a task-free environment with correspondence to cognitive state [2,9].
These short-scale modulations in connectivity, which were latent under previous as-
sumptions of stationarity FC, accordingly contain valuable information about functional
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organization in the resting-state brain. Utilizing the novel features of FC dynamics, in
turn, may allow us to build a better understanding of the effects of neurological disease
on brain function.

It is only recently that dynamic FC patterns have been investigated for the purpose
of characterizing disease. Ma et al. [14] defined group-level intrinsic connectivity net-
works (ICNs) in the resting-state brain and assessed differences in schizophrenic dy-
namic FC patterns using a sliding windows approach. Additionally, they used Markov
modeling to identify abnormal modulation of brain states within the default mode net-
work (DMN) of the schizophrenic group. Leonardi et al. [13] used principal compo-
nents analysis over sliding windows to uncover differences in whole-brain FC varia-
tion patterns (termed “eigenconnectivites”) between relapse-remitting multiple sclero-
sis (RRMS) patients and normal controls. This novel approach revealed altered DMN-
related eigenconnectivities among RRMS patients.

In addition to dynamic changes in connectivity on a single network scale, the inter-
action of multiple large-scale networks has recently become an important topic in brain
disease investigation [5,11]. As the brain’s functioning is a product of many concur-
rent neural patterns, the incorporation of multiple networks into resting-state analysis
has great bearing for robust disease characterization. To date, however, there has been
little research addressing the properties of dynamic connectivity in disease on a multi-
network scale.

In this paper, we combine the dynamic properties of functional connectivity among
multiple resting-state networks and explore the merits of such an approach in better
classifying childhood autism spectrum disorders (ASDs). Using ICNs defined from
group independent component analysis (ICA) on resting-state fMRI data, we investigate
sliding window connectivity within individual networks on a large range of time scales.
We then apply a multiple kernel support vector machine (MK-SVM) model to evaluate
the combination of multiple networks on multiple scales and compare the classifica-
tion results to those obtained from single-network analysis or under the assumption of
stationary functional connectivity over the course of the scan.

2 Methods

Our approach to ASD classification uses multi-network combination of intra-network
dynamic connectivity features. Starting with ICNs defined at the group level, we em-
ployed linear regression to recover subject-specific time courses for each network.
Then, dynamic FC features were extracted for each network using sliding window cor-
relations over a large range of window sizes (20 to 240 seconds, at step sizes of 10
seconds); stationary connectivity features were also collected. Using this wide array of
feature types over all networks, we applied an iterative selection/weighting algorithm in
a multiple kernel SVM (MK-SVM) model to identify optimal ICNs and window sizes
for overall ASD classification. Leave-one-out cross-validation (LOOCV) was used to
separate the data into the training and testing sets used in classification. An overview of
the classification pipeline is illustrated in Figure 1.
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Fig. 1. Framework for the proposed classification pipeline. Subject-specific dynamic connectivity
features are derived from group-level ICNs on multiple time scales (i.e. sliding window sizes).
Feature selection is then applied to each ICN for every time scale. Finally, features from all ICNs
at all time scales are combined in a weighted multiple kernel model.

2.1 Participant Data

Resting-state subject scans were obtained from the open-access Autism Brain Imaging
Data Exchange (ABIDE) database [4]. A cohort of 60 child scans, 30 categorized as
typical controls (TC) and 30 diagnosed with ASD, were selected from the NYU Lan-
gone Medical Center ABIDE site dataset. Mean group ages, in years, were 9.75± 1.40
for ASD patients and 9.69 ± 1.58 for controls. Subject ages ranged between 6.5 and
12 years, and individuals were selected to minimize between-group age differences (p
= 0.8873). Information about participant data collection, exclusion criteria, and scan
parameters for the NYU dataset is available on the ABIDE website1.

2.2 Data Preprocessing

Initial fMRI scans were collected on a 3-Tesla Siemens Allegra scanner over six minutes
taking 180 time points at a repetition time (TR) of 2s. The data were preprocessed
using Data Processing Assistant for Resting-State fMRI (DPARSF) software [3]. Before
preprocessing, all images had the first ten time points removed. The remaining volumes
were then normalized to MNI space with a resolution of 3×3×3 mm3. Next, the images
were slice timing corrected and motion corrected using the first remaining time point as
a reference. White matter, CSF, global signals, and head motion were regressed out as
nuisance covariates. Following this, the images underwent signal detrending and band-
pass filtering (0.01-0.08Hz). Finally, motion scrubbing [16] was applied with an FD
threshold of 0.5; time points with significant motion were removed from each image,
along with the preceding time point and the two time points following.

1 http://fcon_1000.projects.nitrc.org/indi/abide/

http://fcon_1000.projects.nitrc.org/indi/abide/
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2.3 Group ICA and Recovery of Subject Time Courses

In this study, we employed group ICA to define population-based ICNs. Using FSL’s
MELODIC software2 [17], all preprocessed subject images – both ASD and normal
controls – were temporally concatenated and projected into a 25-dimensional subspace.
Spatial ICA was performed on this data set to recover 25 statistically independent spa-
tial maps, each representing a unique group-level functional network, with associated
group-level time-courses. After recovering group-level ICNs, we followed the first step
of FSL’s dual regression approach [1] to define subject-specific time courses associated
with each individual network. Namely, we performed linear regression to model each
time point of an individual’s fMRI scan as a linear sum of the group-level spatial maps.

2.4 Estimating Intra-network Functional Connectivity

For each subject, the back-reconstruction process yielded a set of 25 time courses, each
representing an underlying signal associated with a single group-level functional net-
work. Then, for each subject, we measured the influence of a functional network i on a
given voxel v as the normalized cross-correlation of their respective time courses:

I(i, v) =
1

N

N∑
t=1

(Ti(t)− Ti)(Tv(t)− Tv)

σiσv
, (1)

where N is the length of both time courses, Ti is the subject-specific time course repre-
senting network i, Tv is the BOLD signal of voxel v, and T and σ represent the mean
and standard deviation of a time course, respectively. To analyze the change in network
influence over the course of the scan, we split Ti and Tv into synchronous sliding time
windows and computed the correlation for each window separately. To observe the ef-
fect of time scale on dynamic functional connectivity within the networks, we repeated
the experiment on a large range of window sizes, from 10 TR (20 s) to 120 TR (240 s)
at intervals of 5 TR. For all window sizes, we fixed the step size between windows to 2
TR (4 s).

Because resting-state fMRI is inherently task-free, it is difficult to interpret patterns
of dynamic FC in individuals, and likewise, it is impractical to directly compare changes
in FC between subjects. To account for this, we took the voxel-wise mean and variance
of windowed correlation values for a given window size and used these measures as
comparative features. For a given voxel and a given network, the mean correlation over
all time windows gives the average influence of the network within that voxel on a
specific dynamic scale. Similarly, the variance gives the local stationarity of the network
influence on the same scale. That is, voxels with high variance in correlation can be
interpreted to experience some shift in intra-network functional connectivity over the
course of the scan.

2.5 Feature Selection

As ICA may return artifactual or physiological components, we first visually inspected
the set of 25 components and selected 16 as relevant to functional dynamics, discarding

2 http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/MELODIC

http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/MELODIC
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the rest [10]. Then, prior to classification, we performed the following feature selection
steps for each ICN: First, we masked each ICN to only include functionally relevant
voxels, as determined by MELODIC’s post-processing mixture model [17] (using a p-
value cutoff of p < 0.0001). Next, we applied the Mann-Whitney test [15] to only select
mean and variance features where one group exhibited significantly higher values than
the other group (thresholded at p < 0.05). Using the remaining features, we further
applied a logistic regression with L1-norm regularization to ensure a small number of
features were used when constructing linear kernels, which can be strongly affected
by noisy features, in our MK-SVM model. Importantly, feature selection, as well as
subsequent classifier training, was performed independently on each training set in the
LOOCV framework.

2.6 Multiple Network Classification with MK-SVM

From our collection of ICNs, each evaluated at a range of window sizes, our next step
is to integrate the features from all networks to perform combined classification. In
practice, we expect that only a subset of ICNs actually contain meaningful differences
in autism connectivity, and that certain window sizes will provide better disease dis-
criminability than others for ICNs that do have important features. Therefore, we wish
to develop a minimal, yet multi-network, multi-scale model of ICN connectivity that
increases ASD classification over both single-network analysis and assumptions of
FC stationarity. To evaluate the feasibility of such a design, we propose to use an it-
erative ICN selection/weighting method to find the combination of ICN features that
maximizes overall LOOCV classification accuracy, using a multiple kernel SVM (MK-
SVM) model [20] for classification.

Given a set of K kernels {φk(x)} generated from the training set {(xi, yi)}, where
xi ∈ RN×1 is a feature vector and yi ∈ {−1, 1} is a class label, MK-SVM seeks to find
a maximum margin hyperplane in kernel space to separate the two classes. The primal
formulation of MK-SVM seeks to solve

min
wk,b,ξi

1

2

K∑
k=1

βk||wk||2 + C

N∑
i=1

ξi (2)

s.t. ξ ≥ 0, yi

(
K∑

k=1

βk

(
wT

k φk (xi) + b
))
≥ 1− ξi for i = 1, . . . , n.

Here, βk is a linear weight for kernel k; wk and b are the normal vector and intercept
defining the hyperplane, respectively; and C is a parameter regularizing the degree of
misclassification (we used a default value of C = 1 in our experiments). Given a test
observation x, we can then make a prediction on its class ŷ to be

ŷ = sign

(
K∑

k=1

βk

(
wT

k φk (x) + b
))

. (3)

In practice, we can constrain the kernel weights such that
∑K

k=1 βk = 1 and perform a
coarse search within the combinatorial space to select an optimal weight configuration.
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Since we only wish to select a subset of ICNs out of a large set of network/window
size combinations, we employed a greedy forward approach to select kernels one-at-
a-time while simultaneously learning their associated MK-SVM weights {βk}. In this
approach, we first construct a linear kernel for each ICN and for each window size,
forming the set of kernels {φk(x)}. We then seek to find a subselection of K kernels
that maximizes LOOCV accuracy in the MK-SVM model. Starting with the ICN that
gives the best classification accuracy, we incrementally add an additional ICN to the
model if its inclusion increases overall accuracy. At the same time, we use a grid search
approach to select the optimal weights of selected kernels in the MK-SVM model. For
each iteration, we generate all combinations of kernel weights between 0 and 1, using a
step size equal to the inverse of the number of kernels in the model. We stop our iterative
addition of ICNs when overall classification accuracy can no longer be improved.

3 Results and Discussion

Table 1 gives the best results of dynamic and static FC classification on both single- and
multi-network approaches. For the single-network case, we report the highest LOOCV
accuracy among all 16 networks using each network’s features as input to a single, lin-
ear kernel SVM. Under assumptions of FC stationarity, the maximum single-network
accuracy was 68%; in our experiments, this network corresponds to the salience net-
work, which under static FC analysis has previously been shown to have a similar rate
of disease discriminability children with ASD [19]. For dynamic FC analysis, we found
the central executive network (CEN) to have a classification rate of 83% at a window
size of 35 TR (70 s). Interestingly, it has been suggested that disruptions in high-order
cognitive switching controlled by the CEN could contribute to several neurophysio-
logical disorders, including autism [18]. Figure 2 (left) shows the salience and central
executive networks recovered by ICA in our experiments. The right image in Figure 2
plots the classification performance of the two networks across all tested window sizes.
We observe from the figure that the salience network has the best performance under
static IC analysis, while the CEN has a peak between 30 and 40 TR. This finding is
in line with our hypothesis that important FC information exists at different window
sizes for different ICNs, and furthermore, it underscores the importance of considering
multiple time scales when assessing dynamic FC features in mental disease.

Our results also suggest that multi-network classification, which is able to capture a
larger range of disease characteristics, augments both stationary and dynamic analyses.

Table 1. Comparison of the best classification performance obtained under single- and multi-
network models with and without dynamic FC features. (ACC=Accuracy, SEN=Sensitivity,
SPE=Specificity, PPV=Positive Predictive Value, NPV=Negative Predictive Value)

Method ACC (%) SEN (%) SPE (%) PPV (%) NPV (%)
Single-Network, Static FC 68 70 67 68 69
Single-Network, Dynamic FC 83 83 83 83 83
Multi-Network, Static FC 83 87 80 72 86
Multi-Network, Dynamic FC 90 87 93 93 88
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Fig. 2. Left: The salience and central executive networks, which displayed the highest classifica-
tion accuracy among all 16 networks using static and dynamic connectivity features, respectively.
Right: Classification accuracy of the two networks as a function of window size. Here, “full” de-
notes classification under stationary FC assumptions.

Moreover, compared to only using static FC features, we find that searching over multi-
ple dynamic ranges enhances MK-SVM performance for the combination of ICNs. The
multi-network, multi-scale model obtained 90% accuracy using the approach adopted
here, substantially outperforming the 83% accuracy obtained by multi-network analysis
under assumptions of stationary FC. This suggests that while many ICN-window size
pairings may not exhibit strong disease discriminability individually, as evidenced in
Figure 2 (right), there may exist important combinations of ICNs at certain time scales
that can well characterize disease. Effectively, learning these modulation patterns al-
lows for a whole-brain dynamic model of disease, where both stationary connectiv-
ity differences and associated functional compensation are captured. In other words,
multiple-network dynamic FC approaches may be able to simultaneously describe both
high-level aberrant connectivity and the resulting functional modulation of other brain
networks in response. It will be interesting to see what multiple-network models come
about in future analyses of the functional dynamics of disease.

4 Conclusion

In this study, we combined dynamic functional connectivity features from multiple net-
works to enhance the diagnosis of childhood autism. By using FC features over a wide
range of time scales, our approach was able to substantially increase ASD classifica-
tion when compared to using static FC features. Likewise, we showed that integrated
network classification using a multiple kernel SVM approach has higher diagnostic po-
tential when dynamic connectivity is considered. From our results, we conclude that
incorporating different time scales for different ICNs into multi-network FC analysis
provides an important, only now explored, perspective in our understanding of different
disease mechanisms.
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Abstract. The estimation of functional connectivity structure from
functional neuroimaging data is an important step toward understanding
the mechanisms of various brain diseases and building relevant biomark-
ers. Yet, such inferences have to deal with the low signal-to-noise ratio
and the paucity of the data. With at our disposal a steadily growing
volume of publicly available neuroimaging data, it is however possible to
improve the estimation procedures involved in connectome mapping. In
this work, we propose a novel learning scheme for functional connectivity
based on sparse Gaussian graphical models that aims at minimizing the
bias induced by the regularization used in the estimation, by carefully
separating the estimation of the model support from the coefficients.
Moreover, our strategy makes it possible to include new data with a
limited computational cost. We illustrate the physiological relevance of
the learned prior, that can be identified as a functional connectivity at-
las, based on an experiment on 46 subjects of the Human Connectome
Dataset.

Keywords: functional connectivity, sparse Gaussian graphical models.

1 Functional Connectivity and Rest fMRI

Functional connectivity (FC) is a simple measure of the interactions between
brain regions. First introduced for electro-physiological recordings, such as
spike-train recordings or electro-encephalography, it is now commonly used in
spatially-resolved neuro-imaging modalities despite their poor temporal reso-
lution at the scale of a second or more. Reported first as an alternative tool
for positron emission tomography analysis [1], it has become a prominent tool
in functional magnetic resonance imaging (fMRI) analysis. Functional connec-
tivity has initiated a paradigm shift in fMRI studies, since it makes possible
to scan subjects without engaging them in a controlled task. This is especially
important when dealing with non-cooperative subjects, such as children or pa-
tients with neuropathologic disorders [2, among others]. In addition, it creates
an opportunity to study the brain as a whole, through its global interactions,
rather than through local effects.

P. Golland et al. (Eds.): MICCAI 2014, Part III, LNCS 8675, pp. 185–192, 2014.
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Although FC is an established framework in neuroimaging, there is still no
consensus on how to measure it from the data [3]. The connectivity pattern can
be seen as a graph with its nodes (vertices) and connections (edges). Nodes are
associated with elementary brain regions, between which connection strengths
are then estimated, and the graph structure as a whole is referred to as a func-
tional connectome. Nodes may either be predefined regions of interest (ROIs) or
voxels [4], or may consist of distributed structures estimated from the data [5,6].
Once the nodes have been defined, edge strengths are inferred either through
Pearson’s correlation coefficients [4], partial correlation coefficients [7], or mutual
information [8]. Characteristic network properties are then derived from these
graph structures based on graph theoretic measures such as small-worldness,
modularity, etc [9].

The central challenge in functional connectome estimation is that it is ill-
posed, due to the small number of temporal samples in typical datasets. Regu-
larization, e.g. with a sparsity assumption in the connections, is critical to recover
connections from the data [3], yet at the expense of a bias on the estimated con-
nectome. Ng et al [10] have shown that introducing a non-uniform connectivity
prior derived from anatomical connectivity greatly improves estimation. How-
ever, the matching between functional and anatomical connectivity is often very
imperfect [11]. For this reason, it is important to construct connectivity priors
from functional connectivity information itself.

Here, we use a group of subjects to build such a prior in the form of an atlas
that characterizes the stability of brain connections. Our estimation method
is based on the precision matrix (inverse of correlation matrix, related to the
partial correlation coefficients), since it has proven sensitive to correctly detect
existing connections in a graph structure [3]. In contrast to existing stability
studies, we do not focus on global properties of the graph, as in [9,12]. Rather,
we aim at quantifying the probability of a connection being present between
two pre-defined regions by means of a group study, and use this as a prior in
the estimation of single subject FC. To alleviate the bias of sparsity-inducing
penalization, we use a two-stage estimation procedure to obtain edge strengths.

Here, we focus on the qualitative properties of the model, which sketches a
new generation of FC atlases, and leave quantitative validation for future work.

2 Data Used in the Study

In this contribution we use resting state data as provided by the minimal pre-
processed data [13] of the human connectome project (HCP) [14] (release Q2).
This comprises 46 subjects. All data were recorded in 3T MRI scanners with
a repetition time of 720ms. Data have been appropriately masked and motion
corrected using the estimated motion parameters provided by HCP. In addition,
we corrected for confounds using high variance confound regression [15] based
on five principal components of 2% highest variance voxel time series of whole
brain image, and using five principal components of ventricle and white matter
voxels (using standard masks provided in FSL, the mask of the latter eroded by
1 voxel to avoid overlap with gray matter).
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3 Learning the Functional Connectivity Model

3.1 Graph Representation of Functional Connectivity

Given a set of p brain regions, the goal is to estimate an undirected graphical
model G(V,E,Ω) as a connectome representation. The vertex set V = {vi, i ∈
[[p]]} represents weighted averages of time series with respect to each of the
p given ROIs (here a smooth positive function over a bounded subset of R3).
Weights reflect ‘probabilities ’ of a voxel to belong to the given ROI. In this
work, we have chosen the Harvard-Oxford lateralised probabilistic cortical atlas
(p = 96) [16] (see, e.g., [12] for ROI abbreviations and acronyms used in this
contribution).

The edge set E = {eij, (i, j) ∈ [[p]]2} contains eij if and only if the ROIs
represented by vi and vj are functionally connected, given all other vk, k /∈ {i, j}.
Edge weights Ω = {ω(eij), eij ∈ E} represent signed connectivity strengths.
Negative strengths correspond to a phase inversion between the time series of
interest. When modeling FC, it is often assumed that the graph is sparse, which
corresponds to a cardinality of E being (largely) inferior to p(p − 1)/2. This
hypothesis is justified based on evidence provided by structural connectivity
measurements [17].

3.2 Estimation of the Graph Model Parameters

Estimating a sparse graphical-model is an NP-hard problem, and we choose
graphical lasso [18,19] as an appropriate convex relaxation of our problem. We

represent the graphical model through its adjacency matrix Θ
def.
= (θij)i,j , which

under a Gaussian hypothesis corresponds to the rescaled precision matrix (in-
verse of the covariance matrix). Hence, θij = θji = 0 if and only if the two
regions represented by vi and vj are independent, conditional on all other re-
gions [20]. Graphical lasso combines the maximum likelihood estimate with a
convex sparsity inducing penalty with an objective function given by1

Θ̂E = arg minΘ0 ϕE(Θ)
def.
= − log det (Θ) + trace (ΘS) + ‖Λ ◦Θ‖1 (1)

where S is the sample correlation matrix of the time-series represented by the
nodes in V . We minimize ϕE(Θ) of Eq. (1) over the space of symmetric positive

definite matrices using the algorithm of [21], which guarantees Θ̂E � 0 at any
step of the algorithm, as such providing a procedure more robust against ill-
conditioning of S than those originally proposed in [18,19].

The estimate Θ̂E is a biased estimate of Θ, and we only use it to infer the edge
set E. We thus break our estimation scheme down into three steps: (i) estimation

1 The original implementation of the penalization in graph lasso reads λ‖Θ‖1,
but since no penalization of the diagonal terms is required, we may write
λ
∥∥(11T − Idp

)
◦Θ

∥∥
1
, where 1 is a vector of ones in Rp and · ◦ · denotes the

element-wise or Hadamard product. We use here an extension of this model, re-
placing λ

(
11T − Idp

)
by a symmetric matrix Λ = (λij)i,j , with 0 ≤ λij ≤ 1.
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of the hyperparameter Λ, (ii) estimation of the edge set E, and (iii) estimation
of the edge weights or signed connectivity strengths Ω.
Step (i) will be discussed in the next section. Assuming for the moment that Λ
is known, the last two steps are simply:

(ii) The edges eij in Ê correspond to those entries of Θ̂E for which
∣∣∣θ̂ij∣∣∣ > 0.

(iii) Given the estimated edge set, we estimate edge strengths Ω = (ωij)i,j as

the maximum likelihood estimates restricted to the edge set Ê of the graph Ĝ,
based on the sample correlation matrix S. Our estimator reads

Θ̂Ω = arg minΘ|Ĝ0 ϕΩ(Θ)
def.
= − log det (Θ) + trace (ΘS) (2)

which is over the space of positive-definite, symmetric matrices with a given
support set Ê. The restriction to the graph prohibits the use of straightforward
matrix inversion, and instead we use iterative proportional scaling (IPS), itera-
tively solving plain maximum likelihood models alternated over maximal cliques
of the graph Ĝ [20]. The obtained solution is an unbiased maximum likelihood
estimator conditional on the support set of the graph, hence the only bias in our
final model is the pruning of the edges. Given new data (a subject, session, or
condition), we can infer the corresponding functional connectome.

3.3 Choosing the Prior Atlas

The choice of the regularizer Λ is essential to optimize the bias/variance com-
promise. A first approach consists in choosing Λ = λ

(
11T − Idp

)
. As in [21],

this makes the problem low-dimensional. Hence, we use a repeated random jack-
knifing cross-validation scheme. As a score function, we opt for the negative
log-likelihood, which is our main objective function. However, the extrapolation
of that single parameter λ is an issue, since a given λ value corresponds to dif-
ferent cardinality of Ê for different datasets (even if ratios such as λ/λmax are
considered, where λmax is the critical regularizer that yields a trivial solution).
Instead we propose to accumulate the support estimates across subjects and
sessions. The intuition behind this approach is that noise in the data can cause
instabilities in the graph lasso estimate. However, these instabilities are not re-
producible across subjects, and the population distribution of the presence of
edges is reliable. This approach is related to the “stability selection” strategy,
also developed for sparse Gaussian graphical models [22]. Consider q subjects,
each subject having 2 separate scan sessions 2.

Estimation of λ(i)s. For each subject i, we use a grid search to estimate λ(i) as

that λ inΛ = λ
(
11T − Idp

)
for which Θ̂

(i)

Ω maximizes the likelihood general-
ization. The generalization capability of the likelihood can be approximated

2 We consider the back-to-back recorded left-right and right-left phase encoding as a
single session. To marginalize the effect of the phase encoding, we always sample both
encodings evenly. Thus, if we state that n samples are jackknifed from a session, we
actually mean that n/2 samples are jackknifed from each phase encoding associated
with that session.
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by using n samples from one session as a train session to estimate Θ
(i)

E(i) ; E
(i)

is then taken as the support in Eq. (2) to estimate Θ
(i)

Ω(i) from n samples. We
then use the n′ complementary samples in the latter session to compute the

likelihood of Θ̂
(i)

Ω(i) . This is repeated k times, and we report λ(i), as that λ
that maximizes the average likelihood. In this study, we have used n = 200,
n′ = 600, k = 5, and for each repetition the session used for training has
been chosen randomly.

Estimation of Λ. Using the optimal λ(i) for subject i, we re-estimate E(i) from
n′′ = 400 samples, using Eq. (1) for each session, yielding Ê(i,1) and Ê(i,2).
Suppose that all subjects (and sessions) are drawn from a single population
with Pij the marginal probability of observing edge eij . We simply estimate
these probabilities by using maximum likelihood under marginal Bernoulli
distributions on the edges, based on the {E(i,1), E(i,2)} estimates. We then

define the penalization parameter Λ as 11T −P, where P
def.
= (Pij)i,j . Note

that, by construction, P is a symmetric matrix with ones on its diagonal.

Λ can then be used on a new subject as a penalty in the penalized maximum like-
lihood estimation Eq. (1). Importantly, it appears as a penalty, not a constraint,
and it is thus a “soft” prior. In other words, it does not force the existence or
absence of a connections; it simply promotes these choices.

Fig. 1. Prior on the functional connectivity, noted P in the text: the coefficients in the
matrix represent the frequencies of edge detections. ROI labels and their abbreviations,
as well as a visualization of all networks can be found in an addendum to a preprint
of this manuscript at http://hal.inria.fr/hal-00991124.

http://hal.inria.fr/hal-00991124
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4 Resulting Atlas and Discussion

The probability estimates in P give a global view of the connectome in our
training set of 46 subjects. It is important to note that the structure of P re-
flects the sparsity assumptions, which means that some connections have indeed
never been ‘observed’ over the entire set of subjects, see Fig. 1. This connectiv-
ity prior matrix is very structured; it displays a checkerboard pattern: regions
are most likely to be connected to a region in the same hemisphere than the
corresponding one in the opposite hemisphere. In addition, visualized as a brain
graph, it features well-known characteristics of brain connectivity, such as strong
homologous inter-hemispheric or fronto-parietal connections.

To visualize the latent network structure, we re-organized the matrix P using
hierarchical clustering with complete linkage, choosing the number of clusters
that minimizes the silhouette criterion [23]. Clustering on probabilities of edges
in the support of a graph gives FC networks (see Fig. 2) similar to those found
in group analyses based on independent component maps, see, e.g., [5]. This
suggests that the FC atlas has indeed captured valuable information from our
reference population.

Other than having an interpretable graph representation, it should be em-
phasized that our approach provides a readily-usable subject-specific estimator,
alleviating the need of a search over the parameter space (λ) for a new subject.
As any medical-imaging atlases, our model incorporates accumulated knowl-
edge. In contrast to group analyses that need a complete re-computation of the
graph or the components upon incorporation of a new subject [6,24], we only
need to update a single matrix, namely the estimator P. Moreover, based on
the observations of [10], we conjecture that the incorporation of the structured
atlas-based prior will yield more accurate estimation of functional connectivity
than traditional graph lasso estimators that enforce a uniform �1 shrinkage on
all connections.

Fig. 2. Lateral and top views of the four networks containing the most nodes. From
left to right we distinguish a motor network, a visual network, as well as two lateralised
TPJ-to-IFG networks (TPJ: temporo-parietal junction – IFG: Inferior Frontal Gyrus).
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5 Conclusions

Sparsifying penalties are the most promising tools to learning functional connec-
tomes from noisy and scarce fMRI data. Injecting structure in this prior, favoring
connections that are known to be likely, can greatly improve the ability of the
estimation procedures to recover real connections. We have introduced a proce-
dure to learn an atlas of brain functional connections by accumulating knowledge
across subjects, associated with a subject-specific estimator of a sparse Gaussian
graphical model that quantifies functional connectivity. Future work includes the
validation of the atlas-based strategy for individual connectivity estimation and
subjects connectivity comparison.
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22. Meinshausen, N., Bühlmann, P.: Stability selection. Journal of the Royal Statistical
Society: Series B (Statistical Methodology) 72(4), 417–473 (2010)

23. Rousseeuw, P.J.: Silhouettes: A graphical aid to the interpretation and validation
of cluster analysis. Journal of Computational and Applied Mathematics 20, 53–65
(1987)

24. Ng, B., Varoquaux, G., Poline, J.B., Thirion, B.: A novel sparse group Gaussian
graphical model for functional connectivity estimation. In: Information Processing
in Medical Imaging, Asilomar, États-Unis (June 2013)



Discriminative Sparse Connectivity Patterns

for Classification of fMRI Data

Harini Eavani1, Theodore D. Satterthwaite2, Raquel E. Gur2, Ruben C. Gur2,
and Christos Davatzikos1

1 Center for Biomedical Image Computing and Analytics,
University of Pennsylvania

2 Brain Behavior Laboratory, University of Pennsylvania

Abstract. Functional connectivity using resting-state fMRI has
emerged as an important research tool for understanding normal brain
function as well as changes occurring during brain development and in
various brain disorders. Most prior work has examined changes in pair-
wise functional connectivity values using a multi-variate classification
approach, such as Support Vector Machines (SVM). While it is powerful,
SVMs produce a dense set of high-dimensional weight vectors as output,
which are difficult to interpret, and require additional post-processing to
relate to known functional networks. In this paper, we propose a joint
framework that combines network identification and classification, result-
ing in a set of networks, or Sparse Connectivity Patterns (SCPs) which
are functionally interpretable as well as highly discriminative of the two
groups. Applied to a study of normal development classifying children
vs. adults, the proposed method provided accuracy of 76%(AUC= 0.85),
comparable to SVM (79%,AUC=0.87), but with dramatically fewer num-
ber of features (50 features vs. 34716 for the SVM). More importantly,
this leads to a tremendous improvement in neuro-scientific interpretabil-
ity, which is specially advantageous in such a study where the group
differences are wide-spread throughout the brain. Highest-ranked dis-
criminative SCPs reflect increases in long-range connectivity in adults
between the frontal areas and posterior cingulate regions. In contrast,
connectivity between the bilateral parahippocampal gyri was decreased
in adults compared to children.

1 Introduction

Functional connectivity, defined as the amount of correlation between observed
BOLD time-series, has been widely applied to study the large-scale functional
architecture of the human brain in both health, disease, and development. Many
studies that examine changes in pair-wise connectivity use multi-variate meth-
ods, such as SVMs, with the vectorized correlation matrices as features [1]. Ap-
plied to classification, the l2-regularized SVM results in a list of connections or
edges that are discriminative of the two groups. However, high-dimensional pat-
terns are very difficult to parse and interpret, requiring additional processing and
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analysis based on prior knowledge of known functional network labels [2]. To ad-
dress this issue, feature selection methods [3] or l1-regularized SVM can be used,
which produces a sparse discriminative pattern. However, it is known to ignore
features that are highly correlated (and therefore redundant for classification),
which could be neurobiologically relevant.

Alternately, a complementary set of analysis that can be performed begins
with network identification using independent component analysis (ICA). ICA
commonly identifies motor, visual, sub-cortical and default mode networks. These
networks can then be analyzed for changes in spatial extent or average connec-
tivity between the two groups. However, in such a method, network identification
is performed independently of classification. This can be problematic since not
all networks are necessarily different in the two groups - requiring an exhaustive
search in order to find group differences. Such a method seeks to represent func-
tional activity in general, and does not aim specifically to find networks that
relate to the classification task.

In order to address the above limitations, in this paper, we propose a joint
framework that combines network identification with classification, resulting
in functionally meaningful networks that are highly discriminative of the two
groups. Our method is akin to previous work in structural MRI [4], present-
ing a joint generative-discriminative formulation. We propose the use of sparse
decompositions for network identification, resulting in a small set of Sparse Con-
nectivity Patterns (SCPs) that are highly discriminative of the two groups, as
well as functionally interpretable. Thus, this method reduces the high dimension-
ality of the connectivity data to a small set of strongly correlated regions, that
are relevant to the classification task. In addition, as opposed to vectorizing the
correlation matrices [1] the proposed method exploits the positive-semi-definite
(PSD) property of the correlation matrix [5], in order to find stable SCPs.

To test its performance, we use the proposed method to investigate functional
connectivity differences between children and young adults. Section 2 provides
details of the proposed method. Section 3 describes the results and discusses
the merits and drawbacks of the proposed method compared to other methods.
Conclusions and future work are provided in section 4.

2 Identification of Discriminative Sparse Connectivity
Patterns

A schematic diagram illustrating our method is shown in Figure 1. Given P re-
gions, the input to the method is size P×P correlation matricesΣn � 0, and the
associated binary group membership yn, for each subject n, n = 1, 2, . . . , N . We
would like to find smaller networks, or SCPs common to all the subjects, such
that the total connectivity within each network contributes to the two-group
classification. Our formulation jointly optimizes two objectives: (1) Identifica-
tion of SCPs (2) Learning discriminative SCPs. In the following sub-sections we
provide the details of each, followed by the joint optimization strategy.
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Fig. 1. Schematic illustrating the joint framework. Panel to the left describes the SCP
identification term, which factorizes connectivity matrices Σn of each subject n into
a set of common SCPs B = [b1,b2, . . . ,bK ] and its associated coefficients. Panel to
the right illustrates a linear SVM, which uses the total absolute connectivity values
diag(BTΣnB) as input features to classify two groups, resulting in the hyperplane w.

2.1 Identification of SCPs

We would like to find SCPs common to all the subjects, such that a non-negative
combination of SCPs generates the correlation matrixΣn, for each subject n. We
represent each SCP by a vector of region-weights bk, where −1  bk  1, bk ∈
RP , reflecting the membership of the regions to SCP k. If two regions in bk have
the same sign, then they are positively correlated and opposing sign reflects anti-
correlation. Thus, the rank-one matrix bkb

T
k reflects the correlation behavior of

SCP k. To retain the P.S.D. nature of the correlation matrix, we would like
to approximate each matrix {Σn}Nn=1 by a non-negative combination of these

sub-networks B = [b1,b2, . . . ,bK ]. Thus, we want Σn ≈
∑K

k=1 cn(k)bkb
T
k =

B diag(cn) B
T , where diag(cn) denotes a diagonal matrix with values cn ∈ RK

+

along the diagonal.
We quantify the approximation above using the frobenius norm. Then the loss

function G takes the form:

G(B,C) =

N∑
n=1

∣∣∣∣Σn −B diag(cn) B
T
∣∣∣∣2
F

(1)

In general, a blind-decomposition problem such as the above is ill-posed, i.e.,
multiple optima exist, and the solutions are not stable with respect to the noise in
the data. To make the results stable, additional constraints need to be imposed
on the matrix factors. Since known functional networks such as the visual or
motor networks have small spatial extent compared to the whole brain, we use
spatial sparsity as a constraint, similar to our prior work [6]. Hence we impose
spatial sparsity on the SCPs by restricting the l1-norm of bk to less than a
constant value λ.

2.2 Learning Discriminative SCPs

Our objective is to find SCPs that can reconstruct that data as well as act as a
discriminative basis that can classify the two groups. In other words, each SCP
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consists of regions which have the following properties (1) they are strongly
positively or negatively correlated (2) the total absolute correlation between
all the regions within an SCP contributes towards the group difference. The
first property is modeled in the previous section; in this section we describe the
discriminative term that models the second property.

Given an SCP bk, the scalar value b
T
kΣnbk measures the total absolute corre-

lation between all the regions within the SCP for a given subject n. Computed for
all SCPs, the K-dimensional vector diag(BTΣnB) serves as the subject-specific
measure that can be used in a multi-variate SVM framework. We use the squared
hinge loss and l2 regularization for the K-dimensional SVM hyperplane w. The
cost function for the discriminative term is:

D(B,w) =

N∑
n=1

(
1− ynw

T diag
(
BTΣnB

))2
+

(2)

where yn is the binary group label for subject n, and the subscript + denotes
the positive part of the argument.

2.3 Joint Optimization Framework

Bringing the terms in Eqns. 1 and 2 together, along with the l2 regularizer for
w, we have the optimization problem

minimize
B,C,w

(1− μ)G(B,C) + μD(B,w) + ||w||22

subject to

− 1 ≤ bk ≤ 1, ||bk||1 ≤ λ, k = 1, . . . ,K

cn ≥ 0, n = 1, . . . , N

(3)

where μ is the relative weighting fraction between the two terms. A value of
μ = 0 produces purely reconstructive SCPs. We use alternating minimization to
iteratively solve for B, C and w. We use a projected gradient method [4] for B
and C and the libSVM solver for w [7]. The parameter μ, which controls the
trade-off between the two terms, will be linearly increased from a value of 0 to
1 during the iterative process. This ensures that the SCPs generated during the
first few iterations are mainly reconstructive, which tend to be more stable.

Model Parameters The free parameters of the proposed method are the num-
ber of SCPs K, and the sparsity level λ. Using grid search, for every pair of
values in K ∈ {10, 20, . . .} and λ ∈ {0.01, 0.02, . . . , 0.1}∗P , we will use repeated
five-fold cross-validation to find the optimal set of parameters.

3 Application to Study of Development

3.1 Data and Pre-processing

Data used here was drawn from the PNC database [8]. Our data consists of 91
children (age = 10.38± 1.01 yrs.) and 84 young adults (age= 20.21± 0.84 yrs.).
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Fig. 2. Top two SCPs whose total connectivity is stronger in children. 3D brain render-
ing (top) displays location of regions belonging to the SCP. Opposing colors (red/blue)
indicate anti-correlation between the regions. Size of nodes reflect SCP values bk.
Corresponding graphs (bottom) plot total connectivity within SCP for each subject
vs. subject age. Uni-variate p-value scores comparing total connectivity between two
groups are also shown.

As head motion is a known confound that correlates with age effects, we matched
the two groups on motion, measured using the mean relative displacement [1,9]
(p = 0.79). As described elsewhere in detail [8], Blood Oxygen Level Dependent
(BOLD) fMRI was acquired using a whole-brain, echoplanar (EPI) sequence
with the following parameters: 124 volumes, TR 3000 ms, TE 32 ms, effective
voxel resolution 3.0x3.0x3.0mm.

Subject-level BOLD images fMRI images were affinely registered to the T1
image, followed by non-linear registration to the MNI 152 template. We used
the 264 nodes defined in [10] for our experiments. Time-series data was pre-
processed using a validated confound regression procedure [11]. Averaged time-
courses corresponding to these 264 nodes were used to compute a symmetric
Pearson correlation matrix Σn ∈ SP

+ for each subject.

3.2 Results Using Proposed Method

The results of the cross-validation provided an operating point of K = 50, λ =
0.03P (roughly 10 nodes per SCP) at which the results are generalizable within
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Fig. 3. Top two discriminative SCPs whose total connectivity is stronger in adults

sub-samples of the dataset. The cross-validation accuracy saturates at higher
values of K. For these values, the proposed method gave an average classifi-
cation accuracy of 76.3 ± 7.08% between children vs. young adults. The most
discriminative SCPs are shown in Figures 2 and 3, rendered using BrainNet
Viewer [12].

Children demonstrated stronger connectivity within the two SCPs, displayed
in Figure 2. Positive correlations between the bilateral temporal poles and the
parahippocampal gyri are significantly stronger in children, than in adults. This
pattern is consistent with an increased degree of lateralization of temporal con-
nectivity with development [13]. In contrast, adults demonstrated stronger con-
nectivity within two SCPs including the motor network and the default mode
network (Figure 3). These patterns are consistent with patterns of network segre-
gation, whereby connectivity within certain major networks including the motor
network and the default mode network increase with development [2,1]. Of the
four SCPs, strongest p-value difference is exhibited by SCP 4, which shows in-
creased anterior-posterior connectivity between two default-mode regions - me-
dial Pre-Frontal Cortex (mPFC) and the Posterior Cingulate Cortex (PCC).
This finding has been consistently found in other studies [2], further adding to
the validity of our method.

3.3 Comparison with Other Methods

We compared our method with four alternate approaches: (1) l2-regularized l2-
loss linear SVM [7] with pair-wise correlation values (2) l1-regularized l2-loss
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Table 1. Accuracy and AUC values for
all methods

Method Acc (%) AUC # fea-
tures

Proposed 76.3 ± 7.08 0.85± 0.06 50
l2-SVM 79± 1.45 0.87± 0.01 34716
l1-SVM 74± 2.25 0.81± 0.01 139
PCA+SVM 65.2 ± 2.30 0.67± 0.01 180
ICA+SVM 64.8 ± 1.42 0.71± 0.03 210

Fig. 4. SVM weight vector for l2-SVM
(left) and l1-SVM (right)

linear SVM (3) Principal Component Analysis (PCA), followed by classification
(4) Independent Component Analysis (ICA), followed by classification. The first
and second methods are purely discriminative, as they do not perform network
identification. The third and fourth methods use unsupervised network identifi-
cation methods, followed by classification using the total absolute connectivity
values as features. The number of components K (in PCA and ICA) and the
cost parameter for the SVM was chosen using cross-validation.

The classification performance for all the methods is reported in Table 1. The
un-supervised PCA and ICA methods perform poorly. Of the three methods, l2-
SVM provides a slightly better performance compared to the proposed method,
although the difference in accuracies between the two methods is insignificant
(p = 0.0625). The marginally higher accuracy provided by the SVM is due to
the 1000-fold increase in the number of features used, leading to a complete loss
of interpretability. This is illustrated in Figure 4, which displays the l2-SVM
weight vector. The weight vector for l1-SVM is also shown in the same figure.
While the l1 penalty does dramatically reduce the number of features used,
it does not necessarily alleviate the issue of non-interpretability. As explained
earlier, strongly correlated features (connections) that are redundant to the clas-
sification are dropped. In contrast, the generative term G within the proposed
method tends to retain these features by allocating them to the same SCP. Thus,
a whole-brain discriminative pattern is split into multiple SCPs based on the de-
pendencies between the connection strengths, allowing results to be interpreted
within the context of known functional brain networks.

4 Conclusion

In this paper we presented a framework that performs supervised dimensionality
reduction for functional connectivity data such that the discriminative pattern
between two groups is preserved. Results demonstrate improved neurobiological
interpretablity compared to purely discriminative approaches without a signif-
icant loss of accuracy. SCPs that discriminate children from young adults are
consistent with previously-described reports of increased temporal lateralization
and functional network segregation. Future work will extend this method to
continuous labels within a regression framework.
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Abstract. One overarching challenge of clinical magnetic resonance
imaging (MRI) is to quantify tissue structure at the cellular scale of
micrometers, based on an MRI acquisition with a millimeter resolution.
Diffusion MRI (dMRI) provides the strongest sensitivity to the cellu-
lar structure. However, interpreting dMRI measurements has remained
a highly ill-posed inverse problem. Here we propose a framework that
resolves the above challenge for human white matter fibers, by unifying
intra-voxel mesoscopic modeling with global fiber tractography. Our algo-
rithm is based on a Simulated Annealing approach which simultaneously
optimizes diffusion parameters and fiber locations. Each fiber carries its
individual set of diffusion parameters which allows to link them by their
structural relationships.

1 Introduction

Diffusion MRI (dMRI) has become an essential tool for noninvasive mapping
of brain tissue [5]. A unique advantage of dMRI originates from the diffusion
length, a typical displacement of water molecules, being of a few μm in a clin-
ical scan, which is commensurate with cell dimensions. Hence, in addition to
the millimeter-level anatomical MRI resolution, dMRI is sensitive to the tissue
structure on the mesoscopic scale — an intermediate length scale between the
molecular level where the NMR signal originates, and the macroscopic imaging
voxel size. Mesoscopic brain tissue modeling attempts to quantify cellular-level
tissue organization [2,1,4,8] in each voxel. However, determining the μm-scale pa-
rameters, such as axonal dimensions, water fraction and myelin thickness from a
dMRI signal acquired at a 100–1000 times lower resolution, is a difficult problem
riddled by unstable model fitting and sensitivity to noise. Fiber tractography,
on the other hand, focuses on characterizing the structural connectome and in-
ferring the interregional relationships of the human brain. It delineates white
matter tracts based on the empirical anisotropy of the dMRI signal, and does
not attempt to quantify the mesoscopic structure. Tractography algorithms come
in many varieties, divided into deterministic streamline-based, probabilistic and
global [7,9] approaches. Recently, the concept of tractometry [3] was developed,
which projects mesostructural properties on top of already tracked fiber bundles.
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This idea combines both fields above, however it is just a rather a retrospective
’combination’ of outcomes of conceptually different approaches.

In contrast, this work tries to merge both fields into one framework such
that both problems can benefit from each other. There are a few attempts that
try similar approaches [6,10], but from an different perspective. The proposed
algorithm performs a global tracking and local modeling simultanously. Instead
of fitting the parameters independently in a voxel-by-voxel manner we treat the
problem as one global optimization problem. On the one hand, we are able to link
voxels by their structural relationships. On the other hand, the presence of fibers
is purely driven by the fact that they correctly explain the observed signal and no
further assumptions about topology are made. To make the optimization of this
difficult, non-convex problem tractable we propose an efficient approximation of
the data likelihood. A full brain reconstruction of the human brain takes about
12 hours on a standard Desktop PC.

2 The Fiber Model

The fiber model is built of small segments X ∈ X . Each segment contributes
to the predicted MR-signal M(X ) with a small signal contribution. Each seg-
ment carries its individual diffusion parameters that define this contribution.
The segments can connect and polymerize to form long chains, called fibers.
The set of edges connecting the segments is denoted by E . The complete model
F = (X , E , v) consists of the set of segments, their edges between them and
the volume fractions v. Our mesoscopic model M(r,q) is composed of axially-
symmetric Gaussian diffusion signals of the form

m
D‖,D⊥
n (q) = e−D‖t(q·n)2−D⊥t(|q|2−(q·n)2)

from different white matter compartments (here t is a fixed diffusion time and
the b-value [5] b = |q|2t). The parameter n denotes the bundle direction, D‖ and
D⊥ denote axial and radial diffusivities. The signal model is composed of the
sum of two such tensor models, where for one of those the perpendicular diffusion
is zero, and an additional constant reflecting non-diffusing water molecules. So,
the signal from the ith segment is:

Mi(r,q) = vr(r) +m
Di

‖,0
ni (q)va(r) +m

Di
‖,D

i
⊥

ni (q)(1 − va(r) − vr(r)). (1)

where vr is the volume fraction of completely restricted water, va the intra-axonal
fraction and ve = (1− va − vr) the extra-axonal fraction. While empirically this
model captures the signal from a straight fiber bundle quite well, it currently has
a limitation of setting the intra- and extra-axonal diffusivities to be the same.
In general, these parameters seem not to be equal. The total expected signal is
composed of a sum over all segments: M(r,q) =

∑
Xi∈X wi I(r, ri)Mi(q), where

I is an indicator function giving contributions if r and ri is in same voxel. Each
segment carries 5 variables Xi = (ri,ni, D

i
‖, D

i
⊥, wi), the position, direction,

the axial diffusivity along the fiber, the perpendicular diffusivity and its overall
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weight. Note that the volume fractions vr(r), va(r) and ve(r) = 1− va(r)− vr(r)
are not properties of the segment but of the position. This is, on the one hand,
conceptually quite natural and, on the other hand, a way to avoid the ambiguities
of the model. To increase the number of segments (to get a higher number of
fibers) the voxels may be divided into subvoxels which all share the same signal.

The cost functional, or energies as called in the following, consist of two
parts: the data-likelihood and the prior that regularize the problem and con-
trol the connections between the segments. For optimization we use, like in [9],
a simulated annealing approach. The idea is to simulate the Gibbs distribution
P (F) = 1

Z exp(−(Edata(M(X , v)) + Eprior(F))/T ) while lowering the tempera-
ture T . For lower temperature it gets more and more likely that we sample from
minimum of the energy. The simulation principle is based on a Reversible Jump
Monte Carlo Markov Chain (RJMCMC).

2.1 The Energy: Data Likelihood and Priors

The data term consists of a simple quadratic difference between signal and model,
that is, we falsely assume a Gaussian data likelihood, which might cause a sub-
stantial bias on the parameters. However, we found in the numerical experiments
that the Rician noise floor is mostly disrupting the vr-fraction leaving the rest
of the parameters nearly unbiased.

The priors control the number of segments, their connections, foster smooth-
ness of the variables along fibers. Due to the freedom of the diffusion parameters
we need a prior to prevent the fiber model to build unreasonable, non fiber like
configurations, therefore we introduced an additional term Eguide similar to orig-
inal data-likelihood, but each segment has a fixed diffusion model. We found that
very sharp diffusion models, i.e. no extra-axonal compartment and high parallel
diffusion, help to resolve sharp crossings. The second prior controls the number
of particles and the third the number of connections. To each particle a cost is
assigned, called chemical potential Echem(X ) = μ|X | where μ is strength of the
prior, or equivalently the cost of one particle. The prior controlling the connec-
tion is similar to [9], but with one important extension. Each segment X has to
two ports that can make connections with other segments. The location of the
port is r ± �n. If two segments are connected an additional potential is turned
on which controls, the curvature and the similarity of the diffusion parameters.
Let the segments X1 and X2 be connected, then we have the additional energy

Ucon(X
α1
1 , Xα2

2 ) = λd

∑
P∈{D‖,D⊥,v}

(P 1 − P 2)2 + Ubend(X
α1
1 , Xα2

2 ),

where α1, α2 specify the ports. For a detailed description of the second termUbend

consult [9]. The first term gives an additional penalty on differences between the
diffusion parameters, i.e. it drives the diffusion parameters to be similar along
connected segments.
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2.2 Approximation of Q-Space Correlations

The RJMCMC algorithm needs to compute energy differences like Edata(M +
Mmod)−Edata(M). The computation is dominated by correlations of the current
model M with the newly added or modified segment Mmod, and the correlation
of segment Mmod with the signal. The spatial part of these correlations is trivial,
however the q-space part is quite costly as it involves the evaluation of the expo-
nential model. To compute these correlations efficiently we found a power series
approximations that can speed up the computation by an order of magnitude.
The approximations are of type

〈mD‖,D⊥
n , S〉Q =

1

Q

Q∑
k=1

m
D‖,D⊥
n (qk) S(qk) ≈

M∑
l,m=1

blm(n)

(κ+D‖)l(κ+D⊥)m
(2)

where the blm(n) can be found by a least squares minimization and the parameter
κ is fixed and has to be found empirically to obtain good fits. The form is
reminiscent of the Laplace transformation of exponential-type functions. For the
two-shell scheme (a b=1000 and b=2000 shell) considered in the experiments
we found κ = 4 to work well. We found values M > 6 do not improve fitting
accuracy.

3 The Algorithm

As already stated the optimization of the proposed energies is accomplished by
an RJMCMC-type algorithm together with a cooling process. The idea behind
the RJMCMC-algorithm is to repeatedly make random distortions to the current
state F . The distortion, called F ′, usually depends on the previous state and
follows some distribution Pprop(F �→ F ′), which can be arbitrarily chosen by the
algorithm designer. The only condition is that the reverse transition has to be
possible, i.e. Pprop(F ′ �→ F) > 0. The algorithm needs usually a certain number
of initial iterations such that the sequence of generated states follows the desired
distribution and is in equilibrium. Once equilibrium is reached (which can be
checked by statistics of the energy differences), the system is slowly cooled down.
In the following we present the different proposals used in our implementation.

Segment Birth:A segmentX = (r,n, D‖, D⊥, w) is proposed by choosing all
parameters uniformly. Then, the energy difference regarding the data-likelihood
is computed according to ΔEdata = −2〈MX , S(r)〉Q + 2

∑
k〈MX ,Mk〉Q +

〈MX ,MX〉Q, where the sum over k ranges over all segments that lie within
the voxel containing the new segment. For the efficient computation of such
correlation the approximation (2) is used. The computation ΔEguide is simi-
lar. Finally, the Gibbs ratio is R = N0 exp(−(ΔEdata + ΔEguide)/T )/(N + 1),
where N is the number of segments currently present and N0 the expected
number of segments of the underlying Poisson process. Segment death: A
segment X is randomly chosen. The energy differences that have to be com-
puted are just the negated differences from the birth proposal. The Gibbs ratio
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is R = N exp(−(ΔEdata + ΔEguide)/T )/(N0). Segment move A segment X
is randomly chosen. The position and orientation is distorted by normally dis-
tributed random numbers, r′ := r+σsη and n′ := n+σnη. The Gibbs ratio is just
R = exp(−(ΔEdata +ΔEguide +ΔEcon)/T ). Change of segment’s diffusion
parameter A segment X is randomly chosen. The current diffusion parame-
ters are distorted by normally distributed random numbers, where the variance
is proportional to the current temperature. The energy difference is computed
in the same way like for the move proposal. Change of volume fraction A
random voxel is chosen. Let us call EM the data energy before the parameter
change, then: EM =

∑
k,j〈Mk,Mj〉Q − 2

∑
k〈Mk, S(r)〉Q, where the sum runs

over all segments within the voxel. And correspondingly EM ′ after the change,
then ΔEdata = EM ′ −EM . In the same way like for the diffusion parameters the
new volume fraction is proposed by distorting the old one by a normal distribu-
tion with a variance proportional to the current temperature. Dis/Connecting
segments For the connection of segments follows the same principle as proposed
in [9].

Parameters: The segment parameters are chosen similar to [9]. The length
� is chosen to be 2mm and the potential of connection is L = 0.5 (see [9] for
notations). The chemical potential of a segment is chosen proportional to the
number of measurement in q-space. We found μ = 0.005 Q to be a good choice.
That is, if a segment explains on average more than 0.005 of the variance of the
signal, the segment is probably kept. For the strength of Eguide we found λguide =
15T/Tstart to work well. For the strength of the connection priors we found that
values of λc = 1 and λd = 1 work already quite well. The temperature schedule
starts at Tstart = 0.3 and cools down to Tend = 0.0025, which corresponds to a
SNR level of 1/

√
Tend = 20.

4 Experiments

We consider a 2-shell scheme at b-values of 1000 and 2000 acquired with 60 di-
rections per shell. The in vivo diffusion measurement was acquired on a Siemens
3T TIM Trio using an SE EPI sequence, with a TE of 107 ms. A healthy male
volunteer (aged 36) was scanned at an isotropic resolution of 2.5mm. Addition-
ally, a T1 data set was acquired which was segmented into white matter (WM),
gray matter (GM), and CSF using SPM. White matter was thresholded at a
probability of 0.5 to determine the area of reconstruction.

First, to understand the importance of our approximation we did a brute
force search on a synthetic data. By sweeping through the 3-parameter space of
D‖, D⊥ and vi we found that our approximation speeds up the likelihood com-
putation by a factor of 20 compared to an ordinary implementation. To validate
the accuracy of the approximation we simulated a simple crossing/bending con-
figuration (see Figure 1) consisting of three bundles. The central crossing has
a crossing angle of 50◦. The phantom is simulated on 24 × 24 × 9 grid with
a isotropic voxel size of 2mm. Each of the three bundles has the same axonal
volume fraction of 0.4, extra-axonal fraction of 0.6 and different diffusion param-
eters (D‖, D⊥). Bundle a) has (1, 0.5), bundle b) (1.5, 0.5) and bundle c) (2, 1).
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Fig. 1. Results for the phantom. Top: histograms of the diffusion parameters, volume
fractions and signal weights/magnitudes. Bottom: Tracking result in direction coloring
and coloring by their diffusion coefficients.

Rician noise was added with σ = 0.05 corresponding to a SNR of 20. Figure
1 shows histograms of our tracking results: fitted diffusion parameters, volume
fractions, weight parameters and the tractogram. The reconstructed tracts are
shown in three different coloring, one by directions, one by parallel diffusion D‖
and one by perpendicular diffusion D⊥. One can observe that all parameters
are nearly unbiased. While the intra axonal volume fraction va shows a small
underestimation, the vr fractions and the diffusion coefficients show a small over-
estimation. For the in vivo dataset a voxel was subdivided into 33 = 27 subvoxels
to get a sufficient number of segments/fibers. For this setting the running time
of the complete tracking procedure took about 10 hours on a Intel I7 (16GB)
with four threads in parallel. The reconstruction contains 1.5 million particles
forming about 50000 fibers longer than 10 segments.

In Figure 2 we show the results: Parametric brain maps of the diffusion pa-
rameters (Fig.2a), first and second order statistics (Fig.2b) of all parameters
including tortuosity t = D‖/D⊥. The diagonal of the plot matrix shows ordi-
nary histograms, the off-diagonal plots joint histograms of all parameter pairs.
We also show histograms of the w parameter, the predicted signal at b = 0
and number of segments per voxels. Further, we selected several tracts (Fig. 2c)
and d)) by two ROIs, namely, Cingulum (CG), Arcquate Fascicle (AF), Cortical
Spinal Tract (CST), left Optic Radiation (OR), Fronto Occipital Fascicle (IFO)
and callosal fibers to the precentral gyrus (CC). Finally, Figure 2e) shows fibers
sliced coronally and colored by D‖.
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Fig. 2. In vivo-results for a 2-shell scheme (at b=1000,2000) at resolution of 2.5mm3
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5 Discussion and Conclusion

We proposed a novel algorithm that unifies tractography and mesoscopic mod-
eling to simultaneously reconstruct the human brain fiber bundle network and
derives fiber specific diffusion parameters. The in vivo experiments show that the
derived parameters go in-line with the current literature [4]. However, for the
first time, we provide whole brain maps of the parameters including crossing re-
gions. For single fiber voxel populations (like the Corpus Callosum) the putative
axonal volume fraction (va) is in a range of about 40 to 50 percent, while D‖ ≈ 2
and D⊥ ≈ 1 which is similar to [4], where these parameters where derived via
kurtosis imaging. The inferred parameters from multi fiber voxels differ, one can
observe reduced va and D‖ while an increase in D⊥. The source of the restricted
fraction vr is not yet clear. There is definitely a certain amount caused by the
Rician noise. The generated tract bundles show similar appearance like [9], but
they additionally carry individual diffusion parameters.
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Forschungsgemeinschaft (DFG), grant RE 3286/2-1.
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Abstract. In traditional diffusion MRI, short pulsed field gradients
(PFG) are used for the diffusion encoding. The standard Stejskal-Tanner
sequence uses one single pair of such gradients, known as single-PFG
(sPFG). In this work we describe how trajectories in q-space can be used
for diffusion encoding. We discuss how such encoding enables the exten-
sion of the well-known scalar b-value to a tensor-valued entity we call the
diffusion measurement tensor. The new measurements contain informa-
tion about higher order diffusion propagator covariances not present in
sPFG. As an example analysis, we use this new information to estimate
a Gaussian distribution over diffusion tensors in each voxel, described by
its mean (a diffusion tensor) and its covariance (a 4th order tensor).

1 Introduction

In diffusion MRI (dMRI), each millimeter-size voxel of the image contains en-
coded information on the micrometer-scale translational displacements of the
water [1]. The vast majority of applications today focus on the simplest form
of the original MRI diffusion experiment, implemented by the Stejskal-Tanner
pulse sequence [2]. This sequence is based on a pair of short pulsed diffusion
encoding gradients, which we will refer to as the single pulsed field gradient
(sPFG) experiment. sPFG typically is used in diffusion tensor imaging (DTI),
enabling popular measures such as the mean diffusion (apparent diffusion co-
efficient, ADC) and diffusion anisotropy (Fractional Anisotropy, FA). Although
current popular diffusion measures are very sensitive to changes in the cellular
architecture, they are not very specific regarding the type of change.

We are at the cusp of a completely new generation of diffusion MRI tech-
nologies, such as oscillating gradients [3], double pulsed-field gradient (dPFG)
sequences [4–6], and more general waveform sequences [7]. These methods are
transforming what is possible to measure, and have the potential to vastly im-
prove tissue characterization using diffusion MRI. Our work adds to this new
generation of non-conventional pulse sequences. Our method can probe features
of micron-scale transport processes (and thus microstructure) that are invisi-
ble with sPFG. Fig. 1 shows three example structures (voxel distributions) that

P. Golland et al. (Eds.): MICCAI 2014, Part III, LNCS 8675, pp. 209–216, 2014.
c© Springer International Publishing Switzerland 2014
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sticks spheres ellipsoids

Fig. 1. Examples of globally isotropic distributions of structures within a voxel. These
different structures are indistinguishable with traditional sPFG diffusion MRI.

would be indistinguishable using DTI. The aim of our work is the development
of methods that can clearly distinguish these types of very different tissue archi-
tectures in clinical dMRI. In this paper, we present a new diffusion measurement
framework and an example framework for analysis of the data we acquire. To-
gether, these contributions enable us to quantify and distinguish distributions
such as those in Fig. 1.

2 Theory

In conventional pulsed field gradient diffusion MRI, the diffusion encoding is
achieved by applying a pair of short gradient pulses separated by a diffusion time.
Such a measurement probes along a single axis in q-space. Here we will explore
more general scenarios with time-varying gradients that probe trajectories in q-
space. The geometry of the diffusion encoding can in the Gaussian approximation
regime be described by a diffusion “measurement tensor,” or “encoding tensor,”
which extends the traditional b-value to a tensor-valued entity. Here we define
this measurement tensor by

B =

∫ τ

0

q(t)qT(t) dt , where q(t) = γ

∫ t

0

g(t′)dt′ (1)

where g(t) is the time-dependent gradient, τ is the echo time, and γ is the
gyromagnetic ratio. In this general case when the q-vector is built up by a time-
dependent gradient to traverse an arbitrary path in q-space, the rank of the
diffusion encoding tensor depends on the path, and is 1 in the case of sPFG, 2
for double-PFG, and 3 in the isotropic encoding case such as the triple-PFG [8]
or q-MAS [9]. The conventional b-value is given by b = Tr(B), the trace of B.

For example, a planar diffusion encoding tensor, i.e. an encoding that is rota-
tionally symmetric in the plane (Fig. 2, left), can be achieved by a set of time
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varying gradients (middle) that produce a planar q-space trajectory (right). Ideal
planar encoding could be produced by a circular path in q-space. However, q-
space encoding inevitably starts at the origin of q-space, so the path in Fig. 2
(right) is one way to obtain the planar encoding in practice. Constant angular
b-value encoding can be ensured by varying the speed of the traversal in q-space,
by using slower speed at low q-values, since the b-value is a function of both time
and q-value. At a low q, a long diffusion time can build up the same encoding
power (b-value), as a higher q-value with a shorter diffusion time.

g

gy(t)

gz(t)
gx(t)

t

a) measurement tensor b) x-,y-,z- gradients c) q-space trajectory

Fig. 2. An example of time varying gradients (a) that produce a q-space trajectory (b)
and a planar measurement tensor in b-value encoding space (c)

To generate measurement tensors B with general shapes one can start with
q-space trajectory q0(t) that produces a diffusion measurement tensor B0 =∫ τ

0 q0(t)q0(t)
T dt and scale the trajectory with an affine transform M yielding

the new curve q(t) = Mq0(t). This results in a new diffusion measurement tensor
B,

B =

∫ τ

0

Mq0(t) (Mq0(t))
T

dt (2)

= M

(∫ τ

0

q0(t)q0(t)
T dt

)
MT = M B0 MT (3)

The special case of transforming a normalized isotropic curve, B0 = I, produces
the simple relation B = MMT between the affine transform and the resulting
measurement tensor.

We denote dMRI with encoding performed using arbitrary trajectories of q(t)
as q-space trajectory imaging (QTI). The measurement tensors allowed by QTI
enable the separation of orientation dispersion and underlying macroscopical
dispersion [10–12]. Below we propose an example analysis of QTI data where we
estimate a distribution over diffusion tensors at each voxel.

3 Methods

We implemented q-space trajectory imaging (QTI) on a clinical MRI scanner
(Philips Achieva 3T). Imaging parameters were: TE = 160 ms, Tr(B) = b = 0,
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linear

prolate

isotropic

oblate

planar

q(t)iso Biso

Fig. 3. Plot of five different q-space trajectories, with x-y-z axes (left). By varying
the trajectory of q, diffusion encoding tensors of varying shapes can be produced. The
color coding links the q-space trajectories (left) with the corresponding measurement
tensors (right). The curve q(t)iso produces a spherical b-value encoding.
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Fig. 4. MR signal from the five different types of trajectories in Fig 3, applied in two
different directions in q-space. The five types of trajectories produce measurement B-
tensors with (from left to right) linear, prolate, isotropic, oblate, and planar shapes.
Note that the linear and the planar measurement are orthogonal/dual, and thus, where
the linear measurement is bright the planar is dark; see blue and green arrows.

250, 500, 1000 and 2000 s/mm2, voxel size = 3× 3× 3 mm3. The time varying
gradients were designed to produce q-space trajectories generating linear, pro-
late, isotropic, oblate, and planar diffusion measurement tensors, which all were
cylindrically symmetric, with the symmetry axis rotated into directions speci-
fied by the icosahedron, dodecahedron, and the truncated icosahedron. Despite
the rather long TE due to our prototype implementation, the resulting diffusion
encoded images were of a high image quality (Fig. 4).
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3.1 Example Analysis: Estimating a Distribution over Diffusion
Tensors

We propose an example analysis to demonstrate that we can measure additional
microstructure information using QTI. Consider a system composed by a col-
lection of environments, where in each environment the diffusion is Gaussian
and described by the diffusion tensor D (as in Fig. 1). We propose to compactly
model these microenvironments within a voxel with a Gaussian distribution over
tensors. The tensor D is then a stochastic variable with expectation D = 〈D〉.
The covariance of D is given by a 4th-order tensor Σ of size 3 × 3 × 3 × 3 [13].
The description is simplified by using Voigt notation, which allows the diffusion
tensor, which is normally expressed as a 3× 3 matrix,

D =

⎛⎝ Dxx Dxy Dxz

Dyx Dyy Dyz

Dzx Dzy Dzz

⎞⎠ (4)

to be represented as a 1× 6 vector

d =
(
Dxx Dyy Dzz

√
2Dxy

√
2Dxz

√
2Dyz

)T
(5)

allowing the fourth order 4th-order tensor Σ to be represented by a 6×6 variance-
covariance matrix (S), defined using the ordinary definition of the covariance
matrix S = 〈ddT〉 − 〈d〉〈d〉T, and in full given by

S =

⎛⎜⎜⎜⎜⎜⎜⎝

Σxxxx Σxxyy Σxxzz

√
2Σxxxy

√
2Σxxxz

√
2Σxxyz

Σyyxx Σyyyy Σyyzz

√
2Σyyxy

√
2Σyyxz

√
2Σyyyz

Σzzxx Σzzyy Σzzzz

√
2Σzzxy

√
2Σzzxz

√
2Σzzyz√

2Σxyxx

√
2Σxyyy

√
2Σxyzz 2Σxyxy 2Σxyxz 2Σxyyz√

2Σxzxx

√
2Σxzyy

√
2Σxzzz 2Σxzxy 2Σxzxz 2Σxzyz√

2Σyzxx

√
2Σyzyy

√
2Σyzzz 2Σyzxy 2Σyzxz 2Σyzyz

⎞⎟⎟⎟⎟⎟⎟⎠ (6)

To estimate S, consider the diffusion encoded MR-signal E from a system
composed of multiple environments, each having Gaussian diffusion,

E(B) =
〈
exp (− < B,D >)

〉
=
〈
exp

(
−bTd

) 〉
(7)

where < · , · > is the inner product, which with Voigt notation is simplified

to a vector inner product < B,D >= bTd and
〈〉

represent integration over

the distribution in the voxel. Expanding the logarithm of E around B = 0
(derivation omitted), reveals a key relationship

logE(b) ≈ −bTd+
1

2
bT

Sb (8)

where d is the mean value of d. The equation is superficially similar to the model
used in Diffusional Kurtosis Imaging (DKI), however, the fourth order kurtosis
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tensor employed in sPFG DKI only has 15 unique elements in contrast to the
21 elements required to fully specify S. QTI enables the probing of these 6 extra
dimensions (21-15), not visible with sPFG. To estimate the covariance S (6x6
representation of the 4th-order tensor Σ) from a set of dMRI measurements, first
note that

bT
Sb =< bbT, S >=< B, S >= �

T
� (9)

where � and � are the Voigt representation of � = bbT and S, as 21×1 vectors.
Since Eq. 8 is a linear model, we may estimate d and � using pseudoinversion to
solve the following equation system⎛⎜⎝ logE1

...
logEm

⎞⎟⎠ =

⎛⎜⎝1 − bT
1

1
2�

T
1

...
...

...
1 − bT

m
1
2�

T
m

⎞⎟⎠(E0 d �
)T

(10)

In total, the model has 1+6+21 free parameters. (E0,d, �), The 21 parameters
of the 4th-order tensor are difficult to interpret individually. The isotropic 4th-
order tensor has, however, two components [14]

Siso = s1 E1 + s2 E2 (11)

which in the field of mechanics are interpreted as bulk and shear modulus of the
4th-order stress tensor. The bases are given by

E1 =
1

3
eeT and E2 =

3√
45

(I− E1) (12)

where I is the 6 × 6 identity matrix. Note that E1 and E2 are orthogonal and
normalized, i.e. < Ei,Ej >= δij . Expressed in full, these matrices assume simple
structures according to

E1 =
1

3

⎛⎜⎜⎜⎜⎜⎜⎝
1 1 1 0 0 0
1 1 1 0 0 0
1 1 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎠ E2 =
1√
45

⎛⎜⎜⎜⎜⎜⎜⎝
2 −1 −1 0 0 0

−1 2 −1 0 0 0
−1 −1 2 0 0 0
0 0 0 3 0 0
0 0 0 0 3 0
0 0 0 0 0 3

⎞⎟⎟⎟⎟⎟⎟⎠ (13)

Similarly to estimating the mean diffusivity MD by projecting the diffusion ten-
sor on its isotropic basis element, E = I/3 (with I being the identity matrix),
MD =< D,E >, we can project the estimated 4th-order covariance matrix onto
its two isotropic basis elements E1 and E2 and obtain the parameters s1 and s2.
These parameters can be interpreted as the bulk variation of diffusion tensors
(i.e. variation in size) and the shear of them (i.e. variation between directions).
Hence, s2 contains information about microscopic anisotropy, and would give a
high value for a system containing anisotropic microscopic compartments (Fig. 1,
left), and a low value for isotropic compartments (Fig. 1, middle). On the other
hand, s1 reflects variation of mean diffusivities and would yield a low value if all
microscopic compartments are similar in this respect (Fig. 1, left), but a high
value if they are not (Fig. 1, middle).
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s1 (QTI) s2 (QTI) FA (DTI)

Fig. 5. Bulk and shear modulus, s1, s2 estimated from fourth order QTI model, and
FA from the DTI model

4 Results

Figure 5 shows the result of estimating the bulk and shear variation (s1 and s2)
from QTI. The map of s1 shows high values in regions where we expect both
tissue and cerebrospinal fluid in the voxels, which leads to a high variability in
mean diffusivities. By contrast, the map of s2 is high and uniform in the white
matter where variability in diffusivities is driven by the combination of high
anisotropy and random orientations of the underlying microscopic environments.
Since the analysis was performed on the isotropic components of the 4th order
tensor, we know that all voxels have high orientation dispersion and thus s1
reflects only underlying anisotropy. In contrast to FA from DTI, s1 is high in
regions of crossing fibers with a high orientation dispersion.

5 Discussion and Conclusions

QTI enables diffusion encoding with a general measurement tensor B. Although
the “b-matrix” concept is well established, and can be found in standard text
books on diffusion NMR and MRI, the characterization of the b-matrix us-
ing double-PFG, and more general gradient wave form diffusion MRI is novel
and different. In current literature, the concept of b-matrix normally refers to
the standard rank-one measurement (in our terminology) with added imaging
gradient and other correction terms. Extending the traditional rank-1 diffusion
measurement, to rank-2 and full rank-3 measurements, allows for measuring in-
formation that was previously not attainable.

Our work shows that it is possible to perform diffusion encoding imaging of the
human brain with arbitrary q-space trajectories while maintaining good SNR,
and generalizes the concept of b-values enabling new types of measurements not
available with sPFG.
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Abstract. We present a novel approach to determine a local q-space
metric that is optimal from an information theoretic perspective with
respect to the expected signal statistics. It should be noted that the ap-
proach does not attempt to optimize the quality of a pre-defined math-
ematical representation, the estimator. In contrast, our suggestion aims
at obtaining the maximum amount of information without enforcing a
particular feature representation.

Results for three significantly different average propagator distribu-
tions are presented. The results show that the optimal q-space metric
has a strong dependence on the assumed distribution in the targeted
tissue. In many practical cases educated guesses can be made regarding
the average propagator distribution present. In such cases the presented
analysis can produce a metric that is optimal with respect to this distri-
bution. The metric will be different at different q-space locations and is
defined by the amount of additional information that is obtained when
adding a second sample at a given offset from a first sample. The inten-
tion is to use the obtained metric as a guide for the generation of specific
efficient q-space sample distributions for the targeted tissue.

1 Introduction

The discussion concerning optimal q-space sampling strategies has been lively
from the very start of diffusion imaging and is continuing to be a major topic of
research [1] - [10]. Existing sampling schemes are based on experience combined
with more or less ad hoc approaches of which many display interesting features.
There is, however, no consensus regarding the choice of q-sample distribution in
any given situation. Here we try to improve this situation by introducing a novel
approach to determine a local q-space metric that is optimal from an information
theoretic perspective with respect to the expected signal statistics.

The metric will be dependent on the q-space location an indicates the infor-
mation gain, as a function of distance and direction, when adding a sample in
a second q-space location. The obtained metric can then serve as a guide for
the generation of specific q-space sample distributions e.q. sample distributions
obtained in the manner described in [10]. It should be noted that the approach
differs significantly from the classical estimation theory approach, e.g. one based
on Cramer-Rao bounds [12]. The latter requires a pre defined mathematical
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representation, the estimator. Our suggestion aims at obtaining the maximum
amount of information without enforcing a particular feature representation.

2 Theory

The mutual information (originally termed rate of transmission) between to
signals relates directly to the entropies involved and can be estimated from the
joint signal statistics [11]. Using a Gaussian signal+noise source model, which is
a quite reasonable starting point in the present context, the estimate is directly
related to the canonical correlation between two signals, a and b, and is given
in bits by:

Iab = −
1

2
log2

(
[Caa||Cbb|
|C|

)
where C =

(
Caa Cab

Cab Cbb

)
(1)

and C.. are covariance matrices. For the one-dimensional case this reduces to:
Iab = − 1

2 log2(1 − ρ2ab), where ρab is the correlation between the two variables.
This expression can also be used to estimate the information from a single signal
by measuring the correlation between the signal with and added noise realization
and the same signal without noise. In order to obtain an estimate of a local
information based q-space metric we can compute the information gain, IΔ,
from measuring in a second q-space location, qb, given that we already have a
measure at a first location, qa. IΔ is obtained as the information due to the second
measurement alone minus the mutual information between the two measured
signals, i.e. the information that is already present due to the first measurement:

IΔ = Ib0b − Iab =
1

2
log2

(
1− ρ2ab
1− ρ2b0b

)
(2)

In this expression b0 is the true, noise free, source signal at the second location.

It can be noted that equation (2) will give IΔ = 1
2 log2

(
2 SNR+1
SNR+1

)
if the second

measurement is taken at the same location as the first. For reasonably high
SNR (signal to noise ratio) this corresponds 0.5 bits or, equivalently, improving
measurement SNR by

√
2 (3 dB).

It should also be noted that the Gaussian and additive assumptions are not
crucial since mutual information between two variables is a monotonically in-
creasing function of the correlation even in highly non-Gaussian and non-additive
cases [13].

3 Method

To obtain the statistics of the q-space signals we generate a large number of
q-space response examples. Using these examples correlation estimates between
any two q-space locations, as well as correlations between different instances of
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the same location, can be estimated. From these correlations the added infor-
mation from measuring in a second q-space location, given a first measurement
in any other location, can be found. The fact that each voxel in will contain a
huge number of different propagators determining the q-space signals, and that
a substantial intra voxel variation in propagator size and shape can be expected,
makes it natural to use a Gaussian as a first approximation of the q-space re-
sponse magnitude.

Fig. 1. The upper row illustrates three archetypal average propagator distributions.
The plots show iso-surfaces of the Gaussian examples with centers distributed evenly
in a volume of tissue. From left to right is shown: Allsorts - Varying in orientation,
shape and size (Left). Round - Almost spherical propagators of varying in size (Center).
Stick - Highly anisotropic only varying in orientation (Right). For each distribution the
bottom row shows Ia0a(‖q‖), the amount of information that is given by the first
sample at a given radius in q-space.

The example generator was set to produce 3D Gaussian q-space responses
having one long axis and two equal short axes. All generated distributions had
300 different long axes orientations evenly distributed to cover all 3D orienta-
tions. The size of the average propagators was also varied. The total number of
the propagator examples of a given ’tissue volume’ was set to vary as the in-
verse of the volume, i.e. the total volume of the smaller propagators was equal to
the total volume of the larger propagators. The average size of the propagators
was set to vary logarithmically in the specified range. The ratio between the
long and short axes was also set to vary logarithmically in the specified range
while keeping the propagator volume constant. The intention is to study a few
archetypal situations that can be easily understood, not to mimic real tissue. A
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multitude of approaches for modelling biological tissue have been put forward
and such models can readily be incorporated in the present framework. Doing
so is, however, beyond the scope of this paper.

Listed below and shown in figure 1 are the three different distributions gen-
erated to study the effects different average diffusion propagator distributions
will have on the q-space sampling metric. All three generated distributions are
rotation invariant. Also note that the individual spatial propagator positions are
not important for our analysis.

Allsorts - Long/short axis ratios from 1 to 10 and volumes from 0.5 to 2.

Round - A long/short axis ratio of 1.15 and volumes from 0.22 to 4.5.

Stick - A long/short axis ratio of 10 and volumes from 0.5 to 2.

The lower part of figure 1 shows the information given by the first sample as
a function of q-space radius. The q-space radius refered to in the present work
is a relative entity, the relation to physical q-space depends on scanner setup
and actual noise levels. That the information decreases with q-space radius is a
consequence of the diminishing average signal energy present for all three distri-
butions (and for all reasonable other distributions).

4 Results

The Allsorts distribution: Figure 2 shows the result of the estimated q-space
metric for the Allsorts distribution. The lilac colored iso-surfaces show the 3D
q-space locations where the information gain from a second sample, given a first
sample in the center (yellow), reaches ΔI = 2 bits. Results for five different radii
(0, 0.25, 0.5, 0.75 and 1.0) of the first sample are shown. The radii were chosen to
highlight the typical information gain behaviors that will be present in different
parts of q-space. Since the setup is rotationally invariant the results will be the
same along any axis through the origin. The upper plot shows iso-surfaces along
four different directions in one octant of q-space and is intended to demonstrate
that the metric is rotation invariant. The lower part of figure 2 shows the five
results obtained for the initial point located at different positions on the x-axis.
A short summary of the situation at different q-space radii, r, is given below:

– At r=0: The second sample must be moved quite far from the first to gain
more information, i.e. very sparse sampling is needed, a sample at q=0 picks
up most of the information available at the center.

– At r=0.25: The information gain now quickly increases in an approximately
isotropic fashion when the second location is moved away from the first. This
indicates that a relatively dense sampling is preferable here.

– At r=0.5: The situation resembles the previous one but a slight anisotropy
of the 2-bit iso-surface can be noted. The second sample has to be moved
further in the radial direction than in an angular direction to give the same
information gain.

– At r=0.75: The anisotropy is becoming more pronounced indicating that
moving the second location in the angular direction is clearly preferable to
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Fig. 2. Figure showing the result of the estimated q-space metric for the Allsorts dis-
tribution. The lilac colored iso-surfaces show where the information gain from a second
sample, given a first sample in the center (yellow), reaches ΔI = 2 bits. The figure
shows the results for five different radii of the first sample. The upper plot shows one
octant of q-space and is intended to demonstrate that the metric is rotation invariant.
The lower plot shows only the cases where the first sample is on the x-axes. The multi
colored surfaces show the information gain when moving the second sample away from
the first, the gain in bits is indicated by the numbers 1-4 on the upper part of the
y-axis. The iso-contours on the x-y plane below are drawn for every 0.5 bits.
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Fig. 3. Figure demonstrating the estimated q-space metric dependence on the prop-
agator distribution. The upper plot shows the result for the Round distribution. The
lilac colored iso-surfaces show where the information gain from a second sample, given
a first sample in the center (yellow), reaches ΔI = 1 bit. The lower plot shows the
result for the Stick distribution. Here the iso-surfaces are drawn at ΔI = 2 bits. For
both plots the iso-contour line are drawn 0.5 bits apart.
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a change in radius. The volume enclosed by the iso-surface is also larger
indicating that a less dense sampling is needed. The sampling distance in
the radial direction should be lower than that in the angular direction.

– At r=1.0: The iso-surface now takes the shape of a cone implying that
the information gain is largest when moving simultaneously inwards and
angularly. This is due to that the SNR at this radius quickly decreases with
increasing radius due to loss of signal strength.

The Round and Stick Distributions: By studying distribution that are
individually more uniform and ’removed’ from the Allsorts distribution in two
different ways further insights can be gained. The plot at the top of figure 3
shows the results when using the Round distribution and below the results from
using the Stick distribution is plotted. Comparing the two results the following
can be noted:

– At r=0: In both cases the second sample still must be moved relatively
far from the first to gain more information. This effect is very pronounced
for the Round distribution and the plots indicate that the second sample
most be moved roughly four times as far as for the Stick distribution to gain
the same amount of information. (Note that the iso-surfaces are drawn at
different levels, ΔI = 1 bit and ΔI = 2 bits.)

– At r=0.25: Here the difference between the two distribution is even bigger.
For the Round distribution very little is gained by by displacing the second
sample angularly, the preferred displacement direction is clearly radial. In
contrast the information gain increases very quickly in an isotropic fashion
for the Stick distribution.

– At r=0.5 and r=0.75: The situation resembles the previous one but an
increasing anisotropy of the 2-bit iso-surface can be noted for the Stick dis-
tribution. The second sample has to be moved further in the radial direction
than in an angular direction to give the same information gain. A common
feature is that the information gain vs displacement distance is decreasing
for both distributions with increasing q-space radius.

– At r=1.0: The Stick distribution iso-surface now takes the shape of an
open cone implying that the information gain is largest when moving simul-
taneously inwards and angularly. For the Round distribution the iso-surface
almost becomes a plane. This indicates that we are close to a radius were
higher information gain can only be obtained by moving towards the center,
we are approaching the information ’edge’ of q-space.

A general difference that is globally present is that it that the average infor-
mation gain from a second sample is much lower for the Round distribution than
for the Stick distribution. This is, most likely, a consequence of that the former
distribution has a lower overall variability, i.e. lower entropy.

5 Discussion and Conclusion

Although the interpretation of the results may be accordance with the gut feeling
of some experienced researchers in the field we believe that our analysis provides
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a novel view allowing a quantification of said feeling. Our analysis also stresses
the fact that the actual average propagator distribution in the targeted tissue has
a major effect on what is the optimal q-space sampling strategy. In many cases
tissue models can be employed and educated guesses can be made regarding the
average propagator distribution present. In such cases the presented analysis can,
for example, be used to find parameters for the 3D q-space sample distribution
scheme described in [10]. In this way full q-space sampling, optimal with respect
to a given expected distribution of diffusion propagators can be produced. This
will also allow tuning of q-space distributions to maximize resolution for targeted
tissue features.

Acknowledgement. The authors acknowledge the Swedish Research Council
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Abstract. This paper introduces image quality transfer. The aim is to
learn the fine structural detail of medical images from high quality data
sets acquired with long acquisition times or from bespoke devices and
transfer that information to enhance lower quality data sets from stan-
dard acquisitions. We propose a framework for solving this problem using
random forest regression to relate patches in the low-quality data set to
voxel values in the high quality data set. Two examples in diffusion MRI
demonstrate the idea. In both cases, we learn from the Human Connec-
tome Project (HCP) data set, which uses an hour of acquisition time per
subject, just for diffusion imaging, using custom built scanner hardware
and rapid imaging techniques. The first example, super-resolution of dif-
fusion tensor images (DTIs), enhances spatial resolution of standard data
sets with information from the high-resolution HCP data. The second,
parameter mapping, constructs neurite orientation density and disper-
sion imaging (NODDI) parameter maps, which usually require special-
ist data sets with two b-values, from standard single-shell high angular
resolution diffusion imaging (HARDI) data sets with b = 1000 smm−2.
Experiments quantify the improvement against alternative image recon-
structions in comparison to ground truth from the HCP data set in both
examples and demonstrate efficacy on a standard data set.

1 Introduction

Bespoke MRI scanners and imaging protocols can produce very high quality
data uniquely informative about anatomy and function. However, the imaging
techniques that underpin such data sets are often impossible or impractical on
standard devices or in clinical imaging scenarios. For example, small-animal
scanners often have higher field and gradient strength and smaller bore than hu-
man scanners, enhancing signal to noise, image resolution and, in diffusion MRI,
sensitivity to small structures. Such platforms can provide exquisitely high reso-
lution images revealing fine structural detail and providing strong sensitivity to
anatomical features or pathology. Although such measurements highlight the po-
tential of future human imaging devices, they provide little direct benefit to cur-
rent clinic practice. Similarly, the HCP designed bespoke MRI scanners equipped
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with 100mTm−1 and 300mTm−1 gradient coils (several times more powerful
than standard clinical scanners) and exploit several imaging and image recon-
struction innovations to speed up acquisition and improve data quality [1]. The
bespoke imaging system combined with a lengthy acquisition protocol leads to
unique data sets with unprecedented image resolution and noise levels. However,
the techniques extend only partially to clinical imaging with modest hardware
and much more limited imaging times.

In this paper, we propose to exploit the information in expensive high quality
data sets to improve images reconstructed from more modest data acquisitions.
We call this process image quality transfer. We learn fine image structure from
high quality data sets and use it to enhance lower quality data. We present a
framework for solving this general problem using a patch-based image represen-
tation and random forest regression.

Two distinct applications demonstrate the framework by exploiting the HCP
in-vivo human diffusion MRI data, which has uniquely high quality. The first
application is super-resolution of DTIs. The HCP diffusion data have voxel sizes
of 1.253mm3 rather than typical sizes around 23mm3 in standard data sets. Im-
age quality transfer provides a mechanism to reconstruct high resolution DTIs
from low-resolution acquisitions. The second application is quantitative param-
eter mapping. The HCP provides three HARDI shells of data with diffusion
weighting factor b ≈ 1000, 2000, and 3000 smm−2, which supports estimation of
more informative parameters than standard data sets with a single HARDI shell
at b = 1000 smm−2. For example, NODDI [2] provides more specific information
than DTI, such as maps of the density and dispersion of neurites (axons and
dendrites), by fitting a more informative model in each voxel. It has become
popular for clinical studies, because it requires as little as 15 minutes acquisition
time. However, NODDI requires at least two HARDI shells with distinct b and
fitting the NODDI model fails with only a single HARDI shell [2]. This prevents
its use on the large variety of historical standard data sets. Image quality trans-
fer provides a mechanism to recover NODDI parameter maps from single b-value
data sets, which potentially enables NODDI analysis of historical data.

Prior literature on super-resolution is extensive. In medical imaging, [3] uses
example patches from high resolution images to super-resolve scalar MR images
and [4] use dictionaries from a database of similar images. Several authors pro-
pose super-resolution techniques specifically for diffusion images. The closest to
our work is [5], which enhances the resolution of each diffusion weighted image
(DWI) through patch examples before fitting the DT or other models; the dis-
cussion compares this approach to ours in more detail. Image quality transfer for
parameter mapping from rarefied data sets holds greater novelty, although sim-
ilar in spirit to modality transfer [6], which predicts T2 and FA images from T1
scans via patch-based label propagation. Our framework solves both problems.

2 Methods

Our implementation of image quality transfer learns a mapping from each
neighbourhood of N1 voxels in the low-quality data set to a corresponding
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neighbourhood ofN2 voxels in the high-quality data set. Input and output voxels
are vector-valued containing p1 and p2 values, respectively. Construction of the
mapping is thus a regression problem. It requires a training set of patch pairs

T = {xi,yi}|T |
i=1, where each xi has dimension p1N1 and yi dimension p2N2.

2.1 Regression Models

We consider a hierarchy of three types of mapping, where each generalises the
previous: global linear; regression trees; and regression forests.

For global linear regression, we compute the linear transformation matrix
G = Y X†, where Y has columns yi, X has columns xi, and X† is an appropriate
pseudo inverse of X so that, in matlab, G = X\Y. For input patch x, the estimate
of the corresponding output patch is Gx.

The regression tree implements a piecewise linear regression over the space
of input data points [7,8]. Each internal node in the tree sends data points into
left or right subtrees by thresholding one of J scalar functions of x, or features,
F1, · · · , FJ . The choice of features is application dependent and we define ours
later. Each leaf node contains a linear transformation with the same structure as
the global linear transformationG defined in the previous section. Thus, for input
data point x, the output estimate is Gtx where Gt is the linear transformation of
the leaf node at which the data point arrives after traversing the tree. Training
uses a standard greedy search strategy similar to [8]. To control for overfitting,
we use a validation set V with similar size to T and accept only splits that reduce
the residual error of V .

Regression forests use multiple regression trees constructed from different
training sets. Outputs are element by element averages of the prediction from
each tree weighted by the error covariance of the linear transformation Gt, esti-
mated during training.

2.2 Application 1: Super-Resolution

Fig. 1. 2D illustration of
the input (blue) and out-
put (red) patch structure
for n = 2 and m = 2

For DTI super-resolution, the mapping takes a (2n+
1) × (2n + 1) × (2n + 1) cubic patch of DTs, so that
N1 = (2n+ 1)3 and p1 = 6, as input, and outputs an
m×m×m cubic patch of voxels, each also containing
a DT, so that N2 = m3 and p2 = 6. The output patch
is a cubic array of subvoxels that super-resolves the
central voxel of the input patch. For example, if n = 2
and m = 2, each input x contains the 6 independent
elements of the DT in each voxel of a 5 × 5 × 5 low-
resolution patch and each output y the elements of
each DT in the 2 × 2 × 2 high resolution patch (see
figure 1); the mapping is thus from R750 to R48.

For F1, · · · , FJ , we use the following features of x:

– The three eigenvalues of the DT in the central voxel.
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– The orientation of the principal eigenvector of the DT in the central voxel.
– The means of each eigenvalue over the central 3× 3× 3 cube and those over

the whole (2n+ 1)3 cube.
– The mean principal orientation over the central 33 and the whole cubes.
– The orientational variance over the central 33 and the whole cubes.

Unless otherwise stated, training data comes from 8 randomly selected HCP
data sets www.humanconnectome.org. A separate test set contains a different 8
HCP data sets. Each data set contains 288 DWIs including 18 with b ≈ 0 and
three HARDI shells of 90 directions with b ≈ 1000, 2000, and 3000 smm−2; the
precise values vary spatially, as described in [1]. This application uses only the
b ≈ 0 and b ≈ 1000 smm−2 measurements to reflect standard data sets. Training
pairs come from downsampling each DWI by a factor of m in each dimension,
fitting the DT in each voxel of both the downsampled and full resolution image
using weighted linear least squares accounting for the spatially varying b and
gradient directions, and associating (2n+1)3 patches in the downsampled image
with the m3 patch in the full resolution image corresponding to the central voxel
of the low-resolution patch.

Each data set contains around 7.5×105 brain voxels. We randomly subsample
the set of patches from the full training set to meet memory limitations.

2.3 Application 2: Parameter Mapping

This application aims to estimate maps of NODDI parameters from standard
data sets including only b ≈ 0 and b ≈ 1000 smm−2 measurements. Thus the
mapping takes as input a (2n+1)3 cubic patch of DTs fitted to a b ≈ 1000 smm−2

HARDI shell, so that N1 = (2n + 1)3 and p1 = 6. The mapping outputs the
NODDI parameters, intra-cellular volume fraction fICVF, free-water volume frac-
tion fISO, orientation dispersion index (ODI), and the mean fibre orientation
(θ, φ), at the central voxel of the input patch; N2 = 1 and p2 = 5.

The features, F1, · · · , FJ , training, and test data sets are as in DTI super-
resolution. The ground truth NODDI output for the training set comes from
fitting the NODDI model to all three HARDI shells in each image voxel.

3 Results

Figure 2 shows qualitative results from both applications on one of the test data
sets (not used in training). The left panel compares various super-resolution
reconstructions, obtained with m = 4, after downsampling by a factor of 4
in each dimension. The right panel of figure 2 compares various reconstructed
NODDI maps with ground truth. In both examples, n = 2, the training set T
contains about 1.5M data points, and the forest uses 8 trees.

For super-resolution, clarity in both the global linear and forest reconstruc-
tions compare favourably to standard interpolation techniques. The global linear
and forest reconstructions appear quite similar, although the latter avoids some
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Original Linear interp. Cubic interp.

Downsampled Global linear Forest

Original Direct fitting Global linear Forest

f
ICVF

f
ISO

ODI

Fig. 2. Left: Direction-encoded colour FA maps for various reconstructed DTIs from a
downsampled image (bottom left) compared to ground truth (top left) from the original
full resolution data set. Right: Comparison of ground truth NODDI parameter maps
(left) with standard fitting to just the b ≈ 1000 smm−2 shell (left middle), global linear
(right middle) and random forest (right) regression.

glitches visible in the former. As [2] predicts, the standard voxel-by-voxel NODDI
parameter estimation fails, strongly disrupting the neurite density parameter,
fICVF, in particular. The global linear transformation also performs poorly and
fails to recover the structure of the fICVF and ODI maps, although it does pro-
duce a reasonable reconstruction of fISO. The improvement of the forest over the
global linear transformation is striking and the output is visually much closer to
the ground truth, although some differences are still clearly discernible.

Figure 3 quantifies the comparison of high resolution (left) and NODDI pa-
rameter (right) reconstructions as a function of training set size. The metric of
reconstruction error is the mean (over the 8 test subjects) median (over brain
voxels) root-mean-squared parameter error (i.e. of the six independent DT el-
ements or 3 scalar NODDI parameters). All regression techniques improve on
standard interpolation methods for super-resolution. Trees and forests improve
on global linear transformations increasingly as the training set size increases,
because they exploit additional training data by increasing the complexity of the
mapping model. Averaging over the output of multiple trees (the forest) shows
benefit over single trees. The advantage comes in part because the forests see
more training data than single trees, as each component tree uses a different
random training set, although they also mitigate the greedy search that trains
individual trees. Available computer memory limits the amount of training data
a single tree can use, so the forests offer genuine advantages by enabling ex-
ploitation of more training data.

Between subject standard deviation is consistent among the different algo-
rithms suggesting that the error score depends on individual anatomical features,
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such as the size of the ventricles where the error scores tend to be largest for
all algorithms. Other DT metrics, such as orientational difference, show similar
trends. The standard deviation over training set randomisation is more meaning-
ful than over subjects for evaluating the significance of differences in error score.
That standard deviation is 3 or 4 orders of magnitude smaller than the error
itself in most cases, which suggests that (a) the results are highly reproducible
over different training sets; and (b) the differences in error scores between, e.g.
trees and forests, are highly significant (around 60 standard deviations).

Fig. 3. Left: reconstruction errors against ground truth for various reconstructed DT
maps, after downsampling by a factor of 2 and reconstructing with m = 2, as a function
of training set size. Right: reconstruction errors for NODDI parameter reconstructions.
In both cases, n = 2, and the error bars show standard deviation over subjects.

Figure 4 shows qualitative results of both image quality transfer applications
using mappings learned from HCP data to enhance a non-HCP data set. The
data set comes from a standard 3T clinical scanner. It has a single HARDI
shell with b = 1000 smm−2 and 30 gradient directions. The voxel size is 23 mm3.
Image quality transfer sharpens weak structures in super-resolution and produces
plausible NODDI parameter maps.

Original Original Forest X2 Forest X3 f
ICVF

f
ISO ODI

Fig. 4. Image quality transfer to a non-HCP data set. From left to right: (i) Colour
FA map of original data; (ii) zoomed in view of boxed area; (iii) and (iv) forest up
sampling with m = 2 and m = 3; (v)-(vii) reconstructed NODDI parameter maps.
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4 Discussion

The super-resolution results show that patches in low resolution diffusion im-
ages contain a significant amount of information about the subvoxel content at
the centre of the patch. Thus, with a transformation of sufficient complexity, we
can predict high resolution images with much greater accuracy than standard
interpolation techniques. Further work is required to make a formal performance
comparison with other super-resolution techniques, in particular [5], but a key
novelty of our implementation is to use DT patches as input rather than DWI
patches and to output patches of parameter estimates rather than raw DWIs. An
advantage of outputting fitted model patches is to constrain the output image
structure to realistic local configurations. Moreover, treating each DWI sepa-
rately, as in [5], fails to exploit the strong correlation among DWIs, which is
highly informative. For example, enhancing the raw DWIs and then fitting the
NODDI model fails because it still fits to only a single b; it is the neighbourhood
structure of the fitted DTs that informs on the parameters. One might consider
using patches of the full collection of raw DWIs as input or output. However,
this has two practical problems: i) it complicates transfer to sparser data sets
where the set of input DWIs is, by definition, different to that of the high quality
training data; ii) the memory requirements for training become orders of mag-
nitude larger, as, in the super-resolution example, p1 increases from 6 to 288.
However, input patches of parameters of more complex models than the DT,
such as higher-order spherical harmonic coefficients, may improve performance.

Random-forest regression shows a dramatic improvement over both standard
parameter estimation and global linear regression in recovering NODDI param-
eter maps from single-shell HARDI data sets and produces plausible maps of all
three important parameters.

Training times can be considerable for regression trees (around 1 day of pro-
cessor time for the largest training sets in figure 3 with unoptimised matlab
code), but reconstruction times are small (a few minutes for a full volume), as
they require just a linear transformation in each voxel. This is much quicker in
fact than direct NODDI fitting, which is non-linear and requires several hours
of processor time per image volume. The method extends naturally to predict
parameters of other models, such muti-fibre models [9], where computational ad-
vantages again are potentially significant. More broadly, the framework extends
naturally beyond diffusion imaging to any scalar or vector valued images.

Imperfections remain in reconstructed images in both applications. Various
refinements of the random forest regression may improve performance. Recon-
struction error reduces rapidly as the number of trees increases from 1 to 3, but
stabilises above 4 so that the 8 trees we use here is sufficient. For fixed training
set size, little improvement arises from using more than 2 source images, so our
collection of 8 seems sufficient. Performance increases with n for a fixed number
of data points in the training set, suggesting that neighbourhoods are infor-
mative even several steps from the output voxel. However, the data points are
larger at higher n, so memory limits occur at fewer data points; n = 2 is a good
compromise with the current implementation. Choice of features affects perfor-
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mance. From our set, features based on the largest and smallest DT eigenvalues
dominate near the tree root; the second eigenvalue rarely appears. Orientational
features are important for finer partitions nearer leaf nodes. Smaller n leads
to more complex trees, because each linear transformation has less parameters.
Other high dimensional regression techniques may improve results. Moreover,
constraining the mapping with a data fitting term would be beneficial, but leads
to non-linear reconstruction increasing computation times.

In summary, this initial formulation and demonstration of image quality trans-
fer shows compelling results from a simple implementation that improves signif-
icantly on standard interpolation and estimation techniques. Further work must
establish sufficiency of reliability to make downstream improvements in practi-
cal applications such as tractography and image-based biomarker studies. Both
random-forest regression and the local patch-based image representation lend
themselves well to generalizability in the presence of pathology or other effects
not represented in the training set at least for diffuse or macroscopic effects.
However, further work needs to evaluate performance in such situations.
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Complete Set of Invariants of a 4th Order Tensor:

The 12 Tasks of HARDI from Ternary Quartics
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Abstract. Invariants play a crucial role in Diffusion MRI. In DTI (2nd

order tensors), invariant scalars (FA, MD) have been successfully used
in clinical applications. But DTI has limitations and HARDI models
(e.g. 4th order tensors) have been proposed instead. These, however, lack
invariant features and computing them systematically is challenging.

We present a simple and systematic method to compute a functionally
complete set of invariants of a non-negative 3D 4th order tensor with re-
spect to SO3. Intuitively, this transforms the tensor’s non-unique ternary
quartic (TQ) decomposition (from Hilbert’s theorem) to a unique canon-
ical representation independent of orientation – the invariants.

The method consists of two steps. In the first, we reduce the 18
degrees-of-freedom (DOF) of a TQ representation by 3-DOFs via an
orthogonal transformation. This transformation is designed to enhance
a rotation-invariant property of choice of the 3D 4th order tensor. In the
second, we further reduce 3-DOFs via a 3D rotation transformation of
coordinates to arrive at a canonical set of invariants to SO3 of the tensor.

The resulting invariants are, by construction, (i) functionally complete,
(ii) functionally irreducible (if desired), (iii) computationally efficient
and (iv) reversible (mappable to the TQ coefficients or shape); which is
the novelty of our contribution in comparison to prior work.

Results from synthetic and real data experiments validate the method
and indicate its importance.

Keywords: Invariants, SO3, 4
th order tensors, ternary quartics, orthog-

onal & rotation transforms, canonical representation.

1 Introduction

High angular resolution diffusion imaging (HARDI) has vastly improved our
analysis of the brain’s microstructure and the detection of crossing-fibers from
diffusion MRI (dMRI) where classical diffusion tensor imaging (DTI) is limited.
Nonetheless, to assess the integrity of the white-matter affected by development,
aging or neuro-degenerative pathologies, it is crucial to compute rotation invari-
ant scalars or biomarkers. Although numerous invariant scalars are known for
the 2nd order DTI tensor D, e.g. FA, MD, etc. [1] and have been successfully
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used in clinical applications, few invariant scalars are available for HARDI. Al-
though richer in description, higher order HARDI models lack comprehensive
invariant scalar descriptors to decipher that information. Therefore, computing
HARDI invariants is an important problem.

HARDI models are often estimated in the spherical harmonic (SH) or the bi-
jective higher order tensor (HOT) bases. (HOTs are homogeneous polynomials
and their SH transform provides a bijective map to SHs). Thus, studying invari-
ant features of the SH or HOT bases has wide applications. Early proposals of
HARDI biomarkers based on these bases can be found in [2, 3]. Though these
are popular, they only recover a few of the possible invariant scalar biomarkers.

In the case of the 4th order tensor (HOT4), equivalently SHs, more systematic
approaches are presented in [4–6] but only six of the twelve invariants are found.
[4] also presents D-eigenvalues which are the extrema of the HOT4. Further, [6]
introduces the integrity basis and the idea of polynomial completeness.

From this, a more general idea presents itself – functional completeness:
“find a set of invariants such that all other invariants are functions of the invari-
ants of the set.” Naturally, this leads to the idea of functional irreducibility:
“what is the smallest such set?” How to find the minimal set of invariants re-
quired to completely describe the shape of a HOT4? The importance of this ques-
tion can be illustrated on the DTI tensor. A functionally complete & irreducible
invariant set of D is its eigenvalue-set {λ1, λ2, λ3}. However, if only {λ1, λ2} are
found and any number of invariant functions of {λ1, λ2} (even greater than 3),
it is impossible to describe the shape of D without λ3. And there exist infinitely
many such invariant functions!

Further noteworthy results for HOT4 are proposed in [7], where the cardinality
of the irreducible set is shown to be 12. The paper presents polynomial invariants
and tries to establish polynomial completeness. However, this is only partially
successful and the polynomial formulae are intractable and cannot be inverted
to recompute the HOT4 coefficients, hence the approach is irreversible. [8]
is based on rank-4 SHs and proposes a set of 25 invariants (and ad-hoc func-
tions of these). However, no proof of functional completeness, irreducibility or
reversibility is attempted (since only 12 invariants are required).

In this paper, we consider non-negative HOT4s and their Ternary Quartic
(TQ) parameterization from Hilbert’s theorem [9, 10] since the physical con-
straint of positivity arises commonly in dMRI, e.g. the diffusion kurtosis tensor
(DKT) [11], the apparent diffusion coefficient tensor (ADC), or the Cartesian
tensor fiber orientation distribution (CT-FOD).

We propose a simple and systematic method to compute a functionally com-
plete set of invariants to SO3 of a non-negative HOT4 by mapping its non-unique
TQ decomposition to a unique canonical representation independent of orien-
tation. From this we extract the invariants. This involves a two step reduction
process via an orthogonal and a rotation transform. The resulting invariants are,
by construction, (i) functionally complete, (ii) functionally irreducible (if
desired), (iii) efficient to compute and (iv) reversible. Reversibility ensures
that the shape of the TQ can be inferred from the invariants and all prior/other
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invariants can be expressed in terms of these new ones. We validate the method
on synthetic and real data tests to highlight its importance.

2 Materials and Methods

Background. Positivity is a common constraint in dMRI. The right way to
parameterize a non-negative 3D 4th order tensor A, is a sum-of-squares as shown
by Hilbert’s theorem on non-negative TQ’s [9, 10]:

F4(x) =
∑

i+j+k=4

Ai,j,kx
iyjzk = (vTw1)

2 + (vTw2)
2 + (vTw3)

2 = vTWWTv,

where xT = [x, y, z], vT = [x2, y2, z2,
√
2xy,

√
2xz,

√
2yz], wi (i = 1..3) are 6×1

vectors of the coefficients of the three quadratic forms and W = [w1|w2|w3] is
a 6×3 matrix. The TQ parameterization has 18=6×3 independent coefficients,
although A has only 15. These 3 degrees-of-freedom (DOFs) imply that W
and WS for any 3×3 orthogonal matrix S (3-DOFs) result in the same F4. To
resolve this ambiguity, [9] proposed a QR/Iwasawa decomposition of A, the top
3×3 block of W, which fixes S such that A becomes triangular – effectively
zeroing out 3 coefficients. Here, we introduce a slightly different notation:

F4(x) =
∑(

xTCix
)2

= ||c||2, i = 1..3, (1)

where Ci are 3×3 symmetric matrix representations of vectors wi and cT =
[xTC1x, x

TC2x,x
TC3x]. In this notation F4(x) = cT c = ĉT ĉ, where ĉ = Sc.

Theory. TQ’s have 18-DOFs, while HOT4s have 15-DOFs. The excess 3-DOFs
can be eliminated by fixing an orthogonal transformation S. Additionally a ro-
tation invariance criterion would further eliminate 3-DOFs via a rotation trans-
formation R, of coordinates, resulting in the known 12-DOFs.

The basic idea is, therefore, a two step reduction process to twice remove
3-DOFs – first an orthogonal transform S and second a rotation transform
R – resulting in a canonical representation of a TQ invariant to rotations:
C18-DOF � S3-DOF︸ ︷︷ ︸

Step-1

=⇒ C′
15-DOF � R3-DOF︸ ︷︷ ︸

Step-2

=⇒ C′′
12-DOF �−→ 15 invariants

(complete set) ��� 12 invariants (complete & irreducible set if desired).

Orthogonal Transform (S). Contrary to [9], we do not choose S to zero out 3
coefficients, since that is not invariant to SO3 and the zeros would be lost after
the second rotation transform step. Instead, we design S to enhance a property
of choice that is rotation-invariant. First we provide an overview of the approach
before describing the rotation-invariant properties.

The application of S on c results in the transformationsC′
i =

∑
j SijCj , i, j =

1..3. Hence, each C′
i(σi) is a function of the ith row vector σi = [Si1, Si2, Si3]

of S. If S is required to enhance a chosen property P of {C′
i}3i=1 and if P

is a quadratic function, then P can be written as: P({C′
i(σi)}) = 1

2σKσT ,
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where K is the Hessian of the quadratic function P . To enhance P it suffices
to find its extrema or to diagonalize K = UΛUT . K being symmetric, U is an
orthogonal matrix whose columns either maximize or minimize P depending on
the order of the corresponding eigenvalues in Λ. Hence, if S is chosen to be UT ,
S would enhance P when computing {C′

i} from {Ci}. In summary, to enhance
a quadratic property via an orthogonal transform S, we simply need to choose
S as the eigenvector matrix UT from the eigen-decomposition of K.

Let us now examine rotation invariant properties of {C′
i}. Since, {C′

i} are
all 3×3 symmetric matrices, their rotation-invariant properties are simply the
coefficients of their characteristic polynomials: M1(C

′
i(σi)) = trace(C′

i(σi)),
M2(C

′
i(σi)) =

∑
k1,k2

μk1μk2 , where μk are the eigenvalues of C′
i(σi), and

M3(C
′
i(σi)) = det(C′

i(σi)). M1 is a linear function of σi, M2 is a quadratic
function, whileM3 a cubic function. Hence M

2
1 &M2 are two quadratic function-

properties (i.e. P) that are also rotation-invariant.
Let us name H1 and H2 the two Hessian matrices of M2

1 and M2 respec-
tively. To compute the corresponding orthogonal transforms S that enhance
these properties we need to calculate H1 and H2. H1 is simply H1 = 2TTT ,
where TT = [trace(C′

1), trace(C
′
2), trace(C

′
3)]. The form of H2 is more in-

volved but is simple to derive on a computer-algebra-system and can be provided
on request.

Interestingly, any combination of M1 and M2 that is a quadratic function is
also a rotation invariant property. Linear combinations of M2

1 and M2 are simple
to compute as linear combinations of H1 and H2. In particular, we consider the
following invariant properties:

– Trace of C′
i:

P1(σ) = trace(C′
i)

2 = M1(C
′
i)

2 = 1
2σH1σ

T = 1
2σK1σ

T .
– Variance of the eigenvalues of C′

i:
P2(σ) = M1(C

′
i)

2 − 3M2(C
′
i) =

1
2σ (H1 − 3H2)σ

T = 1
2σK2σ

T .
– Frobenius norm of C′

i:
P3(σ) = M1(C

′
i)

2 − 2M2(C
′
i) =

1
2σ (H1 − 2H2)σ

T = 1
2σK3σ

T .

Thus, it is possible to enhance any of these properties while designing an orthog-
onal transform S in the first reduction step. However, this is a generic design and
many other properties could be considered. P2 in particular is the same as the
numerator of FA for DTI. However, in this case {C′

i} may have negative eigen-
values since their squares are considered in the TQ representation. Here, we only
present results of K2 though we have experimented with all three properties.

It is important to note that in choosing S to enhance a rotation-invariant
property, contrary to [9], the application of S to the TQ will not result in 3
coefficients becoming null. It will reduce 3-DOFs of the TQ but will still result
in 18 non-null coefficients, where 3 are now dependent.

Rotation Transform (R). The second reduction step involves further eliminat-
ing 3-DOFs via a rotation transformation of the coordinates to map the modified
TQ coefficients {C′

i} to a representation that is independent of orientation. We
choose this rotation transform R from the eigen-decomposition of C′

1 = RΣRT .
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C′
1 is diagonalized and the other twoC′

i’s are transformed asC′′
i = RTC′

iR. The
two transformations, S and R combined, map the original TQ parameterization
to a canonical representation that is invariant to all 3D rotations.

This results in 15 non-null coefficients (C′′
1 = Σ : 3,C′′

2&3 : 2 × 6) with 12-
DOFs, implying that three are dependent. This, however, ensures functional
completeness and, by construction, the invariants are also reversible and still
maintain the TQ structure.

The process for extracting the irreducible set of 12 invariants involves con-
sidering the off-diagonal terms of the matrix K. This yields a linear system in
the coefficients of C′′

i , which can be solved to express 3 coefficients as an expres-
sion of the others. However, the choice of which 3 coefficients to eliminate is not
unique. This ambiguity implies that the space of TQs is covered by several maps
and that there are many ways to extract the irreducible set of 12 invariants from
the 15 non-null (invariant) coefficients. Therefore, although for theoretical pur-
poses it is possible to extract the irreducible set of 12 invariants, in practice it is
more convenient to work directly with the 15 invariant coefficients with slightly
redundant information but guaranteed functional completeness.

Unicity of Sign. The two steps involving S andR proceed via eigen-decomposi-
tions of K and C′

1, implying that the eigenvectors in U and R are unique only
up to a sign. This introduces an ambiguity since a large set of maps can be
used to transform the TQ coefficients to the canonical representation. These
arbitrary sign changes can become difficult to handle in the presence of noise or
when values are close to zero. We devised the following procedure to minimize
this ambiguity. The sign of the columns of U are flipped to ensure that the
largest absolute eigenvalue of the corresponding C′

i is positive. The sign of the
columns of R are flipped to ensure that the largest absolute entry in the column
is positive. However, since R is a rotation matrix, if the above operation results
in det(R) < 0, the sign of R is flipped to guarantee a proper rotation.

So far in this section, we presented the coefficients of the quadratic forms
(TQ coefficients) modified by the orthogonal and rotation transforms as the
invariants. However, any functions of these invariant coefficients are also valid
invariants. In practice, on real data, we found that working with “super-features”
such as M1,M2,M3 of the final canonical coefficients to be more robust to rota-
tion tests. Note that these still satisfy functional completeness but reversibility
becomes harder to establish. Nonetheless, it is important to explore suitable
“super-feature” functions, especially from a physical/physiological perspective.

3 Experiments and Results

We conducted tests on synthetic and real data to verify the invariance of the
canonical invariants to rotation. In the synthetic data experiments, we used the
multi-tensor model to generate voxels with various crossing configurations (1, 2
& 3). These were then arbitrarily rotated in space before estimating the HOT4s
and the invariants. We conducted a similar real data experiment from an in vivo
acquisition where we rotated the set of gradient directions arbitrarily before
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Fig. 1. Real data (qualitative): Rotation invariance test and comparison with princi-
pal invariants (PIs). (a) Coronal slice indicating chosen voxels. (b) 1st row: the sample
voxels, followed by samples with random rotations. (c-e): 3 PIs. (f-h) 3 new/canonical
invariants. PIs (c-e) resemble each other or capture similar information. The new in-
variants (f-h) have a richer spectrum and as expected capture more information.

estimating the HOT4s and the invariants. In both cases, the results were very
similar. Hence, we present only the real data results here.

The real data was acquired with a whole-body 3 Tesla Magnetom TRIO
scanner (Siemens Medical Solution). It was equipped with an 8-channel head
array coil. The twice-refocused spin-echo EPI sequence (TR = 12s, TE = 100
ms, 128×128 image matrix, FOV = 22.0 = 22.0 cm2) consisted of 60 diffusion-
encoding gradient directions with a b-value of 1000s/mm2 [12].

In the experiment, we chose 21 voxels from a coronal slice with some voxels
in the Corpus Callosum (CC) and others in a region where radial projections
of the CC intersect the superior longitudinal fasciculus (SLF) and the cortico-
spinal tract (CST), Fig. 1a. This allowed us to consider voxels with 1, 2 & 3
fiber crossings. For each of these voxels, we randomly rotated the acquisition
gradients 50 times to generate 50 test cases. From these, we estimated the non-
negative HOT4s or TQs, Fig. 1b, and computed the principal invariants [6]
and the new/canonical invariants. Some of these are in Figs. 1c-h. Finally, we
computed the difference between each pair of 50 test cases for all the voxels to
compute the average relative error for both the principal & new invariants. This
quantitative result is presented in Fig. 2.

In Figs. 1c-h we notice that the principal invariants (mid-row) capture al-
most the same information, while the new invariants (bot-row) have a richer
spectrum. The new invariants look more noisy but this is only due to the visual
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Fig. 2. Real data (quantitative): Rotation invariance test and comparison with prin-
cipal invariants (PIs). Average relative errors between the new/canonical invariants
compared to PIs (see Fig. 1). Blue-bars: new/canonical invariants (only a few are
shown). Red-bars: principal invariants. All invariants (new & PIs) are stable under
rotation and commit less than 2% error even in the worst case.

representation. From Fig. 2 it is clear that all the (new & principal) invariants
are stable under rotation and commit less than 2% error on an average even in
the worst case. Thus, our tests reveal that the new invariants are stable and as
expected capture more invariant/shape information than principal invariants.

Fig. 3. A sample of the new/canonical invariants. Six are displayed on a coronal slice.
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4 Conclusion

We have proposed a simple and systematic method for computing a function-
ally complete set of invariants of a non-negative HOT4. The method has two
steps. First, we designed an orthogonal transform to enhance rotation-invariant
properties of the tensor while eliminating 3-DOFs from its TQ representation.
Second, we chose a rotation transform to map the TQ coefficients to a canonical
representation invariant to orientation. From this, we extracted the invariants.

These canonical invariants are, by construction, (i) functionally complete,
(ii) functionally irreducible (if desired) – although in practice we deal with
a slightly redundant super-set, (iii) efficient to compute and (iv) reversible
– allowing us to map the TQ’s shape completely. Reversibility ensures that all
other/prior invariants can be described as functions of these canonical invariants.

We conducted tests on synthetic and real data and validated the invariants.
The results revealed that the new invariants were stable under rotation and
captured a rich spectrum of information. In the future, we plan to explore phys-
iological interpretations and to conduct a more elaborate clinical validation.
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Abstract. We present a technique for mapping dispersion anisotropy of
neurites in the human brain in vivo. Neurites are the structural substrate
of the brain that support its function. Measures of their morphology
from histology provide the gold standard for diagnosing various brain
disorders. Some of these measures, e.g. neurite density and orientation
dispersion, can now be mapped in vivo using diffusion MRI, enabling
their use in clinical applications. However, in vivo methods for estimat-
ing more sophisticated measures, such as dispersion anisotropy, have yet
to be demonstrated. Dispersion anisotropy allows more refined character-
isation of the complex neurite configurations such as fanning or bending
axons; its quantification in vivo can offer new imaging markers. The aim
of this work is to develop a method to estimate dispersion anisotropy
in vivo. Our approach builds on the Neurite Orientation Dispersion and
Density Imaging (NODDI), an existing clinically feasible diffusion MRI
technique. The estimation of dispersion anisotropy is achieved by in-
corporating Bingham distribution as the neurite orientation distribution
function, with no additional acquisition requirements. We show the first
in vivo maps of dispersion anisotropy and demonstrate that it can be
estimated accurately with a clinically feasible protocol. We addition-
ally show that the original NODDI is robust to the effects of dispersion
anisotropy, when the the new parameter is not of interest.

1 Introduction

Axons and dendrites, collectively known as neurites, are the projections from the
cell body of a neuron; they are the structural underpinnings of brain functions.
The morphology of neurites, quantified using histological analysis of postmortem
tissue, provides the gold standard for understanding the development [1], func-
tion [2] and pathology [3] of the brain. Accessing such information non-invasively
has been of great interest because this will enable a dynamic view of the brain
in health and disease. Diffusion MRI (dMRI) is such a technique, which can
probe the microstructure and is becoming an indispensable tool for assessing
the structure of neurites, in vivo.
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The standard dMRI technique, diffusion tensor imaging (DTI) [4], provides
sensitivity to neurite morphology, but can not quantify specific measures such
as neurite density and orientation dispersion. Jespersen et al. proposed the
first dMRI technique to estimate these neurite measures directly [5] in ex vivo
imaging; their technique was subsequently validated with detailed histological
comparison [6]. Zhang et al enabled the in vivo mapping of these measures
with the development of the neurite orientation dispersion and density imaging
(NODDI) [7]. The clinical feasibility of NODDI has allowed the quantification
of neurite morphology to gain adoption in neuroimaging research, e.g. to study
epilepsy [8] and brain development [9].

However, one limitation of NODDI is that it can not characterise complex
neurite configurations such as those arising from fanning and bending axons.
NODDI models orientation distribution of neurites with the Watson distribu-
tion [10], which constrains the dispersion about the dominant orientation to be
isotropic (see Fig.1). For fanning and bending axons, the dispersion about the
dominant orientation is typically anisotropic: the dispersion is the highest along
the plane of fanning and bending but the lowest perpendicular to the plane. Ex
vivo imaging has shown such dispersion anisotropy is widespread in the brain [11]
but can not be accessed with NODDI or other in vivo techniques. Quantifying
this anisotropy in vivo will provide a more refined measure of neurite morphol-
ogy that can serve as a potential imaging marker of neurite integrity [12] and be
used to improve tractography [11,13].

Watson
Bingham Distribution

�μ2

�μ1

�μ3

τ1 = 0.94, τ2 = 0.03, τ1 = 0.90, τ2 = 0.07, τ1 = 0.70, τ2 = 0.27,
τ3 = 0.03 τ3 = 0.03τ3 = 0.03

1
0

κ = 16, β = 0 κ = 16, β = 8 κ = 16, β = 14

Fig. 1. Probability density plots for Bingham distribu-
tion. From left to right, increasing dispersion anisotropy
about the dominant orientation μ1. The primary disper-
sion orientation, μ2, represents the orientation of dis-
persion anisotropy about μ1. Watson is a special case of
Bingham distribution.

The aim of this work
is to develop a method
that can estimate disper-
sion anisotropy of neu-
rites in vivo.We take the
approach of building on
NODDI because it pro-
vides a dMRI acquisition
protocol that has been
demonstrated to be clin-
ically feasible [8,9]. We
propose a new NODDI
model that incorporates
the Bingham distribution
[10] to enable the quan-
tification of dispersion
anisotropy of neurites. Bingham distribution has been used in various dMRI
techniques [14,11], but the focus has been on mapping brain connectivity. Our
aim is to map microstructure using biophysically meaningful parameters. The
key advance in this work over these approaches is the use of multi-shell data,
as in [7], which enables estimation of microstructure at the same time as the fi-
bre dispersion parameters. Our proposed model enables estimation of dispersion
anisotropy and the primary dispersion orientation, along with the estimates of
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neurite density and their concentration along the dominant orientation, with-
out imposing any additional acquisition requirements compared to the original
model. We define a new measure of dispersion anisotropy based on the Orienta-
tion Tensor (OT), following the work by [12]. To assess the performance of the
proposed NODDI model, we evaluate the accuracy and precision of estimating
dispersion anisotropy, with the 2-shell optimised protocol [7]. We also assess the
consequences of not accounting for dispersion anisotropy, on estimation of the
NODDI parameters.

2 NODDI Tissue Model

NODDI relates the microstructure parameters to acquired dMRI signals, using
a two-level multi-compartment model. At the first level, the signals from the
tissue and non-tissue components of the brain are modelled separately, weighted
by their respective volume fractions, to obtain the total signal.

The non-tissue compartment represents the free diffusing water in the brain
(e.g. CSF and interstitial fluid) and is modelled by isotropic Gaussian diffusion,
with diffusivity, diso = 3.0 × 10−9m2s−1. The volume fraction of this compart-
ment is denoted by νiso and that of the tissue compartment by (1− νiso).

The second level models the signal from tissue compartment (grey and white
matter (GM/WM)) as a sum of the signal originating from inside the neurites
(intra-neurite) and that from the space outside them (extra-neurite), weighted
by their respective volume fractions. The intra-neurite volume fraction gives an
estimate of neurite density and we denote it by νin, while the extra-neurite vol-
ume fraction is (1−νin). The membrane of neurites restrict the water diffusion to
be along their length, so the signal from a neurite is computed as the attenuation
due to unhindered diffusion along a stick with diffusivity d‖ = 1.7× 10−9m2s−1.
The intra-neurite signal, Ain is:

Ain =

∫
S2

f(n)e−bd‖(q.n)2 dn, (1)

where q and b are the gradient direction and b-value of the diffusion-weighting,
and f(n)dn gives the probability of finding sticks along an orientation n. The
diffusion in the extra-neurite space is hindered by the presence of neurites; thus
the orientation distribution of neurites affects the the extra-neurite signal, Aen.
Therefore we couple the two tissue compartments by the orientation distribution
function f(n). Aen is modelled with anisotropic (Gaussian) diffusion:

logAen = −bqT

⎛⎝∫
S2

f(n)D(n) dn

⎞⎠ q, (2)

where D(n) is a cylindrically symmetric tensor. In the present work we use
the Bingham distribution as f(n), as described in the next section. Hereafter
the proposed model will be referred to as Bingham-NODDI, and the original as
Watson-NODDI.
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2.1 Bingham Distribution

The Bingham distribution [10] is a statistical parametric distribution, which is
the spherical analogue of the 2-D Gaussian distribution. It quantifies the proba-
bility density of orientations along the axes in a 3-D spherical coordinate system.
The distribution is characterised by three orthogonal orientations: μ1, μ2 and
μ3; and their respective concentrations, κ1 ≥ κ2 ≥ κ3; as shown in Fig.1.

To simplify the representation, we redefine the concentration parameters as:
κ ≥ β ≥ 0, where κ = (κ1 − κ3) and β = (κ2 − κ3), similarly to [11]. The
Bingham distribution is then defined as:

f(n) = F (κ, β)−1eκ(μ1.n)2+β(μ2.n)2 (3)

where F is a confluent hypergeometric function.

2.2 Orientation Tensor

We summarise the orientation distribution of the neurites in each voxel in terms
of an orientation tensor (OT), similar to the 3-D rendering of the diffusion tensors
(DT). OT is defined as the scatter matrix (second moment) of an orientation
distribution function, such as the Bingham distribution:

Ti,j =

∫
S2

nif(n)nj dn (4)

The primary and secondary eigenvalues of the OT, 1 ≥ τ1 ≥ 1/3, τ1 ≥ τ2 ≥ 0, are
functions of the concentration parameters κ and β, and reflect the relative con-
centration of neurites along the dominant and primary dispersion orientations,
respectively. The corresponding eigenvectors are precisely μ1 and μ2.

Dispersion Anisotropy Index (DAI): To quantify the dispersion
anisotropy of neurites, we use the planarity measure [15] of the OT: DAI =
(τ2−τ3)

τ1
. DAI is zero for isotropic dispersion about μ1 (Watson) and one for

maximum anisotropic dispersion, i.e. when τ1 = τ2 = 0.5. DAI is a measure
specifically related to the orientation distribution, unlike the planarity measure
of a DT, which is influenced by DAI as well as other features like neurite density.

To quantify the dispersion of neurites, we use τ1, and τ2 as they have a finite
range, unlike κ and β, which range between 0 and∞. The concentration param-
eter τ1 is inversely proportional to the dispersion parameter ODI in the original
NODDI model, which is an arbitrary transformation to map κ to a finite range.
To determine τ1 and τ2, we compute the OT from the estimated values of κ, β,
using the equations 3 and 4 (The tertiary eigenvalue is by definition: 1− τ1− τ2,
and can be determined once τ1 and τ2 are computed). Since eigenvectors are
mutually orthogonal, the dominant orientation, μ1 and the primary dispersion
orientation μ2 can be quantified as a 3-D rotation of the coordinate system in
which the Bingham distribution is defined. Thus we only need to estimate two
extra parameters, β and the angle defining the rotation of the plane orthogonal
to μ1, compared to those estimated in Watson-NODDI.
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3 Experimental Design and Results

We acquire in vivo dMRI data for one healthy male, on a 3T Philips scanner
(Gmax = 60mT/m), using the 4-shell protocol, as in [7]. We also synthesise data
for a range of tissue parameters, to compare estimates against known ground
truth, similarly to [7] but using the Bingham distribution.

The NODDI Matlab toolbox1 is modified to incorporate the Bingham distri-
bution, which is then fit to the in vivo and synthetic data. To assess the influ-
ence of using a simplified model to represent the neurite orientation distribution,
we also fit Watson-NODDI to the data. We use Bayesian Information Criteria
(BIC), a standard model selection tool, to determine which model explains the
data better, while accounting for the complexity of the models. We use the op-
timised NODDI protocol, which is a 2-shell subset of the acquired protocol, to
assess the performance of the two models. The complete 4-shell data is used as
a pseudo ground-truth to calculate the errors in estimation of the parameters
in vivo. We quantify the accuracy and precision of the parameters separately
for WM and GM. For in vivo data, the segmentation of WM, GM and the free
water compartment signal is done as described in [7]; ground-truth values of νin
are used to do the same for synthetic data.

3.1 Results

Fig. 2 demonstrates the feasibility of in vivo estimation of neurite dispersion
anisotropy. We show maps of the novel parameters, τ1 and DAI (highlighted in
yellow) obtained by fitting Bingham-NODDI, for a range of axial slices of the
brain. The slices show the cross section of the corona radiata (regions in blue in
the RGB map, on either sides of the corpus callosum), a region known to exhibit
fanning, as it extends from the internal capsule to the various cortical areas.
This fanning is captured by high values of DAI and have a good contrast to the
corpus callosum, where neurites are coherently oriented. Such a contrast can not
be captured by Watson-NODDI. The last two columns of Fig.2 show the maps
of BIC, which clearly show that Bingham-NODDI explains the data better than
Watson-NODDI without overfitting. This is consistent with the comparison of
models with dispersion in [16]. Watson-NODDI performs worst specifically in
areas of high dispersion anisotropy.

Table 1 shows a quantitative analysis of errors in estimation of the parameters
from Bingham-NODDI and Watson-NODDI, using the 2-shell NODDI protocol.
The estimation errors are very small for Bingham-NODDI estimates showing
that we can accurately model dispersion anisotropy using the 2-shell clinical
protocol. We also observe that the error and variability associated with μ2 es-
timation is higher than those for μ1, implying that μ2 is harder to estimate.
A key finding here is that Watson-NODDI can accurately capture neurite mor-
phology in regions of simple neurite configurations, as the errors associated with
Watson-NODDI estimates are comparable to those of Bingham-NODDI. These
findings are all backed by the synthetic data analysis (results not shown).

1 http://nitrc.org/projects/noddi_toolbox

http://nitrc.org/projects/noddi_toolbox
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Fig. 2. Maps of the novel parameters τ1 and DAI (highlighted in yellow), obtained
from fitting Bingham-NODDI to in vivo data, with estimates of νin, νiso (columns 2
& 3). Corresponding RGB maps of FA weighted dominant orientation are shown for
comparison. The last two columns show the maps of BIC for fitting Bingham-NODDI
and Watson-NODDI.

Table 1. Mean errors with the corresponding standard deviations of those errors, for
estimation of neurite parameters using Bingham-NODDI and Watson-NODDI, with
respect to the 4-shell protocol estimates, for in vivo data

Grey Matter White Matter

Bingham Watson Bingham Watson

νin -0.025 ± 0.083 -0.025 ± 0.083 -0.002 ± 0.042 -0.001 ± 0.042

νiso 0.000 ± 0.032 0.001 ± 0.032 0.005 ± 0.029 0.005 ± 0.030

τ1 0.006 ± 0.038 0.009 ± 0.039 -0.001 ± 0.041 0.000 ± 0.043

τ2 0.000 ± 0.028 -0.055 ± 0.045 0.003 ± 0.029 -0.074 ± 0.047

μ1 21.063 ± 21.458 19.709 ± 20.201 5.519 ± 7.430 5.348 ± 6.589

μ2 27.822 ± 23.521 - 12.002 ± 14.679 -

DAI 0.011 ± 0.122 - 0.010 ± 0.078 -
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4 Discussion

We demonstrate that it is possible to estimate dispersion anisotropy of neurites
in vivo, and we can obtain sensible maps of this measure using a clinically feasible
protocol. We present DAI as a measure of dispersion anisotropy which is specif-
ically related to the orientation distribution. We show that Bingham-NODDI
explains the dMRI signal better than Watson-NODDI, however presence of dis-
persion anisotropy does not have significant affect on the estimation of dispersion
along the dominant orientation. Thus the studies based on the current imple-
mentation of NODDI are valid, but Bingham-NODDI may be used to extract
parameters for dispersion anisotropy, which can enhance the findings.

A limitation of the method proposed is that it does not explicitly model cross-
ing fibres. But our primary aim is to provide simple and robust microstructure
indices and attempting to resolve multiple fibre populations will introduce insta-
bility in the model, as shown in [11]. Nevertheless, the model correctly identifies
crossing regions with high orientation dispersion and some with high DAI. In
future we would like to investigate the possibility of incorporating crossing fibres
in Bingham-NODDI. The primary dispersion orientation is found to be harder to
estimate than the dominant orientation, which is not unexpected since it repre-
sents a more subtle microstructure feature. The estimation of this feature can be
improved by increasing the angular resolution of the acquisition protocol. This
is not yet clinically feasible with the existing imaging sequences, but emerging
technologies, such as multi-band imaging [17], will make it possible to acquire
substantially more data per unit time. A reproducibility study is a natural next
step for future work, as it will allow to assess if the variability in estimates is low
enough to capture between-subject differences. This has implications for use of
the technique in disease progression as well as tractography studies. Further work
in understanding the relationship between changes in the dispersion anisotropy
and normal brain development or pathology, could lead to the measure being
utilised as a marker for brain disorders.

Acknowledgements. This work is supported by the EPSRC Doctoral Train-
ing Award, the MS society in the UK, and the Department of Healths NIHR
Biomedical Research Centres funding scheme.
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Abstract. Advanced diffusion weighted MR imaging allows non-invasive
study on the structural connectivity of human brains. Fiber orientation
distributions (FODs) reconstructed from diffusion data are a popular
model to represent crossing fibers. For this sophisticated image repre-
sentation of connectivity, classical image operations such as smoothing
must be redefined. In this paper, we propose a novel rotation-induced Rie-
mannian metric for FODs, and introduce a weighted diffusion process for
FODs regarding this Riemannian manifold. We show how this Riemannian
manifold can be used for smoothing, interpolation and building image-
pyramids, yielding more accurate or intuitively more reasonable results
than the linear or the unit hyper-sphere manifold.

1 Introduction

The Human Connectome Project [1] has provided cutting-edge diffusion MR
imaging techniques to study brain anatomical connectivity in vivo at unprece-
dented spatial and angular resolution. This advancement urges the development
of novel mathematical methods to modelling neural fibers.

Fiber orientation distribution (FOD) images, reconstructed from diffusion
weighted images, are widely used to represent the spatial and orientational dis-
tribution of neural fibers. At each voxel location p, the likelihood of fibers along
a direction u is described by a real-valued and nonnegative function F (u).

The mathematical property of FODs is more complicated than that of inten-
sity values or diffusion tensors, so their fundamental operations such as smooth-
ing and interpolation cannot be conducted in the same way. For example, linear
smoothing does not yield satisfactory results, as shown in Section 5.2. In [2,3,4],
f =

√
F is modeled as a point on the unit hyper-sphere, a manifold whose

exponential and logarithmic maps are well studied. Later in [5,6], FODs are sep-
arated as two parts: orientation and shape. FODs’ comparison and interpolation
are conducted by rotationally matching their shapes.
� This work is supported by grants 5U01MH093765, 7P41EB015922, 5R01MH094343

and K01EB013633 from the National Institutes of Health (NIH).

P. Golland et al. (Eds.): MICCAI 2014, Part III, LNCS 8675, pp. 249–256, 2014.
c© Springer International Publishing Switzerland 2014



250 J. Li, Y. Shi, and A.W. Toga

In this paper, we propose a rotation-induced Riemannian metric for square-
rooted FODs f , and introduce a weighted diffusion process for FODs regarding
this metric. This novel weighted diffusion process can be used for smoothing,
interpolation and down-sampling of FOD images. It may potentially benefit
many down-stream tasks, such as tractography or registration. It can also be
used to build FOD image pyramids for multi-scale image processing. Contrast
to the work in [5,6], we focus on the differential structure of FODs, instead of
their weighted average. In an experiment with real images, we compared the
new method with the linear manifold and the hyper-sphere manifold. The new
method keeps fiber integrity better in smoothing and down-sampling, and yields
more accurate results in interpolation.

2 Rotation and Spherical Functions

2.1 Rotation and Angular Velocity

Any rotation in R3 can be described with a rotation vector −→r = [rx, ry, rz ]
(‖−→r ‖ � π) whose direction −→r / ‖−→r ‖ is the pivot axis according to the right-
hand rule and whose length ‖−→r ‖ is the rotation angle. The rotation matrix
associated with −→r is R = e[

−→r ]× where [•]× is the cross-product matrix of a 3D
vector as defined in Eq. (1),

[•]× ≡

⎡⎣ 0 −•z •y
•z 0 −•x
−•y •x 0

⎤⎦ . (1)

An angular velocity vector −→ω describes the pivot axis and spinning speed of a
rotating object respectively with its direction and amplitude. If an object spin-
ning with −→ω for time duration t, the accumulated rotation effect, parameterized
as a rotation matrix, is R = et[

−→ω ]× . With R, a point p ∈ R3 rotates to Rp.

2.2 Rotation of Spherical Functions

If a spherical function f(u) is rotated with R, it becomes f(R−1u). Given a unit
angular velocity −→ω (‖−→ω ‖ = 1), we define

ḟ−→ω (u) ≡
d

dt
|t=0 f(e−t[−→ω ]×u) (2)

as the rotation differential of f around axis −→ω .

3 Manifolds of FODs

An FOD F is a spherical probability density function satisfies both´
u∈S2 F (u)du = 1 and F (u) � 0, where S2 is a unit sphere in R3. Cheng,
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etc. in [2] modelled the manifold M ≡ {f(u) =
√
F (u)} as a unit hyper-sphere,

assuming that f can be linearly represented by a finite number of orthonormal
base functions. In this section, we propose a Riemannian metric for M , differ-
ently weighting the effect of rotation in R3. For simplicity, symbols such as “f ”,
“v” or “l”, depending on the context, denote either spherical functions, or their
linear coordinates as represented by orthonormal base functions.

3.1 Hyper-Sphere

For two spherical functions f1 and f2, we define 〈f1, f2〉 ≡
´
u∈S2 f1(u)f2(u)du as

their dot product. As any f ∈M satisfies 〈f, f〉 = 1, M is a unit hyper-sphere, a
well-studied Riemannian manifold. Given a point f ∈M , another point f † ∈M
near f can be logarithmically mapped to TfM , the tangent space at f , as

logf (f
†) = vf =

f † − f cosϕ

‖f † − f cosϕ‖ϕ, where ϕ = arccos
(〈
f, f †〉) (3)

The Riemannian metric at f associated with the logarithmic map is gf (v1, v2) =
〈v1, v2〉 where v1, v2 ∈ TfM are two tangent vectors at f .

3.2 Rotation-Induced Riemannian Metric

Riemannian metric gf is isotropic, treating all the directions in TfM equally. To
incorporate rotation into the metric, tangent vectors generated by rotating f in
R3 should be treated differently. Let ḟx, ḟy and ḟz denote the rotation differential
of f respectively around the x, y, and z axes, as defined in Eq. (2). As ḟx, ḟy and
ḟz are in TfM , we use them to induce a Riemannian metric as follows. First, for
a tangent vector v, we project it to the subspace spanned by ḟx, ḟy and ḟz. Let
cxḟx + cy ḟy + cz ḟz be the projection, c ≡ [cx, cy, cz] the projection coefficients,
and ξ ≡ v − cxḟx + cy ḟy + cz ḟz the residual. Second, given two tangent vectors
v1 and v2, the induced Riemannian metric is defined as

g∗f(v1, v2) = λ 〈c1, c2〉+ 〈ξ1, ξ2〉

where λ > 0 is a parameter weighting the contribution of rotation. Such a metric
definition is equivalent to g∗f (v1, v2) = 〈v∗1 , v∗2〉 where v∗• = Gfv• and Gf is a full-
rank transformation matrix induced by ḟx, ḟy, ḟz and λ. The gf in Section 3.1
can be regarded as using Gf = I.

As ḟx, ḟy and ḟz are not necessarily linearly independent, the projection coef-
ficients c may not be unique. To resolve the ambiguity, we choose the coefficients
with the least norm. Let b1, · · · , bm be a set of unitary bases of the subspace
spanned by ḟx, ḟy and ḟz. The least norm projection coefficients are

c = AT (AAT )−1

⎡⎢⎣ 〈b1, v〉...
〈bm, v〉

⎤⎥⎦ where A =

⎡⎢⎢⎢⎣
〈
b1, ḟx

〉 〈
b1, ḟy

〉 〈
b1, ḟz

〉
...

...
...〈

bm, ḟx

〉 〈
bm, ḟy

〉 〈
bm, ḟz

〉
⎤⎥⎥⎥⎦.
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The Riemannian metric g∗f introduces a new logarithmic map near f . The

length of a smooth curve γ : [0, 1] → M is L∗(γ) =
´ 1
0

√
g∗γ [γ

′(t), γ′(t)]dt. The

geodesic from f to a nearby point f † is a curve γ which satisfies γ(0) = f
and γ(1) = f † and minimizes L∗(γ). With appropriate re-parameterization of t,
g∗γ [γ

′(t), γ′(t)] can be time-invariant. Accordingly, the logarithmic map of f † to
TfM is log∗f (f

†) = Gfγ
′(0).

4 Weighted Diffusion of FODs

An FOD image is a mapping from R3 to an FOD manifold M . Given a point
p in R3, let fp denote its square-rooted FOD. To calculate the diffusion force
at p, we construct a local helper function hp : hp(q) ≡ LOGfp(fq) where q is a
point near p and hp(q) is the logarithmic map of fq to TfpM . It should be noted
that the definition of LOGfp is subject to the definition of Riemannian metrics.
Sections 3.1 and 3.2 describes different metrics and logarithmic maps.

A weighted diffusion process on an FOD image is

dfp
dt

=
1

wp
lp ≡

1

wp
G−1

fp

(
∂2hp

∂x2
+

∂2hp

∂y2
+

∂2hp

∂z2

)
(4)

where lp is the diffusion force at point p, and wp is a positive weight associ-
ated with point p in the FOD image. G−1

fp
maps the diffusion force to tangent

space of the hyper-sphere manifold. FODs at points with higher weights changes
slower than those with lower weights. We assume that such a diffusion process
eventually makes every point in the image take the same FOD value.

The weighed diffusion can be applied to FOD image processing as follows:

– Smoothing: diffusion in R3.
– Interpolation: weighted diffusion within a 2x2x2 voxel cube.
– Down-Sampling: diffusion followed by interpolation.

5 Evaluation

We compare three different manifold models of FODs: the linear model, the unit
hyper-sphere model, and the rotation-induced manifold. For simplicity, we call
them the linear, the hSphere and the rSphere methods. With the three models,
image processing tasks smoothing, interpolation and down-sampling are con-
ducted on real FOD images. Their performances are evaluated with two indices:
(1) the sharpness of their output FODs and (2) the difference from baseline im-
ages depending on the processing tasks. The sharpness of FODs is measured with
the generalized Fractional Anisotropy gFA(f) = 2dist(f0, f)/π where f0 is the
uniform spherical function in M , and dist(•, •) ≡ arccos(〈•, •〉); the difference
from a baseline is measured with δ(f) = 2dist(fb, f)/π where fb is the baseline
FOD. (The factor 2/π scales the indices into range [0, 1].)
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Fig. 1. Example of smoothing. The rSphere method produces sharper and orientation-
ally smoother FODs. The linear and the hSphere methods produce “bloated” FODs.

Pixel-wise comparison within each subject is conducted as follows: a perfor-
mance index image of one method is subtracted from that of another method,
and then the histogram of the subtracted image is plotted. The subject-wise
comparison is conducted as follows: for every subject, a voxel-averaged perfor-
mance index is calculated, and the averaged indices of subjects are compared
with the t-test between the three methods.

5.1 Data

Ten subjects are randomly selected from the Human Connectome Project. The
diffusion data were acquired with a multi-shell sampling scheme, and the FOD
images, represented with the 8-th order spherical harmonics [7], were recon-
structed with the method in [8].

5.2 Smoothing

Images are diffused with time duration t = 1. gFA is calculated on the diffused
images, and the original images are the baseline images of δ. The diffused images
of a subject is shown in Figure 1, taken from the highlighted region in the figure
besides Table 1. The rSphere method yields more reasonable results, as the fibers
are sharper and orientationally smoother. The linear and hSphere methods yield
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Table 1. Subject-wise comparison of smoothing

gFA δ

mean p-value mean p-value
rS. - hS. 0.092 ± 0.002 8.14e-16 −0.0059 ± 0.0011 6.54e-7
rS. - L. 0.084 ± 0.002 2.02e-15 −0.0221 ± 0.0013 2.22e-11
hS. - L. −0.007 ± 0.003 1.51e-12 −0.0162 ± 0.0004 3.33e-15

“bloated” FODs. Figures 1(b) and 1(c) show the histogram of the pixel-wise
contrast of the gFA and δ indices among the three methods. The rSphere method
produces higher gFA than the other two methods. Table 1 shows the t-test of
subject-wise comparison. The rSphere method makes slightly less changes (low
δ) from the original images, yet keeps the diffused FODs much sharper (high
gFA). Tiny p-values evidence the statistical significance of the results.

5.3 Interpolation

Images are sub-sampled into two parts: one of odd-index voxels and the other of
even-index. FODs at even-index voxels are then interpolated from the odd-index
image, and then compared with the original even-index image. gFA is calculated
on the interpolated images, and the original even-index images are the baseline
images of δ. The interpolation results of a subject is shown in Figure 2, taken
from the highlighted region in the figure besides Table 2. The rSphere method
yields more accurate results, with FODs more similar to the original image.
Figures 2(b) and 2(c) show the histogram of the pixel-wise contrast of the gFA
and δ indices among the three methods. The rSphere method yields higher gFA
and lower δ than the other two methods. Table 2 shows the t-test of subject-wise
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Fig. 2. Example of interpolation. The rSphere results are more similar to the truth.
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Table 2. Subject-wise comparison of interpolation

gFA δ

mean p-value mean p-value
rS. - hS. +0.071 ± 0.0015 3.35e-15 −0.131 ± 0.0034 1.72e-14
rS. - L. +0.064 ± 0.0015 6.87e-15 −0.134 ± 0.0035 1.95e-14
hS. - L. −0.0061 ± 0.0002 2.60e-13 −0.0033 ± 0.0005 2.45e-07

comparison. The rSphere outperforms the other two methods with higher gFA
and lower δ. Tiny p-values evidence the statistical significance of the results.

5.4 Down-Sampling

Down-sampling is conducted as follows. Images are diffused with time duration
t = 1 and then is interpolated for the down-sampled voxel locations. Two-level
down-sampling is conducted to build image pyramids. gFA is calculated on the
down-sampled images. The down-sampled results of a subject is shown in Figure
3. Sub-figures (a) and (b) show respectively the overview and highlighted region
of the original image. Sub-figures (c) and (e) show the down-sampled images of
the hSphere method, sub-figures (d) and (f) show those of the rSphere method.
(Due to limited page room, the following contents are not presented here: the
results of linear down-sampling which are very similar to the hSphere method,
the histogram of pixel-wise contrast of the gFA index which is very similar to the
smoothing and interpolation tasks.) The rSphere produces sharper FODs. Table
3 shows the t-test of subject-wise comparison of gFA. The rSphere yields higher

(a) original, overview (c) hSphere, level 1 (e) hSphere, level 2

(b) original, highlighted (d) rSphere, level 1 (f) rSphere, level 2

Fig. 3. Example of down-sampling. The rSphere method produces sharper FODs.
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Table 3. Subject-wise comparison of down-sampling, regarding the gFA index

Level-1 Level-2
mean p-value mean p-value

rSphere - hSphere +0.035 ± 0.0008 3.43e-15 0.082 ± 0.0012 8.03e-17
rSphere - Linear +0.033 ± 0.0008 2.85e-15 0.075 ± 0.0011 7.82e-17
hSphere - Linear −0.0015 ± 0.0001 1.24e-13 −0.0077 ± 0.0002 4.30e-15

gFA, indicating the down-sampled FODs are shaper than the other methods.
Tiny p-values evidence the statistical significance of the results.

6 Conclusion

Weighted diffusion of square-rooted FODs f with the rotation-induced Rieman-
nian metric leads to significantly better smoothing, interpolation and down-
sampling of FOD images, in comparison with the linear manifold, and the hyper-
sphere manifold.
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Abstract. The residence time τi of water inside axons is an important
biomarker for white matter pathologies of the human central nervous
system, as myelin damage is hypothesised to increase axonal permeabil-
ity, and thus reduce τi. Diffusion-weighted (DW) MRI is potentially able
to measure τi as it is sensitive to the average displacement of water
molecules in tissue. However, previous work addressing this has been
hampered by a lack of both sensitive data and accurate mathemati-
cal models. We address the latter problem by constructing a compu-
tational model using Monte Carlo simulations and machine learning in
order to learn a mapping between features derived from DW MR sig-
nals and ground truth microstructure parameters. We test our method
using simulated and in vivo human brain data. Simulation results show
that our approach provides a marked improvement over the most widely
used mathematical model. The trained model also predicts sensible mi-
crostructure parameters from in vivo human brain data, matching values
of τi found in the literature.

1 Introduction

Numerous white matter (WM) pathologies of the human central nervous sys-
tem (CNS), such as multiple sclerosis, spinal cord injury and leukodystrophies,
are characterised by damage to the insulating myelin sheaths around the axonal
fibres. As the breakdown of myelin is hypothesised to lead to an increase in ax-
onal permeability, there is widespread interest in developing imaging biomarkers
based on permeability or intra-axonal water residence time τi in order to im-
prove diagnosis of and treatment for these conditions. Diffusion-weighted (DW)
MRI is potentially amenable to estimating τi as it is sensitive to the disper-
sion of water molecules within tissue. However, due to a lack of both sensitive
data and sufficiently accurate mathematical models, progress has been limited.
Whereas improvements in modern hardware and the development of specialised
imaging sequences are beginning to address the former issue, there is still a need
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to develop models that accurately characterise water exchange within the brain.
Many commonly used compartment models for microstructure imaging, such as
AxCaliber [4] and ActiveAx [3], ignore the effects of permeability completely
and overestimate axon diameter. Including the effects of permeability in these
techniques not only gives us another clinically useful parameter τi, but may also
improve the estimation of other microstructure indices.

Mathematical models that explicitly incorporate τi include the Kärger model
(KM) and apparent exchange rate (AXR) imaging. The KM is commonly used
[8,12] as it is compatible with data acquired using widely available pulsed gradi-
ent spin echo (PGSE) and stimulated echo (STE) imaging sequences. It accounts
for intercompartmental water exchange by coupling the DW MR signals due to
the separate compartments via τi. However, it relies on the assumption that
the two pools of water are well mixed and it does not model restriction. These
conditions are not valid in WM tissue where the intra- and extra-axonal com-
partments are spatially separate and the axonal membranes restrict the motion
of water molecules. Even though these limitations have been known for over 20
years, there have been no improvements to the model due to the mathematical
intractability of the problem. AXR imaging [9] has recently been introduced as
an alternative to the KM; however it requires specialised double PGSE imaging
sequences, and it again relies on strong assumptions about the compartmenta-
tion of water into a ‘fast’ and ‘slow’ pool. The estimated AXR parameter also
conflates τi with intra-axonal volume fraction f , making it difficult to disentangle
the origin of any measured change.

Given the inherent difficulties involved in deriving accurate analytical mod-
els of permeability, we approach this problem by constructing a computational
model to learn the mapping between microstructural features of interest and the
data, bypassing the need for a mathematical model altogether. We use Monte
Carlo (MC) simulations to generate synthetic signals from a library of histo-
logically relevant microstructure indices. A random forest (RF) regressor then
learns the mapping between features derived from DW MR signals and ground
truth microstructure parameters using the synthetic data, providing an efficient
and accurate method for predicting microstructure parameters, including τi.

Previous related work [8] generated libraries of microstructure parameters and
their corresponding DWMR signals from MC simulations, and used them to find
the nearest-neighbour microstructure parameters that matched unseen signals;
however nearest-neighbour matching typically has poor generalisation to unseen
input data and the method has only been demonstrated on synthetic data. We
extend this approach using RF regression which has better generalisation to
unseen data [5], i.e. combinations of tissue parameter values not explored in the
training set. We compare our approach to the KM using simulated data and
demonstrate that the trained RF can be used to predict sensible estimates of
microstructure indices from in vivo human brain WM.
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2 Methods

Protocol Optimisation. We use an orientationally invariant (OI), DW-STE
protocol, previously optimised [2] for a two-compartment KM assuming a max-
imum imaging time of 30 minutes. The protocol was optimised for the following
biophysically plausible tissue parameters: f=0.7, parallel diffusivity d‖=2×10−9

m2s−1, perpendicular diffusivity d⊥=0.7×10−9 m2s−1, axon radius R=1 μm,
τi∈{0.05, 0.1, 0.2, 0.4, 1} s, T 1=832 ms. The resulting protocol contains 89
measurements divided into 4 distinct shells, with Δ ranging from 95 to 398 ms.
The final protocol, accounting for the effects of the additional STE imaging
gradients, is shown in table 1.

Monte Carlo Simulations. We use MC simulations [6], in combination with
the OI protocol in table 1, to generate DW MR signals from 12,500 WM tis-
sue substrates. We model WM as a collection of 100,000 non-abutting, parallel
cylinders with radii drawn from a gamma distribution (with mean μR, stan-
dard deviation σR). Each substrate is described by a unique combination of
μR, σR, f , τi and d‖ which are randomly selected in the ranges: μR ∈ [0.2, 5]
μm, σR ∈[min(0.1,μR

5 ), μR

2 ] μm (to ensure that the distributions have a non-
zero mode, matching the distributions observed in histology [1]), f ∈ [0.4, 0.7],
τi ∈ [20, 950] ms, d‖ ∈ [0.8, 2.2]×10−9 m2s−1. All simulations are performed us-
ing 100,000 spins and 2,000 time steps. We generate two sets of signals: noise-free
and noisy. As spins undergo T 1 relaxation during the mixing time TM between
the two diffusion gradients, measurements made using longer Δ (and so longer
TM) experience more relaxation leading to lower signal intensities and signal to
noise ratios (SNR). For the noisy data set we scale the signals by exp

(
−TM

T1

)
where T 1=832 ms for WM at 3T. We then add Rician noise, choosing the stan-
dard deviation of the noise σ so that the SNR of the b = 0 images with Δ=95
ms is 20.

Data Acquisition and Pre-processing. We acquire DW images, using the
protocol in table 1, from one healthy subject (male, age 31) on a 3T Phillips
Achieva scanner with the following imaging parameters: TE=55 ms, TR=12000
ms, FOV=256mm×256mm, matrix size=128×128, slice thickness=4 mm, no. of
slices=30. The total imaging time is approximately 30 minutes. As the model

Table 1. OI STE protocol parameters, optimised for Kärger model parameter estima-
tion

Shell # b = 0 # gradient b |G| Δ δ TM
(s mm−2) directions (s mm−2) (mT m−1) (ms) (ms) (ms)

1 1 32 1592 70 95 7 69
2 1 6 1746 62 398 4 370
3 1 32 3538 71 394 5 370
4 1 15 3950 84 162 7 135
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that we learn here is specific to axons that resemble parallel cylinders, it is
not applicable in regions containing CSF, grey matter or highly dispersed or
crossing WM fibres. We mask out these voxels by computing maps of linearity
CL = λ1−λ2

λ1
and planarity CP = λ2−λ3

λ1
[13] from diffusion tensor (DT) fits, and

select only those voxels with CL > 0.5 and CP < 0.3. The SNR of the selected
WM region in the b = 0 image with Δ = 95 ms is approximately 19.

Random Forest Regression. RF regression works by averaging the predic-
tions from an ensemble of randomly trained decision trees [5]. We use it here
to learn a mapping between rotationally invariant features derived from DT (all
shells) and 4th order spherical harmonic (SH) fits (shells 1,3,4) to the simulated
DW MR signals and the ground truth microstructure parameters. From the
DT fits we calculate the eigenvalues λ1, λ2, λ3, mean diffusivity and fractional
anisotropy. From the SH fits we calculate the mean, peak, dispersion (i.e. the
eigenvalues of the hessian matrix at the peak), anisotropy, skewness and kurtosis
of the apparent diffusion coefficient profile, as well as simple combinations of the

SH coefficients given by Ik =
k∑

i=−k

|ak,i|2 for k = 0, 2, 4 where ak,i is the coef-

ficient of SH order k and index i. This gives a vector with 50 features for each
measurement. The RF regressor, containing 100 trees of maximum depth 20, is
trained [10] on 10,000 of the 12,500 feature vectors from noisy and noise-free
data separately. The remaining 2,500 previously unseen feature vectors are used
for testing. When predicting the microstructure indices from the noise-free test
sets, we use the RF trained on noise-free data; when predicting from the noisy
test and in vivo feature vectors (which have similar noise characteristics), we
use the RF trained on noisy data. The microstructure parameters we estimate
during the RF regression are f , d‖, τ and α, a single axon radius index [3] which
reflects both the mean and spread of the radius distribution.

Kärger Model Fitting. We fit a two-compartment KM to the 2,500 noise-free
and noisy test data sets, and to the masked WM voxels from the in vivo human
data set. The intra-axonal compartment, with volume fraction f , is modelled
using randomly packed, parallel cylinders with radius R and an intra-axonal
water residence time τi. The extracellular space is modelled as a cylindrically
symmetric DT with diffusivities, d‖ and d⊥. d‖ is assumed to be the same in
both compartments. The model is simplified using the tortuosity model as in [3].
Prior to model fitting, each measurement is normalised by the b = 0 measurement
with the same TM to eliminate T 1 effects. The model is fit using Markov Chain
Monte Carlo (MCMC) with an offset Gaussian noise model (assuming different
noise standard deviations σ for each shell of data, which we estimate a priori)
to sample from the posterior distribution over the model parameters. The burn-
in phase for the MCMC consists of 10,000 steps, after which we collect 1,000
samples at an interval of 100 steps.
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Fig. 1. Scatter plots of ground truth values of f , τ , α, d‖ against a) predictions from
the RF and b) the KM for noise-free data with correlation coefficients shown

3 Results

Figure 1 shows scatter plots of f , α, τi and d‖ against predictions from a) the RF
regressor and b) the KM in the case of noise-free simulated data. The correlations
between ground truth and RF predictions are strong for all parameters. Even
so, we do not get a perfect recovery, in part because of the statistical nature
of the model, but also because parameters such as τi and α have a very weak
influence on the DW MR signals and thus the features we derive from them.
However, this provides an indication of the best predictions we can make given
the measurements we have. For the KM, we observe good correlations for f and
d‖, but virtually no sensitivity to α. The protocol was optimised for sensitivity
to τi rather than α, so this is in line with expectations. The KM can estimate τi
for residence times less than 200 ms as, due to the long Δ used in the protocol,
the intra- and extra-axonal compartments appear well mixed at this timescale
for smaller τi; beyond this, the assumption breaks down and the KM severely
underestimates large τi.

Figure 2 shows similar scatter plots, but for noisy data. Predictions from
the RF are noisier, resulting in lower correlations with the ground truth val-
ues. Estimates of d‖ are still strong, but large f in particular are consistently
underestimated. There is still a positive correlation between ground truth and
predicted values of τi until ≈400-500 ms, after which the estimates level off. This
is because the small differences in the features due to τi are now overshadowed
by the differences in the features due to noise. However, the RF is still able to
distinguish short and long τi, unlike the KM, which is the key requirement for a
useful imaging biomarker. The correlation for α is again much lower, although
there still a slight positive trend indicating that the RF may be able to distin-
guish between large and small α. The KM generally provides good estimates of
f and d‖ but has almost no sensitivity to α and τi. Given that the KM fails to
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Fig. 2. Scatter plots of ground truth values of f , τ , α, d‖ against a) predictions from
the RF and b) the KM for noisy data with SNR=20, with correlation coefficients shown

estimate these parameters from data generated using a simple geometric model
and realistic SNR, it is unlikely to be sensitive to these parameters in real brain
tissue, which is much more complex.

We note that there is bias in this comparison, as the test data for the RF is
generated in the same manner as the training data, which is not the case for the
KM. However, it clearly illustrates the limitations of the KM’s assumptions in
situations where they are known to be violated, as in WM.

Figure 3 shows in vivo estimates of human WM microstructure parameters
using a) the RF and b) the KM across the same sagittal and axial slices. The
values of d‖ estimated by both models are consistent across the WM. Predic-
tions of f using the RF are lower than expected for WM, ranging from 0.45-0.63,
reflecting the results from the noisy simulated data. Across the mid-sagittal cor-
pus callosum (CC), we see slightly higher f in the genu and splenium compared
to the midbody [1], but the trend is not as clear as that predicted by the KM.
Estimates of α and τi from the KM are very noisy, as expected, and show no
obvious patterns across the WM. In contrast, the values of α and τi predicted
by the RF are much less noisy and we can identify trends across WM tracts.
For example, across the mid-sagittal CC, we see the characteristic low-high-low
trend in α [1]. Estimates of τi are consistently in the range 400-600 ms across
the genu and splenium of the CC, and slightly lower in the corticospinal tract
(CST), where we predict τi=300-500ms. It is inherently difficult to validate these
values as accurate estimates of τi are not obtainable via histology. However, a
study of intra- to extra-axonal water exchange across the whole in vivo rat brain
using relaxometry and contrast agents suggests a mean τi of approximately 550
ms [11]. This is similar to the values predicted here, although how well these
numbers correspond to human tissue is unknown.
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Fig. 3. Predicted values of f , τ , α, d‖ from in vivo human brain WM across slice x=66,
z = 15 using a) the RF regressor and b) the KM

4 Discussion

This study demonstrates that we can learn a mapping between microstructure
parameters and simulated DW MR signals using RF regression, even when the
data is noisy. The parameter correlations, particularly for τi and α, are higher for
the RF than the KM, even though acquisition protocol we use was optimised for
the latter approach. Furthermore, the trained RF predicts sensible microstruc-
ture parameters from in vivo human data, even for parameters such as α and τi
which only weakly influence the DW MR signals available from human scanners.
The model gives a way of obtaining plausible, if noisy, estimates of τi in vivo for
the first time. Given the mathematical difficulty of deriving accurate analytical
models of permeability, this approach is very promising; however further work
and validation is needed.

Although the mapping we learn here is specifically for randomly packed, par-
allel, non-abutting cylinders and a STE imaging sequence, the approach can
be easily extended to other tissue configurations and pulse sequences. In future
we plan to incorporate models of fibre dispersion into our MC simulations, e.g.
by using undulating cylinders, allowing us to extend our technique to dispersed
white matter fibre regions as well as grey matter. We also plan to investigate
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more specialised pulse sequences, such as the AXR sequence [9], which may
improve sensitivity as well as allowing us to compare other analytic models.

The protocol used here was optimised specifically for the KM. It is therefore
unlikely that this protocol is optimal for our approach, especially as some of the
DW shells do not have high enough angular resolution to support feature calcu-
lation. Improving the angular resolution of the data, adding a longer diffusion
time (subject to SNR constraints) and increasing |G| should improve the RF
predictions, particularly of τi and α.

Acknowledgments. This work is supported by EPSRC grant EP/I027084/1.
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Abstract. Tractography in diffusion tensor imaging estimates connec-
tivity in the brain through observations of local diffusivity. These obser-
vations are noisy and of low resolution and, as a consequence, connections
cannot be found with high precision. We use probabilistic numerics to es-
timate connectivity between regions of interest and contribute a Gaussian
Process tractography algorithm which allows for both quantification and
visualization of its posterior uncertainty. We use the uncertainty both in
visualization of individual tracts as well as in heat maps of tract loca-
tions. Finally, we provide a quantitative evaluation of different metrics
and algorithms showing that the adjoint metric [8] combined with our
algorithm produces paths which agree most often with experts.

1 Introduction

Diffusion tensor imaging (DTI) is a non-invasive imaging technology generating
a global mapping of local brain diffusivity. DTI estimates, in each voxel, the
local directional probability of water molecule displacement, represented as a
tensor field. Assuming high diffusion along brain fibers, global connections can
be estimated by integrating the tensor field, a process referred to as tractography.

Shortest path algorithms for tractography are useful for quantifying structural
brain connectivity between regions of interest (ROIs), as needed for structural
brain connectivity graphs. Due to low resolution and a low signal-to-noise ratio,
one cannot find connections with high precision. Quantification and interpreta-
tion of the uncertainty of solutions is thus an important problem [18]. We use
probabilistic numerics [12] both to estimate connectivity in the form of tracts
connecting ROIs, and to quantify and visualize the tracts and their uncertainty.

We apply a recent algorithm [12] to infer a distribution of possible solutions
to shortest path problems in tractography. This distribution is represented as
a Gaussian Process (GP) over the solution to an ordinary differential equation
(ODE). GPs offer novel ways to quantify and visualize uncertainty arising from
the numerical computation, and allow marginalization over a space of feasible
solutions. This has two strong advantages: 1) the inclusion of quantified numer-
ical uncertainty into the final tractography result gives a more honest view of
the accuracy of the algorithm; and 2) visualizing the uncertainty emphasizes the
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fact that the shortest paths solutions found are not real fibers in the brain, but
mathematical abstractions of probable connectivity.

Contribution and Organization. In Sec. 1.1 we provide a brief overview of
tractography. We then present the suggested algorithm for tractography based
on a probabilistic numerical solution to the ODEs arising when a Riemannian
metric is estimated from the diffusion tensors (Sec. 2). This gives a distribution
of possible shortest paths in the form of a GP. We then show new visualization
techniques emerging from the availability of the uncertainty of the GP solution
(Sec. 3). Finally, the same section provides results from a quantitative analy-
sis demonstrating that the adjoint metric [8] combined with GP ODE solvers
produces shortest paths matching best to expert annotations compared to state-
of-the-art in shortest path tractography.

1.1 Background and Related Work

Current tractography methods are either fiber tracking or shortest path methods.
Fiber tracking methods greedily trace the most probable path in any di-

rection from a chosen seed until a stopping criterion is met. Deterministic fiber
tracking algorithms [2] trace paths by following a non-stochastic rule, while prob-
abilistic algorithms [15] randomly sample different directions in each step and
continue forward from the best one(s).

While popular, these methods suffer from two problems. 1) Exploratory track-
ing methods continue tracing out a path until the algorithm no longer knows
where to go. Because of this, many tracking algorithms either get lost in low-
connected areas or in areas with crossing fibers. 2) Voxels near the starting region
are explored more thoroughly than voxels far away. Some parts of the brain can,
thus, be under-explored. This not only introduces a bias towards paths close to
the starting region, but may also have the effect that the optimal path is never
explored. This is particularly important when tractography is used to generate
structural connectivity networks between ROIs for population studies of brain
networks. Weak connections will be far less reliably estimated than strong ones,
meaning that any graph analysis performed on the resulting network is biased
towards finding differences in strong connections.

Shortest path methods tackle these problems by specifically computing
connections between ROIs rather than connections from a seed. To derive effi-
cient algorithms, optimal connections are often defined as shortest paths under
a Riemannian metric, which is inversely proportional to the local diffusion ten-
sor [13,14]. This way, local steps of short length correspond to local steps of large
diffusion. While multiple shortest paths might exist between two given voxels,
only one solution is obtained. Hence, many voxels are considered (cf. Fig. 3).
In more detail, from the diffusion tensor Di at voxel i, a local distance measure
dist2(a, b) = αi(a−b)ᵀD−1

i (a−b) is defined. Here αi is a per-voxel scaling factor,
where most commonly αi = 1 [13,14]. Hao et al. [11] argue that a per-voxel scal-
ing is needed and provide a numerical scheme for computing αi. Fuster et al. [8]
show that shortest paths only correspond to free Brownian motion under the
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implied Riemannian metric when αi = detDi. This is called the adjoint metric.
We investigate this choice further in the empirical evaluation (Sec. 3).

Discrete shortest path methods construct a graph with vertices corre-
sponding to voxel positions, edges between neighboring voxels, and edge length
defined according to the local distance measure. Shortest paths can then be
found either using Dijkstra’s algorithm [14] or fast marching methods [16]. This
is computationally efficient, but suffers from discretization errors as the shortest
paths are restricted to go through the voxels.

Continuous shortest path methods smoothly interpolate the per-voxel
metric tensors Mi = αiD

−1
i to form a continuous metric space. The shortest

path from a to b can then be found by solving the following system of ODEs [13]

c′′(t) = −1

2
M−1(c(t))

[
∂ vecM(c(t))

∂c(t)

]ᵀ
[c′(t)⊗ c′(t)]

=: f(c(t), c′(t)), with c(0) = a, c(1) = b,

(1)

where vecM ∈ R
9 stacks the columns of M and ⊗ is the Kronecker product.

The solution is a continuous curve c : [0, 1] → R3, so discretization issues are
avoided. Unlike discrete methods, the solution found by the numerical solver
might only provide a locally optimal path. This concern, along with their ease
of implementation, has made discrete methods the most common solution in
shortest path tractography [8, 11, 14, 16].

Non-trivial ODEs such as (1) cannot be solved analytically. Traditional nu-
merical algorithms return a point estimate in the solution space of all curves
agreeing with the finitely many evaluation points of the ODE. This might lead
to the impression that this is the true solution rather than an uncertain approx-
imation. GP ODE solvers return a more accurate picture in this regard.

2 Methodology

We propose a probabilistic continuous shortest path tractography algorithm.
Similarly to Lenglet et al. [13] we form a continuous Riemannian metric through
trilinear interpolation of the metric tensors given at voxel locations. We then
provide a method for solving Eq. (1) numerically which gives explicit estimates
of the uncertainty of the solution.

2.1 Probabilistic ODE Solvers

The central idea in recent work on probabilistic solvers for ODEs is to assign a
prior probability distribution over possible solutions to the ODE, then iteratively
refine it to a posterior distribution by repeatedly evaluating the ODE at test
inputs. For algebraic as well as conceptual reasons [4], GPs are a preferable
choice for the prior distribution. We first review GPs and then discuss their
application in ODE solvers.

Review of GP Regression. A Gaussian Process GP(c;μ, k) [17] is a prob-
ability distribution over real-valued functions c : R �→ R such that any finite re-
striction to function values {c(t1), . . . , c(tN )} has a Gaussian distribution. GPs
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are parameterized by a mean function μ : R �→ R and a covariance function
k : R× R �→ R. GPs are closed under linear transformations; a linear operation
Φ induces a distribution over Φc as GP(Φc;Φμ, ΦkΦᵀ), where Φᵀ denotes appli-
cation of Φ to the left. Given observations (T, Y ) = [(t1, y1), . . . , (tN , yN)]ᵀ of
likelihood N (y;Φc, σ2I), the posterior over c is a GP(c; μ̃, k̃) with

μ̃(t) := μ(t) + k(t, T )Φᵀ(ΦkTTΦ
ᵀ + σ2I)−1(Y − Φμ(T )) (2)

k̃(t, u) := k(t, u)− k(t, T )Φᵀ(ΦkTTΦ
ᵀ + σ2I)−1Φk(T, u), (3)

where (kTT )ij := k(ti, tj) is the covariance matrix of input locations [17, §2.2].

Fig. 1. GP example

Fig. 1 illustrates the concept with a GP
posterior belief GP(c; μ̃, k̃) (green) and its
derivative GP(∂c; ∂μ̃, ∂k̃∂ᵀ) (orange). Bold
lines show posterior mean and filled areas
show point-wise two times the standard devi-
ation. The posterior was generated from 5 ob-
servations (black). Beliefs over multi-output
functions c = [ci(t)], i = 1, . . . , D can be con-
structed through vectorization. If the covari-
ance structure is assumed to factorize between
inputs and outputs

cov(ci(t), cj(u)) = Vij · k(t, u), (4)

then the belief over c can be written as p(c(t)) = GP(c;μc, V ⊗k). (The important
special case V = I amounts to independent GP priors for each dimension of c).
The covariance structure determines the regularity and uncertainty of the curve.

GP ODE Solvers. In [12], Hennig & Hauberg studied a framework, originally
envisioned by Skilling [19], for obtaining a posterior probability distribution p(c)
over the solution c to an ODE like Eq. (1). The general concept was also recently
analyzed by Chkrebtii et al. [4]. It works as follows.

Since differentiation is a linear operation, a GP distribution on c induces a GP
belief on its derivatives, if the mean and kernel functions are sufficiently smooth.
One can now repeatedly construct an estimate c̃(ti) for the true solution c(ti) to
the ODE and use it to construct approximate observations yi = f(c̃(ti), ∂c̃(ti))
of ∂2c(ti). As c̃(ti) is only an approximation to the true solution c(ti), the ob-
servation yi is imprecise up to some error that, in this framework, is estimated
by propagating the current uncertainty over c through the ODE:

At step i, assume a current posterior p(c) = GP(c; μ̃i, k̃i). We construct the
estimates c̃ and ∂c̃ as the current “best guess”, the mean: [c̃, ∂c̃] = [μ̃(ti), ∂μ̃(ti)].
The estimate for the error of this guess is the current marginal variance

cov

(
c̃i(ti)
∂c̃i(ti)

)
=

⎛⎝ k̃i(ti, ti)
∂k̃i(ti,t)

∂t

∣∣∣
t=ti

∂k̃i(t,ti)
∂t

∣∣∣
t=ti

∂2k̃i(t,u)
∂t∂u

∣∣∣
t,u=ti

⎞⎠ =: Σi. (5)

Assuming we have access to upper bounds or other estimates U > ∂f/∂c and
U ′ > ∂f/∂c′ on the gradients of f , we can use Σi to construct an estimate
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for the error on yi as [U,U ′]ᵀΣi[U,U ′] =: Λi, which gives a likelihood function
p(yi | ∂2c(ti)) = N (yi; f(c̃

i, ∂c̃i), Λi). Using (2) and (3), the belief can be updated
to obtain μ̃i+1, k̃i+1, and the process repeats.

GP ODEs for Tractography. For the DTI shortest path problem (1), we
make the following specific choices: For the prior covariance we use the Kronecker
form of (4), with a Gaussian kernel k(ti, tj) = exp

[
−(ti − tj)

2/(2λ2)
]
, which has

one free model parameter, the length scale λ. In contrast to [12], we estimate
both V and λ with a marginal moment matching method instead of evidence
maximization [17, §2.3], which allows for more adaptive solutions. Like [12], we
include boundary conditions analytically in the prior belief as direct observations
of c with vanishing noise, using a regular grid with 2N observations spread over
the domain t = [0, 1]. We initialize the prior mean for the solver from a discrete
shortest path v0 = a, v1, . . . , vN = b, which we pre-process with a GP least-
squares smoother (with a square exponential kernel function, whose parameters
are optimized using evidence maximization [17, §5.3] separately for each output
dimension). This gives a smooth prior mean function for the GP solver.

GP ODE Solutions. The output of the ODE solver is a posterior GP belief
GP(c; μ̃, k̃). The repeated linear extrapolation to construct the c̃(ti) in the GP
solver is structurally very similar to Runge-Kutta methods [10], but does not
afford the strong analytic guarantees of those classic solvers. However, this al-
gorithm, at any point during its runtime, retains a joint, consistent probability
distribution over one locally distinct solution c and all its derivatives (cf. Fig. 1),
from which joint samples (candidate solutions for the ODE) can be drawn. In
contrast, classic solvers only return a single joint point estimate for c, with local
error estimates that do not allow joint sampling.

3 Experiments

Data. Tractography was performed on pre-processed diffusion data of 40 sub-
jects provided as a subsample from the Q3 release of the Human Connectome
Project (HCP) [6, 7, 9, 20]. The pre-processed HCP diffusion data contains 270
diffusion directions distributed equally over 3 shells with b-values = 1000, 2000
and 3000 s/mm2 [20]. DTI tensors for each voxel were computed with dtifit [1].
Segmentation was performed with FAST [22]. The cortico-spinal tract (CST)
used for experiments was obtained from the expert annotated Catani tract at-
las [3]. ROI atlases were constructed in “template space” by overlapping the tract
atlas with regions defined by the Harvard-Oxford cortical and sub-cortical at-
las [5] using the overlap with the brainstem, the hippocampus and the amygdala
for one region, and the overlap with the superior frontal gyrus, the precentral
gyrus and the postcentral gyrus for the second region. The warp fields provided
by HCP were used to warp the ROIs from “template space” to “subject spaces”.

Evaluation. We subsample 250 pairs of points at random from the ROIs
for all 40 subjects and compute the discrete and continuous shortest paths. To
compare the quality of the solutions we compute the set of voxels each path
passes through. Taking the Catani atlas as a reference we measure accuracy
defined as the percentage of voxels which are classified as belonging to the CST
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Fig. 2. Box plot of the evaluation score of different methods under different metrics

Discrete (adjoint) Discrete (inverse) GP ODE (adjoint) GP ODE (inverse)

Fig. 3. Top: Geodesics under the inverse [13,14] and the adjoint metrics [8] in the right
CST. Blue area shows voxels in the Catani atlas which at least one expert considered
to be part of the tract. By considering different endpoints, bifurcating tracts can be
discovered (1st and 3rd figure). Bottom: Density of discrete (left) and continuous
(right) paths using two different metrics. CST of the Catani atlas as defined by at least
one expert as reference (blue). Also see the supplementary material1.

by at least one expert. We evaluate both the standard inverse metric [13,14] and
the adjoint metric [8]. Fig. 2 shows the results for all 40 subjects.

Fig. 3 shows example paths from both algorithms and metrics computed on
a single subject. The supplementary material1 further contain an animation of
samples from the GP solutions. Additionally, by counting the number of discrete
paths going through each voxel, we produce a 3D density of paths. For each GP
posterior we sample several curves, and proceed as in the discrete case. Fig. 3
shows a 2D heat map slice of the 3D density, chosen via principal component
analysis to contain maximal variance.

4 Discussion and Conclusion

We use probabilistic numerics to compute shortest paths for tractography. This
captures the uncertainty inherent in the shortest path computation which can

1 http://probabilistic-numerics.org/ODEs.html

http://probabilistic-numerics.org/ODEs.html
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be used when visualizing the results. Sampling and averaging from the GP pos-
terior allows us to marginalize over its uncertainty. We utilize this to generate
heat maps of path densities. Compared to discrete methods, these heat maps
appear smoother due to marginalization, but also sharper due to the continuous
description of the sampled solutions.

Fig. 3 shows the classic “spaghetti plot” used for visualizing tractography re-
sults. The discrete solutions show tendencies to straight line segments connected
by rather sharp turns which cannot solely be explained by the discretization
error. In general, the continuous solutions bend less drastically, as we would
expect from actual fibers. The figure only shows the mean function of the GP
estimates of the geodesics; the supplements contain an animation of the
uncertainty1. This provides a visualization of the solutions which makes it very
clear that individual paths cannot, and should not, be interpreted as individual
fibers in the brain — a common misinterpretation of “spaghetti plots”.

We introduce a quality measure to compare different methods. First, we com-
pare the standard inverse metric [13, 14] to the recently suggested adjoint met-
ric [8]; empirical results show that the theoretically strong adjoint metric is
consistently better. Secondly, we find that the GP posteriors agree with experts
slightly more often than the discrete solutions. Generally, samples from the pos-
terior score lower than the mean prediction, but this is to be expected since the
Gaussian distribution puts non-zero probability mass everywhere.

A general disadvantage of shortest path tractography is that there will always
be some path connecting any two points, whether it is anatomically there or
not. This can be alleviated to some extent by discarding improbable paths.

Recent work by Wassermann et al. [21] illustrates that GPs form a particularly
useful representation of shortest paths for population studies of brain connectiv-
ity. Our GP solution to the tractography problem lends itself particularly well
to this type of population analysis as it avoids the post-hoc GP fitting used by
Wassermann et al. This will be further investigated in future work.
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Abstract. Mapping the neuronal wiring diagrams in the brain at multiple spatial 
scales has been one of the major brain mapping objectives. Macro-scale medi-
cal imaging modalities such as diffusion tensor imaging (DTI) and meso-scale 
biological imaging such as serial two-photon tomography have emerged as the 
prominent tools to reveal structural connectivity patterns at multiple scales. 
However, a significant gap that whether/how DTI data and microscopic data are 
correlated with each other for the same species of mammalian brains, e.g., 
mouse brains, has been rarely explored. To bridge this knowledge gap, this 
work aims to construct multi-modal mouse brain connectomes via joint model-
ing of macro-scale DTI data and meso-scale neuronal tracing data. Specifically, 
the high-resolution DTI data and its streamline tractography result are mapped 
to the Allen Mouse Brain Atlas, in which the high-density axonal projections 
were already mapped by microscopic serial two-photon tomography. Then, 
multi-modal connectomes were constructed and the multi-view spectral cluster-
ing method is employed to assess consistent and discrepant connectivity pat-
terns across the multi-scale multi-modal connectomes. Experimental results 
demonstrated the importance of fusing multimodal, multi-scale imaging modali-
ties for structural connectivity and connectome mapping.              

Keywords: Multi-scale connectome, DTI, neuron tracer, brain mapping. 

1 Introduction 

Creating structural wiring maps of the brain (or named brain connectome) is believed 
critical in understanding the mind [1, 2]. With the emerging biomedical imaging tech-
niques, mapping structural connection wiring patterns at different scales with relatively 
high resolutions is made possible. For instance, on the macro-scale, with noninvasive 
diffusion tensor imaging (DTI), long-range fiber connections are being studied widely, 
e.g., the ongoing Human Connectome Project (HCP) [3]. On the meso-scale, Allen 
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Mouse Brain Connectivity Atlas released the first meso-scale mouse brain connectivity 
atlas based on neuron tracer and serial two-photon (STP) tomography recently[4]. With 
these new neuroimaging methods, our understanding of the brain has been significantly 
advanced at different scales, e.g., the ongoing Brain Decoding Project (http://brain 
decodingproject.org) is trying to merge data in different scales to unveil secrete of 
memory. 

Essentially, multimodal neuroimaging data across spatial scales tend to provide 
rich complementary information that forms a comprehensive picture to understand the 
same biological question [1]. At the same time, each neuroimaging modality has its 
own limitations in terms of resolutions, quantification, noises, and variability. It is 
likely that the limitations in one modality could be made up by another. For instance, 
DTI is good at mapping global patterns of long-range brain wiring diagrams, but has 
been known to be limited in resolving crossing fibers, sensitive to noises and artifacts, 
possessing limited spatial resolution and etc. In comparison, STP tomography has 
very high spatial resolution and can trace complex axonal connection patterns, but is 
limited in capturing global wiring diagrams (which entails many injection sites) and it 
is very costly and time-consuming. Therefore, it would be much desirable to fuse 
multimodal, multi-scale imaging modalities to gain comprehensive and robust struc-
tural connectivity and connectome mapping. 

Fortunately, with the publicly available data sources of both high-resolution DTI 
data and STP tomography data of mouse brains, both of which can be mapped to the 
same reference atlas, it becomes feasible and desirable to build multi-modal mouse 
brain connectomes via joint modeling of macro-scale DTI data and meso-scale neu-
ronal tracing data and to assess consistent and discrepant connectivity patterns across 
these connectomes. Specifically, we defined the connectome nodes based on the fine-
granularity neuroanatomic regions in the Allen Mouse Brain Atlas (ABA) and the 
connectivity edges based on the connection strengths derived from the DTI or STP 
tomography data. Then we employed a multi-view spectral clustering algorithm to 
group the connectomes into sub-networks, based on which agreements and discrepan-
cies between multi-modal connectomes, and interesting results were obtained. 

2 Method 

2.1 Experimental Materials 

Axonal projection images were downloaded from publicly available Allen Mouse 
Brain Connectivity Atlas (ACA) (http://connectivity.brain-map.org/). Images obtained 
from neuron tracing experiments covering the whole brain of mouse were applied in 
this study. In each experiment, rAAV tracer was injected to certain anatomical region 
of a mouse brain to label the projection from this region to the whole brain (Fig. 1(d)). 
After fixation and dissection, the mouse brain was then sliced (100 μm thick) and 
high resolution image (0.35 µm/pixel) was obtained for each slice with STP tomogra-
phy [5]. Then the images were processed with injection site manually annotated by 
experts and a 3-D image stack was obtained and registered to the 3-D reference atlas 
space for analysis. It should be noted that, for the purpose of efficiency, all the 1378 
injection sites were selected on the right hemisphere of mouse brain. 
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Meanwhile, high-resolution DTI data of an adult mouse brain was downloaded 
from the publicly available Mouse BIRN Data Repository and applied for this study. 
The data acquisition parameters and preprocessing pipeline were detailed in [6]. DTI 
data was aligned to the 3-D reference atlas in Allen Mouse Brain Atlas (ABA) via 
FSL FLIRT [7] (Fig. 1(c)). Streamline fiber tractography was performed using DTI 
Studio [8] and cortical surface was reconstructed for the purpose of visualization [9].  

To analyze large-scale mouse brain connectomes in different modalities, we adopt-
ed the annotation of mouse brain’s anatomical structure downloaded from ABA 
(http://mouse.brain-map.org/). As shown in Fig. 1(a), these brain regions were manu-
ally annotated by experts in the 3-D reference atlas of ABA. Notably, the original 
annotation file did not differentiate brain regions by hemisphere. To analyze cross 
hemisphere connections, we manually selected 159 brain regions and separated them 
by hemisphere, resulting in 3 groups of brain regions: left hemisphere, right hemi-
sphere, and cross hemisphere. Finally, 471 regions of interest (ROIs) were applied for 
the construction and analysis of mouse brain connectome, as shown in Fig. 1(b). 

 

Fig. 1. (a) Fine-granularity mouse brain region annotation in ABA. 14 slices were selected for 
visualization. (b) Centers of all the regions we used in our analysis. Annotated regions are 
color-coded such that regions in the left hemisphere are blue while regions in the right hemi-
sphere are red. (c) Joint visualization of 3-D reference atlas (left) and registered DTI-derived 
fiber tracts (right). (d) Visualization of injection sites in the ACA. 

2.2 Cross-Validation of DTI-Derived Tracts and Neuron Traces 

To quantitatively compare DTI-derived tracts and neuron traces, we adopted the 
Hausdorff distance [10] to measure the distance or discrepancy between streamlines 
of DTI-derived tracts and the neuron tracers, which were all aligned into the ABA 
space. Specifically, given a streamline F represented by a set of connected vertices 
and a trace T represented by a set of voxels, for each voxels in T, its shortest distance 
to F will be calculated; and the Hausdorff distance is defined as the largest of the 
shortest distances to F of all voxels in T: 

 })}),|min({|max({),( TVFPPVDDTFHausdorff ikkii ∈∈−==  (1) 

where Vi and Pk are the 3D coordinates of trace voxels and fiber vertices. 
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2.3 Construct Mouse Brain Connectomes 

To compare large-scale mouse brain connectomes in different DTI and STP tomogra-
phy modalities, the connections between ROIs introduced in section 2.1 were com-
puted. As for DTI-based tracts, the fiber streamlines going through the brain volume 
of each ROI were extracted as the projection from/to the ROI. The number of fibers 
connecting each pair of ROIs was then counted as the connection strength between 
ROIs. To facilitate the quantitative analysis, the connection strength has been normal-
ized to 1 such that values larger than 1000 will be set to 1 and the rest will be divided 
by 1000. The resulted connection matrix is shown in Fig. 2(a). 

As for neuron tracer data, for each experiment, the density of projection in each 
ROI was applied to measure the connection strength. As rAVV tracer traces neurons 
anterogradely, for each tracing experiment, a vector has been generated indicating the 
connection strength from the injection to all the ROIs. And the connectivity matrix 
was constructed such that ith row is obtained by averaging the vectors corresponding 
to experiments with neuron tracer injected to ROI i. However, as all the injection sites 
were selected on the right hemisphere of the brain, the connection from the left hemi-
sphere to the rest of the brain is largely missing (Fig. 2 (b)). By assuming that 
connectome in mouse brain is symmetric (largely true based on the observation of 
DTI data and the known symmetry of mouse brains), we mapped the connection from 
the left hemisphere to the right hemisphere (Fig. 2 (c)). 

 

Fig. 2. Mouse brain’s connectivity matrices. Each matrix was segmented by brain regions: from 
left to right, top to bottom are left hemisphere ROIs, across hemisphere ROIs, right hemisphere 
ROIs, respectively. Contrast has been enhanced for the purpose of visualization. (a) DTI de-
rived brain connectome. (b)-(d) Neuron tracer derived brain connectomes. (b) Original connec-
tivity matrix. (c) Symmetrically mapped connectome. (d) Symmetrified connectome. 

2.4 Assess Mouse Brain Connectomes 

The normalized-cut spectral clustering was applied to obtain sub-networks of the 
brain [11]. Basically, the salient eigenvectors of the connectivity matrix was applied 
to bi-partition the graph iteratively and the number of clusters will be determined by 
the threshold set for normalized cut. However, to solve the eigenvector problem, a 
matrix needs to be symmetric, which is not true for the connectivity matrix based on 
neuron tracer. Thus, we symmetrify the matrix by adding it to its transpose. As shown 
in Fig. 2(d), the symmetrified connectivity matrix does not change much by visual 
inspection. Meanwhile, a multi-view spectral clustering procedure has also been  
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applied to infer common clusters for these two modalities [11]. Specifically, the con-
nectivity matrix will be projected to the eigenspace of the matrix of the other modality 
to maximize the agreement between them. By doing so, the common part of two con-
nectivity matrices will be enhanced, while the discrepant part will be weakened. Also, 
the common clusters of two could be achieved. 

3 Result 

3.1 Comparison of DTI-Based Tracts and Neuron Traces 

We calculated the Hausdorff distances between forty two thousands DTI-based tracts 
obtained by streamline tractography and 1378 neuron traces in the same ABA space. 
All of the DTI-based tracts are visualized in Fig. 3(a) and are color-coded by their 
minimum Hausdorff distance to the neuron traces. As all of the injection sites were 
picked on the right hemisphere, DTI-based tracts in the left hemisphere have longer 
Hausdorff distance in comparison with those in the right hemisphere. On average, the 
Hausdorff distance for the DTI-based tracts that projected from/to the right hemi-
sphere is 0.68±0.43 mm, which is relatively small considering the size of mouse 
brain. Considering possible misalignment and false elimination of trace foreground 
with selected threshold, we assumed when Hausdorff distance is less than 1mm, the 
DTI-based tract has correspondence to the neuron trace. Two neuron tracer experi-
ments and the corresponding DTI-based tracts were visualized in Fig. 3(b)-(c). It can 
be seen that DTI-based tracts truly possess correspondence to the real neuronal pro-
jections, which validates that fibers derived from DTI offer reliable information of 
axonal connection and could be applied in the study of brain connectome. 

 

Fig. 3. (a) Visualization of all DTI-based fiber tracts. Tracts are color-coded by their minimum 
Hausdorff distances to neuron traces. (b)-(c) Visualization of two examples of neuron tracer 
experiments and the corresponding DTI-based tracts. Locations of injection site of neuron 
tracer in each experiment are highlighted by pink arrows. 

Meanwhile, we noticed that when computing large-scale whole brain connectomes 
via DTI-based tracts, some brain regions are rarely connected. These regions were 
shown in Fig. 4(a). This might be partially because DTI could only detect axonal fiber 
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when big bundle of axons orient in the same direction (e.g. in white matter). As white 
matter volume is relatively small in mouse brain, when some ROIs do not have direct 
connection with white matter due to their nature or the possible misalignment be-
tween DTI data and 3-D reference atlas, connections cannot be identified by DTI-
based tracts for these ROIs. We then obtained the common connections and unique 
connections obtained by two multi-scale modalities (Fig. 4(b)-(d)). It can be seen in 
Fig. 4(b) that those two multi-scale modalities inferred a large number of common 
connections, which to some extent cross-validates each other. However, by calculat-
ing the average Euclidean distance between connected regions, we found that the 
connection lengths of common connections (2.76 mm) are relatively shorter than 
unique connections. Meanwhile, connections identified by DTI only are much longer 
(4.4 mm) in comparison. This result suggests that both multi-scale modalities work 
well in identifying short connections. Also, the long-range connections generated by 
DTI tractography may be not reliable and some may be missing. However, as the 
neuron tracer signal will degenerate when travelling long distance and the signal 
strength will be impacted by the dose of tracers injected, it is equally possible that 
some long distance connections are missed due to the weak signal in neuron tracer 
experiments. Thus, it will be very important to compare the results in different modal-
ities to achieve better understanding of the structural wiring diagram of the brain.  

 

Fig. 4. (a) Visualization of brain locations of regions that have weak DTI-derived connections. 
(b)-(d) Visualization of common and unique connections between DTI and neuron tracer. Con-
nections are color-coded and scaled by connection strength accordingly (color bar on right). 

3.2 Joint Assessment of Multimodal Mouse Brain Connectomes 

The multi-scale brain connectomes derived from different modalities were firstly 
assessed by graphical measurements. Notably, when analyzing DTI-derived brain 
connectome, we excluded those ROIs that have no connections as they can cause 
error in some measurements. As shown in Table 1, fewer connections have been iden-
tified by DTI-based tracts, which results in a smaller average degree and density. To 
measure the graph topology, the average clustering coefficients and average path 
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length were computed and compared with the corresponding randomized graphs [12]. 
It is evident that the overall graph topological structures of these two connectomes by 
different modalities are similar and both of them are small-world networks. 

Table 1. Graph-theoretic measurements of multimodal connectomes 

 
average 
degree 

density 
average clustering coefficient average path length 
original randomized o/r original randomized o/r 

DTI 88 0.25 0.71 0.32 2.18 1.83 1.67 1.09 

tracer 137 0.3 0.69 0.32 2.13 1.74 1.68 1.04 

We then compared the sub-networks obtained by spectral clustering algorithm. The 
results are shown in Fig. 5. For those ROIs with no connection by DTI-derived tracts, 
we manually labeled them as a class when performing clustering based on DTI-
derived connectivity matrix or jointly with both matrices. As highlighted by yellow 
and blue arrows, after clustering, some common clusters of two modalities were clear-
ly identified. As highlighted by red arrows, both modalities separated cerebellum 
from other parts of the brain. By using multi-view spectral clustering, all the common 
clusters inferred by two modalities could be recognized. More analysis will be con-
ducted to further understand these clusters. 

 

Fig. 5. Connectivity matrices based on DTI-based tracts (left column) and neuron tracers (mid-
dle column) were re-arranged by clusters with each cluster highlighted by green box according-
ly. Clusters were visualized in the mouse brain with each cluster color-coded by certain color 
(right column). (a) Clusters obtained based on DTI-based tracts; (b) Clusters obtained based on 
neuron tracers; (c) Clusters obtained by both with multi-view spectral clustering. 
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4 Discussion and Conclusion 

This paper presents a novel computational framework to construct multi-modal brain 
connectomes via joint modeling of macro-scale DTI data and meso-scale neuronal 
tracing data. The publicly available data sources of DTI data and STP tomography 
data of mouse brains were mapped to the same Allen mouse brain atlas for the con-
struction of multi-modal connectomes. Then consistent and discrepant connectivity 
patterns across these connectomes, as well as the graph theoretic measurements, were 
assessed. Our results quantitatively demonstrated that both DTI and neurnal tracing 
are valuable complementary tools for structural connectivity and connectome map-
ping, and particularly the fusion of these multimodal, multi-scale imaging modalities 
has a potential to create synergy to facilitate connectome-related research.  
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Abstract. In diffusion MRI (dMRI), determining an appropriate sampling
scheme is crucial for acquiring the maximal amount of information for data re-
construction and analysis using the minimal amount of time. For single-shell ac-
quisition, uniform sampling without directional preference is usually favored. To
achieve this, a commonly used approach is the Electrostatic Energy Minimiza-
tion (EEM) method introduced in dMRI by Jones et al. However, the electrostatic
energy formulation in EEM is not directly related to the goal of optimal sampling-
scheme design, i.e., achieving large angular separation between sampling points.
A mathematically more natural approach is to consider the Spherical Code (SC)
formulation, which aims to achieve uniform sampling by maximizing the mini-
mal angular difference between sampling points on the unit sphere. Although SC
is well studied in the mathematical literature, its current formulation is limited
to a single shell and is not applicable to multiple shells. Moreover, SC, or more
precisely continuous SC (CSC), currently can only be applied on the continuous
unit sphere and hence cannot be used in situations where one or several subsets
of sampling points need to be determined from an existing sampling scheme. In
this case, discrete SC (DSC) is required. In this paper, we propose novel DSC
and CSC methods for designing uniform single-/multi-shell sampling schemes.
The DSC and CSC formulations are solved respectively by Mixed Integer Linear
Programming (MILP) and a gradient descent approach. A fast greedy incremen-
tal solution is also provided for both DSC and CSC. To our knowledge, this is the
first work to use SC formulation for designing sampling schemes in dMRI. Ex-
perimental results indicate that our methods obtain larger angular separation and
better rotational invariance than the generalized EEM (gEEM) method currently
used in the Human Connectome Project (HCP).

1 Introduction

Diffusion MRI (dMRI) is a unique technique for exploring the underlying tissue prop-
erties of white matter in the human brain. A central problem in dMRI is to reconstruct
the MR signal attenuation E(q) from a limited number of measurements in the q-space
and to estimate some meaningful quantities such as the Ensemble Average Propagator
(EAP) and the Orientation Distribution Function (ODF). An effective q-space sampling
scheme is critical for the acquisition of maximum information with minimum time cost.
Since white matter fascicles traverse the brain in a wide range of directions, a uniform
sampling scheme with no directional preference is often preferred [1].
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In the last decade, two approaches have been widely used for designing sampling
schemes for single-shell acquisition. The first approach involves tessellation of a unit
sphere using basic shapes such as the icosahedron. Using such a spherical tessellation
approach, however, one is unable to generate a sampling scheme with an arbitrary num-
ber of sample points. The second approach is the Electrostatic Energy Minimization
(EEM) method, which was introduced in dMRI by Jones et al. [1]. Some best known
solutions to the EEM problem have been collected in CAMINO [2]. EEM was also
recently generalized for multi-shell sampling [3,4] with staggered samples in different
shells and has been adopted in the Human Connectome Project (HCP) [5]. However, the
electrostatic energy formulation in EEM is not directly related to the goal of sampling
scheme design, which is to maximize the angular separation between sampling points,
and it is still unknown why electrostatic energy matters in dMRI reconstruction.

A good sampling scheme should have large angular separation such that the recon-
struction has large angular resolution and good rotational invariance. Thus a mathemati-
cally more natural way for sampling scheme design is to maximize the minimal angular
difference between sampling points, i.e., covering radius, on a unit sphere. Determining
such point configuration is essentially the Spherical Code (SC) problem1, and there are
a collection of best known solutions for the SC problem in S2 [6]2. Although SC is well
studied in the mathematical literature, its current formulation is limited to a single shell
and is not applicable to multiple shells. Moreover, SC, or more precisely continuous SC
(CSC), currently can only be applied on the continuous unit sphere and hence cannot
be used in situations where several subsets of sampling points need to be determined
from an existing sampling scheme. In this case, discrete SC (DSC) is required, where
the solution space is discrete and determined by a set of predetermined sampling points.

In this paper, we propose novel CSC and DSC methods for designing single-/multi-
shell sampling schemes. We propose a greedy incremental estimation for rapid genera-
tion of solutions to the DSC and CSC problems, a Mixed Integer Linear Programming
(MILP) method to solve the DSC problem, and a Riemannian gradient descent method
to solve the CSC problem. Experimental results indicate that the proposed methods
are capable of yielding larger covering radius and better rotational invariance than the
state-of-the-art generalized EEM (gEEM) method currently used in the HCP [4,5].

2 Designing Sampling Scheme Using Spherical Code

2.1 Discrete Spherical Code (DSC) and Continuous Spherical Code (CSC)

For single-shell sampling, the SC problem is to determine a set of K points {ui}Ki=1

such that the minimal distance between these points is maximized, i.e.,

max
{ui∈D}K

i=1

d({ui}Ki=1), d({ui}Ki=1) = min
i
=j

arccos |uT
i uj |, (1)

where d({ui}Ki=1) is the minimal angular distance, or called covering radius, of point
set {ui}Ki=1, and D ⊆ S

2 is the solution domain. If D = S
2, Eq. (1) is a CSC problem

1 http://mathworld.wolfram.com/SphericalCode.html
2 http://neilsloane.com/grass/dim3/

http://mathworld.wolfram.com/SphericalCode.html
http://neilsloane.com/grass/dim3/
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for selecting K points from throughout the unit sphere S2. If D = {un}Nn=1, a set of
N predetermined points on S2, then Eq. (1) is a DSC problem for selecting K from
N points. We use the absolute value of uT

i uj in Eq. (1) because antipodal symmetric
samples have the same role in diffusion MRI data reconstruction. Note that the original
SC in mathematics only means CSC, while in this paper it is the first time that we
propose both CSC and DSC and generalize them for multi-shell case for designing
sampling scheme in dMRI.

For multi-shell sampling, the SC problem is to find a set of points {us,i} by solving

max
{us,i∈D}

wS−1
S∑

s=1

d({us,i}Ks

i=1) + (1− w)d({us,i}i=1,...,Ks;s=1,...,S), (2)

where us,i is the i-th point on the s-th shell, S is the number of shells, Ks is the
number of points on the s-th shell, and w is a weighting factor for balancing two terms.
In Eq. (2), the first term is the mean covering radius of the S shells, and the second term
is the covering radius for a combined shell containing all points from the S shells. Due
to the second term, the estimated samples in different shell are staggered.

2.2 Greedy Incremental Solver

Similarly to EEM [7] and gEEM [3,4], we propose a greedy solver for incremental
estimation of sampling schemes. Incremental estimation can be applied for both Eq. (1)
and Eq. (2) when solving a DSC problem, i.e., when D = {ui}Ni=1. In step k, we
estimate one point u ∈ D that maximizes the cost function based on the k − 1 points
estimated in previous iterations. This incremental estimation technique can be applied
to generate an approximate solution to a CSC problem, i.e., D = S2, by approximating
S2 using a large number of uniformly distributed points. In practice, 20481 points from
a 7 order tessellation of the icosahedron are used. Incremental estimation can generate
reasonable solutions in seconds.

2.3 DSC via Mixed Integer Linear Programming (MILP)

Instead of incrementally estimating samples one by one, Mixed Integer Linear Pro-
gramming (MILP) can be used to estimate samples simultaneously. For D = {un}Nn=1,
Eq. (1) can be solved using MILP in Eq. (3a) as follows:

max
y,{hi}Ni=1

y (3a)

s.t. arccos(|uT
i uj |) ≥ y − (2− hi − hj)M, ∀i > j (3b)

dLB ≤ y ≤ dUB(2K) (3c)
N∑
i=1

hi = K; hi = 0, 1, ∀i (3d)

where hi = 1 indicates that ui is selected as one of the K points, dLB is the lower
bound of the covering radius, which can be set to 0 or the covering radius from an
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existing sampling scheme, dUB(2K) = arccos

√
4− csc2

(
πK

6(K−1)

)
is the theoretical

upper bound of the covering radius for 2K points on S2 [8], and M is the difference
between the maximal and minimal distances of any two points ui,uj ∈ D, i = j. Note
that 1) after solving MILP, the solution of y, denoted as y∗, is the covering radius of the
selected K samples; 2) the constraint in Eq. (3b) only takes effect when hi = hj = 1,
and is automatically satisfied when hi = 0 or hj = 0, because the chosen M is large
enough such that arccos(|uT

i uj |) ≥ 0 ≥ y∗ − (2 − hi − hj)M when hi + hj ≤ 1.
Similarly, Eq. (2) can be solved using MILP in Eq. (4a) as follows:

max
{ys},{hs,i}

wS−1
S∑

s=1

ys + (1− w)y0 (4a)

s.t. arccos(|uT
i uj |) ≥ ys − (2− hs,i − hs,j)M, ∀s, i > j (4b)

arccos(|uT
i uj |) ≥ y0 − (2− hs,i − hs′,j)M, ∀s, s′, i > j (4c)

dLB,s ≤ ys ≤ dUB(2Ks), ∀s; dLB,0 ≤ y0 ≤ dUB(2
S∑

i=1

Ks) (4d)

N∑
i=1

hs,i = Ks, ∀s;
S∑

s=1

hs,i ≤ 1, ∀i; hs,i = 0, 1, ∀i, s (4e)

where hs,i = 1 indicates that ui is selected as one of the Ks points on the s-th shell,
dLB,s and dUB(2Ks) are the lower and upper bounds of the covering radius on the s-th
shell, and dLB,0 and dUB(2

∑S
i=1 Ks) are the lower and upper bounds for the combined

shell with all points. Constraints in Eq. (4b) and Eq. (4c) are respectively for the first
and second terms in Eq. (4a).

∑S
s=1 hs,i ≤ 1 makes ui to be selected at most one shell

such that the estimated samples are staggered in different shells.
MILP problem can be solved using branch and bound method which iteratively

solves the relaxed LP program. In our implementation, we solve Eq. (3a) and Eq. (4a)
using GUROBI [9], which can obtain the global solution or at least a reasonable solu-
tion within minutes for DSC. In practice, we progressively increase the lower bound dLB

based on the solutions estimated in previous iterations to find a better feasible solution
within 10 minutes which is good enough in experiments.

2.4 CSC via Riemannian Gradient Descent

When D = S
2, Eq. (1) can be solved using a Riemannian gradient descent method. For

each iteration, we detect the pairs of points {(up0 ,up1)} whose angular differences are
equal to the minimal angular difference computed from all point pairs. Noting that the
Euclidean gradient of function d({uj}Kj=1) is

∂d({uj}Kj=1)

∂ui
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
−
∑

p1

1√
1−(uT

p0
up1 )

2
sign(uT

p0up1)up1 if i = p0

−
∑

p0

1√
1−(uT

p0
up1)2

sign(uT
p0up1)up0 if i = p1

0 if i 
∈ {p0, p1}

(5)

the Riemannian gradient for ui can be computed as [10]

∇uid({uj}) =
∂d({uj})

∂ui
−

(
uT
i
∂d({uj})

∂ui

)
ui. (6)
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Algorithm 1. CSC via Riemannian Gradient Descent

Input: Initialization {us,i}Ks
i=1, s = 1, ..., S.

Output: Refined {us,i}Ks
i=1, s = 1, ..., S.

k = 0, t0 = 0.1, determine the set of point pairs P (k) = {(ups0
,ups1

)}Ss=0 that have
minimal distances in S + 1 shells;
repeat

Record: P (k)
0 ← P (k);

repeat
Calculate Riemannian gradient vs,i,∀s, i, using point-pair set P (k)

0 and Eq. (6) ;
if ∀s, i, ‖vs,i‖ ≤ ε then break;
Choose step size t ∈ (0, t0] via inexact line search;

u
(k+1)
s,i = Exp

u
(k)
s,i

(
t

vs,i
maxs,i{‖vs,i‖}

)
, ∀s, i ;

Detect updated set P (k+1) based on {u(k+1)
s,i };

if P (k+1) 
⊆ P
(k)
0 then P

(k)
0 ← P

(k)
0 ∪ P (k+1);

until P (k+1) ⊆ P
(k)
0 ;

k ← k + 1;
until Cost function does not change;

Then the gradient descent update is performed using

u
(k+1)
i = Exp

u
(k)
i

(
t

∇uid({uj})
maxi{‖∇uid({uj})‖}

)
, Expu(v) = u cos ‖v‖+ v

‖v‖ sin ‖v‖, (7)

where the largest norm of gradient vectors is used for normalization of all gradient
vectors, Expu(v) is the exponential map [10] that maps the gradient vector v from the
tangent space of the unit sphere at u to the unit sphere itself. Note that Riemannian
gradient descent is performed on all {ui}Ki=1 simultaneously. For the multi-shell case,
point pairs {(ups

0
,ups

1
)} with minimal distances are detected from all S shells and the

combined shell with all points. Then similar gradient descent is performed, taking the
gradient of Eq. (4a) as a summation of gradients from S + 1 shells.

One important issue of the proposed Riemannian gradient descent method is that,
after each gradient descent, the set of point pairs {(ups

0
,ups

1
)} with minimal distances

may change, and the cost function and its gradient, which depends on these pairs, may
also change. To solve this issue, in each iteration, we compare the updated set of point
pairs with the previous pair set before the one step gradient descent, and if the updated
pair set has some new pairs which are not in the previous pair set, then we re-perform
the gradient descent using the joint set of these two sets. See Algorithm 1 for imple-
mentation details. The algorithm is efficient and converges in seconds.

Since the optimization problem is highly non-convex, a good initialization is impor-
tant for a good solution. Initialization can be set as a set of random points, the solution
given by incremental estimation, or the solution given by MILP. Note that when using
MILP for the initialization, solving the CSC becomes slow when a large number of
points are involved. In practice, we apply MILP to 321 points obtained from spheri-
cal tessellation and use the MILP solution as the initialization of the gradient descent
method for CSC.
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Table 1. Covering radii of multi-shell sampling schemes with number of samples 28 × 3 and
90× 3 generated by various methods. Note that gEEM results for 90× 3 are not available in [4],
and EEM results from CAMINO are individually for each single shell (the scheme with 270
samples is not available).

Shell 1 (28) Shell 2 (28) Shell 3 (28) Combined (28× 3)
gEEM [4] 22.2◦ 22.2◦ 22.0◦ 13.2◦

Incr. gEEM [4] 19.2◦ 19.7◦ 19.3◦ 4.7◦

Incr. CSC (N = 20481) 21.3◦ 19.3◦ 21.1◦ 10.5◦

MILP (N = 321) 23.8◦ 23.8◦ 24.3◦ 13.3◦

Incr. CSC + Grad. Desc. 24.3◦ 23.5◦ 24.2◦ 10.9◦

MILP + Grad. Desc. 25.7◦ 25.7◦ 25.4◦ 13.6◦

EEM (CAMINO) [1,2] 25.7◦ 25.7◦ 25.7◦ 15.6◦

Shell 1 (90) Shell 2 (90) Shell 3 (90) Combined (90× 3)
Incr. gEEM [4] 10.8◦ 10.3◦ 10.5◦ 2.4◦

Incr. CSC (N = 20481) 10.4◦ 9.7◦ 10.4◦ 4.6◦

MILP (N = 321) 13.3◦ 13.5◦ 13.3◦ 7.9◦

Incr. CSC + Grad. Desc. 13.0◦ 13.5◦ 12.8◦ 5.2◦

MILP + Grad. Desc. 14.6◦ 15.0◦ 14.8◦ 7.5◦

EEM (CAMINO) [1,2] 15.1◦ 15.1◦ 15.1◦ -

3 Experiments

Separation of Sampling Schemes. We evaluated the effectiveness of the proposed
multi-shell MILP-based DSC method in Eq. (4a) with w = 1, by gauging whether it
can separate points on a set of samples into several subsets, keeping the points in each
subset as uniform as possible. We used the subsetpoints program in CAMINO
[1,2] for comparison, which performs the same task by using simulated annealing. For
this evaluation, we randomly mixed two sets of uniform points, one set consisting of 81
points generated by spherical tessellation and the other set consisting of 60 points from
CAMINO generated by EEM. Separation of these 141 points into subsets respectively
with 81 and 60 samples should ideally give results that match the original uniform point
sets. Our method, which uses MILP, gave results that exactly match the original point
sets within 5 seconds. subsetpoints in CAMINO saves the result every hour when
it runs. It gave two incorrect points in each subset after running for 2 hours, 7 incorrect
points after 8 hours, and the correct result after 9 hours. Although the correct result had
been obtained, the program continued to run for hours until the simulated annealing
temperature was finally small enough.

Multi-shell Angular Separation. We evaluated the effectiveness of the proposed multi-
shell DSC (MILP) and CSC (incremental estimation) methods in generating a three
shell sampling scheme, each shell consisting of K sampling points. We tested two
cases: K = 28 and K = 90. These two cases were used such that we could com-
pare our results with those given by gEEM and incremental gEEM [4]; results for 28
points per shell were reported in [4] and results for 90 points per shell were utilized in
the HCP. MILP was used to select K × 3 points from 321 points given by spherical
tessellation. In incremental CSC, the selection was carried out using 20481 uniformly
distributed points. Gradient descent was then used to refine these results. In Table 1, the
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Incr. gEEM (4.7◦) Incr. CSC (10.5◦) MILP + Grad. Desc. (13.6◦)

Fig. 1. Multi-shell sampling schemes with 28 × 3 samples generated by three methods and their
combined covering radii showed in Table 1. The colors differentiate the sampling points from the
three shells.

covering radii, i.e., the minimal angular differences, of these results were compared with
those given by gEEM and incremental gEEM [4]. The multi-shell results of gEEM with
K = 28 were extracted from [4]. The results of incremental gEEM with K = 28, 90,
which have been used in HCP, were obtained from the website3 created for [4]. The
covering radii for single-shell results given by EEM in CAMINO are shown for ref-
erence. Fig. 1 visualizes the results with K = 28 generated by incremental gEEM,
incremental CSC, and gradient descent with MILP initialization. Table 1 and Fig. 1
demonstrate clearly that the proposed MILP method and incremental CSC estimation
yield larger covering radii than gEEM and incremental gEEM in all three shells and
the combined shell containing all points. The proposed gradient descent method with
MILP initialization yields the best angular separation in the multi-shell case, and its re-
sults are comparable with the single-shell results given by EEM in CAMINO, although
the optimization was done with respect to all shells.

Rotational Invariance in Reconstruction. We tested the multi-shell sampling schemes
with 28 × 3 samples in Table 1 on whether they give consistent reconstruction re-
sults for the synthetic signals generated by rotated models. A mixture of tensor model
was used: E(qu) = 0.5 exp(−q2uTD1u) + 0.5 exp(−q2uTD2u), where b = q2 =
1000, 2000, 3000 s/mm2, and the two tensors D1, D2 have the same eigenvalues
[1.7, 0.2, 0.2]× 10−3 mm2/s and have a crossing angle of 60◦. This signal generation
is repeated 20481 times by rotating the model according to 20481 uniformly distributed
directions generated by spherical tessellation. We performed Spherical Polar Fourier
Imaging (SPFI) with spherical order 6 and radial order 2 [11] to estimate the EAP pro-
files with radius of 15μm, detected the peaks of the EAP profiles, and compared the
detected peaks with the ground-truth fiber directions in these 20481 tests. The means
and standard deviations are shown in Table 2. Note that we have omitted the results
for gEEM because the algorithm is not publicly available. It is clear from the table that
the proposed methods yield significantly lower mean angular differences (paired t-test,
p < 0.001) with lower standard deviations than incremental gEEM. Similar to Table 1,
gradient descent with MILP initialization gives the best result.

3 http://www.emmanuelcaruyer.com/q-space-sampling.php

http://www.emmanuelcaruyer.com/q-space-sampling.php
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Table 2. Angular differences between estimated and ground-truth fiber directions for the sam-
pling schemes generated by different methods

Incr. CSC Incr. CSC + Grad. Desc. MILP MILP + Grad. Desc. Incr. gEEM
Angular

1.44◦ ± 0.69◦ 1.40◦ ± 0.69◦ 1.30◦ ± 0.68◦ 1.29◦ ± 0.68◦ 1.72◦ ± 0.79◦
Difference

4 Conclusion

To our knowledge, this is the first work on designing single-/multi-shell sampling
schemes using continuous spherical code (CSC) and discrete spherical code (DSC) for-
mulations. We propose an incremental estimation method for both CSC and DSC, a
mixed-integer linear programming (MILP) method for DSC, and a Riemannian gradi-
ent descent method for CSC. The experimental results showed that, compared with the
gEEM method and its incremental variant that has been used in the HCP, the sampling
schemes by the proposed gradient descent with MILP initialization and incremental
CSC yield larger covering radius and better rotation invariance.
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Abstract. Quantitative and qualitative analysis of white matter fibers
resulting from tractography algorithms is made difficult by their huge
number. To this end, we propose an approximation scheme which gives
as result a more concise but at the same time exhaustive representation
of a fiber bundle. It is based on a novel computational model for fibers,
called weighted currents, characterised by a metric that considers both
the pathway and the anatomical locations of the endpoints of the fibers.
Similarity has therefore a twofold connotation: geometrical and related
to the connectivity. The core idea is to use this metric for approximating
a fiber bundle with a set of weighted prototypes, chosen among the fibers,
which represent ensembles of similar fibers. The weights are related to the
number of fibers represented by the prototypes. The algorithm is divided
into two steps. First, the main modes of the fiber bundle are detected
using a modularity based clustering algorithm. Second, a prototype fiber
selection process is carried on in each cluster separately. This permits to
explain the main patterns of the fiber bundle in a fast and accurate way.

1 Introduction

Tractography from diffusion-weighted magnetic resonance imaging (DW-MRI)
is a technique capable to virtually map the neural architecture of the human
brain white matter (WM). This method is very useful for a better characteriza-
tion of neurological diseases, for surgical planning or for the study of anatomo-
functional relationships, for example. Tractography methods result in a set of 3D
tracts that are commonly referred to as “fibers” which represent an estimate of
the trajectory of large groups of neural fibers. WM fibers are traced starting from
points, called seeds, inside one or more voxels and they are constituted by seg-
ments connecting different voxels. Tractography algorithms can be divided into
two classes: deterministic and probabilistic. Deterministic methods reconstruct
the fiber following the principal direction given by the diffusion model inside
each voxel while the probabilistic ones use a randomly perturbed version of the
main fiber direction. The idea behind probabilistic methods is to start many

P. Golland et al. (Eds.): MICCAI 2014, Part III, LNCS 8675, pp. 289–296, 2014.
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fibers from every seed in order to obtain maps of connectivity that are related
to the probability that a certain voxel is connected to the starting seed. The
choice of the starting voxels depends on the application and it ranges from the
whole-brain to particular areas of the gray matter (ROI). One can also choose
a second ROI as ending area in order to retrieve only the fibers connecting two
precise areas of the gray matter. This paper focuses on such sets of fibers, called
fiber bundles, which connect the cortical surface to the basal ganglia. A fiber
is therefore characterised by its pathway between voxels and by the anatomi-
cal locations of its starting and ending point. Tractography algorithms usually
result in a considerable amount of fibers. This makes difficult the development
of efficient computational methods and the visualisation and interpretation of
the brain connections that have been captured. To this end, we propose a novel
approximation scheme for fiber bundles which reduces the number of tracts to
analyse conserving almost all the information related to the fibers pathway (ge-
ometry) and to the distribution of the fibers endpoints (connectivity).

The core idea is to approximate a fiber bundle B with a set of weighted pro-
totypes {τiMi}, chosen among the fibers, which represent ensembles of similar
fibers. The weights {τi} are linked to the number of fibers approximated by
the prototypes {Mi}. In order to do that, we need an appropriate dissimilarity
measure based on both the geometry and the connectivity of a fiber. Usual dis-
similarity measures present in the literature consider only the geometry of the
fibers, like the Hausdorff distance [5], the Chamfer distance (or modified versions
of it)[5,6,8,12], the total square loss between two fibers represented as Gaussian
mixture model [13] or Fourier descriptors [10]. Other dissimilarity measures con-
sider only the ending points of the fibers [11] or are based on the voxel space
[12,14]. Here we propose a novel dissimilarity measure which considers both the
pathway and the anatomical locations of the termini of the fibers. It can be seen
as an extension of the framework of currents [3] and we have called it: weighted
currents. As usual currents, it does not need point-to-point correspondence be-
tween fibers, it has a closed form and easy to compute expression and it can
be used to compare fiber bundles. In addition, two fibers modelled as weighted
currents are considered similar if and only if their pathways are alike and their
endpoints are close to each other. Fibers are considered as vectors in the space
of weighted currents. This permits to see a fiber bundle B as the sum of all its
fibers Fj : B =

∑
j Fj and its approximation as a weighted sum:

∑K
i=1 τiMi.

The proposed approximation scheme is based on the minimization of the
residual error between B and {τiMi} which can be easily written as: ||B −∑K

i=1 τiMi||2W∗ in the framework of weighted currents. The final goal is to find
the smallest set of prototypes which minimizes this approximation error. An ex-
haustive analysis of all the possible combinations of prototypes is not feasible
and therefore we propose a greedy algorithm. Our strategy is first to decompose
a fiber bundle into modes, and then approximate every mode assuming that its
fibers follow a gaussian distribution. In order to do that, the fiber bundle is first
divided into independent clusters, which can be seen as different modes, using a
clustering algorithm. Afterwards, the prototype fiber selection process is carried
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on in each cluster separately. This permits a fast (parallel computing), concise
and at the same time exhaustive approximation of the fiber bundle.

Usual clustering approaches forWM tracts are based on hierarchical [8,5,12,13],
spectral [6,11] or EM [7] techniques. In many cases one needs to fix in advance pa-
rameters like the number or the size of the clusters. A solution, which does not
require parameter setting, is to employ one of the quality functions in the field
of networks community detection: the modularity [9]. It determines how good a
cluster division is by comparing the similarity of fibers inside clusters with respect
to the similarity of fibers between clusters. Optimization methods based on the
maximization of this quality function permit to automatically find the number of
clusters and how to divide the fiber bundle into clusters.

Eventually, the prototypes are chosen by selecting the fibers that minimize the
residual error between B and {τiMi} in the spirit of PCA (Principal Component
Analysis) exploiting the fact that every mode is assumed to be gaussian (uni-
modal). This permits to explain and approximate almost the entire variability
of the fiber bundle in a fast and accurate way.

2 Approximation Scheme for WM Fiber Bundles

In the first paragraph we introduce the concept of weighted currents from a
formal mathematical point of view. Afterwards, we present the two steps of the
approximation scheme based on weighted currents: the modularity optimization
clustering algorithm and the prototype fiber selection.

Weighted Currents can be seen as an adaptation of the functional cur-
rents presented in [4] where the “functional signal” attached to each fiber is the
anatomical location of its starting and ending point. Let X be a WM tract (an
oriented and rectifiable curve in R3) which can be modelled as a polygonal line
of N segments and f c and f b two 3D vectors in M=R3xR3 containing the coor-
dinates of the two extremities. For example, f c might represent the extremity of
the fiber on the cortical surface and f b on the basal ganglia. In practice, f c and
f b could be the mean values of the last n points, i.e. n=3, if the extremities are
supposed to be in an area with a low SNR. The tract X, exactly as for currents,
can be seen as a discrete weighted current via: CX(w) =

∑N
i=1 w(xi, f

c, f b)Tαi

where xi and αi are the centres and the tangent vectors of the N segments re-
spectively and w is a vector field belonging to a reproducing kernel Hilbert space
(RKHS)W onR3xM . A natural way to build the kernel associated toW is as the
tensor product of kernels defined separately in the geometrical space R3 and in
the “functional” space M . This means that the inner product in the framework
of weighted currents between two tracts X (CX(w) =

∑N
i=1 w(xi, f

c, f b)Tαi)

and Y (CY (w) =
∑M

j=1 w(yj , t
c, tb)Tβj) can be defined as:

〈CX , CY 〉W∗ = Kc(f
c, tc)Kb(f

b, tb)

N∑
i=1

M∑
j=1

αT
i Kg(xi, yj)βj

where Kc, Kb and Kg are Gaussian kernels parametrized by their scale pa-
rameters: λc, λb and λg respectively. The underlined part is the inner product
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between usual currents which measures overall differences in the pathway of the
two fibers. λg defines the range of interactions between the points of X and
Y . The multiplication by the new terms Kc and Kb means that two fibers are
considered similar if the pathways are similar, like in usual currents, but also if
the endpoints of the two fibers are at a distance smaller than λc on the cortical
surface and than λb on the basal ganglia (see Fig.1). The space of weighted cur-
rents is a vector space which implies that a fiber bundle B is seen as the sum
of its fibers Fi: CB =

∑N
i CFi and that it is also possible to compute the mean

of a fiber bundle: CF̄ = 1
N

∑N
i CFi . In the following, we will assume that each

fiber is modelled as weighted current writing simply F instead than CF . As we
will see, our processing will be calculated using only simple computations of the
Gram matrix Γ = {〈Fi, Fj〉W∗}i,j=1,...,N .

Fig. 1. Tracts that have an angle smaller than 45 degrees with the red one using
currents (green, #118) and weighted currents (blue, #8). Fibers belong to a thalamo-
cortico bundle of the right hemisphere resulting from a probabilistic tractography (see
Sec.3). Green tracts are more than the blue ones and they are also more spread, con-
necting anatomical locations far from the ones of the red fiber. This shows why weighted
currents are more suitable for clustering and approximating fiber bundles.

Modularity Optimization Clustering. A fiber bundle is seen as a sum of
vectors in the space of weighted currents, each vector representing a fiber. Every
vector can then be considered as a vertex of a weighted graph where the weighted
edges are the inner products between every couple of fibers. The first step of the
proposed algorithm consists in finding clusters in this set of vectors representing
the main modes of the fibers distribution. We use a clustering algorithm based
on the maximization of a quality function Q called Modularity [9]:

Q =

NC∑
c=1

⎧⎨⎩‖∑
i∈c

Fi‖2W∗‖
∑
j /∈c

Fj‖2W∗ − (
∑
i∈c

∑
j /∈c

〈Fi, Fj〉W∗)
2

⎫⎬⎭ (1)

whereNC is the number of clusters. This equation can be easily rewritten in terms
of theGrammatrixΓ as:Q=

∑NC

c=1(s
T
c Γsc)((1-sc)

TΓ (1-sc))−(sTc Γ (1−sc))2 where
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sc(k)=1 if Fk belongs to cluster c and 0 otherwise. In the simple case of NC = 2

this equation can be rewritten as: Q = ‖F̄1‖2W∗‖F̄2‖2W∗ −
〈
F̄1, F̄2

〉2
W∗ where F̄1

and F̄2 are the means of the two clusters. Maximizing Q means therefore looking
for two clusters whose means are as orthogonal as possible and at the same time
their norms should be as close as possible. This can be generalized to NC clusters
by saying that the goal of modularity is to create clusters with balanced norms
characterised by fibers orthogonal to the fibers in the other clusters and parallel
to the fibers in their own cluster. Unfortunately, exact modularity optimization is
a NP-complete problem. The “Louvain” algorithm [9] is a greedy solution divided
into two steps which are repeated iteratively. At the beginning every WM tract
forms a different cluster. The first part consists of associating every WM tract to
all its neighbour clusters finding the one that leads to the largest increase in Q.
This step is repeated until no change would produce an increase in Q. The second
part consists in merging all theWM tracts of one cluster in one single supervertex.
Two supervertices have a weighted edge equal to the sum of all the inner prod-
ucts between the fibers of the initial clusters. The two steps are repeated until no
change would produce an increase inQ. At the end of this process the fiber bundle
is separated into different clusters without fixing in advance neither the number
of clusters nor their size.

Prototype Fiber Selection. The goal of the Prototype Fiber Selection (PFS)
process is to concisely represent the fiber bundle B with a set of weighted proto-
types {τiMi} chosen among the fibers. If we wanted only one weighted prototype
τ1M1 which minimizes ||B−τ1M1||2W∗ , it would be: M1 = argmaxFz

〈B, Fz

||Fz||〉
2
W∗

= argmaxFz
N2〈F̄ , Fz

||Fz|| 〉
2
W∗ with τ1 = 〈B,M1〉

||M1||2 . This means that we would look

for the fiber most similar to the average of the bundle. This scheme works fine
only in a uni-modal setting (i.e. gaussian) but not in a multi-modal one since the
fiber chosen would be the one closest to the center of the different modes. If the
modes are far from each other the fiber chosen could be also considered as an out-
lier. This is why it is fundamental finding the main modes of the bundle through
the previous clustering step. Once defined the main modes, a PFS is performed
independently on each one of them. One prototype is not sufficient to explain
the whole cluster. So, as for instance in PCA, we remove from each fiber (Fi)

its orthogonal projection onto the prototype (π(Fi) =
〈Fi,M1〉M1

||M1||2 ) and we select,

in this new representation (r(Fi) = Fi − π(Fi)), the fiber most similar to the

new average as second prototype (M2 = argmaxr(Fz) N
2〈r(F̄ ), r(Fz)

||r(Fz)||〉
2). We

iterate this process for each cluster Cj until: ||Cj −
∑Kj

i=1 τiMi||W∗ ≤ γ||Cj ||W∗ .
At iteration k, the k weights {τi} are computed by the orthogonal projection
of the cluster Cj to the space spanned by the selected k prototypes {Mi}. It is
important to notice that all these computations are based on the Gram matrix
Γ of the fiber bundle, also when computing a new prototype: 〈r(Fi), r(Fj)〉 =
〈Fi, Fj〉 − 〈Fi,M〉〈Fj ,M〉

||M||2 =Γij − ΓiMΓjM

||ΓMM ||2 . After selecting the prototypes in each

cluster, the weights are recomputed by the orthogonal projection of the whole
bundle B to the entire set of prototypes in order to retrieve the correct values
also for the prototypes close to the boundary between two different clusters.
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3 Experiments and Discussion

We illustrate the algorithm on 36 fiber bundles from 6 subjects connecting the
cortex to thalamus (12), putamen (12) and caudate (12) of the right hemisphere
using both deterministic and probabilistic tractography estimated from HARDI
data ([1] and references therein). The fiber bundles include the commisural fibers
which have been truncated at the interhemispheric fissure [1]. The segmentation
of the sub-cortical structures and of the cortex is done using FSL and FreeSurfer
respectively [2]. The result of the clustering and the prototype representation for
both deterministic and probabilistic tractography on a cortico-thalamus fiber
bundle are shown in Fig.2. Other results are presented in the supplementary
material. In the deterministic case only 491 fibers out of 9525 have been chosen as
prototypes (∼5%) in order to explain 90% of ||B||W∗ while with the probabilistic
tractography only 2652 fibers out of 10410 have been used as prototypes (∼25%)
to explain 85% of ||B||W∗ . The average reduction in the deterministic case is 4.7%
explaining 90% of ||B||W∗ and 24.6% in the probabilistic case explaining 84%
of ||B||W∗ . Once calculated the Gram matrix (∼120 min), the computation of
the whole approximation scheme is very fast: about 40 sec for the clustering and
30 sec for the PFS in a PC, Intel Xeon, 4 cores, 3.20GHz using 10410 fibers.
Fig.3 shows the same bundle of Fig.2 but its goal is to point out the differences
between our approximation scheme and a uniform downsampling resulting in
the same number of tracts. The probability densities of the endpoints of the
original fibers on both cortex and thalamus are more similar to the ones of
our scheme than with a uniform downsampling. In fact, some small modes are
lost with the uniform downsampling. Probability densities have been computed
using gaussian kernels, taking into account the weights τi of the prototypes

Fig. 2. First row: clusters of the right thalamo-cortico bundle highlighted in different
colors. Second row: resulting prototypes visualized as tubes whose radii are proportional
to their weights τi. The two columns on the right show the same fiber bundle from both
lateral views.
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Fig. 3. Probability densities of the endpoints of the fibers using the right thalamo-
cortico fiber bundle, prototypes P and an equal number of fibers coming from a uniform
downsampling U of the original fiber bundle. U is a poorer approximation of the original
density than P since it reveals fewer modes, as shown by the arrows.

for our approximation. The Kolmogorov-Smirnov test fails to show statistically
significant differences between the densities of the original fibers and of the
weighted prototypes and in most of the cases it finds significant differences at
the 5% level between densities from original fibers and uniform downsampling.

4 Conclusions

We have presented here a new approximation scheme for white matter fiber
bundles which results in a concise representation maintaining almost all the in-
formation related to the pathways of the fibers and to the locations of the fiber
endpoints. It is based on a new computational model for fiber bundles, called
weighted currents, which permits to compare fibers considering both their path-
ways and the locations of their endpoints. Moreover, it allows to treat fibers
as vectors. We have tested this method on fiber bundles resulting from both
deterministic and probabilistic tractography showing that the number of tracts
to analyse can be reduced up to 3% of the initial number of fibers in the deter-
ministic case and up to 17% in the probabilistic case, explaining in both cases
more than 84% of the norm of the fiber bundles. We have also shown that the
connectivity information, seen as the probability density of the fibers endpoints
onto the gray matter, is more preserved with the proposed method than using a
uniform downsampling. This information is important in many neuro-anatomical
studies since it could be used, for instance, to characterise neurodevelopmental
disorders [2]. Future works will include this new representation into registra-
tion and atlas construction methods in order to find changes in white matter
organization across subjects. Another possible development could be to use this
method for the white matter segmentation problem [6,12].
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Abstract. Recent studies have found that the modular structure of
functional brain network is disrupted during the progress of Alzheimer’s
disease. The modular structure of network is the most basic topological
invariant in determining the shape of network in the view of algebraic
topology. In this study, we propose a new method to find another higher
order topological invariant, hole, based on persistent homology. If a hole
exists in the network, the information can be inefficiently delivered be-
tween regions. If we can localize the hole in the network, we can infer the
reason of network inefficiency. We propose to detect the persistent hole
using the spectrum of k−Laplacian, which is the generalized version of
graph Laplacian. The method is applied to the metabolic network based
on FDG-PET data of Alzheimer disease (AD), mild cognitive impair-
ment (MCI) and normal control (NC) groups. The experiments show
that the persistence of hole can be used as a biological marker of disease
progression to AD. The localized hole may help understand the brain
network abnormality in AD, revealing that the limbic-temporo-parietal
association regions disturb direct connections between other regions.

1 Introduction

The hierarchical modular structure of brain network has revealed the functional
integration of local specialized modules of brain regions [1]. The modular struc-
ture of network is the first basic topological invariant in determining the shape
of network in the view of algebraic topology [2]. The second basic topological in-
variant is holes. While the connected network structures of brain has been often
studied, holes never played any role in modeling brain networks [3,1]. However,
hole detection has found its usefulness in mobile sensor networks in determining
the obstacle-regions, which weaken the strength of cellphone signals [4,5]. In this
study, we take a novel hole detection method in finding such aberrant regions of
brain network in Alzheimer’s disease (AD).

If the brain network has the hole, it implies that the information can be
inefficiently transferred between regions due to indirect connections around the
hole. When abnormal brain regions associated with Alzheimer’s disease interrupt
direct connections between other regions, the hole can occur in the network. The
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larger the hole is, the more inefficient the information transfer around the hole
is. Hence, the size of hole can be a new measure for quantifying the degree of
abnormality of the brain network in AD [6]. To find holes and estimate their
size, we introduce the concept of persistent homology which assumes that true
topological invariants of the underlying network are more persistent over the
change of network parameters rather than noise. The more persistent hole is
over the change of network parameters, the more connections are needed to
cover the hole. Thus, the persistence of hole can be considered as its size. The
hole is usually identified by manipulating a matrix associated with the boundary
operator in the persistent homology [7]. This method directly selects the edge set
that forms a hole. However, this approach has an ambiguity in choosing edges
that depends on the order of nodes and edges. A superior new method, which
this paper is proposing, is to estimate holes by computing the eigenvectors with
zero eigenvalues of higher order Laplacians [5], called k-Laplacian. The method
represents the hole as a linear combination of edges of which coefficients are
proportional to their contributions to the hole.

The methodological contributions of this paper are: (1) We propose a new
method in detecting the local abnormality of network by identifying a hole within
the persistent homology framework. This is the first study of using the hole as a
brain network feature. (2) We introduce the concept of k−Laplacian in estimat-
ing the hole. This approach is a natural generalization of finding modular struc-
ture of brain network using the spectrum of graph Laplacian, i.e., 0−Laplacian.
(3) We demonstrate that the persistence of holes in the network can be used
to quantify the disease progression for the first time. The proposed hole detec-
tion method is applied to the FDG-PET based metabolic network of AD, mild
cognitive impairment (MCI) and normal control (NC) groups. Our finding sug-
gests that the persistence of hole may be increased as the disease progressed.
The resulting holes support prior studies that reported alterations and discon-
nections in temporal, parietal, frontal association areas and abnormal change in
the limbic region by AD [8,9]. In addition, the result also show that the medial
temporal lobe is affected by MCI [9].

2 Methods

2.1 k−Dimensional Holes

We will first define a hole in a network rigorously using the language of algebraic
topology. The nodes and edges of a network are the building blocks of topolog-
ical space defined on the network. The algebraic topology extends this concept
further to a simplicial complex, which considers higher order elements with more
than three nodes such as triangles. Given a node set vi ∈ V, an element with
(k + 1) nodes is called k−simplex σk = [v1, . . . , vk+1]. Node, edge and filled-in
triangle are then denoted as σ0, σ1 and σ2. Note that we call σ2 as the filled-in
triangle in the simplicial complex to distinguish the unfilled-in triangle consist-
ing of three nodes (σ0) in a network. The collection of simplexes is a simplicial
complex. The example of simplicial complex is shown in Fig. 1 (a).
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Fig. 1. (a) An example of simplicial complex. (b) A chain complex with chain, cycle
and boundary groups which are mapped by boundary operator. (c) The boundary
operators ∂1 and ∂2 of (a) in the matrix form. (d) A hole is the cycle whose boundary
becomes zero, but not the boundary of any higher order simplex. Hence, the boundary
of the filled-in triangle t1 is not a hole but a cycle.

The boundary of an edge (σ1) is two end nodes (σ0) of the edge. The boundary
of a filled-in triangle (σ2) is three edges (σ1) surrounding the triangle. If we
denote Ck as a chain complex, a set of σks, the relationship between σk and σk−1

is defined using the boundary operator ∂k : Ck → Ck−1. Fig. 1 (b) shows a chain
map by boundary operation. Given

{
σ1
k, · · · , σ

q
k

}
⊂ Ck and

{
σ1
k−1, · · · , σ

p
k−1

}
⊂

Ck−1, the linear transformation ∂k ∈ Rp×q from Ck to Ck−1 can be represented
in the matrix form:

[∂k]ij =

{
1 if σi

k−1 is positively oriented w.r.t. σj
k,

−1 if σi
k−1 is negatively oriented w.r.t. σj

k,
0 otherwise.

When σi
k−1 belongs to the ordered boundaries of σj

k, it is positively/negatively
oriented if its order is odd/even. The matrix form of boundary operators is
shown in Fig. 1 (c). ∂1 is an incidence matrix of binary network. So the boundary
operator is the generalization of the incident matrix in graph theory.

The kernel of ∂k is a set defined by ker∂k = {σk ∈ Ck|∂kσk = 0} . The kernel is
then a cycle which consists of σks starting and ending at the same σk−1.The image
of ∂k+1 is a set defined by img∂k+1 = {σk ∈ Ck|∂k+1σk+1 = σk, σk+1 ∈ Ck+1} .
Hence, the image of ∂k+1 is a boundary of σk+1, which is always a cycle, i.e.
img∂k+1 ⊂ ker∂k. But the cycle may not be a boundary of σk+1 as shown in Fig. 1
(d), where the square hole is not the boundary of any higher order simplex. The set
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of cycles of∂k, which are not the boundary of∂k+1 is called the kth homology group.
Hk = ker∂k ∩ (img∂k+1)

C , where (·)C denotes the complementary set of · [7]. The
element ofHk is the k−dimensional hole which is an important topological invari-
ant used in distinguishing different topological spaces. The cardinality ofHk is the
kth Betti number βk.For the sake of simplicity, wewill only consider 1-dimensional
hole as a hole in this study and left higher dimensional holes as a future study.

2.2 k−Laplacian

In the persistent homology, the k−dimensional hole Hk is usually identified by
manipulating the kernel of ∂k and image of ∂k+1 based on Gaussian elimination
[7]. If we apply this approach to the example in Fig. 1 (a), one of two possible
holes, e12−e13+e24−e35+e45 or −e23+e24−e35+e45, are estimated depending
on how to order edges in the column of ∂1 and row of ∂2. To avoid this ambiguity,
we introduce a new method based on k−Laplacian for estimating hole [10].

The k-Laplacian Lk is defined as Lk = ∂k+1∂
�
k+1 + ∂�

k ∂k [11]. Since ∂0 :

C0 → 0, L0 = ∂�
1 ∂1 and it is the graph Laplacian, which is widely used in

spectral clustering [12]. The kth homology group Hk is a kernel of k−Laplacian
Lk [10]. Hence the kth Betti number βk is the dimension of kernel space of Lk.
The eigenvectors with zero eigenvalues of Lk are spanned in the kernel space
of Lk. So, the k−dimensional hole in Hk is obtained by the eigenvectors with
zero eigenvalues of Lk. βk is obtained by the number of zero eigenvalues of Lk.

Fig. 2. Example of hole estimation based on eigen-
vector U1 and eigenvalue D1 of L1. The absolute
value of eigenvector with zero eigenvalue becomes
the edge weight in the hole H1.

Fig. 2 shows the example
of hole estimation using the
spectrum of L1. The simpli-
cial complex in Fig. 1 (a)
is used as an example. Af-
ter estimating L1 using ∂1
and ∂2 in Fig. 1 (c), we ob-
tain its eigenvectors U1 and
their corresponding eigenval-
ues D1. The eigenvector with
zero eigenvalue of L1 is the
hole H1. The resulting hole

can be represented in the linear combination of edges −0.17e12 + 0.17e13 +
0.35e23 − 0.52e24 + 0.52e35 − 0.52e45 as shown in Fig. 2. The absolute value
of coefficient is proportional to its contribution to the hole.

2.3 Persistent Holes

The metabolic brain connectivity forms the connectivity matrix W = [wij ], with
each of the elements wij encoding the distance between two brain regions vi and
vj . We introduce the Rips complex to estimate holes in brain network with
the connectivity matrix W . The Rips complex R(W , ε) is a simplicial complex
whose k-simplexes correspond to unordered (k + 1)-tuples of nodes which are
pairwise within distance ε [3]. If we confine k ≤ 1, the Rips complex is identical
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Fig. 3. (a) Rips filtration and (b) the persistence diagram of hole. Since the hole starts
and ends at 47 and 63, respectively, the point is plotted at (47,63) on (b).

to the binary network where two nodes are connected if their distance is less
than ε. Given the connectivity matrix W and thresholds ε1 < · · · < εq, the
Rips filtration decomposes the connectivity matrix into the sequence of Rips
complexes: R(W , ε1) ⊆ R(W , ε2) ⊆ · · · ⊆ R(W , εq). During the filtration,
the holes of Rips complexes are appearing and disappearing as shown in Fig.
3 (a). The persistent homology observes such a change of k−dimensional holes
and counts their Betti numbers over the change of threshold. The birth and
death times of hole εBirth and εDeath are encoded in the persistence diagram by
mapping to the point (εBirth, εDeath). The persistence diagram P is a set of the
points in the plane where the horizontal and vertical axes represent the birth
and death times of hole as shown in Fig. 3 (b). The life span of hole from birth
to death time is same as the distance from the point to the line εBirth = εDeath

in the persistence diagram. The closer to the line εBirth = εDeath, the shorter
the life span of corresponding hole is. The persistent homology assumes that a
persistent hole with long life span may be the signal that reflects the shape of
true topological space, but a hole with short life span may be a noise. Now, we
introduce the bottleneck distance to estimate the confidence band [0, c] which
distinguishes between signal and noise in Fig. 3 (b) [13].

The bottleneck distance W∞ measures the distance between two persistence
diagrams P1 and P2. It is defined as

W∞(P1,P2) = min
P

max
(x,y)∈P

d∞(x, y) for all x ∈ P1, y ∈ P2,

where d∞ is the L∞ distance and P is a one-to-one correspondence of the points
in P1 and P2. Suppose that the persistence diagrams of the underlying Rips
and random Rips complexes P and Prand are given. If we find a confidence in-
terval c such that P (W∞(P ,Prand) > c) ≤ α,

√
2c is same as the distance to

the line εBirth = εDeath which distinguishes between the signal and noise [13].
The random Rips complexes are generated from 5000 random permutations of
AD, MCI and NC datasets. For each permutation, the group labels are ran-
domly reassigned and the persistence diagram Prand and the bottleneck distance
T = W∞(P ,Prand) are recalculated. After 5000 permutations, we obtain 5000
bottleneck distances and sort them in descending order as T1 > T2 > · · · > T5000.
c = T250 is chosen to satisfy α = 0.05. Then, the hole located outside of the con-
fidence band [0, c] is denoted as the persistent hole. Here we expect that finding
persistent holes may help understand aberrant functional connectivity in AD.
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Fig. 4. The persistence diagram of (a) NC, (b) MCI and (c) AD. (d) The life span of
hole with respect to the disease progression. There is no significantly persistent hole in
NC. (e) Three persistent holes of MCI are mainly located in 1) right temporal, 2) bilat-
eral temporo-parietal, and 3) widespread fronto-temporo-parietal-occipital lobule. (f)
Two persistent holes of AD may occur because the limbic-temporo-parietal association
regions disturb direct connections between two large clustered regions.
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3 Results

Data Sets. We used FDG-PET imaging data sets: 45 NC (age: 68.9± 5.2), 24
MCI (67.8±9.0) and 22 AD (66.9±7.1) subjects. All 18F-FDG PET images were
spatially normalized and smoothed with 16 mm FWHM using the SPM package.
Then, FDG uptake values of 103 regions of interest (ROIs) were extracted by
weighted averaging. Each FDG uptake value was scaled by individual’s total
gray matter mean count. The connectivity matrix W = [wij ] ∈ R103×103 was
estimated based on the diffusion distance on positive correlation between FDG
uptake values in two ROIs.

Group Differences. The persistence diagrams of NC, MCI and AD are shown
in Fig. 4 (a-c). The total number of holes is 17 for AD, 25 for MCI and 21
for NC. We examined group differences using the bottleneck distance between
persistence diagrams and permutation test. The persistence diagrams are signifi-
cantly different between NC and AD (p < 0.05), but tend to be different between
NC and MCI and between MCI and AD (p < 0.1).

Life Span of Holes. In Fig. 4 (d), the life span of holes is plotted with respect
to NC, MCI and AD. Using the permutation test, we found that the longest life
span of holes connected by red line is proportional to the disease progression
(p < 0.05). The resulting confidence band for persistence diagram is shown in
the shaded region in Fig. 4 (a-d). All holes in NC are not persistent. 2 and 3
holes are determined as the persistent for AD and MCI respectively.

Persistent Hole. 5 persistent holes are shown in Fig. 4 (e,f). Three per-
sistent holes of MCI are mainly located in right temporal, bilateral temporo-
parietal, and widespread fronto-temporo-parietal-occipital lobule. The reduced
metabolism in a network has been found in parietal, temporal and frontal lobes in
AD [8]. Especially, the hypometabolism of medial temporal lobe observed in the
first hole is known as a biomarker for the identification of MCI [9]. In the persis-
tent holes of AD, we found that two large clustered brain regions on the left and
right sides in (f) are not directly connected because the limbic-temporo-parietal
association regions disturb the connection between them. These association re-
gions are also known to be affected by AD [8,9].

4 Conclusions

In this study, we propose a new method for localizing aberrant regions by detect-
ing hole in the metabolic network based on persistent homology and 1-Laplacian.
We also introduce a new biomarker, life span of hole, to measure the degree of
abnormality of brain network. The proposed hole detection method is natural
extension of finding modular structure of network based on the spectrum of
graph Laplacian, 0−Laplacian. The resulting aberrant holes are mainly located
in parietal, temporal and frontal regions which is known to be related to AD and
MCI. In addition, our finding suggests that the brain network inefficiency in AD
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may be because the limbic-temporo-parietal association regions interrupt direct
connections between other brain regions. The proposed method can be further
applicable to other high order topologically invariant features using k-Laplacian,
which is left as a future study.
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Abstract. Combining multi-modality brain data for disease diagnosis
commonly leads to improved performance. A challenge in using multi-
modality data is that the data are commonly incomplete; namely, some
modality might be missing for some subjects. In this work, we proposed
a deep learning based framework for estimating multi-modality imag-
ing data. Our method takes the form of convolutional neural networks,
where the input and output are two volumetric modalities. The network
contains a large number of trainable parameters that capture the rela-
tionship between input and output modalities. When trained on subjects
with all modalities, the network can estimate the output modality given
the input modality. We evaluated our method on the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) database, where the input and output
modalities are MRI and PET images, respectively. Results showed that
our method significantly outperformed prior methods.

1 Introduction

Alzheimer’s disease (AD) is a common neuro-degenerative disease for which we
still lack effective treatment. It has been shown that early detection and inter-
vention at its prodromal stage, such as the mild cognitive impairment (MCI)
stage, are effective in delaying the onset of AD. Developments in neuroimaging
techniques, such as the magnetic resonance imaging (MRI) and positron emission
tomography (PET) techniques, coupled with advanced computational methods,
have led to accurate prediction of AD and MCI [1].

A key challenge in employing computational methods for disease diagnosis
is that the neuroimaging data usually consist of multiple modalities, but they
could be incomplete in the sense that not all subjects have all data modalities.
The accuracy of disease diagnosis might be improved if the missing data could
be estimated. However, the relationship between different data modalities is
complicated and nonlinear. Thus, a highly sophisticated model is required for
the collaborative completion of neuroimaging data.

Deep convolutional neural networks (CNNs) are a type of multi-layer, fully
trainable models that are capable of capturing highly nonlinear mappings be-
tween inputs and outputs [2]. These models were originally motivated from
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computer vision problems and thus are intrinsically suitable for image-related
applications. Deep CNNs have been successfully applied to a variety of applica-
tions, including image classification [2,3], segmentation [4], and denoising [5].

In this work, we propose to use deep CNNs for completing and integrating
multi-modality neuroimaging data. Specifically, we designed a 3-dimensional (3-
D) CNN architecture that takes one volumetric data modality as input and
another volumetric data modality as its output. When trained end-to-end on
subjects with both data modalities, the network captures the nonlinear relation-
ship between two data modalities. This allows us to predict and estimate the
output data modality given the input modality.

We applied our 3-D CNN model to predict the missing PET patterns from
the MRI data. We trained our model on subjects with both PET and MRI
data, where the MRI data were used as input and the PET data were used as
output. The trained network contains a large number of parameters that encode
the nonlinear relationship between MRI and PET data. We used the trained
network to estimate the PET patterns for subjects with only MRI data. Results
showed that our method outperformed prior methods on disease diagnosis.

2 Material and Methods

2.1 Data Preprocessing

The data used in this work were obtained from the Alzheimer’s Disease Neu-
roimaging Initiative (ADNI) database. For each subject, the T1-weighted MRI
was processed by correcting the intensity inhomogeneity followed by skull-
stripping and cerebellum removing. In addition, each MRI was segmented into
gray matter, white matter and cerebrospinal fluid and was further spatially nor-
malized into a template space. In this work, the gray matter tissue density maps
were used. The PET images were also obtained from ADNI, and they were
rigidly aligned to the respective MR images. The gray matter tissue density
maps and the PET images were further smoothed using a Gaussian kernel (with
unit standard deviation) to improve the signal-to-noise ratio. To reduce the com-
putational cost, we downsampled both the gray matter tissue density maps and
PET images to 64× 64× 64 voxels.

We used data for 830 subjects in the ADNI baseline data set. This data set
was acquired from 198 AD patients, 403 MCI patients, which include 167 pMCI
patients (who will progress to AD in 18 months) and 236 sMCI patients (whose
symptom were stable and will not progress to AD in 18 months), and 229 healthy
normal controls (NC). Out of these 830 subjects, more than half of them (432)
do not have PET images. Thus, accurate completion of PET images for these
subjects would improve the accuracy of disease diagnosis.

2.2 3-D Convolutional Neural Networks

Convolutional neural networks (CNNs) are a type of deep models that are able
to capture highly nonlinear relationships between input and output [2]. In image
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classification tasks, two types of layers, i.e., convolutional layer and subsampling
layer, are usually stacked alternatingly. The convolutional layer applies trainable
filers to feature maps in the previous layer, while the subsampling layer is used
to reduce the resolution of feature maps.

CNNs have been primarily applied to 2-D images such as visual object recog-
nition [2,3] and segmentation [6]. In [4,5], 2-D CNNs have been extended to
segment and restore 3-D images. In [7], 3-D CNNs have been applied to process
spatiotemporal video data. Similar to the 2-D case, 3-D CNNs perform nonlinear
mapping by computing convolutions with 3-D filters.

Formally, let the value at position (x, y, z) on the jth feature map in the ith
layer be vxyzij . Then the 3-D convolution is given by

vxyzij = σ

(
bij +

∑
m

Pi−1∑
p=0

Qi−1∑
q=0

Ri−1∑
r=0

wpqr
ijmv

(x+p)(y+q)(z+r)
(i−1)m

)
, (1)

where σ(·) is the sigmoid function, bij is the bias, m indexes the set of feature
maps in the (i − 1)th layer connected to the current feature map, Pi, Qi and
Ri are the sizes of the 3-D kernel along three spatial dimensions respectively,
wpqr

ijm is the (p, q, r)th value of the filter connected to the mth feature map in the
previous layer. Note that Eq. (1) describes a generic 3-D convolution operation
and can be applied to any layer of a 3-D CNN architecture with any number of
feature maps.

Subsampling layers are commonly used in recognition and classification tasks.
In these layers, the resolution of feature maps is reduced by pooling over lo-
cal neighborhood, thereby enhancing invariance to distortions on the inputs. In
this work, our primary focus is data completion instead of recognition. Thus,
subsampling layers were not used.

2.3 3-D CNN for Imaging Data Completion

Based on the 3-D convolution described above, a variety of CNN architectures
can be devised. In the following, we describe a 3-D CNN architecture, shown
in Fig. 1, for PET image completion. The data for training this CNN model
consist of patches extracted from subjects having both PET and MRI images.
The input patch size was determined by the size of output patch in the output
layer, since each convolution operation reduces the size of feature map along
each dimension by a factor related to the size of filter. In this work, the size of
output patches was set to 3 × 3 × 3. We randomly selected a large number of
patches from each 3-D MRI volume, and the corresponding PET image patches
were also obtained. Patches that cross the boundary or are located completely
within background were removed. The total number of patches extracted from
each volume was 50, 000 so that the entire volume is largely covered.

In the CNN architecture, we first applied 3-D convolution with a filter size
of 7 × 7 × 7 on the input patch and construct 10 feature maps in the first
hidden layer. The second hidden layer is again a 3-D convolution layer with 10
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7 X 7 X 7

3-D convolution 7 X 7 X 7
3-D convolution

Fu
ll c

onnecti
on

Input:
1@15 X 15 X 15
3-D MRI Patch

10@9 X 9 X 9
3-D feature maps

10@3 X 3 X 3
3-D feature maps

Output:
1@3 X 3 X 3

3-D PET Patch

Fig. 1. The 3-D CNN architecture for imaging data completion used in this work.
There are 2 hidden layers between the input and output layers. Each of the hidden
layers contains 10 feature maps. The total number of trainable parameters in this
network is 37, 761.

feature maps fully connected to all the feature maps in the previous layer. The
output layer contains only one feature map, which is the corresponding PET
image patch. In addition, the filter size for mapping the feature maps of the last
hidden layer to the output was set to 1 to reduce the computational cost. In
total, the number of trainable parameters for this network is 37, 761. The latent
nonlinear relationship between the MRI and PET images was encoded into the
large number of parameters in the network. This CNN architecture was selected
based on a balance between the representation power and the computational cost
of training the network. A network with more layers and feature maps might be
able to represent the training data better, but the computational cost of training
more complex networks is prohibitive.

In this work, the CNS package [8] was used to implement the CNN architec-
ture. The weights of this network were updated by error back-propagation using
stochastic gradient descent algorithm. The learning rate was fixed to 10−2 in
all the experiments, and other parameters were set to the default values given
in the CNS package [8]. The network was trained for multiple epochs, where
each epoch involves training the network by each example once. In this paper,
we trained the network for 10 epochs since the performance seems to have con-
verged after 10 epochs and the training was very time-consuming. In particular,
we have 398 × 50, 000 = 19.9 million training patches. Each epoch took about
48 hours if all the patches were used on a Tesla K20c GPU with 2,496 cores.



Deep Learning Based Imaging Data Completion 309

3 Results and Discussion

3.1 Experimental Setup

In the experiments, we focused on evaluating our 3-D CNN model for missing
PET data completion. We used several controlled experiments to compare the
predicted and the true PET image data. We did not employ advanced feature
extraction and classification methods to compare the completed and true data,
but rather used a set of standard methods to make the comparison straightfor-
ward. We consider three binary-class classification tasks (i.e., AD vs. NC, MCI
vs. NC, and sMCI vs. pMCI) in this paper, where MCI includes both pMCI and
sMCI.

We compared our method with two other commonly used missing data esti-
mation methods, namely, K-nearest neighbor (KNN) and Zero methods [9]. The
experiments in this work consist of two steps. The first step is to complete the
missing PET data using CNN, KNN, or Zero methods. The second step then
evaluate the classification performance based on reconstructed data using the
�2-norm regularized logistic regression classifiers for all methods. In the experi-
ments, we trained the classifiers by randomly selecting 2/3 of the samples and
performed an evaluation using the remaining 1/3 as test data in the second step.
To obtain robust performance estimates, we repeated the random partition 30
times and reported the statistics computed over these 30 trials. Note that no
class information was used in our CNN training. Thus, we built one CNN model
and applied it for all 30 random trials. We performed feature selection by remov-
ing voxels that have zero value for all subjects. Since the number of samples was
not balanced between classes, we used the area under the ROC curve (AUC) as
the performance measure to evaluate different methods in this study.

3.2 Evaluation on Subjects with Both MRI and PET

We first evaluated whether the predicted PET data were similar to the true PET
data. In the data set used for this study, there were 398 subjects with both MRI
and PET images. We randomly sampled 1/2 of these 398 subjects for training
the 3-D CNN model. Then the model was used to predict the PET images of
the remaining 1/2 subjects. Since we had true PET images for the test subjects,
we were able to compare the true and the predicted PET images both visually
and quantitatively.

We first visually examined the predicted PET patterns with the ground truth
data for each subject. Figure 2 shows the predicted and the ground truth data
slice by slice for two subjects. We can observe that the predicted PET patterns
are similar to the ground truth. This demonstrates that our deep learning based
method can successfully estimate the missing PET data.

To evaluate the proposed data completion method quantitatively, we also
compared the classification results based on the true and the predicted PET
images. In addition, we report the classification results based on KNN and Zero
methods. The AUC values of the three classification tasks based on true PET
images and predicted images by three methods are given in Table 1.
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Predicted PET for an AD subject

Ground truth PET for the same AD subject

Predicted PET for an NC subject

Ground truth PET for the same NC subject

Fig. 2. Comparison of the predicted and the ground truth PET images on two subjects.
Each row corresponds to the data (either ground truth or predicted) of one subject,
and each column corresponds to slice with the same brain position.

We can observe from these results that the 3-D CNN model outperforms KNN
and Zero methods significantly in all three classification tasks. These significant
performance differences verify that our deep learning method successfully ex-
tracts highly nonlinear relationship between the MRI and PET images. We can
also observe that the results of the 3-D CNN model is comparable with those
of the true PET images. This demonstrates that our predicted PET images can
potentially be used to improve the accuracy of disease diagnosis. Note that the
classification performance reported here might be lower than those in the current
literature on the ADNI data set because (1) we do not employ advanced feature
extraction and classification methods on the true and completed data, and (2)
the number of subjects used in the study is relatively small, since we used only
these subjects with both MRI and PET.
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Table 1. Performance comparison of classification tasks using the true and the pre-
dicted PET data. The data set consists of 398 subjects having both MRI and PET
images.

Tasks MCI vs. NC pMCI vs. sMCI AD vs. NC

PET

True data 0.7014 ± 0.0212 0.6823 ± 0.0241 0.8982 ± 0.0224
3-D CNN 0.6947 ± 0.0281 0.6804 ± 0.0267 0.8868 ± 0.0208
KNN 0.6304 ± 0.0248 0.6278 ± 0.0326 0.7421 ± 0.0282
Zero 0.6175 ± 0.0213 0.6124 ± 0.0243 0.6928 ± 0.0225

Table 2. Performance comparison of classification tasks using the true and the pre-
dicted PET images. All 830 subjects were used in this experiments, where subjects
with no PET images were completed using three methods.

Tasks MCI vs. NC pMCI vs. sMCI AD vs. NC

MRI 0.7439 ± 0.0329 0.7168 ± 0.0253 0.9192 ± 0.0188

PET
3-D CNN 0.7305 ± 0.0315 0.7029 ± 0.0245 0.8762 ± 0.0236
KNN 0.6352 ± 0.0200 0.6133 ± 0.0346 0.7391 ± 0.0304
Zero 0.6102 ± 0.0268 0.5924 ± 0.0331 0.7028 ± 0.0331

MRI + PET
3-D CNN 0.7621 ± 0.0205 0.7244 ± 0.0241 0.9287 ± 0.0207
KNN 0.7231 ± 0.0214 0.6813 ± 0.0312 0.7691 ± 0.0213
Zero 0.7217 ± 0.0290 0.6291 ± 0.0317 0.7003 ± 0.0162

3.3 Evaluation on All Subjects

To further evaluate the effectiveness of our proposed method, we report the
prediction performance on all 830 subjects, where 398 subjects have both MRI
and PET images, and the remaining 432 subjects have only MRI images. The
3-D CNN and other data completion methods were trained on the 398 subjects,
and the trained models were used to complete the PET images of the remaining
432 subjects. The classification performance on all 830 subjects is reported in
Table 2. Note that the comparison of classification performance based on true
data is not applicable in this experiment, since 432 of 830 subjects did not have
PET images.

We can observe that the 3-D CNN model outperforms KNN and Zero methods
for all three tasks with three different combinations of PET and MRI modalities.
This again demonstrates that the proposed 3-D CNN data completion method
is more effective than the competing methods. We can also observe that the per-
formance was improved when the MRI and PET image features were combined.
Overall, these experiments yielded insights on the power of the 3-D CNN model
in completing missing neuroimaging data, thereby providing practical guidelines
for employing multi-modality data even when some data modalities are miss-
ing. These results demonstrated that the estimated PET data could be used to
improve the accuracy of disease diagnosis.
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4 Conclusion and Future Work

We developed a 3-D CNN model for completing and integrating multi-modality
neuroimaging data. This model takes one volumetric data modality as input and
another modality as output. The nonlinear relationship between different data
modalities is captured by a large number of trainable parameters in the network.
We applied this model to predict the missing PET patterns from the MRI data.
Results showed that the predicted PET data achieved similar classification per-
formance as the true PET images. Additionally, our data completion method
significantly outperformed the previous methods.

In this paper, we considered the CNN model for data completion. There are
also other deep architectures that achieved promising performance on image-
related tasks. It would be interesting to apply other deep models, such as the
deep belief networks, for volumetric image data completion. In this work, we
employed a CNN model with two hidden layers due to the high computational
cost of training. We will explore ways of expediting the computation and design
more complicated deep models in the future.
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Abstract. Many recent scientific efforts have been devoted to construct-
ing the human connectome using Diffusion Tensor Imaging (DTI) data
for understanding the large-scale brain networks that underlie higher-
level cognition in human. However, suitable computational network anal-
ysis tools are still lacking in human connectome research. To address this
problem, we propose a novel multi-graph min-max cut model to detect
the consistent network modules from the brain connectivity networks
of all studied subjects. A new multi-graph MinMax cut model is intro-
duced to solve this challenging computational neuroscience problem and
the efficient optimization algorithm is derived. In the identified connec-
tome module patterns, each network module shows similar connectivity
patterns in all subjects, which potentially associate to specific brain func-
tions shared by all subjects. We validate our method by analyzing the
weighted fiber connectivity networks. The promising empirical results
demonstrate the effectiveness of our method.

1 Introduction

Advent of diffusion MRI technology has made tremendous progress over the last
decade [2] and enables us to use Diffusion Tensor Imaging (DTI) for non-invasive
in vivo white matter mapping of the human brain by the inference of axonal fiber
pathways from local water diffusion [4]. DTI combined with tractography allows
the reconstruction of the major fiber bundles in the brain and also permits the
mapping of white matter cortico-cortical and cortico-subcortical projections at
high spatial resolution. These studies enable the analysis of the human connec-
tome as organizational principle of the central nervous system.

Understanding the structural basis of functional connectivity patterns requires
a comprehensive map of structural connection of the human brain, which has
been conceptualized as the human connectome [10]. A connectome is a compre-
hensive description of the network elements and connections that form the brain.
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Such clear and comprehensive knowledge of anatomical connections lies at the
basis of understanding network functions. The connectome can be represented
as a large interconnected graph, in which nodes are neuroanatomical regions and
synapses are bundles of white matter tracts. The resultant networks exhibit im-
portant topological properties such as small-worldness and highly connected hub
regions in the posterior medial cortical regions. These studies have accelerated
our understandings of human connectome.

Although many network and graph analysis tools have been applied to human
connectome studies, most of them focus on analyzing the connectome of each
subject individually. How to find the consistent network module patterns (con-
nectome modules) from a group of subjects (i.e. a set of regions are connected
by similar density of nerve fibers in all subjects) under the same condition (e.g.
normal or Alzheimer) is important to understand the underlying brain structural
and functional mechanisms. The existing research work mainly used the average
connectivity networks of all subjects to seek the consistent network modules,
however, this straightforward method can easily fail to many conditions. For
example, one or two subjects have very strong signals connecting two brain re-
gions, but the rest of subjects have small values on this connectivity. The average
connectivity value of all subjects between these two regions can still be large,
which indicates a wrong connectivity pattern.

To solve this challenging problem, we propose a novel multi-graph MinMax
cut model to identify the consistent network patterns from brain connectivity
networks of a group of subjects. Our new approach does the min-max cut on
each connectivity network simultaneously. The common connectome patterns are
then detected from the dense connected modules. We introduce a new projected
gradient optimization algorithm to solve the proposed multi-graph MinMax cut
objective. By analyzing the weighted fiber connectivity network from 50 young
male adults, we identify six consistent network modules which consistently carry
high connectivity among all the subjects. These connectome module patterns
potentially associate to the common brain functions shared by all subjects.

2 Methodology

2.1 Consistent Connectivity Patterns

The brain connectome of each subject can be represented as a graph A, in which
each node is an ROI (region of interest) in human brain and the weight of each
edge is the density of the nerve fibers connecting a pair of nodes. In next section,
we will describe the details of brain network construction. Given a group of m
subjects under the same condition with n ROIs, we can denote their connectivity
networks as A1, A2, · · · , Am, where Ak ∈ #n×n and Ak

ij denotes the connectivity
of the i-th ROI and the j-th ROI in the k-th subject, k = 1, · · · ,m, 1 ≤ i, j ≤ n.

It is important to discover the common consistent connectivity patterns, i.e. a
set of ROIs connected by similar density of nerve fibers in all subjects, which are
potentially associated to the underlying brain structural and functional mecha-
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nisms shared by the subjects. Thus, our goal is to detect the sub-networks which
have similar connectivity structures in all or most A1, A2, · · · , Am.

Although there are many graph cut methods to group nodes in the graph,
these approaches only work for single graph and cannot find the common con-
nectome patterns. Thus, we propose a novel multi-graph MinMax cut model to
group nodes based on their structures in all connectivity networks.

2.2 Multi-graph MinMax Cut

Given a graph with weight matrix A ∈ #n×n, there are many graph cut methods
to group nodes, such as Min Cut, Ratio Cut, Normalized Cut, and MinMax
Cut. The MinMax cut can provide the balanced group results to avoid grouping
the outlier data together. Thus, MinMax cut is preferred to group nodes in
connectome data analysis. However, the traditional MinMax cut only works for
single graph. To solve the multiple networks problem, we propose a novel multi-
graph MinMax cut model for grouping nodes on multiple graphs simultaneously.

Let Av ∈ #n×n denote the v-th network, and Dv are diagonal matrices whose
diagonal elements are

∑
j

avij . When we perform MinMax cut on the v-th network,

we can minimize the following spectral relaxed objective [9]:

min
(Qv)TQv=I

K∑
k=1

(qvk)
TDvqvk

(qvk)
TAvqvk

, (1)

where Qv = [qv1 , · · · , qvK ] ∈ #n×K is the group indicator matrix for the v-th
network and K is the number of groups.

The straightforward way to group ROIs on all networks is to average the
corresponding edge weights to build a new “ensemble” network, and perform
the MinMax cut on the new network. However, in such method, some networks
have very strong signals in local ROIs will dominate the average network and
lead to the wrong connectivity patterns. It is ideal to simultaneously perform
the MinMax cut on each network and unify their consistent results.

When the multi-graph MinMax algorithm is performed on all networks, the
grouping results in different networks should be unique, i.e. the group indicator
matrices Q(v) of different networks should share the same one. Therefore, in
multi-graph MinMax, we force the group assignment matrices to be the same
across different networks, that is, the consensus common group indicator matrix
Q ∈ #n×K . Our new Multi-Graph MinMax Cut model (MGMMC) is to solve
the following objective:

min
QTQ=I

J(Q) =
m∑

v=1

K∑
k=1

qTk D
vqk

qTk A
vqk

(2)

where m is number of connectivity networks, K is number of clusters. The pro-
posed model is capable of capturing the connectome structures from different
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networks, and thus expected to get consistent connectivity patterns. It is diffi-
cult to solve the objective in Eq. (2) because of the orthonormality constraints.
We will derive our optimization algorithm using the projected gradient descent
method.

Taking derivative on J(Q) w.r.t. qk, we get:

∂J

∂qk
=

m∑
v=1

(qTk A
vqk)D

vqk − (qTk D
vqk)A

vqk
(qTk A

vqk)2
=

m∑
v=1

1

qTk A
vqk

Dvqk − qTk D
vqk

(qTk A
vqk)2

Avqk

We denote:

αv = diag(
1

qT1 A
vq1

, · · · , 1

qTKAvqK
) , βv = diag(

qT1 D
vq1

(qT1 A
vq1)2

, · · · , qTKDvqK
(qTKAvqK)2

) ,

where diag(x) represents a diagonal matrix whose diagonal elements are the
elements in vector x.

So Eq. (3) can be rewritten as:

∂J

∂Q
=

m∑
v=1

DvQαv −AvQβv . (3)

Because we have the orthonormal constraint QTQ = I in objective, we can
use the projected gradient descent method to solve this problem. Given Q, we
calculate a new variable H by:

H = Q− τ(

m∑
v=1

DvQαv −AvQβv) . (4)

When H is fixed, we need to solve the following constrained optimization prob-
lem:

min
QTQ=I

‖Q−H‖2F (5)

Because

‖Q−H‖2F = Tr((Q −H)T (Q−H)) = Tr(QTQ− 2QTH +HTH) , (6)

and QTQ = I, and H is fixed, problem (5) is equivalent to solve the following
problem:

max
QTQ=I

Tr(QTH) . (7)

If the SVD result of H is : H = UΣV T , then the optimal solution of problem
(7) can be obtained by:

Q = UKV T , (8)

where UK is composed of the first K columns of U . Thus,we can iteratively solve
H using Eq. (4) and update Q by Eq. (8) till convergence.
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3 Human Brain Connectivity Network Construction

In our project, participants included 50 healthy youngmale adults (age: 24.0±3.2)
with no history of neurological or psychiatric disorder. The MRI scans were ac-
quired on a Siemens 3TTIM Trio (Erlangen, Germany) using a 12-channel receive
only phased array head coil in combination with a body coil for radio frequency
transmission. A SE-EPI DTI sequence was applied using parameters: matrix=
128× 128; FOV= 256× 256mm; TE/TR=77/8300ms; 68 transversal slices with
2mm thickness; 48 diffusion directions with gradients b=1000s/mm2, and 8 sam-
plings at b=0.Each session also included a high resolutionT1-weightedMP-RAGE
imaging as anatomical reference for subsequent parcellation and co-registration.

The DTI data are analyzed in FSL1. DTI preprocessing includes correction
for motion and eddy current effects in DTI images. The processed DTI images
are then output to Diffusion Toolkit (http://trackvis.org/) for fiber tracking,
using the streamline tractography algorithm called FACT (fiber assignment by
continuous tracking). The FACT algorithm initializes tracks from many seed
points and propagates these tracks along the vector of the largest principle axis
within each voxel until certain termination criteria are met. In our study, stop
angle threshold is set to 35 degree, which means if the angle change between two
voxels is greater than 35 degree, the tracking process stops. A spline filtering is
then applied to smooth the tracks.

Anatomical parcellation is performed using FreeSurfer 5.12 [7,5,6] on the
high-resolution T1-weighted anatomical MRI scan acquired with MP-RAGE se-
quence. The parcellation is an automated operation on each subject to obtain 82
gyral-based ROIs, with 41 cortical ROIs in each hemisphere, one in brainstem.
The T1-weighted MRI image is registered to the low resolution b0 image of DTI
data using the FLIRT toolbox in FSL, and the warping parameters are applied
to the ROIs so that a new set of ROIs in the DTI image space are created. These
new ROIs are used for constructing the structural network.

The topological representation of a network is a collection of nodes and edges
between pairs of nodes. In constructing the weighted, undirected network, the
nodes are chosen to be the 83 registered ROIs obtained from FreeSurfer par-
cellation. Three different schemes [8,3] are used to define the edge weight as
follows: 1) Weighted: The density of the fibers connecting a pair of nodes, which
is the number of tracks between two ROIs divided by the mean volume of the
two ROIs; 2) Fiber number: the number of tracks between two ROIs; 3) Fiber
length: the length of tracks between two ROIs.

4 Experiments and Discussions

4.1 Experiment Setup

We apply our MGMMC model on the 50 connectivity networks. The parameter
group numberK is set as 10, and the stepsize τ is set as 0.001 for all experiments.

1 http://www.fmrib.ox.ac.uk/fsl.html
2 http://surfer.nmr.mgh.harvard.edu/

http://www.fmrib.ox.ac.uk/fsl.html
http://surfer.nmr.mgh.harvard.edu/
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We use the normalized connectivity measure of connectome modules to evaluate
the density of detected modules:

Btt =

∑m
v=1 s

v
tt

m · n2
t

, (9)

where Btt represents the normalized connectivity of the t-th connectome module,
m is the total number of networks used in experiments, nt is the cardinality of
the t-th module Ct (Ct is the set of ROIs contained in the t-th cluster), i.e.
the number of ROIs in t-th module Ct. s

v
tt =

∑
i∈Ct,j∈Ct

Av
ij is the connectivity

measure of the t-th module in the v-th network.

4.2 Comparison of Connectivity Measures

To demonstrate the effectiveness of our MGMMC model, we compare MGMMC
with two methods:
(1) MMC performed on the average network, where Gavg =

∑m
v=1 Gv

m .
(2) Multi-Modal Spectral Clustering (MMSC)[1], which integrates data from
different modality/view to perform spectral clustering.

The connectivity measure are reported in Table 1. We can conclude that: for
all three types of graph (W, LL, NF), the average connectivity measurements of
top 6 modules detected by our MGMMC model are greater than that of modules
detected using the two comparison methods. This justifies the effectiveness and
advantage of our MGMMC model, which considers the connectivity structures in
different graphs. T-test is performed to evaluate the significance of difference of
the module connectivity. The p values of the T-test for the six pair comparisons
(W, W avg), (W, W mmsc), (LL, LL avg), (LL, LL mmsc), (NF, NF avg), (NF,
NF mmsc) are 0.14, 0.04, 0.04, 0.008, 0.03, 0.03. Five out of the six p values are
less than 0.05, which means the difference of most of the six pair comparisons
are significant in all cases except one. We can also see from Table 1 that: the av-
erage connectivity measures of detected connectome modules by using weighted
network is the best among three types of networks, and the fiber length (LL)
network gets the worst connectivity measures. This shows that the weighted
network is the best connectivity measurement.

4.3 Visualization of Detected Modules

We visualize the top 6 connectome modules using weight network detected by
MGMMC model in Figure 4.2. Only the first 24 subjects are shown due to space
limitation. ROIs contained in each connectome module are listed on the left-side
in Figure 4.2. We can see that three pairs of modules are almost symmetric
except for one ROI in each pair: module 1 and module 2, module 3 and module
6, module 4 and module 5. This shows that each connectome module has its
counterpart in the other half brain. In Figure 2, we visualize the location of the
top 6 connectome modules in human brain.
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Table 1. Btt for top 6 modules with largest connectivity. W, LL and NF denote the
results of using our MGMMC model on the graphs of weighted, fiber length, and fiber
number, respectively; W mmc, LL mmc, and FN mmc denote the results of MMC
using the average graph; W mmsc, LL mmsc, and FN mmsc denote the results using
mmsc method.

Module W W mmcW mmsc LL LL mmc LL mmsc NF NF mmc NF mmsc

1 0.1369 0.1250 0.1369 0.0693 0.0649 0.0649 0.0870 0.0829 0.0773
2 0.1003 0.1136 0.0884 0.0649 0.0636 0.0636 0.0818 0.0765 0.0741
3 0.0971 0.0812 0.0867 0.0607 0.0607 0.0545 0.0765 0.0726 0.0735
4 0.0884 0.0780 0.0865 0.0582 0.0522 0.0522 0.0726 0.0658 0.0709
5 0.0867 0.0780 0.0839 0.0522 0.0495 0.0403 0.0640 0.0638 0.0702
6 0.0805 0.0709 0.0768 0.0495 0.0393 0.0386 0.0624 0.0624 0.0574

Average 0.0983 0.0911 0.0932 0.0592 0.0551 0.0524 0.0740 0.0707 0.0706

Module 1
L parahippocampal
L entorhinal
L temporalpole
L hyppocampus
L amygdala

Module 2
R parahippocampal
R entorhinal
R temporalpole
R hyppocampus
R amygdala

Module 3
R superiorparietal
R precuneus
R cuneus
R pericalcarine
R lateraloccipital
R lingual
R fusiform

Module 4
R supramarginal
R inferiorparietal
R inferiortemporal
R middletemporal
R bankssts
R superiortemporal
R transversetemporal

Module 5
L supramarginal
L inferiorparietal
L inferiortemporal
L middletemporal
L bankssts
L superiortemporal
L transversetemporal

Module 6
L superiorparietal
L precuneus
L cuneus
L pericalcarine
L lateraloccipital
L lingual
L fusiform

N/A

Fig. 1. The top 6 connectome modules discovered by our MGMMC model. ROIs con-
tained in each connectome module are listed on the left-side. The edge between two
nodes denotes there is connection between these two ROIs. Zoom in for clear view.

Fig. 2. Location visualization of top 6 connectome modules discovered by MGMMC
model from top, bottom, right, left views
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5 Conclusion

In this paper, we proposed a novel brain connectivity network analysis method by
employing the new multi-graphMinMax cut model to identify the consistent con-
nectivity patterns from multiple subjects. We introduced an efficient algorithm
to discover such connectivity patterns that are potentially associated to differ-
ent brain functions of humans. The clinical DTI data were used to construct the
brain connectivity networks to validate our methods. Several important highly
connected sub-network modules were detected.
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Abstract. Recently, neuroimaging data have been increasingly used to
study the causal relationship among brain regions for the understand-
ing and diagnosis of brain diseases. Recent work on sparse Gaussian
Bayesian network (SGBN) has shown it as an efficient tool to learn
large scale directional brain networks from neuroimaging data. In this
paper, we propose a learning approach to constructing SGBNs that are
both representative and discriminative for groups in comparison. A max-
margin criterion built directly upon the SGBN models is proposed to
effectively optimize the classification performance of the SGBNs. The
proposed method shows significant improvements over the state-of-the-
art works in the discriminative power of SGBNs.

1 Introduction

Neuroimaging techniques have been widely adopted in brain research for analyz-
ing mental diseases, such as the Alzheimer’s disease (AD). They could provide
more sensitive and consistent assessments for the early diagnosis of disease. Re-
cently, neuroimage analysis is shifting its emphasis from local brain regions to
regional interactions (known as brain network) using graph theory [1]. Such anal-
ysis is important because brain network change is often a response to damages
like mental diseases. Generally a brain network is constructed as follows (Fig. 1).
After aligning to a common stereotaxic space, brain images are partitioned into
regions of interest (ROI). A brain network is then modeled by a graph with
each node corresponding to a brain region and each edge corresponding to the
connectivity between regions. Brain “effective connectivity” analysis focuses on
the causal relationships between brain regions [1]. The directionality is often of
interest, because it may disclose the pathways of how one brain region affects the
other. Evidence of causal relationship changes has been found in many mental
diseases including AD from multiple imaging modalities [2,3], shedding light on
discovering novel connectivity-based biomarkers for disease diagnosis.

Early research works in this regard usually require a prior model of connec-
tivity and study only a small number (≤ 10) of brain regions, such as Structural
Equation Modeling [4] and Dynamic Causal Modeling [5]. This situation has been
improved recently by [2], where a completely data-driven method, denoted as

P. Golland et al. (Eds.): MICCAI 2014, Part III, LNCS 8675, pp. 321–328, 2014.
c© Springer International Publishing Switzerland 2014
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Fig. 1. Illustration of brain network construction from neuroimaging data

H-SGBN in this paper, is proposed to recover sparse Gaussian Bayesian network
(SGBN) from more than 40 brain regions in fluorodeoxyglucose PET (FDG-
PET) images. It employs the strategy of sparsity constraint to handle large scale
Bayesian Network (BN) construction, and circumvents the traditional two-stage
procedure for parent set identification in many sparse BN learning methods,
achieving a more accurate network recovery [2].

As most BNmethods in the literature, H-SGBN is a generative method, which,
as pointed out in [6], may ignore the subtle but critical brain structural changes
induced by mental diseases. Therefore, a learning approach is proposed in [6],
denoted as DL-SGBN, to introduce class discrimination into the SGBN models.
DL-SGBN employs Fisher kernel to extract sample-based features from SGBNs,
and minimizes a generalization error bound for SVM classifiers with these SGBN-
induced features. In that work, the class discrimination is learned by optimizing
the classification performance of SVMs, which does not guarantee the equivalent
improvement on SGBNs. However, SGBN models are the ultimate goal in such
research since they represent the brain connectivity.

In this paper, we propose a new method to learn discriminative SGBN models
from neuroimaging data, which overcomes the drawbacks of the state-of-the-art
works mentioned above. We propose a max-margin framework to jointly learn
two SGBNs, one for each class, for both discrimination and representation. Un-
like DL-SGBN in [6], our framework optimizes a criterion directly built upon the
classification performance of SGBNs, thus further improves the discriminative
power of the models from DL-SGBN (and H-SGBN). Our method is different
from the literature of BN classifiers where a single BN is learned to represent the
differences of two classes (in either structure or parameter but not in both) [7,8].
These methods work on discrete variables, while the brain ROI measurements
are usually continuous variables whose discretization is often hard to decide.
Our experiment shows significant improvement of our proposed method over the
state-of-the-art works of H-SGBN and DL-SGBN in terms of the discriminative
power of SGBNs. The notations of symbols frequently appearing in this paper
are summarized in Table 1.

2 Background

Because this paper is based on sparse Gaussian Bayesian Network (SGBN)
model, in the following, we review the fundamentals of SGBN in the original
paper [2]. For DL-SGBN, the discriminative learning of SGBN, please refer to [6]
for the technical details. We compare with both methods experimentally.
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Table 1. Notation

xi a random variable

x a sample of m variables: x = [x1, x2, · · · , xm]�

X the data matrix of n samples, X ∈ R
n×m

xi,: the i-th row of X, representing a sample

x:,i the i-th column of X, representing the realization of the random variable xi

on n samples

W the parameters of a Gaussian Bayesian Network: W = [w1, · · · ,wm], W ∈ R
m×m

Pai a vector containing the parents of xi

PAi a matrix whose j-th column represents a realization of Pai on the j-th sample.

G an m×m matrix for BN: if there is a directed edge from xi to xj , Gij = 1,

otherwise Gij = 0

P an m×m matrix for BN: if there is a directed path from xi to xj , Pij = 1,

otherwise Pij = 0

A graph of BN G expresses the factorization property of a joint distribution
p(x) =

∏
i=1,··· ,m

p(xi|Pai). The conditional probability p(xi|Pai) is assumed to

follow a Gaussian distribution in Gaussian BN (GBN). Each node xi is regressed
over its parent nodes Pai: xi = w�

i Pai+εi, where the vectorwi is the regression
coefficients, and εi ∼ N (0, σ2

i ). A BN is a directed acyclic graph (DAG), i.e.,
there is no closed path within the graph. Identifying parent sets is critical for BN
learning. Traditional methods often consist of two stages: determine candidate
parent sets and further prune them by some criteria. A drawback rises that a
missing true parent in the first stage will never be recovered. The work in [2]
proposed a different approach (H-SGBN) based on sparse GBN (SGBN). In H-
SGBN, each node xi is regressed over all the other nodes, and its parent set is
implicitly selected by the regression coefficients wi that are estimated by:

min
W

m∑
i=1

‖x:,i −PA�
i wi‖22 + λ1‖wi‖1 (1)

s.t. Wji ×Pij = 0, ∀i, j = 1, · · · ,m, i = j.

All the symbols are defined as in Table 1. A challenge for BN learning is how to
enforce the DAG property, i.e., avoiding directed cycles in the graph. A sufficient
and necessary condition for being a DAG is proposed in [2], which requires
Wji ×Pij = 0 for all i and j. Note that Pij is an implicit function of Wji. H-
SGBN has been shown to outperform the conventional two-stage methods with
higher accuracy for the network edge recovery in [2].

3 Our Proposed Method

As a generative model, BN models the density of the data, revealing how the
data could be generated through an underlying process. This is desirable in
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the exploratory research of brain, where discovering new knowledges about the
brain and the mental diseases is critical. When used for classification, a BN is
trained for each class independently and a sample is categorized to the class that
produces the higher probability. However, the BNs individually trained by each
class may ignore some subtle but critical network differences that distinguish two
classes. Since we usually have access to both classes in comparison (e.g., AD and
normal control), it is argued in [6] that the parameters of the two SGBNs, one
for each class, should be learned from the two classes jointly in order to retain
the essential discrimination. Therefore, a joint learning method DL-SGBN is
proposed in [6], which introduces group discrimination into SGBNs by optimizing
the performance of SVM classifiers with SGBN-induced features. Although this
leads to a relatively simple optimization problem, optimizing the performance of
SVMs does not necessarily equal to optimizing the discrimination of SGBNs that
represent the brain networks. We believe that, the discrimination of SGBNs can
be further improved if we directly optimize their (instead of SVMs’) classification
performance. Therefore we propose a new learning framework based on max-
margin formulation directly built on SGBNs. We call our method MM-SGBN.

For binary classification, maximizing the minimum margin between two
classes can be obtained by maximizing the minimum conditional likelihood ratio
(MCLR):

MCLR(W) =
n

min
i=1

P (yi|xi,Wyi)

P (ȳi|xi,Wȳi)
,

where n is the number of samples. Without loss of generality, yi and ȳi ∈ {−1, 1},
representing the true and false labels for the i-th sample, respectively. The pa-
rameter Wyi = W1 if yi = 1, or Wyi = W2 if yi = −1. We can see that
MCLR identifies the most confusing sample whose probability of the true class
assignment is close to or even less than that of the false class assignment. Hence,
maximizing MCLR targets the maximal separation of the most confusing sam-
ples in the two classes. It is not difficult to see that MCLR can naturally handle
multi-class case when replacing the denominator by the maximal probability
induced by all false class assignments. Taking log-likelihood of MCLR, we have

log MCLR(W) =
n

min
i=1

(log p(xi|yi,Wyi)− log p(xi|ȳi,Wȳi)) + const, (2)

which can be shown as a quadratic function of W in the case of SGBN. In order
to maximize MCLR, we require the log-likelihood difference in Eqn. (2) larger
than a margin for all samples and maximize the margin. To deal with hard
separations, we employ a soft margin formulation as follows.

min
W1,W2,ξi,r

λ

n∑
i=1

ξi − r (3)

s.t. yi (L(W1,xi)− L(W2,xi)) ≥ r − ξi, ∀i (3a)

ξi ≥ 0, r ≥ 0, (3b)

f(X1,W1) ≤ T1, f(X2,W2) ≤ T2 (3c)

W1 ∈ DAG, W2 ∈ DAG (3d)
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Algorithm 1. MM-SGBN: Discriminative Learning

Input: data X1,X2 ∈ R
n×m, label y ∈ R

n×1

1. Obtain the initial solution for Eqn. (3):

Get initial W(0) = [W
(0)
1 ,W

(0)
2 ] by Eqn. (1);

Get initial r(0) and ε
(0)
i by solving Eqn. (3) with only the two constraints (3a)

and (3b) and a fixed W = W(0).
2. Select a subsets of parameters (Wi,j) that satisfy:

i) the gradient (change) of SGBN model at these parameters are highly correlated
with the class label, and ii) the corresponding edges present in the graph.
3. Optimize the parameters of the selected nodes by Eqn.(3).

Eqn. (3) has three components addressing class separation (3a), model represen-
tation (3c) and DAG property (3d), respectively.

The constraints in (3a) enforce the likelihood of xi to its true class larger than
that to its false class by a margin r. The variable ξi is the slack variables indi-
cating the intrusion of the margin. The function L(·) denotes the log-likelihood:

L(W,x) =

m∑
i=1

−(xi −Pa�
i wi)

2

2σ2
i

− log(2π
√
σi).

The constraints in (3c) control the fitting errors to maintain reasonable rep-
resentation. Adding these constraints also avoids the scaling problem of W. The
function f(·) measures the squared fitting errors of the corresponding SGBNs
for the data X1 and X2 from the two classes. It is defined as

f(X,W) =

m∑
i=1

‖x:,i −PA�
i wi‖22.

The parameters of T1 and T2 are application dependent and predefined by users
to control how much representation could be sacrificed for discrimination.

The constraints in (3d) are the DAG constraint proposed in Eqn. (1), i.e.,
W1{ji} × P1{ij} = 0, W2{ji} × P2{ij} = 0, ∀i, j = 1, · · · ,m, i = j. By these
constraints, we enforce the validity of both graphs.

The optimization in Eqn. (3) is quadratic programming, which can be solved
iteratively by fmincon-SQP (sequential quadratic programming) in Matlab. The
details are given in Algorithm 1.

Our method differs from the conventional BN classifiers [7,8] that solely focus
on classification. In those methods, only one BN is learned to merely represent
the “difference” of the two classes. They no longer model the individual class
as our method does, and hence are less interpretative. Moreover, they cannot
handle the continuous variables of brain imaging measures, and inherit the draw-
backs of the traditional two-stage methods. In practice, learning the whole set
of SGBN parameters could become unreliable when the training samples are
insufficient. Therefore, we follow the line in [6] to optimize only a selected sub-
set of parameters. Note that this does not introduce the same problem as the
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traditional two-stage methods. It is just an engineering trick to handle small
sample size problem and becomes unnecessary when sufficient training data are
available. In contrast, identifying the candidate-parent sets is an indispensable
step in two-stage methods to obtain computationally tractable solutions.

4 Experiment

We evaluate our proposed MM-SGBN against the single class method H-SGBN
from [2] and the discriminative learning method DL-SGBN from [6]. For com-
parison, following [6], we apply all methods on the publicly accessible ADNI1

database to analyze brain effective connectivity for AD. Three data sets are used
from two imaging modalities of MRI and FDG-PET downloaded from ADNI.

MRI data set includes 120 T1-weighted MR images belonging to 50 mild cogni-
tive impairment (MCI) patients and 70 normal controls (NC). These images are
preprocessed by the typical procedure of intensity correction, skull stripping, and
cerebellum removal. They are segmented into gray matter (GM), white matter
(WM), and cerebrospinal fluid (CSF) using the standard FSL2 package, and par-
cellate them into Regions of Interest (ROI) based on an ROI atlas after spatial
normalization. The GM volumes of each ROI are used as network nodes. Forty
ROIs similar to [6] are used3, mainly in the temporal lobe and around.
PET data set includes 103 FDG-PET images (and their corresponding MR
images) of 51 AD patients and 52 NC. The MR images belonging to different
subjects are co-registered and partitioned into ROIs as mentioned above. The
ROI partitions are copied onto their corresponding PET images by a rigid trans-
formation. The average tracer uptakes within each ROI in PET images are used
as network nodes. Forty discriminative ROIs to AD are used.
MRI-II data set is similar to the MRI data set but using 40 different ROIs
covering the typical brain regions spread over the frontal, parietal, occipital and
temporal lobes.

We test how the learning process improves the discriminative power of the
individual SGBNs estimated by each class. The individual SGBNs are obtained
by H-SGBN. We test two methods for discriminative learning: our max-margin-
based method MM-SGBN and DL-SGBN in [6]. In order to maintain represen-
tation capability, we allow maximal 1% additional squared fitting errors (that
is, Ti = 1.01× Ti0, (i = 1, 2), where Ti0 is the squared fitting error of the initial
solution) to be introduced during the learning process. To classify a test sample,
we compare the values of its likelihood and assign the sample to the class with a
higher likelihood. The test accuracies are averaged over the 50 randomly parti-
tioned training-test groups and presented in Table. 2. Paired t-tests (two-tailed)
are also conducted to examine the statistical significance of the results.

1 http://www.adni-info.org/
2 http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/
3 Forty ROIs are used to be comparable to that in [2,6].

http://www.adni-info.org/
http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/
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Table 2. Test Classification Accuracy Averaged over 50 Training-Test Groups (left)
and p-values of Paired t-tests (right)

Accuracy p-value

H-SGBN DL-SGBN MM-SGBN H-SGBN vs. H-SGBN vs. DL-SGBN vs.

(%) (%) (%) DL-SGBN MM-SGBN MM-SGBN

MRI 66.08 72.92 76.25 7e-7 0 1e-4

PET 61.47 66.74 69.92 4e-4 0 5e-6

MRI-II 57.08 63.92 67.17 7e-6 0 3e-3

From the results we observe that: i) Both DL-SGBN and MM-SGBN can greatly
improve the discriminative power of the SGBNs estimated from individual classes
by H-SGBN. DL-SGBN increases the test accuracy by 6.8% for MRI, 5.3% for
PET and 6.8% for MRI-II. MM-SGBN increases the test accuracy by 10.2%
for MRI, 8.5% for PET and 10.1% for MRI-II. These improvements are all sta-
tistically significant as shown by the very small p-values. This indicates the
effectiveness of jointly learning two classes. ii) Our proposed MM-SGBN gener-
ates the best classification accuracies over all the data sets, which also further
improves the classification accuracy of the DL-SGBN by 3.4% for MRI, 3.2% for
PET and 3.3% for MRI-II. These improvements are all statistically significant.
The advantages of MM-SGBN over DL-SGBN come from directly optimizing the
discriminative power of SGBNs, instead of getting indirect help from optimiz-
ing the performance of SVM on SGBN-induced features. iii) Remind that these
improvements on discrimination are achieved with no more than 1% increase of
squared fitting errors, as explicitly controlled via the user-defined parameters T1

and T2. Note that the rate of 1% is application dependent. More tolerance of
fitting errors can potentially bring more discrimination. When we relax fitting
error to 10%, another 3% increase of test accuracy could be further achieved.

An example of 18 edge weight changes learned by DL-SGBN and MM-SGBN
on PET data is given in Fig. 2, where the SGBN networks from two classes are
vectorized and concatenated as x-axis. As shown, both methods learn similar
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discriminative patterns despite of using different learning criteria. However, MM-
SGBN significantly increases the positive weight of the edge from “precuneus L”
to “precuneus R”, and reduces the negative weight from “globus palladus L to
“anterior limb of internal capsule L”. Such differences may lead to the superior
performance of MM-SGBN on this dataset and are worthy of further research.

5 Conclusion

In this paper, we propose a max-margin framework directly built on SGBN
models to learn causal relationship of brain regions from neuroimaging data.
Compared with the state-of-the-art, our method significantly improves the dis-
crimination of the obtained SGBNs, as well as maintaining good representation
capacity of the SGBN models.
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1 Introduction

Brain imaging genetics is an emerging research field aiming to identify associ-
ations between genetic factors such as single nucleotide polymorphisms (SNPs)
and quantitative traits (QTs) extracted fromneuroimaging data.While univariate
analyses [9] have been widely used to discover single-SNP-single-QT associations,
recent studies have also started to perform regression analyses [5] to examine the
joint effect of multiple SNPs on one or a few QTs, and bi-multivariate analyses
[4,6,10,12] to examine complex multi-SNP-multi-QT associations.

Sparse canonical correlation analysis (SCCA) [7,14] is a bi-multivariate anal-
ysis method that has been applied to both real [6] and simulated [4] imaging
genetics data, as well as other omics data sets [2,3,7,14]. Most existing SCCA
algorithms use the soft threshold strategy for solving the Lasso [7,14] or group
Lasso [4,6] regularization terms. However, the soft threshold approach requires
the input data X to have an orthonormal design XTX = I (see Section 10 in
[11]), meaning that the features in the data should be independent from each
other. However, for neuroimaging and genetics data, correlation usually exists
among regions of interest (ROIs) in the brain and among linkage disequilibirum
(LD) blocks in the genome. Simply treating the covariance of the input data as
an identity or diagonal matrix will inevitably limit the capability of identifying
meaningful imaging genetic associations.

One possible solution to address this issue is to orthogonalize the input data by
performing principal component analysis (PCA) before running SCCA. However,
we aim to identify relevant imaging and genetic markers, and thus prefer a sparse
model. The combined PCA and SCCA strategy cannot achieve this goal, since
PCA loadings on the original imaging and genetic markers are non-sparse.

To overcome this limitation, in this paper, we propose a novel structure-aware
SCCA (denoted as S2CCA) algorithm for brain imaging genetics applications
to achieve the following two goals: (1) our algorithm is not based on the soft
threshold framework and eliminates the independence assumption for the input
data; (2) our model can incorporate group-like structure (e.g., voxels in an ROI,
or SNPs in an LD block) to yield more stable and biologically more meaningful
results than conventional SCCA model. We perform an empirical comparison be-
tween the proposed S2CCA algorithm and a widely used SCCA implementation
in the PMD software package (http://cran.r-project.org/web/packages/PMA/)
[14] using both simulated and real imaging genetic data. The empirical results
demonstrate that the proposed S2CCA algorithm can yield improved prediction
performance and biologically meaningful findings.

2 Structure-aware SCCA (S2CCA)

We denote vectors as boldface lowercase letters and matrices as boldface upper-
case ones. For a given matrix M = (mij), we denote its i-th row and j -th column
to mi and mj respectively. Let X = {x1, ...,xn}T ⊆ Rp be the SNP data and
Y = {y1, ...,yn}T ⊆ Rq be the imaging QT data, where n is the number of
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participants, p and q are the numbers of SNPs and QTs, respectively. Canonical
correlation analysis (CCA) seeks linear combinations of variables in X and Y
which maximize the correlation between Xu and Yv:

max
u,v

uTXTYv s.t. uTXTXu = 1,vTYTYv = 1 (1)

where u and v are canonical vectors or weights. Two major weaknesses of CCA
are that it requires the number of observations n to exceed the combined di-
mension of X and Y and that it produces nonsparse u and v which are diffi-
cult to interpret. The sparse CCA (SCCA) method removes these weaknesses
by maximizing the correlation between Xu and Yv subject to the weight vec-
tor constraints P1(u) ≤ c1 and P2(v) ≤ c2. The penalized matrix decomposition
(PMD) toolkit [14] provided a widely used SCCA implementation, where the L1

penalty P (A) =
∑p

k=1 |A(k)| was used for both P1 and P2. As mentioned earlier,
similar to most SCCA methods, PMD employed the soft threshold strategy for
solving the L1 penalty term, which required the input data to have an orthonor-
mal design XTX = I and YTY = I (see Section 10 in [11]). This independence
assumption usually does not hold in imaging genetic data (e.g., correlated vox-
els in an ROI, correlated SNPs in an LD block), and thus inevitably limits the
capability of identifying meaningful imaging genetic associations.

To overcome this limitation, we propose a novel structure-aware SCCA (de-
noted as S2CCA) algorithm to not only eliminate the independence assumption
for the input data, but also incorporate group-like structure in the model. In-
stead of using L1, we define a group L1 constraint on P1 and P2 as follows:

P1 = ||u||G = γ1

K1∑
k1=1

√ ∑
i∈πk1

u2
i = γ1

K1∑
k1=1

||uk1 ||2,

P2 = ||v||G = γ2

K2∑
k2=1

√ ∑
i∈πk2

v2i = γ2

K2∑
k2=1

||vk2 ||2.

(2)

In Eq. (2), SNPs are partitioned into K1 groups Π1 = {πk1}K1

k1=1, such that

{ui}
mk1

i=1 ∈ πk1 , and mk1 is the number of SNPs in πk1 ; and imaging QTs are

partitioned into K2 groups Π2 = {πk2}K2

k2=1, such that {vi}
mk2

i=1 ∈ πk2 , and mk2

is the number of QTs in πk2 . || · ||G is the constraint for the group structure. In
this work, we partition voxels using AAL ROIs and SNPs using LD blocks.

Now the S2CCA objective function can be formally written as follows:

max
u,v

uTXTYv− γ1

K1∑
k1=1

||uk1 ||2 − γ2

K2∑
k2=1

||vk2 ||2 (3)

s.t. uTXTXu = 1, vTYTYv = 1,

Using Lagrange multipliers, Eq. (3) can be transformed as follows:

max
u,v

uTXTYv− γ1||u||G − γ2||v||G − β1||Xu||22 − β2||Yv||22 (4)
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Algorithm 1. Structure-aware SCCA (S2CCA)
Require:

X = {x1, ...,xn}T , Y = {y1, ...,yn}T

Ensure:
Canonical vectors u and v.

1: t = 1, Initialize ut ∈ Rp×1, vt ∈ Rq×1 ;
2: while not converged do
3: Calculate the block diagonal matrix D1t , where the k1-th diagonal is 1

2||uk1
t ||2

;

4: ut+1 = (β1X
T X + γ1D1t )

−1XTYvt/2; Scale ut+1 so that uT
t+1X

TXut+1 = 1;

5: Calculate the block diagonal matrix D2t , where the k2-th diagonal is 1

2||vk2
t ||2

;

6: vt+1 = (β2Y
TY + γ2D2t )

−1YTXut+1/2; Scale vt+1 so that vT
t+1Y

TYvt+1 = 1;

7: t = t + 1.
8: end while

Taking the derivative about u and v and setting them to zero, we have

XTYv/2− γ1D1u− β1X
TXu = 0, (5)

YTXu/2− γ2D2v− β2Y
TYv = 0, (6)

where D1 is the block diagonal matrix of the k1-th diagonal block as 1
2||uk1 ||2

,

and D2 is the block diagonal matrix of the k2-th diagonal block as 1
2||vk2 ||2

.

With v fixed, we can use an approach similar to G-SMuRFS [13] to solve for
u. With u fixed, we can do the same to solve for v. We propose Algorithm 1 to
alternatively compute u and v until the result converges. We use max{|δ| | δ ∈
(ut+1−ut)} < 10−5 and max{|δ| | δ ∈ (vt+1−vt)} < 10−5 as stopping criterion,
and nested cross-validation to automatically tune parameters γ1, γ2, β1 and β2.

3 Experimental Results

3.1 Results on Simulation Data

We first performed a comparative study between S2CCA and PMD using sim-
ulated data. We used the following procedure to generate two sets of synthetic
data X and Y, both with n = 1000 and p = q = 50: 1) We created a random
positive definite non-overlapping group structured covariance matrix M. 2) Data
set Y with covariance structure M was calculated through Cholesky decompo-
sition. 3) We repeated the above two steps to generate another data set X. 4)
Canonical loadings u and v were set based on the group structures of X and Y
respectively, where all the variables within the group share the same weights. In
this initial study, for simplicity, we selected only one group in Y to be associated
with 4 groups in X. 5) The portion of the specified group in Y were replaced
based on the u, v, X and the assigned correlation. We generated 7 pairs of X
and Y with correlations ranging from 0.45 to 0.99. The canonical loadings and
group structure remained the same across all the synthetic data sets.

We applied S2CCA and PMD to all seven data sets. The regularization pa-
rameters were optimally tuned using a grid search from 10−5 to 105 through
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Fig. 1. 5-fold trained weights of u and v. Ground truth of u and v are shown in
the most left two panels. S2CCA results (top row) and PMD results (bottom row)
are shown in the remaining panels, corresponding to true correlation coefficients (CCs)
ranging from 0.45 to 0.99. For each panel pair, the five estimated u values are shown
on the left panel, and the five estimated v values are shown on the right panel.

Table 1. Five-fold cross-validation performance on synthetic data: mean±std is shown
for estimated correlation coefficients and AUC of the test data using the trained model.
P-value of paired t-test between S2CCA and PMD results is also shown.

True Correlation Coefficient (CC) Area under ROC (AUC)
CC S2CCA PMD p S2CCA:u PMD:u p S2CCA:v PMD:v p
0.445 0.42±0.05 0.27±0.08 7E-4 1.00±0 0.68±0.02 4E-6 1.00±0 0.84±0.02 4E-5
0.526 0.48±0.04 0.32±0.11 4E-3 1.00±0 0.66±0.01 3E-7 1.00±0 0.87±0.06 3E-3
0.594 0.56±0.07 0.39±0.12 2E-3 1.00±0 0.64±0.01 3E-7 1.00±0 0.81±0.05 7E-4
0.697 0.67±0.01 0.47±0.07 2E-3 0.94±0.02 0.66±0.03 6E-5 1.00±0 0.85±0.04 3E-4
0.814 0.80±0.04 0.49±0.06 7E-5 0.98±0.02 0.63±0.01 1E-6 1.00±0 0.83±0.04 5E-4
0.906 0.90±0.01 0.56±0.06 9E-5 1.00±0 0.66±0.01 4E-7 1.00±0 0.82±0.04 4E-4
1.000 0.99±0.00 0.65±0.04 2E-5 1.00±0 0.66±0.01 3E-7 1.00±0 0.86±0.07 4E-3

nested 5-fold cross-validation. The true and estimated u and v values are shown
in Fig. 1. Due to different normalization strategies, the weights yielded through
S2CCA and PMD showed different scales. Yet the overall profile of the estimated
u and v values from S2CCA remained consistent with the ground truth across
the entire range of tested correlation strengths (from 0.45 to 0.99), while PMD
only identified an incomplete portion of all the signals. Furthermore, we also ex-
amined the correlation in the test set computed using the learned CCA models
from the training data for both methods. The left part of Table 1 demonstrates
that S2CCA outperformed PMD consistently and significantly, and it could ac-
curately reveal the embedded true correlation even in the test data. The right
part of Table 1 demonstrates the sensitivity and specificity performance using
area under ROC (AUC), where S2CCA also significantly outperformed PMD
no matter whether the correlation was weak or strong. From the above results,
it can also be observed that S2CCA could identify the correlations and signal
locations not only more accurately but also more stably.
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Table 2. Participant characteristics

HC MCI AD
Num 304 363 176
Gender(M/F) 111/193 235/128 95/81
Handedness(R/L) 190/14 329/34 166/10
Age (mean±std) 76.07±4.99 74.88±7.37 75.60±7.50
Education (mean±std) 16.15±2.73 15.72±2.30 14.84±3.12

3.2 Results on Real Neuroimaging Genetics Data

S2CCA and PMD were also compared using real neuroimaging and SNP data.
The magnetic resonance imaging (MRI) and SNP data were downloaded from
the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database. One goal
of ADNI has been to test whether serial MRI, positron emission tomography,
other biological markers, and clinical and neuropsychological assessment can be
combined to measure the progression of mild cognitive impairment (MCI) and
early AD. For up-to-date information, see www.adni-info.org.

This ADNI study included 176AD, 363MCI and 304 healthy control (HC) non-
Hispanic Caucasian participants (Table 2). Structural MRI scans were processed
with voxel-based morphometry (VBM) in SPM8 [1,8]. Briefly, scans were aligned
to a T1-weighted template image, segmented into gray matter (GM), white mat-
ter (WM) and cerebrospinal fluid (CSF) maps, normalized to MNI space, and
smoothed with an 8mm FWHM kernel. Rather than using ROI summary statis-
tics, in this study we subsampled the whole brain and examined correlations be-
tween the voxels (GM density measures) and SNPs. A total of 465 voxels spanning
all brain ROIs were extracted. All SNPs within LD block of APOE e4 were ex-
tracted from an imputed genetic data set containing only SNPs in Illumina 610Q
and/or OmniExpress arrays after basic quality control. As a result, four SNPs
(rs429358, rs439401, rs445925, rs534007) from this LD block were included in this
study. Using the regression weights derived from the healthy control participants,
VBM and genetic measures were pre-adjusted for removing the effects of the base-
line age, gender, education, and handedness.

Both S2CCA and PMDwere performed on the normalizedVBM and SNPmea-
surements. Similar to the previous analysis, 5-fold nested cross-validation was ap-
plied to optimally tune the parameters. Table 3 shows 5-fold cross-validation
canonical correlation results, indicating that S2CCA significantly and consistently
outperformed PMD in terms of identifying high correlations from the training
data and replicating those in the testing data. Shown in Fig. 2(a) are the canonical
loadings trained from 5-fold cross-validation, suggesting relevant imaging and ge-
netic markers. Although the S2CCA model did not explicitly impose sparsity on
individual voxels, it was still able to discover a very small number of relevant ROIs
for easy interpretation due to the imposed group sparsity. The strongest imaging
signals came from the right hippocampus, which were inversely correlated with
APOE e4 allele rs429358. In contrast, despite the flat sparsity design, PMD identi-
fied manymore ROIs than S2CCA (Fig. 2 (a-b)), making results hard to interpret.
In addition, comparing the results from 5 cross-validation trials, S2CCA yielded
a more stable and consistent pattern than PMD. It is reassuring that S2CCA



A Novel Structure-Aware Sparse Learning Algorithm 335

Table 3. Five-fold cross validation canonical correlation results on real data: the CCA
models learned from the training data were used to estimate the correlation coefficients
between canonical components for both training and testing sets. P-values of paired
t-tests were obtained for comparing S2CCA and PMD results.

Correlation S2CCA PMD
p-value

coefficients F1 F2 F3 F4 F5 F1 F2 F3 F4 F5
Training 0.28 0.27 0.27 0.27 0.27 0.26 0.26 0.26 0.26 0.24 0.016
Testing 0.21 0.24 0.28 0.23 0.26 0.20 0.21 0.21 0.20 0.24 0.017
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Fig. 2. Comparison of S2CCA and PMD canonical vectors in cross-validation trials:
(a) 5-fold canonical loadings of u and v on 4 APOE SNPs and 465 VBM measures; (b)
mapping the average of imaging canonical loadings v of 5 cross-validation trials onto
the brain

identified a well-known correlationbetween hippocampalmorphometry andAPOE
in an AD cohort, which shows the promise of S2CCA to correctly identify biolog-
ically meaningful imaging genetic associations.

4 Conclusions

Most existing SCCA algorithms (e.g., [4,6,7,12,14]) are designed using the soft
threshold strategy, which assumes that the features in the data are independent
from each other. This independence assumption usually does not hold in imaging
genetic data, and thus limits the capability of yielding optimal results. We have
proposed a novel structure-aware sparse canonical correlation analysis (S2CCA)
algorithm, which not only removes the above independence assumption, but also
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takes into consideration group-like structure in the data.We have comparedS2CCA
with PMD (a widely used SCCA implementation) on both synthetic data and real
imaging genetic data. The promising empirical results demonstrate that S2CCA
significantly outperformed PMD in both cases. In addition, S2CCA accurately re-
covered the true signals from the synthetic data and yielded improved canonical
correlation performance and biologically meaningful findings from real data. This
study is an initial attempt to remove the feature independence assumption many
existing SCCA methods have. Since joint multivariate modeling of imaging ge-
netic data is computationally and statistically challenging, we downsampled our
data via a targeted APOE analysis to reduce computational burden and overfit-
ting risk. The S2CCA sparsity was designed to reduce model complexity and fur-
ther overcome overfitting. Future directions include evaluating S2CCAusing more
realistic settings and expanding S2CCA to address efficiency and scalability.
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Abstract. We propose a method for fast, accurate and robust localiza-
tion of several organs in medical images. We generalize global-to-local
cascades of regression forests [1] to multiple organs. A first regressor en-
codes global relationships between organs. Subsequent regressors refine
the localization of each organ locally and independently for improved
accuracy. We introduce confidence maps, which incorporate information
about both the regression vote distribution and the organ shape through
probabilistic atlases. They are used within the cascade itself, to better
select the test voxels for the second set of regressors, and to provide richer
information than the classical bounding boxes thanks to the shape prior.
We demonstrate the robustness and accuracy of our approach through a
quantitative evaluation on a large database of 130 CT volumes.

1 Medical Motivation and Overview

With the ever growing size and complexity of 3D medical acquisitions, auto-
matic, robust and accurate anatomy localization is of prime interest. First, it
enables faster data navigation and visualization of target structures. Secondly,
organ localization is a key initialization step for tasks such as segmentation. It is,
overall, a crucial component to complex workflows such as treatment follow-up.

General object detection has been deeply studied in computer vision. However
algorithms proposed for natural 2D scenes are usually not efficient enough (ex-
haustive scanning of the image) or not even applicable (from 2D to 3D) to the
case of anatomical objects. Moreover, medical images often hold specific contex-
tual information, which entails to design specific methods. In the literature we
can mostly find three types of approaches for multi-organ localization: classifi-
cation, regression and atlas-based approaches. As shown in [2], regression-based
methods are computationally less expensive (about 25 times less) than atlas-
based ones, and then more adapted to clinical contexts. A good overview of the
different classification and regression approaches proposed so far can be found
in [3]. In this paper we focus on regression-based methods, as their speed and
accuracy [2] make them well adapted to clinical contexts. The idea of these ap-
proaches is to learn a regression function which relates a voxel and its associated
image features to a set of parameters that we want to predict (e.g. organ bound-
ing box). We say that a voxel votes for a set of parameters. The votes from
several voxels form a distribution from which we can infer the final result. In [2]
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the authors have developed a multivariate regression approach where the organs
bounding boxes positions are predicted from voxel locations. The authors of [1]
enriched this approach by performing a cascade of locally trained regressors. In
both works, bounding boxes give a very rough approximation of the target organs
(e.g. the liver). In [4] the authors increase the organs parameterization complex-
ity. They perform a joint anatomical landmarks detection and then align shape
models. This method gives very good and fast results on shapes such as the lungs
or the kidneys, but its application on organs like the stomach or the gallbladder
remains questionable, as specific landmarks may be difficult to define.

In these methods based on predictions, the authors often use the maximum,
the median or the mean of the votes as a final result [2,5]. The vote distributions
are not taken into account even though they hold precious information. In this
work we intend to make a deeper use of the vote distributions. Following the
idea of [6] we also propose to condition the image voxels membership to a global
shape prior represented by probabilistic atlases. In Sect. 2 we develop this idea
by introducing the concept of confidence maps that can be seen as weighted vote
distributions associated with shape priors, and propose a fast implementation to
compute them. Then we present our global-to-local prediction framework taking
benefit of these maps. In Sect. 3 we show different aspects of our contribution:
the benefit of performing a greedy parameter optimization and the evaluation
of our approach on a large database, thus demonstrating the interest of the
confidence maps as part of the localization framework and as a result in itself.

2 Methodology

Merging Shape Priors and Vote Distributions with Confidence Maps.
In the main works on organ localization with regression, the spatial vote distri-
butions are not fully exploited. However, as shown with the Hough forests [7],
vote aggregation can give more information than a single measure of the dis-
tribution. For this purpose we introduce the notion of confidence map, which
encodes the confidence in finding a target organ at a given location. It is built
through an aggregation process, making use of both the spatial distribution of
regression votes and of organ shape priors through probabilistic atlases.

Probabilistic Atlas. To compute a probabilistic atlas of an organ we first reg-
ister the binary masks of several samples of this organ. For this purpose let
{Mi}i∈[[1,N ]] be the set of N different cropped binary masks of the organ such
that ∀i Mi : Ω → IR (Ω being the image volume) and where Mr (r ∈ [[1, N ]]) is
a mask of reference chosen arbitrarily. We transform each mask with a transfor-
mation Ti (rigid and anisotropic scaling) in order to scale up the masks Mi to
the same size as Mr. The probabilistic atlas A is then computed as an average
of these masks, given by A(x) = 1

N

∑N
i=1 Mi ◦ Ti(x). Each value A(x) evaluates

the probability of a voxel x to belong to the organ (see Fig. 1a).

Confidence Map. Let us consider a regressor Rθ which, for a test voxel v and its
associated image features θ, can give a prediction of the bounding box position
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(a) (b) (c) (d) (e)

Fig. 1. Atlas of the liver (a), localization of the liver and the right kidney: images with
confidence map as overlay (images have been cropped) and predicted median box after
global step (b,d) and local step (c,e) (best viewed in color)

and scale of an organ with a confidence score α. We parameterize a bounding
box by b = (bmin, bmax) ∈ IR6 where bmin and bmax are its extremal vertices.
We denote Xb the set of voxels included in the bounding box with parameteriza-
tion b. We introduce {bk}k∈[[1,K]] an ensemble of K votes with confidence scores
{αk}k∈[[1,K]]. The confidence map C for a given organ is built by localizing and
scaling the organ’s probabilistic atlas A according to each vote k and by accumu-
lating the result in C with weight αk. The map C gives a confidence score about
the presence of the organ at a given location in the image. The pseudo-code is
given in Algo. 1. Some examples of confidence maps are given in Fig. 1(b-e). Fig-
ures 1(b,d) show that the maps capture the ambiguity of the vote distribution,
as we observe that some voxels were correctly voting for the box upper wall posi-
tion, an information that the median was not able to capture. The computation
of these maps may be expensive. Therefore we propose a fast implementation
which considerably reduces the computation time while not degrading signifi-
cantly the accuracy (see Sect. 3). The idea is to uniformly discretize the space
of predicted bounding boxes dimensions. As detailed in Algo. 2, considering we
have J discrete values, for each jth discretization value we convolve the volume
C′

j , where associated center of votes have been set to their confidence score, with
the probabilistic atlas Aj resized to the corresponding sample dimension. The
final map C is computed as the sum of each C′

j (we normalize by the maximum).
With a uniform discretization on 27 boxes dimensions (3 per spatial dimension,
which is good trade-off between speed and precision), the computation is about
30 times faster.

Localizing Organs with Regressors and Confidence Maps. Our approach
consists of two steps in a global-to-local fashion. A first regressor, aiming at
capturing the spatial relationships between organs, is learned using global infor-
mation: voxels of the whole image can vote for the positions of all the organs
simultaneously. Then, new regressors, dedicated to each organ, are learned using
more local information. The benefit of the cascade approach has been already
shown in [1]. Here we propose to introduce the use of confidence maps for refin-
ing the votes in the cascade of regressors. The selection of voxels which vote in
the local step may benefit of the information given by the confidence maps, that
is to say the vote distributions and the shape prior. Notice that this method
can be applied with any multi-variate regressor. We denote by o ∈ [[1, Norg]] the
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C ← 0;
for k ← 1 to K do

[bmin, bmax, α] ← Rθ[v[k]];
Xb ← computeXb(bmin, bmax);
c ← 1

2
(bmin + bmax);

d ← norm(bmin,bmax) ;
At ← resizeToBoxDim(A,d) ;
foreach x ∈ Xb do

C[x] ← C[x] + α
K
At(x− c);

Algo. 1. Confidence map computation

C ← 0, dmax ← 0, dmin ←max ;
for k ← 1 to K do

[bmin, bmax, α[k]] ← Rθ [v[k]];

c ← 1
2
(bmin + bmax);

d[k] ← norm(bmin ,bmax) ;
dmax ← max(dmax,d);
dmin ← min(dmin,d);

d̂ ← quantize(dmax,dmin,J) ;

foreach d̂j ∈ d̂ do

indices ← getIndicesOfVotes(d̂j ,d);

C′ ← 0;
foreach ind ∈ indices do

C′[ind] ← C′[ind] + α[ind] ;

Aj ← resizeToBoxDim(A,d̂j ) ;

C′ ← convolve(C′ ,Aj) ;

C ← C + C′ ;

Algo. 2. Fast confidence map com-
putation

indices of the Norg organs to localize, and we describe the two steps more pre-
cisely hereafter.

Global Step. In the first step, a random subset of Kg voxels {vk}k∈[[1,Kg]] of the
image I will vote for the bounding boxes parameters of organ o {bk,o}k∈[[1,Kg]].
Votes are performed according to long-range features computed from the image
(see Sect. 3 for specific application with regression forest as regressor). These
features are chosen to encapsulate global information from the image. Notice that
the regressor should be designed such that the relationships between the organs
are implicitly embedded during learning (by preserving correlation information
between organs positions). Then we compute the confidence map Co for each
organ o using Algo. 1 or 2 and given a probabilistic atlas Ao.

Local Step. The second step aims at improving the previous localization. We re-
localize each organ o individually by first computing the binary mask Bo built
from the map Co at a threshold tg (see Sect. 3). Then we select a random subset
of Kl voxels {vk}k∈[[1,Kl]] such that each voxel Bo(vk) = 1. Each voxel vk votes
for the parameters of organ o using a regressor specifically trained for this organ.
Contrarily to the previous step this predictor is now learned using short-range
features (see Sect. 3) and computed in the vicinity of the organ o thanks to the
confidence map so that we give more importance to local information. We then
use the votes to compute new and more accurate confidence maps C′

o for each
organ. Figures 1(c,d) show the benefit of this local step.

3 Experiments and Results

To validate our approach we propose to localize 6 abdominal organs: the liver,
the kidneys, the gallbladder, the spleen and the stomach from various types of
3D CT volumes and using a regression forest as a regressor.

Using the Multivariate Regression Forest as a Regressor. Regression
forests have been introduced in [8] and recently popularized in [2] for the pur-
pose of multi-organ localization. This method has proved to be very fast and



Multi-organ Localization Combining Global-to-Local Regression 341

quite accurate. As in [2] we use the random forest to regress the parameters b
of each organ. Random trees are learned from a subset of test voxels from the
training images. Each node of each tree contains a 1D feature and in each leaf the
distributions of the parameters to regress are stored (here multivariate Gaussian
distributions). We refer the reader to [2] for more details on the method. This
approach is well suited to rough localization. We are able to reinforce its robust-
ness and accuracy using our global-to-local approach with confidence maps. For
the first step of the algorithm we use long-range features computed from the
image after Gaussian smoothing. As in [1,2], a 1D feature corresponds to the
difference of mean intensities in two 3D patches of random sizes and locations in
a certain range. The statistical information stored in the leaf of the random for-
est regressor allows us to compute confidence scores for each vote. Notice that
in practice votes with low confidence scores are discarded. Here we point out
that the forest implicitly encodes the organs relationships, as each tree has been
built considering the entire set of parameters from all the organs. In the second
step we use one random regression forest per organ while using the same kind
of features in a more local range (see Sect. 3). Each of these regression forests is
learned from test voxels in the vicinity of the corresponding organ thanks to the
confidence maps built after the global step. Votes are thus explicitly restricted
to a certain neighborhood around each organ.

Database Description and Implementation. Our database is composed of
130 3D CT images coming from 112 patients with diverse medical conditions
(healthy and pathological subjects, no organ missing). It includes volumes with
varied fields of view, body shapes, resolution and use or not of contrast agents.
Slices and inter-slices resolution ranges from 0.5 to 1mm and from 0.5 to 3mm,
respectively. All the organs have been manually segmented in these 130 volumes.
The dataset has been split randomly into 50 and 80 volumes for training and
testing, respectively. Our method was implemented in C++ and running times
are given for a machine with four 2.3GHz cores and 8Go RAM.

Off-line Training. To reach the best performances and analyze each aspect of
the algorithm, we performed an extensive greedy optimization of the algorithm
parameters. Learning one tree with depth 12 takes about 2minutes. Before learn-
ing we decorrelate the data with a whitening transformation.

Greedy Parameters Optimization. For each parameter we performed a 3-fold
cross-validation on the training set. The accuracy of the algorithm is measured
as the mean distance of the predicted box to the ground truth bounding box.
We first initialized every parameter arbitrarily. Then we optimized each param-
eter one-by-one by grid-search and we replaced its value by the optimized one.
Concerning the training parameters we optimized the tree depth, the threshold
of the confidence map tg1 and the range of the features. We got the best perfor-
mances with tree depths of 14 and 12 for the global and local steps respectively,
tg1 = 0.4 and the range of features Δg = [0, 70]3, Wg = [0, 70]3 and Δl = [0, 40]3,
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Wl = [0, 40]3 for global and local steps respectively (where Δ is the range of dis-
tances from the test voxel to the 3D patches and W is the range of sizes of the
3D patches, all sizes given in millimeters). Regarding the testing parameters, we
looked for the best number of votes (with Kg = 30000 and Kl = 10000) for the
final prediction and the best threshold tg2 of the confidence map after the global
step. Setting tg2 = 0.5 and keeping respectively 3% and 1% of the votes with
best confidence gave the best results.

Learning Phase. The best parameters found after the above optimization were
used for the final forests learning on the 50 training volumes. Atlases of each or-
gan were learned on the same dataset. As in [8] we perform bagging for learning
all the forests (uniform random draw with replacement). Node optimization was
performed with 30 feature tries as a good compromise between speed and accu-
racy. Hereafter, if not specified, we used 3 trees as it achieves a good compromise
between computation time and accuracy.

Evaluation of the Localization Approach. The first objective of our eval-
uation is to show that the confidence maps can be used as a localization result
itself, giving more consistent information than the bounding boxes alone. Confi-
dence maps are computed at a 5mm isotropic spacing. We give some examples of
localization results in Fig.2(a-d). An exhaustive visualization of the results can
be seen in the supplementary material1. The lines of Table 1 starting with
’MD’ give the mean distance of the thresholded maps contours (t = 0.5) to the
ground truth contours, using Algo. 1 and 2. The statistics of the results (median
and standard deviation) confirm that our method is robust to the variety of test
images. We also show that our fast implementation degrades the overall perfor-
mance very slightly. This allows us to think that our approach can be very useful
in various contexts such as segmentation initialization, added to the fact that it
runs in about 10 seconds which makes it adapted to clinical applications (code
optimization may still improve the computation time). Moreover the confidence
maps give much more information than a simple binary mask or contour. For that
reason we propose adapted evaluation measures taking into account the fuzziness
of the maps. If C denotes a confidence map and B a binary mask of the organ
ground truth, then the true positive values are defined as TP =

∑
x∈Ω B(x)C(x),

the false negative values as FN =
∑

x∈Ω B(x)(1 − C(x)) and the false positive
values as FP =

∑
x∈Ω(1−B(x))C(x). Following the definitions of the sensitiv-

ity S = TP/(TP + FN) and the precision P = TP/(TP + FP ), we are able
to compute the weighted versions of these measures. The corresponding results
are reported in Table 1. We notice lower performances for the stomach and the
gallbladder, which are challenging organs due to their shape variability. However
the figures show that they are still correctly detected.

The second objective of our evaluation comprises two experiments in which
we only change the way of selecting the test voxels {vk}k∈[[1,Kl]] for the second
local step: exp.1a: from the predicted boxes after the global step, exp.1b: from

1 http://perso.telecom-paristech.fr/~gauriau/files/MICCAI14_SupMat.pdf

http://perso.telecom-paristech.fr/~gauriau/files/MICCAI14_SupMat.pdf
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Table 1. Results with confidence maps (5mm isotropic spacing) with Algo.(1, 2) with
measures MD: mean distance (mm), S: weighted sensitivity (%), P: weighted precision
(%) (mean±standard deviation (median))

Liver L. Kidney R. Kidney Spleen Gallbladder Stomach All organs Time

A
lg

o
.1 MD 9.6 ± 3(9) 5.6 ± 3(5) 6.1 ± 3(6) 7.9 ± 4(7) 9.4 ± 6(7) 13.5 ± 6(12) 8.7 ± 3(8)

S 76.8 ± 5(77) 65.7 ± 8(68) 64.6 ± 8(66) 66.3 ± 11(69) 45.2 ± 19(48) 49.7 ± 9(51) 61.4 ± 15(65) 300s

P 78.8 ± 7(79) 85.2 ± 7(87) 85.1 ± 5(87) 80.8 ± 10(82) 52.4 ± 22(59) 68.3 ± 12(69) 75.1 ± 17(80)

A
lg

o
.2 MD 9.8 ± 3(9) 6.0 ± 4(5) 6.3 ± 3(6) 8.5 ± 4(7) 9.6 ± 4(7) 13.8 ± 6(13) 9.0 ± 3(8)

S 75.9 ± 6(77) 64.4 ± 9(66) 63.8 ± 9(66) 64.9 ± 11(67) 44.1 ± 19(46) 49.3 ± 9(50) 60.4 ± 15(64) 10s

P 78.2 ± 7(79) 84.5 ± 7(86) 85.0 ± 5(87) 80.2 ± 10(82) 52.1 ± 21(57) 67.4 ± 13(68) 74.6 ± 17(80)

(a) (b) (c) (d)
(e)

Fig. 2. 3D MIP of final confidence maps (a), some results with Algo.2 with overlaid
confidence maps on the images (b,c,d) and results of exp.1(a,b) (e)

the confidence map using Algo. 2. Figure 2e shows that above 10, the number of
trees does not significantly improves the results. Then we keep this number of
trees for exp.1(a,b). In Table 2 we report the results of [1,2] and ours after global
step and exp.1(a,b). The performances after the global step show that a fine
optimization of the parameters helps reaching better results than in [2]. Exp.1a
shows the benefit of the cascade approach (additional iterations did not show
significant improvements of the results), compared to the single step one. Exp.1b
shows the difference between our method and the original cascade approach. The
improvement is specially significant for the liver. Moreover Fig. 2 shows that the
use of confidence maps tends to rather decrease the bias of the results with
an increasing number of trees. We also get similar results to those of [1] for
the kidneys, which shows that the cascade approach is scalable and that an
increasing number of organs does not degrade the average performance.

Table 2. Box walls mean distances per organ (mean distance (mm) ± standard devi-
ation (median)), per method and per experiment

Method Liver L. Kidney R. Kidney Spleen Gallbladder Stomach All organs Time(∼)

[2]* 15.7 ± 15 13.6 ± 13 16.1 ± 16 15.5 ± 15 18.0 ± 15 18.6 ± 16 16.3 4s**

[1]* - 7 ± 10(5) 7 ± 6(6) - - - - 3s**

Global 12.5 ± 4(12) 13.6 ± 7(13) 13.8 ± 5(12) 14.3 ± 6(14) 13.9 ± 6(12) 14.3 ± 6(14) 13.9 ± 6(13) 1s

L
o
c
a
l

Exp.1a 11.8 ± 4(11) 6.9 ± 6(5) 7.2 ± 3(7) 9.6 ± 7(8) 9.8 ± 5(9) 13.6 ± 5(13) 9.8 ± 6(9) 3s

Exp.1b 10.5 ± 4(10) 6.8 ± 6(5) 7.3 ± 3(7) 9.6 ± 6(8) 10.0 ± 5(8) 13.5 ± 5(13) 9.6 ± 5(8) 4s

* results are given for other datasets than ours ** times are given for different machines than ours
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4 Conclusion

In this article we proposed a fast, robust and accurate method for the localization
of multiple organs. We extended the idea of cascade of regressors while introduc-
ing the concept of confidence map, which models the vote distributions with the
addition of shape prior. We showed that the confidence map, with a proposed
fast implementation, can enhance the consistency and accuracy of multi-organ
localization with a limited additional computational cost. It is a generic tool with
promising potential, which can be used with any type of regressor and which is
adaptable to different modalities (e.g. CT, MRI). Moreover its fuzziness property
may be useful in many types of clinical applications, such as segmentation (for
initialization) or visualization (to target the objects of interest for 3D rendering)
for instance. Therefore the perspectives are numerous. We also showed that an
extensive optimization of the regression parameters significantly improves the
localization results. Finally, the consistency and accuracy of our method may
still be improved with the use of multiple probabilistic atlases per organ and the
regression of the rotation parameters.

Acknowledgments. Work supported in part by an ANRT grant (008512012).
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Abstract. Feature encoding plays an important role for medical image
classification. Intra-cluster features such as bag of visual words have been
widely used for feature encoding, which are based on the statistical infor-
mation within each clusters of local features and therefore fail to capture
the inter-cluster statistics, such as how the visual words co-occur in im-
ages. This paper proposes a new method to choose a subset of cluster
pairs based on the idea of Latent Semantic Analysis (LSA) and proposes
a new inter-cluster statistics which capture richer information than the
traditional co-occurrence information. Since the cluster pairs are selected
based on image patches rather than the whole images, the final represen-
tation also captures the local structures present in images. Experiments
on medical datasets show that explicitly encoding inter-cluster statistics
in addition to intra-cluster statistics significantly improves the classifi-
cation performance, and adding the rich inter-cluster statistics performs
better than the frequency based inter-cluster statistics.

1 Introduction

The Bag-of-Words (BoW) approach is widely applied as a feature encoding
method for medical [1] as well as natural [2, 3] image classification. In BoW,
firstly local features such as SIFT [4] extracted from training images are used to
build a dictionary. This dictionary represents a set of visual words (or clusters)
which are then used to compute a BoW frequency histogram as a feature vector
for any give image. BoW captures the intra-cluster statistics of each cluster by
just counting the number of local features falling into that cluster (0th-order
statistics). On the other hand, VLAD [5] and Fisher Vector (FV) [6] represents
the intra-cluster information by a rich statistical representation compared to
BoW. In VLAD a distance measure between the cluster center and the local fea-
tures which are assigned to that cluster is used as the intra-cluster information
(1st-order statistics). In addition to the 0th and 1st order statistics, FV also con-
siders 2nd order statistics (i.e., variance for each feature component) [6] within
each cluster. All the above encoding methods (BoW, VLAD and FV) consider
that local features extracted from images are independent to each other and
none of them captures (1) the inter-cluster statistical information (e.g., how two
visual words co-occur in each image) and (2) the local structure information of
images.

P. Golland et al. (Eds.): MICCAI 2014, Part III, LNCS 8675, pp. 345–352, 2014.
c© Springer International Publishing Switzerland 2014
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To capture inter-cluster information, co-occurrences between all pairs of vi-
sual words are considered as features for classification [2,3]. However, this leads
to a very high-dimensional feature vector. Including inter-cluster features from
pairs of clusters which do not have relevant information for classification may
decrease classification performance. Recently a mutual information based crite-
rion has been used to select cluster pairs whose co-occurrence information was
then used for classification [7]. However, all these methods [2, 3, 7] only con-
sider the dependency between two visual words (first-order co-occurrence) and
failed to consider any higher-order dependencies (discussed in section 2). The
inter-cluster information in these methods is represented merely as the number
of co-occurrence between two clusters. In contrast, we make use of higher-order
co-occurrence information to select the informative cluster pairs and encode the
inter-cluster features using a richer representation. The contributions of this
paper include:

– A new method to select a subset of cluster pairs based on Latent Semantic
Analysis (LSA) by considering higher-order co-occurrence of visual words.

– A patch-based method to construct the term-document matrix in the LSA
framework, which can capture structural information of objects in images.

– A new inter-cluster feature to capture rich statistical information between se-
lected pairs of clusters, which performs better than co-occurrence frequency.

– Experimental evidence showing that adding inter-cluster statistics (even
from a small subset of cluster pairs) improves medical image classification.

2 Inter-Cluster Features

This section focuses on adding inter-cluster statistical information to intra-
cluster statistics (e.g., BoW) to represent images. A new method is proposed
to choose a subset of cluster pairs by considering the higher-order co-occurrence
of visual words within local image regions and introduces an inter-cluster feature
which captures rich statistical information between any chosen cluster pairs.

2.1 Selection of Cluster Pairs Based on LSA

Latent Semantic Analysis (LSA) is a well-known technique applied to a wide
range of tasks such as search and retrieval [8] and classification [9]. Let A be a
term-document matrix with t rows (terms) and d columns (documents), where
the element A(i, j) represents the frequency of the occurrence of term i in doc-
ument j. In image analysis domain, terms correspond to visual words and doc-
uments often (but not always, see Section 2.2) correspond to images. In this
paper terms and words are used interchangeably. An example of term-document
matrix is shown in Figure 2. In LSA, a low-rank (e.g., rank-k) approximation
Ak of matrix A is obtained by keeping the k largest non-zero singular values in
the SVD of A (A = TSDT), i.e., Ak = TkSkD

T
k, where the t-by-k matrix Tk,

the k-by-k diagonal matrix Sk, and the d-by-k matrix Dk are respectively the
truncated versions of the original matrices T, S, and D. Then the i-th row in
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TkSk can be used to represent the semantic meaning of the i-th term (or word)
in the so-called k-dimensional latent semantic space, where noise can be largely
suppressed by discarding the smaller singular values in S. Based on such seman-
tic representation of terms, the similarities (correlations) between terms can be
captured by the term-term (co-occurrence) matrix, Ck = TkSk(TkSk)

T [10],
where each element Ck(i, j) represents the similarity between the i-th and the j-
th terms, with higher positive value representing stronger similarity (or positive
correlation) between terms and the lower negative value representing stronger
anti-similarity (or negative correlation) between terms.

More importantly, it has been shown that term-term matrix Ck from the
truncated matrix TkSk can additionally capture higher-order co-occurrence in-
formation (Figure 1) between terms compared to the original co-occurrence ma-
trix (i.e. a matrix where each element (i, j) represents how many times the words
i and j co-occur in a document) which is obtained directly from documents [10].
As shown in Figure 1, terms t1 and t2, t2 and t3, and t3 and t4 respectively
co-occur in three different documents. With the original co-occurrence matrix,
only the first order co-occurrence was captured and therefore the similarity be-
tween terms t1 and t3 (also t2 and t4, and t1 and t4) will be zero. But there is
a relationship between t1 and t3 via t2. Such higher-order co-occurrence can be
captured by the term-term matrix Ck where the corresponding entries won’t be
zero.

Fig. 1. High-order co-occurrence

We propose to select a subset (say, P percent) of cluster (or term) pairs which
have corresponding larger values in the term-term matrix Ck. As explained
above, the use of the truncated term-term matrix Ck instead of the original
co-occurrence matrix can help choose the cluster pairs which are semantically
similar. In addition, by using a small subset of cluster pairs for inter-cluster fea-
ture extraction, richer (in general with higher-dimensional) inter-cluster statis-
tics can be extracted from the selected pairs. Instead, if all the cluster pairs are
used for inter-cluster feature extraction as in [2], richer inter-cluster statistics will
make feature dimensionality too high to be practically applicable for classifier
training.

2.2 Construction of Term-Document Matrix

Note that the truncated term-termmatrixCk is obtained from the term-document
matrix A. To construct A, in general, each image corresponds to one document
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and the occurrence of each visual word is counted within the whole image (Figure
2left). However, such term-document matrix construction does not consider any
spatial relationship (e.g., far from or close to each other) between the correspond-
ing image regions to any two visual words. As a result, the term-term matrix Ck

won’t contain any information about the spatial relationships between any two
visual words. In order to make Ck contain certain spatial relationship between
visual words, here we propose to use each image patch (with certain size) as one
document (Figure 2right). In this way, the term-termmatrix only considers the co-
occurrence information between visual words whose corresponding image regions
are within the same image patches (therefore close to each other in the image).
By selecting word pairs (i, j) whose corresponding absolute values of Ck(i, j) are
larger in the patch-based term-termmatrixCk, we expect that the selected highly
co-occurred word pairs within image patches (i.e., local image regions) will cap-
ture certain structural information of objects in an image, e.g., teeth and nose in
radio-graphic images of head often close to each other and therefore more likely
appear within an image patch. The statistical information between such cluster
(word) pairs may implicitly convey such structural information which cannot be
captured within each cluster. What’s more, the patch-based term-termmatrixCk

can also capture the larger-scale structural information (if existing) by the higher-
order co-occurrence information within Ck, e.g., eye balls with teeth via nose.

2.3 Inter-Cluster Statistics

After selecting a subset of word (or cluster) pairs, we need to extract the inter-
cluster information based on these pairs. Let W denote the dictionary which
contains N visual words {wi}, and Π denote the selected subset of word pairs.
Given any image, a number of L local descriptors (e.g., SIFT) X = {xl, l =
1, . . . , L} will be extracted from each image patch. Let cluster Ci denote the
subset of X such that the nearest visual word for each xl in Ci is wi. We consider
the following two measures to respectively capture this inter-cluster statistics:

1. Co-occurrence of visual words: A simple measure of how many times a
pair of visual words co-occur locally in each image. Consider an image patch
within which visual word wi occurs a times and visual word wj occurs b times,
and the word pair (i, j) is in the selected subset Π . The co-occurrence statistics
f(i, j) of these two visual words inside the image patch will be f(i, j) = min(a, b).
2. Statistical difference between two clusters: For each cluster Ci, the
VLAD descriptor vi is first computed as [5] vi =

∑
x∈Ci

(x − wi). Then for
every word pair (i, j) in Π , the inter-cluster statistics is computed as f(i, j) =
||vi

σi
− vj

σj
||2 , where σi and σj are the standard deviations of the clusters i and

j which are computed in the dictionary learning phase by considering all the
training features within those clusters. || · ||2 is a component-wise squared dis-
tance measure, and therefore f(i, j) is a vector and will contain richer statistical
information than the scalar co-occurrence value.
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Fig. 2. Term-document matrix obtained from images (left) and patches (right)

2.4 Feature Encoding

Given an image, we encode the image based on both intra-cluster and inter-
cluster statistics. First we compute the intra-cluster statistics using the existing
approaches such as BoW or VLAD. Then we compute the inter-cluster statistics
for image patches in the image as described above. Finally we apply sum pooling
over all image patches for the inter-cluster statistics to obtain a feature vector
which represents the inter-cluster statistical information for the whole image.
The feature vector obtained based on the intra and inter-cluster statistics are
normalized individually (we use the power and L2 normalizations as in [11]) and
concatenated together as the final image descriptor.

3 Experiments

Two medical datasets were used to evaluate the proposed method for cluster pair
selection and inter-cluster features. The ICPR HEp-2 cell classification dataset
(ICPR1) contains 13, 596 gray-scale cell images from 6 classes (homogeneous,
speckled, nucleolar, centromere, golgi, and nuclear membrane), with average im-
age size about 70 × 70 pixels. The Image Retrieval in Medical Applications
dataset (IRMA2) contains 15,363 anonymous radiographs from 57 classes (of
various human body parts), with images resized to be no larger than 300× 300.
Since the number of images is very unbalanced across IRMA classes, only 20
classes were selected, each of which contains 200 images. We used one-vs-rest
multi-class SVM with linear and intersection kernels [12] for classification. SVM
parameters were learned using 5-fold cross-validation on the training set. The
value of k is chosen such that theAk keeps 95% of its column-wise variance. BoW
and VLAD features are respectively used as two intra-cluster features based on
the local descriptor SIFT, where for each image, dense SIFT descriptors were
extracted from each small regions of size 16×16 pixels over a grid with spacing of
4 pixels along both directions, and every 7× 7 neighboring regions compose one
image patch (i.e., 49 SIFT features in each patch). For ICPR dataset, we applied
two-fold cross-validation and report the mean per-class accuracies (MAC) over
5 runs. For the IRMA dataset 30 images per class are selected for training and
the rest are used for testing; the averaged MAC over 10 iterations are reported.

1 http://i3a2014.unisa.it/
2 http://ganymed.imib.rwth-aachen.de/irma/index_en.php

http://i3a2014.unisa.it/
http://ganymed.imib.rwth-aachen.de/irma/index_en.php
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3.1 Effect of the Inter-Cluster Features

When using BoW as intra-cluster feature and co-occurrence frequency of visual
words as inter-cluster features, Figures 3(a)(b) show that adding inter-cluster
features significantly increase the classification performance for both datasets
(e.g., around 78% when P = 0 vs. 86% when P > 0 for ICPR dataset, and
around 91% vs. 94% for IRMA dataset, both with dictionary size 200 and using
intersection kernel). It also shows that the classification accuracy is not signifi-
cantly different between selecting 10% (when P = 10) and all (when P = 100)
cluster pairs, which indicates that only a small subset of cluster pairs are suffi-
cient enough to capture the inter-cluster information. Figure 3(a)(b) also show
that intersection kernel for intra-cluster feature cannot capture high-order infor-
mation encoded in inter-cluster features, otherwise adding inter-cluster feature
would not improve the accuracy.

Similar findings have been confirmed when using VLAD as the intra-cluster
feature and the VLAD-based inter-cluster statistics for the inter-cluster features
(Figure 3(c)). By comparing the classification performance from Figures 3(a)
and (c), it becomes clear that, even using a smaller dictionary (N = 32) and a
smaller subset of cluster pairs (P = 10 percent), VLAD plus VLAD-based inter-
cluster features outperforms the corresponding BoW plus co-occurrences based
inter-cluster features, i.e., 86.8% vs. 84.4% for ICPR dataset. Similar finding
were found for IRMA dataset (not shown due to limited space). This indicates
that both VLAD intra-cluster feature and the VLAD-based inter-cluster feature
captures richer statistical information than the BoW intra-cluster feature and
the co-occurrence based inter-cluster feature.

(a) ICPR dataset (b) IRMA dataset (c) ICPR dataset

Fig. 3. Effect of the inter-cluster features. P = 0 corresponds to intra-cluster feature,
and P > 0 corresponds to inter-cluster feature plus intra-cluster feature. (a-b) BoW
with co-occurrence, (c) VLAD with statistical cluster difference.

To further confirm the effect of inter-cluster features, in Figure 4 left the
sizes of the dictionaries are varied and only 20% cluster pairs are chosen based
on corresponding dictionaries. It shows a significant performance improvement
when adding inter-cluster features, no matter what the dictionary size is. Since
adding inter-cluster features for larger dictionaries tremendously increases the
dimensionality of the final image representation, in another test, we capture
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Fig. 4. Classification performance on ICPR dataset with BoW and co-occurrence based
inter-cluster features using intersection kernel. See text for more details.

inter-cluster features by considering only 20% pairs from a fixed small dictionary
of size 100. Adding these fixed inter-cluster features to the traditional intra-
cluster BOW features computed from any larger dictionary still increases the
overall performance (Figure 4right). Notice that adding inter-cluster features
from a fixed smaller dictionary not only increases the classification accuracy but
also reduces the feature dimensionality.

3.2 Patch-Based vs. Image-Based Methods

This test is to compare the performance of patch-based with the image-based
cluster pair selection for inter-cluster feature encoding on the IRMA dataset.
For both methods, BoW was used as intra-cluster feature and co-occurrence
of selected visual words as inter-cluster feature. The dictionary size was fixed
to 200 and only 10% of pairs are selected to encode inter-cluster features. As
expected, patch-based method gives the accuracy of 93.4%, much better than the
accuracy 87.0% from image-based method (with standard deviation about 0.7%),
supporting that patch-based method helps capture local structural information
encoded in inter-cluster features.

3.3 LSA-Based Pair Selection

In this section the LSA-based truncated term-term matrix is compared with the
original co-occurrence matrix for pair selection. In this experiment a dataset con-
taining radiographs of heads taken from four different angles collected from the
IRMA dataset is considered. This dataset contains 50 images in each of the four
classes. By keeping all the other factors (e.g., patch-based term-document con-
struction and VLAD based inter-cluster feature encoding) unchanged, we found
that when selecting a small subset (P = 5) of pairs for inter-cluster features, the
pair selection based on the truncated term-term matrix performs significantly
better than based on the original co-occurrence matrix (78.3% vs. 87.2%). This
confirms the potential function of LSA-based pair selection in reducing noise and
capturing high-order co-occurrence statistics.
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3.4 Inter-Cluster Features for Fisher Vector

Some initial experiments with FV was also performed on ICPR dataset to ob-
serve the effect of inter-cluster features for FV. Given an image, Fisher vector Fi

for each cluster Ci was computed based on soft-assignments (see [6] for details).
The inter-cluster feature between any chosen cluster pair (i, j) was computed
as ||Fi − Fj||2 (component-wise, as for VLAD). With totally 16 clusters being
used, accuracy of 85.2% was obtained by FV. In comparison, adding inter-cluster
features (P = 20) to FV significantly improves the performance to 88.7%.

4 Conclusions

This paper showed that adding inter-cluster features to the intra-cluster features
significantly improves medical image classification. A new method was proposed
to select a subset of cluster pairs to get the inter-cluster features. Experiments
showed that adding rich inter-cluster statistics performs better than only con-
sidering the co-occurrence frequency information as the inter-cluster statistical
feature. In feature work we plan to select cluster pairs based on discriminative
information (i.e., class labels) and add spatial information to final representation.

Acknowledgement. This work is funded by 2011-2016 EU FP7 ERC project
“CODIR: colonic disease investigation by robotic hydrocolonoscopy”, collabora-
tive between the Universities of Dundee (PI Prof Sir A Cuschieri) and Leeds (PI
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A Universal and Efficient Method to Compute

Maps from Image-Based Prediction Models

Mert R. Sabuncu�

A.A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital,
Harvard Medical School, Charlestown, MA, USA

Abstract. Discriminative supervised learning algorithms, such as Sup-
port Vector Machines, are becoming increasingly popular in biomedical
image computing. One of their main uses is to construct image-based
prediction models, e.g., for computer aided diagnosis or “mind reading.”
A major challenge in these applications is the biological interpretation
of the machine learning models, which can be arbitrarily complex func-
tions of the input features (e.g., as induced by kernel-based methods).
Recent work has proposed several strategies for deriving maps that high-
light regions relevant for accurate prediction. Yet most of these methods
either rely on strong assumptions about the prediction model (e.g., lin-
earity, sparsity) and/or data (e.g., Gaussianity), or fail to exploit the
covariance structure in the data. In this work, we propose a computa-
tionally efficient and universal framework for quantifying associations
captured by black box machine learning models. Furthermore, our theo-
retical perspective reveals that examining associations with predictions,
in the absence of ground truth labels, can be very informative. We apply
the proposed method to machine learning models trained to predict cog-
nitive impairment from structural neuroimaging data. We demonstrate
that our approach yields biologically meaningful maps of association.

Keywords: Machine learning, image-based prediction.

1 Introduction

Broadly, there are two approaches in statistical data analysis [1]: generative (i.e.,
model based or classical) and discriminative (i.e., prediction oriented). While
the former offers more interpretable models, the latter can yield more accurate
predictions [1]. Over the last decade, discriminative supervised learning models
have been widely adopted to analyze biomedical image data, for example to
demonstrate that one can accurately predict a clinical diagnosis form imaging
measurements, e.g. [2–6]. The main challenge in these studies is the biological
interpretation of image-based prediction models.

One way to gain biological insight is to derive maps of association, which have
traditionally been obtained via mass-univariate techniques, such as voxel-based

� Supported by NIH NIBIB 1K25EB013649-01 and a BrightFocus grant (AHAF-
A2012333). Data used were obtained from ADNI: http://tinyurl.com/ADNI-main.
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morphometry [7]. Motivated by this approach, recent studies have employed
various strategies to compute such maps based on multivariate discriminative
models, e.g. [8–11]. These techniques attempt to quantify the statistical relevance
of voxel-level features with respect to the predicted variable. Several methods
to compute feature relevance, or variable importance, have also been proposed
in the machine learning literature, e.g. [12–16]. Yet, as we elaborate in the next
section, most of these methods suffer from drawbacks being specific to a type of
algorithm/model (non-universality).

In this paper, we present a universal and computationally efficient method
to examine associations captured by black box machine learning models. Our
method does not rely on knowledge about the learning algorithm. Furthermore,
we do not make any strong distributional assumptions about the data. In its
simplest form, the proposed method simply uses a dataset, on which predictions
have been computed. Our theoretical framework demonstrates that, even in the
absence of ground truth labels, the associations we quantify can be informative
about the underlying biology. We apply the proposed method to compute maps of
association from discriminative models trained to predict a clinical or behavioral
condition from structural brain magnetic resonance imaging (MRI) scans.

2 Theory

2.1 Motivation

A popular approach for interpreting a linear discriminative model is to examine
the weights, e.g. [17]. Yet, as recently pointed out [11], this interpretation can be
misleading. Furthermore, it is not clear whether directly examining the estimated
model parameters provides any insight about the underlying biology. This is
because the model can be arbitrarily inaccurate and thus model parameters alone
might provide little information about the target variable. Sampling strategies,
e.g. [9, 13, 15] address this issue by randomly perturbing the data and examining
the variation in model parameters and/or predictions. This approach, however,
typically requires repeatedly running the computationally expensive training
step or resorting to approximation strategies. Moreover, it assumes a particular
model structure, e.g. linear, sparse, or a tree.

More general methods applicable to any black box prediction model have
recently been proposed, e.g. [14, 18]. Yet these techniques often make strong as-
sumptions about the data (e.g. binary or Gaussian) to offer practical solutions.
Our goal in this work is to propose a technique for measuring feature relevance
that is universal (i.e. applicable to any black box model), computationally effi-
cient, and robust with respect to the data and the algorithm. Furthermore, we
would like the proposed method to capture nonlinear relationships, as well. To
achieve this, we build on the theoretical framework that was recently used to
derive a generalized measure of correlation [19].
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2.2 Proposed Feature Relevance Measure and Its Properties

Let’s assume a black box predictive model. We will use capital letters to denote
random variables. Let X be the input data vector, which is typically high dimen-
sional, e.g., images, P be the prediction produced by the model, and Y be the
target variable that we aim to predict, e.g., clinical status. Note P is typically a
non-random function of X and we denote the i’th component of X as Xi.

A generalized measure of correlation (GMC) between two random variables,
say P and Y , can be derived based on the well-known variance decomposition
formula [19]:

V (Y ) = V (E(Y |P )) + E(V (Y |P )), (1)

where V denotes (conditional) variance and E denotes (conditional) expecta-
tion, defined over appropriate random variables. The first term on the right,
V (E(Y |P )), can be interpreted as the explained variance of Y by P . Thus the
GMC between Y and P , which we denote as γ(Y |P ), can be defined as:

γ(Y |P ) =
V (E(Y |P ))

V (Y )
. (2)

The GMC is a measure of correlation that quantifies both linear and non-linear
dependencies [19] and ranges from 0 (no correlation) to 1 (max. correlation).

We expand Eq. 1 by applying another variance decomposition to V (E(Y |P )):

V (Y ) = V (E(E(Y |P )|X i)) + E(V (E(Y |P )|Xi) + E(V (Y |P )), (3)

where Xi is an input variable and V (E(E(Y |P )|X i)) can be viewed as the
explained variance of Y by Xi, as captured by the model’s prediction P . Thus,
we define the captured correlation as:

κ(Y |P |Xi) =
V (E(E(Y |P )|Xi))

V (Y )
. (4)

Some of the properties of κ(Y |P |Xi) are as follows (Proofs of P1-4 are omitted
due to space constraints). Note ρ denotes Pearson’s correlation.

P1. 0 ≤ κ(Y |P |Xi) ≤ γ(Y |P ) ≤ 1.
P2. If P and Xi or P and Y are independent, then κ(Y |P |Xi) = 0.
P3. If ∃f s.t. f(P ) = Y , then κ(Y |P |Xi) = γ(Y |Xi).
P4. If ∃g s.t. g(Xi) = P , then κ(Y |P |Xi) = γ(Y |P ).
P5. If ρ(Xi,Xj) = ±1, then κ(Y |P |Xi) = κ(Y |P |Xj).
Proof: If ∃a = 0, b s.t. Xi = aXj + b, then, for any Z, E(Z|Xi) = E(Z|Xj).

Thus, V (E(E(Y |P )|Xi)) = V (E(E(Y |P )|Xj)), where we use Z � E(Y |P ).
P6. If ρ(E(Y |P ), P ) = ±1, then κ(Y |P |Xi) = γ(Y |P )γ(P |Xi).
Proof: Define Z � E(Y |P ). If ∃a = 0, b s.t. Z = aP + b, then a2V (P ) = V (Z)

and V (E(Z|Xi))
a2 = V (E(P |X i)). Then κ(Y |P |Xi) = V (E(Z|Xi))

V (Y )
V (P )a2

V (P )a2 =
V (E(Z|Xi))

a2V (Y )
a2V (P )
V (P ) = V (E(P |Xi))

V (Y )
V (Z)
V (P ) = γ(Y |P )γ(P |Xi).



356 M.R. Sabuncu

The first five properties summarize the general behavior of κ as a dependency
measure. For example, it is zero if the model’s prediction is independent of the
variable X i. If the model is perfectly accurate, κ reduces to the GMC between
Y and Xi. Moreover, as P5 suggests, the captured correlation is indifferent to
whether a variable is directly used in the prediction or correlated alternatives
are. Thanks to this property, captured correlation will not highlight an arbitrary
subset among correlated variables, the way sparse models do.

P6 is a particularly interesting property, which states that under a specific
condition, the captured correlation is proportional to the GMC between the
prediction P and input variable Xi. We note that, in fact E(Y |P ) = P is a
common modeling assumption that seems to hold in many practical problems.
For example, many regression models (where Y is continuous), assume a zero-
mean independent additive Gaussian noise model. Or, in binary classification, P
can be the probability of class 1. In both examples, these models imply E(Y |P ) =
P and thus κ(Y |P |Xi) ∝ γ(P |Xi). In this case, the ranking of variables with
respect to their captured correlations is the same as their ranking with respect
to their GMC with the prediction. This is a critical observation. It suggests that,
in the absence of ground truth data, examining the associations between input
variables and the model’s predictions can be informative about the relationships
with the (ground truth) target variable.

2.3 A Non-parametric Estimator

We propose to employ a non-parametric strategy, which relies on the mild dis-
tributional assumption of finite first and second order moments, to estimate
the correlation measures κ and γ. Here, we assume that we have access to N
independent samples of (X,P, Y ), where for notational simplicity we have re-
placed Xi with X . We denote these samples as {xj , pj, yj}, where lower case
letters represent observations, indexed by subscripts. We use the well-known
Nadaraya-Watson estimator:

E(Y |P ) ≈
∑N

j=1 kP (pj − P )yj∑N
l=1 kP (pl − P )

=

N∑
j=1

k̄P (pj − P )yj , (5)

where kP is an appropriate kernel function and k̄P (pj − P ) =
kP (pj−P )∑N
l=1 kP (pl−P )

.

Similarly, we can write:

E(E(Y |P )|X) ≈
N∑

k=1

k̄X(xk −X)

N∑
j=1

k̄P (pj − pk)yj , (6)

where k̄X(xk −X) = kX (xk−X)∑N
l=1 kX (xl−X)

and kX is an appropriate kernel. Now, let’s

concatenate the observations into length N column vectors {x,p,y} and define
two N ×N matrices KX and KP , the (j, k)’th entries of which are k̄X(xj − xk)
and k̄P (pj − pk), respectively. Given the above, an estimate of κ is:
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κ(Y |P |X) =
V̂ (KXKPy)

V̂ (y)
, (7)

where V̂ denotes the sample variance, defined as V̂ (y) = 1
N−1

∑N
j=1(yj − ȳ)2

with ȳ = 1
N

∑N
j=1 yj . Similarly, an estimate of γ is: γ(P |X) = V̂ (KXp)

V̂ (p)
.

In our implementation, we employed Gaussian kernel functions for kX (and

similarly kP ). I.e., kX(xj − xk) = exp(− (xj−xk)
2

hX
). Based on Silverman’s rule of

thumb we set the bandwidth as: hX = V̂ (x)/N0.2. Note that, this choice also
ensures that the estimates are invariant to rescaling a variable.

3 Experimental Results

Data: We analyzed data from two public datasets, OASIS (oasis-brains.org)
and ADNI (adni.loni.usc.edu), which contain brain MRI scans from healthy and
demented subjects. We processed the T1-weighted structural brain MRIs using
FreeSurfer (FS v5.1, surfer.nmr.mgh.harvard.edu) to obtain thickness measure-
ments across the entire cortex, resampled onto a common template, fsaverage.
FS also provides estimates of volumes for a range of cortical and sub-cortical
structures, such as the hippocampus. The target variable we used was mini
mental state exam (MMSE) score, which measures cognitive impairment and
is associated with dementia, including Alzheimer’s disease (AD). The OASIS
sample consisted of young healthy subjects (YCN, N=200, 26.8± 9.7 years, 55%
Female), old cognitively normal (OCN, clinical dementia rating, CDR, zero) sub-
jects (N=135, 69.1±13.8 y, 72% F) and AD patients (CDR> 0, N=100, 76.8±7.1
y, 59% F). We subdivided the OASIS OCN+AD sample (N=235) into five parti-
tions (of equal size) for cross-validation. We call this the OASIS cross-validation
sample. The entire ADNI sample contained N=810 (75.2 ± 6.9 y, 42% F) CN
subjects, subjects with mild cognitive impairment and AD patients.

Machine Learning Algorithms: We explored two classes of publicly avail-
able algorithms to predict MMSE from brain MRI measurements. The first one
is the Relevance Voxel Machine1 [8] (RVoxM), which is an adaptation of a sparse
Bayesian model, customized to handle image data. The second algorithm was
the Support Vector Machine (SVM) with a radial basis function kernel2. We
trained RVoxM and SVM to predict MMSE, based on FS-computed cortical
thickness data. We also trained a separate SVM only on volumes of brain struc-
tures (saved as FS file aseg.stats), which we call SVM-aseg. We performed 5-fold
cross-validation on the OASIS sample, where each of the five partitions was
treated as the test sample in each fold, with the remaining subjects used for
training. Thus, each OASIS subject was treated as a test case once, during
which the (“out-of-bag”) image-based prediction was computed. The Pearson
correlation between out-of-bag predictions and ground truth values were 0.46,

1 Downloaded from people.csail.mit.edu/msabuncu/sw/RVoxM/index.html
2 Downloaded from csie.ntu.edu.tw/ cjlin/libsvm



358 M.R. Sabuncu

Fig. 1. All visualizations (in color) are on inflated fsaverage surface, a population
average representation of the human cerebral cortex. Top and bottom rows show lateral
and medial views, respectively. Only left hemispheres are shown. (A) Weights of RVoxM
model trained on entire OASIS OCN+AD sample to predict MMSE from cortical
thickness data. Note that most regions have no contribution to the model, i.e., have
zero weight (shown in gray). (B) Captured correlation (κ) computed based on RVoxM’s
MMSE predictions on OASIS cross-validation sample. (C) κ-map for SVM’s MMSE
predictions on OASIS cross-validation sample (trained on cortical thickness). (D) κ-
map for SVM-aseg’s MMSE predictions on OASIS cross-validation sample.

0.53, and 0.35 (all P< 10−10) for RVoxM, SVM and SVM-aseg, respectively. The
ADNI data were only used for training to obtain prediction models.

Results: Fig. 1A visualizes the weights of the RVoxMmodel trained to predict
MMSE from cortical thickness data on the OASIS sample. Because of RVoxM’s
sparsity assumption, most cortical regions have zero contribution to the model.
We argue that this fact, along with the issues associated with interpreting the
parameters of a discriminative model [11] makes it hard to make biological sense
of this map and the SVM models. Moreover, we could not visualize the (non-
linear) kernel SVM models, since there is no well-accepted strategy to do so.
Fig. 1B-D illustrate maps of captured correlation (κ) computed with three dif-
ferent models trained on the OASIS cross-validation samples (based on out-of-
bag predictions). All these maps bear a striking resemblance to AD-associated
thinning maps reported in prior work [20]. Note MMSE is a variable strongly
correlated with and used to clinically diagnose AD. The right-most map was
actually computed based on an SVM model trained on the aseg features, which
do not include regional cortical thickness measurements (although there is a
variable that measures global cortical volume). There is strong agreement be-
tween these three κ-maps (pairwise Pearson correlations > 0.84, see Fig. 2D),
which suggests that the captured correlation measure is robust to the variation
in prediction algorithm and utilized image features.

Fig. 2A-C illustrate maps of GMC, (γ(P |X), which ignores the ground truth
variables Y ) between cortical thickness values and the RVoxM predictions of
MMSE. The correlation between the RVoxM-derived κ and γ-maps (Fig. 1-B
and Fig. 2-A) is 0.97, providing evidence that the associations with the pre-
dicted values are informative about associations with the ground truth (thanks
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Fig. 2. (A) GMC (γ) between RVoxM’s MMSE predictions and cortical thickness values
computed on OASIS cross-validation sample. (B) γ-map between the ADNI RVoxM
model’s MMSE predictions and cortical thickness values computed on OASIS AD+CN
sample. (C) γ-map between the ADNI RVoxM model’s MMSE predictions and cortical
thickness values computed on OASIS CN sample. (D) Pearson correlations of different
maps with the RVoxM κ-map computed on OASIS cross-validation (shown in Fig. 1B).
SVM, SVM-aseg, RVoxM γ, RVoxM γ ADNI, and SVM-aseg γ ADNI refer to maps of
Fig. 1C, 1D, 2A, 2B, and 2C, respectively. For further details see caption of Fig.1.

to property P6 of captured correlation). Fig. 2B-C were in fact computed using
models trained on a separate dataset (ADNI). The map of Fig. 2C is particularly
intriguing, as it was computed on healthy subjects (the OASIS young and old
cognitively normal sample). Since this sample does not include subjects with
dementia, there is little variation in the MMSE values (29.1±1.1). However, the
γ-map with the predicted MMSE scores demonstrate that, even in this healthy
cohort, regions of potentially significant association with cognitive impairment
can be detected. There is a correlation of 0.54 (P< 1e − 10) between the map
of Fig. 2C and the benchmark map of Fig. 1B. This result demonstrates the
robustness of the proposed measure with respect to substantial variation in the
data, since both the training and testing data are different between the analyses.

4 Conclusion

We proposed a novel measure, called captured correlation, to quantify asso-
ciations between input features and the target variable, as captured by the
prediction model. We applied this measure to image-based prediction models
and demonstrated that captured correlation yields biologically meaningful maps
that are robust to the choice of learning algorithm. We showed that under cer-
tain assumptions, captured correlation is proportional to the association between
features and predictions. Intriguingly, this perspective provides a theoretical jus-
tification for examining associations with predictions, in the absence of ground
truth labels. For example, one can analyze large, unlabeled datasets in order to
identify potentially relevant areas, which could then be further interrogated on
labeled datasets. Our approach can also be used to examine and prioritize mul-
tivariate relationships, such as the association between multiple image features
and the target variable. Future work will pursue these interesting directions.
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15. Meinshausen, N., Bühlmann, P.: Stability selection. Journal of the Royal Statistical
Society: Series B (Statistical Methodology) 72(4), 417–473 (2010)

16. Goldstein, A., et al.: Peeking inside the black box: Visualizing statistical learning
with plots of individual conditional expectation. J. of Comp. and Graph. Stat.
(2014)

17. Dosenbach, N.U.F., et al.: Prediction of individual brain maturity using fMRI.
Science 329(5997), 1358 (2010)

18. Sonnenburg, S., et al.: Poims: positional oligomer importance matricesunderstand-
ing support vector machine-based signal detectors. Bioinformatics 24(13), i6–i14
(2008)

19. Zheng, S., et al.: Generalized measures of correlation for asymmetry, nonlinearity,
and beyond. J. of the American Statistical Association 107(499), 1239–1252 (2012)

20. Dickerson, B., et al.: The cortical signature of alzheimer’s disease. Cerebral Cor-
tex 19(3), 497–510 (2009)



3D Spine Reconstruction of Postoperative

Patients from Multi-level Manifold Ensembles

Samuel Kadoury1,2, Hubert Labelle2, and Stefan Parent2

1 MEDICAL, Polytechnique Montreal, Montreal, QC, Canada
samuel.kadoury@polymtl.ca

2 Sainte-Justine Hospital Research Center, Montreal, QC, Canada

Abstract. The quantitative assessment of surgical outcomes using per-
sonalized anatomical models is an essential task for the treatment of
spinal deformities such as adolescent idiopathic scoliosis. However an ac-
curate 3D reconstruction of the spine from postoperative X-ray images
remains challenging due to presence of instrumentation (metallic rods
and screws) occluding vertebrae on the spine. In this paper, we formu-
late the reconstruction problem as an optimization over a manifold of
articulated spine shapes learned from pathological training data. The
manifold itself is represented using a novel data structure, a multi-level
manifold ensemble, which contains links between nodes in a single hierar-
chical structure, as well as links between different hierarchies, represent-
ing overlapping partitions. We show that this data structure allows both
efficient localization and navigation on the manifold, for on-the-fly build-
ing of local nonlinear models (manifold charting). Our reconstruction
framework was tested on pre- and postoperative X-ray datasets from pa-
tients who underwent spinal surgery. Compared to manual ground-truth,
our method achieves a 3D reconstruction accuracy of 2.37± 0.85mm for
postoperative spine models and can deal with severe cases of scoliosis.

1 Introduction

Spinal deformity pathologies such as adolescent idiopathic scoliosis are three-
dimensional (3D) deformations of the trunk, described as a lateral deviation of
the spine combined with asymmetric deformation of the vertebrae. Modalities
such as MRI or CT are limited for pre- and postoperative assessment since
they require the patient to be lying in a prone position during acquisition. For
this reason, biplanar radiography is still the imaging technique which is most
frequently used for the 3D clinical assessment of spinal deformities, as it allows
acquiring the image in a natural standing posture with very little radiation.

Several attempts were made to reconstruct the spine from biplanar X-rays. A
priori knowledge of the vertebral shapes was used with morphologic descriptors
to estimate the geometrical spine model and refined with projected silhouettes
[1]. This approach was improved by adding inference-based adjustments to obtain
an accurate estimate of the vertebra’s orientation and 3D location [2]. Humbert
et al. [3] proposed to evaluate a parametric model based on the spinal centerline,
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Moura et al. [4] inferred an articulated model of the spine based on splines, and
Boisvert et al. [5] formulated the estimation of the spine shape as a second-
order cone program. Kadoury et al. [6] introduced a statistical and image-based
approach to reconstruct the spine using geometrical models. However, all of these
methods were designed for the reconstruction from preoperative X-rays.

Surgical treatment involves correcting the scoliotic curves with pre-shaped
metal rods anchored on the vertebrae with screws. Few methods have focused
on the 3D reconstruction from instrumented spines, even though postoperative
3D analysis is crucial to assess a treatment’s efficacy. In [7], a multilevel statisti-
cal model was proposed to reconstruct the spine in postoperative patients. Still,
the method remains highly supervised and assumes a linear statistical distri-
bution of the underlying pathological variations. In contrast, manifold learning
is based on the premise that data are often of artificially high dimension and
can be embedded in a lower dimensional space. However most global approaches
(LLE, ISOMAP) fail to adequately model closed distributions by unwrapping
the manifold, thus changing the intrinsic topology. On the other hand, graph-
search approaches preserve the manifold, avoiding losing continuity during the
embedding [8]. This could add robustness to the inference process of unseen cases
from a low-dimensional manifold embedded in the ambient space.

We propose a novel biplanar 3D reconstruction method of the instrumented
spine, where the shape reconstruction task is formulated as optimizing an energy
function over the manifold of uninstrumented spine shapes. The energy function
is designed such that it is robust to instrumentation, leading to solutions which
fit inside the domain of valid anatomical configurations. The manifold is learned
from a training set of visual hull reconstructions from spine X-ray images. To
this manifold we attach a vector field of generating parameters for articulated
poses and shapes. Our contributions are two-fold. First, we propose an approach
to build local charts whenever it is required on the manifold, approximating
the tangent space around a point and maximizing the accuracy of the nonlinear
approximation. Our approach combines the construction of a neighbourhood
graph and learning the manifold onto this graph, to effectively infer new models.
Second, we propose a spine reconstruction method from X-ray images, where
the anatomy of the spine is occluded by instrumentation (screws and rods).

2 Method

Given a set of calibrated biplanar X-rays, a visual hull reconstruction of the
global spine shape is obtained from the silhouettes of the anterior portion of the
spine extracted from both images (frontal and lateral) using a Hessian filtering
technique [9]. Our aim is to create a multi-level manifold ensemble from a training
set of visual hulls (Fig. 1), so to efficiently navigate towards the best match
during the spine reconstruction process for an unseen set of X-rays.



3D Spine Reconstruction of Postoperative Patients 363

Fig. 1. Illustration of the multi-level manifold ensembles for the 3D reconstruction of
postoperative spines. The data structure allows both vertical and horizontal displace-
ments between tree nodes given an input visual hull reconstruction of the spine.

2.1 Building the Multi-level Manifold Ensemble

The first step is to learn an ensemble of randomized space partioning trees that
are connected between each other. Essentially, the trees can be viewed as defining
an adaptive grid on the ambient space, in a manner similar to k-d trees. The
ensemble is a set, T , of binary trees ti ∈ T which hierarchically partitions the
ambient data space RD. We train each tree with the same dataset X = {xi},
xi ∈ RD of global spine visual hulls of dimension D. In our application, we
assume the samples xi to lie on a d-dimensional manifold M embedded in RD

with d < D. The parameters Θj = (θj , τj) for each node j define a separating
hyperplane in the ambient space RD by its unit normal vector θj ∈ RD and a
threshold τj ∈ R, set as the average of the two projected samples with the largest
distance on the manifold. The data assigned to each node, Xj , is partitioned
into two subsets: XL

j and XR
j , depending on the value of the split function

h(x, Θj) ∈ {0, 1}. The split functions take the form:

h(x, Θj) = I(xT θj > τj) (1)

where I is the indicator function that penalizes points further away from the
manifolds. The set XL

j contains samples x ∈ X for which h(x, Θj) = 0, the set

XR
j contains those for which h(x, Θj) = 1. To find Θj , we sample a random

subset, Dj ⊂ Xj , sample a point xk ∈ Dj and find the most distant point in Dj :

xl = argmax
x∈Dj

‖xl − xk‖. (2)

The normal θj to our hyperplane is the unit length vector between these two
points: θj = (xl − xk)/(‖xl − xk‖).

The second step learns the graphs, composed of a set of tree nodes, V , and a
set of directed edges, E . Here, we denote nodes as vti ∈ V with t the tree, and
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i the node index respectively, while an edge set is composed of all parent-child
tree edges Et along with edges between trees Es,t. A set of edges is defined as:

E = (
⋃
t∈T

Et) ∪ (
⋃

(s,t)∈T
Es,t). (3)

The idea here is that two nodes vsi and vtj in trees s and t are connected if
the regions they define intersect. Exact computation of these intersections is too
expensive in high dimensions, even in the case of linear splits. Instead, we use
the data samples to estimate intersections, and connect nodes vsi and vtj if the
intersection of their sample sets Ds

i and Ds
j is non-empty. The weight w(vs

i ,v
t
j)

of

each directed edge is set proportional to Ds
i ∩ Ds

j .

2.2 Optimization on the Manifold

Once the multi-level manifolds are trained, our aim, given a test case, is to
optimize an energy function f defined on points that lie on a manifold M.
We first find an initial solution by traversing the ensemble, both horizontally
and vertically (within and between trees), using an optimized k-d search with
aligned trees. Upon reaching a leaf node, we query the local neighborhood with
the horizontal connections and build a nonlinear chart on M.

Generating an Initial Solution. In order to minimize an energy function f
with the multi-level manifold structure, the first step consists of generating a set
of initial points on the manifold. These potential nodes will provide a pool of
candidates which will be close to the global solution. Our aim is not to obtain
a single point, but rather a group of points on the manifold used later to chart
a non-linear map. To overcome the overall complexity of the multi-level trees
and facilitate searches to find the nearest neighbour to a query, we employ a
strategy where prior to searching the trees, binary trees ti ∈ T are aligned by
their principal components via a PCA approach. Data is therefore split up in
the tree by hyperplanes perpendicular to the principal axes. To achieve this, the
datasets are first translated so that their centroids coincide at the origin. Then,
we construct the matrix U =

∑N
i=1 xix

T
i , with N the size of ti. The eigenvectors

of U are the principal axes of the dataset, and the eigenvalues are referred to as
the principal moments which are used to rotate the trees ti ∈ T .

Given a query vector, a descent down the trees leads to a single leaf node.
The data point associated with the node vtj is the first candidate for the nearest
neighbour. However this point will not necessarily be the nearest neighbour
to the query vector; it must be followed by a process of horizontal and vertical
moves, in which other cells are searched for better candidates. The recommended
method is priority search [10] in which the cells are searched in the order of their
distance from the query point. This may be accomplished efficiently using a
priority tree for ordering the cells, in which the cells are numbered in the order
of their distance from the query vector. The search terminates when there are
no more cells within the distance defined by the best point found so far.
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At the end of the process, the minimizing cost function yields a set of leaf
averages x̄t

j which are used as points to create a non-linear chart on the manifold
M. Hence, this feature represents a clear advantage to methods using graph-
building approaches, since charts are computed on the fly over the training data.

Nonlinear Charting. All the leaf averages x̄t
j define a neighbourhood in the

local nonlinear charting step of the manifold M, finding a mapping function
around a query. The seeds are expanded to their neighborhood using a random
walk of horizontal moves. The walk carries on until a given number of nodes
W has been reached. The parameter W controls the local chart size and must
therefore be chosen carefully, depending on a given optimization problem. We
propose to use the nodes reached by the walk as samples for training φ(y), which
provides the transformation from a nonlinear chart near x on the manifoldM at
y ∈ Rd to the ambient space, such that φ(y) = x where y contains the non-linear
dimensionally components. We use the basis of the tangent plane to estimate φ(y)
in d-dimensional space, where in differential geometry, the tangent space is used
to compute a local chart. The mapping of φ(y) = x estimates the relationship
between the D-space and manifold M as a joint distribution. The non-linear
chart should follow a conditional expectation which captures the trend within
a local neighborhood of the manifold. Gaussian kernels G estimate densities in
the conditional expectation setting [11]:

φ(yi) = argmin
xi

∑
j∈N (i) G(yi, yj)‖xi − xj‖2∑

j∈N (i) G(yi, yj)
(4)

which integrates the distance ‖xi − xj‖2, that: 1) acts as the similarity metric,
2) avoids giving more weight to the neighbors that are further away within a
the neighbourhood N (i) and, 3) updates φ(yi) using the closest neighbors of
point yi in the manifold space. This constrains the regression to be valid for all
the neighbourhood of the manifold chart around yi as it preserves locality in
xi. The chart provides a non-linear parameterization of the space, where outside
this range, a new chart is recomputed around the new initial solution.

2.3 3D Reconstruction of Postoperative Patients

We formulate the 3D reconstruction process of postoperative spines, where the
anatomy is partly obscured with rods and screws on the X-ray images, by an
optimization over the manifold of visual hulls from uninstrumented spines. The
energy term we seek to optimize is asymmetric, meaning that the solution that
is obtained from the manifold must lie inside the visual hull of the instrumented
input. Our model is learned from visual hull shapes (vectorized as x) which
are smoothed and subsampled. The function f used to navigate throughout the
manifold and find the closest points to the query x is formulated as:

f(x,y) =

|x|∑
i=1

k ◦ |(xi − yi)(1 + I(xi < yi)β)| (5)
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which defines the dissimilarity between input visual hull x and points y on the
manifold. Here, k(·) is a kernel function reducing the influence of outliers, and
I(·) is the indicator function. The function f induces a penalty of β for points
falling outside the input reconstruction x i.e. the uninstrumented visual hull
must lie within the input shape. We compute initial solutions on the manifold,
followed by nonlinear charting using Eq. (4) over a neighbourhood from which
a geometrical spine model is built.

Once the closest node on the manifold is identified, we revert to the ambient
space for the final refinements brought to the detailed spine model, by adjusting
the parametric spine model to its projection on the biplanar X-rays. We build the
parametric body model from the vector field of generating parameters attached
to the manifold neighborhood found previously. This models the spine as an array
of local intervertebral rigid transformations A = [T1, T2, . . . , Tm], with m the
number of intervertebral transformations and Ti = {R, t} a rigid transform. We
propose to use a Markov Random Field (MRF) to refine A, which was obtained
from the manifold. In our formulation, the energy includes data term g = {gi(·)}
(unary potentials) associated to each vertex of the MRF and a regularization
term f = {fij(·, ·)} (pairwise potentials) associated to the edges. The first encodes
the geodesic active contours of the projected 3D vertebral meshes with the X-
ray gradient images, whereas the later ones act as a regularizer by restraining
large transformation differences between two vertebral levels (e.g. T4 and T5),
introducing coherency in the minimization of the discrete MRF:

MRF (g, f) = min

m∑
i=1

gi(ui) +

m∑
i=1

∑
j∈N (i)

fij(ui,uj). (6)

Here, ui,uj ∈ L are the labels assigned to transformations Ti, Tj ∈ A respec-
tively, with transformation Ti being moved by assigning them different labels
ui ∈ L (L is the label space) until an optimal configuration is found. To reach
such an optimal configuration, we define an energy term that will be minimized
using an optimization algorithm. We adopt FastPD (Primal-Dual) to optimize
the aforementioned non-submodular MRF.

3 Experiments

We tested the multi-level manifold structure for the 3D reconstruction of spine
models with instrumentation, by handling occlusions from X-rays. The manifold
was built from 843 scoliotic spines demonstrating several types of deformities. For
each spine in the dataset, both a visual hull reconstruction and a high-resolution
geometrical model was obtained from calibrated biplanar X-rays. The models
include 12 thoracic and 5 lumbar vertebrae, each represented by 6 landmarks (4
pedicle extremities and 2 endplate center points), yielding a total 102 landmarks
per model. An atlas of 17 generic prior vertebra mesh models obtained from serial
CT-scans were fitted to the landmark-based models using FFD.

We first evaluate the performance on preoperative patients with scoliosis. Ten
pairs of preoperative biplanar X-rays taken from patients with mild deformities
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Table 1. Reconstruction results of pre- and postoperative spines. Results of the pro-
posed multi-level manifold (MLM) are compared to standard PCA and a recently
proposed approach using locally linear embeddings (LLE) [6].

Preoperative X-rays (n = 10) Postoperative X-rays (n = 20)

dim. 2D RMS difference 3D RMS difference 2D RMS difference 3D RMS difference
PCA LLE MLM PCA LLE MLM PCA LLE MLM PCA LLE MLM

1 4.77 2.72 2.05 5.04 2.97 2.39 6.37 3.44 2.38 6.72 3.86 2.59
5 4.18 2.53 1.98 4.52 2.85 2.22 5.74 3.31 2.21 6.16 3.80 2.46
10 3.71 2.07 1.90 4.10 2.33 2.09 5.53 3.18 1.96 5.95 3.68 2.34
15 3.64 2.02 1.93 4.04 2.28 2.15 5.52 3.14 2.04 5.87 3.63 2.39
20 3.59 2.10 1.95 4.01 2.39 2.20 5.47 3.22 2.07 5.85 3.72 2.41

(a) (b)

Fig. 2. (a) Sample 3D reconstruction result from postoperative frontal and lateral
X-rays, yielding high-resolution geometrical models. (b) Errors with 5 different instru-
mentation configurations, comparing optimization with and without horizontal moves.

(Cobb angle 15 - 30◦) were used to quantify the 3D accuracy. This enables to
assess the errors under normal settings, without any occlusion from instrumen-
tation. For each case, differences between the proposed method and landmarks
identified manually by a radiology expert were computed. Table 1 presents these
results, demonstrating performances similar to state-of-the-art [6].

We then evaluated the method on twenty (n = 20) pairs of instrumented
biplanar X-rays, where 3D spine reconstructions were generated by learning a
manifold of visual hulls rendered from uninstrumented spines. Sample results are
shown in Fig. 2(a). In Table 1, we compare results to both a PCA and a single
spine manifold approach [6], prior to MRF optimization. Different values of d
were tested in order to evaluate the effect of the manifold dimensionality. With
d = 10, the mean difference in 3D landmark locations for all 20 patients was of
2.57±0.73mm for thoracic vertebrae and 2.12±0.67mm for lumbar vertebrae. To
evaluate robustness with respect to different instrumentation strategies, we mea-
sured the reconstruction accuracy over five different types of surgical paradigms,
based on instrumented levels (thoracic and lumbar). Fig. 2(b) shows these re-
sults, which also show the benefit of integrating horizontal moves in the ensemble
search when different anatomical regions are occluded by metal rods.
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4 Conclusion

In this paper, we proposed an unsupervised method to perform the 3D recon-
struction of a spine geometry when surgical instrumentation is visible on biplanar
X-rays. Our approach is based on multi-level manifold ensembles, which enable
an efficient navigation on a low-dimensional domain to infer the closest match to
a training set. Results show that this model allows reconstruction accuracies sim-
ilar to gold-standard. Because the 3D reconstructions are obtained without any
user supervision, the proposed approach could be transposed to clinical practice
and used in the context of multi-centre evaluations of surgical practices.
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Abstract. Training an effective and scalable system for medical image analysis
usually requires a large amount of labeled data, which incurs a tremendous an-
notation burden for pathologists. Recent progress in active learning can alleviate
this issue, leading to a great reduction on the labeling cost without sacrificing
the predicting accuracy too much. However, most existing active learning meth-
ods disregard the “structured information” that may exist in medical images (e.g.,
data from individual patients), and make a simplifying assumption that unlabeled
data is independently and identically distributed. Both may not be suitable for
real-world medical images. In this paper, we propose a novel batch-mode active
learning method which explores and leverages such structured information in an-
notations of medical images to enforce diversity among the selected data, there-
fore maximizing the information gain. We formulate the active learning problem
as an adaptive submodular function maximization problem subject to a partition
matroid constraint, and further present an efficient greedy algorithm to achieve
a good solution with a theoretically proven bound. We demonstrate the efficacy
of our algorithm on thousands of histopathological images of breast microscopic
tissues.

1 Introduction

Recent development of microscopical acquisition technology enables computerized
analysis of histopathological images [9]. For example, in the context of breast can-
cer diagnosis, plenty of systems have been designed to conduct automatic and ac-
curate analysis of high-resolution images digitized from tissue histopathology slides,
where well-known machine learning and image processing techniques [12,3,4] have
been exploited. Particularly, supervised learning models such as Support Vector Ma-
chines (SVMs) [13] have been extensively employed, because they are able to effec-
tively bridge the so-called “semantic gap” between histopathological images and their
diagnosis information [3,6,9]. To train an accurate prediction model under a supervised
manner, it is usually necessary to require a large amount of labeled data, e.g., manual
annotations from domain experts or pathologists. However, acquiring sufficient high-
quality annotations is a very expensive and tedious process. To alleviate this issue and
reduce the labeling cost, active learning [14] has been suggested to intelligently select a
small yet informative subset of the whole database, which requires only a few labeling
operations from domain experts to build an accurate enough prediction model yet with
a low training cost.
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Active learning has been widely investigated in the machine learning community,
aiming for progress in both theoretical aspects, e.g., sample complexity bounds [1],
and approaching practical applications, e.g., image [10] and text [15] classification and
retrieval (the related work in active learning is briefly described below). However, for
histopathological images, previous active learning methods have two main shortcom-
ings: 1) Almost all of them assume that unlabeled data samples are independently and
identically distributed (I.I.D.), which is not necessarily suitable for histopathological
images. In fact, for each patient there are usually several images available which share
common pathological characteristics, e.g., images from different ROIs. Obviously, there
are considerable correlations among such image samples. 2) Even if the I.I.D. property
holds, previous active learning methods may disregard the structured information of
histopathological images, e.g., patient identity, which is easy to obtain but could be
crucial for active learning to enforce diversity during sample selection.

In this work, we propose a novel batch mode active learning approach which is
specifically designed for histopathological image analysis by leveraging structured in-
formation to enforce diversity during intelligent sample selection. We formulate the
active learning problem (essentially the sample selection problem) as a constrained
submodular optimization problem and present a greedy algorithm to efficiently solve
it. Notably, we provide a theoretical bound characterizing the quality of the submodular
active learning strategy, which guarantees that our proposed greedy algorithm approxi-
mates the optimal batch mode active learning strategy for the adaptive submodular func-
tion maximization problem with a partition matroid constraint. In practice, our active
learning driven histopathological image analysis approach outperforms state-of-the-art
methods to tackle histopathological image analysis. We perform experiments on a large
database of histopathological images with high-dimensional features. The experimental
results demonstrate the efficacy of our approach, which achieves 83% prediction ac-
curacy with merely 100 labeled samples among more than two thousand images (i.e.,
less than 5% training data). This accuracy is 11% higher than passive learning and 6%
higher than state-of-the-art active learning methods.

Related Work in Active Learning. Active learning can be considered as a combi-
natorial optimization problem which is typically difficult to exactly solve, so a variety of
heuristics have been resorted to. For example, a number of active learning algorithms
relax the original combinatorial problem involving discrete constraints to a continu-
ous optimization problem, and then employ regular convex or non-convex optimization
techniques to solve the relaxed problem. These algorithms usually suffer from pro-
hibitively high computational complexities, and the deviation from the solution of the
relaxed problem to that of the original problem remains unknown. In contrast, some
latest work casts active learning problem into a submodular set function maximization
problem which is direct combinatorial optimization. While maximizing a submodular
function appears NP-hard, a landmark result from Nemhauser et al. [5] certifies that a
simple greedy optimization scheme is able to achieve the (1− 1

e )-approximation for the
cardinality constraint and the ( 1

p+1 )-approximation for p matroid constraints, respec-
tively. Built on this theoretic finding, Chen and Krause [2] propose a nearly optimal
batch mode active learning strategy by applying an adaptive submodular optimization
scheme [8]. Motivated by this line of submodular optimization techniques, our active
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learning method firstly explores and leverages structured information of histopatholog-
ical images through imposing a partition matroid constraint on active learning.

2 Approach

2.1 Problem Definition

Given an unlabeled dataset U = {x1, · · · ,xn}, each data sample xi ∈ U carries a
random label variable yi ∈ Y (Y = {1,−1}) in our binary classification task for which
the positive label ‘1’ implies ‘benign’ and the negative label ‘-1’ implies ‘actionable’.
Assume that there exists a joint probability distribution P (yU) of the labels of the sam-
ples in U , where yU = [y1, · · · , yn]� ∈ Yn. Batch mode active learning selects a
small subset of U , queries their labels from experts, and then trains a classifier using
the chosen labeled samples. To be specific to histopathological image analysis, batch
mode active learning works as follows: whenever a batch of k unlabeled images B ⊆ U
(|B| = k) are selected, their associated labels yB ∈ Yk are requested from the diagnosis
of pathologists and acquired simultaneously; the obtained labels are used to select next
batches of images iteratively until the needed classification (i.e., predicting ‘benign’ or
‘actionable’) accuracy is achieved.

2.2 Adaptive Submodular Optimization

Our goal is to learn a classifier h : U → Y from a set H of finite hypotheses. We
write S = {(xi, yi)} ⊆ U × Y to denote the set of observed sample-label pairs. We
defineH(S) = {h ∈ H : yi ≡ h(xi), ∀(xi, yi) ∈ S} to denote the reduced hypothesis
space consistent with the observed sample-label pairs in S. We then define and aim to
maximize the objective set function f : 2U×Y → R as

f(S) = |H| − |H(S)|, (1)

where the operator | · | outputs the cardinality of an input set. In this paper, we study
hyperplane hypotheses in the form of h(x) = sgn(w�x) in which the sign function
sgn(x) returns 1 if x > 0 and -1 otherwise. Intuitively, the function f(S) measures the
number of hypotheses eliminated by the observed labeled data in S. As a matter of fact,
f satisfies the following properties:

– f(∅) = 0; (Normalized)
– for any S1 ⊆ S2 ⊆ U × Y , f(S1) ≤ f(S2); (Monotonic)
– for any S1 ⊆ S2 ⊆ U × Y and (x, y) ∈ (U × Y)\S2, we have f(S2 ∪ {(x, y)})−
f(S2) ≤ f(S1 ∪ {(x, y)})− f(S1); (Submodular)

– for an unlabeled sample x and an observed data subset S ⊆ U × Y , define the
conditional expected marginal gain of x with regard to S as

Δf (x | S) =
∑
y∈Y

P (yi = y | S)[f(S ∪ {(x, y)})− f(S)], (2)

and then the function f along with the distribution P (yU ) is called adaptive sub-
modular if Δf (x | S2) ≤ Δf (x | S1) holds for any S1 ⊆ S2 ⊆ U × Y and
P (S2) > 0. (Adaptive Submodular [8])
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To work under the batch mode setting, the BatchGreedy algorithm [2] generalizes
the conditional marginal benefit in Eq. (2) to allow for conditioning on a set of selected
but not yet observed sample-label pairs within the current batch. BatchGreedy greedily
selects the samples within each batch and assembles batches in a sequential manner.
Specifically, BatchGreedy selects the i-th sample in the j-th batch as follows:

x∗ = argmax
x∈U

Δf (x | {x1,j, ...,xi−1,j},S), (3)

where S represents the observed labeled data from all previous j − 1 batches, and
{x1,j, · · · ,xi−1,j} retains the selected i − 1 samples whose labels are not observed
yet within the current j-th batch. This algorithm is theoretically guaranteed to obtain an
approximation to the optimal batch-mode active sampling strategy.

2.3 Modeling the Partition Matroid Constraint

Since images of the same patient are very likely to include large pathological informa-
tion redundancy, we propose to explicitly enforce diversity within the selected images
by imposing an additional partition matroid constraint on the original adaptive submod-
ular function maximization problem in Eq. (3).

A partition matroid constraint is defined as follows:P1,P2, · · · ,Pq are a partitioning
of the set U if U =

⋃
1≤i≤q Pi and P1, · · · ,Pq are disjoint with each other. We require

the currently selected batch to include at most one sample from each subset Pi.
More formally, our proposed constrained problem is defined as follows:

B∗ = argmax
B⊆U

Δf (B | S)

subject to |B| = k, |B ∩ Pi| ≤ 1, k ≤ q, ∀i ∈ {1, ..., q},
(4)

where B∗ is the optimal k-cardinality batch selected from the current unlabeled dataset
U , P1, · · · ,Pq are q disjoint subsets partitioning U , and S is the set composed of the
previously observed labeled data. These disjoint subsets can be obtained through per-
forming clustering according to the structured information of the annotated images.

Within each batch, the i-th sample of the j-th batch is selected as follows

x∗ = argmax
x∈U

Δf (x | {x1,j, ...,xi−1,j},S)

subject to cluster(x) = cluster(xk,j), ∀k ∈ {1, · · · , i− 1},
(5)

where cluster(x) is the index of the cluster that x belongs to.
For the sequential version of this problem, Golovin and Krause[7] have proven that

the greedy method can achieve a ( 1
p+1 )-approximation to the optimum when maximiz-

ing f subject to p matroid constraints, which motivates us to generalize this result to
the batch mode setting. We propose a practical batch mode active learning algorithm
BGAL-PMC, as described in Algorithm 1. In what follows, we show that BGAL-PMC
can well approximate the optimal batch selection strategy. Note thatH is the hypothesis
set, H(S) is the reduced hypothesis set which is consistent to the observation S, and
|H| is the size of the hypothesis set.
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Algorithm 1. BGAL-PMC (Batch Greedy Active Learning with a Partition Matroid
Constraint)

Input: a set of disjoint clusters P1,P2, ...Pq , previously selected dataset S and their observed
labels yS , unlabeled dataset U , hypothesis set size N , and batch size k.
Ouput: the selected batch B and their labels yB.
Sample a hypothesis set H = {h1, h2, ...hN} using yS ;
initialize B = ∅, D = ∅, and T = ∅;
for i = 1 to k do

for j = 1 to |U| do
score(xj) = Ey∈{−1,1}[|H({(x, y) | x ∈ B ∪ {xj}})|]

end for
while true do

x∗ = argminx∈U\{B∪T } score(x)
ind = cluster(x∗)
if ind /∈ D then

B = B ∪ {x∗}, D = D ∪ {ind}
break

else
T = T ∪ {x∗}

end if
end while

end for
query the labels yB for B.

Theorem 1. Given a monotonic and submodular function f and a label distribution
P such that (f, P ) is adaptive submodular, when maximizing f subject to a partition
matroid constraint, the expected cost of the BGAL-PMC algorithm is at most 2(ln(|H|−
1)− 1) times the expected cost of the optimal batch selection strategy.

The proof of Theorem 1 is provided in the supplemental material. This theorem
guarantees that BGAL-PMC needs at most 2(ln(|H|− 1)− 1) times more batches than
those required by the optimal batch selection strategy. Note that directly searching for
the optimal selection strategy takes exponential time. To sample a finite hypothesis set
H, we employ the hit-and-run sampler [11] to generate a set of linear separators, which
has been used by [2] and proven effective for active learning problems.

3 Experiments

Experimental Settings: Our experiments are conducted on a large database of
histopathological images from breast microscopic tissues [4,17]. This database con-
tains more than two thousand images, gathered from around a hundred patients. Each
image is labeled as benign category (usual ductal hyperplasia (UDH)) or actionable
category (atypical ductal hyperplasia (ADH) and ductal carcinoma in situ (DCIS)) by
pathologists, which are development procedures from a normal terminal duct-lobular
unit to an invasive cancer. Classifying these two categories is an important clinical
problem since the therapy planning and management relies on the diagnosis of UDH
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Fig. 1. (a) Learning curves of the proposed BGAL-PMC and other 5 methods on the breast micro-
scopic tissues image dataset. X-axis is the number of selected images while Y-axis is the accuracy
as the number of selected training images increases. BGAL-PMC (the pink curve) outperforms
the other 5 methods significantly; (b) The diversity curves of all 6 methods. X-axis is the num-
ber of selected images while Y-axis is the diversity of the selected set as the number of selected
images increases. Note that the diversity here is defined as the perentage of partitioning clusters
being covered.

and ADH/DCIS. It is also very challenging due to the subtle differences between cate-
gories. High-dimensional (i.e., 10000) texture features are extracted from each image.
We randomly split the dataset into 50% training to actively select candidate images and
50% testing to test the learned classifier. We also ensure that images for a particular
patient are either in the training set or in the testing set. We randomly split 10 times and
the average performance is reported.

Five active learning methods are compared, i.e., Random Selection, Min Margin [15],
Fbatch [10], BMDR [16], and BatchGreedy [2]. Note that the Random Selection is
equivalent to the passive learning setting. In our method, we partitioned the dataset into
20 disjoint subsets using both the structured information and image texture features by
K-means. Since it’s difficult and time-consuming to sample hyperplanes uniformly in
high dimensional space, we follow [2] to reduce the dimension to 100 to sample the
hypothesis set H. For fair comparison, we use SVM classifier for all methods, with the
same parameters tuned via five-fold cross validation. We set batch size at 5 throughout
the experiments. Two positive images and two negative images are randomly selected
for initialization. The size of the hypothesis set is set at 300, which is empirically large
enough in our experiments. All experiments are conducted on a 2.80GHz i7 CPU with
16 cores and 16G RAM in Matlab implementation.

Results: Fig. 1(a) shows the classifier learning curves as selected samples increase.
Not surprisingly, all five active learning methods perform better than random selec-
tion, which manifest the effectiveness of active learning. In particular, the proposed
BGAL-PMC performs significantly better than all other four active learning meth-
ods. Min Margin method as a classical active learning baseline is the second-best in
our experiments. Although Fbatch, BMDR and BatchGreedy perform well in the first
20 selected samples, the improvement of their accuracy is less substantial when more
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Fig. 2. One example batch of selected images using our proposed method. The first 3 are action-
able, and the last 2 are benign. 5 images are selected from distinct clusters.

Table 1. Comparsion of the average time to select a single batch of images for 5 active learning
algorithms (batch size=5)

Methods MinMargin[15] BMDR[16] FBatch[10] BatchGreedy[2] BGAL-PMC
Time (seconds) 3.13 17.63 128.13 1.97 1.98

batches are selected. The reason is that all other methods do not take the information of
clusters into consideration. Therefore, their selected images may include information
redundancy, which downgrades their performances. On the other hand, trivially using
cluster information cannot achieve the same accuracy either. We tested samping from
randomly-chosen distinct clusters, as an alternative baseline. It achieved 77% accuracy
when selecting 100 samples which is better than some baselines, but is still significantly
worse than our proposed method. Leveraging image structured information may be a
general paradigm to boost active learning performance, but our proposed matroid con-
straint is a more effective and theoretical sound method. With less than 5% data labeled,
our method achieves 83% prediction accuracy. This accuracy is at least 6% higher than
all compared methods. In fact, when 80% data is labeled, the prediction accuracy is
87%, which is merely 4% higher than our method but use much more labeled samples
than us. Therefore, this scheme considerably reduces the label effort from pathologists,
without significantly sacrificing the accuracy.

We further investigated the diversity of all methods, as shown in Fig. 1(b). The diver-
sity here is defined as the coverage rate of the clusters. Since we enforce the partition
matroid constraint explicitly, BGAL-PMC covered all the clusters in much fewer iter-
ations than other methods. Fig. 2 is one selected batch using our proposed method, to
show the diversity of our selections visually. We also compared the running time, as
shown in Table 1. In our experiments, BatchGreedy and BGAL-PMC are much more
scalable than other active learning algorithms. BatchGreedy is slightly faster than ours
(1.97s vs. 1.98s), both of which are negligible in the practical use of active learning.

4 Conclusion

In this paper, we proposed a novel batch mode active learning approach which lever-
ages the structured information of annotated histopathological images. We formulated
the batch mode active learning problem as a submodular function maximization prob-
lem with a partition matroid constraint, which prompts us to design an efficient greedy
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algorithm for approximate combinatorial optimization. We further provided a theo-
retic bound characterizing the quality of the solution achieved by our algorithm. We
compared the proposed active learning approach against several state-of-the-art active
learning methods on a large database of histopathological images, and demonstrated the
superiority of our approach in performance. The spirit of our active learning method
capitalizing on submodular optimization is generic, and can thus be applicable to other
problems in medical image analysis. In the future, we will also explore more sophis-
cated ways to extract structured infomation.
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Abstract. We propose a novel unstained cell detection algorithm based on un-
supervised learning. The algorithm utilizes the scale invariant feature transform
(SIFT), a self-labeling algorithm, and two clustering steps in order to achieve
high performance in terms of time and detection accuracy. Unstained cell imag-
ing is dominated by phase contrast and bright field microscopy. Therefore, the
algorithm was assessed on images acquired using these two modalities. Five cell
lines having in total 37 images and 7250 cells were considered for the evalua-
tion: CHO, L929, Sf21, HeLa, and Bovine cells. The obtained F-measures were
between 85.1 and 89.5. Compared to the state-of-the-art, the algorithm achieves
very close F-measure to the supervised approaches in much less time.

1 Introduction

Cell detection plays a vital role in biomedical image analysis. Automatic image-based
cell detection approaches can be used for estimating the number of cells [1,2], initializ-
ing cell segmentation algorithms [3], cell tracking [4], and for extracting features which
can be used for further analysis such as cell viability determination [5].

In fluorescence microscopy, cells are stained using a fluorescent dye. This reshapes
the cell detection problem as a relatively easy task due to the high contrast obtained
by staining. On the other hand, in some biological applications [6], it is desired to
avoid staining because of its side effects on cells. In this case, cell detection is more
challenging and sometimes very difficult [7, 8, 9].

We know from bioprocess engineers that, for unstained cell imaging, bright field and
phase contrast are the most widely used microscopic modalities. Therefore, they form
together a very appropriate choice for the evaluation of unstained cell detection.

Several machine learning approaches have been proposed in the literature in order to
cope with the difficulty of the problem. Some approaches follow a pixel-wise classifica-
tion strategy [5,8,10,11]. Others perform the classification at the level of image interest
points [9,12,13,14]. The latter have some useful properties. First, the problem is sparse
compared to the pixel-wise classification. Second, the interest points are characterized
by features and/or descriptors which can be utilized for detection as in [9, 12]. Third,
they can be employed to achieve scale- and orientation-invariant training as in [9].
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All the previous approaches are dependent on supervised learning. The latter trans-
fers part of its inductive bias to the training data which makes the approach adaptable by
simply changing the training set. This has the advantage that it can model very compli-
cated situations and provide reliable results as long as the training set is representative.
On the other hand, its drawback is that it requires labeled ground truth. In many cases,
the users of cell image analysis software would sacrifice some detection accuracy in
favor of having a labeling-free system. This preference becomes more serious when the
system has to be trained for each new cell line.

In this paper, we advocate an unsupervised machine learning approach for unstained
cell detection. Technically speaking, we also employ supervised learning, but with
ground truth learned automatically from the input image. The proposed approach was
tested on five cell lines with diverse visual appearance. Our results show that we are very
close in terms of detection rate to the state-of-the-art supervised learning approaches.
However, our approach has a much faster runtime and does not require manually-labeled
ground truth.

Related Work. In [12] and [14] on phase contrast microscopy and [9] on bright field
microscopy, the training was done at two levels: First, cells and background are sepa-
rated by machine learning techniques. Second, the difference between interest points
belonging to the same cell and interest points belonging to neighboring cells is learned.
The support vector machine (SVM) classifier and interest points detected by a set of
Laplacian filters were utilized in [12] and [14] while the random forest classifier and
the scale invariant feature transform (SIFT) keypoints were used in [9]. The previous
approaches require ground truth of segmented cells. In other words, cell borders should
be delineated and each cell should have a distinguishing identifier in the ground-truth
mask. In [13], maximally stable extremal regions (MSER) keypoints were utilized and
a structured SVM was used to learn a bijective mapping between the MSER regions
and the ground-truth cell centers. Compared to [9], [12], and [14], this approach has the
advantage that it is easier to train because only cell centers are required as ground truth.
The closest to our approach is [9], but ours uses unsupervised learning and it is thus
labeling-free.

2 Methods

We make a heavy use of SIFT related concepts. Therefore, we introduce SIFT in
Section 2.1 and we then describe our method in Section 2.2.

2.1 SIFT

SIFT [15] is a local image feature detector and descriptor. Each detected keypoint is
characterized by its spatial coordinates, a scale, an orientation, a difference of Gaussians
(DOG) value, and a principal curvatures ratio (PCR) value. The DOG value indicates
the keypoint strength and its range is proportional to the dynamic image range. Its sign
is positive for black-on-white blobs and negative for white-on-black blobs. The PCR
value is defined as [15]:

PCR =
Tr(HDOG)

2

Det(HDOG)
(1)
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where HDOG is the Hessian of DOG, Tr is the trace, and Det is the determinant. PCR
has a minimum of 4 for the isotropic blobs and its value increases theoretically until
+∞ by increased blob anisotropy.

2.2 Cell Detection by Keypoint Clustering and Self-labeling

2.2.1 Keypoint Extraction
Our algorithm starts by extracting SIFT keypoints of the input image I. These keypoints
are not thresholded using the PCR or the DOG values. In other words, all detected SIFT
keypoints of all strength and anisotropy values are considered at this step.

2.2.2 Blob Type Detection
The keypoint blob type is determined by the DOG sign. As mentioned in Section 2.1,
it is either black on white (+1), or white on black (-1). Based on [9], the blob type is
computed using the following equation:

β = sign

(∑N
i=1 ωi |DOG(pi)|H(DOG(pi))∑N

i=1 ωi |DOG(pi)|
− 1

2

)
(2)

ωi =
s(pi)

PCR(pi)
(3)

where pi, i = 1..N are the keypoints in the image as obtained in Step 2.2.1, N is
their number, s(pi) is the scale of pi, and H is the Heaviside step function. If β = +1,
the positive DOG keypoints are considered while the negative DOG keypoints are dis-
carded, and vice versa.

2.2.3 Scale Adaptive Smoothing
The image I is smoothed with a Gaussian kernel whose standard deviation is the mean
keypoint scale. The latter is computed using the following equation:

σ =

∑M
i=1 |DOG(pi)| s(pi)∑M

i=1 |DOG(pi)|
(4)

where M is the number of the keypoints resulting from Step 2.2.2, i.e. only one blob
type is considered.The smoothed image Iσ is saved for further processing.

2.2.4 Second Keypoint Extraction
Step 2.2.1 is applied on the smoothed image Iσ and the keypoints which conform to the
previously computed β are considered while the others are discarded.

2.2.5 Cell/Background Keypoint Clustering
At this step, the keypoints are clustered into one of two categories: cells and back-
ground. K-medians clustering, i.e. intra-cluster �1-norm minimization, is applied with
K = 2. One-dimensional Otsu thresholding is applied on the DOG values of the key-
points and the two resulting clusters are used to initialize the Lloyd’s iteration. The
features are modality-specific. For bright field microscopy, at each keypoint pi, we em-
ploy DOG(pi) and smoothed image intensity Iσ(pi) as features. For phase contrast
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microscopy, we use DOG(pi) and VAR(I,pi, σ). The latter is the local variance of the
original image I within a square neighborhood centered at pi with a half side-length
equal to σ (up to an integer approximation). The features are normalized to [0, 1] so that
they contribute equally to the �1-norm. After termination, the keypoints which belong
to the background cluster are discarded.

2.2.6 Cell/cell Keypoint Clustering
The goal of this step is to cluster the cell keypoints resulting from the previous step into
Nc clusters where two keypoints belong to the same cluster if and only if they belong to
the same cell. Nc is not known a priori. In order to achieve this goal, a classifier which
ranks each pair of keypoints as belonging to the same cell or not is required [9], [14].
We propose to learn this classifier from the input image using a self-labeling algorithm
instead of manually-labeled ground truth. Informally speaking, the algorithm trains a
keypoint-pair classifier on extreme cases (for which ground truth labels can be assumed)
and applies the resulting classifier on intermediate cases. This is achieved as follows:
1) Consider Ψ to be a set of keypoint pairs defined as:

(pi,pj) ∈ Ψ⇔ ‖pi − pj‖2 ≥ ρ where ρ = α · σ and α is a constant. ρ must be
larger than the maximum cell length. Due to the use of SIFT, safe values for α can
be set easily regardless of the image resolution or cell type. We set it to 10 in our
experiments.

2) Randomly choose N1 elements, i.e. keypoint pairs, from Ψ. Label each of them as
cross which means that the two corresponding keypoints belong to two different
cells.

3) Randomly choose N2 keypoints from the set of cell keypoints and form the set Ω.
The probability of selecting a keypoint is proportional to its scale. Both N1 and N2

were set to 100 in our experiments.

4) Motivated by the intuition that short line segments are very unlikely to span two
cells: For each element pi in Ω, choose a random orientation θi and form the point
qi = pi +(s (pi) cos (θi) , s (pi) sin (θi)). Label each pair (pi, qi) as inner which
means that the two corresponding points belong to the same cell. The labels ob-
tained by this step and by Step 2 are illustrated in Figure 1 (b).

5) For each inner/cross pair (p∗
i ,p∗

j ), extract the following feature after [9]:
Fij = Iσ(p

∗
i ) − 2 extremumij + Iσ(p

∗
j ). extremumij is, by definition, either the

maximum (when β = +1) or the minimum (β = −1) intensity along the line
segment between p∗

i and p∗
j .

6) Estimate the two class conditional densities P(F |inner) and P(F |cross) assuming
a Gaussian distribution.

So far, a keypoint-pair classifier was trained using the input image. The posterior proba-
bility P(cross|F ), assuming equal priors, is then used to rank each two nearby keypoints
(cf. Figure 1 (c)). This ranking expresses the probability that they belong to two different
cells. In order to reduce runtime, only the three nearest neighbors of each keypoint are
considered. The resulting ranks are then used as input for an agglomerative hierarchical
clustering with average linkage similar to [9]. The resulting clusters at a cut-off equal
to 0.5 (cf. Figure 1 (d)) represent the detected cells. Inside each cluster, the arithmetic
average of the keypoint coordinates identifies the center of a detected cell.



Unsupervised Unstained Cell Detection by SIFT Keypoint Clustering 381

a cross
innerb

c dcross
inner

Fig. 1. Illustration of the cell/cell keypoint clustering. The circle inside each figure shows a mag-
nified view. a) Cell keypoints resulting from the cell/background K-medians clustering. b) Point
pairs chosen by the self-labeling algorithm for training a cell boundary potential. Each pair is in-
dicated by a line segment. c) The learned boundary potential is employed to rank nearby keypoint
pairs. The output is probabilistic, but only the binary classification result is shown. d) Result of
hierarchical clustering using the ranks obtained from the previous step. Each cluster represents a
detected cell.

3 Evaluation

Table 1 contains a summary of the datasets used in the evaluation. The ground-truth
type of all datasets except [13] is cell border delineation, while in the dataset of [13] a
dot is marked at the center of each cell. This difference in ground-truth representation
leads to a difference in the evaluation procedure. In all datasets except [13], a cell is
considered detected if the hit point belongs to the cell mask and the centeredness error
is used to assess the deviation from the cell center. Centeredness error is defined after [9]
as the distance between the hit point and the cell’s center of mass normalized by the
cell major axis length and averaged over all correctly-detected cells in the considered
image. In the dataset of [13], cell masks are not available. Therefore, a cell is considered
detected if the distance to the ground-truth cell center is less than the minimum cell
radius. The latter was set after [13] to 5 pixels. Figure 2 exemplifies detection results
of our approach for all datasets. Quantitative evaluation and comparison with the state-
of-the-art are described in the next paragraph. The evaluation results of all approaches
except ours are given according to their corresponding papers: [9], [14], and [13].

A comparison with [9] on bright field microscopy is shown in Table 2. The figures
of [9] in Table 2 were obtained by image-wise cross-validation in each cell line: One
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image per cell line is used for training and the other images of the same cell line are
used for testing. The results of our approach were obtained by averaging each of the F-
measure, time, and centeredness error over images per cell line. A comparison with [13]
and [14] on phase contrast microscopy is shown in Table 3. The shown results of the
approaches [13] and [14] in Table 3 were generated by the hold-out method: [13] was
trained using 11 images and tested on other 11 images. Similarly, [14] was trained
using 10 images and tested on other 10 images. We evaluated our approach on the same
images which were used for testing each of them (the images described in Table 1).
Tables 2 and 3 show that the proposed approach is very close in terms of F-measure
and centeredness error (when available) to the supervised approaches. However, our
approach is much faster especially when compared with the phase contrast approaches
where it is one or two orders of magnitude faster.

The blob type was correctly picked for all images by Eq. 2. As can be seen in Eq. 2,
this blob type is decided by the sign function. Therefore, the reliability of the decision is
proportional to the absolute value of the sign operand. We observed a little improvement
(data not shown) of this reliability when both PCR and scale are used for weighting (as
in Eq. 3) compared to the case when only the scale is used.

(a) CHO (b) L929 (c) Sf21

(d) HeLa (e) Bovine

Fig. 2. Samples of the detection results. Each plus sign marks a detected cell.

Table 1. Datasets used in the evaluation

Cell line Modality Resolution #Images #Cells Ground truth Source
CHO bright field 1280 × 960 6 1431 border delineation [9]
L929 bright field 1280 × 960 5 1078 border delineation [9]
Sf21 bright field 1280 × 960 5 1001 border delineation [9]
HeLa phase contrast 400× 400 11 1156 center dots [13]
Bovine phase contrast 680× 512 10 2584 border delineation [14]
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Table 2. Comparison with the state-of-the-art on bright field microscopy

F-measure (%) Time (seconds) Centeredness error
CHO L929 Sf21 CHO L929 Sf21 CHO L929 Sf21

Supervised Mualla et al. [9] 84.2 86.5 97.0 45.9 36.7 40.7 0.48 0.38 0.16
Proposed approach 85.1 88.3 89.5 10.5 10.9 14.4 0.40 0.42 0.23

Table 3. Comparison with the state-of-the-art on phase contrast microscopy

F-measure (%) Time (seconds) Centeredness error
HeLa Bovine HeLa Bovine HeLa Bovine

Supervised Pan et al. [14] - 94.6 - 900.0 - -
Supervised Arteta et al. [13] 88.0 - 30.0 - - -
Proposed approach 88.7 86.0 1.5 3.5 - 0.11

4 Discussion and Conclusion

Both blob type detection and scale adaptive smoothing were proposed in the supervised
approach of [9]. In contrast to [9], where only keypoints which belong to cells (known
from ground truth) are considered, we compute the blob type β in an unsupervised man-
ner by considering all keypoints. In addition, we use both scale and PCR to weigh the
keypoint contribution to β whereas only scale is used in [9]. For the scale adaptive
smoothing, we use a weighted average instead of the simple arithmetic average used
in [9]. In general, we can conclude that SIFT can be successfully employed for unsu-
pervised structure-of-interest measurements such as mean scale and dominant curvature
direction.

In the cell/cell clustering step, a self-labeling algorithm was employed to train a rank-
ing classifier. This classifier learns from extreme cases and applies the learned model on
intermediate ones. In other words, training and testing feature vectors are drawn from
different distributions. Therefore, the features should be chosen carefully so that they
do not overfit the training samples. With this in mind, we confined ourselves to use a
one-dimensional feature space and a simple generative model. In future, we plan to im-
prove the cell/cell clustering by applying transductive transfer learning techniques. On
the other hand, for the possibly less-reliable cell/background clustering, we think that
applying transductive learning methods may alleviate the limitations of K-medians. In
the self-labeling algorithm, due to the use of SIFT, it was possible to define a scale-
invariant notion of the extreme cases. Consequently, the algorithm could successfully
detect cells in images of different resolutions and/or cell types without any change in
the parameter values.

The proposed approach achieves detection accuracy which is very close to three state-
of-the-art supervised cell detection approaches in much less time, without training data,
and without manual parameter-tuning. We thus believe that the cell detection problem
is, to a large extent, solvable by self-supervised techniques which learn from the input
image itself.
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ate School in Advanced Optical Technologies (SAOT) by the German Research
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9. Mualla, F., Schöll, S., Sommerfeldt, B., Maier, A., Hornegger, J.: Automatic cell detection
in bright-field microscope images using SIFT, random forests, and hierarchical clustering.
IEEE Transactions on Medical Imaging 32(12), 2274–2286 (2013)

10. Nattkemper, T., Ritter, H., Schubert, W.: Extracting patterns of lymphocyte fluorescence from
digital microscope images. In: Intelligent Data Analysis in Medicine and Pharmacology, pp.
79–88 (1999)
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Abstract. This paper presents Group-sparse Nonnegative supervised Canonical
Correlation Analysis (GNCCA), a novel methodology for identifying discrimi-
native features from multiple feature views. Existing correlation-based methods
do not guarantee positive correlations of the selected features and often need a
pre-feature selection step to reduce redundant features on each feature view. The
new GNCCA approach attempts to overcome these issues by incorporating (1)
a nonnegativity constraint that guarantees positive correlations in the reduced
representation and (2) a group-sparsity constraint that allows for simultaneous
between- and within- view feature selection. In particular, GNCCA is designed
to emphasize correlations between feature views and class labels such that the
selected features guarantee better class separability. In this work, GNCCA was
evaluated on three prostate cancer (CaP) prognosis tasks: (i) identifying 40 CaP
patients with and without 5-year biochemical recurrence following radical prosta-
tectomy by fusing quantitative features extracted from digitized pathology and
proteomics, (ii) predicting in vivo prostate cancer grade for 16 CaP patients by
fusing T2w and DCE MRI, and (iii) localizing CaP/benign regions on MR spec-
troscopy and MRI for 36 patients. For the three tasks, GNCCA identifies a feature
subset comprising 2%, 1% and 22%, respectively, of the original extracted fea-
tures. These selected features achieve improved or comparable results compared
to using all features with the same Support Vector Machine (SVM) classifier.
In addition, GNCCA consistently outperforms 5 state-of-the-art feature selection
methods across all three datasets.

1 Introduction

Availability of multiple data streams presents an opportunity to fuse and combine
multimodal biomarkers, for potentially improving performance of predictors of disease
diagnosis and prognosis. Canonical correlation analysis (CCA) [1] addresses this mul-
timodal fusion task by attempting to maximize the correlations of the multiple data
sources. Supervised multi-view CCA (SMVCCA) [2] combines the principle of CCA
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and linear discriminant analysis (LDA), to find a subspace that maximizes the correla-
tions of multi-view signals and ensures discriminability of provided class labels. Despite
its advantages, SMVCCA has some key limitations. First, the CCA components can be
negatively correlated, which is less interpretable in practice and hurts the positive de-
pendency between data and their class labels. Secondly, a pre-feature selection step is
required in order to reduce redundant features [2]. Thirdly, SMVCCA emphasizes the
correlations of all modalities, but neglects modality-specific information.

In this paper, we present Group-sparse Nonnegative supervised CCA (GNCCA),
which incorporates (1) nonnegativity and (2) group sparsity constraints to overcome the
aforementioned issues of SMVCCA. The nonnegativity is applied onto both the projec-
tion and coefficient factor matrices, thus ensuring latent components are positively cor-
related. Group sparsity allows to simultaneously perform view fusion and within-view
feature selection, thus capturing both view-shared and view-specific information. In
particular, in order to encourage the association between feature views and class labels,
GNCCA keeps the projection section of the label view non-sparse. Although sparse
nonnegative CCA has been previously proposed [3], the framework can only calculate
the projection of a single view at a time, which has no group sparsity and is difficult to
be extended for multiple views. In contrast, GNCCA is based on a more general matrix
factorization scheme, which can update all view projections simultaneously.

By ranking the original features based on their values in the projected subspaces [4],
GNCCA can be easily used as a multi-modal feature selector, providing an efficient
way to interpret the importance of each of the original features for feature-based clas-
sification tasks. Unlike the existing feature selection tools, which either neglect view
information [4–7] or address only class separability with group lasso [8], GNCCA
considers both view association and the discriminability of the selected features.

In this work, we compared GNCCA with 5 related feature selection schemes on
three prostate cancer (CaP) prognosis tasks: (i) identifying 40 CaP patients with and
without 5-year biochemical recurrence following radical prostatectomy by fusing quan-
titative features extracted from digitized pathology and proteomics, (ii) predicting in
vivo prostate cancer grade for 16 CaP patients by fusing T2w and DCE MRI, and (iii)
localizing CaP/benign regions on MR spectroscopy and MRI for 36 patients.

2 Related Work

In this section we first describe supervised multi-view CCA (SMVCCA) and then dis-
cuss previous work in sparse nonnegative CCA.

Supervised Multi-View Canonical Correlation Analysis (SMVCCA). Provided
n data samples X from K feature views, multi-view CCA [1] seeks a set of linear
transformations {W1,W2, ...,WK} such that the sum of the correlations of every two
views are maximized. In order to ensure class separability, supervised multi-view CCA
(SMVCCA) [2] was proposed to simultaneously maximize the correlations of feature
views and the correlations between X and its class labels Y, which yields:

arg max
Wx,Wy

trace(WT
xCWx) + 2trace(WT

xXYTW(y)) (1)

s.t. WTCdxyW = I, WT
(1)C

(11)
dxy

W(1) = . . . = WT
(K)C

(KK)
dxy

W(K) = WT
(y)YYTW(y),
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where W = [WT
(1), · · · ,WT

(K) ,WT
(y)]

T , I is an identity matrix, C is the covariance

matrix of the K views of X, Cdxy is the block-diagonal section of C, and C
(jj)
dxy

is the

jth diagonal block of Cdxy [2].
Sparse Nonnegative CCA. Sparse nonnegative CCA, which was first proposed

in [3], takes the form:

max
w1,w2

wT
1 C12w2, (2)

s.t. ‖w1‖2 ≤ 1, ‖w2‖2 ≤ 1, P (w1) ≤ c1, P (w2) ≤ c2, w1 � 0, w2 � 0,

where w1 and w2 are the two pursued canonical projections; the constraints w1 �
0, w2 � 0 enforces that each element in w1 and w2 must be nonnegative. The
constraints ‖w1‖2 ≤ 1, ‖w2‖2 ≤ 1 are the convex relaxations of the equality con-
straints ‖w1‖2 = 1, ‖w2‖2 = 1, which normalize the projections. P is a convex
sparsity-inducing penalty with c1 and c2 being two sparsity controllers. Optimization
with respect to w1 and w2 involves iteratively fixing one and solves the other.

3 Group-sparse Nonnegative supervised CCA (GNCCA)

GNCCA combines the benefits of SMVCCA and sparse nonnegative CCA by introduc-
ing a new group-sparse penalty, relaxing the normalization constraint, and, in particular,
encouraging the relevance between features and class labels.

Following the notations in Eq. (1), let Z = [XT YT ]T denote the stacking of the n
K-View data samples X and their labels Y. Correspondingly, let Cxy denote the stack-
ing of the covariance matrix C and YYT . In order to make GNCCA solvable after
integrating group sparsity, the objective of SMVCCA, trace(WTCxyW), is equiv-
alently transformed to its Frobenius-Norm: ‖Z −WH‖2F , where H is the coefficient
matrix, and W is the basis matrix. Based on this reformulation, GNCCA takes the form:

min
1

2
‖Z−WH‖2F + α‖H‖2F + β

K∑
k=1

‖W(k)‖1,∞, (3)

s.t. ∀‖w(k)
i ‖2 ≤ 1− β, k = 1, · · · ,K; i = 1, · · · , r;

∀‖w(y)
i ‖2 = 1− β, i = 1, · · · , r;

H ≥ 0, W ≥ 0,

where W ∈ Rm×r, H ∈ Rr×n, parameters α, β control the relative influence of
each penalty term, K is the number of feature views, r is the dimension of reduced
representation, r � m, and ‖‖1,∞ refers to �1,∞-norm. The nonnegative constraints
H ≥ 0, W ≥ 0 ensure that both the canonical correlations of training and testing data
are positive. The penalty ‖H‖2F is to avoid an arbitrarily large H.

The uniqueness of GNCCA lies in two aspects. First is the group-sparsity penalty on
theK-View basis W(1:K):

∑K
k=1 ‖W(k)‖1,∞. Each �1,∞-norm is defined by: ‖W(k)‖1,∞

=
∑r

i=1 ‖w
(k)
i ‖∞ = ‖w(k)

1 ‖∞ + · · · ‖w(k)
r ‖∞, which is the sum of vector �∞-norms

of its columns. Such �1,∞-norm is used to promote as many zero columns as possible
in W(1), · · ·W(K), which indicates that only the correlations of the non-zero feature
views are maximized. In this way, GNCCA captures both the sharing among modalities
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and the uniqueness of each modality. ‖w(k)
i ‖2 ≤ 1−β is to ensure that the correlations

are normalized. In particular, we change the relaxation in Eq. (2), ∀‖w(k)
i ‖2 ≤ 1, to

be ∀‖w(k)
i ‖2 ≤ 1 − β. This is because the �1,∞ penalty is related to the constraints

∀‖w(k)
i ‖2 ≤ 1. The insight is that for sparse features, the �2-norm of these features

should be smaller than the norms of dense features.
Secondly, we keep the normalization for the label-view basis: ∀‖w(y)

i ‖2 = 1 − β,
which ensures that the selected features are closely correlated with the class labels.

Problem (3) is optimized by adapting the efficient vector-block coordinate descent
(BCD) method [9], which updates one column of a factor matrix at each step while fix-
ing all other values. The optimization randomly initializes W and H, and then updates
each vector of H, W(1:K) and W(y) in three steps, until either the objective function is
below a preset threshold or the maximum number of iterations has been reached.

Step 1: Fixing W, update each row vector hi· ∈ R
1×n, i = 1, · · · , r as

hi· ← argmin
h≥0

1

2
‖Ri −wih‖2F + α‖h‖22, (4)

where Ri = Z −
∑r

j=1,j �=i wjhj·. This subproblem is solved in a closed form: hi· ←[
wT

i Ri

2α+‖wi‖2

]
+

, where [ ]+ denote the element-wise projection to nonnegative numbers.

Step 2: Fixing H and W(y), update each column vector w(k)
i , k = 1, · · · ,K as

w
(k)
i ← arg min

w≥0,‖w‖2≤1−β

1

2
‖R(k)

i −w(k)hi·‖2F + β‖w(k)‖∞, (5)

where R
(k)
i = Z(k) −

∑r
j=1,j �=i w

(k)
j hj·. This subproblem can be efficiently solved by

first finding the solutionw(k)∗
i of the problem described in [10], then normalizingw(k)∗

i

such that ‖w(k)∗
i ‖2 ≤ 1−β, and finally updating w

(k)∗
i as w(k)∗∗

i =

[
R

(k)
i hT

i·
‖hi·‖2

]
+

−w
(k)∗
i .

Step 3: Fixing W(1:K) and H, update W(y) as

w
(y)
i ← arg min

w≥0,‖w‖2=1−β

1

2
‖R(y)

i −w(y)hi·‖2F , (6)

where R
(y)
i = Z(y)−

∑r
j=1,j �=i w

(y)
j hj·. The solution of this subproblem is to first update

w as w
(y)
i ←

[
R

(y)
i hT

i·
‖hi·‖2

]
+

, and then normalize w
(y)
i by w

(y)
i ← w

(y)
i

‖w(y)
i ‖

√
1− β.

The above optimization result of GNCCA leads to:

Z =

[
X
Y

]
≈

[
W
Wy

]
H,

which provides two approximate relationships: X ≈ WH and YT ≈ HTWT
y . The for-

mer introduces a lower feature representation H in the reduced feature space W while
the latter models how the lower representation H is regressed to class labels YT . Given
these two relationships, we rank the original jth feature according to the Variable Im-
portance in the Projections (VIP) score [4], which determines the importance of original
features based on their values in the projected subspace:

πj =

√
m

∑r
i=1 ‖wy‖i2hi·hT

i·(
wji

‖wi‖
)2∑r

i=1 ‖wy‖i2hi·hT
i·

,
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where wi
y ∈ Wy is column entry of Wy . To automatically determine the number of

selected features, we define a threshold σ: 0 < σ < 1. Only top features whose scores
are no smaller than σ×πmax will be selected, where πmax is the largest VIP score. For
simplicity, we call the GNCCA based feature selector GNCCA-VIP.

4 Experiments

4.1 Data Sets

To evaluate GNCCA-VIP, we chose three unique datasets that enabled us to address
three of the most relevant problems in the disease domain of prostate cancer (CaP), i.e.,
predict biochemical recurrence, identifying CaP grade and localizing CaP. GNCCA-
VIP is applied to select the most important ones from extracted imaging/non-imaging
features such that the selected features can be used to better address the associated task
of CaP prognosis.

We evaluate the proposed method by using D1 [2], D2 [2] and D3 [11] datasets (see
Table 1). Representative images from D1 and D2 are shown in Fig. 1. D1 contains 21
CaP patients who experienced and 19 CaP patients who did not experience biochemical
recurrence within 5 years of radical prostatectomy. For each patient, 242 histological
features and 650 proteomic profiling values are extracted. D2 contains 33 MRI slices
from 16 CaP patients. 22 slices have prostate cancer with a Gleason grade [12] of 3,
while the other 11 have a grade of 4. On each slice, 112 textural features and 38 ki-
netic features are extracted from T2w and DCE MRI, respectively. D3 contains 2901
CaP/non-CaP voxels from 36 patients that were annotated by an expert clinician. From
within each voxel, 6 MRS features and 58 MRI features are extracted.

Table 1. Summary of the benchmark data sets

Data set #Views #Features #Patients Task
D1 [2] 2 892(242+650) 40 predict biochemical recurrence
D2 [2] 2 150(112+38) 16 identify CaP grade

D3 [11] 2 64(6+58) 36 localize CaP

4.2 Experimental Settings

A Leave-M -Patients-Out cross validation scheme was used in conjunction with a linear
Support Vector Machine (SVM) classifier [13] to evaluate the feature selection per-
formance of GNCCA-VIP with the following comparative strategies: i) All-features,
ii) FisherScore [5], iii) T-test [6], iv) mRMR [7], v) PCA-VIP [4], and vi) SMVCCA-
VIP [2]. The parameter c of SVM is set to be c = 1. The critical parameters of GNCCA,
including β, r and σ, are determined via Leave-1-Patient-out cross validation. The con-
troller of ‖H‖2F , α, is fixed at 0.1. The number of patients left out, M , varies according
to the number of total patients in each dataset.

Each experiment was repeated 50 times, and the average classification accuracy as
well as variations were reported. All the experiments were conducted within a Matlab
environment on a 64-bit Linux machine with 4-core CPU and 4G memory.
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Fig. 1. D1 histology dataset: (a) textural features extracted on excised gland orientations, (b)
structural features, and (c) Proteomic profiling values. D2 dataset: (d) T2w MRI, (e) DCE MRI,
and (f) Kinetic curve extracted from DCE MRI.

4.3 Experiment 1: GNCCA-VIP versus Other Feature Selection Schemes

Fig. 2 illustrates the classification results obtained with the compared feature selection
approaches in conjunction with linear SVM. Fig. 3 shows the corresponding number
of selected features with each selection approach. On D1, GNCCA-VIP achieves better
classification than All-features while selecting only 2% of the features (18 out of 892).
Although other methods (except mRMR) select fewer features, their classification re-
sults are obviously worse. On D2, GNCCA-VIP obtains the highest classification results
with only selecting an average of 2 features from 150 features. On D3, GNCCA-VIP
selects an average of 13 features (out of the 64 features) and achieves the same classifi-
cation result as using all features.

All−features FisherScore T−test mRMR PCA−VIP SMVCCA−VIP GNCCA−VIP
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Fig. 2. Comparing the prognosis accuracies (and standard deviations (STD)) with the features
selected via All-features, FisherScore, T-test, mRMR, PCA-VIP, SMVCCA-VIP and GNCCA-
VIP on the three dataset. The same linear SVM is used as the classifier here. The proposed
GNCCA-VIP approach achieves highest accuracies (with lowest STDs) in all the prognosis tasks.

The results also reveal that GNCCA-VIP is likely to select a comparable number of
features from each modality. For example, on D3, GNCCA-VIP is most likely to select
all 6 MRS features and then select 6 or 7 MRI features that are related to the 6 MRS
features. By contrast, the other feature selection methods are likely to only select MRI
features, which is clearly a bias towards the dominant MRI features. All these results
demonstrate the ability of GNCCA-VIP in identifying features that are discriminative
of provided class labels and leads to better view association.
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Fig. 3. The average number of features (STD) adaptively selected via FisherScore, T-test, mRMR,
PCA-VIP, SMVCCA-VIP and GNCCA-VIP on achieving the reported prognosis accuracies in
Fig. 2. Note that at each time mRMR selects the same number of features on D1 and D2.

4.4 Experiment 2: Parameter Sensitivity of GNCCA-VIP

Fig. 4 shows the sensitivity of GNCCA-VIP to four critical parameters that must be
manually tuned: i) the group-sparsity controller β in Eq. (3), ii) the intrinsic dimension-
ality r in Eq. (3), iii) the threshold σ that controls the number of selected features, and
iv) M , the number of patients left out. The D1 dataset is used for this experiment. As
we can see, GNCCA-VIP is relatively insensitive to β, r and σ. As M increases, indi-
cating that more patients are being used as testing samples and fewer subjects are being
retained for training purposes, all the classification results gradually degrade. However,
GNCCA-VIP consistently leads to favourable classification result compared to using
all features.
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Fig. 4. Testing the influence of parameters β , r , σ and M . (a) varying β from 0.1 to 0.9 by
fixing r = 1, σ = 0.9,M = 1. (b) varying r from 1 to 9 by fixing β = 0.7, σ = 0.9,M = 5.
(c) varying σ from 0.1 to 0.9 by fixing β = 0.7, r = 2,M = 1. (d) varying M from 1 to 9 by
fixing r = 1, σ = 0.7, β = 0.9. Note that the D1 dataset is used for this experiment.

5 Concluding Remarks

This paper presents GNCCA-VIP, a novel method for multimodal feature selection that
incorporates nonnegativity and group-sparse constraints into supervised CCA. The non-
negativity ensures that latent components are always positively correlated. Group spar-
sity incorporates strengths from both between- and within- view sparsity, thus allowing
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for simultaneous view association and single-view feature selection. In our experiments,
the features selected via GNCCA-VIP result in improved classification performance in
CaP prognosis prediction compared to using either the entire feature set or using other
state-of-the-art feature selection schemes. Hence, this approach may be a better choice
in the context of combining multi-scale, multi-modal data.
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Abstract. In this work, we formulate a clustering-induced multi-task learning
method for feature selection in Alzheimer’s Disease (AD) or Mild Cognitive
Impairment (MCI) diagnosis. Unlike the previous methods that often assumed a
unimodal data distribution, we take into account the underlying multipeak1 distri-
bution of classes. The rationale for our approach is that it is likely for
neuroimaging data to have multiple peaks or modes in distribution due to the
inter-subject variability. In this regard, we use a clustering method to discover the
multipeak distributional characteristics and define subclasses based on the clus-
tering results, in which each cluster covers a peak. We then encode the respective
subclasses, i.e., clusters, with their unique codes by imposing the subclasses of
the same original class close to each other and those of different original classes
distinct from each other. We finally formulate a multi-task learning problem in an
�2,1-penalized regression framework by taking the codes as new label vectors of
our training samples, through which we select features for classification. In our
experimental results on the ADNI dataset, we validated the effectiveness of the
proposed method by achieving the maximal classification accuracies of 95.18%
(AD/Normal Control: NC), 79.52% (MCI/NC), and 72.02% (MCI converter/MCI
non-converter), outperforming the competing single-task learning method.

1 Introduction

From a computational modeling perspective, while the feature dimension of neuroimag-
ing data is high in nature, we have a very limited number of observations/samples avail-
able. This so-called “small-n-large-p” problem has been of a great challenge in the field
to build a robust model that can correctly identify a clinical label of a subject, e.g., AD,
MCI, Normal Control (NC) [10]. For this reason, reducing the feature dimensionality,
by which we can mitigate the overfitting problem and improve a model’s generalizabil-
ity, has been considered as a prevalent step in building a computer-aided AD diagnosis
system as well as neuroimaging analysis [6]. On the other hand, pathologically, since
the disease-related atrophy or hypo-metabolism could happen in the part of a Region
Of Interest (ROI), or cover small regions of multiple ROIs, it is difficult to predefine

1 Even though the term of “multimodal distribution” is generally used in the literature, in order
to avoid the confusion with the “multimodal” neuroimaging, we use the term of “multipeak
distribution” throughout the paper.

P. Golland et al. (Eds.): MICCAI 2014, Part III, LNCS 8675, pp. 393–400, 2014.
c© Springer International Publishing Switzerland 2014
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ROIs, and thus important to consider the whole brain features and then select the most
informative ones for better diagnosis.

The main limitation of the previous methods of Principal Component Analysis (PCA)
and Linear Discriminant Analysis (LDA), and an embedded method such as �1-penalized
regression model is that they consider a single mapping or a single weight coefficient
vector in reducing the dimensionality. But, if the underlying data distribution is not
unimodal, e.g., mixture of Gaussians, then these methods would fail to find the proper
mapping or weighting functions, and thus result in performance degradation. In this re-
gard, Zhu and Martinez proposed a Subclass Discriminant Analysis (SDA) [12] that first
clustered samples of each class and then reformulated the conventional LDA by regard-
ing clusters as subclasses. Recently, Liao et al. applied the SDA method to segment
prostate MR images and showed the effectiveness of the subclass-based approach [5].

In this paper, we propose a novel method of feature selection for AD/MCI diagno-
sis by integrating the embedded method with the subclass-based approach. The mo-
tivation of clustering samples per class is the potential heterogeneity within a group,
which may result from (1) a wrong clinical diagnosis; (2) different sub-types in AD
(e.g., amnestic/non-amnestic); (3) conversion of MCI non-converter or NC to AD af-
ter the follow-up time. Specifically, we first divide each class into multiple subclasses
by means of clustering, with which we can approximate the inherent multipeak data
distribution of a class. Note that we regard each cluster as a subclass by following Zhu
and Martinez’s work [12]. Based on the clustering results, we encode the respective sub-
classes with their unique codes, for which we impose the subclasses of the same original
class close to each other and those of different original classes distinct from each other.
By setting the codes as new labels of our training samples, we finally formulate a multi-
task learning problem in an �2,1-penalized regression framework that takes into account
the multipeak data distributions, and thus help enhance the diagnostic performances.

2 Materials and Image Processing

We use the ADNI dataset publicly available on the web2. Specifically, we consider only
the baseline Magnetic Resonance Imaging (MRI) and 18-Fluoro-DeoxyGlucose (FDG)
Positron Emission Tomography (PET) data acquired from 51 AD, 99 MCI, and 52 NC
subjects. For the MCI subjects, they were further clinically subdivided into 43 MCI
Converters (MCI-C) and 56 MCI Non-Converters (MCI-NC), who progressed and did
not progress to AD in 18 months, respectively.

The MR images were preprocessed by applying the prevalent procedures of Anterior
Commissure (AC)-Posterior Commissure (PC) correction, skull-stripping, and cerebel-
lum removal. Specifically, we used MIPAV software3 for AC-PC correction, resampled
images to 256×256×256, and applied N3 algorithm [8] for intensity inhomogeneity
correction. Then, structural MR images were segmented into three tissue types of Gray
Matter (GM), White Matter (WM) and CSF with FAST in FSL package4. We finally
parcellated them into 93 ROIs by warping Kabani et al.’s atlas [4] to each subject’s

2 Available at ‘http://www.loni.ucla.edu/ADNI’
3 Available at ‘http://mipav.cit.nih.gov/clickwrap.php’
4 Available at ‘http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/’

http://www.loni.ucla.edu/ADNI
http://mipav.cit.nih.gov/clickwrap.php
http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/
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Fig. 1. In the response vector/matrix, the colors of blue, red, and white represent 1, -1, and 0,
respectively. In multi-task learning, each row of the response matrix represents a newly defined
sparse code for each sample by the proposed method.

brain space. Regarding FDG-PET images, they were rigidly aligned to the respective
MR images, and then applied parcellation propagated from the atlas by registration.
For each ROI, we used the GM5 tissue volume from MRI, and the mean intensity from
FDG-PET as features. Therefore, we have 93 features from an MR image and the same
dimensional features from an FDG-PET image.

3 Method

Throughout the paper, we denote matrices as boldface uppercase letters, vectors as bold-
face lowercase letters, and scalars as normal italic letters, respectively. For a matrix
X = [xij ], its i-th row and j-th column are denoted as xi and xj , respectively. We fur-
ther denote the Frobenius norm and �2,1-norm of a matrixX as ‖X‖F =

√∑
i ‖xi‖22 =√∑

j ‖xj‖22 and ‖X‖2,1 =
∑

i ‖xi‖2 =
∑

i

√∑
j x

2
ij , respectively, and the �1-norm

of a vector as ‖w‖1 =
∑

i |wi|.

3.1 Preliminaries

Let X ∈ RN×D and y ∈ RN denote, respectively, the D neuroimaging features and
clinical labels of N samples. Assuming that the clinical label can be represented by a
linear combination of the neuroimaging features, many research groups have utilized a
least square regression model with various regularization terms. In particular, despite its
simple form, the �1-penalized linear regression model has been widely and successfully
used in the literature [1, 11], as formulated as follows:

min
w

‖y −Xw‖22 + λ1‖w‖1 (1)

5 Based on the previous studies that showed the relatively high relatedness of GM compared to
WM and CSF, we use only features from GM in classification.
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where λ1 denotes a sparsity control parameter. Since this method finds a single optimal
weight coefficient vector w that regresses the target response vector y, it is classified
into a single-task learning (Fig. 1(a)) in machine learning.

If there exists additional class-related information, then we can further extend the
�1-penalized linear regression model into a more sophisticated �2,1-penalized one as
follows:

min
W

‖Y −XW‖2F + λ2‖W‖2,1 (2)

where Y = [y1, · · · ,yS ] ∈ RN×S is a target response matrix, W = [w1, · · · ,wS ] ∈
RD×S is a weight coefficient matrix, S is the number of response variables, and λ2

denotes a group sparsity control parameter. In machine learning, this framework is clas-
sified into a multi-task learning6 (Fig. 1(b)) because it needs to find a set of weight
coefficient vectors by regressing multiple response values, simultaneously.

3.2 Clustering-Induced Multi-task Learning

Because of the inter-subject variability [3, 7], it is likely for neuroimaging data to have
multiple peaks in distribution. In this paper, we argue that it is necessary to consider
the underlying multipeak data distribution in feature selection. To this end, we propose
to divide classes into subclasses and to utilize the resulting subclass information for
guiding feature selection by means of a multi-task learning.

To divide the training samples of each original class into their respective subclasses,
we exploit a clustering technique. Specifically, thanks to its simplicity and computa-
tional efficiency, especially in a high dimensional space, we use a K-means algorithm.
Note that the resulting clusters are regarded as subclasses, following Zhu and Martinez’s
work [12]. We then encode the subclasses with their unique labels, for which we use
discriminative sparse codes to enhance classification performance. Let K(+) and K(−)

denote, respectively, the number of clusters/subclasses for the original classes of ‘+’
and ‘−’. Without loss of generality, we define sparse codes for the subclasses of the
original classes of ‘+’ and ‘−’ as follows:

s
(+)
l =

[
+1 z

(+)
l 0K(−)

]
(3)

s(−)
m =

[
−1 0K(+)

z
(−)
m

]
(4)

where l ∈ {1, · · · ,K(+)}, m ∈ {1, · · · ,K(−)}, 0K(+)
and 0K(−)

denote, respectively,

zero row vectors with K(+) and K(−) elements, and z
(+)
l ∈ {0, 1}K(+) and z

(−)
m ∈

{0,−1}K(−) denote, respectively, indicator row vectors in which only the l-th/m-th
element is set to 1/-1 and the others are 0. Thus, the full code set is defined as follows:

S = {s(+)
1 , · · · , s(+)

l , · · · , s(+)
K(+)

, s
(−)
1 , · · · , s(−)

m , · · · , s(−)
K(−)

}. (5)

Fig. 2 presents a simple toy example of finding subclasses and defining the respective
sparse code vectors. It is noteworthy that in our sparse code set, we reflect the original

6 To regress each response value is considered as a task.
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(a) Data distribution of ‘+’/‘-’ classes (b) Subclasses (original class, cluster #)

Fig. 2. A toy example of finding subclasses and defining the respective sparse code vectors.
(+, 1) : s

(+)
1 =

[
+1 +1 0 0 0

]
, (+, 2) : s

(+)
2 =

[
+1 0 +1 0 0

]
, (−, 1) : s

(−)
1 =[

−1 0 0 −1 0
]
, and (−, 2) : s

(−)
2 =

[
−1 0 0 0 −1

]
.

label information to our new codes by setting the first element of the sparse codes

with their original label. Furthermore, by setting the indicator vectors {z(+)
l }K(+)

l=1 and

{z(−)
m }K(−)

m=1 to be positive and negative, respectively, the distances become close among
the subclasses of the same original class while distant among the subclasses of the
different original classes.

Using the newly defined sparse codes, we assign a new label vector yi to a training
sample xi as follows:

yi = s(yi)
γi

(6)

where yi ∈ {+,−} is the original label of the training sample xi, and γi denotes the
cluster to which the sample xi was assigned by the K-means algorithm. In this way, we
extend the original scalar labels of +1 or -1 into sparse code vectors in S.

Thanks to our new sparse codes, it becomes natural to convert a single-task learning
in Eq. (1) into a multi-task learning in Eq. (2) by replacing the original label vector y

in Eq. (1) with a matrix Y =
[
yi
]N
i=1

∈ {−1, 0, 1}N×(1+K(+)+K(−)). Therefore, we
have now (1+K(+)+K(−)) tasks. Note that the task of regressing the first column re-
sponse vector y1 corresponds to our binary classification problem between the original
classes of ‘+’ and ‘−’. Meanwhile, the tasks of regressing the remaining column vec-

tors {yi}
1+K(+)+K(−)

i=2 formulate new binary classification problems between one sub-
class and all the other subclasses. It should be noted that unlike the single-task learning
that finds a single mapping w between regressors X and the response y, the clustering-
induced multi-task learning finds multiple mappings {w1, · · · ,w(1+K(+)+K(−))}, and
thus allows us to efficiently use the underlying multipeak data distribution in feature
selection.

3.3 Feature Selection and Classifier Learning

Because of the �2,1-norm regularizer in our objective function of Eq. (2), after find-
ing the optimal solution, we have some zero row-vectors in W. In terms of the linear
regression, the corresponding features are not informative in regressing the response
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Table 1. A summary of the performances for AD/NC classification

Method Modality ACC (%) SEN (%) SPEC (%) BAC (%) AUC (%)

STL
MRI 90.45±6.08 82.67 98.33 90.50 93.55
PET 86.27±8.59 82.00 90.33 86.17 90.12

MRI+PET 92.27±5.93 90.00 94.67 92.33 94.91

CIMTL
MRI 93.27±6.33 88.33 98.33 93.33 94.19
PET 89.27±7.43 90.00 88.33 89.17 91.67

MRI+PET 95.18±6.65 94.00 96.33 95.17 96.15

values. In this regard, we finally select the features whose weight coefficient vector is
non-zero, i.e., ‖wi‖2 > 0. With the selected features, we then train a linear Support
Vector Machine (SVM) for making a diagnostic decision.

4 Experimental Results and Analysis

4.1 Experimental Setting

We considered three binary classification problems: AD/NC, MCI/NC, and MCI-C/MCI-
NC. In the classification of MCI/NC, we labeled both MCI-C and MCI-NC as MCI. Due
to the limited number of samples, we applied a 10-fold cross-validation technique in each
binary classification problem. Specifically, we randomly partitioned the samples of each
class into 10 subsets with approximately equal size without replacement. We then used
9 out of 10 subsets for training and the remaining one for testing. For performance com-
parison, we took the average of the 10 cross-validation results.

Regarding model selection, i.e., number of clusters K , sparsity control parameters
of λ1 in Eq. (1) and λ2 in Eq. (2), and the soft margin parameter C in SVM [2] , we
further split the training samples into 5 subsets for nested cross-validation. To be more
specific, we defined the spaces of the model parameters as follows: K ∈ {1, 2, 3, 4, 5},
C ∈ {2−10, . . . , 25}, λ1 ∈ {0.001, 0.005, 0.01, 0.05, 0.1, 0.15, 0.2, 0.3, 0.5}, and λ2 ∈
{0.001, 0.005, 0.01, 0.05, 0.1, 0.15, 0.2, 0.3, 0.5}.The parameters that achieved the best
classification accuracy in the inner cross-validation were finally used in testing.

To validate the effectiveness of the proposed Clustering-Induced Multi-Task Learn-
ing (CIMTL) method, we compared it with the Single-Task Learning (STL) method
that used only the original class label as the target response vector. For each set of
experiments, we used 93 MRI features and/or 93 PET features as regressors in the re-
spective least square regression models. Regarding the neuroimaging fusion of MRI and
PET [9], we constructed a long feature vector by concatenating features of the modal-
ities. It should be noted that the only difference between the proposed CIMTL method
and the competing STL method lies in the way of selecting features, i.e., single-task
learning vs. multi-task learning. We used five quantitative metrics for comparison: AC-
Curacy (ACC), SENsitivity (SEN), SPECificity (SPEC), Balanced ACcuracy (BAC),
and Area Under the receiver operating characteristic Curve (AUC).
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Table 2. A summary of the performances for MCI/NC classification

Method Modality ACC (%) SEN (%) SPEC (%) BAC (%) AUC (%)

STL
MRI 74.85±5.92 80.67 64.00 72.33 76.55
PET 69.51±10.11 74.78 59.67 67.22 73.54

MRI+PET 74.85±3.91 84.78 56.00 70.39 78.79

CIMTL
MRI 76.82±7.15 85.78 59.67 72.72 77.84
PET 74.18±7.18 81.89 59.67 70.78 72.73

MRI+PET 79.52±5.39 88.89 62.00 75.44 77.91

Table 3. A summary of the performances for MCI-C/MCI-NC classification

Method Modality ACC (%) SEN (%) SPEC (%) BAC (%) AUC (%)

STL
MRI 56.98±20.61 51.00 60.67 55.83 58.85
PET 61.58±17.79 55.00 66.00 60.50 60.63

MRI+PET 64.62±14.04 62.50 66.00 64.25 63.87

CIMTL
MRI 61.60±13.12 44.00 75.67 59.83 60.76
PET 66.73±11.32 39.00 88.00 63.50 65.57

MRI+PET 72.02±13.80 58.00 82.67 70.33 69.64

4.2 Classification Results and Discussion

We summarized the performances of the competing methods with various modalities
for AD and NC classification in Table 1. The proposed method showed the mean
ACCs of 93.27% (MRI), 89.27% (PET), and 95.18% (MRI+PET). Compared to the
STL method that showed the ACCs of 90.45% (MRI), 86.27% (PET), and 92.27%
(MRI+PET), the proposed CIMTL method improved by 2.82% (MRI), 3% (PET), and
2.91% (MRI+PET). The proposed CIMTL method achieved higher AUC values than the
STL method for all the cases. It is also remarkable that, except for the metric of SPEC
with PET, 90.33% (STL) vs. 88.33% (CIMTL), the proposed CIMTL method consis-
tently outperformed the competing STL method over all the metrics and modalities.

In the discrimination of MCI from NC, as reported in Table 2, the proposed CIMTL
method showed the ACCs of 76.82% (MRI), 74.18% (PET), and 79.52% (MRI+PET).
Meanwhile, the STL method showed the ACCs of 74.85% (MRI), 69.51% (PET),
and 74.85% (MRI+PET). Again, the proposed CIMTL method outperformed the STL
method by improving ACCs of 1.97% (MRI), 4.67% (PET), and 4.67% (MRI+PET),
respectively. We believe that the high sensitivities and the low specificities for both com-
peting methods resulted from the imbalanced data between MCI and NC. In the metrics
of BAC and AUC that somehow reflect the imbalance of the test samples, the proposed
method achieved the best BAC of 75.44% and the best AUC of 77.91% with MRI+PET.

Lastly, we conducted experiments of MCI-C and MCI-NC classification, and com-
pared the results in Table 3. The proposed CIMTL method achieved the best ACC of
72.02%, the best BAC of 70.33%, and the best AUC of 69.64% with MRI+PET. In
line with the fact that the classification between MCI-C and MCI-NC is the most im-
portant for early diagnosis and treatment, it is remarkable that compared to the STL
method, the propose method improved the ACCs by 4.62% (MRI), 5.15% (PET), and
7.4% (MRI+PET), respectively.

For interpretation of the selected features, we built a histogram of the frequency
of the selected ROIs of MRI and PET over CVs per binary classification. By setting
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the mean frequency as the threshold, features from the following ROIs were mostly
selected: subcortical regions (e.g., amygdala, hippocampus, parahippocampal gyrus)
and temporal lobules (e.g., superior/middle temporal gyrus, temporal pole).

Regarding the identified subclasses, we computed the statistics (mean±std) of
the optimal number of clusters determined in our cross-validation: 2.5±1.7/2.5±1.2
(AD/NC), 3.1±1.1/2.9±1.2 (MCI/NC), 3.4±0.8/3.8±1.3 (MCI-C/MCI-NC). Based on
these statistics, we can say that there exists heterogeneity in a group, and by reflecting
such information in feature selection, we could improve the diagnostic accuracy.

5 Conclusion

In this paper, we proposed a novel method that formulates a clustering-induced multi-
task learning by taking into account the underlying multipeak data distribution of the
original classes. In our experiments on the ADNI dataset, we proved the validity of the
proposed method and showed its significantly better performance than the competing
methods in the three binary classifications of AD/NC, MCI/NC, and MCI-C/MCI-NC.
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Abstract. In this paper, we consider the joint regression and classification in
Alzheimer’s disease diagnosis and propose a novel multi-relation regularization
method that exploits the relational information inherent in the observations and
then combines it with an �2,1-norm within a least square regression framework for
feature selection. Specifically, we use three kinds of relationships: feature-feature
relation, response-response relation, and sample-sample relation. By imposing
these three relational characteristics along with the �2,1-norm on the weight coef-
ficients, we formulate a new objective function. After feature selection based on
the optimal weight coefficients, we train two support vector regression models to
predict the clinical scores of Alzheimer’s Disease Assessment Scale-Cognitive
subscale (ADAS-Cog) and Mini-Mental State Examination (MMSE), respec-
tively, and a support vector classification model to identify the clinical label. We
conducted clinical score prediction and disease status identification jointly on the
Alzheimer’s Disease Neuroimaging Initiative dataset. The experimental results
showed that the proposed regularization method outperforms the state-of-the-art
methods, in the metrics of correlation coefficient and root mean squared error in
regression and classification accuracy, sensitivity, specificity, and area under the
receiver operating characteristic curve in classification.

Keywords: Alzheimer’s disease, feature selection, sparse coding, manifold
learning, MCI conversion.

1 Introduction

For the computer-aided Alzheimer’s Disease (AD) or Mild Cognitive Impairment
(MCI) diagnosis, the available sample size is usually small, but the feature dimen-
sion is high. For example, the sample size used in [7,21] was less than one hundred,
while the feature dimension (including both Magnetic Resonance Imaging (MRI) and
Positron Emission Tomography (PET) features) was hundreds or even thousands. The
small sample size makes it difficult to build an effective model, and the high dimension-
ality of data leads to an overfitting problem. To this end, researchers mostly predefined
the disease-related features and used such low-dimensional features in clinical label
identification or clinical score prediction.

In the meantime, recent studies have shown that the feature selection helps over-
come both problems of high dimensionality and small sample size, by removing un-
informative features [14,16,13,19,20,18]. Moreover, among various feature selection
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techniques, manifold learning has been successfully used in either regression or clas-
sification [9,13,12,17]. For example, Cho et al. adopted a manifold harmonic transfor-
mation method on the cortical thickness data and achieved a sensitivity of 63% and a
specificity of 76% on the dataset with 72 MCI Converters (MCI-C) and 131 MCI Non-
Converters (MCI-NC) [3]. While most of the previous studies focused on identifying
brain disease and estimating clinical scores separately [4], there have been also efforts
to select joint features that could be used for both tasks simultaneously. For example,
Zhang and Shen proposed a multi-task sparse feature selection method for joint disease
status identification and clinical scores prediction, and showed that such combination
can achieve better performance than performing them separately [15,21].

In line with Zhang and Shen’s work, in this paper, we consider the prediction of both
clinical scores and disease status jointly in a unified framework, as in [7,9]. However,
unlike the previous manifold-based feature selection methods that considered only the
manifold of the samples, but not manifold of either the features or the response vari-
ables, we propose a novel multi-relation regularization method. Specifically, we use
the relational information inherent in the observations and combine it with an �2,1-
norm within a least square regression framework. The rationale for the proposed multi-
relation regularization method is as follows: (1) If some features are related to each
other, then the same or similar relation is expected to be preserved between the re-
spective weight coefficients in a least square regression model. (2) Due to the algebraic
operation in least square regression, i.e., matrix multiplication, the weight coefficients
are linked to the response variables via regressors, i.e., feature vectors in our work.
Therefore, it is natural to impose the relation between a pair of weight coefficients to
be similar to the relation between the corresponding pair of target response variables.
(3) As considered in many manifold learning methods [1,6,17], if a pair of samples are
similar to each other, then their respective response values should be also similar to each
other. By imposing these three relational characteristics along with the �2,1-norm on the
weight coefficients, we formulate a new objective function. We then select features to
build classification and regression models for clinical label identification and clinical
scores (Alzheimer’s Disease Assessment Scale-Cognitive subscale: ADAS-Cog, Mini-
Mental State Examination: MMSE) prediction, respectively.

2 Method

By taking the features as regressors and the concatenation of clinical scores (e.g.,
ADAS-Cog, MMSE) and a class label as responses, we apply the proposed method to
select features that are jointly used to represent clinical scores and class labels. Based
on the selected features, we finally build clinical scores regression models and a clinical
label identification model with Support Vector Regression (SVR) and Support Vector
Classification (SVC), respectively.

Let X ∈ Rn×d and Y ∈ Rn×c denote d neuroimaging features and c clinical
response values of n subjects or samples, respectively. In this work, we assume that
the response values of clinical scores and a clinical label can be represented by a linear
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combination of the features. Then, the problems of regressing clinical scores and iden-
tifying a class label can be formulated by a least square regression model as follows:

L(W) = ‖Y −XW‖2F = ‖Y − Ŷ‖2F =

n∑
i=1

c∑
j=1

(yij − ŷij)
2 (1)

where ‖ · ‖F denotes a Frobenius norm, W ∈ Rd×c is a weight coefficient matrix,
and Ŷ = XW. While the least square regression model has been successfully used
in many fields, it is well known that the solution is generally overfitted to the training
samples in its original form. To overcome the overfitting problem and to find a more
generalized solution, a variety of its variants using different types of regularizations
have been proposed [5], which can be mathematically simplified as follows:

min
W

L(W) +R(W) (2)

whereR(W) denotes a set of regularization terms.
From a machine learning point of view, a well-defined regularization term helps find

a generalized solution to the objective function, and thus result in a better performance
for the final goal. In this paper, we devise novel regularization terms that effectively
utilize various pieces of information inherent in the observations. Note that since, in
this work, we extract features from the parcellated brain areas or Regions-Of-Interest
(ROIs), which are structurally or functionally related to each other, it is natural to as-
sume that there exist relations among features. Meanwhile, if two features are highly
related to each other, then it is reasonable to have the respective weight coefficients also
related. However, to the best of our knowledge, none of the previous regression methods
in the literature considered and guaranteed this characteristic in their solutions. To this
end, we devise a new regularization term with the claim that, if some features are related
to each other, the same or the similar relation is expected to be preserved between the
respective weight coefficients. To utilize this ‘feature-feature’ relation, we impose the
relation between columns in X to be reflected in the relation between the corresponding
rows in W, by defining the following regularization term:

R1(W) =
1

2

d∑
i,j

mij‖wi −wj‖22 (3)

where mij denotes an element in the feature similarity matrix M = [mij ] ∈ Rd×d that
encodes the relation between features in the samples. Throughout this paper, we use a
radial basis function kernel to measure the similarity between vectors.

Meanwhile, given a feature vector xi, in our joint regression and classification
framework, we use a different set of weight coefficients to regress the elements in the
response vector yi. In other words, the elements of each column in W are linked to the
elements of each column in Y via feature vectors. By taking this mathematical property
into account, we further impose the relation between column vectors in W to be similar
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to the relation between the respective target response variables (i.e., respective column
vectors) in Y, which we call as ‘response-response’ relation:

R2(W) =
1

2

c∑
i,j

gij‖wi −wj‖22 (4)

where gij denotes an element in the matrix G = [gij ] ∈ R
c×c that represents the simi-

larity between every pair of target response variables (i.e., every pair of column vectors
in Y). Due to the algebraic operation in the least square regression, i.e., matrix multi-
plication, the weight coefficients are linked to the response variables via regressors, i.e.,
feature vectors in our work. Therefore, it is meaningful to impose the relation between
a pair of weight coefficients to be similar to the relation between the respective pair of
target response variables.

We can also utilize the relational information between samples, called as ‘sample-
sample’ relation. That is, if samples are similar to each other, then their respective re-
sponse values should be also similar to each other. In this regard, we define a regular-
ization term as follows:

R3(W) =
1

2

n∑
i,j

sij‖ŷi − ŷj‖22 =
1

2

n∑
i,j

sij‖xiW − xjW‖22 (5)

where sij is an element in the matrix S = [sij ] ∈ Rn×n that measures the similarity
between every pair of samples. We should note that this kind of sample-sample relation
has been successfully used in many manifold learning methods [1,6]. We argue that the
simultaneous consideration of these newly devised regularization terms, i.e., feature-
feature relation, sample-sample relation, and response-response relation, can effectively
reflect the relational information inherent in observations in finding an optimal solution.

Regarding feature selection, we believe that due to the underlying brain mechanisms
that determine clinical scores or a clinical label, i.e., response variables, if one feature
plays a role in predicting one response variable, then it also devotes to the prediction
of the other response variables. So, we further impose to use the same features across
the tasks of clinical scores and clinical label prediction. Mathematically, this can be
formulated by a �2,1-norm on W, i.e., ‖W‖2,1.

Therefore, our final objective function is formulated as follows:

min
W

L(W) + α1R1(W) + α2R2(W) + α3R3(W) + λ‖W‖2,1 (6)

where α1, α2, α3, and λ denote control parameters of the respective regularization
terms, respectively. This objective function can be efficiently optimized using the frame-
work in [22].

It is noteworthy that unlike the previous regularization methods such as local linear
embedding [10], locality preserving projection [6], predictive space aggregated regres-
sion [2], and high-order graph matching [9] that focused on the sample similarities
by imposing nearby samples to be still nearby in the transformed space, the proposed
method utilizes richer information inherent in the observations. Thus, it is expected that
the proposed method can find a generalized solution, which can be robust to noise or
outliers.
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3 Experimental Analysis

We compared the performance of the proposed method and the state-of-the-art methods
on a subset of the ADNI dataset. Our dataset has 202 subjects including 51 AD, 52 NC,
and 99 MCI. Moreover, 99 MCI contains 43 MCI-C and 56 MCI-NC.

3.1 Image Processing and Feature Extraction

We conducted image pre-processing for MRI and PET images by the sequential appli-
cation of spatial distortion, skull-stripping, and removal of cerebellum. Then, for struc-
tural MRI images, we segmented them into three different tissues: gray matter (GM),
white matter (WM), and CSF. By warping Kabani et al. ’s atlas [8] into a subject’s MRI
image, we further dissected the GM tissue into 93 ROIs by HAMMER[11]. We then
regarded the volume of the GM tissue of each ROI as a feature. We aligned each PET
image to its corresponding MRI image, and then took the average intensity of each ROI
as a feature. Thus, we extracted 93 features from MR and PET images, respectively.

3.2 Experimental Setting

We considered three binary classification problems: AD vs. NC, MCI vs. NC, and MCI-
C vs. MCI-NC. For MCI vs. NC, both MCI-C and MCI-NC were labeled as MCI. For
each set of experiments, we used 93 MRI features or 93 PET features as regressors,
and 2 clinical scores along with 1 class label as responses in the least square regres-
sion model. We employed the metrics of Correlation Coefficient (CC) and Root Mean
Squared Error (RMSE) between the target clinical scores and the predicted ones in re-
gression, and also the metrics of classification ACCuracy (ACC), SENsitivity (SEN),
SPEcificity (SPE), and Area Under the receiver operating characteristic Curve (AUC)
in classification.

To validate the effectiveness of the proposed method, we considered rigorous exper-
imental conditions: (1) In order to show the validity of the feature selection strategy, we
performed the tasks of regression and classification without precedent feature selection,
and considered them as a baseline method. Hereafter, we use the suffix “N” to indicate
that no feature selection was involved in. For example, by MRI-N, we mean that either
the classification or regression was performed using the full MRI features. (2) One of
the main arguments in our work is to select features that can be jointly used for both
regression and classification. To this end, we compare the multi-task based method with
a single-task based method, in which the feature selection was carried out for regression
and classification independently. In the following, the suffix “S” manifests a single-task
based method. For example, MRI-S represents single-task based feature selection on
MRI features. (3) We compare with two state-of-the-art methods: High-Order Graph
Matching (HOGM) [9] and Multi-Modal Multi-Task (M3T) [15]. The former used a
sample-sample relation along with an �1-norm in an optimization of single-task learn-
ing. The latter used multi-task learning with an �2,1-norm only to select a common set
of features for the tasks of regression and classification.
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Table 1. Comparison of classification performances (%) of the competing methods

Feature Method
AD vs. NC MCI vs. NC MCI-C vs. MCI-NC

ACC SEN SPE AUC ACC SEN SPE AUC ACC SEN SPE AUC

MRI

MRI-N 89.5 82.7 86.3 95.3 68.3 92.6 39.2 82.5 60.3 15.5 92.3 68.7
MRI-S 91.2 85.9 92.5 96.7 76.7 93.3 37.6 83.7 64.5 24.9 95.8 70.6
HOGM 93.4 89.5 92.5 97.1 77.7 95.6 51.4 84.4 66.8 36.7 95.0 72.2

M3T 92.6 87.2 95.9 97.5 78.1 94.5 54.0 83.1 67.1 37.7 92.0 72.5
Proposed 93.7 88.6 97.8 97.6 79.7 94.8 56.9 84.7 71.8 48.0 92.8 81.4

PET

PET-N 86.2 83.5 84.8 94.8 69.0 95.0 30.8 77.9 62.2 21.6 93.1 71.3
PET-S 87.9 85.7 90.9 94.7 73.8 96.5 36.2 78.7 65.1 31.0 95.5 73.5
HOGM 91.7 91.1 92.8 95.6 74.7 96.5 43.2 79.3 66.6 35.5 95.5 72.4

M3T 90.9 90.5 93.1 96.4 77.2 94.5 44.3 80.5 67.0 39.1 93.2 73.1
Proposed 91.8 91.5 93.8 96.9 79.2 97.1 45.3 80.8 71.2 47.4 93.0 77.6

3.3 Classification Results

Table 1 shows the classification performances of all the competing methods. From these
results, we can draw three conclusions. First, it is important to conduct feature selection
on the high-dimensional features before training a classifier since the baseline methods
with no feature selection, i.e., MRI-N, and PET-N, reported the worst performances.
Second, it is beneficial to use joint regression and classification framework, i.e., multi-
task learning, for feature selection. As shown in Table 1, M3T and our method, which
utilized the multi-task learning, achieved better classification performances than the
single-task based method. Specifically, the proposed method showed the superiority to
the single-task based method, i.e., MRI-S and PET-S, improving the accuracies by 2.5%
(AD vs. NC), 3.0% (MCI vs. NC), and 7.3% (MCI-C vs. MCI-NC) with MRI, and by
3.9% (AD vs. NC), 10.2% (MCI vs. NC), and 9.0% (MCI-C vs. MCI-NC) with PET,
respectively. Lastly, based on the fact that the best performances over the three binary
classifications were all obtained by our method, we can say that the proposed regular-
ization terms were effective to find class-discriminative features. It is worth noting that
compared to the state-of-the-art methods, the accuracy enhancements by our method
were 5% (vs. HOGM) and 4.7% (vs. M3T) with MRI, and 4.6% (vs. HOGM) and 4.2%
(vs. M3T) with PET for MCI-C vs. MCI-NC classification, which is the most important
for early diagnosis and treatment.

3.4 Regression Results

Regarding the prediction of two clinical scores of MMSE and ADAS-Cog, we sum-
marized the results in Table 2, we can see that, similar to the classification results, the
regression performance of the methods without feature selection (MRI-N and PET-N)
was worse than any of the other methods with feature selection. Moreover, our method
consistently outperformed the competing methods for the cases of different pairs of
clinical labels.

In the regression with MRI for AD vs. NC, our method showed the best CCs of 0.669
for ADAS-Cog and 0.679 for MMSE, and the best RMSEs of 4.43 for ADAS-Cog and
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Table 2. Comparison of regression performances of the competing methods in terms of Correla-
tion Coefficient (CC) and Root Mean Square Error (RMSE)

Feature Method
AD vs. NC MCI vs. NC MCI-C vs. MCI-NC

ADAS-Cog MMSE ADAS-Cog MMSE ADAS-Cog MMSE
CC RMSE CC RMSE CC RMSE CC RMSE CC RMSE CC RMSE

MRI

MRI-N 0.587 4.96 0.520 2.02 0.329 4.48 0.309 1.90 0.420 4.10 0.441 1.51
MRI-S 0.591 4.85 0.566 1.95 0.347 4.27 0.367 1.64 0.426 4.01 0.482 1.44
HOGM 0.625 4.53 0.598 1.91 0.352 4.26 0.371 1.63 0.435 3.94 0.521 1.41

M3T 0.649 4.60 0.638 1.91 0.445 4.27 0.420 1.66 0.497 4.01 0.550 1.41
Proposed 0.669 4.43 0.679 1.79 0.472 4.23 0.500 1.62 0.589 3.83 0.603 1.40

PET

PET-N 0.597 4.86 0.514 2.04 0.333 4.34 0.331 1.70 0.382 4.08 0.452 1.50
PET-S 0.620 4.83 0.593 2.00 0.356 4.26 0.359 1.69 0.437 4.00 0.478 1.48
HOGM 0.600 4.69 0.515 1.99 0.360 4.21 0.368 1.67 0.430 4.03 0.523 1.41

M3T 0.647 4.67 0.593 1.92 0.447 4.24 0.432 1.68 0.520 3.91 0.569 1.45
Proposed 0.671 4.41 0.620 1.90 0.513 4.13 0.485 1.66 0.526 3.87 0.570 1.37

1.79 for MMSE. The next best performances in terms of CCs were obtained by M3T,
i.e., 0.649 for ADAS-Cog and 0.638 for MMSE, and those in terms of RMSEs were
obtained by HOGM, i.e., 4.53 for ADAS-Cog and 1.91 for MMSE. In the regression
with MRI for MCI vs. NC, our method also achieved the best CCs of 0.472 for ADAS-
Cog and 0.50 for MMSE, and the best RMSEs of 4.23 for ADAS-Cog and 1.62 for
MMSE. For the case of MCI-C vs. MCI-NC with MRI, the proposed method improved
the CCs by 0.092 for ADAS-Cog and 0.053 for MMSE compared to the next best CCs
of 0.497 for ADAS-Cog and 0.550 for MMSE by M3T. Note that the proposed method
with PET also reported the best CCs and RMSEs for both ADAS-Cog and MMSE over
the three regression problems, i.e., AD vs. NC, MCI vs. NC, and MCI-C vs. MCI-NC.

4 Conclusions

In this work, we proposed a novel feature selection method by devising new regular-
ization terms that consider relational information inherent in the observations for joint
regression and classification in the computer-aided AD diagnosis. From our extensive
experiments on the ADNI dataset, we found that the utilization of the devised three reg-
ularization terms, i.e., sample-sample relation, feature-feature relation, and response-
response relation, were helpful to improve the performances in the problem of joint
regression and classification, outperforming the state-of-the-art methods.
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Abstract. As minimally invasive surgery becomes increasingly popular,
the volume of recorded laparoscopic videos will increase rapidly. Invalu-
able information for teaching, assistance during difficult cases, and qual-
ity evaluation can be accessed from these videos through a video search
engine. Typically, video search engines give a list of the most relevant
videos pertaining to a keyword. However, instead of a whole video, one is
often only interested in a fraction of the video (e.g. intestine stitching in
bypass surgeries). In addition, video search requires semantic tags, yet
the large amount of data typically generated hinders the feasibility of
manual annotation. To tackle these problems, we propose a coarse-to-
fine video indexing approach that looks for the time boundaries of a task
in a laparoscopic video based on a video snippet query. We combine our
search approach with the Fisher kernel (FK) encoding and show that
similarity measures on this encoding are better suited for this problem
than traditional similarities, such as dynamic time warping (DTW). De-
spite visual challenges, such as the presence of smoke, motion blur, and
lens impurity, our approach performs very well in finding 3 tasks in 49
bypass videos, 1 task in 23 hernia videos, and also 1 cross-surgery task
between 49 bypass and 7 sleeve gastrectomy videos.

Keywords: surgical workflow analysis, laparoscopy, time boundaries,
video indexing, sliding window, Fisher kernel.

1 Introduction

Most knowledge, in the form of texts, images, and even videos, is just one key-
word and a click away thanks to search engines. Because images and videos have
a rich content that still cannot be fully extracted automatically by computers,
their retrieval is mostly possible because of the semantic tags provided by man-
ual annotation. However, with vast amounts of data, browsing the videos and
associating them with semantic tags manually becomes tedious. This is espe-
cially true for medical data, where the skilled annotators are moreover likely to
be clinicians with little time on their hands.

In this paper, we therefore propose a method that looks for the time bound-
aries of a task in a video based on a video query. We use a video snippet of the
task as query in order to eliminate the need for semantic tags. By providing the

P. Golland et al. (Eds.): MICCAI 2014, Part III, LNCS 8675, pp. 409–416, 2014.
c© Springer International Publishing Switzerland 2014



410 A.P. Twinanda, M. De Mathelin, and N. Padoy

snippet, the method automatically provides the annotation of the task in rele-
vant videos in the database. We call this problem video indexing and focus in this
work on laparoscopic videos. Such videos contain invaluable information about
the execution of surgeries in various clinical configurations. By implementing this
method, fellow surgeons can observe different techniques in performing a specific
surgical task. Additionally, such a method can provide boundary candidates in
order to automate or simplify semantic tag annotation. Processing laparoscopic
videos is, however, not a trivial problem due to atypical visual challenges, such
as the presence of smoke, specular reflection, motion blur, and lens impurity.

In the domain of surgical video processing, one of the most explored topics is
surgical phase recognition [1,2,3]. For instance, Lalys et al. [1] presented a frame-
work to segment high-level surgical phases from 20 videos of cataract surgeries
based on visual features; Padoy et al. [2] proposed a method that uses the signals
from the surgical tool to model and recognize the surgical workflow of 16 chole-
cystectomies; and Blum et al. [3] combined both visual features and surgical tool
signals to train a classification model for segmenting 7 cholecystectomy videos.
However, all of these previous works depended on a model that was trained on
videos whose phases had been previously fully annotated by a human annotator.
Moreover, the model required training from complete workflows, which can be
an issue when the workflow is not sequential or when the videos are incomplete.
In contrast, our work aims to perform the video indexing in an unsupervised
manner using a single video query.

Our work is closely related to video sequence matching, which is the process
of finding similarities between two video sequences. Typically, such a method is
performed to find videos that are relevant to the query video [4], but not to find
the time boundaries of a particular task in the video. Other related methods, such
as [5], focus on action recognition and work in a supervised environment using
datasets that usually contain short actions. One of the closest works to ours is [6]
where Chu et. al proposed the temporal commonality discoveries (TCD) method.
It is an unsupervised approach to find the time boundaries of the commonalities
between two sequences using a branch and bound (B&B) optimization with
histogram encoding and l1/χ

2 bounding distance. We observed that, despite the
optimization, the B&B still carries out too many evaluations, thus taking a long
time to find the task boundaries for one video. Moreover, the global optimality
comes at the cost of a suitable similarity measure, namely TCD enforces the use
of histogram encoding. In contrast, we are particularly interested in the Fisher
kernel (FK) encoding. The FK has become popular since Perronnin et. al. [7]
showed that it can be understood as an extension of the bag-of-words (BOW)
approach (i.e. histogram encoding). It is a generic framework that combines the
benefits of generative and discriminative approaches. As presented in a recent
work [8], applying FK on frame-based features is also superior to BOW due to
its ability to model the variation in time in the videos.

In this work, we propose a novel coarse-to-fine temporal search to find the time
boundaries using FK-based similarity. The coarse-to-fine search speeds up time
boundaries discovery compared to the traditional sliding window approaches.
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While coarse-to-fine approaches are popular in image processing, they have not
been investigated as much in such time-series data because the considered tasks
are usually already short. Furthermore, unlike TCD, our method accepts any
types of feature encoding and similarity measures. We will show in particular
that FK-based similarity largely outperforms traditional similarities between
time-series, such as dynamic time warping (DTW) [9]. We will also show that the
combination of FK with coarse-to-fine temporal search gives higher performance
compared to the globally optimal TCD. We carried out extensive experiments to
retrieve the time boundaries of 3 tasks (i.e. intestine stapling, intestine stitching,
and fat stitching) from 49 bypass videos, and one task (i.e. net placing) from
23 hernia videos. We also carried out a cross-surgery retrieval of the intestine
stitching from the bypass videos to 7 sleeve gastrectomy videos.

In summary, the contributions of this paper are three-fold: (1) we tackle the
problem of automatic video indexing which, to the best of our knowledge, has
not previously been addressed in the medical community; it is also very differ-
ent from the shot detection and action recognition problem from the traditional
computer vision community; (2) we propose a coarse-to-fine temporal search
combined with Fisher-kernel based similarity and show its suitability for laparo-
scopic video data; and (3) we present an extensive retrieval comparison with
multiple techniques and similarity measures.

2 Methodology

2.1 Frame Rejection

This step is carried out to reject irrelevant frames (e.g. blank or static images,
arbitrary views outside the patient’s body) from the laparoscopic videos before
the feature extraction process. Supervised methods, such as [10], have been pre-
sented to tackle this problem. However, to keep the whole process completely
unsupervised, we propose a simple RGB histogram thresholding. Through obser-
vation, it is apparent that the red color channel is particularly more dominant
compared to the other color channels in relevant frames (i.e. views inside the
patient’s body). A scalar value is computed to represent each color channel his-
togram in such a way that if the red scalar value is in a certain range and
superior to the blue and green scalars, the frame will be accepted and then pro-
cessed. It was shown in [11] that this approach significantly reduced the number
of frames to be processed and improved the accuracy of surgery classification for
laparoscopic videos.

2.2 Feature Representation

In the field of video processing, many visual-based features have been explored,
such as color information, image gradients, optical flow and spatio-temporal
interest points (STIP) [12]. However, based on preliminary experiments, the color
histogram is not a discriminative feature since our frames look very similar to one
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another. Also, optical flow fails due to the rapid movement of the laparoscopic
camera, and the STIP was observed to be very sensitive to specular reflection.
Thus, we decided to extract histogram of gradients (HOG) [13] since it acts as
a global descriptor for the video frames.

We encode the features using two approaches: bag-of-words (BOW) and fisher
kernel (FK). We use the typical BOW approach using k-means clustering to build
the vocabulary with a hard data-to-cluster assignment. For the fisher kernel, we
represent the vocabulary as a Gaussian Mixture Model (GMM) with K Gaus-
sians. As repeatedly suggested in many works such as [8], we also tried to reduce
the dimensionality of HOG using principal component analysis (PCA) for the
FK representation. However, we found during preliminary experiments that the
dimensionality reduction did not bring any improvements to the overall precision
and recall, so we keep the original dimensions of the features.

2.3 Video Sequence Similarity

Given two video sequences A =
[
a1 . . . anA

]
and B =

[
b1 . . . bnB

]
where nA

is the number of frames in video A (respectively nB and B) and ai is the vector
representation of the i-th frame in videoA (respectively bi andB), the similarity
between the two is defined as either S (A,B) = DTW (A,B) or S (A,B) =
De

d (A,B). DTW (A,B) computes the similarity between A and B using DTW,
while De

d (A,B) computes the similarity using encoding e ∈ {BOW, FK} and
distance d. In this paper, we consider vector distances (i.e. l1 and l2), histogram
distance (i.e. χ2), and also mutual information (MI).

2.4 Boundary Search

We represent our query and target videos respectively as matrices Q =[
q1 . . . qm

]
and R =

[
r1 . . . rn

]
where m < n. The problem of video indexing

is to find the best time interval [b, e] ⊆ [1, n] in the target video, such that

(b∗, e∗) = argmin
b,e

S (Q [1,m] ,R [b, e]) , (1)

whereR [b, e] =
[
rb . . . re

]
denotes the subsequence of R that begins from frame

b and ends in frame e, hence Q [1,m] = Q.
We initialize our algorithm by temporally partitioning the target video R into

L overlapping segments with the size of m. The amount of overlapping depends
on the predefined time step s = αm, where 0 < α < 1 to ensure overlapping. For
a target video R, this partitioning then defines Ri = R[bi, ei] where i ∈ {1, L},
b1 = 1, ei = bi +m− 1, and bj = bj−1 + s, j ∈ {2, L}.

We find the most similar segment to the query by computing the similarity:

i∗ = argmin
i

S (Q,Ri) (2)

Taking Ri∗ as our initial segment, we find the time interval by refining the
boundary through boundary shrinking and expansion. This is carried out since



Fisher Kernel Based Task Boundary Retrieval 413

the size of the queried task in video R is not necessarily equal to the query
size m. By considering a step σ, we compute the distance of Q to four possi-
ble segments:R [bi∗ + σ, ei∗ ], R [bi∗ − σ, ei∗ ], R [bi∗ , ei∗ + σ], and R [bi∗ , ei∗ − σ].
Next, we choose the best segment among the four possible ones. This process is
repeated until the similarities between the query and all four possible segments
are less than between the query and the initial segment.

2.5 Coarse-to-Fine Approach

In order to improve the computational time, we propose to use a coarse-to-fine
approach. Both query and target videos are downsampled N times by a factor of
2. The search algorithm begins at the lowest resolution. Next, we limit our search
on the higher resolutions based on the result (i.e. the time boundaries) from
the search at lower resolution. This process is repeatedly done until the highest
resolution is reached. This way, the total number of comparisons is reduced since
we get the rough estimation of the time boundaries from the lower resolutions.

3 Experimental Results

We conducted experiments to retrieve 4 tasks: intestine stitching (IStit), intestine
stapling (IStap), fat stitching (FStit) and net placing (NP). Our dataset consists
of 79 surgeries performed by 8 surgeons. The details of the tasks and surgeries are
shown in Table 1-b. There are only 45 videos of 49 videos for the task IStap due
to incomplete recordings. For quantitative analysis, we manually annotated the
time boundaries of the tasks in all videos. To evaluate the method, we performed
random testing for bypass and hernia surgeries by searching 4 random queries
within the remaining videos. We repeated this process 5 times. The underlying
assumption was that the task was present in every target video. Methods, such
as in [4], that retrieve relevant videos can be used to determine whether the task
is present in the target videos. This is however not the focus of this work.

In Table 1-c, the full experimental setup is shown and the explanation of the
naming conventions is given in Table 1-a. We trained BOW and GMM dictionar-
ies with respectively 500 and 50 words. We set α = 0.1 to get high overlapping
segments and a large refinement step σ = 5. For TCD configuration, we used the
χ2 bounding function since it was shown in [6] to provide the best result. This
was also confirmed in our preliminary experiments. We downsampled the videos
to 0.5 frame per second (fps) for the best performance-time trade-off. For our
method, we carried out extensive experiments to observe the effects of various
parameters. Due to limited space, we only show the most significant results.

For evaluation, we use the method proposed in [6]. Given the ground truth of

the time boundaries T̂ = [b̂, ê], the evaluation of the estimated time boundaries

T = [b, e] is done by computing precision φp = T∩T̂
T and recall φr = T∩T̂

T̂
. We

consider a boundary estimation to be correct in terms of precision if φp > 0.5,
meaning more than half of the frames in the estimated time boundaries is in the
ground true boundaries. We also apply the similar thresholding for recall.
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Table 1. Experimental setup: (a) the naming conventions for the experimental config-
urations; (b) the details of the tasks and surgeries, including number of surgeries and
the mean ± std of the task and surgery length; and (c) the configuration of experiments
complying to the conventions defined in (a), except for TCD.

Code Description

C Coarse-to-fine approach

B BOW representation

F FK representation

L Low resolution

H High resolution

R Refinement

(a)

Task Surgery #Surg.
Avg. Len. (min.)
Task Surg

IStit
Bypass 49 14± 5 111± 27

Sleeve Gast. 7 25± 8 109± 16

FStit Bypass 49 6± 2 111± 27

IStap Bypass 45 7± 5 114± 26

NP Hernia 23 4± 2 50± 25

(b)

ID FPS N

TCD 0.5 -

CBH-DTW 2.5 3

CBH-MI 2.5 3

CBH-χ2 2.5 3

FL-l1 0.5 1

FL-l2 0.5 1

FH-l1 2.5 1

FH-l2 2.5 1

CFH-l1 2.5 3

CFH-l2 2.5 3

CFHR-l1 2.5 3

CFHR-l2 2.5 3

(c)

Comparison with TCD. From multiple search configurations shown in
Table 1-c, we show in Table 2-a the best configurations (with the highest
F = 2 · rec·prec

rec+prec) of our video indexing method compared to TCD. Compared to
TCD, our method is significantly faster since it does less evaluations. Note that
the best results are all obtained from the coarse-to-fine configurations. Thus,
not only does the coarse-to-fine approach decrease the number of evaluations,
but it also improves the performance of the method. This is possible because
less noise is present in lower resolution, giving better initialization at the higher
resolution.

For all events, our method gives the same or higher precision compared to
TCD. The recall is only slightly decreased for IStit task and largely increased
for all the other tasks. Out of 5 task retrievals, 4 are obtained using coarse-to-fine
approaches with FK, 3 of which use the boundary refinement method.

It can be seen that the method tends to fail at retrieving IStap and NP tasks.
Compared to stitching tasks, these tasks have higher variability in terms of the
sub-task execution. However, the precision and recall are still much higher than
TCD and chance. In summary, the complete approaches that we propose, namely
CFHR-l1 and CFHR-l2, have higher average F-measure (respectively 35.29 and
35.36) over all retrievals compared to TCD (34.88).

Effect of Resolution, Feature Representation and Choice of Similar-
ity Measures. To observe the effect of various parameters, we show the com-
plete results from IStit task retrieval in Bypass videos using queries from Bypass
videos (B→B) in Table 2-b. Since our method performs really fast, we have the
possibility to increase the data resolution up to full resolution. In preliminary
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Table 2. Experimental results. (a) Comparison of precision, recall, and mean ± std of
execution time between TCD and our boundary search method. Q and T respectively
stands for query and target. We use the first letter of the surgery to ID them, thus B,
S, and H respectively represents bypass, sleeve gastrectomy, and hernia. For instance,
B→S means looking for a task based on video query from bypass surgery in sleeve
gastrectomy videos. (b) Precision and recall comparison of our method for IStit B→B.

Task Q→T
TCD Best of ours

Prec (%) Rec (%) Time (s) ID Prec (%) Rec (%) Time (s)

IStit
B→B 70.91 78.26 33± 21 CFHR-l1 78.57 77.85 4.4 ± 3.3
B→S 58.57 22.14 45± 24 CFHR-l1 59.28 19.28 1.9 ± 0.5

FStit B→B 37.44 38.19 21± 12 CBH-MI 53.51 45.61 0.3 ± 0.2

IStap B→B 10.02 12.44 26± 17 CFH-l2 23.44 26 2.4 ± 1.2

NP H→H 19.47 18.52 9± 8.2 CFHR-l2 38.04 31.95 2.2 ± 1.2

(a)

Task Eval.
CBH FL FH CFH CFHR

DTW MI χ2 l1 l2 l1 l2 l1 l2 l1 l2

IStit, B→B
Prec 40.91 70.12 56.42 77.65 58.36 76.12 58.16 77.95 58.57 78.57 58.77
Recall 41.83 71.3 55.51 78.06 57.85 77.85 58.26 78.36 57.95 77.85 56.53

(b)

results, we observed that 2.5 fps gave the best performance-cost trade-off. Having
data with higher resolution means that the we can retrieve the boundary more
precisely. However, searching directly on the high resolution may cause wrong
initialization due to the presence of noise. Thus, most of the time, the improve-
ment from using higher resolution is obtained after the coarse-to-fine approach.
This can be observed from the FL, FH and CFH configurations.

As expected, the FK representation performs better in most cases than the
BOW approach, which confirms the conclusions of previous works [14,8]. In
terms of similarity measures, our FK-based approach significantly outperforms
the usual similarity on sequence, DTW, by over 35%. However, it can be noticed
that the FK is sensitive to the distance function (i.e. l1- and l2-distance).

4 Conclusions

In this paper, we present a video indexing method for a laparoscopic video
database using Fisher kernel based similarities. This method performs signifi-
cantly better than DTW, the standard similarity measure between sequences.
In addition, our method is more flexible than TCD as it can be adapted to any
feature representation and similarity measure. We also compared our method
with the globally optimal TCD and showed large improvements in most cases by
using more suited similarities. Furthermore, we demonstrated that in addition
to decreasing the number of evaluations, the coarse-to-fine approach does not
impede the method’s performance. In future work, we plan to try our approach
on bigger datasets containing a greater number of tasks and explore more pos-
sibilities for cross-surgery retrievals. We also plan to further investigate the use
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of other distance functions for FK in order to find a function that will work
uniformly well in all cases.
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Abstract. We propose a novel framework for exploring patterns of
respiratory pathophysiology from paired breath-hold CT scans. This is de-
signed to enable analysis of large datasets with the view of determining re-
lationships between functional measures, disease state and the likelihood
of disease progression. The framework is based on the local distribution of
image features at various anatomical scales. Principal Component Analy-
sis is used to visualise and quantify the multi-scale anatomical variation of
features, whilst the distribution subspace can be exploited within a classi-
fication setting. This framework enables hypothesis testing related to the
different phenotypes implicated in Chronic Obstructive Pulmonary Dis-
ease (COPD). We illustrate the potential of our method on initial results
from a subset of patients from the COPDGene study, who are exacerba-
tion susceptible and non-susceptible.

1 Introduction

Exacerbations of Chronic Obstructive Pulmonary Disease (COPD) are defined
as a sudden worsening of symptoms, which accelerate the decline in lung function
leading to an increased risk of mortality. Understanding their pathophysiology
is critical for predicting the patients at greatest risk of hospitalisation. Recent
work suggests that the frequency of exacerbations is a distinct phenotype [1].
This is described as an exacerbation susceptible phenotype, where a patient may
exhibit distinct physiological patterns resulting in an intrinsic susceptibility.

Recent studies have suggested a potential link between changes in lung
structure, function and exacerbations. A correlation between the progression
of emphysema and the presence of exacerbations has been observed [2] whilst
pulmonary arterial enlargement has been seen to be a related factor [3]. Further,
regional ventilation defects have been observed prior to acute exacerbations [4].
These suggest a dependence between abnormalities in lung structure, the distri-
bution of disease and exacerbations, which motivates our algorithm.

There is a growing interest in employing machine learning for the study and
diagnosis of COPD. Classifiers are frequently trained with scalar values rep-
resenting the whole lung [5] or individual lobes [6]. This ignores the spatial
distribution of disease; which may be a signature of various COPD phenotypes.
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c© Springer International Publishing Switzerland 2014



418 F.J.S. Bragman et al.

We propose a novel framework for the analysis of lung pathophysiology. We
hypothesise that the spatial distribution of disease is a discriminating factor in
the presence of pathology. Our method is based on the measurement of image
features representing the biomechanics and density of tissue, using a sliding box
window at various anatomical scales. This is to deal with the bifurcating nature
of the respiratory system. We apply it to the study of exacerbation susceptible
and non-susceptible patients. The distributions measured at multiple scales are
exploited to investigate differences between subtypes whilst classifying for the
first time, those at greatest risk of further exacerbations.

2 Method

2.1 Non-rigid Registration

The NiftyReg registration platform1 [7] is employed to find the spatial map-
ping between the lung at full inhalation (Ω∗) and end exhalation (Ω). This
is performed using a stationary velocity field, parameterised through a cubic B-
spline interpolation. The Local Normalised Cross Correlation (LNCC) drives the
registration whilst the bending energy of the velocity field is used as the regular-
isation. The registration is performed by considering only the lungs, delineated
by segmented masks. The background volume is set to 0 Hounsfield Units upon
which the masks are diluted to include a 0 HU border within the lung volume.

2.2 Feature Extraction

The transformation ϕ : Ω → Ω∗, resulting from the registration serves to map
each coordinate x ∈ Ω to x∗ ∈ Ω∗, such that the position of voxels at expiration
(x ∈ Ω) is known within the inspiratory phase (x∗ ∈ Ω∗). Biomechanical and
density-based feature sets are derived using the information embed within ϕ.

Biomechanical Feature Set. To quantify the transformation ϕ, we consider
the deformation gradient tensor F, which is defined as ∇x∗ϕ(x). We derive 3
features from F to capture the respiratory process; the Jacobian determinant
(det(F)) and the first 2 moments of the distribution of the eigenvalues of the
Lagrangian strain tensor (E). The Jacobian determinant is defined as

det(F) = det(∇x∗ϕ(x)) (1)

and measures the fractional volume change of voxels. The Lagrangian Strain
Tensor E is derived from F, by considering the Right Cauchy-Green Strain (C)

C = F�F, F = R U, F�F = U� R� R U = U�U .

We are interested in analysing the stretches captured by F. The tensor C results
from a polar decomposition of F, where the rotation component R is discarded

1 http://sourceforge.net/projects/niftyreg

http://sourceforge.net/projects/niftyreg
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by considering its orthogonal properties. The tensor C is thus rotation free,
solely containing information about the stretches U. The computation of the
Lagrangian Strain Tensor (E) follows

E =
1

2
(C− I) . (2)

We derive the principal strains (λ = {λi | i = 1, 2, 3}) via an eigen-decomposition
of E. The trace (

∑
λ), provides an overall measure of the magnitude of tissue

strain whilst the variance (Var(λ)) characterises anisotropy in the strain profile.

Density-Based Feature Set. The transformation ϕ allows us to compute
corresponding measures of voxel density (HU) at inspiration (Iins) and expiration
(Iexp). We consider the distribution of HU in Iins and Iexp and 2 scalar values;
the percentage of emphysema (%LAAins−950HU) and gas trapping (%LAAexp−
856HU). The %LAAins/exp metrics are computed as follows:

%LAAins − 950HU =

∑
x∗∈Ω∗ (Iins(x

∗) < −950)∑
x∗∈Ω∗ x∗ (3a)

and

%LAAexp − 856HU =

∑
x∗∈Ω′ ((Iexp(x) ◦ ϕ) < −856)∑

x∗∈Ω′ x∗ . (3b)

They are expressed as the percentage of voxels below −950 HU and −856 HU
within Iins and Iexp. Within our framework, all features are calculated within
local neighbourhoods across the lung, which is discussed below in Sect. 2.3.

2.3 Multi-scale Analysis of Imaging Features

Feature Distributions. We propose to sample the local variation of features
(fk) to quantify their distribution across the lung. This is performed by consider-
ing histograms (hi(fk;xj , φi)) of the local distributions of fk. Each local feature
distribution is centered at a voxel xj (j = 1 · · ·J) within a neighbourhood ω
governed by the scale φi, where i = 1 · · ·n and j is the jth sampled neighbour-
hood. Thus, distributions at increasing scales of analysis (φi) can be computed
(Fig. 1). The histograms are modelled by the first 4 statistical moments and the
median. The feature fk within ω centered at xj is defined by:

Hj (fk(xj)) = {μ(h1) ν(h1) σ(h1) γ1(h1) γ2(h1) · · ·
μ(hn) ν(hn) σ(hn) γ1(hn) γ2(hn)}

(4)

where μ is the mean, ν the median, σ the variance, γ1 the skewness and γ2 is
the kurtosis. A patient-specific matrix (Hp, p = 1 · · ·P ) is created such that

Hp =

⎡⎢⎢⎣
H1 (f1(xj)) · · · H1 (fk(xj)) %LAA1

ins/exp(xj)∀φ
...

...
...

HJ (f1(xJ )) · · · HJ (fk(xJ )) %LAAJ

ins/exp(xJ )∀φ

⎤⎥⎥⎦ . (5)
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The Jacobian determinant (det(F)), the trace (
∑

λ) and variance (Var (λ)) of
the strain eigenvalues and the voxel densities in Iins and Iexp are modelled locally
across the lung (k = 5). We incorporate the %LAA−950HU and %LAA−856HU
for all φi, leading to 27n features per xj . The number of sampled regions is
determined by the sampling frequency of xj at the finest scale (φ1).

1

Hj
(
fk =

∑
λ;xj

)
= {μ(h1) ν(h1) σ(h1) γ1(h1) γ2(h1) · · ·

μ(hn) ν(hn) σ(hn) γ1(hn) γ2(hn)}n n n 1 n

fk

h
i(
∑

λ
;
x
j
;
φ
i)

 

 

2

h1(fk; xj ; φ1)

h2(fk; xj ; φ2)

h3(fk; xj ; φ3)

Fig. 1. Illustration of the framework. 1) A feature fk (e.g.
∑

λ) at xj is sampled at
n = 3 scales, leading to 3 local histograms hi(fk;xj , φi). 2) Statistical moments and
the median of hi(fk;xj , φi) are calculated for all φi, leading to the set Hj (fk(xj)).

Statistical Analysis of Features

Hypothesis testing using Hp. Analysis of the distribution of values contained
within eachHp allows hypotheses of changes in the global nature of local features
to be made. For instance, consider the distribution of the variance of det(F)
at all xj . Each value demonstrates the local variation in volume change. The
distribution of this measure across the lung will illustrate how the local variation
is expressed, which may vary across subtypes. This facilitates a direct comparison
of patient-specific distributions across phenotypes.

Principal Component Analysis of X. We are interested in modelling the dis-
tribution of parameters across the studied population. We apply PCA on X =[
H�

1 · · · H�
P

]
. This seeks a low-dimensional projection (d << 27n) of X, where

the variance of the projected features is maximised. The entries of X are repre-
sentative of the local histogram features measured at multiple scales. PCA of X
allows one to compute the component scores within each neighbourhood defined
by xj . Thus, the computed scores can be projected to the image space to assess
their distribution across the lung. Since the component scores are linear pro-
jections of the features measured at various scales, they will capture potential
fractal properties in line with the nature of the lung anatomy. The distribution
of the principal component scores can be analysed to model patient-specific dis-
tributions by computing their respective mean and variance. Thus, phenotype-
specific distributions can be estimated to produce a clinically meaningful classi-
fier. Importantly, classification in the PCA subspace prevents overfitting as PCA
removes colinearity in the features.
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3 Experiments and Results

3.1 Clinical Data

Inhale and exhale breath-hold CT images from the COPDGene study [8] were
used. CT scans were acquired from multi-detector CT scanners, at full inspira-
tion (200mAs) and at the end of normal expiration (50 mAs) with resolutions
approximately equal to 0.66mm x 0.66mm x 0.73mm [8].

We tested our framework on P = 20 subjects with a GOLD 3 severity stage
exhibiting f = 0 (n = 10) or f ≥ 6 (n = 10) exacerbations per year. GOLD 3
patients were chosen due to their low variation in FEV1. We chose two extreme
sets (f = 0 and ≥ 6) to gauge the applicability of our framework in discriminat-
ing these phenotypes. The patient sets had a mean age of 60.2 and 67.5, a mean
FEV1%predicted of 42.1 and 40.5 and a mean FEV1/FVC ratio of 42.4 and 47.2.

3.2 Algorithm Parameters

Prior to the registration, the masks were dilated with a sphere of 3 voxel ra-
dius. An analysis of the registration parameters was performed; demonstrating
robustness in the registration to small parameter changes. The standard devia-
tion of the LNCC Gaussian kernel was set to 33 voxels, whilst the weighting of
the regularisation was 0.05% of the overall optimised cost function. The finest
control point spacing of the B-spline grid was set to 5 voxels along each axis.
After registration, the inhale lung mask was eroded by a spherical element with
a 7 voxel radius. This was performed to ignore regions prone to discontinuities
and which experience an extreme degree of motion. We performed the sampling
using a cubic box window at scales 10, 20 and 30 mm3 (n = 3), which is con-
sistent with the size of the secondary pulmonary lobule. A sampling frequency
of 10mm was used yielding approximately 7, 500 regions per lung. We ignored
regions at all scales where 50% of the voxels fell outside the lung mask.

3.3 Multi-scale Analysis of Imaging Features

We investigated feature distributions at the 3 scales using Hp. We calculated
the mean and standard deviation of each feature within Hp for all 3 scales.
This provided two patient-specific distributions of values for each feature. We
performed a two-sample t-test for each subtype mean and standard deviation
set to determine discriminating factors between both subtypes.

A significant difference in the mean of σ (det(F)) (.12 ± .01 and .21 ± .02)
at all scales of analysis was found (p < .03). The feature σ (det(F)) illustrates
the variation in local volume change. The lower variation seen by the exacerba-
tion susceptible group suggested that they exhibit a more homogeneous pattern
in their volume change. No significance was seen in the standard deviation of
σ (det(F)) (p < .20). We observed a marked difference (p < .05) in the mean
(.15±.02 and .27±.04) and standard deviation (.12±.01 and .22±.02) of σ (

∑
(λ))

at all scales. This insinuated that for the susceptible group, the anisotropy in the
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magnitude of local tissue strain and its variation throughout the lung is more ho-
mogeneous compared to the non-susceptible patients. These suggested a possible
distinction in physiological patterns, which were exploited in the classification.

Results from the PCA of matrix X corroborated the above, displaying evi-
dence of distinct feature distributions across subtypes. (Figs. 2 and 3). Figure 2
illustrates 2 patient-specific principal component distributions for each subtype.
These are characteristic of the phenotype distributions and are mostly consis-
tent across each group. As the component scores are a linear projection of the
features, Figure 2 suggests that there is a consistent physiological pattern per
subtype. This is illustrated by a variation in the heterogeneity of the scores as
observed in the analysis of Hp. This reinforces the notion of phenotype-specific
distributions and the discriminating power of the distribution of disease.
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Fig. 2. An example of the multi-scale principal component distributions for each sam-
pled neighbourhood xj for 4 patients (2 susceptible and 2 non-susceptible patients).
The first 3 principal components explain ≈ 55% of the variance of X.

As the principal component scores were computed per sampled region (xj),
we were able to couple them with their respective anatomical location (Fig. 3).
This displays varying patterns in the physiology of the lung, consistently within
and across subtypes. As the principal components aimed to fully explain the lung
macrostructure and the deformation captured within Hp, these maps display a
novel way of viewing how lung physiology differs with the COPD phenotype and
the frequency of exacerbations.

3.4 Classification of COPD exacerbation-susceptible patients

We aimed to classify exacerbation susceptible and non-susceptible patients based
on the hypothesis that global and local patterns of disease differed across sub-
types. This was shown in Fig. 2 and 3, where a rise in feature homogeneity
coincided with exacerbation susceptibility. We performed the classification on
the feature projections using the mean and the variance of the principal com-
ponent scores as features. The set explaining 90% (17/81) of the variance of X
was chosen.
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(a) PC1 (b) PC2 (c) PC3

Fig. 3. Projection of the first 3 principal components of the multi-scale PCA into the
image space. Coronal slice is at the mid-section. Top row: exacerbation susceptible
phenotype. Bottom row: exacerbation non-susceptible phenotype.

A leave-one-out cross validation (LOOCV) was employed to test the classi-
fier. LOOCV iteratively selects one patient (Hunseen) as the testing data whilst
the remaining are used for training. We assumed independence amongst each
training set during the LOOCV to calculate accuracy and precision rates. For
the classification, we projected Hunseen into the principal component space of
XP−1 and used the mean and variance of the principal component scores as fea-
tures. We used Support Vector Machines (SVM) as a classifier with a Gaussian
radial basis function kernel σ = 2.25 and a soft-margin constant C = 0.5. Our
framework has the unique ability to classify an unseen patient as either exacerba-
tion susceptible (f ≥ 6) or non-susceptible (f = 0) with a total accuracy of 75%
(Table 1). This supports the applicability of our framework towards determining
relationships between the distribution of disease with the clinical outcome.

Table 1. Classification results using Leave One-Out Cross Validation

Susceptible Non-Susceptible Total

Classification accuracy (%) 80 70 75± 7.5

4 Conclusions

We have presented a novel framework for investigating global and local patterns
of lung pathophysiology. The applicability of our framework in determining re-
lationships between functional measures and the severity of disease has been
shown, through an analysis of the exacerbation susceptible phenotype. Analysis
of the local feature distributions displayed significant differences in the nature of
lung function across subtypes. This translated to subtype-specific distributions



424 F.J.S. Bragman et al.

after dimensionality reduction, suggesting an intrinsic physiological behaviour
attributed to both sets of patients. The main limitation of our work is due to
the lack of patients analysed. We aim to include a larger population of patients to
better demonstrate the clinical applicability of our work. This will allow us to cor-
rectly evaluate the performance of our classifier, and the consistency and utility
of the derived feature distributions. Moreover, we intend to construct anatomi-
cal atlases to perform regional inter-patient statistics to investigate whether the
spatial location of disease provides a further dimension to the analysis.
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Coupé, Pierrick III-105
Courtecuisse, Hadrien II-33
Cowan, Brett R. II-513, II-546
Criminisi, Antonio I-235, II-429, II-496,

III-225
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Orlando, José Ignacio I-634
Ormiston, John II-513
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