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Abstract. In this paper a novel augmented-reality environment is pre-
sented for enhancing locomotor training. The main goal of this environ-
ment is to excite kids for walking and hence facilitate their locomotor
therapy and at the same time provide the therapist with a quantitative
framework for monitoring and evaluating the progress of the therapy.
This paper focuses on the quantitative part of our framework, which
uses a depth camera to capture the patient’s body motion. More specifi-
cally, we present a model-free graph-based segmentation algorithm that
detects the regions of the arms and legs in the depth frames. Then, we
analyze their motion patterns in real-time by extracting various features
such as the pace, length of stride, symmetry of walking pattern, and
arm-leg synchronization. Several experimental results are presented that
demonstrate the efficacy and robustness of the proposed methods.

Keywords: Augmented-Reality, Locomotor training, Spinal-cord injury,
Physical Therapy, Rehabilitation, Game, Kinect.

1 Introduction

Locomotor training is an activity based therapy that aims to promote recovery
of walking, by activating the neuromuscular system[4]. Locomotor training op-
timizes task-specific sensory input during intense stepping practice to promote
activity-dependent plasticity. While locomotor training was initially developed
for persons with spinal cord injuries, it has been recently translated to children
and can be used in general with various types of neurologic injuries [14]. In the
case of children, during locomotor training, stepping and standing often are prac-
ticed on a treadmill for over an hour causing many children to lose motivation
and become bored. As attention and focus wane, critical task-specific move-
ments, such as upright trunk posture and reciprocal arm swing, become nearly
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Fig. 1. A picture of our locomotor training environment (left), and the corresponding
depth image (right) captured by a depth sensor located on the front of the treadmill.

impossible to evoke. Most importantly, a less intense and effective training ses-
sion compromises the child’s recovery. Incorporation of interactive and engaging
video games is an innovative approach to enhance rehabilitation [6,2,5,11,13,7].
Although commercial games have demonstrated therapeutic effects when applied
to children with neurological injuries, most games do not consider the specific
impairments that are common in children with spinal cord injury and are not
designed for use during locomotor training [6,7]. Therefore, our long-term ob-
jective is to design and develop an engaging and interactive game that enhances
locomotor training for children with neurological injuries.

Our goal is to engage children to perform walking-related movements with
their arms and legs in order to play the game. To accomplish this, we use a depth
camera to detect and track movement in the unique locomotor training treadmill
environment shown in Fig. 1 left. In leterature, there are several examples of
methods or applications related to body tracking using depth cameras. A game-
based rehabilitation system was presented in [9] using body tracking from RGB-
D. Other applications include human detection [15], model-based 3D tracking of
hand articulations [10], human pose recognition and tracking of body parts [12],
and real-time 3D reconstruction of the articulated human body [3]. A detailed
review of RGB-D applications using Microsoft Kinect sensor is presented in [8].

The main challenge in our particular application, which is the main focus of
this paper, is that generic body tracking algorithms fail to detect and analyze
the patient’s body motion due to its close proximity with other objects or hu-
man subjects in the locomotor training treadmill environment (see examples in
Fig. 5). To overcome this problem we propose a model-free graph-based body
segmentation algorithm that detects the arms and legs of the patient. Descriptive
motion features are extracted from the segmented regions of the limbs and their
movement patterns are analyzed by computing various motion indices that we
proposed in this paper to capture the symmetry between the right and left leg
kinematics, their pace, and the synchronization of the arm swing with the walk-
ing pattern. Several experimental results are presented using real and synthetic
data that demonstrate the efficiency of the proposed framework.
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Fig. 2. Screenshots of the developed 3D augmented-reality environment taken from
three different orientations to show the front, side, and back of the patient respectively.

2 Methods

In this section, we present our framework for computed-assisted locomotor train-
ing using augmented-reality gaming environments (see Fig.2). The framework
has two main goals: 1) to enhance the traditional methodologies for physical
therapy by exciting kids for walking using gaming technologies, and 2) to com-
pute in real-time several motion-based quantities such as periodicity, synchro-
nization, pace, and others in order to provide the therapist with a quantitative
framework for monitoring the progress of a patient, evaluating the effectiveness
of therapy, and automatically optimizing the parameters of the therapy.

Motion detection sensors such as infrared depth cameras offer an infrastruc-
ture that can facilitate the aforementioned goals and also offer a natural user
interface for comunicating with computers without the need of remote controllers
or other hand-held or warable electronic devices. Each data frame captured by
a digital range camera is a two dimensional array of depth values (i.e., distance
between the plane of the sensor and the depicted objects). The depth value
of the pixel with coordinates (x, y) on a perticular depth frame is denoted by
d(x, y) ∈ R

+ (see an example of a depth frame in Fig. 1 right).
In the proposed framework, the acquired sequence of depth frames is processed

by a graph-based segmentation algorithm that detects the regions of the patient’s
arms, legs, and torso in the depth images. Descriptive features of the segmented
regions are then extracted and employed by motion pattern analysis algorithms,
which are described in detail in the following sections.

2.1 Graph-Based Segmentation

Each depth frame is scanned horizontally (row by row) and segmented into line
stripes that are smoothly-varing 1-pixel-wide regions defined as

L={(xs, y), · · · , (xe, y) : xs < xe,

∣
∣
∣
∣

∂d(x, y)

∂x

∣
∣
∣
∣
< ε1,

∣
∣
∣
∣

∂2d(x, y)

∂x2

∣
∣
∣
∣
< ε2 ∀x ∈ (xs, xe)}

where xs and xe denote the start and end pixel coordinates of the line segment.
The length of a line segment can be easily computed by length(L) = xe−xs+1.
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Fig. 3. Representative results of our body segmentation algorithm in different instances
during the walking cycle. The generated tree graph is superimposed on the right plate.
The partial inclusion of the assistants’ arms in the regions of the subject’s legs does
not affect the estmated motion features as shown in Fig.4, which demonstrates the
robustness of the proposed framework to such outliers.

The computed line segments are organized in the form of a directed graph,
which is constructed simultaneously with the segmentation of the line segments.
In such graph each line segment L can be connected with line segments in the
previous row of pixels that form the set of parents(L) defined as

L′ ∈ parents(L) ⇔ ∃(x, y) ∈ L, ∃(x, y − 1) ∈ L′ :
∣
∣
∣
∣

∂d(x, y)

∂y

∣
∣
∣
∣
< ε1. (1)

Equivalently, each line segment can be connected with line segments in the next
row of pixels by defining the set children(L) as the inverse of Eq. 1 as follows:

L′ ∈ children(L) ⇔ L ∈ parents(L′). (2)

The graph produced by Eqs. 1 and 2 may contain cycles. To enforce the cre-
ation of non-cyclic graphs we define the set father(L) as the subset of parents(L)
that contains the largest line segment:

father(L) = argmax
L′∈parents(L)

length(L′). (3)

The above process segments a given depth frame into several regions that
are computed as independent disconnected graphs and typically correspond to
different objects in the field of view. In most applications the subject of interest
corresponds to the graph with the largest number of pixels, and in general can
be easily isolated from the rest of the objects in the scene (see Fig. 3).

Each graph can be further segmented into smoothly varying regions by con-
structing sets of connected line segments with coherent structural characteristics
as follows:

S = {L1, · · · ,Ln : Li = father(Li+1), |children(Li)| = 1 ∀i ∈ [i, n− 1]}. (4)
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The line segments Li in Eq. 4 form a sequence of descendants without sim-
blings, which corresponds to a linear graph. The set of segments S can also be
organized into a graph by defining the father(S) and children(S) using the
connections defined in father(L1) and children(Ln) respectively. An example
of a graph of segments is shown in Fig. 3 (the network of the graph is visualized
on the right).

In our application, the regions of the legs and arms of the depicted subjects
can be found by performing simple graph searches. More specifically, the legs can
be found by searching for the segment with the largest sum of distances from the
top of the older ancestor and from the bottom of the youngest descendant. Such
distances can be easily computed by accumulating the height of each segment in
the corresponding path of the graph given by

height(S) = max
∀(x,y)∈Li,∀Li∈S,

y − min
∀(x,y)∈Li,∀Li∈S,

y + 1. (5)

The left and right children of the solution correspond to the right and left legs
respectively. Finally, the left or right arms can be found as the largest right or
left children in the graph respectively, which are not already marked as legs.
Examples of estimated segments are shown in Fig. 3 with different color-coding.

2.2 Motion Pattern Analysis

After segmenting the regions of the limbs in each depth frame, their motion is
analyzed by tracking their motion patterns over time. Various features can be
extracted from each segmented region such as the averageX,Y, Z coordinate, the
medial line, the orientation of the limb, however we found in our experiments
that the average Z coordinate of the medial line is descriptive enough to be
used in our motion pattern analysis. Hence, four sequences are computed and
monitored over time LL(t), RL(t), LA(t), RA(t) that correspond to the average
Z coordinate of the medial line of the left leg, right leg, left arm, and right arm
regions respectively.

First, each of the sequences is smoothened using a median filter followed by
a Gaussian filter to enhance the robustness of our calulations (see example in
Fig.4A). Then the local extrema of each sequence are computed as

extrema(f(t)) =

⎧

⎨

⎩

1 if t = argmaxt∈N(t) f(t)

−1 if t = argmint∈N(t) f(t)

0 otherwise

, (6)

where N(t) is a neighborhood in the time domain centered at t. The size of the
neighborhood should be smaller than the duration of each pace to ensure that
the extrema of each pace are calculated. Fig. 4B shows Eq. 6 computed from a
real data sequence.

The duration between two consecutive same-type extrema (minima or max-
ima) is given by

gap(f(t), v) = min
∀s≥x:extrema(f(s))=v

s− max
∀s<x:extrema(f(s))=v

s (7)
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Fig. 4. Experimental results from a real data sequence of 10 paces. A) The estimated z-
coordinates of the right (red) and left (blue) leg, B) The time signatures of the estimated
local extrema of A, C) The estimated duration of each pace, D) The corresponding
symmetry index.

Eq. 7 can be calculated for LL(t) and RL(t) for each type of maxima in order
to compute the duration of each pace as a function of time:

pace(t) = [gap(LL(t), 1) + gap(LL(t),−1) + gap(RL(t), 1) + gap(RL(t),−1)]/4

In a walking pattern with constant speed it is expected that each of the four
terms in Eq. 7 gives the same numerical value. However, in practice we compute
the average of all four measurements in order to increase the robustness of the
overall pace estimator. It should be noted that pace(t) corresponds to the time
of a full stride from the time when the recorded signal reaches a local maximum
until the time when the same leg’s signal reaches the next local maximum (see
example in Fig. 4C). The corresponding length of a full stride can be easily
computed as pace(t)/speed, where speed is the speed of the treadmill, which is
a known manually set quantity.

The symmetry of the walking patterns of the two legs as well as their synchro-
nization with the motion of the arms are quantifiable indices that are especially
useful for physical therapy. To calculate the level of symmetry of the walking
pattern we first need to estimate the mid-point in the time domain between two
same-type extrema given by

mid(f(t), v) =

[

min
∀s≥x:extrema(f(s))=v

s+ max
∀s<x:extrema(f(s))=v

s

]

/2 (8)

and then compare two sequences f(t) and g(t) by computing the time difference
between the extrema of one and the corresponding mid-point of the other as
follows:

sym(f(t), g(t), v) = 1− 2 |mid(f(s), v)− s| /pace(s), (9)

where s = max∀r<t:extrema(g(r))=v r. The largest possible time difference is equal
to the duration of half pace, hence the range of Eq. 9 is the interval of real
numbers from 0 to 1.
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Finally, Eq. 9 considers only one type of extrema of one of the two given
sequences. To account for all combinations we compute the symmetry of the
walking pattern as the sum of four terms given by

symmetry(LL(t), RL(t)) =
∑

v=−1,1

sym(LL(t), RL(t), v) + sym(RL(t), LL(t), v)

4

where LL(t) and RL(t) denote the left and right leg sequences (see Fig. 4D).
Similarly, the index that describes the sychnronization between the motion of the
legs and the arms can be computed using the arm and leg sequences as follows:
[symmetry(LL(t), LA(t)) + symmetry(RL(t), RA(t))]/2 (see Fig. 7 left).

2.3 Augmented-Reality Environment

The algorithms presented in Secs. 2.1 and 2.2 were implemented in Java using
the J4K (Java for Kinect) Software Development Kit introduced in [3]. The
input depth frames are processed in real-time using the proposed graph-based
segmentation algorithm and the 3D image of the body of the patient is composed
as a textured quadratic mesh by combining the segmented depth image with the
corresponding video frame captured by a regular RGB camera.

The 3D image of the body of the patient is visualized within a 3D augmented-
reality gaming environment that consists of a randomly generated scene with a
walking path. The patient can watch herself walking in this synthesized environ-
ment from different 3D views (front, side, and back) that offer visual variability
that makes the gaming environment more engaging and easier for the patient to
understand the perspective and virtual surroundings (see screenshots in Fig. 2).
The environment automatically animates in relation to the speed of the treadmill
and new surrounding elements randomly appear as the game progresses.

A scoring system is also used in order to enhance the level of engagement by
unlocking new features and environments based on the patient’s score. Although
in the current version of the game the scoring system is based on the number of
items that the user collects from the virtual path, which is proportional to the
distance walked, our goal is to introduce adaptive scoring mechanisms that will
award good walking patterns based on the calculated symmetry and synchro-
nization of the motion (Sec. 2.2).

3 Experimental Results

In this section, we present several quantitative experimental results obtained by
using the proposed framework with real and synthetic data.

Locomotor training typically includes alternate bouts of approximately 5 min-
utes of treadmill stepping and standing practice to achieve a total of 60-minutes
of practice. A team of trainers provide hands-on assistance as well as motivation
for the child to step at an age-appropriate/normal speed, maintain an upright
trunk posture and normal leg kinematics, and reciprocally swing his or her arms.
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Fig. 5. Typical errors of existing skeleton fitting algorithms caused by the close prox-
imity of the patient with other objects or human subjects in the clinical environment.

To evaluate the feasibility and effectiveness of the proposed framework we
organized a pilot study in which we recreated locomotor training sessions in a
real clinical setting without employing real patients at this time. During the
pilot sessions, depth data were acquired using the PrimeSenseTMdepth sensor
contained in the Microsoft KinectTMdevice. The sensor was placed in front of
the treadmill and was connected to a 64-bit computer with Intel Core i5 CPU at
2.53GHz and 4GB RAM. The resolution of the depth camera was 320×240 pixels
at 25 frames per second and it was calibrated so that it records depth in the
range from 0.8m to 4.0m, which is suitable for capturing the patient’s motion in
our clinical setup. In this hardware setup the proposed algorithms were executed
in real-time with average data processing time of 9.9889 ms/frame.

In order to compare our technique with other existing popular methods for
body feature extraction from depth frames, we employed the skeleton fitting al-
gorithm provided with the Microsoft Kinect SDK [1]. Our goal was to extract
the location and/or orientation of the legs in order to be able to compute the
pace and symmetry indices as described in Sec. 2.2. The skeleton fitting algo-
rithm failed to provide full body skeleton for the majority of the depth frames
sequences. Instead, upper body tracking was possible, which however does not
track the user’s legs. The failure of the skeleton fitting algorithm was caused
due to the close proximity of the user’s body with other objects in our clinical
environment. Even in the rare cases in which the algorithm provided output, the
obtained skeletons were often erroneous as it is shown in Fig. 5.

In contrast to the Kinect SDK algorithm, our proposed body segmentation
algorithm (Sec. 2.1) was able to segment the user’s body and provide results
for the entire dataset. Fig. 3 shows the segmentation results obtained for four
representative frames during the walking cycle. The segmented regions of the
arms and legs are color-coded and in the right plate the underlying estimated
graph is superimposed. It should be noted that the presence of the assistants’
arms in the regions of the subject’s legs did not affect our motion analysis because
our feature extraction method is robust to such outliers as it is shown in Fig. 4.

Furthermore, we applied the proposed motion analysis framework (Sec. 2.2)
to our segmentation results and the computed pace and symmetry indices are
presented in the plots of Figs. 4, 6, and 7.
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Fig. 6. Plot of the symmetry index versus the amount of synthetic delay introduced in
the data sequence of the left leg.

Fig. 4 shows the data sequences extracted from the left and right legs for a
period of 10 full strides, and the correspodning extrema, pace, and symmetry
index. The red and blue lines correspond to the right and left legs. From the
obtained results we can make the following observations: a) the extracted data
sequences describe well the walking pattern, b) the pace estimated from the right
leg deviates insignificantly from the one of the left leg, which demonstrates the
robustness of our model, and c) the calculated symmetry index is very high as
expected, which also demonstrates the effectiveness of the proposed index.

More specifically, the average duration of a full stride for a data sample of 60
sec. (Fig. 7) was found to be 1.2350±0.0360 sec. for the left leg and 1.2338±0.0407
sec. for the right leg, with the average for both legs at 1.2344±0.0351 sec. In order
to assess the robustness of our algorithm we can multiply these results by the
number of acquired frames per second. This will give us an estimated duration
of pace of 30.8591 frames with standard deviation of less than a frame (0.8765),
which concluively demonstrates that the stability of our estimator reaches the
limit of the data acquisition frequency and hence cannot be further improved.

In order to demonstrate the behaviour of the proposed symmetry index in
the case of abnormal leg kinematics we introduced various amounts of delays in
the sequence of the left leg and for each case we computed the symmetry index.
The results are presented in Fig. 6 and show that the symmetry index drops as
the amount of delay approaches the half of the pace as expected.

Fig. 7. Plots of the computed arm-leg symmetry (left) and the corresponding leg sym-
metry (right) from a real data sequence. As expected the motion pattern of the arms
has more fluctuations compared to the more coherent symmetry index of the legs.

Finally, Fig. 7 show the arm-leg synchronization (left) in contrast to the sym-
metry of the leg motion (right). As expected the arm-leg index has higher values
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when the patient reciprocally swings his or her arms and drops otherwise, for
example in the case of hand gestures or other type of arm-based interaction.

4 Conclusion

In this paper a novel framework was presented for locomotor training using
an augmented-reality gaming environment, which is remotely controlled with
natural user motions detected by a depth camera. The proposed algorithms
analyze the motion patterns and compute various descriptive indices that provide
the therapists with a quantitative framework for monitoring the progress of
the patients. Several experimental results were presented that demonstrated the
effectiveness and robustness of our methods. In the future we plan to employ
this framework to enhance locomotor training and excite kids for walking.
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