
Chapter 6
Rule-Following and the Limits of Formalization:
Wittgenstein’s Considerations Through the Lens
of Logic

Paolo Pistone

6.1 Introduction

The justification of logical rules stumbles upon a celebrated remark by Wittgenstein:
it takes rules to justify the application of rules. This inner circularity affecting logic
makes it difficult to explain what by following a rule (typically, by endorsing the
alleged compulsion of deduction) is inexorably left implicit.

Loosely following Searle’s revision (see Searle 1969) of Kant’s vocabulary, I’ll
style “constitutive” those conditions (if any) on which the existence of the activity of
(correctly) applying a given rule depends. Then, a series of well-known arguments
(that I briefly recall in Sect. 6.2) seem to undermine the possibility to provide
logical rules with such constitutive conditions, since the description of the latter
would involve the use of the same rules they should be constitutive of; it would be
indeed patently circular to explain the existence of a successful practice of correctly
applying the rule of, say, modus ponens by relying on the existence of the practice
of modus ponens!

On the other hand, in Sect. 6.3, I’ll try to show that by exploiting the advances
made by proof theory on the dynamics of logic, a different approach to rules is
possible: my thesis is indeed that the focus on the concrete syntactic manipulation
which underlies the application of logical rules within formal systems can represent
a fertile direction where to look for a way out from the “blind spot” of circular
explanations.

The formalization of logical inference, as it is clear from the developments of
mathematical logic from Frege’s Begrisschrift to most recent programming lan-
guages, may carry some arbitrariness: for instance, we know that Frege’s formalism,
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natural deduction and sequent calculus actually code exactly the same notion of
classical provability, though in quite different ways. Yet, the apparently superficial
differences between these formal systems hide relevant structural information: for
instance, Gentzen was able to show that, among those three, only sequent calculus
exposes in a clear way the symmetries underlying classical inference, leading to his
celebrated Hauptsatz.

It seems quite tempting to call those aspects regarding logical formatting the
subjective side of logic, for at least two reasons: first, since they are generally
considered as inessential to the characterization of “objective” logic (in our example,
classical provability) and, second, since they are directly related to the way logic is
actually written, that is, to the most significative observable form of access to logical
inference. In particular, since writing is an activity concretely happening in space
and time, it is quite natural to expect this syntactic dimension to be subject to the
results and perspectives coming from computational complexity theory. Just to give
an idea, taking �-calculus or Turing machines as our favourite formalism for cal-
culus will produce exactly the same “objective” class of computable functions, but
with a very remarkable difference of grain: the single, atomic step of computation
in �-calculus (called ˇ-reduction) requires a polynomial time to be simulated on a
Turing machine; so to say, what appears on one side as the immediate application
of a rule takes quite a long time to be executed on the other.

Finally, in the last section, one will find a technical sketch of the mathematical
perspective of Girard’s transcendental syntax, which reconstructs logic in the
algebra and geometry of linear operators, building on proof-theoretic results coming
from linear logic: such a reconstruction provides mathematical content to the
philosophical reflections motivating this article, so as a concrete connection with
computational complexity and its theoretical open questions (concerning the space
and time in which formal devices evolve).

6.2 The Blind Spot of Rules

In Wittgenstein’s Tractatus, it is stated that matters about logical formatting, i.e.
about the choice of rules and notations for logic, cannot even be meaningfully for-
mulated: these matters would indeed say something on the logical form, that is, on
the way in which logical languages are involved in referential practices, i.e. some-
how attached to the world; since the logical form plays a normative role, the one of
assuring the indisputability of deduction, then it cannot be the object of discussion
and challenge, since any challenge should presuppose it as a constitutive condition.

Logical conventionalism, with Carnap’s distinction between internal and exter-
nal questions (see Carnap 1950), was intended to save the theory of the logical form,
eliminating at the same time all reference to “the mystic”: “what one should be silent
of” (Wittgenstein 2001), with Wittgenstein’s words, became in Carnap’s work the
object of purely pragmatical considerations.

On the other hand, the celebrated criticism of conventionalism contained in
Quine (1984), where it is stated that
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[. . . ] if logic is to proceed mediately from conventions, logic is needed for inferring logic
from the conventions. Quine (1984)

seems to show that the theory contained in the Tractatus cannot be reduced to a
conventionalist one1; that criticism was indeed grounded on the remark that, in the
description of logical rules, the explicitation of what is required in order to correctly
apply those rules inexorably eludes the description: as Wittgenstein would say, it is
shown but cannot be said; Quine’s argument is just a variation on a theme published
by Lewis Carroll forty one years before (see Carroll 1895). To make the long story
short, Carroll’s (and a fortiori Quine’s) argument is based on the remark that in
order to describe how to follow the rule of modus ponens

A A ) B

B
.MP/

(6.1)

one is naturally led to produce an inflated argument which is nothing but another
form (rather, a sequence of instances) of the rule of modus ponens, whose major
premise is a formula expressing the content of the schema (6.1):

A ) B

A A ) ..A ) B/ ) B/

.A ) B/ ) B
.MP/

B
.MP/

(6.2)

which leads naturally to a more inflated argument and so on. . . the attempt at
justifying our tentative to follow the logical convention expressed by the modus
ponens schema, in definitive, ends up in an infinite regress.

A similar argument is notoriously part of Wittgenstein’s discussion on rule-
following in the Philosophical Investigations, where he observes that in order to
act in accordance with what a given rule, say modus ponens, requires him to do
( i.e. in order to apply the rule), one has to interpret a certain schema (e.g. the
schema (6.1)); on the other hand, if a person were asked to justify, or simply to
explain, his course of actions as an interpretation of the schema or, as one would
say, as somehow compelled by the associated rule, then he would end up picking up
another schema (think of (6.2)) to be interpreted, giving rise to an infinite regress.
Wittgenstein claims, however, that in practice mutual comprehension takes place
without any regress of that kind:

§201 It can be seen that there is a misunderstanding here from the mere fact that in the
course of our argument we give one interpretation after another; as if each one contented us
at least for a moment, until we thought yet of another standing behind it. [. . . ]

1This way of reading the Tractatus presupposes the thesis that there is a theoretical unity tying
together the theory of the logical form and what Wittgenstein writes later on the following rules:
in both cases, one indeed finds that constitutive conditions of “saying” cannot be expressed
linguistically without falling into circularity or regress.
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§217 If I have exhausted the justifications I have reached bedrock, and my spade is turned.
Then I am inclined to say: ‘This is simply what I do’. Wittgenstein (2009)

Again, in the infinite regress, one would find himself trying to say, continuously
missing the point, what is implicit in the adoption of the rule, that is, what he should
content himself to show in his linguistic practice.

As we have already remarked, the appeal to the distinction between internal and
external questions (so as to the more familiar distinction between object language
and metalanguage) does not constitute a viable way out of the presented arguments
for the regress: to assert that a rule is justified at the meta-level by an argument which
employs the alter ego of the rule itself cannot indeed constitute a proper justification
of the rule, since practically every rule could be justified in that way: choose a rule
R, and then write a semantics for R, by exploiting a rule meta-R; with few technical
work, soundness and completeness (for instance, if R enjoys a kind of subformula
property, enabling thus an inductive argument) will be proved. There would be thus
no difference in principle between the rule of modus ponens, the most unassailable
of deductive rules, and the worst rule one can imagine!

On one side, as a consequence, rules, meta-rules and meta-languages dramat-
ically fail to provide constitutive conditions for deduction; on the other, it seems
quite natural to expect that logically correct rules must be somehow explained, since
otherwise they would simply be arbitrary ones.2

The alternative conclusion that logical deduction is fundamentally ungrounded,
since we cannot discursively express what the validity of its rules consists in, is
discussed in epistemological terms in On certainty: Wittgenstein maintains that
grammatical rules are in charge of establishing what is constitutively exempt from
doubt, in the sense that one could not make sense of what a doubt whatsoever about
it could mean, since he could not display nor imagine any use of it:

§314. Imagine that the schoolboy really did ask: “And is there a table there even when I turn
around, and even when no one is there to see it?”

§315 [. . . ] The teacher would feel that this was only holding them up, that this way the
pupil would only get stuck and make no progress.[. . . ] this pupil has not learned how to ask
questions. He has not learned the game that we are trying to teach him. Wittgenstein (1969)

The idea conveyed by these examples is that the activity of rule-following,
and thus, in the case of logic, the alleged normativity of deduction, is one whose
constitutive conditions, when we try to grasp them, inexorably slip out of our hands,
hiding themselves behind the mirror effects of interpretations (semantics and meta-
languages) obsessively reproducing the same questions at higher levels: we cannot
say what underlies any form of saying, so as we cannot see the blind spot which
enables any form of seeing.

The point at the heart of the work of the late Wittgenstein is that if we cannot
say anything about conditions of possibility of rules, then we cannot even raise

2This expectation clearly goes well beyond Wittgenstein’s view on rules and logic, since he
believed that logical rules are truly arbitrary ones, though enjoying a special position in language.
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meaningful doubts concerning them: in the course of our infinite interpretative
regress, “doubt gradually loses its sense” Wittgenstein (1969).

§307. And here the strange thing is that when I am quite certain of how the words are used,
have no doubt about it, I can still give no grounds for my way of going on. If I tried I could
give a thousand, but none as certain as the very thing they were supposed to be grounds for.
Wittgenstein (1969)

This is to say that whereas the adoption of a given system of rules (a linguistic
game, so to say) commits to a structured arrangement of referential claims, its
“semantic ascent”, with Quine’s words, nothing can be said about the legitimacy to
impose such a structure on experience. This remark revives the “mystical” question:
why just these rules? To make an example, the adoption of a certain system of rules
for modal logic (say S5) naturally leads to the acceptance of truth claims regarding
propositions on possible worlds (“Is water the same as H2O in every possible
world?” “Is gold the same as goodness only knows what in some possible world?”),
but what is to assure us, not about the truth-value of those sentences but rather
about the right by which we are authorized to take such sentences as demanding
for a definite truth-value? In a word, to quote a celebrated passage from Kant,
quid iuris?

The moral to be drawn from the problem of the logical form would be thus that
no serious questioning of logical formatting can be raised: entitlement to consider
“logic” this or that system of rules would thus reduce to a matter of mere convention
or to Wittgenstein’s Promethean attitude (the “mystic”). In definitive, logic would
be thus simply incapable to answer to a matter of right.

6.3 Proofs as Programs, Rules as Behaviours

The aim of this section is to discuss the significance of logical formatting (“why
just these rules?”) from a more specifically logical (loosely technical) viewpoint:
this will be achieved by privileging an approach directed to the dynamics of
logic, heritage of the so-called Curry-Howard correspondence, which establishes
a connection (indeed an isomorphism) between logical proofs and programs written
in a functional language like �-calculus: a proof, as isomorphic with a program, is
considered not only as a mathematical object to be constructed but also as a program
to be executed; for instance, a proof of 8x 2 AB.x/ corresponds to a program
which, when taken as input an element t 2 A, produces, once executed, a proof of
B.t/.

Through the mathematical analysis of cut-elimination algorithms, directly corre-
sponding to the normalization of terms in �-calculus, the rules of logic, as we’ll
sketch, are characterized by the symmetries which discipline the use (i.e. the
dynamics) of proofs/programs. Particular attention is given to the problem of the
termination of executions, i.e. of the computations that represent the interaction
between proofs and programs: a program can indeed be of some use only when
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its execution achieves a certain goal within a finite amount of time and, on the
other side, that logicalness constitutes an answer to the question “does this program
actually do what it is designed for?” is well known by computer scientists.

That logical syntax is in charge to tame the dynamics of programs by forcing
termination,3 is best seen from the viewpoint of the so-called formulas-as-types
correspondence: by this, formulas become sets of proofs/programs satisfying the
norms associated by logical rules to formulas. For instance, a program � is typed
A ) B (and it is indeed a proof of A ) B) when, for every proof/program
� -typed A, the execution of the application .�/� of � to � terminates producing a
proof-/program-typed B .

In this way, the static viewpoint which individuates rules by their schemas, for
instance, the modus ponens schema, is replaced by a dynamic one, in which proofs
manifesting the correct application of a rule are those whose execution satisfies
opportune behavioural (i.e. observable through interaction) norms: rules are then
not imposed a priori on proofs, but rather different proofs manifesting the same
behaviour can be “typed” in the same way. The input of computer science is
crucial here: a program is a source code written in a given language (�-calculus,
for instance); it is thus a “subjective” (in the sense explained) device; yet, one is
generally only interested in what the program does when it is run. The behaviour of
the program can in fact be largely independent from its code, and programs written
in different languages can behave exactly in the same way. These considerations
prompt the search for a behavioural explanation of rules, that is, one in which
the “objective” content of a rule is expressed as a problem of interface between
proofs (more detailed, though informal, descriptions of this bridge between logic
and computer science can be found in Joinet (2009, 2011)).

From the viewpoint of sequent calculus, resolving a problem of interface
corresponds to eliminate cuts: let’s see, through an easy example, how properties of
rule-schemas can be derived from the behaviour of proofs through cut-elimination.
Let’s suppose to cut an arbitrary proof …4 of conclusion A ^ B with a cut-free
proof ƒ:

.... …

` A ^ B

.... ƒ

�; A; B ` �

�; A ^ B ` �
.L^/

� ` �
cut

(6.3)

3And by that logical correctness, since the eliminability of cuts (which implies the termination of
all reductions) has as a corollary the logical coherence of the calculus: since no introduction rule is
given for the absurdity ?, if a proof of ? existed, then it would reduce to a proof whose last rule
is an introduction for ?, thus no such proof can exist.
4In this section, I’ll adopt the convention to name sequent calculus proofs with capital Greek letters
…; ƒ; : : : and with small letters �; �; : : : the programs, respectively, associated.
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In order not to let interaction fail, … must be reduced to a proof that we can split
into a proof …1 of conclusion A and a proof …2 of conclusion B:

.... …1

` A

.... ƒ

�; A; B ` �

�; B ` �
cut

.... …2

` B

� ` �
cut

(6.4)

that is, by cut-elimination, the request that … interfaces with ƒ has two conse-
quences: first, the rule-schema for ^ must have the form one might expect5

` A ` B

` A ^ B
.L^/

(6.5)

Second, it must be possible to transform a proof of conclusion A^B into one whose
last rule is expressed by the schema (6.5). Behavioural norms impose thus, through
cut-elimination, syntactical constraints on the form of rules and proofs.

A crucial remark in the argument above is that the rule-schema for ^ has been
derived by taking into consideration an arbitrary cut-free proof dual to an arbitrary
proof of A ^ B; more generally, let’s say that two proof-programs are polar each
other when they can be cut together giving rise to a terminating execution (i.e. cut-
elimination converges); given a set T of proofs-programs, we can define the set T ?
as the set of all proof-programs polar to every element of T . A set of this form
will be called an “abstract type” (remark that these definitions make no use of rule-
schemas). A simple argument shows that an abstract type T satisfies the equation

T D T ?? (6.6)

this equation asserts that T is complete in the sense that an arbitrary proof-program
polar to an arbitrary proof-program in T ? is already in T .

Let now S be the set of proofs/programs of a given formula A built following the
rules of a certain logical syntax. By embedding the programs in S in a more general
functional language, we can ask the nontrivial question: is S an abstract type? If we
recognize the abstract type S? as a set of tests for S and thus S?? as the smallest
abstract type containing S , our question can be rephrased as

S?? � S‹ (6.7)

This way of embedding syntactic proofs into abstract types defined by their bipolar
is reminiscent of the notion of completion in topology and functional analysis. It
can easily be acknowledged that what (6.7) expresses is a form of completeness

5We neglect for simplicity matters regarding the discipline of contexts, which would require a more
sophisticated argument to reach exactly the same conclusion.
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(usually styled internal completeness; see Girard 2001) which makes no reference to
semantics, that is, radically internal to syntax: it is a query on the internal properties
of the logical format, that is, on the symmetries between rules: is anything missing?
Is there anything syntax cannot see?

It is to be observed that a test for A isn’t but a proof/program of A ` � , what,
in the case in which � D ;, means a possibly incorrect proof of A `, that is, a
possibly incorrect proof of :A: the interaction between a proof and a test can thus
be interpreted as a dispute between two players (this perspective is made explicit in
ludics; see Girard 2001). The focus on the dynamics of logic, so as the interest in
wrong proofs, after all, is just a way to bring dialectics back at the heart of logic.

In definitive, what the view briefly sketched tries to achieve is an exposition of
logic in which rules and their schemata are not primitive notions, but are derived
from the recognition of the normative requirements necessary to avoid divergence,
i.e. lack of mutual communication: if you want to sustain A ^ B and you want
your proof to be accepted by others (i.e. your program to interface successfully),
then (6.3) tells you that the principal rule of your proof ought to be a splitting
between A and B .

A similar deconstruction of logical rules can be found in the tradition of proof-
theoretical semantics based on Gentzen’s Hauptsatz (see Prawitz 1973; Dummett
1991). For instance, Dummett describes the dynamics between proofs as the interac-
tion between the proponent of an introduction rule (that he calls the “verificationist”)
and the proponent of an elimination rule (that he calls the “pragmatist”); the search
for an equilibrium between the expectations of both leads to his notion of “logical
harmony”, corresponding to the requirement of eliminability of cuts.

In Dummett’s and Prawitz’s theories, though, the building blocks of logical
proofs are rule-schemata (for instance, introduction rules); as a consequence, the
recognition of something as being obtained through the correct application of a rule
(be it harmonious or not) remains a precondition for their interactive explanation of
logic, so that Wittgenstein’s rule-following infinite regress still applies (see Cozzo
(2004) for a brief discussion): Dummett himself, in Dummett (1978), declares that
a satisfying justification of logical rules imposes to reject Wittgenstein’s point about
rule-following (e.g. by endorsing his proposal of a molecularist theory of meaning).

In the approach here sketched (which builds on Girard’s transcendental syntax
program, as it will be made more precise in the next section), on the contrary,
rule-schemata do not constitute primitive notions, since proofs are represented by
“pure” programs: this means that proofs, like programs in �-calculus, can be written
independently of logical rules; behavioural constraints are then used to retrieve
rule-application through the notion of “last rule” (remark that the example (6.3)
discussed above clearly recalls Dummett’s “fundamental assumption” (Dummett
1991)). Explaining rules through the notion of polarity with respect to a given set of
tests, i.e., again, pure programs, yields then a completely behavioural description of
logic.

This strategy appears prima facie as providing a way out of the mirror effects,
i.e. the infinite regress arguments; let’s see how, for instance, in the case of Carroll’s
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argument on the modus ponens, the step leading to the regress is due to the
possibility to pass from the rule-schema of modus ponens

A A ) B

B
.MP/

(6.8)

to the logical formula expressing it:

A ) ..A ) B/ ) B/ (6.9)

which is used as premise of the inflated argument. Notably, the conclusion that
Carroll himself and many others (Dummett included) have drawn from the argument
is that this passage is somehow to be forbidden: a rule should not be expressed by
a logical sentence. The typical argument (a good recognition can be found in Engel
(2005)) is that a rule represents a dynamic pattern of linguistic practice, whereas a
logical sentence expresses a static content. Dummett (1973) makes appeal to Frege’s
notion of “assertoric force” to distinguish the assertion (a piece of concrete linguistic
practice) of the sentence A as premise of a rule of inference from its mere occurrence
in the formula A ) ..A ) B/ ) B/:

[. . . ] it cannot be the same, because then “Peter is a Jew; if Peter is a Jew, Andrew is a Jew;
therefore Andrew is a Jew” would be the same as “If both Peter is a Jew and if Peter is a Jew,
then Andrew is a Jew, then Andrew is a Jew” and it was precisely Lewis Carroll’s discovery
(in ‘What the Tortoise said to Achilles’) that it was not. Dummett (1973)

In contrast with such a diagnosis, in what follows I’ll accept to pass from the
rule-schema (6.8) to the inflated schema, but with the remark that, in the latter, the
formula expressing the schema must occur as conclusion of a proof/program �; here
is a sequent calculus proof that could be associated to �:

A ` A B ` B

A; A ) B ` B

A ` .A ) B/ ) B

` A ) ..A ) B/ ) B/ (6.10)

My thesis is that one is not compelled to go on inflating the argument: an explanation
of modus ponens is given by showing that, given arbitrary correct proofs/programs
�; � of conclusions, respectively, A and A ) B , the interaction .�/�� is con-
vergent, what amounts, essentially, to a (strong) normalization argument. Remark
that, by representing a rule by a proof-program of a logical sentence, its dynamic
content (so as the assertoric force of its premises and conclusions) is not lost, since
the application of the rule (6.8) is translated into the execution of the program
�. Questioning (6.8) amounts then to ask for an argument which asserts the
compatibility of � with the interface induced by the introduction rules for A and
A ) B: in other words, Dummett’s argument for logical harmony is retrieved
without presupposing that proofs are built following rules-schemata.
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Furthermore, one could well imagine to invert the process, namely, to accept �

as representing a correct rule and to adopt it as a test for proofs of A and A ) B:
one will say that � and � are correct when .�/�� is convergent. This isn’t but a way
to pose the issue of internal completeness: do all correct �; � actually come from
your favourite syntax?

Summing up, the strategies just presented have the following form:

1. Start by � and prove that correct proofs of A and A ) B are polar to �: � and
� are thus tests for �, i.e. the rule is tested.

2. Take arbitrary �; � polar to � and prove that they come, respectively, from proofs
of A and A ) B: � becomes here a test for � and � , i.e. the rule is the tester.

If a blind man were to ask me “Have you got two hands?” I should not make sure by looking.
If I were to have any doubt of it, then I don’t know why I should trust my eyes. For why
shouldn’t I test my eyes by looking to find out whether I see my two hands? What is to be
tested by what? Wittgenstein (1969)

Regress is then translated into the balance between introduction and elimination
rules, that is, in the acknowledgement of the inner symmetries of (good) syntax.

A fundamental objection to the argument just presented is that it is at least
implausible that an argument for normalization can be carried over without appeal
to some instance of modus ponens, so that circularity would not be eliminated. This
is tantamount to saying that it is at least implausible that a serious argument for
justifying logic be carried over without using logic somewhere (this remark was
indeed the starting point of our discussion). It must be conceded then that such a
form of circularity impedes any form of definitive foundation for logic.

By the way, this indirect form of circularity is not the same as the plain circularity
exposed by Carroll’s argument, since, as we are going to see, it puts on the
foreground the syntactical complexity of normalization arguments: these are indeed
usually very complex logical arguments and may heavily depend on the formalism
chosen. Thus, if one were somehow sceptic about the normalization argument (for
defendable reasons, as we’ll point out), then he would find himself in the situation
hypothesized by Carroll in his article, namely, that of accepting the premises of the
modus ponens, accepting the schema of the rule and yet remaining perplexed about
the conclusion.

If A and B and C are true, Z must be true,“ the Tortoise thoughtfully repeated. That’s another
Hypothetical, isn’t? And, if I failed to see its truth, I might accept A and B and C, and still
not accept Z, mightn’t I?” Carroll (1895)

Suppose indeed to have laid down a normalization proof for .�/�� , where †; T

vary among all the proofs of A and A ) B in a given formalism, which establishes
a hyper-exponential run time for normalization (this is actually the case for classical
and intuitionistic propositional logic): to accept such a proof would mean to accept
that by composing � and � , a program representing a proof of B can be obtained
by execution. By the way, can we reasonably expect to see the reduction of .�/��

terminate? What the normalization proof asserts is indeed the existence of a normal
form, without providing a viable procedure to produce one (in a reasonable time).
In the case of (6.3), to make another example, the theorem asserts the existence
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of a tower of exponentials bounding the time necessary to split the proof … of a
conjunction into a conjunction of proofs: our universe could not plausibly assist to
such an event!

One could thus well imagine a “strict finitistic” tortoise accepting the schema
expressed by � but questioning the application of the rule, since the latter depends
on an argument which provides no concrete mean to show that whose existence it
asserts. Again, why not to imagine a “Turing-tortoise” refusing ˇ-reduction since it
takes too much time to be implemented on the tape of a Turing machine?

These examples are not meant to motivate the endorsement of a more or less
strictly finitistic view on mathematics, but only to show how a (more or less)
legitimate doubt could be raised on formats disciplining the use of deductive rules,
a doubt that could not be raised from a purely rule-theoretic standpoint. A somehow
Kantian issue on legitimation is recovered by observing that by adopting sequent
calculus or �-calculus, one is led to accept as valid something he cannot actually
see as valid. Again: by what right?

Gödel’s incompleteness enables us to push the matter even farther: it is well
known that since cut-elimination implies coherence, normalization proofs for sys-
tems enabling inductive/recursive constructions (and more generally, impredicative
second-order constructions) cannot be performed within those systems themselves.
This can be read in terms of ordinal run times for normalization: the so-called
proof-theoretic ordinal number is associated to every proof as a measure of the
computational cost of its normalization. A worst-case run time, which embodies
the general normalization proof, is then obtained as the least not proof-theoretic
ordinal (usually, a limit ordinal): such a proof cannot be a proof in the system.

What this argument shows is that by incompleteness, in no way one can be certain
of the logical correctness of a given format: in no way, one will satisfy once for
all the demands by a sceptic tortoise, since normalization arguments must employ
principles whose logical correctness is even harder to justify.

Here we stumble again on the already discussed circle of logic presupposing
logic, but with a significant quality/price advantage: in his remarks, Wittgen-
stein clearly stated that all questioning must stop somewhere, namely, when the
“bedrock” is reached, i.e. the practice of a given “grammar” and all that is
implicit in it. Now, the proof-theoretical and/or computational complexity of strong
normalization proofs fills the gap between what can be directly seen and what must
be left implicit in the use of formal proofs.

In this sense, the reformulation of Kant’s quid iuris question in the preceding
section reduces to a question on the implicit complexity of syntactic manipulation:
can we actually write this? Can we do that in a reasonable time and space?

Summing up, if the argument presented is right (or at least, not drastically wrong,
given its quite informal and sketchy description), then the infinite regress of logical
rules interpreting themselves must stop at the level of formats, namely, at the level
of syntactical prescriptions. As a consequence, a rigorous mathematical exposition
of these preconditions of logic (which demands for more sophisticated techniques
than the one sketched here; see the next section) might replace the Wittgensteinian
“thereof we must be silent” and open the way for an exploration of what lies behind
the apparently unquestionable evidence of the practice of logic and its rules.
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6.4 Linearity and Logical Syntax

The search for an internal explanation of logical rules, through a profound mathe-
matical investigation of formal systems, represents the core of the transcendental
syntax program (see Girard 2011b), launched in 2011 by Jean-Yves Girard as
the foundational counterpart to the refinement of proof-theoretical tools obtained
through linear logic and its developments (for instance, ludics and geometry of
interaction). In what follows, I’ll try to give a hint at how, through the mathematical
treatment of linearity in logic, it is possible to give ground to the discussions of the
previous sections and to develop a promising framework to reconstruct logic.

From the viewpoint of syntax, linearity is obtained when the structural rules of
weakening and contraction

` �

` �; A
.W /

` �; A; A

` �; A
.C /

(6.11)

are eliminated; logically speaking, this amounts to reject the logical principles
? ) A and A ) A ^ A. This choice, which could seem at first rather arbitrary, is
explained by observing that, in sequent calculus, the structural rules .W / and .C /6

form an independent group with respect to identity rules (axiom and cut) and logical
rules (introduction and elimination of connectives).

Historically, the first reason for styling “linear” the fragment of logic without
weakening and contraction7 was a semantical one: linear logic proofs could indeed
be interpreted as linear maps between coherent spaces, that is, stable maps on
cliques (see Girard 1987a) satisfying

f

 
kX
i

ai

!
D

kX
i

f .ai / (6.12)

where the sum is intended as a disjoint union of sets. However, it was only with the
development of proofnet theory and geometry of interaction (GoI in the following)
that it was realized that linear proofs could be represented as linear operators in
the traditional, matricial, sense. These operators act on the (usually complex) linear
space generated by the occurrences of atomic formulas in the formulas to be proved:
more precisely, to every occurrence of an atomic formula A, a finite linear space

6Along with the rule .Ex/ of exchange which allows to permute the order of appearance of
occurrences of formulas in a sequent and whose rejection leads to non-commutative logic NL,
see Abrusci and Ruet (2000).
7Which happens to be very well organized, with classical connectives splitting into a multiplicative
and an additive version, and with modalities (known as exponentials) reintroducing, in a linear
setting, controlled versions of weakening and contraction.
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jAj is associated; to the general formula F.A1; : : : ; An/, where the Ai denote the
occurrences of atomic formulas in F , the linear space jF j D Ln

i jAi j is associated.
Remark the locativity of this approach: every occurrence of formula is assigned a
distinct location (i.e. an independent linear space); for instance, to construct the
occurrence space of .A ) A/ ) .A ) A/, one first has to distinguish the four
distinct occurrences of A as .A1 ) A2/ ) .A3 ) A4/ and then to associate to the
formula the linear space jA1j ˚ jA2j ˚ jA3j ˚ jA4j.

Now, if we have a look at how structural rules are reflected in cut-elimination, we
notice that they cause the dimension of the “occurrence space” not to be preserved
during the computation: for instance, in the case of contraction, this dimension is,
in the worst case, multiplied by the number of contracted occurrences:

.... …

` �; A; A

` �; A
.C /

.... ƒ

` �; :A

` �; �
cut �

.... …

` �; A; A

.... ƒ

` �; :A

` �; �; A
cut

.... ƒ

` �; :A

` �; �; �
cut

` �; �
.C /

(6.13)

In case of nested contractions, this phenomenon is responsible for the hyper-
exponential growth rates of reductions in classical logic.

On the other hand, in the absence of those principles, the dimension of the
occurrence space is preserved (the space of all the occurrences of formulas strictly
shrinking during reduction), as shown in the following example: selectfont

.... …1

` �1; A

.... …2

` �2; B

` �; A ^ B

.... ƒ

` :A; :B; �

` :A _ :B; �

` �; �
cut �

.... …2

` �2; B

.... …1

` �1; A

.... ƒ

` :A; :B; �

` :B; �1; �
cut

` �; �
cut

(6.14)

The matricial representation of a linear proof in GoI is given by the symmetry
(called wire) on the occurrence space representing the exchange between the dual
occurrences of formulas in the axioms of the proof; for instance, to the following
proof …8

` A; � A ` B; � B

` A ˝ B; � A; � B

` A ˝ B; � A` � B (6.15)

8Where �; ˝;` denote, respectively, linear negation, multiplicative conjunction (tensor) and
multiplicative disjunction (par).



104 P. Pistone

one straightforwardly associates the symmetry below, acting on the space generated
by A1; B1; � A2; � B2 (isomorphic to C

4),9 which exchanges, respectively, jA1j
with j � A2j and jB1j with j � B2j:

� D

0
BB@

0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

1
CCA (6.16)

Not every symmetry on the occurrence space comes from a proof of the formula
associated; this is because the representation of proofs as wires radically forgets
about rules (except axiom rules): it erases all sequentiality (i.e. rule-application)
from the proofs.

In order to characterize the wires which represent correct sequent calculus proofs,
the elegant solution, coming from proofnet theory, is to represent rules as tests to
be performed on the wires: every logical rule is interpreted as a set of permutation
matrices on the occurrence space, so that inductive composition of rules produces a
set of general permutations �i (which can still be seen as wires) on the occurrence
space, that can interact with the wire. In GoI, interaction (cut-elimination) can be
directly implemented on wires: the intuition behind that is that the interaction of two
wires is obtained by “plugging” them together to produce another wire:

A1 A2 A3 A1

becomes

A3

(6.17)

In geometrical terms, this means to go through all the paths produced alternating
the two wires. Let’s see a little more in detail how to use this idea to interpret cut-
elimination in sequent calculus: the cut rule (in locative form)

.... …

` �; A1

.... ƒ

`� A2; �

` �; �
cut

(6.18)

is represented (as every rule) as a test given by the following symmetry on the
occurrence space which is the direct sum of the occurrence spaces of � and �:

� D

0
BB@

I 0 0 0

0 0 I 0

0 I 0 0

0 0 0 I

1
CCA (6.19)

9In this section, I’ll adopt the convention to name sequent calculus proofs with capital greek letters
…; ƒ; : : : and with small letters �; �; : : : the wires, respectively, associated.
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� acts as the identity on the subspace j�j ˚ j�j and as a symmetry on the space
jA1j ˚ j � A2j exchanging every atomic occurrence in A1 with its dual one in
� A2.

We interpret the cut-elimination algorithm as follows: suppose to start in a point
in j�j and to reach, by the symmetry � , a point in jA1j; then, by the symmetry � ,
you are sent to a point in jA2j, and two distinct possibilities arise:

• The symmetry � sends you into j�j, and you’re done, since you’ve exited the
“combat zone”.

• � sends you to another point in jA2j; by � , you are sent back into jA1j. Again,
two distinct possibilities arise. . . .

Strong normalization (i.e. logical correctness) warrants that you will always exit
jA1j ˚ jA2j (towards j�j ˚ j�j) in a finite amount of time, that is, that you won’t
get into a cycle in jA1j ˚ jA2j.

To simplify things, let’s suppose � D ;; then, given the block decomposition,

� D
�

��� ��A

�A� �AA

�
(6.20)

the general algorithm can be translated into the expression

��� C ��A

�
� C ��AA� C ��AA��AA� C � � � C �.�AA�/n C : : :

�
�A� (6.21)

which, if the series
P1

n .�AA�/n converges, corresponds to the algebraic
expression10

��� C ��A�
�
I � �AA�

��1
�A� (6.22)

Strong normalization is then translated into the nilpotency (corresponding to
acyclicity) of �AA� , namely, the existence of an integer N , the order of nilpotency,
such that .�AA�/N D 0, what trivially implies convergence: nilpotency reduces
indeed the expression (6.22) to the finite one below

��� C ��A

�
� C ��AA� C ��AA��AA� C � � � C �.�AA�/N

�
�A� (6.23)

corresponding to a finite computation.
It is now possible to implement typing through tests: let’s say that two wires

�; � on the same occurrence space are polar (notation, �?� ) when �� is nilpotent,
and let S? WD f� 2 M.X /j�?�; � 2 Sg for every set S of wires on a given
occurrence space X . We recover thus logical types as the “abstract types” of the
previous section: they are polar to sets of tests induced by logical rules, that is, as

10A simple calculation shows that, for u a linear operator, .I � u/�1 D P
1

n un, given the
convergence of the series on the right or, equivalently, the invertibility of I � u.
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the sets of all the wires following a given sequence of rules. The concrete translation
of the rules of logic into tests follows the ideas in Girard (1987b), but I won’t enter
here into the details.

Notice that this framework enables the issue of internal completeness: do
all wires in a given logical type come from actual sequent calculus proofs?
A fundamental result, giving substance to the whole theory at the end of the eighties,
was the theorem establishing completeness in the case of multiplicative linear logic
(see Girard 1987b).

The justification for modus ponens we gave in the previous section can now be
translated in the vocabulary of GoI as follows: given a wire � on the occurrence
space jAj representing a proof of A and a wire 	 on the occurrence space jAj C
jBj representing a proof of A ) B , we can obtain a wire Œ	
� (intuitively, the
application of 	 to � ) on the occurrence space jBj representing a proof of B; in fact
	 can be pictured as the block matrix

	 D
�

	AA 	AB

	BA 	BB

�
(6.24)

where 	XY represents a linear operator from jX j to jY j. Following (6.22), Œ	
� is
defined as follows:

Œ	
� D 	BB C 	BA�.I � 	AA�/�1	AB (6.25)

what can be done only in case the series
P1

i .	AA�/n converges (i.e. I � 	AA�

is invertible). As expected, for wires coming from logical syntax, convergence is
assured by the proof that 	AA� is nilpotent (this constituted in fact the main theorem
of GoI – see Girard (1989)).

Remark that the nilpotency order N can be arbitrarily big, and it can be read as a
measure of the complexity involved in the computation: it provides indeed a bound
on the number of iterations necessary to reach convergence. Consider the following
(linear) proof

A3 ` A1 A2 ` A4

A1 ) A2; A3 ` A4

A1 ) A2 ` A3 ) A4 (6.26)

represented by the wire

	 D

0
BB@

0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

1
CCA (6.27)

Let’s call � the simple wire . 0 1
1 0 / on the occurrence space corresponding to the first

two occurrences of A in the previous proof, representing the axiom A ) A; we
can easily compute Œ	
� and find that the nilpotency order is bounded by 2, the
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dimension of the occurrence space in which 	 and � actually “meet”. Again, no
room for doubt, no room for the Tortoise.

The wire 	 corresponds to the �-calculus term �f:�x:.f /x, usually taken as
the Church numeral 1. On the other hand, the general Church numeral n D
�f:�x:.f /nx requires the encoding in GoI of n contractions. This means that we
must transform, in a linear way, a space of dimension k C n into a space of
dimension n. This is done by means of a linear isomorphism ˆ W X 2 ! X .
The existence of these isomorphisms requires the adoption of infinitary operator
algebras, like C �-algebras. To give an example, if we consider an operator algebra
acting over the Hilbert space `2.N/, we can take

ˆ

 X
n

.˛nen ˚ ˇnen/

!
D
X
2n

˛2ne2n C
X
2nC1

ˇ2nC1e2nC1 (6.28)

which follows the coding of pairs of integers into integers known as “the Hilbert
Hotel”. Concretely, the Hilbert Hotel is what is required in order to double a wire �

into two distinct isomorphic copies � 0; � 00: here is a typical feature of GoI, namely,
the exposition of the procedures implicit in the manipulation of formal systems
(introducing superscripts may indeed require to “make space on the blackboard”).

The subjectivity of notations is thus eventually recovered: the Hilbert Hotel by no
means constitutes a canonical choice for the isomorphism ˆ, and different choices
are not warranted to agree, i.e. to interact without producing interferences; ˆ can be
written as ˆ D P C Q with the property that for every u; v 2 X ,

P �uPQ�vQ D Q�vQP �uP

P �Q D Q�P D 0
(6.29)

it can thus be used to produce commutations between arbitrary operators, by sending
them into disjoint copies of the same universe. Remark that, when interpreting
logic, this doubling of the universe has the effect to enlarge the dimension of the
occurrence space (without violating linearity). On the other hand, any P and Q

satisfying (6.29) will do the job, so that we can imagine infinite many different
possibilities to implement an apparently simple task. By the way, the nilpotency
order of computations (and thus the complexity involved in normalization proofs),
as I’m going to make a bit more clear, will be highly sensible to the choice of P and
Q, since the latter discipline the growth of the occurrence space during computation.

We can represent, for instance, the numeral 2, associated to the following proof
(where Af .2;4/; Ag.3;5/ denote fresh locations, respectively, depending on 2; 4 and
3; 5),

A1 ` A2 A3 ` A4 A5 ` A6

A2 ) A3; A4 ) A5; A1 ` A6

Af .2;4/ ) Ag.3;5/; A1 ` A6

.C /

Af .2;4/ ) Ag.3;5/ ` A1 ) A6 (6.30)
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as follows: from the 6 � 6 wire,11 representing the axioms,

0
BBBBBBB@

0 0 0 0 1 0

0 0 1 0 0 0

0 1 0 0 0 0

0 0 0 0 0 1

1 0 0 0 0 0

0 0 0 1 0 0

1
CCCCCCCA

(6.31)

we pass, through two linear isomorphisms P W jA2j ˚ jA4j ! jAf .2;4/j and Q W
jA3j ˚ jA5j ! jAg.3;5/j satisfying (6.29), to the 4 � 4 contracted wire

	.2/ D

0
BB@

0 PQ� P � 0

QP � 0 0 Q�
P 0 0 0

0 Q 0 0

1
CCA (6.32)

We can verify now that Œ	.2/
� still verifies nilpotency, but its order is now bounded
by 4, meaning that the occurrence space of � has been doubled by P and Q during
interaction (or, equivalently, that � has been doubled in P �P � C Q�Q�, that is, in
what we would naturally write � 0; � 00): in order to use 	.2/, one has “made space
on the blackboard” to create new copies.

On the other hand, suppose one makes the two distinct copies of integer
representations interact, i.e. to represent the computation .m/n, which in �-calculus
leads to an exponential growth:

.n/m � .�f:�x:.f /nx/�g:�y:.g/my

�ˇ �x:.�g:�y:.g/my/n�k�y:.x/mk

y

D �x: .�g:�y: .g/ : : : .g/„ ƒ‚ …
m times

y/ : : : .�g:�y: .g/ : : : .g/„ ƒ‚ …
m times

y/

„ ƒ‚ …
n�k times

�x: .x/ : : : .x/„ ƒ‚ …
mk times

y

�ˇ �x:�y: .x/ : : : .x/„ ƒ‚ …
mn times

y � mn (6.33)

From the viewpoint of formal systems, this poses strictly no problem
(since variables and terms can be copied as many times as desired), but, in GoI,
where every occurrence must receive a distinct location, one needs isomorphisms

11To be precise, the wire corresponds to a linear operator u whose support is a projection � of
dimension 6, i.e. such that u D �u� , and which can thus be thought of as a 6 � 6 matrix. In the
following, I’ll freely use matrices to represent linear operators of finite support.
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whose composition (inducing a group structure) provides enough space to
implement the computation (6.33). In this manner, time and space requirements
are translated into the algebraic properties of the group of isomorphisms chosen
(see Girard 2007 for a discussion).

Now, we can well imagine a tortoise accepting modus ponens and demanding for
more instructions for its application: since lacking the relevant – though logically
arbitrary – isomorphisms, she simply does not know how to write something
which would conform to the rule, and so she asks for further explanations. For
instance, in (6.33) she could well question the convergence of reductions, since the
possibility to write (6.33) undermines the validity of what (6.33) expresses: in order
to show convergence of a notation for exponentials, one has to adopt an explicitly
exponential notation (look at the underbraces)!

By inflating the argument, as relying on higher forms of the modus ponens
schema (or some schema defining exponential functions), still the tortoise would
not know how to accept the conclusion, since she would find herself in a completely
isomorphic situation: the instructions she needs are inexorably left implicit in the
description of logical rules; in order to investigate what it is to follow the rules of
logic, then, one has to take into consideration the concrete manipulation of symbols
in time and space.

To conclude, I add that, from a purely mathematical perspective, the purpose
to characterize in purely algebraico-geometrical terms the subjectivity of formal
systems and to describe logically their interactions has already led to some
considerable results (concerning the implicit characterization of complexity classes
like ELEMENTARY, P or NL, see for instance Girard (2012), Girard (2011a), and
Aubert and Seiller (2012)) and constitutes one of the most promising technical
aspects of research on transcendental syntax.
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