
Chapter 2
Plane and Solid Geometry: A Note on Purity
of Methods

Paolo Mancosu and Andrew Arana

2.1 Introduction

Traditional geometry concerns itself with planimetric and stereometric
considerations, which are at the root of the division between plane and solid
geometry. When one raises the problem of the relationship between these two
areas, one encounters epistemological, ontological, semantical, and methodological
problems. In addition, other issues related to psychology and pedagogy of
mathematics emerge naturally. In this note (based on Arana and Mancosu 2012),
we will focus on a methodological aspect: purity of methods (see Detlefsen 2008
and Detlefsen and Arana 2011). After a few historical remarks concerning the
role played by solid geometry in the development of plane geometry, we will
move on to the analysis of a specific case, Desargues’ theorem on the plane
(which we will call “Desargues’ plane theorem”). This theorem was proved by
Desargues by making use of metric notions (congruence principles) that were key
to a theorem that played a central role in the demonstration, namely, Menelaus’
theorem. However, the development of geometry in the nineteenth century led
to the analysis of the foundations of projective geometry and to the attempt to
eliminate as much as possible from this discipline non-projective notions such as
congruence or measure. Desargues’ theorem played a crucial role in this type of
investigation. A purely projective proof of this theorem had already been given in
1822 by Poncelet. Poncelet had shown how a version of Desargues’ theorem in
space (we will call it “Desargues’ solid theorem”) provided, as a simple corollary,
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a projective demonstration of Desargues’ plane theorem. The appeal to congruence
in Desargues’ original proof for the plane theorem was thus eliminated through
the introduction of spatial notions. One can however ask whether this appeal
to space is legitimate and necessary. The legitimacy question originates from
considerations related to purity of methods. The issue about necessity is tied to
logical considerations. One had to wait until the works of Peano and Hilbert to
obtain an (affirmative) answer to the latter question. Moreover, these results are at
the basis of a more articulate discussion of the legitimacy problem (namely, the
purity problem). These considerations will be developed in the final part of the note.

2.2 Historical Notes on the Relationship Between Plane
and Solid Geometry

In ancient geometry, we encounter few interesting applications of solid geometry
to plane geometry (of course, solid geometry requires plane geometry). Euclid’s
Elements present us with a sharp separation between plane geometry and solid
geometry (with the latter relegated to the last books of the Elements), a division that
will have a lasting impact on the presentation of elementary geometry until the end
of the nineteenth century. There are however, already in Greek times, some advanced
directions of research in which techniques of solid geometry are applied to the study
of problems in plane geometry. We can mention, for instance, the quadrature of the
circle provided by (Pappus 1876–1878) which is obtained generating the quadratrix
curve on the plane through a projection of the cylindrical helix. It is also important to
note that the distinction between plane, solid, and linear problems given by Pappus
is orthogonal to that between plane and solid geometry. Pappus’ taxonomy concerns
the types of curves required for the solution of problems (line and circle for plane
problems, conic sections for solid problems, and “more complex” curves for the
linear problems). Euclid’s solid geometry ends up classified as “plane” in Pappus’
taxonomy, and conversely, problems stated in plane geometry, such as the trisection
of an arbitrary angle, are classified as “solid.” While Pappus criticizes the use of
curves that do not correspond to the nature of the problem (such as the use of
conic sections for solving “plane” problems), we are not aware that any Greek
mathematician (or philosopher) ever raised objections to the use of solid geometry
in investigations of problems of plane geometry.

In the seventeenth century, one notices a lively interest for the application of
solid geometry in the solution of problems in plane geometry. Consider for instance
the example of Evangelista Torricelli. In his treatise, De quadratura parabolae
(1644; see Torricelli 1919–1944), Torricelli presented 20 different proofs of the
quadrature of the parabola (a theorem of plane geometry proved for the first time
by Archimedes) and classified them according as to whether they were proved
by “classical” demonstrations (using techniques by reductio ad absurdum) or
with demonstrations obtained through the geometry of indivisibles of Cavalierian
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inspiration. What is striking in this treatise is Torricelli’s attention vis-à-vis the
use of solid geometry in the proofs of theorems of plane geometry. All the most
important results of Euclidean and Archimedean stereometry are appealed to and
Torricelli showed how one can obtain the quadrature of the parabola from each
one of these stereometric theorems, either using exhaustion techniques (reductio
ad absurdum) or indivisibilist arguments. Of course, not a single one of these
stereometric results can be considered necessary for the proof of this plane theorem,
for Archimedes had already given a proof that only appeals to concepts and results of
plane geometry. Torricelli does not raise any methodological problems concerning
the use of solid geometry in investigating problems of plane geometry.

With the development of projective geometry in the nineteenth century, the use
of spatial techniques in the study of problems of plane projective geometry begins
to show its fruitfulness. Monge’s school, in particular, made extensive use of the
interaction between planar and spatial notions. In his famous 1837 Aperçu, Chasles
described the school of Monge by means of its propensity towards the use of three
dimensions in the proof of plane theorems.

We conclude these brief historical remarks by recalling that within elementary
geometry, the separation between plane and solid geometry was challenged seri-
ously for the first time in the work of the Italian geometer Riccardo de Paolis in
Elementi di geometria (1884). In this book, de Paolis emphasized the importance of
analogies between plane and solid geometry (angles-diedra, polygons-polyhedra,
etc.) as well as the importance of using space for the understanding and the
simplification of theorems of plane geometry. This “fusionist” position, namely, the
request that plane and solid geometry be developed together, was at a source of the
debate known as “fusionism” which saw the involvement of Italian, French, and
German geometers. The debate between those who advocated “fusionism” and their
opponents led to discussions concerning the legitimacy as well as the necessity of
using space in proofs of theorems in plane geometry. But in order to seriously tackle
such issues, one had to wait for the foundational works of Peano and Hilbert, which
we will discuss below.

2.3 The Foundations of Projective Geometry

In the early nineteenth century, geometers set out to develop the foundations of
projective geometry, independently of Euclidean geometry. Some, for instance,
Möbius and Plücker, sought to develop an analytic projective geometry, analogous
to Cartesian analytic geometry for Euclidean geometry. Others, for instance, Steiner,
sought a coordinate-free development of projective geometry that had the same
power as the new analytic projective geometry. In these research programs, these
geometers freely used metric considerations. They appealed either to the Euclidean
distance metric or to principles of proportionality or congruence. However, these
are not projectively invariant.
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Beginning with his Geometrie der Lage (1847), von Staudt sought to eliminate
these metric considerations from projective geometry, on purity grounds:

I have tried in this work to make the geometry of position into an independent science that
does not require measurement.

Though there were gaps concerning continuity that were later filled by others,
von Staudt’s work yielded a means of defining projective coordinates by purely
projective means. The key to his accomplishment was a particular construction
(“quadrilateral construction”), which provides a way, given any three collinear
points, to find uniquely a fourth point on that line with a certain relation to the other
three points; it is then said that the four points together form a “harmonic range”
(a notion that we do not need to define here). The uniqueness of the fourth harmonic
point can be shown by metric considerations. Following his aim of purifying
projective geometry of metric considerations, von Staudt proved the uniqueness of
the fourth harmonic point by purely projective means, in particular by appealing to
Desargues’ theorem whose statement does not involve any metric notion.

Desargues’ Plane Theorem If two triangles lying in the same plane are such
that the lines connecting their corresponding vertices intersect at a point, then the
intersections of their corresponding sides are collinear.

As we have already mentioned, Desargues’ original proof appeals to metric
notions, since it appealed to congruence by way of Menelaus’ theorem. Von Staudt’s
aim was to purify projective geometry of metric considerations and, in particular, to
define projective coordinates by purely projective means. The key to doing so was
Desargues’ theorem.

His aim would only have been satisfied if he had a nonmetrical proof of
Desargues’ theorem. However, Desargues had also stated a solid version of the
result.

Desargues’ Solid Theorem If two triangles lying in different planes are such
that the lines connecting their corresponding vertices intersect at a point, then the
intersections of their corresponding sides are collinear.

The planar Desargues’ theorem can be proved by “projecting” the solid version
into the plane, as Poncelet showed in his Traité des propriétés projectives des
figures (1822). This proof is purely projective, avoiding metrical considerations (all
one needs to observe is that two planes intersect at a line and that the lines that
connect the vertices of the triangles lying on different planes can only meet in the
line of intersection of the two planes). Hence, von Staudt was able to achieve his
aim by using this proof. However, this proof draws on considerations from solid
geometry, despite the fact that Desargues’ theorem concerns just triangles in the
plane.

We have thus reached the point where the fusionist debate began. That fusionism
had to be a necessity in the foundations of projective geometry was also the
conclusion reached by Felix Klein in his article Über die sogenannte Nicht-
Euklidische Geometrie (1873).
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In an influential 1891 lecture (Wiener 1892) remarked, without proof, that
Desargues’ theorem cannot be proved by purely planar projective considerations,
observing that “this area of geometry is not self-contained.” Peano and Hilbert took
up this metamathematical question shortly thereafter.

2.4 Peano and Hilbert

The key to Klein’s observation on the necessity of appealing to space in the
foundations of projective geometry is Beltrami’s theorem (1865), which says that a
“smooth” (i.e., Riemannian) surface has constant curvature if and only if it can be
mapped to a plane so that the geodesics of that surface are mapped to straight lines
in that plane. The result applies to the Euclidean plane and even to the projective
plane. Klein understood Beltrami’s theorem as asserting that a Riemannian surface
of nonconstant curvature cannot be represented on a plane so that the geodesics of
that surface “behave” like straight lines in the plane.

In 1894 Peano developed this suggestion, sketching a proof that his axioms
of planar geometry have models in which Desargues’ theorem fails by appealing
to Riemannian surfaces of nonconstant curvature. Hence, his planar axioms are
provably insufficient for proving Desargues’ theorem. Once solid axioms are added,
Peano’s axioms prove Desargues’ theorem as expected.

In lectures delivered in 1898–1899, Hilbert developed his own axiomatization for
geometry, dividing his axioms into classes I (incidence), II (order), III (parallel), IV
(congruence), and V (continuity). He observed that Desargues’ theorem is provable
in this system using spatial axioms, or alternately using axioms of congruence. He
then showed that Desargues’ theorem cannot be proved in plane geometry (in fact,
from axioms I 1–2, II, III, IV 1–5, and V), by presenting explicitly a model in which
these axioms are satisfied but Desargues’ theorem is not. Hence, it follows that his
planar axioms (I 1–2) are provably insufficient for proving Desargues’ theorem.

In his lectures of 1898–1899 (Lectures on Euclidean Geometry), Hilbert com-
mented upon the result by emphasizing the importance for the issue of purity of
methods:

This theorem gives us an opportunity now to discuss an important issue. The content [Inhalt]
of Desargues’ theorem belongs completely to planar geometry; for its proof we needed to
use space. Therefore we are for the first time in a position to put into practice a critique
of means of proof. In modern mathematics such criticism is raised very often, where the
aim is to preserve the purity of method [die Reinheit der Methode], i.e. to prove theorems if
possible using means that are suggested by [nahe gelegt] the content of the theorem. (Hallett
and Majer 2004, pp. 315–316)

What is critical for a proof’s being pure or not, then, is whether the means it
draws upon are “suggested by the content of the theorem” being proved. Since
the “content of Desargues’ theorem belongs completely to planar geometry,” solid
considerations would not appear to be “suggested by the content of the theorem,”
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and therefore, it would seem that Hilbert judged solid proofs of Desargues’ theorem
impure. Hilbert also showed that if a planar geometry satisfies axioms I 1–2 (the
planar incidence axioms), II (the order axioms), and III (the parallel axiom), then
Desargues’ theorem is necessary and sufficient for that planar geometry to be an
element of a spatial geometry satisfying all the incidence axioms I in addition to the
axioms of II and III. That is, a plane satisfying axioms I 1–2, II, and III, and also
satisfying Desargues’ theorem, will also satisfy the spatial incidence axioms I 3–7.
Hilbert proved this by showing, firstly, how, in a planar geometry satisfying axioms
I 1–2, II, III, and Desargues’ theorem, to construct an algebra of segments that is
an ordered division ring and, secondly, how this ordered division ring can be used
to construct a model of axioms of I, II, and III, that is, a model of spatial geometry.
(Order is inessential here.)

Here is how Hilbert summarized the situation in his 1898–1899 lectures:

Then the Desargues Theorem would be the very condition which guarantees that the plane
itself is distinguished in space, and we could say that everything which is provable in space
is already provable in the plane from Desargues. (Hallett and Majer 2004, p. 240)

In other words, Desargues’ theorem can be used as a replacement for Hilbert’s
solid axioms: it has the same provable consequences as those axioms in Hilbert’s
axiomatic system (see Hilbert 1899, 1971).

2.5 The Problem of Content

In a recent article (Hallett 2008) and in his introductions to the Hilbert’s lectures on
geometry published in the first volume of the Hilbert Editions (Hallett and Majer
2004), Michael Hallett has drawn some interesting consequences, which in our
opinion are questionable, on the notion of the content of Desargues’ theorem and on
the issue of purity of methods. Hallett writes:

What this shows is that the Planar Desargues’s Theorem is a sufficient condition for the
orderly incidence of lines and planes, in the sense that it can be used to generate a space.
We thus have an explanation for why the Planar Desargues’s Theorem cannot be proved
from planar axioms alone: the Planar Desargues’s Theorem appears to have spatial content.
(Hallett 2008, p. 229)

Moreover, in his introduction to Hilbert’s 1898–1899 lectures, Hallett writes that
Hilbert’s work “reveals that Desargues’ planar Theorem has hidden spatial content,
perhaps showing that the spatial proof of the Planar Theorem does not violate
‘Reinheit’ after all” (pp. 227–228). Thus, Hallett believes that Hilbert’s work should
cause us to revise our judgments of what counts as a pure proof of Desargues’
theorem. While solid considerations would seem “at first sight” to be impure for
proving Desargues’ theorem, Hallett infers from Hilbert’s work reveals that they are
not, for Desargues’ theorem is in fact a theorem with (hidden) solid content.

This position defended by Hallett appeals to the notion of “hidden higher-
order content” developed by Dan Isaacson in the context of some articles aimed at
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providing an interpretation of Gödel’s incompleteness results for Peano arithmetic
(Isaacson 1987). In our paper (Arana and Mancosu 2012), we develop a detailed
analysis both of Isaacson’s notion of “hidden higher-order content” as well as the
consequences drawn from it by Hallett with respect to the issue of purity of methods.

The central aspect of the issue is that the notion of content proposed by Hallett, on
the basis of the Hilbertian analysis of Desargues’ theorem, is based on the deductive
role played by this theorem with an axiomatic context. This notion is very close
to that of content as deductive equivalence (within an axiomatic system) that had
been proposed by Carnap. Hallett sees in Desargues’ plane theorem a statement
with (hidden) solid content exactly because, within a certain axiomatic theory,
Desargues’ theorem plays the same inferential role as the space incidence axioms.

Our criticism to Hallett’s position is based on the following five objections, which
we simply state here without giving any arguments (for which we refer to Arana and
Mancosu 2012):

(a) If the content of Desargues’ theorem were spatial, it would seem to follow that
an investigator with no beliefs or commitments concerning space (such as a
character of Flatland) could not understand Desargues’ theorem, which seems
implausible.

(b) To claim that Desargues’ plane theorem has a solid content on account of the
inferential role it plays in Hilbert’s axiomatic system requires a deep metathe-
oretical analysis such as the one carried out by Hilbert. But what to say then
of statements that have not yet been subjected to such a deep metatheoretical
analysis or, worse, for which we don’t know whether they are true or false (such
as the twin prime conjecture)? Intuitively, we understand the content of the twin
prime conjecture even though we have no metatheoretical analysis of it.

(c) Hallett’s view implies a radical contextualism regarding the content of
statements like Desargues’ theorem. The inferential role of Desargues theorem
within metrical geometries is quite different than its inferential role within
projective geometry; in the former, spatial considerations are unnecessary,
while in the latter they are necessary. If Hallett were correct, the content of
Desargues’ theorem would change dramatically depending on which axiomatic
context we use it in, without its formulation changing at all.

(d) Hallett infers that the spatial content “revealed” by Hilbert’s work belongs
specifically to Desargues’ theorem, when Hilbert’s work shows only that
Desargues’ theorem added to the planar axioms of classes I, II, and III has the
same spatial consequences as the spatial axioms of those classes. Even if it is
reasonable to maintain that the planar axioms plus Desargues’ theorem have
tacit spatial content on account of their shared inferential role (which we have
contested), it is illicit to single out that content as belonging to Desargues’
theorem. For those spatial consequences belong only to the axiomatic system
as a whole, not to Desargues’ theorem alone. While it is true that without
Desargues’ theorem these spatial consequences are not ensured, it is also true
that Desargues’ theorem alone does not ensure them. Hence it would be more
accurate to say that these spatial consequences are partly the result of the planar



30 P. Mancosu and A. Arana

axioms and partly the result of Desargues’ theorem. Indeed, Hallett’s argument
would just as well establish that one of the planar axioms, say I.1, has tacit
spatial content.

(e) From the analysis of the notion of content defended by Hallett, it follows that
every theorem has a pure proof. It seems to us implausible that this can be
true a priori, simply as a consequence of the analysis of the notion of content.
Purity would end up being trivialized.

We conclude that the notion of content offered by Hallett can be of interest
for other theoretical goals but not for the clarification of the ascription of purity
that are often found in mathematical practice. The notion of content that in our
opinion is useful for clarifying judgments about purity of proofs must be tied to the
understanding of the meaning of the statement of a theorem and not to its inferential
role within an axiomatic system. Moreover, our position on Desargues’ theorem
seems to us to be identical to the one defended by Hilbert: Desargues’ plane theorem
does not have a pure proof in a projective context.
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