
Chapter 10
On the Distinction Between Sets and Classes:
A Categorical Perspective

Samuele Maschio

10.1 Introduction

10.1.1 The Thorny Relation Between Categories and Sets

The relation between sets and categories is a thorny and intriguing topic (see, e.g.,
Blass 1984). The set-theoretical foundations of category theory were discussed by
some mathematicians, e.g., by Feferman (1977), Engler (1969), and Lolli (1977).
On the contrary, the categorical foundation of set theory is not yet a completely
clear matter. Categorical logic allows us to talk about the categorical models of
mathematical theories; in particular, it makes possible to talk about the categorical
models of set theories, for example, IZF, CZF, and ZF. In 1995, Joyal and Moerdijk
in their algebraic set theory (Joyal and Moerdijk 1995) proposed a technique to
ensure the existence of internal models of ZF and IZF in a category. Before this,
mathematicians had proposed categorical models of set theory within categories.
However, these categories were still built using a model of set theory. Joyal and
Moerdijk’s approach has thus two main advantages:

1. It allows to prove the existence of a model of IZF inside a category by simply
checking some purely categorical properties of a family of arrows.

2. It works for a relatively large family of categories.

Their book led to the large spread of several works (see, e.g., Awodey et al. (2007)
or Simpson (1999)). Algebraic set theory was expected to be not only a useful tool
for mathematics but also something interesting for foundational studies.
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Category theory provides a foundation for mathematics: this is maybe one of
the most striking and imprecise sentences (see, e.g., Marquis 1995; Landry and
Marquis 2005). In fact this is not necessarily wrong, but it is indispensable to clearly
explain the meaning of the words foundation for mathematics. Kreisel observed
(see e.g., Kreisel 1971) that category theory provides a powerful tool to organize
mathematics; this is also what many mathematicians interested in category theory
think, considering it as a foundation.

However, there are also some proposals to use category theory to build a theory
of sets based on functions. On such a theory, it is possible to found the whole
mathematical building: the typical examples are the axiomatic systems proposed by
Lawvere (2005) and philosophically analyzed by McLarty, for example, in McLarty
(2004).

This paper is in accordance with the first vision of category theory as a
foundation: we think that category theory describes mathematics in a very effective
way. In the following pages, this descriptive power will be shown by using category
theory to explain the role of classes in the practice of ZF set theory. Category
theory—both in its usual and in its internal version—will be used to represent the
relation between mathematics and metamathematics.

10.1.2 A Nontrivial Question

The original title of this paper was What is the real category of sets?. Since it was
a little pretentious and too vague, we changed it into the present one. However, the
question What is the real category of sets? is strongly connected with the content
of the paper and has been the motivation for the work. In fact, in the practice of
mathematics, we often refer to the category of sets, even if we use a category of
sets. Actually we typically use categories of sets which are built starting from a
given model of ZF set theory. So the question should be rephrased as follows: Is
there anything that is uniquely determined and that can be called the real category
of sets? If such a category exists, then it must be the common core of all the different
categories of sets. This is why we chose to propose an answer considering the
syntactic category of definable classes ofZF and its internal category of sets (which
are in fact mere syntactical constructions). This is motivated by a fundamental
correspondence between functors defined on the syntactic category of a theory with
values in a category equipped with appropriate structures and models of the same
theory in it. This particularly applies to ZF .

10.1.3 Classes and ZF

Set theory is mainly ZF (or—in other words—most set theorists study ZF ). ZF
is a classical first-order theory with equality, and its language has (countably many)
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individual variables, no functional symbols, and a binary relational symbol 2; its
specific axioms are the following ones:

1. 8x8y.8t .t 2 x $ t 2 y/ ! x D y/;
2. For every formula P with free variables p1; : : : ; pk; t ,

8p1 : : :8pk8x9y8t .t 2 y $ .t 2 x ^ P //I

3. 8x8y9z8t .t 2 z $ .t D x _ t D y//;
4. 8x9z8t .t 2 z $ 9y.t 2 y ^ y 2 x//;
5. 8y9z8x.x 2 z $ x � y/;
6. For every formula F with free variables p1; ::; pk; x; y,

8p1 : : :8pk8z.8x.x 2 z ! 9ŠyF / ! 9z08x.x 2 z ! 9y.y 2 z0 ^ F ///I

7. 9x.0 2 x ^ 8t .t 2 x ! �.t/ 2 x//;
8. 8x.x ¤ 0 ! 9z.z 2 x ^ 8t .t 2 x ! t … z///;

where, as usual, x � y is a shorthand for 8t .t 2 x ! t 2 y/, �.t/ stays for t [ ftg,
and 0 is a shorthand for the empty set. In detail, for every formula P D P.x/,

P.�.t// means 8x.8s.s 2 x $ ..s D t / _ .s 2 t /// ! P.x// and

P.0/ means 8x.8t .t … x/ ! P.x//:

Set theorists work with sets, but they also talk about classes. However, classes do
not exist in ZF . In practice, set theorists consider classes as shorthands or formal
writings. If P is a formula with a distinguished variable x, then a class is a formal
writing fxjP.x/g, and the expression

t 2 fxjP.x/g

is simply a shorthand for P Œt=x�. For example, set theorists write t 2 V , as a
shorthand for t 2 fxjx D xg, which is a shorthand for t D t . They also write
t 2 ON as a shorthand for t 2 fxjON.x/g, which is a shorthand for ON.t/, where
ON.x/ is the formula expressing that x is an ordinal:

8s8s08s00..s 2 t ^ s0 2 t ^ s00 2 t ^ s 2 s0 ^ s0 2 s00/ ! s 2 s00/^
^8s8s0..s 2 t ^ s0 2 t ^ s ¤ s0/ ! .s 2 s0 _ s0 2 s// ^ 8s.s 2 t ! s � t /:

It is clear that classes are not mathematical, but metamathematical objects. However,
these shorthands share some properties with sets. For instance, the notion of inter-
section of classes or the notion of subclass can be given a meaning. This accidental
fact leads of course to some confusion! As a matter of fact, the metamathematical
level is often mixed up with the mathematical one. As a consequence, impressive



188 S. Maschio

(but at the same time highly incorrect) assertions are not uncommon. This is a typical
example:

Sets are exactly those classes for which the comprehension axiom is true..�/

Sentences like this can be used as a sort of convincing arguments to give students
a hint of the notion of set. Nonetheless, in the context ofZF , these statements sound
quite dangerous rather than useful.

Set theorists easily use classes, which are formal objects, as quasi-sets, for
two reasons. Firstly, we have already seen that their syntactical structure (and
in particular the use of connectives and quantifiers) makes this legitimate for
many operations. Secondly, set theorists know that the theory of classes NBG is
a conservative extension of ZFC. Nevertheless, in this context, classes are nothing
more than syntactical objects.

In the following sections, we will see how the use of category theory can help
to describe the relation between metamathematics and mathematics. Furthermore,
category theory makes easier the distinction between real sentences about sets and
external (naïve) ones.

10.2 The Syntactic Category of ZF

In this section, we will study the category of ZF definable classes and its relevant
subcategories. First of all, we want to define the syntactic category of ZF (see
Johnstone (2002) for the general construction). We will indicate it with ZF. Its
objects are formulas in context, i.e., the following formal writings:

fx1; : : : ; xnjP g ;

where x1; : : : ; xn is a (possibly empty) list of distinct variables and P is a formula
which has free variables among x1; : : : ; xn. An arrow from a formula in context
fxjP g to another formula in context fyjQg is an equivalence class of formulas in
context

Œ
˚
x0; y0jF �

��;

where x0 is a list of variables having the same length as x and y0 is a list of variables
having the same length as y, which satisfies the following requirements:

1. F `ZF P Œx0=x� ^QŒy0=y�.
2. F ^ F Œy00=y0� `ZF y0 D y00.
3. P Œx0=x� `ZF 9y0F .
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The equivalence relation is given by

˚
x0; y0jF � � ˚

x00; y00jF 0� iff `ZF F $ F 0Œx0=x00; y0=y00�:

For the composition, it is enough to consider the composable arrows Œfx0; y0jF g��
and Œfy0; z0jF 0g�� with all distinct variables (this doesn’t determine a loss of
generality). In this case, the composition is given by

Œ
˚
x0; z0j9y0.F ^ F 0/

�
��:

For very general reasons, the category we obtain is regular and Boolean (see
Johnstone (2002) for a proof). In particular we recall the fact that the product of
two objects fxjP g and fyjQg is given by

fx; yjP ^Qg ;

where we have supposed (without loss of generality) that all variables involved are
distinct. Moreover, terminal objects are given for example by

f j8x.x D x/g ; either fxj8t .t … x/g :

We can also easily prove that ZF is extensive, thanks to the fact that

`ZF 0 ¤ 1;

where 1 stays for �.0/.
Initial objects are given, for example, by

f j9x.x ¤ x/g ; either fxjx ¤ xg :

ZF is also an exact category; the proof of it is based on Scott’s trick (see Rosolini
2011; Maschio 2012). Finally, ZF has also a subobject classifier that is given by

Œ
˚
x; x0jx D 0 ^ x0 D 1

�
�� W fxjx D 0g ! fxjx D 0 _ x D 1g :

10.2.1 Definable Classes

The category of definable classes of ZF , which we denote with DCLŒZF �, is the
full subcategory of ZF which is determined by all those objects having a list of
variables with length 1. This is clearly conceived of as the category of classes, in the
context of the practice of ZF .
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Although DCLŒZF � is a subcategory of ZF, it is provable to be equivalent to it.
This results from the possibility to represent ordered pairs in ZF :

x D< x1; x2 >�def x D ffx1g ; fx1; x2gg :

An arbitrary object of ZF, fx1; ::; xnjP g, is isomorphic to

fxj9x1 : : : 9xn.x D<< : : : < x1; x2 >; : : : >; xn > ^P /g ;

where x is a variable not included in x1; : : : ; xn.

10.2.2 The Categorical Side of Class Operations

At this point, we would like to give an example of the categorical interpretation
of the practical operations between classes. Our aim is to prove how adequate
DCLŒZF � is for the description of the category of formal classes. On this purpose,
we will focus on intersection. We consider two definable classes fxjP g and fyjQg
(we can assume that x and y are distinct without loss of generality); we usually
consider their intersection as fxjP ^QŒx=y�g. However, this operation can be
expressed in mere categorical terms. In fact fxjP ^QŒx=y�g is isomorphic in
DCLŒZF � to the object we obtain by considering the following pullback.

10.2.3 Definable Sets

Now we will consider the full subcategory DSTŒZF � of DCLŒZF � determined by
the objects fxjP g for which

`ZF 9z8x.x 2 z $ P /:

This is the category of sets we have in mind, when we think sentence .�/ is true.
We obtain the following result:

Theorem 10.2.1. DSTŒZF � is a Boolean topos.
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Proof. Finite limits exactly correspond to finite limits in ZF: a terminal object is
given by fxjx D 0g, equalizers are exactly equalizers in ZF, while the product of
two definable sets fxjP g, fyjQg is given by

fzj9x9y.z D< x; y > ^P ^Q/g

with the obvious projections (we are assuming x and y to be distinct without loss of
generality). The subobject classifier is exactly the subobject classifier of ZF, while
exponentials fyjQgfxjP g are given by

˚
f jFun.f / ^ 8s.s 2 dom.f / $ P.s// ^ 8s0.s0 2 ran.f / ! Q.s0//

�
;

with the evaluation arrow given by

ŒfF; yj9f 9x.F D< f; x > ^ Fun.f / ^ 8s.s 2 dom.f / $ P.s//^
^8s0.s0 2 ran.f / ! Q.s0//^ < x; y >2 f /g��:

ut

10.3 Algebraic Set Theory in the Syntactic Category of ZF

In order to better understand the relation between formal classes, definable sets, and
sets, we are now going to talk a little about algebraic set theory and the syntactic
category of ZF following Rosolini’s example in Rosolini (2011); in fact the notion
of definable sets is strictly connected with a specific notion of small maps in ZF.

10.3.1 Simpson’s Axioms for Algebraic Set Theory

In this section, we will introduce a list of axioms for algebraic set theory proposed
by Simpson (see Simpson 1999). Every axiomatization of algebraic set theory is
based on a pair .C;S/ in which C is a category and S is a family of arrows of C
(called family of small maps). The axioms are the following ones:

1. C is a regular category.
2. The composition of two arrows in S is in S .
3. Every mono is in S .
4. (Stability) If f 2 S and f 0 is a pullback of f , then f 0 2 S .
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5. (Representability) For every X , there exists an object PS.X/ and an arrow
eX W2X! X �PS.X/ with �2 ı eX 2 S so that, for every  W R ! X �Z with
�2 ı  2 S , there exists a unique arrow � W Z ! PS.X/ that fits in a pullback
as follows:

6. (Power Set) vX W�X! PS.X/ � PS.X/ satisfies �2ı vX2 S ,
where vX is determined by the following property:
An arrow f D< f1; f2 >W Z ! PS.X/ � PS.X/ factorizes through vX if

and only if considering the following pullbacks

the arrow � factorizes through � 0.

We also want to recall some definitions:

Definition 10.3.1. An object U in a category C is universal, if for every object X
in C, there exists a mono j W X ! U .

Definition 10.3.2. An object U in a regular category C with a class of small maps
S is a universe if there exists a mono j W PS.U / ! U .

Definition 10.3.3. A ZF -algebra for a regular category C with a class of small
maps S is an internal sup-semilattice .U;�/ together with an arrow � W U ! U ,
so that for every � W B ! U and for every j W B ! A 2 S , there exists supj .�/ W
A ! U so that for any j 0 W B 0 ! A and �0 W B 0 ! U , once we consider the
following pullback

we have that

supj .�/ ı j 0 � �0 if and only if � ı �2 � �0 ı �1:
The morphisms of ZF -algebras are the morphisms between internal sup-
semilattices that preserve supj .�/ along j 2 S and commute with the arrows
� . An initial ZF -algebra is an initial object in the category of ZF -algebras and
morphisms between them.
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10.3.2 Small Maps in ZF

We now want to define a class SZF of small maps in DCLŒZF �. An arrow

is in SZF if and only if

`ZF 8y9z8x.F.x; y/ $ x 2 z/:

The class SZF is a class of small maps, as Simpson means (Simpson 1999):

Lemma 10.3.4. Every mono is in SZF .

Proof. This is obtained by using axiom 2 to obtain the existence of an empty set
and axiom 3 to prove the existence of singletons, once we notice that an arrow

Œfx; yjF g��
is mono if and only if

F ^ F Œx0=x� `ZF x D x0

ut
Lemma 10.3.5. Every composition of arrows in SZF is in SZF .

Proof. This is obtained by using axioms 6 and 4 ut
Lemma 10.3.6. The stability axiom is satisfied by SZF .

Proof. This is obtained by using axiom 6. ut
Lemma 10.3.7. The representability axiom is satisfied by SZF .

Proof. A definable class X D fxjP g is fixed. Then, the definable class PSZF .X/ is
given by

fyj8x.x 2 y ! P /g ;

while the definable class 2X is given by

fzj9x9y.z D< x; y > ^8t .t 2 y ! P.t// ^ x 2 y/g ;

and the arrow eX : 2X! X � PSZF .X/ is given by

Œ
˚
z; z0j9x9y.z D< x; y > ^8t .t 2 y ! P.t// ^ x 2 y/ ^ z D z0���:
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Now if the following arrow

satisfies R.x; y/ `ZF P.x/ ^ Q.y/ and `ZF 8y9y08x.R.x; y/ $ x 2 y0/,
which means that it represents (without loss of generality) a relation with the second
component in SZF , then its representing arrow from fyjQg to PSZF .X/ is given by

Œ
˚
y; y0jQ ^ 8x.R.x; y/ $ x 2 y0/

�
��:

ut
Lemma 10.3.8. The power set axiom is satisfied by SZF .

Proof. The subset relation for fxjP g is given by the following arrow:

Œ
˚
z; z0j9y9y0.z D< y; y0 > ^y � y0 ^ 8x.x 2 y0 ! P.x/// ^ z D z0���

from fzj9y9y0.z D< y; y0 > ^y � y0 ^ 8x.x 2 y0 ! P.x///g to PSZF .X/ �
PSZF .X/.

This relation is in SZF by virtue of axiom 5. ut

10.3.3 An Algebraic Set-Theoretical Light on Definable Sets

First of all, the small definable classes are exactly those classes fxjP g for which the
unique arrow to 1, which is Œfx; yjP ^ y D 0g�, is small. This means that

`ZF 8y9z8x.x 2 z $ .P.x/ ^ y D 0//:

Now we know that

`ZF 9y.y D 0/

and so the previous condition is equivalent to

`ZF 9z8x.x 2 z $ P.x//:

This means that the small definable classes are exactly the definable sets. Further-
more, fxjN.x/g is a small definable class, where N.x/ is the formula saying that x
is a finite ordinal: this follows from axioms 7 and 2.

Finally, fxjx D xg is a universal definable class (and so also a universe), because,
for every definable class fxjP g, the arrow Œfx; x0jP ^ x D x0g�� is a mono from
fxjP g to fxjx D xg.
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Last but not least, there exists an explicit (and obvious) representation for an
initial ZF -algebra: this is given by

.fxjx D xg ;vfxjxDxg; Œfx; zjz D fxgg��/:

If

Œ
˚
z; z0jF.z; z0/

�
�� W fzjP g ! ˚

z0jQ�

is small in DCLŒZF �, and Œfz; xj�.z; x/g�� is an arrow from fzjP g to fxjx D xg,
then

supŒfz;z0jF.z;z0/g�.Œfz; xj�.z; x/g��/

is given by the arrow

Œ
˚
z0; xjQ ^ 8t .t 2 x $ 9z.F.z; z0/ ^ �.z; t ///���:

10.4 The Internal Category of Sets

In this section, we will introduce internal category theory to build an internal
category of sets in ZF. This will be the internal topos induced by the initial ZF -
algebra for SZF .

10.4.1 Internal Category Theory

First of all, we need to recall the notion of internal category, which is the
generalization of the notion of small category. Although we can define an internal
category in an arbitrary category (requiring the existence of certain pullbacks), we
prefer considering the case of a category C with all finite limits.

Definition 10.4.1. An internal category of C is a 6-ple

.C0; C1; ı0; ı1; ID;�/

in which C0; C1 are objects of C and ı0; ı1 W C1 ! C0, ID W C0 ! C1,

� W C1 �� C1 ! C1
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are arrows of C, where C1 �� C1 fits in the following pullback.

The 6-ple C must satisfy the following requirements:

1. ı1 ı ID D ı0 ı ID D idC0 .
2. ı0 ı � D ı0 ı p0 and ı1 ı � D ı1 ı p1.
3. � ı dID ı ı0; idC1e D � ı didC1 ; ID ı ı1e D idC1 .
4. �ıd�ıp0; p1e D �ıdp0;�ıp1eıdp0ıp0; dp1ıp0; p1ee W .C1��C1/��C1 !
C0.

Here we denote with df; f 0e the unique arrow that exists for the definition of
pullback, and .C1 �� C1/ �� C1 is the pullback of ı1 ı � and ı0.

Before going to the next section, we show a way to externalize internal categories.
This is done in a very natural way by means of global elements.

Proposition 10.4.2. If C D .C0; C1; ı0; ı1; ID;�/ is an internal category of C and
I is an object of C, then

Hom.I; C/ WD.Hom.I; C0/;Hom.I; C1/; ı0ı.�/; ı1ı.�/; IDı.�/;�ıd.�/1; .�/2e/

is a category.

Proof. Every point of the definition of category follows immediately because of the
relative point in the definition of internal category. This is possible as the functor
Hom.I; �/ preserves all finite limits. ut
We will denote by �.C/ the category Hom.1; C/, where 1 is a (selected) terminal
object of C.

Remark 10.4.3. We should notice that an internal category in a category C with all
finite limits is nothing more than a model of the first-order theory of categories (see
Johnstone 2002) in C.

10.4.2 The Real Category of Sets: SET

We will now define an internal category of ZF (or equivalently of DCL.ZF /),
called SET , which is built on the initialZF -algebra for SZF . This category is given
by the following assignments:

1. SET 0 WD fxjx D xg.
2. SET 1 WD fF j9f 9z.F D< f; z > ^Fun.f / ^ ran.f / � z/g.
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3. ı0 WD ŒfF; xj9f 9z.F D< f; z > ^Fun.f / ^ ran.f / � z ^ dom.f / D x/g��.
4. ı1 WD ŒfF; zj9f .F D< f; z > ^Fun.f / ^ ran.f / � z/g��.
5. ID WD Œfx; F j9f .F D< f; x > ^8t .t 2 f $ 9s.s 2 x ^ t D< s; s >///g��.
6.

� WD ŒfJ;Gj9f 9f 09z9f 00.J D< f;< f 0; z >> ^Fun.f / ^ Fun.f 0/

^ran.f / � dom.f 0/ ^ ran.f 0/ � z ^G D< f 00; z > ^
^8t .t 2f 00 $ .9s9s09s00.< s; s0 >2f ^ < s0; s00 >2f 0 ^ tD< s; s00 >////g��;

once we easily realized that the object of composable arrows is given by

fJ j9f 9f 09z.J D< f;< f 0; z >> ^Fun.f /^
^Fun.f 0/ ^ ran.f / � dom.f 0/ ^ ran.f 0/ � z/g:

We obtain that

Theorem 10.4.4. SET is an internal category.

Proof. See Johnstone (1977). ut
We also derive that this is an internal topos, as every construction for a topos can be
done in ZF. This follows from a well-written proof of the fact that sets and functions
form a topos formalized in ZF .

Moreover, we should notice that this internal category exactly corresponds to
the canonical interpretation (according to model theory) of the first-order theory of
categories in ZF set theory.

10.5 Definable Sets and Global Elements

We have just well explained what we mean by the internal category SET ; we now
would like to study the category �.SET /. Following in detail the definition, the
objects of �.SET / are the equivalence classes ŒfxjP.x/g�� of definable classes
with the property that `ZF 9ŠxP.x/. The arrows of �.SET / are the classes of
equivalence Œff jP.f /g�� which satisfy `ZF 9ŠfP.f /, and

P.f / `ZF 9f 09z.f D< f 0; z > ^Fun.f 0/ ^ ran.f 0/ � z/:

As a consequence, we have the following theorem:

Theorem 10.5.1. DST.ZF / and �.SET / are equivalent.
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Proof. We need to consider the following functors:

1. P W DST.ZF / ! �.SET / is given by
P.fxjP.x/g/ WD Œfzj8x.x 2 z $ P.x//g��
P.Œfx; yjF.x; y/g��/ WD
WD Œff 0j9f 9z.f 0 D< f; z > ^8t .t 2 f $ 9x9y.t D< x; y > ^F.x; y///^
^8y.y 2 z $ Q.y///g��

2. P0 W �.SET / ! DSTŒZF � is given by
P0.ŒfzjP.z/g��/ WD fx0j9z.P.z/ ^ x0 2 z/g
P0.Œff 0jQ.f 0/g��/ WD Œfx; x0j9f 0.Q.f 0/ ^ 9z9f .f 0 D< f; z > ^ < x; x0 >
2 f //g��
where x0 is a fixed variable. (We can think of it as the first variable. The condition
for this is that the variables of the language of ZF are presented in a countable
list.)

We can then immediately see that P ı P0 is the identity functor for �.SET /, while
there is a natural isomorphism from the identity functor of DCLŒZF � to P0 ı P,
which is given by the arrows

Œ
˚
x; x0jP.x/ ^ x D x0��� W fxjP.x/g ! fx0j9z.x0 2 z ^ 8x.x 2 z $ P.x///g

ut
We can think about objects of �.SET / as sets with a name, because they are exactly
determined by a class of formulas ŒP � with one free variable; the name of the object
of �.SET / determined by ŒP � could be, for example, ŒŒP ��.

10.6 Final Remarks

In our attempt to clarify the relation between (formal) classes and sets and
between metamathematics and mathematics, by means of a unique mathematical
structure, we started by introducing the syntactic category ZF (that we proved to
be equivalent to the category of definable classes of ZF ). This category shapes the
metamathematical level: its objects are classes as are usually (see, e.g., Jech 2003)
introduced in the set theorists’ practice. Moreover, this category has an important
full subcategory: the category of definable sets, whose objects are those definable
classes fxjP g for which

`ZF 9z8x.x 2 z $ P /:

This corresponds to the naïve category of sets. Obviously, this is not the real
category of sets. In this context, the real category of sets is SET . However, this is not
a category: it is an internal category in ZF. The relation between metamathematics
and mathematics in this context exactly corresponds to the relation between
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categories and internal categories. Mathematical concepts are represented through
internal categories, and external (or metamathematical) concepts are expressed on
the categorical level. In our opinion, the most interesting result described in the
previous sections is the equivalence of the two most (at least in our opinion) natural
ways to give an external account of the notion of set. We proved that the category
of definable sets is equivalent to the category obtained by global sections on SET :
the classes that satisfy the comprehension axiom are exactly those classes that can
be named.
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