
Completeness of Separation Logic with Inductive

Definitions for Program Verification

Makoto Tatsuta1 and Wei-Ngan Chin2

1 National Institute of Informatics,
2-1-2 Hitotsubashi, 101-8430 Tokyo, Japan

tatsuta@nii.ac.jp
2 Department of Computer Science,
National University of Singapore,

13 Computing Drive, Singapore 117417, Singapore
chinwn@comp.nus.edu.sg

Abstract. This paper extends Reynolds’ separation logical system for
pointer-based while program verification by adding inductive definitions.
Inductive definitions give us a great advantage for verification, since they
enable us for example, to formalize linked lists and to support the lemma
reasoning mechanism. This paper proves its completeness theorem that
states that every true asserted program is provable in the logical system.
In order to prove its completeness, this paper shows an expressiveness
theorem that states the weakest precondition of every program and every
assertion can be expressed by some assertion.

1 Introduction

Reynolds proposed a new logical system based on separation logic for pointer
program verification [17]. It enables us to have a concise specification of program
properties and a manageable proof system. Separation logic is successful in a
theoretical sense as well as a practical sense. By using separation logic, some
pointer program verification systems have been implemented [13,2].

Inductive definitions in logical systems to formalize properties of programs
have been studied widely, for example, in [7,15,18,11]. Inductive definitions play
an important role in formalizing properties of programs in logical systems. Many
important data structures such as lists and trees are naturally represented in
logical systems by using inductive definitions, since they are recursively defined
by nature. Specifications and properties of programs can be formally represented
in a natural way in a logical system with the help of inductive definitions.

Combining with separation logic, inductive definitions give a verification sys-
tem a general mechanism to formalize recursive data structures such as linked
lists and circular doubly-linked lists. Instead of manually adding these data struc-
tures one by one in an ad hoc way, the system uniformly formalizes all these
recursive data structures once we have inductive definitions in the system. Some
properties called lemmas in [14] are important for program verification. In our
system, every lemma statement corresponding to each recursive data structure is

D. Giannakopoulou and G. Salaün (Eds.): SEFM 2014, LNCS 8702, pp. 20–34, 2014.
c© Springer International Publishing Switzerland 2014

Completeness of Separation Logic with Inductive Definitions 21

also generated automatically from the description of the recursive data structure,
and the consistency of the system is automatically preserved.

One of the most important theoretical questions for a verification system is
its completeness [1,5,9,12]. The soundness of a system guarantees that if the
correctness of a program is proved in the system, then the program will indeed
run correctly. The soundness of those existing practical systems has been proved.
However, it does not mean the system can prove all correct programs are correct,
that is, there is a possibility that some programs are not proved to be correct
by the system even though they are indeed correct. The completeness is the
converse of the soundness. The completeness of the system guarantees that if a
program runs correctly, then the system surely proves the program is correct.
The completeness of a system shows how powerful the system is.

Our contributions are: (1) an extension of separation logic for pointer while
program verification by adding inductive definitions, (2) the completeness theo-
rem of separation logic with inductive definitions for pointer while programs, and
(3) the expressiveness theorem of the separation logic with inductive definitions
for pointer while programs.

We will prove the completeness by extending the completeness results of sepa-
ration logic for pointer while programs given in [19] to assertions with inductive
definitions. The main challenge is proving the expressiveness theorem.

We say that a logical system with the standard model is expressive for pro-
grams, if the weakest precondition of every program is definable in the logical
system. At first sight, the expressiveness may look trivial, but it is indeed a
subtle problem and some pathological counterexamples are known [3].

The expressiveness theorem for Peano arithmetic and separation logic was
proved in [19] based on the following idea. We code the heap information as well
as the store information by natural numbers, and simulating program executions
as well as the truth of assertions by using Peano arithmetic. The idea uses natural
numbers to encode the current store s and heap h, respectively. The store s is
coded by a list of values in distinguished variables. We can construct a heapcode
translation HEvalA(m) of an assertion A. HEvalA(m) is a pure formula such
that A is true at (s, h) if and only if HEvalA(m) is true at s when the number
m represents the heap h.

We will extend the expressiveness proof in [19] to inductive definitions. Since
our system is proof-theoretically strictly stronger than the system in [19] because
of inductive definitions [16], we did not know a possibility of this extension. The
key in our proof of the expressiveness theorem for inductive definitions is to
observe that if A is an inductively defined predicate, we can define HEvalA(m)
by using another inductively defined predicate. This idea is a similar direction to
the solutions used in an extension of type theory to inductive definitions [7,15],
and an extension of realizability interpretations to inductive definitions [18].

An extension of bunched implications with inductive definitions was studied
in [4]. Our assertion language is included in it, but ours is more specific for the
aim of pointer program verification. They discussed only an assertion language
and did not discuss asserted programs.

22 M. Tatsuta and W.-N. Chin

Recently the completeness of separation logic was actively studied [5,9,12].
However, the case of a predicate logic with inductive definitions has not been
investigated yet, since [5] and [9] discussed only propositional logic, and [12]
studied only a system without inductions.

Our long-term aim is proving completeness of the core of existing practical
verification systems for pointer programs. This paper will give a step for this
purpose. In order to analyze a verification system with built-in recursive data
structures and their properties such as the lemma reasoning mechanism in [14],
the separation logic with inductive definitions is indispensable. Since our system
in this paper is simple and general, our completeness theorem can be applied
to those systems in order to show the completeness of their core systems. This
paper will also provide a starting point for completeness theorems in extensions
with richer programming languages and assertion languages such as recursive
procedure calls.

Section 2 defines our programming language and our assertion language, and
gives examples of inductive definitions. Their semantics is given in Section 3.
Section 4 gives a logical system for proving asserted programs, and Section 5
shows our completeness theorem as well as our soundness theorem. Section 6
gives a proof sketch of the expressiveness theorem. Section 7 is the conclusion.

2 Languages

This section defines our programming language and our assertion language. Our
language is obtained from Reynolds’ paper [17] by adding inductive definitions
to the assertion language.

Our programming language is an extension of while programs to pointers. It
is the same as that of Reynolds [17].

We have variables x, y, z, w, . . ., and constants 0, 1, null. Its expressions are
defined as follows.

Expressions e ::= x | 0 | 1 | null | e+ e | e× e.
Expressions mean natural numbers or pointers. null means the null pointer.
Its boolean expressions are propositional formulas defined as follows.
Boolean expressions b ::= e = e | e < e | ¬b | b ∧ b | b ∨ b | b→ b.
Boolean expressions are used as conditions in a program.
Programs are defined by:
Programs P ::= x := e | if (b) then (P) else (P) | while (b) do (P) | P ;P |
x := cons(e, e) | x := [e] | [e] := e | dispose(e).

The statement x := cons(e1, e2) allocates two new consecutive memory cells,
puts e1 and e2 in the cells, and puts the address into x. The statement x := [e]
looks up the content of the memory cell at the address e and puts it into x. The
statement [e1] := e2 changes the content of the memory cell at the address e1 by
e2. The statement dispose(e) deallocates the memory cell at the address e. We
will sometimes write the number n to denote the term 1+ (1+ (1+ . . . (1 + 0)))
(n times of 1+). We will use i, j, k, l,m, n for natural numbers.

Completeness of Separation Logic with Inductive Definitions 23

Our assertion language is a first-order language extended with inductive def-
initions and the separating conjunction ∗ and the separating implication —∗. It
is an extension of assertions in [17,19] with inductive definitions. Our assertion
language is defined as follows: Terms are the same as the expressions of our
programming language and denoted by t. We have predicate symbols =, <, �→, a
predicate constant emp, and predicate variables X,Y, We assume that when
we have a predicate variable X we also have a predicate variable X̃.

Open formulas A ::= emp | e = e | e < e | e �→ e | X(t, . . . , t) | ¬A | A ∧ A |
A ∨ A | A→ A | ∀xA | ∃xA | (μX.λx . . . x.A)(t, . . . , t) | A ∗A | A—∗A.

We assume thatX occurs inA only positively for (μX.λx1 . . . xn.A)(t1, . . . , tn).
The positivity is defined in a standard manner as follows. We define the set
FPV+(A) of positive predicate variables and the set FPV−(A) of negative predi-
cate variables for A in a standard way. We say that X occurs only positively in A
when X 	∈ FPV−(A).

We define FPV(A) as FPV+(A) ∪ FPV−(A). We call an open formula A a
formula if FPV(A) = ∅. We will sometimes call a formula an assertion. We call
an open formula pure when the open formula does not contain emp, e1 �→ e2,
A ∗B, or A—∗B.

The open formula (μX.λx1 . . . xn.A)(t1, . . . , tn) means the inductively defined
predicate μX.λx1 . . . xn.A holds for t1, . . . , tn. The predicate μX.λx1 . . . xn.A de-
notes the least predicate X such that A ↔ X(x1, . . . , xn). An open formula may
contain some predicate variables. The meaning of an open formula depends on
the meaning of its predicate variables. A formula does not contain any predicate
variables, and its meaning is determined in an ordinary way. For an assertion,
we will use only a formula, since it does not contain any free predicate variables.

emp means the current heap is empty. e1 �→ e2 means the current heap has
only one cell at the address e1 and its content is e2. A ∗ B means the current
heap can be split into some two disjoint heaps such that A holds at one heap and
B holds at the other heap. A—∗ B means that for any heap disjoint from the
current heap such that A holds at the heap, B holds at the new heap obtained by
combining the current heap and the heap. Note that X(t1, . . . , tn) may depend
on the current heap since X could take emp or e1 �→ e2. The other formula
constructions mean ordinary logical connectives.

FV(A) is defined as the set of free variables in A. FV(e) and FV(P) are
similarly defined. FV(O1, . . . , On) is defined as FV(O1)∪ . . .∪FV(On) when Oi

is an open formula, an expression, or a program. A ↔ B is defined as (A→B)∧
(B→A). We use A[x := t] for a standard substitution without variable capture.

We use vector notation to denote a sequence. For example, −→e denotes the
sequence e1, . . . , en of expressions.

Example 1 (linked lists). The predicate that characterizes singly linked lists
is formalized by using inductive definitions as follows.

Node(x, y, z) = x �→ y ∗ x+ 1 �→ z,
LL = μX.λxy.(x = null ∧ y = 0 ∨ ∃zw(Node(x, z, w) ∗X(w, y − 1))).

24 M. Tatsuta and W.-N. Chin

LL(p, n) means that there is a singly linked list pointed by p such that its length
is n.

LL is the least predicate that satisfies

LL(p, n) ↔ p = null ∧ n = 0 ∨ ∃xq(Node(p, x, q) ∗ LL(q, n− 1)).

LL(p, n) formalizes the predicate p::ll<n> given in [14]. They added their
lemma properties in an ad hoc way for proof search. In our system, those prop-
erties are derived by the above general principle.

Example 2 (circular doubly-linked lists). Let

Node2(x, y, z, w) = x �→ y ∗ x+ 1 �→ z ∗ x+ 2 �→ w,
DSN = μX.λxyzwv.(x = w ∧ z = v ∧ y = 0

∨∃y′w′(Node2(x, y′, z, w′) ∗X(w′, y − 1, x, w, v))),
DCL(x, y) = (x = null ∧ y = 0∨

∃zw(∃uNode2(x, u, z, w) ∗DSN(w, y − 1, x, x, z))).

DSN(q, s, p, n, t) means that there is a doubly linked list pointed by q such that
its length is s, the previous pointer in the first element is p, the next pointer in
the last element is n, and t points the last element. DCL(p, s) means that there
is a circular doubly-linked list of length s pointed by p.

DSN is the least predicate that satisfies

DSN(q, s, p, n, t) ↔
q = n ∧ p = t ∧ s = 0 ∨ ∃rs′(Node2(q, s′, p, r) ∗DSN(r, s− 1, q, n, t)).

Since it is the least, we can also show that one of their lemma properties

DSN(q, s, p, n, t) ∧ s > 0 ↔ ∃r(DSN(q, s− 1, p, t, r) ∗ ∃xNode2(t, x, r, n))
is true.

DCL(p, s) formalizes the predicate p::dcl(s), DSN(r, s, p, n, t) formalizes
r::dseqN<s,p,n,t>, and the last equivalence formula formalizes their lemma
given in [14].

Example 3 (linked list segments). The predicate that characterizes linked
list segments is formalized by using inductive definitions as follows.

LS = μX.λxy.(x = y ∧ emp ∨ ∃v(∃uNode(x, u, v) ∗X(v, y)) ∧ x 	= y).

LS(x, p) means that the heap is a linked list segment such that x points the first
cell and p is the next pointer in the last cell.

LS is the least predicate that satisfies

LS(x, p) ↔ x = p ∧ emp ∨ ∃v(∃uNode(x, u, v) ∗ LS(v, p)) ∧ x 	= p.

By this general principle we can show that

LS(x, p) ∗Node(p, a, b) ↔ ∃q(LS(x, q) ∗ LS(q, p) ∗Node(p, a, b))
is true.

Completeness of Separation Logic with Inductive Definitions 25

LS(E,F) formalizes the following predicate ls(E,F) given in [2], where we
represent E �→ [f1 : x, f2 : y] by Node(E, x, y). These formulas are also true in
our system.

ls(E,F) ↔ (E = F ∧ emp) ∨ (E 	= F ∧ ∃y.E �→ [n : y] ∗ ls(y, F)),
ls(E1, E2) ∗ ls(E2, E3) ∗ E3 �→ [ρ]→ ls(E1, E3) ∗ E3 �→ [ρ].

3 Semantics

The semantics of our programming language and our assertion language is de-
fined in this section. Our semantics is obtained by combining a standard seman-
tics for natural numbers and inductive definitions and a semantics for programs
and assertions given in Reynolds’ paper [17] except the following simplification:
(1) values are natural numbers, (2) addresses are non-zero natural numbers, and
(3) null is 0. We call our model the standard model.

The set N is defined as the set of natural numbers. The set Vars is defined
as the set of variables in the language. The set Locs is defined as the set {n ∈
N |n > 0}.

For sets S1, S2, f : S1 → S2 means that f is a function from S1 to S2.
f : S1 →fin S2 means that f is a finite function from S1 to S2, that is, there
is a finite subset S′

1 of S1 and f : S′
1 → S2. Dom(f) denotes the domain of the

function f . We use ∅ and p(S) to denote the empty set and the powerset of the
set S respectively. For a function f : A → B and a subset C ⊆ A, the function
f |C : C → B is defined by f |C(x) = f(x) for x ∈ C.

A function f : p(S) → p(S) is called monotone if f(X) ⊆ f(Y) for all X ⊆ Y .
It is well-known that a monotone function has its least fixed point. The least
fixed point of f is denoted by lfp(f).

A store is defined as a function from Vars → N , and denoted by s. A heap is
defined as a finite function from Locs →fin N , and denoted by h. We will write
Heaps for the set of heaps. A value is a natural number. An address is a positive
natural number. The null pointer is 0. A store assigns a value to each variable.
A heap assigns a value to an address in its finite domain.

The store s[x1 := n1, . . . , xk := nk] is defined by s′ such that s′(xi) = ni and
s′(y) = s(y) for y 	∈ {x1, . . . , xk}. The heap h[m1 := n1, . . . ,mk := nk] is defined
by h′ such that h′(mi) = ni and h′(y) = h(y) for y ∈ Dom(h) − {m1, . . . ,mk}.
The store s[x1 := n1, . . . , xk := nk] is the same as s except values for the
variables x1, . . . , xn. The heap h[m1 := n1, . . . ,mk := nk] is the same as h
except the contents of the memory cells at the addresses m1, . . . ,mk. We will
sometimes write ∅ for the empty heap whose domain is empty.

We will write h = h1 + h2 when Dom(h) = Dom(h1) ∪Dom(h2), Dom(h1) ∩
Dom(h2) = ∅, h(x) = h1(x) for x ∈ Dom(h1), and h(x) = h2(x) for x ∈
Dom(h2). The heap h is divided into the two disjoint heaps h1 and h2 when
h = h1 + h2.

A state is defined as (s, h). The set States is defined as the set of states. The
state for pointer program is specified by the store and the heap, since pointer
programs manipulate memory heaps as well as variable assignments.

26 M. Tatsuta and W.-N. Chin

Definition 3.1. We define the semantics of our programming language.
We define the semantics [[e]]s of our expressions e and the semantics [[A]]s of

our boolean expressionsA under the variable assignment s by the standard model
of natural numbers and [[null]] = 0. For example, [[e]]s is defined by induction on
e by [[x]]s = s(x), [[0]]s = 0, [[1]]s = 1, [[null]]s = 0, [[e1 + e2]]s = [[e1]]s + [[e2]]s,
and so on. [[A]]s is defined in a similar way.

For a program P , its meaning [[P]] is defined as a function from States∪{abort}
to p(States ∪ {abort}). We will define [[P]](r1) as the set of all the possible
resulting states after the execution of P with the initial state r1 terminates. In
particular, if the execution of P with the initial state r1 does not terminate, we
will define [[P]](r1) as the empty set, since there are no possible resulting states
in this case. Our semantics is nondeterministic since the cons statement may
choose a fresh cell address and we do not allow renaming of memory addresses.
[[P]] is defined by induction on P as follows:

[[P]](abort) = {abort},
[[x := e]]((s, h)) = {(s[x := [[e]]s], h)},
[[if (b) then (P1) else (P2)]]((s, h)) = [[P1]]((s, h)) if [[b]]s = true,

[[P2]]((s, h)) otherwise,
[[while (b) do (P)]]((s, h)) = {(s, h)} if [[b]]s = false,⋃{[[while (b) do (P)]](r) | r ∈ [[P]]((s, h))} otherwise,
[[P1;P2]]((s, h)) =

⋃{[[P2]](r) | r ∈ [[P1]]((s, h))},
[[x := cons(e1, e2)]]((s, h)) = {(s[x := n], h[n := [[e1]]s, n+ 1 := [[e2]]s])|

n > 0, n, n+ 1 	∈ Dom(h)},
[[x := [e]]]((s, h)) = {(s[x := h([[e]]s)], h)} if [[e]]s ∈ Dom(h),

{abort} otherwise,
[[[e1] := e2]]((s, h)) = {(s, h[[[e1]]s := [[e2]]s])} if [[e1]]s ∈ Dom(h),

{abort} otherwise,
[[dispose(e)]]((s, h)) = {(s, h|Dom(h)−{[[e]]s})} if [[e]]s ∈ Dom(h),

{abort} otherwise.

Definition 3.2. We define the semantics of the assertion language. For an as-
sertion A and a state (s, h), the meaning [[A]](s,h) is defined as true or false.
[[A]](s,h) is the truth value of A at the state (s, h).

A predicate variable assignment σ is a function that maps a predicate vari-
able X with arity n to a subset of Nn × Heaps. Since an open formula A may
contain free predicate variables, in order to give the meaning of A, we will use a
predicate variable assignment for the meaning of free predicate variables in A.
The predicate variable assignment σ[X1 := S1, . . . , Xn := Sn] is defined by σ′

such that σ′(Xi) = Si and σ′(Y) = σ(Y) for Y 	∈ {X1, . . . , Xn}. We will some-
times write ∅ for the constant predicate variable assignment such that ∅(X) is
the empty set for all X .

In order to define [[A]](s,h) for a formula, we first define [[A]]σ(s,h) for an open
formula by induction on A as follows:

Completeness of Separation Logic with Inductive Definitions 27

[[emp]]σ(s,h) = true if Dom(h) = ∅,
[[e1 = e2]]

σ
(s,h) = ([[e1]]s = [[e2]]s),

[[e1 < e2]]
σ
(s,h) = ([[e1]]s < [[e2]]s),

[[e1 �→ e2]]
σ
(s,h) = true if Dom(h) = {[[e1]]s}, h([[e1]]s) = [[e2]]s,

[[X(
−→
t)]]σ(s,h) = true if ([[

−→
t]]s, h) ∈ σ(X),

[[¬A]]σ(s,h) = (not [[A]]σ(s,h)),

[[A ∧B]]σ(s,h) = ([[A]]σ(s,h) and [[B]]σ(s,h)),

[[A ∨B]](s,h)σ = ([[A]]σ(s,h) or [[B]]σ(s,h)),

[[A→B]]σ(s,h) = ([[A]]σ(s,h) implies [[B]]σ(s,h)),

[[∀xA]]σ(s,h) = true if [[A]]σ(s[x:=n],h) = true for all n ∈ N,

[[∃xA]]σ(s,h) = true if [[A]]σ(s[x:=n],h) = true for some n ∈ N,

[[A ∗B]]σ(s,h) = true if h = h1 + h2,

[[A]]σ(s,h1)
= [[B]]σ(s,h2)

= true for some h1, h2,

[[A—∗B]]σ(s,h) = true if h2 = h1 + h and

[[A]]σ(s,h1)
= true imply [[B]]σ(s,h2)

= true for all h1, h2,

[[(μX.λ−→x .A)(
−→
t)]]σ(s,h) = true if ([[

−→
t]]s, h) ∈ lfp(F) where

n is the length of −→x ,
F : p(Nn ×Heaps) → p(Nn ×Heaps),

F (S) = {(−→l , h) | [[A]]σ[X:=S]

(s[−→x :=
−→
l],h)

= true}.

We define [[A]](s,h) for a formula A as [[A]]∅(s,h). We say A is true when [[A]](s,h) =

true for all (s, h).

Note that in the definition of [[(μX.λ−→x .A)(
−→
t)]]σ(s,h), since X appears only

positively in A, F is a monotone function and there is the least fixed point of F .
Since the inductively defined predicates are interpreted by the least fixed

points, we have the following lemma. We use A[X := λ−→x .C] to denote the
formula obtained from A by replacing X(

−→
t) by C[−→x :=

−→
t].

Lemma 3.3. Let μ be μX.λ−→x .A.
(1) A[X := μ] ↔ μ(−→x) is true.
(2) ∀−→x (A[X := λ−→x .C]→ C)→∀−→x (μ(−→x)→ C) is true for any formula C.

They are proved by using the definition of semantics.
The claim (1) means the folding and the unfolding of inductive definitions.

The claim (2) means the inductively defined predicate is the least among C
satisfying ∀−→x (A[X := λ−→x .C]→ C).

Definition 3.4. For an asserted program {A}P{B} with assertions A and B,
its meaning is defined as true or false. {A}P{B} is defined to be true if the
following hold.

(1) for all (s, h), if [[A]](s,h) = true, then [[P]]((s, h)) 	� abort.
(2) for all (s, h) and (s′, h′), if [[A]](s,h) = true and [[P]]((s, h)) � (s′, h′), then

[[B]]((s′, h′)) = true.

28 M. Tatsuta and W.-N. Chin

{A}P{B} means abort-free partial correctness. It implies partial correctness
in the standard sense. It also implies that the execution of the program P with
the initial state that satisfies A never aborts, that is, P does not access to any
unallocated addresses during the execution.

Examples. (1) {0 = 1}dispose(1); [1] := 0{0 = 1} is true. Because there is no
initial state that satisfies 0 = 1.

(2) {emp}[1] := 0{0 = 0} is false. Because the abort occurs at [1] := 0.
(3) {emp}while (0 = 0) do (x := 0); [1] := 0{0 = 1} is true. Because we do

not reach [1] := 0 because of the infinite loop, and the abort does not occur.

4 Logical System

This section defines our logical system. It is an extension of Reynolds’ sys-
tem presented in [17] so that our assertion language is extended with inductive
definitions.

We will write the formula e �→ e1, e2 to denote (e �→ e1) ∗ (e+ 1 �→ e2).

Definition 4.1. Our logical system is defined by the following inference rules.

{A[x := e]}x := e{A} (assignment)

{A ∧ b}P1{B} {A ∧ ¬b}P2{B}
{A}if (b) then (P1) else (P2){B} (if)

{A ∧ b}P{A}
{A}while (b) do (P){A ∧ ¬b} (while)

{A}P1{C} {C}P2{B}
{A}P1;P2{B} (comp)

{A1}P{B1}
{A}P{B} (conseq)

(A→ A1 true, B1 → B true)

{∀x′((x′ �→ e1, e2) —∗ A[x := x′])}x := cons(e1, e2){A} (cons)
(x′ �∈ FV(e1, e2, A))

{∃x′(e �→ x′ ∗ (e �→ x′ —∗A[x := x′]))}x := [e]{A} (lookup)
(x′ 	∈ FV(e, A))

{(∃x(e1 �→ x)) ∗ (e1 �→ e2 —∗A)}[e1] := e2{A} (mutation)
(x 	∈ FV(e1))

{(∃x(e �→ x)) ∗A}dispose(e){A} (dispose)
(x 	∈ FV(e))

We say {A}P{B} is provable and we write � {A}P{B}, when {A}P{B} can
be derived by these inference rules.

Note that in the side condition (A→A1 true, B1→B true) of the rule (conseq),
the truth means one in the standard model of natural numbers and inductive

Completeness of Separation Logic with Inductive Definitions 29

definitions. Theoretically there are several interesting choices for the truth of this
side condition [1]. Since we are interested in whether a given implementation of
this logical system is indeed powerful enough in a real world, we choose the truth
of the standard model. Hence the completeness of our system means complete-
ness relative to all true formulas in the standard model of natural numbers and
inductive definitions.

5 Soundness and Completeness Theorems

Our main results are the completeness theorem and the expressiveness theorem
stated in this section. We will also show the soundness theorem. The soundness
theorem is proved in a similar way to [17] and [19]. The completeness theorem is
proved in a similar way to [19] if we have the expressiveness theorem. A proof of
the completeness theorem requires the expressiveness theorem. Since our asser-
tion language is extended with inductive definitions, the expressiveness theorem
for our assertion language is really new. For this reason, the completeness result
is also new. We will give only proof sketches of the soundness theorem and the
completeness theorem.

Theorem 5.1 (Soundness). If {A}P{B} is provable, then {A}P{B} is true.

The soundness theorem is proved by induction on the given proof of {A}P{B}.
Intuitively, we will show each inference rule preserves the truth.

Definition 5.2. For a program P and an assertion A, the weakest pre-
condition for P and A under the standard model is defined as the set
{(s, h)|∀r([[P]]((s, h)) � r→ r 	= abort ∧ [[A]]r = true)}.

Our proof of the completeness theorem will use the next expressiveness theo-
rem, which will be proved in the next section.

Theorem 5.3 (Expressiveness). For every program P and assertion A, there
is a formula W such that [[W]](s,h) = true if and only if (s, h) is in the weakest
precondition defined in Definition 5.2 for P and A under the standard model.

Theorem 5.4 (Completeness). If {A}P{B} is true, then {A}P{B} is
provable.

This theorem says that a given asserted program {A}P{B} is true (defined
in Section 3), then this is provable (defined in Section 4). Note that it is relative
completeness in the sense that our logical system assumes all true formulas in
the standard model of natural numbers and inductive definitions. This is the
best possible completeness for pointer program verification for a similar reason
to that for while program verification discussed in [6].

We sketch the proof. The completeness theorem is proved by induction on
the program P . The goal is showing a given true asserted program is provable.
Intuitively, we will reduce this goal to subgoals for smaller pieces of the given

30 M. Tatsuta and W.-N. Chin

program that state true asserted subprograms of the given program are provable.
If we show that for each program construction a true asserted program is provable
by using the assumption that all the asserted subprograms are provable, we can
say any given true asserted program is provable.

We discuss the rule (comp). Suppose {A}P1;P2{B} is true. We have to con-
struct a proof of {A}P1;P2{B}. In order to do that, we have to find some asser-
tion C such that {A}P1{C} is true and {C}P2{B} is true. If we find the assertion
C, since P1 and P2 are smaller pieces of the given program P1;P2, we can sup-
pose {A}P1{C} and {C}P2{B} are both provable, and by the rule (comp), we
have a proof of {A}P1;P2{B}. In order to find the assertion C, we will use the
expressiveness given by Theorem 5.3, to take the weakest precondition for P2

and B as the assertion C.

6 Proof Sketch of Expressiveness Theorem

This section gives a sketch of proofs of the expressiveness theorem (Theorem
5.3). We extend the expressiveness proof given in [19] to inductive definitions.
We assume the readers of this section have knowledge of [19] and [20].

In order to show the expressiveness theorem, we have to construct a formula
that expresses the weakest precondition for given a program P and a formula
A. We will follow the technique used in [19] and [20]. The main technique is
to translate separation logic into ordinary first-order logic by coding a heap by
a natural number and simulating a separation-logic formula by a pure formula
produced by its translation. First we translate a separation-logic formula A into
a pure formula HEvalA(m) such that A is true at the current heap h if and
only if HEvalA(m) is true where m is a natural number that represents the
current heap h. We say m is a code of h. Secondly we give a pointer program
P a semantics ExecP ((n1,m1), (n2,m2)) that manipulates the code of the cur-
rent heap instead of the current heap itself. We will define the pure formula
ExecP ((n1,m1), (n2,m2)) such that when the current heap is represented by
m1, if we execute P , then the current heap is changed into some heap repre-
sented by m2. Finally the weakest precondition for P and A is described by a
formula WP,A that transforms the current heap into its heap code m1, requires
ExecP ((n1,m1), (n2,m2)) for executing P , and requires HEvalA(m2) for enforc-
ing A at the resulting heap m2. This formula WP,A proves our expressiveness
theorem.

Since our assertions include inductive definitions, it is non-trivial to make
this technique work for our system. In particular, the main challenge is to define
a translation scheme HEvalA for assertions of form A that contain inductive
definitions. This section shows it is actually possible. Similar problems occurred
in type theory and realizability interpretations. An extension of type theory to
inductive definitions was solved in [7] and [15], and an extension of realizability
interpretations to inductive definitions was solved in [18]. Their ideas were to
use another inductive definition for translating a given inductive definition. Our
solution will be similar to these ideas.

Completeness of Separation Logic with Inductive Definitions 31

We will define a heapcode translation HEvalA(m) of an assertion A such
that HEvalA(m) is a pure formula for expressing the meaning of A at the heap
coded by m. The main question is how to define HEvalA(m) for inductively
defined predicates. To answer this question, we will show that we can define
HEval

(μX.λ−→x .A)(
−→
t)

(m) as (μX̃.λ−→x y.HEvalA(y) ∧ IsHeap(y))(
−→
t ,m) by using

another inductively defined predicate μX̃.λ−→x y.HEvalA(y) ∧ IsHeap(y), and we
will also show that this satisfies a desired property (Lemma 6.8).

Semantics for Pure Formulas

When we simulate an inductively defined separation-logic formula by some in-
ductively defined pure formula, in order to avoid complications, we introduce the
semantics of pure formulas, which does not depend on a heap. This semantics
has the same meaning as our semantics defined in Section 3, and is a stan-
dard semantics for pure formulas with inductive definitions, for example, given
in [18,16].

Definition 6.1. For a store s, and a pure formula A, according to the standard
interpretation of a first-order language with inductive definitions, the meaning
[[A]]s is defined as true or false. [[A]]s is the truth value of A under the store s.

A pure predicate variable assignment σ is a function that maps a predicate
variable of arity n to a subset of Nn. The pure predicate variable assignment
σ[X1 := S1, . . . , Xn := Sn] and the pure constant predicate variable assignment
∅ are defined in a similar way to Section 3.

In order to define [[A]]s for a pure formula A, we first define [[A]]σs for a pure
open formula A as follows. We give only interesting cases.

[[X(
−→
t)]]σs = true if [[

−→
t]]s ∈ σ(X),

[[(μX.λ−→x .A)(
−→
t)]]σs = true if [[

−→
t]]s ∈ lfp(F) where n is the length of −→x ,

F : p(Nn) → p(Nn),

F (S) = {−→l | [[A]]σ[X:=S]

s[−→x :=
−→
l]

= true}.

We define [[A]]s for a pure formula A as [[A]]∅s.

In order to show [[A]]s = [[A]](s,h) for a pure formula A, we need some
preparation.

For a pure predicate variable assignment σ, we define a predicate variable
assignment σ × Heaps by (σ × Heaps)(X) = σ(X) × Heaps. For a subset S of
Nn×Heaps, we call the subset S H-independent when S = S′×Heaps for some
subset S′ of Nn. For a predicate variable assignment σ, we call the predicate
variable assignment σ H-independent when σ(X) is H-independent for all X .

Lemma 6.2. Suppose A is pure.
(1) {(s, h) | [[A]]σ(s,h) = true} is H-independent if σ is H-independent.

(2) [[A]]σs = [[A]]
σ×Heaps
(s,h) for all heaps h.

Lemma 6.3. For a pure formula A, we have [[A]]s = [[A]](s,h) for any h.

Proof. By letting σ = ∅ in Lemma 6.2 (2). �

32 M. Tatsuta and W.-N. Chin

Heapcode Translation

We define a heapcode translation of an assertion A that is a pure formula and
describes the meaning of A in terms of the heap code. This is based on the same
idea in [19]. Our key idea is to find that it is possible to define HEvalA(x) for an
inductively defined predicate A by using another inductively defined predicate.

Definition 6.4. We define the pure open formula HEvalA(x) for the open for-
mula A by induction on A. We give only interesting cases.

HEval
X(

−→
t)

(m) = X̃(
−→
t ,m),

HEval
(μX.λ−→x .A)(

−→
t)

(m) = (μX̃.λ−→x y.HEvalA(y) ∧ IsHeap(y))(
−→
t ,m).

For a formula A, HEvalA(m) means [[A]](s,h) = true where s is the current store
and m represents the heap h. That is, we have [[HEvalA(m)]]s = [[A]](s,h) if m
represents the heap h. This will be formally stated in Lemma 6.8.

Note that in the definition of HEval
(μX.λ−→x .A)(

−→
t)

(m), since X appears

only positively in A, X̃ appears only positively in HEvalA(y). We have
FPV(HEvalA(m)) = {X̃|X ∈ FPV(A)}. In particular, when (μX.λ−→x .A)(

−→
t)

is a formula, (μX̃.λ−→x y.HEvalA(y) ∧ IsHeap(y))(
−→
t ,m) is also a formula.

Definition 6.5. We define the pure formula EvalA,−→x (n,m) for the assertion A.

We suppose −→x includes FV(A).

EvalA,−→x (n,m) = IsHeap(m) ∧ ∃−→x (Store−→x (n) ∧ HEvalA(m)).

For a formula A, EvalA,−→x (n,m) means [[A]](s,h) = true where n represents the
store s and m represents the heap h.

Key Lemma

To utilize the heapcode translation defined just above, we need the key lemma
that states that the semantics of a separation-logic formula equals the semantics
of the corresponding pure formula obtained by the translation even if our system
includes inductive definitions.

We define ()∗ for transforming semantics for heaps between that for heap
codes.

Definition 6.6. We use Heapcode(m,h) to mean the number m is the code
that represents the heap h. For S ⊆ Nn ×Heaps, we define

S∗ = {(−→l ,m) | (−→l , h) ∈ S,Heapcode(m,h)},
For a predicate assignment σ, we define σ∗ by σ∗(X̃) = σ(X)∗.

The role of S∗ is to give the semantics of the corresponding pure formula when
S gives the semantics of a separation-logic formula.

In order to prove Lemma 6.8, we need the following key lemma, which is a
generalization of Lemma 6.8 for open formulas.

Completeness of Separation Logic with Inductive Definitions 33

Lemma 6.7 (Key Lemma). Suppose A is an open formula and y 	∈ FV(A).
We have ∀mh(Heapcode(m,h)→ [[HEvalA(y)]]

σ∗
s[y:=m] = [[A]]σ(s,h)).

The next lemma shows that the pure formula HEvalA(m) actually has the
meaning we explained above.

Lemma 6.8. Suppose A is a formula. We have Heapcode(m,h) →
[[HEvalA(m)]]s = [[A]](s,h).

Proof. By letting σ = ∅ in Lemma 6.7. �

Once HEvalA is defined and Lemma 6.8 is shown, we can construct the for-
mula required in the expressiveness theorem in a similar way to [19]. Note that
EvalA,−→x below is extended to inductive definitions. We will use Pair2(k, n,m) to

mean that k represents the state (s, h) when n represents s and m represents h.

Definition 6.9. We define the formula WP,A(−→x) for the program P and the
assertion A. We fix some sequence −→x of the variables in FV(P,A).

WP,A(−→x) = ∀xyzw(Store−→x (x) ∧ Heap(y) ∧ Pair2(z, x, y) ∧ ExecP,−→x (z, w)

→w > 0 ∧ ∃y1z1(Pair2(w, y1, z1) ∧ EvalA,−→x (y1, z1))).

WP,A(−→x) means the weakest precondition for P and A. That is, WP,A(−→x) gives
the weakest assertion W such that {W}P{A} is true. Note that all the free
variables in WP,A(−→x) are −→x and they appear only in Store−→x (x). This formula
is the formula that describes the weakest precondition, and by this formula we
can prove the expressiveness theorem (Theorem 5.3).

7 Conclusion

We have shown the completeness theorem of the pointer while program verifica-
tion system which is an extension of Reynolds’ separation logic with inductive
definitions. For this purpose, we have also proved the expressiveness theorem
of Peano arithmetic, the separation logic, and inductive definitions for pointer
while programs under the standard model.

Future work would be to find a assertion language with inductive definitions
that would be more suitable for automated deduction. For example, it would
be interesting to find what syntactical condition guarantees that the claim (1)
derives the claim (2) in Lemma 3.3. It would be also interesting to find a decidable
fragment of a logical system with inductive definitions.

Another future work would be proving completeness results of various ex-
tensions of our system such as recursive procedure calls with call-by-name pa-
rameters and global variables, which have been intensively analyzed for while
programs by several papers [1,8,10].

34 M. Tatsuta and W.-N. Chin

References

1. Apt, K.R.: Ten Years of Hoare’s Logic: A Survey — Part I. ACM Transactions on
Programming Languages and Systems 3(4), 431–483 (1981)

2. Berdine, J.,Calcagno,C.,O’Hearn,P.W.: SymbolicExecutionwithSeparationLogic.
In:Yi,K. (ed.) APLAS2005. LNCS, vol. 3780, pp. 52–68. Springer, Heidelberg (2005)

3. Bergstra, J.A., Tucker, J.V.: Expressiveness and the Completeness of Hoare’s Logic.
Journal Computer and System Sciences 25(3), 267–284 (1982)

4. Brotherston, J.: Formalised Inductive Reasoning in the Logic of Bunched Implica-
tions. In: Riis Nielson, H., Filé, G. (eds.) SAS 2007. LNCS, vol. 4634, pp. 87–103.
Springer, Heidelberg (2007)

5. Brotherston, J., Villard, J.: Parametric Completeness for Separation Theories. In:
Proceedings of POPL 2014, pp. 453–464 (2014)

6. Cook, S.A.: Soundness and completeness of an axiom system for program verifica-
tion. SIAM Journal on Computing 7(1), 70–90 (1978)

7. Coquand, T., Paulin, C.: Inductively Defined Types. In: Martin-Löf, P., Mints, G.
(eds.) COLOG 1988. LNCS, vol. 417, pp. 50–66. Springer, Heidelberg (1990)

8. Halpern, J.Y.: A good Hoare axiom system for an ALGOL-like language. In: Pro-
ceedings of POPL 1984, pp. 262–271 (1984)

9. Hou, Z., Clouston, R., Gore, R., Tiu, A.: Proof search for propositional abstract
separation logics via labelled sequents. In: Proceedings of POPL 2014, pp. 465–476
(2014)

10. Josko, B.: On expressive interpretations of a Hoare-logic for Clarke’s language
L4. In: Fontet, M., Mehlhorn, K. (eds.) STACS 1984. LNCS, vol. 166, pp. 73–84.
Springer, Heidelberg (1984)

11. Kimura, D., Tatsuta, M.: Call-by-Value and Call-by-Name Dual Calculi with In-
ductive and Coinductive Types. Logical Methods in Computer Science 9(1), Article
14 (2013)

12. Lee, W., Park, S.: A Proof System for Separation Logic with Magic Wand. In:
Proceedings of POPL 2014, pp. 477–490 (2014)

13. Nguyen, H.H., David, C., Qin, S.C., Chin, W.N.: Automated Verification of Shape
and Size Properties Via Separation Logic. In: Cook, B., Podelski, A. (eds.) VMCAI
2007. LNCS, vol. 4349, pp. 251–266. Springer, Heidelberg (2007)

14. Nguyen, H.H., Chin, W.N.: Enhancing Program Verification with Lemmas. In:
Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 355–369. Springer,
Heidelberg (2008)

15. Paulin-Mohring, C.: Extracting Fω’s programs from proofs in the Calculus of Con-
structions. In: Proceedings of POPL 1989, pp. 89–104 (1989)

16. Pohlers, W.: Proof Theory. Springer (2009)

17. Reynolds, J.C.: Separation Logic: A Logic for Shared Mutable Data Structures. In:
Proceedings of LICS 2002, pp. 55–74 (2002)

18. Tatsuta, M.: Program synthesis using realizability. Theoretical Computer Sci-
ence 90, 309–353 (1991)

19. Tatsuta, M., Chin, W.N., Al Ameen, M.F.: Completeness of Pointer Program Ver-
ification by Separation Logic. In: Proceeding of SEFM 2009, pp. 179–188 (2009)

20. Tatsuta, M., Chin, W.N., Al Ameen, M.F.: Completeness of Pointer Program Ver-
ification by Separation Logic. NII Technical Report, NII-2009-013E (2009)

	Completeness of Separation Logic with Inductive Definitions for Program Verification
	1 Introduction
	2 Languages
	3 Semantics
	4 Logical System
	5 Soundness and Completeness Theorems
	6 Proof Sketch of Expressiveness Theorem
	7 Conclusion
	References

