
Verified Functional Iterators

Using the FoCaLiZe Environment

Catherine Dubois and Renaud Rioboo

CEDRIC-ENSIIE, 1 square de la résistance, 91025 Évry, France
{Catherine.Dubois,Renaud.Rioboo}@ensiie.fr

Abstract. Collections and iterators are widely used in the Object com-
munity since they are standards of the Java language. We present a certi-
fied functional implementation of collections and iterators addressing the
Specification And Verification of Component Based Systems 2006 chal-
lenge. More precisely we describe a FoCaLiZe implementation providing
these functionalities. Our approach uses inheritance and parameteriza-
tion to describe functional iterators. Our code can be run in Ocaml and
is certified using Coq. We provide general specifications for collections,
iterators and removable iterators together with complete implementation
for collections using lists as representation and iterators over those.

1 Introduction

Iterators on data structures like lists, sets, vectors, trees, etc. are available in
many programming languages, usually as resources of their standard library.
In functional languages, iterating facilities are mainly provided as higher order
functions (e.g. fold left or fold right for iteration on lists in SML or Ocaml).
In object oriented languages like Java, Eiffel or C#, they are provided as ob-
jects with methods allowing the enumeration of the data structure elements
(e.g. hasNext and next in the Java Iterable interface). Usually the iterable
data structure contains a method (e.g. iterator in Java collections), each invo-
cation of which creates an iterator. Following the ITERATOR design pattern [7],
iterators give a clean way for element-by-element access to a collection without
exposing its underlying representation. Following this view, purely functional
iterators can also be implemented, such as in [6] or in the Ocaml Reins Data
Structure Library1. Thus we can consider the type of an iterator as an abstract
data-type equipped with 3 functions start, hasnext and step: start is applied
to a collection and computes an iterator; hasnext takes an iterator as an argu-
ment and returns a boolean indicating whether the enumeration is finished or
not; and step i, when i is an iterator, returns an element not yet visited and
the new iterator. Thus the underlying collection is provided as an argument to
start and is not used anymore after that.

1 See http://ocaml-reins.sourceforge.net/api/Reins.Iterator.S.html for the
interface of the Iterator module.

D. Giannakopoulou and G. Salaün (Eds.): SEFM 2014, LNCS 8702, pp. 317–331, 2014.
c© Springer International Publishing Switzerland 2014

http://ocaml-reins.sourceforge.net/api/Reins.Iterator.S.html

318 C. Dubois and R. Rioboo

In this paper, we propose a verified implementation of such functional itera-
tors. Here verified means that this implementation has been proved correct with
respect to the specification. Specification, implementation and proof are done
using the FoCaLiZe2 environment (which is a successor of FoCaL) [5]. As far
as we know, it is the first verified implementation of functional iterators in the
flavor of those proposed e.g. by Filliâtre in [6]. In this study we are mainly look-
ing for a way to specify the behavior of an iterator without exposing its internal
representation or the representation of the collection it traverses and to evaluate
how convenient it is for specifying and proving generic algorithms using such
iterators.

This work can also be seen as a contribution to the 2006 SAVCBS (Speci-
fication And Verification of Component Based Systems) challenge asking for a
specification of the Iterator interface as provided in Java or its equivalent in
another language3. Different solutions [1] have been proposed, most of them fo-
cusing on the verification of non-interference between calls that directly modify
the collection and interleaved uses of one or more iterators.

The FoCaLiZe language in which our development is done, is functional.
However it borrows some features to the Object world, such as inheritance,
redefinition that ease reuse of specifications, code and proofs. Furthermore pa-
rameterization facilitates the definition of generic iterators and derived functions.

The rest of this paper is structured as follows. Section 2 presents FoCaL-
iZe very quickly. Then we introduce in Section 3 the main ingredients to use
iterators. Iterators allow the enumeration of values contained in another data
structure, often collections. Thus we stick to this view and propose a FoCaLiZe
specification of collections and an implementation for sequences as collections in
Section 4. Then we present in Section 5 a FoCaLiZe implementation of iterators
for collections which are sequences. Some existing approaches are presented and
discussed in Section 6. Section 7 concludes and presents some future work.

2 A Quick Presentation of FoCaLiZe

The FoCaLiZe environment provides a set of tools to describe and implement
functions and logical statements together with their proof. A FoCaLiZe source
program is analyzed and translated into Ocaml sources for execution and Coq
sources for certification. The FoCaLiZe language has an object oriented flavor
allowing inheritance, late binding and redefinition.

FoCaLiZe concrete programming units are collections which contain entities in
a model akin to classes and objects or types and values. In the following, to avoid
confusion with collections as data containers, a FoCaLiZe collection is called an
Fcollection. Fcollections havemethods which can be called using the “!” notation
as in Code 1. They are derived from species which describe and implement
methods. In an Fcollection the concrete representation of entities is abstracted
and a programmer refers to it using the keyword Self in FoCaLiZe sources.

2 http://focalize.inria.fr
3 http://www.eecs.ucf.edu/~leavens/SAVCBS/2006/challenge.shtml

http://focalize.inria.fr
http://www.eecs.ucf.edu /~leavens/SAVCBS/2006/challenge.shtml

Verified Iterators in FoCaLiZe 319

Species may inherit from other species and may have parameters which may
either be Fcollections or entities providing parametric polymorphism. As shown
in Code 4 parameters are declared in sequence and may have dependencies: this
excerpt describes a species parameterized by 2 Fcollections named resp. Elt and
L. The first one is expected to derive from the Setoid species, it means that
it provides at least all the methods appearing in the interface of Setoid, i.e
the list of methods appearing in Setoid or inherited, with their type where the
type of entities is made abstract. The second parameter L is expected to provide
methods in the interface of Utils(Elt) where Utils is a parameterized species
which is applied to the effective Fcollection Elt. We can notice the dependency
between the first and the second argument.

A species defines a set of entities together with functions and properties ap-
plying to them. At the beginning of a development, the representation of these
entities is usually abstract, it is precised later in the development. However the
type of these entities is referred as Self in any species. Species may contain
specifications, functions and proofs, all of theses being called methods. More
precisely species may specify a method (signature, property keywords as in
code 4) or implement it (let, proof of, theorem keywords as in code 1 or 2).
A let defined function must match its signature and similarly a proof intro-
duced by proof of should prove the statement given by the property keyword.
Statements belong to first order typed logic.

Within FoCaLiZe, proofs are written using the FoCaLiZe proof language and
are sent to the Zenon prover which produces Coq proofs. The FoCaLiZe proof
language is a declarative language in which the programmer states a property and
gives hints (by) to achieve its proof which is performed by Zenon. She typically
introduces a context with variables (assume) and hypothesis (hypothesis) and
then states a result (prove). Elements of the proof are then listed (by) and
these can be either an hypothesis (hypothesis), an already proved statement
(step), an existing statement (property) or a definition (definition of, or
type). When a proof has steps it is ended by conclude or qed by clauses. Code
9 shows the skeleton of a FoCaLiZe proof tree. The automatic prover Zenon is
a first order automatic theorem prover which supports algebraic data types and
induction developed by D. Doligez (see for instance [2]).

For more details on FoCaLiZe please refer to the reference manual. More ex-
planations about FoCaLiZe syntax will be given in next sections when necessary.

3 Using Iterators

In this section we present a sample use of our iterators implementation. Our
demonstration package IterTools proposes a function copy (see Code 1) that
copies elements from a collection c of type Col, using an iterator it of type
It. We use a tail recursive function copy aux that uses an iterator (it) and a
collection (a). Since FoCaLiZe is a functional language the state change of an
object is implemented using an extra result and the next operation returns a pair
made of an iterator together with the visited element. The species presented here

320 C. Dubois and R. Rioboo

is parameterized by four Fcollections Elt, L, Col and It specifying operations
for elements of the collections, lists of such elements, collections of such elements
and iterators on the previous collections. These Fcollections derive from species
which will explained in the following sections. The overall hierarchy of species is
shown in Figure 1 (without parameters for sake of clarity).

We can notice that the copy function provided by the species IterTools uses
the same implementation for both the source and the target collections. It can
be generalized to allow different implementations. In that case, two Fcollections
Col1 (implementation of the source collection) and Col2 (implementation of
the target collection), both having the interface Collection(Elt, L), will be
provided as parameters of the species. Furthermore the It parameter would have
as interface Iterator(Elt, L, Col1).

Code 1

species IterTools (Elt is Setoid,

L is Utils(Elt),

Col is Collection(Elt, L),

It is Iterator(Elt, L, Col)) =

let rec copy_aux (it, a) =

if It!has_next(it) then

let res = It!next (it) in

copy_aux (snd(res), Col!add(fst(res), a))

else a;

let copy (c) = copy_aux (It!start (c), Col!empty);

At this step, we have identified some necessary operations of collections and
iterators. Collections have to provide 2 operations, empty and add, these are the
methods Col!empty and Col!add provided by the Fcollection parameter Col.
For iterators, we need 3 operations, start, has next and next provided by the
Fcollection parameter It.

Correctness of copy relies on the theorem copy spec whose statement is given
in Code 2, establishing that the original collection and its copy have the same
elements. The statement uses the contains method provided by collections.
Inside the proof, we use an invariant property, copy invariant (also in Code 2)
which refers to the abstract model of an iterator stated by the logical predicate
model. For an iterator i, a collection c and a list of elements l the model(i, c,

l) statement should describe logically the elements of c belonging to the list l
which are not yet visited by the iterator i. This informal specification and further
constraints on the model predicate will be formalized in Section 5. The invariant
property copy invariant relates two collections between recursive calls in the
copy aux function. An element x is either an element of the collection c not yet
visited by an iterator or contained in an auxiliary collection a.

Code 2 excerpt of species IterTools

theorem copy_spec :

Verified Iterators in FoCaLiZe 321

all e: Elt, all c : Col,

Col!contains (e, c) <-> Col!contains (e, copy(c))

proof = (* 50 lines *);

theorem copy_invariant:

all it: It, all a: Col, all c: Col, all l: list(Elt),

It!model(it, c, l) ->

(all x: Elt, Col!contains(x, a) -> Col!contains(x, c)) ->

(all x: Elt, Col!contains(x, copy_aux(it, a)) <->

((L!mem(l, x) || Col!contains(x, a))))

proof = (* 150 lines *);

The above theorems allow us to state that if the copy aux function terminates
it performs the right action. In order to show termination we must prove that
the recursive call in copy aux decreases for some well founded order it order

defined below (see Code 3).

Code 3 excerpt of species IterTools

let it_order(it1, it2) =

(0 <= It!measure_it(it2)) &&

(It!measure_it(it1) < It!measure_it(it2));

theorem well_wrapper_it: well_wrapper(it_order)

proof =(* 30 lines of Coq *);

theorem rec_call_decreases: all it: It, all res: Elt * It,

It!has_next(it) -> (It!next(it) = res) -> it_order(snd(res), it)

proof = (* 150 lines *);

The well wrapper statement is part of FoCaLiZe standard library and states
that the ordering it receives as argument is well founded. Since it is not a first
order statement we cannot prove it using the Zenon prover and have to do the
proof in Coq. Proofs are here omitted but performed by unfolding the different
definitions and making use of the (Zwf well founded 0) Coq property that
establishes that the usual order on positive integers is well founded. In order to
prove that the recursive call decreases (theorem rec call decreases) we rely on
a property stating that when iterating we decrease some measure of an iterator.
We thus have identified two other operations it measure it and mea decreases

which we specify in Code 10.
We can see that though the 6 lines of effective code in Code 1 use a simple

accumulator they must be completed by 10 lines of specification statements in
Code 2 which are not obvious to guess. Furthermore their proofs are quite tedious
and the overall species is globally 350 lines of mixed FoCaLiZe and Coq code.

4 Collections

Though the word collection is a keyword of the FoCaLiZe language we use it in
the normal UML/Java sense and we present the functionalities we implemented.

322 C. Dubois and R. Rioboo

Collection

CollectionAsSet Sequence

SequenceAsSet

IterTools Iterator

UniqueIteratorRemovableIterator SequenceIterator

UniqueSeqIterator

RemovableUniqueGenericIterator

RemovableGenericIterator

ListIterator

Ellipses correspond to specification species. Rectangles correspond to implementation
species (complete species)

Fig. 1. The Overall Hierarchy

4.1 Specification Hierarchy

Basic collections contain a finite number of values and we have methods to add
and remove values in a collection, check if a value is in a collection and transform
a collection into a list of values as in Code 4. We can also compute the size of a
collection, check if a collection is empty etc.

Code 4

species Collection (Elt is Setoid, L is Utils(Elt)) =

signature contains: Elt -> Self -> bool;

signature add: Elt -> Self -> Self;

property add_contains: all c: Self, all e x: Elt,

contains(x, add(e, c)) <-> ((x = e) || contains(x, c));

signature remove: Elt -> Self -> Self;

property remove_contains:

all c: Self, all e : Elt, all x : Elt, not (x = e)) ->

(contains (x, (remove (e, c))) <-> contains (x, c));

signature tolist : Self -> list(Elt);

property tolist_contains :

all c: Self, all e : Elt, contains (e, c)

<-> L!mem (tolist(c), e);

We then distinguish between collections which are sets. Thus we define, us-
ing inheritance, a new species (CollectionAsSet) describing these collections
as sets. A new property, unique contains, is added, it explains that such col-
lections have no redundant element (Code 5)

Verified Iterators in FoCaLiZe 323

Code 5

species CollectionAsSet (Elt is Setoid, L is Utils(Elt)) =

inherit Collection(Elt, L) ;

property unique_contains : all c : Self, all e : Elt,

not(contains (e, remove (e, c))) ;

end;;

4.2 Implementations

In the previous subsection, a specification of basic collections is presented. We
could go further into specifications by providing specifications for sequences,
maps and then provide one or more implementations for each category. Here we
simply provide an implementation of sequences using a simple implementation
based on lists (seen as the elements of an inductive type providing 2 constructors:
cons and empty). In FoCaLiZe a species is complete when all its signatures have
an implementation and all its statements have received a proof. Thus the species
given in Code 6 contains the definition of every function and the proof of every
property specified in Collection. It also exports the functions head and tail

with their specifications which have their obvious meaning.
In this case all functions have a simple termination proof (structural key-

word as in Code 7) since their code performs simple pattern matching on lists
and recursive calls on the tail of their initial parameter. All properties can be
proved by induction over lists which is supported by the Zenon prover as shown
in the proof of unique contains (Code 9). Statements <2>1 and <2>1 are the
base and inductive steps, statement <2>3 is the property we prove inductively
and the <2>f step enables to abstract the list representation.

Code 6

species Sequence (Elt is Setoid, L is Utils(Elt)) =

inherit Collection(Elt, L);

representation = list(Elt);

let contains (e: Elt, l: Self) = L!mem (l, e);

We also provide a SequenceAsSet complete species where we use the invariant
that lists have no doubles as in Code 7.

Code 7

species SequenceAsSet(Elt is Setoid, L is Utils(Elt)) =

inherit Sequence(Elt, L), CollectionAsSet(Elt, L);

let torep (l : Self) : list(Elt) = l;

let rec nodouble (l) =

match l with

324 C. Dubois and R. Rioboo

| [] -> true

| h :: q -> nodouble (q) && not(L!mem (q, h))

termination proof = structural l;

For correctness of the invariant we follow [17] and need to prove that all
functions returning an element of Self preserve the invariant property as shown
in Code 8. These proofs use induction on lists and the overall code is 170 lines
of FoCaLiZe code.

Code 8 excerpt of species SequenceAsSet

theorem remove_preserves_inv : all l : Self, all e : Elt,

nodouble (torep(l)) -> nodouble (torep(remove (e, l)))

proof =

<1>1 prove all l: list(Elt), all e: Elt,

nodouble(l) -> nodouble(remove(e, l))

(* 40 lines proof *)

<1>2 qed by step <1>1 definition of torep;

We can now prove uniqueness of an element in a sequence implemented as a list
in Code 9 which statement is in Code 5

Code 9 excerpt of species SequenceAsSet

proof of unique_contains =

<1>1 assume c : Self,

assume e : Elt,

prove not(L!mem (remove(e, c), e))

<2>1 prove not(L!mem (remove(e, []), e)) (* 2lines *)

<2>2 prove all l : list(Elt), not(L!mem (remove(e, l), e))

-> all x : Elt, not(L!mem (remove(e, x::l), e))

(* 30 lines *)

<2>3 prove all l : list(Elt), not(L!mem (remove(e, l), e))

by step <2>1, <2>2

<2>f qed by step <2>3

<1>f qed by step <1>1

property tolist_contains

definition of tolist;

5 Iterators

Once collections have been specified, we can use them to specify iterators. We
were inspired functional iterators of [6] for the interface and by JML specifica-
tions of [8] for the logical description.

5.1 Specification Hierarchy

In this paper we mainly describe finite linear iterations but many other may be
considered. In order to provide a library which can easily be reused we heavily use
inheritance and parameterization. We begin with basic iterator functionalities
as in Code 10. An Fcollection implementing collections Col is a parameter of
the specification species of iterators Iterator.

Verified Iterators in FoCaLiZe 325

Code 10

species Iterator (Elt is Setoid,

L is Utils(Elt),

Col is Collection(Elt, L)) =

signature start : Col -> Self;

signature has_next : Self -> bool;

signature step_it : Self -> Elt * Self;

property step_it_empty :

all c : Col, Col!is_empty (c) -> not(has_next (start (c)));

property step_it_nonempty :

all c : Col, not(Col!is_empty (c)) -> has_next (start (c));

signature measure_it : Self -> int;

property mea_positive : all a : Self, 0 <= measure_it (a) ;

property mea_decreases :

all i1: Self, all res: Elt * Self, has_next(i1) ->

step_it(i1) = res -> measure_it (snd(res)) < measure_it (i1);

The mea decreases property expresses that when stepping an iterator we de-
crease a measure and thus enables us to prove the termination of the iteration.

As outlined in Section 3 and following [3] and [8], we rely on the user of our
hierarchy for writing a model logical statement relating an iterator, a collection
and a list of values. An implementation of the model signature should be a
statement describing the list of elements of collection which have not been visited
by the iterator.

Code 11 excerpt of species Iterator

signature model : Self -> Col -> list(Elt) -> prop;

(** elements of l are in c *)

property model_includes: all it: Self, all c: Col, all l : list(Elt),

model(it, c, l) -> all e: Elt, L!mem(l, e) -> Col!contains(e, c);

(** should start with full collection *)

property model_start : all c : Col, model (start (c), c, Col!tolist(c)) ;

(** when has_next is true l should not be empty *)

property model_has_next_true :

all it : Self, all l : list(Elt), all c : Col,

model (it, c, l) -> has_next(it) -> not(l = []);

(** when has_next is false there should remain no element to treat *)

property model_has_next_false :

all it : Self, all l : list(Elt), all c : Col,

model (it, c, l) -> not (has_next(it)) -> l = [];

326 C. Dubois and R. Rioboo

[* we should return an element among those to be treated *)

property model_step :

all it it2 : Self, all e : Elt, all l : list(Elt), all c : Col,

model (it, c, l) -> has_next(it) -> step_it (it) = (e, it2) ->

L!mem (l, e);

property model_step_exists: all it it2: Self, all c: Col, all e: Elt,

all l: list(Elt), has_next(it) ->

model(it, c, l) -> step_it(it) = (e, it2) ->

(* there exists a list which is a model for it2 *)

(ex l2: list(Elt), model(it2, c, l2));

The properties in Code 11 explicit the informal specifications given in section
3 of the model statement which is thus a key component of our implementation.
The last statement expresses that when stepping an iterator we still have some
model.

We now can specify iterators that visit only once an element of a set using
inheritance as in Code 12.

Code 12

species UniqueIterator (Elt is Setoid,

L is Utils(Elt),

Col is CollectionAsSet(Elt, L)) =

inherit Iterator(Elt, L, Col) ;

property model_step_unique :

all it it2: Self, all e: Elt, all l l2: list(Elt), all c : Col,

model (it, c, l) -> has_next(it) -> step_it (it) = (e, it2) ->

model(it2, c, l2) -> not(L!mem(l2, e));

end

The Java informal specifications introduce the notion of iterators from which
the last iterated element can be removed from the collection it belongs to. This
is achieved using the optional remove functionality, on the contrary we rely on
FoCaLiZe inheritance to specify the remove functionality. In Code 13 we define
a species of removable iterators that inherits from basic iterators and adds new
specifications.

Code 13

species RemovableIterator(Elt is Setoid,

L is Utils(Elt),

Col is Collection(Elt, L)) =

inherit Iterator(Elt, L, Col) ;

signature remove: Self -> Self ;

property remove_spec :

all it it2: Self, all e: Elt, all l l2: list(Elt), all c : Col,

model (it, c, l) -> has_next(it) ->

step_it (it) = (e, it2) -> model(it2, c, l2) ->

Verified Iterators in FoCaLiZe 327

model(remove(it2), Col!remove(e, c), l2);

signature get_collection: Self -> Col ;

end

The statement remove spec explains the behavior of the remove function, we
also provide a get collection operation to retrieve the new collection that
results from the application of remove on an iterator.

5.2 Implementations

In this subsection, we describe our implementation of iterators which use sequences
as representation and also a generic implementation of removable iterators.

First, in the species SequenceIterator (see Code 14), we represent an iterator
by a sequence containing the elements left to be treated by the iterator. We use
operations from Sequence (head, tail as in Section 4) to traverse the values.

Code 14
species SequenceIterator (Elt is Setoid, L is Utils(Elt),

LCol is Sequence(Elt, L)) =

inherit Iterator(Elt, L, LCol);

representation = LCol ;

let tolist (l : Self) = LCol!tolist (l);

logical let model (it: Self, c, l) =

(all x : Elt, L!mem (l, x)

<->

L!mem (tolist(it), x));

let start (c : LCol) : Self = c;

let has_next (it : Self) = not(LCol!is_empty (it));

let step_it (it) =

if has_next (it) then (LCol!head (it), LCol!tail (it))

else focalize_error ("no more elements") ;

let measure_it (c) = LCol!size (c);

We have defined the model statement which expresses that the list of elements
to visit should be the list view of the iterator. Here this view is the list view of
the underlying sequence as defined by the tolist function.

The overall SequenceIterator species is 150 lines of FoCaLiZe code where
proofs mostly involve unfolding definitions. For iterators that visit an element
only once we implemented the UniqueSeqIterator species by simple inheritance
and we proved the model step unique property in 40 lines of FoCaLiZe.

328 C. Dubois and R. Rioboo

We use a species RemovableGenericIterator to implement the remove fea-
ture. It takes an iterator as argument as in Code 15. To implement removable
iterators we encapsulate a general iterator with the necessary information to
keep track of the last element returned and of the collection of remaining values
after deletion. In Code 15 we use the PFailed value to reflect that no element
can be removed from the collection. As in Java we enforce that only the last
visited element can be removed.

Code 15

type partial(’a) =

| PFailed

| PUnfailed(’a);;

species RemovableGenericIterator(Elt is Setoid, L is Utils(Elt),

Col is Collection(Elt, L),

It is Iterator(Elt, L, Col)) =

inherit RemovableIterator(Elt, L, Col);

(* basic iterator, last element returned, current collection *)

representation = It * (partial(Elt) * Col) ;

logical let model(it, c, l) =

It!model(fst(it), c, l);

let get_collection(it: Self) = snd (snd (it));

let remove(it: Self): Self =

let i = fst(it) and re = snd(it) in

let e = fst(re) and col = snd(re) in

match e with

| PFailed -> it

| PUnfailed(x) -> (i, (PFailed , Col!remove(x, col)));

let start(c) = (It!start(c), (PFailed, c));

let step_it(it) =

if has_next(it)

then

let c = It!step_it(fst(it)) in

(fst(c), (snd(c), (PUnfailed(fst(c)), snd(snd(it)))))

else focalize_error("no more elements");

This species implements all of the basic iterators specifications (for instance
has next or model start of Iterator) together with features of remove. Basic
iterator methods are implemented by de-structuring the iterator’s representation
and using the corresponding methods of the embedded basic iterator.

Verified Iterators in FoCaLiZe 329

We also provide a RemovableUniqueGenericIterator species which inherits
removable iterators and proves that an element is only visited once. The overall
code for the two species implementing remove facilities is 300 lines of FoCaLiZe
code.

6 Related Work

Collections and iterators have been studied from a verification point of view by
different researchers, mainly in the context of Java or C#. Existing approaches
differ a lot and some of them are mentioned below.

Besides static verification methods, run-time verification has been used, it
allows for example the verification of safe enumeration, by monitoring and pre-
dictive analysis such as in [16].

Formal specification and deductive methods and tools have tackle the problem
of safe iterators or safe use of iterators. A very early specification of Alphard like
iterators using traces has been given by Lamb in [12]. Iterators have also been
studied in the context of the refinement calculus [10]. In this work, iterators are
translated into catamorphisms.

Some approaches (see e.g. [11] and [15]) and use higher order separation logic
to verify some properties on iterators. It is strongly linked to an imperative
implementations with shared mutable heap structures and thus not in the scope
of our approach.

Model oriented specification to describe how iterators behave is a largely
adopted approach (see e.g. [18], [8], [4], [9], [14]). Contracts are associated to
collections and iterators in the form of pre and post-conditions and invariants.
In Java and JML context, this kind of specification may use model fields [3] such
as in [8] where the abstract model of a collection is a bag. From specification
and code, verification conditions are generated and then proved, automatically
or not, by a theorem prover. Our approach is close to this model based style,
however we don’t fix a choice for the model. We only specified it as a logi-
cal statement and its definition is left to the implementor of the iterators. This
avoids explicit bag abstraction and we believe, allows more flexibility to describe
iterators.

Such uses of specification contracts, model fields in particular, usually allow
modular verification. Our approach facilitates also this modular verification since
we are able to verify functions dealing with iterators according to their interface
and thus using only the specifications of iterators (model start, model next

etc.).
The standard Coq library provides a modular specification for finite maps and

sets very similar to those found in the Ocaml library implemented using lists and
efficient trees. Iterators are not featured, however a fold function is proposed.
Also Filliâtre (see [6]) generalizes a fold function into efficient persistent itera-
tors for Ocaml.

The Isabelle Collections Framework (ICF) [13] provides a unified framework
for using verified collection data structures in Isabelle/HOL formalizations. They

330 C. Dubois and R. Rioboo

come with iterators which are implemented as generalized fold combinators.
The ICF supports maps, sets and sequences together with generic algorithms
using the Isabelle abstraction facilities. Iterators are created using a continuation
function, a state transformer function and an initial state. Support for reasoning
is achieved using an invariant and specifications are provided for maps, sets and
sequences. Our implementation only provides some support for sequences but we
have designed a general framework in which maps and sets can be implemented.
The ICF heavily relies on higher order functions whereas FoCaLiZe emphasizes
on first order statements which are often easier to understand by programmers.
We thus remain in the same spirit than the Java Collection Framework but we
use persistent data and allow certification.

7 Conclusion

In this paper we have presented a formal specification of collections and iterators
together with a verified implementation of iterators for sequential lists, using the
FoCaLiZe environment. The overall FoCaLiZe formal development with specifi-
cations, code and proofs, contains around 1600 lines4. We have used as much as
possible FoCaLiZe inheritance and parameterization in order to get a flexible,
adaptable and reusable formal development.

As perspectives we plan to specify and implement iterators for other kind
of collections such as trees or maps. Then, in our development it is possible to
state that when there is no more element to visit, every element in the collection
has been visited. It would also be interesting to exploit the fact that a sequence
is an ordered aggregate of elements and thus specify and define iterators that
enumerate the elements of such a collection respecting their order.

Furthermore since we have defined iterators as a species they are normal
FoCaLiZe values and we are able to manipulate them as in Code 15. This should
allow the combination of different iterators and thus provide generic species
implementing combinators of iterators.

References

1. Proceedings of the 2006 Conference on Specification and Verification of
Component-based Systems. ACM, New York (2006)

2. Bonichon, R., Delahaye, D., Doligez, D.: Zenon: An extensible automated theorem
prover producing checkable proofs. In: Dershowitz, N., Voronkov, A. (eds.) LPAR
2007. LNCS (LNAI), vol. 4790, pp. 151–165. Springer, Heidelberg (2007)

3. Breunesse, C.-B., Poll, E.: Verifying jml specifications with model fields. In: Formal
Techniques for Java-like Programs. Proceedings of the ECOOP 2003 Workshop
(2003)

4. Cok, D.R.: Specifying java iterators with jml and esc/java2. In: Proceedings of the
2006 Conference on Specification and Verification of Component-based Systems,
SAVCBS 2006, pp. 71–74. ACM (2006)

4 Available at the unlisted url http://www.ensiie.fr/~rioboo/iterators.fcl

Verified Iterators in FoCaLiZe 331

5. Dubois, C., Hardin, T., Vigui Donzeau-Gouge, V.: Building certified components
within focal. In: Loidl, H.-W. (ed.) Revised Selected Papers from the Fifth Sym-
posium on Trends in Functional Programming, TFP 2004, München, Germany.
Trends in Functional Programming, vol. 5, pp. 33–48. Intellect (2006)

6. Filliâtre, J.-C.: Backtracking iterators. In: Proceedings of the ACM Workshop on
ML 2006, Portland, Oregon, USA, pp. 55–62. ACM (2006)

7. Gamma, E., Helm, R., Johnson, R., Vlissides, J.M.: Design patterns: elements of
reusable object-oriented software. Addison-Wesley, Reading (1994)

8. Huisman, M.: Verification of java’s abstractcollection class: A case study. In:
Boiten, E.A., Möller, B. (eds.) MPC 2002. LNCS, vol. 2386, pp. 175–194. Springer,
Heidelberg (2002)

9. Jacobs, B., Meijer, E., Piessens, F., Schulte, W.: Iterators revisited: Proof rules
and implementation. In: Workshop on Formal Techniques For Java-like Programs,
FTFJP (2005)

10. King, S., Morgan, C.: An iterator construct for the refinement calculus. In: Fourth
Irish Workshop on Formal Methods (2000)

11. Krishnaswami, N.R.: Reasoning about iterators with separation logic. In: Proceed-
ings of the 2006 Conference on Specification and Verification of Component-based
Systems, SAVCBS 2006, pp. 83–86. ACM (2006)

12. Lamb, D.A.: Specification of iterators. IEEE Trans. Software Eng. 16(12), 1352–
1360 (1990)

13. Lammich, P., Lochbihler, A.: The isabelle collections framework. In: Kaufmann, M.,
Paulson, L.C. (eds.) ITP 2010. LNCS, vol. 6172, pp. 339–354. Springer, Heidelberg
(2010)

14. Leino, K.R.M., Monahan, R.: Dafny meets the verification benchmarks chal-
lenge. In: Leavens, G.T., O’Hearn, P., Rajamani, S.K. (eds.) VSTTE 2010. LNCS,
vol. 6217, pp. 112–126. Springer, Heidelberg (2010)

15. Malecha, G., Morrisett, G.: Mechanized verification with sharing. In: Cavalcanti,
A., Deharbe, D., Gaudel, M.-C., Woodcock, J. (eds.) ICTAC 2010. LNCS, vol. 6255,
pp. 245–259. Springer, Heidelberg (2010)

16. Meredith, P., Roşu, G.: Runtime verification with the RV system. In: Barringer, H.,
et al. (eds.) RV 2010. LNCS, vol. 6418, pp. 136–152. Springer, Heidelberg (2010)

17. Rioboo, R.: Invariants for the FoCaL language. Annals of Mathematics and Arti-
ficial Intelligence 56(3-4), 273–296 (2009)

18. Weide, B.W.: Savcbs 2006 challenge: Specification of iterators. In: Proceedings of
the 2006 Conference on Specification and Verification of Component-based Sys-
tems, SAVCBS 2006, pp. 75–77. ACM (2006)

	Verified Functional Iterators Using the FoCaLiZe Environment
	1 Introduction
	2 A Quick Presentation of FoCaLiZe
	3 Using Iterators
	4 Collections
	4.1 Specification Hierarchy
	4.2 Implementations

	5 Iterators
	5.1 Specification Hierarchy
	5.2 Implementations

	6 Related Work
	7 Conclusion
	References

