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Abstract. Object invariants are used to specify valid object states.
They play a central role for reasoning about the correctness of object-
oriented software. Current verification methodologies require additional
specifications to support the flexibility of modern object oriented pro-
gramming concepts. This increases the specification effort and represents
a new source of error. The presented methodology reduces the currently
required specification overhead. It is based on an automatic control flow
analysis between code positions violating invariants and code positions
requiring their validity. This analysis helps to prevent specification errors,
possible in other approaches. Furthermore, the presented methodology
distinguishes between valid and invalid invariants within one object. This
allows a (more) flexible definition of invariants.

Keywords: Object Invariants, Dependency Analysis, Reduced Specifi-
cation Overhead.

1 Introduction

Invariants specify relations on the program’s data, which are expected to hold
during the program execution. Besides other contract types, e.g. pre- and post-
conditions, invariants play a central role for reasoning about the correctness of
object-oriented software [1–3]. It is generally accepted when pre- and postcon-
ditions must be valid. Preconditions must be valid at call time of a method
and postconditions at a methods completion. But there exists no unique def-
inition regarding the scope of an invariant, which specifies when an invariant
must be valid. Different approaches exist regarding the definition of invariants
and the supported scope. To handle the flexibility of object oriented concepts,
current approaches introduce and require additional specifications. These addi-
tional specifications are used to define explicitly when an invariant or object
must be valid or which methods are allowed to invalidate an invariant. But they
also cause additional specification overhead and represent a new source of error.

This paper describes a new methodology to generate proof obligations for
invariants. Figure 1 illustrates how the presented methodology is embedded in a

D. Giannakopoulou and G. Salaün (Eds.): SEFM 2014, LNCS 8702, pp. 302–316, 2014.
c© Springer International Publishing Switzerland 2014



More Flexible Object Invariants with Less Specification Overhead 303

Input: source code
with specification

Proof Obligation (PO) Generator

Generating POs
for Preconditions,
Postconditions,

Assertions 

Proof
Obligations

Verification Backend

Translating the
POs into a solvers 

input lnguage

Verify POs using
e.g. a SMT-Solver

POs for Invariants (IDA)

Step 1: Analysing references
Step 2: Finding violating code
            Positions
Step 3: Finding depending 
            Code Positions
Step 4: Building Verification
            Graph
Step 5: Analyse scope
Step 6: Create POs

Fig. 1. Process flow diagram of our methodology

verification process. It is based on a static code analysis consisting of six steps.
We begin in Step 1 to analyse all references of each invariant. In Step 2 we search
code positions modifying the referenced values. These positions may invalidate
the corresponding invariant. In Step 3 we search code positions depending on the
validity of an invariant. In Step 4 we analyse backwards the possible call stack of
each found code position and build a special call graph, called Verification Graph.
In Step 5 we use the generated Verification Graph to analyse when invariants
are invalidated and when they need to be re-established. We call this the Scope
of an invariant. This information is used in Step 6 to generate proof obligations,
ensuring the validity of an invariant whenever it is expected to hold. Therefore
they are very similar to a Hoare-Triple [4]

The remainder of this paper is structured as follows: In Section 1.1 we in-
troduce current methodologies for specifying and verifying invariants and detail
their limitations. The contributions of the presented methodologies are listed in
Section 1.2. A formal description of our methodology is given in Section 2. In
Section 3 we show how this approach is applied to several examples. In Section
4 we conclude and introduce possible future work.

1.1 Related Work and Current Limitations

The classical Visible State Technique (VST) [5], as used in Eiffel [6] or Java
Extended Static Checking [7], is the most restricted methodology verifying in-
variants. In this concept, invariants are allowed to reference only class fields of
the same object. Each invariant must be valid in every public state. Therefore,
one must show that each invariant of an object is valid before and after any
public exported method has been executed. The limitations of the VST are well
analysed in the literature [5, 8]. Due to its strictness the VST does not require
any additional specifications. But it is also not flexible enough to support con-
structs like recursive methods, inheritance or invariants referring to values of
multiple classes (multiclass invariants).

The ownership technique (OST) [9, 10, 5, 11] structures the set of objects in
a acyclic hierarchical graph. Each object has at most one owner, which defines
one context, containing all its (transitively) owned objects. Objects without any
owner are part of the global context. The ownership model permits an object to
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reference directly owned objects (rep references) and objects in the same context
(peer references). Invariants may reference class fields of its own class and of all
(transitively) owned objects. A method is allowed to violate the invariants of all
objects within the ancestor context of its receiver object. Therefore, the owner-
ship model allows the modification of an object only by methods of its owner.
The OST introduces a new notation to specify the ownership relations between
object references. Hierarchical references must be declared as rep-references.
References to sibling objects must be marked as peer-reference. To verify an
invariant, one must show that each exported method preserves the invariants of
its receiver object. Besides the additional required specification effort, the OST
represents a very strict verification model. This model does not support the ver-
ification of recursive data structures and limits the possible cooperation between
different objects. Furthermore, the ownership technique prohibits invariants of
two different objects to contain a reference to one shared instance.

Barnett et al. extends the ownership technique in [12], by introducing a friend-
ship system (FSS). This system allows the specification of invariants beyond
ownership boundaries. Friendship relations control the access to privately owned
fields. This allows other classes to build their invariants on it. This is realised
by two new specification statements friend and read. Another extension is in-
troduced by Barnett et al. in [14]. We refer to this approach as Explicit State
Technique (EST). In that methodology, whether or not an object invariant is
known to hold is expressed within the objects state in a special class field, not
accessible by normal program code. Therefore, objects have to be marked explic-
itly as ”invalid”, before their class fields are updated. This is done by two special
statements: unpack and pack. The first one marks an object as invalid and opens
a frame in which the object state may be changed. The second statement closes
the frame and enforces all invariants to hold again. This extension is used by
Leino et al. in [2] to express invariants in dynamic contexts. Their approach uses
an additional dependent and ownerdependent clausal to mark recursive depen-
dencies. Furthermore, it is the first approach able to reason separately about
object invariants declared in different subclasses.

The visibility technique (VIS) is introduced by Müller et al. in [5] and is
based on the ownership model. A declaration within a specific class is visible
in a method, if the methods module imports the module of that class. An ex-
tended approach considering visibility modifiers is presented in [15]. Invariants
may reference class fields from their own class and all classes, in which that
invariant is visible. Therefore, an invariant might be violated only by methods
in which the invariant is visible. To prove that an invariant holds, one must
show that a method preserves the invariants of all its referenced objects. As a
result, the visibility technique is powerful enough to define and handle among
others specifications of recursive data structures. Because the VIS is based on
the ownership model it supports only very strict invariants regarding the owner-
ship hierarchy. The VIS requires that each invariant of all objects, relevant for a
method’s execution, hold before the corresponding method is called. Therefore,
the VIS cannot be used to verify a gradual update on a not owned object.
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Fig. 2. Illustration of an inter-object based on partly valid objects

The Oval approach (OVL) [13] combines the ownership model and behavioural
contracts. These contracts are defined by the additional specification sets valid-
ity invariants and validity effects : The first set contains objects which must be
valid before and after a method is executed. The second set enumerates objects
which might be violated during the execution of that method. Both sets are used
to track which objects must be re-established and validated after a method was
executed. This is very similar to the presented methodology which also is based
on two sets, listing invariants expected to be valid and invariants which might be
invalidated. However, we use a static code analysis to determine these sets au-
tomatically rather than requiring their definition manually by the programmer.
Furthermore, the Oval approach allows only invariants based on its own fields
or the fields of its (transitively) owned objects. As well as the pure ownership
and the visibility technique, Oval cannot distinguish between valid and invalid
invariants within one object. Additionally to the overhead caused by the under-
lying ownership model, the Oval approach requires a high specification overhead
for defining the behavioural contracts. Consequently, a manual enumeration of
required and effected invariants has to be performed for each method.

1.2 Contributions

Current approaches have two main limitations: (1) They require a high specifi-
cation overhead to define object invariants. (2) They cannot distinguish between
valid and invalid invariants within one object.

The first limitation has an additional drawback. The programmer must learn
the semantic and syntax of these new specifications. Furthermore, they represent
an additional source of error. This is because the programmer may define the
expected scope of an invariant not correctly. This may cause the unrecognised
invalidation of depending post- or preconditions, as shown in Section 3. The
second limitation prevent current approaches to be used to verify method calls on
partly valid objects, depending on a subset of invariants, as illustrated in Figure
2. In this example, the Data-object is invalid until the last method C : m()
establishes its valid state. But the operation C : m() requires the validity of
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invariant i1, which has been established just one step before by the method
B : m().

The presented methodology addresses these limitations and has following
contributions to the state of the art: (1) Reduced specification overhead, by
using an automatic dependency analysis based on existing access modifiers (2)
More flexibility, by distinguishing between valid and invalid invariants within one
object.

2 Methodology

The presented methodology generates proof obligations ensuring the validity of
invariants. The process of generating proof obligations uses static code analy-
sis to analyse when invariants are expected to hold. Altogether, the presented
methodology combines six different steps, as illustrated in Figure 1. These steps
are applied for each invariant.

Step 1: Analysing References. To analyse when an invariant might be vio-
lated we need to know what values are referenced by a given invariant i. The set
of class fields referenced by any statement s or invariant i is specified by the set
Ref∗(s). It combines directly (Ref(s)) and transitively referenced class fields.
A direct reference is any direct access to a class field fc in class c, by calling o.f
on an instance o of class c. Transitively referenced fields are accessed through
method calls in s, e.g. by calling a get-method. The set of methods called in s
is denoted by CalledMethods(s).

Ref∗(s) = Ref(s) ∪ {Ref(m) |m ∈ CalledMethods(s)} (1)

The set of class fields, directly modified by a given statement s, is returned by
the function Ref !(s).

Step 2: Finding Invariant Violations. A statement might invalidate an in-
variant i, if it assigns a new value to any class field fc, referenced in i. We call
such statement s Violating Code Position and its method m|s ∈ m Violating
Method. Violating code positions are searched in each method body Sm ∈ Mc

of all methods Mc of each class c ∈ C within the set of all classes C. The set of
violating code positions for one invariant i is defined by:

V iolatingS(i) = ∀c ∈ C ∀m ∈ Mc ∀s ∈ Sm {s |Ref !(s) ∩Ref∗(i) �= ∅} (2)

For reasons of simplicity, we assume that every class field f has private accessi-
bility. Therefore, direct access to a field fc is possible only within its declaring
class c. However, this assumption causes no limitations, because we make no
further assumptions regarding the definition of set- and get-methods.

Step 3: Finding Depending Code Positions. To analyse the scope of an
invariant i we must know when i might be violated and when i is expected to
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be valid. A code position s is called Depending Code Position if it requires the
validity of an invariant. The corresponding method m|s ∈ m is called Depending
Method. Depending code positions are searched in each method body Sm ∈ Mc

of each class c. A statement s accessing a field f , referred by the invariant i, de-
pends on i in two cases: (1) If s has no (transitive) access to every fi ∈ Ref∗(i)
(2) If there exists a different proof obligation �, e.g. caused by a postcondition,
containing s: s ∈ S�.

The first case is based on the idea that an invariant might be invalid, as long
as its validity can be checked by the programmer. But this is only possible if all
fields, referenced by an invariant are accessible. In this case we say s can check
i. If an invariant cannot be checked, a code block may invalidate an invariant or
access an invalid object. This is very similar to the task of checking manually
the validity of preconditions, before calling the corresponding method. Therefore,
preconditions are part of the public specification. In our concept, a programmer
can use access modifiers to control the visibility of each invariant and therefore
also its scope. Which code positions may access a defined class element is defined
by its access modifier:

Definition 1 (Accessibility). Each class element ec of class c, which is either
a class field fc, a method mc or an invariant ic, has one access modifier α(ec) ∈
AM , while the set AM must be specified by the concrete programming language.
An access modifier defines which code positions can access ec. The predicate
IsAccessible (ec, s) returns True, if the statement s can access the class element
ec. A class element ec of the instance o of class c might be accessed either directly
by o.f or transitively through a get-method. A get-method getfc , for the class field
fc, is a method of class c, returning the unmodified value of fc. In both cases, the
predicate IsAccessible(fc, s) returns True. Furthermore, a statement can access
a class element ec transitively through references across several object instances.
The predicate IsAccessible∗(ec, s) returns True, if the class element ec can be
accessed transitively by s.

However, the syntax and semantic of each α ∈ AM depends on the selected
programming language. Because we have exemplary implemented our method-
ology for Java, we support four different access modifiers1: public, package,
protected, private. Elements ec, declared as public, are accessible from any other
method mc in any other class c ∈ C. Each class cp ∈ C is member of one pack-
age p ∈ P . Elements ecp , declared as package, within class cp are accessible by
all other methods m defined in class c′p, declared in the same package p. Ele-
ments ec, declared as protected, are accessible from methods defined in c and
all classes extending c. Elements declared as private are accessible only from
methods declared in the same class c.

The following predicate indicates, if a statement s can check an invariant i:

CanCheck(s, i) ⇔ IsAccessible∗(i, s) ∧ ∀ e ∈ Ref∗(i)
∪CalledMethods(i) : IsAccessible∗(e, s) (3)

1 There exist no problem in adapting this methodology to a different semantic of access
modifiers.
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The second case considers dependencies between different proof obligations. For
example, a postcondition might be verified only, if a corresponding invariant is
valid. Therefore, a statement also depends on the validity of an invariant, if it
refers to a proof obligation whose validity cannot be proven without assuming
the correctness of that invariant. If a statement s requires the validity of an
invariant i is given by the predicate Requires(s, i).

Requires(s, i) ⇔ ∃ � = (P, S,Q)|s ∈ S� : ¬Ψ((P \ i, S,Q) ∧ Ψ(P ∪ i, S,Q)) (4)

In summary, a statement s depends on an invariant i if:

Depends(s, i) ⇔ ¬CanCheck(s, i) ∨ Requires(s, i) (5)

The set of depending code positions for one invariant i is defined by:

DependingS(i) = ∀c ∈ C ∀m ∈ Mc ∀s ∈ Sm {s |Depends(s, i)} (6)

Step 4: Building The Verification Graph. The scope of an invariant defines
when an invariant might be violated and when its validity is expected. We use a
special call graph, called Verification Graph (VG), to analyse the scope of each
invariant.

Definition 2 (Verification Graph). A Verification Graph V G(i) = (V,E)
is a tuple. Each vertex v ∈ V has a reference mv to a method m. Each edge
e = (vi, vj) ∈ E indicates a method call in mvi to the method referenced by its
target mvj . Furthermore, each edge e has a reference se to the position of the
method call in mvi . Within vi, the edges are ordered by the position se in mvi .
If e1 = (vi, vj) < e2 = (vi, vk) the method mvj is called before the method mvk

is called. Each method and method call is represented only once within the VG.

The VG is built by analysing the possible call stack of each violating and de-
pending method. We call this possible call stack Context.

Definition 3 (Context). The context of any method m̂ is defined as a set of
pairs (m, s), where m refers to a method and s ∈ Sm to a statement within the
method m. Each pair corresponds to a method m, calling m̂ with the statement
s = o.m′(−→p ), and any list of parameters −→p . If m is the source of the context, s
might also be empty, denoted as (m, ∅). The general n-order context, for n ≥ 0,
of a method m and a defined set of methods M ′ ⊂ M , of all methods M , is
defined as:

Cn(m,M ′) =
{
(ṁ, s) |s = o.m′(−→p ) ∈ Sṁ ∧m′ ∈ Cn−1(m) ∧ ṁ �∈ M ′} (7)

C0(m,M ′) = {(m, ∅) |m �∈ M ′} (8)

The Verification Graph V G(i) = (V,E) of a given invariant i is built as follows:

V = V1 = {(m)|∃s ∈ m ∧ s ∈ V iolatingS(i)} ∪ (9)

V2 = {(m)|∃s ∈ m ∧ s ∈ DependingS(i)} ∪ (10)

{(m)|m ∈ C(V1, V2) ∪ C(V2, V1)} (11)

E = {(vi, vj)|vi, vj ∈ V ∧mvi calls mvj} (12)
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Data: Start vertex: vj , Start statement: s, Searched type: t = {violating, depending},
Search behind s: b

Result: The closest vertex of type t wthin the context of vj
1 if vj marked then return ∅ // Skip visited vertexes ;
2 mark vj ; // Mark vertex as visited

3 if vj is t then return vj ;

// Analysing all called methods in mvj before s is reached

// by following edges ej,k whose position sej,k in mvj is smaller than s

4 foreach ej,k = (vj , vk) | sej,k < s | from s to 0 do
// Searching recursively from begin on (mvk [0]) in each called method

5 v̂ = findNode(vk, mvk [0], t, true)
6 if v̂ �= ∅ then return v̂ ;

// Analysing all methods called after s is reached

// by following edges ej,k whose position sej,k in mvj is greater than s.

// This is used if we analyse methods called before the original s was

reached.

7 if b then
8 foreach ej,k = (vj , vk) | sej,k > s | from s to n do

// Searching recursively from begin on (mvk [0]) in each called

method

9 v̂ = findNode(vk,mvk [0], t, true)
10 if v̂ �= ∅ then return v̂ ;

// Analysing all methods calling mvj

11 foreach ek,j = (vk, vj)do
// Searching from the position calling mvk to the begin of mvj.

12 v̂ = findNode(vk, sek,j
, t, false)

13 if v̂ �= ∅ then return v̂ ;

14 return ∅ ; // No vertex found

Algorithm 1. FindNode(vj ,s,t,b) : Searching closest node

Step 5: Analysing Invariant Scopes. The scope of an invariant defines when
an invariant is expected to be valid and when it is allowed to be invalid. We
must guarantee, that an invariant is valid whenever a depending code position is
reached. In general, the invariant must be ensured by code positions modifying
any value, referenced by that invariant. In combination with depending code
positions, we are searching the last violating code position called before the de-
pending code position is reached. We call the corresponding vertexes Ensuring
Vertexes, because they must ensure the invariants validity. These positions are
found by searching the shortest paths between each depending vertex and the
closest violating vertex. For one depending code position s ∈ m, we analyse two
categories of methods: (1) Methods (transitively) called in m before s is reached.
(2) Methods (transitively) calling m. Algorithm 1 formalises this search for a
given depending code position s ∈ mvj , by calling FindNode(vj , s, violating,
false). A detailed walk through, based on an example, is presented in
Section 3.
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Step 6: Creating Proof Obligations. Proof obligations define an expected
behaviour for a defined sequence of statements.

Definition 4. Proof Obligation. A proof obligation � = (P, S,Q) is a triple. It
combines a set of assumptions (P ), an ordered list of statements (S) and a goal
(Q). Each assumption and the goal are represented as boolean predicate. To prove
a proof obligation, one must show, that each possible evaluation of S, validates
Q, while assuming P . The predicate Ψ(�) is true if � can be verified.

Here, they are used to ensure that each ensuring method respects the corre-
sponding invariant. But it is not sufficient to analyse the violating method. This
is because the invariant might be ensured within the method calling the ensur-
ing method. For example, a set-method is marked as ensuring method. In this
case, the method calling the set-method must ensure, that the set value respects
the invariant. Therefore, the code block s of the corresponding proof obligation
� = (P, S,Q) must combine statements of both methods. In general, each code
block, not depending on that invariant, within the call stack of the ensuring
method may ensure its validity. For one ensuring node v̌, we analyse the undi-
rected path p(v̂, v̌) to the closest depending vertex v̂. The closest depending node
is found by using FindNode defined by Algorithm 1.

In summary, we create the set of proof obligation ρ(i) for each invariant i:

D = DependingS(i) (13)

E =
⋃

d∈D

FindNode(v(d), d, violating, false) (14)

P =
⋃

e∈E

p = (FindNode(v(e), e, depending, false), v(e)) (15)

S(p) =
⋃

e=(vj ,vk)∈p

mvj [0, e] ∪ mv̌ (16)

ρ(i) =
⋃

p(v̂,v̌)∈P

(Preconditions(v̂), S(p), i) (17)

The predicate Preconditions(v̂) refers to the set of preconditions defined for v̂.
We use the syntax mvj [0, e] to refer to the subset of statements in Sm from the
begin of m (position 0) to the position referenced by the edge se.

2.1 Soundness

We sketch the proof of soundness, by showing that the set of generated proof
obligations is sufficient to guarantee an invariants validity whenever a depending
code position is reached:

Theorem 1. If all proof obligations could be verified, every invariant i is valid,
whenever one of its referenced values v ∈ Ref∗(i) is accessed by a statement ŝ
in method m̂, with the set of valid assumptions P and defined condition Q such
that ¬Ψ(� = (P \ i,m,Q)) ∧ Ψ(� = (P ∪ i,m,Q)).
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Proof. If ŝ fulfils the properties defined in the theorem, we know ŝ ∈
DependingS(i) (Equation 6). If i is not valid when ŝ is evaluated, there must
be one statement š within method m̌ which has invalidated i and which has
been evaluated before ŝ. To invalidate i, š must assign an invalid value to
any field referred by i: Ref !(š) ∪ Ref∗(i) �= ∅. Regarding š, there exist two
possibilities: (1) š is the last code position modifying a value referenced by i,
before reaching ŝ. (2) It exists a code position ˇ̌s which modifies a value refer-
enced by i, which is evaluated after š and before ŝ is reached. In the first case,
FindNode(v(ŝ), ŝ, violating, false) = ṽ = v(š). In the second case, ˇ̌s must re-
establish i and FindNode(v(ŝ), ŝ, violating, false) = ṽ = v(ˇ̌s). The syntax v(s)
refers to the vertex v whose referenced method contains s. Step 6 generates a
proof obligation � = (P, S, i) and the statement sequence S contains as last se-
quence the statements of mṽ (Equation 16). Therefore, if � can be verified, i is
re-established after mṽ has been evaluated and before ŝ is reached. ��

3 Case Studies

The presented methodology provides a higher flexibility in defining object invari-
ants while requiring less specification overhead. This is shown by demonstrating
the analysis process of different examples. The examples represent challenges and
code examples which have been addressed by latest related work. Thereby we can
compare the specification overhead of our methodology with the one required
by related approaches. Furthermore, we present one example which cannot be
verified using current approaches. All examples have been implemented in Java.
Invariants were defined using the syntax of the Java Modelling Language, as
descried in [7]. The defined access modifiers are interpreted as described in Step
3 within Section 2.

Challenge 1: Gradual Updates. Invariants may refer to multiple class
elements. A gradual update of referenced values may invalidate an invariant
temporary. This enables access to an invalid object. Current methodologies use
additional specification elements to define when an invariant is valid. The ap-
proach presented in [14] uses unpack and pack statements. These statements
mark the begin and end of an interval, in which an object is allowed to be in-
valid. Their usage is indicated in Listing 1. The example is based on a data type,
representing a numerical interval by storing a min and max value. It provides a
method getSize(), which guarantees a positive return value. Thereby, getSize()
requires the validity of the invariant getMin() <= getMax().

In Listing 1.2 pack and unpack is correctly used, because getSize is called,
after the object invariant has been ensured by calling pack. In Listing 2 the pack
statement is located after getSize() and has been called on the invalid object.
This is a specification error, because the programmer declares the scope of the
invariant incorrectly. This causes a violated postcondition of getSize(). We want
to demonstrate two points in this example: (1) How the presented methodology
analyses the code without using additional specification elements like pack and
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1 class I n t e r v a l {
2 //@publ i c i n va r i an t getMin () <= getMax () ;
3 private int min ,max ;
4 // For reasons o f compactness we do not d i s p l a y
5 // the con s t ru c t o r and the analog s e t / g e t methods f o r min
6 public void setMax ( int max) { this .max=max ;}
7 public int getMax ( ) { return this .max ; }
8 //@ensures \ re turn >= 0;
9 public void ge tS i z e ( ) { return this .max−this .min ; }

10 }
11 class UseIn te rva l {
12 //@ensures \ re turn >= 0;
13 public int main ( ) {
14 I n t e r v a l i n t e r = new I n t e r v a l ( 5 ,7 ) ;
15 //unpack i n t e r as I n t e r v a l
16 i n t e r . setMin (8) ;
17 i n t e r . setMax (9) ;
18 // pack i n t e r as I n t e r v a l
19 return i n t e r . g e t S i z e ( ) ;
20 }
21 }

Listing 1.1. Gradual update of an invariant

unpack. (2) How the automatic code analysis of the presented methodology
detects the described error of Listing 1.3.

The VGs (V Ga,V Gb) for both examples are illustrated in Figure 3.

1 //@ensures \ re turn >= 0;
2 public int main2 ( ) {
3 I n t e r v a l i n t e r = new I n t e r v a l ( 5 ,7 ) ;
4 //unpack i n t e r as I n t e r v a l
5 i n t e r . setMin (8) ;
6 int d i s t = i n t e r . g e t S i z e ( ) ;
7 i n t e r . setMax (9) ;
8 //pack i n t e r as I n t e r v a l
9 return d i s t ;

10 }

Listing 1.2. Specification error

In the following, we use the vertex labels as reference to the different meth-
ods. In Step 1 we analyse the references of the public invariant i: Ref∗(i) =
{min,max}. In Step 2 we analyse which code positions modify any referenced
value. These are the methods setMin() and setMax(): V iolatingS = {sv3 , sv4}.
In Step 3 we analyse which code positions depend on i. The method getSize()
is the only depending code position: DependingS = {sv5}. This is because the
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v1a : Main (1.1)

v1b : Main (1.2)

e1a e2a e4a

e1b e2b e3b

v3 : setMin()

v2 : Interval() v4 : setMax()

v5 : getSize()

e3a

e4b

Fig. 3. The VGs for the Listings (a) 1.1 and (b) 1.2

postcondition �v5 = (i, (max − min), (max − min) >= 0) cannot be verified
without assuming i. In Step 4, we build the VG, illustrated in Figure 3. In Step
5, we search the ensuring methods of each depending code position. In exam-
ple (a) the analysis follows first edge e4a and next edge e3a. The first edge is
followed by lines 11-13 of Algorithm 1 and the second edge by lines 3-6, within
the first recursive call. Thereby we reach vertex v4 and we find the closest vi-
olating method. In example (b) the analysis follows first edge e3b and next
edge e2b. Here, vertex v3 is the closest violating method. In Step 6, we create
the proof obligations ensuring i. Therefore, we search for each ensuring vertex
the closest depending vertex. In these examples, there is no depending vertex
within the context of both ensuring vertexes. Therefore, the context covers the
full program until each ensuring vertex is reached. The proof obligations are:
�A = (∅,mv2 ∪m[14] ∪mv3 ∪mv4 , i), �B = (∅,mv2 ∪m[14] ∪mv3 , i). Using Z3
as verification back-end, we can prove the validity of �A and �B.

Challenge 2: Recursive Data-Structures. Figure 4 contains an example for
a recursive data structure width following private invariant: inv1 = ((val >=
0) ∧ (prev.val < 0)) ∨ ((val < 0) ∧ (prev.val >= 0)). Recursive data struc-
tures have been addressed by Leino et al. in [2]. They require the additional
specification statements peer, dependent and owner dependent. The presented
methodology does not require any additional specification elements. Our analysis
recognises that the public setPrev-method (m1) and the constructor (m2) are
the only two methods modifying the value val. Because the invariant is private,
both public methods must ensure the invariant. The two proof obligations are
�1 = (∅,m1, i) and �2 = (∅,m2, i).

Challenge 3: Dependencies on an Invariant Subset. Current methodolo-
gies do not distinguish between valid and invalid invariants within one object.
Methods cannot require the validity of an invariant subset only. Current method-
ologies cannot be used to verify the example in Figure 5 or in Listing 1.3.
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1 class S t a r t e r {
2 // Post : Return Value > 0 ;
3 static main ( int a ) {
4 i f ( a < 2)
5 { throw new Exception ( ) ; }
6 Data d = new Data ( ) ;
7 d . setA ( a ) ; d . setB (0) ;
8 return DataProcessorA .

p roce s s (d ) ;
9 } }

10 class DataProcessorA {
11 static int proce s s (Data d) {
12 a s s e r t (d . getA ( )>2) ;
13 int b = 2 ∗ s q r t (d . getA ( ) ) ;
14 d . setB (b) ;
15 return DataProccessorB .

p roce s s (d ) ;
16 } }
17 class DataProcessorB {
18 // Post : Return Value > 0 ;
19 static int proce s s (Data d)
20 { return d . getC ( ) /d . getB ( ) ;}
21 }

Listing 1.3. Partly valid objects

NumListElement
- inv1

-prev: NumLisElement

-val: int

+NumListElement(val:int)

+getPrev(): NumListElement

+setPrev(p:NumListElement)

Fig. 4. Recursive data structure

Data

-a: int

+inv1: a>2

-b: int

+inv2: b>0

+c: int

+getA(): int

+getB(): int

+setA(a:int): void

+setB(b:int): void

Fig. 5. Data model of Listing 3

This Listing uses the data structure shown in Figure 5, which contains two
invariants (i1 = inv1) and (i2 = inv2). The Data-object is passed as an
argument to the DataProcesorA : process-method and later further to the
DataProcessorB : process-method. The DataProcessorA : process-method
uses the square root of the a-field-value to calculate a new b-field-value. Be-
cause of the defined assertion, it relies on the invariant i1. But at call time
of DataProcessorA : process, the invariant i2 is invalid. The invariant i2
is required not until DataProcessorB : process is called. This method uses
the b-field-value as divisor in Line 19 of Listing 1.3. This implies the obliga-
tion b! = 0, which cannot be assured without assuming i2. In summary, both
methods DataProcessorA : process and DataProcessorB : process rely on a
different subset of invariants defined within the Data-object. We use this ex-
ample to demonstrate how the presented methodology distinguishes between
valid and invalid invariants within one object. This example causes two Verifi-
cation Graphs V G(i1) and V G(i2), one for each invariant. They are both illus-
trated in Figure 6. Again, we start by analysing the references of each invariant:
Ref∗(i1) = {a}, Ref(i2) = {b}. These values may be modified by following code
position: V iolating(i1) = {sv4}, V iolating(i2) = {sv3}. The depending code
positions are DependingS(i1) = {mv5 [12]} and DependingS(i2) = {mv6 [20]}.
We use the syntax [•] to identify the corresponding code position by their
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v2 : setA() v7 : getB()

VG(i2)
v5 : DPA:process()

v3 : setB()

v1 : Main

e1 e2

e3

e4
e6v4 : getA()

e5

v6 : DPB:process()

e7
v2 : setA()

VG(i1)
v5 : DPA:process()

v3 : setB()

v1 : Main

e1 e2

e3

e4

v4 : getA()

e5

Fig. 6. The VG for the example of Goal 6

line number in Listing 1.3. The ensuring method for mv5 [12] is mv2 , following
the edges e3,e2,e1. For mv6 the ensuring method is mv3 , following the edges
e6 and e5. There is no depending code position within the context of mv2

and mv3 . Therefore, we add the all statements to S, until setA() respectively
setB(). The corresponding proof obligations are: �i1 = (∅,main[4−6]∪mv2, i1),
�i2 = (∅,main[4−6]∪mv2 ∪mv3 ∪mv2 [12−13]∪mv3 , i2). Both proof obligations
can be verified, using the Z3 as verification back-end.

Results. The analysis of Challenge 1, 2, and 3 shows that the presented method-
ology does not require specification overhead like current state of the art meth-
ods. Furthermore, the automatic analysis prevents errors caused by the wrong
usage of additional specification elements, as shown in Challenge 1. The pre-
sented methodology recognised the violated postcondition in Listing 1.3, caused
by the access to an invalid object. The determination between valid and invalid
invariants within one object enables the verification of Challenge 3, which is not
possible with current state of the art approaches.

4 Conclusion and Future Work

We have introduced a new methodology to specify and verify object invariants.
This methodology uses access modifiers to control the scope of an object invari-
ant. An automatic control flow analysis is used to analyse when invariants may be
invalidated and when they must be re-established. This reduces the specification
overhead and helps to prevent errors through the usage of specification state-
ments, as we have shown in Challenge 1 in Section 3. The presented methodology
distinguishes between invalid and valid invariants within one object. Thereby,
it supports more flexible scopes of invariants, as we have shown in Challenge
3. The computational overhead does highly depend on the analysed program
structure. In general, public invariants cause a larger number of paths that need
to be considered to validate an invariant, because more code positions may in-
validate an public invariant. The same applies to invariants with a large number
of references. Therefore, the higher flexibility may cause a higher number of
proof obligations. The reduced specification overhead causes a higher computa-
tional overhead. We have implemented the presented methodology within a tool
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analysing single threaded Java programs using the Z3 solver as formal verifica-
tion back-end. Currently we do not support the full Java language specification
(e.g. method overloading). Current limitations are caused by high implementa-
tion efforts but should not influence the completeness of the presented methods.
At the moment we must apply all six steps to each source file after every change
in order to validate defined invariants. Future work may address the integration
of a change review to analyse only code fragments, affected by latest changes.
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