
A Toolset for Support of Teaching Formal

Software Development

Štefan Korečko, Ján Sorád, Zuzana Dudláková, and Branislav Sobota

Department of Computers and Informatics,
Faculty of Electrical Engineering and Informatics,

Technical University of Košice, Letná 9, 041 20 Košice, Slovakia
{stefan.korecko,zuzana.dudlakova,branislav.sobota}@tuke.sk,

jansorad@gmail.com

Abstract. Teachers of formal methods courses often experience disin-
terest or even disgust towards the topic from software engineering stu-
dents. As one of the significant reasons of this situation we see the fact
that students are not in touch with domains where their use is desired
and worth the effort. In this paper we deal with a toolset we developed
to improve the situation. The toolset brings to students, in a virtual
form, one of the most successful domains of formal methods application
- railway systems. It consists of a modified version of a railway central-
ized traffic control simulator called Train Director and a tool that allows
signals and switches in a railway scenario, simulated by Train Director,
to be controlled by a separate formally developed control program. We
briefly describe the toolset and its typical use within a formal methods
course and discuss its usability with respect to various formal methods.

Keywords: formal methods, teaching, software development, railway
systems, virtual laboratory.

1 Introduction

Almost every university teacher who dedicated a portion of his career to in-
troducing software engineering students to the world of formal methods (FM),
especially to those heavy weighted ones that involve formal verification and re-
finement, faced several serious problems. And in the era we live in, the era of
massification of higher education, one of the most important problems is how to
motivate students to enrol into formal methods courses and to stay in them. Of
course, we often get the “Why should I learn this language (method, approach,
etc.)?” question in “normal” software engineering subjects as well. But there it
can be easily answered by pointing out a number of (local) companies whose em-
ployees use them on regular basis. However, in FM courses we get a more serious
questions, like “Why on earth should I deal with such terrifying stuff like formal
semantics or, heaven forbid, mathematical proofs?”. And the easy answer is not
here. There are only few companies worldwide that use FM in software develop-
ment and they are almost exclusively located in the most developed countries.

D. Giannakopoulou and G. Salaün (Eds.): SEFM 2014, LNCS 8702, pp. 278–283, 2014.
c© Springer International Publishing Switzerland 2014



A Toolset for Support of Teaching Formal Software Development 279

Instead of it we can, together with the authors of [3], focus on a noble goal
of educating rigorous software engineers who will change the way software is
produced. But will our students follow? It is our strong belief that they will if
we let them play with FM in an appropriate setting. We agree with Almeida
et al. [1] that FM should not be used everywhere, but primarily in cases when
reliability, safety or security are a concern. We can hardly persuade students to
put an extra effort to formal verification of some typical information system, a
computer game or a mobile phone firmware when they already know that such
software is usually released with several bugs, fixed by updates afterwards. And
nothing really bad ever happens. The problem is that these are exactly the types
of systems our students encounter during their university study. So, we need to
introduce them to a domain where use of FM is appropriate, where they will feel
the need of that extra effort. And we have to let them develop something for that
domain, using FM. But what domain to choose? We should pick up one where
software failures may have tragic consequences. It is also important that most of
the students are familiar with the domain and can imagine these consequences
affecting their lives. Moreover, there should be real-life cases from the domain
where human lives are already under the control of automated systems. There
are several candidates but one of the most appealing are railway systems. The
fact that this domain is one of few where FM reached a mature level [2] is a nice
and important bonus.

The domain has been selected, now the question is how to bring it to the stu-
dents. The real railway is definitely out of our reach and to let students develop
a console application on the basis of some text document form of assignment is
hardly motivating. This is exactly where our toolset can help. It replaces the real
railway with a virtual one, represented by a simulation game called Train Di-
rector (http://www.backerstreet.com/traindir). The modifications we made
to the game allow it to be connected to a separately developed control program
(module), which responds to requests from simulated trains by manipulating
switches and signals. And these control modules are the very pieces of software
the students develop using formal methods. The control modules are Java ap-
plications, so the toolset is usable with any FM for which a Java code generator
exists. The appearance and operation of the toolset and control modules, their
place in a FM course and adaptability to various FM are described in the next
section. The final one deals with teaching experiences, related work and plans
for future development.

2 The Toolset and Its Use

The toolset itself consists of two tools - a modified version of Train Direc-
tor, an open source simulator of the railway centralized traffic control and
TS2JavaConn, a Java application whose primary role is to provide communi-
cation between the simulator and control modules.

Train Director is a game that allows a user to create and simulate a railway
scenario, which consists of a track layout and a train schedule. The user’s task

http://www.backerstreet.com/traindir


280 Š. Korečko et al.

a)

b)

Fig. 1. The toolset during a simulation: Train Director (a) and TS2JavaConn (b)

during the simulation is to throw switches and clear signals in such a way that
the trains will follow the schedule. The game has its own logic that prevents col-
lisions and changes some signals automatically. It also provides a simple server
interface for an external control. We modified the game by disabling the internal
logic and implementing train collisions and naming of signals and switches. We
also enhanced the server interface to be able to communicate with TS2JavaConn.
The modified Train Director sends messages to TS2JavaConn every time a train
stops before a red signal (requestGreen message), wants to enter a track layout
(reqestEnter) or departure from a station (reqestDepartureStation). These mes-
sages also contain name of the corresponding signal, entry point or station, name
of the train and names of following stations the train should visit according to
the schedule. A sectionLeave message is sent when a train leaves current track
section and a sectionEnter message when it enters a new one. For the sake of
simplicity a track section always starts and ends at some signal, switch or entry
point. The modified Train Director can also receive messages. These messages
are commands from TS2JavaConn to, for example, start or stop a simulation or



A Toolset for Support of Teaching Formal Software Development 281

to change the state of a signal or switch. In Fig. 1 a) we can see Train Director
during a simulation of simple scenario that consists of two entry points e0 and
e1 and two signals sig0 and sig1. There are two track sections, e0_sig1 and
sig0_e1.

TS2JavaConn (Fig. 1 b) was necessary because Train Director is a C++
application and control modules are in Java. We have chosen Java because of its
popularity among students and wide support in FM tools. Having TS2JavaConn
as a separate tool also allows to easily replace Train Director with another sim-
ulator. The tool provides a GUI where a user can load a control module (first
button in the toolbar in Fig. 1 b), unload the module (2nd button) open a tab
with a module generator (3rd button), reset the connection with the simulator
(4th button) or remotely control the simulation in Train Director (round but-
tons). In the “Element state” part of the “Overview” tab a user can observe
in which state track elements are in the simulator (S) and in the module (M).
Communication between the tools can be watched in the “Logger” part. For each
scenario the current version of the module generator can create a control mod-
ule template in Java and in specification languages of formal methods B-Method
and Perfect Developer, together with a corresponding configuration file.

The control module itself is a Java application where one “main” class
contains methods that react to the messages from Train Director and variables
that represent devices from the controlled scenario. How exactly these methods
and variables are mapped to the messages from and devices in Train Direc-
tor is defined in a mandatory text-based configuration file. The possibilities are
wide: for data representation we can use primitive types like integer or boolean,
enumerated sets or mappings. The methods can be non-parametric, where cor-
responding message parameters are parts of their names or parametric, where
they are usual parameters. For example, in a control module for the scenario
depicted in Fig. 1 a) we need two non-parametric methods (reqGreen_sig0 and
reqGreen_sig1) or one parametric method (reqGreen(sig)) to handle the re-
questGreen messages for sig0 and sig1. The number of additional classes and
libraries in control modules is not limited, so the modules can be really sophis-
ticated and complex applications. One may ask why we bother with the non-
parametric representation, but our experience shows that more complex data
representation, necessary for the parametric one, usually makes an automated
verification in FM tools impossible even for very simple scenarios.

The communication between the simulator and a control module can be
seen in Fig. 1, which shows the tools exactly after the moment when a request
for clearing the signal sig0 is received from the train Os001. As we can see in
the “Logger” part, TS2JavaConn responds by calling reqGreen_sig0 method
from the connected control module. The method changes the value of a variable
that represents sig0 and this change is sent back to the simulator (as so-called
multiCommand message) where it sets sig0 to green.

During a FM course the toolset is useful in both lectures and practices. In
lectures the whole method taught can be illustrated by examples utilizing the
toolset. Even very simple scenarios and control modules are able to demonstrate



282 Š. Korečko et al.

benefits (e.g. we can specify safety conditions and prove that they hold in every
state of given program) and drawbacks (e.g. we cannot prove that the safety
conditions we specified are the right ones) of FM. Advanced concepts can be
explained as well. For example, on a refinement from a data representation that
corresponds 1:1 to devices in given scenario to a more effective one or on a
control module composed from reusable components for individual track types
(a straight track, various junctions, etc.). On practices the toolset primarily
provides a virtual laboratory environment and is usually used in the following
way: First a teacher creates a new scenario, or modifies an existing one, in Train
Director. When creating it he should restrict himself to simple red/green signals
and two-way switches. Then he presents the scenario to students with a task
to create a dependable controller for it. The students can then play with the
scenario in Train Director: if it is disconnected from TS2JavaConn, switches and
signals can be operated manually. After getting familiar with the scenario the
students generate an empty module using TS2JavaConn and start to develop the
controller itself, using given formal method and its tools. Finally, they return to
the toolset and run the finished and compiled module with the scenario.

Adaptability of the toolset to various FM was one of the primary concerns
during its development. It has been achieved by making the toolset as indepen-
dent from actual FM tools as possible. There are only two “common points”. The
first one is when a new control module template is generated. Only languages
of two FM are supported yet, but the module generator is based on the Apache
Velocity template engine, so new ones can be added easily. The second point is
when a finished module is connected to and run with the corresponding scenario.
Here the only requirement is that the module has to be a Java application with
an appropriate interface. And Java code generators are available for a wide vari-
ety of FM tools. For example, Perfect Developer (http://www.eschertech.com)
and VDM++ Toolkit (http://www.vdmtools.jp) have built-in generators, for
the Rodin tool (http://www.event-b.org) of the Event-B method they exist
in a form of plug-ins (e.g. EB2J, http://eb2all.loria.fr) and for B-Method
we provide our own generator, called BKPI compiler, optimized for the use with
the Atelier-B tool (http://www.atelierb.eu). We had tested the toolset with
all these methods and code generators and only in the case of EJ2B it was nec-
essary to alter the generated Java code (an explicit constructor was added). In
all other cases it was enough to modify configuration files of the modules.

3 Conclusions

The toolset was already used during two runs of a FM course, which teaches
Petri nets and B-Method, at the home institution of the authors. Petri nets were
explained with abstract models of synchronization problems while almost all ex-
amples in the B-Method part were prepared and presented using the toolset. On
practices the toolset was used in the way described in section 2. Based on the
students’ feedback we can conclude that our belief has been confirmed. When
compared to previous years the students were more engaged and even those who

http://www.eschertech.com
 http://www.vdmtools.jp
 http://www.event-b.org
http://eb2all.loria.fr
http://www.atelierb.eu


A Toolset for Support of Teaching Formal Software Development 283

didn’t score very well in other theoretical computer science-based subjects man-
aged to accomplish assignments that incorporated the toolset without significant
problems. Some of them reported that they enjoyed the B-Method part more
that the Petri nets part despite its significantly higher difficulty. And all of them
enjoyed the moment when they have finally seen their control modules running
in the toolset. Of course, problems were reported, too. After the first run (in
2013) the need to write configuration files and whole control modules manually
was identified as the greatest setback. To improve the situation the module gen-
erator of TS2JavaConn has been implemented. Students also reported that it
takes too long to get the modules from FM side to the toolset. But this was
intentional, to prevent students from using the “modify-compile-run” cycle too
often.

The belief we presented is also supported by other educators. The work [4]
shares our view on importance of motivation with respect to massification of
higher education and points out that students will see little benefit in devel-
oping ordinary systems using FM. The authors of [2] see the importance of an
appropriate experimentation platform, which is exactly what our toolset tries to
establish, as high enough to make it one of their ten principles (no. 6).

The future development of the toolset will focus on an improvement of the
module generator and replacement of Train Director by 3D train simulator Open
Rails (www.openrails.org).

This paper dealt primarily with the actual version of the toolset and its use
in a FM course. Additional information, such as the general idea behind the
toolset, related work that led us to the idea, examples of control modules and
the reasons why Train Director was chosen, can be found in other papers by
the authors. These papers, the toolset, the BKPI compiler and a set of exam-
ples with control modules developed using various FM can be downloaded from
https://kega2012.fm.kpi.fei.tuke.sk.

Acknowledgments. This work has been supported by KEGA grant project
No. 050TUKE-4/2012: “Application of Virtual Reality Technologies in Teaching
Formal Methods”.

References

1. Almeida, J.B., Frade, M.J., Pinto, J.S., Melo de Sousa, S.: Rigorous Software De-
velopment. An Introduction to Program Verification. Springer, London (2011)

2. Cerone, A., Roggenbach, M., Schlingloff, H., Schneider, G., Shaikh, S.: Teaching
Formal Methods for Software Engineering Ten Principles. In: Fun With Formal
Methods, Workshop Affiliated with the 25th Int. Conf. CAV 2013 (2013)

3. Cristi, M.: Teaching formal methods in a third world country: what, why and how.
In: Proceedings of the 2006 Conference on Teaching Formal Methods: Practice and
Experience (2006)

4. Reed, J.N., Sinclair, J.E.: Motivating study of Formal Methods in the classroom. In:
Dean, C.N., Boute, R.T. (eds.) TFM 2004. LNCS, vol. 3294, pp. 32–46. Springer,
Heidelberg (2004)

 www.openrails.org‎
https://kega2012.fm.kpi.fei.tuke.sk

	A Toolset for Support of Teaching Formal 
Software Development
	1 Introduction
	2 The Toolset and Its Use
	3 Conclusions
	References




