
Learning Extended Finite State Machines�

Sofia Cassel1, Falk Howar2, Bengt Jonsson1, and Bernhard Steffen3

1 Dept. of Information Technology, Uppsala University, Sweden
{sofia.cassel,bengt.jonsson}@it.uu.se

2 Carnegie Mellon University, Moffet, CA, USA
howar@cmu.edu

3 Chair for Programming Systems, Technical University Dortmund, Germany
steffen@cs.tu-dortmund.de

Abstract. We present an active learning algorithm for inferring ex-
tended finite state machines (EFSM)s, combining data flow and control
behavior. Key to our learning technique is a novel learning model based
on so-called tree queries. The learning algorithm uses the tree queries to
infer symbolic data constraints on parameters, e.g., sequence numbers,
time stamps, identifiers, or even simple arithmetic. We describe sufficient
conditions for the properties that the symbolic constraints provided by a
tree query in general must have to be usable in our learning model. We
have evaluated our algorithm in a black-box scenario, where tree queries
are realized through (black-box) testing. Our case studies include con-
nection establishment in TCP and a priority queue from the Java Class
Library.

1 Introduction

Behavioral models of components and interfaces are the basis for many powerful
software development and verification techniques, such as model checking, model
based test generation, controller synthesis, and service composition. Ideally, such
models should be part of documentation (e.g., of a component library), but
in practice they are often nonexistent or outdated. To address this problem,
techniques for automatically generating models of component behavior are being
developed. These techniques can be based on static analysis, dynamic analysis,
or a combination of both approaches. Static analysis of a component requires
access to its source code; so when source code is not available, or when models
must be generated on the fly, dynamic analysis is a better alternative.

In dynamic analysis, test executions are used to drive and observe compo-
nent behavior. Mature techniques for generating finite-state models, describing
the possible orderings of interactions between a component and its environment,
have been developed to support, e.g., interface modeling [4], test generation [27],
and security analysis [23]. However, faithful models should capture not only the
ordering between interactions (control flow aspects), but also the constraints

� Supported in part by the European FP7 project CONNECT (IST 231167), and by
the UPMARC centre of excellence.

D. Giannakopoulou and G. Salaün (Eds.): SEFM 2014, LNCS 8702, pp. 250–264, 2014.
c© Springer International Publishing Switzerland 2014

Learning Extended Finite State Machines 251

on any data parameters passed with these interactions (data flow aspects). Data
flow aspects are commonly captured by extending finite state machines with vari-
ables. Together with the data parameters passed with interactions, the variables
influence the control flow by means of guards, and the control flow can cause
updates of variables. Different dialects of extended finite state machines (EF-
SMs) are successfully used in tools for model-based testing [18], software model
checking [19], and model-based development [11]. However, dynamic analysis
techniques that generate EFSM models with guards and assignments to vari-
ables are still lacking: existing techniques either handle only a limited range of
operations on data (typically only equality [16,15]), require significant manual
effort [2], or rely on access to source code.

In this paper, we present a black-box technique for generating register au-
tomata (RAs), which are a particular form of EFSMs in which transitions are
equipped with guards and assignments to variables (called registers). Our contri-
bution is an active automata learning algorithm for RAs, which is parameterized
on a particular theory, i.e., a set of operations and tests on the data domain that
can be used in guards. By an appropriate choice of theory, we can infer RA
models where data parameters and variables represent sequence numbers, time
stamps, numbers with limited arithmetic, identifiers, etc.

Our algorithm has been evaluated in a black-box scenario, using SMT-based
test generation for realizing tree queries for integers with addition (+), equal-
ities (=), and inequalities (<,>). We have learned models of the connection
establishment in TCP and the priority queue from the Java Class Library.

Illustrating Example. We give an example of an RA that can be generated
using our technique. We begin by describing the language that it recognizes.
Consider a simplistic sliding window protocol without retransmission, with a
window of size two, in which the receipt of messages must be acknowledged in
order. The protocol is described as a data language Lseq over messages of form
msg(d) and ack(d), where d ranges over natural numbers. A sequence of mes-
sages σ = msg(d1) . . . ack(dm) is in the language Lseq if (i) σ has equally many
msg and ack messages, (ii) the data parameter d in each msg(d)-message must
be one more than the data parameter of the previous msg-message. (iii) the
data parameter d in each ack(d)-message must be one more than the data pa-
rameter of the previous ack-message. (iv) whenever msg(d) immediately pre-
cedes ack(d′), then d − 1 ≤ d′ ≤ d. Sequences msg(1)ack(1)msg(2)ack(2) and
msg(1)msg(2)ack(1)ack(2) are examples of data words in Lseq .

Fig. 1 shows a register automaton that accepts Lseq . Locations are annotated
with registers. Accepting locations are denoted by double circles; l0 is the initial
location. Transitions are denoted by arrows and labeled with a message, a guard
over parameters of the message and registers of the automaton, and an assign-
ment to these registers. A sink location and its adjacent transitions are omitted
in the figure. The automaton processes sequences σ by first moving from l0 to
l1 and storing the data value of the initial msg in x1. It then moves between
locations l1 (waiting for an ack), l2 (waiting for two acks), and l3 (accepting).
Lseq is used as a running example throughout the paper.

252 S. Cassel et al.

l0 l1 x1

l3 x1

l2
x1

x2

msg(p) | true
x1 := p

ack(p) | p = x1

x1 := p

msg(p) | p = x1 + 1
x2 := p

ack(p) | p = x1

x1 := x2

msg(p) | p = x1 + 1
x1 := p

Fig. 1. A simple sliding window protocol with sequence numbers

Main Ideas. In classic active learning for finite automata (e.g., L∗ [5]), each
location of an inferred automaton is identified by a word that reaches it from the
initial location. Two words lead to the same location if they behave the same
when prepended to the same suffix (i.e., both are accepted or both rejected).
Similarly, each location in the RAs we infer is identified by a data word. To
determine whether two data words represent the same location, it is, however,
not sufficient to check whether they behave the same when prepended to the
same suffix, since we want to model relations between data parameters and not
concrete data values. For example, when learning Lseq , we might wrongly de-
duce that msg(3) and msg(1) represent different locations, by observing that
msg(3)ack(3) ∈ Lseq but msg(1)ack(3) /∈ Lseq. To remedy this, we have gener-
alized the L∗ algorithm to the symbolic setting.

We describe our learning framework as a game between a learner and a
teacher: the learner has to infer an automaton model of an unknown target
language by making queries to a teacher who knows it. The concept of a teacher
is an abstraction that helps us separate different concerns; the concrete learning
framework is defined by the types of queries that the teacher can answer, and
the class of languages that can be learned.

Teacher. In our framework, the Teacher answers equivalence queries and tree
queries. The answer to an equivalence query tells us if a conjectured automaton
is correct, i.e., it accepts the unknown language. If not, the teacher provides a
counterexample, i.e., a data word that is in the language but not accepted by
the conjectured automaton, or vice versa. In practice, counterexamples can be
provided by, e.g., conformance testing or monitoring.

A tree query consists of a concrete prefix (e.g., a sequence of messages where
data parameters are instantiated with concrete data values) and a symbolic suf-
fix. Symbolic suffixes are obtained from concrete suffixes by replacing data values
by symbolic parameters (e.g., ack(p)). The answer to a tree query is a symbolic
decision tree (SDT), which describes which instantiations of the symbolic suffix
are accepted and which are rejected. Fig. 2 shows examples of SDTs for Lseq .
We depict trees with the root location at the top and annotate locations with
registers. A register in the root location with index i holds the i-th data value
of the corresponding prefix. The trees describe the fragments of Lseq for suffixes
of form ack(p) after prefixes msg(1) (Tree [a]) and msg(1)ack(1)msg(2) (Tree
[b]). They each have a register at the root location and two guarded initial tran-
sitions. In both trees, ack(p) leads to an accepting location only when the value

Learning Extended Finite State Machines 253

[a] [b]

x1 x3

ack(p) | p = x1

ack(p) | p �= x1

ack(p) | p = x3

ack(p) | p �= x3

Fig. 2. Isomorphic SDTs for ack(p) after [a] msg(1), and [b] msg(1)ack(1)msg(2)

of the parameter p is equal to the value of the register in the root location (i.e.,
the value of the parameter from the most recent msg(p)).

Learner. The learner infers a register automaton that accepts the unknown
target language by making tree queries and equivalence queries. At a very ab-
stract level, our learning algorithm builds a prefix-closed set of prefixes, i.e., test
sequences with concrete data values that reach control locations of the inferred
register automaton. To determine when prefixes should lead to the same control
location in the automaton, the learner compares SDTs to each other. Prefixes
with equivalent SDTs (isomorphic up to renaming of registers and locations) can
be unified. The transitions of SDTs will be used to create registers, guards, and
assignments in the automaton. For example, the trees in Fig. 2 are equivalent
— meaning that the corresponding prefixes msg(1) and msg(1)ack(1)msg(2)
should lead to the same location.

The learner submits the hypothesis automaton to an equivalence query. If the
equivalence query is successful, the algorithm terminates; otherwise, a counterex-
ample is returned. Counterexamples guide the algorithm to make tree queries
for larger fragments of the target language, e.g., for more and/or longer suffixes
after a given prefix. The resulting SDTs will lead to refinements in the hypoth-
esis: previously unified prefixes may be split, new registers may be introduced,
and transitions may be refined or new ones introduced.

Related Work. The problem of generating models from implementations has
been addressed in a number of different ways. Proposed approaches range from
mining source code [4], static analysis [25] and predicate abstraction [3,24] to
dynamic analysis [12,6,28,22]. Closest to our work are approaches that combine
an automata learning algorithm with a method for inferring constraints on data.
An early black-box approach to inferring EFSM-like models is [20], where models
are generated from execution traces by combining passive automata learning
with the Daikon tool [10].

A number of approaches combine active automata learning with different
methods for inferring constraints on data parameters. All these approaches follow
a pattern similar to CEGAR (counterexample guided abstraction refinement).
A sequence of models is refined in a process that is usually monotonic and con-
verges to a fixpoint. Active automata learning has been combined with symbolic
execution [13,8] and an approach based on support vector machines [29] for
inferring constraints on data parameters in white-box scenarios. In white-box
learning scenarios (as in other static analyses) registers or state variables do not
have to be inferred as they are readily available. Sometimes abstraction is used

254 S. Cassel et al.

to reduce the size of constructed models. In contrast, our approach will infer
models with a minimal set of required registers.

Previous works based on active automata learning that infer data constraints
from tests in a black-box scenario have been restricted to the case where the only
operation on data is comparison for equality [16,1,7]. Other approaches infer
models without symbolic data constraints [17,23] or require manually provided
abstractions on the data domain [2]. In general, black-box methods can infer
complex (e.g., arithmetic) constraints only at a very high cost — if at all. Our
black-box implementation is subject to these principal limitations, too.

While existing approaches extend active learning to a fix class of behavioral
models, we present a general purpose automata learning algorithm that can be
combined with any method for generating data constraints (meeting the require-
ments we discuss in this paper).

Register automata are similar to the symbolic transducers of [26]. It is an
open question if some of the decidability results for symbolic transducers can be
adapted to RAs to help answer for which relations and operations tree queries
and equivalence queries are decidable.

Outline. In Sec. 2, we introduce register automata and data languages. In Sec. 3,
we define symbolic decision trees and discuss how a tree oracle answers tree
queries. We present the details of the learning algorithm in Sec. 4, and Sec. 5
presents the results of applying it in a small series of experiments. Here, we
also briefly describe the implementation of a teacher for our learning framework.
Conclusions are in Sec. 6.

2 Preliminaries

In this section, we introduce the central concepts of our framework: theories,
data languages, and register automata.

Theories. Our framework is parameterized by a theory, which consists of an
unbounded domain D of data values, and R is a set of relations on D. The
relations in R can have arbitrary arity. Known constants can be represented by
unary relations. For example, the theory of natural numbers with inequality is
the theory 〈N, {<}〉 where N is the natural numbers and < is the inequality
relation on N. In the following, we assume that some theory has been fixed.

Data Languages. We assume a set Σ of actions, each with an arity that de-
termines how many parameters it takes from the domain D. In this paper, we
assume that all actions have arity 1; it is straightforward to extend our results
to the case where actions have arbitrary arity. A data symbol is a term of form
α(d), where α is an action and d ∈ D is a data value. A data word is a sequence
of data symbols. For a data word w = α1(d1) . . . αn(dn), let Acts(w) denote its
sequence of actions α1 . . . αn, and V als(w) its sequence of data values d1 . . . dn.
The concatenation of two data words w and w′ is denoted ww′. Two data words
w = α1(d1) . . . αn(dn) and w′ = α1(d

′
1) . . . αn(d

′
n) are R-indistinguishable, de-

noted w ≈R w′, if Acts(w) = Acts(w′) and R(di1 , . . . , dij) ↔ R(d′i1 , . . . , d
′
ij)

Learning Extended Finite State Machines 255

whenever R ∈ R and i1, . . . , ij are indices between 1 and n. Intuitively, w and
w′ are R-indistinguishable if they have the same sequences of actions and cannot
be distinguished by the relations in R.

A data language L is a set of data words that respects R in the sense that
w ≈R w′ implies w ∈ L ↔ w′ ∈ L. A data language can be represented as a
mapping from the set of data words to {+,−}, where + stands for accept and
− for reject.

Register Automata. Assume a set of registers (or variables), ranged over by
x1, x2, A parameterized symbol is a term of form α(p), where α is an action
and p a formal parameter. A guard is a conjunction of negated and unnegated
relations (from R) over the parameter p and registers. An assignment is a simple
parallel update of registers with values from registers or p.

Definition 1. A register automaton (RA) is a tuple A = (L, l0,X , Γ, λ), where

– L is a finite set of locations, with l0 ∈ L as the initial location,
– λ maps each l ∈ L to {+,−},
– X maps each location l ∈ L to a finite set X (l) of registers, and
– Γ is a finite set of transitions, each of form 〈l, α(p), g, π, l′〉, where

• l ∈ L is a source location,
• l′ ∈ L is a target location,
• α(p) is a parameterized symbol,
• g is a guard over p and X (l), and
• π (the assignment) is a mapping from X (l′) to X (l)∪{p} (meaning that
the value of π(xi) is assigned to the register xi ∈ X (l′)). 	

We require register automata to be completely specified in the sense that when-
ever there is an α-transitions from some location l ∈ L, then the disjunction of
the guards on α-transitions from l is true.
Let us now describe the semantics of an RA. A state of an RA A = (L, l0,X , Γ, λ)
is a pair 〈l, ν〉 where l ∈ L and ν is a valuation over X (l), i.e., a mapping from

X (l) to D. The state is initial if l = l0. A step of A, denoted 〈l, ν〉 α(d)−−−→ 〈l′, ν′〉,
transfers A from 〈l, ν〉 to 〈l′, ν′〉 on input of the data symbol α(d) if there is a
transition 〈l, α(p), g, π, l′〉 ∈ Γ with

1. ν |= g[d/p], i.e., d satisfies the guard g under the valuation ν, and
2. ν′ is the updated valuation with ν′(xi) = ν(xj) if π(xi) = xj , otherwise

ν′(xi) = d if π(xi) = p.

A run of A over a data word w = α(d1) . . . α(dn) is a sequence of steps

〈l0, ν0〉
α1(d1)−−−−→ 〈l1, ν1〉 . . . 〈ln−1, νn−1〉

αn(dn)−−−−→ 〈ln, νn〉
for some initial valuation ν0. The run is accepting if λ(ln) = + and rejecting if
λ(ln) = −. The word w is accepted (rejected) by A under ν0 if A has an accepting
(rejecting) run over w which starts in 〈l0, ν0〉. Note that an RA defined as above
does not necessarily have runs over all data words.

We define a simple register automaton (SRA) to be an RA with no registers
in the initial location, whose runs over a given data word are either all accepting
or all rejecting. We use SRAs as acceptors for data languages.

256 S. Cassel et al.

3 Tree Queries

In this section, we first define symbolic decision trees (SDTs), which are used to
symbolically describe a fragment of a data language. We then state conditions
for the construction of SDTs, which is done by a tree oracle.

Symbolic Decision Trees. A symbolic decision tree (SDT) is an RA T =
(L, l0,X , Γ, λ) where L and Γ form a tree rooted at l0. In general, an SDT has
registers in the initial location; we use X (T) to denote these registers X (l0).
Thus, an SDT has well-defined semantics only wrt. a given valuation of X (T).

If l is a location of T , let T [l] denote the subtree of T rooted at l. Let T and
T ′ be two SDTs, such that γ : X (T) �→ X (T ′) is a bijection from the initial
registers of T to the initial registers of T . We say that T and T ′ are equivalent
under γ, denoted T γ T ′, if γ can be extended to a bijection from all registers
of T to all registers of T ′, under which T and T ′ are isomorphic.

Let a symbolic suffix be a sequence of actions in Σ∗. Let u be a data word
with V als(u) = d1, . . . , dk. Let νu be defined by νu(xi) = di. We require that
for each data word u and each guard g over p and V als(u), the guard g has
a representative data value in D, denoted dgu, such that νu |= g[dgu/p] (i.e., d

g
u

satisfies p after u), and such that whenever g′ is a stronger guard satisfied by dgu
(i.e., νu |= g[dgu/p]) then dg

′
u = dgu.

Definition 2. For a data language L, a data word u with V als(u) = d1, . . . , dk,
and a set V of symbolic suffixes, a (u, V)-tree is an SDT T that has runs over
all data words v with Acts(v) ∈ V , such that v is accepted by T under νu iff
uv ∈ L (and rejected iff uv �∈ L) whenever Acts(v) ∈ V . Moreover, in any run of
T over a data word v, the register xi may contain only the value of the ith data
value in uv. 	

The last requirement simplifies the matching of decision trees. It can be enforced,
e.g., by requiring that whenever 〈l, α(p), g, π, l′〉 is the jth transition on some
path from l0, then for each xi ∈ X (l′) we have either (i) i < k+j and π(xi) = xi,
or (ii) i = k + j and π(xi) = p (recall that k is the length of u).

The initial α-transitions of an SDT are the transitions for action α from the
root location l0, guarded by initial α-guards. The SDT in Fig. 2 [a] has two
initial ack(p)-transitions with initial ack(p)-guards p = x1 and p �= x1.

Tree Oracles. A key concept in our approach is that of tree queries. Tree queries
are made to a tree oracle, which returns an SDT. To ensure the consistency of
tree queries, a tree oracle must satisfy the conditions in the following definition.

Definition 3. Let L be a data language. A tree oracle for L is a function OL,
which for a data word u and a set V of symbolic suffixes returns a (u, V)-tree
T , and satisfies the following constraints.

1. If V ⊆ V ′, then OL(u, V ′) γ OL(u, V ′) implies OL(u, V) γ OL(u, V) for
all u, u′ and γ (i.e., adding more symbolic suffixes cannot make inequivalent
trees equivalent).

Learning Extended Finite State Machines 257

[a] [b] [c]

msg(p) | true x1

x2

x3

msg(p) | true
x1 := p

ack(p) | p �= x1 ack(p) | p = x1

msg(p) | p �= x2 + 1
msg(p) | p = x2 + 1

x3 := p

ack(p) | p �= x3 ack(p) | p = x3

Fig. 3. [a] SDT for msg(p) after prefixes ε and msg(1)ack(1). Refined SDTs for suffix
msg(p)ack(p) after [b] ε and [c] msg(1)ack(1).

2. If V ⊆ V ′, then for each initial α-transition of OL(u, V) with guard g,
there is some initial α transition of OL(u, V ′) with a stronger guard g′ (i.e.,
νu |= g′ −→ g).

3. If 〈l0, α(p), g, π, l〉 is an initial transition of OL(u, V), then OL(u, V)[l] γ

OL(uα(d), α−1V), where d = dgu, and γ is the identify mapping (i.e., any
subtree of OL(u, V) must be isomorphic to the subtree after d: here α−1V
denotes the set of sequences α1 · · ·αn such that αα1 · · ·αn ∈ V). 	

The first two conditions in Def. 3 ensure monotonicity: First, extending V
will only preserve or introduce inequivalence between trees of different prefixes.
Second, by gradually extending V , we will only refine trees and not, e.g., merge
transitions or forget registers. Fig. 3 [b] and [c] show SDTs that refine SDT [a].
SDT [b] refines [a] by adding an assignment x1 := p to the initial transition and
by adding new transitions after the initial one. SDT [c] refines [a] by splitting
the initial transition into two transitions with refined guards, and by initializing
a register in the root location. The third condition ensures that it is sufficient
to consider concrete prefixes with representative data values during learning.

Finally, let two data words u and u′ be equivalent, denoted by u ≡OL u′ if
OL(u, V) γ OL(u′, V) for some γ and any finite V . A data language L is regular
if ≡OL has finite index. The regularity of L is relative to the implementation of
tree queries, since ≡OL is defined on SDTs.

The following adaptation of the Myhill/Nerode theorem provides the basis for
convergence of the automata learning algorithm presented in the next section.

Theorem 1 (Myhill-Nerode). Let L be a data language, and let OL be a
tree oracle for L. If the equivalence ≡OL has finite index, then there is an SRA
which accepts precisely the language L. 	

4 The SL∗ Algorithm

This section presents the central ideas for an active automata learning algorithm
SL∗ (Symbolic L∗, reminiscent of the L∗ algorithm). To construct an SRA for
some unknown data language, we need to infer locations, transitions, and reg-
isters. Locations of an SRA can be characterized by their SDTs, which are
obtained by making tree queries. Data words with equivalent SDTs will lead to
the same location. The initial transitions of the SDTs will serve as transitions

258 S. Cassel et al.

[a]
l0 l1

msg(p)
x1 := p

ack(p) | p = x1

[b]

msg(p) | true
x1 := p

ack(p) | p = x1ack(p) | p �= x1

U ∪ U+
V {ε, msg(p), ack(p)}

ε

msg(1)

ack(1)

msg(1)ack(1)

(l0)

(l1)

(l2)

msg(p)

ack(p)

x1

msg(p)

ack(p) | x1 �= p

ack(p) | x1 = p

msg(p)

ack(p)

msg(p)

ack(p)
.

Fig. 4. Hypothesis [a] (without error location l2) and its observation table (right).
Transitions [b] for suffix msg(p)ack(p) after prefix msg(1)ack(1) in hypothesis.

in the SRA. The registers of an SDT will become registers in the location that
the SDT represents. A hypothesis automaton is constructed and submitted for
an equivalence query. If it matches (which will happen eventually for regular data
languages), the algorithm terminates. Otherwise, the returned counterexample
is processed, leading to refinement of the hypothesis.

The SL∗ algorithm maintains an observation table 〈U, V, Z〉, where U is a
prefix-closed set of data words, called short prefixes, V is a set of symbolic
suffixes, and Z maps each element u in U to its (u, V)-tree. The algorithm also
maintains a finite set U+ of extended prefixes of the form uα(d) (abbreviated
uα), such that u ∈ U and d is dgu, where g is an initial α-guard of Z(u). Fig. 4
(right) shows an observation table for the example in Sec. 1. A set of symbolic
suffixes V labels the column; rows are labeled with short prefixes from U (above
the double line) and with prefixes from U+ (below the double line). Each table
cell (referred to by row label u and column label V) stores the SDT Z(u).

Algorithm 1 shows a pseudocode description of SL∗. The algorithm is initial-
ized (line 1) with U containing the empty word, the set of symbolic suffixes V
being the empty sequence together with the set of all actions, and Z(ε) being the
SDTOL(ε, V). The algorithm then iterates three phases: hypothesis construction,
hypothesis validation, and counterexample processing until no more counterex-
amples are found, monotonically adding locations and transitions to hypothesis
automata. We detail these phases below, referring to lines in Algorithm 1.

Hypothesis Construction (lines 3-11). In this phase, the algorithm attempts
to construct a hypothesis automaton by making tree queries and entering the
results in an observation table. The answer to a tree query for the prefix u and
the set of symbolic suffixes V is the SDT OL(u, V), stored in the table as Z(u).

An observation table 〈U, V, Z〉 is

– closed, if for every u ∈ U+ there is a short prefix u′ ∈ U and a γ such that
Z(u) γ Z(u′). Closedness ensures that all transitions in the automaton
have a target location. If the table is not closed, then u leads to a location
not covered by U , and Z(u) proves it by not being equivalent to Z(u′) for

Learning Extended Finite State Machines 259

Algorithm 1 SL∗

Require: A set Σ of actions, a data language L, a tree oracle OL for L.
Ensure: An SRA H with L(H) = L
1: U ← {ε}, V ← ({ε} ∪Σ), Z(ε)← OL(ε, V) � Initialization
2: loop
3: repeat � Hypothesis construction
4: U+ ← {uα(dgu) : u ∈ U , α ∈ Σ, and g initial α-guard of Z(u)}
5: For each u ∈ (U ∪ U+), Z(u)← OL(u, V)
6: if ∃u ∈ U+ s.t. Z(u) ��γ Z(u′) for any γ and u′ ∈ U then
7: U ← U ∪ {u}
8: if ∃uα ∈ U+ and ∃xi ∈ X (Z(uα)) ∩ V als(u) s.t. xi /∈ X (Z(u)) then
9: V ← V ∪ {αv} for v ∈ V with xi ∈ X (OL(uα, {v}))
10: until 〈U, V, Z〉 is closed and register-consistent
11: H ← Hyp(〈U,V, Z〉)
12: if eq(H) then Return H � Hypothesis validation
13: else � Counterexample processing
14: for 〈ui−1, αi(p), gi, πi, ui〉 in run of H over σ do
15: if gi does not refine an initial trans. of OL(ui−1, Vi−1) then V ← V ∪ Vi−1

16: if OL(ui−1αi, Vi) ��γ OL(ui, Vi) for γ used to construct H then
17: V ← V ∪ Vi

18: end loop

any short prefix u′. 〈U, V, Z〉 is closed by making u a short prefix, i.e., adding
it to U .

– register-consistent, if (X (Z(uα) ∩ V als(u)) ⊆ X (Z(u)) for every uα ∈ U+.
Register-consistency ensures that whenever a data value in u is needed to
construct the SDT after uα, then it also occurs in the tree after u. If the
table is not register-consistent, then Z(uα) has a register that expects a value
from u but Z(u) does not have a register for storing this value. We make
〈U, V, Z〉 register-consistent by extending V with the appropriate abstract
word αv with v ∈ V , propagating the missing register backwards to Z(u).

A closed and register-consistent observation table 〈U, V, Z〉 can be used to-
gether with a set U+ of extended prefixes to construct a hypothesis automaton
Hyp(〈U, V, Z〉) = (L, l0,X , Γ, λ), where

– L = U and l0 = ε,
– X maps each location u ∈ U to X (Z(u)) (X (l0) is the empty set),
– λ(u) = + if u ∈ L, otherwise λ(u) = −, and
– each uα ∈ (U ∪U+) with corresponding initial α-transition 〈l0, α(p), g, π, l′〉

of Z(u) generates a transition 〈u, α(p), g, π′, u′〉 in Γ , where

• u′ is the (unique) prefix in U with Z(uα) γ Z(u′),
• π′ is an assignment X (Z(u′)) �→ (X (Z(u)) ∪ {p}). For xi ∈ X (Z(u′)),
we define π′(xi) = γ−1(xi) if γ

−1(xi) stores a data value of u in Z(uα),
and π′(xi) = p otherwise.

260 S. Cassel et al.

Fig. 4 shows an observation table that is closed and register-consistent. Fig. 4 [a]
shows the hypothesis that can be constructed from it. In the table, rows for short
prefixes (above the double line) are annotated with corresponding locations in
the hypothesis. The assignment on the transition from l0 to l1 and the guard on
the transition from l1 to l0 are both derived from the SDT for prefix msg(1).

Hypothesis Validation (line 12). The hypothesis automaton H is submitted
for an equivalence query. The teacher either replies ’OK’, or returns a counterex-
ample (a word that is accepted by H but rejected by the target system, or vice
versa). If it replies ’OK’, the algorithm terminates and returns H. Otherwise,
the counterexample has to be analyzed.

Counterexample Analysis (lines 13-16). A counterexample indicates either
that a location is missing, (i.e., that U has to be extended), or that a transition
is missing, (i.e., that SDTs need to be refined), or that we used an incorrect
renaming γ between some SDTs when constructing the hypothesis. For a coun-
terexample σ of length m we denote by σi its prefix of length i, and by vi its
suffix of length m− i. Moreover, let Vi be the singleton set {Acts(vi)}.

In a run of H over σ, the i-th step 〈ui−1, νi−1〉
αi(di)−−−−→ 〈ui, νi〉 traverses tran-

sition 〈ui−1, αi(p), gi, πi, ui〉, i.e., prefix σi leads to the location corresponding to
short prefix ui from U . In order to determine at which step the run of H over σ
diverges from the behavior of the system under learning, we analyze the sequence
u0 = ε, . . . , um and the corresponding (ui, Vi)-trees for 0 ≤ i ≤ m computed by
OL(ui, Vi), using an argument similar to the one presented in [21]: Since σ is
a counterexample and V contains ε, there is an index j of the counterexample
for which uj−1 together with OL(uj−1, Vj−1) contains a counterexample to H,
while uj and OL(uj, Vj) do not. We can then distinguish two cases.

Case 1. The guard gj in the step of H from uj−1 to uj does not refine an
initial transition of OL(uj−1, Vj−1). In this case the SDT distinguishes cases
that H does not distinguish. Adding Vj−1 to V will result in new and refined
transitions from uj−1 in the hypothesis. This is guaranteed by the monotonicity
requirement on tree constructors in Def. 3. Consider, e.g., the counterexample
msg(1)ack(1)msg(1)ack(1) to the hypothesis in Fig. 4 at index 3. The hypothesis
in Fig. 4 [b] has only one transition with guard true after msg(1)ack(1). The
corresponding SDT for Lseq (Fig. 3 [c]), on the other hand, has two initial
transitions, and neither of them is refined by the true. Adding msg(p)ack(p) to
V will add these transitions to the hypothesis.

Case 2. The tree OL(uj, Vj) is not isomorphic to the corresponding subtree
after α(d

gj
uj−1) of OL(uj−1, Vj−1) under the renaming of registers γ that was

used in the hypothesis (only one of these trees contains a counterexample to
H). Adding Vj to V will lead to either OL(uj , V) � OL(uj−1α(d

gj
uj−1), V) and

uj−1α(d
gj
uj−1) will become a separate location, or γ will be refined. Consider again

the counterexample msg(1)ack(1)msg(1)ack(1) to the hypothesis in Fig. 4; this
time at index 2. Here, uj−1α(d

gj
uj−1) is msg(1)ack(1), and uj = u2 is ε. The

SDTs for these two prefixes and the suffix msg(p)ack(p) are shown in Fig. 3 [b]

Learning Extended Finite State Machines 261

l0 l1 l2

l3

l4 l5

init(p) | p=x
x:=p

syn(p) | p=x+1
x:=p

ack(p) | p=x
−

fin−ack(p) | p=x
−

fin−ack(p) | p=x
−

ack(p) | p=x
−

Fig. 5. Connection establishment of TCP (only non-reflexive transitions)

and Fig. 3 [c]. They are not equivalent. Adding the suffix msg(p)ack(p) to V
will lead to a new location for msg(1)ack(1) in the next hypothesis.

Correctness and Termination. That SL∗ returns a correct SRA upon ter-
mination follows by the properties of our teacher. For regular data languages,
termination follows from the properties of tree queries in Sec. 3, from Theorem 1,
and from the algorithm itself: SDTs will only be refined when adding symbolic
suffixes, and this can happen only finitely often. Each added symbolic suffix will
either lead to a new transition, a refined transition, a new register assignment or
a new location. By adapting arguments from other contexts [5,16], Theorem 1
can be used to show that SL∗ converges to a minimal (in terms of locations and
registers) SRA for L. Note that this minimal number of locations and transitions
also depends on the particular tree oracle that is used.

Complexity. We estimate the worst case number of counterexamples and show
how they lead to a correct model with n locations, t transitions, and at most r
registers per location. Since each location has one access sequence, n ≤ t, and
thus we estimate the costs in t and r only. The final model is minimal relative
to the implementation of tree queries: it has one location per class of ≡OL . Each
counterexample results in one additional suffix in the observation table, leading
to a new transition or to discarding a bijection between two prefixes in U . The
former can happen t times before all transitions are identified. The latter can
happen at most tr times, since it corresponds to breaking a symmetry between
two of at most r registers at one of n ≤ t locations (cf. [14]). The algorithm
terminates after O(tr) equivalence queries. The number of tree queries depends
on the length m of the longest counterexample and on the size of the observation
table. The algorithm uses a maximum of m calls per counterexample, and the
size of U ∪U+ in the final observation table is t+1. This leads to O(t2r+ trm)
tree queries and yields the following theorem.

Theorem 2. The algorithm SL∗ infers a data language L with O(tr) equiva-
lence queries and O(t2r + trm) tree queries. 	

5 Implementation and Evaluation

We have implemented the SL∗ algorithm together with a teacher for a black-box
scenario and fixed set of relations on integers and rationals. We allow equalities
and/or inequalities as well as simple sums of registers and pre-defined constants
(e.g., p = x1 + x2 or p = x1 + 5).

262 S. Cassel et al.

The implementation of tree queries Ou(V,) is based on the ideas for construct-
ing canonical constraint decision trees presented in [9] (Proof of Theorem 1). The
set of R-distinguishable classes of data words of the form uv where Acts(v) ∈ V
can be represented in an SDT with maximally refined guards (so-called atoms).
We use an SMT solver (Z31) to generate tests for all atoms in this SDT. Finally,
atoms are merged in a bottom-up fashion based on test results.

Equivalence queries have been implemented using tree queries (similar to the
approach in [13]). We generate OL(ε, w) for all w ∈ Σk up to some depth k and
compare the SDTs to the hypothesis. We start with k = 3 and increase k until
a fixed time limit is reached (10 minutes) or until a counterexample is found.

We have inferred a simplified version of the connection establishment phase
of TCP, a bounded priority queue from the Java Class Library, and a set of five
smaller models (Alternating-bit protocol, Sequence number, Timeout, an ATM,
and a Fibonacci counter). Here, we only detail the TCP model. Fig. 5 shows the
connection establishment phase of TCP. The example uses a set of five actions:
init, syn, syn−ack, ack, and fin−ack. The transition init(p) was added to get
an initial sequence number. Each synchronizing message increases this number;
all other messages use the current sequence number.

We used common optimizations for saving tests: a cache and a prefix-closure
filter. Table 1 shows the results. We report the locations, variables, and transi-
tions for all inferred models. For each case, we state the number of constants,
relations (≤ denotes the combination of equalities and inequalities), and sup-
ported terms: p+ c indicates sums of parameters and constants, and p+ p sums
of different parameters. We report the number of tree queries (TQs) and equiv-
alence queries (EQs) made. For equivalence queries, we also state the depth k1
at which the last counterexample was found and the greatest explored depth k2
(up to which inferred models are guaranteed to be correct). Finally, we show
execution times.

Time consumption for learning is below one second for most of the examples;
the only “real” Java class, the priority queue, takes a little more time (4.3 sec-
onds). The difference between k1 and k2 gives an idea of how likely the final
hypothesis is correct: If k2 is bigger than k1, then the depth was increased by
k2 − k1 without finding a new counterexample. A big difference suggests that
the learning algorithm has converged to the correct RA. For some examples
no counterexamples where found and for the Timeout example k2 = ∞, i.e.,
the equivalence query terminated successfully. This was possible because all se-
quences of length greater than two are not in the language of this example. For
the examples with more relations (≤, and p + c or p + p) the reached depth
k2 is smaller, regardless of the number of locations and transitions in the final
model. This is due to the exploding number of R-distinguishable classes of data
words in such cases. One way of addressing this challenge in the future could be
introducing typed parameters and using multiple simpler disjoint domains.

1 http://z3.codeplex.com

http://z3.codeplex.com

Learning Extended Finite State Machines 263

Table 1. Experimental results obtained on a 2GHz Intel Core i7 with 8GB of memory
running Linux kernel 3.8.0

Model Language class Queries EQ Times
Loc’s Var’s Trans’s Const’s Rel’s Op’s TQs EQs k1 k2 TQs [s] EQs [s]

ABP 3 0 5 2 = - 9 1 - 11 0.1 599.9
Sequence Number 3 1 4 1 = p+c 8 1 - 10 0.1 599.9
TCP 7 1 51 1 = p+c 187 2 6 7 0.6 599.4
PriorityQueue 8 2 33 0 ≤ - 113 5 6 7 4.3 595.7
Timeout 4 1 5 1 ≤ p+c 9 1 - ∞ 0.2 0.1
ATM 3 1 7 3 ≤ p+c 16 2 3 4 1.3 598.7
Fibonacci counter 4 2 6 0 ≤ p+p 19 2 3 5 0.2 599.8

6 Conclusions

We have presented a symbolic learning algorithm which can be parameterized by
methods for constructing symbolic decision trees and which infers models that
capture both control and data aspects of a system. Our preliminary implemen-
tation demonstrates that the approach can infer protocols comprising sequence
numbers, time stamps, and variables that are manipulated using simple arith-
metic operations or compared for inequality even in a black-box scenario.

A particularly promising direction for future research will be the combination
with white-box methods like symbolic execution, both for searching counterex-
amples as well as for supporting construction of decision trees. We also plan to
investigate decidability of tree queries and equivalence queries in our learning
model for different data domains.

References

1. Aarts, F., Heidarian, F., Kuppens, H., Olsen, P., Vaandrager, F.: Automata learn-
ing through counterexample guided abstraction refinement. In: Giannakopoulou, D.,
Méry, D. (eds.) FM 2012. LNCS, vol. 7436, pp. 10–27. Springer, Heidelberg (2012)

2. Aarts, F., Jonsson, B., Uijen, J.: Generating models of infinite-state communica-
tion protocols using regular inference with abstraction. In: Petrenko, A., Simão,
A., Maldonado, J.C. (eds.) ICTSS 2010. LNCS, vol. 6435, pp. 188–204. Springer,
Heidelberg (2010)

3. Alur, R., Cerný, P., Madhusudan, P., Nam, W.: Synthesis of interface specifications
for java classes. In: POPL 2005, pp. 98–109 (2005)

4. Ammons, G., Bodik, R., Larus, J.: Mining specifications. In: POPL 2002, pp. 4–16
(2002)

5. Angluin, D.: Learning regular sets from queries and counterexamples. Information
and Computation 75(2), 87–106 (1987)

6. Bertolino, A., Inverardi, P., Pelliccione, P., Tivoli, M.: Automatic synthesis of behav-
ior protocols for composable web-services. In: ESEC/FSE 2009, pp. 141–150 (2009)

7. Bollig, B., Habermehl, P., Leucker, M., Monmege, B.: A fresh approach to learning
register automata. In: Béal, M.-P., Carton, O. (eds.) DLT 2013. LNCS, vol. 7907,
pp. 118–130. Springer, Heidelberg (2013)

8. Botinčan, M., Babić, D.: Sigma*: symbolic learning of input-output specifications.
In: POPL 2013, pp. 443–456 (2013)

264 S. Cassel et al.

9. Cassel, S., Jonsson, B., Howar, F., Steffen, B.: A succinct canonical register automa-
ton model for data domains with binary relations. In: Chakraborty, S., Mukund,
M. (eds.) ATVA 2012. LNCS, vol. 7561, pp. 57–71. Springer, Heidelberg (2012)

10. Ernst, M.D., Perkins, J.H., Guo, P.J., McCamant, S., Pacheco, C., Tschantz, M.S.,
Xiao, C.: The Daikon system for dynamic detection of likely invariants. Sci. Com-
put. Programming 69(1-3), 35–45 (2007)

11. Gery, E., Harel, D., Palachi, E.: Rhapsody: A complete life-cycle model-based de-
velopment system. In: Butler, M., Petre, L., Sere, K. (eds.) IFM 2002. LNCS,
vol. 2335, pp. 1–10. Springer, Heidelberg (2002)

12. Ghezzi, C., Mocci, A., Monga, M.: Synthesizing Intentional Behavior Models by
Graph Transformation. In: ICSE 2009 (2009)

13. Giannakopoulou, D., Rakamarić, Z., Raman, V.: Symbolic learning of component
interfaces. In: Miné, A., Schmidt, D. (eds.) SAS 2012. LNCS, vol. 7460, pp. 248–
264. Springer, Heidelberg (2012)

14. Howar, F.: Active learning of interface programs. PhD thesis. Technical University
of Dortmund, Germany (2012)

15. Howar, F., Isberner, M., Steffen, B., Bauer, O., Jonsson, B.: Inferring semantic
interfaces of data structures. In: Margaria, T., Steffen, B. (eds.) ISoLA 2012, Part
I. LNCS, vol. 7609, pp. 554–571. Springer, Heidelberg (2012)

16. Howar, F., Steffen, B., Jonsson, B., Cassel, S.: Inferring canonical register au-
tomata. In: Kuncak, V., Rybalchenko, A. (eds.) VMCAI 2012. LNCS, vol. 7148,
pp. 251–266. Springer, Heidelberg (2012)

17. Howar, F., Steffen, B., Merten, M.: Automata Learning with Automated Alphabet
Abstraction Refinement. In: Jhala, R., Schmidt, D. (eds.) VMCAI 2011. LNCS,
vol. 6538, pp. 263–277. Springer, Heidelberg (2011)

18. Huima, A.: Implementing Conformiq Qtronic. In: Petrenko, A., Veanes, M., Tret-
mans, J., Grieskamp, W. (eds.) TestCom/FATES 2007. LNCS, vol. 4581, pp. 1–12.
Springer, Heidelberg (2007)

19. Jhala,R.,Majumdar,R.: Softwaremodel checking.ACMComput. Surv. 41(4) (2009)
20. Lorenzoli, D., Mariani, L., Pezzè, M.: Automatic generation of software behavioral

models. In: ICSE 2008, pp. 501–510 (2008)
21. Rivest, R.L., Schapire, R.E.: Inference of finite automata using homing sequences.

Information and Computation 103(2), 299–347 (1993)
22. Schur, M., Roth, A., Zeller, A.: Mining behavior models from enterprise web ap-

plications. In: ESEC/FSE 2013, pp. 422–432 (2013)
23. Shu, G., Lee, D.: Testing security properties of protocol implementations - a ma-

chine learning based approach. In: ICDCS 2007 (2007)
24. Singh, R., Giannakopoulou, D., Păsăreanu, C.: Learning component interfaces with

may and must abstractions. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010.
LNCS, vol. 6174, pp. 527–542. Springer, Heidelberg (2010)

25. Tkachuk, O., Dwyer, M.B.: Adapting side effects analysis for modular program
model checking. In: ESEC/FSE 2003, pp. 188–197 (2003)

26. Veanes, M., Hooimeijer, P., Livshits, B., Molnar, D., Bjorner, N.: Symbolic finite
state transducers: Algorithms and applications. In: POPL 2012, pp. 137–150 (2012)

27. Walkinshaw, N., Bogdanov, K., Derrick, J., Paris, J.: Increasing functional coverage
by inductive testing: A case study. In: Petrenko, A., Simão, A., Maldonado, J.C.
(eds.) ICTSS 2010. LNCS, vol. 6435, pp. 126–141. Springer, Heidelberg (2010)

28. Whaley, J., Martin, M.C., Lam, M.S.: Automatic extraction of object-oriented
component interfaces. In: ISSTA 2002, pp. 218–228 (2002)

29. Xiao, H., Sun, J., Liu, Y., Lin, S.-W., Sun, C.: Tzuyu: Learning stateful typestates.
In: ASE 2013, pp. 432–442 (2013)

	Learning Extended Finite State Machines
	1 Introduction
	2 Preliminaries
	3 Tree Queries
	4 The SL* Algorithm
	5 Implementation and Evaluation
	6 Conclusions
	References

