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Preface

This volume contains the papers presented at SEFM 2014, the 12th International
Conference on Software Engineering and Formal Methods, which was held during
September 3–5, 2014, in Grenoble, France. The aim of the conference is to bring
together practitioners and researchers from academia, industry, and government
to advance the state of the art in formal methods, to facilitate their uptake in the
software industry, and to encourage their integration with practical engineering
methods. SEFM 2014 was organized by Inria and supported by Grenoble INP,
University Joseph-Fourier, LIG, and CNRS.

SEFM 2014 received 138 abstracts and 106 full submissions. Papers under-
went a rigorous review process, and each paper received 3 reviews. After a careful
discussion phase, the international Program Committee decided to select 23 re-
search papers and 6 tool papers. These papers cover a wide variety of topics
such as program correctness, testing, static analysis, theorem proving, model
checking, and automata learning. They also address a wide range of systems,
including component-based, real-time, embedded, adaptive, and multi-agent.

The conference featured 3 invited talks by Patrice Godefroid (Microsoft Re-
search, USA), Joost-Pieter Katoen (RWTH Aachen University, Germany), and
Xavier Leroy (Inria, France). These talks discussed the software engineering chal-
lenges of developing trusted formal tools that scale to the size of industrial sys-
tems. Extended abstracts of the invited talks can be found in this volume.

Five international workshops were colocated with SEFM 2014: the 1st Work-
shop on Human-Oriented Formal Methods (HOFM 2014), the 3rd International
Symposium on Modelling and Knowledge Management Applications: Systems
and Domains (MoKMaSD 2014), the 8th InternationalWorkshop on Foundations
and Techniques for Open Source Software Certification (OpenCert 2014), the 1st
Workshop on Safety and Formal Methods (SaFoMe 2014), and the 4th Workshop
on Formal Methods in the Development of Software (WS-FMDS 2014).

We thank the local Organizing Committee (Sophie Azzaro, Wassila Bouhadji,
Myriam Etienne, Vanessa Peregrin) for taking care of the local arrangements,
the Steering Committee chair Antonio Cerone and the Conference Chair Radu
Mateescu for their guidance, the workshop chairs (Carlos Canal, Marc Frappier,
and Akram Idani) for supervizing the workshops organization, Rim Abid for
negotiating financial support, Lina Ye for acting as publicity chair, and Hugues
Evrard for acting as Web master. We assembled an exciting technical program
that would not have been possible without the excellent work of the Program
Committee and external reviewers. Last, but not least, we thank the authors of
all submitted papers, our invited speakers, and all the participants (speakers or
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not) of the conference in Grenoble. All these people contributed to the success of
the 2014 edition of SEFM. Finally, EasyChair made our work as program chairs
substantially easier.

June 2014 Dimitra Giannakopoulou
Gwen Salaün
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Formal Proofs of Code Generation

and Verification Tools

Xavier Leroy

Inria Paris-Rocquencourt, France

Abstract. Tool-assisted verification of critical software has great po-
tential but is limited by two risks: unsoundness of the verification tools,
and miscompilation when generating executable code from the sources
that were verified. A radical solution to these two risks is the deductive
verification of compilers and verification tools themselves. In this invited
talk, I describe two ongoing projects along this line: CompCert, a veri-
fied C compiler, and Verasco, a verified static analyzer based on abstract
interpretation.



500 Machine-Years of Software Model

Checking and SMT Solving

Patrice Godefroid

Microsoft Research

pg@microsoft.com

Abstract. I will report on our experience running SAGE for over 500-
machine years in Microsoft’s security testing labs. SAGE is a whitebox
fuzzing tool for security testing. It performs symbolic execution dynami-
cally at the binary (x86) level, generates constraints on program inputs,
and solves those constraints with an SMT solver in order to generate new
inputs to exercise new program paths or trigger security vulnerabilities
(like buffer overflows). This process is repeated using novel state-space
exploration techniques that attempt to sweep through all (in practice,
many) feasible execution paths of the program while checking simultane-
ously many properties. This approach thus combines program analysis,
testing, model checking and automated theorem proving (constraint solv-
ing).

Since 2009, SAGE has been running 24/7 on average 100+ machines
automatically “fuzzing”hundreds of applications. This is the largest com-
putational usage ever for any SMT solver, with over 4 billion constraints
processed to date. In the process, SAGE found many new security vul-
nerabilities (missed by blackbox fuzzing and static program analysis) and
was credited to have found roughly one third of all the bugs discovered
by file fuzzing during the development of Microsoft’s Windows 7, sav-
ing millions of dollars by avoiding expensive security patches to nearly a
billion PCs.

In this talk, I will present the SAGE project, highlight connections
with program verification, and discuss open research challenges.

This is joint work with Michael Levin, David Molnar, Ella Bounimova,
and other contributors.



Model Checking Gigantic Markov Models

Joost-Pieter Katoen

Software Modelling and Verification, RWTH Aachen University, Germany

Formal Methods and Tools, University of Twente, The Netherlands

Probabilistic model checking – the verification of models incorporating random
phenomena – has enjoyed a rapid increase of interest. Thanks to the availability
of mature tool support and efficient verification algorithms, probabilistic model
checking has been successfully applied to case studies from various areas, such
as randomized (distributed) algorithms, planning and AI, security, hardware,
stochastic scheduling, reliability analysis, and systems biology [9]. In addition,
model-checking techniques have been adopted by mainstream model-based per-
formance and dependability tools as effective analysis means. Probabilistic model
checking can thus be viewed as a viable alternative and extension to traditional
model-based performance analysis [1].

Typical properties that are checked are quantitative reachability objectives,
such as: does the probability to reach a certain set of goal states (by avoiding
illegal states) exceed 1

2? Extra constraints can be incorporated as well that e.g.,
require the goal to be reached within a certain number of transitions, within a
certain budget, or within a real-time deadline. For models exhibiting both transi-
tion probabilities and non-determinism, maximal and minimal probabilities are
considered. Intricate combinations of numerical (or simulation) techniques for
Markov chains, optimization algorithms, and traditional CTL or LTL model-
checking algorithms result in simple, yet very efficient verification procedures [2,
10]. Verifying time-bounded reachability properties on continuous-time models
of tens of millions of states usually is a matter of seconds. Using symbolic repre-
sentation techniques such as multi-terminal BDDs, much larger systems can be
treated efficiently as well. A gentle introduction can be found in [5].

Like in the traditional setting, probabilistic model checking suffers from the
curse of dimensionality: the number of states grows exponentially in the num-
ber of system components and cardinality of data domains. This hampers the
analysis of real-life systems such as biological models involving thousands of
molecules [12], and software models of on-board aerospace systems that incor-
porate probabilistic error models of various system components on top of the
“nominal” system behaviour [3].

This talk considers the theory and practice of aggressive abstraction of discrete-
time and continuous-time Markov models. Our abstraction technique is based
on a partitioning of the concrete state space that is typically much coarser
than e.g., bisimulation minimisation. We exploit three-valued abstraction [4]
in which a temporal logic formula evaluates to either true, false, or indefi-
nite. In this setting, abstraction is conservative for both positive and negative
verification results; in our setting this means that the analysis yields bounds
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on the desired probability measures. If the verification of the abstract model
yields an indefinite answer (dont know), no conclusion on the validity in the
concrete model can be drawn. States in abstract Markov models are groups of
concrete states and transitions are either equipped with intervals or modeled as
non-deterministic choices. The resulting abstraction is shown to preserve a sim-
ulation relation: concrete states are simulated by their corresponding abstract
ones.

We present the theoretical foundations of aggressive abstraction of Markov
models [6] and show how this technique can be applied in a compositional way.
This enables the component-wise abstraction of large models [7, 11]. We present
two case studies, one from systems biology and one from queueing theory, il-
lustrating the power of this technique. This includes strategies of which states
to group, verification times of the abstract models, and the resulting accura-
cies of the quantitative results. We show that this abstraction technique enables
the verification of models larger than 10250 states by abstract models of a few
hundred thousands states while obtaining results with an accuracy of 10−6 [8].

Acknowledgement. This work is funded by the EU FP7-projects SENSA-
TION and MEALS, the STW project ArRangeer, and the Excellence Program
of the German Federal Government.
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Formal Proofs of Code Generation

and Verification Tools

Xavier Leroy

Inria Paris-Rocquencourt, France

Abstract. Tool-assisted verification of critical software has great po-
tential but is limited by two risks: unsoundness of the verification tools,
and miscompilation when generating executable code from the sources
that were verified. A radical solution to these two risks is the deductive
verification of compilers and verification tools themselves. In this invited
talk, I describe two ongoing projects along this line: CompCert, a veri-
fied C compiler, and Verasco, a verified static analyzer based on abstract
interpretation.

Abstract of Invited Talk

Tool-assisted formal verification of software is making inroads in the critical soft-
ware industry. While full correctness proofs for whole applications can rarely be
achieved [6,12], tools based on static analysis and model checking can already
establish important safety and security properties (memory safety, absence of
arithmetic overflow, unreachability of some failure states) for large code bases
[1]. Likewise, deductive program verifiers based on Hoare logic or separation logic
can verify full correctness for crucial algorithms and data structures and their
implementations [11]. In the context of critical software that must be qualified
against demanding regulations (such as DO-178 in avionics or Common Crite-
ria in security), such tool-assisted verifications provide independent evidence,
complementing that obtained by conventional verification based on testing and
reviews.

The trust we can put in the results of verification tools is limited by two risks.
The first is unsoundness of the tool: by design or by mistake in its implementa-
tion, the tool can fail to account for all possible executions of the software under
verification, reporting no alarms while an incorrect execution can occur. The
second risk is miscompilation of the code that was formally verified. With a few
exceptions [3], most verification tools operate over source code (C, Java, . . . ) or
models (Simulink or Scade block diagrams). A bug in the compilers or code gen-
erators used to produce the executable machine code can result in an incorrect
executable being produced from correct source code [13].

Both unsoundness and miscompilation risks are known in the critical software
industry and accounted for in DO-178 and other regulations [7]. It is extremely
difficult, however, to verify an optimizing compiler or sophisticated static an-
alyzer using conventional testing. Formal verification of compilers, static ana-
lyzers, and related tools provides a radical, mathematically-grounded answer to
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these risks. By applying deductive program verification to the implementations
of those tools, we can prove with mathematical certainty that they are free of
miscompilation and unsoundness bugs. For compilers and code generators, the
high-level correctness statement is semantic preservation: every execution of the
generated code matches one of the executions of the source code allowed by
the semantics of the source language. For static analyzers and other verification
tools, the high-level statement is soundness : every execution of the analyzed code
belongs to the set of safe executions inferred and verified by the tool. Combining
the two statements, we obtain that every execution of the generated code is safe.

In this talk, I give an overview of two tool verification projects I am involved
in: CompCert and Verasco. CompCert [8,9] is a realistic, industrially-usable com-
piler for the C language (a large subset of ISO C 1999), producing assembly code
for the ARM, PowerPC, and x86 architectures. It features careful code genera-
tion algorithms and a few optimizations, delivering 85% of the performance of
GCC at optimization level 1. While some parts of CompCert are not verified yet
(e.g. preprocessing), the 18 code generation and optimization passes come with
a mechanically-checked proof of semantics preservation. Verasco [2] is an ongo-
ing experiment to develop and prove sound a static analyzer based on abstract
interpretation for the CompCert subset of C. It follows a modular architecture
inspired by that of Astrée: generic abstract interpreters for the C#minor and
RTL intermediate languages of CompCert, parameterized by an abstract domain
of execution states, itself built as a combination of several numerical abstract
domains such as integer intervals and congruences, floating-point intervals, and
integer linear inequalities (convex polyhedra).

Both CompCert and Verasco share a common methodology based on interac-
tive theorem proving in the Coq proof assistant. Both projects use Coq not just
for specification and proving, but also as a programming language, to implement
all the formally-verified algorithms within Coq’s Gallina specification language,
in pure functional style. This way, no program logic is required to reason about
these implementations: they are already part of Coq’s logic. Executability is not
lost: Coq’s extraction mechanism produces executable OCaml code from those
functional specifications.

CompCert and Verasco rely crucially on precise, mechanized operational
semantics of the source, intermediate, and target languages involved, from Comp-
Cert C to assembly languages. These semantics play a crucial role in the cor-
rectness statements and proofs. In a sense, the proofs of CompCert and Verasco
reduce the problem of trusting these tools to that of trusting the semantics in-
volved in their correctness statements. An executable version of the CompCert C
semantics was built to enable testing of the semantics, in particular random test-
ing using Csmith [13].

Not all parts of CompCert and Verasco need to be proved: only those parts
that affect soundness, but not those part that only affect termination, preci-
sion of the analysis, or efficiency of the generated code. Leveraging this effect,
complex algorithms can often be decomposed into an untrusted implementation
followed by a formally-verified validator that checks the computed results for
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soundness and fails otherwise. For example, CompCert’s register allocation pass
is composed of an untrusted implementation of the Iterated Register Coalescing
algorithm, followed by a validation pass, proved correct in Coq, that infers and
checks equalities between program variables and registers and stack locations
that were assigned to them [10]. Likewise, Verasco’s relational domain for lin-
ear inequalities delegates most computations to the Verasco Polyhedral Library,
which produces Farkas-style certificates that are checked by Coq-verified valida-
tors [4]. Such judicious use of verified validation a posteriori is effective to reduce
overall proof effort and enable the use of sophisticated algorithms.

In conclusion, CompCert and especially Verasco are ongoing experiments
where much remains to be done, such as aggressive loop optimization in Comp-
Cert and scaling to large analyzed programs for Verasco. In parallel, many other
verification and code generation tools also deserve formal verification. A no-
table example is the verified verification condition generator of Herms et al [5].
Nonetheless, the formal verification of code generation and verification tools ap-
pears both worthwhile and feasible within the capabilities of today’s interactive
proof assistants.
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Abstract. We present a principled approach to the development of con-
struction and verification tools for while-programs. Our verification tool
uses Kleene algebra with tests to capture the control flow of programs and
its relational semantics for their data flow. It is extended to a Morgan-
style program construction tool by adding one single axiom to the al-
gebra. Our formalisation in Isabelle/HOL makes these tools themselves
correct by construction. Verification condition generation and program
construction steps are based on simple equational reasoning and sup-
ported by powerful Isabelle tactics. Two case studies on program con-
struction and verification show our tools at work.

1 Introduction

Kleene algebras with tests [11] (KAT) support the analysis of while-programs by
simple equational reasoning. They consist of a Kleene algebra, which models se-
quential compositions, nondeterministic choices and finite iteration of programs,
and an embedded boolean algebra, which models assertions and test in condi-
tionals and while-loops. KAT can verify program transformations [11], and it
subsumes Hoare logic without the assignment rule [12]. The algebra has been
applied, for instance, in compiler optimisation [14] and static analysis [13]. This
applicability owes to its models of computational interest which include binary
relations, and guarded languages and automata.

Nevertheless the role of KAT in program verification and correctness tools has
so far been limited. One reason may be that these and similar algebras capture
the control flow of programs elegantly and concisely, while providing limited
capabilities for modelling their data flow. Only recently have KAT and similar
algebraic approaches been formalised in theorem proving environments such as
Coq [20] or Isabelle [3, 4] and first applications been explored.

A main contribution of this article lies in a principled approach by which
program construction and verification tools can be prototyped rapidly and ef-
fectively from an algebraic layer in Isabelle/HOL [18]. It benefits from Isabelle’s
support for designing algebraic hierarchies with their models and its emphasis
on proof automation through the integration of state-of-the-art first-order the-
orem proving and SMT solving technology. This technology has been optimised
for equational reasoning and it interacts very efficiently with the algebraic layer.
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The Isabelle infrastructure and our large libraries for KAT and similar alge-
bras [4] make our approach simple and lightweight. We use variants of KAT for
reasoning about the control flow of programs. The data flow, which appears in
assignment statements, tests and assertions, is clearly separated from this layer.
It is captured within appropriate models of KAT, in our case the standard rela-
tional semantics of imperative sequential programs. At this level we can link once
more into Isabelle’s extensive libraries and its extant verification infrastructure.
The overall approach is illustrated through two main applications:

(i) the development of a KAT-based verification tool for while-programs which
uses Hoare logic;

(ii) its extension to a program refinement tool based on Morgan’s specification
statement.

Relative to the formalisation of KAT in Isabelle, the main development step
for the verification tool consists in refining the relational model of KAT into a
detailed program semantics with program stores, in deriving assignment rules
and in integrating data structures such as lists, arrays or queues.

For our program construction tool, we first show that the addition of one single
algebraic axiom to KAT and its justification in the relational model suffices for
deriving Morgan’s basic refinement calculus.

The development in Isabelle makes both tools themselves correct by construc-
tion. It also highlights the role of algebra in program construction and verifica-
tion. First of all, it allows the derivation of inference rules or refinement laws by
equational reasoning which, in our case, is straightforward and fully automatic.
Second, the algebraic laws can be turned into powerful tactics. In the context of
verification, these support the automatic generation of verification conditions,
which can be discharged by reasoning entirely at the data level. In the context of
construction, they support the automated verification of refinement steps. Third,
the algebraic approach is essentially open. It supports the rapid prototyping of
variants and extensions, and the efficient derivation of additional inference rules
or refinement laws as needed in applications.

We have applied our tools in a series of program construction and verification
examples, two of which are presented in this article: the computation of sums of
even Fibonacci numbers, and insertion sort. These evidence a high level of proof
automation and suggest that our tools are stable enough at least for educational
purposes. Optimisations to make them comparable to Isabelle’s more advanced
verification tools and similar tools for program construction and verification
[19, 9, 7] are certainly possible, but not the purpose of this article.

The complete implementation of our tools in Isabelle and the complete pro-
gram construction and verification proofs can be obtained online1. In particular,
all mathematical statements in this article have been verified with Isabelle. Com-
prehensive libraries for variants of Kleene algebras, and in particular KAT, can
be obtained from the Archive of Formal Proofs [5, 4].

1 http://www.dcs.shef.ac.uk/~victor/refinement

http://www.dcs.shef.ac.uk/~victor/refinement
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2 Kleene Algebras with Tests

Kleene algebras with tests combine Kleene algebras for reasoning about the
control flow of while-programs with boolean algebras that capture assertions as
well as tests in conditionals or loops. Kleene algebras, in turn, are based on
dioids or idempotent semirings.

A semiring is a structure (S,+, ·, 0, 1) such that (S,+, 0) is a commutative
monoid and (S, ·, 1) a monoid; the distributivity laws x · (y+z) = x ·y+x ·z and
(x+ y) · z = x · z+ y · z, and the annihilation laws x · 0 = 0 and 0 · x = 0 hold. A
semiring is idempotent (a dioid) if x+x = x. In that case, (S,+, 0) is a semilattice
with least element 0 and semilattice order defined by x ≤ y ⇔ x+ y = y.

A Kleene algebra is a structure (K,∗ ) such that K forms a dioid and the star
satisfies the unfold laws and induction rules

1 + x∗x ≤ x∗, z + yx ≤ y ⇒ zx∗ ≤ y,

1 + xx∗ ≤ x∗, z + xy ≤ y ⇒ x∗z ≤ y.

Here and henceforth we drop the multiplication symbol.
Kleene algebras capture the control flow of programs. If K represents the

actions of a program, then + models the nondeterministic choice between actions,
· their sequential composition, and ∗ their finite iteration; 0 represents abort
and 1 skip. The rule sx ≤ ys ⇒ sx∗ ≤ y∗s, for instance, states that every
(co)simulation s from x to y is also a (co)simulation from x∗ to y∗. It is proved
by equational reasoning with the first induction rule above.

For modelling concrete control structures such as conditionals or while-loops
and for expressing assertions, however, additional structure is needed.

A Kleene algebra with tests [11] is a pair (K,B) consisting of a Kleene algebra
K and a boolean algebra B of tests which is embedded into K. By this embed-
ding, the least and greatest element of B are respectively 0 and 1; addition +
corresponds to join and multiplication · to meet. Complementation is defined
only within B. Multiplication of tests is therefore commutative: pq = qp. We
write x, y, z for general Kleene algebra elements and p, q, r for tests; we write
KAT for the class of Kleene algebras with tests and the set of its axioms.

KAT yields a simple algebraic semantics for conditionals and while-loops:

if p then x else y fi = px+ py, while p do x od = (px)∗p.

More precisely, it is well known that KAT is sound with respect to the standard
partial correctness semantics of while-programs in terms of binary relations.

Proposition 2.1 ([3]). Let A be a set. Then (2A×A, B,∪, ◦,∗ ,¬, ∅, idA) is a
KAT, where B = {P ∈ A×A | P ⊆ idA} is the set of all subidentities in 2A×A.

In this definition, ◦ denotes relational composition, ∗ the reflexive transitive
closure operation, ¬P = {(a, a)| (a, a) 
∈ P}, and idA = {(a, a) | a ∈ A} is
the identity relation. The structure (2A×A, B,∪, ◦,∗ ,¬, ∅, idA) is called the full
relational KAT over A; each of its subalgebras forms again a KAT—a relational



8 A. Armstrong, V.B.F. Gomes, and G. Struth

KAT. The reflexive transitive closure of every element of a relational KAT exists
and is equal to

⋃
i≥0R

i by standard fixpoint theory.
It can be checked in relational KAT that px models an input restriction of

program x to those states where test p holds. Thus, in the above KAT-expression
for the conditional, x is executed when p holds while y is executed when p fails.
In the KAT-expression for the loop, x is executed zero or finitely many times
after p holds, and afterwards p fails, or else the loop aborts.

3 Hoare Logic with KAT

Tests can also model assertions. Validity of Hoare triples is encoded in KAT as

� {|p|}x{|q|} ⇔ pxq = 0.

The right-hand side states that there are no successful terminating executions
of program x from states where assertion p holds into states where assertion q
fails. In other words, if x is executed from precondition p and if it terminates,
then postcondition q must hold after its execution.

KAT is expressive enough for deriving the inference rules of propositional Hoare
logic (PHL), that is, Hoare logic without the assignment rule [12].

Proposition 3.1 ([12]). The inference rules of PHL are theorems of KAT:

� {|p|}skip{|p|},
p ≤ p′ ∧ q′ ≤ q∧ � {|p′|}x{|q′|} ⇒ � {|p|}x{|q|},

� {|p|}x{|r|}∧ � {|r|}y{|q|} ⇒ � {|p|}x; y{|q|},
� {|pb|}x{|q|}∧ � {|pb|}y{|q|} ⇒ � {|p|}if b then x else y fi{|q|},

� {|pb|}x{|p|} ⇒ � {|p|}while b do x od{|bp|}.

The proof is calculational. The while rule, e.g., expands to the KAT-formula

pbxp = 0⇒ p(bx)∗b(bp) = 0.

Since pxq = 0 is equivalent to px ≤ xq in KAT, we calculate

pbx ≤ bxp⇒ p(bx)∗ ≤ (bx)∗p⇒ p(bx)∗b ≤ (bx)∗pb,

using the above (co)simulation rule in the first step. This illustrates the simplic-
ity and concision of reasoning about programs in KAT. Proving the other PHL
rules is even simpler. Hoare logic supplies one inference rule per programming
construct. Its inference rules can therefore be applied deterministically, which
simplifies the generation of verification conditions.

PHL rules for total correctness can be derived in a variant of Kleene algebra
in which an operation x∞ for the possibly infinite iteration of x is used instead
of x∗ [16]. This extension is, however, not considered in this paper.
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4 Refinement with KAT

KAT can be extended to a Morgan-style refinement calculus by adding one sin-
gle axiom. We keep the partial correctness setting, which suffices for practical
program construction tasks. Extending it to a total correctness setting with ter-
mination variants seems straightforward.

Our approach follows Morgan’s classical book on Programming from Specifi-
cations [17]. We think of specifications as programs that need not be executable.
Morgan starts from the largest program which relates a given precondition p
to a given postcondition q—the specification statement—and uses refinement
laws to transform it incrementally and compositionally into an executable pro-
gram which is correct by construction. In KAT, the axiomatisation of Morgan’s
specification statement is very simple.

A refinement Kleene algebra with tests (rKAT) is a KAT expanded by an
operation [ , ] : B ×B → K which satisfies

� {|p|}x{|q|} ⇔ x ≤ [p, q]. (1)

It is easy to show that (1) implies the characteristic properties � {|p|}[p, q]{|q|}
and � {|p|}x{|q|} ⇒ x ≤ [p, q] of the specification statement. First of all, program
[p, q] relates precondition p with postcondition q whenever it terminates. Second,
it is the largest program with that property.

Morgan’s basic refinement calculus provides one refinement law per program
construct. Once more we ignore assignments at this stage. Deriving these laws
in rKAT is strikingly easy. We use the refinement order �, which is the converse
of ≤. One may also identify p ≤ q on tests with the implication p→ q.

Proposition 4.1. The following refinement laws are theorems of rKAT:

p ≤ q ⇒ [p, q] � skip, (2)

p′ ≤ p ∧ q ≤ q′ ⇒ [p, q] � [p′, q′], (3)

[0, 1] � x, (4)

x � [1, 0], (5)

[p, q] � [p, r]; [r, q], (6)

[p, q] � if b then [bp, q] else [bp, q] fi, (7)

[p, bp] � while b do [bp, p] od. (8)

The laws are usually derived from Hoare logic in set theory. Two typical examples
show the simplicity of deriving them with rKAT instead. For (2), we calculate

p ≤ q ⇒ pq ≤ qq = 0⇒ p1q = 0⇒ � {|p|}1{|q|} ⇒ 1 ≤ [p, q]⇒ [p, q] � skip.

For (8), we calculate with the while-rule of PHL and (1), �,

� {|pb|}[pb, p]{|p|} ⇒ � {|p|}while b do [bp, p] od{|bp|}
⇒ [p, bp] � while b do [bp, p] od.
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In (2), skip refines any specification statement provided its precondition im-
plies its postcondition. [0, 1] is usually called the abort statement, [1, 0] the
magic statement. For further discussion of these laws we refer to the literature.

Finally, we verify soundness of rKAT in the relational model.

Proposition 4.2. Let A be a set and let, for all P,Q ⊆ idA,

[P,Q] =
⋃
{R ⊆ A×A | � {|P |}R{|Q|}}.

The structure (2A×A, B,∪, ◦, [ , ],∗ ,¬, ∅, idA) then forms a rKAT.

This structure is called the full relational rKAT over A. Again, every subalgebra
forms a rKAT; a relational rKAT over A.

5 Program Correctness Tools in Isabelle

We develop our tools within the Isabelle/HOL theorem proving environment [18].
Variants of Kleene algebras have already been formalised in Isabelle together
with their most important models, in particular the binary relation model [5].
More recently, a comprehensive Isabelle library for KAT and a related algebra
for total program correctness have been implemented [4, 3]. This includes the
soundness proof for KAT with respect to the relational model (Proposition 2.1)
and the derivation of the PHL rules (Proposition 3.1).

Formalising theory hierarchies is supported by Isabelle’s type classes, which
allow theory expansions. The class of dioids, for instance, can be specified by list-
ing its signature and axioms. Kleene algebras are obtained by expanding dioids;
fixing the star and listing its axioms. Algebras declared that way are polymor-
phic; their elements can have various types. This allows linking algebras formally
with their model by instantiation or interpretation statements, for instance KAT
and rKAT with the relational model.

By designing hierarchies like this, theorems are automatically propagated
across classes and models. Those proved for Kleene algebras, for instance, be-
come available for KAT and the relational model. Algebraic reasoning benefits
from powerful proof automation supported by Isabelle’s integrated automated
theorem provers and SMT-solvers, whose proof output is internally verified to in-
crease trustworthiness. Since these tools are highly optimised for equational rea-
soning, they interact very efficiently with the algebraic layer. Reasoning within
models may require higher-order logic. This is supported by Isabelle’s capabil-
ities for modelling and reasoning with sets, polymorphic data types, inductive
definitions and recursive functions as well as its tactics and simplifiers.

With this infrastructure, the implementation of verification tools for while-
programs is very simple. Since the relational model of KAT is polymorphic in
the underlying set, we can model the assignment rule of Hoare logic at the level
of relations between generic program stores. Together with the rules of PHL at
the algebraic level it can then be used for generating verification conditions.
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Verifying these conditions depends on the underlying data domain, for which
Isabelle, in many cases, offers excellent library support.

Implementing the refinement tool requires, as a first step, the formalisation of
the material on rKAT from Section 4. This is straightforward and most proofs are
fully automatic. Parts of the verification tool can then be reused for reasoning
about the store and implementing Morgan’s refinement rules for assignments.

We first describe the derivation of Hoare’s assignment rule in the relational
model. We define the store as a record of program variables. For each variable
we provide a retrieve and an update function, which support variables of any
Isabelle type. Isabelle’s built-in list data type and its built-in list libraries can
thus be used, e.g., for reasoning about list-based programs. We follow Isabelle’s
existing Hoare logic closely and use many of its predefined functions.

Let S be the set of all possible states of the store. We implement assignment
statements as relations

(‘x := e) = {(σ, x update σ e) | σ ∈ S},
where ‘x is a program variable, x update the update function for ‘x provided by
Isabelle; σ is a state and e an evaluated expression of the same type as ‘x.

As usual we identify assertions with their extensions, which are sets of states.
For the relational model we need to inject assertions into relational subidentities:

�P � = {(σ, σ) | σ ∈ P}.
This allows us to complete our implementation of Hoare logic in Isabelle.

Lemma 5.1. Hoare’s assignment rule is derivable in relational KAT.

P ⊆ Q[e/‘x]⇒ � {| �P � |}(‘x := e){| �Q� |},
where Q[e/‘x] denotes substitution of variable ‘x by evaluated expression e in Q.

This yields the following soundness theorem of Hoare logic.

Theorem 5.2. The rules of Hoare logic are theorems of relational KAT.

We use the rules of Hoare logic to implement the Isabelle proof tactic hoare
which generates verification conditions automatically and tries to blast away the
entire control structure. As an enhancement of verification condition generation
we have verified an additional rule for while-loops with invariants.

p ≤ i ∧ pi ≤ q ∧ � {|ib|}x{|i|} ⇒ � {|p|}while b inv i do x od{|q|}.
In addition, our definition of assignment allows us to derive refinement laws.

Proposition 5.3. The following refinement laws are derivable in relational rKAT.

P ⊆ Q[e/‘x]⇒ [�P � , �Q�] � (‘x := e), (9)

Q′ ⊆ Q[e/‘x]⇒ [�P � , �Q�] � [�P � , �Q′�]; (‘x := e), (10)

P ′ ⊆ P [e/‘x]⇒ [�P � , �Q�] � (‘x := e); [�P ′� , �Q�]. (11)

(10) and (11) are called the following and leading refinement law for assign-
ments [17]. They are particularly useful for program construction. As in the case
of verification, we have programmed a refinement tactic which automatically
tries to apply the rules of the basic refinement calculus.



12 A. Armstrong, V.B.F. Gomes, and G. Struth

6 Sum of Even Fibonacci Numbers

We now present the first example which shows our tools at work. We construct
a program which computes the sum of even Fibonacci numbers below a given
threshold2. Its input is threshold m ∈ N; its return value is stored in variable
‘sum. Because of typing there is no specific precondition. The postcondition
is-sum-efib ‘sum m, which is equivalent to ∃n. ‘sum = sum-efib m n∧ fib n ≤ m,
is specified using the standard functional program fib, which can be programmed
in Isabelle, and the recursive function

sum-efib m 0 = 0,

sum-efib m (n+1) =

{
sum-efib m n for fib n odd or fib n ≥ m,

sum-efib m n+ fib n otherwise.

The specification statement for our program is therefore, in Isabelle syntax,

[[True, is-sum-efib ‘sum m]].

To keep track of all even Fibonacci numbers up to m, we use the function

efib 0 = 2, efib 1 = 8, efib (n+2) = 4 ∗ efib (n+1)+ efib n.

We have verified by induction that all numbers computed by efib are even and
that efib n = fib (3n + 1) holds for all n ≥ 0. The following classical fact about
Fibonacci numbers then implies that efib computes indeed all even terms:

(fib n) mod 2 = 0⇔ n mod 3 = 1.

After this groundwork, which is an indispensable part of program construc-
tion and verification, we can start with the program construction itself. It is
shown in Figure 1. Since Fibonacci numbers are defined recursively from their
two predecessors, we add the variables ‘x and ‘y to keep track of them. In (1)
we initialise ‘x to 2—the first even Fibonacci number—applying the leading re-
finement law for assignments derived in Proposition 5.3. Our refinement tactic
automatically applies the assignment law. In (2) we then initialise ‘y to 8—the
second even Fibonacci number. The refinement tactic now dictates the proof
obligation fib 4 = 8, which is discharged by an integrated SMT solver. In (3) we
initialise ‘sum to 0 and state that ‘sum = sum-efib m 1 by definition.

The main idea behind this program is to add the next even Fibonacci number
to ‘sum as long as it is below m, while storing the previous numbers in ‘x and ‘y.
In the actual state of development, we also want to keep track of the indices of
these numbers in the fib and efib series. Hence in (4) we add the variables ‘n and
‘k. The facts proved about Fibonacci numbers imply that the numbers stored in
‘x and ‘y have distance 3 in the series of Fibonacci numbers. The precondition

2 The algorithm is taken from http://toccata.lri.fr/gallery/euler002.en.html.
Fibonacci numbers start as 1, 2, 3, 5, 8, ..., which is perhaps nonstandard.

http://toccata.lri.fr/gallery/euler002.en.html
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[[ True, is-sum-efib ‘sum m]]
� (1)

‘x := 2 ;
[[ ‘x=efib 0 ∧ ‘x=fib 1 , is-sum-efib ‘sum m]]
by refinement

� (2)
‘x := 2 ; ‘y := 8 ;
[[ ‘x=efib 0 ∧ ‘x=fib 1 ∧ ‘y=efib 1 ∧ ‘y=fib 4 , is-sum-efib ‘sum m]]
by refinement (smt even-fib.simps(2 ) even-fib-correct)

� (3)
‘x := 2 ; ‘y := 8 ; ‘sum := 0 ;
[[ ‘x=efib 0 ∧ ‘x=fib 1 ∧ ‘y=efib 1 ∧ ‘y=fib 4 ∧ ‘sum=sum-efib m 1 ,
is-sum-efib ‘sum m]]
by refinement

� (4)
‘x := 2 ; ‘y := 8 ; ‘sum := 0 ; ‘n := 0 ; ‘k := 1 ;
[[ ‘x=efib ‘n ∧ ‘x=fib ‘k ∧ ‘y=efib (‘n+1 ) ∧ ‘y=fib (‘k+3 )

∧ ‘n ≥ 0 ∧ ‘k ≥ 1 ∧ ‘sum=sum-efib m ‘k , is-sum-efib ‘sum m]]
by refinement

� (5)
‘x := 2 ; ‘y := 8 ; ‘sum := 0 ; ‘n := 0 ; ‘k := 1 ;
while {| ‘x ≤ m |} do
[[ ‘x=efib ‘n ∧ ‘x=fib ‘k ∧ ‘y=efib (‘n+1 ) ∧ ‘y=fib (‘k+3 )

∧ ‘n ≥ 0 ∧ ‘k ≥ 1 ∧ ‘sum=sum-efib m ‘k ∧ ‘x ≤ m,
‘x=efib ‘n ∧ ‘x=fib ‘k ∧ ‘y=efib (‘n+1 ) ∧ ‘y=fib (‘k+3 )
∧ ‘n ≥ 0 ∧ ‘k ≥ 1 ∧ ‘sum=sum-efib m ‘k ]]

od
by refinement (smt is-sum-efib-def )

� (6)
‘x := 2 ; ‘y := 8 ; ‘sum := 0 ; ‘n := 0 ; ‘k := 1 ;
while {| ‘x ≤ m |} do
[[ ‘x=efib ‘n ∧ ‘x=fib ‘k ∧ ‘y=efib (‘n+1 ) ∧ ‘y=fib (‘k+3 )

∧ ‘n ≥ 0 ∧ ‘k ≥ 1 ∧ ‘sum=sum-efib m ‘k ∧ ‘x ≤ m,
‘x=efib ‘n ∧ ‘x=fib (‘k+3 ) ∧ ‘y=efib (‘n+1 )
∧ ‘y=fib (6+‘k) ∧ ‘n ≥ 0 ∧ ‘sum=sum-efib m (‘k+3 ) ]];

‘k := ‘k+3
od
by refinement

� (7)
‘x := 2 ; ‘y := 8 ; ‘sum := 0 ; ‘n := 0 ; ‘k := 1 ;
while {| ‘x ≤ m |} do
[[ ‘x=efib ‘n ∧ ‘x=fib ‘k ∧ ‘y=efib (‘n+1 ) ∧ ‘y=fib (‘k+3 )

∧ ‘n ≥ 0 ∧ ‘k ≥ 1 ∧ ‘sum=sum-efib m ‘k ∧ ‘x ≤ m,
‘y=efib (‘n+1 ) ∧ ‘y=fib (‘k+3 ) ∧ (4∗‘y+‘x )=efib (‘n+2 )
∧ (4∗‘y+‘x )=fib (6+‘k) ∧ (‘sum+‘x )=sum-efib m (‘k+3 ) ]];

‘tmp := ‘x ; ‘x := ‘y ;
‘y := 4∗‘y + ‘tmp;
‘sum := ‘sum + ‘tmp;
‘n := ‘n+1 ; ‘k := ‘k+3

od
by refinement

Fig. 1. Construction of the sum of even Fibonacci numbers program
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now stores the tentative loop invariant; so we can introduce the while-loop in
(5). This requires that the precondition implies the postcondition, which follows
from the definition of the predicate is-sum-efib by setting n to ‘k.

Deriving the body of the loop in (6) and (7) is quite straightforward; we just
need to specify the variable updates. In (6), k is updated; then, in (7), ‘sum is
updated to ‘sum + ‘x, ‘x to ‘y, ‘y to the next even Fibonacci number, and so on.
This can be achieved by applying the following or leading refinement law. This
time we choose to apply the following law from Proposition 5.3, which forces a
substitution in the postcondition. In (7) we also add a new variable ‘tmp to save
the value of ‘x and proceed as before until all variables have been updated.

It now remains to eliminate the surviving specification statement. Refining
it to skip with refinement law (2) requires that its precondition implies its
postcondition. Accordingly, our refinement tactic generates the proof obligations

fib (k + 6) = 4 ∗ fib (k + 3)+ fib k,

even (fib k) ∧ fib k ≤ m⇒ sum-efib m (k + 3) = sum-efib m k+ fib k,

which are discharged by automatic theorem proving, using induction on Fi-
bonacci numbers. This finally gives us the program in Figure 2, which is partially
correct by construction. For total correctness it remains to prove termination,
for which Isabelle provides support as well [21].

We conclude this development with three remarks. First, with good libraries
for Fibonacci numbers in place, the algebra and particular Isabelle technology
used for constructing this algorithm remain hidden behind an interface. Devel-
opers interact with Isabelle mainly by writing mathematical expressions and
pseudocode in a specification language similar to to Morgan’s, and by calling
the refinement tactic and Isabelle’s theorem provers. Alternatively, they could
invoke individual refinement rules. This is nicely supported by Isabelle’s struc-
tured proof specification language Isar.

Second, proof automation was very high. Most refinement steps were verified
by refinement alone, the others by automated theorem proving. Isabelle thus
supported a seamless refinement process at the level of textbook proofs.

Finally, it should be pointed out that we used ghost variables such as ‘n and
‘k to prove correctness, which are not displayed in the final program, but have
not been eliminated formally.

The Fibonacci algorithm can as well be verified with Hoare logic as shown
in Figure 3. Our hoare tactic generates the standard proof obligations, which

‘x := 2 ; ‘y := 8 ; ‘sum := 0 ;
while {| ‘x ≤ m |} do
‘tmp := ‘x ; ‘x := ‘y ;
‘y := 4∗‘y + ‘tmp;
‘sum := ‘sum + ‘tmp;

od

Fig. 2. Sum of even Fibonacci numbers
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lemma � {| True |}
‘x := 2 ; ‘y := 8 ; ‘sum := 0 ; ‘n := 0 ; ‘k := 1 ;
while {| ‘x ≤ m |}
inv {|
(‘k ≥ 1 ) ∧ (‘x=efib ‘n) ∧ (‘x=fib ‘k) ∧ (‘y=efib (‘n+1 ))
∧ (‘y=fib (‘k+3 )) ∧ (‘sum=sum-efib m ‘k)

|}
do
‘tmp := ‘x ; ‘x := ‘y ;
‘y := 4∗‘y + ‘tmp;
‘sum := ‘sum + ‘tmp;
‘n := ‘n+1 ; ‘k := ‘k+3

od
{| is-sum-efib ‘sum m |}
apply (hoare, auto)
apply (smt is-sum-efib-def )
apply (metis fib-6-n)
apply (metis efib-mod-2-eq-0 sum-efib-fib)
by (smt efib.simps(2 ) efib-correct)

Fig. 3. Verification of the sum of even Fibonacci numbers program

can be inspected when executing our Isabelle theories, and auto discharges the
trivial ones. The survivors are then proved by Isabelle’s SMT solvers and exter-
nal theorem provers, using the built-in theorem prover metis to verify external
outputs. In this case, user interaction is restricted to calling tactics and theorem
provers. Beyond that the verification is fully automatic.

7 Insertion Sort

Our next example stems from Morgan’s book: the construction and verification
of insertion sort. It shows that our tool can handle arrays and nested loops.

We model an array A by using Isabelle’s functional lists, and therefore ben-
efit from its excellent libraries developed for this data type. This includes the
operation A ! i for retrieving the i-th element of A, the function take n A which
extracts the first n elements of A, the function list-update A i e which updates
the i-th value of A to e, and a sorted predicate. Using this, array assignments
are defined merely as syntactic sugar:

‘A ! i := e⇔ ‘A := list-update ‘A i e.

Our insertion sort algorithm takes an array A0 of polymorphic data that can
be linearly ordered. It returns a variable ‘A which holds the sorted array; that is,
the values in A0 have been permuted so that ‘A ! i ≤ ‘A ! j whenever i ≤ j. We
write ‘A ∼π A0 if ‘A stores a permutation of the values of A0. We also require
that A0 has positive length. This suggests the specification statement
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[[ |A0| > 0 ∧ ‘A=A0, sorted ‘A ∧ ‘A ∼π A0 ]].

The idea behind insertion sort is well known and need not be repeated. To
express that we successively sort larger prefixes, we introduce a variable ‘i such
that 1 ≤ ‘i ≤ |‘A|. For ‘i = 1, we have sorted (take ‘i ‘A).

Our refinement steps are similar to Morgan’s. We show only the most impor-
tant ones in Figure 4. In (1) we initialise ‘i := 1 and introduce a while-loop. The
resulting proof obligation is discharged by the refinement tactic. In the body
of the loop we now wish to take the ‘i-th element of the array and insert it in
position ‘j ≤ ‘i such that sorted (take (‘i+1) ‘A). To express this succinctly we de-
fine the predicate sorted-but A k, which states that A is sorted after removing its

[[ |A0| > 0 ∧ ‘A=A0, sorted ‘A ∧ ‘A ∼π A0]] � (1)
‘i := 1 ;
while {|‘i < |‘A||} do
[[ sorted (take ‘i ‘A) ∧ ‘i < |‘A| ∧ ‘A ∼π A0,
sorted (take (‘i+1 ) ‘A) ∧ (‘i+1 ) ≤ |‘A| ∧ ‘A ∼π A0]];
‘i := ‘i+1

od
� (2)

‘i := 1 ;
while {|‘i < |‘A||} do
[[ sorted-but (take (‘i+1 ) ‘A) ‘i ∧ ‘i < |‘A| ∧ ‘A ∼π A0,
‘j ≤ ‘i ∧ sorted-but (take (‘i+1 ) ‘A) ‘j ∧ (‘j 	=‘i −→ ‘A ! ‘j ≤ ‘A ! (‘j+1 ))
∧ (‘i+1 ) ≤ |‘A| ∧ (‘j=0 ∨ ‘A ! (‘j−1 ) ≤ ‘A ! ‘j ) ∧ ‘A ∼π A0]];

‘i := ‘i+1
od

� (3)
‘i := 1 ;
while {|‘i < |‘A||} do
‘i := ‘j ;
while {| ‘j 	=0 ∧ ‘A ! ‘j < ‘A ! (‘j−1 ) |} do
[[ ‘j ≤ ‘i ∧ sorted-but (take (‘i+1 ) ‘A) ‘j ∧ (‘j 	=‘i −→ ‘A ! ‘j ≤ ‘A ! (‘j+1 ))
∧ (‘i+1 ) ≤ |‘A| ∧ ‘j 	=0 ∧ ‘A ! ‘j < ‘A ! (‘j−1 ) ∧ ‘A ∼π A0,
‘j−1 ≤ ‘i ∧ sorted-but (take (‘i+1 ) ‘A) (‘j−1 ) ∧ (‘i+1 ) ≤ |‘A|
∧ (‘j−1 	=‘i −→ ‘A ! (‘j−1 ) ≤ ‘A ! ‘j ) ∧ ‘j 	=0 ∧ ‘A ∼π A0]];

‘j := ‘j−1
od;
‘i := ‘i+1

od
· · ·

[[ . . . previous specification statement . . . ]]
� (4)

‘k := ‘A ! ‘j ;
‘A ! ‘j := ‘A ! (‘j−1 );
‘A ! (‘j−1 ) := ‘k

Fig. 4. Construction of insertion sort algorithm (excerpts)
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‘i := 1 ;
while {|‘i < |‘A||} do
‘i := ‘j ;
while {| ‘j 	=0 ∧ ‘A ! ‘j < ‘A ! (‘j−1 ) |} do
‘k := ‘A ! ‘j ;
‘A ! ‘j := ‘A ! (‘j−1 );
‘A ! (‘j−1 ) := ‘k ;
‘j := ‘j−1

od;
‘i := ‘i+1

od

Fig. 5. Insertion sort algorithm

k-th element. We then rewrite the specification statement in (2). The refinement
tactic generates four proof obligations which are discharged automatically.

Next we wish to set ‘j to ‘i and iteratively swap ‘A ! ‘j to ‘A ! (‘j − 1) until
‘A ! (‘j − 1) ≤ ‘A ! ‘j or ‘j = 0. This requires introducing a new while-loop in
(3) which is justified by calling refinement.

Finally, in (4) we need to prove that the remaining specification statement is
refined by swapping ‘A ! ‘j to ‘A ! (‘j − 1). The refinement tactic generates six
proof obligations. Discharging them automatically requires proving some general
properties of sorted list and permutations absent in Isabelle’s library, e.g., that
swapping array elements yields a permutation. Construction of the insertion sort
algorithm is then complete. The result is shown in Figure 5. Again, it is partially
correct by construction; its termination can be proved by other means. Apart
from adding some general-purpose lemmas about permutations and sorted lists
to Isabelle’s libraries, the development was fully automatic.

Decorating the algorithm with the pre- and postcondition from the above
specification statement, one can also verify this algorithm with Hoare logic.
After calling the hoare tactic and auto we are left with seven proof obligations,
the proof of which is shown in Figure 6. It is mainly by automated theorem
proving. Only the unfold step does not directly call a theorem prover. It unfolds
two facts and then calls Isabelle’s auto tool.

apply (hoare, auto)
apply (metis One-nat-def take-sorted-butE-0 )
apply (metis take-sorted-butE-n One-nat-def less-eq-Suc-le not-less-eq-eq)
apply (metis One-nat-def Suc-eq-plus1 le-less-linear less-Suc-eq-le take-sorted-butE )
apply (unfold sorted-equals-nth-mono sorted-but-def , auto)
apply (smt nth-list-update)
apply (metis (hide-lams, no-types) One-nat-def perm .trans perm-swap-array)
apply (smt nth-list-update)
by (smt perm.trans perm-swap-array)

Fig. 6. Verification of insertion sort algorithm (proof steps)
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8 Conclusion

We have used Kleene algebra with tests for developing a simple program veri-
fication tool based on Hoare logic in Isabelle. Adding one single axiom to this
algebra yielded a tool for program construction with a basic Morgan-style re-
finement calculus. Using the algebra in combination with Isabelle’s integrated
automated theorem provers and SMT solvers made this development simple and
effective. Two extended case studies show our tools at work.

Our tools form a lightweight flexible middle layer for formal methods which
can easily be adapted and extended. Programs are analysed directly on their re-
lational semantics, but most relational manipulations are captured algebraically.
Therefore our tools can be integrated directly into any formal method which uses
a relational semantics. Alternatively, imperative code can be verified by map-
ping a programming language syntax to its relational semantics. In the context
of program construction, code for a given imperative language could be gener-
ated automatically from our “relational” programs, transforming the abstract
data structures in these programs by data refinement [10].

Or approach can be enhanced and adapted flexibly to other analysis tasks.
First, equations in KAT can be decided in PSPACE. The general Horn and
first-order theories are undecidable, but universal Horn formulas of the form
r1 = 0∧ · · · ∧ rn = 0⇒ s = t are still decidable via a technique called hypothesis
elimination. Inference rules with Hoare triples fall into this fragment. Formally
verified decision and hypothesis elimination procedures are currently available
only in Coq [20]; they would further enhance the performance of our tools.

Second, in contrast to our semantic approach, KAT can be expanded to cap-
ture assignments at the algebraic level [1]. A flowchart equivalence proof from [1]
has already been formalised in Coq [20] and Isabelle [6] with this approach. It re-
quires, however, more work to integrate it into tools and increase its automation.
Comparing both approaches in practice is certainly interesting.

Third, while KAT captures the deductive aspect of Hoare logic, modal Kleene
algebras [8] encompass also its partial correctness semantics [15]. The integration
of our tools into these more expressive algebras will be our next step. This
supports program analysis directly via the wlp-semantics. It may also yield more
powerful inference rules and refinement laws, and support static analysis.

Finally, KAT could be replaced by algebras for total correctness reasoning, for
which Isabelle support has already been provided [3], and by rely-guarantee style
algebras for shared variable concurrency. A simple verification tool for this, which
includes a semantics of finite transition traces, has already been developed [2].
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[10] Haftmann, F., Krauss, A., Kunčar, O., Nipkow, T.: Data refinement in Is-
abelle/HOL. In: Blazy, S., Paulin-Mohring, C., Pichardie, D. (eds.) ITP 2013.
LNCS, vol. 7998, pp. 100–115. Springer, Heidelberg (2013)

[11] Kozen, D.: Kleene algebra with tests. ACM TOPLAS 19(3), 427–443 (1997)
[12] Kozen, D.: On Hoare logic and Kleene algebra with tests. ACM TOCL 1(1), 60–76

(2000)
[13] Kozen, D.: Kleene algebras with tests and the static analysis of programs. Tech-

nical Report TR2003-1915, Cornell University (2003)
[14] Kozen, D., Patron, M.-C.: Certification of compiler optimizations using Kleene

algebra with tests. In: Lloyd, J., et al. (eds.) CL 2000. LNCS (LNAI), vol. 1861,
pp. 568–582. Springer, Heidelberg (2000)
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Abstract. This paper extends Reynolds’ separation logical system for
pointer-based while program verification by adding inductive definitions.
Inductive definitions give us a great advantage for verification, since they
enable us for example, to formalize linked lists and to support the lemma
reasoning mechanism. This paper proves its completeness theorem that
states that every true asserted program is provable in the logical system.
In order to prove its completeness, this paper shows an expressiveness
theorem that states the weakest precondition of every program and every
assertion can be expressed by some assertion.

1 Introduction

Reynolds proposed a new logical system based on separation logic for pointer
program verification [17]. It enables us to have a concise specification of program
properties and a manageable proof system. Separation logic is successful in a
theoretical sense as well as a practical sense. By using separation logic, some
pointer program verification systems have been implemented [13,2].

Inductive definitions in logical systems to formalize properties of programs
have been studied widely, for example, in [7,15,18,11]. Inductive definitions play
an important role in formalizing properties of programs in logical systems. Many
important data structures such as lists and trees are naturally represented in
logical systems by using inductive definitions, since they are recursively defined
by nature. Specifications and properties of programs can be formally represented
in a natural way in a logical system with the help of inductive definitions.

Combining with separation logic, inductive definitions give a verification sys-
tem a general mechanism to formalize recursive data structures such as linked
lists and circular doubly-linked lists. Instead of manually adding these data struc-
tures one by one in an ad hoc way, the system uniformly formalizes all these
recursive data structures once we have inductive definitions in the system. Some
properties called lemmas in [14] are important for program verification. In our
system, every lemma statement corresponding to each recursive data structure is
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also generated automatically from the description of the recursive data structure,
and the consistency of the system is automatically preserved.

One of the most important theoretical questions for a verification system is
its completeness [1,5,9,12]. The soundness of a system guarantees that if the
correctness of a program is proved in the system, then the program will indeed
run correctly. The soundness of those existing practical systems has been proved.
However, it does not mean the system can prove all correct programs are correct,
that is, there is a possibility that some programs are not proved to be correct
by the system even though they are indeed correct. The completeness is the
converse of the soundness. The completeness of the system guarantees that if a
program runs correctly, then the system surely proves the program is correct.
The completeness of a system shows how powerful the system is.

Our contributions are: (1) an extension of separation logic for pointer while
program verification by adding inductive definitions, (2) the completeness theo-
rem of separation logic with inductive definitions for pointer while programs, and
(3) the expressiveness theorem of the separation logic with inductive definitions
for pointer while programs.

We will prove the completeness by extending the completeness results of sepa-
ration logic for pointer while programs given in [19] to assertions with inductive
definitions. The main challenge is proving the expressiveness theorem.

We say that a logical system with the standard model is expressive for pro-
grams, if the weakest precondition of every program is definable in the logical
system. At first sight, the expressiveness may look trivial, but it is indeed a
subtle problem and some pathological counterexamples are known [3].

The expressiveness theorem for Peano arithmetic and separation logic was
proved in [19] based on the following idea. We code the heap information as well
as the store information by natural numbers, and simulating program executions
as well as the truth of assertions by using Peano arithmetic. The idea uses natural
numbers to encode the current store s and heap h, respectively. The store s is
coded by a list of values in distinguished variables. We can construct a heapcode
translation HEvalA(m) of an assertion A. HEvalA(m) is a pure formula such
that A is true at (s, h) if and only if HEvalA(m) is true at s when the number
m represents the heap h.

We will extend the expressiveness proof in [19] to inductive definitions. Since
our system is proof-theoretically strictly stronger than the system in [19] because
of inductive definitions [16], we did not know a possibility of this extension. The
key in our proof of the expressiveness theorem for inductive definitions is to
observe that if A is an inductively defined predicate, we can define HEvalA(m)
by using another inductively defined predicate. This idea is a similar direction to
the solutions used in an extension of type theory to inductive definitions [7,15],
and an extension of realizability interpretations to inductive definitions [18].

An extension of bunched implications with inductive definitions was studied
in [4]. Our assertion language is included in it, but ours is more specific for the
aim of pointer program verification. They discussed only an assertion language
and did not discuss asserted programs.
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Recently the completeness of separation logic was actively studied [5,9,12].
However, the case of a predicate logic with inductive definitions has not been
investigated yet, since [5] and [9] discussed only propositional logic, and [12]
studied only a system without inductions.

Our long-term aim is proving completeness of the core of existing practical
verification systems for pointer programs. This paper will give a step for this
purpose. In order to analyze a verification system with built-in recursive data
structures and their properties such as the lemma reasoning mechanism in [14],
the separation logic with inductive definitions is indispensable. Since our system
in this paper is simple and general, our completeness theorem can be applied
to those systems in order to show the completeness of their core systems. This
paper will also provide a starting point for completeness theorems in extensions
with richer programming languages and assertion languages such as recursive
procedure calls.

Section 2 defines our programming language and our assertion language, and
gives examples of inductive definitions. Their semantics is given in Section 3.
Section 4 gives a logical system for proving asserted programs, and Section 5
shows our completeness theorem as well as our soundness theorem. Section 6
gives a proof sketch of the expressiveness theorem. Section 7 is the conclusion.

2 Languages

This section defines our programming language and our assertion language. Our
language is obtained from Reynolds’ paper [17] by adding inductive definitions
to the assertion language.

Our programming language is an extension of while programs to pointers. It
is the same as that of Reynolds [17].

We have variables x, y, z, w, . . ., and constants 0, 1, null. Its expressions are
defined as follows.

Expressions e ::= x | 0 | 1 | null | e+ e | e× e.
Expressions mean natural numbers or pointers. null means the null pointer.
Its boolean expressions are propositional formulas defined as follows.
Boolean expressions b ::= e = e | e < e | ¬b | b ∧ b | b ∨ b | b→ b.
Boolean expressions are used as conditions in a program.
Programs are defined by:
Programs P ::= x := e | if (b) then (P ) else (P ) | while (b) do (P ) | P ;P |
x := cons(e, e) | x := [e] | [e] := e | dispose(e).

The statement x := cons(e1, e2) allocates two new consecutive memory cells,
puts e1 and e2 in the cells, and puts the address into x. The statement x := [e]
looks up the content of the memory cell at the address e and puts it into x. The
statement [e1] := e2 changes the content of the memory cell at the address e1 by
e2. The statement dispose(e) deallocates the memory cell at the address e. We
will sometimes write the number n to denote the term 1+ (1+ (1+ . . . (1 + 0)))
(n times of 1+). We will use i, j, k, l,m, n for natural numbers.
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Our assertion language is a first-order language extended with inductive def-
initions and the separating conjunction ∗ and the separating implication —∗. It
is an extension of assertions in [17,19] with inductive definitions. Our assertion
language is defined as follows: Terms are the same as the expressions of our
programming language and denoted by t. We have predicate symbols =, <, �→, a
predicate constant emp, and predicate variables X,Y, . . .. We assume that when
we have a predicate variable X we also have a predicate variable X̃.

Open formulas A ::= emp | e = e | e < e | e �→ e | X(t, . . . , t) | ¬A | A ∧ A |
A ∨ A | A→ A | ∀xA | ∃xA | (μX.λx . . . x.A)(t, . . . , t) | A ∗A | A—∗A.

We assume thatX occurs inA only positively for (μX.λx1 . . . xn.A)(t1, . . . , tn).
The positivity is defined in a standard manner as follows. We define the set
FPV+(A) of positive predicate variables and the set FPV−(A) of negative predi-
cate variables for A in a standard way. We say that X occurs only positively in A
when X 
∈ FPV−(A).

We define FPV(A) as FPV+(A) ∪ FPV−(A). We call an open formula A a
formula if FPV(A) = ∅. We will sometimes call a formula an assertion. We call
an open formula pure when the open formula does not contain emp, e1 �→ e2,
A ∗B, or A—∗B.

The open formula (μX.λx1 . . . xn.A)(t1, . . . , tn) means the inductively defined
predicate μX.λx1 . . . xn.A holds for t1, . . . , tn. The predicate μX.λx1 . . . xn.A de-
notes the least predicate X such that A↔ X(x1, . . . , xn). An open formula may
contain some predicate variables. The meaning of an open formula depends on
the meaning of its predicate variables. A formula does not contain any predicate
variables, and its meaning is determined in an ordinary way. For an assertion,
we will use only a formula, since it does not contain any free predicate variables.

emp means the current heap is empty. e1 �→ e2 means the current heap has
only one cell at the address e1 and its content is e2. A ∗ B means the current
heap can be split into some two disjoint heaps such that A holds at one heap and
B holds at the other heap. A —∗ B means that for any heap disjoint from the
current heap such that A holds at the heap, B holds at the new heap obtained by
combining the current heap and the heap. Note that X(t1, . . . , tn) may depend
on the current heap since X could take emp or e1 �→ e2. The other formula
constructions mean ordinary logical connectives.

FV(A) is defined as the set of free variables in A. FV(e) and FV(P ) are
similarly defined. FV(O1, . . . , On) is defined as FV(O1)∪ . . .∪FV(On) when Oi

is an open formula, an expression, or a program. A↔ B is defined as (A→B)∧
(B→A). We use A[x := t] for a standard substitution without variable capture.

We use vector notation to denote a sequence. For example, −→e denotes the
sequence e1, . . . , en of expressions.

Example 1 (linked lists). The predicate that characterizes singly linked lists
is formalized by using inductive definitions as follows.

Node(x, y, z) = x �→ y ∗ x+ 1 �→ z,
LL = μX.λxy.(x = null ∧ y = 0 ∨ ∃zw(Node(x, z, w) ∗X(w, y − 1))).
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LL(p, n) means that there is a singly linked list pointed by p such that its length
is n.

LL is the least predicate that satisfies

LL(p, n)↔ p = null ∧ n = 0 ∨ ∃xq(Node(p, x, q) ∗ LL(q, n− 1)).

LL(p, n) formalizes the predicate p::ll<n> given in [14]. They added their
lemma properties in an ad hoc way for proof search. In our system, those prop-
erties are derived by the above general principle.

Example 2 (circular doubly-linked lists). Let

Node2(x, y, z, w) = x �→ y ∗ x+ 1 �→ z ∗ x+ 2 �→ w,
DSN = μX.λxyzwv.(x = w ∧ z = v ∧ y = 0

∨∃y′w′(Node2(x, y′, z, w′) ∗X(w′, y − 1, x, w, v))),
DCL(x, y) = (x = null ∧ y = 0∨

∃zw(∃uNode2(x, u, z, w) ∗DSN(w, y − 1, x, x, z))).

DSN(q, s, p, n, t) means that there is a doubly linked list pointed by q such that
its length is s, the previous pointer in the first element is p, the next pointer in
the last element is n, and t points the last element. DCL(p, s) means that there
is a circular doubly-linked list of length s pointed by p.

DSN is the least predicate that satisfies

DSN(q, s, p, n, t)↔
q = n ∧ p = t ∧ s = 0 ∨ ∃rs′(Node2(q, s′, p, r) ∗DSN(r, s− 1, q, n, t)).

Since it is the least, we can also show that one of their lemma properties

DSN(q, s, p, n, t) ∧ s > 0↔ ∃r(DSN(q, s− 1, p, t, r) ∗ ∃xNode2(t, x, r, n))

is true.
DCL(p, s) formalizes the predicate p::dcl(s), DSN(r, s, p, n, t) formalizes

r::dseqN<s,p,n,t>, and the last equivalence formula formalizes their lemma
given in [14].

Example 3 (linked list segments). The predicate that characterizes linked
list segments is formalized by using inductive definitions as follows.

LS = μX.λxy.(x = y ∧ emp ∨ ∃v(∃uNode(x, u, v) ∗X(v, y)) ∧ x 
= y).

LS(x, p) means that the heap is a linked list segment such that x points the first
cell and p is the next pointer in the last cell.

LS is the least predicate that satisfies

LS(x, p)↔ x = p ∧ emp ∨ ∃v(∃uNode(x, u, v) ∗ LS(v, p)) ∧ x 
= p.

By this general principle we can show that

LS(x, p) ∗Node(p, a, b)↔ ∃q(LS(x, q) ∗ LS(q, p) ∗Node(p, a, b))

is true.
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LS(E,F ) formalizes the following predicate ls(E,F ) given in [2], where we
represent E �→ [f1 : x, f2 : y] by Node(E, x, y). These formulas are also true in
our system.

ls(E,F )↔ (E = F ∧ emp) ∨ (E 
= F ∧ ∃y.E �→ [n : y] ∗ ls(y, F )),
ls(E1, E2) ∗ ls(E2, E3) ∗ E3 �→ [ρ]→ ls(E1, E3) ∗ E3 �→ [ρ].

3 Semantics

The semantics of our programming language and our assertion language is de-
fined in this section. Our semantics is obtained by combining a standard seman-
tics for natural numbers and inductive definitions and a semantics for programs
and assertions given in Reynolds’ paper [17] except the following simplification:
(1) values are natural numbers, (2) addresses are non-zero natural numbers, and
(3) null is 0. We call our model the standard model.

The set N is defined as the set of natural numbers. The set Vars is defined
as the set of variables in the language. The set Locs is defined as the set {n ∈
N |n > 0}.

For sets S1, S2, f : S1 → S2 means that f is a function from S1 to S2.
f : S1 →fin S2 means that f is a finite function from S1 to S2, that is, there
is a finite subset S′

1 of S1 and f : S′
1 → S2. Dom(f) denotes the domain of the

function f . We use ∅ and p(S) to denote the empty set and the powerset of the
set S respectively. For a function f : A → B and a subset C ⊆ A, the function
f |C : C → B is defined by f |C(x) = f(x) for x ∈ C.

A function f : p(S)→ p(S) is called monotone if f(X) ⊆ f(Y ) for all X ⊆ Y .
It is well-known that a monotone function has its least fixed point. The least
fixed point of f is denoted by lfp(f).

A store is defined as a function from Vars→ N , and denoted by s. A heap is
defined as a finite function from Locs→fin N , and denoted by h. We will write
Heaps for the set of heaps. A value is a natural number. An address is a positive
natural number. The null pointer is 0. A store assigns a value to each variable.
A heap assigns a value to an address in its finite domain.

The store s[x1 := n1, . . . , xk := nk] is defined by s′ such that s′(xi) = ni and
s′(y) = s(y) for y 
∈ {x1, . . . , xk}. The heap h[m1 := n1, . . . ,mk := nk] is defined
by h′ such that h′(mi) = ni and h′(y) = h(y) for y ∈ Dom(h) − {m1, . . . ,mk}.
The store s[x1 := n1, . . . , xk := nk] is the same as s except values for the
variables x1, . . . , xn. The heap h[m1 := n1, . . . ,mk := nk] is the same as h
except the contents of the memory cells at the addresses m1, . . . ,mk. We will
sometimes write ∅ for the empty heap whose domain is empty.

We will write h = h1 + h2 when Dom(h) = Dom(h1) ∪Dom(h2), Dom(h1) ∩
Dom(h2) = ∅, h(x) = h1(x) for x ∈ Dom(h1), and h(x) = h2(x) for x ∈
Dom(h2). The heap h is divided into the two disjoint heaps h1 and h2 when
h = h1 + h2.

A state is defined as (s, h). The set States is defined as the set of states. The
state for pointer program is specified by the store and the heap, since pointer
programs manipulate memory heaps as well as variable assignments.
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Definition 3.1. We define the semantics of our programming language.
We define the semantics [[e]]s of our expressions e and the semantics [[A]]s of

our boolean expressionsA under the variable assignment s by the standard model
of natural numbers and [[null]] = 0. For example, [[e]]s is defined by induction on
e by [[x]]s = s(x), [[0]]s = 0, [[1]]s = 1, [[null]]s = 0, [[e1 + e2]]s = [[e1]]s + [[e2]]s,
and so on. [[A]]s is defined in a similar way.

For a program P , its meaning [[P ]] is defined as a function from States∪{abort}
to p(States ∪ {abort}). We will define [[P ]](r1) as the set of all the possible
resulting states after the execution of P with the initial state r1 terminates. In
particular, if the execution of P with the initial state r1 does not terminate, we
will define [[P ]](r1) as the empty set, since there are no possible resulting states
in this case. Our semantics is nondeterministic since the cons statement may
choose a fresh cell address and we do not allow renaming of memory addresses.
[[P ]] is defined by induction on P as follows:

[[P ]](abort) = {abort},
[[x := e]]((s, h)) = {(s[x := [[e]]s], h)},
[[if (b) then (P1) else (P2)]]((s, h)) = [[P1]]((s, h)) if [[b]]s = true,

[[P2]]((s, h)) otherwise,
[[while (b) do (P )]]((s, h)) = {(s, h)} if [[b]]s = false,⋃

{[[while (b) do (P )]](r) | r ∈ [[P ]]((s, h))} otherwise,
[[P1;P2]]((s, h)) =

⋃
{[[P2]](r) | r ∈ [[P1]]((s, h))},

[[x := cons(e1, e2)]]((s, h)) = {(s[x := n], h[n := [[e1]]s, n+ 1 := [[e2]]s])|
n > 0, n, n+ 1 
∈ Dom(h)},

[[x := [e]]]((s, h)) = {(s[x := h([[e]]s)], h)} if [[e]]s ∈ Dom(h),
{abort} otherwise,

[[[e1] := e2]]((s, h)) = {(s, h[[[e1]]s := [[e2]]s])} if [[e1]]s ∈ Dom(h),
{abort} otherwise,

[[dispose(e)]]((s, h)) = {(s, h|Dom(h)−{[[e]]s})} if [[e]]s ∈ Dom(h),

{abort} otherwise.

Definition 3.2. We define the semantics of the assertion language. For an as-
sertion A and a state (s, h), the meaning [[A]](s,h) is defined as true or false.
[[A]](s,h) is the truth value of A at the state (s, h).

A predicate variable assignment σ is a function that maps a predicate vari-
able X with arity n to a subset of Nn × Heaps. Since an open formula A may
contain free predicate variables, in order to give the meaning of A, we will use a
predicate variable assignment for the meaning of free predicate variables in A.
The predicate variable assignment σ[X1 := S1, . . . , Xn := Sn] is defined by σ′

such that σ′(Xi) = Si and σ′(Y ) = σ(Y ) for Y 
∈ {X1, . . . , Xn}. We will some-
times write ∅ for the constant predicate variable assignment such that ∅(X) is
the empty set for all X .

In order to define [[A]](s,h) for a formula, we first define [[A]]σ(s,h) for an open
formula by induction on A as follows:



Completeness of Separation Logic with Inductive Definitions 27

[[emp]]σ(s,h) = true if Dom(h) = ∅,
[[e1 = e2]]

σ
(s,h) = ([[e1]]s = [[e2]]s),

[[e1 < e2]]
σ
(s,h) = ([[e1]]s < [[e2]]s),

[[e1 �→ e2]]
σ
(s,h) = true if Dom(h) = {[[e1]]s}, h([[e1]]s) = [[e2]]s,

[[X(
−→
t )]]σ(s,h) = true if ([[

−→
t ]]s, h) ∈ σ(X),

[[¬A]]σ(s,h) = (not [[A]]σ(s,h)),

[[A ∧B]]σ(s,h) = ([[A]]σ(s,h) and [[B]]σ(s,h)),

[[A ∨B]](s,h)σ = ([[A]]σ(s,h) or [[B]]σ(s,h)),

[[A→B]]σ(s,h) = ([[A]]σ(s,h) implies [[B]]σ(s,h)),

[[∀xA]]σ(s,h) = true if [[A]]σ(s[x:=n],h) = true for all n ∈ N,

[[∃xA]]σ(s,h) = true if [[A]]σ(s[x:=n],h) = true for some n ∈ N,

[[A ∗B]]σ(s,h) = true if h = h1 + h2,

[[A]]σ(s,h1)
= [[B]]σ(s,h2)

= true for some h1, h2,

[[A—∗B]]σ(s,h) = true if h2 = h1 + h and

[[A]]σ(s,h1)
= true imply [[B]]σ(s,h2)

= true for all h1, h2,

[[(μX.λ−→x .A)(
−→
t )]]σ(s,h) = true if ([[

−→
t ]]s, h) ∈ lfp(F ) where

n is the length of −→x ,
F : p(Nn ×Heaps)→ p(Nn ×Heaps),

F (S) = {(−→l , h) | [[A]]σ[X:=S]

(s[−→x :=
−→
l ],h)

= true}.

We define [[A]](s,h) for a formula A as [[A]]∅(s,h). We say A is true when [[A]](s,h) =

true for all (s, h).

Note that in the definition of [[(μX.λ−→x .A)(
−→
t )]]σ(s,h), since X appears only

positively in A, F is a monotone function and there is the least fixed point of F .
Since the inductively defined predicates are interpreted by the least fixed

points, we have the following lemma. We use A[X := λ−→x .C] to denote the
formula obtained from A by replacing X(

−→
t ) by C[−→x :=

−→
t ].

Lemma 3.3. Let μ be μX.λ−→x .A.
(1) A[X := μ]↔ μ(−→x ) is true.
(2) ∀−→x (A[X := λ−→x .C]→ C)→∀−→x (μ(−→x )→ C) is true for any formula C.

They are proved by using the definition of semantics.
The claim (1) means the folding and the unfolding of inductive definitions.

The claim (2) means the inductively defined predicate is the least among C
satisfying ∀−→x (A[X := λ−→x .C]→ C).

Definition 3.4. For an asserted program {A}P{B} with assertions A and B,
its meaning is defined as true or false. {A}P{B} is defined to be true if the
following hold.

(1) for all (s, h), if [[A]](s,h) = true, then [[P ]]((s, h)) 
� abort.
(2) for all (s, h) and (s′, h′), if [[A]](s,h) = true and [[P ]]((s, h)) � (s′, h′), then

[[B]]((s′, h′)) = true.
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{A}P{B} means abort-free partial correctness. It implies partial correctness
in the standard sense. It also implies that the execution of the program P with
the initial state that satisfies A never aborts, that is, P does not access to any
unallocated addresses during the execution.

Examples. (1) {0 = 1}dispose(1); [1] := 0{0 = 1} is true. Because there is no
initial state that satisfies 0 = 1.

(2) {emp}[1] := 0{0 = 0} is false. Because the abort occurs at [1] := 0.
(3) {emp}while (0 = 0) do (x := 0); [1] := 0{0 = 1} is true. Because we do

not reach [1] := 0 because of the infinite loop, and the abort does not occur.

4 Logical System

This section defines our logical system. It is an extension of Reynolds’ sys-
tem presented in [17] so that our assertion language is extended with inductive
definitions.

We will write the formula e �→ e1, e2 to denote (e �→ e1) ∗ (e+ 1 �→ e2).

Definition 4.1. Our logical system is defined by the following inference rules.

{A[x := e]}x := e{A} (assignment)

{A ∧ b}P1{B} {A ∧ ¬b}P2{B}
{A}if (b) then (P1) else (P2){B}

(if)

{A ∧ b}P{A}
{A}while (b) do (P ){A ∧ ¬b} (while)

{A}P1{C} {C}P2{B}
{A}P1;P2{B}

(comp)

{A1}P{B1}
{A}P{B} (conseq)

(A→ A1 true, B1→ B true)

{∀x′((x′ → e1, e2) —∗ A[x := x′])}x := cons(e1, e2){A} (cons)
(x′ 	∈ FV(e1, e2, A))

{∃x′(e �→ x′ ∗ (e �→ x′ —∗A[x := x′]))}x := [e]{A} (lookup)
(x′ 
∈ FV(e, A))

{(∃x(e1 �→ x)) ∗ (e1 �→ e2 —∗A)}[e1] := e2{A}
(mutation)

(x 
∈ FV(e1))

{(∃x(e �→ x)) ∗A}dispose(e){A} (dispose)
(x 
∈ FV(e))

We say {A}P{B} is provable and we write � {A}P{B}, when {A}P{B} can
be derived by these inference rules.

Note that in the side condition (A→A1 true, B1→B true) of the rule (conseq),
the truth means one in the standard model of natural numbers and inductive
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definitions. Theoretically there are several interesting choices for the truth of this
side condition [1]. Since we are interested in whether a given implementation of
this logical system is indeed powerful enough in a real world, we choose the truth
of the standard model. Hence the completeness of our system means complete-
ness relative to all true formulas in the standard model of natural numbers and
inductive definitions.

5 Soundness and Completeness Theorems

Our main results are the completeness theorem and the expressiveness theorem
stated in this section. We will also show the soundness theorem. The soundness
theorem is proved in a similar way to [17] and [19]. The completeness theorem is
proved in a similar way to [19] if we have the expressiveness theorem. A proof of
the completeness theorem requires the expressiveness theorem. Since our asser-
tion language is extended with inductive definitions, the expressiveness theorem
for our assertion language is really new. For this reason, the completeness result
is also new. We will give only proof sketches of the soundness theorem and the
completeness theorem.

Theorem 5.1 (Soundness). If {A}P{B} is provable, then {A}P{B} is true.

The soundness theorem is proved by induction on the given proof of {A}P{B}.
Intuitively, we will show each inference rule preserves the truth.

Definition 5.2. For a program P and an assertion A, the weakest pre-
condition for P and A under the standard model is defined as the set
{(s, h)|∀r([[P ]]((s, h)) � r→ r 
= abort ∧ [[A]]r = true)}.

Our proof of the completeness theorem will use the next expressiveness theo-
rem, which will be proved in the next section.

Theorem 5.3 (Expressiveness). For every program P and assertion A, there
is a formula W such that [[W ]](s,h) = true if and only if (s, h) is in the weakest
precondition defined in Definition 5.2 for P and A under the standard model.

Theorem 5.4 (Completeness). If {A}P{B} is true, then {A}P{B} is
provable.

This theorem says that a given asserted program {A}P{B} is true (defined
in Section 3), then this is provable (defined in Section 4). Note that it is relative
completeness in the sense that our logical system assumes all true formulas in
the standard model of natural numbers and inductive definitions. This is the
best possible completeness for pointer program verification for a similar reason
to that for while program verification discussed in [6].

We sketch the proof. The completeness theorem is proved by induction on
the program P . The goal is showing a given true asserted program is provable.
Intuitively, we will reduce this goal to subgoals for smaller pieces of the given
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program that state true asserted subprograms of the given program are provable.
If we show that for each program construction a true asserted program is provable
by using the assumption that all the asserted subprograms are provable, we can
say any given true asserted program is provable.

We discuss the rule (comp). Suppose {A}P1;P2{B} is true. We have to con-
struct a proof of {A}P1;P2{B}. In order to do that, we have to find some asser-
tion C such that {A}P1{C} is true and {C}P2{B} is true. If we find the assertion
C, since P1 and P2 are smaller pieces of the given program P1;P2, we can sup-
pose {A}P1{C} and {C}P2{B} are both provable, and by the rule (comp), we
have a proof of {A}P1;P2{B}. In order to find the assertion C, we will use the
expressiveness given by Theorem 5.3, to take the weakest precondition for P2

and B as the assertion C.

6 Proof Sketch of Expressiveness Theorem

This section gives a sketch of proofs of the expressiveness theorem (Theorem
5.3). We extend the expressiveness proof given in [19] to inductive definitions.
We assume the readers of this section have knowledge of [19] and [20].

In order to show the expressiveness theorem, we have to construct a formula
that expresses the weakest precondition for given a program P and a formula
A. We will follow the technique used in [19] and [20]. The main technique is
to translate separation logic into ordinary first-order logic by coding a heap by
a natural number and simulating a separation-logic formula by a pure formula
produced by its translation. First we translate a separation-logic formula A into
a pure formula HEvalA(m) such that A is true at the current heap h if and
only if HEvalA(m) is true where m is a natural number that represents the
current heap h. We say m is a code of h. Secondly we give a pointer program
P a semantics ExecP ((n1,m1), (n2,m2)) that manipulates the code of the cur-
rent heap instead of the current heap itself. We will define the pure formula
ExecP ((n1,m1), (n2,m2)) such that when the current heap is represented by
m1, if we execute P , then the current heap is changed into some heap repre-
sented by m2. Finally the weakest precondition for P and A is described by a
formula WP,A that transforms the current heap into its heap code m1, requires
ExecP ((n1,m1), (n2,m2)) for executing P , and requires HEvalA(m2) for enforc-
ing A at the resulting heap m2. This formula WP,A proves our expressiveness
theorem.

Since our assertions include inductive definitions, it is non-trivial to make
this technique work for our system. In particular, the main challenge is to define
a translation scheme HEvalA for assertions of form A that contain inductive
definitions. This section shows it is actually possible. Similar problems occurred
in type theory and realizability interpretations. An extension of type theory to
inductive definitions was solved in [7] and [15], and an extension of realizability
interpretations to inductive definitions was solved in [18]. Their ideas were to
use another inductive definition for translating a given inductive definition. Our
solution will be similar to these ideas.
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We will define a heapcode translation HEvalA(m) of an assertion A such
that HEvalA(m) is a pure formula for expressing the meaning of A at the heap
coded by m. The main question is how to define HEvalA(m) for inductively
defined predicates. To answer this question, we will show that we can define
HEval

(μX.λ−→x .A)(
−→
t )

(m) as (μX̃.λ−→x y.HEvalA(y) ∧ IsHeap(y))(
−→
t ,m) by using

another inductively defined predicate μX̃.λ−→x y.HEvalA(y) ∧ IsHeap(y), and we
will also show that this satisfies a desired property (Lemma 6.8).

Semantics for Pure Formulas

When we simulate an inductively defined separation-logic formula by some in-
ductively defined pure formula, in order to avoid complications, we introduce the
semantics of pure formulas, which does not depend on a heap. This semantics
has the same meaning as our semantics defined in Section 3, and is a stan-
dard semantics for pure formulas with inductive definitions, for example, given
in [18,16].

Definition 6.1. For a store s, and a pure formula A, according to the standard
interpretation of a first-order language with inductive definitions, the meaning
[[A]]s is defined as true or false. [[A]]s is the truth value of A under the store s.

A pure predicate variable assignment σ is a function that maps a predicate
variable of arity n to a subset of Nn. The pure predicate variable assignment
σ[X1 := S1, . . . , Xn := Sn] and the pure constant predicate variable assignment
∅ are defined in a similar way to Section 3.

In order to define [[A]]s for a pure formula A, we first define [[A]]σs for a pure
open formula A as follows. We give only interesting cases.

[[X(
−→
t )]]σs = true if [[

−→
t ]]s ∈ σ(X),

[[(μX.λ−→x .A)(
−→
t )]]σs = true if [[

−→
t ]]s ∈ lfp(F ) where n is the length of −→x ,

F : p(Nn)→ p(Nn),

F (S) = {−→l | [[A]]σ[X:=S]

s[−→x :=
−→
l ]

= true}.

We define [[A]]s for a pure formula A as [[A]]∅s.

In order to show [[A]]s = [[A]](s,h) for a pure formula A, we need some
preparation.

For a pure predicate variable assignment σ, we define a predicate variable
assignment σ × Heaps by (σ × Heaps)(X) = σ(X) × Heaps. For a subset S of
Nn×Heaps, we call the subset S H-independent when S = S′×Heaps for some
subset S′ of Nn. For a predicate variable assignment σ, we call the predicate
variable assignment σ H-independent when σ(X) is H-independent for all X .

Lemma 6.2. Suppose A is pure.
(1) {(s, h) | [[A]]σ(s,h) = true} is H-independent if σ is H-independent.

(2) [[A]]σs = [[A]]
σ×Heaps
(s,h) for all heaps h.

Lemma 6.3. For a pure formula A, we have [[A]]s = [[A]](s,h) for any h.

Proof. By letting σ = ∅ in Lemma 6.2 (2). �
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Heapcode Translation

We define a heapcode translation of an assertion A that is a pure formula and
describes the meaning of A in terms of the heap code. This is based on the same
idea in [19]. Our key idea is to find that it is possible to define HEvalA(x) for an
inductively defined predicate A by using another inductively defined predicate.

Definition 6.4. We define the pure open formula HEvalA(x) for the open for-
mula A by induction on A. We give only interesting cases.

HEval
X(
−→
t )

(m) = X̃(
−→
t ,m),

HEval
(μX.λ−→x .A)(

−→
t )

(m) = (μX̃.λ−→x y.HEvalA(y) ∧ IsHeap(y))(
−→
t ,m).

For a formula A, HEvalA(m) means [[A]](s,h) = true where s is the current store
and m represents the heap h. That is, we have [[HEvalA(m)]]s = [[A]](s,h) if m
represents the heap h. This will be formally stated in Lemma 6.8.

Note that in the definition of HEval
(μX.λ−→x .A)(

−→
t )

(m), since X appears

only positively in A, X̃ appears only positively in HEvalA(y). We have
FPV(HEvalA(m)) = {X̃|X ∈ FPV(A)}. In particular, when (μX.λ−→x .A)(

−→
t )

is a formula, (μX̃.λ−→x y.HEvalA(y) ∧ IsHeap(y))(
−→
t ,m) is also a formula.

Definition 6.5. We define the pure formula EvalA,−→x (n,m) for the assertion A.

We suppose −→x includes FV(A).

EvalA,−→x (n,m) = IsHeap(m) ∧ ∃−→x (Store−→x (n) ∧ HEvalA(m)).

For a formula A, EvalA,−→x (n,m) means [[A]](s,h) = true where n represents the
store s and m represents the heap h.

Key Lemma

To utilize the heapcode translation defined just above, we need the key lemma
that states that the semantics of a separation-logic formula equals the semantics
of the corresponding pure formula obtained by the translation even if our system
includes inductive definitions.

We define ( )∗ for transforming semantics for heaps between that for heap
codes.

Definition 6.6. We use Heapcode(m,h) to mean the number m is the code
that represents the heap h. For S ⊆ Nn ×Heaps, we define

S∗ = {(−→l ,m) | (−→l , h) ∈ S,Heapcode(m,h)},

For a predicate assignment σ, we define σ∗ by σ∗(X̃) = σ(X)∗.

The role of S∗ is to give the semantics of the corresponding pure formula when
S gives the semantics of a separation-logic formula.

In order to prove Lemma 6.8, we need the following key lemma, which is a
generalization of Lemma 6.8 for open formulas.
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Lemma 6.7 (Key Lemma). Suppose A is an open formula and y 
∈ FV(A).
We have ∀mh(Heapcode(m,h)→ [[HEvalA(y)]]

σ∗
s[y:=m] = [[A]]σ(s,h)).

The next lemma shows that the pure formula HEvalA(m) actually has the
meaning we explained above.

Lemma 6.8. Suppose A is a formula. We have Heapcode(m,h) →
[[HEvalA(m)]]s = [[A]](s,h).

Proof. By letting σ = ∅ in Lemma 6.7. �

Once HEvalA is defined and Lemma 6.8 is shown, we can construct the for-
mula required in the expressiveness theorem in a similar way to [19]. Note that
EvalA,−→x below is extended to inductive definitions. We will use Pair2(k, n,m) to

mean that k represents the state (s, h) when n represents s and m represents h.

Definition 6.9. We define the formula WP,A(−→x ) for the program P and the
assertion A. We fix some sequence −→x of the variables in FV(P,A).

WP,A(−→x ) = ∀xyzw(Store−→x (x) ∧ Heap(y) ∧ Pair2(z, x, y) ∧ ExecP,−→x (z, w)

→w > 0 ∧ ∃y1z1(Pair2(w, y1, z1) ∧ EvalA,−→x (y1, z1))).

WP,A(−→x ) means the weakest precondition for P and A. That is, WP,A(−→x ) gives
the weakest assertion W such that {W}P{A} is true. Note that all the free
variables in WP,A(−→x ) are −→x and they appear only in Store−→x (x). This formula
is the formula that describes the weakest precondition, and by this formula we
can prove the expressiveness theorem (Theorem 5.3).

7 Conclusion

We have shown the completeness theorem of the pointer while program verifica-
tion system which is an extension of Reynolds’ separation logic with inductive
definitions. For this purpose, we have also proved the expressiveness theorem
of Peano arithmetic, the separation logic, and inductive definitions for pointer
while programs under the standard model.

Future work would be to find a assertion language with inductive definitions
that would be more suitable for automated deduction. For example, it would
be interesting to find what syntactical condition guarantees that the claim (1)
derives the claim (2) in Lemma 3.3. It would be also interesting to find a decidable
fragment of a logical system with inductive definitions.

Another future work would be proving completeness results of various ex-
tensions of our system such as recursive procedure calls with call-by-name pa-
rameters and global variables, which have been intensively analyzed for while
programs by several papers [1,8,10].



34 M. Tatsuta and W.-N. Chin

References

1. Apt, K.R.: Ten Years of Hoare’s Logic: A Survey — Part I. ACM Transactions on
Programming Languages and Systems 3(4), 431–483 (1981)

2. Berdine, J.,Calcagno,C.,O’Hearn,P.W.: SymbolicExecutionwithSeparationLogic.
In:Yi,K. (ed.) APLAS2005. LNCS, vol. 3780, pp. 52–68. Springer, Heidelberg (2005)

3. Bergstra, J.A., Tucker, J.V.: Expressiveness and the Completeness of Hoare’s Logic.
Journal Computer and System Sciences 25(3), 267–284 (1982)

4. Brotherston, J.: Formalised Inductive Reasoning in the Logic of Bunched Implica-
tions. In: Riis Nielson, H., Filé, G. (eds.) SAS 2007. LNCS, vol. 4634, pp. 87–103.
Springer, Heidelberg (2007)

5. Brotherston, J., Villard, J.: Parametric Completeness for Separation Theories. In:
Proceedings of POPL 2014, pp. 453–464 (2014)

6. Cook, S.A.: Soundness and completeness of an axiom system for program verifica-
tion. SIAM Journal on Computing 7(1), 70–90 (1978)

7. Coquand, T., Paulin, C.: Inductively Defined Types. In: Martin-Löf, P., Mints, G.
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Abstract. We describe the motivations, technical problems and solu-
tions behind the implementation of BeeDeeDee, a new thread-safe Java
library for Binary Decision Diagrams (BDDs) manipulation. BeeDeeDee
allows clients to share a single factory of BDDs, in real parallelism, and
reduce the memory footprint of their overall execution, at a very low
synchronization cost. We prove through experiments on multi-core com-
puters that BeeDeeDee is an effective thread-safe library for BDD ma-
nipulation. As test cases, we consider multiple instances of the n-queens
problem, the construction of circuits and the parallel execution of infor-
mation flow static analyses of Java programs, for distinct properties of
variables. For sequential-only executions, BeeDeeDee is faster than other
non-thread-safe Java libraries and as fast as non-thread-safe C libraries.

Keywords: Manipulation of Boolean functions, Binary Decision Dia-
grams, Java multithreading.

1 Introduction

Binary Decision Diagrams [14] (from now on BDDs) are a well-known data
structure for the efficient representation of Boolean functions. Their first success
story is their application for symbolic model checking [16]. They have been sub-
sequently applied to static analysis: groundness analysis of logic programs [11],
aliasing analysis of Java [18], cyclicity analysis of Java [20] and information flow
analysis of Java bytecode [17]. This is because variables in Boolean functions
can be very naturally seen as properties of program states or program variables,
while implications between them can be seen as constraints between those prop-
erties. For instance, a Boolean function might express the fact that groundness
of a variable might imply groundness of another; or that aliasing between a pair
of variables might entail aliasing between other pairs; or that whenever a piece
of information flows into a variable it might flow into other variables as well.

BDDs are one of many possible representations for Boolean functions. Their
success is related to their compactness and efficiency. The key idea underlying
their definition is to represent a Boolean function as a directed acyclic graph,
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where each non-terminal node corresponds to the evaluation of a variable and
has two outgoing edges, leading to graphs which represent the function with
the variable value fixed to 1 (true) or 0 (false), respectively; terminal nodes are
labeled 0 or 1 and correspond to the evaluation of the function once all vari-
ables has been assigned a value [14,15]. The order of variable evaluation can be
fixed, and redundant nodes can be removed, leading to a canonical BDD, that
is, a minimal representation for a class of equivalent functions. So, equivalence
of functions can be tested by checking the structural identity of their BDD rep-
resentations. Moreover, this accounts for a significant reduction in the memory
space needed to hold a BDD. Furthermore, a clever implementation might allow
distinct BDDs to share identical subgraphs.

There exist special purpose BDDs. For instance, Algebraic Decision Diagrams
(ADDs) [12] can have other terminal nodes than 0 and 1. They can efficiently
represent matrices and weighted directed graphs, by encoding their characteristic
functions. Zero-suppressed Binary Decision Diagrams (ZDDs) [19] consider as
redundant and remove the nodes whose positive edge points to terminal node 0.
They are overall larger than BDDs in size, but they become very compact when
dealing with functions that are almost everywhere 0.

C libraries, such as BuDDy [2], CUDD [4] and CAL [3], that represent and ma-
nipulate BDDs, may be used in Java via the Java Native Interface. They merely
feature an API that is poorly adapted to an object-oriented language and they
are not cross-platform since they must be recompiled on each platform. Java
libraries, such as JavaBDD [7], JDD [8] and SableJBDD [10], are built around
a common architecture, where BDDs are compactly stored in an array of inte-
gers: each integer stands for a logically distinct BDD. This array is manipulated
through a centralized controller, called factory, that uses a unique table of nodes.
Furthermore, caching is typically used to avoid re-computations

JavaBDD seems to be the current choice of the Java world and it offers in-
terfaces to the native libraries BuDDy, CAL and CUDD, as well as to JDD. It
includes a unique table implementation directly translated in Java from BuDDy.
JDD performs well with problems that only involve simple Boolean operations,
such as the n-queens problem, but performs rather badly in case of variable
replacement or quantification. Moreover, for replace, exist and forall opera-
tions, it exhibits unusual behaviors, such as exiting the JVM instead of throwing
exceptions. Consequently, it may not be suitable to production environments.
SableJBDD is in a very early stage of development and currently exhibits low
performance and very high memory consumption.

Among C libraries, CUDD can manipulate both ADDs and ZDDs. Among
Java libraries, only JDD can manipulate ZDDs.

2 Our Motivation: Parallel Information Flow Analyses

The present work was sparked from a concrete problem. We were implementing
many flavors of information flow analysis for Java bytecode inside our Julia static
analyzer [9], by using a common framework derived from [17] and based on a
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translation of the program into Boolean functions.1 Each flavor was targeted at
determining where and how some specific kind of information might flow inside
a Java program. These kinds of information were inspired from the Top 25 Most
Dangerous Software Errors [1]: among them, one finds well-known issues such as
user-provided servlet parameters flowing into SQL commands (SQL-injection)
or into OS commands (command-injection); hard-coded credentials flowing into
user-visible output; internal data flowing into implementation revealing output.

These distinct analyses do share a lot: namely, most program statements
just transfer information from variables to variables and their abstraction into
Boolean functions is identical for all flavors of information flow analysis; only a
few statements have different abstraction for distinct information flow flavors.
Our first implementation was based on JavaBDD. Each information flow analy-
sis was independent from the others, that is, it was run in isolation and did not
share any data structure with the others. The result was perfectly working and
we could also run more analyses in parallel, in distinct threads, as long as each
thread allocated its own unique table of BDDs and caches. But we immediately
hit the limit of this approach as soon as we tried to analyze, in parallel, the full
codebase of Hadoop Common [5], a Java implementation of a big data engine.
While the computational cost in time was still acceptable, the memory footprint
of the parallel analyses exploded and we had to rely on their sequential rather
than parallel execution, which however takes many hours rather than minutes.

In order to reduce the memory footprint of the parallel analyses, we tried to
use a single BDD unique table, shared among all threads. But this turned up
to be impossible with JavaBDD. In fact, JavaBDD is not a thread-safe library,
in the sense that by sharing the unique table among threads one just gets a
runtime exception. This problem was present also with native C libraries. We
realized that we needed a new library for BDD manipulation, with a thread-
safe implementation. Our first version of that library was however deceiving: we
built it so that all operations on the unique table were mutually exclusive, which
made it thread-safe; however, any parallel execution was in reality completely
sequential, since one thread at most could access the unique table, at a time.
We understood that we had to allow more threads to use the unique table at
the same time and synchronize them as rarely as possible. How this could be
achieved was far from obvious and is the topic of this article.

3 The Features of Our Library

We assume the Java memory model: the runtime may introduce execution opti-
mizations as long as the result of a thread in isolation is guaranteed to be exactly
the same as it would have been if all the statements been executed in program
order. This semantics does not prevent different threads from having different
views of the data, but actions that imply communication between threads, such

1 These information flow analyses are not the topic of this article and we describe
them as far as it is needed for understanding our work on BDDs.
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Fig. 1. An ordered read-once branching program with order x1 < x2 < x3 for the
Boolean formula ¬( x1 ∧ x2 ∧ x3 ) ∨ (x1 ∧ x2 ) ∨ ( x2 ∧ x3 )

as the acquisition or release of a lock, ensure that actions that happen prior to
them are seen by other threads.

Let us clearly state the features of our efficient thread-safe library for BDD
manipulation in Java. By thread-safe we mean that clients can run in parallel
and safely share a BDD unique table and all the needed caches. By efficient
we mean that clients do not pay a high synchronization cost for that and are
consequently blocked for a low percentage of their overall execution time.

Our library is not multithreaded, in the sense that it does not use multi-
threading itself: BDDs are manipulated exclusively via sequential algorithms. It
does use multithreading just for parallel resizing and garbage-collection, but this
is a secondary aspect that does not account very much for its efficiency.

As a matter of fact, ideal parallelism is rarely achievable, since there is gen-
erally some synchronization cost to pay for. As a consequence, the parallel ex-
ecution of many instances of the same task will cost, in general, slightly more
than the execution of a single instance, also when enough execution cores are
available. A concrete example is shown at the end of this article (see Figure 6).

4 Boolean Formulas and BDDs

Boolean formulas are generated by the grammar f ::= x | 0 | 1 | ¬f | f ∧ f |
f ∨ f | f ⇒ f | f ⇔ f , where x ranges over a given set of Boolean variables, 0
means false and 1 means true. The set of truth values is denoted as B = {0, 1}. An
assignment π binds each Boolean variable x to a truth value π(x) and allows one
to evaluate a Boolean formula f into a truth value π(f), computed by replacing
each Boolean variable in f with its value as provided by π and by applying the
usual truth tables for the logical operators. If we fix an ordering on the Boolean
variables, we can view f as defining a Boolean function from Bn to B where n is
the number of variables in f . Two Boolean functions are equal if they yield the
same truth value for all assignments.
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Fig. 2. Types of redundancy in an ordered read-once branching program

Fig. 3. BDD for ¬( x1 ∧ x2 ∧ x3 ) ∨ ( x1 ∧ x2 ) ∨ ( x2 ∧ x3 ) with x1 < x2 < x3

We can represent a Boolean function f as a rooted, directed, acyclic graph,
consisting of decision nodes and terminal nodes. Each decision node v is labeled
with a Boolean variable x and has two children called low(v) and high(v). The
edge from v to low(v) (or high(v)) represents an assignment of x to 0 (respec-
tively, 1). Terminal nodes can be either a 0-terminal or a 1-terminal. Each truth
assignment π stands for a path from the root to a terminal node, the latter being
π(f)-terminal. Each variable can be evaluated at most once in a path. Such a
graph is called a read-once branching program. Moreover, it is called ordered if
the variables on a path from the root to a terminal node are ordered according to
a fixed total order, as in Figure 1. These graphs can be simplified by applying the
following rules (see Figure 2): merge any isomorphic subgraphs (merging rule)
and remove any node whose children are isomorphic (elimination rule). This
leads to reduced ordered read-once branching programs, also known as Binary
Decision Diagrams or BDDs (Figure 3).

Any Boolean function has a unique BDD representation [14], up to isomor-
phism; i.e., BDDs are a canonical representation of Boolean functions, where the
equivalence test of functions becomes an isomorphism check on acyclic graphs.
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Function MK(v,l,h)

input : A variable v and two nodes l and h
output: A node with label v, low child l and high child h

1 if l = h then
2 return l;

3 if the unique table does not contain a node n = (v, l, h) then
4 add node n = (v, l, h) to the unique table;

5 return n.

5 Architecture of a BDD Library

The first efficient BDD package of [13] has been the inspiration for subsequent
packages. The idea is to implement a BDD node as a data structure with, at
least, a variable index and two node references to low and high children.

As we anticipated, every BDD package keeps a unique table of nodes, which
contains all the already created BDDs and is used as a cache, so that isomorphic
BDDs are never recreated. This allows the achievement of strong canonicity: not
only are two equivalent functions represented by isomorphic graphs, but they
are actually the same graph in memory. Therefore BDD equivalence testing
boils down to constant-time equality checking of pointers. The unique table is
typically an array of integral values: each node is represented as a triple (v, l, h),
where v is the corresponding variable, l is the position of the low child and h is
the position of the high child inside the same array.

To retrieve already created nodes from the unique table, it is convenient to
organize it as a hash table, so that the array also contains, for each node, the
position of the next node inside the same bucket, if any.

In order to represent strongly canonical BDDs, a package defines two constants
and two functions. Constants ZERO and ONE stand for 0 and 1. Function MK
yields a node with a given variable as a label and with two given nodes as chil-
dren. Function APPLY implements a logical operation over BDDs and typically
uses a cache for efficiency, which is implemented as a hash table.

Lines 1–2 of MK implement elimination rule, while lines 3–4 implement merg-
ing rule. Thanks to the use of the unique table inside MK, function APPLY
keeps strong-canonicity, as it can be proved by induction. Since BDDs must be
ordered, variables are put in order in the result of APPLY. Time complexity is
O(|n1||n2|). In fact, if |n| denotes the number of nodes of a BDD rooted at n,
then the recursive calls in APPLY(op, n1, n2) are |n1||n2| at most (see [14]).

Caching is also used for non-propositional operations on BDDs such as restric-
tion (fixing the value of a variable) and variable replacement. In fact, variables
must be kept ordered subsequently to every variable replacement and reordering
requires a complete and expensive rearrangement of BDDs: this is why a cache
is used. Universal and existential quantification are reduced to restriction and
propositional operations.
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Function APPLY(op, n1, n2)

input : A logical operator op and two nodes n1 and n2

output: The result of the operation n1 op n2

1 if the result of (n1 op n2) is already cached then
2 return that result;

3 if n1, n2 are constants then
4 return op applied to n1 and n2;

5 if var(n1) = var(n2) then
6 result = MK(var(n1),
7 APPLY(op, low(n1), low(n2)), APPLY(op, high(n1), high(n2)) );

8 else if var(n1) < var(n2) then
9 result = MK( var(n1),

10 APPLY(op, low(n1), n2), APPLY(op, high(n1), n2) );

11 else
12 result = MK( var(n2),
13 APPLY(op, n1, low(n2))), APPLY(op, n1, high(n2)) );

14 cache result ;
15 return result ;

BDDs might be used for temporary operations and then become garbage,
alike all dynamically allocated data structures. However, the normal garbage
collector of Java is not in charge here: nodes are elements of an array of integers
(the unique table) and Java garbage collector deals with the array as a whole,
not with its single elements. It is hence necessary to implement a brand new
garbage collector for elements of the unique table array. This garbage collector
must run when that table is almost full, mark unreachable nodes and sweep
them away, by compacting and rehashing the surviving nodes. Any traditional
garbage collection technique may be used here. Garbage collection might be
expensive or might even invalidate the caches, hence it introduces a significant
overhead. When garbage collection fails to free a sufficient number of nodes, a
BDD package can only resize the unique table.

6 Our Thread-Safe Library BeeDeeDee

The fact that a BDD library must be highly optimized, thus requiring a unique
node table and caches, becomes a problem with multithreading: the unique table
and all caches are shared among clients and are hence the perfect candidates for
race conditions. This section shows how we overcome that problem. Avoiding
race conditions was not the only requirement: we also needed to synchronize
clients as little as possible, since otherwise performance would have been badly
affected. We mainly applied two techniques to prevent performance degradation:

Optimistic behaviors: some operations can be performed as if a client were
the only thread using the library, hence without synchronization. If this
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strategy fails, we synchronize and perform the access again. Statistically,
most accesses won’t require synchronization.

Split locks: distinct locks can be used for accessing distinct portions of a data
structure, in parallel. Hence, when two clients access different parts of the
unique table, or even different caches, one cannot block the other as it would
happen with a single lock on the whole data structure.

Below, we show the concrete application of these techniques.

6.1 Thread-Safe Unique Table

We organize the unique table as a hash table with the following hashing function:

hash(v, l, h, size) = (l + h · 2�log2(l)	) mod size

where (v, l, h) represents the node, as described in Section 5, and size is the table
size (i.e., the length of the array that holds the table). This hash function well
distributes nodes over the hash table, as we have verified through profiling.

Once a client needs a node n = (v, l, h) from the unique table, it must look
for n in the table. When n is missing in the table, the client must allocate it.
This, in turn, might trigger a table resize operation. Here is our code for node
look-up with a possible node allocation:

1 int get(int v, int l, int h) {

2 do {

3 Object myLock;

4 int size = this.size;

5 int i = hash(v, l, h, size);

6 int result = getOptimistic(v, l, h, i);

7 if (result >= 0)

8 return result;

9

10 synchronized (myLock = getLocks[i % getLocks.length]) {

11 if (size == this.size || i == hash(v, l, h, this.size))

12 return expandTable(v, l, h, myLock, i);

13 }

14 } while (true);

15 }

Method getOptimistic scans the i-th bucket of the hash table for the node.
It can be run in real parallelism, without synchronization, with a resize oper-
ation and with other get operations which just read from the table. In partic-
ular, a resize operation just extends the table and modifies only the value of
this.size, not node positions. Thus, the hash code corresponding to n may
have been changed after the assignment at line 5 and the search performed by
getOptimistic could have scanned the wrong bucket without finding n, even
though the node appears in the table. This is harmless since, in that case, the
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value of result would be -1 and the occurrence of resizing would be verified
inside a synchronized block at line 11.

Function get returns the position of the node as soon as getOptimistic finds
it (lines 7–8). Otherwise, get synchronizes on the i-th bucket of the hash table
and expands it with a brand new node (lines 10–12). This task is accomplished
by expandTable which first scans the i-bucket of the table to ensure that n was
not concurrently added by another client and then adds the node only if n does
not appear in the table. The code for expandTable is omitted for simplicity.

Split locks are used for synchronization on an element of the array getLocks

instead of on the whole hash table. Distinct threads are still allowed to proceed
in real parallelism to the update of the hash table as long as they operate on
distinct buckets, modulo getLocks.length. The bigger getLocks, the smaller
becomes the risk of collision, but the bigger are memory requirements. Method
expandTable might trigger a resize operation if the unique table is full. When
multiple threads want to resize inside expandTable, only one manages to get a
resize lock, and the others wait on their myLock. The winning thread locks all
elements of getLocks, resizes the table and notifies all elements of getLocks.
Afterwards, all waiting threads can resume.

A tricky detail is the check at line 11. As we said, that check is essential
since a resize might have occurred between the first computation of i (line 5)
and the call to expandTable. Since the hash code depends on the size of the
table, the bucket to be modified might have been changed. If the hash code does
not match, the whole procedure starts again. In fact, the check at line 11 is
equivalent to i == hash(v, l, h, this.size), but the short-circuit operator
|| improves efficiency, since the hash function is expensive in elaboration time.

6.2 Thread-Safe Caches

Caches are used for APPLY and other expensive operations such as variable
renaming. They can be made thread-safe by synchronizing their accesses. Split
locks reduce the number of blocked threads and grant threads to access and
modify distinct portions of the cache, in real parallelism. For instance, function
APPLY uses a computation cache with a method get that allows a thread to
look up for the index, inside the unique table, of the node that holds the result
of the required operation in the case it has been already computed before and
never overwritten later. Cache is implemented as the array cache of integers,
which contains tuples (n1, op, n2, r), where n1 and n2 are operands, op is a logical
operator and r the result. The method get runs the following code:

1 int i = hash(n1, op, n2); // not the same of the unique table

2 if (cache[i] == n1 && cache[i + 1] == op && cache[i + 2] == n2)

3 synchronized (locks[i % locks.length]) {

4 return (cache[i] == n1

5 && cache[i + 1] == op

6 && cache[i + 2] == n2) ? cache[i + 3] : -1;

7 }
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Namely, it first hashes the triple that must be looked up in the cache and finds
at which index i of the cache it should be, if it ever exists there. Rather than
the whole array, it locks only a portion of the array that includes the i-th
element, by using the same split locks that are used when putting a value in
the cache (for simplicity, this code is not shown). Synchronization is mandatory
since the elements of the array might be modified by other threads while get

tries to read them. Finally, it accesses the triple starting at i and checks again
whether the result is stored there or not, this time inside the critical section
marked by the synchronized at line 3. The check at line 2 is semantically
useless but essential for efficiency: it allows us to abort when a (non-thread-safe)
access to the cache tells that the result is not in the cache. Since the check is
outside the synchronization, a race condition might induce us to think that the
result is not in the cache while it was actually there. In other terms, that check
avoids almost all useless synchronizations but might account for some extra cache
miss. Our experiments showed that avoiding useless synchronization is definitely
the direction to go since synchronization costs much more than a very unlikely
cache miss.

6.3 Synchronization with the Garbage Collector

It might well be possible to let the get method of Section 6.1 allocate as many
nodes as needed, inside expandTable. However, BDDs are used by clients and
eventually not needed anymore. When this is the case, clients can call the free
method of BDDs to request deallocation from memory.2 This means that, in the
unique table, the positions of the nodes reachable only from the root of the freed
BDDs become useless holes and can be eventually compacted away in order to
keep the size of the table small. To do that, we use a garbage collector.

Since it modifies the unique table, garbage collection cannot run while clients
are using the BDD library. That is, all operations on BDDs must be synchro-
nized with the garbage collector, as for instance the logical conjunction might
be implemented as:

1 public BDD and(BDD other) {

2 synchronized (uniqueTable.getGCLock()) {

3 return new BDD(APPLY(AND, this.root, other.root));

4 }

5 }

The getGCLock method, called at line 2, yields a lock used as a barrier to enter
the library; that object is acquired by the garbage collector as well, when it starts
running. That way, we achieve mutual exclusion between clients and garbage
collection. However, if we always returned the same object inside getGCLock,

2 The free method might be called automatically inside the finalize method of the
BDDs, to integrate our garbage collector of nodes with the standard garbage collector
of Java. This works but we have found that redefining the finalize method currently
interferes with the Just-in-Time Java compiler and makes the code much slower.
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we would obtain mutual exclusion with the garbage collection but two clients
would never be allowed to use the library in real parallelism, since only one of
them would pass the barrier (i.e., lock that object). To achieve real parallelism
among clients, we use split locks also inside getGCLock:

1 protected Object getGCLock() {

2 return gcLocks[nextGCLocks = (nextGCLocks + 1) % gcLocks.length];

3 }

Here, gcLocks is an array of objects used as locks and nextGCLocks is a circular
cursor over that array. Hence this method returns, in general, distinct objects for
distinct calls and, consequently, clients synchronize on different objects and are
allowed to access the library in real parallelism. The garbage collector must now
acquire a lock on all the elements of gcLocks in order to block all clients. Note
that the increment of nextGCLocksmight give rise to a race condition since it is
not synchronized, but this is not relevant since it would only introduce a small
degradation (two clients synchronizing on the same barrier and hence obliged
to run sequentially). This is much better than synchronizing the accesses to
nextGCLock, since introducing a synchronized statement at line 2 would have
a high cost and might block some client.

6.4 Parallel Resize and Garbage Collection

Resize and garbage collection of the unique node table might be expensive opera-
tions when the table is large. Resize rehashes the nodes and the hashing function
depends on the size of the table (Section 6.1); garbage collection scans the not
yet freed BDDs in order to collect all the nodes reachable from their root, which
must be kept in the table. Both are expensive operations. We have exploited the
parallelism allowed by modern multicore hardware by distributing those opera-
tions on distinct threads when the size of the table exceeds a given threshold.3

Parallel rehashing distributes the positions at different worker threads, so that
each worker rehashes a different portion of the table. Parallel garbage collection
does the same distribution for the not yet freed BDDs; each worker has in this
case its own bag of positions deemed reachable from the BDDs that it has al-
ready processed. That bag gets merged in a global bag only at the end of the
computation of the worker: this avoids synchronization among workers.

7 Experiments and Comparisons

We first consider some sequential experiments. The n-queens problem consists
in placing n queens over a checkerboard so that no one attacks another. It trans-
lates naturally into the construction of a logical function whose solutions are
all possible placements of queens. Figure 4 shows the execution time for con-
structing this function with BeeDeeDee, compared to the time needed by using

3 For small tables, the overhead of starting a multithreaded computation is propor-
tionally too large.
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the Java libraries JavaBDD and JDD, and the C libraries CUDD and BuDDy.
BeeDeeDee is here the fastest Java library and is comparable to BuDDy, the
best C library. Also the construction of the transition relation, as a BDD, for a
circuit is a problem that applies many Boolean operations, sequentially. Figure 5
shows the time needed for three circuits from the ITC99 benchmark set [6]. Also
in this case, BeeDeeDee outperforms the other Java libraries. These experiments
show that BeeDeeDee can be used instead of already existing, non-thread-safe
libraries, also for sequential computations.

Let us come to multithreaded examples now. Figure 6 shows the time for the
construction from 1 to 4 BDDs representing the function associated to the same
12-queens problem. Such a construction was performed in parallel on a quad-
core processor, by sharing unique table and caches with BeeDeeDee. We see here
that we manage to achieve a high degree of real parallelism, since four BDDs are
built in 33.6 seconds while a single BDD is built in 22.4 seconds. Some degra-
dation exists, due to synchronization, but the parallel cost is much lower than
the theoretical sequential cost of 4 × 22.4 = 89.6 seconds. This example shows
that the overhead of synchronization is well acceptable for parallel computations
through BeeDeeDee.
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A Thread-Safe Library for Binary Decision Diagrams 47

1 2 3 4

22

24

26

28

30

32

34

Number of 12-queens instances

T
im

e
(s
)

Fig. 6. Parallel 12-queens BDDs construction

1 2 3 4

20

40

60

80

100

Number of sources

T
im

e
(s
)

BeeDeeDee

JavaBDD

JDD

Fig. 7. Parallel information flow analysis for different sources

Figure 7 shows the time needed to perform from 1 to 4 information flow
analyses of Hadoop with Julia Static Analyzer [9], in parallel on a quad-core
processor, with the three libraries BeeDeeDee, JavaBDD and JDD. When we use
BeeDeeDee, the BDD unique table and caches are shared, while this is not possi-
ble for the other, non-thread-safe libraries. JDD’s poor performance is due to the
fact that flow analysis heavily uses quantification and replacement operations,
for which JDD is not optimized. JavaBDD is slightly faster in this case (it pays
no synchronization overhead), but it consumes more memory, as we show next
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with Figure 8. There, a parallel information flow analysis with 4 sources is per-
formed by using the two libraries; with BeeDeeDee it never requires more than
9 gigabytes of RAM, whereas with JavaBDD around 11 gigabytes are required,
2 more than with BeeDeeDee. This little difference might be misleading, since
the information flow analysis is only the tip of the iceberg, resting on previous
processing and analyses, that amount to many gigabytes of RAM, independently
from the BDD library. For a fairer comparison, we hence have to consider only
the memory occupied by the BDD library, that is, the BDD table size. For that,
BeeDeeDee uses single shared unique table and caches, that in this example reach
a size of 2,200,000 nodes; whereas JavaBDD needs four different unique table and
caches, for a cumulative size of 5,500,000 nodes. The gain is now apparent. This
shows that BeeDeeDee is an effective choice when it is sensible to share unique
nodes table and caches among different threads to reduce the memory footprint
of the overall computation. We stress the fact that the precision of the informa-
tion flow analyses is always the same, independently from the BDD library that
we use, since it depends on the definition of the abstraction and of the abstract
operations, not on the BDD library used for their implementation.

8 Conclusion

We have developed and evaluated a new BDD library. To the best of our knowl-
edge, it is the first thread-safe library of that kind. This allows one to share the
same unique table of nodes among clients, reduce the memory footprint and share
the caches, hence avoiding repeated computations in distinct threads. It is actu-
ally faster than the already existing and non-thread-safe Java BDD libraries. Our
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library is consequently ready for the foreseeable development of new analysis, ver-
ification and artificial intelligence tools that exploit multithreading for real par-
allelism on multicore hardware. One such tool is already Julia [9], but more will
be developed soon. Our library is free for non-commercial applications. It is avail-
able in source and binary formats at http://www.juliasoft.com/beedeedee.
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Effect-Polymorphic Behaviour Inference
for Deadlock Checking�
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Abstract. We present a constraint-based effect inference algorithm for deadlock
checking. The static analysis is developed for a concurrent calculus with higher-
order functions and dynamic lock creation. The analysis is context-sensitive and
locks are summarised based on their creation-site. The resulting effects can be
checked for deadlocks using state space exploration. We use a specific deadlock-
sensitive simulation relation to show that the effects soundly over-approximate
the behaviour of a program, in particular that deadlocks in the program are pre-
served in the effects.

1 Introduction

Deadlocks are a common problem for concurrent programs with shared resources. Ac-
cording to [4], a deadlocked state is marked by a number of processes, which forms a
cycle where each process is unwilling to release its own resource, and is waiting on the
resource held by its neighbour. The inherent non-determinism makes deadlocks hard to
detect and to reproduce. We present a static analysis using behavioural effects to de-
tect deadlocks in a higher-order concurrent calculus. Deadlock freedom, an important
safety property for concurrent programs, is a thread-global property, i.e., two or more
processes form a deadlock. The presented approach works in two stages: in a first stage,
an effect-type system uses a static behavioural abstraction of the codes’ behaviour, con-
centrating on the lock interactions. To detect potential deadlocks on the global level, the
combined individual abstract thread behaviours are explored in the second stage.

Two challenges need to be tackled to make the approach applicable in practice. For
the first stage on the thread local level, the static analysis must be able to derive the ab-
stract behaviour, not just check compliance of the code with a user-provided description.
This is the problem of type and effect inference or reconstruction. As usual, the abstract
behaviour needs to over-approximate the concrete one, i.e., concrete and abstract de-
scriptions are connected by some simulation relation: everything the concrete system
does, the abstract one can do as well. For the second stage, exploring the (abstract) state
space on the global level, obtaining finite abstractions is crucial. In our setting, there are
four principal sources of infinity: the calculus allows 1) recursion, supports 2) dynamic
thread creation, as well as 3) dynamic lock creation, and 4) unbounded lock counters
for re-entrant locks. Our approach offers sound abstractions for the mentioned sources
of unboundedness, except for dynamic thread creation. We first shortly present in a
non-technical manner the ideas behind the abstractions before giving the formal theory.
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1.1 Effect Inference on the Thread Local Level

In the first stage of the analysis, a behavioural type and effect system is used to over-
approximate the lock-interactions of a single thread. To force the user to annotate the
program with the expected behaviour in the form of effects is impractical, so the type
and especially the behaviour should be inferred automatically. Effect inference, includ-
ing inferring behavioural effects, has been studied earlier and applied to various settings,
including obtaining static over-approximations of behaviour for concurrent languages
by Amtoft et al. [2]. We apply effect inference to deadlock detection and as is standard
(cf. e.g., [11,16,2]), the inference system is constraint-based, where the constraints in
particular express an approximate order between behaviours. Besides being able to in-
fer the behaviour, it is important that the static approximation is as precise as possible.
For that it is important that the analysis may distinguish different instances of a func-
tion body depending on their calling context, i.e., the analysis should be polymorphic
or context-sensitive. This can be seen as an extension of let-polymorphism to effects
and using constraints. The effect reconstruction resembles the known type-inference
algorithm for let-polymorphism by Damas and Milner [6,5] and this has been used for
effect-inference in various settings, e.g., in the works mentioned above.

Deadlock checking in our earlier work [13] was not polymorphic (and we did not
address effect inference). The extension in this paper leads to an increase in precision
wrt. checking for deadlocks, as illustrated by the small example below, where the two
lock creation statements are labeled by π1 and π2:

let x1 = newπ1 L in let x2 = newπ2 L in

let f = fn x:L . ( x.lock; x.lock )

in spawn(f(x2)); f(x1)

The main thread, after creating two locks and defining function f , spawns a thread,
and afterward, the main thread and the child thread run in parallel, each one executing
an instance of f with different actual lock parameters. In a setting with re-entrant locks,
the program is obviously deadlock-free. Part of the type system of [13] determines the
potential origin of locks by data-flow analysis. The analysis cannot distinguish the two
instances of f (the analysis is context-insensitive), and therefore forces that the type
of the formal parameter is, at best, L{π1,π2}. Based on that approximate information, a
deadlock looks possible through a “deadly embrace” [7] where one thread takes first
lock π1 and then π2, and the other thread takes them in reverse order, i.e., the analy-
sis would report a (spurious) deadlock. The context-sensitive analysis presented here
correctly analyzes the example as deadlock-free.

1.2 Deadlock Preserving Abstractions on the Global Level

Lock Abstraction. For dynamic data allocation, a standard abstraction is to summa-
rize all data allocated at a given program point into one abstract representation. In the
presence of loops or recursion, the abstracting function mapping concrete locks to their
abstract representation is necessarily non-injective. For concrete, ordinary programs it
is clear that identifying locks may change the behaviour of the program. Identification
of locks is in general tricky (and here in particular in connection with deadlocks): on
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the one hand it leads to less steps, in that lock-protected critical sections may become
larger. On the other hand it may lead to more steps at the same time, and deadlocks
may disappear when identifying locks. This form of summarizing lock abstraction is
problematic when analyzing properties of concurrent programs, and has been observed
elsewhere as well, cf. e.g., Kidd et al. in [9].

To obtain a sound abstraction for deadlock detection when identifying locks in the
described way, one faces thus the following dilemma: a) the abstract level, using the
abstract locks, needs to show at least the behaviour of the concrete level, i.e., we expect
that they are related by a form of simulation. On the other hand, to preserve not only
the possibility of doing steps, but also deadlocks, the opposite must hold sometimes: b)
a concrete program waiting on a lock and unable to make a step thereby, must imply
an analogous situation on the abstract level, lest we should miss deadlocks. Let’s write
l, l1, l2, . . . for concrete lock references and π ,π ′, . . . for program points of lock creation,
i.e., abstract locks. To satisfy a): when a concrete program takes a lock, the abstract one
must be able to “take” the corresponding abstract lock, say π . A consequence of a) is
that taking an abstract lock is always enabled. That is consistent with the abstraction
as described where the abstract lock π confuses an arbitrary number of concrete locks
including, e.g., those freshly created, which may be taken.

Thus, abstract locks lose their “mutual exclusion” capacity: whereas a concrete heap
is a mapping which associates to each lock reference the number of times that at most
one process is holding it, an abstract heap σ̂ records how many times an abstract lock
π is held by the various processes, e.g., thrice by one process and twice by another. The
corresponding natural number abstractly represents the sum of the lock values of all
concrete locks (per process). Without ever blocking, the abstraction leads to more pos-
sible steps, but to cater for b), the abstraction still needs to appropriately define, given
an abstract heap and an abstract lock π , when a process waits on the abstract lock, as
this may indicate a deadlock. The definition has to capture all possibilities of waiting on
one of the corresponding concrete locks (see Definition 6 later). The sketched intuitions
to obtain a sound abstract summary representation for locks and correspondingly for
heaps lead also to a corresponding refinement of “over-approximation” in terms of sim-
ulation: not only must the a) positive behaviour be preserved as in standard simulation,
but also the b) possibility of waiting on a lock and ultimately the possibility of deadlock
needs to be preserved. For this we introduce the notion of deadlock sensitive simulation
(see Definition 9). The definition is analogous to the one from [13]. However, it takes
into account now that the analysis is polymorphic and the definition is no longer based
on a direct operational interpretation of the behaviour of the effects. Instead it is based
on the behavioural constraints used in the inference systems.

The points discussed are illustrated in Fig. 1, where the left diagram Fig. 1a depicts
two threads running in parallel and trying to take two concrete locks, l1 and l2 while Fig.
1b illustrates an abstraction of the left one where the two concrete locks are summarized
by the abstract lock π (typically because being created at the same program point). The
concrete program obviously may run into a deadlock by reaching commonly the states
q01 and q11, where the first process is waiting on l2 and the second process on l1. With
the abstraction sketched above, the abstract behaviour, having reached the correspond-
ing states q̂01 and q̂11, can proceed (in two steps) to the common states q̂02 and q̂12,
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Fig. 1. Lock abstraction

reaching an abstract heap where the abstract lock π is “held” twice by each process. In
the state q̂01 and q̂11, however, the analysis will correctly detect that, with the given lock
abstraction, the first process may actually wait on π , resp. on one of its concretizations,
and dually for the second process, thereby detecting the deadly embrace. Allowing this
form of abstraction, summarizing concrete locks into an abstract one, improves our
earlier analysis [13], which could therefore deal only with a static number of locks.

Counter Abstraction and Further Behaviour Abstraction. Two remaining causes
of an infinite state space are the values of lock counters, which may grow unboundedly,
and the fact that for each thread, the effect behaviour abstractly represents the stack
of function calls for that thread. Sequential composition as construct for abstract be-
havioural effects allows to represent non-tail-recursive behaviour (corresponding to the
context-free call-and-return behaviour of the underlying program). To curb that source
of infinity, we allow for replacing the behaviour by a tail-recursive over-approximation.
The precision of the approximation can be adapted in choosing the depth of calls after
which the call-structure collapses into an arbitrary, chaotic behaviour. A finite abstrac-
tion for the lock-counters is achieved similarly by imposing an upper bound on the
considered lock counter, beyond which the locks behave non-deterministically. Again,
for both abstractions it is crucial, that the abstraction preserves also deadlocks, which
we capture again using the notion of deadlock-sensitive simulation. These two abstrac-
tions have been formulated and proven in the non-context-sensitive setting of [13].

To summarize, compared to [13], the paper makes the following contributions: 1) the
effect analysis is generalized to a context-sensitive formulation, using constraints, for
which we provide 2) an inference algorithm. Finally, 3) we allow summarizing multiple
concrete locks into abstract ones, while still preserving deadlocks.

The rest of the paper is organized as follows. After presenting syntax and semantics
of the concurrent calculus in Section 2, the behavioural type system is presented in
Section 3, which also includes the soundness result in the form of subject reduction.
The conclusion in Section 4 discusses related and future work.

2 Calculus

This section presents the syntax and semantics for our calculus. The abstract syntax is
given in Table 1 (the types T will be covered in more detail in Section 3). A program
P consists of processes p〈t〉 running in parallel, where p is a process identifier and t
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is a thread, i.e., the code being executed. The empty program is represented by /0. We
assume, as usual, parallel composition ‖ to be associative and commutative. A thread
t is either a value v or a sequential composition written as let x:T = e in t, where the
let-construct binds the local variable x in t. Expressions include function applications
and conditionals. Threads are created with the expression spawn t. For lock manipula-
tion, new L yields the reference to a newly created lock (initially free), and the opera-
tions v. lock and v. unlock deal with acquiring and releasing a lock. Values which are
evaluated expressions are variables, lock references, and function abstractions, where
fun f :T.x:T.t represents recursive function definitions.

Table 1. Abstract syntax

P ::= /0 | p〈t〉 | P ‖ P program
t ::= v | let x:T = e in t thread
e ::= t | v v | if v then e else e | spawn t | new L

| v. lock | v. unlock expr.
v ::= x | l | true | false | fn x:T.t | fun f :T.x:T.t values

Semantics

The small-step operational semantics, presented next, distinguishes between local and
global steps (cf. Table 2). The local steps are straightforward and therefore left out
here. Global configurations are of the form σ � P where P is a program and the
heap σ is a finite mapping from lock identifiers to the status of each lock, which can
be either free or a tuple indicating the number of times a lock has been taken by a
thread. For the analysis later, we allow ourselves also to write σ(l, p) = n+1 if σ(l) =
p(n+ 1) (indicating the pair of process identifier p and lock count n) and σ(l, p) = 0
otherwise. The global steps are given as transitions between global configurations. It
will be handy later to assume the transitions appropriately labeled (cf. Table 2). Thread-
local transition steps are lifted to the global level by rule R-LIFT. A global step is a
thread-local step made by one of the individual threads sharing the same σ (cf. rule
R-PAR). R-SPAWN creates a new thread with a fresh identity running in parallel with
the parent thread. All the identities are unique at the global level. Creating a new lock,
which is initially free, allocates a fresh lock reference l in the heap (cf. rule R-NEWL).
The locking step (cf. rule R-LOCK) takes a lock when it is either free or already being
held by the requesting process. To update the heap, we define: If σ(l) = free, then
σ +p l = σ [l �→ p(1)] and if σ(l) = p(n), then σ +p l = σ [l �→ p(n+ 1)]. Dually σ −p l
is defined as follows: if σ(l) = p(n+1), then σ−p l = σ [l �→ p(n)], and if σ(l) = p(1),
then σ −p l = σ [l �→ free]. Unlocking works correspondingly, i.e., it sets the lock as
being free resp. decreases the lock count by one (cf. rule R-UNLOCK).

To later relate the operational behaviour to its behavioural abstraction, we label the
transition of the operational semantics appropriately. In particular, steps for lock ma-
nipulations are labelled to indicate which process has taken or released which lock. For

instance, the labelled transition step
p〈l.lock〉−−−−→means that a process p takes a lock labelled

l. We discuss further details about the labels in the next section.
Before defining the notion of deadlock, we first characterize the situation in which

one thread in a program attempts to acquire a lock which is not available as follows:
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Table 2. Global steps

t1 −→ t2
R-LIFT

σ � p〈t1〉 −→ σ � p〈t2〉
σ � p1〈let x:T = spawn t2 in t1〉 −→ σ � p1〈let x:T = () in t1〉 ‖ p2〈t2〉 R-SPAWN

σ � P1 −→ σ ′ � P′1
R-PAR

σ � P1 ‖ P2 −→ σ ′ � P′1 ‖ P2

σ ′ = σ [l �→ free] l is fresh
R-NEWL

σ � p〈let x:T = new L in t〉 −→ σ ′ � p〈let x:T = l in t〉

σ(l) = free∨σ(l) = p(n) σ ′ = σ +p l
R-LOCK

σ � p〈let x:T = l. lock in t〉 −→ σ ′ � p〈let x:T = l in t〉

σ(l) = p(n) σ ′ = σ −p l
R-UNLOCK

σ � p〈let x:T = l. unlock in t〉 −→ σ ′ � p〈let x:T = l in t〉

Definition 1 (Waiting for a lock). Given a configuration σ � P, a process p waits for

a lock l in σ � P, written as waits(σ � P, p, l), if it is not the case that σ � P
p〈l.lock〉−−−−→,

and if furthermore there exists a σ ′ s.t. σ ′ � P
p〈l.lock〉−−−−→ σ ′′ � P′.

The notion of (resource) deadlock used is rather standard, where a number of pro-
cesses waiting for each other’s locks in a cyclic manner constitute a deadlock (see also
[13]). In our setting with re-entrant locks, a process cannot deadlock “on itself”.

Definition 2 (Deadlock). A configuration σ � P is deadlocked if σ(li) = pi(ni) and
furthermore waits(σ � P, pi, li+k1) (for all 0 ≤ i ≤ k− 1 and where k ≥ 2). The +k

represents addition modulo k. A configuration σ � P contains a deadlock, if, starting
from σ � P, a deadlocked configuration is reachable; otherwise, it is deadlock free.

3 Type System

Next we present an effect type system to derive behavioural information which is used,
in a second step, to detect potential deadlocks. The type system derives flow information
about which locks may be used at various points in the program. Additionally, it derives
an abstract, i.e., approximate representation of the code’s behaviour. The representation
extends our earlier system [13] by making the analysis context-sensitive and further-
more by supporting type and effect inference, both important from a practical point of
view. Being context-sensitive, making the effect system polymorphic, increases the pre-
cision of the analysis. Furthermore, inference removes the burden from the programmer
to annotate the program appropriately to allow checking for potential deadlock. These
extensions follow standard techniques for behaviour inference, see for instance Amtoft
et al. [2] and type-based flow analysis, see e.g., Mossin [11]. The system here makes
use of explicit constraints. Type systems are, most commonly, formulated in a syntax-
directed manner, i.e., analyzing the program code in a divide-and-conquer manner. That
obviously results in an efficient analysis of the code. However, a syntax-directed for-
mulation of the deduction rules of the type system, which forces to analyze the code
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following the syntactic structure of the program, may have disadvantages as well. Us-
ing constraints in a type system decouples the syntax-directed phase of the analysis,
which collects the constraints, from the task of actually solving the constraints. For-
mulations of type systems without relying on constraints can be seen as solving the
underlying constraints “on-the-fly”, while recurring through the structure of the code.

3.1 Types, Effects, and Constraints

The analysis performs a data flow analysis to track the usage of locks. For that purpose,
the lock creation statements are equipped with labels, writing newπ L, where π is taken
from a countably infinite set of labels. As usual, the labels π are assumed unique in a
given program. The grammar for annotations, types, and effects is given in Tables 3 and
4. We use r to denote sets of πs with ρ representing corresponding variables. Types
include basic types, represented by B, such as the unit type Unit, booleans, integers,
etc., functional types with latent effect ϕ , and lock types Lr where the annotation r
captures the flow information about the potential places where the lock is created. This
information will be reconstructed, and the user writes types without annotations (the
“underlying” types) in the program. We write T (and its syntactic variants) as meta-
variables for the underlying types, and T̂ (and its syntactic variants) for the annotated
types, as given in the grammar. The universally quantified types, represented by Ŝ,
capture functions which are polymorphic in locations and effects.

Table 3. Types and type schemes

Y ::= ρ | X type-level variables
r ::= ρ | {π} | r� r lock/label sets

T̂ ::= B | Lr | T̂
ϕ−→ T̂ types

Ŝ ::= ∀�Y :C. T̂
ϕ−→ T̂ | T̂ type schemes

C ::= /0 | ρ  r,C | X  ϕ,C constraints

Whereas the type of an expression captures the results of the computations of the
expression if it terminates, the effect captures the behaviour during the computations.
For the deadlock analysis, we capture the lock interactions as effects, i.e., which locks
are accessed during execution and in which order. The effects (cf. Table 4) are split
between a (thread-) local level ϕ and a global level Φ . The empty effect is denoted
by ε , representing behaviour without lock operations. Sequential composition is repre-
sented by ϕ1;ϕ2. The choice between two effects ϕ1 +ϕ2, as well as recursive effects
recX .ϕ , is actually not generated by the algorithm; they would show up when solving
the constraints generated by the algorithm. We included their syntax for completeness.
Note also that recursion is not polymorphic. Labels a capture the three basic effects:
spawning a new process with behaviour ϕ is represented by spawn ϕ , while r. lock
and r.unlock respectively capture lock manipulations, acquiring and releasing a lock,
where r refers to the possible points of creation. Silent transitions are represented by τ .
Lock-creation has no corresponding effect, as newly created locks are initially free, i.e.,
with a lock-count of 0. On the abstract level, locks are summarized by the sum of all
locks created at given point. Hence lock creation will be represented by a τ-transition.

Constraints C finally are finite sets of in-equations of the form ρ  r or of X  ϕ ,
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Table 4. Effects

Φ ::= 0 | p〈ϕ〉 | Φ ‖Φ effects (global)
ϕ ::= ε | ϕ;ϕ | ϕ +ϕ | α | X | recX .ϕ effects (local)
a ::= spawn ϕ | r.lock | r.unlock labels/basic effects
α ::= a | τ transition labels

where ρ is, as mentioned, a flow variable and X an effect or behaviour variable. To
allow polymorphism we use type schemes Ŝ, i.e., prefix-quantified types of the form
∀�Y :C. T̂ , where Y are variables ρ or X . The qualifying constraints C in the type scheme
impose restrictions on the bound variables. The formal system presented in this paper
uses a constraint-based flow analysis as proposed by Mossin [11] for lock informa-
tion. Likewise, the effects captured as a sequence of behaviour are formulated using
constraints.

3.2 Type Inference

Next we present a type inference algorithm which derives types and effects and gen-
erates corresponding constraints (see Table 6 below). It is formulated in a rule-based
manner, with judgments of the form: Γ � e : T̂ :: ϕ ;C. The system is syntax-directed,
i.e., algorithmic, where Γ and e are considered as “input”, and the annotated type T̂ , the
effect ϕ , and the set of constraints C as “output”. Concentrating on the flow information
and the effect part, expressions e are type-annotated with the underlying types, as given
in Table 3. In contrast, e contains no flow or effect annotations; those are derived by the
algorithmic type system. It would be straightforward to have the underlying types recon-
structed as well, using standard type inference à la Hindley/Milner/Damas [6,5,8]. For
simplicity, we focus on the type annotations and the effect part. For locks, the flow an-
notation over-approximates the point of lock creation, and finally, ϕ over-approximates
the lock-interactions while evaluating e. As usual, the behavioural over-approximation
is a form of simulation. For our purpose, we will define a particular, deadlock-sensitive
form of simulation. These intended over-approximations are understood relative to the
generated constraints C, i.e., all solutions of C give rise to a sound over-approximation
in the mentioned sense. Solutions to a constraint set C are ground substitutions θ , as-
signing label sets to flow variables ρ and effect variables X . We write θ |= C if θ is a
solution to C.

Ultimately, one is interested in the minimal solution of the constraints, as it provides
the most precise information. Solving the constraints is done after the algorithmic type
system, but to allow for the most precise solution afterward, each rule should generate
the most general constraint set, i.e., the one which allows the maximal set of solutions.
This is achieved using fresh variables for each additional constraint. In the system be-
low, new constraints are generated from requesting that types are in a “subtype” rela-
tionship. In our setting, “subtyping” concerns the flow annotations on the lock types
and the latent effects on function types. For instance in rule TA-APP in Table 6, the
argument of a function of type T̂2

ϕ−→ T̂1 is of a subtype T̂ ′2 of T̂2, i.e., instead of requir-
ing T̂ ′2 ≤ T̂2 in that situation, the corresponding rule will generate new constraints in
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requiring the subtype relationship to hold (see Definition 3). As an invariant, the type
system makes sure that lock types are always of the form Lρ , i.e., using flow variables
and similarly that only variables X are used for the latent effects for function types.

Definition 3 (Constraint generation). The judgment T̂1 ≤ T̂2 �C (read as “requiring
T̂1 ≤ T̂2 generates the constraints C”) is inductively given as follows:

B≤ B � /0 C-BASIC Lρ1 ≤ Lρ2 � {ρ1 � ρ2} C-LOCK

T̂ ′1 ≤ T̂1 �C1 T̂2 ≤ T̂ ′2 �C2 C3 = {X � X ′}
C-ARROW

T̂1
X−→ T̂2 ≤ T̂ ′1

X ′−→ T̂ ′2 �C1,C2,C3

In the presence of subtyping/sub-effecting, the overall type of a conditional needs to
be an upper bound on the types/effects of the two branches (resp. the least upper bound
in case of a minimal solution). To generate the most general constraints, fresh variables
are used for the result type. This is captured in the following definition. Note that given
T̂ by T̂1 ∨ T̂2 � T̂ ;C, type T̂ in itself does not represent the least upper bound of T̂1

and T̂2. The use of fresh variables assures, however, that the minimal solution of the
generated constraints makes T̂ into the least upper bound.

Definition 4 (Least upper bound). The partial operation ∨ on annotated types (and
in abuse of notation, on effects), giving back a set of constraints plus a type (resp. an
effect) is inductively given by the rules of Table 5. The operation ∧ is defined dually.

Table 5. Least upper bound

B1 = B2

LT-BASIC

B1 ∨ B2 = B1; /0

T̂ ′1 ∧ T̂ ′′1 = T̂1;C1 T̂ ′2 ∨ T̂ ′′2 = T̂2;C2 X1�X2 = X ;C3

LT-ARROW

T̂ ′1
X1−→ T̂ ′2 ∨ T̂ ′′1

X2−→ T̂ ′′2 = T̂1
X−→ T̂2;C1,C2,C3

ρ fresh Lρ1 ≤ Lρ �C1 Lρ2 ≤ Lρ �C2

LT-LOCK

Lρ1 ∨ Lρ2 = Lρ ;C1,C2

X fresh C = {ϕ1 � X ,ϕ2 � X}
LE-EFF

ϕ1 �ϕ2 = X ;C

The rules for the type and effect system then are given in Table 6. A variable has
no effect and its type (scheme) is looked up from the context Γ . The constraints C that
may occur in the type scheme, are given back as constraints of the variable x, replacing
the ∀-bound variables �Y in C by fresh ones. Lock creation at point π (cf. TA-NEWL)
is of the type Lρ , has an empty effect and the generated constraint requires ρ  {π},
using a fresh ρ . As values, abstractions have no effect (cf. TA-ABS rules) and again,
fresh variables are appropriately used. In rule TA-ABS1, the latent effect of the result
type is represented by X under the generated constraint X  ϕ , where ϕ is the effect
of the function body checked in the premise. The context in the premise is extended by
x:!T"A, where the operation !T"A annotates all occurrences of lock types L with fresh
variables and introduces fresh effect variables for the latent effects. Rule TA-ABS2 for
recursive functions works analogously. For applications (cf. TA-APP), both the func-
tion and the arguments are evaluated and therefore have no effect. As usual, the type of
the argument needs to be a subtype of the input type of the function, and corresponding
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constraints C3 are generated by T̂ ′2 ≤ T̂2 �C3. For the overall effect, again a fresh effect
variable is used which is connected with the latent effect of the function by the addi-
tional constraint X  ϕ . For conditionals, rule TA-COND ensures both the resulting type
and the effect are upper bounds of the types resp. effects of the two branches by gener-
ating two additional constraints (cf. Table 5). The let-construct (cf. TA-LET) for the
sequential composition has an effect ϕ1;ϕ2. To support context-sensitivity (correspond-
ing to let-polymorphism), the let-rule is where the generalization over the type-level
variables happens. In the first approximation, given e1 is of T̂1, variables which do not
occur free in Γ can be generalized over to obtain Ŝ1, which quantifies over the maxi-
mal number of variables for which such generalization is sound. In the setting here, the
quantification affects only flow variables ρ and effect variables X . The close-operation
close(Γ ,ϕ ,C, T̂ ) first computes the set of all “relevant” free variables in a type T̂ and
the constraint C by the operation close↑↓(fv(T̂1),C1) which finds the upward and down-
ward closure of the free variables in T̂1 wrt. C1. Among the set of free variables, those
that are free in the context or in the effect, as well as the corresponding downward clo-
sure, are non-generalizable and are excluded. (See also Amtoft et al. [2]). The spawn
expression is of unit type (cf. TA-SPAWN) and again a fresh variable is used in the
generated constraint. Finally, rules TA-LOCK and TA-UNLOCK deal with locking and
unlocking an existing lock created at the potential program points indicated by ρ . Both
expressions have the same type Lρ , while the effects are ρ . lock and ρ . unlock.

The type and effect system works on the thread local level. The definition for the
global level is straightforward. If all the processes are well-typed, so is the corre-
sponding global program. A process p is well-typed, denoted as � p〈t〉 :: p〈ϕ ;C〉, if
� t : T̂ :: ϕ ;C. In abuse of notation, we use Φ to abbreviate p1〈ϕ1;C1〉 ‖ . . . ‖ pn〈ϕn;Cn〉.

Table 6. Algorithmic effect inference

Γ (x) = ∀�Y :C.T̂ �Y ′ fresh θ = [�Y ′/�Y ]
TA-VAR

Γ � x : θ T̂ :: ε ;θC

T̂1 = !T1"A Γ ,x:T̂1 � e : T̂2 :: ϕ ;C X fresh
TA-ABS1

Γ � fn x:T1.e : T̂1
X−→ T̂2 :: ε ;C,X  ϕ

T̂1
X−→ T̂2 = !T1 → T2"A Γ , f :T̂1

X−→ T̂2,x:T̂1 � e : T̂ ′2 :: ϕ ;C1 T̂ ′2 ≤ T̂2 �C2
TA-ABS2

Γ � fun f :T1 → T2,x:T1.e : T̂1
X−→ T̂2 :: ε ;C1,C2,X  ϕ

Γ � v1 : T̂2
ϕ−→ T̂1 :: ε ;C1 Γ � v2 : T̂ ′2 :: ε ;C2 T̂ ′2 ≤ T̂2 �C3 X fresh

TA-APP

Γ � v1 v2 : T̂1 :: X ;C1,C2,C3,X  ϕ

�T̂�= �T̂1�= �T̂2� T̂ ;C = T̂1 ∨ T̂2 X ;C′ = ϕ1 �ϕ2

Γ � v : Bool:: ε ;C0 Γ � e1 : T̂1 :: ϕ1;C1 Γ � e2 : T̂2 :: ϕ2;C2
TA-COND

Γ � if v then e1 else e2 : T̂ :: X ;C0,C1,C2,C,C′

ρ fresh
TA-NEWL

Γ � newπ L : Lρ :: ε ;ρ  {π}

Γ � e1 : T̂1 :: ϕ1;C1 �T̂1�= T1

Ŝ1 = close(Γ ,ϕ1 ,C1, T̂1) Γ ,x:Ŝ1 � e2 : T̂2 :: ϕ2;C2
TA-LET

Γ � let x:T1 = e1 in e2 : T̂2 :: ϕ1;ϕ2;C1,C2

Γ � t : T̂ :: ϕ ;C X fresh
TA-SPAWN

Γ �spawn t : Unit:: X ;C,X  spawn ϕ

Γ � v : Lρ :: ε ;C X fresh
TA-LOCK

Γ � v. lock: Lρ :: X ;C,X  ρ.lock

Γ � v : Lρ :: ε ;C X fresh
TA-UNLOCK

Γ � v. unlock: Lρ :: X ;C,X  ρ.unlock
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3.3 Semantics of the Behaviour

Next we are going to define the transition relation on the abstract behaviour with the
effect-constraints. Given a constraint set C, we interpret C � a;ϕ2 � ϕ1 as ϕ1 may first
perform an a-step before executing ϕ2, where a is one of the labels from Table 4 which
do not include the τ-label. See also [2]. The relation C � ϕ1 � ϕ2 is defined in Table 7.

Definition 5. The transition relation between configurations of the form C; σ̂ � Φ is
given inductively by the rules of Table 8, where we write C � ϕ1

a
=⇒� ϕ2 for C � a;ϕ2 �

ϕ1. The σ̂ represents an abstract heap, which is a finite mapping from a flow variable ρ
and a process identity p to a natural number.

Each transition correspondingly captures the three possible steps we describe in the be-
haviour, namely creating a new process with a given behaviour, locking and unlocking.
Analogous to the corresponding case in the concrete semantics, rule RE-SPAWN covers
the creation of a new (abstract) thread and leaves the abstract heap unchanged. Taking a
lock increases the corresponding lock count by one (cf. RE-LOCK). Unlocking works
similarly by decreasing the lock count by one (cf. RE-UNLOCK), where the second
premise makes sure the lock count stays non-negative. The transitions of a global ef-
fect Φ consist of the transitions of the individual thread (cf. RE-PAR). As stipulated by
rule RE-LOCK, the step to take an abstract lock is always enabled, which is in obvi-
ous contrast to the behaviour of concrete locks. To ensure that the abstraction preserves
deadlocks requires to adapt the definition of what it means that an abstract behaviour
waits on a lock (cf. also Definition 1 for concrete programs and heaps).

Definition 6 (Waiting for a lock (=⇒�)). Given a configuration C; σ̂ � Φ where Φ =
Φ ′ ‖ p〈ϕ〉, a process p waits for a lock ρ in σ̂ �Φ , written as waits�(C; σ̂ � Φ, p,ρ),
if C � ϕ ρ .lock

===⇒� ϕ ′ but σ̂(ρ ,q)≥ 1 for some q 
= p.

Definition 7 (Deadlock). A configuration C; σ̂ �Φ is deadlocked if σ̂(ρi, pi)≥ 1 and
furthermore waits(C; σ̂ �Φ, pi,ρi+k1) (where k≥ 2 and for all 0≤ i≤ k−1). The +k is
meant as addition modulo k. A configuration C; σ̂ � Φ contains a deadlock, if, starting
from C; σ̂ �Φ , a deadlocked configuration is reachable; otherwise it is deadlock free.

Table 7. Orders on behaviours

ε ;ϕ ≡ ϕ EE-UNIT ϕ1;(ϕ2;ϕ3)≡ (ϕ1;ϕ2);ϕ3 EE-ASSOC

C � ϕ1 � ϕ ′1 C � ϕ2 � ϕ ′2
S-SEQ

C � ϕ1;ϕ2 � ϕ ′1;ϕ ′2

C,r ⊆ ρ � r ⊆ ρ S-AXL C,ϕ � X � ϕ � X S-AXE C � r ⊆ r S-REFLL

ϕ1 ≡ ϕ2

S-REFLE

C � ϕ1 � ϕ2

C � r1 ⊆ r2 C � r2 ⊆ r3

S-TRANSL

C � r1 ⊆ r3

C � ϕ1 � ϕ2 C � ϕ2 � ϕ3

S-TRANSE

C � ϕ1 � ϕ3

C � ϕ1 � ϕ2

S-SPAWN

C �spawn ϕ1 �spawn ϕ2

C � r1 ⊆ r2

S-LOCK

C � r1.lock � r2.lock

C � r1 ⊆ r2

S-UNLOCK

C � r1.unlock � r2.unlock
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Table 8. Global transitions

C � ϕ ρ.lock
===⇒� ϕ ′ σ̂ ′(ρ , p) = σ̂(ρ , p)+1

RE-LOCK

C; σ̂ � p〈ϕ〉 p〈ρ.lock〉
=====⇒� C; σ̂ ′ � p〈ϕ ′〉

C � ϕ spawn(ϕ′′ )
======⇒� ϕ ′

RE-SPAWN

C; σ̂ � p1〈ϕ〉
p1〈spawn(ϕ′′)〉========⇒� C; σ̂ � p1〈ϕ ′〉 ‖ p2〈ϕ ′′〉

C � ϕ ρ.unlock
=====⇒� ϕ ′ σ̂ (ρ , p)≥ 1 σ̂ ′(ρ , p) = σ̂ (ρ , p)−1

RE-UNLOCK

C; σ̂ � p〈ϕ〉 p〈ρ.unlock〉
======⇒� C; σ̂ ′ � p〈ϕ ′〉

C; σ̂ � Φ1
a
=⇒� C; σ̂ ′ �Φ ′

1
RE-PAR

C; σ̂ �Φ1 ‖Φ2
a
=⇒� C; σ̂ ′ �Φ ′

1 ‖Φ2

3.4 Soundness

A crucial part for soundness of the algorithm wrt. the semantics is preservation of well-
typedness under reduction. This includes to check that the operational semantics of the
program is over-approximated by the effect given by the type system captured by a
simulation relation; in our setting, this relation has to be sensitive to deadlocks. Defin-
ing the simulation relation requires to relate concrete heaps with abstract ones where
concrete locks are summarized by their point of creation.

Definition 8 (Wait-sensitive heap abstraction). Given a concrete and an abstract
heap σ1 and σ̂2, and a mapping θ from the lock references of σ1 to the abstract
locks of σ̂2, σ̂2 is a wait-sensitive heap abstraction of σ1 wrt. θ , written σ1 ≤θ σ̂2,
if ∑l∈{l′ | θ l′=ρ}σ1(l, p) ≤ σ̂2(ρ , p), for all p and ρ . The definition is used analogously
for comparing two abstract heaps. In the special case of mapping between the concrete
and an abstract heap, we write ≡θ if the sum of the counters of the concrete locks
coincides with the count of the abstract lock.

Definition 9 (Deadlock sensitive simulation �D
�). Assume a heap-mapping θ and a

corresponding wait-sensitive abstraction ≤θ . A binary relation R between configura-
tions is a deadlock sensitive simulation relation (or just simulation for short) if the
following holds. Assume C1; σ̂1 �Φ1 R C2; σ̂2 �Φ2 with σ̂1 ≤θ σ̂2. Then:

1. If C1; σ̂1 � Φ1
p〈a〉
==⇒� C1; σ̂ ′1 � Φ ′

1, then C2; σ̂2 � Φ2
p〈a〉
==⇒� C2; σ̂ ′2 � Φ ′

2 for some
C2; σ̂ ′2 �Φ ′

2 with σ̂ ′1 ≤θ σ̂ ′2 and C1; σ̂ ′1 �Φ ′
1 R C2; σ̂ ′2 �Φ ′

2.
2. If waits�((C1; σ̂1 �Φ1), p,ρ), then waits�((C2; σ̂2 �Φ2), p,θ (ρ)).

Configuration C1; σ̂1 �Φ1 is simulated by C2; σ̂2 �Φ2 (written C1; σ̂1 �Φ1 �D
�C2; σ̂2 �

Φ2), if there exists a deadlock sensitive simulation s.t. C1; σ̂1 � Φ1 R C2; σ̂2 �Φ2.
The definition is used analogously for simulations between program and effect con-

figurations, i.e., for σ1 � P �D
� C; σ̂2 � Φ . In that case, the transition relation

p〈a〉
==⇒� is

replaced by
p〈a〉
==⇒ for the program configurations.

The notation
p〈a〉
==⇒ is used for weak transitions, defined as

p〈τ〉−−→∗ p〈a〉−−→. This relation cap-
tures the internal steps which are ignored when relating two transition systems by sim-
ulation. It is obvious that the binary relation �D

� is itself a deadlock simulation. The
relation is transitive and reflexive. Thus, if C1; σ̂1 �Φ1 �D

� C2; σ̂2 �Φ2, the property of
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C1; σ̂1 �Φ1 C1; σ̂ ′1 �Φ ′
1

C2; σ̂2 �Φ2 C2; σ̂ ′2 �Φ ′
2

�

p〈a〉

R

�

p〈a〉

R

Fig. 2. Deadlock sensitive simulation �D
�

deadlock freedom is straightforwardly carried over from the more abstract behaviour to
the concrete one (cf. Lemma 1).

Lemma 1 (Preservation of deadlock freedom). Assume C1; σ̂1 �Φ1 �D
� C2; σ̂2 �Φ2.

If C2; σ̂2 �Φ2 is deadlock free, then so is C1; σ̂1 �Φ1.

The next lemma shows compositionality of �D
� wrt. parallel composition.

Lemma 2 (Compositionality). Assume C; σ̂1 � p〈ϕ1〉�D
�C; σ̂2 � p〈ϕ2〉, then C; σ̂1 �

Φ ‖ p〈ϕ1〉�D
� C; σ̂2 �Φ ‖ p〈ϕ2〉.

The soundness proof for the algorithmic type and effect inference is formulated as
a subject reduction result such that it captures the deadlock-sensitive simulation. The
part for the preservation of typing under substitution is fairly standard and therefore
omitted here. For the effects, the system derives the formal behavioural description
for a program’s future behaviour; one hence cannot expect the effect being preserved
by reduction. Thus, we relate the behaviour of the program and the behaviour of the
effects via a deadlock-sensitive simulation relation.

Lemma 3 (Subject reduction). Let Γ � p〈t〉 :: p〈ϕ ;C〉, σ1 ≡θ̂ σ̂2, and θ |=C.

1. σ1 � p〈t〉 p〈τ〉−−→ σ ′1 � p〈t ′〉, then Γ � p〈t ′〉 :: p〈ϕ ′;C′〉 with C � θ ′C′ for some θ ′, and
furthermore C � ϕ  θ ′ϕ ′, and σ ′1 ≡θ̂ σ̂2.

2. (a) σ1 � p〈t〉 p〈a〉−−→ σ ′1 � p〈t ′〉 where a 
= spawnϕ ′′, then C; σ̂2 � p〈ϕ〉 p〈a〉
==⇒�C; σ̂ ′2 �

p〈ϕ ′〉, Γ � p〈t ′〉 :: p〈ϕ ′′;C′〉 with C � θ ′C′, furthermore C � ϕ ′  θ ′ϕ ′′ and
σ ′1 ≡θ̂ σ̂ ′2.

(b) σ1 � p〈t〉 p〈a〉−−→ σ1 � p〈t ′′〉 ‖ p′〈t ′〉 where a = spawnϕ ′, then C; σ̂2 � p〈ϕ〉 p〈a〉
==⇒�

C; σ̂2 � p〈ϕ ′′〉 ‖ p′〈ϕ ′〉 and such that Γ � p〈t ′′〉 :: p〈ϕ ′′′;C′′〉 with C � θ ′′C′′ and
C � ϕ ′′  θ ′′ϕ ′′′, and furthermore Γ � p′〈t ′〉 :: p′〈ϕ ′′′′;C′〉 with C � θ ′C′ and
C � ϕ ′  θ ′ϕ ′′′′.

3. If waits(σ1 � p〈t〉, p, l), then waits�(C; σ̂2 � p〈ϕ〉, p, θ̂ l).

The well-typedness relation between a program and its effect straightforwardly im-
plies a deadlock-preserving simulation:

Corollary 1. Given σ1 ≡θ σ̂2 and Γ � p〈t〉 :: p〈ϕ ;C〉, then σ1 � p〈t〉�D
�C; σ̂2 � p〈ϕ〉.
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4 Conclusion

We have presented a constraint-based type and effect inference algorithm for deadlock
checking. It infers a behavioural description of a thread’s behaviour concerning its lock
interactions which then is used to explore the abstract state space to detect potential
deadlocks. The static analysis is developed for a concurrent calculus with higher-order
functions and dynamic lock creation. Covering lock creation by an appropriate abstrac-
tion extends our earlier work [13] for deadlock detection using behaviour abstraction.
Another important extension of that work is to enhance the precision by making the
analysis context-sensitive and furthermore to support effect inference ([13] in contrast
required the programmer to provide the behaviour annotations manually). The analysis
is shown sound, i.e., the abstraction preserves deadlocks of the program. Formally that
is captured by an appropriate notion of simulation (“deadlock-sensitive simulation”).

Related work. Deadlocks are a well-known problem in concurrent programming and a
vast number of techniques for statically and dynamically detecting deadlocks have been
investigated. One common way to prevent deadlocks is to arrange locks in a certain par-
tial order such that no cyclic wait on locks/resources, which is one of the four necessary
conditions for deadlocks [4], can occur. For instance, Boyapati et al. [3] prevent dead-
locks by introducing deadlock types and imposing an order among these. The paper also
covers type inference and polymorphism wrt. the lock levels. Likewise, the type infer-
ence algorithms by Suenaga [15] and Vasconcelos et al. [17] assure deadlock freedom
in a well-typed program with a strict partial order on lock acquisition. In contrast, our
approach will certify two processes as safe if they take locks in orders 1-2-3 and 1-3-2,
even though no fixed global order exists. Agarwal et al. [1] use above deadlock types to
improve the efficiency for run-time checking with a static type system, by introducing
runtime checks only for those locks where the inferred deadlock type indicates potential
for deadlocks. Similar to our approach, Naik et al. [12] detect potential deadlocks with
a model-checking approach by abstracting threads and locks by their allocation sites.
The approach is neither sound nor complete. Kobayashi [10] presents a constraint-based
type inference algorithm for detecting communication deadlocks in the π-calculus. In
contrast to our system, he attaches abstract usage information onto channels, not pro-
cesses. Cyclic dependencies there indicate potential deadlocks. Further differences are
that channel-based communication does not have to consider reentrance, and the lack of
functions avoids having to consider polymorphism and higher order. Instead of check-
ing for deadlocks, the approach by Kidd et al. [9] generates an abstraction of a program
to check for data races in concurrent Java programs, by abstracting unlimited number
of Java objects into a finite set of abstract ones whose locks are binary.

Future work. As mentioned, there are four principal sources of infinity in the state-space
obtained by the effect inference system. For the unboundedness of dynamic lock cre-
ation, we presented an appropriate sound abstraction. We expect that the techniques for
dealing with the unboundedness of lock counters and of the call stack can be straight-
forwardly carried over from the non-context-sensitive setting of [13], as sketched in
Section 1.2. All mentioned abstractions are compatible with our notion of deadlock-
sensitive simulation in that being more abstract —identifying more locks, choosing a
smaller bound on the lock counters or on the allowed stack depth— leads to a larger
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behaviour wrt. our notion of simulation. This allows an incremental approach, starting
from a coarse-grained abstraction, which may be refined in case of spurious deadlocks.
To find sound abstractions for process creation as the last source of infinity seems more
challenging and a naive approach by simply summarizing processes by their point of
creation is certainly not enough. We have developed a prototype implementation of the
state-exploration part in the monomorphic setting of [13]. We plan to adapt the imple-
mentation to the more general setting and to extend it with implementing type inference.

For lack of space, all proofs have been omitted here. Further details can found in an
extended version of this work (cf. the technical report [14]).
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Abstract. Automatic test case generation techniques rely on a descrip-
tion of the input data that the unit under test is intended to handle. For
heap data structures, such a description is typically expressed as some
form of object invariant. If a program may create structures that violate
the invariant, the test data generated using the invariant systematically
ignores possible inputs and, thus, potentially misses bugs. In this paper,
we present a technique that detects violations of object invariants. We
describe three scenarios in which traditional invariant checking may miss
such violations. Based on templates that capture these scenarios, we syn-
thesize parameterized unit tests that are likely to violate invariants, and
use dynamic symbolic execution to generate inputs to the synthesized
tests. We have implemented our technique as an extension to Pex and
detected a significant number of invariant violations in real applications.

1 Introduction

Automatic test case generation techniques, such as random testing or symbolic
execution, rely on a description of the input data that the unit under test (UUT)
is intended to handle. Such a description acts as a filter for undesirable input
data. It is usually expressed as code in the test driver or as a method precondition
that specifies the valid arguments for the method under test. When the inputs
are heap data structures, some test case generators use predicates that express
which instances of a data structure are considered valid. In an object-oriented
setting, these predicates are often called class or object invariants.

Invariants may be provided by the programmer in the form of contracts,
such as in the random testing tool AutoTest [11] for Eiffel and in the dynamic
symbolic execution tool Pex [19] for .NET, or by the tester, like in the Korat [1]
tool for Java, which exhaustively enumerates data structures that satisfy a given
predicate up to a bound. Invariants may also be inferred by tools like the Daikon
invariant detector [4], which is used by the symbolic execution tool Symbolic Java
PathFinder [15] for obtaining input constraints on a UUT.

Using object invariants to generate test data requires the invariants to accurately
describe the data structures a program may create. When an invariant is too weak,
i.e., admits more data structures than the program may create, the test case gen-
erator may produce undesirable inputs, which are however easily detected when in-
specting failing tests. A more severe problem occurs when an invariant is too strong,
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i.e., admits only a subset of the data structures the program might actually create.
The test case generator may then not produce desirable inputs since they are filtered
out due to the overly strong invariant. Consequently, the UUT is executed with a
restricted set of inputs, which potentially fail to exercise certain execution paths
and may miss bugs. Too strong invariants occur, for instance, when programmers
specify invariants they intend to maintain but fail to do so due to a bug, when they
fail to capture all intended program behaviors in the invariant, or when invariants
are inferred from program runs that do not exercise all relevant paths. Therefore, it
is essential that invariants are not only used to filter test inputs but are also checked
as part of test oracles. However, checking object invariants is very difficult as shown
by work on program verification [3,12]. In particular, it is generally not sufficient
to check at the end of each method that the invariant of its receiver is maintained.
This traditional approach [10], which is for instance implemented in Pex and Au-
toTest, may miss invariant violations when programs use common idioms such as
direct field updates, inheritance, or aggregate structures (see Sect. 2).

To address this issue, we propose a technique for detecting previously missed
invariant violations by synthesizing parameterized unit tests (PUTs) [20] that
are likely to create broken objects, i.e., class instances that do not satisfy their
invariants. The synthesis is based on templates that capture the situations in
which traditional invariant checking is insufficient. We use dynamic symbolic
execution (DSE) [7], also called concolic testing [16], to find inputs to the syn-
thesized PUTs that actually violate an invariant.

Whenever our approach detects an invariant violation, the programmer has to
inspect the situation to decide which of the following three cases applies: (1) The
object invariant is stronger than intended. In this case, one should weaken the
invariant. (2) The invariant expresses the intended properties, but the program
does not maintain it. This case constitutes a bug that should be fixed. (3) The
invariant expresses the intended properties and can, in principle, be violated
by clients of the class, but the entire program does not exhibit such violations.
For instance, the class might provide a setter that violates an invariant when
called with a negative argument, but the program does not contain such a call.
In such cases, one should nevertheless adapt the implementation of the class to
make the invariant robust against violations for future program changes during
maintenance and for other clients of the class during code reuse.

The contributions of this paper are as follows:

- It identifies an important limitation of current test case generation approaches
in the treatment of object invariants. In particular, existing approaches that
use invariants as filters on input data do not sufficiently check them, if at all.

- It presents a technique that detects invariant violations by synthesizing PUTs
based on templates and exploring them via DSE.

- It demonstrates the effectiveness of this technique by implementing it as an
extension to Pex and using it on a suite of open source C# applications.

Outline. Sect. 2 illustrates the situations in which the traditional checks for
object invariants are insufficient. Sect. 3 gives an overview of our approach.
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Sect. 4 explains how we select the operations to be applied in a synthesized
test, and Sect. 5 describes the templates used for the synthesis. We discuss our
implementation in Sect. 6 and present the experimental evaluation in Sect. 7.
We review related work in Sect. 8 and conclude in Sect. 9.

2 Violating Object Invariants

1 public class Person {
2 Account account ;
3 public int salary ;
4
5 inv 0 < account . balance + salary ;
6
7 public void Spend1 (int amount ) {
8 account . Withdraw (amount );
9 }

10
11 public void Spend2 (int amount ) {
12 account .balance -= amount ;
13 }
14 }
15
16 public class Account {
17 public int balance ;
18
19 public void Withdraw ( int amount ) {
20 balance -= amount ;
21 }
22 }
23
24 public class SavingsAccount : Account {
25 inv 0 <= balance ;
26 }

Fig. 1. A C# example on invariant violations.
We declare invariants using a special inv key-
word and assume that fields hold non-null val-
ues.

We present three scenarios in which
the traditional approach of check-
ing at the end of each method
whether it maintains the invariant
of its receiver is insufficient. These
scenarios have been identified by
work on formal verification and to-
gether with a fourth scenario—call-
backs, which are not relevant here
as explained in Sect. 8—have been
shown to cover all cases in which
traditional invariant checking does
not suffice [3]. We assume that in-
variants are specified explicitly in
the code as contracts. However, our
technique applies equally to predi-
cates that are provided as separate
input to the test case generator or
invariants that have been inferred
from program runs.

We illustrate the scenarios using the C# example in Fig. 1. For simplicity,
we assume that all fields hold non-null values. A Person holds an Account and
has a salary. An Account has a balance. Person’s invariant (line 5) requires
that the sum of the account’s balance and the person’s salary is positive. A
SavingsAccount is a special Account whose balance is non-negative (line 25).
In each of the following scenarios, we consider an object p of class Person that
holds an Account a.

Direct field updates: In most object-oriented languages, such as C++, C#,
and Java, a method may update not only fields of its receiver but of any object
as long as the fields are accessible. For instance, method Spend2 (which is an
alternative implementation of Spend1) subtracts amount from the account’s
balance through a direct field update instead of calling method Withdraw. Such
direct field updates are common among objects of the same class (say, nodes of
a list) or of closely connected classes (say, a collection and its iterator). If a is a
SavingsAccount, method Spend2 might violate a’s invariant by setting balance
to a negative value. A check of the receiver’s invariant at the end of method
Spend2 (here, Person object p) does not reveal this violation. In order to detect
violations through direct field updates, one would have to check the invariants
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of all objects whose fields are assigned to directly. However, these objects are
not statically known (for instance, when the direct field update occurs within a
loop), which makes it difficult to impose such checks.

Subclassing: Subclasses may restrict the possible values of a field inherited
from a superclass, i.e., they strengthen the invariant for this field, as shown by
class SavingsAccount. Methods declared in the superclass are typically designed
for and tested with instances of the superclass as their receiver, and thus the tests
check only the weaker superclass invariant. When such methods are inherited by
the subclass and called on subclass instances, they may violate the stronger
subclass invariant. In our example, in case a is a SavingsAccount, calling the
inherited method Withdraw on a might set balance to a negative value and
violate the invariant of the subclass. To detect such violations, one would have
to re-test every inherited method whenever a new subclass is declared. Moreover,
subclassing makes the invariant checks for direct field updates even more difficult
because one would have to consider all subclasses for the objects whose fields are
updated. For instance, when introducing SavingsAccount, testing Withdraw on
a subclass instance is not sufficient; one has to also re-test method Spend2 to
detect the invariant violation described in the previous scenario.

Multi-object invariants: Most data structures are implemented as aggre-
gations of several objects. For such aggregate structures, it is common that an
object invariant constrains and relates the states of several objects. In our ex-
ample, the invariant of class Person relates the state of a Person object to the
state of its Account. For such multi-object invariants, modifying the state of one
object might break the invariant of another. For instance, when Account a ex-
ecutes method Withdraw, it might reduce the balance by an amount such that
it violates the invariant of Person p. To detect such violations, one would have
to check the invariants of all objects that potentially reference a, e.g., the invari-
ants of Person objects sharing the account, of collections storing the account,
etc. These objects are not statically known and cannot even be approximated
without inspecting the entire program, which defeats the purpose of unit testing.

These scenarios demonstrate that the traditional way of checking object in-
variants may miss violations in common situations and that the checks cannot
be strengthened in any practical way. Therefore, simply including all necessary
invariant checks in the test oracle is not feasible; other techniques are required
to detect invariant violations.

3 Approach

For a given UUT we synthesize client code in the form of PUTs to detect in-
variant violations. The synthesis is based on a set of four fixed templates that
capture the three scenarios of Sect. 2. Each template consists of a sequence of
candidate operations, i.e., updates of public fields and calls to public methods.
These operations are applied to the object whose invariant is under test or, in
the case of aggregate structures, its sub-objects. (Note that since our approach
synthesizes client code, it uses public candidate operations. To also synthesize
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code of possible subclasses, one would analogously include protected fields and
methods.) The candidate operations are selected conservatively from the UUT
based on whether they potentially lead to a violation of the object invariant. De-
pending on the template, additional restrictions are imposed on the candidate
operations, e.g., that they are inherited from a superclass. By instantiating the
templates with candidate operations, the synthesized PUTs become snippets of
client code that potentially violate the object invariant.

Alg. 1. Synthesis of parameterized unit tests.
1 function Synthesize(class, inv, len)
2 candOps ← ComputeCandOps(class, inv)
3 puts ← GenFieldCombs(candOps, len)
4 puts ← puts + GenMultiCombs(candOps, len, inv)
5 puts ← puts + GenSubCombs(candOps, len)
6 puts ← puts + GenAllCombs(candOps, len)
7 return AddSpecs(puts)

Alg. 1 shows the gen-
eral strategy for the
PUT synthesis. Func-
tion Synthesize takes
the class of the object
to which candidate op-
erations should be ap-
plied (class), the object
invariant under test (inv), and the desired length of the PUTs to be synthesized
(len). The last argument prevents a combinatorial explosion by bounding the
number of operations in each synthesized PUT. Synthesize returns a list of
PUTs. Each PUT consists of a sequence of candidate operations and additional
specifications, such as invariant checks, which are inserted by AddSpecs and
explained in Sect. 4. The algorithm first determines the set of candidate opera-
tions (candOps) of class that could potentially violate the object invariant inv.
It then synthesizes the PUTs for each of the three scenarios using the corre-
sponding templates. We discuss the selection of candidate operations as well as
these templates in detail in the next sections.

We complement the templates, which cover specific scenarios for violating in-
variants, by an exhaustive enumeration of combinations (of length len) of candi-
date operations. In the algorithm, these combinations are computed by function
GenAllCombs. As we will see in Sect. 5, this exhaustive exploration is useful
for multi-object invariants where the actual violation may happen by calling a
method on a sub-object of an aggregate structure.

For a given UUT, we apply function Synthesize for each class in the unit
and the invariant it declares or inherits. We perform this application repeatedly
for increasing values of len. All operations in the resulting PUTs have argu-
ments that are either parameters of the enclosing PUT or results of preceding
operations; all such combinations are tried exhaustively, which, in particular, in-
cludes aliasing among the arguments. This makes the PUTs sufficiently general
to capture the scenarios of the previous section, i.e., to detect invariant violations
caused by these scenarios. We employ dynamic symbolic execution (DSE) [7,16]
to supply the arguments to the PUTs.

4 Candidate Operations

To synthesize client code that violates object invariants, we select candidate
operations from the public fields and methods of the UUT. To reduce the number
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of synthesized PUTs, we restrict the operations to those that might violate a
given invariant. Such operations are determined by intersecting the read effect
of the invariant with the write effect of the operation. The read effect of an
invariant is the set of fields read in the invariant. If the invariant contains calls
to side-effect free methods, the fields (transitively) read by these methods are also
in its read effect. The write effect of a method is the set of fields updated during
an execution of the method including updates performed through method calls.
The write effect of a field update is the field itself. Note that the effects are sets of
(fully-qualified) field names, not concrete instance fields of objects. This allows us
to use a simple, whole-program static analysis that conservatively approximates
read and write effects without requiring alias information (see Sect. 6).

public class C {
public int x;
int y;

inv x == 42;

public void SetX() { x = y; }

public void SetY( int v) { y = v; }
}

To illustrate these concepts, consider
the example on the right. The read effect
of the invariant is {C.x} indicating that
only the value of C’s field x determines
whether the invariant holds. The write
effect of an update to the public field x
and of method SetX is {C.x}, while method SetY has write effect {C.y}. By
intersecting these read and write effects, we determine that field updates of x
and calls to SetX must be included in the candidate operations.

void PUT_0 (C o, int v) {
assume o != null && o. Invariant();
o.x = v;
assert o.Invariant();

}
void PUT_1 (C o) {

assume o != null && o. Invariant();
o.SetX ();
assert o.Invariant();

}

With these operations, the exhaus-
tive enumeration of sequences of length 1
(function GenAllCombs in Alg. 1) pro-
duces the two PUTs on the right (PUT_0,
PUT_1). As shown here, each synthesized
test expects as argument a non-null ob-
ject o whose invariant holds, applies the synthesized sequence of candidate opera-
tions to o, and then asserts that o’s invariant still holds. We encode the invariant
via a side-effect free boolean method Invariant and use assume statements to
introduce constraints for the symbolic execution. The assume and assert state-
ments are inserted into the PUTs by function AddSpecs of Alg. 1. The input
object o is constructed using operations from the UUT, for instance, a suitable
constructor. As explained above, the arguments of candidate operations (like the
value v for the assignment to o.x in the first test) are either parameters of the
PUT and supplied later via DSE, or results of preceding operations.

Whether a method call violates an invariant may not only depend on its
arguments but also on the state in which it is called. For instance, a call to SetX
violates the invariant only if y has a value different from 42. Therefore, tests that
apply more than one candidate operation must take into account the possible
interactions between operations. Consequently, for each candidate operation opd

that might directly violate a given object invariant, we compute its read effect
and include in the set of candidate operations each operation opi whose write
effect overlaps with this read effect and might, therefore, indirectly violate the
invariant. To prune the search space, we record that opi should be executed
before opd. This process iterates until a fixed point is reached.
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void PUT_2 (C o, int v) {
assume o != null && o. Invariant();
o.SetY(v);
assume o.Invariant();
o.SetX ();
assert o.Invariant();

}

In our example, method SetX has read
effect {C.y}. As a result, method SetY is
used in the PUTs as a candidate oper-
ation that should be called before SetX.
Therefore, the exhaustive enumeration of
sequences of length 2 includes the PUT above (PUT_2). Note that, by assuming
o’s invariant before the call to SetX, we suppress execution paths that have al-
ready been tested in a shorter PUT, i.e., paths that violate o’s invariant before
reaching the final operation.

5 Synthesis Templates

We now present the templates that capture the three scenarios of Sect. 2. Be-
sides other arguments, each template expects an object r to which candidate
operations are applied, and an object o whose invariant is under test. When the
templates are used to synthesize an entire test, these two objects coincide and we
include only one of them in the PUT. The templates are also used to synthesize
portions of larger PUTs, and then r and o may refer to different objects.

5.1 Direct Field Updates

void DFU(r, o, a0..aN) {
assume r != null;
assume o != null && o. Invariant();
Op0(r, ...); ... OpM(r, ...);
assume o.Invariant();
r.f = v;
assert o.Invariant();

}

The direct-field-update template tries to
violate the invariant of an object o by as-
signing to a field of r (or to an element
of r when r is an array). The template
has the form shown on the right. It ap-
plies a sequence of operations (Op0 to OpM) to r to create a state in which the
subsequent update of r.f may violate o’s invariant. For instance, if the invariant
relates f to private fields of the same object, these operations may be method
calls that update these private fields. The operations Op0 to OpM are selected
from the set of candidate operations and may include a method call or field
update more than once. Their arguments as well as the right-hand side v of the
last field update are either parameters of the template (a0 to aN) or results of
preceding operations; all such combinations are tried exhaustively.

Alg. 2. Synthesis of parameterized unit tests
from the direct-field-update template.
1 function GenFieldCombs(candOps, len)
2 puts ← []
3 combs ← GenAllCombs(candOps, len−1)
4 fieldOps ← FieldOps(candOps)
5 foreach comb in combs
6 foreach fieldOp in fieldOps
7 puts ← puts + [comb + [fieldOp]]
8 return puts

The synthesis of PUTs from
this template is performed by
function GenFieldCombs in
Alg. 2, which is invoked from
Alg. 1. Line 3 generates all possi-
ble sequences of length len − 1
from the set of candidate op-
erations. Line 4 selects the set
fieldOps of all field updates from
the set of candidate operations, candOps. Lines 5–7 append each field update
fieldOp to each of the sequences of operations computed earlier.
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void PUT_DFU ( Person o, int a, int s) {
assume o != null && o.Invariant();
o.Spend1 (a);
assume o. Invariant();
o.salary = s;
assert o. Invariant();

}

Consider an invocation of the syn-
thesis with this template, where the
object to which operations are applied
and the object whose invariant is being
tested are the same instance of class
Person from Fig. 1. The synthesized PUTs of length 2 include the test above
(PUT_DFU). Symbolically executing this PUT produces input data that causes
the assertion of the invariant to fail; for instance, a Person object with salary
100 and whose Account has balance 100 for o, the value 150 for a, and any
value less than or equal to 50 for s.

5.2 Subclassing
void S(r, o, a0..aN) {

assume r != null;
assume o != null && o. Invariant();
Op0(r, ...); ... OpM(r, ...);
assume o.Invariant();
Op_super (r, ...);
assert o.Invariant();

}

The template for the subclassing scenario
(on the right) aims at breaking the in-
variant of an object by invoking inher-
ited operations. It exhaustively applies a
number of operations to an object of the
subclass, including any operations inherited from a superclass, and requires that
the last operation is an inherited one (i.e., an update of an inherited field or
a call to an inherited method) to reflect the subclassing scenario described in
Sect. 2. Like in the template for direct field updates, the first M + 1 operations
(Op0 to OpM) construct a state in which the final inherited operation may violate
o’s invariant as this operation was designed to maintain the weaker invariant
of a superclass. This template is useful only when a subclass strengthens the
invariant of a superclass with respect to any inherited fields. We identify such
subclasses using a simple syntactic check: if the read effect of the invariant de-
clared in the subclass includes inherited fields, we conservatively assume that
the invariant is strengthened with respect to those.

void PUT_S( SavingsAccount o, int a) {
assume o != null && o.Invariant();
o.Withdraw (a);
assert o. Invariant();

}

The synthesis of PUTs based on
this template is performed by function
GenSubCombs, which is invoked from
Alg. 1. GenSubCombs is analogous to
GenFieldCombs (Alg. 2) except that on line 4 it selects the candidate op-
erations that are inherited from a superclass. Consider an invocation of the
synthesis with this template, where the object to which operations are applied
and the object whose invariant is being tested are the same instance of class
SavingsAccount from Fig. 1. This class strengthens the invariant of its super-
class Account for the inherited field balance. The synthesized PUTs of length
1 include the test above (PUT_S). The symbolic execution of this PUT pro-
duces input data that causes the assertion of the invariant to fail; for instance, a
SavingsAccount object with a balance of 0 for o and any positive value for a.

5.3 Multi-object Invariants

Multi-object invariants describe properties of aggregate structures. The invariant
of such a structure may be violated by modifying its sub-objects. For instance,
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one might be able to violate a Person’s invariant by reducing the balance of its
account. Such violations are possible when sub-objects of the aggregate structure
are not properly encapsulated [12] such that clients are able to obtain references
to them: when a client obtains a direct reference to the Account sub-object, it
can by-pass the Person object and modify the account in ways that violate the
Person’s invariant. To reflect this observation, we use two templates that allow
clients to obtain references to sub-objects of aggregate structures. One template
uses leaking, i.e., it passes a sub-object from the aggregate structure to its client.
The other one uses capturing, i.e., it passes an object from the client to the
aggregate structure and stores it there as a sub-object. Leaking and capturing
are the only ways in which clients may obtain a reference to a sub-object of an
aggregate structure.

Leaking. A method is said to leak an object l if the following three conditions
hold: (1) the method takes as an argument (or receiver) an object o that (directly
or transitively) references l, (2) the method returns the reference to l or assigns
it to shared state, and (3) a field of l is dereferenced in o’s invariant. We use a
static analysis to approximate the operations that might leak a sub-object (see
Sect. 6). These operations include reading public fields with reference types.

For example, assume that class Person from Fig. 1 provides a public getter
GetAccount for field account. This method leaks the account sub-object of its
receiver since (1) its receiver directly references the account, (2) it returns the ac-
count, and (3) account is dereferenced in the invariant of Person. Consequently,
this getter enables clients to obtain a reference to the account sub-object and
violate Person’s invariant, for instance by invoking Withdraw on the account.

void L(r, o, a0..aN) {
assume r != null;
assume o != null && o. Invariant();
Op0(r, ...); ... OpM(r, ...);
var l = Op_leaking(r, ...);
... // operations on leaked 'l'
assert o.Invariant();

}

In the template for leaking (on the
right), we first apply a number of oper-
ations to create a state in which a sub-
object l may be leaked via the operation
Op_leaking. Once the object has been
leaked, we try to violate o’s invariant by applying operations to the leaked ob-
ject l (indicated by the ellipsis with the corresponding comment in the above
template). To obtain a suitable sequence of operations on l, we apply function
Synthesize (Alg. 1) recursively with the class of the leaked object l and the in-
variant of o. This recursive call selects candidate operations on l that may break
o’s invariant, for instance by updating a public field of l or via complex combi-
nations of scenarios such as repeated leaking. Note that this template attempts
to violate o’s invariant; whether l’s invariant holds is an orthogonal issue.

void PUT_L (Person o, int a) {
assume o != null && o. Invariant();
var l = o.GetAccount();
// exhaustive enumeration
assume l != null && o. Invariant();
l. Withdraw (a);
assert o.Invariant();

}

Based on this template, we obtain the
PUT on the right (PUT_L) for objects of
class Person from Fig. 1. In this test,
method GetAccount leaks the Person’s
account object. The recursive applica-
tion of function Synthesize determines method Withdraw as a candidate op-
eration because its write effect includes balance, which is also in the read ef-
fect of Person’s invariant. Withdraw is selected by the exhaustive enumeration
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(function GenAllCombs of Alg. 1) and would not be selected by any of the
other templates. Symbolically executing this PUT produces input data that
causes the assertion of the invariant to fail; for instance, a Person object with
salary 100 and whose Account has balance 100 for o, and a value of at least
200 for a.

Capturing. A method is said to capture an object c if: (1) the method takes
as arguments two objects o and c (o or c could also be the receiver), (2) the
method stores a reference to c in a location reachable from o, and (3) the field
in which c is stored is dereferenced in o’s invariant. Updating a field f that has
a reference type is also considered capturing if f is dereferenced in o’s invariant.

void C(r, o, c, a0..aN) {
assume r != null;
assume o != null && o. Invariant();
Op0(r, ...); ... OpM(r, ...);
Op_capturing(r, c, ...);
... // operations on captured 'c'
assert o.Invariant();

}
void Cctor (c, a0..aN) {

assume c != null;
Op0(c, ...); ... OpM(c, ...);
var o = new ctor(c, ...);
... // operations on captured 'c'
assert o.Invariant();

}

The template for capturing (on the
right) is analogous to leaking. In partic-
ular, it also uses a recursive application
of function Synthesize to determine the
operations to be applied to the captured
object. In the common case that the cap-
turing operation is a constructor of ob-
ject o, the template is adjusted as shown
on the right (Cctor). This adjustment en-
sures that o is actually created with a
constructor that captures c instead of a
constructor selected by the symbolic execution. Note that before the capturing
operation we could also allow a number of operations on c with the goal of
bringing it to a state such that, for instance, the precondition of Op_capturing
is satisfied or the capturing execution path is taken. We omit such operations to
simplify the presentation.

Alg. 3. Synthesis of parameterized unit tests from the
leaking and capturing templates.
1 function GenMultiCombs(candOps, len, inv)
2 puts ← []
3 multiOps ← MultiOps(candOps)
4 for i = 0 to len − 2 do
5 prefixes ← GenAllCombs(candOps, i)
6 foreach multiOp in multiOps
7 class ← GetClass(multiOp)
8 suffixes ← Synthesize(class, inv, len − 1 − i)
9 foreach prefix in prefixes
10 foreach suffix in suffixes
11 put ← prefix + [multiOp] + suffix
12 puts ← puts + [put]
13 return puts

Synthesis. The synthe-
sis of PUTs based on
these templates is per-
formed by the Gen-
MultiCombs function
in Alg. 3. On line 3,
a new set of candidate
operations, multiOps, is
created by selecting from
candOps the operations
that leak or capture ob-
jects according to the
above criteria. Since the
synthesis for these templates includes a recursive application of Synthesize, we
must split the overall length of the PUT between the operations occurring before
the leaking or capturing operation and the operations on the leaked or captured
object occurring after. To explore all possible splits, we generate all combina-
tions of candidate operations of length up to len − 2 to be applied before the
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leaking or capturing operation (lines 4–5). These operations create a state in
which the next operation can leak or capture an object. After invoking any such
operation, we recursively apply function Synthesize of Alg. 1 by taking into
account the class of the leaked or captured object (class) and the original object
invariant under test, inv (lines 6–8). Therefore, suffixes is a list of sequences
of operations to be applied to the leaked or captured object. On lines 9–12, we
combine the synthesized sub-sequences of lengths i, 1, and len − 1 − i.

6 Implementation

We have implemented our technique as an extension to Pex. Our implemen-
tation builds a static call-graph for the entire UUT that includes information
about dynamically-bound calls. The call-graph is used to compute the read and
write effects of all methods in the UUT with a conservative, inter-procedural,
control-flow insensitive static analysis on the .NET bytecode. The effects de-
termine the candidate operations that might, directly or indirectly, lead to an
invariant violation (see Sect. 4). Our effect analysis is extended to also approx-
imate the sets of leaking and capturing operations using their read and write
effects, respectively, in addition to the read effect of the invariant under test. For
simplicity, we only consider leaking operations that return the leaked object or
store it in a public field of their receiver.

To detect invariant violations more efficiently, we carefully chose the order
in which the synthesis (Alg. 1) applies the templates of Sect. 5 and exhaustive
enumeration. The templates for direct field updates and multi-object invariants
have proven to most effectively detect invariant violations and are therefore
explored first. The exhaustive enumeration comes last as it produces the largest
number of PUTs and requires the most effort in the symbolic execution.

7 Experimental Evaluation

We have evaluated the effectiveness of our technique using ten C# applications,
which were selected from applications on Bitbucket, CodePlex, and GitHub con-
taining invariants specified with Code Contracts [5]. This section focuses on our ex-
periments with the nine applications for which invariant violations were detected.

Tab. 1 summarizes the results of our experiments. The third and fourth
columns show the total number of classes and the number of classes with in-
variants for each application, respectively. We have tested the robustness of all
invariants in these applications. Note that the total number of classes refers only
to the classes that were included in the evaluation and not to all classes of each
application. We have left out only classes that were defined in dynamic-link li-
braries (DLLs) containing no object invariants. The two rightmost columns of
Tab. 1 show the unique and total numbers of invariant violations detected with
our technique. The unique number of violations refers to the number of invari-
ants that were violated at least once. The total number of violations refers to

https://bitbucket.org/
http://www.codeplex.com/
https://github.com/
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Table 1. Summary of results. The third and fourth columns show the total number
of classes and the number of classes with invariants for each application. The two
rightmost columns show the unique and total numbers of invariant violations detected
with our technique.

Application Description Classes Classes Invariant
w/ invariants violations

unique total
Boogie Intermediate verification engine1 355 144 21 64
ClueBuddy GUI application for board game2 44 4 1 2
Dafny Programming language/verifier3 310 113 15 53
Draugen Web application for fishermen4 36 5 3 3
GoalsTracker Various web applications5 63 5 1 1
Griffin .NET and jQuery libraries6 31 3 1 1
LoveStudio IDE for the LÖVE framework7 66 7 2 2
Encore ‘World of Warcraft’ emulator8 186 30 1 4
YAML YAML library9 76 6 1 2

the number of distinct PUTs that led to invariant violations and may include
violations of the same object invariant multiple times.

When running Pex with our technique, we imposed an upper bound of 3 on
the number of operations per PUT, and an upper bound of 300 on the number
of synthesized PUTs per object invariant. It turned out that all unique invari-
ant violations were detected already with 2 operations per PUT; increasing the
bound to 4 for some projects did not uncover previously undetected invariant
violations. On average, 14.7 PUTs were synthesized per second. We then applied
Pex to generate input data for the synthesized PUTs forcing Pex to use only
public operations of the UUT (to guarantee that all inputs are constructible in
practice). We counted the number of unique invariant violations and of distinct
PUTs that led to invariant violations. We imposed a timeout of 3 minutes for
the DSE in Pex to generate inputs for and run the synthesized PUTs. Here, we
report the number of invariant violations that were detected within this time
limit. Within this time limit, the first invariant violation was detected within 4–
47 seconds (12.8 seconds on average) for all object invariants in all applications.

1 http://boogie.codeplex.com, rev: f2ffe18efee7
2 https://github.com/AArnott/ClueBuddy,

rev: c1b64ae97c01fec249b2212018f589c2d8119b59
3 http://dafny.codeplex.com, rev: f2ffe18efee7
4 https://github.com/eriksen/Draugen ,

rev: dfc84bd4dcf232d3cfa6550d737e8382ce7641cb
5 https://code.google.com/p/goalstracker , rev: 556
6 https://github.com/jgauffin/griffin,

rev: 54ab75d200b516b2a8bd0a1b7cfe1b66f45da6ea
7 https://bitbucket.org/kevinclancy/love-studio, rev: 7da77fa
8 https://github.com/Trinity-Encore/Encore,

rev: 0538bd611dc1bc81da15c4b10a65ac9d608dafc2
9 http://yaml.codeplex.com, rev: 96133

http://boogie.codeplex.com
https://github.com/AArnott/ClueBuddy
http://dafny.codeplex.com
https://github.com/eriksen/Draugen
https://code.google.com/p/goalstracker
https://github.com/jgauffin/griffin
https://bitbucket.org/kevinclancy/love-studio
https://github.com/Trinity-Encore/Encore
http://yaml.codeplex.com
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The total violations found by our technique may be classified into the fol-
lowing categories based on the template that was instantiated: 60 due to direct
field updates, 41 due to leaking, and 25 due to capturing. The remaining 6 vi-
olations were detected by the exhaustive enumeration. Out of these 6 invariant
violations, 5 are also detected by the version of Pex without our technique, i.e.,
with the traditional approach of checking the invariant of the receiver at the
end of a method. The last violation requires a sequence of two method calls
and was detected only by our technique. This is because Pex could not generate
appropriate input data to the second method such that the invariant check at
the end of the method failed. In this case, the exhaustive enumeration served
as a technique for generating more complex input data. The object invariants
that were violated at least once can be classified into the following categories:
27 invariants were violated at least once due to direct field updates, 24 due to
leaking, 17 due to capturing, and 5 due to the exhaustive enumeration. Note
that in these applications we found no subclasses that strengthen the invariant
of their superclass with respect to any inherited fields. This is why no invariant
violations were detected with the subclassing template.

An example of an invariant violation detected by our technique in LoveStudio
is shown on the right. A StackPanel object has a LuaStackFrame array, and its
invariant holds if all array elements are non-null. In the PUT, method SetFrames
captures a0 depending on the value of a1. The last operation of the test assigns
a LuaStackFrame object to the array at a valid index a2. In case a3 is null, o’s
invariant is violated.

void PUT( StackPanel o,
LuaStackFrame[] a0 , bool a1 ,
int a2 , LuaStackFrame a3) {

assume o != null && o.Invariant();
o.SetFrames(a0 , a1 );
assume a0 != null && o.Invariant();
assume 0 <= a2 && a2 < a0.Length ;
a0[a2] = a3;
assert o. Invariant();

}

We have manually inspected all de-
tected invariant violations. Violations
detected with the direct-field-update
template reveal design flaws and can be
fixed by making fields private and pro-
viding setters that maintain the invari-
ants. Violations due to leaking or capturing could be fixed either by cloning
the leaked or captured objects, or by using immutable types in the interfaces
of the classes whose invariants are under test. The largest number of invariant
violations found with the leaking and capturing templates was detected in the
Boogie and Dafny applications, which declare several multi-object invariants in
their code.

The detected invariant violations indicate overly strong invariants in the sense
that they may be violated by possible clients of a UUT. These clients are not
necessarily present in a given application and, thus, the violations do not neces-
sarily reveal bugs. This behavior is to be expected for unit testing, where each
unit is tested independently of the rest of the application. Nevertheless, the de-
tected violations do indicate robustness issues that might lead to bugs during
maintenance or when classes are reused as libraries. We discussed the detected
invariant violations in Boogie and Dafny with the lead developer, Rustan Leino.
All of them seem to indicate robustness issues, which will be addressed by either
weakening the invariants or changing the design of the code.
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8 Related Work

Our approach to testing object invariants is inspired by static verification tech-
niques. Poetzsch-Heffter [14] pointed out that the traditional way of checking the
invariant of the receiver at the end of each method is insufficient. The checks he
proposed are sufficient for sound verification, but not suitable as unit test oracles
since they make heavy use of universal quantification. Some modular verification
techniques for object invariants [9,12] handle the challenges mentioned in Sect. 2,
but require annotation overhead that does not seem acceptable for testing.

We distilled our templates for test synthesis from a formal framework for
verification techniques for object invariants [3]. This framework identifies an ad-
ditional scenario (not presented in Sect. 2) involving a call-back. In this scenario,
a method L violates the invariant of its receiver r and then calls another method
M. If M performs a call-back r.N, method N finds the invariant of r broken, which
may lead to an error in the body of N or a violation of the invariant check at the
end of N. We omitted this scenario because Pex already detects such problems
while testing L. It attempts to generate inputs for L that violate the assertions
in method L and all methods it calls, in particular, the check of r’s invariant at
the end of N.

There are several test case generators for object-oriented programs that rely
on invariants, but miss the violations presented here. AutoTest [11], a random
testing tool for Eiffel, follows the traditional approach of checking the invariant
of the receiver at the end of each method. Pex [19] follows the same approach, but
asserts the invariant of the receiver only at the end of public methods. Korat [1]
and Symbolic Java PathFinder [15] do not check object invariants of the UUT
at all; they use invariants only to filter test inputs. All such tools may miss bugs
when object invariants are violated and would thus benefit from our technique.

Work on synthesizing method call sequences to generate complex input data
is complementary to ours. In fact, such approaches could be applied in place
of the object construction mechanism in Pex to generate input objects for our
PUTs. In certain cases, this might reduce the length of the synthesized tests since
fewer candidate operations may be required to generate the same objects. These
approaches include a combination of bounded exhaustive search and symbolic
execution [22], feedback-directed random testing [13], a combination of feedback-
directed random testing with concolic testing [6,2], evolutionary testing [21], an
integration of evolutionary and concolic testing [8], and source code mining [17].
Moreover, Palus [23] combines dynamic inference, static analysis, and guided
random test generation to automatically create legal and behaviorally-diverse
method call sequences. In contrast to existing work, our technique synthesizes
code that specifically targets violations of object invariants. This allows for a
significantly smaller search space restricted to three known scenarios in which
invariant violations may occur.

The work on method call synthesis most closely related to ours is Seeker [18],
an extension to Pex that combines static and dynamic analyses to construct
input objects for a UUT. More specifically, Seeker attempts to cover branches
that are missed by Pex. Even though this approach does not rely on object
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invariants, the negation of an invariant could be regarded as a branch to be
covered. However, some of the scenarios of Sect. 2 are not captured by Seeker’s
static analysis. For example, a multi-object invariant violation involves leaking or
capturing parts of an object’s representation, and might not necessarily involve
a sequence of missed branches. The same holds for subclassing.

9 Conclusion

We have presented a technique for detecting object invariant violations by syn-
thesizing PUTs. Given one or more classes under test, our technique uses a set
of templates to synthesize snippets of client code. We then symbolically execute
the synthesized code to generate inputs that might lead to invariant violations.
As a result, our technique may reveal critical defects in the UUT, which go un-
detected by existing testing tools. We have demonstrated the effectiveness of our
implementation on a number of C# applications with object invariants.
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Abstract. A Domain Specific Language (DSL) focuses on the essential
concepts in a certain problem domain, thus abstracting from low-level
implementation details. In combination with code generators, DSLs bring
software development closer to domain requirements. The development
of DSLs usually centers around the grammar and a code generator; there
is little attention for the semantics of the DSL. However, a formal seman-
tics is essential for reasoning about specifications in terms of the DSL
(i.e., DSL instances). We argue that the semantics should be expressed
independent of a code generator. Thus semantic issues can be revealed
that could otherwise remain undetected. We also use the semantics to
define the conformance of an implementation to a DSL instance, and to
automatically test conformance of the (generated) implementation code
to a DSL instance. We illustrate our approach using an industrial proto-
type DSL for collision prevention.
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1 Introduction

A Domain Specific Language (DSL, [19,20]) focuses on the essential concepts
in a certain problem domain, thus abstracting from implementation details. By
trading generality for expressiveness in a limited domain, DSLs offer substantial
gains in ease of use compared with general-purpose programming and specifi-
cation languages in their domain of application [10]. In combination with code
generators, DSLs bring software development closer to domain requirements.

Modern implementation technologies like the Eclipse Modeling Framework
(EMF, [16]) seem to boost the applicability of DSLs, by providing support for
the development of the language, an editor, validation and code generation.
However, the development of a DSL usually centers around the syntax of the
language and a code generator; there is little attention for the semantics of the
DSL especially for language users. The overlooking of semantics gives rise to two
important questions that we address in this paper:
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1. what is the precise meaning of the language elements?
2. how to validate the generated implementation code?

The first question is about semantics: it is great that DSLs focus on domain
concepts, but what do we model exactly? In the literature, many approaches
can be found for giving semantics to a language [2,15]. In practice, the seman-
tics of a DSL is usually defined implicitly by implementing a transformation
from the DSL to a general purpose implementation language, e.g., C++. As one
would anyhow implement such a code generator, an implicit semantics comes for
free. However, such a semantics is entangled with the complexities of the target
language and requires that users of the DSL also understand its low-level imple-
mentation details, which contradicts the purpose of using DSLs. Thus, we aim
to describe the semantics independent of transformations to other languages.

The second question is about correctness: it is great that code is generated
automatically, but how do we know it is any good? This consists of two parts.
First of all, whether syntactically correct code is generated. Secondly, whether
the code conforms to the semantics of the DSL. We focus on the second part, and
assume that the code is syntactically correct. Various authors [3,5] have argued
that the correctness should be proved. However in practice code generators are
improved regularly and it is important to gain confidence in the generated code
in a lightweight manner. To this end we propose a testing approach.

Writing down a semantics in addition to writing a code generator requires
extra effort, and hence it needs to offer added value. The first advantage is a
better understanding of the language. As an extra benefit, many authors use
the constructed semantics to build simulators [14]. Instead of this, we define the
conformance of an implementation to a specification in terms of a DSL (i.e., a
DSL instance) and derive test cases to test the compliance of an (generated)
implementation with a DSL instance which describes its required behavior.

In addition to testing the generated code for a single DSL instance, the code
generator itself can be tested by providing several DSL instances. The latter
would be relevant as a regression test when the code generator is optimized or
extended, but we focus on testing the generated code for a single DSL instance.

To illustrate our approach, we consider a prototype DSL that we have de-
veloped in collaboration [12] with Philips Healthcare in the context of interven-
tional X-ray scanners (Fig. 1(a)). This DSL enables the description of various
sets of collision prevention rules, early validation (such as verification of safety
properties [9] and performance analysis [18]), and the generation and run-time
monitoring of implementation code [11].

By giving several demonstrations of this DSL, we have observed that most
of its features are understood quickly. Some advanced features, however, always
need quite a bit of explanation. Moreover, detailed discussions about the DSL
have revealed that some features can be interpreted in subtly different ways.
These observations motivate again the need for a precise description of the DSL
semantics. Moreover, as collision prevention is a safety-critical component, it is
important to gain confidence in the generated code.



Formalizing DSL Semantics for Reasoning and Conformance Testing 83

(a) Interventional X-ray
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Fig. 1. Industrial Study Case

Overview. In Section 2 we introduce the collision prevention DSL and describe
its structure. Its semantics is split into two modules and formalized in Section 3,
which forms the basis of the conformance testing as described in Section 4.
Section 5 reports some practical results from the formalization and testing. In
Section 6 we argue that studying formal semantics in a modular way can improve
reusability between languages. In Section 7 we discuss related work. Section 8
contains some concluding remarks and suggestions for future research.

2 Structural DSL Specification

We illustrate our approach using the interventional X-ray scanners (Fig. 1(a)) of
Philips Healthcare. These systems consist of several moving objects as sketched
in Fig. 1(b). For example, the Table can be moved horizontally, the Detector can
be moved vertically, and the CArm can be rotated around its center.

The software architecture of these systems includes a dedicated safety layer to
prevent collisions between these heavy objects; see Fig. 1(c). User speed requests
for object movements should pass the safety layer. The safety layer uses certain
internal resources called ‘geometric models’ to store data from the sensors. Ge-
ometric models store the shortest distance between each pair of objects. This
data is used for making decisions about user requests and determining the speed
requests that should be applied to the motors.

To describe the collision prevention logic of the safety layer from Fig. 1(c)
we use the DSL from [11]. Fig. 2 depicts an instance of this collision prevention
DSL1. The general structure of an instance of this DSL is as follows:

DSL Instance. An instance of the DSL is a tuple DI = 〈Obj,Mod, R〉 where:

– Obj is a finite set of objects;
– Mod is a finite set of geometric models;
– R ∈ P(Restr) is a finite set of restrictions (depending on Obj and Mod).

Each DSL instance declares a set of objects Obj and a set of geometric models
Mod. We assume these sets as context and do not mention them as subscripts in
the rest of the formalization. In Fig. 2, the object declarations correspond to the

1 For confidentiality reasons, numbers and details have been changed in this example.
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Fig. 2. Example Instance of the DSL

system depicted in Fig. 1(b) and the geometric model declarations imply that
the sensor data is stored in two geometric models, viz., Actuals and LookAhead.

In what follows we first relate the context declarations to the external inter-
faces of the safety layer. Afterwards we discuss the restrictions that form the
internal logic. The goal is to understand precisely the domain notions.

2.1 External Interfaces

The external interfaces of the safety layer in the architecture of Fig. 1(c) use two
concepts: speed request and geometric models value.

Speed Request. For each object, there are two kinds of movements, viz., ro-
tation and translation. We use the data type MovType to describe them:

MovType == {Rotation,Translation}

Each speed request contains for each object and movement a 3D vector. We use
the data type SpReq to describe them:

SpReq == Obj×MovType → R3

It should be noted that there is no language construct for speed requests.

Geometric Models Value. Each geometric model consists of the distances
between each pair of objects. We describe each geometric model as a distance
function d : Obj×Obj → R+

0 such that (for all o1, o2 ∈ Obj):
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– d(o1, o1) = 0;
– d(o1, o2) = d(o2, o1).

We use Dist to denote the set of distance functions for Obj. As depicted in
Fig. 1(b), the objects have shapes. Each distance value refers to the shortest
distance between a pair of objects, i.e., the distance between the closest pair of
points from these objects. The triangle inequality does not apply in terms of the
objects. We use the data type GeoVal to describe the geometric models value
for the set of models and objects:

GeoVal == Mod→ Dist

In the DSL syntax Distance[m](o1,o2) denotes the distance between objects
o1 and o2 in geometric model m.

2.2 Internal Logic

Finally, the collision prevention logic is specified in terms of restrictions. From
Fig. 2 one can see that each restriction consists of three parts.

Restriction. A restriction is a tuple (act, deact, eff ) ∈ Restr where:

– act ∈ Cond is an activation condition;
– deact ∈ Cond is a deactivation condition;
– eff ∈ P(Eff ) is a finite set of effects.

Condition, Expression. A condition is a function from geometric models value
to booleans, and an expression is a function from geometric models value to real
numbers. We use the data types Cond and Expr to describe them:

Cond == GeoVal→ Bool Expr == GeoVal→ R

As a syntactic shorthand, the activation or deactivation conditions can be omit-
ted from a restriction; in such cases the omitted condition is assumed to be true.
The constants in the conditions and expressions can be annotated by measure-
ment units (e.g., cm, dgps); we assume that all constants are transformed to a
default unit and do not consider this as part of the semantics.

Effect. There are two types of effects, viz., absolute and relative. We use the
data type LimType to describe them:

LimType == {Abs,Rel}

An effect is a tuple (lt, om, e) ∈ Eff where:

– lt ∈ LimType is a limit type;
– om ∈ P(Obj ×MovType) is a finite set of object movements;
– e ∈ Expr is an expression.
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3 DSL Semantics

Given a speed request from the user and a geometric models value from the
sensors, the speed request to the motors is determined by the DSL instance. The
DSL semantics consists of two modules. The first module is a symbolic transition
system that determines the active restrictions (Section 3.1). The second module
is a set of functions that compute the output speed request (Section 3.2).

3.1 Determining Active Restrictions

The active restrictions are determined by the first module which considers only
one of the inputs to the safety layer, viz., the geometric models value. We first
focus on a single restriction r = (actr, deactr, effr). Each restriction can be in
two states: active or passive. Initially each restriction r is passive. Given the
previous state (b ∈ Bool) and the current geometric models value (g ∈ GeoVal),
the current state of r is active if:

– the activation condition evaluates to true (i.e., actr(g)), or
– it was active in the previous state and the deactivation condition evaluates

to false (i.e., b ∧ ¬deactr(g))
It follows from the discussion above that if both the activation and the deactiva-
tion conditions evaluate to true, the current state is active. Fig. 3 illustrates these
rules as a symbolic transition system. The transition relation can be formalized
by the function CurrActr : Bool ×GeoVal→ Bool as follows:

CurrActr(b, g) = actr(g) ∨ (b ∧ ¬deactr(g))

For the set of restrictions R in DI = 〈Obj,Mod, R〉, this induces an augmented
symbolic transition system ASTSR = 〈Q,L, q, T 〉 such that:

– Q is a set of states;
– L : Q→ (R→ Bool) is a total and one-to-one labeling function;
– q ∈ Q is the initial state and L(q)(r) = False for all r ∈ R;
– T ⊆ Q × Cond × Q is a transition relation where the following properties

hold (for all p, q1, q2 ∈ Q, cond : Cond, f : R→ Bool, g ∈ GeoVal):

(q1, cond, q2) ∈ T ⇒ cond(g) =
∧
r∈R

(L(q2)(r) ⇔ CurrActr(L(q1)(r), g))

∧ (∃gv ∈ GeoVal . cond(gv)) (1)

f ∈ ran(L)⇔ f = L(q) ∨ (∃(p1, cond1, p2), . . . , (pn−1, condn−1, pn) ∈ T.

p1 = q ∧ pn = p ∧ f = L(p)) (2)

�� False

actr(g) ��

¬actr(g)

��
True

¬actr(g) ∧ deactr(g)

��

actr(g) ∨ ¬deactr(g)

��

Fig. 3. A Symbolic Transition System for R = {r}
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The labeling function indicates which restrictions are active; initially all re-
strictions are passive. Each transition symbolically represents the geometric
models values that enable the move from the source state to the target state.
Unreachable states (Eqn. (2)) and unsatisfiable transitions (Eqn. (1)) are not
considered. The notation ran(L) denotes the range of L.

This transition system is deterministic, i.e., the outgoing transitions of each
state are labeled with disjoint conditions. Moreover, in each state and for every
geometric models value there is an outgoing satisfiable transition. Fig. 3 depicts
the ASTSR for R = {r}; the transition labels are assumed to be satisfiable.

3.2 Computing Output Speed Requests

Output speed request computation is the second module of the semantics which
considers both inputs of the safety layer. In this section we first introduce the
semantics of a single restriction. Then the semantics of a set of restrictions is
discussed and applied for output speed request computation.

The effects of a restriction r = (actr, deactr, effr) are described in the context
of b ∈ Bool which denotes the current state of r. The function [[Effr]]b : Obj ×
MovType × LimType × GeoVal → P(R) specifies the active limits of r for each
object movement, limit type, and geometric models value:

[[Effr]]b(obj,m, �, g) = {v | b ∧ ∃om ∈ P(Obj×MovType), e ∈ Expr.

(�, om, e) ∈ effr ∧ (obj,m) ∈ om ∧ e(g) = v}

When r is active, for each object movement the most restrictive relative and
absolute limits are considered as the effects of r. Formally, we interpret r as a
partial function [[r]]b : Obj ×MovType × LimType×GeoVal � R such that:

[[r]]b(obj,m, �, g) = min([[Effr]]b(obj,m, �, g)) if [[Effr]]b(obj,m, �, g) 
= ∅

The set of restrictions R is interpreted in the context of B : R → Bool,
which denotes the current state of the restrictions. The set R is interpreted as
[[R]]B : Obj ×MovType × LimType × GeoVal → R. The notation R denotes the
two point compactification of real numbers: R = R ∪ {−∞,+∞}.

[[R]]B(obj,m, �, g) ={
min{[[r]]B(r)(obj,m, �, g) | r ∈ R} if (∃r ∈ R. (obj,m, �, g) ∈ dom([[r]]b))

DefLim (�) if ¬(∃r ∈ R. (obj,m, �, g) ∈ dom([[r]]b))

where dom([[r]]b) extracts the domain of r. For each geometric model value the
most restrictive limits specified by R are considered for each object movement.
If R does not specify a limit, an appropriate default value specified by DefLim :
LimType→ R is returned, i.e., DefLim (Rel) = 1 and DefLim (Abs) = +∞.

It should be noted that the effects of R are real numbers while (user/output)
speed requests are 3D vectors. The length of the requests to the motors is com-
puted by [[outSpeedR]]B : Obj ×MovType × GeoVal × SpReq→ R for the set of
restrictions R in the context of B as follows:
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[[outSpeedR]]B(obj,m, g, ur) =

min{[[R]]B(obj,m,Abs, g), [[R]]B(obj,m,Rel, g)× norm(ur(obj,m))}

where ur ∈ SpReq is the current speed request from the user and norm is defined
as norm((x, y, z)) =

√
x2 + y2 + z2. In the above definition min refers to the

definition of the minimum function for R. Since the relative limits and norm of
vectors are real numbers the computed speed is a real number (not −∞ or +∞).

Finally, the speed requests vectors computed by R that is applied to the
motors is specified by [[outputR]]B : GeoVal× SpReq→ SpReq as follows:

[[outputR]]B(g, ur)(obj,m) ={
ur(obj,m)

norm(ur(obj,m)) × [[outSpeedR]]B(obj,m, g, ur) if ur(obj,m) 
= (0, 0, 0)

(0, 0, 0) otherwise

It follows from the definition that the direction of the output is determined
by computing a unit vector from the user request. The norm of the output is
determined by the value computed by the DSL instance, i.e., outSpeedR.

3.3 Semantics of a DSL Instance

Finally, the semantics of a DSL instance combines the two modules that deter-
mine the active restrictions and that compute the output:

Definition 1 (Semantics of an Instance). Let DI = 〈Obj,Mod, R〉 be a DSL
instance. The semantics of DI is the pair (ASTSR, outputR).

In the following definition, we formalize the notion of execution for a DSL
instance and show how the two modules of the semantics are linked. These defi-
nitions are guided by the manner in which the safety layer communicates with its
interfacing components (Fig. 1(c)). The safety layer reads the geometric models
value and the speed request from the user simultaneously at fixed intervals of
time, and then produces a speed request to the motors.

Definition 2 (Run, Trace). Let DI = 〈Obj,Mod, R〉 be a DSL instance:

– A run of DI is a sequence q0(g1, ur1, or1) . . . (gn, urn, orn)qn of states (qi ∈
Q) and tuples of geometric models value, user speed requests, and outgoing
speed requests (gi ∈ GeoVal, uri, ori ∈ SpReq) such that:

(q0 = q) ∧ ∀i ∈ {1, . . . , n} . (ori = [[outputR]]L(qi)(gi, uri)) ∧
(∃cond ∈ Cond.(qi−1, cond, qi) ∈ T ∧ cond(gi))

The notation Runs(DI) denotes the set of all runs for DI.
– The set of traces for DI is defined as follows where ε is the empty trace:

Traces(DI) = {ε} ∪ {(g1, ur1, or1) . . . (gn, urn, orn)|
q0(g1, ur1, or1) . . . (gn, urn, orn)qn ∈ Runs(DI)}

Since ASTSR is deterministic, the mapping from Runs(DI) to Traces(DI) is
one-to-one.
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4 Conformance Testing

In this section we first specify for a DSL instance DI the set of test cases that
can determine whether a given implementation correctly implements DI (Sec-
tion 4.1). Inspired by model-based testing approaches we introduce a formalism
for describing the behavior of implementations and define the conformance of
an implementation to a DSL instance. Finally, we define the notions of test case
and test case execution. Afterwards we address the test selection problem in our
testing approach (Section 4.2). Then we discuss the procedure that we use in
practice for generating test cases based on the test selection criteria (Section 4.3).

In what follows we refer to sequences over a given set A by seq(A) such that:

seq(A) = {f : N � A | ∃n ∈ N . dom(f) = {1, . . . , n}}
We write [a, b, c] to denote the sequence {1 �→ a, 2 �→ b, 3 �→ c}.

4.1 Conformance of an Implementation to a DSL Instance

Several testing theories assume that the behavior of implementations can be
described using a particular formalism [7,17]. Thus an implementation is treated
as a black-box and its internal structure does not play a role in testing. This
assumption is called testing hypothesis. The model of an implementation does
not need to be known a-priori.

Definition 3 (Implementation). Any implementation controlling the move-
ments of Obj based on the values in Mod can be modeled as imp = (STS, output).
In this model STS = 〈Q, q, T 〉 is a symbolic transition system where:

– Q is a set of states;
– q ∈ Q is the initial state;
– T ⊆ Q× Cond×Q is a transition relation.

The function [[output]]STS,h : GeoVal×SpReq→ SpReq computes the output speed
request based on the execution history h ∈ seq(GeoVal) and the path navigated
so far in STS. The notation Imp denotes the set of all implementations for Obj
and Mod.

We use a structure similar to Def. 1 for our testing hypothesis. In Def. 3
the only assumption is that output computation is affected by the history of
execution. There is no reference to DSL concepts. On the other hand, Def. 1
explicitly refers to the current state of restrictions for output computation.

A run of imp is a sequence q0(g1, ur1, or1) . . . (gn, urn, orn)qn such that:

(q0 = q) ∧ ∀i ∈ {1, . . . , n} . (ori = [[output]]STS,[g1,...,gi](gi, uri)) ∧
(∃cond ∈ Cond.(qi−1, cond, qi) ∈ T ∧ cond(gi))

The set of traces for imp, i.e., Traces(imp), is defined similar to Def. 2. We
assume that implementations are deterministic, i.e., exactly one output request
is possible for each state, geometric models value, and user speed request.

In order to determine the correctness of an implementation, we define the
conformance of an implementation to a DSL instance.
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Definition 4 (Conformance). An implementation imp ∈ Imp conforms to
DI = 〈Obj,Mod, R〉 if and only if Traces(DI) = Traces(imp).

From Section 3 one can see that a DSL instance specifies exactly one output
request for any (reachable) state, geometric models value, and user request. In
this setting trace equivalence is a natural way of describing conformance.

From Def. 4 it follows that to establish the conformance of imp to DI the
set Traces(DI) should be tested on imp. To investigate the conformance of an
implementation to a DSL instance we perform test cases on it. A test case is an
experiment where in each step we supply a geometric models value and a user
speed request to the implementation and observe its output. Therefore, a test
case for imp ∈ Imp is an element of seq(GeoVal× SpReq× SpReq).

Let t = [(g1, ur1, or1), . . . , (gn, urn, orn)] ∈ seq(GeoVal×SpReq×SpReq) be a
test case. Formally, execution of t on (STS, output) can be described by Exec :
Imp× seq(GeoVal× SpReq× SpReq)→ {pass, fail} such that:

Exec((STS, [[output]]STS,h), t) ={
pass if ∀k.1 ≤ k ≤ n.[[output]]STS,[g1,...gk](gk, urk) = ork

fail otherwise

4.2 Coverage Criteria

Conformance of an implementation to an instance DI can be tested by executing
the set Traces(DI). This set is complete but requires executing an infinite number
of test cases. We define some coverage criteria for selecting a finite number of
test cases, namely in two ways:

– reformulate existing criteria that are relevant to the semantic modules;
– define criteria that test certain language-specific aspects.

In what follows we use the function ContextDI : Traces(DI)→ (R→ Bool) to
compute the state of DI after executing a trace t ∈ Traces(DI):

ContextDI(t) =

⎧⎪⎨⎪⎩
L(qm) if t = (g1, ur1, or1) . . . (gm, urm, orm) ∧

q0(g1, ur1, or1) . . . (gm, urm, orm)qm ∈ Runs(DI)

L(q) if t = ε

In [1] the authors discuss an exhaustive list of coverage criteria for different
artifacts (e.g., source code, specification). The node coverage criterion for graphs
can be formulated for the collision prevention DSL. In our context the only test
requirement will be to test the output speed request in each state. In each state
arbitrary user requests are considered for each object movement. This criterion
is specified in terms of the ASTS module of the semantics.

Definition 5 (Coverage Criterion 1 (CC1)). Let DI = 〈Obj,Mod, R〉 be a
DSL instance. A test suite T ⊆ Traces(DI) satisfies the criterion CC1 for DI if:

∀p ∈ Q ∃[(g1, ur1, or1), . . . , (gn, urn, orn)] ∈ T, 1 ≤ i ≤ n.

ContextDI((g1, ur1, or1), . . . , (gi, uri, ori)) = L(p)
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In addition to reformulating existing criteria for the DSL, it is possible to
formulate criteria that focus on language-specific features. We define a criterion
to test the definition of outSpeedR for each object (obj ∈ Obj) and movement
(m ∈ MovType) by enforcing two test requirements in each state:

– the output request should be determined by the relative limit for m of obj;
– the output request should be determined by the absolute limit for m of obj.

Hence the specification of this criterion refers to both semantic modules.

Definition 6 (Coverage Criterion 2 (CC2)). Let DI = 〈Obj,Mod, R〉 be a
DSL instance. A test suite T ⊆ Traces(DI) satisfies the criterion CC2 for DI if:

∀p ∈ Q, obj ∈ Obj,m ∈ MovType

∃[(g1, ur1, or1), . . . , (gn, urn, orn)], [(g′1, ur′1, or′1), . . . , (g′m, ur′m, or′m)] ∈ T

∃1 ≤ k ≤ n, 1 ≤ � ≤ m . norm(ork(obj,m)) = [[R]]L(p)(obj,m,Abs, gk) ∧
norm(or′�(obj,m)) = [[R]]L(p)(obj,m,Rel, g′�)× norm(ur′�(obj,m)) ∧
L(p) = ContextDI((g1, ur1, or1), . . . , (gk, urk, ork)) ∧
L(p) = ContextDI((g

′
1, ur

′
1, or

′
1), . . . , (g

′
�, ur

′
�, or

′
�))

4.3 Test Case Generation

Let DI = 〈Obj,Mod, R〉 be an instance with the semantics (ASTSR, outputR).
In order to generate test cases satisfying a coverage criterion CC we extract
outputR (i.e., the function module) automatically from a DSL instance. For
actual instances of the DSL, ASTSR contains a large number of transitions.
Therefore, for any criterion we try to explore ASTSR in an on-the-fly manner.

The semantics of DI implies that output computation is influenced by values
from the infinite domains SpReq and Dist. Our test case generation procedures
treat data items from these domains symbolically. For a given coverage criteria
CC we start exploring ASTSR from the initial state. In each state we sym-
bolically build a condition in terms of geometric model values and user speed
requests that refer to the requirements of CC. We use a solver to find a satisfi-
able assignment for the constructed condition. If the condition is satisfiable we
compute the next state and the expected output. Otherwise, the requirement is
not satisfiable. We repeat the same procedure until all requirements for CC are
satisfied or known to be infeasible. It should be noted that generating minimal
sets of test cases for each criterion is outside the scope of this paper.

Using a state-of-the-art SMT solver, e.g., Z3 [4], as the back-end solver is an
option. However most SMT solvers provide limited support for solving non-linear
expressions. In our realistic instances exponentiation is used to specify smooth
brake patterns. Thus, we have decided to use Mathematica [8].

5 Formalization and Testing Results

By formalizing the semantics and testing the implementations generated by the
code generator from [11] we have encountered three main issues.



92 S. Keshishzadeh and A.J. Mooij

5.1 Mathematically Undefined Operations

The syntax of the collision prevention DSL allows arithmetic operations inside
conditions and effects. Some operations may not be mathematically defined, for
example, because of a division by zero, or a square root of a negative number.
Thus we should provide a semantics for interpreting undefined operations. For
the collision prevention DSL, we have encountered this issue in particular with
respect to effect expressions. We see two interpretations in this case:

– “ignore the effect”: this is a general solution. It requires Expr in Section 2
to be a partial function. In turn, the semantics in Section 3.2 should be
extended in order to take the partiality into account;

– “assume the effect to have value 0 for undefined cases”: this is a specific
solution for the collision prevention DSL which conservatively attempts to
stop the objects affected by the undefined effect. It only requires a change
in the way that elements of Expr are interpreted.

We have defined the semantics for both interpretations. The code generator from
[11] uses the second interpretation. In our experiments the test cases based on the
first interpretation fail, whereas the test cases based on the second interpretation
pass. This was discovered by test cases satisfying criterion CC1 ; perhaps random
testing could also identify this difference.

5.2 Semantics of Restrictions

The semantics from Section 3.2 resolves unspecified limits in the context of
the set of restrictions R by returning values specified by DefLim. However, the
code generator from [11] resolves unspecified limits in the context of a single
restriction r; hence restrictions are interpreted as total functions. Moreover, the
code generator from [11] conservatively truncates any relative limit that exceeds
the value 1 into the value 1.

This makes a difference for DSL instances with individual effects above 1
for relative limits. This is related to restriction masking as discussed in [9].
Actual instances of the DSL did not include effects above 1 for relative limits.
However, we discovered this mismatch by formalizing the semantics. One can
also formulate a criterion to detect this mismatch by testing.

5.3 Computation Accuracies

Some test cases fail because of very small differences in the computed speed
request to the motors. This is due to differences in computation accuracies be-
tween the test case generator and the generated code. To address this issue
in a practical way, we have used an acceptance threshold for comparing ex-
pected and actual outputs. We consider the expected and actual speed requests
(ex, ey, ez), (ax, ay, az) ∈ R3 for an object to be equal if |ex−ax| ≤ 1 ∧ |ey−ay| ≤
1 ∧ |ez − az| ≤ 1. This solution may not apply when individual rounding errors
lead to large propagation errors.
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6 Towards a Modular Semantics for DSLs

The formal semantics of a DSL can also be used by language developers as a
means to characterize the main features of the language and their expressiveness.
During the formalization of the semantics of the collision prevention DSL, we
have observed that its semantics can naturally be split in two modules, focus-
ing on the state-based and function-based aspects respectively. We formalized
the connection of these two aspects in the definition of run (see Def. 2) where
the label of the current state affects the output computation. This modularity
helped us to consider variants of the language by changing the way the history of
execution affects output computation. In particular, the simpler version of this
DSL as discussed in [9] is stateless, and hence could be described using only a
(modified) function-based module.

By their nature, DSLs usually focus on a narrow domain, and hence it may
seem hard to expect any reuse among DSLs beyond frameworks like EMF for de-
veloping parsers and editors. However, many DSLs share some general semantic
concepts. Ideally, this would enable the reuse of semantic modules (not necessar-
ily their syntax). A similar direction is sketched in [13]. The authors consider a
set of primary modules with well-defined semantics shared among different DSLs
as analysis DSLs (e.g., expressions language module). Formalizing the semantics
of DSLs can facilitate the reusability of more complex semantic models.

The separation in semantic modules can help us by selecting appropriate
analysis tools for DSLs with known semantics. Since the function-based aspect
is dominant in the collision prevention DSL, the use of solvers is very effective.
For example, in [9] we have used solvers for verifying properties such as deadlock
freedom. Similarly, in Section 4.3 we have used solvers for generating test cases.
This has the potential to further reduce the required effort of developing DSLs
and their tool infrastructure such as code generators and analysis techniques.
In [13] the authors use analysis tools to perform certain checks on the identified
primary modules (e.g., completeness of a set of boolean conditions).

7 Related Work

Various authors have formalized the semantics of DSLs to facilitate formal ver-
ification or visualization of the underlying state spaces:
– A method for prototyping visual interpreters and debugging facilities for

DSLs is proposed in [14]. It is illustrated by a DSL for Petri net models. They
extend the meta model of the language with the concept of configuration and
use QVT (Query/View/Transformation) relations to describe the semantics.

– In [15] the authors formalize the semantics of an industrial DSL. First the
concrete syntax of the language is projected onto an abstract and compo-
sitional language consisting of process terms. Then structural operational
semantics (SOS) is used to assign semantics to the obtained process terms.
The SOS rules are used for state space generation and model validation.

– A translational approach for prototyping the semantics of a DSL named
SLCO is studied in [2]. SLCO is used in a setting with a number of transfor-
mations, e.g., to implementation code, or to restricted SLCO models with
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equivalent observable behavior. The semantics of the DSL is captured by a
transformation to an intermediate language called CS. They also introduce
a straightforward transformation from CS to labeled transition systems and
analyze them by existing tools. The correctness of the transformations is as-
sessed by comparing the underlying labeled transition systems of the source
and target models.

The DSLs studied in the mentioned works provide domain-specific abstractions
for transition systems. In contrast, the dominating aspect of the collision pre-
vention DSL is the function module. Moreover, we have used the semantics to
test the generated implementation code.

For establishing the correctness of generated code, also [20] focuses on testing.
However, he focuses on manually writing unit tests, either at the level of the
implementation language, or at the level of the DSL.

In [6], for a model transformation it is tested whether, given source models
satisfying the precondition, the transformation produces target models satisfying
the postcondition. It is assumed that the meta-models of the source and target
languages, precondition, and postcondition of the transformation are encoded
in a constructive logic. A set of predefined criteria is used to generate source
models as test data. Instead of testing the code generator, we test the generated
code for a particular instance.

8 Conclusions and Further Work

The development of a DSL typically centers around the syntax of the language,
whereas the semantics is defined implicitly in terms of a code generator. By
formalizing the semantics independently of a code generator, we have identified
semantic issues that are hard to detect due to the complexity of code genera-
tors. The formal semantics can also be used to derive test cases that check the
compliance of an implementation with a DSL instance. Moreover, studying the
semantics of a DSL in a modular way can improve reusability between languages.

DSLs like the collision prevention DSL are not only used to generate code,
but also to generate analysis models [18,9]. It is future work to get confidence in:

– the semantic correctness of all generated artifacts and
– the consistency of artifacts with respect to a set of desired properties

in a practically feasible way. This imposes additional problems. Some aspects of
the semantics may be ignored in some analysis models, because they are not rel-
evant for a certain type of analysis. The generated code may also have properties
in addition to the semantics that are important for the analysis models.

As an example of the latter, the code generator from [11] ensures that no
duplicate distance computations are performed in a single computation cycle.
Such properties are not part of the semantics of the DSL, but the performance
models of [18] are based on this property.
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Abstract. Test suite generation and coverage analysis have been widely
studied for FSM-based models. Several studies focused on specific
conditions for verifying completeness of test suites. Some have found nec-
essary conditions for test suite completeness, whereas other approaches
obtained sufficient, but not necessary, conditions for this problem. Most of
these works restricted the specification or the implementation FSM mod-
els in several ways. Some works show how to generate specific complete
test suites, but they do not deal with the general problem of checking com-
pleteness for any given test suite. In this work we describe necessary and
sufficient conditions that guarantee test suite completeness even in the
presence of partial FSM models, and when test cases are blocking.

Keywords: test suite completeness, partial FSMs, blocking sequences,
perfectness.

1 Introduction

Many studies have investigated the automatic generation of test suites based on
Finite State Machine (FSM) models. Several of them focused on the automatic
generation of test suites with full fault detection. In other words, they provide
test suites with complete fault coverage [3–6, 10–12, 15, 20]. Several of these meth-
ods have shown sufficient conditions that guarantee the completeness of the test
suites. Some other works proved necessary conditions [13, 21] for the complete-
ness of test suites. However, in most of them, specifications are required to be
reduced machines with n states, while the corresponding implementation FSMs
must have m ≥ n states [5]. Other works are more restrictive, either requiring
m = n [14, 18, 20] or completely specified specifications [8, 9, 11, 12, 20].

In a recent approach [1, 2], necessary and sufficient conditions have been
proposed for test suite completeness, where the authors assume more relaxed
constraints on the models, and still guarantee test completeness. On the other
hand, these works still require that implementations be completely specified.
Moreover, the approach also relies on the classical notion of completeness, where
test cases are assumed to run in both the specification and in the implementation
models, even when implementations are considered as black-boxes.
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Here, we treat more general FSMs, allowing for partial models both as speci-
fications and as implementations. We prove that our method succeeds in deter-
mining the completeness of test suites, even in situations where other approaches
fail. Further, we relax the classical notion of completeness in order to deal with
a more realistic situation in practice. More specifically, we allow for blocking
test cases, that is, test cases which may not run to completion in neither the
specification nor in the implementation machines. We also provide necessary and
sufficient conditions for checking completeness of test suites in this new scenario.

Section 2 summarizes some recent works that are more closely related to our
approach. Section 3 contains basic definitions and notations. Section 4 discusses
necessary and sufficient conditions for test suite completeness with partial FSM
models. We present a simple example to illustrate the application of our method
in Section 5. In Section 6 we describe necessary and sufficient conditions for
test suite completeness in the presence of blocking test cases. We conclude in
Section 7.

2 Related Works

In this section we describe some works that address issues more closely related to
our approach. Petrenko and Yevtushenko [15] propose a complete test suite gen-
eration method based on partial FSMs. They treat unreduced machines where
separating sequences do not exist. However, their focus is on test suite genera-
tion only, together with sufficient conditions for the generated test suites to be
complete. In our work, we give not only sufficient, but also necessary conditions
under which any given test suite can be ascertained to be complete. Moreover, we
also state necessary and sufficient conditions for checking test suite completeness
even in the presence of blocking test cases.

In a recent work, Simão et al. [17] use the notion of test convergence in order
to reduce the length of tests. Two tests are said to be convergent for a set of
FSMs if they lead from the initial state to the same state in each FSM in the set.
Their test suite generation method relies on sufficient conditions for completeness
based on previous knowledge about the implementations, which are no longer
complete black boxes, and other specific requirements, such as reducibility and
completeness of both the specification and implementation models. In an early
version [16] the authors show necessary and sufficient conditions for test suite
completeness, but only when some strong constraints apply to both the specifi-
cation and implementation models, such as minimality of the implementations
and also reducibility and completeness of both the specification and implemen-
tation models. Further, both approaches do not deal with blocking test cases
where sequences do not run to completion in one, or both, of the FSM models.

A number of other works proposed methods for checking test suite complete-
ness. However, these approaches show only sufficient conditions for the problem,
which can lead to inconclusive verdicts. Simão and Petrenko [18] uses the no-
tion of confirmed sets. A set of input sequences is said to be confirmed when its
sequences are such that when a pair of them lead to a same state in the speci-
fication, then the pair also lead to a common state in the implementation, and
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vice-versa. Moreover, their approach also requires complete implementations as
well as reduced specification and implementation machines. They also restrict
implementations to having at most as many states as the specification, giving
rise to the notion of n-complete test suites, where n is the number of states in the
specification. Again, they do not deal with the more general case, when blocking
sequences may be present in the test suites.

More recent studies [1, 2] treat not only sufficient but also necessary conditions
that can be used to guarantee m-completeness of test suites. The authors use
simulation relations to characterize m-completeness of any given test suites. But
they also require implementation candidates to be complete FSM models and,
besides, blocking test cases are not considered.

In this work we provide necessary and sufficient conditions for checking test
suite completeness for partial models, both in the specification side and also in
the implementation side. We show that our method always succeeds in determin-
ing the completeness of any given test suite, avoiding inconclusive verdicts. More-
over, we relax the classical notion of completeness in order to treat blocking test
cases, that is, test cases which may not run to completion in neither the specifica-
tion nor in the implementation machines.We also provide necessary and sufficient
conditions for checking completeness of test suites in this more realistic scenario.

3 Definitions and Notation

In this section we present some definitions and notation that will be useful later.
Let I be an alphabet. The length of any finite sequence of symbols α over I is
indicated by |α|. The empty sequence will be indicated by ε, with |ε| = 0. The
set of all sequences of length k over I is denoted by Ik, while I� names the
set of all finite sequences from I. When we write σ = x1x2 · · ·xn ∈ I� (n ≥ 0)
we mean xi ∈ I (1 ≤ i ≤ n), unless noted otherwise. Given any two sets of
sequences A,B ⊆ I�, their symmetric difference will be indicated by A ' B,
that is A'B = (A∩B)∪ (A∩B), where A indicates the complement of A with
respect to I�. By A \B we mean set difference.

Remark 1. A'B = ∅ iff 1 A = B.

Next, we write the definition of a Finite State Machine [2, 7].

Definition 1. A FSM is a system M = (S, s0, I,O, D, δ, λ) where

– S is a finite set of states
– s0 ∈ S is the initial state
– I is a finite set of input actions or input events
– O is a finite set of output actions or output events
– D ⊆ S × I is a specification domain
– δ : D → S is the transition function
– λ : D → O is the output function. �

1 Here, ‘iff’ is short for ‘if and only if’.
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In what followsM andN will always denote the FSMs (S, s0, I,O, D, δ, λ) and
(Q, q0, I,O′, D′, μ, τ), respectively. Let σ = x1x2 · · ·xn ∈ I�, ω = a1a2 · · ·an ∈
O� (n ≥ 0). If there are states ri ∈ S (0 ≤ i ≤ n) such that δ(ri−1, xi) = ri

and λ(ri−1, xi) = ai (1 ≤ i ≤ n), then we may write r0
σ/ω→ rn. When the input

sequence σ, or the output sequence ω, is not important, then we may write

r0
σ/→ rn, or r0

/ω→ rn, respectively, and, if both sequences are not important we
may write r0 → rn. We can also drop the target state, when it is not important,

e.g. r0
σ/ω→ or r0 →. It will be useful to extend the functions δ and λ to pairs

(s, σ) ∈ S × I�. Let D̂ =
{
(s, σ) | s σ/→

}
. Now define the extensions δ̂ : D̂ → S

and λ̂ : D̂ → O� by letting δ̂(s, σ) = r and λ̂(s, σ) = ω whenever s
σ/ω→ r.

When there is no reason for confusion, we may write D, δ and λ instead of
D̂, δ̂ and λ̂, respectively. Also, the function U : S → I� will be useful, where
U(s) = {σ | (s, σ) ∈ D̂}.

Now we are in a position to define test cases and test suites.

Definition 2. Let M be a FSM. A test suite for M is any finite subset of I�.
Any element of a test suite is a test case. �

Since test cases must be applied from initial states, an implementation under
test must be brought to its initial state before the application of a test case.
This can be achieved using a homing sequence [9, 20]. If there exist more than
one test case to be applied, it is assumed that the implementation under test
has a reset operation. The reset operation brings the machine back to its initial
state [4, 5].

The notion of simulation is given as follows.

Definition 3. Let M and N be FSMs. We say that a relation R ⊆ S × Q is
a simulation ( of M by N) iff (s0, q0) ∈ R, and whenever we have (s, q) ∈ R

and s
x/a→ r in M , then there is a state p ∈ Q such that q

x/a→ p in N and with
(r, p) ∈ R. We say that M and N are bi-similar iff there are simulation relations
R1 ⊆ S ×Q and R2 ⊆ Q× S. �

4 Test Suite Completeness for Partial FSMs

In this section we give necessary and sufficient conditions for verifying test suite
completeness for FSM models. Such conditions will allow for partiality in both
the specification and implementation machines.

We start by writing the classical notion of distinguishability and equivalence.

Definition 4. Let M and N be FSMs and let s ∈ S, q ∈ Q. Let C ⊆ I�.
We say that s and q are C-distinguishable iff λ(s, σ) 
= τ(q, σ) for some σ ∈
U(s)∩U(q) ∩C, denoted s 
≈C q. Otherwise, s and q are C-equivalent, denoted
s ≈C q. We say that M and N are C-distinguishable iff s0 
≈C q0, and they are
C-equivalent iff s0 ≈C q0. �
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When C is not important, or when it is clear from the context, we might drop
the index. When there is no mention to C, we understand that we are taking
C = I�. In this case, the condition U(s0) ∩U(q0) ∩C reduces to U(s0) ∩U(q0).

Next we introduce the concept of n-complete test suites.

Definition 5. Let M be a FSM, let T a test suite for M and take n ≥ 1. Then
T is n-complete for M iff for any FSM N , with U(s0) ⊆ U(q0) and |Q| ≤ n, if
M 
≈ N then M 
≈T N . �

The following result will help to show the existence of simulation relations.

Lemma 1. Let M and N be FSMs. Let n ≥ 1, si ∈ S, pi ∈ Q (1 ≤ i ≤ n) and

xi ∈ I, ai ∈ O, bi ∈ O′ (1 ≤ i < n) be such that si
xi/ai→ si+1 and pi

xi/bi→ pi+1

(1 ≤ i < n). Assume further that s1 ≈ p1. Then si ≈ pi (1 ≤ i ≤ n) and
a1a2 · · · an−1 = b1b2 · · · bn−1.

Proof. An easy induction on n ≥ 1 [1]. �

The next lemma states half of our desired result. We note that specifications
and candidate implementations can be partial machines.

Lemma 2. Let T be a n-complete test suite for a FSM M . Let N be a FSM
such that U(s0) ⊆ U(q0) and |Q| ≤ n. If M ≈T N then there exists a simulation
of M by N .

Proof. Define a relation R ⊆ S × Q by letting (s, q) ∈ R iff δ(s0, α) = s and
μ(q0, α) = q for some α ∈ I�. Since δ(s0, ε) = s0 and μ(q0, ε) = q0 we get
(s0, q0) ∈ R.

Now assume (s, q) ∈ R and let s
x/a→ r in M , for some r ∈ S, x ∈ I and

a ∈ O. Since T is n-complete for M , U(s0) ⊆ U(q0), |Q| ≤ n and M ≈T N ,
Definition 5 gives M ≈ N . Hence, s0 ≈ q0. Since (s, q) ∈ R, the construction of
R gives some α ∈ I� such that δ(s0, α) = s and μ(q0, α) = q. Composing, we
get δ(s0, αx) = δ(s, x) = r and so αx ∈ U(s0). Since U(s0) ⊆ U(q0), we obtain
αx ∈ U(q0). Then μ(q0, αx) = μ(q, x) = p, for some p ∈ Q.

Collecting, we get δ(s0, α) = s, μ(q0, α) = q and s0 ≈ q0. Using Lemma 1
we conclude that s ≈ q, and then we must have λ(s, x) = a = τ(q, x). So, from

(s, q) ∈ R, s
x/a→ r we obtained p ∈ Q such that q

x/a→ p. Finally, we note that
we also have μ(q0, αx) = p and δ(s0, αx) = r. The definition of R now gives
(r, p) ∈ R. This shows that R is a simulation relation, concluding the proof. �

We now show the converse. That is, if there is a simulation of M by any
T -equivalent FSM with U(s0) ⊆ U(q0) and with at most n states, then n-
completeness of the test suite follows.

Lemma 3. Let M be a FSM, let T a test suite for M and take n ≥ 1. Assume
that M can be simulated by any T -equivalent FSM N , with U(s0) ⊆ U(q0) and
|Q| ≤ n. Then T is n-complete for M .
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Proof. We proceed by contradiction. Assume that T is not n-complete for M .
Then, by Definition 5, there exists a T -equivalent FSM N with U(s0) ⊆ U(q0),
|Q| ≤ n, and such that M 
≈ N . Using Definition 4, we get an input sequence
σ = x1 . . . xn ∈ I� (n ≥ 0) and an input symbol y ∈ I such that λ(s0, α) =
τ(q0, α) and λ(s0, αy) 
= τ(q0, αy). Let si ∈ S, qi ∈ Q (1 ≤ i ≤ n) be such that
δ(si−1, xi) = si and μ(qi−1, xi) = qi (1 ≤ i ≤ n). So, δ(s0, σ) = sn and μ(q0, σ) =
qn. Further, we get s ∈ S and q ∈ Q such that δ(sn, y) = s, μ(qn, y) = q and
λ(sn, y) 
= τ(qn, y).

Since N is T -equivalent to M , U(s0) ⊆ U(q0) and |Q| ≤ n, the hypothesis
gives a simulation relation R ⊆ S ×Q.
Claim: (si, qi) ∈ R (0 ≤ i ≤ n).
Proof of the Claim. We go by induction on i ≥ 0.

Basis: we get (s0, q0) ∈ R directly from Definition 3.
Induction step: assume that (si, qi) ∈ R for some i < n. Since δ(si, xi+1) =
si+1, Definition 3 gives a q ∈ Q such that μ(qi, xi+1) = q, λ(si, xi+1) =
τ(qi, xi+1) and (si+1, q) ∈ R. But we already have μ(qi, xi+1) = qi+1 and,
since μ is a function, we get q = qi+1. Thus (si+1, qi+1) ∈ R extending the
induction and establishing the Claim. )

Using the Claim, we get (sn, qn) ∈ R. Since δ(sn, y) = s, Definition 3 gives a
p ∈ Q such that (s, p) ∈ R, μ(qn, y) = p, and λ(sn, y) = τ(qn, y), which is a
contradiction. �

Putting together the previous results we obtain necessary and sufficient condi-
tions for n-completeness of test suites, even if we allow for partial implementation
candidates.

Theorem 1. Let M be a FSM, let T be a test suite for M and let n ≥ 1. Then,
T is n-complete for M iff M can be simulated by any T -equivalent FSM N that
satisfies U(s0) ⊆ U(q0) and |Q| ≤ n.

Proof. Assume that T is n-complete for M . Then, Lemma 2 guarantees that N
can simulate M when N is T -equivalent to M , U(s0) ⊆ U(q0) and |Q| ≤ n.
Now assume that M can be simulated by any T -equivalent FSM N such that
U(s0) ⊆ U(q0) and |Q| ≤ n. Then, Lemma 3 guarantees that T is n-complete
for M . �

Remark 2. Note that Theorem 1 is valid even in the absence of the condition
|Q| ≤ n, if Definition 5 is also changed accordingly. But removing the condition
would result in a vacuous statement, as no test suite would then be complete.

5 An Example

An algorithm for checking completeness of test suites has been investigated [1, 2].
We modify that algorithm in order to adapt it to treat partial implementations.
Basically, we add a new step to check if the condition U(s0) ⊆ U(q0) holds, given
an specification M and any candidate FSM N . So, now, the algorithm proceeds
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in three steps, given a specification M and a test suite T : construct a T -tree;
check language containment; and check for a simulation relation.

At the end of the first step, the algorithm constructs all possible FSMs, with
n states and of which all T -equivalent FSMs are extensions, where n is an upper
bound on the number of states for FSM implementations, as given in Definition 5.
We illustrate the tree growing process by the following example depicted in
Figure 2.

In the second step, we check if the condition U(s0) ⊆ U(q0) holds, given the
specification M and any candidate FSM N obtained at the end of first step.
If it does hold, then N should be passed on to the final step that checks for
a simulation relationship, otherwise it should be discarded. This step can be
efficiently done by noting that from any FSM M = (S, s0, I,O, D, δ, λ) we can
readily extract a finite automaton MA = (S, s0, I, δ, F ) [19] where the set of final
states is taken to be F = S. Let L(MA) be the language accepted by such an
automaton. Then, clearly, U(s0) ⊆ U(q0) if and only if L(MA) ⊆ L(NA). And
this test can be performed efficiently [19].

The final step then checks if all remaining FSMs can effectively simulate M . If
the answer is positive, we declare T to be complete for M . If, on the other hand,
the algorithm proves that any of the remaining FSMs was unable to simulate
M , then T is declared not complete for M .

Next, as an illustration we apply the whole procedure, which is based on the
main result given in Theorem 1. Let M be the FSM depicted in Figure 1, and
let T = {01000, 000, 10} be a test suite for M . Assume that we are treating
implementation machines with up to m = 3 states. A T -tree [1, 2] for M is
partially illustrated in Figure 2.

s0 s1

0/1

1/1

0/0

Fig. 1. Specification FSM M

The procedure starts with a root labeled (s0, q0), at level zero, representing a
trivial machine Z0 with empty transition and output functions. Let σ = 01000
be the first test case chosen from T . It is now the current test case. The first
input symbol of σ is a 0 and so we get the two descendant nodes at level one.

The leftmost corresponds to extending Z0 according to q0
0/1→ q0, and the second

corresponds to adding a new state q1 and extending Z0 with q0
0/1→ q1. The

current test case is now reduced to σ = 1000, and we proceed to nodes at level
1. The leftmost node at level 1, say node u, represents a machine Z1, as indicated

in Figure 2. Since we do not have q0
1/→ in Z1, we generate new descendants for
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u by extending Z1 according to q0
1/1→ q0, and also by adding a new state q1

and letting q0
1/1→ q1. Next, we examine the second node at level 1, say node

w, representing a machine Z2 in the figure. Since we do not have q1
1/→ in Z2,

we generate new descendants for w by extending Z2 according to q1
1/1→ q for all

states q ∈ {q0, q1} that are already in Z2. These are the leftmost two descendants
of w. Since Z2 has two states and we are treating implementation FSMs with at
most m = 3 states, node w gets another descendant by adding a new state q2 to

Z2 and extending it as required by q1
1/1→ q2. This is the rightmost descendant

of w.

(s0, q0) Z0

(s0, q0) Z1

(s1, q0) Z3 (s1, q1) Z4

(s1, q0) (s1, q1)

(s1, q1)

...

(s1, q1) N0

(s1, q2)

(s1, q0) (s1, q1)

...

(s1, q2) N1

(s1, q2)

...

(s1, q2) N2

(s0, q1) Z2

(s1, q0) Z5 (s1, q1) Z6

(s1, q0) (s1, q1)

...

×

(s1, q2)

...

×

(s1, q2) Z7

(s1, q0) (s1, q1)

...

×

(s1, q2)

(s1, q2)

...

(s1, q2) N3

Fig. 2. T -tree for FSM depicted in Figure 1

The current test case is now reduced to σ = 000, and we proceed with nodes at
level 2. When we consider the leftmost node at level 2, labeled (s1, q0), represent-

ing machine Z3, we notice that we have s1
0/0→ s1 in M but q0

0/1→ q0 in Z3. This
indicates an incompatibility and we terminate the process for this node, leaving
it behind. Next, we examine the second node at level 2, say node v, representing

machine Z4. Since we do not have q1
0/→ in Z4, we generate new descendants

for v by extending Z4 according to q1
0/0→ q for all states q ∈ {q0, q1} that are

already in Z4. These are the leftmost two descendants of v. Again, since Z4 has
two states and we are treating implementation FSMs with at most m = 3 states,
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node v gets another descendant by adding a new state q2 to Z4 and extending

it by requiring q1
0/0→ q2. This is the rightmost descendant of v.

In the third node at level 2, representing a machine Z5, we notice that we

have s1
0/0→ s1 in M but q0

0/1→ q1 in Z5. This indicates an incompatibility and
we terminate the process for this node, leaving it behind. We then pick the
fourth node at level 2, say node r, representing a machine Z6, as indicated in

the figure. Since we do not have q1
0/→ in Z6, we generate new descendants for r

by extending Z6 according to q1
0/0→ q for all states q ∈ {q0, q1} that are already

in Z6. These are the leftmost two descendants of r. Since Z6 has two states and
we are treating implementation FSMs with at most m = 3 states, node r gets
another descendant by adding a new state q2 to Z6 and extending it as required

by q1
0/0→ q2. This is the rightmost descendant of r. Next, we examine the fifth

node at level 2, say node z, representing a machine Z7. Since we do not have

q2
0/→ in Z7, we generate new descendants for z by extending Z7 according to

q1
0/0→ q for all states q ∈ {q0, q1, q2} that are already in Z7.
At this point we have reduced the current test to σ = 00 and the tree growing

process continues until we exhaust it. When the current test is reduced to σ = ε,
we must take another test case from T . In the example, we take σ = 000 as
the current test case. Because we are restarting the tree growing process with a
new test case, we must relabel all nodes at level 5 with the root label, (s0, q0).
We note that this is not explicitly indicated in Figure 2. The growing process
continues until we exhaust the current test case σ = 000. The symbol × in the
figure represents a branch where the growing process is terminated because of
incompatibilities. After processing σ = 000, the last test case in T not already
used is σ = 10. After the tree growing process terminates for this last test case,
we have obtained four machines T -equivalent to M , namely, machines N0 to N3,
indicated in the last level in Figure 2. Machine N0 is isomorphic to M , whereas
machines N1, N2 and N3 are not, since they have 3 states.

After the first phase, we need to check the condition U(s0) ⊆ U(q0). In this
example, it is easily checked that the condition is satisfied for all machines Ni,
i = 0, 1, 2, 3.

The third phase starts with a set of pairs of machines Ni and candidate
simulation relations Ri, that is we have the set M = {(Ni, Ri) | 0 ≤ i ≤ 3}.
Initially, Ri contains only the pair of initial states for M and Ni. We first extract
the pair (N0, R0) from M, where machine N0 can be read directly from the T -
tree. Since N0 is isomorphic to M , the third phase routinely verifies that N0 can
simulate M . We illustrate a pass of this third phase when it returns to M and
extracts the next pair, namely, (N1, R1).

Machine N1 can be read from the T -tree, and is depicted in Figure 3. Initially,
R1 contains (s0, q0), unmarked. We mark it as visited and proceed. For the input

symbol 0 we get s0
0/1→ s0 in M and q0

0/1→ q0 in N1, but the pair (s0, q0) is already

in R1. With input symbol 1 we get s0
1/1→ s1 and q0

1/1→ q1, and we add (s1, q1)
to R1, unmarked. Now, R1 = {(s0, q0)‡, (s1, q1)}, with visited pairs indicated by
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q0 q1 q2

0/1

1/1
0/0

0/0

Fig. 3. FSM N1

a ‡. We mark (s1, q1) as visited and, with input symbol 0, we get s1
0/0→ s1 and

q1
0/0→ q2, and we add (s1, q2) to R1, unmarked. Since (s1, 1) 
∈ D we are done with

(s1, q1). Now, R1 = {(s0, q0)‡, (s1, q1)‡, (s1, q2)}. We mark (s1, q2) as visited and

need only consider the input symbol 0, since (s1, 1) 
∈ D. We get s1
0/0→ s1 and

q2
0/0→ q1, and so R1 does not change. Now, R1 = {(s0, q0)‡, (s1, q1)‡, (s1, q2)‡}.

We have no more unmarked pairs in R1 and the examination of the pair (N1, R1)
terminates without reaching a conflict.

q0 q1 q2

0/1

1/1 0/0

0/0

Fig. 4. FSM N2

The procedure returns toM and picks the pair (N2, R2). Machine N2 can also
be read from the T -tree, and is depicted in Figure 4. It proceeds as it did with
te pair (N1, R1) and reaches the point when R2 = {(s0, q0)‡, (s1, q1)‡, (s1, q2)}.
Then we mark (s1, q2) as visited and need only consider the input symbol 0,

since (s1, 1) 
∈ D. We get s1
0/0→ s1 and q2

0/0→ q2, and so R does not change. Now,
R2 = {(s0, q0)‡, (s1, q1)‡, (s1, q2)‡}. Again, we have no more unmarked pairs in
R2 and the examination of the pair (N2, R2) also terminates without reaching a
conflict.

Finally, the procedure extracts the last pair, (N3, R3) fromM. Again, machine
N3 is read from the T -tree that is depicted in Figure 5. Initially, R3 contains

q0 q1 q2
0/1

0/1

1/1

0/0

1/1

Fig. 5. FSM N3
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(s0, q0), unmarked. We mark it as visited and proceed. For the input symbol 0

we get s0
0/1→ s0 in M and q0

0/1→ q1 in N3, and we add (s0, q1) to R3, unmarked.

With input symbol 1 we get s0
1/1→ s1 and q0

1/1→ q2, and we add (s1, q2) to R3,
unmarked. Now, R3 = {(s0, q0)‡, (s0, q1), (s1, q2)}, with visited pairs indicated

by a ‡. We mark (s0, q1) as visited and, with input symbol 0, we get s0
0/1→ s0

and q1
0/1→ q1, but the pair (s0, q1) is already in R3. With input symbol 1 we

get s0
1/1→ s1 and q1

1/1→ q2, but the pair (s1, q2) is already in R3. Now, R3 =
{(s0, q0)‡, (s0, q1)‡, (s1, q2)}. We mark (s1, q2) as visited and need only consider

the input symbol 0, since (s1, 1) 
∈ D. We get s1
0/0→ s1 and q2

0/0→ q2, and
so R3 does not change. Now, R3 = {(s0, q0)‡, (s0, q1)‡, (s1, q2)‡}. We have no
more unmarked pairs in R3 and the examination of the pair (N3, R3) terminates
without reaching a conflict.

We would return to M for another pair, but now we have M = ∅. So, the
procedure would terminate successfully, declaring T to be 3-complete for M .

6 Completeness in the Presence of Blocking Test Cases

In this section we allow for test cases that may not run to completion in candidate
implementations. That is, when put under test, implementations may not output
the same number of events as there were input symbols in the test case. This
kind of fault can be readily identified by observing the external behavior of the
model. We show necessary and sufficient conditions for test suite completeness
in the presence of blocking test cases.

Given a FSM model M , a blocking test case for M is one that does not run to
completion in M . Given a test suite T , two FSM models M andN are considered
T -equivalent in the presence of blocking test cases, if all blocking test cases for
M in T are also blocking for N , and vice-versa. Furthermore, any test case that
is non-blocking for both M and N must output identical behaviors when run
through both models. We then investigate necessary and sufficient conditions for
T to be a complete test suite, when considering this more general scenario.

We start by making precise the new notion of equivalent models.

Definition 6. Let M and N be FSMs and let s ∈ S, q ∈ Q. Let C ⊆ I�. We
say that s and q are C-alike, denoted s ∼C q, iff

(
U(s) ' U(q)

)
∩ C = ∅ and

λ(s, σ) = τ(q, σ) for all σ ∈ U(s) ∩ U(q) ∩ C. Otherwise, s and q are C-unlike,
denoted s 
∼C q. We say that M and N are C-alike iff s0 ∼C q0, otherwise they
are C-unlike. �

Again, when C is not important, or when it is clear from the context, we
might drop the index, and when there is no mention to C, we understand that
we are taking C = I�.

Remark 3. Using Remark 1, we note that s ∼ q is equivalent to U(s) = U(q)
and λ(s, σ) = τ(q, σ) for all σ ∈ U(s).
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The new notion of test suite completeness now reflects the fact that we may
be in the presence of blocking test cases. In order to avoid ambiguities we rename
completeness to perfectness.

Definition 7. Let M be a FSM and T be a test suite for M . Then T is perfect
for M iff for any FSM N , if M 
∼ N then M 
∼T N . �

That is when T is a perfect test suite for a specification M , then for any imple-
mentation under test N , if M and N are unlike, then they are also T -unlike.

The following result will be useful when we consider certain bi-similarities.

Lemma 4. Let M and N be FSMs. Let n ≥ 1, si ∈ S, pi ∈ Q (1 ≤ i ≤ n) and

xi ∈ I, ai ∈ O, bi ∈ O′ (1 ≤ i < n) be such that si
xi/ai→ si+1 and pi

xi/bi→ pi+1

(1 ≤ i < n). Assume further that s1 ∼ p1. Then si ∼ pi (1 ≤ i ≤ n) and
a1a2 · · · an−1 = b1b2 · · · bn−1.

Proof. Let σ = x1x2 · · ·xn−1, ω1 = a1a2 · · ·an−1 and ω2 = b1b2 · · · bn−1. We

clearly have s1
σ/ω1→ sn and p1

σ/ω2→ pn. Definition 6 immediately gives ω1 = ω2,
because s1 ∼ p1 and σ ∈ U(s1) ∩ U(q1).

To see that si ∼ pi (1 ≤ i ≤ n) we go by induction on n. The basis is trivial
and we proceed with the induction step. Let 1 ≤ k < n and assume sk ∼ pk. Let
α = x1 · · ·xk. Clearly δ(s1, α) = sk+1, μ(p1, α) = pk+1 and so α ∈ U(s1)∩U(p1).
For te sake of contradiction, assume that sk+1 
∼ pk+1. By Definition 6 we have
two cases.

Case 1: U(sk+1)' U(pk+1) 
= ∅.
Let β ∈ U(sk+1) and β 
∈ U(pk+1). This gives αβ ∈ U(s1) and αβ 
∈ U(p1).
Hence U(s1) ' U(p1) 
= ∅, contradicting s1 ∼ p1. The situation when β 
∈
U(sk+1) and β ∈ U(pk+1) is entirely analogous.

Case 2: β ∈ U(sk+1) ∩ U(pk+1) and λ(sk+1, β) 
= τ(pk+1, β), for some β ∈ I�.
This gives αβ ∈ U(s1) ∩ U(p1). Moreover,

λ(s1, αβ) = λ(s1, α)λ(δ(s1, α), β)) = λ(s1, α)λ(sk+1 , β), and

τ(p1, αβ) = τ(p1, α)τ(μ(p1, α), β)) = τ(p1, α)τ(pk+1, β).

Because |λ(s1, α)| = |τ(p1, α)| and λ(sk+1, β) 
= τ(pk+1, β), we get
λ(s1, αβ) 
= τ(p1, αβ). Since αβ ∈ U(s1) ∩ U(p1), this contradicts s1 ∼ p1.

The proof is complete. �

The next result guarantees the existence of bi-simulations in the presence of
blocking test cases.

Lemma 5. Let T be a perfect test suite for a FSM M . Let N be a FSM such
that M ∼T N . Then M and N are bi-similar.

Proof. Define a relation R1 ⊆ S×Q by letting (s, q) ∈ R1 if and only if δ(s0, α) =
s and μ(q0, α) = q for some α ∈ I�, s ∈ S and q ∈ Q. Since δ(s0, ε) = s0 and
μ(q0, ε) = q0 we get (s0, q0) ∈ R1.
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Now assume (s, q) ∈ R1 and let s
x/a→ r for some r ∈ S, x ∈ I and a ∈ O.

Since (s, q) ∈ R1, the definition of R gives some α ∈ I� such that δ(s0, α) = s
and μ(q0, α) = q. Composing, we get δ(s0, αx) = δ(s, x) = r and so αx ∈ U(s0).
Since T is perfect for M and M ∼T N , Definition 6 gives M ∼ N , that is
s0 ∼ q0. Further, Definition 6 and Remark 3 imply U(s0) = U(q0), and so
αx ∈ U(q0). Then μ(q, x) = p, for some p ∈ Q. Since s0 ∼ q0, δ(s0, α) = s
and μ(q0, α) = q, Lemma 4 gives s ∼ q. But x ∈ U(s) ∩ U(q), and so we must

have a = λ(s, x) = τ(q, x). Thus, we have found p ∈ Q with q
x/a→ p. Since

δ(s0, αx) = r and μ(q0, αx) = p, we also have (r, p) ∈ R1. This shows that R1 is
a simulation relation.

A similar argument will show that R2 ⊆ Q × S, where R2 = R−1
1 , is also a

simulation relation. Thus M and N are bi-similar, as desired. �

We now show the converse, that is, if M is bi-similar to any FSM N that is
T -alike to it, then T is a perfect test suite for M .

Lemma 6. Let M be a FSM and T a test suite for M . Assume that any FSM
that is T -alike to M is bi-similar to it. Then T is perfect for M .

Proof. We proceed by contradiction. Assume that T is not perfect for M . Then,
by Definition 7, there exists a FSM N such that M ∼T N and M 
∼ N . Hence,
since M ∼T N , we get that N is bi-similar to M , and so there are simulation
relations R1 ⊆ S ×Q and R2 ⊆ Q× S.
Claim: Let s = δ(s0, α) and q = μ(q0, α) for some α ∈ I�. Then (s, q) ∈ R1 and
(q, s) ∈ R2.
Proof of the Claim. The argument is an easy induction on |α| ≥ 0 and is
omitted.

Since M 
∼ N , by Definition 6 we have two cases:

Case 1: α ∈ U(s0)' U(q0), for some α ∈ T .
We may assume that |α| is minimum.
If α ∈ U(q0) and α 
∈ U(s0), then we may write α = βx, where β ∈ I�,
x ∈ I are such that β ∈ U(q0) ∩ U(s0). Thus, δ(s0, β) = s, μ(q0, β) = q
and μ(q, x) = p, for some s ∈ S and some q, p ∈ Q. Since (q0, s0) ∈ R2,
we can use Lemma 4 and write (q, s) ∈ R2. Because R2 is a simulation
and μ(q, x) = p we get some r ∈ S such that δ(s, x) = r. But this gives
δ(s0, α) = δ(s0, βx) = δ(s, x) = r, that is α ∈ U(s0), a contradiction.
When α 
∈ U(q0) and α ∈ U(s0), the argument is analogous.

Case 2: There is some α ∈ U(s0) ∩ U(q0) with λ(s0, α) 
= τ(q0, α).
Again, assume that |α| is minimum. Then, there are β ∈ I�, x ∈ I, s ∈ S and
q ∈ Q such that α = βx and δ(s0, β) = s, μ(q0, β) = q. Further, we get some
r ∈ S, p ∈ Q such that δ(s, x) = r, μ(q, x) = p, a = λ(s, x) 
= τ(q, x) = b.

Using the Lemma 4, we may write (s, q) ∈ R1. Because we have s
x/a→ r in M

and R1 is a simulation, we know that there is some t ∈ Q such that q
x/a→ t

in N , with (r, t) ∈ R1. But we already had q
x/b→ p in N . Hence, since τ is a

function, we conclude that a = b, which is a contradiction.
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The proof is now complete. �

Combining the previous results we obtain necessary and sufficient conditions
for the perfectness of test suites.

Theorem 2. Let M be a FSM and T be a test suite for M . Then T is perfect
for M iff any T -alike FSM is bi-similar to M .

Proof. Assume that T is perfect for M . Lemma 5 guarantees that N and M
are bi-similar when N is T -alike to M . Now assume that any T -alike FSM is
bi-similar to M . In this case, Lemma 6 guarantees that T is perfect for M . �

7 Conclusions

In this work we showed necessary and sufficient conditions for checking com-
pleteness of test suites for more relaxed FSM models. Our approach is general
in the sense that specifications and implementations models are required to be
only deterministic. So partial FSM machines are treated in the specification side
and also in the implementation side. We have also presented an example in order
to illustrate the application of our approach.

Further we described a new approach for checking completeness of test suites
taking into account FSM models that allow for blocking test cases. For that, we
introduced the new notion of test suite perfectness, a relaxation of the classical
notion of test suite completeness. We have also provided necessary and sufficient
conditions for checking test suite perfectness in a more realistic sceneries.

All claims herein are proved correct by rigorous arguments. Being based on
necessary and sufficient proofs, our approaches always provide definitive answers
regarding test suite completeness and perfectness, thus never issuing inconclusive
verdicts.

We leave for future works the possibility of testing our algorithms in practical
situations, and comparing the results with other methods for testing test suites
completeness and perfectness.
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Abstract. The complexity of error diagnosis in requirements specifications, al-
ready high, is increased when requirements refer to various system components,
on whose interaction the system’s aims depend. Further, finding causes of error,
and ways of overcoming them, cannot easily be achieved without a systematic
methodology. This has led researchers to explore the combined use of verifi-
cation and machine-learning to support automated software analysis and repair.
However, existing approaches have been limited by using formalisms in which
modularity and compositionality cannot be explicitly expressed. In this paper
we overcome this limitation. We define a translation from a representative pro-
cess algebra, Finite State Processes, into the action language C+. This enables
forms of verification not supported by previous methods. We then use a logic-
programming equivalent of C+, to which we apply inductive logic programming
for learning repairs to system components while ensuring no new errors are intro-
duced and interactions with other components are maintained. These two phases
are iterated until a correct specification is reached, enabling rigorous and scalable
support for automated analysis and repair of component-based specifications.

1 Introduction

Research into formal specification, verification and error diagnosis has played a signif-
icant role in improving software safety and reliability. Such methods rely on specifying
the system in a formal language (e.g., temporal logic, process algebras) and using au-
tomated verification techniques such as model checking and theorem proving to check
that the specified system satisfies some given property. Though such methods are useful
for detecting errors in software specifications (e.g., [14]), identifying the exact causes
of error and resolving them is a very difficult task that is mostly performed manually—
defeating the aim of automation, and increasing the likelihood of error.

In recent years researchers in software engineering have responded to this by deploy-
ing a combination of verification and machine learning techniques to improve software
specifications. For example, in [1] the authors describe a method for incrementally re-
fining a consistent specification, expressed in first-order temporal logic, with respect
to some given property using an integration of model checking and Inductive Logic
Programming (ILP). In [2], the authors give a method for revising temporal specifica-
tions that may be incorrect or inconsistent using model checking and artificial neural
networks. Such advances overcome some of the difficulties of generating alternative
candidate repairs to detected errors, ensuring consistency of the computed solutions
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with the available specification and property. However, a very significant drawback of
such approaches is that verification and specification improvement are at system level
only: they do not relate the specification to the individual system components, nor do
they support compositional analysis. With this drawback come the familiar problems of
modularity, scalability and realizability. (Realizability means that suggested repairs can
be assigned to and achieved by individual components.) Furthermore, these approaches
either require the engineer to specify an action thought to have produced the error in
the output violation run; or require the engineer to simplify the diagnosis procedure by
assuming that the last action in the run is the cause.

In this paper we propose a new approach for incrementally detecting errors in and
repairing compositional software specifications using verification and ILP. Our frame-
work: (i) supports error-diagnosis and repair at component level rather than system
level; (ii) diagnoses multiple errors in a single iteration; (iii) can hypothesize faults at
any point in a violation run, and fix them wherever they are; (iv) finds all minimal re-
pairs with respect to a given input language; (v) guarantees deadlock-free repairs to
components consistent with the original specification; and (vi) is fully automated.

Our systems specifications are given in Finite State Processes (FSPs), a well-studied
process algebra [20]. FSPs enable a user to represent the behaviour at the architectural
level, specifying the system in a modular manner as a composition of processes exe-
cuted concurrently and interacting with each other through shared actions. FSPs con-
tain operations common to most algebraic languages and are supported by the model
checker LTSA [20]. We show how FSP descriptions can be formulated in the action
language C+ [12] (from non-monotonic reasoning in A.I.) and its corresponding logic
programming representation, EC+ [6] which are the languages used by the verification
and learning tasks respectively. C+ is a natural choice: similarly to FSPs, it has a se-
mantics of LTSs and allows concise representation of domains. It also supports many
forms of reasoning, including the computation of all runs of a given length that satisfy a
given description, and the construction complex queries over runs, states and transition
of processes. We describe a systematic translation of C+ into logic programs, where the
resulting logic programs allows us to deploy ILP in the discovery of repairs.

The paper is structured at follows. §2 gives background, and §3 our running example.
In §4 we describe verification using C+. §5 presents the use of EC+ and ILP to correct
FSP descriptions. Related work and a conclusion follow in §6.

2 Background

Labelled Transition Systems (LTSs)

LTSs [15] are behaviour models representing the changing states of a system, in re-
sponse to actions occurring within or outside the system. Both FSPs and C+ use LTSs
in their semantics. An LTS L is a structure (S,A,Δ, S0), where S is a finite set of
states, A is a finite set of action labels (also known as the alphabet), Δ ⊆ S × A × S
is the transition relation, and S0 is a set of initial states. An LTS is deterministic iff
for each s ∈ S and each action label a ∈ A, there is at most one state s′ for which
(s, a, s′) ∈ Δ. It is called deadlock-free if for each s ∈ S reachable from an initial
state in S0, there is at least one state s′ for which (s, a, s′) ∈ Δ. We use s

a−→ s′ as
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a shorthand for (s, a, s′) ∈ Δ. A run of length n through an LTS (S,A,Δ, S0) is a
sequence (s0, a0, s1, . . . , an−1, sn) such that s0 ∈ S0 and for all i with 0 � i < n,

(si, ai, si+1) ∈ Δ. We often write such runs as expressions (s0
a0−→ · · · an−1−−−→ sn).

Where several LTSs represent the individual components of a larger system, the in-
dividual LTSs can be composed together by synchronising the actions common to their
alphabets and interleaving the remaining actions. To denote the composed behaviour of
two LTSs P = (SP , AP , ΔP , SP,0) and Q = (SQ, AQ, ΔQ, SQ,0) we use the com-
mutative and associative binary parallel composition operator, ‖. The LTS (P ‖ Q) is
the structure (SP × SQ, AP ∪ AQ, Δ, SP,0 × SQ,0) such that (sp, sq)

a−→ (s′p, s′q) iff

either: (i) a ∈ AP \ AQ and sp
a−→ s′p and sq = s′q; (ii) a ∈ AQ \ AP and sq

a−→ s′q
and sp = s′p; or (iii) a ∈ AP ∩ AQ and sp

a−→ s′p and sq
a−→ s′q . (i) and (ii) represent

independent execution of P and Q; (iii) gives joint execution of a shared action.

Finite State Processes (FSPs)

FSPs [20] are process algebras, based on CSP [13] and CCS [22], for describing the
behaviour of components of concurrent systems. Each component is represented as a
primitive process, comprising a number of local processes, which can be thought of
as phases of the component’s operation. The scope of a local process is the primitive
process in which it is defined. A composite process represents the composition of a set
of primitive processes. The signature of a primitive process includes a process name,
names of its local processes and a set of action labels A, the alphabet. Primitive process
operators include ‘→’ for action prefixing (showing which actions can be performed to
lead to another local process) and ‘|’ for choice (more than one possible action).

The language also allows for definitions of constants, integer ranges, sets of action
labels. In the current paper we focus on the basic syntax for FSPs. We refer to it here as
fundamental FSPs and define it in §4. Each ‘full’ FSP has an equivalent formulation in
terms of fundamental FSPs—so there is no loss of expressivity [20].

A composite process represents the composition of a number of primitive processes.
Similarly to LTSs, the operator ‖ is used to denote the composed behaviour of two
processes. The expression P ‖Q means that the P and Q may execute actions indepen-
dently but must synchronise actions common to their alphabets. A composite process
is identified by a process name preceded by the symbol “||”. In §4 we will describe the
precise syntax and semantics of the restricted form of FSPs we work with.

C+ and EC+
Action languages [11] are logical formalisms for representing the way systems change
as a consequence of actions and events occurring in them.

The language of C+ is built over a multi-valued propositional signature σ, with fluent
constants σf—describing states—and the action constants σa—describing actions and
events. An atom c=v has c ∈ σ and v ∈ dom(c)—the non-empty domain of c’s values.
An interpretation I maps constants to values; we write I |= c=v iff I(c) = v. I(σ)
is the set of interpretations of the signature σ. A fluent formula is built from Boolean
connectives using fluent atoms (c=v where c ∈ σf) and ⊥ and + (for logical truth); an
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action formula is made from atoms containing only action constants, with +, and must
contain at least one action constant. The LTSs (S,A,Δ, S0) used in the semantics of
C+ have S ⊆ I(σf) and A = I(σa); S0 is S, and Δ ⊆ S ×A× S.

Causal laws determine the states S and transition relation Δ. A static law has the
form F if G, where F and G are fluent formulas: if a state satisfies G, it must also
satisfy F . A fluent dynamic law has the form F if G after ψ, where F and G are fluent
formulas, and ψ is any formula with signature σf ∪ σa. This means: for any transition
(s, a, s′), if s ∪ a |= ψ and s′ |= G, then s′ |= F . (If G is +, then we abbreviate the
rule as F after ψ.) Finally, an action dynamic law is an expression α if ψ, where α is
an action formula and ψ is as above. These mean: if s ∪ a |= ψ, then a |= α.

An action description is a set of causal laws; each defines an LTS (S,A,Δ, S0). A
law inertial c means the value of fluent constant f persists by default; exogenous a
means (roughly) that a can be executed, or not executed, in every state. In later sections
we will use the further abbreviation of default α if β for the action dynamic law
α if α∧β and nonexecutable α if β for the fluent dynamic law⊥ if + after α∧β.
The default law represents that, where β is true, then α is true by default, whilst the
nonexecutable is understood as false is derivable from a state where α ∧ β is true.

Current implementations of C+, such as iCCalc, 1 are based on SAT solvers.
Queries specify partial information about the values of fluent and action constants in
the states and transitions of a run through the transition system, and answers take the
form of the complete set of runs consistent with that specification.

In [6] it is shown that a subclass of action descriptions of C+ (those without cir-
cular dependencies in causal laws) can be represented as normal logic programs (See
Appendix) whose form is closely related to that of the Event Calculus [16]. We have
adapted the form of those logic programs to suit our C+ action descriptions for FSPs.
The EC+ formulation includes a translation of the specific causal theory, as well as core,
domain-independent clauses to enable reasoning and ensure the semantics is respected.
Domain specific facts include those of the predicate domain/2 (giving the domain of a
fluent constant) and causes/5—where a fact causes(C2,V2,Act,C1,V1) cor-
responds to the presence of a fluent dynamic law C2=V 2 if + after Act=t ∧C1=V1.

In conjunction with information about what is initially true in a given run (facts of
init/2) and what actions occur at different times (facts of happens/2), the sets of
clauses of an EC+ logic program have stable models that are in one-to-one correspon-
dence with runs through the LTS defined by the action descriptions [6].

Inductive Logic Programming

ILP [23] is a symbolic machine-learning technique for computing a hypothesis H from
a background theory B (a logic program) and examples (E = E− ∪ E+) such that: (i)
B ∪H |= e+ for each e+ ∈ E+; (ii) B ∪H 
|= e− for each e− ∈ E−. For shorthand
we write (i) and (ii) as B ∪ H |= E+ and B ∪ H 
|= E−. A hypothesis space is the
set of all hypotheses {Hi} that satisfies the conditions set above. To restrict the size
of the hypothesis space, some ILP methods make use of mode declarations (MD), a
form of language bias that specifies the syntactic form of the hypotheses to be learned.

1 See http://www.doc.ic.ac.uk/˜rac101/iccalc/

http://www.doc.ic.ac.uk/~rac101/iccalc/
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It contains both head and body declarations that describe predicates that may appear,
the desired input and output behaviour and number of instantiations. We use s(MD) to
denote the set of all hypotheses satisfying MD.

Typically, B is assumed partial but correct. The ILP task is to generate a hypothesis
H that extends B to explain the examples. ILP is applicable to problems in which
B is partially incorrect and must be revised. Parts of the background suspected to be
responsible are removed from B and put in the revisable theory T . The revision of a
theory T involves applying a transformation to T to obtain a new theory H , denoted
r(T,H), by deleting rules, adding facts, adding conditions to rules or deleting conditions
from rules. A repair is called minimal if the number of revision operations required to
transform one theory into another (the sum of all deletions and additions) is minimal.

Definition 1. An inductive task is a tuple 〈B, T,E,MD〉. B is the background theory,
T is a revisable theory s.t. T ⊆ s(MD), E = E+ ∪ E− is the examples and MD is
the mode declaration. The logic program H , where H ⊆ s(MD) and r(T,H), is an
inductive solution to the task 〈B, T,E,MD〉 iff B ∪H |= E+ and B ∪H 
|= E−.

3 Running Example

Our running example is based on the production cell system [7]. It comprises two con-
veyor belts (feed belt and deposit belt), two products (a and b), a robot arm and two
tools (drill and oven). The feed belt conveys raw products for the robot arm to pick up
and process; the deposit belt conveys the processed products out of the cell. We define
FSPs ARM, TOOL and RAW PRODUCT (process names are in small capitals; actions
are in italic), with the sets PRODUCTTYPES = {a, b} and TOOLSET = {oven, drill}:

ARM = IDLE,

IDLE = ([p : PRODUCTTYPES].getFeedbelt → PICKED UP[p]),

PICKED UP[p : PRODUCTTYPES] = (put[t : TOOLSET][p] → PROCESSING[t][p]

| [p].putDepositbelt → IDLE | [p].getFeedbelt → PICKED UP[p]),

PROCESSING[t : TOOLSET][p : PRODUCTTYPES] = (get[t][p] → PICKED UP[p]).

TOOL(T = ‘any) = (put[T ][p : PRODUCTTYPES] → get[T ][p] → TOOL).

RAW PRODUCT(P = ‘any) = ([P ].available → [P ].getFeedbelt → TOOL AVAILABLE

| [P ].unavailable → RAW PRODUCT),

TOOL AVAILABLE = (put[t : TOOLSET][P ] → get[t][P ] → TOOL AVAILABLE

| [P ].putDepositbelt → RAW PRODUCT).

where ‘any means any constant value assigned in the composed system. ARM, TOOL

and RAW PRODUCT are primitive process names. ARM has three local processes: IDLE,
PICKED UP and PROCESSING. It is initially idle. When it is idle it can pick up a product
from the feed belt [p : PRODUCTTYPES].getFeedbelt (in which case it progresses to the
PICKED UP process). Once it has picked up a product p, it can either put the product in
a tool t (put[t][p]) and move to the PROCESSING phase or, from the same state, place it
in the deposit belt [p].putDepositbelt and return to the IDLE phase, or it can get another
product from the feed belt and continue in the same phase. If it puts in the tool for
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processing then it can remove the product from the tool and return to the PICKED UP

local process and continue from there. Note that in FSP, indices may appear either
before or after action labels. The composite system is defined as below.

||TOOLS = (TOOL(oven) ‖ TOOL(drill)).
||RAW PRODUCTS = (RAW PRODUCT(a) ‖ RAW PRODUCT(b)).
||PRODUCTIONCELL = (ARM ‖ TOOLS ‖ RAW PRODUCTS).

Consider the property “The robot arm should not process products a and b at the same
time”. We are interested in checking if this situation is permissible in our composite
system PRODUCTIONCELL. In the following sections we show how to detect automat-
ically violations to such properties and repair the specification if any violations exist.

4 Compositional Verification in C+
This section presents a new approach to verification for component-based systems rep-
resented as FSPs. It considers a fundamental FSP description as input and automatically
translates it into the C+ language. iCCalc is then used to verify that a property speci-
fied in C+ holds in every run of the system. Our focus is on a class of properties (called
safety properties [18]) which express the notion that no ‘bad’ state will be reached and
that are expressible in Linear Temporal Logic (LTL) [21]. In what follows we give de-
tails of the FSP translation and verification using iCCalc.

Specifying FSPs in C+
Translation from FSPs into C+ starts from fundamental FSPs.

Definition 2. Let A be a finite set of action labels, and Q a finite set of state labels,
called Q-labels, of the form Qi. Then a fundamental FSP definition has the form:

PROC = Q0,

Q0 = (a1,1 → Q1,1 | · · · | a1,l1 → Q1,m1),

. . . , Qn = (an,1 → Qn,1 | · · · | an,ln → Qn,mn).

where the ai,j are in A and the Qi, Qi,j are in Q. (It is clear that a fundamental FSP
definition is also a full FSP.) We also use a representation of a fundamental FSP PROC

as 4-tuple of the form (Q, A, trans,Q∗), where Q and A are as above, Q∗ ⊆ Q is
the set of initial local processes, and trans ⊆ Q × A × Q (the transition relation)
represents the effect of the actions on the FSP as above: (Qi, aj,k, Ql,m) ∈ trans iff
Qi = (· · · | aj,k → Ql,m | · · · ) forms part of the fundamental FSP definition. We will
refer to fundamental FSPs just as ‘FSPs’ where this causes no confusion. Note that Q0

always represents the initial local state of a process. For a fundamental FSP PROC, we
useQPROC , APROC , transPROC andQ∗

PROC to refer to elements of the tuple representation.

Any full FSP can be translated into a fundamental FSP representation behaviourally
equivalent (allowing the same sequences of actions to be performed) to the original. The
main features of fundamental FSPs compared to the original FSPs are: (i) definitions
of sequences of action prefixes are split by creating new local processes for each action
prefix, (ii) each range-indexed local process is replaced with a set of local processes,
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one for each value in the specified range, and (iii) each range-indexed action prefix is
replaced with a choice of action prefix for each value in the range.

We work with the tuple-based representation of fundamental FSPs. The semantics is
an LTS; an FSP (Q, A, trans,Q∗) defines the LTS (Q, A, {(Q, a,Q′) | trans(Q, a) =
Q′},Q∗). Composition of the LTSs defined by fundamental FSPs is then given using
the definitions in §2. (The LTS defined by a ‘full’ FSP is equivalent to that defined
by its fundamental equivalent.) To illustrate, consider the (full) FSP definition ARM in
our running example. The equivalent fundamental FSP is shown below, where we have
marked the identity of states according to their Q-values.2

ARM = Q0,

Q0 = (b.getFeedbelt → Q1| a.getFeedbelt → Q4),

Q1 = (b.putDepositbelt → Q0 | b.getFeedbelt → Q1 | put.drill.b → Q2

| put.oven.b → Q3 | a.getFeedbelt → Q4),

Q2 = (get.drill.b → Q1), Q3 = (get.oven.b → Q1),

Q4 = (a.putDepositbelt → Q0 | b.getFeedbelt → Q1 | a.getFeedbelt → Q4

| put.drill.a → Q5 | put.oven.a → Q6),

Q5 = (get.drill.a → Q4), Q6 = (get.oven.a → Q4).

When translating into C+, we work with sets of fundamental FSPs. The fluent constants
will be their names; we use the fact that signatures of C+ are multi-valued by setting the
domain of each such fluent constant to be the Q-values (the states of the local processes)
for the corresponding FSP. The only action constant is ACT, with domain the union of
the sets of all action labels for each fundamental FSP. The causal laws of the translation
encode the particular behaviour of the FSP. Consider again the ARM process. The C+
translation has causal laws including:

ARM=Q1 after ARM=Q0 ∧ ACT=b.getFeedbelt inertial ARM

ARM=Q4 after ARM=Q0 ∧ ACT=a.getFeedbelt default ACT=a.getFeedbelt

nonexecutable ACT=a.getFeedbelt if ARM=Q2

nonexecutable ACT=a.getFeedbelt if ARM=Q3

The caused laws encode the response to actions; the inertial law ensures that the
local state of ARM continues in its current state unless it is caused to be otherwise;
the default laws ensure that actions can occur by default; and the nonexecutable
laws specify the conditions under which actions cannot occur. Further: σf = {ARM},
dom(ARM) = {Q0, Q1, Q2, Q3, Q4, Q5, Q6}, σa = {ACT}, dom(ACT)={put.drill.X,
put.oven.X, get.drill.X, get.oven.X, X.getFeedbelt, X.putDepositbelt}, for X ∈ {a, b}.

Definition 3. Let F be a set of fundamental FSPs, named {PROC1, . . . , PROCn}. The
C+ translation of F is FC+, where σf = {PROC1, . . . , PROCn} and σa = {ACT}, with:

dom(PROCi) = {Q | PROCi ∈ F, Q ∈ QPROCi} dom(ACT) =
⋃

{APROC | PROC ∈ F}
and where the laws of FC+ are:

2 The complete FSP description is available at
http://www.doc.ic.ac.uk/˜da04/sefm14/production_cell.fsp

http://www.doc.ic.ac.uk/~da04/sefm14/production_cell.fsp
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{PROC=Q′ after PROC=Q ∧ ACT=a | ∃PROC ∈ F, (Q,a,Q′) ∈ transPROC}
∪ {inertial PROC | PROC ∈ F} ∪ {default ACT=a | a ∈ dom(ACT)}
∪ {nonexecutable ACT=a if PROC=Q | a ∈ APROC,¬∃Q′((Q, a,Q′) ∈ transPROC}

As with our illustration using the ARM process, the first set of laws encodes the response
to actions; and the second set ensures that local states of processes persist unless caused
to change. The third set of laws ensure that synchronisation is correctly modelled: where
a is in the alphabet of the processes PROC1, . . . , PROCn, then a can occur only when
each of those processes is in an appropriate local state. Our first theorem shows that any
transition in an LTS defined by a fundamental FSP is matched by a transition in the LTS
defined by the corresponding C+ action description.

Theorem 1. Let F be a set of fundamental FSPs, F = {PROC1, . . . , PROCn}, such that
(S,A,Δ, S0) is the LTS defined by the composition ||F = (PROC1 ‖ · · · ‖ PROCn)
(where no PROCi itself contains a composition). Let FC+ be the corresponding C+
action description, with LTS (S′, A′, Δ′, S′

0). Then there is a mapping λ : S → S′ such
that for any (s1, a, s2) ∈ Δ, (λ(s1), {ACT=a}, λ(s2)) ∈ Δ′.
Proof. (See the Appendix.) ,�

This result allows us to prove that runs through the LTS defined by the FSP starting
at the initial state are in 1-1 correspondence with runs through the LTS defined by the
C+ encoding, starting at its initial state.

Theorem 2. Let F be a set of fundamental FSPs, F = {PROC1, . . . , PROCn}, such
that (S,A,Δ, S0) is the LTS defined by the composition ||F = (F1 ‖ · · · ‖ Fn). Let
FC+ be the corresponding C+ action description and (S′, A′, Δ′, S′

0) its LTS, where s′0
is {PROCi=Qi | Qi ∈ s0}. Then there is a run (s0, a0, s1, a1, . . . , an−1, sn) through
(S,A,Δ, S0) iff there is a run (s′0, a

′
0, s

′
1, a

′
1, . . . , a

′
n−1, s

′
n) through (S′, A′, Δ′, S′

0),
with (i) a′i = {ACT=ai} and (ii) s′i = {PROCk=Qk | Qk ∈ si}.

Proof. Left to right is a trivial inductive consequence of Theorem 1. Right to left is a
simple inductive proof on the length of runs (details omitted owing to space limits). ,�

As a result of Theorem 2, fundamental FSPs—and therefore also all FSPs—have a
C+ equivalent, in the sense that runs through the transition systems defined encode the
same information. Tools developed for C+ which allow different kinds of analysis can
therefore be brought to bear in reasoning about properties of FSPs, which is the aim for
the rest of this section. As the translation preserves the compositionality of the origi-
nal FSP specification, one may remove and add the parts of the C+ action description
corresponding to different processes without harm, to streamline verification. It may be
possible to make use of theorems in [27], which show when causal laws in an action de-
scription are redundant, in order to reduce the size of the translation. This would make
the representation of the action description smaller, without affecting the state space.

Detecting Errors in iCCalc

We use iCCalc for verification. It takes as input a C+ action description and a query
as a partial specification of a run. Part of that query involves a specification of the initial
state, which is extracted from the FSP specification (for each primitive process).



Automated Error-Detection and Repair for Compositional Software Specifications 119

Verification involves checking runs of the system satisfy desirable properties, ex-
pressed in iCCalc as propositional formulas of time-stamped fluent and action con-
stants t:C=V, where constant C must have the value V at t (the tth state or transition in
the run). In this paper, we suppose properties are given in the iCCalc language. In [6]
it is shown how bounded model checking over LTL can be expressed and performed in
iCCalc using these constraints. The length of runs may be adjusted and incrementally
increased as needed. The minimum length of runs needed to ensure completeness of the
verification process can be calculated using methods such as those in [4].

To prove a property for a system composed of several FSP processes, we check the
LTS defined by the corresponding C+ action description satisfies the negation of that
property. If a run satisfying its negation is found then the original property is violated
and any run produced represents a counterexample. The constraint in the third argument
of the query is expressed with the constant C being either ACT, the name of a primitive
process or a fluent constant, and V representing the name of some action, a local state
of a process or a fluent value (⊥ or+). For instance, consider the property mention in §3
“The robot arm should not process two different product types at the same time”. This
is violated if there is a run leading to a state where the robot is processing product a
and b concurrently. To check if this is possible in our model, we extend our production
cell description in C+ to include the fluent constants: {processing.a, processing.b}
where processing.a becomes true once the action a.getFeedbelt happens, and becomes
false once a.putDepositbelt occurs and defined as false in the initial state. A similar
definition is given to processing.b. In C+:

processing.a after ACT = a.getFeedbelt ¬processing.a after ACT = a.putDepositbelt

default ¬processing.a
We include predefined queries to our input files for iCCalc, using a predicate rinit

in which the third parameter captures each process’s initial local state (see Appendix).
To check whether there is a run from the initial state leading to a state where a the
robot’s arm is processing two products a and b at the same time we prompt iCCalc
with the query query rinit(1..m, [max : processing.a,max : processing.b]) where
m is an upper-bound on the length of the runs we interested in (in this example m was
set to 100). In our running example, iCCalc finds all six solutions in the composed
system of length four showing a case where the robot’s arm gets product b from the feed
belt while its processing product a and vice versa—we show three of the six here (the
rest in the Appendix):

r1 = (s0
a.available−−−−−−→ s1

b.available−−−−−−→ s2
a.getFeedbelt−−−−−−−→ s3

b.getFeedbelt−−−−−−−→ s4)

r2 = (s0
a.available−−−−−−→ s1

a.getFeedbelt−−−−−−−→ s2
b.available−−−−−−→ s3

b.getFeedbelt−−−−−−−→ s4)

r3 = (s0
b.available−−−−−−→ s1

a.available−−−−−−→ s2
a.getFeedbelt−−−−−−−→ s3

b.getFeedbelt−−−−−−−→ s4)
iCCalc produces runs representing all shortest (distinct) counterexamples to the orig-
inal property from the initial state of the composed system. This is an advantage over
other approaches as it allows the learning procedure (§5) to diagnose problematic runs
simultaneously and hence suggest minimal repairs for all of them in a single iteration.

Because the underlying technology for the verification is propositional SAT-solving,
verification is in general NP-complete w.r.t. the clausal representation iCCalc uses. In
practice we have found the time iCCalc takes appears to be sensitive to the structure
of the action descriptions; we leave the further investigation of this for future work.
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5 Repairing Compositional Specifications

The detection of violation runs in the verification phase shows the composition of the
processes violates the original property. However, the location of the errors and their
exact causes may be unclear. Errors may occur in the composition of all or some of the
processes, or be caused by a single component within the composite system. They may
be caused by an over-constrained, under-specified or incorrect specification. Hence any
repair must take all these considerations into account and ensure that any fix would not
introduce further errors. In this section we use ILP to address these problems.

Encoding Process Descriptions

To enable the use of ILP, we first translate the C+ theory for a set of fundamental FSPs,
from §4, into an EC+ logic program FEC+ using a variant of the C+ to EC+ translation
detailed in [6]. The mapping for caused and nonexecutable clauses follows that
described in [6]. For each fluent constant f and action constant a the EC+ program
contains a fact fc(f) and av(a); if a value v ∈ dom(c), there is a fact domain(c,v).
Further, for every member v of the domain of a fluent constant, there is a fact fv(v).
Thus, the Q-values for a process are recorded. For instance, the program obtained from
encoding the extract of causal laws in §4 is:3

causes(arm, q1, b_getFeedbelt, arm, q0).
causes(arm, q4, a_getFeedbelt, arm, q0).
inertial FC :- fc(FC).
nonexecutable(a_getFeedbelt, arm, q2).
nonexecutable(a_getFeedbelt, arm, q3).
fc(arm). av(b_getFeedbelt). av(b_getFeedbelt). fv(q0). fv(q1).
fv(q2). fv(q3). fv(q4). domain(arm, q0). domain (arm, q1).
domain(arm, q3). domain(arm, q4).
domain(act, b_getFeedbelt). domain(act, a_getFeedbelt).

Interpretations of FEC+ are given with respect to an initial state, encoded using
the predicate init/2, e.g., init(arm, q0), and runs expressed as a conjunction of
happens literals. To capture multiple runs in our EC+ description, we enrich the signa-
ture of EC+ programs to include run constants σr and extend EC+ predicates happens,
caused and broken with an additional argument for runs, e.g., happens(a,t,r) means
action a happens at time t in run r. The domain-independent axioms in EC+ pro-
grams, Axioms, are updated accordingly. They fall into four parts, so that Axioms =
Ax1 ∪ Ax2 ∪ Ax3 ∪ Ax4. The first component, Ax1, are inspired by the event calculus,
and were given in [6]; they are described in the Appendix.

We introduce the predicate alphabet(c, a), which says that action a is in the al-
phabet of process c. The C+ to EC+ translation is extended to generate these for each
action in the alphabet of every process in the C+ theory. To ensure the semantics of FSP
descriptions are preserved when learning repairs, we further include a set of constraints
in the Axioms. Thus, Ax2 is:

3 The full program is available at
http://www.doc.ic.ac.uk/˜da04/sefm14/production_cell.lp

http://www.doc.ic.ac.uk/~da04/sefm14/production_cell.lp
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:- causes(C, V1, A, C, V),
causes(C, V2, A, C, V),
V1 != V2.

:- causes(C, V, AV, C, V0),
not domain(C,V).

:- causes(C, V1, A, C, V),
not alphabet(C, A).

:- causes(C, V1, A, C, V),
nonexecutable(A, C, V).

:- causes(C, V, A, C, V0),
not domain(C,V0).

:- nonexecutable(A, C, V),
not alphabet(C, A).

The top-left constraint ensures determinism: a process may not be caused to be in two
different local states. The middle-left states that a process cannot be caused to be in a
Q state outside its domain. The bottom-left specifies that only actions in the alphabet of
a process may cause it to transit to a new state. The constraints on the right say that (i)
an action cannot cause a system to evolve to a new state by executing a nonexecutable
action, (ii) a process cannot be caused to transit to or from a state not within its domain
and (iii) a process can only restrict the occurrence of actions within its alphabet.

In addition, it is necessary to ensure any changes to the existing process description
result in a component specification that is deadlock-free. To do this, we include the
following in Axioms which state collectively that a process must at least be able to
evolve to one other state from every state in its domain. Our Ax3 contains:

exists_nextQstate(Process, From):-
causes(Process, To, A, Process, From).

:- not exists_nextQstate(Process, From).

Note that although the above ensures that in any model of the EC+ program, each
process is deadlock-free, it does not guarantee this for the composite system. For the
latter, the program must also include definitions of composite states reachable from
the initial composite state, and a constraint similar to the above but with respect to
composite states. We do not include these for lack of space.

To represent runs, we augment the language with the predicate attempt(a, t, r),
meaning there is an attempt to execute the action a at time t in run r. Consequently,
a run is encoded in EC+ as two sets: (i) a set of attempt facts, and (ii) a rule with
happens literals in the body as defined below.

Definition 4. Let r = (s0
a0−→ · · · an−1−−−→ sn) be a run. Its EC+ translation is rEC+ =

rExt ∪ rHap where rExt = {attempt(a0,0,r) . . . attempt(at−1,t−1,r)}, and rHap is
the clause run:-happens(a0,0,r), . . ., happens(at−1,t−1,r) with run is a predicate
uniquely to run r. For simplicity, we use αrHap to denote the head of clause rHap.

Finally, we further extend the set Axioms with Ax4, below. The predicate nonexecuta-
ble expresses that an action is cannot be performed at a time point within a run.
happens(A, T, R):-

attempt(A, T, R),
not nonexcutable(A,T, R).

nonexcutable(A,T, R):-
caused(C, V, T, R),
nonexecutable(A, C, V).

:- attempt(A1, T, R),
attempt(A2, T, R),
A1 != A2.

The first rule means that an action happens if it has been attempted at a time in which it
may occur. The second rule says that an action is not executable at a time t in a run r if
it the system has evolved to a state from which it cannot occur. The constraint ensures
that actions may not occur concurrently. This completes our EC+ encoding.
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Learning Repairs

Our proposed repair method locates the cause of the violation run detected during ver-
ification and revises the FSP descriptions to prevent these from occurring, whilst guar-
anteeing the modifications are consistent with the composite specification and do not
introduce deadlock. To achieve this using ILP, the revision task 〈B, T,E,MD〉 is set by
assigning specific elements of the FEC+ program to B, T and E and defining MD.

When learning repairs for process descriptions, the revision task may be explicitly
guided to explore the repair of specific components or all components within a given
description. The ability to specify this is particularly useful if the specification con-
tains process descriptions that are known to be correct or cannot be modified (as is the
case in legacy systems). Hence when applying the revision task to a set of FSP de-
scriptions, their EC+ encoding is split into two sets: those for which revisions may be
explored are added to T and those which are unmodifiable are included in B. Recall
that a component specification in EC+ is represented as a collection of caused and
nonexecutable clauses in which its process label appears. The background B also
includes Axioms and the EC+ encoding of the runs obtained from Def. 4.

As mentioned in §4, iCCalc generates the shortest runs the composed system may
execute to reach an undesirable state. The purpose of the repair is to identify neces-
sary changes to the FSP descriptions so that these sequences are no longer permissible.
Therefore for each violation run r, the constant appearing in the head of its rHap rule is
included in the negative examples E−.

As we are only interested in hypotheses that influence the set of runs permissible in
the LTS of a composite system, we define the mode declaration to include rules that
contain a causes and nonexceutable atom in the head. (Modification to the domain and
alphabet of processes is discussed in the §6.) The repair task is defined as follows.

Definition 5. Let F = F1, ...,Fm−1,Fm, ...,Fn be a set of fundamental FSPs and R a
set of violation runs such that each run in R exists in the LTS defined by F1||...||Fn . F*
is said to be a repaired specification of F with respect to R if H is an inductive solution
to the inductive task 〈B, T,E,MD〉 such that:
B = F1

EC+ ∪ ... ∪ Fm−1
EC+ ∪ Axioms ∪

⋃
1<i

{r i
EC+|ri ∈ R}; T = Fm

EC+ ∪ ... ∪ Fn
EC+;

E− =
⋃
1<i

αr i
Hap

for all ri ∈ R; and F*EC+ = F1
EC+, ...,F

m−1
EC+ ∪H .

Thus far we have only discussed the use of violation runs within the proposed ap-
proach. Although not required, it is possible to integrate information about runs that
satisfy the property being verified and should be preserved by the repair task. This is
done by applying the translation in Def. 4 to each desirable run rj and including the
constant appearing in the head of its rjHap in the set of positive examples E+. It is im-
portant to note that F* is not unique. The approach will produce all possible sets of
minimal repairs from which the engineer may select which one to use.

To compute the necessary repairs, we use the non-monotonic ILP tool ASPAL [5].
The ASPAL learning algorithm maps an ILP task into Answer Set Programming (ASP)
[10] and uses an ASP solver to abduce ground literals from which a hypothesis H
is constructed. For our running example, we include TOOLSEC+, RAW PRODUCTSEC+
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and (r1EC+ ∪ ... ∪ r6EC+) in the background theory, ARMEC+ as the revisable theory and
(αr1Hap

∪ . . . ∪ αr6Hap
) as the negative examples. ASPAL returns a revised theory where

causes(arm, q4, a getFeedbelt, arm, q4),
causes(arm, q1, b getFeedbelt, arm, q4)

are deleted, and the facts
nonexecutable(b getFeedbelt, arm, q4),
nonexecutable(b getFeedbelt, arm, q4)

are added. Although ASPAL is based on ASP which is NP-complete, we have noted
that the repair computation time increases with the number of rules that need grounding
by the ASP solver, and the number of revisions required. Heuristics for optimising the
repair procedure require further study. As a result of the above, the LTS model of the
C+ equivalent of F*EC+ is no longer consistent with the violations runs r1, ..., r6 [6].

Theorem 3. Let F be a set of fundamental FSPs and R a set of violation runs such that
each run in R exists in the LTS defined by F. Let F* be the repaired specification of F
with respect to R. Then each run r ∈ R no longer exists in the LTS defined by F*.

Proof. Induction on run length, and using the fact that there is a unique stable model.

Although the theorem above proves the repair procedure eliminates the violation
runs detected, the repair process does not guarantee longer violation runs are pro-
hibited. Therefore, the verification and learning processes are iterated to detect any
additional violation runs and repair the description accordingly. Violation runs from
previous iterations are accumulated in E− to ensure they are not made permissible by
later revisions. The convergence of this process is guaranteed once no further viola-
tion runs up to the completeness bound discussed in §4 are detected. Since the repair
is with respect to sets of violation runs, the approach takes fewer iterations than other
approaches that integrate verification and learning. Once the cycle terminates, the final
description is translated back into fundamental FSPs. In our running example, checking
the C+ equivalent of (FEC+ ∪ H) against the same property in iCCalc shows that
no further violations exist and thus the approach converges in a single iteration. Con-
sequently, the revised theory is mapped back into FSP through an inverse application
of the translation in Def. 3 (space limitations prevent our providing the full transla-
tion). The final outcome is a repaired specification in which the only process modified
is Arm:4

ARM = Q0,

Q0 = (b.getFeedbelt → Q1 | a.getFeedbelt → Q4),

Q1 = (b.putDepositbelt → Q0 | b.getFeedbelt → Q1 | put.drill.b → Q2

| put.oven.b → Q3),

Q2 = (get.drill.b → Q1), Q3 = (get.oven.b → Q1),

Q4 = (a.putDepositbelt → Q0 | a.getFeedbelt → Q4 | put.drill.a → Q5

| put.oven.a → Q6),

Q5 = (get.drill.a → Q4), Q6 = (get.oven.a → Q4).

4 Full FSP available at: http://www.doc.ic.ac.uk/ da04/
sefm14/production cell revised.lts

http://www.doc.ic.ac.uk/~da04/sefm14/production_cell_revised.lts
http://www.doc.ic.ac.uk/~da04/sefm14/production_cell_revised.lts
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6 Conclusion and Related and Future Work

In this paper we have shown how to repair compositional specifications described in
FSP, following a phase of automatic verification. We showed how an action language
widely studied in A.I. (C+) and ILP may be used to detect violations in properties
expressible in LTL, and compute minimal repairs to individual components while con-
sistency with the rest of the specification is maintained. This also involved defining a
translation from FSPs into C+, and thence into its logic-programming equivalent, EC+;
the correctness of our translations was proved. Although the paper focuses on revising
FSP descriptions, we see the work presented here as holding exciting potential for solv-
ing a wide range of problems in component-based software engineering.

To the best of our knowledge, the translation from process algebras into logic pro-
grams has not been explored before. Several authors have proposed using logic pro-
gramming to reason about software behaviour described in other formalisms [1,2,25].
[1] provides a translation for specifications expressed in LTL to event calculus logic
programs. However, both that work and [2] only generate a single violation run at a
time and hence require users to provide additional positive and negative example runs
to ensure computed solutions are not over-generalised and to speed up the convergence
of the approach. This limitation is overcome in our work by the generation of multiple
violation runs in a single verification step. Further, the formalism and semantics used
here allow the modelling of concurrency without the need to introduce special actions
explicitly in the language (e.g., ‘tick’ actions in [19]), removing one threat to scalability.
The work in [25] for generating Event Calculus logic programs from descriptions ex-
pressed in a tabular specification language and applying abductive logic programming
to discover violations to a restricted class of invariants, namely ‘single-state’ invariants.
That work finds a restricted class of violations, and cannot repair specifications.

[24] also use learning, to compute assumptions representing LTSs which, when com-
posed with given components, guarantee a property’s satisfaction. The learning method
is L*, which finds a regular language over a given alphabet and produces a determin-
istic finite-state machine that accepts the language. L* requires access to an oracle that
iteratively accepts and rejects a generated string, and updates a table containing state
information accordingly. ILP, by contrast, uses an expressive logic-based formalism ca-
pable of capturing state information among many other constructs such as constraints
over the types of computable changes; this is not possible in L*.

Our approach is somewhat related to work on controller synthesis, e.g., [7]. For in-
stance, techniques such as [7] automatically generate controllers that, together with a
given model of the environment, satisfy a given property. Although these have shown
good results,such techniques find at most one solution, even if many exist. Which con-
troller is produced is chosen at random. Although our approach has only been demon-
strated to learn revisions for existing process descriptions, we believe it may be adapted
to compute all minimal process descriptions for a given alphabet.

In future work, we will investigate the use of our method to check liveness proper-
ties. We will modify the approach to handle revisions to the alphabet and extend the
translation to embrace non-determinism and complex features such as abstractions and
priorities. We will apply the work to model distribution problems [26], compositional
specification synthesis from scenarios [17] and self-adaptive software [8].
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Appendix

Theorem 1. Let F be a set of fundamental FSPs, F = {PROC1, . . . , PROCn}, such that
(S,A,Δ, S0) is the LTS defined by the composition ||F = (PROC1 ‖ · · · ‖ PROCn)
(where no PROCi itself contains a composition). Let FC+ be the corresponding C+
action description, with LTS (S′, A′, Δ′, S′

0). Then there is a mapping λ : S → S′ such
that for any (s1, a, s2) ∈ Δ, (λ(s1), {ACT=a}, λ(s2)) ∈ Δ′.

Proof. Members s ∈ S have the form (Q1, . . . , Qn) (§2). Let λ be s.t. λ(Q1, . . . , Qn)
is {PROC1=Q1, . . . , PROCn=Qn}. {PROC1=Q1, . . . , PROCn=Qn} is clearly a state
of the LTS defined by FC+. Assume (s1, a, s2) ∈ Δ, and let s1 = (Q1, . . . , Qn) and
s2 = (Q′

1, . . . , Q
′
n). We must show (λ(s1), {ACT=a}, λ(s2)) is in Δ′. Let Fa be those

members of F whose alphabets include a, i.e., Fa = {PROC ∈ F | a ∈ APROC}. Then
for all i such that 1 � i � n, if PROCi ∈ Fa we have that transPROC(Qi, a) = Q′

i, by
definition of the transition systems defined by FSPs, and thus a law

PROC=Q′
i after PROCi=Qi ∧ ACT=a

in FC+. (Note also that if PROCi 
∈ Fa then transi(Qi, a) is undefined.) Also using
Definition 3 there must be a law

default ACT=a if PROC∗
1=Q∗

1 ∧ · · · ∧ PROC∗
m=Q∗

m

in FC+, where PROC∗
1, . . . , PROC∗

m are the members of Fa and the Q∗
1, . . . , Q

∗
m the

corresponding values in s1. The presence (and absence) of these causal laws, together
with the inertial laws, means that there is a transition

({PROC1=Q1, . . . , PROCn=Qn}, {ACT=a}, {PROC1=Q′
1, . . . , PROCn=Q′

n})
in Δ′, which is precisely (λ(s1), {ACT=a}, λ(s2)) given our definition of λ. ,�

Logic Programs

A normal logic program is a set of rules of the form

L : −L1, . . . , Lm, not N1, . . . , not Nn (1)

where the L, Li and Ni are atoms and 0 � m, 0 � n. L is called the head of the rule
whilst L1, . . . , Lm, not N1, . . . , not Nn is referred to as the rule’s body. A literal is an
atom possibly preceded by not, where not is the negation as failure operator [3]. When
a program does not contain not in its rules, it is called a definite logic program.

A (Herbrand) model M of a logic program P , is a set of ground atoms such that, for
each ground instance C of a rule in P , M satisfies the head of C whenever it satisfies the
body of C. A program is consistent if it has at least one model. A model M is minimal
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if it does not strictly include any other model. Definite programs always have a unique
minimal model. Normal programs may have one, none, or several minimal models.
When there is no unique minimal model, alternative semantics are often provided to
single out specific models as the intended model.

Let P be a normal logic program and M be a set of atoms; then the reduct [9] of P
with respect to M , written PM , is

{L : −L1, . . . , Lm | (1) ∈ P ∧ ∀i � n (Ni ∈M)}
The reduct of any normal logic program is a definite logic program, and therefore has
a unique minimal model. If I is the minimal Herbrand model of PM then M is said to
be a stable model of P .

Core Axioms

We present the domain-independent axioms for our translation to EC+ in §5. The first,
event-calculus inspired component, Ax1, are:
caused(C, V, 0, R) :-

domain(C, V),
init(C, V).

caused(C, V, T1, R) :-
domain(C, V),
0 < T1,
T is T1 - 1,
happens(A, T, R),
domain(C, V0),
caused(C, V0, T, R),
causes(C, V, A, C, V0).

caused(C, V, T1, R) :-
domain(C, V),
0 < T1, T is T1 - 1,
caused(C, V, T, R),
not broken(C, V, T, T1, R).

broken(C, V, T1, T2, R) :-
domain(C, V),
0 =< T1, T1 < T2,
domain(C, V1), V1 != V,
happens(A, T1, R),
causes(C, V1, A, C, V),
caused(C, V, T1, R).

The top-left axiom states that anything known true initially is caused to be true. The
bottom-left axiom states that if there is a fluent dynamic law (causes/5) of the right
form, and its conditions on the previous state and action performed hold, then the rel-
evant fluent atom holds. The top-right axiom states that the values of fluent constants
persist inertially by default; and the bottom-right, broken/5 axiom gives the circum-
stances overriding that default.

iCCalc Query

query(rinit(N), N,
[0:arm=q0, 0:raw productˆ[a]=q0, 0:raw productˆ[b]=q0,
0:toolˆ[drill]=q0, 0:toolˆ[oven]=q0,
-(0:being processedˆ[a]),
-(0:being processedˆ[b])]).

Remaining Violation Runs from §4

r4 = (s0
b.available−−−−−−→ s1

b.getFeedbelt−−−−−−−→ s2
a.available−−−−−−→ s3

a.getFeedbelt−−−−−−−→ s4)

r5 = (s0
a.available−−−−−−→ s1

b.available−−−−−−→ s2
b.getFeedbelt−−−−−−−→ s3

a.getFeedbelt−−−−−−−→ s4)

r6 = (s0
b.available−−−−−−→ s1

a.available−−−−−−→ s2
b.getFeedbelt−−−−−−−→ s3

a.getFeedbelt−−−−−−−→ s4)
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Abstract. Architectures depict design principles: paradigms that can
be understood by all, allow thinking on a higher plane and avoiding
low-level mistakes. They provide means for ensuring correctness by con-
struction by enforcing global properties characterizing the coordination
between components. An architecture can be considered as an operator
A that, applied to a set of components B, builds a composite component
A(B) meeting a characteristic property Φ. Architecture composability is
a basic and common problem faced by system designers. In this paper,
we propose a formal and general framework for architecture composabil-
ity based on an associative, commutative and idempotent architecture
composition operator ‘⊕’. The main result is that if two architectures
A1 and A2 enforce respectively safety properties Φ1 and Φ2, the archi-
tecture A1⊕A2 enforces the property Φ1∧Φ2, that is both properties are
preserved by architecture composition. We also establish preservation of
liveness properties by architecture composition. The presented results
are illustrated by a running example and a case study.

1 Introduction

Architectures depict design principles: paradigms that can be understood by all,
allow thinking on a higher plane and avoiding low-level mistakes. They provide
means for ensuring correctness by construction by enforcing global properties
characterizing the coordination between components.

Using architectures largely accounts for our ability to master complexity
and develop systems cost-effectively. System developers extensively use libraries
of reference architectures ensuring both functional and non-functional proper-
ties, for example fault-tolerant architectures, architectures for resource manage-
ment and QoS control, time-triggered architectures and security architectures.
Nonetheless, we still lack theory and methods for combining architectures in
principled and disciplined fully correct-by-construction design flows.

Informally speaking, an architecture can be considered as an operator A that,
applied to a set of components B builds a composite component A(B) meeting
a characteristic property Φ. In a design process, it is often necessary to com-
bine more than one architectural solution on a set of components to achieve a
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global property. System engineers use libraries of solutions to specific problems
and they need methods for combining them without jeopardizing their char-
acteristic properties. For example, a fault-tolerant architecture combines a set
of features building into the environment protections against trustworthiness
violations. These include 1) triple modular redundancy mechanisms ensuring
continuous operation in case of single component failure; 2) hardware checks to
be sure that programs use data only in their defined regions of memory, so that
there is no possibility of interference; 3) default to least privilege (least sharing)
to enforce file protection. Is it possible to obtain a single fault-tolerant archi-
tecture consistently combining these features? The key issue here is architecture
composability in the integrated solution, which can be formulated as follows.

Consider two architectures A1 and A2, enforcing respectively properties Φ1

and Φ2 on a set of components B. That is, A1(B) and A2(B) satisfy respectively
the properties Φ1 and Φ2. Is it possible to find an architecture A1 ⊕ A2 such
that the composite component (A1 ⊕A2)(B) meets Φ1 ∧ Φ2? For instance, if A1

ensures mutual exclusion and A2 enforces a scheduling policy is it possible to find
an architecture on the same set of components that satisfies both properties?

Architecture composability is a very basic and common problem faced by
system designers. Manifestations of lack of composability are also known as
feature interaction in telecommunication systems [1].

The development of a formal framework dealing with architecture composabil-
ity implies a rigorous definition of the concept of architecture as well as of the
underlying concepts of components and their interaction. The paper proposes
such a framework based on results showing how architectures can be used for
achieving correctness by construction in a rigorous component-based design flow
[2]. The underlying theory is inspired from BIP [3]. BIP is a component frame-
work rooted in well-defined operational semantics. It proposes an expressive
and elegant notion of interaction models for component composition. Interac-
tion models can be studied as sets of Boolean constraints expressing interactions
between components. BIP has been fully implemented in a language and sup-
porting toolset, including compilers and code generators [4].

BIP allows the description of composite components as an expression γ(B),
where B is a set of atomic components and γ is an interaction model. Atomic
components are characterized by their behaviour specified as transition systems.

An interaction model γ is a set of interactions. Each interaction is a set of
actions of the composed components, executed synchronously. The meaning of
γ can be specified by using operational semantics rules defining the transition
relation of the composite component γ(B) in terms of transition relations of
the composed components B. Intuitively, for each interaction a ∈ γ, γ(B) can
execute a transition labelled by a iff the components involved in a can execute
the corresponding transitions labelled by the actions composing a, whereas other
components do not move. A formal definition is given in Sect. 2 (Def. 2).

Given a set of components B an architecture is an operatorA such that A(B) =
γ(C,B), where γ is an interaction model and C a set of coordinating components,
and A(B) satisfies a characteristic property ΦA.
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According to this definition, an architecture A is a solution to a specific co-
ordination problem, specified by ΦA, by using an interaction model specified
by γ and C. For instance, for distributed architectures, interactions are point-
to-point by asynchronous message passing. Other architectures adopt a specific
topology (e.g. ring architectures, hierarchically structured architectures). These
restrictions entail reduced expressiveness of the interaction model γ that must
be compensated by using the additional set of components C for coordination.
The characteristic property ΦA assigns a meaning to the architecture that can be
informally understood without the need for explicit formalization (e.g. mutual
exclusion, scheduling policy, clock synchronization).

Our Contributions. We propose a general formal framework for architec-
ture composability based on a composition operator ‘⊕’ which is associative,
commutative and idempotent. We consider that characteristic properties are the
conjunction of safety properties and liveness properties. We show that if two
architectures A1 and A2 enforce respectively safety properties Φ1 and Φ2, the
architecture A1⊕A2 enforces Φ1∧Φ2, that is both properties are preserved by ar-
chitecture composition. The concept of liveness for architectures derives from the
Büchi-acceptance condition. We designate a subset of states of each coordinator
as “idle”, meaning that it is permissible for the coordinator to remain in such a
state forever. Otherwise, the controller must execute infinitely often. The main
result guaranteeing liveness preservation is based on a “pairwise noninterference”
check of the composed architectures that can be performed algorithmically.

The paper is structured as follows. Sect. 2 introduces the notions of com-
ponents and architecture, as well as the corresponding composition operators.
Sect. 3 presents the key results about the preservation of safety and liveness
properties. Sect. 4 illustrates the application of our framework on an Elevator
control use case. Some related work is discussed in Sect. 5, and Sect. 6 concludes.

2 The Theory of Architectures

2.1 Components and Architectures

Definition 1 (Components). A component is a Labelled Transition System
B = (Q, q0, P,−→), where Q is a set of states, q0 ∈ Q is the initial state, P is
a set of ports and −→⊆ Q × 2P × Q is a transition relation. Each transition is
labelled by an interaction a ⊆ P . We call P the interface of B. Notations q

a−→ q′,
q

a−→ and q 
 a−→ are as usual; QB, q
0
B, PB and −→B denote the constituents of B.

Definition 2 (Interaction model). Let B = {B1, . . . , Bn} be a finite set of
components with Bi = (Qi, q

0
i , Pi,−→),1 such that all Pi are pairwise disjoint, i.e.

∀i 
= j, Pi ∩ Pj = ∅. Let P =
⋃n

i=1 Pi. An interaction model over P is a subset
γ ⊆ 2P . We call the set of ports P the domain of the interaction model.

1 Here and below, we skip the index on the transition relation −→, since it is always
clear from the context.
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The composition of B with the interaction model γ is given by the component
γ(B) = (Q, q0, P,−→), where Q =

∏n
i=1 Qi, q

0 = q01 . . . q
0
n and −→ is the minimal

transition relation inductively defined by the following rules:

qi
∅−→ q′i

q1 . . . qi . . . qn
∅−→ q1 . . . q

′
i . . . qn

,
a ∈ γ qi

a∩Pi−−−→ q′i (if a ∩ Pi 
= ∅)
qi = q′i (if a ∩ Pi = ∅)

q1 . . . qn
a−→ q′1 . . . q

′
n

.

In the sequel, when speaking of a set of components B = {B1, . . . , Bn}, we
will always assume that it satisfies all assumptions of Def. 2.

Definition 3 (Architecture). An architecture is a tuple A = (C, PA, γ), where
C is a finite set of coordinating components with pairwise disjoint sets of ports,⋃

C∈C PC ⊆ PA, and γ ⊆ 2PA is an interaction model over PA.

Definition 4 (Application of an architecture). Let A = (C, PA, γ) be an
architecture and let B be a set of components, such that

⋃
B∈B PB ∩

⋃
C∈C PC =

∅ and PA ⊆ P
Δ
=

⋃
B∈B∪C PB. The application of an architecture A to the

components B is the component

A(B) Δ
=

(
γ ‖ 2P\PA

)
(C ∪ B) , (1)

where, for interaction models γ′ and γ′′ over disjoint domains P ′ and P ′′ respec-
tively, γ′ ‖ γ′′ Δ

= {a′ ∪ a′′ | a′ ∈ γ′, a′′ ∈ γ′′} is an interaction model over P ′∪P ′′.

Architecture A enforces coordination constraints on the components in B.
The interface PA of an architecture A contains all ports of the coordinating
components C and some additional ports, which must belong to the components
in B. In the application A(B), the ports belonging to PA can only participate
in the interactions defined by the interaction model γ of A. Ports which do
not belong to PA are not restricted and can participate in any interaction. In
particular, they can join the interactions in γ (see (1)). If the interface of the
architecture covers all ports of the system, i.e. P = PA, we have 2P\PA = {∅}
and the only interactions allowed in A(B) are those belonging to γ. Finally, the
definition of γ′ ‖ γ′′, above, requires that an interaction from each of γ′ and
γ′′ be involved in every interaction belonging to γ′ ‖ γ′′. To enable independent
progress in (1), one must have ∅ ∈ γ. (Notice that ∅ ∈ 2P\PA holds always.)

work

sleep

f1

b1

B1

f1

b1

work

sleep

f2

b2

B2

f2

b2

taken

free

f12

f12

b12

b12

C12

(a) (b)
Fig. 1. Component (a) and coordinator (b) for Ex. 1.
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Example 1 (Mutual exclusion). Consider the components B1 and B2 in Fig. 1(a).
In order to ensure mutual exclusion of their work states, we apply the ar-
chitecture A12 = ({C12}, P12, γ12), where C12 is shown in Fig. 1(b), P12 =
{b1, b2, b12, f1, f2, f12} and γ12 = {∅, b1b12, b2b12, f1f12, f2f12}.

The interface P12 of A12 covers all ports of B1, B2 and C12. Hence, the only
possible interactions are those explicitly belonging to γ12. Assuming that the
initial states of B1 and B2 are sleep, and that of C12 is free, neither of the two
states (free, work, work) and (taken, work, work) is reachable, i.e. the mutual
exclusion property (q1 
= work) ∨ (q2 
= work) holds in A12(B1, B2)

Let B3 be a third component, similar to B1 and B2, with the interface {b3, f3}.
Since b3, f3 
∈ P12, the interaction model of the application A12(B1, B2, B3)
is γ12 ‖ {∅, b3, f3}. (We omit the interaction b3 f3, since b3 and f3 are never
enabled in the same state and, therefore, cannot be fired simultaneously.) Thus,
the component A12(B1, B2, B3) is the unrestricted product of the components
A12(B1, B2) and B3. The application of A12 enforces mutual exclusion between
the work states of B1 and B2, but does not affect the behaviour of B3.

2.2 Composition of Architectures

Architectures can be intuitively understood as enforcing constraints on the global
state space of the system [3, 5]. More precisely, component coordination is re-
alised by limiting the allowed interactions, thus enforcing constraints on the
transitions components can take. From this perspective, architecture composi-
tion can be understood as the conjunction of their respective constraints. This
intuitive notion is formalised by the two definitions below.

Definition 5 (Characteristic predicates [6]). Denote B = {tt, ff} and let
γ ⊆ 2P be an interaction model over a set of ports P . Its characteristic predicate

(ϕγ : BP → B) ∈ B[P ] is defined by letting ϕγ
Δ
=

∨
a∈γ

(∧
p∈a p ∧

∧
p∈a p

)
. For

any valuation v : P → B, ϕγ(v) = tt if and only if {p ∈ P | v(p) = tt} ∈ γ. A
predicate ϕ ∈ B[P ] uniquely defines an interaction model γϕ, such that ϕγϕ = ϕ.

Example 2 (Mutual exclusion (contd.)). Consider the interaction model γ12 =
{∅, b1b12, b2b12, f1f12, f2f12} from Ex. 1. Since the domain of γ12 is P12 = {b1, b2,
b12, f1, f2, f12}, its characteristic predicate is (omitting ‘∧’):

ϕγ12 = b1 b2 b12 f1 f2 f12 ∨ b1 b2 b12 f1 f2 f12 ∨ b1 b2 b12 f1 f2 f12

∨ b1 b2 b12 f1 f2 f12 ∨ b1 b2 b12 f1 f2 f12

= (b1 ⇒ b12) ∧ (f1 ⇒ f12) ∧ (b2 ⇒ b12) ∧ (f2 ⇒ f12) (2)

∧ (b12 ⇒ b1 XOR b2) ∧ (f12 ⇒ f1 XOR f2) ∧ (b12 ⇒ f12) .

Intuitively, the implication b1 ⇒ b12, for instance, means that, for the port b1
to be fired, it is necessary that b12 be fired in the same interaction [6].

Definition 6 (Architecture composition). Let Aj = (Cj , Pj , γj), for j = 1, 2
be two architectures. The composition of A1 and A2 is an architecture A1⊕A2 =
(C1 ∪ C2, P1 ∪ P2, γϕ), where ϕ = ϕγ1 ∧ ϕγ2 .
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The following lemma states that the interaction model of the composed com-
ponent consists precisely of the interactions a such that the projections of a
onto the interfaces of both of the composed architectures (A1, A2, resp.) belong
to the corresponding interaction models (γ1, γ2 resp.). In other words, these are
precisely the interactions that satisfy the coordination constraints enforced by
both composed architectures.

Lemma 1. Consider two interaction models γi ⊆ 2Pi , for i = 1, 2, and let
ϕ = ϕγ1 ∧ϕγ2 . For an interaction a ⊆ P1∪P2, a ∈ γϕ iff a∩Pi ∈ γi, for i = 1, 2.

Proposition 1. Architecture composition ‘⊕’ is commutative, associative and
idempotent; Aid =

(
∅, ∅, {∅}

)
is its neutral element, i.e. for any architecture A,

we have A⊕Aid = A. Furthermore, for any component B, we have Aid(B) = B.

Notice that, for an arbitrary set of components B with P =
⋃

B∈B PB , we

have, by (1), Aid(B) =
(
2P

)
(B) (cf. Def. 2).

Example 3 (Mutual exclusion (contd.)). Building upon Ex. 1, let B3 be a third
component, similar to B1 and B2, with the interface {b3, f3}. We define two addi-
tional architecturesA13 andA23 similar toA12: for i = 1, 2,Ai3 = ({Ci3}, Pi3, γi3),
where, up to the renaming of ports, Ci3 is the same as C12 in Fig. 1(b), Pi3 =
{bi, b3, bi3, fi, f3, fi3} and γi3 = {∅, bibi3, b3bi3, fifi3, f3fi3}.

By considering, for ϕγ13 and ϕγ23 , expressions similar to (2), it is easy to
compute ϕγ12 ∧ ϕγ13 ∧ ϕγ23 as the conjunction of the following implications:

b1 ⇒ b12 ∧ b13 , f1 ⇒ f12 ∧ f13 , b12 ⇒ b1 XOR b2 , f12 ⇒ f1 XOR f2 , b12 ⇒ f12 ,

b2 ⇒ b12 ∧ b23 , f2 ⇒ f12 ∧ f23 , b13 ⇒ b1 XOR b3 , f13 ⇒ f1 XOR f3 , b13 ⇒ f13 ,

b3 ⇒ b13 ∧ b23 , f3 ⇒ f13 ∧ f23 , b23 ⇒ b2 XOR b3 , f23 ⇒ f2 XOR f3 , b23 ⇒ f23 .

It is now straightforward to obtain the interaction model for A12⊕A13⊕A23, i.e.
{∅, b1b12b13, f1f12f13, b2b12b23, f2f12f23, b3b13b23, f3f13f23}. Notice that this
is different from the union of the interaction models of the three architectures.

Assuming that the initial states of B1, B2 and B3 are sleep, whereas those of
C12, C13 and C23 are free, one can observe that none of the states (·, ·, ·, work,
work, ·), (·, ·, ·, work, ·, work) and (·, ·, ·, ·, work, work) are reachable in (A12⊕A13⊕
A23)(B1, B2, B3). Thus, we conclude that the composition of the three architec-
tures, (A12⊕A13⊕A23)(B1, B2, B3), enforces mutual exclusion among the work
states of all three components. In Sect. 3.1, we provide a general result stating
that architecture composition preserves the enforced state properties.

2.3 Hierarchical Composition of Architectures

Proposition 2. Let B be a set of components and let A1 = (C1, PA1 , γ1) and
A2 = (C2, PA2 , γ2) be two architectures, such that 1) PA1 ⊆

⋃
B∈B∪C1

PB and
2) PA2 ⊆

⋃
B∈B∪C1∪C2

PB. Then A2(A1(B)) is defined and equal to (A1⊕A2)(B).
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Condition 1 states that A1 can be applied to the components in B (cf. Def. 4);
condition 2 states that A2 can be applied to A1(B). Note that, when PAi ⊆⋃

B∈B∪Ci
PB holds for both i ∈ {1, 2}—for i = 1, this is the condition 1—and

none of the architectures involves the ports of the other, i.e. PAi ∩
⋃

C∈Cj
PC =

∅, for i 
= j ∈ {1, 2}, then the two architectures are independent and their
composition is commutative: A2(A1(B)) = (A1 ⊕A2)(B) = A1(A2(B)).

Proposition 3. Let B1,B2 be two sets of components, such that
⋃

B∈B1
PB ∩⋃

B∈B2
PB = ∅. Let A1 = (C1, PA1 , γ1) and A2 = (C2, PA2 , γ2) be two archi-

tectures, such that PA1 ⊆
⋃

B∈B1∪C1
PB and PA2 ⊆

⋃
B∈B1∪B2∪C1∪C2

PB . Then
A2(A1(B1,B2)) = A2(A1(B1),B2).

Intuitively, Prop. 3 states that one only has to apply the architecture A1 to
those components that have ports involved in its interface. Notice that, in order
to compare the semantics of two sets of components, one has to compose them
into compound components, by applying some architecture. Hence the need for
A2 in Prop. 3. As a special case, one can consider the “most liberal” identity
architecture Aid (see Prop. 1). Aid does not impose any coordination constraints,
allowing all possible interactions between the components it is applied to.

Example 4 (Mutual exclusion (contd.)). Ex. 3 can be generalised to an arbitrary
number n of components. However, this solution requires n(n − 1)/2 architec-
tures, and so does not scale well. Instead, we apply architectures hierarchically.

Let n = 4 and consider two architectures A12, A34, with the respective coordi-
nation components C12, C34, that respectively enforce mutual exclusion between
B1, B2 and B3, B4 as in Ex. 3. Assume furthermore, that an architecture A en-
forces mutual exclusion between the taken states of C12 and C34. It is clear that
the system A(A12(B1, B2), A34(B3, B4)) ensures mutual exclusion between all
four components (Bi)

4
i=1. Furthermore, by the above propositions,

A(A12(B1, B2), A34(B3, B4)) = A(A12(B1, B2, A34(B3, B4))) =

A(A12(A34(B1, B2, B3, B4))) = (A⊕A12 ⊕A34)(B1, B2, B3, B4) .

3 Property Preservation

Throughout this section we use several classical notions, which we recall here.

Definition 7 (Paths, path fragments, and reachable states). Let B =

(Q, q0, P,−→) be a component. A finite or infinite sequence q0
a1−→ q1

a2−→ · · · ai−1−−−→
qi−1

ai−→ qi · · · is a path in B if q0 = q0, otherwise it is a path fragment. A state
q ∈ Q is reachable iff there exists a finite path in B terminating in q.

3.1 Safety Properties

Definition 8 (Properties and invariants). Let B = (Q, q0, P,−→) be a com-
ponent. A property of B is a state predicate Φ : Q→ B. Φ is initial if Φ

(
q0
)
= tt.
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Definition 9 (Enforcing properties). Let A = (C, PA, γ) be an architecture;
let B be a set of components and Φ be an initial property of their parallel compo-
sition Aid(B) (see Prop. 1). We say that A enforces Φ on B iff, for every state
q = (qb, qc) reachable in A(B), with qb ∈

∏
B∈B QB and qc ∈

∏
C∈C QC , we have

Φ(qb) = tt.
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Fig. 2. Component from Ex. 5

Example 5. Consider again mutual ex-
clusion in Ex. 1. The component
A12(B1, B2) is shown in Fig. 2 (we ab-
breviate sleep, work, free and taken

to s, w, f and t respectively). Clearly
A12 enforces on {B1, B2} the property
Φ12 = (q1 
= w) ∨ (q2 
= w), where q1
and q2 are state variables of B1 and B2

respectively.
According to the above definition, when we say that an architecture enforces

some property Φ, it is implicitly assumed that Φ is initial for the coordinated
components. Below, we omit mentioning this explicitly.

Theorem 1 (Preserving enforced properties). Let B be a set of compo-
nents; let A1 and A2 be two architectures enforcing on B the properties Φ1 and
Φ2 respectively. The composition A1 ⊕A2 enforces on B the property Φ1 ∧ Φ2.
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For ease of reading, we omit
the transitions indicated in
blue and additionally label
each state with a red num-
ber, whereof the main label is
the binary representation with
s = 0 and w = 1.

Fig. 3. Projections of reachable states of Ex. 6 components onto Aid(B1, B2, B3)

Example 6. In the context of Ex. 3, consider the application of architectures A12

and A23 to the components B1, B2 and B3. The former enforces the property
Φ12 = (q1 
= w)∨ (q2 
= w) (the projections of reachable states of A12(B1, B2, B3)



136 P. Attie et al.

onto the state-space of the atomic components are shown in Fig. 3(a)), whereas
the latter enforces Φ23 = (q2 
= w) ∨ (q3 
= w) (the projections of reachable
states of A23(B1, B2, B3) onto the state-space of the atomic components are
shown in Fig. 3(b)). By Th. 1, the composition A12 ⊕A23 enforces Φ12 ∧ Φ23 =
(q2 
= w) ∨

(
(q1 
= w) ∧ (q3 
= w)

)
, i.e. mutual exclusion between, on one hand,

the work state of B2 and, on the other hand, the work states of B1 and B3

(see Fig. 3(c)). Mutual exclusion between the work states of B1 and B3 is not
enforced. Furthermore, it is easy to check that A1 ⊕ A2 ⊕ A3 enforces mutual
exclusion between the work states of B1, B2 and B3 as Φ12 ∧Φ13 ∧Φ23 =

(
(q1 
=

w) ∧ (q2 
= w)
)
∨
(
(q1 
= w) ∧ (q3 
= w)

)
∨
(
(q1 
= w) ∧ (q3 
= w)

)
.

3.2 Liveness Properties

Our treatment of liveness properties is based on the idea that each coordinator
C must be “invoked sufficiently often”, so that the liveness properties inherent in
C are imposed on the system as a whole. So, what does sufficiently often mean?
A reasonable initial idea is to require that each controller is executed infinitely
often (along an infinite path). But that turns out to be too strong. For example,
a mutual exclusion controller should not be invoked infinitely often if no process
that it controls requests the critical resource. So, we add “idle states”, so that it
is permitted for a coordinator to remain forever in an idle state. A coordinator
not in an idle state must eventually be executed. We will use the equivalent
formulation: an (infinite) path is live with respect to a coordinator C iff either
C is executed infinitely often, or is in an idle state infinitely often. A live path
is one that is live with respect to all coordinators. An architecture A is live with
respect to a set of components B iff every finite path of A(B) can be extended
to an infinite live one.

A transition q
a−→ q′ executes a coordinator C iff a∩ PC 
= ∅. An infinite path

α executes C infinitely often iff α contains an infinite number of transitions that
execute C. An infinite path q0

a1−→ q1 · · · visits an idle state of coordinator C
infinitely often iff, for infinitely many i ≥ 0, qi � C (the state component of C in
qi) is an idle state of C.

Definition 10 (Architecture with liveness conditions). An architecture
with liveness conditions is a tuple A = (C, PA, γ), where C is a set of coor-
dinating components with liveness condition, PA is a set of ports, such that⋃

C∈C PC ⊆ PA, and γ ⊆ 2PA is an interaction model. A coordinating compo-
nent with liveness condition is C = (Q, q0, Qidle, PC ,−→), where (Q, q0, PC ,−→)
is a component (Def. 1) and Qidle ⊆ Q.

Hence, we augment each coordinator with a liveness condition: a subset Qidle

of its states Q, which are considered “idle”, and in which it can remain forever
without violating liveness.

Definition 11 (Live path). Let A = (C, PA, γ) be an architecture with liveness
conditions and B a set of components. An infinite path α in A(B) is live iff, for
every C ∈ C, α contains infinitely many occurrences of interactions containing
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some port of C, or α contains infinitely many states whose projection onto C is
an idle state of C.

That is, if α
Δ
= q0

a1−→ q1
a2−→ · · · ai−→ qi · · · then, for every C ∈ C, for infinitely

many i: ai ∩ P 
= ∅ or qi � C ∈ Qidle, where C = (Q, q0, Qidle, P,−→), and qi � C
denotes the local state of C in qi.

The intuition behind this definition is that each liveness condition guarantees
that its coordinator executes “sufficiently often”, i.e. infinitely often unless it
is in an idle state. When architectures are composed, we take the union of all
the coordinators. Since each coordinator carries its liveness condition with it, we
obtain that each coordinator is also executed sufficiently often in the composed
architecture. We also obtain that architecture composition is as before, i.e. we
use Def. 6, with the understanding that we compose two architectures with
liveness conditions. For the rest of this section, we use “architecture” to mean
“architecture with liveness conditions”.

When we apply an architecture with liveness conditions to a set of compo-
nents, thereby obtaining a system, we need the notion of machine closure [7]:
every finite path can be extended to a live one.

Definition 12 (Live w.r.t. a set of components). Let A be an architecture
with liveness conditions and B be a set of components. A is live w.r.t. B iff every
finite path in A(B) can be extended to a live path.

Even if A1, . . . , Am are each live w.r.t. B, it is still possible for (A1 ⊕ · · · ⊕
Am)(B) to be not live w.r.t. B, due to “interference” between the coordinators
of the Ai. For example, consider two architectures that enforce mutually incon-
sistent scheduling policies, e.g. they require two conflicting interactions (those
that share a component) to both be executed. Hence, we define a notion of
“noninterference” which guarantees that (A1 ⊕ · · · ⊕Am)(B) is live w.r.t. B.

A system is free of global deadlock iff, in every reachable global state, there
is at least one enabled interaction. We show in [8] how to verify that a system
is free of global deadlock, using a sufficient but not necessary condition that,
in many cases, can be evaluated quickly, without state-explosion. Essentially,
we check, for every interaction a in the system, that the execution of a cannot
possibly lead to a deadlock state. The check can often be discharged within a
“small subsystem,” which contains all of the components that participate in a.

We now give a criterion for liveness that can be evaluated without state-
explosion w.r.t. the number of architectures. For simplicity, we assume in the
sequel that each architecture Ai has exactly one coordinating component Ci.

Definition 13 (Noninterfering live architectures). Let architectures Ai =
({Ci}, PAi , γi), for i = 1, 2 be live w.r.t. a set of components B. Then A1 is
noninterfering with respect to A2 and components B iff, for every infinite path α
in (A1⊕A2)(B) which executes C1 infinitely often: either α executes C2 infinitely
often or α visits an idle state of C2 infinitely often.

A set of architectures Ai = ({Ci}, PAi , γi), for i ∈ {1, . . . ,m} is pairwise-
noninterfering w.r.t. components B, iff for all j, k ∈ {1, . . . ,m}, j 
= k: Aj is
noninterfering w.r.t Ak and components B.
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Theorem 2 (Pairwise noninterfering live architectures). Let architec-
tures Ai = ({Ci}, PAi , γi), for i ∈ {1, . . . ,m} be live and pairwise-noninterfering
w.r.t. a set of components B. Assume also that (

⊕m
i=1 Ai)(B) is free of global

deadlock. Then (
⊕m

i=1 Ai) is live w.r.t. B.

Example 7 (Noninterference in mutual exclusion). Consider the system (A12 ⊕
A23⊕A13)(B1, B2, B3), as in Ex. 3. Let each coordinator have a single idle state,
namely the free state. Consider the applications of each pair of coordinators, i.e.
(A12 ⊕ A23)(B1, B2, B3), (A23 ⊕ A13)(B1, B2, B3) and (A12 ⊕ A13)(B1, B2, B3).
For (A12⊕A23)(B1, B2, B3), we observe that along any infinite path, either C12

executes infinitely often, or remains forever in its idle state after some point.
Hence A23 is noninterfering w.r.t. A12 and B1, B2, B3. Likewise for the five other
ordered pairs of coordinators. We verify that (A12 ⊕ A23 ⊕ A13)(B1, B2, B3) is
free from global deadlock using the method of [8]. Hence by Th. 2, we conclude
that (A12 ⊕A23 ⊕A13) is live w.r.t. {B1, B2, B3}.

For a finite-state system (A1 ⊕A2)(B), we verify noninterference by checking
for infinite paths along which C1 (the coordinator of A1) executes forever, while
C2 (the coordinator of A2) does not execute and is not in an idle state. Our algo-
rithm is: (1) generate the state-transition graphM12 of (A1⊕A2)(B), by starting
with the initial state and repeatedly applying all enabled interactions until there
is no further change; (2) let M ′

12 result from M12 by removing all transitions of
C2 and all global states (and their incident transitions) whose C2-component is
an idle state of C2; (3) find all non-trivial maximal strongly connected compo-
nents of M ′

12, if any. A strongly connected component is nontrivial if it is either
a single state with a self-loop, or it contains at least two states. Existence of
such a component CC of M ′

12 certifies the existence of an infinite path along
which C1 executes forever, while C2 does not execute and is not in an idle state.
Conversely, the non-existence of such a CC certifies that A1 is noninterfering
w.r.t. A2 and B (Def. 13).

Let |M12| denote the number of nodes (states) plus the number of edges
(transitions) in M12. Let |γ1 ∪ γ2| denote the number of interactions in |(A1 ⊕
A2)(B)|. Step (1) takes time O(|M12|∗|γ1∪γ2|), since every interaction is checked
in every state. Step (2) takes time O(|M12|), since it can be implemented using a
depth-first (or breadth-first) search of M12. Step (3) takes time O(|M12|), using
[9]. Hence our algorithm has time complexity O(|M12| ∗ |γ1 ∪ γ2|).

4 Case Study: Control of an Elevator Cabin

We illustrate our results with the Elevator case study adapted from the literature
[10, 11], for a building with three floors. Control of the elevator cabin is modelled
as a set of coordinated atomic components shown in Fig. 4. Each floor of the
building has a separate caller system, which allows floor selection inside the
elevator and calling from the floor. Ports ic and fc respectively represent calls
made within the elevator and calls from a floor. Ports is and fs represent cabin
stops in response to these calls. Furthermore, port names, m, c, o, s, dn , up, nf ,
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Fig. 4. Elevator atomic components

fn and fr stand respectively for “move”, “call”, “open”, “stop”, “move down”,
“move up”, “not full”, “finish” and “free”. Caller system components and their
ports are indexed by floor numbers. B = {E,D,CS0, CS1, CS2} denotes the set
of atomic components.
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Fig. 5. Coordinating components for the elevator example

To enforce required properties, we successively apply and compose architec-
tures. First, apply architecture A1 = ({C1}, P1, γ1) to B. C1 is shown in Fig. 5(a).
P1 contains all ports of C1 and all ports of B. γ1 comprises the empty interaction
∅ and the following interactions (for i ∈ [0, 2]):

– Door control: {{o, o1}, {c, c1}}
– Floor selection control: {{fci}, {ici}}
– Moving control: {{si, s, fs i}, {si, s, isi}, {up,m1}, {dn,m1}}

System A1(B) provides basic elevator functionality, i.e., moving up and down,
stopping only at the requested floors, and door control. Architecture A1 en-
forces the safety property: the elevator does not move with open doors. Nonethe-
less, A1(B) allows the elevator to stop at a floor, and then to leave with-
out having opened the door. To prevent this, we apply architecture A2 =
({C2}, P2, γ2) where C2 is shown in Fig. 5(b), P2 = {e2, d2,m2, c1, s,m1}, and
γ2 = {∅, {s, d2}, {c1, e2}, {m1,m2}}. This grants priority to the door controller
after an s action. By Prop. 2, A2(A1(B)) = (A1 ⊕ A2)(B). (A2 ⊕ A1)(B) pro-
vides the same functionality as A1(B), and also this additional property. The
property “if the elevator is full, it must stop only at floors selected from the
cabin and ignore outside calls” [10, 11], is enforced by applying architecture
A3 = ({C3}, P3, γ3) with C3 shown in Fig. 5(c), P3 = {add3, sub3, nf 3, s, fs i | i ∈
[0, 2]} and γ3 = {∅, {add3}, {sub3}} ∪ {{s,nf 3, fs i} | i ∈ [0, 2]}. A elevator is full
in our example if it contains two passengers. By Prop. 2, A3((A1 ⊕ A2)(B)) =
(A1 ⊕A2 ⊕A3)(B). By Th. 1, (A1 ⊕A2 ⊕A3)(B) satisfies all three properties.

We specify liveness properties for (A1 ⊕ A2 ⊕ A3)(B) by choosing idle states
for the coordinators. C1 and C2 have only their initial states idle, since a moving
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elevator must eventually stop, and an open door must eventually close. C3 has all
of its states idle, since C3 enforces a pure safety property. We implemented our
algorithm for checking noninterference, and used the implementation to verify
that C1 and C2 are mutually noninterfering w.r.t. to B. Our implementation
showed, however, that C3 interferes with both C1 and C2, since it allows an
infinite sequence of add3 and sub3 interactions. This reflects the absence of an
environment component: in reality, one assumes that clients will not hold up
the elevator indefinitely by continuously moving in and out. This shows that we
can detect shortcomings in component models w.r.t. liveness: they manifest as
violations of noninterference.

Finally, we consider the additional property: “requests from the sec-
ond floor have priority over all other requests” [10, 11]. This is en-
forced by the architecture A4 = ({C4}, P4, γ4) with C4 shown in
Fig. 5(d). P4 consists of ports of C4, CS2, and o, s and dn; γ4 =
{∅, {fc2, req4}, {ic2, req4}, {o, fr4}, {dn, fr 4}, {fs2, fn4}, {is2, fn4}}. The system
obtained by application of A4 to (A1⊕A2 ⊕A3)(B) has a local deadlock, which
was detected by using the deadlock analysis tool presented in [8]. This deadlock
occurs when a full elevator is called from the second floor. In fact, A4 enforces
the constraint of not going down, while A3 forbids stopping at this floor. Thus,
the only choice is to move upward, which is impossible. Hence the system is in
a local deadlock state involving the elevator engine.

(A1⊕A2⊕A4)(B), obtained by applying A4 to (A1⊕A2)(B), is verified to be
deadlock-free, using [8]. {A1, A2, A4} are pairwise-noninterfering w.r.t. B, using
our implementation. So by Th. 2, (A1 ⊕A2 ⊕A4) is live w.r.t. B.

5 Related Work

A number of paradigms for unifying component composition have been stud-
ied in [12–14]. These achieve unification by reduction to a common low-level
semantic model. Coordination mechanisms and their properties are not studied
independently of behaviour. This is also true for the numerous compositional and
algebraic frameworks [15–23]. Most of these frameworks are based on a single
operator for concurrent composition. This entails poor expressiveness, which re-
sults in overly complex architectural designs. In contrast, BIP allows expression
of general multiparty interaction and strictly respects separation of concerns.
Coordination can be studied as a separate entity that admits a simple Boolean
characterisation that is instrumental for expressing composability.

BIP has some similarities with CSP, which can directly express multiparty in-
teraction by using composition operators parameterized by channel names. For
example,B|{a}|B′ is the system that enforces synchronisation of a-actions of com-
ponentsB andB′. Nonetheless, CSP is not adequate for architecture composition
as the components must be modified when additional architecture constraints are
applied. Consider for example the components Bi = ai → STOP for i = 1, 2, 3.
To model the system described in BIP by {{a1, a2}, {a2, a3}}{B1, B2, B3}, two
channels α and β must be defined representing respectively interactions {a1, a2}
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and {a2, a3} and the components modified as follows: B1 = α → STOP , B2 =
α → STOP � β → STOP,B3 = β → STOP . That is, in addition to renaming,
B2 must be modified to show explicitly the conflict between α and β.

Existing research on architecture composability deals mainly with resource
composability for particular types of architectures, e.g. [23]. The feature interac-
tion problem is how to rapidly develop and deploy new features without disrupt-
ing the functionality of existing features. It can be considered as an architecture
composability problem to the extent that features can be modelled as archi-
tectural constraints. A survey on feature interaction research is provided in [1].
Existing results focus mainly on modelling aspects and checking feature inter-
action by using algorithmic verification techniques with well-known complexity
limitations. Our work takes a constructive approach. It has some similarities to
[24] which presents a formal framework for detecting and avoiding feature inter-
actions by using priorities. Nonetheless, these results do not deal with property
preservation through composition. Similarly, existing work on service interaction
mainly focuses on modelling and verification aspects, e.g. [25, 26].

6 Conclusion

Our work makes two novel contributions towards correct-by-construction system
design. First, it proposes a general concept of architecture. Architectures are
operators restricting the behaviour of their arguments by enforcing a character-
istic property. They can be composed and studied independently. Composition
of architectures can be naturally expressed as the conjunction of the induced
synchronisation constraints. This implies nice properties such as associativity,
commutativity and idempotence. Nonetheless, it is not easy to understand it as
an operation on interaction models. Using BIP to describe architectures proves
to be instrumental for achieving this. In contrast to other formalisms, BIP is
expressive enough and keeps a strict separation between behaviour and coordi-
nation aspects. Application of architectures does not require any modification of
the atomic components. The second contribution is preservation of properties en-
forced by architectures. The preservation of state predicates is guaranteed by the
very nature of architecture composition. This result is different from existing re-
sults stipulating the preservation of invariants of components when composed by
using parallel composition operators e.g., an invariant of B1 is also an invariant
of B1||B2 for some parallel composition operator ||. Our result is about preser-
vation of properties over the same state-space, which is the Cartesian product
of the atomic components. That is, a property of A1(B) is also a property of
(A1 ⊕A2)(B), and so the state-space of the components B is unchanged.

Our work pursues similar objectives as the research on interaction of fea-
tures or services, insofar as they can be modelled as architectural constraints.
Nonetheless, it adopts a radically different approach. It privileges constructive
techniques to avoid costly and intractable verification. It proposes a concept of
composability focusing on property preservation.
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Abstract. Modern complex software systems produce a large amount of execu-
tion data, often stored in logs. These logs can be analyzed using trace checking
techniques to check whether the system complies with its requirements specifi-
cations. Often these specifications express quantitative properties of the system,
which include timing constraints as well as higher-level constraints on the occur-
rences of significant events, expressed using aggregate operators.

In this paper we present an algorithm that exploits the MapReduce program-
ming model to check specifications expressed in a metric temporal logic with
aggregating modalities, over large execution traces. The algorithm exploits the
structure of the formula to parallelize the evaluation, with a significant gain in
time. We report on the assesment of the implementation—based on the Hadoop
framework—of the proposed algorithm and comment on its scalability.

1 Introduction

Modern software systems, such as service-based applications (SBAs), are built accord-
ing to a modular and decentralized architecture, and executed in a distributed environ-
ment. Their development and their operation depend on many stakeholders, including
the providers of various third-party services and the integrators that realize composite
applications by orchestrating third-party services. Service integrators are responsible to
the end-users for guaranteeing an adequate level of quality of service, both in terms of
functional and non-functional requirements. This new type of software has triggered
several research efforts that focus on the specification and verification of SBAs.

In previous work [8], some of the authors presented the results of a field study on
property specification patterns [12] used in the context of SBAs, both in industrial and
in research settings. The study identified a set of property specification patterns specific
to service provisioning. Most of these patterns are characterized by the presence of ag-
gregate operations on sequences of events occurring in a given time window, such as
“the average distance between pairs of events (e.g., average response time)”, “the num-
ber of events in a given time window”, “the average (or maximum) number of events
in a certain time interval over a certain time window”. This study led to the definition
of SOLOIST [9] (SpecificatiOn Language fOr servIce compoSitions inTeractions), a
metric temporal logic with new temporal modalities that support aggregate operations

D. Giannakopoulou and G. Salaün (Eds.): SEFM 2014, LNCS 8702, pp. 144–158, 2014.
c© Springer International Publishing Switzerland 2014



Trace Checking of MTL with Aggregating Modalities Using MapReduce 145

on events occurring in a given time window. The new temporal modalities capture, in a
concise way, the new property specification patterns presented in [8].

SOLOIST has been used in the context of offline trace checking of service execution
traces. Trace checking (also called trace validation [15] or history checking [13]) is a
procedure for evaluating a formal specification over a log of recorded events produced
by a system, i.e., over a temporal evolution of the system. Traces can be produced at run
time by a proper monitoring/logging infrastructure, and made available at the end of the
service execution to perform offline trace checking. We have proposed procedures [5,7]
for offline checking of service execution traces against requirements specifications writ-
ten in SOLOIST using bounded satisfiability checking techniques [16]. Each of the
procedures has been tailored to specific types of traces, depending on the degree of
sparseness of the trace (i.e., the ratio between the number of time instants where sig-
nificant events occur and those in which they do not). The procedure described in [5]
is optimized for sparse traces, while the one presented in [7] is more efficient for dense
traces.

Despite these optimizations, our experimental evaluation revealed, in both proce-
dures, an intrinsic limitation in their scalability. This limitation is determined by the
size of the trace, which can quickly lead to memory saturation. This is a very com-
mon problem, because execution traces can easily get very large, depending on the
running time captured by the log, the systems the log refers to (e.g., several virtual
machines running on a cloud-based infrastructure), and the types of events recorded.
For example, granularity can range from high-level events (e.g., sending or receiving
messages) to low-level events (e.g., invoking a method on an object). Most log analyz-
ers that process data streams [10] or perform data mining [17] only partially solve the
problem of checking an event trace against requirements specifications, because of the
limited expressiveness of the specification language they support. Indeed, the analysis
of a trace may require checking for complex properties, which can refer to specific se-
quence of events, conditioned by the occurrence of other event sequence(s), possibly
with additional constraints on the distance among events, on the number of occurrences
of events, and on various aggregate values (e.g., average response time). SOLOIST ad-
dresses these limitations as we discussed above.

The recent advent of cloud computing has made it possible to process large amount
of data on networked commodity hardware, using a distributed model of computation.
One of the most prominent programming models for distributed, parallel computing is
MapReduce [11]. The MapReduce model allows developers to process large amount
of data by breaking up the analysis into independent tasks, and performing them in
parallel on the various nodes of a distributed network infrastructure, while exploiting,
at the same time, the locality of the data to reduce unnecessary transmission over the
network. However, porting a traditionally-sequential algorithm (like trace checking)
into a parallel version that takes advantage of a distributed computation model like
MapReduce is a non-trivial task.

The main contribution of this paper is an algorithm that exploits the MapReduce
programming model to check large execution traces against requirements specifica-
tions written in SOLOIST. The algorithm exploits the structure of a SOLOIST formula
to parallelize its evaluation, with significant gain in time. We have implemented the
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algorithm in Java using the Apache Hadoop framework [2]. We have evaluated the ap-
proach in terms of its scalability and with respect to the state of art for trace checking
of LTL properties using MapReduce [3].

The rest of the paper is structured as follows. First we provide some background
information, introducing SOLOIST in Sect. 2 and then the MapReduce programming
model in Sect. 3. Section 4 presents the main contribution of the paper, describing the
algorithm for trace checking of SOLOIST properties using the MapReduce program-
ming model. Section 5 discusses related work. Section 6 presents the evaluation of the
approach, both in terms of scalability and in terms of a comparison with the state of
the art for MapReduce-based trace checking of temporal properties. Section 7 provides
some concluding remarks.

2 SOLOIST

In this section we provide a brief overview of SOLOIST; for the rationale behind the
language and a detailed explanation of its semantics see [9].

The syntax of SOLOIST is defined by the following grammar: φ ::= p | ¬φ | φ ∧φ |
φUIφ | φSIφ | CK

��n(φ) | UK,h
��n (φ) |MK,h

��n (φ) |DK
��n(φ ,φ), where p ∈ Π , with Π being a

finite set of atoms. In practice, we use atoms to represent different events of the trace.
I is a nonempty interval over N; �� ∈ {<,≤,≥,>,=}; n,K,h range over N. Moreover,
for the D modality, we require that the subformulae pair (φ ,ψ) evaluate to true in
alternation.

The UI and SI modalities are, respectively, the metric “Until” and “Since” operators.
Additional temporal modalities can be derived using the usual conventions; for exam-
ple “Next” is defined as XIφ ≡ ⊥UIφ ; “Eventually in the Future” as FIφ ≡ �UIφ and
“Always” as GIφ ≡ ¬(FI¬φ), where � means “true” and ⊥ means “false”. Their past
counterparts can be defined using “Since” modality in a similar way. The remaining
modalities are called aggregate modalities and are used to express the property speci-
fication patterns characterized in [8]. The CK

��n(φ) modality states a bound (represented
by �� n) on the number of occurrences of an event φ in the previous K time instants; it
is also called the “counting” modality. The UK,h

��n (φ) (respectively, MK,h
��n (φ)) modality

expresses a bound on the average (respectively, maximum) number of occurrences of an
event φ , aggregated over the set of right-aligned adjacent non-overlapping subintervals
within a time window K; it can express properties like “the average/maximum number
of events per hour in the last ten hours”. A subtle difference in the semantics of the U
and M modalities is that M considers events in the (possibly empty) tail interval, i.e.,
the leftmost observation subinterval whose length is less than h, while the U modality
ignores them. The DK

��n(φ ,ψ) modality expresses a bound on the average time elapsed
between occurrences of pairs of specific adjacent events φ and ψ in the previous K time
instants; it can be used to express properties like the average response time of a service.

The formal semantics of SOLOIST is defined on timed ω-words [1] over 2Π ×N.
A timed sequence τ = τ0τ1 . . . is an infinite sequence of values τi ∈ N with τi > 0
satisfying τi < τi+1, for all i ≥ 0, i.e., the sequence increases strictly monotonically.
A timed ω-word over alphabet 2Π is a pair (σ ,τ) where σ = σ0σ1 . . . is an infinite
word over 2Π and τ is a timed sequence. A timed language over 2Π is a set of timed
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(w, i) |= p iff p ∈ σi

(w, i) |= ¬φ iff (w, i) 	|= φ
(w, i) |= φ ∧ψ iff (w, i) |= φ ∧ (w, i) |= ψ
(w, i) |= φSIψ iff for some j < i,τi− τ j ∈ I,(w, j) |= ψ and for all k, j < k < i,(w,k) |= φ
(w, i) |= φUIψ iff for some j > i,τ j− τi ∈ I,(w, j) |= ψ and for all k, i < k < j,(w,k) |= φ
(w, i) |= CK

��n(φ) iff c(τi−K,τi,φ) �� n and τi ≥ K

(w, i) |= UK,h
��n (φ) iff

c(τi−
 K
h �h,τi,φ)

 K

h �
�� n and τi ≥ K

(w, i) |= MK,h
��n (φ) iff max

{⋃⌊
K
h

⌋
m=0 {c(lb(m),rb(m),φ)}

}
�� n and τi ≥ K

(w, i) |= DK
��n(φ ,ψ) iff

∑(s,t)∈d(φ ,ψ,τi,K)(τt − τs)
|d(φ ,ψ ,τi,K)| �� n and τi ≥ K

where c(τa,τb,φ) = |{s | τa < τs ≤ τb and (w,s) |= φ}|, lb(m) = max{τi−K,τi− (m+1)h}, rb(m) = τi−mh, and
d(φ ,ψ ,τi,K) = {(s,t) | τi−K < τs ≤ τi and (w,s) |= φ ,t = min{u | τs < τu ≤ τi,(w,u) |= ψ}}

Fig. 1. Formal semantics of SOLOIST

words over the same alphabet. Notice that there is a distinction between the integer
position i in the timed ω-word and the corresponding timestamp τi. Figure 1 defines
the satisfiability relation (w, i) |= φ for every timed ω-word w, every position i≥ 0 and
for every SOLOIST formula φ . For the sake of simplicity, hereafter we express the U

modality in terms of the C one, based on this definition: UK,h
��n (φ) ≡ C


K
h �·h

��n·
K
h �

(φ), which

can be derived from the semantics in Fig. 1.
We remark that the version of SOLOIST presented here is a restriction of the origi-

nal one introduced in [9]: to simplify the presentation in the next sections, we dropped
first-order quantification on finite domains and limited the argument of the D modal-
ity to only one pair of events; as detailed in [9], these assumptions do not affect the
expressiveness of the language.

SOLOIST can be used to express some of the most common specifications found
in service-level agreements (SLAs) of SBAs. For example the property: “The aver-
age response time of operation A is always less than 5 seconds within any 900 sec-
ond time window, before operation B is invoked” can be expressed as: G(Bstart →
D900

<5 (Astart,Aend)), where A and B correspond to generic service invocations and each
operation has a start and an end event, denoted with the corresponding subscripts.

We now introduce some basic concepts that will be used in the presentation of our
distributed trace checking algorithm in Sect. 4. Let φ and ψ be SOLOIST formulae.
We denote with sub(φ) the set of all subformulae of φ ; notice that for atomic formulae
a ∈ Π , sub(a) = /0. The set of atomic subformulae (or atoms) of formula φ is defined
as suba(φ) = {a | a ∈ sub(φ), sub(a) = /0}. The set subd(φ) = {α | α ∈ sub(φ),∀β ∈
sub(φ),α /∈ sub(β )} represents the set of all direct subformulae of φ ; φ is called the
superformula of all formulae in subd(φ). The notation supψ (φ) denotes the set of all
subformulae of ψ that have formula φ as direct subformula, i.e., supψ(φ) = {α | α ∈
sub(ψ),φ ∈ subd(α)}. The subformulae in sub(ψ) of a formula ψ form a lattice with
respect to the partial ordering induced by the inclusion in sets supψ(·) and subd(·), with
ψ and /0 being the top and bottom elements of the lattice, respectively. We also introduce
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the notion of the height of a SOLOIST formula, which is defined recursively as:

h(φ) =
{

max{h(ψ) | ψ ∈ subd(φ)}+ 1 if subd(φ) 	= /0
0 otherwise.

We exemplify these concepts using formula γ ≡ C40
��3(a∧b)U(30,100)¬c.

Hence sub(γ) = {a,b,c,a∧ b,¬c,C40
��3(a∧ b)} is the set of all subformulae of γ;

suba(γ) = {a,b,c} is the set of atoms in γ; subd(γ) = {C40
��3(a∧ b),¬c} is the set of

direct subformulae of γ; supγ (a) = supγ(b) = {a∧ b} shows that the sets of superfor-
mulae of a and b in γ coincide; and the height of γ is 3, since h(a) = h(b) = h(c) = 0,
h(¬c) = h(a∧ b) = 1, h(C40

��3(a∧ b)) = 2 and therefore h(γ) = max{h(C40
��3(a∧ b)),

h(¬c)}+ 1=3.

3 The MapReduce Programming Model

MapReduce [11] is a programming model for processing and analyzing large data
sets using a parallel, distributed infrastructure (generically called “cluster”). At the
basis of the MapReduce abstraction there are two functions, map and reduce, that
are inspired by (but conceptually different from) the homonymous functions that are
typically found in functional programming languages. The map and reduce functions
are defined by the user; their signatures are map(k1,v1) → list(k2,v2) and re-
duce(k2,list(v2)) → list(v2). The idea of MapReduce is to apply a map func-
tion to each logical entity in the input (represented by a key/value pair) in order to com-
pute a set of intermediate key/value pairs, and then applying a reduce function to all the
values that have the same key in order to combine the derived data appropriately.

Let us illustrate this model with an example that counts the number of occurrences
of each word in a large collection of documents; the pseudocode is:

map(String key, String value)
//key: document name
//value: document contents
for each word w in value:

EmitIntermediate(w,"1")

reduce(String key, Iterator values):
//key: a word
//values: a list of counts
int result = 0
for each v in values:

result += ParseInt(v)
Emit(AsString(result)

The map function emits list of pairs, each composed of a word and its associated
count of occurrences (which is just 1). All emitted pairs are partitioned into groups and
sorted according to their key for the reduction phase; in the example, pairs are grouped
and sorted according to the word they contain. The reduce function sums all the counts
(using an iterator to go through the list of counts) emitted for each particular word (i.e.,
each unique key).

Besides the actual programming model, MapReduce brings in a framework that pro-
vides, in a transparent way to developers, parallelization, fault tolerance, locality opti-
mization, and load balancing. The MapReduce framework is responsible for partition-
ing the input data, scheduling and executing the Map and Reduce tasks (also called
mappers and reducers, respectively) on the machines available in the cluster, and for
managing the communication and the data transfer among them (usually leveraging a
distributed file system).
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More in detail, the execution of a MapReduce operation (called job) proceeds as
follows. First, the framework divides the input into splits of a certain size using an
InputReader, generating key/value (k,v) pairs. It then assigns each input split to Map
tasks, which are processed in parallel by the nodes in the cluster. A Map task reads
the corresponding input split and passes the set of key/value pairs to the map function,
which generates a set of intermediate key/value pairs (k′,v′). Notice that each run of
the map function is stateless, i.e., the transformation of a single key/value pair does not
depend on any other key/value pair. The next phase is called shuffle and sort: it takes the
intermediate data generated by each Map task, sorts them based on the intermediate data
generated from other nodes, divides these data into regions to be processed by Reduce
tasks, and distributes these data on the nodes where the Reduce tasks will be executed.
The division of intermediate data into regions is done by a partitioning function, which
depends on the (user-specified) number of Reduce tasks and the key of the intermediate
data. Each Reduce task executes the reduce function, which takes an intermediate key
k′ and a set of values associated with that key to produce the output data. This output is
appended to a final output file for this reduce partition. The output of the MapReduce
job will then be available in several files, one for each Reduce task used.

4 Trace Checking with MapReduce

Our algorithm for trace checking of SOLOIST properties takes as input a non-empty
execution trace T and the SOLOIST formula Φ to be checked. The trace T is finite and
can be seen as a time-stamped sequence of H elements, i.e., T = (p1, p2, . . . , pH). Each
of these elements is a triple pi = (i,τi,(a1, . . . ,aPi)), where i is the position within the
trace, τi the integer timestamp, and (a1, . . . ,aPi) is a list of atoms such that a ji ∈Π , for
all ji ∈ {1, ...Pi},Pi ≥ 1 and for all i ∈ {1,2, . . . ,H}.

The algorithm processes the trace iteratively, through subsequent MapReduce passes.
The number of MapReduce iterations is equal to height of the SOLOIST formula Φ to
be checked. The l-th iteration (with 1 < l ≤ h(Φ)) of the algorithm receives a set of
tuples from the (l−1)-th iteration; these input tuples represent all the positions where
the subformulae of Φ having height l−1 hold. The l-th iteration then determines all the
positions where the subformulae of Φ with height l hold.

Each iteration consists of three phases: 1) reading and splitting the input; 2) (map)
associating each formula with its superformula; 3) (reduce) determining the positions
where the superformulae obtained in the previous step hold, given the positions where
their subformulae hold. We detail each phase in the rest of this section.

4.1 Input Reader

We assume that before the first iteration of the algorithm the input trace is available in
the distributed file system of the cluster; this is a realistic assumption since in a distribute
setting is possible to collect logs, as long as there is a total order among the timestamps.
The input reader at the first iteration reads the trace directly, while in all subsequent
iterations input readers read the output of the reducers of the previous iteration.

The input reader component of the MapReduce framework is able to process the
input trace exploiting some parallelism. Indeed, the MapReduce framework exploits the
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function INPUT READERΦ ,k,l (Tk)
for all (i,τi,A) ∈ Tk do

T S(i)← τi

for all a ∈ A do
if a ∈ suba(Φ) then

output(a, i)
end if

end for
end for

end function

(a) Input reader algorithm

pi

(a1, i)
. . .

(aPi , i)
Input reader

(b) Data flow of the Input reader

Fig. 2. Input reader

location information of the different fragments of the trace to parallelize the execution
of the input reader. For example, a trace split into n fragments can be processed in
parallel using min(n,k) machines, given a cluster with k machines.

Figure 2b shows how the input reader transforms the trace at the first iteration: for
every atomic proposition φ that holds at position i in the original trace, it outputs a tuple
of the form (φ , i). The transformation does not happen in the subsequent iterations, since
(as will be shown in Sect. 4.3) the output of the reduce phase has the same form (φ , i).
The algorithm in Fig. 2a shows how input reader handles the k-th fragment Tk of the
input trace T . For each time point i and for each atom p that holds in position i it creates
a tuple (p, i). Moreover, for each time point i, it updates a globally-shared associative
list of timestamps T S. This list is used to associate a timestamp with each time point;
its contents are saved in the distributed file system, for use during the reduce phase.

4.2 Mapper

Each tuple generated by an input reader is passed to a mapper at the local node. Map-
pers “lift” the formula in the tuple by associating it with all its superformulae in the
input formula Φ . For example, given the formula Φ ≡ (a∧ b)∨¬a, the tuple (a,5) is
associated with formulae a∧b and ¬a. The reduce phase will then exploit the informa-
tion about the direct subformulae to determine all the positions in which a superformula
holds.

As shown in Fig. 3, the output of a mapper are tuples of the form ((ψ , i),(φ , i))
where φ is a direct subformulae of ψ and i is the position where φ holds. For each
received tuple of the form (φ , i), the algorithm shown in Fig. 3a loops through all the
superformulae ψ of φ and emits (using the function output) a tuple ((ψ , i),(φ , i)).

Notice that the key of the intermediate tuples emitted by the mapper has two parts:
this type of key is called a composite key and it is used to perform secondary sorting of
the intermediate tuples. Secondary sorting performs the sorting using multiple criteria,
allowing developers to sort not only by the key, but also “by value”. In our case, we
perform secondary sorting based on the position where the subformula holds, in order
to decrease the memory used by the reducer. To enable secondary sorting, we need to
override the procedure that compares keys, to take into account also the second element
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function MAPPERΦ ,l ((φ , i))
if l ≤ h(φ) then

for all ψ ∈ supΦ (φ) do
output((ψ , i),(φ , i))

end for
end if

end function

(a) Mapper algorithm

(φ , i)
((ψ1, i),(φ , i))

. . .

((ψg, i),(φ , i))
Mapper

(b) Data flow of a Mapper

Fig. 3. Mapper

of the composite keys when their first elements are equal. We have also modified the key
grouping procedure to consider only the first part of the composite key, so that each re-
ducer gets all the tuples related to exactly one superformula (as encoded in the first part
of the key), sorted in ascending order with respect to the position where subformulae
hold (as encoded in the second part of the key).

4.3 Reducer

In the reduce phase, at each iteration l, reducers calculate all positions where subfor-
mulae with height l hold. The total number of reducers running in parallel at the l-th
iteration is the minimum between the number of subformulae with height l in the in-
put formula Φ and the number of machines in the cluster multiplied by the number
of reducers available on each node. Each reducer calls an appropriate reduce function
depending on the type of formula used as key in the input tuple. The initial data shared
by all reducers is the input formula Φ , the index of the current MapReduce iteration l
and the associative map of timestamps TS.

In the rest of this section we present the algorithms of the reduce function defined
for SOLOIST connectives and modalities. For space reasons we limit the description
to the algorithms for negation (¬) and conjunction (∧), and for the modalities UI , CK

��n,
M

K,h
��n , and DK

��n. The other temporal modalities can be expressed in a way similar to the
Until modality UI . In the various algorithms we use several auxiliary functions whose
pseudocode is available in the extended version of this article [6].

Negation. When the key refers to a negated superformula, the reducer emits a tuple
at every position where the subformula does not hold, i.e., at every position that does
not occur in the input tuples received from the mappers. The algorithm in Fig. 4e shows
how output tuples are emitted. If no tuples are received then the reducer emits tuples
at each position. Otherwise, it keeps track of the position i of the current tuple and the
position p of the previous tuple and emits tuples at positions [p + 1, i−1].

Conjunction. We extend the binary ∧ operator defined in Sect. 2 to any positive
arity; this extension does not change the language but improves the conciseness of the
formulae. With this extension, conjunction a∧ b∧ c is represented as a single con-
junction with 3 subformulae and has height equal to 1. Tuples (φ , i) received from the
mapper may refer to any subformula φ of a conjunction.

In the algorithm in Fig. 4b we process all the tuples sequentially. First, we check if
the height of each subformula is consistent with respect to the iteration in which they are
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function REDUCER
DK

��n ,Φ ,l,TS(DK
��n(φ ,ψ), tuples[])

if h(DK
��n(φ ,ψ)) = l +1 then

p← 0, pairs← 0, dist← 0
for all (ξ , i) ∈ tuples do

for j← p+1 . . . i−1 do
updateDistInterval(j)
emitDist(j)

end for
if ξ = ψ then

pairs← pairs+1
dist← dist +(T S(i)−T S(subFmas.last))

end if
subFmas.addLast(i)
updateDistInterval(i)
emitDist(i)
p← i

end for
else

for all (φ , i) ∈ tuples do
output(φ , i)

end for
end if

end function

function REDUCER∧,Φ ,l,T S(ψ , tuples[])
p← 0, c← 1
while (φ , i) ∈ tuples do

if h(ψ) = l +1 then
if i = p then

c← c+1
else

if c = |subd(ψ)| then
output(ψ , i)

end if
c← 1

end if
else

output(φ , i)
end if
p← i

end while
end function

(a) D modality (b) Conjunction
function REDUCERUI ,Φ ,l,TS(φ1U(a,b)φ2, tuples[])

if h(φ1U(a,b)φ2) = l +1 then
p← 0
for all (ξ , i) ∈ tuples do

updateLTLBehavior(i)
updateMTLBehavior(i)
if ξ = φ2 then

emitUntil(i)
end if
p← i

end for
else

for all (φ , i) ∈ tuples do
output(φ , i)

end for
end if

end function

function REDUCER
CK

��n ,Φ ,l,TS(CK
��n(φ), tuples[])

p← 0, c← 0
for all (φ , i) ∈ tuples do

c← c+1
for j← p+1 . . . i−1 do

updateCountInterval(j)
if c �� n then

output(CK
��n(φ), j)

end if
end for
updateCountInterval(i)
if c �� n then

output(CK
��n(φ), i)

end if
p← i

end for
end function

(c) U modality (d) C modality
function REDUCER¬,Φ ,l,T S(¬φ , tuples[])

p← 0
for all ((φ , i)) ∈ tuples do

for j← p+1 . . . i−1 do
output(¬φ , j)

end for
p← i

end for
for i← p+1 . . . T S.size() do

output(¬φ , i)
end for

end function

function REDUCER
M

K,h
��n ,Φ ,l,TS

(MK,h
��n (φ), tuples[])

p← 0
for all (ξ , i) ∈ tuples do

for j← p+1 . . . i−1 do
updateMaxInterval(j)
emitMax(j)

end for
updateMaxInterval(i)
emitMax(i)
p← i

end for
end function

(e) Negation (f) M modality

Fig. 4. Reduce algorithms
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processed. In fact, mappers can emit some tuples before the “right” iteration in which
they should be processed, since subformule of a conjunction may have different height.
If the heights are not consistent, the reducer re-emits the tuples that appeared early.
Since the incoming tuples are sorted by their position, it is enough to use a counter
to record how many tuples there are in each position i. When the value of the counter
becomes equal to the arity of the conjunction, its means that all the subformulae hold
at i and the reducer can emit the tuple for the conjunction at position i. Otherwise, we
reset the counter and continue.

UI modality. The reduce function for the Until modality is shown in Fig. 4c. When
we process tuples with this function, we have to check both the temporal behavior and
the metric constraints (in the form of an (a,b) interval) as defined by the semantics of
the modality.

Given a formula φ1U(a,b)φ2, we check whether it can be evaluated in the current
iteration, since reducer may receive some tuples early. If this happens, reducer re-emits
the tuple, as described above.

The algorithm processes each tuple (φ , i) sequentially. It keeps track of all the po-
sitions in the (0,b) time window in the past with respect to the current tuple. For each
tuple it calls two auxiliary functions, updateLTLBehavior and updateMTLBehav-
ior. The first function checks whether φ1 holds in all the positions tracked in the (0,b)
time window; if this not the case we stop tracing these positions. This guarantee that we
only keep track of the position that exhibit the correct temporal semantics of the Until
formula. Afterwards, function updateMTLBehavior checks the timing constraints and
removes positions that are outside of the (0,b) time window. Lastly, if φ2 holds in the
position of the current tuple, we call function emitUntil, which emits an Until tuple
for each position that we track, which is not in the (0,a) time window in the past.

C modality. The reduce function for the C modality is outlined in the algorithm in
Fig. 4d. To correctly determine if C modality holds, we need to keep track of all the
positions in the past time window (0,K). While we sequentially process the tuples, we
use variable p to save the position which appeared in the previous tuple. This allows
us to consider positions between each consecutive tuple in the inner “for” loop. We
call function updateCountInterval, which checks if the tracked positions, together
with the current one, occur within the time window (0,K); positions that do not fall
within the time interval are discarded. Variable c is used to count in how many tracked
positions subformula φ holds. At the end, we compare the value of c with n according
to the �� comparison operator; if this comparison is satisfied we emit a C tuple.

M modality. The algorithm in Fig. 4f shows when the tuples for the M modality
are emitted. Similarly to the C modality, we need to keep track of the all positions in
the (0,K) time window in the past. Also, the two nested “for” loops make sure that
we consider all time positions. For each position we call in sequence function up-
dateMaxInterval and function emitMax. Function updateMaxInterval is similar
to updateCountInterval, i.e., it checks whether the tracked positions, together with
the current one, occur within the time window (0,K). Function emitMax computes,
in the tracked positions, the maximum number of occurrences of the subformula in all
subintervals of length h. It compares the computed value to the bound n using the ��
comparison operator; if this comparison is satisfied it emits the M modality tuple.
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D modality. The reduce function for the D modality is shown in Fig. 4a. Similarly
to the case of the UI modality, if the heights of the subformulae are not consistent with
the index of the current iteration, the reducer re-emits the corresponding tuples. After
that, the incoming tuples are processed in a sequential way and two nested “for” loops
guarantee that we consider all time points. We need to keep track of all the positions
in the (0,K) time window in the past in which either φ or ψ occurred. Differently
from the previous aggregate modalities, we have to consider only the occurrences of
φ for which there exists a matching occurrence ψ ; for each of these pairs we have
to compute the distance. This processing of tuples (and the corresponding atoms and
time points that they include) is done by the auxiliary function updateDistInterval.
Variables pairs and dist keep track of the number of complete pairs in the current time
window and their cumulative distance (computed accessing the globally-shared map
TS of timestamps). Finally, by means of the function emitDist, if there is any pair in
the time window, we compare the average distance computed as dist

pairs with the bound n
using the �� comparison operator. If the comparison is satisfied, we emit a D modality
tuple.

5 Related Work

To the best of our knowledge, the approach proposed in [3] is the only one that uses
MapReduce to perform offline trace checking of temporal properties. The algorithm
is conceptually similar to ours as it performs iterations of MapReduce jobs depend-
ing on the height of the formula. However, the properties of interest are expressed us-
ing LTL. This is only a subset of the properties that can be expressed by SOLOIST.
Their implementation of the conjunction and disjunction operators is limited to only
two subformulae which increases the height of the formula and results in having more
iterations. Intermediate tuples exchanged between mappers and reducers are not sorted
by the secondary key, therefore reducers have to keep track of all the positions where
the subformulae hold, while our approach tracks only the data that lies in the relevant
interval of a metric temporal formula.

Distributed computing infrastructures and/or programming models have also been
used for other verification problems. Reference [14] proposes a distributed algorithm
for performing model checking of LTL safety properties on a network of interconnected
workstations. By restricting the verification to safety properties, authors can easily par-
allelize a bread-first search algorithm. Reference [4] proposes a parallel version of the
well-known fixed-point algorithm for CTL model checking. Given a set of states where
a certain formula holds and a transition relation of a Kripke structure, the algorithm
computes the set of states where the superformula of a given formula holds though a
series of MapReduce iterations, parallelized over the different predecessors of the states
in the set. The set is computed when a fixed-point of a predicate transformer is reached
as defined by the semantics of each specific CTL modality.
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Table 1. Average processing time per tuple for the four properties

Property 1 Property 2 Property 3 Property 4
SOLOIST LTL SOLOIST LTL SOLOIST LTL SOLOIST LTL

Number of tuples 16,121 55,009 24,000 119,871 215,958 599,425 1,747,360 4,987,124
Time per event (μs) 1.172 19 1.894 21 3.707 14 7.200 30

6 Evaluation

We have implemented the proposed trace checking algorithm in Java using the Hadoop
MapReduce framework [2] (version 1.2.1). We executed it on a Windows Azure cloud-
based infrastructure where we allocated 10 small virtual machines with 1 CPU core and
1.75 GB of memory. We followed the standard Hadoop guidelines when configuring the
cluster: the number of map tasks was set to the number of nodes in the cluster multiplied
by 10, and the number of reducers was set to the number of nodes multiplied by 0.9;
we used 100 mappers and 9 reducers. We have also enabled JVM reuse for any number
of jobs, to minimize the time spent by framework in initializing Java virtual machines.
In the rest of this section, we first show how the approach scales with respect to the
trace length and how the height of the formula affects the running time and memory.
Afterwards, we compare our algorithm to the one presented in [3], designed for LTL.

Scalability. To evaluate scalability of the approach, we considered 4 formulae, with
different height: C50000

<10 (a0), D50000
<10 (a1,a2), (a0∧(a1∧a2))U(50,200)((a1∧a2)∨a1) and

∃ j ∈ {0 . . .9} ∀i ∈ {0 . . .8} : G(50,500)(ai, j → X(50,500)(ai+1, j)). Here the ∀ and ∃ quan-
tifiers are used as a shorthand notation to predicate on finite domains: for example,
∀i ∈ {1,2,3} : ai is equivalent to a1∧a2∧a3. We generated random traces with a num-
ber of time instants varying from 10000 to 350000. For each time instant, we randomly
generated with a uniform distribution up to 100 distinct events (i.e., atomic proposi-
tions). Hence, we evaluated our algorithm for a maximum number of events up to 35
millions. The time span between the first and the last timestamp was 578.7 days on
average, with a granularity of one second.

Figure 5 shows the total time and the memory used by the MapReduce job run to
check the four formulae on the generated traces. Formulae C50000

<10 (a0) and D50000
<10 (a1,a2)

needed one iteration to be evaluated (shown in Fig. 5a and Fig. 5b). In both cases, the
time taken to check the formula increases linearly with respect to the trace length; this
happens because reducers need to process more tuples. As for the linear increase in
memory usage, for modalities C and D reducers have to keep track of all the tuples in
the window of length K time units and the more time points there are the more dense
the time window becomes, with a consequent increase in memory usage. As for the
checking of the other two formulae (shown in Fig. 5c and Fig. 5d), more iterations were
needed because of the height of the formulae. Also in this case, the time taken by each
iteration tends to increase as the length of the trace increases; the memory usage is con-
stant since the formulae considered here do not contain aggregate modalities. Notice the
increase of time and memory from Fig. 5c to Fig. 5d: this is due to the expansion of the
quantifiers in formula ∃ j ∈ {0 . . .9} ∀i ∈ {0 . . .8} : G(50,500)(ai, j→ X(50,500)(ai+1, j)).
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Fig. 5. Scalability of the algorithm
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Comparison with the LTL approach [3]. We compare our approach to the one pre-
sented in [3], which focuses on trace checking of LTL properties using MapReduce;
for this comparison we considered the LTL layer included in SOLOIST by means of
the Until modality. Although the focus of our work was on implementing the semantics
of SOLOIST aggregate modalities, we also introduces some improvements in the LTL
layer of SOLOIST. First, we exploited composite keys and secondary sorting as pro-
vided by the MapReduce framework to reduce the memory used by reducers. We also
extended the binary ∧ and ∨ operators to support any positive arity.

We compared the two approaches by checking the following formulae:
1) G(50,500)(¬a0); 2) G(50,500)(a0 → X(50,500)(a1)); 3) ∀i ∈ {0 . . .8} : G(50,500)(ai →
X(50,500)(ai+1)); and 4) ∃ j ∈ {0 . . .9} ∀i ∈ {0 . . .8} : G(50,500)(ai, j → X(50,500)(ai+1, j)).
The height of these formulae are 2, 3, 4 and 5, respectively. This admittedly gives our
approach a significant advantage since in [3] the restriction for the ∧ and ∨ operators
to have an arity fixed to 2 results in a larger height for formulae 3 and 4. We randomly
generated traces of variable length, ranging from 1000 to 100000 time instants, with up
to 100 events per time instant. With this configuration, a trace can contain potentially
up to 10 million events. We chose to have up to 100 events per time instant to match
the configuration proposed in [3], where there are 10 parameters per formula that can
take 10 possible values. We generated 500 traces. The time needed by our algorithm to
check each of the four formulae, averaged over the different traces, was 52.83, 85.38,
167.1 and 324.53 seconds, respectively. We do not report the time taken by the ap-
proach proposed in [3] since the article does not report any statistics from the run of an
actual implementation, but only metrics determined by a simulation. Table 1 shows the
average number of tuples generated by the algorithm for each formulae. The number
of tuples is calculated as the sum of all input tuples for mappers at each iterations in
a single trace checking run. The table also shows the average time needed to process
a single event in the trace. This time is computed as the total processing time divided
by the number of time instants in the trace, averaged over the different trace checking
runs. The SOLOIST column refers to the data obtained by running our algorithm, while
the LTL column refers to data reported in [3], obtained with a simulation. Our algo-
rithm performs better both in terms of the number of generated tuples and in terms of
processing time.

7 Conclusion and Future Work

In this paper we present an algorithm based on the MapReduce programming model
that checks large execution traces against specifications written in SOLOIST. The ex-
perimental results in terms of scalability and comparison with the state of the art are
encouraging and show that the algorithm can be effectively applied in realistic settings.

A limitation of the algorithm is that reducers (that implement the semantics of tem-
poral and aggregate operators) need to keep track of the positions relevant to the time
window specified in the formula. In the future, we will investigate how this information
may be split into smaller and more manageable parts that may be processed separately,
while preserving the original semantics of the operators.
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Abstract. Data stores for cloud infrastructures provide limited consis-
tency guarantees, which restricts the applicability of the cloud for many
applications with strong consistency requirements, such as financial and
medical information systems. Megastore is a replicated data store used
in Google’s cloud infrastructure. Data are partitioned into entity groups,
and consistency is only guaranteed if each transaction only accesses data
from a single entity group. This paper extends Megastore to also provide
consistency for transactions accessing data from multiple entity groups,
thereby increasing the applicability of such cloud data stores. Our exten-
sion, Megastore-CGC, achieves this extra consistency without introducing
significant additional message exchanges.We used the formal specification
language and analysis tool Real-TimeMaude throughout the development
of Megastore-CGC. We introduce Megastore-CGC, its Real-Time Maude
specification, and show how Real-Time Maude can estimate the perfor-
mance of Megastore-CGC and model check Megastore-CGC.

1 Introduction

Database facilities are important for applications, such as payroll systems, stock
exchange systems, banking, online auctions, and medical systems, where incon-
sistencies (such as lost or corrupted medication requests or money deposits) can-
not be tolerated. Databases therefore usually provide transactions. A transaction
is a sequence of read and write operations which are executed equivalently to an
atomic execution, and where the concurrent execution of a set of transactions is
equivalent to some sequential execution of the transactions.

The availability and performance of the database is crucial in many of the
applications mentioned above, which would therefore benefit from running on a
cloud infrastructure. However, there is currently limited support for transactions
in cloud-based data stores. A main reason is that data must be replicated across
multiple sites to achieve the availability and scalability expected from cloud ser-
vices. Multi-site replication introduces many challenges, in particular regarding
performance, since ensuring consistency requires costly message exchanges, and
fault tolerance, since sites may go down or messages may be lost.

� This work was partially supported by AFOSR Grant FA8750-11-2-0084.

D. Giannakopoulou and G. Salaün (Eds.): SEFM 2014, LNCS 8702, pp. 159–174, 2014.
c© Springer International Publishing Switzerland 2014



160 J. Grov and P.C. Ölveczky

One of the most mature cloud-based data management systems providing
some transaction support is Google’s Megastore [1]. Megastore is widely used
both internally at Google, backing services such as GMail and Google+, and
externally through Google’s Platform-as-a-Service offering Google AppEngine.
Megastore is a very complex system, described informally in the overview pa-
per [1]. To facilitate research on the Megastore approach to data management in
the cloud, a precise and more detailed description is needed. We therefore define
in [9] a formal model of (the) Megastore (approach) using the rewriting-logic-
based Real-Time Maude formal specification language [13].

Megastore works well for many less consistency-critical applications, such as
email, social media, or online newspapers, but has some limitations for more
consistency-critical applications: the data must be partitioned into a set of entity
groups, and consistency is only guaranteed if each transaction only accesses data
from a single entity group. This may require a difficult (or impossible) tradeoff
between scalability and consistency, as illustrated in Section 3.

In this paper, we extend Megastore to provide consistency also for transactions
accessing multiple entity groups. Our extension, called Megastore-CGC (“Mega-
store with cross-group consistency”), achieves this additional feature without
reducing Megastore’s performance and fault-tolerance.

Achieving fault-tolerant transaction management is very hard [18]. We there-
fore formally defined Megastore-CGC in Real-Time Maude, which allowed us to
use Real-Time Maude simulations and LTL model checking extensively through-
out the development of Megastore-CGC. To the best of our knowledge, this is
the first time formal methods have been used during the design of a cloud-based
transaction protocol. We experienced that anticipating all possible behaviors
of Megastore-CGC is impossible. A similar observation was made by Google’s
Megastore team, which implemented a pseudo-random test framework, and state
that “the tests have found many surprising problems” [1]. Compared to such a
testing framework, Real-Time Maude model checking analyzes not only a set
of pseudo-random behaviors, but all possible behaviors from an initial system
configuration. Furthermore, we believe that Real-Time Maude provides a more
effective and low-overhead approach to testing than a real testing environment.

Several studies indicate that the test-driven development method significantly
improves the quality of the resulting product [12]. In this method, a suite of tests
for the planned features are written before development starts. This set of tests
is then used both to give the developer quick feedback during development, and
as a set of regression tests when new features are added. However, test-driven
development has traditionally been considered to be unfeasible when targeting
fault tolerance in complex concurrent systems due to the lack of tool support for
testing large number of different scenarios. Our experience from Megastore-CGC
is that with Real-Time Maude, a test-driven approach is possible also in such
systems, since many complex scenarios can be quickly tested by model checking.

To summarize, the contributions of this paper are the following:

1. Section 3 defines an extension of Megastore, called Megastore-CGC, that
provides consistency also for transactions accessing multiple entity groups.
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2. Section 4 defines a formal model of Megastore-CGC in Real-Time Maude.
3. We use Real-Time Maude Monte Carlo simulations in Section 5 to show that

the performance of Megastore-CGC is on par with that of Megastore.
4. We show in Section 6 how Real-Time Maude LTL model checking can be

used to analyze the correctness of Megastore-CGC, including how such model
checking can analyze the important feature serializability property of dis-
tributed databases: any concurrent execution of a set of transactions should
produce results equivalent to a serial execution of the same transactions.

2 Preliminaries

Megastore. Megastore [1] is a replicated data store developed by Google. Data
are key-value pairs called entities. A transaction is a sequence of read and write
operations on entities, followed by a commit request. Entities are partitioned into
entity groups, and each entity group is replicated at different sites. A replicated
transaction log is maintained for each entity group. For transactions accessing a
single entity group, Megastore ensures atomicity and serializability (consistency)
by only allowing one transaction to update the log at any time.

Initially, all read operations in a transaction t are executed locally at a site
s, and t’s updates are buffered. Each site has a coordinator, which is always
informed about whether the local replica is up-to-date. If the local replica is not
up-to-date for an entity requested by t, a majority read is performed.

Let t read and write entities from entity group eg, and let lp be the current
log position in the replicated log of eg. When t requests commit, site s prepares
a log entry for eg containing t’s updates, and runs the following variant of the
Paxos consensus protocol [11] to assign this entry to log position lp+ 1:

1. Site s sends a proposal containing the log entry and the next leader (normally
s) to the current leader site l, which was elected during the previous commit.
If l accepts the entry, s sends the proposal to the other sites. If not, e.g., due
to a concurrent update of the same entity group, the transaction is aborted.

2. Site s then waits for acknowledge responses from all sites. If some sites fail
to acknowledge, s sends an invalidate message to these sites.

3. When each site has acknowledged either the proposal or the invalidate mes-
sage, s requests all sites to apply t’s updates. Each site replicating eg then
appends the chosen log entry for position lp + 1 to the local copy of the
transaction log for eg, and subsequently updates the local data store.

In the presence of failures, s may fail to achieve consensus. In this case another
site may propose itself as the leader, and starts at step (1). If multiple sites
propose log entries for the same log position, Paxos ensures that only one is
elected, and the others are aborted.

Real-Time Maude. Real-Time Maude [13] is a formal modeling language and
high-performance simulation and model checking tool for distributed real-time
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systems. The modeling formalism is expressive and intuitive, allowing developers
with limited formal methods experience to model complex real-time systems.

An algebraic equational specification (specifying sorts, subsorts, functions and
equations defining the functions) defines the data types in a “functional program-
ming style.” Labeled rewrite rules crl [l]: t => t′ if cond define local tran-
sitions from state t to state t′, and tick rewrite rules crl [l]: {t} => {t′} in

time Δ if cond advance time in the entire state t by Δ time units.
A declaration class C | att1 : s1, . . . , attn : sn declares a class C with

attributes att1 to attn of sorts s1 to sn. An object of class C is represented as a
term < O : C | att1 : val1, ..., attn : valn > of sort Object, where O, of sort Oid,
is the object’s identifier, and where val1 to valn are the current values of the
attributes att1 to attn. A message is a term of sort Msg. The state is a term of
sort Configuration, and is a multiset of objects and messages. Multiset union
is denoted by an associative and commutative juxtaposition operator, so that
rewriting is multiset rewriting.

Real-Time Maude specifications are executable, and the tool provides a variety
of formal analysis methods. The timed rewriting command (tfrew t in time

<= timeLimit .) simulates one of the system behaviors by rewriting the initial
state t up to duration timeLimit .

Real-Time Maude’s linear temporal logic model checker analyzes whether each
behavior satisfies a temporal logic formula. State propositions are operators of
sort Prop, and their semantics is defined by equations of the form

eq statePattern |= prop = b and ceq statePattern |= prop = b if cond

for b a term of sort Bool, which defines prop to hold in all states t where t |=
prop evaluates to true. A temporal logic formula is constructed by state propo-
sitions and temporal logic operators such as True, False, ~ (negation), /\, \/,
-> (implication), [] (“always”), <> (“eventually”), and U (“until”). The model
checking command (mc t |=u formula .) checks whether the temporal logic
formula formula holds in all behaviors starting from the initial state t.

3 Megastore-CGC

3.1 Motivation

In Megastore, the strategy for partitioning entities into entity groups depends
both on application access patterns and requirements for consistency. For an
application requiring consistent access to two entities A and B, A and B must
belong to the same entity group. Large entity groups are therefore desired to
ensure consistency for many different transactions types. However, since only
one concurrent update is allowed per entity group, the system’s ability to serve
multiple simultaneous users depends on entity groups being relatively small. The
following example illustrates that it can be hard (or impossible) to partition the
entities such that the required levels of consistency and concurrency are achieved.
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Example 1. Consider a hospital with thousands of employees. To enable efficient
allocation of personnel to tasks (both planned and emergencies), the hospital
wants to use a cloud infrastructure for a shared scheduling system used to assign
each employee a status throughout the day. The system should maintain entities
〈〈employee, time slot〉, status〉, where each employee has a set of capabilities
(heart surgery, anesthesia, etc), and where status is booked, available, or off-
duty. The scheduling system must satisfy the following constraints:

1. An employee can be booked for at most 12 hours during a 24-hour period.
2. Emergency preparedness requires having a certain number of available em-

ployees with a given capability in each time slot. There should, for example,
always be an available heart surgeon to deal with emergencies.

Transactions booking personnel therefore need to inspect multiple entities before
performing updates. For Constraint 1, other records for the same employee must
be inspected. For Constraint 2, records of other employees must be inspected.

The question is how to group the records into entity groups. Grouping all enti-
ties into the same entity group would make simultaneous assignments (by differ-
ent operators) impossible, which is unacceptable. Grouping all entities belonging
to one employee into the same entity group allows us to enforce Constraint 1 but
not Constraint 2: Let H1 and H2 be the only two available heart surgeons at
time slot τ , and let two concurrent transactions Book-H1 and Book-H2 attempt
to book H1 and H2, respectively, at time τ . If H1 and H2 belong to different
entity groups, Megastore cannot ensure consistency across H1 and H2. Then,
both Book-H1 and Book-H2 could see the other heart surgeon as available,
leading to the violation of Constraint 2.

3.2 Megastore-CGC

In Megastore, the data is a set E of entities replicated across a set S of sites.
E is partitioned into a set EG = {eg1, . . . , egn} of non-empty entity groups. A
function R : S → P(EG) assigns to a site the entity groups it replicates.

In Megastore-CGC, the set of entity groups is partitioned into a set OC of
ordering classes. A number of entity groups should belong to the same ordering
class if consistent transactions across these entity groups are required. Further-
more, for each ordering class, there must be at least one site replicating all entity
groups in the ordering class (∀oc ∈ OC ∃s ∈ S oc ⊆ R(s)). One of the sites
replicating all the entity groups in an ordering class oc is the ordering site of oc.

A key observation is that, in Megastore, a site replicating a set of entity groups
participates in all updates on these entity groups, and should therefore be able
to maintain an ordering on these updates. The idea behind Megastore-CGC is
that with this ordering, one site, the ordering site, can validate transactions.

Example 2. The status of heart surgeon h at time slot τ is represented by the
entity hτ , which is part of the entity group eh representing all time slots of h.

Let t be a transaction, initiated at site st, that wants to book hτ . Since there
must always be at least one heart surgeon available, t also reads the status of the
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other heart surgeons at time τ . These entities belong to different entity groups.
t completes by changing the availability status of hτ to booked, if possible.

Using Megastore, Constraint 2 could be violated if some concurrent transac-
tion t′, executing at site st′ , attempts to book the only other available heart
surgeon h′ at time slot τ :

1. t reads the value of hτ and h′
τ at st.

2. t′ reads the value of hτ and h′
τ at st′ .

3. t books hτ . This update is distributed by st and applied at all sites replicating
hτ , including st′ .

4. t′ books h′
τ . This update is distributed by st′ and applied at all replicating

sites, including st.

This execution, which books both heart surgeons and leaves no heart surgeon
for emergencies, is not serializable. Megastore-CGC can ensure also Constraint
2 if we group the entity groups for all employees with a given expertise into
the same ordering class: The ordering site of the ordering class HS of all heart
surgeons orders t and t′, and then validates t and t′ by checking whether all read
operations have seen the most recent updates (according to the given order). In
the above scenario, either t or t′ would fail this test and be aborted.

Since Megastore-CGC makes explicit and uses the implicit ordering of up-
dates during Megastore commits, Megastore-CGC is essentially piggybacked
onto Megastore’s commit protocol, which has the following advantages:

– Performance on par with Megastore, as Megastore-CGC does not introduce
additional coordination messages or blocking.

– For transactions requiring the consistency level provided by Megastore, fault
tolerance is identical to that of Megastore.

3.3 Megastore-CGC Without Error Handling

This section explains the behavior of Megastore-CGC without its fault-tolerance
features; i.e., assuming that messages are not lost and that sites never fail.

Megastore-CGC maintains the following additional information:

– A mapping os : OC → S, which assigns to each ordering class oc its ordering
site os(oc) such that oc ⊆ R(os(oc)) for each ordering class oc ∈ OC .

– A function ol : OC → Orderlist , assigning to each ordering class its ordering
list. Each entry in the ordering list for oc contains the updates on entity
groups in oc, together with the updating transaction.

We can select any Megastore site replicating all entity groups in an ordering class
oc as the ordering site for oc. The ordering list ol(oc) is replicated, with each site
maintaining a projection of ol(oc) of updates to locally replicated entity groups.

The mapping os is stored as a special entity group egos replicated at all sites.
This ensures a consistent view among all participating sites, since the ordering
site of an ordering class oc may change when an ordering site fails.
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When a transaction t accessing entity group(s) in ordering class oc commits,
an entry for t is appended to the list ol(oc) by os(oc). This represents the
ordering of t in oc, and t can then be validated: its execution is valid if and only
if all read operations have seen the most recent update according to ol(oc).

Let t be a transaction with ordering class oc. Megastore-CGC then extends
Megastore’s commit protocol (see Section 2) as follows:

– In Step 1, t is ordered once the ordering site os(oc) receives t’s updates.
After ordering, os(oc) validates t, using the read set of t as input (the read
set is included with the log entry proposal for t, and contains the id of all
entities read by t, together with the log position of the version read by t).

– If validation at os(oc) is successful, the updated order is included in the
apply-request of Step 3.

– If validation is not successful, the apply-step is replaced by a rollback-step,
requesting all participating sites to abort t.

A more detailed description of these steps is given in Appendix A.

3.4 Failure Handling in Megastore-CGC

The transaction ordering must be consistent even when the ordering site fails
and/or messages containing ordering information are lost. Our key ideas are:

– Transactions not requiring the additional consistency features provided by
Megastore-CGC are treated as in Megastore: they are committed regardless
of whether Megastore-CGC’s validation features are available.

– A new ordering site is chosen if the current ordering site may be unavailable.

The commit protocol of a transaction t may be completed without t being
ordered (and validated) by the ordering site. This can happen for several reasons:

1. The ordering site is down (or recovering from failure).
2. The ordering site did not receive the message containing t’s updates.
3. The acknowledgment from the ordering site was lost.
4. The site executing t crashed after sending t’s updates, and some other site

completed the commit protocol for t (this is a feature provided by Paxos).

In this scenario, the apply message for t in Step 3 is sent without the ordering
information. The next step depends on the validation requirements of t:

– If t only reads entities from one entity group, recipients of the message
register t as awaiting order before applying t’s updates.

– If t accesses multiple entity groups, t cannot be safely committed, and its
updates will be replaced by an empty list of operations.

If the ordering site fails, Megastore-CGC provides a method to reinstate or-
dering if there is another site replicating all entity groups of the ordering class.
The steps of this ordering site failover are:
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– Let t be a transaction with ordering class oc. If the ordering site os(oc) fails
to order t during t’s commit, st (the original site executing t) initiates an
ordering site failover for ordering class oc.

– st selects the new ordering site s′ from the sites replicating all entity groups
in oc. If no such site (except os(oc)) exists, the failover procedure is canceled.

– If a new ordering site is available, st prepares an update to the special entity
group egos , which contains the current ordering site for each ordering class.

– Once this update is accepted by a majority of sites, the new ordering site s′

is elected. The mapping os is updated to os [oc �→ s′].
– Once elected, s′ orders all transactions registered as awaiting order. This

ordering is included in the apply message for the next transaction t′.

4 Formalizing Megastore-CGC

This section presents our formal Real-Time Maude model of Megastore-CGC,
which extends and modifies our model of Megastore in [9]. The entire executable
formal specification is available at http://folk.uio.no/jongr/mcgc/.

We model Megastore-CGC in an object-oriented way, where the state consists
of a multiset of site objects and messages traveling between them. Each site is
modeled as an object instance of the following class:

class Site | entityGroups : Configuration, localTransactions : Configuration,

coordinator : EntGroupLogPosPairSet, egOrderings : OrderClassUpdates,

awaitingOrder : EntGroupUpdateList .

The attribute entityGroups contains one EntityGroup object for each entity group
replicated at the site; localTransactions contains one Transaction object for each
active transaction originating at the site; coordinator denotes the local coordi-
nator state for each entity group; egOrderings contains a list of entries (t, eg, lp)
for each ordering class oc, representing ol(oc), where lp is the log position of t’s
update in the transaction log for entity group eg; and awaitingOrder is a set of
entries (oc, t, eg, lp), used during failures for transactions requiring ordering later.

Each site’s copy of an entity group is modeled as an object of the class

class EntityGroup | entitiesState : EntitySet, transactionLog : LogEntryList,

replicas : EntityGroupReplicaSet, proposals : PaxosProposalSet,

pendingWrites : PendingWriteList .

entitiesState stores the local version of each entity. transactionLog denotes the
local copy of the replicated transaction log. A log entry (t lp s ol) contains the
identity t of the originating transaction, the log position lp, the leader site s for
the next log entry, and the list ol of write operations executed by t. replicas
denotes the set of sites replicating this entity group; proposals denotes the local
state in ongoing Paxos processes involving this entity group; and pendingWrites

maintains a list of write operations waiting to be applied to the entitiesState.
A transaction request is a list of current read operations cr(e) and write

operations w(e,v). Executing transactions are modeled as objects of the class

http://folk.uio.no/jongr/mcgc/
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class Transaction | operations : OperationList, status : TransStatus,

reads : EntitySet, readState : ReadStateSet,

writes : OperationList, paxosState : PaxosStateSet .

The attribute operations contains the remaining operations in the transaction;
reads stores the values fetched during read operations; write operations are
buffered in writes; status holds the current transaction status; and readState

and paxosState store transient data during execution.
We assume that the sites are connected by a wide-area network, and we there-

fore do not assume FIFO delivery between the same pair of nodes.
The dynamic behavior of Megastore-CGC is defined by 72 rewrite rules.

5 Performance Estimation

This section shows how randomized Real-Time Maude simulations can estimate
the following performance parameters of Megastore-CGC:

– Average time, per committed transaction, between the request arrives and
the response is sent.

– Number of commits, conflict aborts, and validation aborts at each site.

We compare the performance of (our models of) Megastore-CGC and Megas-
tore. With the right system parameters, Real-Time Maude simulations should
provide realistic performance estimates. For example, it is shown in [14] that
Real-Time Maude simulations of wireless sensor networks give as good perfor-
mance estimates as dedicated simulation tools. Our system parameters are:
– Frequency and distribution of transaction requests.
– Number of sites.
– Number and size of entity groups and ordering classes.
– Network delay distribution between each pair of sites.
– Network and site failure rates.
– Initial values of the seeds for the random function.

We can easily change these parameters by modifying the initial state in Fig. 1.
We use a scenario with three sites, four entities, two entity groups, one ordering
class (containing both entity groups), and a set of transaction types reading and
writing these entity groups. A local read operation requires 10 ms to complete,
according to real-world measurements in [1]. After commit, we assume a delay
of 100 ms for each write operation before the new value is available. Two sites,
Site 1 and Site 2, are located in the same area, with the third site (RSite) at a
more remote location. The probability distribution of the network delays is:

30% 30% 30% 10%

Site 1 ↔ Site 2 10 15 20 50
Site 1 ↔ RSite 30 35 40 100
Site 2 ↔ RSite 30 35 40 100

Transaction requests are generated randomly at each site according to the
following frequency distribution (where “Book H1A” is a transaction that also
reads the entity H2A (“heart surgeon H2 in the afternoon”) before possibly
booking (heart surgeon) H1 in the afternoon):
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eq initState(N) =

{< RSite : Site |

awaitingOrder : noAwaitingOrderSet, coordinator : ..., egOrderings : ...,

entityGroups :

(< H1 : EntityGroup | pendingWrites : emptyPWList, proposals : emptyProposalSet,

replicas : ..., entitiesState : ..., transactionLog : ... >

< H2 : EntityGroup | ... >

< OrderSites : EntityGroup | ... >), --- special entity group representing the map OS

localTransactions : none, seqGen : 0 >

< Site1 : Site | ... >

< Site2 : Site | ... >

< NWRK : NetworkDelays |

connections : (conn(Site1 <-> RSite,< 1 ; 30 ; 30 > ... < 91 ; 100 ; 100 >, true) ;

conn(RSite <-> Site2, ... , true) ; conn(Site1 <-> Site2, ... , true)) >

< rnd : Random | seed : N >

< stats(Site1): SiteStatistics | avgLatency : 0, commits : 0,

conflictAborts : 0, validationAborts : 0, ... >

< stats(RSite): SiteStatistics | ... > < stats(Site2): SiteStatistics | ... >

< transGen(RSite): PoissonTransGen | idCounter : 1, status : waiting(10),

workload : < 1 ; 25 ; update-H1-M > ... < 76 ; 100 ; book-H1-A > >

< transGen(Site1): PoissonTransGen | ... > < transGen(Site2): PoissonTransGen | ... > >}

Fig. 1. An initial state in our simulations (with parts of the term replaced by ‘...’).

Site 1 Site 2 Remote site

Update H1M 50% Update H1M 25% Update H1M 25%
Update H1A 50% Update H1A 25% Update H1A 25%

Update H1M 25% Update H2A 25%
Book H2A 25% Book H1A 25%

We add “record” objects that record events during the simulation, using tech-
niques in [14]. The initial state initState, shown in Figure 1, is then a multiset
containing: one Site object for each site; one NetworkDelays object containing
the network delay distributions; one Random object with the seed used to ran-
domly select a network delay when a message is sent; one SiteStatistics object
for each site recording statistics during simulation; and a PoissonTransGen ob-
ject for each site, which generates transactions randomly according to the given
distribution.

We simulate the system up to 1,000,000 ms using the command

(tfrew initState(10) in time <= 1000000 .)

which returns the term (with parts of the term are replaced by ‘...’)

{< stats(RSite): SiteStatistics | avgLatency : 94579/631, commitCount : 631,

conflictAborts : 171, validationAborts : 10, ... > ... }

in 145,957ms cpu time on a Pentium Intel Core i7 2,6 GHz.
We have also run these experiments on our model of Megastore, and show the

result when the average (overall) transaction rate is 2.5 TPS (transactions per
second). The following table shows the number of transactions successfully com-
mitted (Comm.), and aborted due to conflict (Abs.), and the average transaction
latency (Avg.lat). For Megastore-CGC, we also show the number of transactions
aborted due to validation failures (Val.abs), since the transactions book-H1-A and
book-H2-A access multiple entity groups and could see an inconsistent read set.
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Megastore Megastore-CGC

Comm. Abs. Avg.lat Comm. Abs. Val.abs. Avg.lat

Site 1 652 152 126 660 144 0 123
Site 2 704 100 118 674 115 15 118
RSite 640 172 151 631 171 10 150

We have also compared the performance on “Megastore-friendly” transactions
where each transaction only accesses a single entity group. The performance of
Megastore and Megastore-CGC is virtually the same in this experiment:

Megastore Megastore-CGC

Comm. Abs. Avg.lat Comm. Abs. Val.abs. Avg.lat

Site 1 684 120 122 679 125 0 120
RSite 674 138 132 677 135 0 130
Site 2 693 111 110 691 113 0 113

We also used simulations during the development of Megastore-CGC to esti-
mate the performance of different design choices. For example, our experiments
showed that aggressive failure detection may increase the number of validation
aborts, since ordering may be quicker re-established in case of small transient
errors (such as message losses) than if a failover is required.

6 Model Checking Verification

We use model checking to explore all possible behaviors of Megastore-CGC that
can happen nondeterministically from a given initial system configuration. In
addition to verifying desired properties, model checking is invaluable during the
design process, and helped us discover many subtle bugs in (earlier versions of)
Megastore-CGC that were not uncovered during extensive simulation.

We analyze the original nondeterministic model (not the randomized one used
for performance estimation). For the model checking analysis to terminate, we
analyze scenarios with a limited number of transactions, and restrict the message
delays, transaction start times, site and communication failures, etc.

With a finite number of transactions, the system should satisfy the property
that in all states from some point on:

1. All transactions have finished their execution.
2. All replicas of an entity have the same value or the coordinator of diverging

site(s) is invalidated.
3. All logs for an entity group contain the same entries, unless a coordinator is

invalidated.
4. The execution was serializable; i.e., it gives the same result as some execution

in which the transactions are executed one after the other.

This property can be formalized as the following temporal logic formula Φ:

<> [] (allTransFinished /\ entityGroupsEqualOrInvalid

/\ transLogsEqualOrInvalid /\ isSerializable)
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allTransFinished is a state proposition that is true in a state if all transactions
have finished; entityGroupsEqualOrInvalid is a state proposition that is true

in all states where all replicas of each entity have the same value, unless the
coordinator has been invalidated; and transLogsEqualOrInvalid is true when all
transitions logs for each entity group are equal (unless a coordinator has been
invalidated). The last of these propositions is defined as follows:

op transLogsEqualOrInvalid : -> Prop [ctor] .

ceq {REST

< S1 : Site | coordinator : eglp(EG1, LP) ; EGLP,

entityGroups : < EG1 : EntityGroup | transactionLog : LOG1 > ... >

< S2 : Site | coordinator : eglp(EG1, LP) ; EGLP,

entityGroups : < EG1 : EntityGroup | transactionLog : LOG2 > ... >}

|= transLogsEqual = false if LOG1 =/= LOG2 .

eq {SYSTEM} |= transLogsEqualOrInvalid = true [owise] .

We first characterize the states where transLogsEqualOrInvalid does not hold,
namely, the states with two sites with valid coordinators and where some entity
group EG1 has different values. The last equation, with the owise (“otherwise”)
attribute, defines transLogsEqualOrInvalid to be true in all other states.

To analyze serializability, we use the technique in [9]. The serialization graph
for an execution of a set of committed transactions is a directed graph where
each transaction is represented by a node, and where there is an edge from a
node t1 to another node t2 iff the transaction t1 has executed an operation on
entity e occurs before transaction t2 executed an operation on the same entity,
and at least one of the operations was a write operation. An execution of multiple
transactions is serializable if and only if its serialization graph is acyclic [20].

In a multi-versioned replicated data store like Megastore-CGC, we need a
version order << on the written entity values to decide the before relation when
constructing the serialization graph. For example: a write operation w(e,v) which
creates a version k of entity e occurs before a current read cr(e) iff cr(e) reads
a version l where k << l according to the selected version order. Since every
committed transaction is assigned a unique log position for each entity group
it updates, we use log positions for the version order. This means that if, for
example, ti reads from log position lp and tk commits an update at log position
lp′, then ti → tk in the serialization graph iff lp < lp′.

When an update transaction ti commits, it produces a message containing:

– the log position and value of each entity it has read; and
– the set of entities written, all of them have the log position assigned to ti.

We add a TransactionHistory object containing the current serialization graph.
When a transaction commits, this object reads the above message and updates
its serialization graph. The proposition isSerializable is then defined

op isSerializable : -> Prop [ctor] .

eq {< th : TransactionHistory | graph : GRAPH > REST}

|= isSerializable = not hasCycle(GRAPH) .

We have model checked the temporal logic formula Φ with a number of dif-
ferent system parameters. For example, we have executed the command without
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site and communication failures, where the message delay is either 30 or 80, with
5 transactions, in the following setup:

Site Transaction Operations Start time

Site 1 update-H1-A read H1-A; write(H1-A, Avail1) 150
RSite update-H2-A read H2-A; write(H2-A, Avail2) 150
Site 2 update-H2-A read H2-A; write(H2-A, Avail3) 150
RSite book-H2-A read H1-A; read H2-A; write(H2-A, Booked1) {180, 210}
Site 2 book-H1-A read H2-A; read H1-A; write(H1-A, Booked2) {180, 210}
We then use the following command to check whether each behavior satisfies

the desired properties in Megastore-CGC:

(mc init1 |=u Φ .)

which returned true in 124 seconds cpu time. The number of different states
reachable from the initial state is 108,279.

Performing the exact same model checking in Megastore returns the following
counterexample, in which there is both an edge from book-H1-A to book-H2-A and
from book-H2-A to book-H1-A in the serialization graph:

Result ModelCheckResult : counterexample({initTransactions

...

< th : TransactionHistory | graph : < book-H2-A ; book-H1-A > ; < book-H1-A ; book-H2-A > ; ... >})

Real-Time Maude outputs a behavior invalidating Φ when model checking fails;
this allowed us to easily identify the (often subtle) issues causing problems.

We have also successfully model checked Megastore-CGC in a number of other
scenarios, including:

– Three transactions, two possible start times, one site failure and fixed mes-
sage delay (1,874,946 reachable states, model checked in 6,311 seconds).

– Three transactions, two possible start times, fixed message delay and one
message failure (265,410 reachable states, model checked in 858 seconds).

7 Related Work

Data stores such as Amazon’s Dynamo [7], Google’s BigTable [3], and Cassan-
dra [10] are widely used due to their combination of high availability and scala-
bility. However, given their lack of transaction features, several data stores with
(limited) transaction support have emerged to address the need for strong con-
sistency in many real-world applications. In addition to Megastore, ElasTraS [6],
Spinnaker [16], Calvin [19], and Microsoft’s Azure [2] achieve high availability
and scalability by partitioning the data, and provide consistency within each
partition. Both Megastore, Spinnaker, and Calvin use Paxos to distribute up-
dates among sites. We are not aware of any generic method for transactional
consistency across partitions besides Megastore-CGC. Google’s Spanner [5] pro-
vides both high availability, scalability, and transactional consistency across par-
titions, but is less generic since it demands a complex infrastructure involving
GPS hardware and atomic clocks.
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We have not seen any other work on formalizing and verifying transactional
data stores using formal verification tools. In [15] the authors assert the need
for formal analysis of replication and concurrency control in transactional cloud
data stores, and they analyze a prose-and-pseudo-code description of a Paxos-
based concurrency control protocol. In contrast to our work, this description is
not amenable to model checking and simulation.

A prerequisite for extending Megastore is to have detailed knowledge of it,
which is a challenging task, since Megastore is an internal system at Google
that is publicly described only in an informal way in [1]. In [9] we therefore de-
velop a fairly detailed Real-Time Maude model of Megastore. The value of using
Maude [4] (the “untimed” version of Real-Time Maude) for formally analyzing
other cloud systems is demonstrated in [17], where the authors point out possible
bottlenecks in a näıve implementation of ZooKeeper for key distribution, and in
[8], where the authors analyze denial-of-service prevention mechanisms.

8 Concluding Remarks

We have used Real-Time Maude to develop an extension of Megastore, denoted
Megastore-CGC, which provides consistency also for transactions that access
multiple entity groups.

The main idea behind Megastore-CGC is that in Megastore, sites replicating
multiple entity groups implicitly observe an ordering of updates across this set of
partitions. We make this ordering explicit by defining ordering sites. An impor-
tant advantage of Megastore-CGC is that ordering and validation is piggybacked
onto the existing message interactions of Megastore’s commit protocol, allowing
Megastore-CGC to provide these features without introducing new messages or
waiting. This is also reflected in our Monte Carlo simulations, which indicate that
the performance of Megastore-CGC is virtually the same as that of Megastore.

The Megastore-CGC approachmight be applicable to other Paxos-based trans-
actional data stores such as Spinnaker [16] and Calvin [19]. However, one key
assumption in Megastore is that each site has a coordinator which knows whether
the local site has received all updates. Without this feature, changing the order-
ing site (in case of failure) becomes significantly more complex.

Designing and validating a sophisticated protocol like Megastore-CGC is very
challenging. Real-Time Maude’s intuitive and expressive formalism allowed a
domain expert (the first author) to define both a precise, formal description and
an executable prototype in a single artifact. Simulating and model checking this
prototype automatically provided quick feedback about both the performance
and the correctness of different design choices, even for very complex scenarios.
Model checking was especially helpful, both to verify properties and to find subtle
“corner case” design errors that were not found during extensive simulations.
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8. Eckhardt, J., Mühlbauer, T., AlTurki, M., Meseguer, J., Wirsing, M.: Stable avail-
ability under denial of service attacks through formal patterns. In: de Lara, J., Zis-
man, A. (eds.) FASE 2012. LNCS, vol. 7212, pp. 78–93. Springer, Heidelberg (2012)
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A Transaction Commit in Megastore-CGC

Let t be a transaction executing at site st, reading a set of entity groups EG and
updating an entity group eg ∈ EG. All entity groups in EG belong to ordering
class oc. The table below summarizes the steps of committing t in Megastore-
CGC, and distinguishes the features of Megastore from the features of our CGC
extension. In the table, Reg denotes all sites replicating eg.
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Step Site(s) Megastore CGC extension
1a st Send an acceptLeader re-

quest to the leader sl for the
current log position.

If sl = os(oc), include t’s read set and request
ordering and validation from sl.

1b sl Receive acceptLeader re-
quest. If there are no con-
flicting updates within eg,
send accept to st. Other-
wise, request st to abort t.

If sl = os(oc) and there are no conflicting up-
dates in eg, order and validate t by appending t’s
updates to ol(oc) and then verifying that t has
seen the most recent update for each member of
EG. If validation is successful, ol(oc) is included
in the accept message. If validation is unsuccess-
ful, request st to abort t.

1c st Receive response from sl.
If sl requests abort, t is
aborted. Otherwise, multi-
cast an accept request for t
to all sites replicating entity
group eg, except st and sl.

If sl = os(oc) and st = os(oc), order and validate
t. If validation is successful, st requests accept
from the other sites. Otherwise, t is aborted.
If sl = os(oc) and st = os(oc): include t’s read
set in the accept request for os(oc).

2 Reg \
{os(oc),
st, sl}

Receive and store the ac-
cept request, send acknowl-
edgment to st.

2’ os(oc)
if os(oc) = st
∧ os(oc) = sl

Receive and store the ac-
cept request, send acknowl-
edgment to st.

Order and validate t. If validation is successful,
include ol(oc) in the acknowledgment message. If
validation is unsuccessful, the acknowledgment is
sent without including the ordering.

3 st Multicast apply message
containing t’s updates.

If t was successfully ordered and validated, in-
clude ol(oc) in this message. Otherwise, replace
t’s updates with an empty list of operations (ef-
fectively aborting t).

3’ Reg Apply t’s updates to local
transaction log and repli-
cated entity store.

If the apply message contains ol(oc), update the
local copy of ol(oc).

Some further comments on the CGC extension:

– t is ordered when the ordering site os(oc) accepts t. If os(oc) is the leader
for this log position, this occurs at Step 1b. Otherwise, it occurs at Step 2’.

– After ordering, os(oc) validates t, using the read set of t as input. The read
set is included in the accept-request for os(oc), and contains the id of all
entities read by t together with the version seen (represented by the log
position). The validation procedure ensures that for any pair of transactions
in a read-write conflict (i.e., one is reading and the other is writing the same
entity), one of the transactions is aborted unless the conflicting operations
occur according to the order ol(oc). Assuming transactions access entity
groups within one ordering class only, this is sufficient to verify that the
serialization graph [20] for any schedule is acyclic.1

– If validation at os(oc) is successful, site st distributes the updated order to
all sites replicating eg as part of the apply message for t. If validation is not
successful, the apply-step is replaced by an empty operation list, effectively
aborting t (Step 3).

1 Megastore is a multi-version data store where write-write conflicts do not occur.



Evaluating the Effect of Faults

in SystemC TLM Models Using UPPAAL

Reza Hajisheykhi1, Ali Ebnenasir2, and Sandeep S. Kulkarni1

1 Michigan State University, USA
{hajishey,sandeep}@cse.msu.edu

2 Michigan Technological University, USA
aebnenas@mtu.edu

Abstract. Since System on Chip (SoC) systems, where integrates all
components of a computer or other electronic system into a single chip,
are typically used for critical scenarios, it is desirable to analyze the im-
pact of faults on them. However, fault-impact analysis is difficult at the
RTL level due to the high integrity of SoC systems and different lev-
els of abstraction provided by modern system design languages such as
SystemC. Thus, modeling faults and impact analysis at different levels
of abstraction is an important task and introduces dependability-related
issues from the early phases of design. In this paper, we present a method
for modeling and analyzing faults in SystemC TLM programs. The pro-
posed method includes three steps, namely timed model extraction, fault
modeling and fault analysis. We use UPPAAL timed automata to for-
mally model the SystemC TLM programs and monitor how the models
behave in the presence of faults. We analyze three case studies, two with
Loosely-Timed coding style, and the other with Approximately-Timed
coding style.

Keywords: SystemC, Transaction Level Modeling, Fault Modeling,
Fault Analysis.

1 Introduction

The continuous increase of transistor density on a single die is leading toward
the production of more and more complex System on Chip (SoC) systems, with
an increasing number of components. As a result, the design process for such sys-
tems has also become more complex. This has given an increasing importance
to examining the behavior of SoC systems under fault and error conditions.
Moreover, developing such complex systems within today’s time-to-market con-
straints requires reasoning at an abstract level for architectural exploration and
early software development. This procedure has become systematic resulting in
the so-called Electronic System Level (ESL) design. For ESL design, SystemC
[1] has become the de facto standard. It is a widely accepted language based
on a C++ library that provides hardware modeling concepts (e.g., time, con-
currency, events, logic value types, etc.) for the description and simulation of
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systems at different levels of abstraction. In addition, the concept of Trans-
action Level Modeling (TLM) [2], which enables transaction-based interactions
between the components of a system, improves the success of SystemC. TLM 2.0
includes two types of interfaces, blocking and non-blocking, to support different
levels of timing detail. The objective of this paper is to provide an approach for
analyzing the effects of different types of faults on SystemC TLM models and
evaluate how the models behave in the presence of faults.

Previous work on testing/verifying SystemC focuses mainly on a) generating
test cases [3,4], and b) verifying the formalized semantics of SystemC [5,6]. In
the second category, which our work lies in, the designers can use techniques for
software model checking of finite models created from SystemC models. Prop-
erties of interest are then checked by an exhaustive search in the finite model.
To generate the finite model, some researchers have developed manual program
transformations from SystemC or SystemC TLM models into equivalent state
machines [7,8]. However, none of the previous work studies the behavior of the
extracted finite model in the presence of faults. In [9], we propose an approach for
designing fault tolerant concerns in SystemC TLM models. In our approach, we
analyze the impact of specific kinds of transient faults and design a fault-tolerant
SystemC TLM program with respect to those faults. However, we consider only
untimed SystemC models and the blocking transport. The blocking transport
interface is only able to model the start and end of a transaction, whereas the
non-blocking interface allows a transaction to be broken down into multiple tim-
ing points. In [10,11,12] the authors propose fault/mutation models for SystemC
TLM models. They mainly target fault localization in their methods and do not
analyze the impact of faults on the SystemC TLM models. By comparison, in
this paper, we propose an approach for modeling different types of faults in the
extracted time-constrained finite models and analyze the impact of faults on
them.

Our objective is to provide a methodology for modeling different types of
faults in SystemC TLM models. To this end, the proposed approach applies
model extraction, fault modeling, and model checking to analyze the effects of
faults on SystemC TLM models. The proposed framework has three parts: (1)
model extraction, (2) fault modeling, and (3) impact analysis.

– For the first part, we leverage the approaches from [13,9] to extract UP-
PAAL timed automata (TA) [14] from the SystemC TLM model. To obtain
the desired model, we utilize two approaches: a) for blocking transport, we
use the approach from [15] that generalizes the approach in [9] by incorporat-
ing timing constraints in them; b) for non-blocking transports, we refine the
approach in [13] by only considering the parts of the model that are relevant
for addition of fault tolerance. The motivation for choosing UPPAAL TA as
the target formal language is multi-fold: UPPAAL (1) supports interactions
between parallel processes including timing behaviors and dynamic sensitiv-
ity; (2) permits modeling of the program as a network of communicating
processes (Similar to SystemC). Hence, it can preserve the architecture of
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the SystemC TLM programs by supporting transactions in the extracted
TA, and (3) enables modeling and verification of timing behaviors.

– For the second part, based on the work in [10], we incorporate different kinds
of faults including message faults, permanent faults, and transient faults into
the extracted TA to create a model in the presence of faults. Towards this
end, we identify several rules that describe how the given faults can be
modeled in the UPPAAL model.

– Finally, in the third part, we use the UPPAAL toolset to simulate and verify
the TA that capture the effect of faults.

To validate our proposed method, we have conducted two case studies. The
first case study utilizes blocking transport interface for communication, whereas
the second case study uses non-blocking transport interface. We analyze the
impact of faults on these case studies. Specifically, we consider three types of
faults, namely message loss, permanent faults, and transient faults. We evaluate
the time for identifying counterexamples and/or verification for these case studies
and argue that the time is comparable with verification in the absence of faults.

Contributions of the Paper. We present

– an approach that supports the analysis of three types of faults, namely mes-
sage loss, permanent, and transient faults in UPPAAL timed automata mod-
els extracted from SystemC TLM models;

– a fault impact analysis method that is applicable for both blocking and non-
blocking transports;

– two case studies where we analyze the impact of faults on memory-mapped
busses, and

– experimental evidence that the increased cost of verification due to faults is
small.

Organization of the Paper. The rest of the paper is organized as follows:
In Section 2, we give a brief background of SystemC TLM models. In Section 3,
we identify our fault modeling approach and different types of faults considered
in this paper. The modeling of these faults is formalized in the case studies in
Sections 4 and 5. Finally, the concluding remarks are presented in Section 6.

2 Background: SystemC, Transaction Level Modeling,
and UPPAAL Timed Automata

This section provides a brief background on SystemC and Transaction Level
Modeling (Section 2.1), UPPAAL timed automata (Section 2.2), and UPPAAL
model extraction (Section 2.3). The concepts presented in this section are adapted
mainly from [1,2,14,13].

2.1 SystemC and Transaction Level Modeling

SystemC is an open-source C++ class library that provides executable models of
hardware-software systems at different levels of abstraction. Transaction Level
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Modeling (TLM) is an abstraction level above the SystemC standard to acceler-
ate simulation by utilizing function calls instead of using individual events and
pins. In TLM, a transaction is an abstraction for an interaction between two
or more concurrent processes for either data transfer or synchronization. In a
TLM model, an initiator is a module that initiates new transactions to exchange
data or synchronize with the other module, called the target. Both the initiator
and target try to maintain interoperability, i.e., the ability to take TLM mod-
els from different sources and make them work together, while interacting. In
TLM 2.0, the interoperability is introduced as a layer and has a set of main
components as follows: i) Core interface which implements blocking transport
interface b transport() and non-blocking transport interface nb transport(); ii)
Generic payload which represents transaction objects; iii) Sockets that connect
initiator and target modules, and iv) Base protocol that is a set of rules for using
TLM interfaces while sending/receiving the generic payload through sockets.

2.2 UPPAAL Timed Automata

Timed Automata (TA) are state machines that enable the modeling of real-time
systems [16]. The notion of time is captured by real-valued clock variables. The
clock values are used to express the timing constraints and can be assigned to
locations (vertices) and transitions (edges) of the TA. The semantics of TA is
given by an infinite-state transition system where transitions correspond either to
a change of location (discrete transition) or to passage of time (time transition).
UPPAAL [14] is an integrated tool environment for modeling, simulation, and
verification of real-time systems modeled as networks of TA, extended with data
types. A system in UPPAAL consists of concurrent processes, each of them
modeled as a TA. Each process TA has a set of locations and transitions. To
control transitions between locations, UPPAAL uses a) guards that limit when
process actions can be executed, and b) synchronization channels that require
multiple processes to coordinate.

2.3 Model Extraction

In order to extract a formal model from a SystemC TLM model, we utilize the
rules and approaches in [9,15,13]. In [9], we propose a set of transformation rules
that extract an untimed formal model from the given SystemC TLM program.
In [15], we extend the transformation rules such that the new set also considers
the timing constraints of the given SystemC TLM program while extracting the
formal model. These rules are proposed for Loosely-Timed (LT) coding style
and blocking transport. We utilize our rules from [9,15] along with the ideas
from [13] to extract the UPPAAL models of SystemC TLM programs in the
approximately-timed coding style and non-blocking transport. The ideas from
[13] are used for transforming the SystemC scheduler and the payload event
queue (PEQ). We model the PEQ with four different TA, namely timed-ordered
list, interface, event fetch and callback invocation, and PEQ event automata.
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3 Fault Modeling

In this section, first, we give a brief description of the three types of faults
considered in this paper in Section 3.1. Then we discuss about general description
of these faults in Section 3.2. Finally, in Section 3.3, we explain a methodology
for modeling the faults in UPPAAL TA models.

3.1 Fault Categories

In our work, we distinguish between faults and bugs with the following intuition.
A fault is something that we expect to happen in a program and we expect the
program to provide desired behavior even if it occurs. Examples of such faults
include message loss (caused due to noise), malicious components, transients,
etc. By contrast, a bug is something that we expect to avoid. Examples include
uninitialized variables, buffer overflow, incorrect use of blocking or nonblocking
interfaces, incorrect use of timed/untimed constructs. With this distinction, in-
tuitively, we want to ensure that the program works correctly even if faults occur.
Our work focuses on the former, i.e., it assumes that the designer has decided
that it is difficult/impossible to prevent the faults from occurring and, hence, it
must be tolerated. We utilize this discussion in formal modeling of faults in the
case studies in Sections 4 and 5. The faults considered are as follows.

– Message faults. Since in SystemC TLM programs transactions are performed
via message passing, one of the common faults is a message fault. These
faults include message corruption, loss and duplication. Modeling of message
duplication is similar, and modeling of message corruption is possible using
the approach for transient faults.

– Permanent faults. By permanent faults, we mean that the impact of the
fault is long-lasting (possibly forever). In this paper, we consider fail-stop,
Byzantine, and stuck-at faults caused in hardware. In a fail-stop fault, a
component fails functionally and the other components cannot communicate
with it. The Byzantine fault is one where the faulty component continues to
run but produces incorrect results. The stuck-at faults cause a signal to get
stuck at a fixed value (logical 0, 1, or X) and cannot switch its value.

– Transient faults. Transient faults are the most common types of faults that
are prevalent in SoC systems [17,18]. They perturb the state of system com-
ponents without causing any permanent damage. It is anticipated that most
of these faults occur only once (or a small number of times). In this paper,
we consider Single Event Upsets (SEUs). Such events may induce soft errors
in storage elements (e.g., SRAM, sequential logic) due to alpha particles
generated by the radioactive decay of packaging and interconnect materials.

3.2 Generic Description of Faults

The generic descriptions of the three aforementioned types of faults are discussed
next.
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Message Loss. We present two methods for modeling message loss faults in
the UPPAAL TA model:

– The first approach injects a new transition T into the UPPAAL TA model
in parallel with a transition (Li, Lj), where Li and Lj are two locations in
the extracted model and (Li, Lj) represents the transition from Li to Lj .
Also the transition (Li, Lj) corresponds to sending/receiving of a message.
The transition T utilizes a channel lossm for synchronization.

– The second approach injects a transition T from location Li to Lj. This
transition does not have any synchronization channel, while the original
transition (Li, Lj) has a channel for synchronization. As a result, the faulty
component assumes that the message is sent to other components and waits
to receive a response.

Permanent Faults. As discussed in Section 3.1, we consider three types
of permanent faults: fail-stop, Byzantine, and stuck-at faults. These faults are
modeled as follows:

– To model fail-stop faults, for each component c, we introduce a variable
downc that denotes whether the component is working (downc = 0) or failed
(downc = 1). This can be tailored to consider failure of all components
or only to a subset of components or to a specific number of components.
Furthermore, all component actions of component c are restricted to execute
only if (downc = 0).

– In Byzantine faults, one or more components behave maliciously. By default,
a malicious component can arbitrarily change the variables it can write. The
designer can restrict it to a subset of variables if desired. To model the
malicious component, a new transition T ′ is injected into the component.
This transition updates the value of the variable subject to Byzantine faults.

– To model the stuck-at faults, we disable all transitions that change the value
of the variable (identified by the designer using the same mechanism dis-
cussed earlier). This is achieved by revising all actions that change the value
of affected variable(s).

Transient Faults. To model the transient fault that affects a given variable,
we model it as a one-time corruption of that variable at any reachable state in
the program.

3.3 Automatic Fault Injection

In this section, we describe the automatic fault injection mechanism. Faults are
injected based on the following parameters which are specified by designer.

– The fault type. Currently, there are three types of faults as explained in
Section 3.1.

– Effect of faults on the program. The designer needs to specify the variables
affected by faults as follows:
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• Message loss. For this type, we assume that any of the messages in the
model may be lost. The designer can limit it to a subset if desired.

• Permanent. i) Fail-stop: For this type of fault, the designer needs to
specify the component that is likely to fail. By default, we consider the
case where any component can fail; ii) Stuck-at: For this type of fault,
the designer needs to specify which variable(s) may be corrupted by the
stuck-at component and the possible value(s); iii) Byzantine: Similar to
the stuck-at fault, the designer needs to specify which variable(s) may
be corrupted by the Byzantine component and the possible value(s).
For instance, in the example of Section 4, the variable representing the
action (read/write) is affected by faults. As described in Section 4, this
fault can change the requested action and leads to an undesirable state.
Hence, the default for this fault is that the variable can be corrupted to
any value in its domain.

• Transient. For this type of fault, the designer needs to specify which
variables are likely to be affected by a transient fault. The default for
this fault is that any variable can be corrupted to any value in its domain.

– Number of occurrences of faults. The designer also needs to specify the oc-
currences of the transient faults that may take place during the computation.
The default setting value is 1.

Algorithm Description. The input of Algorithm 1 is a fault-intolerant TA
model M in XML format and the parameters described above. The output is a
fault-affected TA model M ′ in XML format.

Like the TA model, the XML file has a set of locations and transitions,
which are respectively defined by the following tags: “< location > statements
< /location >” and “< transition > statements < /transition >”. The state-
ments can be a name, an invariant, or a type (e.g., urgent, committed) for lo-
cations, and a source, a target, or labels for transitions. The source and target
tags represent the position of the transition. The label tag shows whether the
transition has a synchronization channel, an assignment operation, or a guard
condition.

The Algorithm 1 utilizes three functions Find, Remove, and Change. The
function Find takes a model M and a label L and returns a transition T that
has label L in model M . The function Remove takes a transition T and a
synchronization channel ch and removes the channel ch from T . The function
Change takes a transition T and a variable v and returns a transition with a
changed value of v.

The algorithm scans the XML file, finds the corresponding part, and changes
it as necessary for the fault. For message loss (Lines 4-8), we identify where
the message loss occurs by finding a transition T that has a label kind =
synchronization. This label represents that T is synchronizing with other mod-
ules. Utilizing T , we create T ′ by removing its synchronization channel, and inject
it in parallel with T into the model. In the case studies, we apply this approach
to generate several fault-affected models, each model considers the case where
one specific message may be lost. This can be trivially generalized to generate a
model that simultaneously loses multiple messages. To model the other approach
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Algorithm 1. Automatic Fault Injection
Input: A fault-intolerant Timed Automata model M in XML format, variable v subject to faults,

type of fault, and counter c.
Output: A fault-affected Timed Automata model M ′ in XML format.

1: AddMoreFaults ← true, cnt ← 0
2: while (AddMoreFaults = true) do
3:
4: Message Loss:
5: T ← Find(M , kind = TransitionKind)
6: T ′ ← T
7: T ′ ← Remove(T ′, channel) {or T ′ ← Change(T ′, channel)}
8: AddMoreFaults ← false
9:
10: Fail-stop:
11: T ← Find(M, true)
12: if T has an assignment statement then
13: add (downc ← 1) to T ’s set of assignments
14: else
15: add an assignment statement to T , and add (downc ← 1) to its set of assignments
16: end if
17: if T has a guard statement then
18: add (downc = 0) to T ’s set of guards
19: else
20: add a guard statement to T , and add (downc = 0) to its set of guards
21: end if
22: AddMoreFaults ← false
23:
24: Byzantine Fault:
25: T ← Find(M , kind = TransitionKind)
26: T ′ ← T
27: T ′ ← Change(T ′, v) {No need to change AddMoreFaults}
28:
29: Stuck-at Fault:
30: T ← Find(M , kind = TransitionKind)
31: T ← Change(T , v)
32: AddMoreFaults ← false
33:
34: Transient Fault:
35: T ← Find(M , kind = TransitionKind)
36: if (cnt ≤ c) then
37: T ← Change(T , v)
38: else
39: AddMoreFaults ← false
40: end if
41:
42: end while

of modeling message loss described in Section 3.2, the synchronization channel
of T ′ should be changed to a faulty channel (by calling function Change). After
injecting the fault, we use a variable AddMoreFaults to terminate the algorithm.

To model a fail-stop fault (Lines 10-22), we use an arbitrary transition T . If
T has a label kind=assigment, which means T has an assignment statement, we
add down ← 1 to its set of assignments. If it does not, we define a new label
kind=assigment and add down← 1 to its set of assignment. This step is repeated
by every transition in the component subject to fail-stop fault. Moreover, we
add the guard down=0 to the set of T ’s guards. For modeling the effects of
failing a specific component, the locations of a transition T (source label for the
starting location and target label for the ending location) should be given to the
algorithm.
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If the fault is a Byzantine fault (Lines 24-27), we inject a new transition T ′ in
parallel to the original transition T , which has an assignment label. The value of
the variable v, which is subject to faults, is corrupted in T ′. The occurrence of
this fault does not terminate the algorithm, since in a Byzantine fault the faulty
component continues to run but produces incorrect results, while injecting a
stuck-at fault (Lines 29-32) terminates the algorithm.

For transient faults (Lines 34-40), we define a counter that controls the number
of occurrence of the fault. When the counter is greater than the input c, the
algorithm terminates.

4 Case Study 1: Modeling Faults in LT Coding Style

In this section, we apply our fault modeling approach in the context of our
first case study. The case study is a Network on Chip (NoC) switch that uses
Loosely-Timed (LT) coding style and the TLM base protocol. In this case study,
we only consider permanent and message faults. Moreover, in the next section,
we investigate the impact of transient faults in the Approximately-Timed (AT)
coding style.

4.1 Description of Case Study 1

In this case study, we use SystemC TLM to model a Network on Chip (NoC)
using memory-mapped busses. The switch has 8 processing cores: four Initiators
and four Targets and a Router as an interconnect component between the Ini-
tiators and Targets. Each Initiator module generates a transaction and sends it
to one of the Target modules through the Router using b transport() interface.

We use the method in [15] (described briefly in 2.3) to extract the UPPAAL
TAmodel from the SystemC TLMmodel. Next, in Figure 1, we identify the fault-
free version of this model that forms the basis of models generated for different
types of faults. Due to space constraints, we only present the extracted model
for the Router as the Router component is the most complicated component and
it suffices to demonstrate the proposed approach.

Figure 1(a) represents the Router automaton and Figure 1(b) shows the ad-
dress decoding mechanism used in the Router module. The Router receives a
transaction through one of the channels Init2Router and changes its state to
L7. This transaction should not be received before delay1 timing point. Note
that in the Router automaton, we cannot use the same channel to communicate
with Initiators since their socket connections are point-to-point in the SystemC
TLM model. After receiving the transaction, the Router decodes the address
(Locations L12 and L13 in Figure 1(b)), obtains the TargetID, and forwards the
transaction to the appropriate Target. The Router then waits to receive the
response of the Target from the same channel (L10) and sends it back to the
appropriate Initiator (L11).

To ensure that the extracted model captures the requirements/properties of
the SystemC TLM program, we specify the properties that should hold in the
absence of faults. For this purpose, we define the following specifications.
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AdrDecode?

AdrDecode!

Init2Router[InitID]!

Router2Target[TargetID]?

Router2Target[TargetID]!

Init2Router[InitID]?

L9

L8

L11 L10

L7L6

x<=delay1+delay2

x>=delay1

(a) The Router module

AdrDecode!

AdrDecode?

shared.address = 
shared.address - TargetSize,
TargetID = TargetID + 1

L13

L12

shared.address > TargetSize

shared.address < TargetSize

(b) The address decoding mechanism

Fig. 1. The extracted UPPAAL timed automata in LT coding style. The green text
illustrates either the guards or synchronization, the blue text shows the updates, and
the pink text represents the names.

SPEC 1: A[] not deadlock

SPEC 2: Init[id_i].CurrTrans.cmd == readCmd

--> (Target[id_t].SentData == Router.RcvdData)

and (Router.SentData == Init[id_i].RcvdData)

SPEC 3: Init[id_i].CurrTrans.cmd == writeCmd

--> (Init[id_i].SentData == Router.RcvdData)

and (Router.SentData == Target[id_t].RcvdData)

SPEC 4: Init[id_i].L1 --> (Init[id_i].L2) or (Init[id_i].L3)

SPEC 5: (Init[id_i].L2) or (Init[id_i].L3) --> Init[id_i].L1

The SPEC 4 and SPEC 5 show that the Initiator will eventually generate a
transaction either with a write request (Location L2) or a read request (Location
L3), and will eventually come back to the initial state to generate another trans-
action. These two requirements together imply that the Initiator module is not
blocked. We can extend the set of requirements and define the same requirements
as SPEC 4 and SPEC 5 for all modules in the extracted model. Using UPPAAL
model checker, we have model checked the aforementioned requirements.

4.2 Modeling and Analyzing Faults in the Case Study

In this part, we extend our previous work [19] on analyzing the impact of per-
manent faults by a) analyzing the impact of both permanent faults and message
loss, and b) injecting all the faults automatically based on approaches introduced
in Section 3.2 and Algorithm 1.

Message Loss. In this example, a message gets lost while forwarding from
either the Initiator to Router, Router to Target, Target to Router, or Router to
Initiator. The results are as shown in Table 1. In this, and subsequent tables, if
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requirement x is satisfied, we include s in the table. If it is violated, we include v.
If the answer is more complicated, we include z and explain the result in the text.
Moreover, SPEC 5 is for all possible Initiators. As an illustration, assume that
the message gets lost while forwarding from the Router to one of the Targets. To
model it, we inject the new transition T ′ introduced in Algorithm 1 (Lines 4-8)
into the Router in Figure 1(a) from Location L9 to L10. As a result, the Router
utilizes this transition and changes its state to L10 and waits to receive the
response from one of the Targets. The desired Target, however, does not receive
any messages from the Router and waits at its initial state, thereby violating
requirements 1, 2, 3, and 5.

Table 1. Modeling and analyzing the impact of faults in the NoC switch while using
LT coding style

Cause Affected Locations
SPEC Total Time

1 2 3 4 5 (ms)

Fault-free model – s s s s s 13.5

Message loss

Initiator to Router v v v s v 12.2
Router to Target v v v s v 12.2
Target to Router v v v s v 13.1
Router to Initiator v v v s v 13.0

Fail-stop
Initiator v v v z v 13.1
Router v v v s v 13.2
Target v v v s v 14.1

Byzantine
Initiator s z z s s 14.0
Router s z z s s 14.3
Target s z z s s 14.4

Stuck-at
Initiator s z z s s 12.0
Router s z s s s 12.2
Target s z s s s 12.4

Fail-Stop. In this example, we consider three types of fail-stop: Initiator,
Router, and Target failures. Regarding the second case, we utilize a variable
downr to define a guard downr == 0 (Lines 18 and 20 in Algorithm 1). This
guard can be defined at any transitions prior to sending the transaction to the
Targets. We initialize this variable to 0 that shows we have no fail-stop. During
the program execution, it can be non-deterministically set to 1. For example,
if the injected fault perturbs the transition from L7 to L8 in Figure 1(a), the
Router cannot decode the address and will not be able to communicate with
the Initiators and Targets. As a result, the Router is considered as a failed
component. The modeling of the Initiator and Target failures are similar. The
results for failure of different components are as shown in Table 1. Regarding the
Initiator failure, the location of the fault injection affects satisfaction of SPEC
4. If the fault occurs after setting the attributes in the sending transaction, the
fault does not violate SPEC 4. If the fault occurs while setting the attributes,
the requirement SPEC 4 is violated. Hence, we show it as z.
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Byzantine Faults. In this example, we consider the case where the variable of
concern is cmd attribute, which represents the action requested (read/write). For
this purpose, we inject a transition T ′ in parallel with the original transition T
into the model (Lines 25-26 in Algorithm 1). The transition T ′ changes the cmd
attribute such that its value is different from that in T . This change causes the
Initiator to update the value of cmd non-determinately and behave maliciously.

Stuck-at Faults. Modeling of the stuck-at faults is similar to that in Byzantine
faults except that once the fault occurs, the affected variables cannot change,
since we do not inject a new transition T ′ (See Algorithm 1) for the stuck-at
faults. We consider the stuck-at fault for the variable cmd to 1 in Table 1, which
means the Initiator is always requesting a write action. As a result, when a write
action is requested, the effects of stuck-at faults cannot be found and SPEC 3 is
satisfied.

5 Case Study 2: Modeling Faults in AT Coding Style

In this section, first, we introduce our second case study that focuses on an on-
chip memory-mapped communication bus between an Initiator and a Memory
module. This case study utilizes Approximately-Timed (AT) coding style and
TLM base protocol. Then, we model the faults described in Section 3 on this
case study, and analyze the effects of each type on the extracted UPPAAL timed
automata.

5.1 Description of Case Study 2 and Model Extraction

In this case study, adapted from [20], the Initiator and the Memory use non-
blocking transport (nb transport()) interface for interaction. The nb transport()
interface is intended to support the AT coding style and is particularly suited
for modeling pipelined transactions. It breaks down each transaction into four
phases, namely BEGIN REQ, END REQ, BEGIN RESP, and END RESP, where
each phase transition is associated with a timing point. The Initiator generates
a transaction and starts the communication by sending a BEGIN REQ using the
forward path nb transport fw to the Memory and waits to receive END REQ or
BEGIN RESP from the backward path nb transport bw. After that, the Initiator
can finish the transaction by sending END RESP. The Initiator can also start
another transaction by sending a new BEGIN REQ.

We utilize the rules and approaches explained in [13,9] to extract the UP-
PAAL timed automata model. Nonetheless, the UPPAAL model generated by
considering all possible components is too large to perform exhaustive analysis.
Hence, for evaluating the effect of given faults, we utilize simple slicing tech-
niques by only considering components that could be affected by those faults.
To ensure that the extracted model captures the requirements of the SystemC
TLM model, we specify a set of requirements that should hold in the absence of
faults. These requirements should be always true in the absence of faults.
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SPEC 1: A[] not deadlock

SPEC 2: Init.SentBeginReq --> (Memory.RcvdBeginReq)

SPEC 3: (Memory.SentEndReq or Memory.SentBeginResp) --> (Init.EndResp)

SPEC 4: Init.SentBeginReq --> (Init.Initial)

SPEC 5: Init.CurrTrans.cmd == readCmd --> (Target.SentData==Init.RcvdData)

SPEC 6: Init.CurrTrans.cmd==writeCmd --> (Init.SentData==Target.RcvdData)

SPEC 7: (Init.SentBeginReq or Init.EndReq) and

(Memory.RcvBeginReq or Memory.SentBeginResp)

--> (Init.CurrTrans.phase == Memroy.CurrTrans.phase)

Among these requirements, the last requirement helps to check the execution
ordering of transactions while they are executed in a pipeline. Using UPPAAL,
we have model checked all the above properties for the extracted model.

5.2 Modeling and Analyzing Faults in the Case Study

In this part, we model and analyze the impact of all the aforementioned faults
in Section 3.1 utilizing the approaches introduced in Section 3.2 and Algorithm
1. The experimental results (Table 2) illustrate that the time for evaluating the
effect of faults is comparable (< 125%) to the verification in the absence of faults.

Table 2. Modeling and analyzing the impact of faults in the memory bus system while
using AT coding style

Cause Affected Locations
SPEC Total Time

1 2 3 4 5 6 7 (s)

Fault-free model – s s s s s s s 5.120

Message loss

Initiator, sending BEGIN REQ v v s v v v s 4.455
Initiator, sending END RESP s s s s s s s 4.545
Memory, sending END REQ v s v v v v s 4.235

Memory, sending BEGIN RESP s s v s v v s 4.235

Fail-stop
Initiator v v v v v v s 4.125
Memory v v v v v v s 4.459

Byzantine
Initiator s s s s z z s 5.534
Memory s s s s z z s 5.680

Stuck-at

Initiator, stuck-at 1 s s s s z s s 5.650
Memory, stuck-at 1 s s s s z s s 5.645
Initiator, stuck-at 0 s s s s s z s 5.552
Memory, stuck-at 0 s s s s s z s 5.557

Transient

Initiator, cmd attribute s s s s z s s 5.676
Memory, cmd attribute s s s s z s s 5.655
Initiator, phase attribute z z z z v v v 5.645
Memory, phase attribute s s s s z z v 5.675

Message Loss. The modeling of message loss in this case study is similar to
that in Section 4 with the exception that the program is using nb transport fw
and nb transport bw for forwarding and receiving transactions.
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Permanent Faults. In modeling fail-stop, either the Initiator or the Memory
can fail. The location of injecting the variable downc explained in Section 4.2
can be different and does not change the results of Table 2. In Byzantine and
stuck-at faults, we consider the case where the variable of interest is the cmd
variable.

Transient Faults. We consider two instances to illustrate the transient faults:
(1) where cmd attribute is corrupted, and (2) where phase argument is corrupted.
As an illustration, when a transient fault affects cmd, satisfaction of SPEC 5 and
SPEC 6 depends upon whether cmd is corrupted from 0 to 1 or from 1 to 0.
Hence, Table 2 represents it as z and z.

6 Conclusions and Future Work

In this paper, we focused on analyzing the effect of different types of faults
that are of concern in the SystemC TLM program. This work is inspired by
[10] that characterizes different types of faults for SystemC TLM programs. We
partitioned the classes of faults in [10] into faults (that need to be tolerated) and
bugs (that need to be prevented) and focused on the former.

We began with the given SystemC TLM model and used the approach in [13]
to generate a fault-intolerant UPPAAL model. Subsequently, we considered three
types of faults, message faults, permanent faults, and transient faults. For each
type of faults, we utilized a generic approach to transform the UPPAAL model
to obtain a fault-affected model. Subsequently, this model was used in UPPAAL
to conclude tolerance to faults or to obtain a counterexample. We were either
able to verify that the original specification is satisfied or find a counterexample
demonstrating the violation of the original specification. Moreover, the time for
evaluating the effect of faults was comparable (< 125%) to the verification in the
absence of faults. We demonstrated our approach with two case studies. These
case studies covered programs that utilized LT and AT coding styles. Given
the simplicity of the LT coding style, the time for verification was lower in LT
coding style. However, the evaluation of the AT coding style was mitigated with
appropriate program slicing that allowed us to consider only those components
that are relevant to the given fault.

One future work is to combine this work with programs such as [13] that
automate translation from SystemC TLM to UPPAAL timed automata.
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Abstract. Matlab/Simulink is a widely used industrial tool for the de-
velopment of embedded systems. Many of these systems are safety crit-
ical, especially in automotive industries. At the same time, automatic
formal verification techniques for Simulink, in particular on model level,
are rare and often suffer from scalability issues. In this paper, we present
an automatic transformation of discrete-time Matlab/Simulink models
into the intermediate verification language Boogie. This transformation
enables us to use the Boogie verification framework and inductive invari-
ant checking for the automatic formal verification of Matlab/Simulink
models. Additionally, verification objectives for common error classes are
generated automatically. With our approach, we provide an automatic
formal verification technique for Matlab/Simulink and the most com-
mon error classes which scales better than existing techniques in many
cases. To demonstrate the practical applicability, we have applied our
approach to a number of case studies from the automotive domain.

Keywords: Formal Verification, Matlab/Simulink, Boogie.

1 Introduction

Mathworks’Matlab/Simulink is a widely used tool in embedded systems devel-
opment, especially in automotive industries. Matlab/Simulink enables graphi-
cal specification of embedded systems as block diagrams, the iterative refinement
of these abstract models with implementation details and finally, the automatic
generation of source code for various target architectures.

Even though Matlab/Simulink is used to develop safety-critical systems, the
correct functionality of systems on model level is often only verified by testing
and simulation of the models, which is known to be incomplete. Since fixing of
errors in late development stages is more expensive, complete formal verification
methods on the model level are desirable. There are automatic approaches for
the formal verification of Matlab/Simulink models but the techniques used, like
abstract interpretation and (bounded) model checking, suffer from scalability
issues, i. e., the state space explosion problem.

Hence, there is a need for techniques that can be applied on model level
and that are promising to scale well even for large and complex models. A
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possible solution for this problem is the use of inductive invariant checking for the
verification of Matlab/Simulink models. With an inductive approach, we avoid
unfolding the full state space of a model. Instead, we use automatic theorem
proving to show that model invariants are maintained in all possible executions.
This technique requires the specification of invariants which are suitable to verify
the desired properties.

In our approach, we present a novel automatic transformation of Matlab/Si-
mulink models into the Boogie intermediate verification language. This enables
us to use the Microsoft Boogie Program Verifier [15] for the verification of Mat-

lab/Simulink models. During the transformation, we also automatically gen-
erate invariants that enable the automatic verification of the models for some
common error classes.

We require our approach to fulfill the following criteria:

Preservation of Semantics. The transformation should preserve the infor-
mal, intuitive semantics of Matlab/Simulink or safely over-approximate
the behavior of model elements if a direct transformation is not possible.

Automation. Achieve a high degree of automation for the transformation as
well as for the verification.

Coverage. Support many of the frequently used blocks from the Matlab/Si-
mulink block library. The set of blocks should be extensible such that trans-
lation rules for further blocks can be easily added in the future.

Performance. Translation and verification should be possible in reasonable
time on a standard computer system.

The rest of the paper is structured as follows: In Section 2, we briefly introduce
Simulink and Boogie. Subsequently, in Section 3, we present our verification
framework for Matlab/Simulink models using the Boogie program verifier. In
Section 4, the automatic translation is presented and after that in Section 5, we
present our verification approach. We show our experimental results in Section 6.
Finally, we present related work in Section 7 and conclude in Section 8.

2 Background

2.1 MATLAB/Simulink

Matlab/Simulink [13,14] is an add-on to Mathworks MATLAB IDE. It en-
ables graphical modeling and simulation of synchronous and reactive embedded
systems. Simulink uses a data flow oriented block diagram notation which con-
sists of blocks and lines. Blocks represent either some kind of functionality, like
mathematical or logical functions, or are used for structuring the model such as
subsystem blocks, port blocks, bus blocks etc. To represent signal flow between
blocks in Matlab/Simulink, lines are used. A line can carry multiple signals.

Every block is defined by its type and its block parameters. The block pa-
rameters consist of a set of common parameters, e. g., color, size, position, data
type, etc., which can be found in every block, and a number of parameters that
are specific to the block type and modify the behavior of the block.
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Matlab/Simulink enables hierarchical structuring of the model using sub-
system blocks. Only subsystem blocks can contain other blocks. To model the
signal flow into subsystems, the inputs of the subsystem blocks are mapped
to (Inport and Outport) port blocks within the subsystem. Besides these port
blocks, a Subsystem block can also contain special (for instance Enable) port
blocks which are used to realize conditional execution. Another important prop-
erty of Subsystem blocks is whether they are atomic or not. Non-atomic (virtual)
subsystems are practically invisible to the Simulink scheduler while atomic sub-
systems do affect the behavior of the model.

Even though the data flow oriented notation of Matlab/Simulink is generally
concurrent, Matlab/Simulink executes the blocks sequentially in a simulation.
Hence, the simulation engine schedules the blocks to determine an execution
order. For that Matlab/Simulink uses so-called execution contexts.

An execution context is comparable to a sorted list of blocks and child exe-
cution contexts that have to be executed as an atomic operation. This means
that once an execution context is entered, all blocks and nested execution con-
texts have to be executed before the execution is allowed to return to the parent
execution context.

2.2 Boogie

Boogie[2] is a verification framework developed at Microsoft Research. It is based
on Extended Static Checking (ESC) as presented by Detlefs et al. in [5]. The basic
idea of ESC is formalizing the program for a set of properties. This is done by
enhancing the code with annotations about invariants and variables as well as
assertions to specify proof obligations. The annotated program is then translated
into first order logic formulas, the Verification Conditions, and passed to an
automatic theorem prover (SMT-solver). The Verifications Conditions (VC) are
only satisfiable if the program is consistent with the annotations.

The Boogie framework consists of the intermediate verification language Boo-
gie2 [12] (formerly BoogiePL) and the Boogie program verifier tool [15], which
is used to verify programs written in Boogie2. Boogie is used as intermediate
framework for the verification of various programming languages. While there
are interfaces to other SMT-solvers, the Boogie framework usually uses the au-
tomatic theorem solver Z3 developed at Microsoft Research [16].

The Boogie programming language is an imperative programming language
providing a number of basic types like Booleans, mathematical integers, mathe-
matical reals and bit vector types together with some basic operations for these
types. It features constants, map types, user-defined types as well as uninter-
preted functions. To model control flow, Boogie offers common constructs like
loops and if-else blocks as well as simple goto statements and labels.

Besides the basic operations, it is possible to use functions and operations of
the theories provided by Z3 using the bvbuiltin directive. With that feature, it
is possible to write specifications that use features of the SMTLIB 2.0 standard
and Z3-specific commands.
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3 Approach

In this section, we present our approach for the verification of Matlab/Simu-
link models. This approach is based on a translation of the models into the
Boogie programming language. Besides the translation of the model, we also
automatically generate proof obligations to verify the absence of specific error
classes. So far, we consider the following error classes: overflows, underflows,
division-by-zero and range violations.

3.1 Limitations and Assumptions

Even though, Matlab/Simulink is used to model the continuous environment of
embedded controllers, we only focus on discrete controller. There are blocks that
include legacy code into a model. This would require a translation of respective
language to Boogie and, hence, is not part of this work. There are blocks that
represent calculations that are too complex or for which it is even impossible to
define a sufficient mapping with the types and operations provided by Boogie.

We constrain the models by the following limitations:

1. The models should only contain blocks from the discrete library and stateless
blocks, such as mathematical functions and blocks for signal routing.

2. We assume that the sample time is fixed for every block.
3. We do not support external code like C code or Matlab functions (M-code)

introduced by S-Function blocks or Stateflow charts. However, these blocks
may be over-approximated.

4. We over-approximate blocks like lookup tables, signal builders or blocks with
arithmetic operations not expressible in the specification language.

5. We only translate vector and scalar signals and element-wise operations on
matrices.

6. We assume that the model does not contain bus-capable blocks and com-
posite data types like bus objects.

3.2 Verification Approach

The core contribution of our approach is the automatic translation of Mat-

lab/Simulink models that fulfill the assumptions from Section 3.1 into the Boo-
gie2 language. Our approach is depicted in Figure 1.

With this translation, we

1. define a formal semantics for the set of supported blocks according to the
informal simulation semantics and

2. automatically extract the verification objectives for the error classes of in-
terest and

3. extract additional information from the model that helps with the verifica-
tion (invariants).
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Fig. 1. The Verification Framework

Formal Model. While the notation of Matlab/Simulink models is generally
concurrent, the simulation of Matlab/Simulink models is done sequentially,
just as the code which is generated for the controllers. During a simulation, the
Matlab/Simulink environment calculates an execution order for the blocks,
initializes the blocks and executes the model for a given number of time steps.
Hence, in our automatic translation, we first have to calculate the order to con-
struct a control flow graph (CFG), which then can be translated into a Boogie
program. Once the CFG is calculated, we translate the model according to the
CFG block by block. For each supported block type, we define translation rules
specifying the translation according to the block semantics, the relevant param-
eters and the signals connected to the inputs.

Verification Objectives. Depending on the block type, verification goals are cre-
ated for each block type. For each block where overflows, underflows, division-
by-zero and range violations can occur, the necessary formulas are produced
according to the parameters of the concrete blocks.

Verification Model. Besides the parameters necessary for the translation of the
blocks, we additionally extract information from the model that helps with the
verification, e. g., saturation limits, data types, and lower and upper bounds for
signals. This information is used to automatically create loop invariants in the
specification. With our approach, we support two verification methods: inductive
invariant checking and k-induction. The first is naturally supported by Boogie,
for the second we create a special Boogie2 specification for a desired k.

Finally, the formal specification for the Matlab/Simulink model is passed to
the Boogie program verifier which either returns a counter example if the model
contains an error or returns that the model is verified.

4 Transformation

In this section, we describe the transformation of Matlab/Simulink models into
the Boogie programming language. For that, we first calculate the control flow
graph of a model. Then, we are able to map the control flow graph directly to
the structure of a Boogie program for the model.

Example 1. Figure 2a depicts a small Matlab/Simulink model for a simple
counter. It consist of a constant with the value 1, a Sum block that outputs the
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(a) A model for a simple counter (b) CFG

Fig. 2. A Example Model and its CFG

sum of its inputs, a Scope block that displays its inputs and a UnitDelay block.
A UnitDelay block holds the value connected to the input for one simulation
cycle and outputs it in the next cycle. It also has a parameter InitialValue which
defines the value for the first simulation step. In this model it is set to 0.

In [18], we already have presented how to calculate control and data depen-
dences in Simulink models. This is done calculating the so-called execution con-
texts of a model and scheduling the blocks according to their data dependences
within execution contexts. We calculate the control flow graph for a model in two
steps: First, we need to calculate all execution contexts within the model using
the algorithm described in [18]. With that, we also capture control flow intro-
duced by the Conditional Execution Behavior parameter as well as by execution
context propagation, which may be activated for subsystem blocks. Second, we
calculate the schedule for each execution context in the model. The schedule of
an execution context contains all blocks and all child execution contexts sorted
according to the signal flow dependencies. The schedule is calculated using the
scheduling rules defined in the Matlab/Simulink documentation.

Example 2. The example model from Figure 2a consists of 4 blocks. All these
blocks are scheduled in the root execution context of the model. The calculation
of the sorted order results in the CFG depicted in Figure 2b. For simplicity, the
initialization steps for the blocks are omitted and subsumed by an init node.

4.1 Translating the Model

Once the CFG is calculated, we translate the model to Boogie. In our translation,
the Matlab/Simulink model is mapped to a procedure in Boogie. Within the
procedure, the simulation loop is realized as Boogie loop. Figure 3 depicts the
structure of a translated model.

The first section contains uninterpreted functions, axioms and constants.
These functions and axioms are either part of our prelude or created during
the block translation. Functions defined in the prelude enable a number of com-
mands from SMTLIB 2.0 and Z3 that are not part of the Boogie programming
language and also some helper functions, e. g., casts according to the semantics
of Matlab/Simulink. Functions defined during the block translation are used
to over-approximate behavior of blocks that cannot be translated to Boogie
directly.
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Fig. 3. General structure of a translated Model

The second section in Figure 3 is the actual Boogie procedure into which
the Matlab/Simulink model is translated. First, all variables needed for the
translation of the blocks are declared. Afterward, all variables are assigned to
their initial values, corresponding to the initialization step of a simulation.

The initialization is followed by the loop head which contains the loop in-
variants. During the translation of the blocks, invariants are added according to
the block type and block parameters. To reflect the simulation semantics in our
translation, we assume that the model is executed a finite, unbounded number
of steps and use a symbolic constant stepmax as simulation bound, which is
greater or equal to the number of simulation steps. Nonetheless, with inductive
invariant checking and k-induction, we are able to verify the model for arbitrary
many simulation steps.

The loop body contains the actual translation of the blocks according to the
CFG. The translation of the blocks consist of statements for each block and the
automatically created verification objectives encoded in assertions.

4.2 Translating Simulink Blocks into Boogie

For our translation, we distinguish the supported set of blocks into four classes.
There are blocks which (1) have direct-feedthrough inputs, (2) do not have direct-
feedthrough inputs, (3) have to be over-approximated or (4) blocks that are
related to control flow.

Direct-feedthrough blocks are the most general class for translation. Every
translation step done for (1) is done for (2) and (3), too.

General Blocks. When translating a block to Boogie, variables have to be
created in the Boogie specification. In Simulink, a block can have multiple out-
puts, the so-called outports, which may either be scalar, vectors or matrices of
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1 var add#1#0 : int;

2 /∗...∗/
3 loophead: // invariant
4 assert ((add#1#0 < 128) &&

(add#1#0 >= -128));

5 /∗...∗/
6 add#1#0#0#0 := Constant#1#0

+ UnitDelay#1#0;

7 // verification objectives
8 assert (add#1#0 < 128);

9 assert (add#1#0 >= -128);

Listing 1.1. Sum block

1 var UnitDelay#1#0 : int;

2 var state_UnitDelay#1#0 : int;

3 state_UnitDelay#1#0 := 0;

4 /∗...∗/
5 loopbody:

6 UnitDelay#1#0#:=

state_UnitDelay#1#0;

7 /∗...∗/
8 state_UnitDelay#1#0:=add#1#0;

Listing 1.2. UnitDelay block

signals. We create a variable for each possible combination of the port number
and the position in a signal vector or the indices within the matrix. A variable
name is constructed using an unique identifier for the block, the port number
and the zero-indexed position of the signal in the vector or matrix if necessary.
We represent a scalar signal as a vector of size 1.

Table 1. Mapping of data types

Matlab/Simulink Boogie

boolean bool

int8, uint8, int16, uint16, .. int (mathematical integer)

single, double real (rational numbers)

Table 1 shows the mapping of basic data types from Matlab/Simulink to
Boogie. The mapping of double and single data types is a safe over-approxima-
tion. Although the integer and real representation of Boogie are unbounded, the
bounds of the data types are kept by the automatically created assertions for
the over- and underflow checks. I.e., over- and underflows are always considered
as a error and reported to the user.

Example 3. Consider the Sum block of Figure 2. It has two inports, one con-
nected to the Constant block and one connected to the UnitDelay block. A Sum

block adds the values of the input signals and extends the output dimensions
if necessary. In our Example, both inputs are scalar signals and the variable
names are prefixed by the port number and a 0 for the position in the vector.
An addition like shown in Listing 1.1 fully captures the behavior of this block.
Additionally to the translation of the block semantics, the verification goals for
the Sum block are created. Of our error classes of interest, only over- and un-
derflows could occur at Sum blocks. Hence, we automatically create an over- and
underflow check during the translation according to the data type of the output
port. Listing 1.1 shows an excerpt of the translation for the example model for
the Sum block. As the output data type is an 8-bit integer, the result has to be
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within the interval [−128, 127]. Hence, we create an assertion for this interval
(Line 8). Finally, in Line 4 a loop invariant is automatically created, limiting the
bounds for the output signal of the Sum block to [−128, 127].

Non-direct-feedthrough Blocks. The second class of blocks are those blocks
that do have non-direct-feedthrough inputs. I.e., the outputs of these blocks are
not directly dependent on the inputs but on the internal state. However, the
inputs of these blocks are used to calculate the state for the next simulation
step. In a simulation, the Matlab/Simulink IDE first calculates the outputs for
all blocks and in a second step the new states for the blocks within the model.
Hence, the blocks are scheduled at the front of the respective execution context.

In our translation, we use two variables for each output of a non-direct-feed-
through block: One for the output and one for the state. Corresponding to the
scheduling rules from the Simulink documentation, the outputs of these blocks
are set in the beginning of the loop, and they are available to every other block
they feed. The state updates are placed at the end of the loop.

Example 4. Consider the example from Figure 2a again. Listing 1.2 shows an
excerpt of the translation for the UnitDelay block. The UnitDelay block in the
model is a non-direct-feedthrough block. Hence, two variables are created. As
mentioned in Example 1, the initial value of the block is 0. So in the initialization
part in Line 3 the state variable for the UnitDelay block is set to 0. At the
beginning of the loop body in Line 6 the output variable for the block is set to
its state variable. Finally, at the end of the loop in Line 8, the state variable is
updated with the new state: The value of the Sum block from Example 3.

Over-approximation for Blocks. In Simulink, there exist blocks that can-
not be directly translated into Boogie. These blocks are, e. g., complex mathe-
matical functions or S-Functions. Additionally, there are blocks where a direct
translation would greatly increase the complexity of the specification and hence
the verification effort, like Lookup tables. In our translation, we automatically
over-approximate such blocks. To over-approximate blocks, we either use unin-
terpreted functions or the havoc-commands to set the outputs of blocks to an
arbitrary value. In most cases we are able to define some bounds by additional
assumptions or axioms for the uninterpreted functions. We prefer the use of the
havoc-command, to reduce the number of quantifier instantiations.

Bounds can be defined for periodic functions like some trigonometric functions
like sin, cos or atan. We also approximate the sqrt -function using linear func-
tions as bounds for the intervals (0, 1) and [1,max] where max is the maximum
positive value for the output data type. The output of a LookupTable is bounded
by the minimum and maximum value in the table. For linear extrapolation the
bounds are given by linear functions using the smallest slope and the smallest
value and the biggest slope and the biggest value. For blocks with behavior not
defined in Simulink, but in Stateflow or legacy code, like S-Functions, we use the
limits given by the OutMin and OutMax parameter as a contract. In Stateflow
charts, sometimes bounds are defined for the output data objects, which can
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be used for the approximation. However, in the general case the translation of
S-Functions is dependent on user annotations.

1 var Sin#1#0 : real;
2 /∗...∗/
3 havoc Sin#1#0; //set to arbitrary value
4 assume (Sin#1#0 >= (-1.0*(10.0+4.0))) && (Sin#1#0<=(10.0+4.0)); //

limit to approximated bounds

Listing 1.3. Translation for the Sine Wave block

Example 5. Assume there is a Sine Wave block which produces a sine wave
dependent on the simulation time. A Sine Wave block has parameters for the
amplitude, the frequency, the phase and its bias. For each Sine Wave block holds:
y = amp∗sin(freq∗x+phase)+biasWhen approximating the Sine Wave we use
the fact, that −1 ≤ sin(x) ≤ 1. For every Sine Wave block with the amplitude
a, the bias b and the simulation time t holds that −a+ b ≤ a∗ sin(t)+ b ≤ a+ b.
Listing 1.3 shows an excerpt of the translation for a Sine Wave block with an
amplitude of 10.0 and a bias of 4.0.

Control Flow. In Matlab/Simulink there also exist blocks that cause con-
trol flow. Such blocks are conditionally executed subsystems, e. g., Enabled

Subsystem blocks, or Switch and MultiPortSwitch blocks. Control flow in
Matlab/Simulink is realized by nested execution contexts, which are only ex-
ecuted if a condition depending on the block type that has caused the control
flow is fulfilled. When translating blocks that introduce control flow, we create a
branch for every execution context a block induces. The blocks contained in each
of these execution contexts are then translated into the corresponding branch.

5 Verification

In this section, we present our approach for the verification of Matlab/Simu-
link models. Our approach for the verification is twofold. We are able to perform
inductive invariant checking on the translated model and, with little changes to
the translated model, we are also able to perform k-induction. Both come with
advantages and disadvantages. However, we use the Boogie program verifier for
both, inductive invariant checking and k-induction. Depending on the desired
technique, we create slightly different Boogie specifications.

Inductive invariant checking is based on the idea of proving a loop by show-
ing that a set of loop invariants holds on loop entry and on an arbitrary loop
execution. The latter is shown by using arbitrary values for the variables modi-
fied by the loop (loop bound variables) which do not violate the loop invariants,
performing one loop iteration and showing that the values after one loop exe-
cution still not violate the loop invariants. This is exactly the way the Boogie
program verifier works. Boogie is able to perform an analysis over the loop bound
variables using abstract interpretation to determine additional invariants.
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(a) Inductive Invariant checking (b) K-Inductive Invariant Checking

Fig. 4. Inductive and k-inductive invariant checking

However, the loop invariants derived by Boogie are helpful, but not very
strong. Thus, we create additional loop invariants during the translation of the
the model. These invariants specify the bounds by data types and parameters of
the blocks or relations of the variables with respect to control flow. A disadvan-
tage of these stronger invariants is that they do not always match the initial state
of the model. Hence we assume that a model is always executed once to reach a
valid entry state for the loop. Figure 4a shows the structure of the specification
for inductive invariant checking.

While inductive invariant checking scales well, especially with large state
spaces, in many cases the invariants that can be automatically derived are not
sufficient to verify a program or model. Instead, invariants needed to succeed with
the verification have to be added manually. A related technique is k-inductive
invariant checking where the induction is not only performed over one loop it-
eration. Instead the induction basis and the induction step are done over k loop
iterations. A benefit of k-induction is that we can omit invariants related to
properties that can be shown in k loop iterations

In our approach we adopt combined-case k-induction presented by Donaldson
et al. [6] where the induction basis and the induction step is encoded into a single
formula. They also extended Boogie to be able to perform k-inductive invariant
checking: K-Boogie. However, K-Boogie is based on an old version of Boogie
and Z3 which is not able to process real values. Hence we decided to encode
the combined-case k-induction directly in our Boogie specification of the model.
Figure 4b shows the structure of the resulting Boogie specification if k-inductive
invariant checking is used. Here the loop is unrolled first k-times which forms the
induction basis. After that, the loop-bound variables are set to arbitrary values
(using the havoc-command). Now the the loop is unrolled k-times while the loop
invariants are assumed. In the final (k + 1) step the loop body is unrolled one
more time but now all invariants and assertions for the error classes are checked.
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Table 2. Experimental Results

Model Name Errors Checks Ind. Inv. Check. k-Induction(k=2) SLDV

time (s) CE time (s) CE time (s) CE

m1 turn indicator 0 10 3 0 4 0 5 0

m2 odometer 0 34 2 1 2 0 26 0

m3 dist warning1 16 38 13 18 119 25 timeout

m4 dist warning2 0 38+4 10 11 41 0 1521 0

6 Evaluation

We have integrated our approach into our MeMo framework [18,10] to evaluate
our approach. The parsing strategy in our MeMo framework is twofold. First,
the model file is parsed to create a skeleton data structure for the model. Second,
the model is loaded into Matlab/Simulink. It is compiled and all the parame-
ters that are usually inferred at the beginning of a simulation are extracted and
saved to the data structure. This procedure avoids the reimplementation of the
inference mechanisms of Matlab/Simulink, whose description is informal and
incomplete in the documentation. While parsing, the MeMo framework automat-
ically integrates model references and library blocks and replaces the Reference
blocks with the corresponding subsystems. This means that the lowest levels of
hierarchy in the parsed model only consist of basic blocks.

Currently, our implementation supports 44 basic block1 types and their com-
mon parameter configurations. It mainly comprises blocks from the following
block sets: Discrete, Lookup Tables, Math Operations, Ports & Subsystems, Sig-
nal Routing, Sources and Sinks. However, more translation rules for other block
types and further parameter combinations can be added in future.

We have evaluated our approach on four models supplied by industrial part-
ners from automotive area: A turn indicator (m1), an odometer (m2) and two
models of a distance control system where one, the original model (m3), is erro-
neous and the second is a corrected version(m4). All models are automatically
translated by our tool and contain between 190 and 346 blocks after integrat-
ing all library and model references. The model m1 mainly consists of Boolean
arithmetic and a few integer computations but no stateful blocks. The model
m2 consists of integer computations and also contains stateful blocks. Finally,
m3 and m4 consist of integer and floating point computations as well as stateful
blocks, where some are only updated every ten steps.

Table 2 shows the evaluation results for the four models. We were able to
automatically verify the absence of over- and underflows, division-by-zero and
range violations for tree of the four case studies. The table shows the number of
errors and automatically generated checks, the time needed for translation and
verification and the number of counter examples (CE) returned by Boogie.

We could verify m1 using only inductive invariant checking which was not
possible for m2 due to a spurious counter example. Nevertheless, we were able

1 Many blocks in the Simulink block library are constructed using basic blocks.
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to show the absence of those error classes for m2 automatically using k-induction
with k = 2. We have discovered errors in the distance warning model m3 that
where caused by Integrator blocks with missing reset which could lead to
overflows at these blocks and at subsequent calculations. Two of the counter
examples using inductive invariant checking were spurious counter examples that
disappear when using k-induction. The nine additional CE using k-induction
are violations of the loop invariants and related to the errors. The verification of
these three models was done fully automatic. We have fixed the distance warning
model (m4) by adding limits to the integrator and were able to verify the model
using k-induction and four manually specified invariants.

We have verified these models using the Simulink Design Verifier (SLDV),
which was not able to verify m3 within 12 hours. For m3 the SLDV reported an
average run time of 1521 seconds over 5 runs. However, with our tool we have
verified all models in less than two minutes and especially for m3 and m4 in
significantly less time than the SLDV.

7 Related Work

There already exist some approaches for the formal verification of Matlab/Si-
mulink models. These approaches can be distinguished whether they use a syn-
chronous semantics for the verification of Simulink models or not.

In [4,22], the authors present an approach for the translation of discrete-
time Matlab/Simulink models into the synchronous data flow language Lustre.
This translation enables the use of the SCADE Design Verifier [11]. Further-
more, other verification backends [17,8] like model checkers, e. g., NuSMV, SAL
and Prover, and to theorem provers, like PVS and ACL can be used for the
verification of these translated models. In [19], a method is presented to show
that a Matlab/Simulink model is correctly translated by an automatic code
generator using the theorem prover YICES to show output equivalence of the
Matlab/Simulink model and the generated C-code. In [20,1], a translation from
Matlab/Simulink into hybrid automata is presented. This translation enables
the use of verification tools for hybrid automata like CheckMate. In [9], a verifi-
cation approach based on a transformation into the input language of the UCLID
verifier is presented and UCLID is used to verify the models. Since UCLID sup-
ports less theories than the Z3, more over-approximations have been used in that
transformation. Hence, it is less precise than our approach.

However, these approaches are based on the assumption that the semantics of
Simulink is synchronous. Instead, the actual semantics of Simulink is sequential
and mechanisms like Conditional Execution Behavior and Conditional Execution
Context Propagation are defined on the sequential simulation semantics. Hence,
we provide a more precise formalization of the Matlab/Simulink semantics.

The Simulink Design Verifier (SLDV)[21] by MathWorks uses abstract inter-
pretation and model checking techniques to automatically verify the model for
division-by-zero, dead code and overflows. However, these techniques are sub-
ject to scalability issues especially for models with large state spaces and in our
experiments the SLDV was not able to verify all the models in a reasonable time.
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An approach for the contract-based verification of Matlab/Simulink models
is presented in [3]. It is based on a manual specification of the contracts for
atomic subsystems and a subsequent translation of theMatlab/Simulink model
into verification conditions for the Z3. However, the schedule for the blocks is
calculated using synchronous data flow graphs instead of the actual scheduling
rules of Simulink and control flow is not mentioned in this translation. Hence,
this translation also is less precise than our approach.

Theoretically, our approach can be used to verify functional properties on a
model, as long as the properties are directly modeled in Simulink like presented
in [7], by translating the SLDV Proof blocks directly into Boogie assertions.

8 Conclusion and Future Work

In this paper, we have presented our approach for the formal verification of
discrete-time Matlab/Simulink model using the Boogie program verifier. The
key idea of the approach is an automatic transformation of a given Matlab/Si-
mulink model into a specification in the Boogie programming language and a
subsequent verification of the model using the Boogie program verifier. The
translation is based on the simulation semantics of discrete-time Matlab/Si-
mulink models. Besides the translation or safe over-approximation of the set
of supported blocks, the translation also creates (1) loop invariants for each
block type, (2) verification goals for each block (according to the error classes
of interest) and (3) a specialized Boogie specification depending on the desired
verification strategy (either inductive invariant checking or k-induction).

We have evaluated our approach on four cases studies supplied by indus-
trial partners and have been able to show the absence of over- and underflows,
division-by-zero and range violations in the correct models as well as that one
of the models is erroneous in less than two minutes.

In future work we want to increase the degree of automation especially for
inductive invariant checking. We want to achieve this by exploiting the semantics
of certain blocks to derive stronger loop invariants. We are also currently working
on a formalization of the Simulink fixed point semantics in Boogie.
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Abstract. In many embedded systems like in the automotive domain,
safety-critical features are increasingly realized by software. Some of
these features are often required to behave fail-operational, meaning that
they must stay alive even in the presence of random hardware failures.

We propose a new fault-tolerant SW/HW architecture for electric ve-
hicles with inherent safety capabilities that enable fail-operational fea-
tures. In this paper, we introduce a constraint-based approach to calculate
valid deployments of mixed-critical software components to the execution
nodes. To avoid harm, faulty execution nodes have to be isolated from the
remaining system. We treat the isolations of execution nodes and the re-
quired changes to the deployment to keep those software components alive
that realize fail-operational features. The affected software components
have to be resumed on intact execution nodes. However, the remaining
system resources may become insufficient to execute the full set of soft-
ware components after an isolation of an execution node. Hence, some
components might have to be deactivated, meaning that features might
get lost. Our approach allows to formally analyze which subset of features
can still be provided after one or more isolations. We present an arith-
metic system model with formal constraints of the deployment-problem
that can be solved by a SMT-Solver. We evaluate our approach by show-
ing an example problem and its solution.

Keywords: Fault-Tolerance, Fail-Operational, Mixed-Critical, Deploy-
ment, Dependability, SMT-Solver.

1 Introduction and Motivation

Many embedded systems are operated in safety-critical environments, in which
unhandled faults could cause harmful system failures. This requires that those
systems react on faults properly. However, handling faults by invalidating faulty
data and going into a fail-safe state may cause the loss of some provided features.
This is not acceptable for features that require fail-operational behavior.
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To increase their dependability, systems must be able to resume affected fea-
tures without any service interruption. If system resources get lost due to hard-
ware failures, the remaining resources should be used efficiently to keep alive
those features with the highest demand with respect to safety, reliability and
availability, as defined in [1]. For instance, if an execution node becomes faulty
and has to be isolated from the remaining system, another execution node has to
be able to provide that features that were provided by the faulty node. However,
as the remaining system-resources may become insufficient to provide the full set
of features, it may be needed to explicitly deactivate some low priority features.
This results in a graceful degradation of the system.

We propose a new centralized HW/SW platform for vehicles, that provides in-
herent safety properties and supports fail-operational features without requiring
mechanical fallbacks. In this paper, we address the calculation and analysis of the
deployment of software components to the execution nodes inside the proposed
architecture. However, with a rising number of software and hardware compo-
nents, this deployment configuration becomes more and more complex and hard
to manage manually. We therefore provide an automated configuration support
for deployment decisions, ranging from a semi-automated to a fully-automated
approach. Our approach is based on a formal system model and a set of formal
constraints describing the validity of deployments with respect to the safety-
concept. Model and constraints characterize an arithmetic problem that can be
solved for instance by SMT-solvers.

The main contribution is an approach to calculate and analyze different re-
configurations of the deployment to become active after execution nodes become
isolated. The set of active software components – and thus also the set of pro-
vided features – is automatically reduced when the remaining system resources
become insufficient to provide the initial set of components. Components are
deactivated based on their priorities, which can either be assigned manually or
derived automatically. Our approach allows to formally analyze at design-time
if the desired system and feature properties can be fulfilled, like which set of
features can still be provided after one or multiple isolations. Analyzing the
deactivations of single features allows to analyze the entire system degradation.

In section 2 we present the basic concepts of the proposed platform. Section
3 shows the main contribution of this paper, which is a formal model and a
constraint-based approach to calculate valid deployments and to analyze which
features can be provided after isolations of nodes. Section 4 contains an auto-
motive example, evaluating the applicability of our approach. Related work is
discussed in section 5 and the conclusion and future work is given in section 6.

2 Proposed System Architecture and Safety Concept

Fault-tolerance is the ability of a system to maintain control objectives despite
the occurrence of a fault, while degradation of control performance may be ac-
cepted [2]. If a system should support fail-operational features, it has to be
capable to absorb loss of execution nodes. We deploy multiple instances of soft-
ware components redundantly to the execution nodes. This enables the system
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to absorb loss of execution nodes and results in features being fail-operational,
meaning that features can continue operation in the presence of a limited num-
ber of hardware failures, while ensuring the absence of harm to the users or the
environment. In the following sections we briefly introduce the main ideas of the
proposed platform, needed to follow the deployment concept and constraints.

2.1 System Architecture

We tackle the development of a scalable, uniform, open and thus easily expand-
able base platform with the aim to reduce the complexity of automotive HW/SW
architectures. The basic principles of this platform have been already presented
in [3] and [4].

The proposed platform is composed by a scalable set of central execution
nodes (also called Duplex Control Computers (DCCs)) and a set of peripheral
execution nodes providing the physical sensing and actuating (also called Smart-
Aggregates). The DCCs assemble the Central Platform Computer (CPC) and
are connected to each other and to the Smart-Aggregates by redundant switched
Ethernet-Links. The DCCs are homogeneous for flexibility in the deployment.

The proposed system has two different power supplies, named red and blue.
Each execution node is supplied by either the red or the blue power supply.
Hence, if one power-supply fails, only a subset of the execution nodes get lost
and the residual nodes can continue the operation. As scheduling policy, we follow
the concept of logical execution times [5], meaning that the software components
are executed within fixed cycles. Each execution node provides a certain budget
of time per cycle that can be used to execute application software components.
In this paper, we assume a simplified model in which all software components
are scheduled with the same rate in every cycle.

2.2 Fault-Model and Safety Concept

In this paper, we focus on so called random hardware failures, as defined in the
ISO 26262 [6] as failures that can occur unpredictably during the lifetime of
a hardware (HW) element and that follows a probability distribution. If such a
random hardware failure exists in an execution node, this node has to be isolated
from the remaining system to avoid harm. Our proposed platform ensures the
detection of random hardware failures with a sufficient failure detection coverage.
Sufficient means that the probability to become out-of-control is acceptably low
to meet the quantitative safety-requirements of the ISO26262 [6]. We focus on
how to handle detected failures by performing adaptions to the deployment to
meet the requirements w.r.t. fail-operationality. We assume a state-transition
time of 0s from a faulty to an isolated state. Only if these assumptions hold,
the deployment considerations shown later in section 3 can be applied. More
information about the Fault-Model is also provided in [7].

In the safety concept of the proposed platform, application software com-
ponents (ASWCs) are grouped into so called ASWC-Clusters. This is done to
reduce the complexity of fault detection and handling mechanisms at runtime.
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The ASWC-Clusters get deployed to the execution nodes. Those ASWCs are
mapped to the same ASWC-Cluster that have the same Automotive Safety In-
tegrity Level (ASIL) and the same requirements to behave fail-operational.

Each ASWC has multiple safety goals, while each safety goal has an assigned
fault-tolerance time (FTT ). The FTT defines the time period that a component
can fail to deliver its service without harming the safety goal. The smallest of
these FTTs is the so called minFTT of an ASWC. The minFTT of an ASWC-
Cluster is the smallest minFTT of the ASWCs that are mapped to this cluster.

Each ASWC-Cluster has at least one actively deployed instance in the ini-
tial deployment. If the cluster is required to be fail-operational, a second in-
stance is deployed. In this case, the first instance is called the master and the
second instance is called the slave. We distinguish between hot-standby and
cold-standby slaves (also known as hot/cold spare). A hot-standby is active
(executed in schedule), while a cold-standby is passive (only in memory, not
executed in schedule). In the deployment, we consider this by distinguishing
between activations (active deployments, ASWCs are executed) and allocations
(inactive/passive deployments). The decision whether to create a hot- or a cold
standby slave depends on the minFTT of the ASWC-Cluster compared to the
fault-recovery time (FRT) of the proposed platform. We assume the FRT to be a
defined constant, as a maximum FRT can be shown because the platform ensures
a worst-case time between fault-detection, confirmation and reconfiguration. In
this paper, we neglect the time that is required to switch a cold-standby slave
to become a master. With the proposed platform, a maximum switchover time
can be verifed. We actually aim on a switchover-time of max. 50ms.

There exist several constraints for the deployment given by the safety concept.
For instance, if an ASWC-Cluster has a master and a slave, master and slave
have to be deployed onto two execution nodes with different power-supplies to
avoid that both instances get lost simultaneously when a power-supply fails.

Depending on the required level of fail-operationality, meaning how many
HW-failures have to be survived, additional inactive instances of a cluster are
deployed. If the execution node of the master gets isolated, the slave becomes the
master and if required, a passive instance becomes the new hot-standby slave.
These mechanisms are presented in section 3 in a more detailed formal model.

3 Deployment Calculation and Analysis

We define the system properties and the deployment problem as shown in the
following sections.

3.1 Formal System and Deployment Model

Definition 1. A Vehicle V = 〈F, SA, HA, Φ〉 comprises a set of Functional
Features F , an Application Software Architecture SA, an Execution Hardware
Architecture HA and a Configuration Φ.
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Definition 2. An Application Software Architecture SA = 〈S, SC〉 is composed
by a set S = {s1, ..., sn} of Application Software Components (ASWCs) and a
set SC = {sc1, ..., scq} of ASWC-Clusters with sci ⊆ S while ∀i, j : sci∩ scj = ∅
and

⋃ q
i=1 sci = S. We describe the mapping of s ∈ S to sc ∈ SC with α(s) −→

{sci ∈ SC | sci contains s} and α(sc) −→ {si ∈ S | si is mapped to sc}.
Definition 3. The set of functional features F = {f1, ..., fm} contains the fea-
tures of the vehicle that can be recognized by the user. A feature is realized by one
or more ASWCs and the involved Sensors and Actuators, while each ASWC con-
tributes to realize one or more features. For s ∈ S and f ∈ F , we define this rela-
tionship as χ(s) −→ {fi ∈ F | s contributes to realize fi} and χ(f) −→ {si ∈ S | f
is partly realized by si}.
Definition 4. An Execution Hardware Architecture HA = 〈E,L〉 comprises ex-
ecution nodes E and communication links L = E × E between these nodes.
The set of execution nodes E = EC ∪ EA is composed by a set of central ex-
ecution nodes EC = {e1, ..., ek} and a set of peripheral Smart-Aggregate nodes
EA = {ek+1, ..., el} with attached physical Sensors and Actuators. The set EC

is also called the Central Platform Computer (CPC).

Definition 5. The Configuration Φ = 〈δP (SC), δA(SC), δ(SC)〉 defines how
ASWC-Clusters SC are deployed to execution nodes E, either passively (δP ) or
actively (δA). For sc ∈ SC, we define δP (sc) −→ {ei ∈ E | sc is in memory of ei,
but not executed on ei}, δA(sc) −→ {ei ∈ E | sc is in memory of ei and executed
on ei} and δ(sc) = δA(sc) ∪ δP (sc).

Our deployment approach can either be applied to ASWCs or to ASWC-
Clusters. The motivation to think in clusters and not in single ASWCs is that
the definition of clusters reduces the complexity with regard to the amount
of combinations to be considered for deployment and master-slave switchovers.
Furthermore, the ASWCs within a cluster have a kind of stronger binding to
each other. Thus, we aim on a deployment of ASWCs which are bound to one
cluster within the same execution node. An example for a binding quality is
data-transport delay.

Fig. 1 shows a visualization of the given definitions, based on an example.
Two features are realized by overall three ASWCs, while the third ASWCs s3
contributes to both features. The three ASWCs are mapped to two different
ASWC-Clusters, depending on a property failOp that defines the level of required
fail-operationality of an ASWC. As cluster sc1 contains ASWCs that are not re-
quired to behave fail-operational, it is deployed only once (δA(sc1) = {e1}). The
other cluster sc2 contains an ASWC that is required to behave fail-operational
(α(sc2) = {s3} and failOp(s3 ) = 1). Hence, this cluster is deployed twice
with one active Master (δA(sc2) = {e2}) and one passive cold-standby slave
(δP (sc2) = {e1}). If a hot-standby slave would have been required, then it would
hold that δA(sc2) = {e1, e2}, δP (sc2) = ∅.

ASWCs might contain invisible sub-components and internal communication
channels. We don’t model external communication channels between ASWCs in
this paper for simplicity.
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Cluster-Deployment δ

Cluster-Mapping α

Feature-Relationship χ

ASWC-Cluster sc1

failOp=0

ASWC-Cluster sc2

failOp=1

e1 (DCC 1)

sc1 (Active)

sc2 (Passive)

e2 (DCC 2)

sc2 (Active)

ASWC s1

failOp=0

ASWC s2

failOp=0

ASWC s3

failOp=1

Feature f1

failOp=0

Feature f2

failOp=1

χ(f2) = {s3}

χ(f1) = {s1, s2, s3}

α(sc1) = {s1, s2} α(sc2) = {s3}

δA(sc1) = {e1} δA(sc2) = {e2}

δP (sc2) = {e1}δP (sc1) = ∅

Fig. 1. Example for the definitions

3.2 Fixed Properties of the Deployment Model

Each ASWC si ∈ S is defined by several properties. Property wcet(S) → N+

defines the Worst-Case Execution Time. Property asil(S)→ {0..4} defines the
Automotive Safety Integrity Level (ASIL) of an ASWC [0: Quality-Management
(QM), 1: ASIL-A, 2: ASIL-B, 3: ASIL-C, 4: ASIL-D]. Property failOp(S )→ N0

defines the fail-operational level [0: non fail-operational, n: si has to be provided
after n isolations]. The minimum of the fault-tolerance times of an ASWC for
its different safety goals is defined by minFTT (S)→ N+.

As defined in section 2.2, the vehicle property frt(V)→ N+ defines the fault-
recovery time of the vehicle V. The frt has influence on whether the slaves are
deployed as hot or as cold-standby slaves, depending on their minFTT .

For execution nodes e ∈ E, the following properties are defined. The property
totalTimeBudget(E ) → N+ defines the budget of time that is provided in each
cycle to execute the ASWCs. We assume here that ASWCs are executed in every
cycle. The property powerSupply(E) → {0, 1} defines the power supply of the
execution node [0: Blue, 1: Red]. Finally, the property isolated(E) → {0, 1}
defines if the execution node ei ∈ E is isolated in the current solution instance.
We do not model the amounts of required and provided volatile and non-volatile
memory here for simplicity. These are handled in a similar manner as the WCET
and the time-budget.
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3.3 Solution Properties of the Model

In this section we describe the model-properties that represent the solution of
the deployment problem.

The properties of ASWC-Clusters sc ∈ SC depend on the mapped ASWCs.
Properties asil(SC) → {0..4} and failOp(SC ) → N0 define the ASIL and the
fail-operational level of a cluster. It is ensured by constraints that ∀si ∈ α(sc) :
asil(sc) = asil(si) and failOp(sc) = failOp(si ). Property minFTT (SC)→ N+

is the minimum of all the minFTT (si) for si ∈ α(sc). Property sumWcets(SC )
is defined to be equal to

∑
si∈α(sc) wcet(si). To cover deactivation scenarios that

might be required after isolations of central execution nodes, each sc ∈ SC has
additionally the following properties:

– hotStandbySlaveReq(SC ) → {0, 1}: indicates if a hot-standby slave is re-
quired. The valuation is derived by considering minFTT (sc) and frt(V)

– hotStandbySlavePresent(SC ) → {0, 1}: indicates if a required hot-standby
slave can be established

– masterPresent(SC )→ {0, 1}: indicates if the master can be established

The last two properties may change after isolations of execution nodes. Finally,
each cluster has the properties prioPointsMaster(SC) → N+ and
prioPointsHotSlave(SC)→ N+ storing priorities of actively deployed instances
of clusters. These are used to construct an order in which the cluster instances
should be deactivated in case resources become insufficient. We derive the prior-
ities depending on asil(SC) and failOp(SC ) (cf. Listing 3). However, they could
also be set in a different manner depending on the user’s needs.

For execution nodes e ∈ E, usedTimeBudget(E ) → N0 is defined to be equal
to

∑
scj∈SC | e∈δA(scj)

sumWcets(scj ), which is the sum of the wcet(s) of those
ASWCs that are active on execution node e. A constraint ensures that ∀e ∈ E :
usedTimeBudget(e) ≤ totalTimeBudget(e).

On vehicle-level, the property prioSumAllSCs(V)→ N is defined as the sum of
the priorities of the actively deployed ASWC-Clusters in the initial deployment
without any isolation. In addition, the property prioSumActiveSCs(V) → N is
the sum of the priorities of all ASWC-Clusters SC′ ⊆ SC that are actively
deployed in the current system situation with some isolations.

Finally, the following two properties define the solution matrices that contain
the mapping of ASWCs S to ASWC-Clusters SC and the deployment of the
ASWC-Clusters SC to the execution nodes E.

– map(S, SC) → {0, 1}: Mapping of ASWCs s ∈ S to ASWC-Clusters sc ∈
SC. [0: s /∈ α(sc), 1: s ∈ α(sc)].

– deploy(SC,E)→ {0, 1, 2, 3}: Deployment of ASWC-Clusters sc ∈ SC (and
it’s ASWCs si ∈ α(sc)) to execution nodes e ∈ E. [0: e /∈ δ(sc), 1: e ∈ δP (sc),
2: e ∈ δA(sc) while sc is a master on e, 3: e ∈ δA(sc) while sc is a hot-standby
slave on e]
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Notice that the decision if an ASWC-Cluster instance becomes a master or
a hot-standby slave is done dynamically at runtime by a Platform-Management
component of the Runtime-Environment (RTE) of the proposed vehicle platform.
This is, because there are also other reasons beside node-isolations that may lead
to the deactivation of a master. Hence, the calculated master/slave deployments
as shown in this paper are not used as predefined runtime-configuration, but at
design-time to statically analyze the fail-operational runtime-behavior. It can be
analyzed under which circumstances it is possible at runtime to keep a master
respectively a slave alive in the presence of faults that lead to the isolation of
execution nodes.

3.4 Basic Deployment Constraints

In this section we describe some exemplary constraints that limit the solution
space of the calculated deployments to ensure the properties listed in section 2.2.

To define the constraints, we setup an arithmetic model. We use two condi-
tional functions in the constraints. Function Ite(I, T, E) has three parameters.
The first parameter describes an if-clause I. If I is true, then the second pa-
rameter T is used in the constraint, else the third parameter E. The second
function that we use is Implies(I, T ), which is true for (¬I ∨T ). Both functions
are provided by the SMT-Solver.

Listing 1 shows some basic constraints of the described deployment model.

1 ∀sc ∈ SC :
2

∑
e∈E Ite(deploy(sc, e) 	= 0, 1, 0) = failOp(sc) + 1

3

4 hotStandbySlaveReq(sc) = Ite(
5 And(failOp(sc) > 0,minFTT (sc) ≤ frt(V)), 1, 0)
6

7 Implies( masterPresent(sc) = 1,
8

∑
e∈E Ite(deploy(sc, e) = 2, 1, 0) = 1)

Listing 1. Some basic constraints

The constraint in line 2 ensures the correct number of allocations of ASWC-
Clusters. Clusters with failOp(sc) = n have to be allocated n+ 1 times. Hence,
|δ(sc)| = n+ 1.

Lines 4-5 show the constraint that defines when a hot-standby slave is required
for a ASWC-Cluster. If the cluster contains fail-operational ASWCs and has a
minFTT smaller or equal than the vehicle’s fault-recovery time (frt), then a
hot-standby slave is required for that cluster.

The constraint in lines 7-8 controls the presence of the master for each cluster.
If a master is present, it is ensured that it exists exactly once. To deactivate a
master, masterPresent(sc) has to become 0. This allows to give feedback that
sc cannot be executed in the current solution.

The hot-standby slaves are handled similarly by considering the property
hotStandbySlaveReq(SC ). Additional constraints ensure for instance that if both
the master and the hot-standby slave are present, then they have to be active
on two execution nodes with different power-supplies.
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3.5 Reconfigurations after Isolations

Let EC
f ⊂ EC be the set of isolated execution nodes. For all ei ∈ EC

f , we set
isolated(ei) = 1. It is ensured by constraints that no ASWC-Cluster is activated
anymore on one of the isolated execution nodes.

Definition 6. A Platform-Availability-Graph (PAG) is a directed acyclic graph
G = (V,E). Each vertex V represents a set of alive central execution nodes
EC

a = EC \EC
f . The edges E describe a transition between two vertices, meaning

that some ei ∈ EC move from EC
a to EC

f . A transition happens due to an
isolation or if a power-supply disappears.

Fig. 2(a) shows an example CPC containing four central execution nodes
(DCCs) and the two power-supplies (red and blue).

DCC
1

DCC
4

DCC
2

DCC
3

Blue 
Power Supply

Red 
Power Supply

B R

Ethernet

(a) An example Central Platform
Computer (CPC) with 4 DCCs

1,2,3,4

2,3,4 1,3,4 1,2,4 1,2,3 1,3 2,4

-1 -2 -3 -4 -R -B

(b) Example PAG considering only one fault

Fig. 2. Platform-Availability-Graph (PAG)

When considering only one fault, the PAG looks like shown in Fig. 2(b).
The vertices are labeled with the Ids i of the alive nodes ei ∈ EC

a . The edges
are labeled with the Id i of that ei ∈ EC

f which has recently been isolated
respectively with the power-supply (R,B) that has recently been broken down.

Fig. 3 shows how the deployment from Fig. 1 is reconfigured in case DCC 2 has
to be isolated. The passive cold-standby slave of cluster sc2 has to be activated,
because the former master gets lost. Assuming that sc1 and sc2 cannot run
simultaneously on e1 due to resource constraints, sc1 has to be passivated. This is
allowed as sc1 contains ASWCs that have no requirement to be active after a fault
(failOp = 0). However, as sc1 becomes passivated, feature f1 cannot be provided
anymore, because two of the three ASWCs that realize f1 are passivated. Notice
that all requirements concerning fail-operationality are met in this example.

We now show some formal constraints that describe the validity of follow-up
deployments that become active after isolations of execution-nodes, forcing a
transition in the PAG.
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Fig. 3. Example of a gracefully degraded system after an isolation

The constraints shown in Listing 2 ensure that no present allocation or acti-
vation of an ASWC-Cluster changes unnecessarily during a PAG-transition. The
notation mapprev(s, sc) and deployprev(sc, e) denote the mapping of ASWC to
clusters respectively the deployment of clusters to nodes that were previously
active before the PAG-transition.

1 ∀s ∈ S, ∀sc ∈ SC :
2 Implies(mapprev(s, sc) = 1, map(s, sc) = 1)
3

4 ∀sc ∈ SC, ∀e ∈ E :
5 Implies(deployprev(sc, e) = 0, deploy(sc, e) = 0)
6

7 ∀sc ∈ SC, ∀em, es ∈ E :
8 Implies(And(deployprev(sc, em) = 2, deployprev(sc, es) = 3,
9 isolated(em) = 1, isolated(es) = 0,

10 masterPresent(sc) = 1),
11 deploy(sc, es) = 2)

Listing 2. Constraints for valid post-isolation deployments

Lines 1-2 ensure that the mapping of ASWCs to the ASWC-Clusters does not
change. Lines 4-5 ensure that no reallocation of an ASWC-Cluster is performed
after a PAG-Transition. Lines 7-11 ensure that if a master and a hot-standby
slave were present but the execution node of the master has been isolated, then
the former hot-standby slave should become the new master. The other cases,
like when only a master is required, are handled in a similar manner.

In order to decide about the deactivation order for the ASWC-Clusters, each
instance of a cluster gets assigned a priority. Listing 3 exemplarily shows how the
cluster-priorities can be calculated and how these are summed up to the vehicle
priority-points prioSumAllSCs(V) and prioSumActiveSCs(V).
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1 ∀sc ∈ SC :
2 prioPointsMaster(sc) = asil(sc) + failOp(sc) + 2
3

4 prioPointsHotSlave(sc) = Ite(hotStandBySlaveReq(sc) = 1 ,
5 asil(sc) + failOp(sc) + 1 , 0))
6

7 prioSumAllSCs(V) =
∑

sc∈SC(prioPointsMaster(sc)
8 + prioPointsHotSlave(sc))
9

10 prioSumActiveSCs(V) =
∑

sc∈SC

∑
e∈E(

11 Ite( deploy(sc, e) = 2 ,
12 prioPointsMaster(sc),
13 Ite(deploy(sc, e) = 3, prioPointsHotSlave(sc), 0)))

Listing 3. Calculation of the priority points of the single deployed instances

Finally, these priority-points can be used to decide which cluster instances
have to be deactivated when the system resources become insufficient. Listing 4
depicts one simple algorithm to do this.

1 pr io r i t yReduct ion := 0
2 whi le True :
3 s . push ( )
4 s . add ( prioSumAllSCs (V) − pr io r i t yReduct ion
5 = prioSumActiveSCs (V ) )
6 r e s u l t := s . check ( )
7 s . pop ( )
8 i f r e s u l t = sat : break
9 pr io r i t yReduct ion := pr io r i t yReduct ion + 1

10 i f prioSumActiveSCs (V) = 0 : e x i t

Listing 4. Determine the set of deployable instances

Before executing this algorithm, all deployment constraints and the set of
isolated execution nodes are defined. When a PAG-transition is calculated, some
solution properties of the former deployment are set as fixed properties for the
follow-up deployment, e.g., to avoid undesired changes in the deployment.

Line 3 pushes the already set constraints onto a stack. Line 4-5 add a new
constraint defining the desired value of prioSumActiveSCs in the solution. Af-
terwards, the problem is checked and the additional constraint is removed again
in line 7. If there exists a solution for the problem, line 8 evaluates to True and
the algorithm terminates successfully with a valid follow-up deployment. If no
solution exists, prioSumActiveSCs is decreased until a valid solution is found.
Decreasing the value of prioSumActiveSCs allows to deactivate those cluster in-
stances whose priorities sum up to prioSumAllSCs(V)− prioSumActiveSCs(V).
This mechanism is repeated as long as the property prioSumActiveSCs(V) be-
comes zero. When this is the case, the algorithm exits unsuccessfully, meaning
that no valid follow-up deployment exists (line 10). Instead of this linear search,
also a more efficient binary-search or other algorithms could be applied, but this
was not in focus of our work. We implemented the system model, constraints
and algorithms using the Z3 SMT-Solver [8].
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4 Evaluation and Example

In this section we show the applicability of our approach on a simplified example
from the automotive domain. Consider the following features and ASWCs:

Feature fi ASWCs si of χ(fi) asil(si) failOp(si) wcet(si)
in ms

f1 : Infotainment s1 : Infotainment QM 0 2
f2 : Energy-
Management

s2 : RemainingRangeCalc
s3 : EnergyEfficiencyAssist

A
A

0
0

0.7
0.3

f3 : ADAS-A s4 : AdasSwc1
s5 : AdasSwc2

C
D

0
1

1.7
1

f4 : ADAS-B s5 : AdasSwc2 D 1 1
f5 : Manual-
Driving

s6 : ManualAcceleration
s7 : ManuelBraking
s8 : ManualSteering

D
D
D

3
3
3

1
1
0.5

The features f3 and f4 are placeholders for some Advanced Driver Assistance
Systems (ADAS), like an ACC or automatic parking. Let f4 be required to stay
active after a failure, but f3 is not required to be active after a failure. As ASWC
s5 contributes to realize both f3 and f4, it has failOp(s5 ) = 1. As ASWC s4
only realizes f3, it is sufficient that failOp(s4 ) = 0.

In this example, five ASWC-Clusters {sc1, ..., sc5} are established. The clus-
ters are: α(sc1) = {s1}, α(sc2) = {s2, s3}, α(sc3) = {s4}, α(sc4) = {s5} and
α(sc5) = {s6, s7, s8}. Notice that ASWC s5 is only in one cluster, although it
contributes to two features.

Considering a CPC with four execution nodes (DCCs) as shown in Fig. 2(a),
a valid initial deployment for the example is shown in Fig. 4(a). Fig. 4(b) shows
the follow-up deployment for the case that DCC 1 has been isolated. The colors
(red/blue) of the execution nodes denote their attached power-supply.

We assume here that minFTT (si) ≤ frt(V) for the fail-operational ASWCs.
Hence, hot-standby slaves are required. As provided execution time of the ex-
ecution nodes per cycle, we assume totalTimeBudget(ei ) = 4ms. It can be
seen in both Fig. 4(a) and Fig. 4(b) that ∀ei ∈ E : usedTimeBudget(ei ) ≤
totalTimeBudget(ei ).

In the initial deployment, all clusters can be deployed as required. After the
isolation of e1 (= DCC 1), the master of cluster sc4 gets lost and its slave on e2
becomes the new master. As failOp(sc4 ) = 1, no new slave is created as it is not
required that sc4 is still present after the next isolation. Furthermore, the slave
of cluster sc5 gets lost. As failOp(sc5 ) = 3, an inactive instance of sc5 must be
activated to serve as new slave to prepare for the next isolation. The new slave
of sc5 can only be activated on e3 and not on e2, because master and slave must
not depend on the same power-supply. However, to be able to execute cluster
sc5 on execution node e3, cluster sc3 has to be deactivated as the sum of the
WCETs of sc3 and sc5 would exceed the time-budget of e3. The deactivation of
sc3 forces the deactivation of feature f3, as α(sc3) = {s4} ⊆ χ(f3).
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sumWcets: 2.5 ms
ASWCs: s6,  s7,  s8

sc3 (Master)

asil: C
failOp: 0
sumWcets: 1.7 ms
ASWCs: s4

sc5 (Inactive)

asil: D
failOp: 3
sumWcets: 2.5 ms
ASWCs: s6,  s7,  s8

sc2 (Master)

asil: A
failOp: 0
sumWcets: 1 ms
ASWCs: s2,  s3

sc5 (Master)

asil: D
failOp: 3
sumWcets: 2.5 ms
ASWCs: s6,  s7,  s8

prioSumAllSCs(V): 40
prioSumActiveSCs(V): 40

Deactivated Masters: --

Deactivated Features: --
Deactivated required hot-standby Slaves: --

(a) Initial deployment for the example

e1 (DCC 1)

ISOLATED

e2 (DCC 2)

usedTimeBudget: 
3 ms

e3 (DCC 3)

usedTimeBudget: 
2.5 ms

e4 (DCC 4)

usedTimeBudget: 
3.5 ms

sc5 (Inactive)

asil: D
failOp: 3
sumWcets: 2.5 ms
hotStandbySlaveReq: 1
hotStandbySlavePresent: 1
ASWCs: s6,  s7,  s8

sc4 (Inactive)

asil: D
failOp: 1
sumWcets: 1 ms
hotStandbySlaveReq: 1
hotStandbySlavePresent: 0
ASWCs: s5

sc1 (Master)

asil: QM
failOp: 0
sumWcets: 2 ms
hotStandbySlaveReq: 0
hotStandbySlavePresent: 0
ASWCs: s1

sc4 (Master)

asil: D
failOp: 1
sumWcets: 1 ms
hotStandbySlaveReq: 1
hotStandbySlavePresent: 0
ASWCs: s5

sc5 (Inactive)

asil: D
failOp: 3
sumWcets: 2.5 ms
hotStandbySlaveReq: 1
hotStandbySlavePresent: 1
ASWCs: s6,  s7,  s8

sc3 (Inactive)

asil: C
failOp: 0
sumWcets: 1.7 ms
hotStandbySlaveReq: 0
hotStandbySlavePresent: 0
ASWCs: s4

sc5 (HotSlave)

asil: D
failOp: 3
sumWcets: 2.5 ms
hotStandbySlaveReq: 1
hotStandbySlavePresent: 1
ASWCs: s6,  s7,  s8

sc2 (Master)

asil: A
failOp: 0
sumWcets: 1 ms
hotStandbySlaveReq: 0
hotStandbySlavePresent: 0
ASWCs: s2,  s3

sc5 (Master)

asil: D
failOp: 3
sumWcets: 2.5 ms
hotStandbySlaveReq: 1
hotStandbySlavePresent: 1
ASWCs: s6,  s7,  s8

Deactivated Masters: sc3

Deactivated Features: f3

Deactivated required hot-standby Slaves: sc4
prioSumAllSCs(V): 40
prioSumActiveSCs(V): 29

(b) Followup deployment after DCC1 has been isolated

Fig. 4. Example about an initial and a followup deployment
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The sum of priority points in the initial solution was 40. The loss of the
master of sc3 and the slave of sc4 forces a loss of 11 priority points, because
prioPointsMaster(sc3) = 5 and prioPointsHotSlave(sc4) = 6. Hence, when
DCC1 is isolated, only 29 priority points can be provided by the system (cf. Fig.
4(b)). When this procedure is continued by isolating more DCCs in arbitrary
order, the cluster sc5 always has a master instance, even if only one DCC is left.
This is important as failOp(sc5 ) = 3.

The designer can analyze the system’s fail-operational behavior by considering
the set of deactivated features for each situation. This allows to analyze if all
desired system and feature properties can be fulfilled, without executing the
system. A valid initial deployment is calculated automatically, but can also be
changed manually in order to analyze the systems graceful degradation scenarios
depending on different initial deployments.

5 Related Work

In this section, we discuss related work of deployment approaches with focus on
safety and fail-operationality.

In [9], the authors show an approach to analyze graceful degradation. They
use a utility function to measure the set of active features. This can be seen
as quite similar to our sums of priorities. To reduce complexity, they group
components by defining subsystems based on the interfaces of components. We
group components by their dependability requirements. This allows separation
of mixed-critical components. The main differences are that they consider a
fail-silent fault-model, while we consider fail-operational behavior of features.
Furthermore, we focus more explicitly on deployment constraints that ensure
fail-operational behavior. Another difference is that we consider the explicit de-
activation of components to be able to keep alive other components that are
required to behave fail-operational. They consider a fixed hardware configura-
tion, while we consider a HW-Architecture whose provided resources decrease
after random hardware failures due to execution node isolations.

In [10], fault-tolerant deployments with focus on the trade-off between perfor-
mance and reliability are optimized using a MILP-Solver. However, the approach
does not consider mixed criticalities explicitly, and also at most 1 replication is
supported due to the single node failure model. The analysis of deployments
after hardware-faults is also not considered.

6 Conclusion and Future Work

In this paper, we introduced a formal model of mixed-critical systems includ-
ing the relationship of functional features and software components realizing
the functional features. A set of formal arithmetic constraints describe valid de-
ployments of the software components to a fault-tolerant HW/SW platform for
vehicles. Based on the model and the constraints, an approach to calculate and
analyze valid deployments of mixed-critical components was provided.
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The analysis focuses on the fail-operational behavior of features in the pres-
ence of random hardware failures. It can be analyzed which features can be
uphold depending on the available set of execution nodes. We implemented the
model as input for an SMT-Solver, which calculates the deployment solutions.
We analyzed which components and features have to become inactive after cer-
tain failures. An evaluation was shown by an automotive example.

As future work, we are going to include communication channels between com-
ponents into the model. Also, we want to treat the integration of new software
components into existing deployments during the use case of extensions of the
vehicle by new functional features. Finally, we want to evaluate the scalability
of our approach based on the layout of a concept car that we construct.

Acknowledgments. This work is partially funded by the German Federal Min-
istry for Economic Affairs and Energy (BMWi) under grant no. 01ME12009
through the project RACE (Robust and Reliant Automotive Computing Envi-
ronment for Future eCars) (http://www.projekt-race.de/).
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Abstract. Partial order reduction has been very successful at combat-
ting the state explosion problem [4], [9] for lower-level formalisms, but
has thus far made hardly any impact for model checking higher-level
formalisms such as B, Z or TLA+. This paper attempts to remedy this
issue in the context of the increasing importance of Event-B, with its
much more fine-grained events and thus increased potential for event-
independence and partial order reduction. This paper provides a detailed
description of a partial order reduction in ProB. The technique is eval-
uated on a variety of models. Additionally, the implementation of the
method is discussed, which contains new constraint-based analyses.

Keywords: Model Checking, Partial Order Reduction, Static Analysis,
Event-B.

1 Introduction

ProB [15] is a toolset for validating systems formalised in B, Event-B, CSP,
TLA+ and Z. Initially developed for B, ProB comprises an animator, a model
checker, and a refinement checker. Using the ProBmodel checker for consistency
checking of B and Event-B models is a convenient way of searching for errors in
the model. In contrast to interactive theorem provers, model checking performs
tasks like invariant and deadlock freedom checking automatically.

B offers a variety of data structures and B models are often infinite state.
Making such a B machine manageable for model checking requires setting bounds
on the types of the variables. However, even systems with finite types can have
very large state spaces. Therefore, applying various optimisation techniques is
essential for practical model checking of B or Event-B specifications.

Partial order reduction reduces the state space by taking advantage of inde-
pendence between actions. The reduction relies on choosing only a subset of all
enabled actions in each reachable state of the state space. In the process of choos-
ing such a subset, certain requirements have to be satisfied so that no new error
states (deadlocks) are introduced and no important executions for the verifica-
tion of the underlying system are pruned. There are several theories [8], [12], [20]
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ensuring the soundness of such a type of reduction. Our implementation of par-
tial order reduction uses the ample set theory which is suggested as a method
for partial order reduction in [4], [8], [9].

Our optimisation uses a static analysis for determining the relations between
each pair of operations or events in a B or Event-B machine, respectively. The
static analysis is executed prior to the model checking and is based on both
syntactic and new constraint-based analyses. These analyses are used for dis-
covering the mutual influences of actions inside the model. In this paper we
present an implementation of partial order reduction in the standard ProB

model checker [15] for the formalisms B [1] and Event-B [2]. In addition, we
evaluate the implementation on several case study models, and discuss the im-
plementation and its limitations. For practical reasons, we will concentrate our
review of the implementation of partial order reduction on Event-B only.

Indeed, Event-B events are much more fine-grained than typical operations
in classical B (e.g. an if-then-else is decomposed into two separate events in
Event-B). As such, the potential for finding independent events and partial order
reduction is greater. Our intuition is that the more fine-grained nature of events
in Event-B should dramatically increase the potential for partial order reduction.

In the next section, we give a brief overview of the Event-B formalism and
consistency checking algorithm in ProB, as well as basic definitions and notation
are introduced. In Section 3, we discuss and define formally relations between
events that are relevant for this work. Section 4 presents the method and the
algorithm. The evaluation and the discussion of the implementation are given in
Section 5. The related work is outlined in Section 6. Finally, we discuss future
improvements and features for the reduced state space search, and draw the
conclusions of our work.

2 Preliminaries

Event-B. Event-B is a formal language for modelling and analysing of hardware
and software systems. The formal development of a system in Event-B is a state-
based approach using two types of components for the description of the system:
contexts and machines.

The machines represent the dynamic part of the model and each machine
is comprised primarily of variables, invariants, and events. The variables are
typecast and constrained by the invariants. The variables determine the states
of the machine. In turn, the states of the machine are related to each other by
means of the events. Each event consists of two main parts: guards and actions.
Formally, an event can be described as follows:

event e = any t where G(x, t) then S(x, t, x′) end

In the definition above, x and x′ stand for the evaluation of the variables before
and after the execution of the event e, respectively. The parameters t in the any
clause are typecast and restricted in the enabling predicate G(x, t) of the event.
The enabling predicate of an event e will be often denoted as the guard of e.
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The actions part S(x, t, x′) of an event is composed of a number of assignments
to state variables. When the event is executed, all assignments in S(x, t, x′) are
completed simultaneously. All non-assigned variables remain unaltered.

The event e is said to be enabled in a particular state s of the machine if
G(x, t) holds for the current evaluation of the variables of s. Otherwise, we say
that the event e is disabled in s.

Notation and Basic Definitions. When we talk about enabled events in a
particular state s, we mean all events whose enabling predicates hold in s. The
set of all events that are enabled in a state s will be denoted by enabled(s).

By definition, an event in Event-Bmay have parameters and non-deterministic
assignments. Thus, in some state s an event e can have several representations,
i.e. there is more than one successor state s′ such that s

e→ s′. In that case,
we say that e is a non-deterministic event. For simplicity, from now on we will
assume that each event is deterministic. However, the optimisation in this work
has been implemented for the general case where non-determinism is present.

An event is called a stutter event if it preserves the truth value of each atomic
proposition of the property being checked. By property we mean an LTL formula
or invariant of an Event-B machine. Formally, an event e is stuttering w.r.t.
a property φ if for each transition s

e→ s′ it is fulfilled that for each atomic
proposition p of φ either s |= p and s′ |= p or s 
|= p and s′ 
|= p.

The implementation of the partial order reduction technique presented in this
work is realised by the ample set theory. The reduction of the state space happens
by choosing a subset of enabled(s) in each state s. These subsets we will denote
by ample(s). In the context of partial order reduction, a state s is then said to
be fully expanded if ample(s) = enabled(s).

The Consistency Checking Algorithm. Since the main contribution of this
work is the optimisation of the consistency checking algorithm for Event-B and
B, we will give a quick overview of it (Algorithm 1).

The pseudo code in Algorithm 1 describes a graph traversal algorithm for
exhaustive error search in a directed transition system. All unexplored nodes
in the state space are stored in a standard queue data structure Queue while
running the consistency check for the particular Event-B machine. By popping
unexplored states from the front or the end of the queue a depth-first search or
a breadth-first search through Graph can be simulated, respectively. A mixed
depth-first/breadth-first search can be simulated by a randomised popping from
the front and end of the queue. This is the standard search strategy in ProB.

Once an unexplored state has been chosen from the queue, it will be checked for
errors by the function error (line 4). An error state, for example, can be a state
that violates the invariant of the machine or that has no outgoing transitions.

If no error has been found in the current state, then it will be expanded.
In this context, expansion means that all events from the current machine will
be applied to the current state. Each event whose enabling predicate G(x, t)
holds for the current variables’ evaluation will be executed and a possible new
successor state will be generated. Subsequently, a new transition will be added
to the state space (line 8) if not already present in Graph, and a new state succ
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Algorithm 1. Consistency Checking

1 Queue := {root} ; Visited := {}; Graph := {};
2 while Queue is not empty do
3 state := get state(Queue)
4 if error(state) then
5 return counter-example trace in Graph from root to state
6 else

7 for all succ,evt such that state
evt→ succ do

8 Graph := Graph ∪ {state evt→ succ};
9 if succ 	∈ Visited then

10 push to front(succ, Queue);
11 Visited := Visited ∪ {succ}
12 end if

13 end for
14

the code to
be optimised

15 end if

16 end while
17 return ok

will be adjoined to the queue (line 10) if not already visited. The algorithm runs
as long as the queue is non-empty and no error state has been found.

Since the way of adding transitions to the state space will become slightly
different in order to apply partial order reduction, the most relevant part of
Algorithm 1 for this paper is thus the pseudo code in lines 7-13.

3 Event Relations

Finding out how the events of an Event-B machine are related to each other
is a key step for applying partial order reduction. The simplest approach just
analyses the syntactic structure. For this, we first need to determine the read
and write sets for each event. For an event e, we denote by read(e) the set of the
variables that are read by e, and by write(e) the set of the variables that are
written by e. With readG(e) and readS(e) we will denote the sets of the variables
that are read in the guard and in the actions part of the event e, respectively.
To simplify the presentation we assume that each event is deterministic.

Introducing Independence. The most important event relation is indepen-
dence. Formally, one can define independence between two events as follows:

Definition 1 (Independence)
Two events e1 and e2 are independent if for any state s with e1, e2 ∈ enabled(s)

it is satisfied that the executions s
e1→ s1

e2→ s′ and s
e2→ s2

e1→ s′′ are feasible in
the state space (enabledness), and additionally s′ = s′′ (commutativity).

Two events e1 and e2 are said to be syntactically independent if the following
three conditions are satisfied:
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(SI 1) The read set of e1 is disjoint to the write set of e2 (read(e1) ∩
write(e2) = ∅).

(SI 2) The write set of e1 is disjoint to the read set of e2 (write(e1) ∩
read(e2) = ∅).

(SI 3) The write sets of e1 and e2 are disjoint (write(e1) ∩ write(e2) = ∅).

Two syntactically independent events are independent by means of Definition
1 since no event can affect the guard of the other one (enabledness) and addi-
tionally the read and write sets of each of both events are disjoint to the write
set of the other one (commutativity).

On the other hand, syntactical independence is obviously a quite coarse con-
cept: two events of an Event-B machine can be independent even if some of the
conditions (SI 1) - (SI 3) are violated. Take for example the following two events:
Example 1 (Event Dependency)

event e1 =

when

x ∈ N

then

y := y + 1

end

event e2 =

when

z ≥ 1 ∧ z ≤ 10

then

x := z ‖ z := z + 1

end

Apparently, e1 and e2 are not syntactically independent as (SI 1) is violated
(read(e1)∩write(e2) = {x}). However, e2 cannot affect the guard of e1 because
e2 can assign to x only values between 1 and 10, and e1 is enabled when x is
a natural number. Since additionally write(e1) ∩ read(e2) = ∅, it follows that
the enabledness condition for independence for e1 and e2 is fulfilled. Further, no
variable written by the one event will be read in the actions part of the other
event and the write sets of e1 and e2 are disjoint. Thus, both events cannot
interfere each other and herewith the commutativity condition for independence
is fulfilled for e1 and e2. Hence, e1 and e2 are indeed independent events.

Since partial order reduction takes advantage of the independence between
events, it is important to determine independence as accurately as possible. The
higher the degree of independence in a system, the higher is the chance to reduce
its state space significantly. This motivates the following, more precise approach
to determine independence by using the ProB’s constraint solving facilities.

Refining the Dependency Relation. We use the constraint solver to find
feasible sequences of events for the analysed Event-B model. First, we define a
procedure stating a Prolog predicate in ProB used for testing whether a given
sequence of events is feasible. This will form the basis of our analysis.

Definition 2 (The test path procedure)
For a given Event-B machine M , let Φ and Ψ be B predicates for M , and
e1, . . . , en events of M . Then, we define test path as follows:

test path(Φ, 〈e1, . . . , en〉, Ψ) =

⎧⎨⎩ true if there is an execution s
e1→ . . .

en→ s′

such that s |= Φ and s′ |= Ψ
false otherwise
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The predicates Φ and Ψ are used in order to constrain the search for possible
test paths for M . If, for example, Φ and Ψ are both equal to the truth value
TRUE then test path will return true if the given sequence of events is possible
from some valid state of M .

We can now refine our definition of independence. We introduce the binary
relation DependentM ⊆ EventsM ×EventsM which is intended to comprise all
dependent pairs of events of a given Event-B machine M . Two events e1 and
e2 will be denoted as dependent if (e1, e2) ∈ DependentM , otherwise they are
considered to be independent. The dependency relation is defined as follows:

DependentM := {(e, e′) | (e, e′) ∈ EventsM × EventsM ∧ dependent(e, e′)},

where M is the observed Event-B machine, EventsM is the set of events of M
and dependent is the procedure showed in Algorithm 2.

Algorithm 2. Determining Events’ Dependency

1 procedure boolean dependent(e1, e2)
2 if write(e1) ∩ write(e2) 
= ∅ then
3 return true /* events are race dependent */

4 else if (read(e1) ∩ write(e2) = ∅ ∧ write(e1) ∩ read(e2) = ∅) then
5 return false /* events are syntactically independent */

6 else
7 return
8 (readS(e1) ∩ write(e2) = ∅ ∧ write(e1) ∩ readS(e2) = ∅)⇒
9 ((readG(e1) ∩ write(e2) 
= ∅ ∧ test path(Ge1 ∧Ge2 , ·

e2→ ·,¬Ge1))

10 ∨ (write(e1) ∩ readG(e2) 
= ∅ ∧ test path(Ge2 ∧Ge1 , ·
e1→ ·,¬Ge2 ))

11 end if

The procedure dependent presents a refined strategy for determining the de-
pendency between two events. The else branch in Algorithm 2 will be executed
if at least one of the two events modifies a variable that is read by the other
one. In order to test whether two events are independent, we need to check the
two independence conditions enabledness and commutativity. The test for de-
pendency is expressed by means of the predicate in lines 8-10. We are interested
mainly in the case when the predicate evaluates to false. This is clearly fulfilled
when the left side of the implication holds and the right side evaluates to false.
In case the premise of the implication

(readS(e1) ∩ write(e2) = ∅ ∧ write(e1) ∩ readS(e2) = ∅)

is satisfied, then it is assured that both events cannot affect each other (at
this point we know that the write sets of e1 and e2 are disjoint) and thus the
commutativity condition for independence is satisfied in case the events cannot
disable each other. Once we know that e1 and e2 cannot interfere, we need to
check the enabledness condition. The enabledness condition is tested by the two
disjunction arguments in lines 9 and 10. If at least one of the arguments is
fulfilled, we have deduced that e1 and e2 are indeed dependent. Otherwise, we
have proven that e1 and e2 are independent.



226 I. Dobrikov and M. Leuschel

Checking whether the events can disable one other is realised by means of
the test path procedure. If, for example, e2 assigns a variable that is read in
the guard Ge1 of e1 (i.e. if readG(e1) ∩ write(e2) 
= ∅) then we can further
check whether e2 eventually can disable e1. This can be additionally examined
by searching for a possible transition s

e2→ s′ such that e1 and e2 are enabled in
s (s |= Ge1 ∧ Ge2 ) and e1 disabled in s′ (s′ |= ¬Ge1 ). The call for this case is

then test path(Ge1 ∧ Ge2 , ·
e2→ ·,¬Ge1). If the result of the call is true then we

have found a case in which e2 can disable e1 and thus inferred that e1 and e2 are
dependent. Otherwise, we have shown that the enabling condition of e1 cannot
be affected by the execution of e2.

The Enabling Relation. In addition to the independence of events, we are also
interested in the particular way events may influence each other. Concretely, if
event e1 modifies some variables in the guard of event e2 we are asking in which
way the effect of e1 may affect the guard of e2. In that case, the possible direct
influences of e1 to e2 can be enabling and disabling. The enabling relation is the
residual relation needed for applying the optimisation technique in this work.

In the next section we are interested whether events can be enabled after the
successively execution of a number of certain events. We will retain the enabling
information between events in terms of a directed edge graph, defined as follows:

Definition 3 (Enable Graph). An enable graph for an Event-B machine M
is a directed edge graph EnableGraphM = (V,E), where V = EventsM are the
vertices and E = {e1 �→ e2 | e1, e2 ∈ EventsM ∧ can enable(e1, e2)} the edges
of EnableGraphM .

In Definition 3, e1 �→ e2 means that e1 can enable e2, while can enable consti-
tutes a procedure which returns falsewhen write(e1)∩readG(e2) = ∅, otherwise
tests if e1 can enable e2 by means of the test path procedure. The call of test path
for testing whether e1 may enable e2 is then test path(Ge1 ∧ ¬Ge2 , ·

e1→ ·, Ge2 ).

4 Algorithm

In this section we introduce the theory of partial order reduction and the algo-
rithm for the expansion of states by using the ample set method. The reduction
of the original state space using ample sets is realised by choosing of a subset of
all enabled events in each state.

The Ample Set Requirements. There are four requirements that should be
satisfied by each ample set to make the reduction of the state space sound:

(A 1) Emptiness Condition
ample(s) = ∅⇔ enabled(s) = ∅

(A 2) Dependency Condition
Along every finite execution in the original state space starting in s, an
event dependent on ample(s) cannot appear before some event e ∈ ample(s)
is executed.
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(A 3) Stutter Condition
If ample(s) � enabled(s) then every e ∈ ample(s) has to be a stutter event.

(A 4) Cycle Condition
For any cycle C in the reduced state space, if a state in C has an enabled
event e, then there exists a state s in C such that e ∈ ample(s).

The Need of Local Criteria for (A 2). We are interested in how efficiently
each of the requirements can be checked. For a state s, the conditions (A 1)
and (A 3) can be checked by examining the events in ample(s). In contrast to
conditions (A 1) and (A 3), condition (A 2) is a global property which requires for
ample(s) the examination of all possible executions (in the original state space)
starting in s. A straightforward checking of (A 2) will demand the exploration
of the original state space. Local criteria thus need to be given for (A 2) that
facilitate an efficient computation of the condition.

For our implementation, we define the following two local conditions (which
will replace (A 2)), where M is the observed Event-B machine, EventsM the set
of events in M , and s a state in the original state space:

(A 2.1) Direct Dependency Condition
Any event e ∈ enabled(s) \ ample(s) is independent of ample(s).

(A 2.2) Enabling Dependency Condition
Any event e ∈ EventsM \ enabled(s) that depends on ample(s) may not
become enabled through the activities of events e′ /∈ ample(s).

The following theorem states that (A 2.1) and (A 2.2) are sufficient local
criteria for (A 2). The proof of Theorem 1 can be examined in [11].

Theorem 1 (Sufficient Local Criteria for (A 2))
Given a state s in the original state space. If ample(s) is computed with respect
to the local criteria (A 2.1) and (A 2.2), then ample(s) satisfies (A 2) for all
execution fragments in the original state space starting in state s.

Computing ample(s). We can now present our algorithm for computing an
ample set satisfying (A 1) through (A 3). The procedure ComputeAmpleSet in
Algorithm 3 gets as argument a set of events. DependentM and EnableGraphM

are respectively the dependent relation and the enable graph computed for the
respective Event-B machine M . The output of the ComputeAmpleSet is an am-
ple set ample(s) satisfying the first three conditions of the ample set constraints.

In Algorithm 3 the set T is meant to be enabled(s). First, it is clear that if
T is an empty set, then ComputeAmpleSet will return an empty set. Other-
wise, if T 
= ∅, then the set returned by ComputeAmpleSet has at least one
element (e.g. the event α chosen in one of the iterations of the for-loop). Thus,
ComputeAmpleSet(T ) = ∅ if and only if T is an empty set. Hence, (A 1) is
satisfied by the procedure in Algorithm 3.

The first step of computing ample(s), in case that T is a non-empty set,
is choosing randomly an event α from T . After that, all enabled events in s
that depend on α will be added to S (line 3). (S is the set which is meant to
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be ample(s).) This step obviously does not violate the local condition (A 2.1).
What remains is to check whether every execution starting from state s with
one of the events in I (the set of all independent from S events) can possibly
enable an event γ that is dependent on an event in S such that γ /∈ S. This is
realised by inspecting the enable graph of M for each β ∈ I (line 6). If we find
a path

β → γ1 → . . .→ γn → γ

in EnableGraphM with γ1, . . . γn, γ /∈ S such that γ depends on S, then we just
add β to S (line 7). Finding of such a path in EnableGraphM means that there
is possibly an execution fragment starting in s that violates the local condition
(A 2.2). In this case, adding β to S is necessary to ensure that S also satisfies (A
2.2). At the beginning of line 10, we then have computed in s a set of enabled
events satisfying the local criteria (A 2.1) and (A 2.2). The final step is to check
whether S fulfills the stutter condition (line 10). The procedure in Algorithm 3
runs until an appropriate ample set has been found or all potential ample sets
fail to fulfil the conditions (A 2) and (A 3) (then we return T ).

Algorithm 3. Computation of ample(s)

1 procedure set ComputeAmpleSet(T )
2 foreach α ∈ T such that α randomly chosen do
3 S := {β | β ∈ T ∧ (α, β) ∈ DependentM} ∪ {α};
4 I := T \ S ;
5 foreach β ∈ I do
6 if there is a path β → γ1 → . . .→ γn → γ in EnableGraphM

such that γ1 , . . . , γn , γ /∈ S ∧ γ depends on S then
7 S := S ∪ {β}
8 end if

9 end foreach
10 if S is a stutter set then /* checking (A 3) */

11 return S
12 end if

13 end foreach
14 return T

The Ignoring Problem. Condition (A 3), which requires adding only of stutter
events to the ample sets of each state (assuming that (A 1) and (A 2) are
also satisfied), can sometimes cause ignoring of certain (non-stutter) events in
the reduced state space. Ignoring of non-stutter events may happen when the
reduction results in a cycle of stutter events only. If some events are ignored in
the reduced state space of the model, then computing ample sets w.r.t. (A 1)
through (A 3) may not be sufficient to preserve some of the LTL−X properties.
The issue is also known as the ignoring problem [20].

To ensure that no events in the reduced state space are ignored, the cycle
condition (A 4) should be guaranteed by the reduced state space. We establish
(A 4) by means of the following condition:
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(A 4’) Strong Cycle Condition
Any cycle in the reduced state space has at least one fully expanded state.

Using the strong cycle condition (A 4’) is a sufficient criterion for (A 4)
(Lemma 8.23 in [4]) and easier to implement. Since at least one of the states
should be fully expanded in any cycle, we expand fully each state s with an out-
going transition reaching an expanded state generated before s, as well as each
state with a self loop. Note that this method of implementing the strong cycle
condition (A 4’) is approximative because it expands fully states unnecessarily
sometimes. We have chosen this way of realising (A 4’) in order to generalise
our algorithm of calculating ample sets for different exploration strategies. This
technique of implementing (A 4) has been also proposed in other works like in [5].

Expanding a State by Applying the Ample Events Only. To apply the
ample set approach for the consistency checking algorithm, we change the way
each state is expanded. Thus, the respective changes in Algorithm 1 take place
in lines 7-13 of the algorithm. Basically, we can replace the code in the else
branch of Algorithm 1 by calling the procedure compute ample transitions in
Algorithm 4 with the currently processed state s as argument.

Algorithm 4. Computation of the Ample Transitions

1 procedure compute ample transitions(s)
2 T := compute all enabled events in s ;
3 S := ComputeAmpleSet(T );
4 foreach evt ∈ S do
5 s′ := execute event(s ,evt);
6 T := T \ {evt}
7 if (id(s) ≥ id(s ′)) ∧ s ′ /∈ Queue then /* check (A 4) */

8 foreach e ∈ T do
9 execute event(s ,e)

10 end foreach
11 break /* state s has been fully explored */

12 end if

13 end foreach

Algorithm 4 summarises the computation of the ample events in each state
and the execution of those in the reduced state space. The presented procedure
compute ample transitions gets as argument the state being expanded. The
computation of the successor states and the insertion of the new determined
transitions are realised by the procedure execute event.

In Algorithm 4 all enabled events in the currently processed state s will be
assigned to T (line 2). After that, an ample set S satisfying (A 1) through (A
3) is computed by means of the procedure ComputeAmpleSet. If the test of the
cycle condition in line 7 fails for each loop-iteration, then only the events from
S will be executed in s . Otherwise, the full expansion of s will be forced (lines
8-10), if a transition from S reaches an already expanded state s′ (s′ /∈ Queue)
generated before s or it is s itself (id(s) ≥ id(s′)).
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5 Discussion and Evaluation

Discussion. In Section 4, we presented the background of the ample set theory
and our implementation of partial order reduction (Algorithms 3 and 4). Our
algorithm reduces the original state space of an Event-B machine M by using
the dependency relation DependentM and the enable graph EnableGraphM .
DependentM and EnableGraphM are computed prior to the model checking by
using a static analysis on the events ofM . We chose to determine the dependency
and enabling relations between the events in this way for performance reasons.
Computing the respective relations between events on-the-fly in each state can
sometimes be expensive since we use constraint based analyses in addition to
syntactic analysis. In fact, timeouts are set by default in ProB for diminishing
the possibility that the overhead caused by static analysis and partial order re-
duction outweighs the improvement achieved by the reduction of the state space.
ProB can also apply partial order reduction without using its constraint solv-
ing facilities. In this case, the determination of the dependency and enabledness
between events is provided by inspecting their syntactic structure only. This,
however, often results in less state space reduction.

The reduction of the state space by using partial order reduction cannot only
be influenced by the independence of the events of the model being verified, but
also by the type of the checked property. For instance, deadlock preservation is
guaranteed by any ample set satisfying conditions (A 1) and (A 2) [13], [20].
We adapted the implementation to this fact to gain more state space reduction
when a model is checked for deadlock freedom only.

Another factor that can influence the effectiveness of the reduction is the
number of the stutter events. For example, if we check the full invariant I , then
every event that trivially fully preserves I is a stutter event. Systems specified
in Event-B often have a very low number, if any, of events that trivially fulfil
the invariant. This means that partial order reduction will probably only yield
minor state space reduction in such cases. A possible way to detect more stutter
events w.r.t. I is to use either proof information (from the Rodin provers) or
ProB for checking invariant preservation for operations: any event which we
can prove to preserve the invariant now becomes a stuttter event.

Evaluation. We have evaluated our implementation of partial order reduction
on various models that we have received from academia and industry.1 A part
of those experiments are presented in Table 1. In particular, we wanted to study
the benefit of the optimisation on models with large state spaces.

Besides having sizeable state spaces, the particular models should also have a
certain number of independent concurrent events. Otherwise, the possibility of
reducing the state space is very minor. If, for instance, we have a system where
there is no pair of independent events or a system where any two independent
events are never simultaneously enabled, then no reductions of the state space
can be gained at all.

1 The models and their evaluations can be obtained from the following web page
http://nightly.cobra.cs.uni-duesseldorf.de/por/



Optimising the ProB Model Checker for B Using Partial Order Reduction 231

Table 1. Part of the Experimental Results (times in seconds)

Analysis Model Checking
Model Algorithm States Transitions Time Time

Counters MC 3,974 11,485 - 3.417*

MC+POR 961 1,807 < 0.001 0.823*

MC-NoINV 110,813 325,004 - 73.167
MC-NoINV+POR 152 154 0.010 0.097

Fact v2 MC 112,185 381,510 - 208.150
MC+POR 112,185 381,510 0.589 230.434
MC-NoINV 112,185 381,510 - 197.181
MC-NoINV+POR 27,628 62,950 0.476 50.051

BPEL v6 MC 2,248 4,960 - 7.437
MC+POR 2,248 4,960 0.748 7.884
MC-NoINV 2,248 4,960 - 6.944
MC-NoINV+POR 847 1,004 0.640 2.670

Token Ring MC 8,196 45,077 - 14.291
MC+POR 8,176 40,565 0.011 14.671
MC-NoINV 8,196 45,077 - 13.814
MC-NoINV+POR 4,776 12,129 0.016 7.807

Sieve MC 8,328 28,436 - 215.138
MC+POR 8,142 25,237 12.437 217.754
MC-NoINV 8,328 28,436 - 220.864
MC-NoINV+POR 6,421 14,557 12.439 186.101

Phil v2 MC 2,350 4,528 - 9.086
MC+POR 2,347 4,390 0.406 9.354
MC-NoINV 2,350 4,528 - 8.870
MC-NoINV+POR 2,346 4,336 0.378 9.167

(*) Invariant Violation

We have performed four different types of checks in order to measure the per-
formance of our implementation of partial order reduction. By all types of tests
we used the mixed depth-first/breadth-first search of ProB for the exploration
of the state space. The four types of checks are abbreviated in Table 1 as follows:

MC: Model checking by using the standard consistency checking algorithm.
MC+POR: Model checking with partial order reduction.
MC-NoINV: Model checking by using the standard consistency checking al-

gorithm without invariant violations checking.
MC-NoINV+POR: Model checking with partial order reduction without in-

variant violations checking.

The consistency checking algorithm and the partial order reduction algorithm
are respectively Algorithm 1 and Algorithm 4. For the evaluations we used model
checking for searching for deadlocks and invariant violations only.2 Due to the
fact that checking for deadlock freedom only requires the satisfaction of the

2 Another options like finding a goal or searching for assertion violations have not
been checked while model checking the particular model.
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ample set conditions (A 1) and (A 2) for the reduced search, we additionally
observed experiments with MC-NoINV+POR. For this type of checks, the results
produced by MC-NoINV+POR were compared with the results of MC-NoINV.

One specification, Counters, in Table 1 is given that represents the best case
for the reduced search in ProB. Counters is a toy example aiming to show the
benefit of partial order reduction when each event in the model is independent
from the executions of all other events. The worst case, when no reductions of
the state space are gained, is represented by checking Fact v2 and BPEL v6 with
MC+POR. Fact v2 is an Event-B model of a simple parallel algorithm for integer
factorisation. The factorisation algorithm’s model was re-created from [10] for
three computational slave processes searching for a factor of 53. In Fact v2 the
guard of the event newround was weakened. Phil [7] and BPEL [3] are case
studies of the dinning philosophers problem with four philosophers and of a
business process for a purchase order, respectively. Both are carried by a stepwise
development via refinement; their last refinement versions Phil v2 and BPEL v6
are presented in Table 1. Token Ring is a B model of a token ring protocol and
Sieve an Event-B model formalising a parallel version (for four processes) of the
algorithm of sieve of eratosthenes for computing all prime numbers from 2 to 40.

All measurements were made on an Intel Xeon Server, 8 x 3.00 GHz Intel(R)
Xeon(TM) CPU with 8 GB RAM running Ubuntu 12.04.3 LTS. The Analy-
sis times in Table 1 are the measured runtimes for the static analysis of each
machine. If the POR option is not set in an experiment, no static analysis is
performed. Each experiment has been performed ten times and its respective
geometric means (states, transitions and times) are reported in the results.

In general, the most considerable reductions of the state space were gained
with the reduced search when only deadlock freedom checks were performed.
We consider both the reductions of the number of states and transitions. In two
cases (Fact v2 and BPEL v6 ), no reductions of the state space were gained using
the reduced search MC+POR. However, the model checking runtimes in those
cases are not significantly different from the model checking runtimes for the
standard search MC. As expected, significant reduction of the state space and
thus the overall time for checking the Counters model were gained by both re-
duction searches MC+POR and MC-NoINV+POR. For the test cases MC and
MC+POR of Counters an invariant violation was found which led to a termi-
nation of the respective search. Interesting results were obtained when applying
any of the reduced searches on the Phil v2 model. Although the model has a
great magnitude of independence, the coupling between the events is so tight
that no significant reductions can be gained.

6 Related Work

Several works have been devoted to optimising the ProB model checker for
B and Event-B. In this section, we refer to some of the techniques have been
developed and analysed for the ProB model checker.

Symmetry reduction is a technique successfully implemented in ProB for
combating the state space explosion problem. Using the fact that symmetry
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is induced by the deferred sets in B, two sorts of exhaustive symmetry reduc-
tion algorithms in ProB have been implemented: the graph canonicalisation
method [19] and the permutation flooding method [16]. The general idea of both
techniques is to check only a single representative of each symmetry class of
equivalent states during the consistency check of the model being verified. An
approximative symmetry reduction method [17] based on computing symmetry
markers for states of B machines has been also implemented in ProB. The idea
of the method is that two states are considered to be symmetrically equivalent if
they have the same symmetrical marker. All three methods showed good perfor-
mance results when model checking B or Event-B models with a certain degree
of symmetry induced by B’s deferred sets.

Another notion of optimising the ProB model checker has been presented
in [6]. The idea of this work is to improve the efficiency of the model checker by
using the already discharged proof information from the front-end environment.
The verification technique, known as proof assisted model checking, is used by
default in ProB and has shown a performance improvement up to factor two
on various industrial models.

Other techniques, such as using mixed breadth-first/depth-first search strat-
egy and heuristic functions for performing directed model checking [14], have
been also suggested as optimisation methods for the standard ProB model
checker.

7 Conclusion and Future Work

Partial order reduction has been very successful for lower-level models such as
Promela, but has had relatively little impact for higher-level modelling languages
such as B, Z or TLA+. Inspired by Event-B’s more simpler event structures and
more distributed nature, we have started a new attempt at getting partial order
reduction to work for high-level formal models. We have presented an imple-
mentation of partial order reduction in ProB for Event-B (and also classical B)
models. The implementation makes use of the ample set theory for reducing the
state space and uses new constraint-based analyses to obtain precise relations
of influence between events. Our evaluation of the reduction method has shown
that considerable reductions of the state space can be gained for models with
a high degree of independence and concurrency. We also observed that check-
ing only for deadlock freedom tends to provide more significant reductions than
checking simultaneously for invariant violations and deadlock freedom.

Our approach of satisfying the Cycle condition (A 4) is an approximative
method for loop detection during the reduced expansion of the state space.
Finding possible cycles in the reduced state space simply by checking whether
the currently processed state has an outgoing transition to an already expanded
state can cause less state space reductions, since the full exploration of a state
can also be forced when no true cycles are discovered. For this reason, future
work will concentrate on improving the reduction algorithm w.r.t. the Cycle de-
tection condition. Further work will need to be done in elaborating the reduction
algorithm presented in this work for the LTL model checker [18] in ProB.
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Abstract. Nowadays academia and industry use model checkers. These
tools use search-based algorithms to check the satisfaction of some prop-
erty f inM . Formally,M |= f , whereM is a transition system representa-
tion of a specification written in a language L. Such a representation may
come from the semantics of L. This paper presents a rapid prototyping of
a model checker development strategy for Circus based on its operational
semantics. We capture this semantics with the Microsoft FORMULA
framework and use it to analyse (deadlock, livelock, and nondetermin-
ism of) Circus specifications. As FORMULA supports SMT-solving, we
can handle infinite data communications and predicates. Furthermore,
we create a semantically well founded Circus model checker as long as
executing FORMULA is equivalent to reasoning with First-Order Logic
(Clark completion). We illustrate the use of the model-checker with an
extract of an industrial case study.

Keywords: Model Checking, Circus, Model-Driven Development, SMT.

1 Introduction

Model checking [1] is an automatic technique to verify whether the relation
M |= f holds, where M is a model (a Labelled Transition System or Kripke
structure) of some formal language L and f is a temporal logic formula. Cir-
cus [2] has introduced another way of performing model checking, named refine-
ment checking. The idea is similar but using the refinement relation Mf � M ,
where both M and Mf are models of a same language and Mf is the most
non-deterministic model known to satisfy f .

Usually a model checker is a tool that implements search procedures derived
from the relation M |= f . Such procedures and representations of M and
f are very specialized algorithms and data structures aiming at achieving the
best space and time complexities. In virtue of this, it is not common to find
model checkers for rich-state space languages that use elaborate data structures
and that clearly follow a formal semantics. Those specialized algorithms and
data structures create a gap between theory and practice. The first issue on
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implementing model-checkers is how to guarantee that the model M conforms
to the semantics (usually the Structured Operational Semantics—SOS) of the
language L. The second issue is concerned with the correctness of the check
M |= f (or Mf � M ). For instance, FDR [3] and PAT [4] had several delivered
versions due to bug fixes. And [5] analyses CSP-Z via FDR but it is not assured
to be semantically well founded.

A very recent technology developed by Microsoft Research, known as FOR-
MULA [6] (Formal Modelling Using Logic Programming and Analysis), seems to
be appropriate for creating semantically well founded model checkers. It is based
on the Constraint Programming Paradigm [7] and Satisfiability Modulo Theory
(SMT) solving provided by Z3 [8]. Besides providing a high abstraction level
for describing structures, FORMULA allows one to deal with some infiniteness
aspects of data types as well as defining search procedures over structures.

Figure 1 shows the ideal scenario for creating semantically well founded model
checkers for a formal language L. The necessary elements are a BNF grammar,
an SOS, and a set of properties stated in some (temporal) logic. The first ef-
fort is describing the theoretical SOS (associated to the constructors defined
by the BNF) using a Domain-Specific Language (DSL) [9] (this can be created
following [10], for instance). The second task is representing this description as
abstractions (how to build a model for an instance of L and how to check proper-
ties over it) in some underlying framework (besides FORMULA [6], Prolog [11]
or Maude [12] are suitable for this purpose). The automatic translation from
the SOS metamodel to the underlying framework can be automated by tools
like Stratego/XT [13] or QVT [14]. The last task is concerned with optimisa-
tion: abstractions can be adjusted to improve space and time towards the final
goals while preserving correctness [15]. Obviously that to assure correctness, the
semantics of the executable framework must be formal and there must exist a re-
finement calculus to obtain the abstractions. But in this paper we follow the idea
of Clark completion [16] of a definite clause program, which makes the assump-
tion that the axioms in a program completely axiomatise all possible reasons for
atomic formulas to be true.

In this paper we focus on the dashed square of Figure 1, considering Circus [2]
as the formal language. We spent 2 months learning FORMULA, 8 months to
create the proposed strategy for any SOS (Figure 1), and 72 hours to build the

Fig. 1. A model checker product line
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model checker. This fast development is result of the high-level abstraction of
FORMULA. Other approaches like [17], for instance, spent a whole PhD to build
a first model checker for Circus and the gap from theory to practice hinders the
claim for a semantically well-founded tool.

The last part of Figure 1 is about optimisation. It consists in rewriting the
FORMULA abstraction to obtain the fastest solution. Such a rewriting process
can produce a FORMULA abstraction that is not straightforward to be com-
pared with the original SOS, but it is assured to be semantics preserving [15].
We point out that our model checker does not have an optimal performance; it
is focused on correctness by construction.

Our main contributions are: (i) a semantically well founded way to capture
operational semantics using FORMULA; (ii) a model checker for Circus speci-
fications that deals with infinite communications and predicates.

This paper is organised as follows. The next section gives a brief introduction
to Circus, through an example. Section 3 presents FORMULA and how to encode
Circus in FORMULA to create a Circus model checker, focusing on semantics
correctness. This model checker is used in Section 4. Related work comes next
in Section 5 and our conclusions and future work in Section 6.

2 Introducing Circus with a Small Example

Circus combines Z, CSP, and constructs of the refinement calculi [18] and Di-
jkstra’s language of guarded commands, which is a simple imperative language
with nondeterminism. All the extra constructs used are familiar: assignments,
conditionals, and so on. We use label ListingC for Circus code listings. ListingC 1
illustrates a process that represents part of a controller of our case study. The
case study is an Emergency Response System that integrates different systems
to achieve an objective that is not accomplished by the systems alone. We give
more details of the case study in Section 4.

process ERUs0 =̂ begin

state Control == [ allocated, total erus : N ]
InitControl == [ Control′ | allocated′ = 0 ∧ total erus′ = 5 ]
AllocateState == [ ΔControl | allocated′ = allocated ]
Allocate =̂ allocate idle eru → AllocateState ; Choose
ServiceState == [ ΔControl | allocated′ = allocated − 1 ]
Service =̂ service rescue → ServiceState ; Choose
Choose =̂

if [ Control | allocated = 0 ] → Allocate
[][ Control | allocated = total erus ] → Service
[][ Control | allocated > 0 ∧ allocated < total erus ] →
Allocate � Service
fi

• InitControl ; Choose

end
ListingC 1. Emergency Response Units Controller (version 0)

The internal state of the process is described in schema Control . It contains
two natural numbers: allocated and total erus . The former records the current



238 A. Mota et al.

number of allocated Emergency Response Units (ERUs), whereas the latter is
used as a constant value (in this version), defining the total number of ERUs.

The definitions that follow are action specifications. The action InitControl
initialises the total number of ERUs to 5 and the number of allocated ERUs to
0. The action Allocate updates Control when a request is made through channel
allocate idle eru (the AllocateState schema has a flaw and will be explained
later). The action Service releases an ERU after a service rescue event. The ac-
tion Choose enables other actions when it is safe: (i) when all ERUs are available
(guard allocated = 0 is valid), only the action Allocate can execute and (ii) when
there is none available (guard allocated = total erus is valid), only the action
Service can execute.

The behaviour of ERUs0 is described by the last sequential composi-
tion InitControl ; Choose. This means that ERUs0 behaves as described by
InitControl and then as described by Choose.

3 Design and Implementation

The Circus model checker is a FORMULA abstraction. FORMULA supports
algebraic data types (ADTs) and strongly typed constraint logic programming
(CLP). This allows one to create concise specifications [6], analysable by SMT-
solving. The following code introduces FORMULA using a basic abstraction for
digraphs. It is reproduced from the FORMULA tutorial.

1 domain Digraph {
2 primitive V ::= (id:Integer ).
3 primitive E ::= (src:V,dst:V).
4 path ::= (beg:V,end:V).
5 path(x, y) :- E(x,y).
6 path(x, z) :- path(x,y),
7 path(y,z).
8 undeclVertex := E(V(x),_),
9 fail V(x).

10 undeclVertex := E(_,V(y)),
11 fail V(y).

12 conforms := !undeclVertex.
13 }
14 model G1 of Digraph {
15 V(5)
16 E(V(5), V(5))
17 }
18 partial model G2 of Digraph {
19 V(_) V(_)
20 E(_, V(3))
21 E(x, y) E(y, z)
22 }

A digraph is modelled as a domain containing a set of vertexes (V) and a set
of edges (E). The qualifier primitive indicates that vertexes and edges cannot be
generated during the analysis, but—as it is to all values in a model—their values
can be instantiated (see, for example the partial model G2). The rule path links
vertexes where there is a single edge or several edges. By using the definition of
path, FORMULA is able to find a path between two vertexes (if it exists) by
building paths between intermediate vertexes. The element undeclVertex estab-
lishes constraints upon the domain; it captures undeclared vertexes by checking
if the first or the second components of edges have not been declared as vertexes
(fail V(.)). Finally, the conforms constraint defines a final goal: a valid graph
cannot have undeclared vertexes. We use two models to check instances of the
domain Digraph. The model G1 defines a digraph with one vertex (V(5)) and a
self-edge. As it has no undeclared vertexes, FORMULA detects its conformance
with the Digraph domain (satisfiable). Concerning the partial model G2, there
are three edges and two vertexes (some are left undetermined). These elements
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play the role of parameters to be instantiated by FORMULA to make G2 satisfi-
able. In this case, FORMULA found the instances V(3) and V(-103701) and used
V(3) to validate the edge with the first vertex undetermined (E(V(3),V(3))). The
value -103701 is arbitrary and was generated only because G2 has two vertexes.
If we remove one vertex, only V(3) is used.

Thus a FORMULA abstraction is a set of domains and (partial) models. A
domain can contain rules (a Horn clause LHS :- RHS where RHS is a set of facts)
and constraints (as queries). A model is a possible representative of a domain.
A model can be satisfiable or unsatisfiable. A partial model is an open model,
whose unknown parts are instantiated by Z3, if a satisfiable model can be found.

Figure 2 shows FORMULA working. It takes the main goal (a special conforms
clause) and the facts given in a (partial) model as starting point. From the
(initial) facts and the RHS of domain rules, FORMULA tries to generate other
facts iteratively (according to the LHS of domain rules) until the base stops
increasing (that is, when a least fixed-point is found). Afterwards, it checks the
goal. If any SMT-solving activity (instantiation, evaluation, etc.) is required,
FORMULA invokes Z3 automatically [6]. Section 3.2 presents this formally.

Fig. 2. Iterative analysis of FORMULA

In this sense, FORMULA works as a symbolic executor, expanding its base
of facts as much as necessary. This fits well the purposes of LTS generation. To
save space we provide a basic (but sufficient) description of each component used
to capture the syntax, semantics, classical properties and traces refinement.

3.1 FORMULA Semantics

Executing a FORMULA abstraction means determining whether a logic pro-
gram can be extended by a finite set of (primitive) facts so that a goal is sat-
isfied [6]. This requires searching through (infinitely) many possible extensions
using Z3 [8]. FORMULA is based on a concept defined as Constraint Logic
Programming Satisfiability (CLP Satisfiability).

Let U be a (possibly infinite) set called a universe. Let r be an n-ary relation
symbol and r I a (finite) interpretation of r ; r I is a (finite) subset of U n . As
shorthand, we use r(t) meaning r applied to elements t1, . . . , tn of U .

Definition 1. (CLP Satisfiability). Given:

– The least Herbrand model, a function lm(.),
– A program Π with relation symbols R = {r1, . . . , rn},
– Rp ⊆ R a subset of the program relations, called the primitive relations,
– A quantifer-free goal g over the program relations.
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Then find a finite interpretation RI
p for primitive relations such that:

lm((Π ∪ RI
p)

∗) |= ∃̃g
Program Π ∪RI

p emerges by extending Π with a fact r(t) whenever RI
p |= r(t).

Then RI
p is an interpretation satisfying the problem.

The program can only be extended by primitive relations RP . The contents of
RI

P are the facts that, when added to the program, cause the goal to be satisfied.
FORMULA rules are directly associated to First-Order Logic formulas by

Clark completion [6]. Thus,

r(X,Y):- p(X,Y). ≡ ∀X ,Y • p(X ,Y )⇒ r(X ,Y )

q(X,Z):- q(X,Y), q(Y,Z). ≡ ∀X ,Z •∃Y •(q(X ,Y ) ∧ q(Y ,Z )⇒ q(X ,Z ))
Repetition of the right-hand side of a rule can be avoided as follows.

q(X) , r(X):- p(X). ≡ ∀X • p(X )⇒ (q(X ) ∧ r(X ))
When different bodies have the same head, one can use semicolon as follows.

q(X) :- r(X); p(X). ≡ ∀X • (r(X ) ∨ p(X ))⇒ q(X )
Differently of rules, FORMULA queries are existentially quantified. Thus,

query1 := q(X,2), p(X,Y). ≡ ∃X ,Y • q(X , 2) ∧ p(X ,Y )

query2 := q(X,_), fail p(X,Y). ≡ ∃X ,Y ,Z • q(X ,Z ) ∧ ¬ p(X ,Y )

1 query3 := p(X, Y).

2 query3 := q(Z, W).
≡ ∃X ,Y ,Z ,W • p(X ,Y ) ∨ q(Z ,W )

3.2 Embedding Circus in FORMULA

The representation of Circus syntax is straightforward as all infix operators be-
come FORMULA constructors with a resulting disjoint union of these several
elements, as illustrated in ListingF 1 in the CircusProcess construct1.

The Circus semantics is captured by the notions of states, events and tran-
sitions [2] (the main elements to build the LTS). In FORMULA, states and
transitions are defined as relations: State(s, A) represents a relation where s is
a binding and A is a syntactically correct Circus process fragment (an action),
and trans(c, ev, c’) is a ternary relation where c is the initial configuration, ev
is the event that labels the transition, and c’ is the configuration after perform-
ing ev. The FORMULA domain Circus Semantics is (partially) described as
an extension (extends Circus Syntax) plus representations for states, events,
transitions, expressions, etc. These elements are used to represent firing rules
from Circus SOS (taken from [2]). In Rule (1) a local context (illustrated from a
simple case of a single variable x of type T and initial value w0) is introduced to
be used in other firing rules.

1 We use label ListingF for FORMULA code listings.
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1 domain Circus_Syntax{
2 ...
3 primitive iChoice ::= (lProc : CircusProcess , rProc : CircusProcess).
4 primitive proc ::= (name : String, p: Type).
5 primitive schema ::= (schN: String).
6 primitive var ::= (name: String, tName: String, p: CircusProcess).
7 primitive assign ::= (occur: Natural ).
8 assignDef ::= (occur: Natural , st: Binding , st_: Binding ).
9 preSchemaOk ::= (schN: String, st: Binding ).

10 preSchemaNOk ::= (schN: String, st: Binding ).
11 schemaDef ::= (schN: String, st: Binding , st_: Binding ).
12 CircusProcess ::= BasicProcess + Prefix + iChoice + eChoice + pGuard +
13 opChoice + seqC + hide + parll + par + proc + var + let + assign + schema.
14 ...
15 }
16 domain Circus_Semantics extends Circus_Syntax{
17 State ::= (bind: Binding , action: CircusProcess).
18 trans ::= (source: State , ev: SigmaEps , target: State).
19 ...
20 }

ListingF 1. Circus Syntax in FORMULA.

⎛
⎜⎜⎝

begin
state [ x : T ]
• A

end

⎞
⎟⎟⎠ ε−→

⎛
⎜⎜⎝

begin
state [ x : T ] | loc (w0 ∈ T | x := w0)
• A

end

⎞
⎟⎟⎠ (1)

In Rule (2) we have that a change in an abstract representation of the local
context (to be used in all SOS rules for simplification purposes), represented as
an antecedent, directly reflects the same change in the concrete local context (as
conclusion of the rule). Without loss of generality, we ignored the condition c

when embedding these SOS rules in FORMULA. Thus, in FORMULA we deal
only with (s |= A) instead of (c | s |= A).

(c1 | s1 |= A1)
l−→ (c2 | s2 |= A2)⎛

⎜⎜⎜⎜⎝

begin
state [ x : T ]
| loc (c1 | s1)
• A1

end

⎞
⎟⎟⎟⎟⎠

l−→

⎛
⎜⎜⎜⎜⎝

begin
state [ x : T ]
| loc (c2 | s2)
• A2

end

⎞
⎟⎟⎟⎟⎠

(2)

From now on we present some SOS rules and the corresponding FORMULA
code. Explanation of syntactic and semantics elements is on demand. Rule (3)
concerns the behavior of the internal choice operator. It is equivalent to CSP
except for the transition that uses the Circus ε invisible event.

c

(c | s |= A1 � A2)
ε−→ (c | s |= A1)

c

(c | s |= A1 � A2)
ε−→ (c | s |= A2)

(3)

We capture Rule (3) in FORMULA by first considering the constructor iChoice
the syntactic representation for ,. The term (c | s |= A1 , A2) becomes State(

s,iChoice(A1,A2)) because we ignore c as already said. Transitions are trivially
represented by using the constructor trans, filled with the corresponding param-
eters. We point out that, differently from a Prolog representation [11], such a
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FORMULA rule only fires if the term State(s,iChoice(A1, A2)) is present in the
FORMULA knowledge base. That is, in terms of behaviour, FORMULA creates
two ε-transitions as described by Rule (3).

1 trans(State(s,iChoice (A1,A2)),eps,State(s, A1)),
2 trans(State(s,iChoice (A1,A2)),eps,State(s, A2)) :- State(s,iChoice (A1,A2)).

In Rule (4) we show another aspect of Circus: the state part. This rule consid-
ers an assignment (v := e), which is represented in FORMULA by assign(id)

(syntax) and assignDef(id,s,s_) (semantics). The id is the (unique) identifier
that links both parts of the assignment. The semantics part is responsible for
interpreting the expression e and updating the state (binding) variable.

c

(c | s |= v := e)
ε−→ (c ∧ (s; w0 = e) | s; v := w0 |= Skip)

(4)

In FORMULA, the variable v and the expression e are encapsulated inside a
fact assignDef(id,s,s_). The expression n is State(s,assign(id)) is useful to
guarantee that State(s,assign(id)) is present in the knowledge base, as well as
to capture such a reference in a variable named n, which is used as first parameter
of trans in the head of the rule.
1 trans(n,eps ,State(s_,Skip)) :- n is State(s,assign(id)),assignDef(id,s,s_).

As last example of embedding of Circus rule in FORMULA, we consider the
situation of a schema when its precondition is not valid (see Rule 5). This implies
the introduction of a Chaos action.

c ∧ ¬ (s; pre Op)

(c | s |= Op)
ε−→ (c | s |= Chaos)

(5)

Similarly to assignments, schemas are handled by two parts: syntactic and
semantic. The first just introduces a unique FORMULA fact schema(schN), where
schN is the name of a schema. However, differently from assignments, schemas
have a precondition that can be valid or not. Ideally we should embed the schema
body once and calculate the negation of its precondition as in ¬ (s ; pre Op).
Unfortunately when one tries to do that, FORMULA reports a non stratified
situation and does not compile. As a solution, we calculate ¬ (s ; pre Op) outside
FORMULA and store the result inside the constructor preSchemaNOk(schN,s). If
such a constructor is present in the knowledge base then ¬ (s ; pre Op) holds.
That is, the precondition is invalid.

1 trans (n,eps ,State (s,Chaos )):-n is State (s,schema(schN )),preSchemaNOk (schN ,s).

3.3 Properties Definition

The rules presented previously guide FORMULA to build the LTS for a Cir-
cus process as defined by the Circus operational semantics. To establish the
properties to be checked in such an LTS we focus on three classical properties
because they are supported by CSP traditional tools like FDR and PAT:

– Deadlock : the process reached some state from which it goes nowhere;
– Livelock : the process performs an infinite loop of ε-transitions;
– Nondeterminism: an event from one state lead to different states.
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We define the properties in a separated domain that extends the semantic one
(see ListingF 2). A deadlock (line 13) is directly captured by the existence of a
configuration C1, from which we can only find an invisible path to a configura-
tion C2 whose action cannot be Skip and from which it is not possible to find
any exit path. The rule path (lines 3–6) captures any path that exists between
two configurations. A livelock is captured by an epsPath from an arbitrary con-
figuration L to itself (line 16), where an epsPath is a sequence of ε-transitions
between two configurations (lines 8–11). The nondeterminism property has some
subtleties that deserve special attention. The rule accepts (lines 18–23) captures
the initial acceptances of a process in a given configuration. Thus, accepts(P,
ev) means the analysed process accepts the visible event ev in a configuration
P (possibly performing ε-transitions before ev). It calculates all reachable states
by using transitive closure. Nondeterminism (lines 24–28) is captured by check-
ing the existence of two transitions with the same event (possibly ε-transitions)
from the same state L (trans(L,ev1,S1) and trans(L,ev1,S2)) leading to differ-
ent states (S1!=S2) in which the process can accept (accepts(S1,ev)) or reject
(fail accepts(S2,ev)) the same visible event (ev!= eps). The remaining facts
epsPath(S1,S3) and epsPath(S2,S4) are necessary to guarantee that S1 and S2

are reachable by the analysed process and avoiding, hence, analysing the prop-
erty in the premises of the firing rules.

1 domain Properties extends
Circus_Semantics {

2 // Reachability anaysis
3 path ::= (fI:State , fE: State).
4 path(C1,C2) :- trans(C1,e,C2).
5 path(C1,C2) :- path(C1,Ci),
6 trans(Ci,e,C2).
7 // Invisible path
8 epsPath ::= (iS:State ,fS:State).
9 epsPath (P,Q) :- trans(P,eps,Q).

10 epsPath (P,Q) :- epsPath (P,S),
11 epsPath (S,Q).
12 //Deadlock property
13 Deadlock := epsPath (C1,C2),
14 C2.action !=Skip ,fail path(C2,C3)

.
15 //Livelock property
16 Livelock := epsPath (L,L).

17 // Nondeterminism property
18 accepts ::= (iS:State ,
19 ev:SigmaTickeps).
20 accepts (P,ev) :- trans(P,ev,_),
21 ev != eps.
22 accepts (P,ev) :- trans(P,eps ,R),
23 accepts (R,ev).
24 Nondeterminism := trans(L,ev1,S1),
25 trans(L,ev1,S2), S1!=S2,
26 accepts (S1,ev), ev!=eps ,
27 fail accepts (S2,ev),
28 epsPath (S1,S3), epsPath (S2, S4),

S3 != S4.
29 }

ListingF 2. Properties Specification in
FORMULA.

3.4 Properties: From Logics to FORMULA

A deadlock occurs in a Circus configuration (s1,A1) if the following formula
holds [19].

∃ s2,A2•(s1,A1)
〈〉
=⇒ (s2,A2) ∧ A2 
= Skip ∧ (¬∃ l , s3,A3•(s2,A2)

l
=⇒ (s3,A3))

To obtain the equivalent FORMULA rules and queries that answer the above
first-order logic formula, we need to introduce some definitions. In [19],

(s1,A1)
t

=⇒ (s2,A2) is defined as reachability: there exists a trace t , from which,
the configuration (s1,A1) can reach configuration (s2,A2). To obtain the corre-
sponding in FORMULA we need a more detailed definition as follows.
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Definition 2. Let s be a binding and A be a Circus action. The configuration
(s , A) is defined in FORMULA as State(s, A). 0
Definition 3. Let (s1, A1) and (s2, A2) be two Circus configurations and e be

an event. The transition (s1, A1)
e−→ (s2, A2) is defined in FORMULA as

trans((s1, A1), e, (s2, A2)). 0
Definition 4. Let (s1, A1) and (s2, A2) be two Circus configurations and t be a

trace, such that t = 〈e1, . . . , ek 〉. The transition (s1, A1)
t

=⇒ (s2, A2) is defined

as ∃C1, . . . ,Cn • (s1, A1)
e1−→ C1 ∧ . . . ∧ Cn

ek−→ (s2, A2). 0
From the previous definitions we can prove that a FORMULA embedding is

equivalent to (s1, A1)
t

=⇒ (s2, A2).

Lemma 1. Let C1 and C2 be two Circus configurations and t be a trace. If

C1
t

=⇒ C2 then path(C1, C2) holds in the FORMULA knowledge base, where
1 path(C1, C2) :- trans(C1, e, C2).
2 path(C1, C2) :- path(C1, Ci), trans(Ci, e, C2).

0
Proof follows by induction.

(Base case: t = 〈e〉)
(a) C1

〈e〉
=⇒ C2 (By hyp.)

(b) C1
e−→ C2 (By Def. 4)

(c) trans(C1, e, C2) (By Def. 3)
(d) path(C1, C2) (By def.)
(Inductive case: t = s � 〈e〉)
(a) C1

s�〈e〉
=⇒ C2 (By hyp.)

(b) ∃Ci • C1
s

=⇒ Ci ∧ Ci
e−→ C2 (By Def. 4)

(c) path(C1, s, Ci), trans(Ci,e,C2) (By def. and Clark comp.)
(d) path(C1, C2) (By def.)

�
Similarly to Lemma 1, we have this new lemma.

Lemma 2. Let C1 and C2 be two Circus configurations. If C1
〈〉
=⇒ C2 then

epsPath(C1, C2) holds in the FORMULA knowledge base, where
1 epsPath (C1, C2) :- trans(C1, eps , C2).
2 epsPath (C1, C2) :- epsPath (C1 , Ci), trans(Ci, eps , C2). 0

And ¬ ∃ l , s3,A3 • (s2, A2)
l

=⇒ (s3, A3) in FORMULA is simply obtained by
negating Lemma 1 as follows.

Corollary 1. Let (s2, A2) be a Circus configuration, named C2 for short. If

¬ ∃ l ,C3 • C2
l

=⇒ C3 holds then fail path(C2, C3). 0
Now Circus deadlock is simply obtained as follows.

Theorem 1. If

∃ s2,A2•(s1,A1)
〈〉
=⇒ (s2,A2) ∧ A2 
= Skip ∧ (¬∃ l , s3,A3•(s2,A2)

l
=⇒ (s3,A3))

then query deadlock in FORMULA is valid, where
1 deadlock := epsPath (C1, C2), C2.action != Skip , fail path(C2, C3). 0
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4 Evaluating the Model Checker

To evaluate our Circus model checker, we consider the Emergency Response Sys-
tem (ERS) introduced in [20,21]. Figure 3 shows its outline view. The ERS model
is a set of SysML [22] diagrams and the behaviour in Circus is obtained from
Activity Diagrams with specialized stereotypes. Due to space restrictions, we
show only in this article the code that corresponds to the activation, detection
and recovery of faults. We add controller processes ERUs0, ERUs1, or ERUs2
(ListingsC 1 and 2). It adds details of the behaviour of the Call Centre, control-
ling the number of ERUs currently allocated. Version 0 has a flaw on the imple-
mentation of the schema AllocateState. The schema should add 1 to the previous
allocated value. This simple mistake causes a deadlock on process ERSystem0

(ListingC 2)—because channel service rescue is never offered by ERUs0—that
is successfully detected by the model-checker. Process ERUs1 fixes this prob-
lem and ERSystem1 is deadlock-free. The FORMULA code and instructions to
run our case study are available at http://www.dsc.ufcg.edu.br/~adalberto/
circus-mc/.

Fig. 3. Outline of the ERS

We went further and verified the fault tolerance property shown in [20] for the
processes ERSystem1 and ERSystem2. The difference between these processes is
the implementation of a recovery mechanism, modelled as process Recovery1. For
this case, we created a deadlock assertion to check fault-tolerance. In ERSystem1

the recovery is not modelled, thus it is not fault tolerant (a deadlock is found).
On the other hand, ERSystem2 is fault-tolerant, and the model-checker is unable
to find a deadlock.

ListingF 3 illustrates a few Circus elements in FORMULA for our
case study: the state (Control) and processes definitions (CallCentreStart,
InitiateRescueFault1Activation, ERSystem_0) in ListingF 3. In this excerpt,
note four constructors: (i) State, (ii) schemaDef, (iii) ProcDef and (iv) genPar.
The Control state is defined through a State constructor and establishes the
schema Control. The three ProcDef defines three processes (CallCentreStart,
InitiateRescueFault1Activation and ERSystem_0). The constructor genPar de-
fines the generalized parallel of the processes InitiateRescueFault1Activation

and ERUs_0, through the chanset declaration with channels allocate_idle_eru

and service_rescue.

http://www.dsc.ufcg.edu.br/~adalberto/circus-mc/
http://www.dsc.ufcg.edu.br/~adalberto/circus-mc/
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process ERUs1 =̂ begin
. . .
AllocateState == [ ΔERUs | allocated′ = allocated + 1 ]
. . .
end

process InitiateRescueFault1Activation =̂ begin
CallCentreStart =̂ start rescue → FindIdleEru
FindIdleEru =̂ find idle erus → (IdleEru � (wait → FindIdleEru))
IdleEru =̂ allocate idle eru → send rescue info to eru → IR1
IR1 =̂ (process message → FAReceiveMessage) � (fault 1 activation → IR2)
FAReceiveMessage = receive message → ServiceRescue
ServiceRescue = service rescue → CallCentreStart
IR2 =̂ IR2Out � (error 1 detection → FAStartRecovery)
IR2Out =̂ drop message → target not attended → CallCentreStart
FAStartRecovery =̂ start recovery 1 → end recovery 1 → ServiceRescue
• CallCentreStart

end

process Recovery1 =̂ begin
Recovery1Start =̂ start recovery 1 → log fault 1 → resend rescue info to eru →
process message → receive message → end recovery 1 → Recovery1Start
• Recovery1Start

end

process ERSystemi∈{0,1} =̂ InitiateRescueFault1Activation ‖
ERUsSignals

ERUsi

process ERSystem2 =̂ ERSystem1 ‖
RecoverySignals

Recovery1

chansetERUsSignals == {| allocate idle eru, service rescue |}
chansetRecoverySignals == {| start recovery 1, end recovery 1 |}

ListingC 2. Emergency Response System processes

1 schemaDef (" Control",s,s_) :- State (s,schema ("Control ")),

2 s = BBinding (SingleBind (" allocated ",allocated ),

3 BBinding (SingleBind (" total_erus "total_erus ),nBind ))),

4 s_ = BBinding (SingleBind (" allocated ", allocated_ ),

5 BBinding (SingleBind (" total_erus "total_erus_ ),nBind ))),

6 allocated_ = 0, total_erus_ = 5.

7 ProcDef(" CallCentreStart ",void ,

8 Prefix(IOComm (4," start_rescue ","", void ),proc (" FindIdleEru ",void ))).

9 ProcDef(" InitiateRescueFault1Activation ",void ,proc (" CallCentreStart ",void )).

10 ProcDef(" ERSystem_0 ",void ,genPar(proc (" InitiateRescueFault1Activation ", void ),

11 "{| allocate_idle_eru ,service_rescue |}", proc (" ERUs_0",void ))).

12 ...

ListingF 3. Main FORMULA elements of our case study.

5 Related Work

Palikareva et al. [23] propose a prototype called SymFDR, which implements
a bounded model checker for CSP based on SAT-solvers. The authors make a
comparison to show that SymFDR can deal with problems beyond FDR (such as
combinatorial complex problems). Moreover, they found that FDR outperforms
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SymFDR when a counter-example does not exist. In our work we extend the class
of problems analysable by SymFDR with the aid of SMT-solving. This resulted
in a more expressive approach to create the LTS because we do not depend on
FDR. Moreover, this makes our approach able to handle infinite state systems
while SymFDR can only deal with systems that FDR can.

Leuschel [11] proposes an implementation of CSP in SICStus Prolog (a vari-
ation of Prolog) for interpretation and animation purposes. Part of the design
of our model checker in FORMULA follows a similar declarative and logic rep-
resentation as reported in [11]. However, as we handle infinite state systems, we
indeed implement a future work of [11]. Like Leuschel’s work, we do not provide
a formal proof of the soundness of our approach. The reason is that, like Prolog
and other languages, FORMULA does not have a publicly available formal se-
mantics. Our hypothesis is assuming that FORMULA is sound, our one-to-one
mapping used in our deep embedding is a strong evidence of semantics preser-
vation. But to further attest this, we checked our hypothesis by performing a
systematic test campaign (170 specifications) based on the classical properties
mentioned here. For those examples that could also be analysed in FDR and
PAT (those with a finite state space) we observed the same results.

The use of SMT-solving for model checking purposes is not new. The advances
of SMT-solving bring a new level of verification. Bjørner et al. [24] extend the
SMT-LIB to describe rules and declare recursive predicates, which can be used
by symbolic model checking. Alberti et al. [25] propose an SMT-based specifica-
tion language to improve the verification of safety properties. Our work focuses
on using Circus as the language and a model checker with a new perspective
for reasoning about infinite systems. In this sense we associate SMT-solving to
increase the expressiveness of the process algebra Circus to provide a powerful
tool for verification and reasoning of concurrent systems.

A similar approach was proposed in [12] and uses MAUDE for executing and
verifying CCS (Concurrent Communicating Systems). According to that work,
only behavioural aspects can be handled, whereas we deal with data aspects
even if they come from an infinite domain and are involved in communications
and in predicates. Moreover, that work also considers temporal logic, whereas
we do not (it is not a Circus culture but FORMULA can handle it). We point
out that MAUDE can be more powerful than FORMULA but it can be harder
to guarantee convergence when applying rewriting rules. Our work is free of
convergence problems because the engine of FORMULA focuses on finding the
least fixed-point using SMT solving.

Still with regard to rewriting rules convergence, the K-framework [26] may
have the same issue, depending on the choice of heating and cooling rules. The
framework allows one to obtain tools—like a state-space explorer—given a lan-
guage syntax and a semantics in MAUDE style, using rewriting rules.

6 Conclusions and Future Work

This work proposed a new model checker for Circus, whose first attempt was
made in [17]. It is a semantically well founded model checker that can handle
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infinite data (involved in communications and in predicates). The relation be-
tween FOL andFORMULAassures the semantic correctness of the model checker.

We have used our tool in more than 170 test specifications and obtained the
same results (concerning correctness) against FDR and PAT. Our results indicate
that our model checker can outperform FDR and PAT for data-intensive com-
municating systems. This is because FORMULA deals with a symbolic LTS. For
non data-intensive systems, the opposite happens. Thus as future work we aim
at optimising the FORMULA rules as well as using the FORMULA abstraction
as a contract to create an efficient and correct implementation [15].

Our work is in the context of the COMPASS2 project which uses the CML
language. CML is based on the maturity of Circus and is a combination of VDM,
CSP, and the refinement calculus of Morgan [18]. Our future plan includes the
extension of the current model checker to deal with CML as well, which means
dealing with time, probability, mobility, etc., aspects in a single language and
tool support. As consequence, we aim as future work to automatize as much as
possible the elements of Figure 1. This means proposing a DSL [9] for SOS rules
(following [10], for example), using Stratego/XT [13] or QVT [14], giving a UTP
semantics [27] to FORMULA and developing a refinement calculus.

In [28], the author shows that it is possible to analyse certain infinite state
CSP processes as long as they are syntactically characterised as data indepen-
dent. This is not available neither in FDR nor in PAT but it can be easily con-
sidered in FORMULA as a future work. Actually, our proposal already works
with data independent systems, but we still need to generalise our solution to
data independent parametrised processes.

References

1. Clarke, E., Grumberg, O., Long, D.: Model Checking and Abstraction. ACM Trans.
on Programming Languages and Systems 16(5), 1512–1542 (1994)

2. Cavalcanti, A., Gaudel, M.C.: Testing for refinement in Circus. Acta Inf. 48(2),
97–147 (2011)

3. Roscoe, A.W., et al.: Model-checking CSP. A classical mind: essays in honour of
CAR Hoare, pp. 353–378 (1994)

4. Liu, Y., Sun, J., Dong, J.: Developing Model Checkers Using PAT. In: Bouajjani,
A., Chin, W.-N. (eds.) ATVA 2010. LNCS, vol. 6252, pp. 371–377. Springer, Hei-
delberg (2010)

5. Mota, A., Sampaio, A.: Model-checking CSP-Z: strategy, tool support and indus-
trial application. Science of Computer Programming 40(1), 59–96 (2001)

6. Jackson, E.K., Levendovszky, T., Balasubramanian, D.: Reasoning about meta-
modeling with formal specifications and automatic proofs. In: Whittle, J., Clark,
T., Kühne, T. (eds.) MODELS 2011. LNCS, vol. 6981, pp. 653–667. Springer, Hei-
delberg (2011)

7. Rossi, F., van Beek, P., Walsh, T. (eds.): Handbook of Constraint Programming.
Elsevier (2006)

2 The EU Framework 7 Integrated Project “Comprehensive Modelling for Advanced
Systems of Systems” (COMPASS, Grant Agreement 287829).



Rapid Prototyping of a Semantically Well Founded Circus Model Checker 249

8. De Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

9. Fowler, M.: Domain Specific Languages, 1st edn. Addison-Wesley Professional
(2010)

10. Corradini, A., Heckel, R., Montanari, U.: Graphical Operational Semantics. In:
ICALP Satellite Workshops, pp. 411–418 (2000)

11. Leuschel, M.: Design and Implementation of the High-Level Specification Language
CSP(LP) in Prolog. In: Ramakrishnan, I.V. (ed.) PADL 2001. LNCS, vol. 1990,
pp. 14–28. Springer, Heidelberg (2001)

12. Verdejo, A., Marti-Oliet, N.: Executing and Verifying CCS in Maude. Technical
report, Dpto. Sist. Informaticos y Programacion, Univ. Complutense de (2002)

13. Visser, E.: Program transformation with Stratego/XT. In: Lengauer, C., Batory,
D., Consel, C., Odersky, M. (eds.) Domain-Specific Program Generation. LNCS,
vol. 3016, pp. 216–238. Springer, Heidelberg (2004)

14. Dan, L.: QVT Based Model Transformation from Sequence Diagram to CSP. In:
2010 15th IEEE International Conference on Engineering of Complex Computer
Systems (ICECCS), pp. 349–354 (2010)

15. Liu, Y.A., Stoller, S.D.: From datalog rules to efficient programs with time and
space guarantees. ACM Trans. Program. Lang. Syst. 31(6), 21:1–21:38 (2009)

16. Dao-Tran, M., Eiter, T., Fink, M., Krennwallner, T.: First-Order Encodings for
Modular Nonmonotonic Datalog Programs. In: de Moor, O., Gottlob, G., Furche,
T., Sellers, A. (eds.) Datalog 2010. LNCS, vol. 6702, pp. 59–77. Springer, Heidelberg
(2011)

17. Freitas, L.: Model Checking Circus. PhD thesis, University of York (2005)
18. Morgan, C.: Programming from Specifications. Prentice-Hall, Inc., Upper Saddle

River (1990)
19. Bryans, J., Galloway, A., Woodcock, J.: COMPASS deliverable D23.2. Technical

report (2013), http://www.compass-research.eu/
20. Andrews, Z., Payne, R., Romanovsky, A., Didier, A., Mota, A.: Model-based devel-

opment of fault tolerant systems of systems. In: 2013 IEEE International Systems
Conference (SysCon), pp. 356–363 (2013)

21. Andrews, Z., Didier, A., Payne, R., Ingram, C., Holt, J., Perry, S., Oliveira, M.,
Woodcock, J., Mota, A., Romanovsky, A.: Report on timed fault tree analysis —
fault modelling. Technical Report D24.2, COMPASS (September 2013)

22. Object Management Group (OMG): Systems Modelling Language (SysML) 1.3.
website (June 2012)

23. Palikareva, H., Ouaknine, J., Roscoe, A.W.: SAT-solving in CSP Trace Refinement.
Sci. Comput. Program. 77(10-11), 1178–1197 (2012)

24. Bjørner, N., McMillan, K., Rybalchenko, A.: Program Verification as Satisfiability
Modulo Theories. In: SMT Workshop (July 2012)

25. Alberti, F., Bruttomesso, R., Ghilardi, S., Ranise, S., Sharygina, N.: Reachability
Modulo Theory Library (Extended abstract). In: SMT Workshop (July 2012)

26. Rosu, G., Serbanuta, T.F.: K Overview and SIMPLE Case Study. In: Proceedings
of International K Workshop (K 2011). ENTCS. Elsevier (2013) (to appear)

27. Hoare, T., He, J.: Unifying theories of programming, vol. 14. Prentice Hall, Engle-
wood Cliffs (1998)
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Abstract. We present an active learning algorithm for inferring ex-
tended finite state machines (EFSM)s, combining data flow and control
behavior. Key to our learning technique is a novel learning model based
on so-called tree queries. The learning algorithm uses the tree queries to
infer symbolic data constraints on parameters, e.g., sequence numbers,
time stamps, identifiers, or even simple arithmetic. We describe sufficient
conditions for the properties that the symbolic constraints provided by a
tree query in general must have to be usable in our learning model. We
have evaluated our algorithm in a black-box scenario, where tree queries
are realized through (black-box) testing. Our case studies include con-
nection establishment in TCP and a priority queue from the Java Class
Library.

1 Introduction

Behavioral models of components and interfaces are the basis for many powerful
software development and verification techniques, such as model checking, model
based test generation, controller synthesis, and service composition. Ideally, such
models should be part of documentation (e.g., of a component library), but
in practice they are often nonexistent or outdated. To address this problem,
techniques for automatically generating models of component behavior are being
developed. These techniques can be based on static analysis, dynamic analysis,
or a combination of both approaches. Static analysis of a component requires
access to its source code; so when source code is not available, or when models
must be generated on the fly, dynamic analysis is a better alternative.

In dynamic analysis, test executions are used to drive and observe compo-
nent behavior. Mature techniques for generating finite-state models, describing
the possible orderings of interactions between a component and its environment,
have been developed to support, e.g., interface modeling [4], test generation [27],
and security analysis [23]. However, faithful models should capture not only the
ordering between interactions (control flow aspects), but also the constraints
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on any data parameters passed with these interactions (data flow aspects). Data
flow aspects are commonly captured by extending finite state machines with vari-
ables. Together with the data parameters passed with interactions, the variables
influence the control flow by means of guards, and the control flow can cause
updates of variables. Different dialects of extended finite state machines (EF-
SMs) are successfully used in tools for model-based testing [18], software model
checking [19], and model-based development [11]. However, dynamic analysis
techniques that generate EFSM models with guards and assignments to vari-
ables are still lacking: existing techniques either handle only a limited range of
operations on data (typically only equality [16,15]), require significant manual
effort [2], or rely on access to source code.

In this paper, we present a black-box technique for generating register au-
tomata (RAs), which are a particular form of EFSMs in which transitions are
equipped with guards and assignments to variables (called registers). Our contri-
bution is an active automata learning algorithm for RAs, which is parameterized
on a particular theory, i.e., a set of operations and tests on the data domain that
can be used in guards. By an appropriate choice of theory, we can infer RA
models where data parameters and variables represent sequence numbers, time
stamps, numbers with limited arithmetic, identifiers, etc.

Our algorithm has been evaluated in a black-box scenario, using SMT-based
test generation for realizing tree queries for integers with addition (+), equal-
ities (=), and inequalities (<,>). We have learned models of the connection
establishment in TCP and the priority queue from the Java Class Library.

Illustrating Example. We give an example of an RA that can be generated
using our technique. We begin by describing the language that it recognizes.
Consider a simplistic sliding window protocol without retransmission, with a
window of size two, in which the receipt of messages must be acknowledged in
order. The protocol is described as a data language Lseq over messages of form
msg(d) and ack(d), where d ranges over natural numbers. A sequence of mes-
sages σ = msg(d1) . . . ack(dm) is in the language Lseq if (i) σ has equally many
msg and ack messages, (ii) the data parameter d in each msg(d)-message must
be one more than the data parameter of the previous msg-message. (iii) the
data parameter d in each ack(d)-message must be one more than the data pa-
rameter of the previous ack-message. (iv) whenever msg(d) immediately pre-
cedes ack(d′), then d − 1 ≤ d′ ≤ d. Sequences msg(1)ack(1)msg(2)ack(2) and
msg(1)msg(2)ack(1)ack(2) are examples of data words in Lseq .

Fig. 1 shows a register automaton that accepts Lseq . Locations are annotated
with registers. Accepting locations are denoted by double circles; l0 is the initial
location. Transitions are denoted by arrows and labeled with a message, a guard
over parameters of the message and registers of the automaton, and an assign-
ment to these registers. A sink location and its adjacent transitions are omitted
in the figure. The automaton processes sequences σ by first moving from l0 to
l1 and storing the data value of the initial msg in x1. It then moves between
locations l1 (waiting for an ack), l2 (waiting for two acks), and l3 (accepting).
Lseq is used as a running example throughout the paper.
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l0 l1 x1

l3 x1

l2
x1

x2

msg(p) | true
x1 := p

ack(p) | p = x1

x1 := p

msg(p) | p = x1 + 1
x2 := p

ack(p) | p = x1

x1 := x2

msg(p) | p = x1 + 1
x1 := p

Fig. 1. A simple sliding window protocol with sequence numbers

Main Ideas. In classic active learning for finite automata (e.g., L∗ [5]), each
location of an inferred automaton is identified by a word that reaches it from the
initial location. Two words lead to the same location if they behave the same
when prepended to the same suffix (i.e., both are accepted or both rejected).
Similarly, each location in the RAs we infer is identified by a data word. To
determine whether two data words represent the same location, it is, however,
not sufficient to check whether they behave the same when prepended to the
same suffix, since we want to model relations between data parameters and not
concrete data values. For example, when learning Lseq , we might wrongly de-
duce that msg(3) and msg(1) represent different locations, by observing that
msg(3)ack(3) ∈ Lseq but msg(1)ack(3) /∈ Lseq. To remedy this, we have gener-
alized the L∗ algorithm to the symbolic setting.

We describe our learning framework as a game between a learner and a
teacher: the learner has to infer an automaton model of an unknown target
language by making queries to a teacher who knows it. The concept of a teacher
is an abstraction that helps us separate different concerns; the concrete learning
framework is defined by the types of queries that the teacher can answer, and
the class of languages that can be learned.

Teacher. In our framework, the Teacher answers equivalence queries and tree
queries. The answer to an equivalence query tells us if a conjectured automaton
is correct, i.e., it accepts the unknown language. If not, the teacher provides a
counterexample, i.e., a data word that is in the language but not accepted by
the conjectured automaton, or vice versa. In practice, counterexamples can be
provided by, e.g., conformance testing or monitoring.

A tree query consists of a concrete prefix (e.g., a sequence of messages where
data parameters are instantiated with concrete data values) and a symbolic suf-
fix. Symbolic suffixes are obtained from concrete suffixes by replacing data values
by symbolic parameters (e.g., ack(p)). The answer to a tree query is a symbolic
decision tree (SDT), which describes which instantiations of the symbolic suffix
are accepted and which are rejected. Fig. 2 shows examples of SDTs for Lseq .
We depict trees with the root location at the top and annotate locations with
registers. A register in the root location with index i holds the i-th data value
of the corresponding prefix. The trees describe the fragments of Lseq for suffixes
of form ack(p) after prefixes msg(1) (Tree [a]) and msg(1)ack(1)msg(2) (Tree
[b]). They each have a register at the root location and two guarded initial tran-
sitions. In both trees, ack(p) leads to an accepting location only when the value
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[a] [b]

x1 x3

ack(p) | p = x1

ack(p) | p = x1

ack(p) | p = x3

ack(p) | p = x3

Fig. 2. Isomorphic SDTs for ack(p) after [a] msg(1), and [b] msg(1)ack(1)msg(2)

of the parameter p is equal to the value of the register in the root location (i.e.,
the value of the parameter from the most recent msg(p)).

Learner. The learner infers a register automaton that accepts the unknown
target language by making tree queries and equivalence queries. At a very ab-
stract level, our learning algorithm builds a prefix-closed set of prefixes, i.e., test
sequences with concrete data values that reach control locations of the inferred
register automaton. To determine when prefixes should lead to the same control
location in the automaton, the learner compares SDTs to each other. Prefixes
with equivalent SDTs (isomorphic up to renaming of registers and locations) can
be unified. The transitions of SDTs will be used to create registers, guards, and
assignments in the automaton. For example, the trees in Fig. 2 are equivalent
— meaning that the corresponding prefixes msg(1) and msg(1)ack(1)msg(2)
should lead to the same location.

The learner submits the hypothesis automaton to an equivalence query. If the
equivalence query is successful, the algorithm terminates; otherwise, a counterex-
ample is returned. Counterexamples guide the algorithm to make tree queries
for larger fragments of the target language, e.g., for more and/or longer suffixes
after a given prefix. The resulting SDTs will lead to refinements in the hypoth-
esis: previously unified prefixes may be split, new registers may be introduced,
and transitions may be refined or new ones introduced.

Related Work. The problem of generating models from implementations has
been addressed in a number of different ways. Proposed approaches range from
mining source code [4], static analysis [25] and predicate abstraction [3,24] to
dynamic analysis [12,6,28,22]. Closest to our work are approaches that combine
an automata learning algorithm with a method for inferring constraints on data.
An early black-box approach to inferring EFSM-like models is [20], where models
are generated from execution traces by combining passive automata learning
with the Daikon tool [10].

A number of approaches combine active automata learning with different
methods for inferring constraints on data parameters. All these approaches follow
a pattern similar to CEGAR (counterexample guided abstraction refinement).
A sequence of models is refined in a process that is usually monotonic and con-
verges to a fixpoint. Active automata learning has been combined with symbolic
execution [13,8] and an approach based on support vector machines [29] for
inferring constraints on data parameters in white-box scenarios. In white-box
learning scenarios (as in other static analyses) registers or state variables do not
have to be inferred as they are readily available. Sometimes abstraction is used
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to reduce the size of constructed models. In contrast, our approach will infer
models with a minimal set of required registers.

Previous works based on active automata learning that infer data constraints
from tests in a black-box scenario have been restricted to the case where the only
operation on data is comparison for equality [16,1,7]. Other approaches infer
models without symbolic data constraints [17,23] or require manually provided
abstractions on the data domain [2]. In general, black-box methods can infer
complex (e.g., arithmetic) constraints only at a very high cost — if at all. Our
black-box implementation is subject to these principal limitations, too.

While existing approaches extend active learning to a fix class of behavioral
models, we present a general purpose automata learning algorithm that can be
combined with any method for generating data constraints (meeting the require-
ments we discuss in this paper).

Register automata are similar to the symbolic transducers of [26]. It is an
open question if some of the decidability results for symbolic transducers can be
adapted to RAs to help answer for which relations and operations tree queries
and equivalence queries are decidable.

Outline. In Sec. 2, we introduce register automata and data languages. In Sec. 3,
we define symbolic decision trees and discuss how a tree oracle answers tree
queries. We present the details of the learning algorithm in Sec. 4, and Sec. 5
presents the results of applying it in a small series of experiments. Here, we
also briefly describe the implementation of a teacher for our learning framework.
Conclusions are in Sec. 6.

2 Preliminaries

In this section, we introduce the central concepts of our framework: theories,
data languages, and register automata.

Theories. Our framework is parameterized by a theory, which consists of an
unbounded domain D of data values, and R is a set of relations on D. The
relations in R can have arbitrary arity. Known constants can be represented by
unary relations. For example, the theory of natural numbers with inequality is
the theory 〈N, {<}〉 where N is the natural numbers and < is the inequality
relation on N. In the following, we assume that some theory has been fixed.

Data Languages. We assume a set Σ of actions, each with an arity that de-
termines how many parameters it takes from the domain D. In this paper, we
assume that all actions have arity 1; it is straightforward to extend our results
to the case where actions have arbitrary arity. A data symbol is a term of form
α(d), where α is an action and d ∈ D is a data value. A data word is a sequence
of data symbols. For a data word w = α1(d1) . . . αn(dn), let Acts(w) denote its
sequence of actions α1 . . . αn, and V als(w) its sequence of data values d1 . . . dn.
The concatenation of two data words w and w′ is denoted ww′. Two data words
w = α1(d1) . . . αn(dn) and w′ = α1(d

′
1) . . . αn(d

′
n) are R-indistinguishable, de-

noted w ≈R w′, if Acts(w) = Acts(w′) and R(di1 , . . . , dij )↔ R(d′i1 , . . . , d
′
ij )



Learning Extended Finite State Machines 255

whenever R ∈ R and i1, . . . , ij are indices between 1 and n. Intuitively, w and
w′ are R-indistinguishable if they have the same sequences of actions and cannot
be distinguished by the relations in R.

A data language L is a set of data words that respects R in the sense that
w ≈R w′ implies w ∈ L ↔ w′ ∈ L. A data language can be represented as a
mapping from the set of data words to {+,−}, where + stands for accept and
− for reject.

Register Automata. Assume a set of registers (or variables), ranged over by
x1, x2, . . .. A parameterized symbol is a term of form α(p), where α is an action
and p a formal parameter. A guard is a conjunction of negated and unnegated
relations (from R) over the parameter p and registers. An assignment is a simple
parallel update of registers with values from registers or p.

Definition 1. A register automaton (RA) is a tuple A = (L, l0,X , Γ, λ), where

– L is a finite set of locations, with l0 ∈ L as the initial location,
– λ maps each l ∈ L to {+,−},
– X maps each location l ∈ L to a finite set X (l) of registers, and
– Γ is a finite set of transitions, each of form 〈l, α(p), g, π, l′〉, where

• l ∈ L is a source location,
• l′ ∈ L is a target location,
• α(p) is a parameterized symbol,
• g is a guard over p and X (l), and
• π (the assignment) is a mapping from X (l′) to X (l)∪{p} (meaning that
the value of π(xi) is assigned to the register xi ∈ X (l′)). ,�

We require register automata to be completely specified in the sense that when-
ever there is an α-transitions from some location l ∈ L, then the disjunction of
the guards on α-transitions from l is true.
Let us now describe the semantics of an RA. A state of an RA A = (L, l0,X , Γ, λ)
is a pair 〈l, ν〉 where l ∈ L and ν is a valuation over X (l), i.e., a mapping from

X (l) to D. The state is initial if l = l0. A step of A, denoted 〈l, ν〉 α(d)−−−→ 〈l′, ν′〉,
transfers A from 〈l, ν〉 to 〈l′, ν′〉 on input of the data symbol α(d) if there is a
transition 〈l, α(p), g, π, l′〉 ∈ Γ with

1. ν |= g[d/p], i.e., d satisfies the guard g under the valuation ν, and
2. ν′ is the updated valuation with ν′(xi) = ν(xj) if π(xi) = xj , otherwise

ν′(xi) = d if π(xi) = p.

A run of A over a data word w = α(d1) . . . α(dn) is a sequence of steps

〈l0, ν0〉
α1(d1)−−−−→ 〈l1, ν1〉 . . . 〈ln−1, νn−1〉

αn(dn)−−−−→ 〈ln, νn〉
for some initial valuation ν0. The run is accepting if λ(ln) = + and rejecting if
λ(ln) = −. The word w is accepted (rejected) by A under ν0 if A has an accepting
(rejecting) run over w which starts in 〈l0, ν0〉. Note that an RA defined as above
does not necessarily have runs over all data words.

We define a simple register automaton (SRA) to be an RA with no registers
in the initial location, whose runs over a given data word are either all accepting
or all rejecting. We use SRAs as acceptors for data languages.
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3 Tree Queries

In this section, we first define symbolic decision trees (SDTs), which are used to
symbolically describe a fragment of a data language. We then state conditions
for the construction of SDTs, which is done by a tree oracle.

Symbolic Decision Trees. A symbolic decision tree (SDT) is an RA T =
(L, l0,X , Γ, λ) where L and Γ form a tree rooted at l0. In general, an SDT has
registers in the initial location; we use X (T ) to denote these registers X (l0).
Thus, an SDT has well-defined semantics only wrt. a given valuation of X (T ).

If l is a location of T , let T [l] denote the subtree of T rooted at l. Let T and
T ′ be two SDTs, such that γ : X (T ) �→ X (T ′) is a bijection from the initial
registers of T to the initial registers of T . We say that T and T ′ are equivalent
under γ, denoted T 1γ T ′, if γ can be extended to a bijection from all registers
of T to all registers of T ′, under which T and T ′ are isomorphic.

Let a symbolic suffix be a sequence of actions in Σ∗. Let u be a data word
with V als(u) = d1, . . . , dk. Let νu be defined by νu(xi) = di. We require that
for each data word u and each guard g over p and V als(u), the guard g has
a representative data value in D, denoted dgu, such that νu |= g[dgu/p] (i.e., d

g
u

satisfies p after u), and such that whenever g′ is a stronger guard satisfied by dgu
(i.e., νu |= g[dgu/p]) then dg

′
u = dgu.

Definition 2. For a data language L, a data word u with V als(u) = d1, . . . , dk,
and a set V of symbolic suffixes, a (u, V )-tree is an SDT T that has runs over
all data words v with Acts(v) ∈ V , such that v is accepted by T under νu iff
uv ∈ L (and rejected iff uv 
∈ L) whenever Acts(v) ∈ V . Moreover, in any run of
T over a data word v, the register xi may contain only the value of the ith data
value in uv. ,�

The last requirement simplifies the matching of decision trees. It can be enforced,
e.g., by requiring that whenever 〈l, α(p), g, π, l′〉 is the jth transition on some
path from l0, then for each xi ∈ X (l′) we have either (i) i < k+j and π(xi) = xi,
or (ii) i = k + j and π(xi) = p (recall that k is the length of u).

The initial α-transitions of an SDT are the transitions for action α from the
root location l0, guarded by initial α-guards. The SDT in Fig. 2 [a] has two
initial ack(p)-transitions with initial ack(p)-guards p = x1 and p 
= x1.

Tree Oracles. A key concept in our approach is that of tree queries. Tree queries
are made to a tree oracle, which returns an SDT. To ensure the consistency of
tree queries, a tree oracle must satisfy the conditions in the following definition.

Definition 3. Let L be a data language. A tree oracle for L is a function OL,
which for a data word u and a set V of symbolic suffixes returns a (u, V )-tree
T , and satisfies the following constraints.

1. If V ⊆ V ′, then OL(u, V ′) 1γ OL(u, V ′) implies OL(u, V ) 1γ OL(u, V ) for
all u, u′ and γ (i.e., adding more symbolic suffixes cannot make inequivalent
trees equivalent).
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[a] [b] [c]

msg(p) | true x1

x2

x3

msg(p) | true
x1 := p

ack(p) | p = x1 ack(p) | p = x1

msg(p) | p = x2 + 1
msg(p) | p = x2 + 1

x3 := p

ack(p) | p = x3 ack(p) | p = x3

Fig. 3. [a] SDT for msg(p) after prefixes ε and msg(1)ack(1). Refined SDTs for suffix
msg(p)ack(p) after [b] ε and [c] msg(1)ack(1).

2. If V ⊆ V ′, then for each initial α-transition of OL(u, V ) with guard g,
there is some initial α transition of OL(u, V ′) with a stronger guard g′ (i.e.,
νu |= g′ −→ g).

3. If 〈l0, α(p), g, π, l〉 is an initial transition of OL(u, V ), then OL(u, V )[l] 1γ

OL(uα(d), α−1V ), where d = dgu, and γ is the identify mapping (i.e., any
subtree of OL(u, V ) must be isomorphic to the subtree after d: here α−1V
denotes the set of sequences α1 · · ·αn such that αα1 · · ·αn ∈ V ). ,�

The first two conditions in Def. 3 ensure monotonicity: First, extending V
will only preserve or introduce inequivalence between trees of different prefixes.
Second, by gradually extending V , we will only refine trees and not, e.g., merge
transitions or forget registers. Fig. 3 [b] and [c] show SDTs that refine SDT [a].
SDT [b] refines [a] by adding an assignment x1 := p to the initial transition and
by adding new transitions after the initial one. SDT [c] refines [a] by splitting
the initial transition into two transitions with refined guards, and by initializing
a register in the root location. The third condition ensures that it is sufficient
to consider concrete prefixes with representative data values during learning.

Finally, let two data words u and u′ be equivalent, denoted by u ≡OL u′ if
OL(u, V ) 1γ OL(u′, V ) for some γ and any finite V . A data language L is regular
if ≡OL has finite index. The regularity of L is relative to the implementation of
tree queries, since ≡OL is defined on SDTs.

The following adaptation of the Myhill/Nerode theorem provides the basis for
convergence of the automata learning algorithm presented in the next section.

Theorem 1 (Myhill-Nerode). Let L be a data language, and let OL be a
tree oracle for L. If the equivalence ≡OL has finite index, then there is an SRA
which accepts precisely the language L. ,�

4 The SL∗ Algorithm

This section presents the central ideas for an active automata learning algorithm
SL∗ (Symbolic L∗, reminiscent of the L∗ algorithm). To construct an SRA for
some unknown data language, we need to infer locations, transitions, and reg-
isters. Locations of an SRA can be characterized by their SDTs, which are
obtained by making tree queries. Data words with equivalent SDTs will lead to
the same location. The initial transitions of the SDTs will serve as transitions
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[a]
l0 l1

msg(p)
x1 := p

ack(p) | p = x1

[b]

msg(p) | true
x1 := p

ack(p) | p = x1ack(p) | p 	= x1

U ∪ U+
V {ε, msg(p), ack(p)}

ε

msg(1)

ack(1)

msg(1)ack(1)

(l0)

(l1)

(l2)

msg(p)

ack(p)

x1

msg(p)

ack(p) | x1 	= p

ack(p) | x1 = p

msg(p)

ack(p)

msg(p)

ack(p)
. . . . . .

Fig. 4. Hypothesis [a] (without error location l2) and its observation table (right).
Transitions [b] for suffix msg(p)ack(p) after prefix msg(1)ack(1) in hypothesis.

in the SRA. The registers of an SDT will become registers in the location that
the SDT represents. A hypothesis automaton is constructed and submitted for
an equivalence query. If it matches (which will happen eventually for regular data
languages), the algorithm terminates. Otherwise, the returned counterexample
is processed, leading to refinement of the hypothesis.

The SL∗ algorithm maintains an observation table 〈U, V, Z〉, where U is a
prefix-closed set of data words, called short prefixes, V is a set of symbolic
suffixes, and Z maps each element u in U to its (u, V )-tree. The algorithm also
maintains a finite set U+ of extended prefixes of the form uα(d) (abbreviated
uα), such that u ∈ U and d is dgu, where g is an initial α-guard of Z(u). Fig. 4
(right) shows an observation table for the example in Sec. 1. A set of symbolic
suffixes V labels the column; rows are labeled with short prefixes from U (above
the double line) and with prefixes from U+ (below the double line). Each table
cell (referred to by row label u and column label V ) stores the SDT Z(u).

Algorithm 1 shows a pseudocode description of SL∗. The algorithm is initial-
ized (line 1) with U containing the empty word, the set of symbolic suffixes V
being the empty sequence together with the set of all actions, and Z(ε) being the
SDTOL(ε, V ). The algorithm then iterates three phases: hypothesis construction,
hypothesis validation, and counterexample processing until no more counterex-
amples are found, monotonically adding locations and transitions to hypothesis
automata. We detail these phases below, referring to lines in Algorithm 1.

Hypothesis Construction (lines 3-11). In this phase, the algorithm attempts
to construct a hypothesis automaton by making tree queries and entering the
results in an observation table. The answer to a tree query for the prefix u and
the set of symbolic suffixes V is the SDT OL(u, V ), stored in the table as Z(u).

An observation table 〈U, V, Z〉 is

– closed, if for every u ∈ U+ there is a short prefix u′ ∈ U and a γ such that
Z(u) 1γ Z(u′). Closedness ensures that all transitions in the automaton
have a target location. If the table is not closed, then u leads to a location
not covered by U , and Z(u) proves it by not being equivalent to Z(u′) for
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Algorithm 1 SL∗

Require: A set Σ of actions, a data language L, a tree oracle OL for L.
Ensure: An SRA H with L(H) = L
1: U ← {ε}, V ← ({ε} ∪Σ), Z(ε) ← OL(ε, V ) � Initialization
2: loop
3: repeat � Hypothesis construction
4: U+ ← {uα(dgu) : u ∈ U , α ∈ Σ, and g initial α-guard of Z(u)}
5: For each u ∈ (U ∪ U+), Z(u) ← OL(u, V )
6: if ∃u ∈ U+ s.t. Z(u) 	�γ Z(u′) for any γ and u′ ∈ U then
7: U ← U ∪ {u}
8: if ∃uα ∈ U+ and ∃xi ∈ X (Z(uα)) ∩ V als(u) s.t. xi /∈ X (Z(u)) then
9: V ← V ∪ {αv} for v ∈ V with xi ∈ X (OL(uα, {v}))
10: until 〈U, V, Z〉 is closed and register-consistent
11: H ← Hyp(〈U,V, Z〉)
12: if eq(H) then Return H � Hypothesis validation
13: else � Counterexample processing
14: for 〈ui−1, αi(p), gi, πi, ui〉 in run of H over σ do
15: if gi does not refine an initial trans. of OL(ui−1, Vi−1) then V ← V ∪ Vi−1

16: if OL(ui−1αi, Vi) 	�γ OL(ui, Vi) for γ used to construct H then
17: V ← V ∪ Vi

18: end loop

any short prefix u′. 〈U, V, Z〉 is closed by making u a short prefix, i.e., adding
it to U .

– register-consistent, if (X (Z(uα) ∩ V als(u)) ⊆ X (Z(u)) for every uα ∈ U+.
Register-consistency ensures that whenever a data value in u is needed to
construct the SDT after uα, then it also occurs in the tree after u. If the
table is not register-consistent, then Z(uα) has a register that expects a value
from u but Z(u) does not have a register for storing this value. We make
〈U, V, Z〉 register-consistent by extending V with the appropriate abstract
word αv with v ∈ V , propagating the missing register backwards to Z(u).

A closed and register-consistent observation table 〈U, V, Z〉 can be used to-
gether with a set U+ of extended prefixes to construct a hypothesis automaton
Hyp(〈U, V, Z〉) = (L, l0,X , Γ, λ), where

– L = U and l0 = ε,
– X maps each location u ∈ U to X (Z(u)) (X (l0) is the empty set),
– λ(u) = + if u ∈ L, otherwise λ(u) = −, and
– each uα ∈ (U ∪U+) with corresponding initial α-transition 〈l0, α(p), g, π, l′〉

of Z(u) generates a transition 〈u, α(p), g, π′, u′〉 in Γ , where

• u′ is the (unique) prefix in U with Z(uα) 1γ Z(u′),
• π′ is an assignment X (Z(u′)) �→ (X (Z(u)) ∪ {p}). For xi ∈ X (Z(u′)),
we define π′(xi) = γ−1(xi) if γ

−1(xi) stores a data value of u in Z(uα),
and π′(xi) = p otherwise.
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Fig. 4 shows an observation table that is closed and register-consistent. Fig. 4 [a]
shows the hypothesis that can be constructed from it. In the table, rows for short
prefixes (above the double line) are annotated with corresponding locations in
the hypothesis. The assignment on the transition from l0 to l1 and the guard on
the transition from l1 to l0 are both derived from the SDT for prefix msg(1).

Hypothesis Validation (line 12). The hypothesis automaton H is submitted
for an equivalence query. The teacher either replies ’OK’, or returns a counterex-
ample (a word that is accepted by H but rejected by the target system, or vice
versa). If it replies ’OK’, the algorithm terminates and returns H. Otherwise,
the counterexample has to be analyzed.

Counterexample Analysis (lines 13-16). A counterexample indicates either
that a location is missing, (i.e., that U has to be extended), or that a transition
is missing, (i.e., that SDTs need to be refined), or that we used an incorrect
renaming γ between some SDTs when constructing the hypothesis. For a coun-
terexample σ of length m we denote by σi its prefix of length i, and by vi its
suffix of length m− i. Moreover, let Vi be the singleton set {Acts(vi)}.

In a run of H over σ, the i-th step 〈ui−1, νi−1〉
αi(di)−−−−→ 〈ui, νi〉 traverses tran-

sition 〈ui−1, αi(p), gi, πi, ui〉, i.e., prefix σi leads to the location corresponding to
short prefix ui from U . In order to determine at which step the run of H over σ
diverges from the behavior of the system under learning, we analyze the sequence
u0 = ε, . . . , um and the corresponding (ui, Vi)-trees for 0 ≤ i ≤ m computed by
OL(ui, Vi), using an argument similar to the one presented in [21]: Since σ is
a counterexample and V contains ε, there is an index j of the counterexample
for which uj−1 together with OL(uj−1, Vj−1) contains a counterexample to H,
while uj and OL(uj, Vj) do not. We can then distinguish two cases.

Case 1. The guard gj in the step of H from uj−1 to uj does not refine an
initial transition of OL(uj−1, Vj−1). In this case the SDT distinguishes cases
that H does not distinguish. Adding Vj−1 to V will result in new and refined
transitions from uj−1 in the hypothesis. This is guaranteed by the monotonicity
requirement on tree constructors in Def. 3. Consider, e.g., the counterexample
msg(1)ack(1)msg(1)ack(1) to the hypothesis in Fig. 4 at index 3. The hypothesis
in Fig. 4 [b] has only one transition with guard true after msg(1)ack(1). The
corresponding SDT for Lseq (Fig. 3 [c]), on the other hand, has two initial
transitions, and neither of them is refined by the true. Adding msg(p)ack(p) to
V will add these transitions to the hypothesis.

Case 2. The tree OL(uj, Vj) is not isomorphic to the corresponding subtree
after α(d

gj
uj−1 ) of OL(uj−1, Vj−1) under the renaming of registers γ that was

used in the hypothesis (only one of these trees contains a counterexample to
H). Adding Vj to V will lead to either OL(uj , V ) 
1 OL(uj−1α(d

gj
uj−1 ), V ) and

uj−1α(d
gj
uj−1) will become a separate location, or γ will be refined. Consider again

the counterexample msg(1)ack(1)msg(1)ack(1) to the hypothesis in Fig. 4; this
time at index 2. Here, uj−1α(d

gj
uj−1) is msg(1)ack(1), and uj = u2 is ε. The

SDTs for these two prefixes and the suffix msg(p)ack(p) are shown in Fig. 3 [b]
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l0 l1 l2

l3

l4 l5

init(p) | p=x
x:=p

syn(p) | p=x+1
x:=p

ack(p) | p=x
−

fin−ack(p) | p=x
−

fin−ack(p) | p=x
−

ack(p) | p=x
−

Fig. 5. Connection establishment of TCP (only non-reflexive transitions)

and Fig. 3 [c]. They are not equivalent. Adding the suffix msg(p)ack(p) to V
will lead to a new location for msg(1)ack(1) in the next hypothesis.

Correctness and Termination. That SL∗ returns a correct SRA upon ter-
mination follows by the properties of our teacher. For regular data languages,
termination follows from the properties of tree queries in Sec. 3, from Theorem 1,
and from the algorithm itself: SDTs will only be refined when adding symbolic
suffixes, and this can happen only finitely often. Each added symbolic suffix will
either lead to a new transition, a refined transition, a new register assignment or
a new location. By adapting arguments from other contexts [5,16], Theorem 1
can be used to show that SL∗ converges to a minimal (in terms of locations and
registers) SRA for L. Note that this minimal number of locations and transitions
also depends on the particular tree oracle that is used.

Complexity. We estimate the worst case number of counterexamples and show
how they lead to a correct model with n locations, t transitions, and at most r
registers per location. Since each location has one access sequence, n ≤ t, and
thus we estimate the costs in t and r only. The final model is minimal relative
to the implementation of tree queries: it has one location per class of ≡OL . Each
counterexample results in one additional suffix in the observation table, leading
to a new transition or to discarding a bijection between two prefixes in U . The
former can happen t times before all transitions are identified. The latter can
happen at most tr times, since it corresponds to breaking a symmetry between
two of at most r registers at one of n ≤ t locations (cf. [14]). The algorithm
terminates after O(tr) equivalence queries. The number of tree queries depends
on the length m of the longest counterexample and on the size of the observation
table. The algorithm uses a maximum of m calls per counterexample, and the
size of U ∪U+ in the final observation table is t+1. This leads to O(t2r+ trm)
tree queries and yields the following theorem.

Theorem 2. The algorithm SL∗ infers a data language L with O(tr) equiva-
lence queries and O(t2r + trm) tree queries. ,�

5 Implementation and Evaluation

We have implemented the SL∗ algorithm together with a teacher for a black-box
scenario and fixed set of relations on integers and rationals. We allow equalities
and/or inequalities as well as simple sums of registers and pre-defined constants
(e.g., p = x1 + x2 or p = x1 + 5).
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The implementation of tree queries Ou(V,) is based on the ideas for construct-
ing canonical constraint decision trees presented in [9] (Proof of Theorem 1). The
set of R-distinguishable classes of data words of the form uv where Acts(v) ∈ V
can be represented in an SDT with maximally refined guards (so-called atoms).
We use an SMT solver (Z31) to generate tests for all atoms in this SDT. Finally,
atoms are merged in a bottom-up fashion based on test results.

Equivalence queries have been implemented using tree queries (similar to the
approach in [13]). We generate OL(ε, w) for all w ∈ Σk up to some depth k and
compare the SDTs to the hypothesis. We start with k = 3 and increase k until
a fixed time limit is reached (10 minutes) or until a counterexample is found.

We have inferred a simplified version of the connection establishment phase
of TCP, a bounded priority queue from the Java Class Library, and a set of five
smaller models (Alternating-bit protocol, Sequence number, Timeout, an ATM,
and a Fibonacci counter). Here, we only detail the TCP model. Fig. 5 shows the
connection establishment phase of TCP. The example uses a set of five actions:
init, syn, syn−ack, ack, and fin−ack. The transition init(p) was added to get
an initial sequence number. Each synchronizing message increases this number;
all other messages use the current sequence number.

We used common optimizations for saving tests: a cache and a prefix-closure
filter. Table 1 shows the results. We report the locations, variables, and transi-
tions for all inferred models. For each case, we state the number of constants,
relations (≤ denotes the combination of equalities and inequalities), and sup-
ported terms: p+ c indicates sums of parameters and constants, and p+ p sums
of different parameters. We report the number of tree queries (TQs) and equiv-
alence queries (EQs) made. For equivalence queries, we also state the depth k1
at which the last counterexample was found and the greatest explored depth k2
(up to which inferred models are guaranteed to be correct). Finally, we show
execution times.

Time consumption for learning is below one second for most of the examples;
the only “real” Java class, the priority queue, takes a little more time (4.3 sec-
onds). The difference between k1 and k2 gives an idea of how likely the final
hypothesis is correct: If k2 is bigger than k1, then the depth was increased by
k2 − k1 without finding a new counterexample. A big difference suggests that
the learning algorithm has converged to the correct RA. For some examples
no counterexamples where found and for the Timeout example k2 = ∞, i.e.,
the equivalence query terminated successfully. This was possible because all se-
quences of length greater than two are not in the language of this example. For
the examples with more relations (≤, and p + c or p + p) the reached depth
k2 is smaller, regardless of the number of locations and transitions in the final
model. This is due to the exploding number of R-distinguishable classes of data
words in such cases. One way of addressing this challenge in the future could be
introducing typed parameters and using multiple simpler disjoint domains.

1 http://z3.codeplex.com

http://z3.codeplex.com
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Table 1. Experimental results obtained on a 2GHz Intel Core i7 with 8GB of memory
running Linux kernel 3.8.0

Model Language class Queries EQ Times
Loc’s Var’s Trans’s Const’s Rel’s Op’s TQs EQs k1 k2 TQs [s] EQs [s]

ABP 3 0 5 2 = - 9 1 - 11 0.1 599.9
Sequence Number 3 1 4 1 = p+c 8 1 - 10 0.1 599.9
TCP 7 1 51 1 = p+c 187 2 6 7 0.6 599.4
PriorityQueue 8 2 33 0 ≤ - 113 5 6 7 4.3 595.7
Timeout 4 1 5 1 ≤ p+c 9 1 - ∞ 0.2 0.1
ATM 3 1 7 3 ≤ p+c 16 2 3 4 1.3 598.7
Fibonacci counter 4 2 6 0 ≤ p+p 19 2 3 5 0.2 599.8

6 Conclusions

We have presented a symbolic learning algorithm which can be parameterized by
methods for constructing symbolic decision trees and which infers models that
capture both control and data aspects of a system. Our preliminary implemen-
tation demonstrates that the approach can infer protocols comprising sequence
numbers, time stamps, and variables that are manipulated using simple arith-
metic operations or compared for inequality even in a black-box scenario.

A particularly promising direction for future research will be the combination
with white-box methods like symbolic execution, both for searching counterex-
amples as well as for supporting construction of decision trees. We also plan to
investigate decidability of tree queries and equivalence queries in our learning
model for different data domains.
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Abstract. Previous work on generating implementations from Event-B
models has focused on translating concrete machines that are already
relatively close to code. Additionally, the generated implementations do
not provide support for data persistence and for inter-operating with
hand-written system components. In this work, we present the EventB-
2SQL tool, which translates Event-B models to Java classes that store
all model data in a relational database. Operations on sets and relations
are directly translated to database queries, and Event-B carrier sets are
both stored in the database and translated as generic type parameters of
the generated classes. This allows developers to use objects of almost any
Java class as elements of carrier sets, and to easily store these objects
in the database. Additionally, using a database back-end in this man-
ner and translating events as database transactions greatly facilitates
the development of client-server and multi-threaded applications while
maintaining the atomicity of events.

Keywords: Event-B, code generation, database applications, client-
server applications.

1 Introduction

Previous work on generating implementations from Event-B models [6,4,5,8] is
largely concerned with translating concrete machines that result from a (pos-
sibly long) refinement process. In fact, the primary purpose of refinement is to
translate abstract models to models that are much closer to programming lan-
guage code, typically removing higher-level Event-B features such as relations
and simultaneous assignment. The implementations produced use in-memory
data structures (often arrays), and so do not provide support for data persis-
tence. While appropriate for small applications with transient data, this ap-
proach does not scale for applications that manage larger volumes of data over
longer timeframes.

In this work, we present the EventB2SQL tool1, which automatically trans-
lates Event-B models to database applications. The generated programs store

1 EventB2SQL is freely available from [7]. The website includes installation and usage
instructions, and the social networking example discussed in this paper.
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Event-B sets, relations and functions in database tables, and EventB2SQL trans-
lates operations on these types to SQL queries. Hence, EventB2SQL can trans-
late Event-B models written at a relatively high level of abstraction, with the
additional advantage of automatically making all application data persistent.

2 The Translation

EventB2SQL translates an Event-B machine and any contexts that it sees to
a Java class that uses JDBC to communicate with a MySQL database. The
translations of all machine variables and carrier sets are stored in the database,
making their values persistent across invocations of the generated program. Car-
rier sets are translated as tables in the database, and the Java class generated
from an Event-B machine has a generic type parameter for each carrier set that
the machine sees. This allows programs generated from Event-B models to ma-
nipulate Java objects, as the classes defining those objects can be used as actual
type parameters when an instance of the translated class is created. Any class
used as an actual type parameter must implement the java.io.Serializable

interface so that instances can be stored in the database. The code generated
by the EventB2SQL tool includes methods for iterating over carrier sets, and
for adding objects to them. Additionally, the generated code includes methods
for retrieving the value of each machine variable, and for retrieving the image of
any domain element for functions and relations.

Each non-INITIALISATION event is translated to a Java method. Any event
parameters are translated as parameters of the method. The method executes
as a single database transaction, ensuring that events are atomic as required by
the semantics of Event-B. If the translation of the event guard is not satisfied
when the method is called, the translation of the actions is not executed and the
method returns false. If the translation of the guard is satisfied, the translation
of the actions is executed and the method returns true. This approach prevents
any interleaving of method executions that would cause the actions of an event
to be executed in a state that did not satisfy the guard of that event.2

To correctly translate simultaneous assignments, the EventB2SQL tool first
translates the right-hand sides of all assignments in the body of an event, as-
signing the results to temporary variables. Because EventB2SQL represents all
Event-B values as integers (as described in the following), the temporary vari-
ables are simply local variables of type int. After all right-hand sides have been
evaluated, the values of these temporary variables are stored to the database in
the locations of the corresponding machine variables. Assignments that use :∈
are handled similarly, with an arbitrary element of the right-hand side assigned
to the temporary variable.

Space limitations preclude a full discussion of the translation of Event-B ex-
pressions and predicates into SQL queries, so we limit our presentation to three

2 For backward compatibility with previous versions of EventB2SQL that did not
support concurrency, the tool also generates separate methods for checking the guard
and executing the actions of an event.
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representative examples. Abstractly, Event-B variables that are sets (but not re-
lations or functions) are represented as SQL tables with a single column labeled
refkey, with each row containing one element of the set. Event-B relations and
functions are represented as SQL tables with two columns labeled id and value,
with each row representing a maplet (pair) in the relation.

EventB2SQL translates the Event-B predicate: x1 ∈ s1 as follows, assuming
that x1 is the translation of x1 and s1 is the translation of s1. In general, x1
and s1 are nested queries and so must be renamed.

select count(*)

from (x1) as x1tp, (s1) as s1tp

where x1tp.id = s1tp.refkey

Assuming that the result of translating s1 contains no duplicates (a property that
our translation enforces), this query evaluates to 1 (true) if and only if x1 ∈ s1.
Note that an expression of a primitive (integral or boolean) type evaluates to a
table with a single row and a single column labeled id.

The composition of n Event-B relations or functions (r1; r2; . . . rm; rn) is trans-
lated to a query that joins tables representing the relations where the value

column of each table (except the last) is equal to the id column of the following
one, and then selecting the appropriate columns in the result:

select r1tp.id, rntp.value

from (r1) as r1tp, (r2) as r2tp, ..., (rm) as rmtp, (rn) as rntp

where r1tp.value = r2tp.id and ... and rmtp.value = rntp.id

We translate relational override (r1�−r2) by selecting appropriate tuples from
the two tables involved and unioning the results. In early versions of the tool,
the generated query used NOT IN to select tuples in r1 that were not overridden
by tuples from r2 in the result. However, MySQL does not execute such queries
efficiently, and so the current version of the tool, uses a LEFT JOIN to find tuples
in r1 with id values that are not id values in r2:

select r1tp.id, r1tp.value

from (r1) as r1tp left join (select id from (r2) as r2tp)

on r1tp.id = r2tp.id where r2tp.id is null

union

select * from (r2) as r2tp

The database design actually used in applications generated by EventB2SQL
is more complex than the abstract version presented above. The abstract version
permits redundancy (the same Event-B object can be stored in multiple tables)
and makes equality comparisons between complex Event-B objects such as sets
and relations difficult. Hence, the EventB2SQL tool uses a highly normalized
representation in which all values of the same type (set, relation, function or
maplet) are stored in the same table, and any value more complex than a number
or boolean is always referred to indirectly (via a unique numeric identifier). The
table schemas generated by EventB2SQL are in BCNF [3], and the generated
code ensures that the tables never contain duplicate entries or null values.
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When processing an Event-B machine, the EventB2SQL tool creates a new ta-
ble for each maplet and set (including relation/function) type that it encounters.
The table for a maplet type has three columns labeled refnum, id and value,
where refnum is an auto-generated primary key used to refer to the maplet,
and id and value represent the pair of values. Whenever an Event-B operation
creates a new maplet (i.e. by using �→), the generated code first checks if the
maplet already exists in the corresponding table. If so, the refnum of that maplet
is returned. If not, a new row is inserted into the table and the refnum of the
row is returned. While potentially expensive to execute, this approach ensures
that maplets can be correctly compared by refnum alone, as a refnum always
uniquely identifies a maplet.

The table created for a set type has two columns labeled refnum and refkey.
All sets of this type will be stored in this table. All elements of the same set have
the same value of refnum, and there is one row in the table for each element
of each set (with the element stored in the refkey column). Again, whenever
a new set is created, the generated code first checks the associated table to see
if the set already exists. If so, the refnum of that set is returned. If not, a new
refnum is generated, appropriate tuples with that refnum are generated and
inserted into the table, and the new refnum is returned. Relations and functions
are stored as sets of maplets, where the refkey value references a maplet in the
appropriate maplet table. This makes the representation uniform, so that the
same translation of set operations works on both sets and relations, and so that
nested structures (such as sets of relations) can be stored as sets of refnums.

Of course, the code generated by the EventB2SQL tool is not as efficient as
a hand-coded database application would likely be, although the query opti-
mization built-in to MySQL should mitigate this to some extent. As mentioned
above, earlier versions of EventB2SQL generated code that made heavy use of
IN and NOT IN in SQL queries (to test membership in the result of a nested sub-
query). MySQL does not do an adequate job of optimizing such queries, and the
performance of applications generated by early versions of EventB2SQL was not
acceptable. Subsequently, we have updated the tool to generate queries that use
joins in place of these forms of nested subqueries, and application performance
is significantly improved.

3 Implementation and Usage Example

The EventB2SQL tool is implemented as a plugin for the Rodin platform [1].
Rodin provides tools such as editors and parsers for Event-B models, and so is an
ideal environment for developing Event-B tools. When translation is initiated,
the EventB2SQL tool walks the abstract syntax tree constructed by Rodin using
the provided visitor pattern, generating a combination of Java code and SQL
statements as previously described.

In a typical usage of EventB2SQL, a developer would:

– use Rodin to develop an Event-B model that includes the desired function-
ality, including refinements as needed. It is not necessary to discharge proof
obligations before translation, but we recommend doing so.
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– use EventB2SQL to translate the model to a Java database application (via
a menu selection within Rodin)

– write client code that interacts with the translation result to produce a
complete application

We have employed an Event-B model of a social networking core (adapted
from the B model in [2]) as a small case study during the development of Event-
B2SQL. Each of the nine machines in this model (one abstract and eight refine-
ments) sees a context that introduces carrier sets PERSON (all possible people
in the network) and CONTENTS (all possible content items). Hence, the Java
class generated by EventB2SQL for each of these machines has type parameters
PERSON and CONTENTS, allowing client code to supply Java classes (as actual
type parameters) that represent people and content items that are appropriate
for the intended application.

To illustrate how to use code generated by EventB2SQL, we have written a
small client application on top of the code generated from the first refinement
machine3. This application:

– creates a connection to a MySQL database
– creates an instance of the class generated by EventB2SQL, passing the

database connection as a parameter and the classes representing people and
content items as type parameters

– uses this instance to:
• call the generated createTables method, which creates all necessary
tables in the database

• call the INITIALISATIONmethod (generated from the initialisation event
in the model) to initialize the network state. Note that this and the
previous step should only be done once.

• call generated methods to add objects to the representations of the car-
rier sets. This adds the objects to the database, making them persistent.

• call methods generated from events in the model to add people and
content to the network, to share content between users and to print the
current state of the network.

It is straightforward to construct a client-server application around the gen-
erated code as many copies of that code (running on different computers) can
connect to a single database server. Because each event executes as a database
transaction, atomicity is maintained. Similarly, applications generated by Event-
B2SQL are well suited for use in multi-threaded environments.

4 Future Work and Conclusion

While EventB2SQL can translate a large and useful subset of Event-B, there
are some features such as set comprehensions, quantified predicates, data types
defined in theories and non-deterministic assignments (formed using :|) that are
3 See [7] for the full source code.
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not yet supported. Other areas for future work include reducing the generated
code’s use of temporary tables and making further improvements in the efficiency
of the generated code. We also plan to undertake larger case studies to evaluate
the reliability and usefulness of applications generated with EventB2SQL, and
to modify the tool as indicated by this evaluation. Finally, to produce a provably
correct implementation, the soundness of the translation performed by Event-
B2SQL must itself be verified. We are currently investigating ways to perform
such a proof.

The current version of the EventB2SQL tool improves on the state of the art
in generating code from Event-B models in a number of ways: it can translate
machines written at a relatively high level of abstraction, it makes the values
of machine variables persistent across executions of a generated application, it
allows carrier sets to contain instances of arbitrary Java classes (in a persistent
way), and it simplifies the development of client-server and multi-threaded appli-
cations. Our hope is that other developers will find EventB2SQL to be useful in
practice, thus promoting the use of Event-B and more generally formal methods
in the software process.
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Abstract. The RTCA standard (DO-178C) for developing avionic soft-
ware and getting certification credits includes an extension (DO-333)
that describes how developers can use static analysis in certification. In
this paper, we give an overview of the IKOS static analysis framework
that helps developing static analyses that are both precise and scalable.
IKOS harnesses the power of Abstract Interpretation and makes it acces-
sible to a larger class of static analysis developers by separating concerns
such as code parsing, model development, abstract domain management,
results management, and analysis strategy. The benefits of the approach
is demonstrated by a buffer overflow analysis applied to flight control
systems.

1 Introduction

Our goal is to enable the use of static analysis for the certification of avionic
systems. The DO-333 extension to DO-178C lists Abstract Interpretation [4] as
a possibility to obtain certification credits. Unfortunately, there are few available
commercial static analyzers based on Abstract Interpretation. Moreover, they
often lack precision and scalability for C/C++ code, or, they are restricted
to strict subsets of C. Our goal is to define a framework that can be used to
develop precise, scalable static analyses based on Abstract Interpretation for
flight software systems.

Abstract Interpretation [4] is a theoretical framework that provides a method-
ology for constructing sound static analyses. It offers mathematical guarantee
that all properties computed by the analyzer hold for all possible execution paths
of the program. The core idea behind this theory is the careful use of the no-
tion of approximation: all possible values that a variable can take at a certain
program point are approximated by a set that can be compactly represented
(e.g., an integer interval), thus ensuring the soundness of the analysis. However,
infeasible value assignments of the variable may be introduced because of the
approximation. This may result into false alarms, where the analyzer detects a
potential problem at a statement when the program is actually safe. These false
alarms need to be as rare as possible; otherwise, it defeats the usefulness of the
analysis. Nevertheless, when a statement is deemed safe, it can never cause an
error, which is a key property for certification.

In this paper, we give an overview of IKOS [1] (Inference Kernel for Open Static
Analyzers), an open-source framework developed at the NASA Ames Research
Center that supports the development of precise and scalable static analyses. IKOS
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Fig. 1. The IKOS framework architecture overview

provides abstract interpretation concepts for developing specialized analyzers,
which helps drive down the number of false positives without compromising scal-
ability. Designing a specialized analyzer using standard methods is long and diffi-
cult. IKOS facilitates this process by factoring out most of the expertise required
to write the analyzer. The use of IKOS in developing precise and scalable static
analyses is demonstrated through the implementation of a buffer overflow analy-
sis and its application to flight control systems. Arrays and buffers are pervasively
employed in flight software (navigation, communication) and errors are often very
hard to catch during standard V&V activities, like testing or code review.

2 Framework Overview

The IKOS framework, shown in Figure 1, offers capabilities to facilitate the de-
velopment and integration of the traditional elements of static analyzers. IKOS
relies on the ARBOS plugin framework for parsing the source code, perform-
ing semantic resolution, and creating an intermediate representation (using the
AR form) more suitable for analysis (i.e., semantic equations that need to be
solved using fixpoint iterations). Analyses are developed as ARBOS plugins us-
ing the Abstract Interpretation concepts available in the IKOS library (a collec-
tion of abstract domains and fixpoint iteration algorithms). Currently, results
are being stored in permanent storage in the form of text files or in an SQL
database (SQLite). The SQL database is convenient to extract specific informa-
tion from the results. We can also visualize the results using an external tool,
called IkosView, which shows the location of the checks in the source code with
the traditional color coding: green for safe checks, red for unsafe checks, and
orange for warnings. In the following sections, we will describe ARBOS and its
AR form, then IKOS, and finally some of the analyses we have developed.
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2.1 The ARBOS Plugin Framework

ARBOS is a plugin framework that allows the definition of static analyses using
the AR form as intermediate representation. Currently, ARBOS includes a front-
end (based on LLVM [7]), which translates C/C++ code into AR, the abstract
representation of programs, and the APIs that facilitate writing static analyses
as ARBOS plugins. The workflow in Figure 1 shows the various phases to obtain
the AR representation of the C/C++ source code to be analyzed.

2.2 Why LLVM?

LLVM [7] is essentially a high-level, platform-independent assembly language.
Although it is simpler to process than the abstract syntax tree of a C/C++
program, it heavily relies on the static single assignment form (SSA) which
cannot be readily used to design an abstract interpreter. The φ-nodes need to
be eliminated and other inadequate constructs need to be simplified using various
LLVM transformation passes. An intermediate representation like CIL [9] is far
more adapted to the design of static analyzers based on Abstract Interpretation
than LLVM, so why choose LLVM in the first place?

The single most important issue facing the user of a static analysis tool is
getting the code through the tool’s parser.All commercial static analyzers, sound
or not, use their own parsers, which may not accept C/C++ dialects or idioms
that are commonplace in the embedded world, including flight systems. For
example, in our experiments the code for the UAS autopilot Paparazzi listed
in Table 1 was rejected by all three commercial static analyzers we had licenses
for. Getting the application through those tools would have required rewriting
huge chunks of code, which is unacceptable in general and for the certification
of flight software in particular, where code cannot be changed at all. However,
Paparazzi would compile without any problem when using the GCC compiler.
As a matter of fact, all the programs we have studied would compile without any
modification using GCC whereas they would require some modifications when
using commercial tools. There is a special version of GCC that has been modified
so as to generate LLVM bitcode, which is why we are using LLVM. CIL has its
own front-end and trips when parsing nonstandard code, very much like all other
C/C++ front-ends but GCC.

2.3 The Abstract Representation

The Abstract Representation (AR) generated by ARBOS can be used as an input
to abstract interpreters implemented using IKOS as ARBOS plugins. Compared
to the LLVM Internal Representation (IR), the AR takes a different angle on
how to express the semantics of a C program. For example, the SSA form is done
away with, the instruction set is more regular and the control flow is expressed
in a declarative way using nondeterministic choices and assertions rather than
conditional branch instructions. Due to space limitations, we cannot describe
the entire AR form in this paper. Instead, we will highlight the main differences
between the LLVM IR and AR using a simple example. It is worth noting that
there is no loss of expressiveness when translating the LLVM IR into AR.
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int a[10]; int i;
for (i = 0; i < 10; i++) { a[i] = i; }
a[i] = 10;

(a)

entry :
%a = alloca [10× i32]
br header

header :
%i.0 = φ [0, entry], [%2, body]
%3 = icmp slt %i.0, 9
br %3, body, tail

body :
%1 = gep %a, 0,%i.0
store %i.0,%1
%2 = add %i.0, 1
br header

tail :
%4 = gep %a, 0,%i.0
store 10,%4
br return

return : ret

entry :
%i.0 = 0

preheader :

headertrue :
%i.0 slt 9
%3 = 1

headerfalse :
%i.0 sge 9
%3 = 0

body :
%6 = mul 40, 0
%7 = mul 4,%i.0
%2 = add %6,%7
%1 = pshift %a,%2
store %i.0,%1
%i.0 = add %i.0, 1

tail :
%9 = mul 40, 0
%10 = mul 4,%i.0
%8 = add %9,%10
%4 = pshift %a,%8
store 10,%4

return : ret

(b) (c)

Fig. 2. Code snippet (a) with LLVM IR (b) and ARBOS AR (c) forms

Figure 2(a) shows a simple piece of code performing an array initialization
with special treatment for the last element. The loop is not correctly written,
which causes an out-of-bounds array access at the last statement. This example
is a redacted and simplified version of a problem identified in a real flight code
during V&V activities. Figures 2(b) and 2(c) show the LLVM IR and ARBOS
AR forms, which have also been simplified for readability. We will now go over
the details of the translation from the LLVM IR into AR.

In SSA form variables can only be assigned once, which requires the introduc-
tion of φ-nodes to represent the values a variable can take at a merge point in the
control-flow graph. In Abstract Interpretation, a merge point corresponds to the
application of a join (or widening) operation in the abstract domain. A φ-node
represents a partial disjunction over some program variables, which can be dealt
with easily when considering non-relational domains (like intervals). However,
relational abstractions (like polyhedra) describe properties over all program vari-
ables, which makes the treatment of φ-nodes extremely challenging. Since IKOS
is meant to be a generic abstract interpretation framework, φ-nodes are removed
from the AR by inserting assignment instructions that simulate the effect of the
φ-nodes on the variables concerned.

In the LLVM IR, conditional branch instructions (br) are coupled with Boolean
instructions that return their result in a register (slt , sge). This implies that pro-
cessing the condition in the abstract domain (e.g., by using a linear constraint
solver) should be done in conjunction with assigning a discrete value to a variable
(the result of the operation) and propagating the invariant across basic blocks
(to take care of both branches). Since IKOS is a generic static analyzer, we need
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to decouple these aspects so as not to make the structure of the fixpoint iterator
dependent on any particular abstract domain. This is why branch instructions
are eliminated for the AR and replaced by nondeterministic choices (over blocks
headertrue and headerfalse in our example).

Finally, complex instructions in the LLVM IR that model pointer arithmetic
(gep) are replaced by atomic operations on the pointer offsets expressed in bytes
(e.g., the pointer shift operation pshift). Once all these transformations have
been applied, the resulting AR form can be processed by the generic algorithms
of IKOS. Instantiating these algorithms with the domain of intervals provides
enough precision to statically resolve all array access checks and identify the
error in the example.

2.4 The IKOS Library

IKOS is a development platform for static analyzers based on Abstract Inter-
pretation. IKOS is actually a large library of optimized Abstract Interpretation
algorithms. It is accessible through a highly generic API. IKOS is meant to of-
fer a cost-effective way of designing specialized static analyzers. The API for
abstract domains provide the usual services from the abstract interpretation
theory, i.e., abstract operators, comparison operators, lattice elements such as
bottom and top, and narrowing and widening operators. Currently, IKOS offers
implementations for the following numerical abstract domains: constants, inter-
vals, arithmetic congruences [3], octagons [8] and discrete symbolic domains.
Other domains are under development. IKOS also provides an API for fixpoint
iterators.

3 Buffer Overflow Analysis

We have used IKOS to implement an interprocedural buffer-overflow analyzer
for avionic codes in C. The analysis represents less than 600 lines of C++. This
analysis is interprocedural and performs a full expansion of function calls, very
much like Astrée [5]. We have run our buffer overflow analysis on a set of C flight
control systems ranging in size from 35 KLOC to 278 KLOC. The analysis was
conducted on a MacBook Pro with a 2.8 GHz Intel Core i7 processor and 16
GB of memory. In our results presented in Table 1, we include analysis times to
give an idea of the speed of the analysis. We did not try to optimize the analysis
speed. We focused on the precision, which is measured as the percentage of
analysis checks that are classified (as safe or unsafe) with certainty as opposed
to checks that yield warnings (there may or may not be a problem).

The goal was to create an analysis that would yield less than 10% false posi-
tives on flight control codes. The results on our test suite seem to indicate that
we have reached this goal since we always have a precision higher than 90%. The
results also show that we have not sacrificed analysis times for precision since
all analyses are done in a matter of minutes or less. We are in the process of
identifying a large embedded system code base so that we can truly characterize
the scalability of the analysis. Note that our measure of analysis time is really
coarse since we do not attempt to separate time spent analyzing the code from
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Table 1. Buffer Out-of-Range Analysis Results

Code Size Analysis Time Precision

Paparazzi 35 KLOC 22s 99%

Gen2 22 KLOC 1m03s 98%

FLTz 144 KLOC 10m30s 91%

Arduplane 278 KLOC 6m30s 94%

time spent logging results to a file or a database. Our past experience with C
Global Surveyor (CGS) showed that logging results takes a significant amount
of time. So, we find our measured analysis times encouraging.

4 Related Work

The closest related work comes from tools relying on the abstract interpreta-
tion framework, namely C Global Surveyor, CodeHawk, Astrée, and PolySpace
Verifier.

C Global Surveyor [10] (CGS) is the ancestor of IKOS, and, it has had a
large influence on the design of IKOS. However IKOS is a framework to build
analyzers when CGS is an analyzer. The emphasis in IKOS is to factor out the
difficult concepts (abstract domains, fixed-point iterators). We also changed the
front-end (GCC/LLVM instead of EDG) and the database (SQLite instead of
PostGReSQL). Finally, the precision of CGS is not on par with IKOS’ precision
since CGS generally produces about 20% warnings when IKOS is usually in the
1% to 2% range.

CodeHawk [6] is the closest tool to IKOS. It is also a framework for devel-
oping analyses based on abstract interpretation. CodeHawk is a commercial tool
and little public data is available.

Astrée [5] was customized for specific Airbus codes. The impressive results
it achieves inspired us to enable the construction of specialized static analyzers.
The Airbus code is essentially composed of filters, which means that Astrée
focused on floating-point computation, which is not yet addressed by IKOS.
IKOS is addressing a much larger class of C programs. In all honesty, we only can
compare to the original version of Astrée, not the current commercial one.

PolySpace Verifier was the first of this line of static analyzers based on Ab-
stract Interpretation. In many ways, it paved the way for the current generation
of tools. Polyspace Verifier was very successful in analyzing Ada code but fell
short for C and C++. In our own experience [2], scalability was a big issue and
the number of warnings was also important (20% to 50% of all checks).

5 Conclusion

We have given an overview of IKOS, an open-source platform which facilitates
the development of static code analyzers based on Abstract Interpretation. The
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front-end of IKOS relies on LLVM, but it can be easily replaced by other front-
ends since the analyses run on our own intermediate representation. We demon-
strated the precision and scalability of IKOS-based analyzers with an interpro-
cedural buffer overflow analysis.
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Abstract. Teachers of formal methods courses often experience disin-
terest or even disgust towards the topic from software engineering stu-
dents. As one of the significant reasons of this situation we see the fact
that students are not in touch with domains where their use is desired
and worth the effort. In this paper we deal with a toolset we developed
to improve the situation. The toolset brings to students, in a virtual
form, one of the most successful domains of formal methods application
- railway systems. It consists of a modified version of a railway central-
ized traffic control simulator called Train Director and a tool that allows
signals and switches in a railway scenario, simulated by Train Director,
to be controlled by a separate formally developed control program. We
briefly describe the toolset and its typical use within a formal methods
course and discuss its usability with respect to various formal methods.

Keywords: formal methods, teaching, software development, railway
systems, virtual laboratory.

1 Introduction

Almost every university teacher who dedicated a portion of his career to in-
troducing software engineering students to the world of formal methods (FM),
especially to those heavy weighted ones that involve formal verification and re-
finement, faced several serious problems. And in the era we live in, the era of
massification of higher education, one of the most important problems is how to
motivate students to enrol into formal methods courses and to stay in them. Of
course, we often get the “Why should I learn this language (method, approach,
etc.)?” question in “normal” software engineering subjects as well. But there it
can be easily answered by pointing out a number of (local) companies whose em-
ployees use them on regular basis. However, in FM courses we get a more serious
questions, like “Why on earth should I deal with such terrifying stuff like formal
semantics or, heaven forbid, mathematical proofs?”. And the easy answer is not
here. There are only few companies worldwide that use FM in software develop-
ment and they are almost exclusively located in the most developed countries.

D. Giannakopoulou and G. Salaün (Eds.): SEFM 2014, LNCS 8702, pp. 278–283, 2014.
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Instead of it we can, together with the authors of [3], focus on a noble goal
of educating rigorous software engineers who will change the way software is
produced. But will our students follow? It is our strong belief that they will if
we let them play with FM in an appropriate setting. We agree with Almeida
et al. [1] that FM should not be used everywhere, but primarily in cases when
reliability, safety or security are a concern. We can hardly persuade students to
put an extra effort to formal verification of some typical information system, a
computer game or a mobile phone firmware when they already know that such
software is usually released with several bugs, fixed by updates afterwards. And
nothing really bad ever happens. The problem is that these are exactly the types
of systems our students encounter during their university study. So, we need to
introduce them to a domain where use of FM is appropriate, where they will feel
the need of that extra effort. And we have to let them develop something for that
domain, using FM. But what domain to choose? We should pick up one where
software failures may have tragic consequences. It is also important that most of
the students are familiar with the domain and can imagine these consequences
affecting their lives. Moreover, there should be real-life cases from the domain
where human lives are already under the control of automated systems. There
are several candidates but one of the most appealing are railway systems. The
fact that this domain is one of few where FM reached a mature level [2] is a nice
and important bonus.

The domain has been selected, now the question is how to bring it to the stu-
dents. The real railway is definitely out of our reach and to let students develop
a console application on the basis of some text document form of assignment is
hardly motivating. This is exactly where our toolset can help. It replaces the real
railway with a virtual one, represented by a simulation game called Train Di-
rector (http://www.backerstreet.com/traindir). The modifications we made
to the game allow it to be connected to a separately developed control program
(module), which responds to requests from simulated trains by manipulating
switches and signals. And these control modules are the very pieces of software
the students develop using formal methods. The control modules are Java ap-
plications, so the toolset is usable with any FM for which a Java code generator
exists. The appearance and operation of the toolset and control modules, their
place in a FM course and adaptability to various FM are described in the next
section. The final one deals with teaching experiences, related work and plans
for future development.

2 The Toolset and Its Use

The toolset itself consists of two tools - a modified version of Train Direc-
tor, an open source simulator of the railway centralized traffic control and
TS2JavaConn, a Java application whose primary role is to provide communi-
cation between the simulator and control modules.

Train Director is a game that allows a user to create and simulate a railway
scenario, which consists of a track layout and a train schedule. The user’s task

http://www.backerstreet.com/traindir
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a)

b)

Fig. 1. The toolset during a simulation: Train Director (a) and TS2JavaConn (b)

during the simulation is to throw switches and clear signals in such a way that
the trains will follow the schedule. The game has its own logic that prevents col-
lisions and changes some signals automatically. It also provides a simple server
interface for an external control. We modified the game by disabling the internal
logic and implementing train collisions and naming of signals and switches. We
also enhanced the server interface to be able to communicate with TS2JavaConn.
The modified Train Director sends messages to TS2JavaConn every time a train
stops before a red signal (requestGreen message), wants to enter a track layout
(reqestEnter) or departure from a station (reqestDepartureStation). These mes-
sages also contain name of the corresponding signal, entry point or station, name
of the train and names of following stations the train should visit according to
the schedule. A sectionLeave message is sent when a train leaves current track
section and a sectionEnter message when it enters a new one. For the sake of
simplicity a track section always starts and ends at some signal, switch or entry
point. The modified Train Director can also receive messages. These messages
are commands from TS2JavaConn to, for example, start or stop a simulation or
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to change the state of a signal or switch. In Fig. 1 a) we can see Train Director
during a simulation of simple scenario that consists of two entry points e0 and
e1 and two signals sig0 and sig1. There are two track sections, e0_sig1 and
sig0_e1.

TS2JavaConn (Fig. 1 b) was necessary because Train Director is a C++
application and control modules are in Java. We have chosen Java because of its
popularity among students and wide support in FM tools. Having TS2JavaConn
as a separate tool also allows to easily replace Train Director with another sim-
ulator. The tool provides a GUI where a user can load a control module (first
button in the toolbar in Fig. 1 b), unload the module (2nd button) open a tab
with a module generator (3rd button), reset the connection with the simulator
(4th button) or remotely control the simulation in Train Director (round but-
tons). In the “Element state” part of the “Overview” tab a user can observe
in which state track elements are in the simulator (S) and in the module (M).
Communication between the tools can be watched in the “Logger” part. For each
scenario the current version of the module generator can create a control mod-
ule template in Java and in specification languages of formal methods B-Method
and Perfect Developer, together with a corresponding configuration file.

The control module itself is a Java application where one “main” class
contains methods that react to the messages from Train Director and variables
that represent devices from the controlled scenario. How exactly these methods
and variables are mapped to the messages from and devices in Train Direc-
tor is defined in a mandatory text-based configuration file. The possibilities are
wide: for data representation we can use primitive types like integer or boolean,
enumerated sets or mappings. The methods can be non-parametric, where cor-
responding message parameters are parts of their names or parametric, where
they are usual parameters. For example, in a control module for the scenario
depicted in Fig. 1 a) we need two non-parametric methods (reqGreen_sig0 and
reqGreen_sig1) or one parametric method (reqGreen(sig)) to handle the re-
questGreen messages for sig0 and sig1. The number of additional classes and
libraries in control modules is not limited, so the modules can be really sophis-
ticated and complex applications. One may ask why we bother with the non-
parametric representation, but our experience shows that more complex data
representation, necessary for the parametric one, usually makes an automated
verification in FM tools impossible even for very simple scenarios.

The communication between the simulator and a control module can be
seen in Fig. 1, which shows the tools exactly after the moment when a request
for clearing the signal sig0 is received from the train Os001. As we can see in
the “Logger” part, TS2JavaConn responds by calling reqGreen_sig0 method
from the connected control module. The method changes the value of a variable
that represents sig0 and this change is sent back to the simulator (as so-called
multiCommand message) where it sets sig0 to green.

During a FM course the toolset is useful in both lectures and practices. In
lectures the whole method taught can be illustrated by examples utilizing the
toolset. Even very simple scenarios and control modules are able to demonstrate
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benefits (e.g. we can specify safety conditions and prove that they hold in every
state of given program) and drawbacks (e.g. we cannot prove that the safety
conditions we specified are the right ones) of FM. Advanced concepts can be
explained as well. For example, on a refinement from a data representation that
corresponds 1:1 to devices in given scenario to a more effective one or on a
control module composed from reusable components for individual track types
(a straight track, various junctions, etc.). On practices the toolset primarily
provides a virtual laboratory environment and is usually used in the following
way: First a teacher creates a new scenario, or modifies an existing one, in Train
Director. When creating it he should restrict himself to simple red/green signals
and two-way switches. Then he presents the scenario to students with a task
to create a dependable controller for it. The students can then play with the
scenario in Train Director: if it is disconnected from TS2JavaConn, switches and
signals can be operated manually. After getting familiar with the scenario the
students generate an empty module using TS2JavaConn and start to develop the
controller itself, using given formal method and its tools. Finally, they return to
the toolset and run the finished and compiled module with the scenario.

Adaptability of the toolset to various FM was one of the primary concerns
during its development. It has been achieved by making the toolset as indepen-
dent from actual FM tools as possible. There are only two “common points”. The
first one is when a new control module template is generated. Only languages
of two FM are supported yet, but the module generator is based on the Apache
Velocity template engine, so new ones can be added easily. The second point is
when a finished module is connected to and run with the corresponding scenario.
Here the only requirement is that the module has to be a Java application with
an appropriate interface. And Java code generators are available for a wide vari-
ety of FM tools. For example, Perfect Developer (http://www.eschertech.com)
and VDM++ Toolkit (http://www.vdmtools.jp) have built-in generators, for
the Rodin tool (http://www.event-b.org) of the Event-B method they exist
in a form of plug-ins (e.g. EB2J, http://eb2all.loria.fr) and for B-Method
we provide our own generator, called BKPI compiler, optimized for the use with
the Atelier-B tool (http://www.atelierb.eu). We had tested the toolset with
all these methods and code generators and only in the case of EJ2B it was nec-
essary to alter the generated Java code (an explicit constructor was added). In
all other cases it was enough to modify configuration files of the modules.

3 Conclusions

The toolset was already used during two runs of a FM course, which teaches
Petri nets and B-Method, at the home institution of the authors. Petri nets were
explained with abstract models of synchronization problems while almost all ex-
amples in the B-Method part were prepared and presented using the toolset. On
practices the toolset was used in the way described in section 2. Based on the
students’ feedback we can conclude that our belief has been confirmed. When
compared to previous years the students were more engaged and even those who

http://www.eschertech.com
 http://www.vdmtools.jp
 http://www.event-b.org
http://eb2all.loria.fr
http://www.atelierb.eu
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didn’t score very well in other theoretical computer science-based subjects man-
aged to accomplish assignments that incorporated the toolset without significant
problems. Some of them reported that they enjoyed the B-Method part more
that the Petri nets part despite its significantly higher difficulty. And all of them
enjoyed the moment when they have finally seen their control modules running
in the toolset. Of course, problems were reported, too. After the first run (in
2013) the need to write configuration files and whole control modules manually
was identified as the greatest setback. To improve the situation the module gen-
erator of TS2JavaConn has been implemented. Students also reported that it
takes too long to get the modules from FM side to the toolset. But this was
intentional, to prevent students from using the “modify-compile-run” cycle too
often.

The belief we presented is also supported by other educators. The work [4]
shares our view on importance of motivation with respect to massification of
higher education and points out that students will see little benefit in devel-
oping ordinary systems using FM. The authors of [2] see the importance of an
appropriate experimentation platform, which is exactly what our toolset tries to
establish, as high enough to make it one of their ten principles (no. 6).

The future development of the toolset will focus on an improvement of the
module generator and replacement of Train Director by 3D train simulator Open
Rails (www.openrails.org).

This paper dealt primarily with the actual version of the toolset and its use
in a FM course. Additional information, such as the general idea behind the
toolset, related work that led us to the idea, examples of control modules and
the reasons why Train Director was chosen, can be found in other papers by
the authors. These papers, the toolset, the BKPI compiler and a set of exam-
ples with control modules developed using various FM can be downloaded from
https://kega2012.fm.kpi.fei.tuke.sk.
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Abstract. Validation of a system design enables to discover specifica-
tion errors before it is implemented (or tested), thus hopefully reducing
the development cost and time. The Unified Modelling Language (UML)
is becoming widely accepted for the early specification and analysis of
requirements for safety-critical systems, although a better balance be-
tween UML’s undisputed flexibility, and a precise unambiguous seman-
tics, is needed. In this paper we introduce UMerL, a tool that is capable
of executing and formally verifying UML diagrams (namely, UML state
machine, class and object diagrams) by means of a translation of its be-
havioural information into Erlang. The use of the tool is illustrated with
an example in embedded software design.

1 Introduction

A better integration with the development process is crucial for the success
of UML as a language for the specification and design of safety-critical soft-
ware. This requires tools capable of validating complex requirements, and link-
ing them to operational code through an unambiguous semantics. With these
goals in mind we have developed UMerL, a tool that executes and verifies UML
designs consisting of UML2 state-machine, class and object diagrams, using
the concurrent language Erlang [1]. UMerL is available (with source code) at
https://bitbucket.org/fredlund1/umerl.

UMerL differs from other analysis tools [2–4] in that an executable prototype
is first produced, and then the validation of the UML model is done by per-
forming various analyses on that prototype. Using Erlang has been crucial for
implementing this approach. First, Erlang’s concurrency features simplified the
task of coding the state machine interpreter, which has to run several state ma-
chines with little runtime overhead. Also, the availability of advanced analysis
tools for Erlang like Quviq QuickCheck [5] or the McErlang model checker [6]
facilitates model validation without having to introduce a new set of tools.

Outline. Sec. 2 describes UMerL. Sec. 3 relates the application of UMerL to a
real industrial case in embedded software design. We focus on the execution of
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state-machine diagrams in Erlang and the verification of behavioural properties
by program analysis on the Erlang code. Finally, Sec. 4 concludes the paper.

2 The UMerL Tool

UMerL is an interpreter of UML state machines implemented in Erlang that ex-
ecutes a system modelled as a collection of UML state machines with acceptable
performance. Its design also allows us to verify using model checking techniques
whether a UML system meets some correctness properties. UMerL executes the
UML state machines inside an object following a UML-friendly semantics: the
meaning assigned to the constructs is consistent with respect to the UML (in-
formal) semantics. An excerpt of the supported semantics and its interpretation
by UMerL is described in Sec. 2.1.

System Description. In UMerL, a system description consists of a UML class
diagram, a set of UML state-machine diagrams each one associated to a class
and a UML object diagram. Each object has a private data store defined by the
properties indicated in the class diagram. Several UML state-machine instances
are running in each object, one for each UML state-machine associated to its
class. To describe the system a domain specific language embedded in Erlang
is used. The environment of the system can communicate with an object (and
its associated state machines) by simply sending normal Erlang messages to the
Erlang process associated with the object.

Verification Workflow. Figure 1 depicts the verification workflow of UMerL. A
verification scenario consists of a system description and an environment model.
The environment model sends messages and signals to the objects. We use Quviq
QuickCheck [5] to randomly generate sequences of sensible messages. UMerL
provides two functionalities: the system can be executed (with user interaction),
providing early feedback regarding behaviour; or the verification scenario can
be (model) checked against a set of correctness properties specified in Linear
Temporal Logic (LTL) [7]. Properties are defined by the user using the McErlang
tool [6], which provides a counterexample (in terms of message traces) when an
LTL property is not satisfied by the system.

Fig. 1. Verification workflow of UMerL
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Architecture. UMerL maps each object to a single Erlang process: a generic
interpreter that executes transitions of the UML state machines in that object,
i.e., an individual UML state machine is not mapped to an Erlang process. Every
step of the generic interpreter consists in choosing, non-deterministically, one of
the enabled transitions and executing it (see Section 2.1).

A message sent to an object is received by its associated process, and is
broadcast to every UML state machine running in the object. Conceptually,
each state machine has its own mailbox for storing incoming messages until they
are processed. Mailboxes are ordered in our implementation, i.e., if a message
m1 arrives before a message m2, then m1 will precede m2 in the mailbox.

2.1 Semantics

Transition execution. A transition of a UML state machine can be executed when
it is enabled: the mailbox contains a message that matches the trigger and the
guard (a condition expressed over the contents of the message and the object
data store) evaluates to true. The execution of a transition consists of three
steps: (1) processing the first eligible message in the mailbox, (2) executing the
activity that updates the private data store and sends messages to other objects,
and (3) entering the target state. The execution of a transition appears to occur
instantaneously since the execution of transitions follows a linearizable (atomic)
semantics (atomicity does not necessarily mean mutually exclusive).

Do activities. A do activity is managed by an independent Erlang process,
which is terminated when the execution of a transition leads outside the state.

Entry and exit activities. The semantics of an entry is implemented by adding
it to the activity of every transition entering the state; an exit is implemented
by adding it to the activity of every transition leaving the state.

Processing of messages. The most interesting aspect in our implementation is
the processing of messages during the execution of a transition, and the deferral
of messages. A message in the mailbox is eligible when it matches the trigger of
a transition, and the corresponding guard evaluates to true. Our implementation
chooses the oldest eligible message providing the additional guarantee (compared
to the standard semantics for UML state machines) that messages from the same
object are treated sequentially.

Deferral of messages. According to the UML semantics, when a message ar-
rives in a state, there is no transition with a matching trigger or guard, and
the deferral condition does not mention the trigger, the message should be dis-
carded. This semantics still leaves room for interpretation in the implementation.
As UMerL provides an ordering guarantee for messages (see above), it is possi-
ble to talk about the arrival order of messages. It is for instance clear that all
non-deferrable messages that arrived before a message which causes a transition
to be taken, are to be discarded. The doubt is which deferral annotation (the
one at the source state, or the one at the target state) should affect the messages
that arrived later than the message which caused the transition.

An eager semantics would discard all the messages not deferred by the source
state while a lazy semantics would discard all the messages not deferred by the
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target state. The implications are crucial. For instance, in a two step commu-
nication protocol where one machine sends two messages m1 and m2 in two
consecutive transitions, and the other machine receives both messages, message
m2 could be discarded if the second machine does not defer it in the initial state
(m1 and m2 could both be received when the machine is in that state).

In our experience a designer of a distributed asynchronous system regularly
makes mistakes causing messages to be silently discarded. We have decided to
implement several semantic options to permit a designer to experiment with
different interpretations of the discarding rule: (i) enable as the default that all
messages are deferrable in states which has no explicit deferral condition. The use
of such an option is, we argue, preferable when modelling distributed systems
using state machines as it leads to fewer errors committed and less syntactic
clutter (avoiding the need to repeat defer annotations in all states); and (ii) the
choice of an eager or lazy deferral semantics, the default being lazy.

3 Safety Assessment of an Embedded Software Design

As case study, we consider a system for managing door operations in a train,
provided by an industrial partner in a collaborative project. The system is com-
posed of three major parts represented by UML classes: a Train Control Man-
agement System (TCMS), a traction system, and several doors. The traction
system moves the train, or stops it. The doors allow passengers to enter or exit
the coaches. Finally, the TCMS is an embedded device in charge of supervising
both the traction system and the doors, to ensure safe operation.

Figure 2(a) and (b) show the UML-State Machine diagrams (UML-SMs) of
the Door and TCMS classes, respectively. A Door object starts closed and disabled,
and can be opened once it has been enabled (which is performed by the TCMS
after receiving a enableDoors message), if a passenger presses the door button
(triggering the sending of buttonPressed message to a door). Once a door is
again disabled, it can be closed when no obstacle is detected. The TCMS starts
in state Idle, which represents a state where the train is stopped. A message
enableDoors will be eventually sent (by the train driver) and received by the
TCMS. Then, the TCMS sends to each Door an enable message, and waits
for an acknowledgement message (notify). The TCMS reports that all doors
have been enabled by switching an informative LED off, and waits until the
message disableDoors is received. After receiving it, the TCMS sends a disable

message to each Door, and it waits a safety time interval of 5 seconds, before
enabling the Traction, and moving to the MovingTrain state. This safety time
is designed to permit to verify that all doors have been correctly closed. The
transition from MovingTrain to StoppingTrain is triggered by the stopTrain

message, and the TCMS acts by sending the disablemessage to Traction. The
signal trainStopped is received once the train has been completely stopped, and
so TCMS moves to the Idle state again.

Safety Assessment. A correctness property that must be assured in the system is
that No door should be open when the train is moving. This is a safety property,
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(a) UML-SM of Door class

(b) UML-SM of TCMS class

Fig. 2. UML-State Machine diagrams of (a) Door and (b) TCMS classes

i.e., stating that something bad never happens. Note that the state predicate “a
door is open” is true when the value of attribute status in a Door object is
equal to OPENED. The predicate “the train is moving” is true when the value of
attribute speed (in the Traction class, not shown here) is greater than zero. As
a verification example, given an environment model in which an enableDoors

message is first received by TCMS, and then a buttonPressed message is sent
to a door, the McErlang model checker can verify that the two predicates above
are never true in the same system state.

The above property can also be reformulated as all doors must be closed when
the train is moving, i.e., the status attribute of a door must be CLOSED. Given that
the status attribute of a door can be either OPEN, CLOSED, ENABLED, OPENING
or CLOSING, this is a more restrictive (and safe) formulation. If we use the same
environment model, except that we assume that a disableDoors message also
arrives at the TCMS, the McErlang tool quickly finds a counterexample to the
second property. The counterexample indicates that the failure is that a door
may not have had sufficient time to process earlier messages sent to it.
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In brief, we have verified the above safety property for a coach with two doors
in 0.35 seconds using McErlang (running under an Intel i7-2640MCPU with 8GB
memory), with a resulting state space of 1,133 states, under the assumption that
all messages are deferrable. The model of a coach with three (and four doors)
has 7,323 (53,743 states), and its checking time is 1.74 seconds (14.88).

4 Conclusion

The experimental results obtained with our tool are quite promising. Although
the tool works with only three kinds of UML diagrams and a quite restrictive
syntax for state-machine diagrams (which has been crucial for defining the under-
lying semantics), the language is expressive enough to model embedded systems
of a moderate complexity, e.g., the train doors example used here.

Several other tools exist which perform model checking on UML state ma-
chines. USMMC [2] is remarkable for being self-contained, it does not rely on a
foreign formalism and checker, thus avoiding some inconveniences of translation-
based tools like HUGO [4] or UMerL. However, UMerL does have a number
of advantages too. First, an executable prototype, constructed from the UML
model, provides early validation that can reveal mistakes even before attempting
a detailed verification. Moreover, UMerL users can take advantage of existing
analysis and testing tools for Erlang such as McErlang and QuickCheck.

To improve the usability of the tool a translation from the XMI notation is
being implemented, and verification counterexamples will be presented as UML
Sequence Diagrams. We also aim at specifying LTL properties at the UML level
using a UML-friendly syntax, such as Object Constraint Language (OCL). More-
over, we aim at supporting hierarchical structures and pseudo-states among other
UML features missing from the current prototype.
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Abstract. This paper presents a tool for verifying dynamic properties
using the B formal method. For example, in a library system, typical
dynamic properties would be that a member has a possibility to borrow
a book or make a reservation if it is already reserved by another member.
Starting from a B specification and a dynamic property, this tool gen-
erates the proof obligations that permit the user to check whether the
property is verified on the B specification. The goal of such a tool is to
discharge the users from tedious and error-prone activities.

1 Introduction

In this paper, we present a tool developed in JAVA for proving dynamic proper-
ties using the B formal method [1]. Verification of these properties is an impor-
tant phase in the development process of many systems like information systems,
access control, etc. Contrary to invariance properties, dynamic properties depend
on several system states. We are interested in three types of dynamic properties:
reachability, absence and precedence properties. In practice, these properties are
very common and useful in several domains and applications. In a library sys-
tem, for instance, a reachability property will be used to state that a member
can always borrow a book. An absence property can express that if a member
me1 reserves a book bo before a member me2, then it is impossible for me2 to
take the book bo before me1.

2 Presentation of the Tool

Our tool implements the verification of several dynamic properties including
reachability [2,3], absence [4] and precedence [5]. The verification methods im-
plemented in the tool are based on a formal specification of the system using
the B method. This formal specification consists of a set B operations acting on
variables representing the state of the system. A reachability property, expressed
in CTL as AG(ψ ⇒ EFφ), specifies that from a state s satisfying ψ, the system
can reach a state s′ where φ becomes true. To prove a reachability property on a
system specified by a B machine, two approaches have been developed. Accord-
ing to the first one, the user must provide a set of paths such that each path leads
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from the initial state to the target one. These paths come from the use cases
identified during requirements analysis to reach ψ from φ. Each path consists of
a set of B operation calls combined with programming constructs like sequenc-
ing ";", IF and LOOP. The key idea of the approach consists in calculating the
intermediate values of each variable (the post-condition of a sub-path) and prov-
ing that at each point of the path, the current values satisfy the precondition of
the next action. The second approach is based on substitution refinement of the
B method. This approach uses Morgan’s specification statement [6] to represent
a reachability property and refinement laws to prove it. An absence property of
the form Abs(P2, From P1 Until P3) expresses that from a state satisfying pred-
icate P1, the system cannot reach a state where P2 is true, until it has reached
a state that satisfies predicate P3. Such a property can be expressed in LTL [7]
by �(P1 ⇒ ¬P2WP3). We have also defined a second variant of such a property
of the form Abs(P2, After P1Until P3) that states that some states, represented
by predicate P2, should not be reached after the system entering a state that
verifies P1 until P3 becomes fulfilled. In LTL, such a property is represented by:
�(P1 ⇒ X(¬P2WP3)). Finally, a precedence property of the form Prec(P1, P2)
that expresses that if a state, presented by predicate P2, is reached then there
should exist a state, in the past, that verifies P1. For these different properties,
the tool generates a set of proof obligation that permit to verify them on a B
specification modeling a given system.

The processing flow of our tool can be divided into four main steps (see Figure
1). The tool takes as input two text files that correspond to the B specification
of the system and the property to verify. These files are then parsed, using the
abstract syntax tree generated by the SableCC parser, to extract the information
they contain. To this aim, we have extended the JAVA class DepthFirstAdapter
generated by SableCC. This class allows one to browse the syntax tree and to
perform processing on the nodes of this tree. The information extracted from the
input files are stored in the JAVA objects SpecSys and Spec_Prop. These objects
are used to generate the proof obligations required to verify the related dynamic
property. As output, the tool produces the same B specification, provided as
input, in which the generated proof obligations are added as assertions. The
correctness of these assertions are then proved using AtelierB [8]. To generate
the proof obligation related to a given dynamic property, several steps have
to be followed. For sake of the concision, this paper gives details only for the
reachability property. More details can be found in [5].

Figure 2 depicts the different steps followed by the tool to generate the proof
obligations required for the verification of the reachability property according to
the approach proposed in [2]. This approach introduces an algorithm that takes
as input a formula that expresses the property to check and a set of guarded paths
that lead to the desired state. As output, this algorithm generates a set of proof
obligations that ensures that the system can reach the desired state by following
these paths. A guarded path is of the form cond � (Act1;Act2; ......;Actn) with
";" denoting action sequencing and Acti an action. This path can be executed
only if guard cond is true.
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Fig. 1. Information flow of the tool

To verify a reachability property of the form AG(ψ ⇒ EFφ), the key idea of
this approach is to prove that:

1. The execution of a path leads to φ:

ψ ∧ cond⇒ [(Act1;Act2; ......;Actn)]φ PO1

where [S]P denotes the weakest conditions under which the execution of
substitution S terminates in a state that verifies predicate P .

2. At least one path can be executed starting from any state satisfying ψ (where
m is the number of paths):

ψ ⇒
∨

i=1,..,m condi PO2

To establish (PO1), one must prove that: (1) action Act1 can run if the current
state satisfies ψ and cond; (2) the state reached after the execution of each action
Acti satisfies the precondition of the next action Acti+1, (3) φ is true after the
execution of the last action Actn.

According to Fig 2, this is achieved in two phases. The first phase produces
the proof obligation associated with each path. It is composed of the three steps
listed above. The second phase generates a proof obligation to guarantee that,
from a state where ψ is true, at least one path can run (PO2). These phases
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have been implemented by defining methods that calculate the precondition and
post-condition of an action. Since an action Acti is executed with the variable
values xi−1 obtained after the execution of the previous action Acti−1, we have
implemented a method to replace each variable x of action Acti by its value
xi−1. This substitution method takes into account all the possible B expressions,
which includes sets, relations, functions, sequences, integers, and predicates.

Fig. 2. Process of generating proof obligations

3 Discussion

There are three main approaches to verifying dynamic properties: testing, model
checking or theorem proving. Testing is the most widely used method in practice,
but it suffers from a lack of automation and limited coverage of the test space.
Model checking has the advantage of being more automatic, but it quickly suffers
from combinatorial explosion, thus limiting the size of the models checked as
shown in [9]. Consequently, the confidence in the correctness of the system is
limited to the relatively small size of the models analyzed. Theorem proving
requires more human intervention and sometimes considerable expertise, but it
certifies the correctness of the system, since proofs are valid for any models.
However, little attention has been paid so far to proofs of temporal properties,
because they are more complex to carry out than typical invariance properties.

Even if some proof-based approaches for the verification of dynamic properties
have been already developed, however they are not dedicated for information
systems and require consequent efforts. More detailed literature description can
be found in [5]. In [10], Abrial and Mussat introduced the leadsto modality of
UNITY for an ancestor of Event-B. UNITY’s leadsto, denoted by ψ � φ, is
defined in LTL as �(ψ ⇒ 0φ). This modality is proved by showing that a set
of events decrease a variant V . This work has been extended in [11] by adding
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UNITY’s ensures modality as well as minimal progress. In [12], a set of rules
that permit to reason about liveness properties are presented. A variant of the
reachability property is dealt with: the authors provide conditions that ensure
that a program can always reach a given state whatever its behavior. For our
application domain, information systems, such properties are not suitable since
a user is never forced to execute an action. In other words, the behavior depends
on the user’s actions that cannot be controlled: it is not possible to prove that
all the possible paths lead to a target state. In our domain, we are interested in
ensuring the existence of at least one path to the target state. Furthermore, all
these approaches are not supported by any tool.

ProB [13], developed at the University of Düsseldorf, implements a model
checking technique to check LTL and CTL properties against a B specification.
Even if such a tool is very useful in the initial verification steps to exhibit the
properties that become rapidly falsifiable, it cannot be used for asserting the
validity of a property because of the rapid state space explosion problem which
is inherent in the IS domain [14].

During the design of our tool, one of the main difficulties we faced is the choice
of a suitable existing B parser in order to avoid developing a new one from scratch.
To this aim, we have selected the parser developed for ProB1. This parser has
been extended to include the concepts of paths, guarded actions/paths that are
relevant in our work. The tool has been experienced on several case studies for
which it provides, in term of performance, interesting runtime: for a B specifica-
tion containing five operations (actions) about 2 seconds are required for the gen-
eration of all the properties we have dealt with [5]. The tool can now be accessed
on-line at the following url: http://www.dmi.usherb.ca/~frappier/DynamicB.

4 Conclusion

In this paper, we have presented a tool that automates some verification ap-
proaches for dynamic properties. From two input files representing the B speci-
fication of a system and the dynamic property to be verified, the tool automat-
ically generates the proof obligations required to prove it. Our tool deals with
reachability together with absence and precedence properties, but can be easily
extended to support other types of property. Also to facilitate the use of the
tool, we have implemented a graphical interface that permits the user to choose
the input files. After six months of implementation, we have automated two ap-
proaches for the verification of reachability properties and two approaches for
the absence properties.

We plan to extend our tool to take into account other types of property pat-
terns that would be interesting for information systems. As an example, we can
cite the response property, which permits specifying that a state is always fol-
lowed by an other specific state. Such a pattern will be used to express, for
instance, that a client that asks for a book is either satisfied or put in a reserva-
tion queue in order to take the book when it becomes available. Moreover, the
1 https://github.com/bendisposto/probparsers

http://www.dmi.usherb.ca/~frappier/DynamicB
https://github.com/bendisposto/probparsers
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approach defined here can be adapted for the Event-B approach [15]. In that
way, the tool can be integrated as a plugin to the Rodin platform2.
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Department of Distributed and Dependable Systems
Faculty of Mathematics and Physics

Charles University in Prague, Czech Republic

Abstract. Static analysis of web applications developed in dynamic lan-
guages is a challenging yet very important task. In this paper, we present
WeVerca, a framework that allows one to define static analyses of PHP
applications. It supports dynamic type system, dynamic method calls, dy-
namic data structures, etc. These common features of dynamic languages
cause implementation of static analyses to be either imprecise or overly
complex.Our framework addresses this problembydefining end-user static
analyses independently of value and heap analyses necessary just to resolve
these features. As our results show, taint analysis defined using the frame-
work found more real problems and reduced the number of false positives
comparing to existing state-of-the-art analysis tools for PHP.

1 Introduction

PHP is the most common programming language used at the server side of web
applications. It is notably used, e.g., by Wikipedia and Facebook. PHP as well
as other dynamic languages contains dynamic features, such as dynamic type
system, dynamic method calls (names of called methods are computed at run-
time), and dynamic data structures (names of object fields are computed at
run-time and object fields can be added at run-time). These features provide
flexibility accelerating the development. However, they make applications more
error-prone and less efficient. Consequently, they shift more work to tools for
error detection, code refactoring, and code optimization.

For most of these tools, static program analysis is a necessary prerequisite.
Unfortunately, dynamic features pose major challenges here. To precisely resolve
these features, the end-user analysis (e.g., taint analysis) needs to be combined
with value and heap analyses. Importantly, these analyses must interplay. To
resolve dynamic accesses to data structures, the heap analysis needs to evaluate
value expressions and the value analysis must track values over heap elements—
array indices and object fields.

In this paper we present WeVerca
1, an open-source static analysis frame-

work for PHP.WeVerca allows to define end-user static analyses independently

� This work was partially supported by the Grant Agency of the Czech Republic
project 14-11384S and by Charles University institutional funding SVV-2014-260100.

1 http://d3s.mff.cuni.cz/projects/formal_methods/weverca/
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of dynamic features. This is possible because: (1) WeVerca defines an inter-
play of value and heap analyses allowing to define these analyses independently
of each other. (2) WeVerca comes with default implementations of context-
sensitive heap and value analyses that model associative arrays and prototype
objects, track values of PHP primitive types, and model library functions, native
operators, and type conversions. (3) WeVerca defines how information from
heap and value analyses are used to resolve dynamic features (i.e., to compute
control-flow and resolve dynamic data accesses). As a proof of the concept, we
implemented static taint analysis for detection of security problems.

2 Example

As an example, consider static taint analysis, which is commonly used for web
applications. It can be used for detection of security problems, e.g., SQL injection
and cross-site scripting attacks. The program point that reads user-input, session
ids, cookies, or any other data that can be manipulated by a potential attacker
is called source, while a program point that prints out data, queries a database,
etc. is referred to as sink. Data at a given program point are tainted if they can
pass from a source to this program point. A tainted data are sanitized if they are
processed by a sanitization routine (e.g., htmlspecialchars in PHP) to remove
potential malicious parts of it. Program is vulnerable if it contains a sink that
uses data that are tainted and not sanitized.

Static taint analysis can be performed by computing the propagation of tainted
data and then checking whether tainted data can reach a sink. The propagation
of tainted data computed by forward data-flow analysis is shown in Tab. 12. The
analysis is specified by giving the lattice of data-flow facts, the initial values of
variables, the transfer function, and the join operator.

Table 1. Propagation of tainted data

Lattice L true
Top � Bool
Initial value init(v) true if v ∈ $ SESSION ∪ ..

false otherwise
Transfer function TF (LHS = RHS) var =

∨
r∈RHS r if var ∈ LHS

var = var otherwise
TF (n) var = var if n is not assignment

Join operator �(x, y) x ∨ y

Consider now the code in Fig. 1. At lines (1)–(9) classes for processing the
output are defined. They can either log the output or show the output to the
user. While the Templ1 class uses a sink command to show the output, Templ2
uses a non-sink command (e.g., does not send the output to the browser directly,
but sanitizes it first). At lines (13)–(16) the application mode is set based on
the value of DEBUG either to log—the application will log the output—or to

2 For simplicity we omit the specification of sanitization.
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show—the application will show the output to the user. At lines (17)–(20) the
skin is set based on user input. At line (21), the array $users is initialized with
the address of administrator. This value is not taken from any source and can
be directly shown to the user. Note the update at line (11) is correct even if the
variable $users is uninitialized. In PHP, if a non existing index is updated, it is
automatically created and if the update involves next dimension, the index is ini-
tialized with an empty array. At lines (23)–(24) information about the user name
and user address is assigned to the array $users. Note that this information is
tainted. Finally, at lines (25)–(26) data are processed to the output.

1 class Templ {
2 function log($msg) {...}
3 }
4 class Templ1 : Templ {
5 function show($msg) { sink($msg); }
6 }
7 class Templ2 : Templ {
8 function show($msg) { not sink($msg); }
9 }

10 function initialize(&$users) {
11 $users[’admin’][’addr’] =

get admin addr from db();
12 }
13 switch (DEBUG) {

14 case true: $mode = ”log”; break;
15 default: $mode = ”show”;
16 }
17 switch ($ GET[’skin’]) {
18 case ’skin1’: $t = new Templ1(); break;
19 default: $t = new Templ2();
20 }
21 initialize($users);
22 $id = $ GET[’userId’];
23 $users[$id][’name’] = $ GET[’name’];
24 $users[$id][’addr’] = $ GET[’addr’];
25 $t−>$mode($users[$id][’name’]);
26 $t−>$mode($users[’admin’][’addr’]);

Fig. 1. Running example

The code contains two vulnerabilities. At lines (25) and (26) the method show

of Templ1 can be called, its parameter $msg can be tainted and the parameter goes
to the sink. Taint analysis defined using WeVerca detects both vulnerabilities.
Note that the definition of taint propagation uses just the information in Tab 1.
This is possible only because WeVerca automatically resolves control-flow and
accesses to built-in data structures. That is, WeVerca computes that the vari-
able $t can point to objects of types Templ1 and Templ2 and that the variable
$mode can contain values show and log. Based on this information, it resolves calls
at lines (25) and (26). Moreover, asWeVerca automatically reads the data from
and updates the data to associative arrays and objects, at line (24), the tainted
data are automatically propagated to index $users[’admin’][’addr’] defined
at line (11). Consequently, the access of this index at line (26) reads tainted data.

3 Tool Description

The architecture of WeVerca is shown in Fig. 2. For parsing PHP sources and
providing abstract syntax tree (AST)WeVerca usesPhalanger3. The analysis
is split into two phases. In the first phase, the framework computes control-flow of
the analyzed program together with the shape of the heap and information about
values of variables, array indices and object fields. Then it also evaluates expres-
sions used for accessing data. The control-flow is captured in the intermediate rep-
resentation (IR), while the other information is stored in the data representation.

3 http://www.php-compiler.net/

http://www.php-compiler.net/
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Fig. 2. The architecture of WeVerca

IR defines the order of instructions’ execution and has function calls, method calls,
includes, and exceptions already resolved. In the second phase, end-user analyses
of the constructed IR are performed. The tool includes the following parts:

– Data Representation stores analysis states and allows to access them—it
allows to read values from data structures, write values to data structures,
and modify the shape of data structures. Next, it performs join and widening
of the states and defines their partial order. Importantly, data representation
defines the interplay of heap and value analyses allowing each analysis to
define these operations independently. WeVerca contains implementation
of heap analysis described in [1]. It supports associative arrays and objects of
an arbitrary depth (in PHP, updates create indices and properties if they do
not exist and initialize them with empty arrays and empty objects if needed;
on contrary, read accesses do not, so updates of such structures cannot be
decomposed). Accesses to these structures can be made using an arbitrary
expression yielding even statically unknown values.

– First-phase implementationmust define value analysis that tracks values
of PHP primitive types and evaluates value expressions. Next, it must han-
dle declaration of functions, classes, and constants. Finally, it must compute
targets of include statements and function and method calls, and it must de-
fine context sensitivity. WeVerca contains a default implementation of the
first phase providing fully context-sensitive value analysis precisely modeling
native operators, native functions, and implicit conversions.

– End-user analyses can be specified using an arbitrary value domain. This
is possible because (1) control-flow is already computed, (2) the shape of
the heap is computed and dynamic data accesses are resolved—all informa-
tion that data representation needs to discover accessed variables, indices,
and fields are available. (3) Data representation combines heap and value
analyses automatically, i.e., to perform operations with analysis states, it
uses standard operations of combined analyses. The framework contains an
implementation of static taint analysis as a proof-of-the-concept.

4 Results

To evaluate the precision and scalability of the framework, we used the frame-
work to implement static taint analysis and we applied it to a NOCC webmail
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client4 and a benchmark application comprising of a fragment of the myBlog-
gie weblog system5, with a total of over 16,000 lines of PHP code. While the
benchmark application contains 13 security problems, in the case of the webmail
client, the number of problems is not known.

Tab. 2 shows the summary of results together with the results of Pixy [3] and
Phantm [4], the state-of-the-art tools for security analysis and error discovery
in PHP applications. The table shows that the analysis defined using WeVerca

outperforms the other tools both in error coverage and number of false positives
when analyzing the benchmark application. While it took WeVerca more than
5 minutes to analyze the webmail client and 52 alarms were reported, Pixy was
even not able to analyze this application.Phantm analyzed the application in two
minutes, however, the false-positive rate of 93% makes its output almost useless.

Out of 13 problems in the benchmark application, WeVerca discovered all
of them. One of the false alarms reported by WeVerca is caused by imprecise
modeling of the built-in function date. WeVerca only models this function by
types and deduced that any string value can be returned by this function. How-
ever, while the first argument of the function is "F", the function returns only
strings corresponding to English names of months. When the value returned by
this function is used to access the index of an array, WeVerca incorrectly re-
ports that an undefined index of the array can be accessed. Two remaining false
alarms are caused by path-insensitivity of the analysis. The sanitization and sink
commands are guarded by the same condition, however, there is a joint point be-
tween these conditions, which discards the effect of sanitization from the perspec-
tive of path-insensitive analysis. While the first false-alarm can be easily resolved
bymodeling the built-in function more precisely, the remaining false alarmswould
require more work. One can either implement an appropriate relational abstract
domain or devise a method of path-sensitive validation of alarms.

Table 2. Comparison of tools for static analysis of PHP. W/C/F/T: Warnings / error
Coverage (in %) / False-positives rate (in %) / analysis Time (in s). The best results
are in bold.

Lines WeVerca
W/C/F/T

Pixy
W/C/F/T

Phantm
W/C/F/T

myBloggie 648 16/100/19/2.2 16/69/44/0.6 43/23/93/2.5
NOCC 1.9.4 15605 52/NA/NA/332 NA 426/NA/NA/130

5 Related Work

The existing work on static analysis of PHP and other dynamic languages is
primarily focused on specific security vulnerabilities and type analysis.

Pixy [3] performs taint analysis of PHP programs and it provides information
about the flow of tainted data using dependence graphs. It involves a flow-
sensitive, interprocedural, and context-sensitive data flow analysis along with

4 http://nocc.sourceforge.net/
5 http://mybloggie.mywebland.com/

http://nocc.sourceforge.net/
http://mybloggie.mywebland.com/
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literal and alias analysis to achieve precise results. The main limitations of Pixy
include limited support for statically-unknown updates to associative arrays,
ignoring classes and the eval command, omitting type inference, and limited
support for handling file inclusion and aliasing. Alias analysis introduced in Pixy
incorrectly models aliasing when associative arrays and objects are involved.

Phantm [4] is a PHP 5 static analyzer for type mismatch based on data-flow
analysis; it aims at detection of type errors. To obtain precise results, Phantm
is flow-sensitive, i.e., it is able to handle situations when a single variable can be
of different types depending on program location. However, they omit updates
of associative arrays and objects with statically-unknown values and aliasing,
which can lead to both missing errors and reporting false positives.

TAJS [2] is a JavaScript static program analysis infrastructure. To gain precise
results, it models prototype objects and associative arrays, dynamic accesses to
these data structures, and implicit conversions. However, TAJS combines com-
bines heap and value analysis ad-hoc, which results in intricate lattice structure
and transfer functions.

6 Conclusion and Future Work

In this paper, we presented WeVerca, a framework for static analysis of PHP
applications. WeVerca makes it possible to define static analyses indepen-
dently of dynamic features, such as dynamic includes, dynamic method calls,
and dynamic data accesses to associative arrays and objects. These features are
automatically resolved using information from heap and value analyses, which
are automatically combined.

Our prototype implementation of static taint analysis outperforms state-of-
the-art tools for analysis of PHP applications both in error coverage and the false-
positive rate. We believe that WeVerca can accelerate both the development
of end-user static analysis tools and the research of static analysis of PHP and
dynamic languages in general.

For future work, we plan to improve the scalability and precision of analy-
ses provided by the framework. In particular, this includes the scalability im-
provements of data representation, implementation of more choices of context-
sensitivity, more precise widening operators, and devising precise modeling of
more library functions.
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Abstract. Object invariants are used to specify valid object states.
They play a central role for reasoning about the correctness of object-
oriented software. Current verification methodologies require additional
specifications to support the flexibility of modern object oriented pro-
gramming concepts. This increases the specification effort and represents
a new source of error. The presented methodology reduces the currently
required specification overhead. It is based on an automatic control flow
analysis between code positions violating invariants and code positions
requiring their validity. This analysis helps to prevent specification errors,
possible in other approaches. Furthermore, the presented methodology
distinguishes between valid and invalid invariants within one object. This
allows a (more) flexible definition of invariants.

Keywords: Object Invariants, Dependency Analysis, Reduced Specifi-
cation Overhead.

1 Introduction

Invariants specify relations on the program’s data, which are expected to hold
during the program execution. Besides other contract types, e.g. pre- and post-
conditions, invariants play a central role for reasoning about the correctness of
object-oriented software [1–3]. It is generally accepted when pre- and postcon-
ditions must be valid. Preconditions must be valid at call time of a method
and postconditions at a methods completion. But there exists no unique def-
inition regarding the scope of an invariant, which specifies when an invariant
must be valid. Different approaches exist regarding the definition of invariants
and the supported scope. To handle the flexibility of object oriented concepts,
current approaches introduce and require additional specifications. These addi-
tional specifications are used to define explicitly when an invariant or object
must be valid or which methods are allowed to invalidate an invariant. But they
also cause additional specification overhead and represent a new source of error.

This paper describes a new methodology to generate proof obligations for
invariants. Figure 1 illustrates how the presented methodology is embedded in a
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Proof
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Step 3: Finding depending 
            Code Positions
Step 4: Building Verification
            Graph
Step 5: Analyse scope
Step 6: Create POs

Fig. 1. Process flow diagram of our methodology

verification process. It is based on a static code analysis consisting of six steps.
We begin in Step 1 to analyse all references of each invariant. In Step 2 we search
code positions modifying the referenced values. These positions may invalidate
the corresponding invariant. In Step 3 we search code positions depending on the
validity of an invariant. In Step 4 we analyse backwards the possible call stack of
each found code position and build a special call graph, called Verification Graph.
In Step 5 we use the generated Verification Graph to analyse when invariants
are invalidated and when they need to be re-established. We call this the Scope
of an invariant. This information is used in Step 6 to generate proof obligations,
ensuring the validity of an invariant whenever it is expected to hold. Therefore
they are very similar to a Hoare-Triple [4]

The remainder of this paper is structured as follows: In Section 1.1 we in-
troduce current methodologies for specifying and verifying invariants and detail
their limitations. The contributions of the presented methodologies are listed in
Section 1.2. A formal description of our methodology is given in Section 2. In
Section 3 we show how this approach is applied to several examples. In Section
4 we conclude and introduce possible future work.

1.1 Related Work and Current Limitations

The classical Visible State Technique (VST) [5], as used in Eiffel [6] or Java
Extended Static Checking [7], is the most restricted methodology verifying in-
variants. In this concept, invariants are allowed to reference only class fields of
the same object. Each invariant must be valid in every public state. Therefore,
one must show that each invariant of an object is valid before and after any
public exported method has been executed. The limitations of the VST are well
analysed in the literature [5, 8]. Due to its strictness the VST does not require
any additional specifications. But it is also not flexible enough to support con-
structs like recursive methods, inheritance or invariants referring to values of
multiple classes (multiclass invariants).

The ownership technique (OST) [9, 10, 5, 11] structures the set of objects in
a acyclic hierarchical graph. Each object has at most one owner, which defines
one context, containing all its (transitively) owned objects. Objects without any
owner are part of the global context. The ownership model permits an object to
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reference directly owned objects (rep references) and objects in the same context
(peer references). Invariants may reference class fields of its own class and of all
(transitively) owned objects. A method is allowed to violate the invariants of all
objects within the ancestor context of its receiver object. Therefore, the owner-
ship model allows the modification of an object only by methods of its owner.
The OST introduces a new notation to specify the ownership relations between
object references. Hierarchical references must be declared as rep-references.
References to sibling objects must be marked as peer-reference. To verify an
invariant, one must show that each exported method preserves the invariants of
its receiver object. Besides the additional required specification effort, the OST
represents a very strict verification model. This model does not support the ver-
ification of recursive data structures and limits the possible cooperation between
different objects. Furthermore, the ownership technique prohibits invariants of
two different objects to contain a reference to one shared instance.

Barnett et al. extends the ownership technique in [12], by introducing a friend-
ship system (FSS). This system allows the specification of invariants beyond
ownership boundaries. Friendship relations control the access to privately owned
fields. This allows other classes to build their invariants on it. This is realised
by two new specification statements friend and read. Another extension is in-
troduced by Barnett et al. in [14]. We refer to this approach as Explicit State
Technique (EST). In that methodology, whether or not an object invariant is
known to hold is expressed within the objects state in a special class field, not
accessible by normal program code. Therefore, objects have to be marked explic-
itly as ”invalid”, before their class fields are updated. This is done by two special
statements: unpack and pack. The first one marks an object as invalid and opens
a frame in which the object state may be changed. The second statement closes
the frame and enforces all invariants to hold again. This extension is used by
Leino et al. in [2] to express invariants in dynamic contexts. Their approach uses
an additional dependent and ownerdependent clausal to mark recursive depen-
dencies. Furthermore, it is the first approach able to reason separately about
object invariants declared in different subclasses.

The visibility technique (VIS) is introduced by Müller et al. in [5] and is
based on the ownership model. A declaration within a specific class is visible
in a method, if the methods module imports the module of that class. An ex-
tended approach considering visibility modifiers is presented in [15]. Invariants
may reference class fields from their own class and all classes, in which that
invariant is visible. Therefore, an invariant might be violated only by methods
in which the invariant is visible. To prove that an invariant holds, one must
show that a method preserves the invariants of all its referenced objects. As a
result, the visibility technique is powerful enough to define and handle among
others specifications of recursive data structures. Because the VIS is based on
the ownership model it supports only very strict invariants regarding the owner-
ship hierarchy. The VIS requires that each invariant of all objects, relevant for a
method’s execution, hold before the corresponding method is called. Therefore,
the VIS cannot be used to verify a gradual update on a not owned object.
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Fig. 2. Illustration of an inter-object based on partly valid objects

The Oval approach (OVL) [13] combines the ownership model and behavioural
contracts. These contracts are defined by the additional specification sets valid-
ity invariants and validity effects : The first set contains objects which must be
valid before and after a method is executed. The second set enumerates objects
which might be violated during the execution of that method. Both sets are used
to track which objects must be re-established and validated after a method was
executed. This is very similar to the presented methodology which also is based
on two sets, listing invariants expected to be valid and invariants which might be
invalidated. However, we use a static code analysis to determine these sets au-
tomatically rather than requiring their definition manually by the programmer.
Furthermore, the Oval approach allows only invariants based on its own fields
or the fields of its (transitively) owned objects. As well as the pure ownership
and the visibility technique, Oval cannot distinguish between valid and invalid
invariants within one object. Additionally to the overhead caused by the under-
lying ownership model, the Oval approach requires a high specification overhead
for defining the behavioural contracts. Consequently, a manual enumeration of
required and effected invariants has to be performed for each method.

1.2 Contributions

Current approaches have two main limitations: (1) They require a high specifi-
cation overhead to define object invariants. (2) They cannot distinguish between
valid and invalid invariants within one object.

The first limitation has an additional drawback. The programmer must learn
the semantic and syntax of these new specifications. Furthermore, they represent
an additional source of error. This is because the programmer may define the
expected scope of an invariant not correctly. This may cause the unrecognised
invalidation of depending post- or preconditions, as shown in Section 3. The
second limitation prevent current approaches to be used to verify method calls on
partly valid objects, depending on a subset of invariants, as illustrated in Figure
2. In this example, the Data-object is invalid until the last method C : m()
establishes its valid state. But the operation C : m() requires the validity of
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invariant i1, which has been established just one step before by the method
B : m().

The presented methodology addresses these limitations and has following
contributions to the state of the art: (1) Reduced specification overhead, by
using an automatic dependency analysis based on existing access modifiers (2)
More flexibility, by distinguishing between valid and invalid invariants within one
object.

2 Methodology

The presented methodology generates proof obligations ensuring the validity of
invariants. The process of generating proof obligations uses static code analy-
sis to analyse when invariants are expected to hold. Altogether, the presented
methodology combines six different steps, as illustrated in Figure 1. These steps
are applied for each invariant.

Step 1: Analysing References. To analyse when an invariant might be vio-
lated we need to know what values are referenced by a given invariant i. The set
of class fields referenced by any statement s or invariant i is specified by the set
Ref∗(s). It combines directly (Ref(s)) and transitively referenced class fields.
A direct reference is any direct access to a class field fc in class c, by calling o.f
on an instance o of class c. Transitively referenced fields are accessed through
method calls in s, e.g. by calling a get-method. The set of methods called in s
is denoted by CalledMethods(s).

Ref∗(s) = Ref(s) ∪ {Ref(m) |m ∈ CalledMethods(s)} (1)

The set of class fields, directly modified by a given statement s, is returned by
the function Ref !(s).

Step 2: Finding Invariant Violations. A statement might invalidate an in-
variant i, if it assigns a new value to any class field fc, referenced in i. We call
such statement s Violating Code Position and its method m|s ∈ m Violating
Method. Violating code positions are searched in each method body Sm ∈ Mc

of all methods Mc of each class c ∈ C within the set of all classes C. The set of
violating code positions for one invariant i is defined by:

V iolatingS(i) = ∀c ∈ C ∀m ∈Mc ∀s ∈ Sm {s |Ref !(s) ∩Ref∗(i) 
= ∅} (2)

For reasons of simplicity, we assume that every class field f has private accessi-
bility. Therefore, direct access to a field fc is possible only within its declaring
class c. However, this assumption causes no limitations, because we make no
further assumptions regarding the definition of set- and get-methods.

Step 3: Finding Depending Code Positions. To analyse the scope of an
invariant i we must know when i might be violated and when i is expected to
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be valid. A code position s is called Depending Code Position if it requires the
validity of an invariant. The corresponding method m|s ∈ m is called Depending
Method. Depending code positions are searched in each method body Sm ∈ Mc

of each class c. A statement s accessing a field f , referred by the invariant i, de-
pends on i in two cases: (1) If s has no (transitive) access to every fi ∈ Ref∗(i)
(2) If there exists a different proof obligation �, e.g. caused by a postcondition,
containing s: s ∈ S�.

The first case is based on the idea that an invariant might be invalid, as long
as its validity can be checked by the programmer. But this is only possible if all
fields, referenced by an invariant are accessible. In this case we say s can check
i. If an invariant cannot be checked, a code block may invalidate an invariant or
access an invalid object. This is very similar to the task of checking manually
the validity of preconditions, before calling the corresponding method. Therefore,
preconditions are part of the public specification. In our concept, a programmer
can use access modifiers to control the visibility of each invariant and therefore
also its scope. Which code positions may access a defined class element is defined
by its access modifier:

Definition 1 (Accessibility). Each class element ec of class c, which is either
a class field fc, a method mc or an invariant ic, has one access modifier α(ec) ∈
AM , while the set AM must be specified by the concrete programming language.
An access modifier defines which code positions can access ec. The predicate
IsAccessible (ec, s) returns True, if the statement s can access the class element
ec. A class element ec of the instance o of class c might be accessed either directly
by o.f or transitively through a get-method. A get-method getfc , for the class field
fc, is a method of class c, returning the unmodified value of fc. In both cases, the
predicate IsAccessible(fc, s) returns True. Furthermore, a statement can access
a class element ec transitively through references across several object instances.
The predicate IsAccessible∗(ec, s) returns True, if the class element ec can be
accessed transitively by s.

However, the syntax and semantic of each α ∈ AM depends on the selected
programming language. Because we have exemplary implemented our method-
ology for Java, we support four different access modifiers1: public, package,
protected, private. Elements ec, declared as public, are accessible from any other
method mc in any other class c ∈ C. Each class cp ∈ C is member of one pack-
age p ∈ P . Elements ecp , declared as package, within class cp are accessible by
all other methods m defined in class c′p, declared in the same package p. Ele-
ments ec, declared as protected, are accessible from methods defined in c and
all classes extending c. Elements declared as private are accessible only from
methods declared in the same class c.

The following predicate indicates, if a statement s can check an invariant i:

CanCheck(s, i) ⇔ IsAccessible∗(i, s) ∧ ∀ e ∈ Ref∗(i)
∪CalledMethods(i) : IsAccessible∗(e, s) (3)

1 There exist no problem in adapting this methodology to a different semantic of access
modifiers.
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The second case considers dependencies between different proof obligations. For
example, a postcondition might be verified only, if a corresponding invariant is
valid. Therefore, a statement also depends on the validity of an invariant, if it
refers to a proof obligation whose validity cannot be proven without assuming
the correctness of that invariant. If a statement s requires the validity of an
invariant i is given by the predicate Requires(s, i).

Requires(s, i) ⇔ ∃ � = (P, S,Q)|s ∈ S� : ¬Ψ((P \ i, S,Q) ∧ Ψ(P ∪ i, S,Q)) (4)

In summary, a statement s depends on an invariant i if:

Depends(s, i) ⇔ ¬CanCheck(s, i) ∨ Requires(s, i) (5)

The set of depending code positions for one invariant i is defined by:

DependingS(i) = ∀c ∈ C ∀m ∈Mc ∀s ∈ Sm {s |Depends(s, i)} (6)

Step 4: Building The Verification Graph. The scope of an invariant defines
when an invariant might be violated and when its validity is expected. We use a
special call graph, called Verification Graph (VG), to analyse the scope of each
invariant.

Definition 2 (Verification Graph). A Verification Graph V G(i) = (V,E)
is a tuple. Each vertex v ∈ V has a reference mv to a method m. Each edge
e = (vi, vj) ∈ E indicates a method call in mvi to the method referenced by its
target mvj . Furthermore, each edge e has a reference se to the position of the
method call in mvi . Within vi, the edges are ordered by the position se in mvi .
If e1 = (vi, vj) < e2 = (vi, vk) the method mvj is called before the method mvk

is called. Each method and method call is represented only once within the VG.

The VG is built by analysing the possible call stack of each violating and de-
pending method. We call this possible call stack Context.

Definition 3 (Context). The context of any method m̂ is defined as a set of
pairs (m, s), where m refers to a method and s ∈ Sm to a statement within the
method m. Each pair corresponds to a method m, calling m̂ with the statement
s = o.m′(−→p ), and any list of parameters −→p . If m is the source of the context, s
might also be empty, denoted as (m, ∅). The general n-order context, for n ≥ 0,
of a method m and a defined set of methods M ′ ⊂ M , of all methods M , is
defined as:

Cn(m,M ′) =
{
(ṁ, s) |s = o.m′(−→p ) ∈ Sṁ ∧m′ ∈ Cn−1(m) ∧ ṁ 
∈M ′} (7)

C0(m,M ′) = {(m, ∅) |m 
∈M ′} (8)

The Verification Graph V G(i) = (V,E) of a given invariant i is built as follows:

V = V1 = {(m)|∃s ∈ m ∧ s ∈ V iolatingS(i)} ∪ (9)

V2 = {(m)|∃s ∈ m ∧ s ∈ DependingS(i)} ∪ (10)

{(m)|m ∈ C(V1, V2) ∪ C(V2, V1)} (11)

E = {(vi, vj)|vi, vj ∈ V ∧mvi calls mvj} (12)
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Data: Start vertex: vj , Start statement: s, Searched type: t = {violating, depending},
Search behind s: b

Result: The closest vertex of type t wthin the context of vj
1 if vj marked then return ∅ // Skip visited vertexes ;
2 mark vj ; // Mark vertex as visited

3 if vj is t then return vj ;

// Analysing all called methods in mvj before s is reached

// by following edges ej,k whose position sej,k in mvj is smaller than s

4 foreach ej,k = (vj , vk) | sej,k < s | from s to 0 do
// Searching recursively from begin on (mvk [0]) in each called method

5 v̂ = findNode(vk, mvk [0], t, true)
6 if v̂ �= ∅ then return v̂ ;

// Analysing all methods called after s is reached

// by following edges ej,k whose position sej,k in mvj is greater than s.

// This is used if we analyse methods called before the original s was

reached.

7 if b then
8 foreach ej,k = (vj , vk) | sej,k > s | from s to n do

// Searching recursively from begin on (mvk [0]) in each called

method

9 v̂ = findNode(vk,mvk [0], t, true)
10 if v̂ �= ∅ then return v̂ ;

// Analysing all methods calling mvj

11 foreach ek,j = (vk, vj)do
// Searching from the position calling mvk to the begin of mvj.

12 v̂ = findNode(vk, sek,j
, t, false)

13 if v̂ �= ∅ then return v̂ ;

14 return ∅ ; // No vertex found

Algorithm 1. FindNode(vj ,s,t,b) : Searching closest node

Step 5: Analysing Invariant Scopes. The scope of an invariant defines when
an invariant is expected to be valid and when it is allowed to be invalid. We
must guarantee, that an invariant is valid whenever a depending code position is
reached. In general, the invariant must be ensured by code positions modifying
any value, referenced by that invariant. In combination with depending code
positions, we are searching the last violating code position called before the de-
pending code position is reached. We call the corresponding vertexes Ensuring
Vertexes, because they must ensure the invariants validity. These positions are
found by searching the shortest paths between each depending vertex and the
closest violating vertex. For one depending code position s ∈ m, we analyse two
categories of methods: (1) Methods (transitively) called in m before s is reached.
(2) Methods (transitively) calling m. Algorithm 1 formalises this search for a
given depending code position s ∈ mvj , by calling FindNode(vj , s, violating,
false). A detailed walk through, based on an example, is presented in
Section 3.
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Step 6: Creating Proof Obligations. Proof obligations define an expected
behaviour for a defined sequence of statements.

Definition 4. Proof Obligation. A proof obligation � = (P, S,Q) is a triple. It
combines a set of assumptions (P ), an ordered list of statements (S) and a goal
(Q). Each assumption and the goal are represented as boolean predicate. To prove
a proof obligation, one must show, that each possible evaluation of S, validates
Q, while assuming P . The predicate Ψ(�) is true if � can be verified.

Here, they are used to ensure that each ensuring method respects the corre-
sponding invariant. But it is not sufficient to analyse the violating method. This
is because the invariant might be ensured within the method calling the ensur-
ing method. For example, a set-method is marked as ensuring method. In this
case, the method calling the set-method must ensure, that the set value respects
the invariant. Therefore, the code block s of the corresponding proof obligation
� = (P, S,Q) must combine statements of both methods. In general, each code
block, not depending on that invariant, within the call stack of the ensuring
method may ensure its validity. For one ensuring node v̌, we analyse the undi-
rected path p(v̂, v̌) to the closest depending vertex v̂. The closest depending node
is found by using FindNode defined by Algorithm 1.

In summary, we create the set of proof obligation ρ(i) for each invariant i:

D = DependingS(i) (13)

E =
⋃
d∈D

FindNode(v(d), d, violating, false) (14)

P =
⋃
e∈E

p = (FindNode(v(e), e, depending, false), v(e)) (15)

S(p) =
⋃

e=(vj ,vk)∈p

mvj [0, e] ∪ mv̌ (16)

ρ(i) =
⋃

p(v̂,v̌)∈P

(Preconditions(v̂), S(p), i) (17)

The predicate Preconditions(v̂) refers to the set of preconditions defined for v̂.
We use the syntax mvj [0, e] to refer to the subset of statements in Sm from the
begin of m (position 0) to the position referenced by the edge se.

2.1 Soundness

We sketch the proof of soundness, by showing that the set of generated proof
obligations is sufficient to guarantee an invariants validity whenever a depending
code position is reached:

Theorem 1. If all proof obligations could be verified, every invariant i is valid,
whenever one of its referenced values v ∈ Ref∗(i) is accessed by a statement ŝ
in method m̂, with the set of valid assumptions P and defined condition Q such
that ¬Ψ(� = (P \ i,m,Q)) ∧ Ψ(� = (P ∪ i,m,Q)).
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Proof. If ŝ fulfils the properties defined in the theorem, we know ŝ ∈
DependingS(i) (Equation 6). If i is not valid when ŝ is evaluated, there must
be one statement š within method m̌ which has invalidated i and which has
been evaluated before ŝ. To invalidate i, š must assign an invalid value to
any field referred by i: Ref !(š) ∪ Ref∗(i) 
= ∅. Regarding š, there exist two
possibilities: (1) š is the last code position modifying a value referenced by i,
before reaching ŝ. (2) It exists a code position ˇ̌s which modifies a value refer-
enced by i, which is evaluated after š and before ŝ is reached. In the first case,
FindNode(v(ŝ), ŝ, violating, false) = ṽ = v(š). In the second case, ˇ̌s must re-
establish i and FindNode(v(ŝ), ŝ, violating, false) = ṽ = v(ˇ̌s). The syntax v(s)
refers to the vertex v whose referenced method contains s. Step 6 generates a
proof obligation � = (P, S, i) and the statement sequence S contains as last se-
quence the statements of mṽ (Equation 16). Therefore, if � can be verified, i is
re-established after mṽ has been evaluated and before ŝ is reached. ,�

3 Case Studies

The presented methodology provides a higher flexibility in defining object invari-
ants while requiring less specification overhead. This is shown by demonstrating
the analysis process of different examples. The examples represent challenges and
code examples which have been addressed by latest related work. Thereby we can
compare the specification overhead of our methodology with the one required
by related approaches. Furthermore, we present one example which cannot be
verified using current approaches. All examples have been implemented in Java.
Invariants were defined using the syntax of the Java Modelling Language, as
descried in [7]. The defined access modifiers are interpreted as described in Step
3 within Section 2.

Challenge 1: Gradual Updates. Invariants may refer to multiple class
elements. A gradual update of referenced values may invalidate an invariant
temporary. This enables access to an invalid object. Current methodologies use
additional specification elements to define when an invariant is valid. The ap-
proach presented in [14] uses unpack and pack statements. These statements
mark the begin and end of an interval, in which an object is allowed to be in-
valid. Their usage is indicated in Listing 1. The example is based on a data type,
representing a numerical interval by storing a min and max value. It provides a
method getSize(), which guarantees a positive return value. Thereby, getSize()
requires the validity of the invariant getMin() <= getMax().

In Listing 1.2 pack and unpack is correctly used, because getSize is called,
after the object invariant has been ensured by calling pack. In Listing 2 the pack
statement is located after getSize() and has been called on the invalid object.
This is a specification error, because the programmer declares the scope of the
invariant incorrectly. This causes a violated postcondition of getSize(). We want
to demonstrate two points in this example: (1) How the presented methodology
analyses the code without using additional specification elements like pack and
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1 class I n t e r v a l {
2 //@publ i c i n va r i an t getMin () <= getMax () ;
3 private int min ,max ;
4 // For reasons o f compactness we do not d i s p l a y
5 // the con s t ru c t o r and the analog s e t / g e t methods f o r min
6 public void setMax ( int max) { this .max=max ;}
7 public int getMax ( ) { return this .max ; }
8 //@ensures \ re turn >= 0;
9 public void ge tS i z e ( ) { return this .max−this .min ; }

10 }
11 class UseIn te rva l {
12 //@ensures \ re turn >= 0;
13 public int main ( ) {
14 I n t e r v a l i n t e r = new I n t e r v a l ( 5 ,7 ) ;
15 //unpack i n t e r as I n t e r v a l
16 i n t e r . setMin (8) ;
17 i n t e r . setMax (9) ;
18 // pack i n t e r as I n t e r v a l
19 return i n t e r . g e t S i z e ( ) ;
20 }
21 }

Listing 1.1. Gradual update of an invariant

unpack. (2) How the automatic code analysis of the presented methodology
detects the described error of Listing 1.3.

The VGs (V Ga,V Gb) for both examples are illustrated in Figure 3.

1 //@ensures \ re turn >= 0;
2 public int main2 ( ) {
3 I n t e r v a l i n t e r = new I n t e r v a l ( 5 ,7 ) ;
4 //unpack i n t e r as I n t e r v a l
5 i n t e r . setMin (8) ;
6 int d i s t = i n t e r . g e t S i z e ( ) ;
7 i n t e r . setMax (9) ;
8 //pack i n t e r as I n t e r v a l
9 return d i s t ;

10 }

Listing 1.2. Specification error

In the following, we use the vertex labels as reference to the different meth-
ods. In Step 1 we analyse the references of the public invariant i: Ref∗(i) =
{min,max}. In Step 2 we analyse which code positions modify any referenced
value. These are the methods setMin() and setMax(): V iolatingS = {sv3 , sv4}.
In Step 3 we analyse which code positions depend on i. The method getSize()
is the only depending code position: DependingS = {sv5}. This is because the
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v1a : Main (1.1)

v1b : Main (1.2)

e1a e2a e4a

e1b e2b e3b

v3 : setMin()

v2 : Interval() v4 : setMax()

v5 : getSize()

e3a

e4b

Fig. 3. The VGs for the Listings (a) 1.1 and (b) 1.2

postcondition �v5 = (i, (max − min), (max − min) >= 0) cannot be verified
without assuming i. In Step 4, we build the VG, illustrated in Figure 3. In Step
5, we search the ensuring methods of each depending code position. In exam-
ple (a) the analysis follows first edge e4a and next edge e3a. The first edge is
followed by lines 11-13 of Algorithm 1 and the second edge by lines 3-6, within
the first recursive call. Thereby we reach vertex v4 and we find the closest vi-
olating method. In example (b) the analysis follows first edge e3b and next
edge e2b. Here, vertex v3 is the closest violating method. In Step 6, we create
the proof obligations ensuring i. Therefore, we search for each ensuring vertex
the closest depending vertex. In these examples, there is no depending vertex
within the context of both ensuring vertexes. Therefore, the context covers the
full program until each ensuring vertex is reached. The proof obligations are:
�A = (∅,mv2 ∪m[14] ∪mv3 ∪mv4 , i), �B = (∅,mv2 ∪m[14] ∪mv3 , i). Using Z3
as verification back-end, we can prove the validity of �A and �B.

Challenge 2: Recursive Data-Structures. Figure 4 contains an example for
a recursive data structure width following private invariant: inv1 = ((val >=
0) ∧ (prev.val < 0)) ∨ ((val < 0) ∧ (prev.val >= 0)). Recursive data struc-
tures have been addressed by Leino et al. in [2]. They require the additional
specification statements peer, dependent and owner dependent. The presented
methodology does not require any additional specification elements. Our analysis
recognises that the public setPrev-method (m1) and the constructor (m2) are
the only two methods modifying the value val. Because the invariant is private,
both public methods must ensure the invariant. The two proof obligations are
�1 = (∅,m1, i) and �2 = (∅,m2, i).

Challenge 3: Dependencies on an Invariant Subset. Current methodolo-
gies do not distinguish between valid and invalid invariants within one object.
Methods cannot require the validity of an invariant subset only. Current method-
ologies cannot be used to verify the example in Figure 5 or in Listing 1.3.
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1 class S t a r t e r {
2 // Post : Return Value > 0 ;
3 static main ( int a ) {
4 i f ( a < 2)
5 { throw new Exception ( ) ; }
6 Data d = new Data ( ) ;
7 d . setA ( a ) ; d . setB (0) ;
8 return DataProcessorA .

p roce s s (d ) ;
9 } }

10 class DataProcessorA {
11 static int proce s s (Data d) {
12 a s s e r t (d . getA ( )>2) ;
13 int b = 2 ∗ s q r t (d . getA ( ) ) ;
14 d . setB (b) ;
15 return DataProccessorB .

p roce s s (d ) ;
16 } }
17 class DataProcessorB {
18 // Post : Return Value > 0 ;
19 static int proce s s (Data d)
20 { return d . getC ( ) /d . getB ( ) ;}
21 }

Listing 1.3. Partly valid objects

NumListElement
- inv1

-prev: NumLisElement

-val: int

+NumListElement(val:int)

+getPrev(): NumListElement

+setPrev(p:NumListElement)

Fig. 4. Recursive data structure

Data

-a: int

+inv1: a>2

-b: int

+inv2: b>0

+c: int

+getA(): int

+getB(): int

+setA(a:int): void

+setB(b:int): void

Fig. 5. Data model of Listing 3

This Listing uses the data structure shown in Figure 5, which contains two
invariants (i1 = inv1) and (i2 = inv2). The Data-object is passed as an
argument to the DataProcesorA : process-method and later further to the
DataProcessorB : process-method. The DataProcessorA : process-method
uses the square root of the a-field-value to calculate a new b-field-value. Be-
cause of the defined assertion, it relies on the invariant i1. But at call time
of DataProcessorA : process, the invariant i2 is invalid. The invariant i2
is required not until DataProcessorB : process is called. This method uses
the b-field-value as divisor in Line 19 of Listing 1.3. This implies the obliga-
tion b! = 0, which cannot be assured without assuming i2. In summary, both
methods DataProcessorA : process and DataProcessorB : process rely on a
different subset of invariants defined within the Data-object. We use this ex-
ample to demonstrate how the presented methodology distinguishes between
valid and invalid invariants within one object. This example causes two Verifi-
cation Graphs V G(i1) and V G(i2), one for each invariant. They are both illus-
trated in Figure 6. Again, we start by analysing the references of each invariant:
Ref∗(i1) = {a}, Ref(i2) = {b}. These values may be modified by following code
position: V iolating(i1) = {sv4}, V iolating(i2) = {sv3}. The depending code
positions are DependingS(i1) = {mv5 [12]} and DependingS(i2) = {mv6 [20]}.
We use the syntax [•] to identify the corresponding code position by their
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v2 : setA() v7 : getB()

VG(i2)
v5 : DPA:process()

v3 : setB()

v1 : Main

e1 e2

e3

e4
e6v4 : getA()

e5

v6 : DPB:process()

e7
v2 : setA()

VG(i1)
v5 : DPA:process()

v3 : setB()

v1 : Main

e1 e2

e3

e4

v4 : getA()

e5

Fig. 6. The VG for the example of Goal 6

line number in Listing 1.3. The ensuring method for mv5 [12] is mv2 , following
the edges e3,e2,e1. For mv6 the ensuring method is mv3 , following the edges
e6 and e5. There is no depending code position within the context of mv2

and mv3 . Therefore, we add the all statements to S, until setA() respectively
setB(). The corresponding proof obligations are: �i1 = (∅,main[4−6]∪mv2, i1),
�i2 = (∅,main[4−6]∪mv2 ∪mv3 ∪mv2 [12−13]∪mv3 , i2). Both proof obligations
can be verified, using the Z3 as verification back-end.

Results. The analysis of Challenge 1, 2, and 3 shows that the presented method-
ology does not require specification overhead like current state of the art meth-
ods. Furthermore, the automatic analysis prevents errors caused by the wrong
usage of additional specification elements, as shown in Challenge 1. The pre-
sented methodology recognised the violated postcondition in Listing 1.3, caused
by the access to an invalid object. The determination between valid and invalid
invariants within one object enables the verification of Challenge 3, which is not
possible with current state of the art approaches.

4 Conclusion and Future Work

We have introduced a new methodology to specify and verify object invariants.
This methodology uses access modifiers to control the scope of an object invari-
ant. An automatic control flow analysis is used to analyse when invariants may be
invalidated and when they must be re-established. This reduces the specification
overhead and helps to prevent errors through the usage of specification state-
ments, as we have shown in Challenge 1 in Section 3. The presented methodology
distinguishes between invalid and valid invariants within one object. Thereby,
it supports more flexible scopes of invariants, as we have shown in Challenge
3. The computational overhead does highly depend on the analysed program
structure. In general, public invariants cause a larger number of paths that need
to be considered to validate an invariant, because more code positions may in-
validate an public invariant. The same applies to invariants with a large number
of references. Therefore, the higher flexibility may cause a higher number of
proof obligations. The reduced specification overhead causes a higher computa-
tional overhead. We have implemented the presented methodology within a tool
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analysing single threaded Java programs using the Z3 solver as formal verifica-
tion back-end. Currently we do not support the full Java language specification
(e.g. method overloading). Current limitations are caused by high implementa-
tion efforts but should not influence the completeness of the presented methods.
At the moment we must apply all six steps to each source file after every change
in order to validate defined invariants. Future work may address the integration
of a change review to analyse only code fragments, affected by latest changes.
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Abstract. Collections and iterators are widely used in the Object com-
munity since they are standards of the Java language. We present a certi-
fied functional implementation of collections and iterators addressing the
Specification And Verification of Component Based Systems 2006 chal-
lenge. More precisely we describe a FoCaLiZe implementation providing
these functionalities. Our approach uses inheritance and parameteriza-
tion to describe functional iterators. Our code can be run in Ocaml and
is certified using Coq. We provide general specifications for collections,
iterators and removable iterators together with complete implementation
for collections using lists as representation and iterators over those.

1 Introduction

Iterators on data structures like lists, sets, vectors, trees, etc. are available in
many programming languages, usually as resources of their standard library.
In functional languages, iterating facilities are mainly provided as higher order
functions (e.g. fold left or fold right for iteration on lists in SML or Ocaml).
In object oriented languages like Java, Eiffel or C#, they are provided as ob-
jects with methods allowing the enumeration of the data structure elements
(e.g. hasNext and next in the Java Iterable interface). Usually the iterable
data structure contains a method (e.g. iterator in Java collections), each invo-
cation of which creates an iterator. Following the ITERATOR design pattern [7],
iterators give a clean way for element-by-element access to a collection without
exposing its underlying representation. Following this view, purely functional
iterators can also be implemented, such as in [6] or in the Ocaml Reins Data
Structure Library1. Thus we can consider the type of an iterator as an abstract
data-type equipped with 3 functions start, hasnext and step: start is applied
to a collection and computes an iterator; hasnext takes an iterator as an argu-
ment and returns a boolean indicating whether the enumeration is finished or
not; and step i, when i is an iterator, returns an element not yet visited and
the new iterator. Thus the underlying collection is provided as an argument to
start and is not used anymore after that.

1 See http://ocaml-reins.sourceforge.net/api/Reins.Iterator.S.html for the
interface of the Iterator module.

D. Giannakopoulou and G. Salaün (Eds.): SEFM 2014, LNCS 8702, pp. 317–331, 2014.
c© Springer International Publishing Switzerland 2014
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In this paper, we propose a verified implementation of such functional itera-
tors. Here verified means that this implementation has been proved correct with
respect to the specification. Specification, implementation and proof are done
using the FoCaLiZe2 environment (which is a successor of FoCaL) [5]. As far
as we know, it is the first verified implementation of functional iterators in the
flavor of those proposed e.g. by Filliâtre in [6]. In this study we are mainly look-
ing for a way to specify the behavior of an iterator without exposing its internal
representation or the representation of the collection it traverses and to evaluate
how convenient it is for specifying and proving generic algorithms using such
iterators.

This work can also be seen as a contribution to the 2006 SAVCBS (Speci-
fication And Verification of Component Based Systems) challenge asking for a
specification of the Iterator interface as provided in Java or its equivalent in
another language3. Different solutions [1] have been proposed, most of them fo-
cusing on the verification of non-interference between calls that directly modify
the collection and interleaved uses of one or more iterators.

The FoCaLiZe language in which our development is done, is functional.
However it borrows some features to the Object world, such as inheritance,
redefinition that ease reuse of specifications, code and proofs. Furthermore pa-
rameterization facilitates the definition of generic iterators and derived functions.

The rest of this paper is structured as follows. Section 2 presents FoCaL-
iZe very quickly. Then we introduce in Section 3 the main ingredients to use
iterators. Iterators allow the enumeration of values contained in another data
structure, often collections. Thus we stick to this view and propose a FoCaLiZe
specification of collections and an implementation for sequences as collections in
Section 4. Then we present in Section 5 a FoCaLiZe implementation of iterators
for collections which are sequences. Some existing approaches are presented and
discussed in Section 6. Section 7 concludes and presents some future work.

2 A Quick Presentation of FoCaLiZe

The FoCaLiZe environment provides a set of tools to describe and implement
functions and logical statements together with their proof. A FoCaLiZe source
program is analyzed and translated into Ocaml sources for execution and Coq
sources for certification. The FoCaLiZe language has an object oriented flavor
allowing inheritance, late binding and redefinition.

FoCaLiZe concrete programming units are collections which contain entities in
a model akin to classes and objects or types and values. In the following, to avoid
confusion with collections as data containers, a FoCaLiZe collection is called an
Fcollection. Fcollections havemethods which can be called using the “!” notation
as in Code 1. They are derived from species which describe and implement
methods. In an Fcollection the concrete representation of entities is abstracted
and a programmer refers to it using the keyword Self in FoCaLiZe sources.

2 http://focalize.inria.fr
3 http://www.eecs.ucf.edu/~leavens/SAVCBS/2006/challenge.shtml

http://focalize.inria.fr
http://www.eecs.ucf.edu /~leavens/SAVCBS/2006/challenge.shtml
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Species may inherit from other species and may have parameters which may
either be Fcollections or entities providing parametric polymorphism. As shown
in Code 4 parameters are declared in sequence and may have dependencies: this
excerpt describes a species parameterized by 2 Fcollections named resp. Elt and
L. The first one is expected to derive from the Setoid species, it means that
it provides at least all the methods appearing in the interface of Setoid, i.e
the list of methods appearing in Setoid or inherited, with their type where the
type of entities is made abstract. The second parameter L is expected to provide
methods in the interface of Utils(Elt) where Utils is a parameterized species
which is applied to the effective Fcollection Elt. We can notice the dependency
between the first and the second argument.

A species defines a set of entities together with functions and properties ap-
plying to them. At the beginning of a development, the representation of these
entities is usually abstract, it is precised later in the development. However the
type of these entities is referred as Self in any species. Species may contain
specifications, functions and proofs, all of theses being called methods. More
precisely species may specify a method (signature, property keywords as in
code 4) or implement it (let, proof of, theorem keywords as in code 1 or 2).
A let defined function must match its signature and similarly a proof intro-
duced by proof of should prove the statement given by the property keyword.
Statements belong to first order typed logic.

Within FoCaLiZe, proofs are written using the FoCaLiZe proof language and
are sent to the Zenon prover which produces Coq proofs. The FoCaLiZe proof
language is a declarative language in which the programmer states a property and
gives hints (by) to achieve its proof which is performed by Zenon. She typically
introduces a context with variables (assume) and hypothesis (hypothesis) and
then states a result (prove). Elements of the proof are then listed (by) and
these can be either an hypothesis (hypothesis), an already proved statement
(step), an existing statement (property) or a definition (definition of, or
type). When a proof has steps it is ended by conclude or qed by clauses. Code
9 shows the skeleton of a FoCaLiZe proof tree. The automatic prover Zenon is
a first order automatic theorem prover which supports algebraic data types and
induction developed by D. Doligez (see for instance [2]).

For more details on FoCaLiZe please refer to the reference manual. More ex-
planations about FoCaLiZe syntax will be given in next sections when necessary.

3 Using Iterators

In this section we present a sample use of our iterators implementation. Our
demonstration package IterTools proposes a function copy (see Code 1) that
copies elements from a collection c of type Col, using an iterator it of type
It. We use a tail recursive function copy aux that uses an iterator (it) and a
collection (a). Since FoCaLiZe is a functional language the state change of an
object is implemented using an extra result and the next operation returns a pair
made of an iterator together with the visited element. The species presented here
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is parameterized by four Fcollections Elt, L, Col and It specifying operations
for elements of the collections, lists of such elements, collections of such elements
and iterators on the previous collections. These Fcollections derive from species
which will explained in the following sections. The overall hierarchy of species is
shown in Figure 1 (without parameters for sake of clarity).

We can notice that the copy function provided by the species IterTools uses
the same implementation for both the source and the target collections. It can
be generalized to allow different implementations. In that case, two Fcollections
Col1 (implementation of the source collection) and Col2 (implementation of
the target collection), both having the interface Collection(Elt, L), will be
provided as parameters of the species. Furthermore the It parameter would have
as interface Iterator(Elt, L, Col1).

Code 1

species IterTools (Elt is Setoid,

L is Utils(Elt),

Col is Collection(Elt, L),

It is Iterator(Elt, L, Col)) =

let rec copy_aux (it, a) =

if It!has_next(it) then

let res = It!next (it) in

copy_aux (snd(res), Col!add(fst(res), a))

else a;

let copy (c) = copy_aux (It!start (c), Col!empty);

At this step, we have identified some necessary operations of collections and
iterators. Collections have to provide 2 operations, empty and add, these are the
methods Col!empty and Col!add provided by the Fcollection parameter Col.
For iterators, we need 3 operations, start, has next and next provided by the
Fcollection parameter It.

Correctness of copy relies on the theorem copy spec whose statement is given
in Code 2, establishing that the original collection and its copy have the same
elements. The statement uses the contains method provided by collections.
Inside the proof, we use an invariant property, copy invariant (also in Code 2)
which refers to the abstract model of an iterator stated by the logical predicate
model. For an iterator i, a collection c and a list of elements l the model(i, c,

l) statement should describe logically the elements of c belonging to the list l
which are not yet visited by the iterator i. This informal specification and further
constraints on the model predicate will be formalized in Section 5. The invariant
property copy invariant relates two collections between recursive calls in the
copy aux function. An element x is either an element of the collection c not yet
visited by an iterator or contained in an auxiliary collection a.

Code 2 excerpt of species IterTools

theorem copy_spec :
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all e: Elt, all c : Col,

Col!contains (e, c) <-> Col!contains (e, copy(c))

proof = (* 50 lines *);

theorem copy_invariant:

all it: It, all a: Col, all c: Col, all l: list(Elt),

It!model(it, c, l) ->

(all x: Elt, Col!contains(x, a) -> Col!contains(x, c)) ->

(all x: Elt, Col!contains(x, copy_aux(it, a)) <->

((L!mem(l, x) || Col!contains(x, a))))

proof = (* 150 lines *);

The above theorems allow us to state that if the copy aux function terminates
it performs the right action. In order to show termination we must prove that
the recursive call in copy aux decreases for some well founded order it order

defined below (see Code 3).

Code 3 excerpt of species IterTools

let it_order(it1, it2) =

(0 <= It!measure_it(it2)) &&

(It!measure_it(it1) < It!measure_it(it2));

theorem well_wrapper_it: well_wrapper(it_order)

proof =(* 30 lines of Coq *);

theorem rec_call_decreases: all it: It, all res: Elt * It,

It!has_next(it) -> (It!next(it) = res) -> it_order(snd(res), it)

proof = (* 150 lines *);

The well wrapper statement is part of FoCaLiZe standard library and states
that the ordering it receives as argument is well founded. Since it is not a first
order statement we cannot prove it using the Zenon prover and have to do the
proof in Coq. Proofs are here omitted but performed by unfolding the different
definitions and making use of the (Zwf well founded 0) Coq property that
establishes that the usual order on positive integers is well founded. In order to
prove that the recursive call decreases (theorem rec call decreases) we rely on
a property stating that when iterating we decrease some measure of an iterator.
We thus have identified two other operations it measure it and mea decreases

which we specify in Code 10.
We can see that though the 6 lines of effective code in Code 1 use a simple

accumulator they must be completed by 10 lines of specification statements in
Code 2 which are not obvious to guess. Furthermore their proofs are quite tedious
and the overall species is globally 350 lines of mixed FoCaLiZe and Coq code.

4 Collections

Though the word collection is a keyword of the FoCaLiZe language we use it in
the normal UML/Java sense and we present the functionalities we implemented.
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CollectionAsSet Sequence
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UniqueSeqIterator

RemovableUniqueGenericIterator
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ListIterator

Ellipses correspond to specification species. Rectangles correspond to implementation
species (complete species)

Fig. 1. The Overall Hierarchy

4.1 Specification Hierarchy

Basic collections contain a finite number of values and we have methods to add
and remove values in a collection, check if a value is in a collection and transform
a collection into a list of values as in Code 4. We can also compute the size of a
collection, check if a collection is empty etc.

Code 4

species Collection (Elt is Setoid, L is Utils(Elt)) =

signature contains: Elt -> Self -> bool;

signature add: Elt -> Self -> Self;

property add_contains: all c: Self, all e x: Elt,

contains(x, add(e, c)) <-> ( (x = e) || contains(x, c));

signature remove: Elt -> Self -> Self;

property remove_contains:

all c: Self, all e : Elt, all x : Elt, not (x = e)) ->

(contains (x, (remove (e, c))) <-> contains (x, c));

signature tolist : Self -> list(Elt);

property tolist_contains :

all c: Self, all e : Elt, contains (e, c)

<-> L!mem (tolist(c), e);

We then distinguish between collections which are sets. Thus we define, us-
ing inheritance, a new species (CollectionAsSet) describing these collections
as sets. A new property, unique contains, is added, it explains that such col-
lections have no redundant element (Code 5)



Verified Iterators in FoCaLiZe 323

Code 5

species CollectionAsSet (Elt is Setoid, L is Utils(Elt)) =

inherit Collection(Elt, L) ;

property unique_contains : all c : Self, all e : Elt,

not(contains (e, remove (e, c))) ;

end;;

4.2 Implementations

In the previous subsection, a specification of basic collections is presented. We
could go further into specifications by providing specifications for sequences,
maps and then provide one or more implementations for each category. Here we
simply provide an implementation of sequences using a simple implementation
based on lists (seen as the elements of an inductive type providing 2 constructors:
cons and empty). In FoCaLiZe a species is complete when all its signatures have
an implementation and all its statements have received a proof. Thus the species
given in Code 6 contains the definition of every function and the proof of every
property specified in Collection. It also exports the functions head and tail

with their specifications which have their obvious meaning.
In this case all functions have a simple termination proof (structural key-

word as in Code 7) since their code performs simple pattern matching on lists
and recursive calls on the tail of their initial parameter. All properties can be
proved by induction over lists which is supported by the Zenon prover as shown
in the proof of unique contains (Code 9). Statements <2>1 and <2>1 are the
base and inductive steps, statement <2>3 is the property we prove inductively
and the <2>f step enables to abstract the list representation.

Code 6

species Sequence (Elt is Setoid, L is Utils(Elt)) =

inherit Collection(Elt, L);

representation = list(Elt);

let contains (e: Elt, l: Self) = L!mem (l, e);

We also provide a SequenceAsSet complete species where we use the invariant
that lists have no doubles as in Code 7.

Code 7

species SequenceAsSet(Elt is Setoid, L is Utils(Elt)) =

inherit Sequence(Elt, L), CollectionAsSet(Elt, L);

let torep (l : Self ) : list(Elt) = l;

let rec nodouble (l) =

match l with
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| [] -> true

| h :: q -> nodouble (q) && not(L!mem (q, h))

termination proof = structural l;

For correctness of the invariant we follow [17] and need to prove that all
functions returning an element of Self preserve the invariant property as shown
in Code 8. These proofs use induction on lists and the overall code is 170 lines
of FoCaLiZe code.

Code 8 excerpt of species SequenceAsSet

theorem remove_preserves_inv : all l : Self, all e : Elt,

nodouble (torep(l)) -> nodouble (torep(remove (e, l)))

proof =

<1>1 prove all l: list(Elt), all e: Elt,

nodouble(l) -> nodouble(remove(e, l))

(* 40 lines proof *)

<1>2 qed by step <1>1 definition of torep;

We can now prove uniqueness of an element in a sequence implemented as a list
in Code 9 which statement is in Code 5

Code 9 excerpt of species SequenceAsSet

proof of unique_contains =

<1>1 assume c : Self,

assume e : Elt,

prove not( L!mem (remove(e, c), e))

<2>1 prove not(L!mem (remove(e, []), e)) (* 2lines *)

<2>2 prove all l : list(Elt), not(L!mem (remove(e, l), e))

-> all x : Elt, not(L!mem (remove(e, x::l), e))

(* 30 lines *)

<2>3 prove all l : list(Elt), not(L!mem (remove(e, l), e))

by step <2>1, <2>2

<2>f qed by step <2>3

<1>f qed by step <1>1

property tolist_contains

definition of tolist;

5 Iterators

Once collections have been specified, we can use them to specify iterators. We
were inspired functional iterators of [6] for the interface and by JML specifica-
tions of [8] for the logical description.

5.1 Specification Hierarchy

In this paper we mainly describe finite linear iterations but many other may be
considered. In order to provide a library which can easily be reused we heavily use
inheritance and parameterization. We begin with basic iterator functionalities
as in Code 10. An Fcollection implementing collections Col is a parameter of
the specification species of iterators Iterator.
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Code 10

species Iterator (Elt is Setoid,

L is Utils(Elt),

Col is Collection(Elt, L)) =

signature start : Col -> Self;

signature has_next : Self -> bool;

signature step_it : Self -> Elt * Self;

property step_it_empty :

all c : Col, Col!is_empty (c) -> not(has_next (start (c)));

property step_it_nonempty :

all c : Col, not(Col!is_empty (c)) -> has_next (start (c));

signature measure_it : Self -> int;

property mea_positive : all a : Self, 0 <= measure_it (a) ;

property mea_decreases :

all i1: Self, all res: Elt * Self, has_next(i1) ->

step_it(i1) = res -> measure_it (snd(res)) < measure_it (i1);

The mea decreases property expresses that when stepping an iterator we de-
crease a measure and thus enables us to prove the termination of the iteration.

As outlined in Section 3 and following [3] and [8], we rely on the user of our
hierarchy for writing a model logical statement relating an iterator, a collection
and a list of values. An implementation of the model signature should be a
statement describing the list of elements of collection which have not been visited
by the iterator.

Code 11 excerpt of species Iterator

signature model : Self -> Col -> list(Elt) -> prop;

(** elements of l are in c *)

property model_includes: all it: Self, all c: Col, all l : list(Elt),

model(it, c, l) -> all e: Elt, L!mem(l, e) -> Col!contains(e, c);

(** should start with full collection *)

property model_start : all c : Col, model (start (c), c, Col!tolist(c)) ;

(** when has_next is true l should not be empty *)

property model_has_next_true :

all it : Self, all l : list(Elt), all c : Col,

model (it, c, l) -> has_next(it) -> not(l = []);

(** when has_next is false there should remain no element to treat *)

property model_has_next_false :

all it : Self, all l : list(Elt), all c : Col,

model (it, c, l) -> not (has_next(it)) -> l = [];
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[* we should return an element among those to be treated *)

property model_step :

all it it2 : Self, all e : Elt, all l : list(Elt), all c : Col,

model (it, c, l) -> has_next(it) -> step_it (it) = (e, it2) ->

L!mem (l, e);

property model_step_exists: all it it2: Self, all c: Col, all e: Elt,

all l: list(Elt), has_next(it) ->

model(it, c, l) -> step_it(it) = (e, it2) ->

(* there exists a list which is a model for it2 *)

(ex l2: list(Elt), model(it2, c, l2));

The properties in Code 11 explicit the informal specifications given in section
3 of the model statement which is thus a key component of our implementation.
The last statement expresses that when stepping an iterator we still have some
model.

We now can specify iterators that visit only once an element of a set using
inheritance as in Code 12.

Code 12

species UniqueIterator (Elt is Setoid,

L is Utils(Elt),

Col is CollectionAsSet(Elt, L)) =

inherit Iterator(Elt, L, Col) ;

property model_step_unique :

all it it2: Self, all e: Elt, all l l2: list(Elt), all c : Col,

model (it, c, l) -> has_next(it) -> step_it (it) = (e, it2) ->

model(it2, c, l2) -> not(L!mem(l2, e));

end

The Java informal specifications introduce the notion of iterators from which
the last iterated element can be removed from the collection it belongs to. This
is achieved using the optional remove functionality, on the contrary we rely on
FoCaLiZe inheritance to specify the remove functionality. In Code 13 we define
a species of removable iterators that inherits from basic iterators and adds new
specifications.

Code 13

species RemovableIterator(Elt is Setoid,

L is Utils(Elt),

Col is Collection(Elt, L)) =

inherit Iterator(Elt, L, Col) ;

signature remove: Self -> Self ;

property remove_spec :

all it it2: Self, all e: Elt, all l l2: list(Elt), all c : Col,

model (it, c, l) -> has_next(it) ->

step_it (it) = (e, it2) -> model(it2, c, l2) ->
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model(remove(it2), Col!remove(e, c), l2);

signature get_collection: Self -> Col ;

end

The statement remove spec explains the behavior of the remove function, we
also provide a get collection operation to retrieve the new collection that
results from the application of remove on an iterator.

5.2 Implementations

In this subsection, we describe our implementation of iterators which use sequences
as representation and also a generic implementation of removable iterators.

First, in the species SequenceIterator (see Code 14), we represent an iterator
by a sequence containing the elements left to be treated by the iterator. We use
operations from Sequence (head, tail as in Section 4) to traverse the values.

Code 14
species SequenceIterator (Elt is Setoid, L is Utils(Elt),

LCol is Sequence(Elt, L)) =

inherit Iterator(Elt, L, LCol);

representation = LCol ;

let tolist (l : Self) = LCol!tolist (l);

logical let model (it: Self, c, l) =

(all x : Elt, L!mem (l, x)

<->

L!mem (tolist(it), x));

let start (c : LCol) : Self = c;

let has_next (it : Self) = not(LCol!is_empty (it));

let step_it (it) =

if has_next (it) then (LCol!head (it), LCol!tail (it))

else focalize_error ("no more elements") ;

let measure_it (c) = LCol!size (c);

We have defined the model statement which expresses that the list of elements
to visit should be the list view of the iterator. Here this view is the list view of
the underlying sequence as defined by the tolist function.

The overall SequenceIterator species is 150 lines of FoCaLiZe code where
proofs mostly involve unfolding definitions. For iterators that visit an element
only once we implemented the UniqueSeqIterator species by simple inheritance
and we proved the model step unique property in 40 lines of FoCaLiZe.
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We use a species RemovableGenericIterator to implement the remove fea-
ture. It takes an iterator as argument as in Code 15. To implement removable
iterators we encapsulate a general iterator with the necessary information to
keep track of the last element returned and of the collection of remaining values
after deletion. In Code 15 we use the PFailed value to reflect that no element
can be removed from the collection. As in Java we enforce that only the last
visited element can be removed.

Code 15

type partial(’a) =

| PFailed

| PUnfailed(’a);;

species RemovableGenericIterator(Elt is Setoid, L is Utils(Elt),

Col is Collection(Elt, L),

It is Iterator(Elt, L, Col)) =

inherit RemovableIterator(Elt, L, Col);

(* basic iterator, last element returned, current collection *)

representation = It * (partial(Elt) * Col) ;

logical let model(it, c, l) =

It!model(fst(it), c, l);

let get_collection(it: Self) = snd (snd (it) );

let remove(it: Self): Self =

let i = fst(it) and re = snd(it) in

let e = fst(re) and col = snd(re) in

match e with

| PFailed -> it

| PUnfailed(x) -> (i, (PFailed , Col!remove(x, col)));

let start(c) = (It!start(c), (PFailed, c));

let step_it(it) =

if has_next(it)

then

let c = It!step_it(fst(it)) in

(fst(c), (snd(c), (PUnfailed(fst(c)), snd(snd(it)))))

else focalize_error("no more elements");

This species implements all of the basic iterators specifications (for instance
has next or model start of Iterator) together with features of remove. Basic
iterator methods are implemented by de-structuring the iterator’s representation
and using the corresponding methods of the embedded basic iterator.
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We also provide a RemovableUniqueGenericIterator species which inherits
removable iterators and proves that an element is only visited once. The overall
code for the two species implementing remove facilities is 300 lines of FoCaLiZe
code.

6 Related Work

Collections and iterators have been studied from a verification point of view by
different researchers, mainly in the context of Java or C#. Existing approaches
differ a lot and some of them are mentioned below.

Besides static verification methods, run-time verification has been used, it
allows for example the verification of safe enumeration, by monitoring and pre-
dictive analysis such as in [16].

Formal specification and deductive methods and tools have tackle the problem
of safe iterators or safe use of iterators. A very early specification of Alphard like
iterators using traces has been given by Lamb in [12]. Iterators have also been
studied in the context of the refinement calculus [10]. In this work, iterators are
translated into catamorphisms.

Some approaches (see e.g. [11] and [15]) and use higher order separation logic
to verify some properties on iterators. It is strongly linked to an imperative
implementations with shared mutable heap structures and thus not in the scope
of our approach.

Model oriented specification to describe how iterators behave is a largely
adopted approach (see e.g. [18], [8], [4], [9], [14]). Contracts are associated to
collections and iterators in the form of pre and post-conditions and invariants.
In Java and JML context, this kind of specification may use model fields [3] such
as in [8] where the abstract model of a collection is a bag. From specification
and code, verification conditions are generated and then proved, automatically
or not, by a theorem prover. Our approach is close to this model based style,
however we don’t fix a choice for the model. We only specified it as a logi-
cal statement and its definition is left to the implementor of the iterators. This
avoids explicit bag abstraction and we believe, allows more flexibility to describe
iterators.

Such uses of specification contracts, model fields in particular, usually allow
modular verification. Our approach facilitates also this modular verification since
we are able to verify functions dealing with iterators according to their interface
and thus using only the specifications of iterators (model start, model next

etc.).
The standard Coq library provides a modular specification for finite maps and

sets very similar to those found in the Ocaml library implemented using lists and
efficient trees. Iterators are not featured, however a fold function is proposed.
Also Filliâtre (see [6]) generalizes a fold function into efficient persistent itera-
tors for Ocaml.

The Isabelle Collections Framework (ICF) [13] provides a unified framework
for using verified collection data structures in Isabelle/HOL formalizations. They
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come with iterators which are implemented as generalized fold combinators.
The ICF supports maps, sets and sequences together with generic algorithms
using the Isabelle abstraction facilities. Iterators are created using a continuation
function, a state transformer function and an initial state. Support for reasoning
is achieved using an invariant and specifications are provided for maps, sets and
sequences. Our implementation only provides some support for sequences but we
have designed a general framework in which maps and sets can be implemented.
The ICF heavily relies on higher order functions whereas FoCaLiZe emphasizes
on first order statements which are often easier to understand by programmers.
We thus remain in the same spirit than the Java Collection Framework but we
use persistent data and allow certification.

7 Conclusion

In this paper we have presented a formal specification of collections and iterators
together with a verified implementation of iterators for sequential lists, using the
FoCaLiZe environment. The overall FoCaLiZe formal development with specifi-
cations, code and proofs, contains around 1600 lines4. We have used as much as
possible FoCaLiZe inheritance and parameterization in order to get a flexible,
adaptable and reusable formal development.

As perspectives we plan to specify and implement iterators for other kind
of collections such as trees or maps. Then, in our development it is possible to
state that when there is no more element to visit, every element in the collection
has been visited. It would also be interesting to exploit the fact that a sequence
is an ordered aggregate of elements and thus specify and define iterators that
enumerate the elements of such a collection respecting their order.

Furthermore since we have defined iterators as a species they are normal
FoCaLiZe values and we are able to manipulate them as in Code 15. This should
allow the combination of different iterators and thus provide generic species
implementing combinators of iterators.
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Abstract. Currently, software verification is perceived as an overly dif-
ficult and hard to understand task. This image can be changed through
effective instruction of prospect programmers during their studies. Teach-
ing Hoare logic is a process that can be made more appealing to students
if appropriate tools are employed. Having an environment tailored to the
style and content of a particular lecture is especially beneficial. We ar-
gue that current state of related technology is such that it is possible
to implement a tool that can be adapted to a particular style of classes
with manageable effort. We illustrate our point by showing a tool called
HAHA (Hoare Advanced Homework Assistant) and presenting a statis-
tical analysis of its effectiveness in teaching Hoare logic.

1 Introduction

Refined dependable software development methods, especially ones based on
Hoare logic, are difficult and as a result are perceived as tedious and impractical.
One way to achieve this it to replace the instruction with pen and paper on
introductory courses of Hoare logic with one supported by a tool. The methodical
approach of Hoare logic is much harder to execute than convincing oneself about
correctness of the very same program in a less formal way, which contributes to
the perception that it is tedious and boring. What is worse, the chances of
making a mistake can be argued to be similar for both approaches. The fact
that the whole logical inference is performed on paper, without any aid from the
computer (save, perhaps, in the matter of typesetting) further enforces the view
that Hoare logic is impractical. One way to avoid this is to present these methods
to future programmers during their curriculum in an attractive, modern way.

The most direct approach here is to use automated formal verification software
to facilitate checking the correctness of Hoare programs. Although systems such
as ESC/Java [7,25], Frama-C [5,8], Verifast [19], Microsoft VCC [9], KeY [3], to
mention only few, have not yet made their way into the everyday toolbox of an
average developer [20], they have proven to be usable in the verification process
of software projects.

The design of these systems is focused on large scale software development,
rather than education, and these two goals are, at least in some aspects, con-
flicting. One of the reasons is that rich feature set of languages such as C or Java
� This work was partly supported by Polish government grant N N206 493138.
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(e.g. the complexity of heap handling in Verifast [19] is an additional burden in
getting the basic ideas through), as well as the need to handle the organisation
of creation and evolution of real code (e.g. in the form of full fledged support for
Design by Contract software development [27]), invariably result in complexity
of the underlying formal logic, which limits its use in an introductory course.

There are tools such as KeY-Hoare [6] or Why3 [14], which are designed with
the goal in mind to serve as educational aids, but were started from general
purpose verification tools. Unfortunately, variants of Hoare logic which are im-
plemented by them are seldom compatible with these from existing teaching
materials of courses in particular faculties. This means pedagogical experience
of tutors is, at least to some descent, lost when such a tool is adopted for instruc-
tion. It should also be noted that the high automation they offer can distract
students and allow them to solve exercises by trial and error with little regard
to the design of the logic. This calls for a tool in which only basic techniques are
implemented, but which can easily be adapted to different courses.

One more crucial point here is that the usefulness of the tools for teaching
is usually presented through qualitative descriptions. Hardly anyone tries to use
statistical methods of quantitative psychology [30] to estimate the impact that
introduction of a tool has on the educational process. We address the discussed
shortcomings of previous approaches and propose a Hoare logic teaching assis-
tant, HAHA, designed specifically to teach the logic. Moreover, we present a
quantitative study of the impact adoption of such tool has on teaching results.

The paper is structured as follows. Section 2 gives an overview of the require-
ments for the tool and its current features. The experiment concerning the results
of teaching students with our tool is presented in Section 3. This is followed by
a presentation of related work in Section 4. We conclude in Section 5

2 Presentation of HAHA1

Requirements for the Tool. The basis of our study are the tutoring activities
in our faculty. We gathered requirements on a tool to support teaching in the fol-
lowing two scenarios. The first of them involves giving instruction on Hoare logic
in a standard undergraduate course on semantics and verification of programs.
The second one involves teaching advanced topics in software verification.

As a secondary non-functional requirement on the development we took the
constraint that the internal design of the tool must be such that the tool is
relatively easy adaptable to other teaching environments.
Teaching Hoare logics. We would like the teaching process to be similar to the
original one. This means we require the syntax of the programs to be close to
original Hoare logic with possible extensions, but in the manner easily digestible
by students who are acquainted with programming languages such as Pascal or
Java. In addition, we would like the process of verification to give the impression
that it is done as part of program development, in particular we would not like to
1 The tool is available from http://haha.mimuw.edu.pl

http://haha.mimuw.edu.pl
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change the environment to the one of interactive prover to assist in discharging
verification conditions. Instead we would like the students to give assertions
between instructions that are subsequently verified by an automatic theorem
prover. In case the prover cannot discharge the supplied conditions we would
like to make it possible to give it additional help rather by means of additional
axioms than through an interactive proof. The latter solution would only be
possible if significantly more time was available to instruct students how to do
interactive proofs. It is an unavoidable feature of this part of software verification
that it requires deep technical fluency in the proving technology [28,16].

Traditionally assignments in our courses suggest students to fill in all asser-
tions in program code. Contrary to the common tendency to make only loop
invariants obligatory, we decided that we want to force students to fill in all in-
termediate assertions. This might seem surprising, since the need to write many
formulae increases the amount of work necessary to create a verified program.
However, we believe that, in the case of a teaching aid, our approach is more
beneficial. First, this suggests students to match the assertions with relevant
Hoare logic rules and in this way it reinforces the process of teaching the logic.
Second, it gives the students a tangible experience of how much information must
be maintained at each step of the program to make it execute correctly — the
process of making the verification work is also a tangible experience of how it is
easy to overlook transformation of some tiny detail in this information packet.

Alternatives to Development. Before we started development of our own
tool we reviewed the literature on existing tools (see Section 4). We decided to
have a closer look at Why3 [4,14] and KeY-Hoare [6]. We verified small programs
with both tools to have an impression of how they match our requirements. We
have no room to make a detailed comparison with them, but we give an overview
of encountered problems with their adaptation to our scenario.

Why3 is a very mature tool. It gives the possibility to work with C or Java code
and brings Emacs interface with syntax colouring for the native Why language,
WhyML. Still, the tool does not have the possibility to enforce filling in assertions
between all instructions. One more obstacle, which makes it less suitable for our
purposes is the syntax of WhyML. It is not similar to the languages the students
are used to work with so it would present some kind of difficulty for them. We
could start instruction with Java or C code, but in the end we would have to
expose students to the native syntax. Therefore, we gave this option up.

Key-Hoare is another mature tool that is an adaptation of the very attractive
KeY platform to the needs of a Hoare logic course. Still, the logic behind the tool
is not pure Hoare logic, but Hoare logic with updates. Therefore, the first ob-
stacle in adoption of the tool was the need to extend the lecture material about
Hoare logic to include the updates. Another difficulty with Key-Hoare is that it
exposes a student to the KeY prover where a considerable number of logic rules
can be applied at each step of verification. A student must be instructed which
of them should be used and which of them avoided in typical cases. We believed
that we did not have enough time during classes to explain it. At last, the prover
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environment gave a good impression on which logic rules are available at each
point, but it also did not give the impression of a typical software development
environment and this was one of our requirements.

After taking these observations, we decided to develop our own, based upon
Eclipse, environment called Hoare Advanced Homework Assistant, or HAHA.
We describe it in more detail below.

2.1 Overview of HAHA

The user interface of HAHA is presented in Fig. 1. The main pane of the window
is filled with the source code of the program one works with. It features an editor
for simple while programs and has all features that are expected of a modern
IDE, such as syntax highlighting, automated completion proposals and error
markers. Once a program is entered, it is processed by a verification conditions
generator, which implements the rules of Hoare logic. The resulting formulae
are then passed to an automated prover. If the solver is unable to ascertain the
correctness of the program, error markers are generated to point the user to the
assertions which could not be proven. A very useful feature is the ability to find

Fig. 1. The user interface of HAHA
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counterexamples for incorrect assertions. These are included in error descriptions
displayed by the editor.

The input language of HAHA is that of while programs over integers and
arrays. We designed it so that its mechanisms and data types match those sup-
ported by state of the art satisfiability solvers, e.g. Z3 [10] or CVC4 [2]. As the
language is fairly standard, we do not give its grammar. Instead, we discuss
pivotal features of the HAHA syntax through an example presented in Fig. 2.

predicate sample ( x : Z) = ( x = 42)
axiom t e s t : f o r a l l x : Z y : Z , ( x + y )^2 = x^2 + 2∗x∗y + y^2

function nsum(n : Z) : Z
precondition n _ i s_ p os i t i v e : n > 0
postcondition gauss : nsum = n ∗ (n − 1) / 2

var
i : Z
s : Z

begin
s := 0
{ n_is_positive : n > 0 } { s = 0 }
i := 0
{ n_is_positive : n > 0 } { s = 0 } { i = 0 }
while i < n do

invariant n _ i s_ p os i t i v e : n > 0
invariant i_le_n : i <= n
invariant gauss : s = i ∗ ( i − 1) / 2
counter L : Z [ L − 1 ] , L = n − i

begin
s := s + i
{ count : L = n − i } { n_is_positive : n > 0 }
{ i_lt_n : i < n } { s = i ∗ ( i + 1) / 2 }
i := i + 1

end ;
{ s = n ∗ (n − 1) / 2 }
nsum := s

end

Fig. 2. Example program. The function computes the sum of numbers from 1 to n − 1
using a loop. The postcondition states that the final result is equal to the result of the
Gauss’ formula.

The program consists of a function, which calculates the sum of integers from
1 to n − 1, for a given value of n. The specification simply states that the result
(which, as in Pascal, is represented by a special variable) matches the well known
Gauss’ formula, as long as the argument is not negative. Here it must be noted
that the type Z, used in the example program, represents unbounded (that is,
arbitrarily large) integers. This is one example of a design choice that would
not necessarily be valid for a verifier meant to be used in actual software de-
velopment. The reason is that errors related to arithmetic overflows are quite
common, and are often exploited for malicious purposes. It seems reasonable to
require a static analyser to be able to ensure that no such mistakes are present
in the checked code. In our setting, these considerations play a less important
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role, so we were able to choose a simpler model of arithmetic. On the other
hand, it might be actually desirable to be able to illustrate difficulties associated
with the necessity of avoiding or handling overflows. For this reason we have
created a variant of our tool to allow the use of Int variables, modelled as 32-bit
vectors, in which way we exercised, in our view successfully, the non-functional
requirement concerning adaptability of HAHA.

Structure of the language appears to be fairly self explanatory. Let us note
that, following the example of Eiffel, loop invariants can be named. This is also
extended to other types of assertions. The names are useful for documentation
purposes, and make error messages as well as solver logs much easier to read.
It is possible to give multiple invariants for a single loop. Similarly, a sequence
of assertions is interpreted as a conjunction. This is notably different from the
approach taken in some textbooks and course material, in which an implication
is supposed to hold between two consecutive assertions not separated by any
statement. We believe the former interpretation to be clearer, but, to illustrate
the ease with which HAHA can be modified to fit the requirements of a particular
course, we have implemented the latter in a variant of our tool. Finally, let us
remark that an explicit application of the weakening rule can be unambiguously
represented with the help of the skip statement.

In the example program, each pair of consecutive statements is separated by
assertions. For each instruction the correctness of the two surrounding assertions
is checked by the application of the Hoare logic rule for the instruction combined
with implicit application of the weakening rule. As long as loop invariants are
provided, these midconditions can be inferred automatically through Dijkstra’s
weakest precondition calculation [11]. However, no such inference is performed
in HAHA as a result of the requirement stated in Section 2.

HAHA supports proofs of both partial and total correctness. We follow here
the traditional pattern used in our classes. To facilitate the latter, we allow
a specifically designated invariant to be parameterised by an auxiliary integer
variable. The conditions generated for such an invariant, which we call a counter,
ensure that the loop condition holds precisely when the invariant formula is true
for an argument of 0. It must also be proved that, if the invariant holds before the
loop for an argument of L ∈ N, it will hold for a number L′ ∈ N strictly smaller
than L after the loop body is executed. Concrete syntax used by HAHA for the
purpose of termination proving can be seen in the example program, although
proving termination of this particular loop is not a very challenging task. The
expression in square brackets represents the aforementioned value of L′.

This solution is different from frequently used constructs of loop variant as
in Why3 or decreases statement as in JML. However, these solutions focus, as
mentioned before, on ease of intent specification while we focus on giving the
students the impression of what information a programmer should control to
write correct programs. Our solution forces students not only to provide the
formula that decreases with each loop iteration, but also to explicate the way how
the formula is decreased. Students can provide such formula only when they have
good command of all the control flow paths of the program. Other courses may
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opt for the mentioned above design with loop variants. A smooth introduction of
such a construct requires binary Hoare calculus, which is a desirable extension of
the basic formalism. To extend the portfolio of existing options, we are working
on adding support for the binary assertions.

Before we conclude this brief examination of the capabilities of HAHA, let us
focus on the very first lines of the example program. They contain definitions of
an axiom and a predicate. They are only an illustration, and are not actually
used in the remaining code. When creating specifications for more complex pro-
cedures, however, it is often desirable to use predicates to simplify notation. Our
experience shows that this is especially useful in code operating on arrays, as it
tends to employ rather complex assertions. Axioms, in turn, are helpful when
the automated solver cannot prove a true formula.

3 Description of the Experiment

In general terms the goal of our study was to check if the students that had been
taught with HAHA performed worse or better in their evaluation. A natural
setup here is to try to reject the null hypothesis (H0) that scores of students
taught with the tool are greater or equal to the scores of students taught tradi-
tionally. Here is a description of our experiment to do this.
Experiment environment. The base environment of the experiment was the
course of Semantics and program verification (Semantyka i weryfikacja pro-
gramów in Polish).2 The students are traditionally instructed on two kinds of
classes, namely, on lectures and on blackboard exercises. The lectures give the
theoretical background for the material while during blackboard exercises stu-
dents are exposed to problems such as defining formal semantics for a given in-
tuitive description of a language or verification of a small program using Hoare
logic. The problems are solved in cooperation between students and tutors. The
lectures are given to all students who enrolled on the course while the blackboard
exercises are given to smaller exercise groups of 15–20 students each.

The course is traditionally divided into three approximately equal in weight
topics: operational semantics, denotational semantics, and program verification.
Each of them ends with a homework graded by tutors. The basis for the ultimate
score of a student is the final exam. The students are given there three problems
concerning the three topics of the course. The course has been run several times
and is instructed with an established routine. The lectures are given with help
of slides that undergo only minor changes each year. The blackboard exercises
are given using standard sets of problems to be dealt with.
Experiment setup. The experiment was run twice. The first run was conducted
in 2012/13 semester and the second one in 2013/14. Each of the runs gave a
student two exam attempts. In case a student attempted an exam twice, only
the second attempt was taken into account in our calculations. The whole body
2 A description of the course curriculum can be found in page

http://informatorects.uw.edu.pl/en/courses/view?prz_kod=1000-215bSWP

http://informatorects.uw.edu.pl/en/courses/view?prz_kod=1000-215bSWP
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of students was divided in two populations: G0, where the instruction was done
traditionally, and G1, where the instruction was done with help of HAHA. Stu-
dents decided to enroll to particular blackboard classes groups, some of which
instructed subjects with HAHA and some traditionally [29]. However, students
were not aware of this variation of instruction at the time of their choice.

Group Size
G0,1,12 47
G0,2,12 17
G0,1,13 41
G0,2,13 14
G0 119
G1,1,12 31
G1,2,12 5
G1,1,13 24
G1,2,13 8
G1 68
Fig. 3. Group
sizes

The groups G0, G1 were subsequently subdivided into con-
trol subpopulations G0,i,j where i ∈ {1, 2} corresponds to the
number of exam attempts and j ∈ {12, 13} corresponds to the
year of experiment. Similarly, for test subpopulations we have
G1,i,j . Out of the students who enrolled the course in 2012/13
we excluded from the computations students who did not re-
turn any homework nor attempted exams.3 We assume they
effectively did not take part in the experiment so they could
not be counted. To ensure independence of the tests we ex-
cluded in the run of 2013/14 in addition those students who
attempted the experiment in 2012/13 run. The sizes of the pop-
ulations are gathered in Fig. 34. We should mention here that
the sizes of the populations G1,2,12 and G1,2,13 are very small
so any statistical results for them are the matter of coincidence. We present the
analysis for them only for completeness.

HAHA tool was introduced to the standard setup of the course for the third
part of the instruction, when Hoare logic was presented. All students were warned
at the first lecture that some of them would be trained with help of a new tool to
avoid astonishment on their side. We also believe that the Eclipse environment
is perceived neither as a hot novelty nor as an antique tool, which is confirmed
by the Evans Data Corp. survey [13].

The tool was presented only during the blackboard exercises. It was not men-
tioned during the lecture except for the initial short message. Each run the
students of the course from G0 were divided into three classes groups instructed
by two teachers T1, T2. Accordingly, the students of G1 in each semester con-
sisted of two classes groups instructed by two teachers T2 and T3. One of the
teachers T2 instructed both classes groups in G0 and in G1. The teacher T3 is a
co-author of the tool and the current paper.

The instruction consisted in exposing the students to the same set of problems
as in the previous years. However, the examples were shown in the HAHA editor
displayed through a projector on a screen visible for the whole group. Students
chosen by a tutor had an opportunity to determine the Hoare formulae written
in HAHA. After the series of instructional classes finished, a homework was
given as in the previous years. The students instructed with help of HAHA
were encouraged, but not forced, to return their homework done in HAHA.
The homework assignment was prepared by the teacher T1 who did it in the
previous years, however to ensure it can be prepared smoothly with HAHA it

3 When these students are included the p-values support our claim even stronger.
4 The supplementary material with raw data and R source code is available from

http://haha.mimuw.edu.pl/experiment2013/data.zip

http://haha.mimuw.edu.pl/experiment2013/data.zip


340 T. Sznuk and A. Schubert

was modified slightly by T3. In the end 12 students returned their homework in
HAHA format in 2012/13 run and 14 in 2013/14. Each run only one of these
returned homeworks was graded not with the maximal number of points.

The results of instructions were checked during the final exams. In each of the
total four attempts the students in G0 and G1 were given the same assignments.
One of them consisted in filling in missing assertions of Hoare logic in a given
program, which was a typical kind of assignment on exams in this subject for
several years. Both groups had to do it on a supplied piece of paper that con-
tained the program and free space to fill in with formulae.5 The assignment was
again prepared by T1 (who was not involved neither in development of HAHA
nor in teaching with HAHA). After the exam the assignments were collected
and graded in points ranging from 0 to 10. The grading was done by the teacher
T1, the one who prepared the assignment and who did not do instruction with
HAHA.
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Fig. 4. Scores of students trained traditionally (No HAHA) and with HAHA (HAHA)
for the exams in 2012/13 and 2013/14 in the first ([1]) and second ([2]) attempts

Experiment results and discussion. The main result of the experiment is the
comparison between the performance of students in G0 and in G1. The his-
tograms of the scores obtained by the groups are presented in Fig. 4. (In all
pictures, an idealised distribution of the scores is drawn, as given by the R tool.)
We can immediately see that the distributions are not normal.

5 The texts of the assignments are included in the supplementary documentation of
the experiment.



Tool Support for Teaching Hoare Logic 341

Group E M σ

G0,1,12 6.908511 7.50 2.468042
G0,2,12 6.676471 8.00 3.066661
G0,1,13 7.963415 8.50 1.953811
G0,2,13 6.714286 7.00 2.439375
G1,1,12 7.109677 8.00 3.192111
G1,2,12 6.100000 7.00 4.006245
G1,1,13 8.375000 9.25 1.906796
G1,2,13 7.437500 7.25 2.321291

Fig. 5. Means (E), medians (M)
and standard deviations (σ) of
student’s scores

We can now turn to the analysis of the statis-
tics for the students’ scores. The results for
all the groups are presented in Fig. 5, which
shows the mean (E) value of each group, me-
dian (M) and the standard deviation (σ). The
picture here is relatively clear. There is only
one exception to the rule that the mean of the
group that was taught without HAHA (the up-
per part of the table) is lower than the one for
the corresponding group that was taught tradi-
tionally. Still, this exception takes place in sit-
uation where the test group was very small so
this may be an accidental situation. The same
situation holds for medians. This suggests that the control population G0 has
systematically lower scores in this experiment than the treatment one, G1.

Groups z-score p
G0,1,13-G1,1,13 1.17971100 0.1190576
G0,2,13-G1,2,13 -0.07922324 0.5315725
G0,1,14-G1,1,14 1.27021700 0.1020037
G0,2,14-G1,2,14 0.72321340 0.2347744

Fig. 6. Comparison of students’ results

We would like to strengthen this
argument by showing that these dif-
ferences are not pure coincidence. We
give here a substantial statistical ev-
idence that the scores in G1 are not
worse than scores in G0, which means
that the students taught with help of
HAHA perform not worse than students taught in the traditional way. We use
for this the confidence level of p ≤ 0.05. For our verification, we use the non-
parametric Mann-Whitney test (also called Willcoxon test), as the use of stan-
dard parametric tests assumes the distributions are normal. We can indeed apply
the test since its prerequisites are met:

Hypotheses The null hypotheses H0 for the current study is that the median
of scores in the groups within G0 (represented by a random variable Y1) are
greater or equal to the median of scores in the groups within G1 (represented
by Y2), i.e. H0 : Y1 − Y2 ≥ 0. The alternative hypothesis HA is that the
median in G0 are less than the one in G1.

Uniformity of populations We also can assume that in case the distribution
of results from G0 and G1 is the same, the probability of an observation
from G0 exceeding one from G1 is equal to the probability of an observation
from G1 exceeding one from G0. We discuss this assumption later, but in
summary the background of both groups is the same and their members
were chosen randomly from the point of view of the experiment.

Independence We can assume that the observations in G0 and G1 are inde-
pendent since they concern answers to the same problem given in disjoint
groups in the conditions of an exam during which communication between
students was prohibited.

Comparable responses The scores are numeric so they can be easily com-
pared one with another so a single ranking of the subjects can be formed.
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The z-scores and p-values for the test6 are presented in Fig. 6. We can see
that the statistics confirms our observation that the median in all cases except
from the second one is greater in the group who was taught with HAHA. Since
the p-values are bigger than 0.05 the results are not statistically significant.
However, we can combine them using a meta-analysis technique called Stouffer-
Lipták method [26]. If we combine all the four p-values from the table in Fig. 6
using weights, as suggested by Lipták, that are square roots of the populations
sizes (8.831761, 4.690416, 8.062258, 4.690416, respectively) then we obtain the
combined p = 0.04166557. In case we take the two tests that compare populations
of bigger sizes then the combined p = 0.0420251. In each of the cases we can
reject H0 and conclude that we obtained statistically significant result that the
median of students who were taught with HAHA is higher than the one for
students who were taught traditionally.

Group E M

Assignment 1
G0,1,12 8.510638 9.00
G1,1,12 7.516129 8.00
G0,2,12 5.617647 6.50
G1,2,12 5.600000 7.00
G0,1,13 7.463415 7.00
G1,1,13 6.958333 7.00
G0,2,13 7.428571 8.00
G1,2,13 6.125000 5.00

Assignment 2
G0,1,12 4.814894 5.00
G1,1,12 4.848387 5.40
G0,2,12 2.205882 1.00
G1,2,12 1.800000 1.00
G0,1,13 5.219512 6.00
G1,1,13 4.791667 4.50
G0,2,13 2.964286 3.25
G1,2,13 1.625000 0.50

Fig. 7. Scores in other as-
signments

There are a few more issues that should be discussed
here.
Bias of more talented students. First of all the pro-
cess of group assignment is mostly random, but can
be influenced by students [29]. One possible bias that
could affect our results is that the students in G1 could
have been more talented than average.

This can be rejected by an additional check. The
assignments 1 and 2, which consist in defining of an
operational and denotational semantics for toy lan-
guages, have similar mathematical nature as the one
with Hoare logic. In case G1 consisted of more talented
students, also the scores for the other assignments dur-
ing the exam should be consistently higher for them.

The statistics for the other assignments are pre-
sented in Fig. 7. The mean of the scores in G0 for
the assignment 1 was consistently higher than the one
in the subgroups of G1. In one case the median for the
assignment was smaller for G0 than for G1. This was
in case of the small group that attempted the exam
for the second time. In case of assignment 2 the situation is more complicated
since both mean and median scores are higher for G0 than for G1 in all cases
except for the first big group of 2012/13 exam. In that case the difference of
the medians measured by the Mann-Whitney test results in Z = −0.2125 and
p = 0.4158. This means that the difference was hardly meaningful [12]. As a
result, we do not see any significant bias here that could testify that students in
G1 were more talented.
Problem of instruction by T3. For the validity of the study it is important to
judge more thoroughly the impact of the instruction of the co-author of the tool,
referred here as T3. The basic ground to think that the results are correct is that
6 The results were obtained with help of the R package coin [17,18] with its heuristics

to handle ties in input data.
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the person who graded the studied assignments was not involved in development
of HAHA nor in teaching with the tool. Moreover, the results of the 2012/13
exam (see Fig. 8, T3,i,j is the subgroup of G1,i,j taught by T3) show that the
scores of the group taught by the teacher were even smaller than ones in G0 so
they made the results of G1 even smaller.

Group E M

T3,1,12 5.041667 6.00
T3,2,12 5.875000 6.75
T3,1,13 8.625000 9.50
T3,2,13 8.250000 8.25

Fig. 8. Results of
groups trained by T3

Discussion of instruction by T2. Since one of the tu-
tors instructed both with help of HAHA and with-
out HAHA, it is interesting to compare the results ob-
tained by the corresponding exercise groups T2,0,i,j ⊆
G0,i,j and T2,1,i,j ⊆ G1,i,j . The sizes of these groups
were |T2,0,1,12| = 17, |T2,1,1,12| = 19, |T2,0,2,12| =
5, |T2,1,2,12| = 1, |T2,0,1,13| = 16, |T2,1,1,13| = 11,
|T2,0,2,13| = 0, |T2,1,2,13| = 6. The comparison of the
medians using the Mann-Whitney test is presented in Fig. 9. We can see that
there was no data for T2,0,2,13-T2,1,2,13 case. This was caused by the size of
T2,0,2,13 equal to zero. As we see, the scores are statistically significant for the
bigger groups. This reinforces the claim that instruction with HAHA gives rise
to better results.

Group z-score p
T2,0,1,12-T2,1,1,12 1.7494 0.04011
T2,0,2,12-T2,1,2,12 -1.2060 0.88610
T2,0,1,13-T2,1,1,13 2.0081 0.02232
T2,0,2,13-T2,1,2,13 no data

Fig. 9. Comparison between groups
trained by T2

Independence and uniformity of populations.
Important assumption in the experiment is
that the results of G0 and G1 groups are
independent one from the other. The main
reason to think so is that the populations
in those groups were separate and the ex-
ams that gave the sample results took place
at different times. Moreover, the solutions to
assignments during the exam were individual, i.e. all kinds of cooperation were
explicitly forbidden under standard sanctions.

The experiment lasted several weeks so in principle the students from the
tested group could interfere significantly with those in the control group. Ac-
tually, students from the groups taught traditionally could even attend classes
taught with HAHA. In one case, a student from a group of students instructed
traditionally actually returned his homework written in HAHA. Incidentally,
this was a student known to attend classes with HAHA. This student was in-
cluded into the population taught with HAHA. Still, the students were strongly
encouraged to attend groups they were enlisted in so such cases were marginal.

In 2012/13 we checked additionally how much information on the tool spread
to the groups taught traditionally. We did it with help of an anonymous survey
during the exam. This survey showed that in all students except 17 indicated no
familiarity with HAHA. Therefore, the number of people who admitted familiar-
ity was strictly less than the number of people in the part of G1 corresponding
to the semester. Moreover, the number of people who answered that used HAHA
was exactly equal to the number of people who returned homework written in
HAHA. Therefore, we can conclude that the number of people who used HAHA
in G0 was marginal.
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4 Related Work

The limited space does not make it possible to give an overview of all program
verification tools. We focus here on those with reported applications in teaching.

KeY-Hoare [6] is a tool that serves purposes very similar to HAHA. It uses
a variant of Hoare logic with explicit state updates which allows one to rea-
son about correctness of a program by means of symbolic forward execution.
In contrast, the assignment rule in more traditional Hoare logics requires back-
wards reasoning, which can be argued to be less natural and harder to learn.
Implementation of the system is based on a modification of the KeY [3] tool.

Why3 [4,14] is a platform for deductive program verification based on the
WhyML language. It allows computed verification conditions to be processed
using a variety of provers, including SMT solvers and Coq. WhyML serves as an
intermediate language in verifiers for C [5,8], Ada [22] and Java. It has also been
used in a few courses on formal verification and certified program construction.

Another tool used in education that must be mentioned here is Dafny [24].
It can be used to verify functional correctness and termination of sequential,
imperative programs with some advanced constructs, such as classes and frame
conditions. Input programs are translated to language of the Boogie verifier,
which uses Z3 to automatically discharge proof obligations.

Some courses on formal semantics and verification use the Coq proof assistant
as a teaching aid [28,16]. Reported results of this approach are quite promising,
but the inherent complexity of a general purpose proof assistant appears to be a
major obstacle [28]. One method that has been proposed to alleviate this issue
is to use Coq as a basis of multiple lectures on subjects ranging from basic
propositional logic to Hoare logic [16]. In this way the overhead necessary to
learn to effectively use Coq or a similar tool becomes less prominent.

The complexity of general purpose provers is often a troublesome issue in
education. One can attempt to resolve this problem by creating tools tailored to
specific applications, which sacrifice generality for ease of use. One example of
such a system is SASyLF [1], which is a proof assistant used for teaching language
theory. Another program worth mentioning here is CalcCheck [21]. It is used to
check validity of calculational proofs in the style of a popular textbook [15].
This approach is very similar to what we advocate for teaching Hoare logic, as
it employs a tool created to fit the style of existing educational material.

5 Conclusions and Further Work

We have implemented a tool to support instruction of Hoare logic to students.
This tool resides in a mainstream software development environment Eclipse,
which can give the impression to students that the technique matches contempo-
rary trends in software development tools. It turns out that students instructed
with this tool improved their scores in statistically significant way.

As the design of HAHA assumes it can be adapted to other curricula, we
invite everybody to consider its adaptation to their teaching needs. The tool is
released with a flexible open-source licence (EPL) that makes this available.
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This tool can also be used to teach advanced formal verification methods.
In fact, the experience of implementation of an existing verification method can
give the students the real working understanding of similar methods. HAHA can
serve as a platform to assign such a development task.

There are still many ways this endeavour could be extended. The presentation
of counterexamples can be enhanced in various ways. Additional different verifi-
cation condition generation procedures could open the tool for different settings,
for instance as an aid in instruction of first-year students where forcing them
to write machine checkable loop invariants can improve their command of pro-
gramming. It would also be convenient to enable execution of edited programs
and their debugging as in GNATprove [23].
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course of his lecture. This study would be impossible without tutoring of Bartek
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Abstract. Adaptive systems are designed to modify their behaviour
in response to changes of their operational environment. We adopt a
language-based approach to the development of such systems, with par-
ticular attention to preventing them from failures in adaptation. The
kernel of our proposal is a simple core language, equipped with a type
and effect system that computes a sound approximation of program be-
haviour. The effect is exploited at loading time to verify that programs
correctly adapt themselves to all possible running environments.

1 Introduction

Adaptive software is designed and programmed to dynamically adjust its be-
haviour in order to respond to specific features or to changes of its execution envi-
ronment, and never fail. The development of adaptive systems requires a variety
of new design and programming abilities, and it often involves cross-environment
actions using different collections of hardware and software resources. This issue
has been investigated from different perspectives (control theory, artificial intel-
ligence, programming languages) and several proposals have been put forward;
for a survey, see [22,14]. A main question is about which features are needed to
make a program aware of its running environment, and able to efficiently adapt.

Typically, an adaptive system is made up of a massive number of interacting
components. Each component must keep consistent its overall structure and its
own private resources, after the adaptation steps. Recent work extend standard
model-checking techniques to guarantee that both functional and non-functional
requirements are preserved. E.g., the logic LTL has been suitably extended
for specifying and verifying transitional properties which hold during adapta-
tion [25]; also, a quantitative model-checking is proposed in [10] to support veri-
fication of parametric models at runtime. Verification can be made more effective
if systems are programmed with an ad hoc language, with high-level constructs
for expressing adaptation patterns. Indeed, the provided linguistic abstractions
impose a good practice to programmers, with a positive fallout on correctness
and modularity, mainly because low level details are masked.

We follow this line of research and we propose the core of a programming
language, called MLCoDa, specifically designed for adaptation. Also, we endow
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it with a static analysis guaranteeing programs to be always able to adapt in
every working environment, which is crucial for proving transitional properties.

Our static analysis is carried out in two phases: a type and effect system
(at compile time) and a control flow analysis (at loading time). While type-
checking we also compute an abstraction over-approximating the capabilities
that must be offered at runtime by the various environments that will host the
program. When entering in a new context, before running the program this
abstraction is exploited to check that no failure will arise because the actual
hosting environment lacks a required capability.

Below, we introduce the main features of the language and of our static analy-
sis. Then Section 2 briefly presents the dynamic semantics of MLCoDa. Sections 3
and 4 introduce our type and effect system, and our loading time analysis. Sec-
tion 5 discusses related work and future work. All the proofs of our results and
some additional technical details are in [11].

The language design. The notion of context is fundamental for adaptive software.
It includes any kind of computationally accessible information coming both from
outside (e.g., sensor values, available devices, code libraries etc. offered by the
environment), and from inside the application boundaries (e.g., its private re-
sources, user profiles, etc.). There have been different proposals to include the no-
tion of context inside programming languages. Context-Oriented Programming
(COP) [9] is one among the most successful approaches. It extends standard
programming languages with suitable constructs to express context-dependent
behaviour in a modular fashion; there basic ones are behavioural variations and
layers. A behavioural variation is a chunk of code that can be activated depend-
ing on information picked up from the context, so to dynamically modify the
execution. A layer is an elementary property of the context, that can be activat-
ed/deactivated at runtime. A set of active layers specify the context. Usually,
behavioural variations are bound to layers: activating/deactivating a layer cor-
responds to activating/deactivating the corresponding behavioural variation.

The kernel of our proposal is MLCoDa, a core of ML with COP features. Its
main novelty is to be a two-component language: a declarative constituent for
programming the context and a functional one for computing (see [11] for more
details and for an applicative scenario). We emphasise that the nature of the
context requires customised abstractions for its description, that are different
from those used for programming applications. This observation, together with
separation of concerns, motivated us to define the language with a bipartite
structure, one for the context and one for applications.

Our context is a Datalog knowledge base [20,16]. Adaptive programs can
therefore query the context by simply verifying whether a given property holds
in it, in spite of the complex deductions that this may require.

As for programming adaptation, we propose two mechanisms. The first one
is context-dependent binding that allows program variables to assume different
values depending on the properties of the context; so our programs are widely
open. The second mechanism extends behavioural variations. Usually, these are
not first class objects in COP languages, rather they are expressed as partial
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definitions of procedures or classes or methods or modules, see e.g. [9]. Instead,
in MLCoDa behavioural variations are first class, so they can be referred to by
identifiers, and passed as arguments to, and returned by functions. Since a be-
havioural variation is a value, it can be supplied by the context and composed
with existing ones. This facilitates programming dynamic adaptation patterns,
as well as reusable and modular code.

Despite the bipartite nature of MLCoDa we avoid the impedance mismatch [17],
i.e. the problem of representing data in the context differently from the applica-
tion, because the two components of the language share the same type system
(see Section 3).

We assume that the virtual machine of the language provides its users with a
collection of system variables, values, functions and predicates through a prede-
fined API. Consequently, the programmer can exploit data, functions and pieces
of the context supplied by the virtual machine. Obviously, the actual values
returned by the API are only available at runtime.

We devise an execution model where the compiler produces a triple (C, e,H),
where C is the application context, e is the program object code and H is an
approximation of e, used to verify properties about the program. Given such a
triple, at loading-time the virtual machine performs a linking and a verification
phase. The linking phase resolves system variables and links the application
context to the system one, so obtaining the initial context that, of course, is
checked for consistency. In the spirit of Proof-Carrying code [19] and of the Java
Bytecode Verifier [21], the verification phase exploits the approximation H to
check that the program e will adapt to all the changes in the operating contexts
that may occur at runtime. In this simple model, if both phases succeed program
evaluation begins, otherwise it is aborted.

2 The Dynamic Semantics of MLCoDa

We briefly define the syntax and the operational semantics of MLCoDa, concen-
trating on the new constructs, the others being standard.

Syntax. MLCoDa consists of two sub-languages: a Datalog with negation to de-
scribe the context and a core ML extended with COP features.

The Datalog part is standard: a program is a set of facts and clauses. We
assume that each program is safe [6]; to deal with negation, we adopt Stratified
Datalog under the Closed World Assumption.

The functional part inherits most of the ML constructs. In addition to the
usual ones, our values include Datalog facts F and behavioural variations. Also,
we introduce the set x̃ ∈ DynV ar of parameters, i.e., variables assuming val-
ues depending on the properties of the running context, while x, f ∈ V ar
are standard identifiers, disjoint from parameters. Our COP constructs include
behavioural variations (x){V a}, each consisting of a variation V a, i.e. a list
G1.e1, . . . , Gn.en of expressions ei guarded by Datalog goals Gi (x possibly free
in ei). At runtime, the first goal Gi satisfied by the context determines the
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(Tell2)

ρ � C, tell(F ) → C ∪ {F}, ()
(Retract2)

ρ � C, retract(F ) → C\{F}, ()

(Dlet1)

ρ[(G.e1, ρ(x̃)) /x̃] � C, e2 → C′, e′2
ρ � C, dlet x̃ = e1 whenG in e2 → C′, dlet x̃ = e1 whenG in e′2

(Dlet2)

ρ � C, dlet x̃ = e1 whenG in v → C, v

(Par)

ρ(x̃) = V a dsp(C, V a) = (e, θ)

ρ � C, x̃ → C, e θ

(Append3)

ρ � C, (x){V a1} ∪ (y){V a2} → C, (z){V a1{z/x}, V a2{z/y}} z fresh

(VaApp3)

dsp(C, V a) = (e, {−→c /−→y })
ρ � C, #((x){V a}, v) → C, e{v/x, −→c /−→y }

Fig. 1. The reduction rules for new constructs of MLCoDa

expression ei to be selected (dispatching). The dlet construct implements the
context-dependent binding of a parameter x̃ to a variation V a. The tell/retract
constructs update the context by asserting/retracting facts. The append oper-
ator e1 ∪ e2 concatenates behavioural variations, so allowing for dynamic com-
positions. The application of a behavioural variation #(e1, e2) applies e1 to its
argument e2. To do so, the dispatching mechanism is triggered to query the
context and to select from e1 the expression to run, if any. The syntax follows:

V a ::=G.e | G.e, V a

v ::=c | λfx.e | (x){V a} | F
e ::=v | x | x̃ | e1 e2 | let x = e1 in e2 | if e1 then e2 else e3 |

dlet x̃ = e1 whenG in e2 | tell(e1) | retract(e1) | e1 ∪ e2 | #(e1, e2)

Semantics. For the Datalog evaluation we adopt the top-down standard seman-
tics for stratified programs [6]. Given a context C ∈ Context and a goal G,
C 	 Gwith θ means that the goal G, under the substitution θ replacing con-
stants for variables, is satisfied in the context C.

The small-step operational semantics of MLCoDa is defined for expressions
with no free variable, but possibly with free parameters, allowing for openness.
For that, we have an environment ρ : DynV ar → V a, mapping parameters to
variations. A transition ρ � C, e → C′, e′ says that in the environment ρ, the
expression e is evaluated in the context C and reduces to e′ changing C to
C′. We assume that the initial configuration is ρ0 � C, ep where ρ0 contains the
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bindings for all system parameters, and C results from linking the system and
the application contexts.

Fig. 1 shows the inductive definitions of the reduction rules for our new con-
structs; the other ones are standard, and such are the congruence rules that
reduce subexpressions, e.g. ρ � C, tell(e) → C′, tell(e′) if ρ � C, e → C′, e′.
See [11] for full definitions. We briefly comment below on the rules displayed.

The rule for tell(e)/retract(e) evaluates the expression e until it reduces to a
fact F , which is a value of MLCoDa. Then, the evaluation yields the unit value
() and a new context C′, obtained from C by adding/removing F . The following
example shows the reduction of a tell construct, where we apply the function
f = λx. if e1 then F2 else F3 to unit, assuming that e1 reduces to false without
changing the context:

ρ �C, tell(f ())→∗ C, tell(F3)→ C ∪ {F3}, ()

The rules (Dlet1) and (Dlet2) for the construct dlet, and the rule (Par) for
parameters implement our context-dependent binding. To simplify the technical
development we assume here that e1 contains no parameters. The rule (Dlet1)

extends the environment ρ by appending G.e1 in front of the existent binding
for x̃. Then, e2 is evaluated under the updated environment. Notice that the dlet
does not evaluate e1 but only records it in the environment. The rule (Dlet2)

is standard: the whole dlet yields the value which eventually e2 reduces to.
The (Par) rule looks for the variation V a bound to x̃ in ρ. Then the dispatch-

ing mechanism selects the expression to which x̃ reduces. It is defined as the
partial function dsp:

dsp(C, (G.e, V a)) =

{
(e, θ) if C 	 Gwith θ

dsp(C, V a) otherwise

A variation is inspected from left to right to find the first goal G satisfied by
C, under a substitution θ. If this search succeeds, the dispatching returns the
corresponding expression e and θ. Then x̃ reduces to e θ, i.e. to e whose variables
are bound by θ. Instead, if the dispatching fails because no goal holds, the
computation gets stuck since the program cannot adapt to the current context.
Our static analysis is designed to prevent this kind of runtime errors.

As an example of context-dependent binding consider the expression tell(x̃),
in an environment ρ that binds the parameter x̃ to e′ = G1.F5, G2. f () (f is
defined above) and in a context C that satisfies the goal G2 but not G1:

ρ � C, tell(x̃) → C, tell(f ()) →∗ C, tell(F3) → C ∪ {F3}, ()

In the first step, we retrieve the binding for ~x (recall it is e′), where dsp(C, e′) =
dsp(C, G1.F5, G2. f ()) = (f (), θ), for a suitable substitution θ.

The rules for e1 ∪ e2 sequentially evaluate e1 and e2 until they reduce to be-
havioural variations. Then, they are concatenated (bound variables are renamed
to avoid name captures, see rule (Append3)). As an example of concatenation,
let T be the goal always true, and consider the function d = λx.λy. x∪ (w){T.y}.
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C, ε ·H → C, H C, tell F → C ∪ {F}, ε C, retract F → C\{F}, ε

C,H1 → C′, H ′
1

C,H1 +H2 → C′, H ′
1

C,H2 → C′, H ′
2

C,H1 +H2 → C′, H ′
2

C, H1 → C′, H ′
1

C, H1 ·H2 → C′, H ′
1 ·H2

C, μh.H → C,H [μh.H/h]

C 	 G

C, askG.H ⊗Δ → C, H

C � G

C, ask G.H ⊗Δ → C, Δ

Fig. 2. Semantics of History Expressions

It takes as arguments a behavioural variation x and a value y, and extends x by
adding a default case which is always selected when no other case apply. (Note
in passing that this way of “extending” programs may require an intricate defi-
nition with standard COP features [9].) In the following computation we apply
d to p = (x){G1.c1, G2.x} and to c2 (c1, c2 constants):

ρ � C, d p c2 → C, (x){G1.c1, G2.x} ∪ (w){T.c2} → C, (z){G1.c1, G2.z, T.c2}

The behavioural variation application #(e1, e2) evaluates the subexpressions
until e1 reduces to (x){V a} and e2 to a value v. Then the rule (VaApp3) invokes
the dispatching mechanism to select the relevant expression e from which the
computation proceeds after v replaced x. Also in this case the computation
gets stuck if the dispatching mechanism fails. As an example, consider the above
behavioural variation p and apply it to the constant c in a context C that satisfies
the goal G2 but not G1. Since dsp(C, p) = dsp(C, (x){G1.c1, G2.x}) = (x, θ) for
some substitution θ, we get

ρ � C, #((x){G1.c1, G2.x}, c) → C, c

3 Type and Effect System

We now associate MLCoDa expressions with a type and an abstraction H , called
history expression. During the verification phase the virtual machine uses H to
ensure that the dispatching mechanism will always succeed at runtime. First, we
define History Expressions and then the rules of our type and effect system.

History Expressions. A history expression is a term of a simple process alge-
bra that soundly abstracts program behaviour [4]. Here, it approximates the
sequence of actions that a program may perform over the context at runtime,
i.e., asserting/retracting facts and asking if a goal holds. The syntax follows

H ::=ε | h | μh.H | tell F | retract F | H1 +H2 | H1 ·H2 | Δ
Δ ::=ask G.H ⊗ Δ | fail
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The empty history expression ε abstracts programs which do not interact with
the context; μh.H represents possibly recursive functions, where h is the recur-
sion variable; the “atomic” history expressions tell F and retract F are for the
analogous expressions of MLCoDa; the non-deterministic sum H1 + H2 stands
for the conditional expression if -then-else; the concatenation H1 · H2 is for
sequences of actions, that arise, e.g., while evaluating applications; Δ is an ab-
stract variation, that mimics our dispatching mechanism and is defined as a list
of history expressions Hi, each guarded by an ask Gi.

Given a context C, the behaviour of a history expression H is formalized by
the transition system inductively defined in Fig. 2. Transitions C,H → C′, H ′

formalize that H reduces to H ′ in C yielding C′. Most rules are standard in
process algebras, so we only comment on those dealing with the context.

An action tell F reduces to ε and yields a context C′ where the fact F has just
been added; similarly for retract F . The rules for abstract variation scan it and
look for the first goal G satisfied in the current context; if this search succeeds, Δ
reduces to the history expressionH guarded by G; otherwise the search continues
on the rest of Δ. If no satisfiable goal exists, the stuck configuration fail is
reached, representing that the dispatching mechanism fails.

Typing rules. Here we only give a logical presentation of our type and effect sys-
tem, and we omit its two-step inference algorithm. We assume that our Datalog
is typed, i.e. each predicate has a fixed arity and a type. Many papers exist on
this topic, and we can follow, e.g., a light version of [18]. From here onwards, we
simply assume that there exists a Datalog typing function γ that given a goal G
returns a list of pairs (x, type-of-x), for all the variables x of G.

The rules of our type and effect systems have the usual type environment Γ
binding the variables of an expression:

Γ ::= ∅ | Γ, x : τ

where ∅ denotes the empty environment and Γ, x : τ denotes an environment
having a binding for the variable x (x does not occur in Γ ).

In addition, we introduce the parameter environment K that maps a parame-
ter x̃ to a pair consisting of a type and an abstract variation Δ. The information
in Δ is used to resolve the binding for x̃ at runtime. Formally:

K ::= ∅ | K, (x̃, τ,Δ)

where ∅ is the empty environment and K, (x̃, τ,Δ) has a binding for the param-
eter x̃ (x̃ not in K).

Our typing judgements have the form Γ ; K � e : τ � H , expressing that in
the environments Γ and K the expression e has type τ and effect H .

The syntax of types is

τ ::= τc | τ1
K|H−−−→ τ2 | τ1

K|Δ
===⇒ τ2 | factφ φ ∈ ℘(Fact)

We have basic types τc ∈ {int, bool, unit, . . .}, functional types, behavioural vari-
ation types, and facts. Some types are annotated for analysis reason. In the type
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(Srefl)

τ ≤ τ

(Sfact)

φ ⊆ φ′

factφ ≤ factφ′

(Sfun)

τ ′
1 ≤ τ1 τ2 ≤ τ ′

2 K � K′ H � H ′

τ1
K|H−−−→ τ2 ≤ τ ′

1
K′|H′
−−−−→ τ ′

2

(Sva)

τ ′
1 ≤ τ1 τ2 ≤ τ ′

2 K � K′ Δ � Δ′

τ1
K|Δ
===⇒ τ2 ≤ τ ′

1
K′|Δ′
====⇒ τ ′

2

(Tsub)

Γ ; K � e : τ ′ � H ′ τ ′ ≤ τ H ′ � H

Γ ; K � e : τ � H

(Tfact)

Γ ; K � F : fact{F} � ε

(Ttell)

Γ ; K � e : factφ � H

Γ ; K � tell(e) : unit � H ·
⎛
⎝∑

F∈φ

tell F

⎞
⎠

(Tretract)

Γ ; K � e : factφ � H

Γ ; K � retract(e) : unit � H ·
⎛
⎝∑

F∈φ

retract F

⎞
⎠

(Tpar)

K(x̃) = (τ, Δ)

Γ ; K � x̃ : τ � Δ

(Tvariation)

∀i ∈ {1, . . . , n} γ(Gi) =
−→yi : −→τi Γ, x : τ1,

−→yi : −→τi ;K′ � ei : τ2 � Hi

Δ = askG1.H1 ⊗ · · · ⊗ askGn.Hn ⊗ fail

Γ ; K � (x){G1.e1, . . . , Gn.en} : τ1
K′|Δ
====⇒ τ2 � ε

(Tvapp)

Γ ; K � e1 : τ1
K′|Δ
====⇒ τ2 � H1 Γ ; K � e2 : τ1 � H2 K′ � K

Γ ; K � #(e1, e2) : τ2 � H1 ·H2 ·Δ

(Tappend)

Γ ; K � e1 : τ1
K′|Δ1
====⇒ τ2 � H1 Γ ; K � e2 : τ1

K′|Δ2
====⇒ τ2 � H2

Γ ; K � e1 ∪ e2 : τ1
K′|Δ1⊗Δ2
=======⇒ τ2 � H1 ·H2

(Tdlet)

Γ,−→y :
−→̃
τ ; K � e1 : τ1 � H1 Γ ; K, (x̃, τ1, Δ

′
) � e2 : τ2 � H2

Γ ; K � dlet x̃ = e1 when G in e2 : τ2 � H2

where γ(G) = −→y :
−→̃
τ

if K(x̃) = (τ1, Δ) then Δ′ = G.H1 ⊗ Δ

else (if x̃ /∈ K then Δ′ = G.H1 ⊗ fail)

Fig. 3. Typing rules for new constructs



A Two-Phase Static Analysis for Reliable Adaptation 355

factφ, the set φ soundly contains the facts that an expression can be reduced
to at runtime (see the rules of the semantics (Tell2) and (Retract2)). In the

type τ1
K|H−−−→ τ2 associated with a function f , the environment K is a precon-

dition needed to apply f . Here, K stores the types and the abstract variations
of parameters occurring inside the body of f . The history expression H is the
latent effect of f , i.e. the sequence of actions which may be performed over the

context while evaluating the function. Analogously, in the type τ1
K|Δ
===⇒ τ2 as-

sociated with the behavioural variation bv = (x){V a}, K is a precondition for
applying bv, and Δ is an abstract variation representing the information that
the dispatching mechanism uses at runtime to apply bv.

We now introduce the orderings �H ,�Δ,�K on H , Δ and K, respectively
(often omitting the indexes when unambiguous). We define H1 � H2 iff ∃H3

such that H2 = H1 + H3; Δ1 � Δ2 iff ∃Δ3 such that Δ2 = Δ1 ⊗ Δ3 (note
that Δ2 has a single trailing term fail); K1 � K2 iff ( (x̃, τ1, Δ1) ∈ K1 implies
(x̃, τ2, Δ2) ∈ K2 ∧ τ1 ≤ τ2 ∧ Δ1 � Δ2 ), where τ1 ≤ τ2 is defined in Fig. 3.

Fig. 3 shows the typing rules for the new constructs, omitting the standard
ML ones. A few comments are in order.

The rules for subtyping and subeffecting are at top of Fig. 3. As expected they
say that subtyping relation is reflexive (rule (Srefl)); a type factφ is a subtype
of a type factφ′ if φ ⊆ φ′ (rule (Sfact)); functional types are contravariant in
the types of arguments and covariant in the result type and in the annotations
(rule (Sfun)); analogously for behavioural variations types (rule (Sva)). The rule
(Tsub) allows us to freely enlarge types and effects by applying the rules above.

The rule (Tfact) says that a fact F has type fact annotated with the singleton
{F} and empty effect. The rule (Ttell)/(Tretract) asserts that the expression
tell(e)/retract(e) has type unit, provided that the type of e is factφ. The overall
effect is obtained by concatenating the effect of e with the nondeterministic
summation of tell F/retract F where F is any of the facts in the type of e. For
example, consider the function f = λx. if e1 then F2 else F3 that returns either
fact F2 or F3. Let H be the latent effect of f , then f() : fact{F2, F3} � H , and
the overall type of tell(f()) will be unit and its effect H · (tell F2 + tell F3).

Rule (Tpar) looks for the type and the effect of the parameter x̃ in the envi-
ronment K. The rule (Tdlet) requires that e1 has type τ1 in the environment
Γ extended with the types for the variables −→y of the goal G. Also, e2 has to
type-check in an environment K extended with the information for parameter
x̃. The type and the effect for the overall dlet expression are the same of e2.

In the rule (Tvariation) we guess an environment K ′ and the type τ1 for
the bound variable x. We determine the type for each subexpression ei under
K ′ and the environment Γ extended by the type of x and of the variables −→yi
occurring in the goal Gi (recall that the Datalog typing function γ returns a
list (z, type-of-z) for all variable z of Gi). Note that all subexpressions ei have
the same type τ2. We also require that the abstract variation Δ results from
concatenating ask Gi with the effect computed for ei. The type of the behavioural
variation is annotated by K ′ and Δ. Consider, e.g. the behavioural variation
bv1 = (x){G1.e1, G2.e2}. Assume that the two cases of this behavioural variation
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have type τ and effects H1 and H2, respectively, under Γ, x : int (goals have
no variables) and the guessed environment K ′. Hence, the type of bv1 will be

int
K′|Δ
===⇒ τ with Δ = ask G1.H1 ⊗ ask G2.H2 ⊗ fail and the effect empty.
The rule (Tvapp) type-checks behavioural variation applications and reveals

the role of preconditions. As expected, e1 is a behavioural variation with param-
eter of type τ1 and e2 has type τ1. We get a type if the environment K ′, that acts
as a precondition, is included in K according to �. The type of the behavioural
variation application is τ2, i.e. the type of the result of e1. Its effect is obtained by
concatenating the ones of e1 and e2 with the history expression Δ, occurring in
the annotation of the type of e1. Consider, e.g. bv1 above, its type and its empty
effect. Assume to type-check e = #(bv1, 10) in the environments Γ and K. If
K ′ � K, the type of e is τ and its effect is ε ·Δ = ask G1.H1⊗askG2.H2⊗ fail.

The rule (Tappend) asserts that two expressions e1,e2 with the same type τ ,
except for the abstract variationsΔ1, Δ2 in their annotations, and effects H1 and
H2, are combined into e1 ∪ e2 with type τ , and concatenated annotations and
effects. More precisely, the resulting annotation has the same precondition of e1
and e2 and abstract variation Δ1 ⊗Δ2, and effect H1 ·H2. E.g., consider again

the above bv1 and its type int
K′|Δ
===⇒ τ ; let bv2 = (w){G3.c2}, and let its type be

int
K′|Δ′
====⇒ τ and its effect be H2. Then the type of bv1 ∪ bv2 is int

K′|Δ⊗Δ′
======⇒ τ

and the effect is ε ·H2 = H2.
Our type and effect system is sound with respect to the operational semantics.

To concisely state our results, the following definitions are helpful.

Definition 1 (Typing dynamic environment). Given the type and param-
eter environments Γ and K, we say that the dynamic environment ρ has type
K under Γ (in symbols Γ � ρ : K) iff dom(ρ) ⊆ dom(K) and ∀x̃ ∈ dom(ρ) .
ρ(x) = G1.e1, . . . , Gn.en K(x̃) = (τ, Δ) and ∀i ∈ {1, . . . , n} . γ(Gi) = −→yi : −→τi
Γ,−→yi : −→τi ;K � ei : τ ′ � Hi and τ ′ ≤ τ and

⊗
i∈{1,...,n}Gi.Hi � Δ.

Definition 2. Given H1, H2 then H1 
 H2 iff one of the following case holds

(a) H1 � H2; (b) H2 = H3 ·H1 for some H3;
(c) H2 =

⊗
i∈{1,...,n} ask Gi.Hi ⊗ fail ∧ H1 = Hi, ∃i ∈ [1..n].

Intuitively, the above definition formalises the fact that the history expression
H1 could be obtained from H2 by evaluation.

The soundness of our type and effect system easily derives from the following
standard results (the proofs are in [11]).

Theorem 1 (Preservation). Let es be a closed expression; and let ρ be a
dynamic environment such that dom(ρ) includes the set of parameters of es and
such that Γ � ρ : K. If Γ ; K � es : τ � Hs and ρ � C, es → C′, e′s then
Γ ; K � e′s : τ � H ′

s and ∃H such that H ·H ′
s 
 Hs and C,H ·H ′

s →� C′, H ′
s.

The Progress Theorem assumes that the effect H is viable, namely it does not
reach fail (i.e. it is not the case that C, Hs →+ C′, fail ), because the dispatching



A Two-Phase Static Analysis for Reliable Adaptation 357

mechanism succeeds at runtime. The control-flow analysis sketched in Section 4
guarantees viability. In the statement of the theorem we write ρ � C, e � to
intend that there exists no transition outgoing from C, e, i.e. that e is stuck.

Theorem 2 (Progress). Let es be a closed expression such that
Γ ;K � es : τ � Hs; and let ρ be a dynamic environment such that dom(ρ) in-
cludes the set of parameters of es, and such that Γ � ρ : K.
If ρ � C, es � and H is viable for C, then es is a value.

The following proposition ensures that the history expression of e over-approx-
imates the actions that may be performed over the context during the evaluation.

Proposition 1 (Over-approximation). Let es be a closed expression.
If Γ ;K � es : τ �Hs ∧ ρ � C, es →� C′, e′, for some ρ such that Γ � ρ : K, then
Γ ;K � e′ : τ � H ′ and there exists a sequence of transitions C, Hs →� C′, H ′.

The following theorem ensures the correctness of our approach.

Theorem 3 (Correctness). Let es be a closed expression such that
Γ ;K � es : τ � Hs; let ρ be a dynamic environment such that dom(ρ) includes
the set of parameters of es, and that Γ � ρ : K; and let C be a context such
that Hs is viable i.e. C,Hs �

+ C′, fail. Then either the computation terminates
yielding a value (ρ � C, es →� C′′, v) or it diverges, but it never gets stuck.

4 A Sketch of the Loading-time Analysis

In this section we illustrate how our loading-time analysis works. As said at the
end of Section 1, in the execution model of MLCoDa the compiler produces the
triple (Cp, ep, Hp) made of the application context, the object code and the
effect over-approximating the behaviour of the application. Using it, the virtual
machine of MLCoDa performs a linking and verification phases at loading time.
During the linking phase, system variables are resolved and the initial context
C is constructed, combining Cp and the system context. Still, the application
is “open” with respect to its parameters. This calls for the verification phase:
we verify whether applications adapt to all evolutions of C that may occur at
runtime, i.e., that all dispatching invocations will always succeed. Only programs
which pass this verification phase will be run. To do that efficiently and to
pave the way for checking further properties, we build a graph G describing the
possible evolutions of the initial context, exploiting the history expression Hp.

To support the analysis, we assume to give a distinct label l ∈ Lab to each
subterm of the history expression in hand. A result of the analysis is a pair of
functions Σ◦, Σ• : Lab→ ℘(Context ∪ {�}) where � is a distinguished context
representing a dispatching failure. For each label l, Σ◦(l) over-approximates the
set of contexts that may arise before evaluatingH l (call it pre-set); instead Σ•(l)
over-approximates the set of contexts that may result from the evaluation of H l

(call it post-set). We define the specification of our analysis in the Flow Logic
style, through the validity relation

	 ⊆ AE ×H
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where AE = (Lab → ℘(Context ∪ {�}))2 is the domain of the results of the
analysis and H the set of history expressions. We write (Σ◦, Σ•) 	 H l, when the
pair E = (Σ◦, Σ•) is an acceptable analysis estimate for the history expressionH l.
We only show the most significant inductive rules defining the validity relation:

(Atell)

∀C ∈ Σ◦(l) C ∪ {F} ∈ Σ•(l)

(Σ◦, Σ•) 	 tell F l

(Aask2)

� ∈ Σ•(l)

(Σ◦, Σ•) 	 faill

(Aask1) ∀C ∈ Σ◦(l)
(C 	 G =⇒ (Σ◦, Σ•) 	 H l1 Σ◦(l) ⊆ Σ◦(l1) Σ•(l1) ⊆ Σ•(l))
(C � G =⇒ (Σ◦, Σ•) 	 Δl2 Σ◦(l) ⊆ Σ◦(l2) Σ•(l2) ⊆ Σ•(l))

(Σ◦, Σ•) 	 (askG.H l1 ⊗Δl2)l

(Aseq1) (Σ◦, Σ•) 	 H l1
1

(Σ◦, Σ•) 	 H l2
2 Σ◦(l) ⊆ Σ◦(l1) Σ•(l1) ⊆ Σ◦(l2) Σ•(l2) ⊆ Σ•(l)

(Σ◦, Σ•) 	 (H l1
1 ·H l2

2 )l

(Arec) (Σ◦, Σ•) 	 H l1

Σ◦(l) ⊆ Σ◦(l1) Σ•(l1) ⊆ Σ•(l)

(Σ◦, Σ•) 	 (μh.H l1)l

(Avar) K(h) = (μh.H l1)l
′

Σ◦(l) ⊆ Σ◦(l
′) Σ•(l

′) ⊆ Σ•(l)

(Σ◦, Σ•) 	 hl

The rule (Atell) prescribes that the estimate E is acceptable if for all context
C in the pre-set, the context C ∪ {F}/C\{F} is in the post-set; similarly for
retract. The rules (Aask1/2) handle the abstract dispatching mechanism. The
first states that E is acceptable for H = (askG.H l1

1 ⊗Δl2)l, provided that, for all
C in the pre-set of H , if the goal G succeeds in C then the pre-set of H1 includes
that of H and the post-set of H includes that of H1. Otherwise, the pre-set of
Δl2 must include the one of H and the post-set of Δl2 is included in that of H .
The rule (Aask2) requires � to be in the post-set of fail. The rules (Aseq1/2)

handle the sequential composition of history expressions. The first states that E
is acceptable for H = (H l1

1 · H l2
2 )l if it is valid for both H1 and H2. Moreover,

the pre-set of H1 must include that of H and the pre-set of H2 includes the
post-set of H1; finally, the post-set of H includes that of H2. The rule (Aseq2)

is omitted here an takes care of the sequentialization when H1 is empty. By the
rule (Arec) E is acceptable for H = (μh.H l1

1 )l if it is acceptable for H l1
1 and the

pre-set of H1 includes that of H and the post-set of H includes that of H1. The
rule (Avar) says that the estimate E is acceptable for a variable hl if the pre-set
of the history expression introducing h, namely K(h), is included in that of hl,
and the post-set of hl includes that of K(h). We also omit the rule (Asum) that
handles the non-deterministic choice in the obvious way.

By exploiting the result of the analysis, we introduce the notion of viability.
Intuitively, we say that a history expression is viable for a given initial context if
the failure context occurs only in the post-set corresponding to fail subterms.
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Σ1
◦ Σ1

•
1 {{F2, F5, F8}} {{F1, F2, F5, F8}}
2 {{F1, F2, F5, F8}} {{F1, F5, F8}}
3 {{F2, F5, F8}} {{F1, F5, F8}}
4 {{F2, F5, F8}} {{F2, F5}}
5 {{F2, F5, F8}} {{F2, F5}}
6 ∅ ∅
7 ∅ {�}
8 ∅ ∅
9 {{F2, F5, F8}} {{F1, F5, F8},{F2, F5}}

{F2, F5, F8}

{F1, F2, F5, F8}

{F2, F5}{F1, F5, F8}

tell F1

ask F5∧
retract F8

retract F2

Fig. 4. The analysis result (on right) and the evolution graph (on left) for the con-
text C = {F2, F5, F8} and the history expression Ha = ((tell F 1

1 · retractF 2
2 )

3 +
(ask F5.retract F

5
8 ⊗ ask F3.retract F

6
4 ⊗ fail7)4)8.

Below we illustrate how viability is checked using a couple of examples. Con-
sider the history expression

Ha = ((tell F 1
1 ·retract F 2

2 )
3+(ask F5.retract F

5
8⊗(ask F3.retract F

6
4⊗fail7)8)4)9

and the initial context C = {F2, F5, F8}, consisting of facts only. For each label
l occurring in Ha, Fig. 4 shows the corresponding values of Σ1

◦(l) and Σ1
•(l),

respectively. The column describing Σ• contains � only for l = 7 which is the
label of fail, so Ha is viable for C.

Now consider the following history expression that fails to pass the verification
phase, when put in the same initial context C used above:

H ′
a = ((tell F 1

1 · retract F 2
2 )

3 + (ask F3.retract F
5
4 ⊗ fail6)4)7

Indeed H ′
a is not viable because the goal F3 does not hold in C, and this is

reflected by the occurrences of � in Σ2
•(4) and Σ2

•(7) as shown in Fig. 5.
By using the pre- and the post-sets we build the evolution graph G describing

how the initial context C evolves at runtime. The abstract machine use G to
study how the application interacts with and affects the context. Reachability
of specific contexts is easily checked on this graph. It can help verifying, besides
viability, various other properties of the application behaviour, both functional

Σ2
◦ Σ2

•
1 {{F2, F5, F8}} {{F1, F2, F5, F8}}
2 {{F1, F2, F5, F8}} {{F1, F5, F8}}
3 {{F2, F5, F8}} {{F1, F5, F8}}
4 {{F2, F5, F8}} {�}
5 ∅ ∅
6 {{F2, F5, F8}} {�}
7 {{F2, F5, F8}} {{F1, F5, F8},�}

{F2, F5, F8}

{F1, F2, F5, F8}

�{F1, F5, F8}

tell F1

ask F3

retract F2

Fig. 5. The analysis result (on left) and the evolution graph (on right) for the con-
text C = {F2, F5, F8} and the history expression H ′

a = ((tell F 1
1 · retractF 2

2 )
3 +

(ask F3.retract F
5
4 ⊗ fail6)4)7
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and non-functional. E.g., we can equip the language with security policies, and
analyse the evolution graph to statically detect which actions on the context
may lead to violate the current security policies [11].

As examples of evolution graph consider the context C and the history ex-
pressions Hp and H ′

p introduced in the examples above. The evolution graph of
C for Hp is in Fig. 4. It is easy to see that Hp is viable for C since the node � is
not reachable from C in the graph. The evolution graph of C for H ′

p is in Fig. 5,
and now the node � is reachable, showing H ′

p not viable.

5 Conclusion

We presented MLCoDa, a two-component language for programming adaptive ap-
plications and its two phases static analysis. In the first, a type and effect system
type-checks programs and computes a sound abstraction of their behaviour. In
the second phase, a loading time analysis uses the abstraction to verify that the
program will adapt to all contexts occurring at runtime, i.e., that the dispatching
mechanism will always succeed.

We successfully experimented the control-flow analysis on a proof-of-concept
implementation in F#. We are currently implementing our constructs for adap-
tation and security within F#, so to tune our linguistic proposal and to assess
our static analyses. We also plan to investigate whether our static machinery can
be beneficial to architectural description languages for self adaptation, e.g. [7,24].

Related Work. Below, we consider only adaptive programming languages, and
neglect other approaches, e.g. the great deal of work on mixing functional and
logic languages [1,5] and the agent-based one.

Starting from the initial proposal by Costanza [9], ContextL, some experi-
mental programming languages adopting this paradigm have been implemented
(see [3,23] for an overview). Here, we concentrate on proposals concerning static
verification of COP languages, and we relate them with our approach.

The Java-like language ContextFJ [8] offers layers, scoped layer activation and
deactivation. However, it does not consider constructs for expressing inheritance
and adopts a class-in-layer [13] strategy to express behavioural variations. Since
layers may introduce methods not appearing in classes, a static type system is
defined to ensure that there always exists a binding for each dispatched method
call. Another Java-like language [12] has inheritance, and uses the class-in-layer
strategy to express behavioural variations. Also in this case, a static type system
prevents the occurrence of erroneous invocations at runtime. This type system is
more restrictive than that of [8], because it forbids layers from introducing any
new methods. So every method defined in a layer has to override a method with
the same name in the class. This restriction has been relaxed in [15] where the
type system is extended to handle dynamic layers composition. Featherweight
EventCJ [2] is a further Java dialect that activate layers in reaction to events
triggered by the environment (layer transitions). Model checking is then used to
verify that layer transitions satisfy some expected safety properties.
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All the approaches above differ from our proposal in a main aspect, namely
the context, that for those is a stack of layers carrying no data. Furthermore,
their notion of context only captures what we called the application context: all
the properties holding in the running context are determined by only considering
the code of the application. Our approach instead introduces the notion of open
context, the properties of which not only depend on the application code, but
also on the actual shape of the system context, where the application is about
to run. This difference is reflected in the two phases of our static analysis, and
justifies the need for a loading time analysis.
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Abstract. Multi-agent technology is a promising approach to devel-
opment of complex decentralised systems that dynamically adapt to
changing environmental conditions. The main challenge while designing
such multi-agent systems is to ensure that reachability of the system-
level goals emerges through collaboration of autonomous agents despite
changing operating conditions. In this paper, we present a case study in
formal modelling and verification of a colony of foraging ants. We for-
malise the behaviour of cooperative ants in Event-B and verify by proofs
that the desired system-level properties become achievable via agent col-
laboration. The applied refinement-based approach weaves proof-based
verification into the formal development. It allows us to rigorously de-
fine constraints on the environment and the ant behaviour at different
abstraction levels and systematically explore the relationships between
system-level goals, environment and autonomous ants. We believe that
the proposed approach helps to structure complex system requirements,
facilitates formal analysis of various system interdependencies, and sup-
ports formalisation of intricate mechanisms of agent collaboration.

Keywords: Self-organizing MAS, cooperative ants, formal verification,
refinement, Event-B.

1 Introduction

Self-organising multi-agent systems (MAS) are decentralised systems composed
of a number of autonomic actors – agents – that cooperate with each other to
achieve system-level goals [6]. Each autonomic agent follows a number of rules
that govern its own behaviour as well as agent interactions. The absence of
a centralised controlling mechanism and a loosely-coupled system architecture
enhance system adaptability. However, they also make the design of self-adaptive
MAS a challenging task, since the designers should demonstrate that the desired
system-level behaviour emerges from the behaviour of individual agents.
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In this paper, we propose an approach to formal development of a self-
organising MAS by refinement in Event-B. Event-B [1] is a formal approach for
designing distributed systems correct-by-construction. The main development
technique of Event-B – refinement – allows the designers to transform an abstract
specification into a detailed model through a chain of correctness-preserving
transformations. Each refinement step is verified by proofs guaranteeing that
a refined model preserves the externally observable behaviour. Refinement also
allows us to formally define relations between formal models representing the
system behaviour at different levels of abstraction. Hence it constitutes a suit-
able mechanism for establishing relationships between the system-level goals, the
behaviour of autonomic agents, and their interactions.

In this paper, we undertake a formal development of a colony of foraging agents.
We adopt the systems approach [11] that promotes an integrated modelling of the
system with its environment. In our modelling, we further extend the systems ap-
proachby integrating the thirdcomponent– theobserver.Theobserverdetects that
the system level goal has been reached and the system can successfully terminate.

We start from an abstract specification in which all three layers – the system
environment (the grid with distributed food), the ant colony, and the observer
are modelled in a formal abstract way. In the chain of model refinements, we
introduce a detailed representation of the ant behaviour and link their actions
with the changes in the environment while, at the same time, elaborating on the
logical conditions of system-level goal reachability. Our models incorporate the
perceive-decide-act pattern for modelling the ant behaviour as well as the ant
decision rules, including the heuristics for moving and harvesting food [2]. We
discuss the benefits of formal modelling, the introduced modelling assumptions,
and point out the modelling aspects that require integration with other modelling
techniques such as stochastic analysis and simulation.

The paper is structured as follows. In Section 2 we briefly describe the basics
of self-organising MAS, while Section 3 presents our formal modelling framework
– Event-B. In Section 4 we describe our case study – the colony of foraging ants
– and outline the formal development strategy. Section 5 presents our formal
development in detail. In Section 6 we discusses the results achieved by our
approach. Finally, in Section 7 we conclude and overview the related work.

2 Self-organising Cooperative MAS

Multi-Agent Systems (MAS) exhibiting a self-organised behaviour is a promising
approach to design complex decentralised software systems. The main challenge
when designing self-organising MAS is to ensure that the desired system-level be-
haviour emerges from the interactions of individual agents. Since self-organising
systems do not have a centralised controlling mechanism, each individual agent
should adapt its behaviour according to its individual perception of the oper-
ating environment and the rules governing its behaviour. The mechanism of
self-adaptation should be described by the means of local information. There-
fore, the functionality of the overall system should emerge from the interactions
between the agents [4]. While designing a MAS, we assume that each agent has a
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life cycle, called the perceive-decide-act cycle, which consists of sensing its local
environment, then deciding according to its own environment perceptions which
actions to perform, and, finally, executing them.

This paper focuses on studying cooperative MAS. The main idea that stems
from the adaptive MAS theory is to ensure that each agent acts in coopera-
tion with its neighbours and in accordance with the state of its operational
environment [8,6]. This behavioural pattern has resulted in the following three
meta-rules [3] of the cooperative MAS design:

– The agent should be able to understand every received signal from its envi-
ronment and its neighbours;

– The representations that the agent has about its environment should allow
it to make decisions;

– The decisions that an agent make should enable it to perform an action
which is useful for the other agents and the environment.

Natural self-organising systems, such as, e.g., ant colonies, provide us with
the valuable behavioural patterns that can facilitate design of decentralised co-
operative interaction mechanisms [6]. The individual capabilities of ants to drop
pheromone, smell nest, food or other agents lead to discovery of the cooperative
mechanisms to perceive the environment, make decisions and act.

Traditionally, the behaviour of self-organising systems is studied via simula-
tion and model-checking. Simulation allows the designers to experiment with
various system parameters and create certain heuristics facilitating the system
design [2]. Model checking provides support in the discovery of deadlocks and
property violations [7]. However, to cope with the complexity of self-organising
MAS, the designer also need techniques that support not only verification, but
also the development process itself. Moreover, such techniques should support
disciplined development and facilitate reasoning about various aspects of the
system behaviour at different levels of abstraction.

We believe that the Event-B framework provides a suitable basis for formal
model-driven development of cooperative MAS. In the next section we give a
brief overview of the Event-B framework, while in Section 5 we will demonstrate
our approach to development of cooperative MAS in Event-B.

3 Formal Development in Event-B

The Event B formalism [1] is a state-based formal approach that promotes the
correct-by-construction development paradigm and formal verification by theo-
rem proving. Event B is particularly suitable for modelling distributed and reac-
tive systems and had been actively used within several EU projects for modelling
complex software-intensive systems from various domains.

In Event-B, a system specification (model) consists of two parts – machine
and context, as shown in Fig. 1. The dynamic part of the model — a machine –
is defined using the notion of an abstract state machine [1]. A machine encapsu-
lates the model state, represented as a collection of model variables, and defines
operations on this state, i.e., contains the the dynamic part (behaviour) of the
modelled system. Another part of the model, called context, contains the static
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Machine M
Variables v
Invariants I
Events

Init
evt1
· · ·
evtN

−→
Context C
Carrier Sets d
Constants c
Axioms A

Fig. 1. Event-B machine and context

part of the system. In particular, a context can include user-defined carrier sets,
constants and their properties, which are given as a list of model axioms.

The machine is uniquely identified by its name M . The state variables, v, are
declared in the Variables clause and initialised in the Init event. The variables
are strongly typed by the constraining predicates I given in the Invariants
clause. The invariant clause might also contain other predicates defining prop-
erties that should be preserved during system execution.

The dynamic behaviour of the system is defined by the set of atomic events
specified in the Events clause. Generally, an event can be defined as follows:

ANY vl WHERE g THEN S END,

where vl is a list of new local variables (parameters), the guard g is a state
predicate, and the action S is a statement (assignment). In case when vl is
empty, the event syntax becomes WHEN g THEN S END.

The occurrence of events represents the observable behaviour of the system.
The guard defines the conditions for the action to be executed, i.e., when the
event is enabled. If several events are enabled at the same time, any of them can
be chosen for execution. If none of the events is enabled, the system deadlocks.

The action of an event is a parallel composition of assignments.The assignments
can be either deterministic or non-deterministic. A deterministic assignment, x :=
E(x, y), has the standard syntax and meaning. A nondeterministic assignment is
denoted either as x :∈ Set, where Set is a set of values, or x :| P (x, y, x′), where
P is a predicate relating initial values of x, y to some final value of x′. As a result,
x can get any value belonging to Set or according to P .

Event-B employs a top-down refinement-based approach to system develop-
ment. Development starts from an abstract system specification that models
the most essential functional requirements. While capturing more detailed re-
quirements, each refinement step typically introduces new events and variables
into the abstract specification. Moreover, Event-B formal development supports
data refinement, allowing us to replace some abstract variables with their con-
crete counterparts. In that case, the invariant of the refined machine formally
defines the relationship between the abstract and concrete variables.

The consistency of Event-B models, i.e., verification of model well-formedness,
invariant preservation as well as correctness of refinement steps, is demonstrated
by discharging the relevant proof obligations. The Rodin platform [13] provides
an automated support for modelling and verification. In particular, it automat-
ically generates the required proof obligations and attempts to discharge them.



Formal Modelling and Verification of Cooperative Ant Behaviour 367

4 The Foraging Ants Case Study

Case Study Description. A colony of foraging ants is a nature-inspired coop-
erative MAS. The global objective of the colony is to bring the food, scattered
in the environment, to the nest. Each ant has the ability to perceive, primar-
ily by smell, different characteristics (e.g., closeness of food, nest or other ants)
of its environment. The ant perception depends on its position in the environ-
ment. We assume that the stronger is the smell, the closer is the food. Each ant
can autonomically perform such actions as moving, harvesting and carrying-up
food, unloading food at the nest, as well as dropping pheromone. Pheromone is
a chemical substance that ants put for marking paths to the discovered food.
The autonomic behaviour of an ant can be summarised by the following rules:

1. Each ant starts by exploring the environment and moving randomly;
2. If it smells food, it moves to the direction where the smell is strongest;
3. If it smells pheromone, it moves to the direction where the smell is strongest;
4. When reaching the food at a certain location, an ant harvests as much food

as it can carry and returns to the nest;
5. While an ant returns to the nest carrying food, it drops pheromone along

the way to attract other ants to the food source.

We assume that the environment is composed of a set of connected locations.
One specific location is reserved for the nest of the colony. A location might
contain a certain limited amount of food. Moreover, a location can be marked
by some quantity of (gradually evaporating) pheromone.

The aim of the formal development is to specify the following requirements.

– (R1) The main goal of the colony is to bring all the food to the nest;
– (R2) Before performing an action, an ant should make a decision based on

its current perceptions of the environment;
– (R3) A combination of the ant perceptions should allow it to make an un-

ambiguous decision;
– (R4) The decision an ant makes should lead to its specific action;
– (R5) An ant should avoid conflicts with other ants on the same food source;
– (R6) An ant should avoid conflicts with other ants on the same area.

The requirements (R5) and (R6) essentially mean that, given a choice, an ant
should avoid the areas already exploited by other ants. This ensures a more
efficient food foraging by exploring more territory for yet undiscovered food.

The Formal Refinement Strategy. Traditionally, modelling of self-organising
MAS is structured according to three views:

– modelling the environment,
– modelling autonomic agents and their interactions,
– modelling the system-level properties (observer-view).

One of the advantages of Event-B is that it supports the systems [11] approach,
i.e., allows us to model the system behaviour together with its environment. In
this paper, we further extend the systems approach by defining our model as
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an integration of the environment, agent and observer views. It allows us to for-
mally derive the interconnections between these layers through the development
process. Moreover, such an integrated modelling approach allows us to discover
the constraints that the environment should satisfy, precisely define how the
agent behaviour affects the environment, and link the system-level goals with
both agent and environment dynamics.

Next we present the strategy that we will follow in our formal development
of the case study. The main idea behind the proposed strategy is to derive a
detailed model demonstrating that the local ant behaviour leads to achieving
the defined system-level goal (the requirement R1). The reachability is proved
as a result of formalisation of all three views: environment, agent and observer
as well as their inter-relationships. The overall refinement strategy is as follows.

1. Initial model. The initial abstract model introduces the location grid (in-
cluding the nest) with the distributed food and models the effect of ants
activity – all the food is gradually transferred to the nest. Reaching this
goal is eventually observed by the observer.

2. First refinement. The specification obtained at this level introduces into
the model a representation of the ants and their behaviour, following the
perceive- decide-act cycle. Moreover, we elaborate of the act stage.

3. Second refinement. At this level, we focus on the decision stage. We in-
troduce different types of possible ant decisions as well as the dynamic food
load the ants are carrying. This refinement allows us also to establish a link
between the act and decide stages.

4. Third refinement. At this level, we complete refinement of the perceive-
decide-act cycle by introducing different ant perceptions and the decision
rules based on these perceptions.

5. Fourth refinement. At the final refinement step, we elaborate on the link
between the cooperative ant behaviour and system-level properties. We in-
troduce the conditions guaranteeing that an ant in a particular functioning
mode (exploration, going after perceived food, returning to the nest, etc.)
always gets closer to its current target.

In our refinement strategy, each subsequent refinement step elaborates on
the previously-introduced models, verifying at the same time the consistency
between the models. Moreover, different refinement steps focus on modelling and
verifying different requirements (R1)–(R6). For instance, the second refinement
step ensures the requirement (R4), while the third refinement step focuses on
formalising the requirements (R3), (R5), and (R6).

5 Formal Development of the Foraging Ants Case Study

Next we present our formal development of the colony of foraging ants. Due to
the space limit, we will present excerpts from our formal models and only discuss
the main modelling solutions as well as verified properties.

The Initial Model. In our formal development, we aim at establishing an
explicit link between the system-level goals and the ant behaviour. In our case,
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we have to demonstrate that the ants will harvest all the food distributed in
the environment. In the initial specification, we abstractly model the process of
harvesting food and reaching the goal – reaching the state in which all the food
initially distributed over the environment is transferred to the colony nest.

In the context component of our abstract model, we introduce constants and
properties required to represent the grid (the environment) on which the ants
are moving to harvest the food. We model the grid as a finite adirectional graph
over a set of interconnected locations. The locations are modelled as the abstract
set Locations, with Nest – a fixed location in the grid – representing the nest of
the colony to which the ants should bring the food.

axm1: Nest ∈ Locations ∧ Locations\{Nest} = ∅

axm2: Grid ∈ Locations ↔↔ Locations ∧ Grid = Grid∼

Here ↔↔ designates a total relation, i.e., each location has at least one adjacent
location, connected by Grid. Grid is also symmetric (the axiom axm2). To make
a decision about where to move next, each ant should analyse its close vicinity
– a set of nearby locations. To represent this set, we explicitly introduce the
function Next, defined as a relational image of Grid for the given location loc.

axm3 : Next ∈ Locations→ P(Locations)
axm4 : ∀loc. loc ∈ Locations ⇒ Next(loc) = Grid[{loc}]

Finally, in the context component we also introduce the initial food distribu-
tion in the grid, defined as a constant function over the grid locations:

axm5 : QuantityFoodMax ∈ N1
axm6 : InitFoodDistr ∈ Locations → 0..QuantityFoodMax
axm7 : InitFoodDistr(Nest) = 0 ∧ (∃loc. loc ∈ Locations\{Nest} ∧ InitFoodDistr(loc) > 0)

Here QuantityFoodMax is the constant restricting the maximal amount of
food for any single location. In other axioms, we require that the initial food
amount in the nest is equal to 0, and there is at least one location outside the
nest that contains some non-zero amount of food. Without these constraints,
the system-level goal would be automatically satisfied, i.e., the system would
terminate right after initialisation.

In our abstract model, the main complexity lies in the context that defines the
system environment. The dynamic part of the model – the machine – is rather
simple. After the system initialisation, the event Change becomes enabled. It
models non-deterministic changes in food distribution on the grid. Eventually the
event Observer becomes enabled, indicating that all the food is now transferred
to Nest. We also introduce two variables GoalReached and QuantityFood:

inv1 : GoalReached ∈ bool
inv2 : QuantityFood ∈ Locations → 0..QuantityFoodMax

The current state of food distribution in the grid is modelled by the variable
QuantityFood. It is defined as a function (array) over the grid locations, asso-
ciating each location with the food amount currently stored in it. The variable
is initialised by InitFoodDistr, introduced in the context. The boolean variable
GoalReached indicates whether the system reached its main goal.
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The system goal is reached when there is no food left in the grid, i.e.,

∀loc. loc ∈ Locations\{Nest} ⇒ QuantityFood(loc) = 0

Once this happens, the variable GoalReached is assigned TRUE (by Observer).
This in turn disables the event Change, effectively terminating the system.

The event Change abstractly models possible changes in the grid food dis-
tribution. Essentially, it non-deterministically specifies the general tendency for
the food to be transferred from non-nest locations to Nest. This behaviour is en-
forced by permitting non-deterministic decrease (or at least non-increase) of the
food amount outside Nest or, similarly, its non-deterministic increase in Nest.

EVENT Change
ANY loc, newQF WHERE

grd1 : loc ∈ Locations ∧ newQF ∈ N

grd2 : loc = Nest ⇒ newQF ≥ QuantityFood(loc)
grd3 : loc = Nest ⇒ newQF ≤ QuantityFood(loc)
grd4 : GoalReached = FALSE

THEN

act1 : QuantityFood(loc) := newQF
END

Even though modelling of ants is abstracted away in the initial model, it is
implicitly assumed that all the changes in the grid food distribution happen
because of some ant activities. In the subsequent refinements, this relationship
will be made explicit, constraining the nondeterminism of our abstract model.

The First Refinement. In our first refinement step, we introduce abstract
representation of ants and their behaviour stages. In particular, we adopt the
widely used pattern Perceive→ Decide→ Act to model the cyclic ant behaviour.
Moreover, we distinguish two groups of ants – the ants that are currently engaged
in the food foraging and the ants that are resting in the nest.

In the context of the refined model, we introduce the abstract set Ants to
model the colony of ants. Moreover, we define the enumerated set StepCycle =
{perceive, decide, act} that defines the constants to indicate specific cyclic stages
of the ant behaviour. In the dynamic part of the refined model, we introduce
three new variables to model ants and their behaviour.

inv8 : WorkingAnts ⊆ Ants
inv9 : AgentStage ∈ WorkingAnts → StepCycle
inv10 : currentLoc ∈ Ants → Locations

The variable WorkingAnts stores the set of the ants currently involved in
food foraging. The variable AgentStage indicates the current behaviour stage for
each working ant. Finally, the variable currentLoc associates each ant (whether
working or resting) with its current location on the grid.

The abstract event Change is now refined (and renamed into Act) to model
possible actions of a particular ant. The event is parameterised with a local
variable ant, which is required to be a working ant in the stage act (the guard
grd5). Note that the local variable (parameter) loc of the abstract event Change,
which signified an arbitrary possible grid location, is now constrained to be equal
to currentLoc(ant), i.e., the current location of ant.

The ant action may also result in the ant moving to an adjacent location.
The new action act2 specifies this: the ant may move to a new location (one of
possible locations specified by Next(currentLoc(ant))) or stay where it is now.
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EVENT Act
REFINES Change

ANY newQF, ant WHERE

grd1 : newQF ∈ N

grd2 : currentLoc(ant) = Nest ⇒ newQF ≥ QuantityFood(currentLoc(ant))
grd3 : currentLoc(ant) = Nest ⇒ newQF ≤ QuantityFood(currentLoc(ant))
grd4 : GoalReached = FALSE
grd5 : ant ∈ WorkingAnts ∧ AgentStage(ant) = act

THEN

act1 : QuantityFood(currentLoc(ant)) := newQF
act2 : currentLoc(ant) :∈ Next(currentLoc(ant))∪ {currentLoc(ant)}

END

The new events Perceive, Decide, and NewCycle are introduced to model the
cyclic ant behaviour. The events Perceive and Decide abstractly model the per-
ceive and decide stages of the ant behaviour. These events will be elaborated (re-
fined) in the subsequent refinement steps. The event NewCycle is enabled when
all the working ants completed their act stage (i.e., executed Act). It starts a
new cycle by moving all the working ants into the perceive stage.

As a part of verifying model correctness, Event-B allows us to formally prove
convergence of the newly introduced events (system transitions) in the refined
models. The convergence is proved by providing a natural number expression
(variant) and then formally demonstrating that this expression is decreased by
any execution of new events. We have proved convergence of the new events
Perceive and Decide (thus guaranteeing that the act stage will be reached for all
the working ants), using the following variant expression:

card({a · a ∈ WorkingAnts ∧AgentStage(a) = perceive}) +
card({a · a ∈ WorkingAnts∧ AgentStage(a) ∈ {perceive, decide}),

where card is the set cardinality operator.

The Second Refinement. The first refinement step has allowed us to establish
the connection between the dynamical changes in the system environment (the
food distribution in the grid) and the actors (ants) that cause these changes. In
the second refinement, we elaborate on the ant decision stage. We also introduce
the notions of ant load (i.e., the amount of food an ant is carrying) and grid
pheromone distribution (i.e., quantities of ant pheromone in grid locations).

To model the outcome of the decision stage, in the model context we introduce
the enumerated set Decision = {move, harvest, dropPheromoneAndMove,
dropPheromone, dropFood, doNothing}, with the constants for respective ant
decisions. The ant decisions are constrained by the corresponding environment
and its own conditions, such as the presence of food and currently carried load.
To reason about this, we add the constant MaxLoad (for the maximal amount
a single ant can carry) as well as the functions TotalLoad and TotalFood, re-
turning the total amount of food for a set of ants or a set of locations.

axm2 : MaxLoad ∈ N1
axm3 : TotalLoad ∈ (Ants → N)→ (P(Ants)→ N)
axm4 : TotalFood ∈ (Locations → N)→ (P(Locations)→ N)

In the dynamic part of the model, we introduce three new variables:

inv2 : load ∈ WorkingAnts → Decision
inv3 : AgentDecision ∈ WorkingAnts → Decision
inv4 : DensityPheromone ∈ Locations → N
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The first variable, load, models the current load each ant is carrying. The sec-
ond one, AgentDecision, stores the latest decision made by every working ant.
Finally, the variable DensityPheromone reflects the current amount of dropped
pheromone in specific grid locations. Having the corresponding type and variable
for ant decisions allows us to refine the abstract event Decide as follows:

EVENT Decide
REFINES Decide

ANY ant WHERE

grd1 : ant ∈ WorkingAnts ∧ AgentStage(ant) = decide
grd2 : GoalReached = FALSE

THEN

act1 : AgentDecision(ant) :∈ Decision
act2 : AgentStage(ant) := act

END

The event is still abstract since the environment perceptions of an ant, which
are the basis for making ant decisions, will be introduced later. As a result, here
the ant decision is made nondeterministically from the set Decision. Neverthe-
less, we can now rely on the information about the last decision of each ant
(stored in AgentDecision) to elaborate on the act stage. In the previous model,
this stage is represented by a single event Act. Now we refine the event Act to
introduce the instances of Act corresponding to each possible ant decision. For
example, below we show the event that models dropping food by an ant after
reaching the nest. This event is proved to be a valid refinement of Act.

EVENT Act Drop Food
REFINES Act

ANY ant WHERE

grd1 : ant ∈ WorkingAnts ∧ AgentStage(ant) = act
grd2 : AgentDecision(ant) = dropFood
grd3 : currentLoc(ant) = Nest ∧ GoalReached = FALSE

THEN

act1 : QuantityFood(Nest) := QuantityFood(Nest) + load(ant)
act2 : load(ant) := 0

END

In a similar way, such events as, for example, Act Move, Act HarvestFood,
and Act DropPheromone, are introduced and proved to be specific refinements
of the abstract event Act. The first event changes the ant’s current location (not
affecting the food and pheromone distributions), while the second and third ones
update respectively the grid pheromone and food distributions.

In the abstract model, the food distribution in the event Change is updated
with a high degree of nondeterminism. After two refinements, the introduced
system details and constraints allow us to eliminate this nondeterminism com-
pletely. In fact, we can prove (as an invariant property) that no food is lost:

inv5 : TotalFood(QuantityFood)(Locations) + TotalLoad(load)(Ants) =
TotalFood(InitFoodDistribution)(Locations)

Here we use the context functions TotalFood and TotalLoad to state that all
the food from the initial food distribution is now either in the grid locations or
is carried up by the ants. We can also explicitly relate the reaching of the main
goal with the food absence outside the nest.

inv6 : GoalReached = TRUE ⇒ TotalFood(QuantityFood)(Ants\{Nest}) = 0
inv7 : GoalReached = TRUE ⇒

QuantityFood(Nest) = TotalFood(InitFoodDistribution)(Locations)
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Finally, we can now prove that all the events affecting the food distribution
are convergent, using the following variant expression:

TotalFood(QuantityFood)(Locations\{Nest})
The Third Refinement. The second refinement step has allowed us to build
a link between the ant decisions and its subsequent actions. While further elab-
orating on the ants behaviour, we have also refined the definition of the system
level goal and the conditions that lead to it. Next, we focus on introducing dif-
ferent ant perceptions and formulate the decision rules allowing an ant to decide
on its next action based on a combination of its current perception values.

We assume that each ant has the ability to perceive from a distance the food,
dropped pheromone, nest and other ants. The exact strength of each perception
depends on the ant’s current location and the direction (i.e., the next location)
it is facing. In other words, knowing the current food, pheromone or ant dis-
tribution on the grid, as well as the ant’s location and direction, we can argue
that the value of a specific perception can be unambiguously determined. This
reasoning allows us to introduce the ant perceptions as abstract functions in the
context. Specifically, the food perception can be defined as follows:

axm5 : MaxFoodSmell ∈ N1
axm6 : FoodPerception ∈ (Locations → N)→ (Locations × Locations �→ 0..MaxFoodSmell)

The first parameter of FoodPerception is the current food distribution on the
grid. The second parameter is a pair of locations, the first element of which is
the current location and the second one is a possible next location (a position
in the vicinity). The resulting value is the perception strength. We also assume
that there is a upper limit for it (e.g., the maximal food smell).

In a similar way, we introduce PheromonePerception and AntPerception.
The final perception, NestPerception, can be defined slightly simpler: since the
nest location is stationary, the first parameter can be omitted.

axm11 : MaxNestSmell ∈ N1
axm12 : NestPerception ∈ (Locations × Locations �→ 0..MaxNestSmell)

When foraging, an ant should evaluate different alternatives in its vicinity
based on a combination of all its perceptions: food, pheromone, other ants, and
nest. In other words, four perception values should be merged into a single value,
which is then can be compared with the corresponding values for each possible di-
rection. In the concrete system implementations, the perception values are often
partitioned into the distinct intervals with the corresponding attached weights.
In our formal development, we abstract away from the concrete heuristics allow-
ing for producing a single perception value1. Instead, we define a generic abstract
function, Favour,

axm14 : Favour ∈ N × N × N × N → N

which can be instantiated in many different ways.
For the given food, pheromone, and ants distributions fd, pd, ad, and a pair of

locations (loc �→ next), the overall perception value can be calculated as follows:

1 How such heuristics can be obtained, see, for instance, [2].
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Favour (FoodPerception fd (loc → next), PheromonePerception pd (loc → next),

AntsPerception ad (loc → next), NestPerception (loc → next))

In the dynamic part of the model, we introduce two new variables:

inv4 : nextLocation ∈ WorkingAnts → Location
inv5 : DensityAnts ∈ Locations → N

The first variable, nextLocation, stores the next location an ants decides to move
to based on its environment perceptions. The variable DensityAnts contains the
dynamic information about the quantity of ants in grid locations.

Based on the perception functions introduced in the model context, we can
now elaborate on the ant decide stage. Specifically, the abstract event Decide
is now split into its several versions (Decide MoveExplore, Decide MoveReturn,
Decide HarvestFood, ...) that cover different ant decisions. The introduced per-
ception functions are most useful for the events where an ant should decide the
next location to proceed to. For instance, the eventDecide MoveExplore presented
below should rely on all the ant perceptions.

EVENT Decide MoveExplore
REFINES Decide

ANY ant, nextDir, maxFav WHERE

grd1 : ant ∈ WorkingAnts ∧ AgentStage(ant) = decide
grd2 : GoalReached = FALSE ∧ nextDir ∈ Next(currentLoc(ant))
grd3 : maxFav = FAVOUR(ant �→ nextDir)
grd4 : maxFav = max({dir · dir ∈ Next(currentLoc(ant)) | FAVOUR(ant �→ dir)}

THEN

act1 : AgentDecision(ant) := move
act2 : AgentStage(ant) := act
act2 : NextLocation(ant) := nextDir

END

where FAVOUR(ant �→ nextDir) stands for

Favour( FoodPerception (QuantityFood) (currentLoc(ant) → nextDir),

PheromonePerception (DensityPheromone) (currentLoc(ant) → nextDir),

AntsPerception (DensityAnts) (currentLoc(ant) → nextDir),

NestPerception (currentLoc(ant) → nextDir))

The event allows an ant to choose the most favourable direction to move next.
It is the location nextDir belonging to Next(currentLoc(ant)) and giving the
maximal FAVOUR(...) value based on the current ant perceptions.

The Fourth Refinement. One of the main purposes of the presented formal
development is to formally establish the reachability of the main system goal:
”All the distributed food will be eventually transferred to the nest”. In the second
refinement, we already proved that all the events affecting the food distribution
are convergent and the amount of food outside the nest is constantly decreasing.

However, this result does not concern the events modelling the ants moving
in search of the food or drawn by the left pheromone, ants returning to the
nest, etc. We have to ensure that the ants do not stay forever in such modes of
operation. We can achieve this by deriving the necessary conditions (constraints)
on the ant perception functions that essentially control ant movements.

When ants are returning to the nest (or going after the food/pheromone
smell), they have a specific target to reach, after which they switch to a different
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activity (operational mode). The property we have to ensure is that, if an ant
moves to the next location according to the used perception functions, it always
gets closer to the target of its current operational mode. We ensure this by adding
additional expected constraints (axioms) for the abstract perception functions
in the model context. Then we are going to use these constraints in the model
machine component to prove termination of the ants in particular operation
modes. For instance, we constrain the definition of NestPerception as follows:

axm17 : ∀loc, next, prc. loc ∈ Locations ∧ next ∈ Next(loc) ∧
prc = NestPerception(loc �→ next) ∧
prc = max({dir · dir ∈ Next(loc) |NestPerception(loc �→ dir)}) ⇒
next = Nest ∨ (∃loc′. loc′ ∈ Next(next) ∧ NestPerception(loc′ �→ dir) > prc)

This axiom states that, if an ant proceeds to the direction with the maximal
nest perception value, it either immediately reaches the nest or there exists
the next location after that with an even higher perception value. Since we
have introduced the constant for the maximal nest smell, the nest perception
value cannot go up indefinitely. In similar fashion, we add the corresponding
constraints to the other perception as well as the Favour function.

In the model machine component, we explicitly introduce ant operation modes
by partitioning the working ants into separate classes. For instance, the variable
AntsApproachingNest is introduced for the ants returning to the nest.

inv7 : AntsApproachingNest ⊆ WorkingAnts

The corresponding model events are refined to update this variable if necessary.
Moreover, we formulate the variant in order to formally demonstrate termi-

nation of the ants in this operation mode:
Σ (ant · ant ∈ AntsApproachingNest | (maxNestSmell − max(

{ dir · dir ∈ Next(currentLoc(ant)) | NestPerception(currentLoc(ant) �→ dir)})))
The decreasing of this variant (for the corresponding events) is proved by relying
on the axiom axm17 presented above. In a similar way, we formulate the necessary
conditions and prove termination for the other ant operation modes.

6 Discussion

The presented formal development of the foraging ants case study has been car-
ried out within the Rodin platform [13] – the integrated tool support for Event-B.
The Rodin platform has significantly facilitated both modelling and verification
of our models. In particular, it has generated over 480 proof obligations, most of
which were automatically discharged. Majority of those proof obligations came
from the last two refinement steps, indicating the rising level of complexity.

By formulating many important notions as abstract sets and functions (with
only essential properties postulated) in the model context, we have not only
achieved better understanding of the environment-system interdependencies but
also arrived at a parametric system model. Indeed, the obtained generic defi-
nitions can be instantiated with different system-specific parameters and hence
the proposed models can be reused to model a family of cooperative MAS. For
instance, generic definitions of the ant decision rules (perception and Favour
functions) allow us to instantiate them in many ways, assigning different weights
for various perceptions or their combinations.
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In the last refinement step we derived the constraints for ensuring termination
of ants staying in particular operation modes. These constraints can be seen as
the conditions to be checked for concrete instances of the perception functions.

Our derived models also demonstrate the interplay between the global and
local reasoning. Even though the ant perception functions (which are the basis
for local ant decisions) are defined globally, they merely represent our global
assumptions that each ant has particular capabilities to perceive its vicinity.

We formalised the problem of system-level goal reachability as a termination
problem. We had to constrain the environment by requiring that no new food
sources appear on the grid, otherwise the system would become non-convergent.
The proved termination for ants in particular modes can be seen as piece-wise
invariant, since it can be violated at the points of ants switching the operating
modes. The termination proof is based on the standard Event-B technique using
variants. To obtain a general termination result, one can consider almost certain
termination approach [9] based on the probabilistic reasoning. However, such an
approach would complicate the refinement process because of intricate properties
of models containing both probabilistic and demonic non-determinism.

To evaluate quantitative characteristics of the modelled system (e.g., how
effective are cooperation strategies of concrete instances of the decision rules),
the designers should bridge Event-B with other approaches. We are planning to
investigate how runtime simulation or model checking can be used for this aim.

7 Related Work and Conclusions

Self-organising systems have attracted significant research attention over the last
decade. Majority of the approaches rely on simulation and model checking to ex-
plore the impact of different parameters on the system behaviour. In [7], Gardelli
uses stochastic Pi-Calculus for modelling self-organising MAS for intrusion de-
tection capabilities. The SPIM tool is used to assess the impact of, e.g., the
number of agents and frequency of inspections, on the system behaviour. In [5],
a hybrid approach for modelling and verifying self-organising systems has been
proposed. This approach uses stochastic simulations to model the system de-
scribed as a Markov chain and probabilistic model checking (using the PRISM
tool) for verification. Konur et al. [10] also use PRISM and probabilistic model
checking to verify the behaviour of a robot swarm. The authors verify the system
properties expressed in the PCTL logic for several scenarios.

In this paper, we have experimented with a technique that not only allows
the designers to verify certain system-level properties of self-organising MAS,
but also provides a support throughout the development process. In our work,
we start from a high-level system model and derive the specification that details
the individual agent mechanisms leading to reaching the desired goal.

The derivational approach has been also adopted in our previous work [12].
There we have studied the mechanisms of goal decomposition by refinement
and ensuring data integrity in cooperative MAS. In contrast, in this paper we
propose how to create a parameterised generic model of the system environment
and establish the link between actions of autonomic agents and the environment
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state. Moreover, we demonstrate how to formally represent agent perception and
decision rules as generic system parameters.

In this paper, we presented a case study in formal development of a nature-
inspired self-organising MAS. We demonstrated how to derive a detailed specifi-
cation of a colony of foraging ants by refinement. Formal derivation has provided
us with a structured and disciplined framework for the development of a complex
system with intricate agent interactions. We believe that the proposed approach
is promising for modelling the logical aspects of self-organising systems.

Self-organising MAS are complex multi-facet phenomena and hence require a
range of approaches for their modelling and analysis. The proposed approach
should be integrated with stochastic analysis techniques, in order to identify the
most optimal system parameters that would allow the system to achieve its objec-
tives not only in terms of logical correctness but also performance, reliability and
required resources. Integration with such techniques constitutes one of the direc-
tions of our future research.
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basée sur la coopération: application à la recherche d’information dans un système
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Abstract. Social networks (SN) provide a great opportunity to help
people interact with each other in different ways depending on the kind
of relationship that links them. One of the aims of SN is to be flexible
in the way one shares information, being as permissive as possible in
how people communicate and disseminate information. While preserving
the spirit of SN, users would like to be sure that their privacy is not
compromised. One way to do so is by providing users with means to define
their own privacy policies and give guarantees that they will be respected.
In this paper we present a privacy policy framework for SN, consisting
of a formal model of SN, a knowledge-based logic, and a formal privacy
policy language. The framework may be tailored by providing suitable
instantiations of the different relationships, the events, the propositions
representing what is to be known, and the additional facts or rules a
particular social network should satisfy. Besides, models of Facebook and
Twitter are instantiated in our formalism, and we provide instantiations
of a number of richer privacy policies.

1 Introduction

A social network is a structure made up of a set of agents (individuals or or-
ganisations), which are connected via different kinds of relationships. People
and organisations use social networks (SN) to interact on a peer-to-peer manner
and also to broadcast information related to themselves or others with selected
subgroups of other agents. Users expect that social network services (SNS) pro-
vide flexibility and easy-to-use interfaces for achieving the intended objectives
in a fast and reliable manner. This flexibility, however, comes with the potential
problem of compromising organisations’ and individuals’ privacy.

Privacy in SN may be compromised in different ways: from direct observa-
tion of what is posted (seen by non-allowed agents), by inferring properties of
data (metadata privacy leakages), indirectly from the topology of the SN (e.g.,
knowing who our friends are), to more elaborate intentional attackers such as
sniffers or harvesters [6]. In this paper we are mainly concerned with the first
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3 kinds of privacy issues. In order to tackle them, we look into the problem
of defining a formal language for writing rich privacy policies in the context of
social networks. We aim at defining a privacy policy language able to express
at least the following (kinds of) policies: i) All privacy policies currently sup-
ported by existing SN like Facebook; ii) Privacy policies describing properties on
attributes, i.e. not only coarse-grained properties as the fact that someone has
post something, but about the content of the post itself; iii) Conditional privacy
policies, which depend on the amount of current knowledge or permissions in the
SN; iv) Privacy policies based on knowledge in a group of agents and distributed
knowledge among several agents.

In order to achieve the above we propose a solution based on the definition of
a rather general privacy policy framework that may be specialised for concrete
SN instances. More concretely, our contributions are:

1. We propose a formal privacy policy framework consisting of: i) a generic
model for social networks, formalised as a combination of hyper-graphs and
Kripke structures; ii) the syntax and semantics of a knowledge-based logic to
reason about the social network and privacy policies; iii) a formal language
to describe privacy policies (based on the logic mentioned above), together
with a conformance relation to be able to state whether a certain social
network satisfies a given policy. (Section 2.)

2. We specify how the above privacy policy framework may be instantiated in
order to be used in practice. (Section 3.)

3. Our definition of instantiated privacy policy framework allows us to model
not only existing SN with their corresponding privacy policies, but also richer
ones. We show the expressiveness of our approach by presenting instantia-
tions of Twitter, Facebook, and richer privacy policies. (Section 4.)

2 Privacy Policy Framework

In this section we define PPF , a formal privacy policy framework for social
networks. The framework is not only able to deal with explicit disclosure of
information, but it also is equipped with internal machinery for detecting implicit
knowledge.

Definition 1. The tuple 〈SN ,KBLSN , |=,PPLSN , |=C〉 is a privacy policy
framework (denoted by PPF), where

– SN is a social network model;
– KBLSN is a knowledge-based logic;

– |= is a satisfaction relation defined for KBLSN ;
– PPLSN is a privacy policy language;

– |=C is a conformance relation defined for PPLSN . ,�

In what follows we define in more detail each of the components of PPF .
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2.1 The Social Network Model SN
SN is a generic model for social networks representing the topology of the social
network, modelling the different connections between agents, their knowledge,
and the actions they are allowed to perform.

Preliminaries. Before providing the definition of SN let us define Ag to be a
finite and nonempty set of agents, C a finite and nonempty set of connections,
representing the relations between agents (e.g. friendship, colleague, blocked,
restricted), and Σ a finite and nonempty set of actions, representing what is
allowed to be performed by the agents (e.g. posting, looking up an agent). Also,
let Π be a finite set of privacy policies defined by

Π = {�ψj�i | i ∈ Ag, j ∈ {1, 2, . . . , ni} and ψj ∈ PPLSN }

containing all the privacy policies for each agent i (there are ni privacy policies
for each agent i, if ni = 0 then there is no privacy policy associated with agent
i).

Definition 2. Given a nonempty set of propositions P, we define a social net-
work model SN to be a hypergraph of the form 〈W, {Ri}i∈C , {Ai}i∈Σ , ν,KB, π〉,
where

– W is a nonempty set of possible worlds. Every world represents one of the
agents defined in the set Ag.

– {Ri}i∈C is a family of binary relations Ri ⊆W ×W , indexed by connections.
Given agents x, y ∈ W , we write xRiy iff (x, y) ∈ Ri.

– {Ai}i∈Σ is a family of binary relations Ai ⊆ W ×W , indexed by actions.
Given agents x, y ∈ W , we write xAiy iff (x, y) ∈ Ai.

– ν is a valuation function returning the set of propositions which are true in
a given world (i.e. ν : W → 2P).

– KB is a function giving the set of accumulated non-trivial knowledge for
each agent, stored in what we call the knowledge base of the agent. 1

– π is a function returning the set of privacy policies defined for a given agent
(i.e. π : W → 2Π). ,�

We define a bijective function between agents and worlds AW : Ag → W ;
hereafter we will interchangeably refer to elements of W as worlds or agents. We
will sometimes use the indexes to denote the corresponding connections. So, given
C to be the set {Friendship, Colleague}, then instead of writing RFriendship and
RColleague we will write Friendship and Colleague respectively. In addition we
define SN |c to be the projection over the connection c ∈ C for a given social
network model SN , as the graph SN |c = 〈W,Rc〉, where W is the set of worlds
of SN and Rc is the binary relation defined in SN for the connection c. Finally,
given a set of agents G ⊆ Ag and a projection SN |c, we define the following
predicate clique(SN |c, G) iff ∀i, j ∈ G. iRcj ∧ jRci.

1 We will formally define this function in subsection 2.2, since its definition requires a
formal specification of KBLSN subformulae.
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(a) Example of a generic SN (b) PPFI of a Facebook-like SN

Fig. 1. Examples of social network models

Example 1. We illustrate how a small fragment of a generic social network could
be modelled according to definition 2. The SN consists of: i) 4 agents, Ag =
{A,B,C,D}; ii) a set of 3 connections, C = {c1, c2, c3}; iii) the set Σ = {a1, a2},
representing the actions allowed among users.

A graphical representation of the defined social network is given in Fig. 1a.
The dashed line and the plain line represent the c1 and c2 relations, respectively.
They are not directed because we assume these relations are symmetric. On the
other hand, the c3 relation (represented by a dotted line) relates only B and C,
and it is directed.

The allowed actions are represented by the dashed and dotted directed arrows.
Actions represent interaction between 2 agents. In the example, action a1 has D
as source and B as target. Associated to each world there is a set of propositions
over {p1, p2, . . . , p7} ⊆ P explicitly representing basic knowledge of the agent.
For instance, in Fig. 1a it is shown that agent C knows p4 and p7. ,�

2.2 The Knowledge-Based Logic for Social Networks KBLSN

We define here a logic for representing and reasoning about knowledge. We give
semantics to the logic KBLSN over a knowledge-based representation built on
top of the social network model SN .

Definition 3. Given i, j ∈ Ag, a ∈ Σ, p ∈ P, and G ⊆ Ag, the knowledge-based
logic KBLSN is inductively defined as:

γ ::= ¬γ | γ ∧ γ | ψ | φ
ψ ::= P j

i a | GP j
Ga | SP

j
Ga

φ ::= p | φ ∧ φ | ¬φ | Kiφ | EGφ | SGφ | DGφ.

The intuitive meaning of the modalities is as follows.
– Kiφ (Basic knowledge): Agent i knows φ.
– EGφ (Everyone knows): Every agent in the group G knows φ.
– SGφ (Someone knows): At least one agent in the group G knows φ.
– DGφ (Distributed knowledge): φ is distributed knowledge in the group of

agents G (i.e. the combination of individual knowledge of the agents in G).
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Table 1. KBLSN satisfiability relation

SN, u |= ¬p iff ¬p ∈ ν(u)
SN, u |= p iff p ∈ ν(u)

SN, u |= ¬φ iff SN, u 	|= φ
SN, u |= φ ∧ ψ iff SN, u |= φ and SN, u |= ψ

SN, u |= Kiδ iff

{
δ ∈ KB(i) if δ = Kjδ

′,where j ∈ Ag
SN, i |= δ otherwise

SN, u |= P j
i a iff (i, j) ∈ Aa

SN, u |= GP j
Ga iff (n, j) ∈ Aa for all n ∈ G

SN, u |= SP j
Ga iff there exists n ∈ G such that (n, j) ∈ Aa

SN, u |= SGδ iff there exists i ∈ G such that SN, i |= Kiδ
SN, u |= EGδ iff SN, i |= Kiδ for all i ∈ G

SN, u |= DGδ iff

{
SN, u |= SGδ

′ and SN, u |= SGδ
′′ if δ = δ′ ∧ δ′′

SN, u |= SGδ otherwise

– P j
i a (Permission): Agent i is allowed to perform action a to agent j.

– GP j
Ga (Global Permission): All agents specified in G are allowed to perform

action a to agent j.
– SP j

Ga (Someone is Permitted): At least one agent specified in G is allowed
to perform action a to agent j.

We will denote with FKBL the set of all well-formed formulae of KBLSN as
defined by the grammar given in above definition. Similarly, FK

KBL will denote
those defined by the syntactic category φ and FP

KBL will denote the subformu-
lae of the logic defined by the syntactic category ψ. The function giving the
knowledge base of an agent, informally described in section 2.1, has the follow-

ing type KB : Ag → 2F
K
KBL . We define in what follows the satisfaction relation

for KBLSN formulae.

Definition 4. Given a SN = 〈W, {Ri}i∈C , {Ai}i∈Σ , ν,KB, π〉, the agents i, j, u
∈ Ag, a finite set of agents G ⊆ Ag, an action a ∈ Σ, δ ∈ FK

KBL, and φ, ψ ∈
FKBL, the satisfiability relation |= is defined as shown in Table 1. ,�

Note that we explicitly add the negation of a proposition. It represents knowing
the negation of a fact (e.g Ki¬p) which is different than not knowing it (i.e.
¬Kip). Moreover, it is important to point out that KBLSN is not minimal as
the last 5 modalities can be defined in terms of more basic cases as follows:
SGδ �

∨
i∈G Kiδ, EGδ �

∧
i∈G Kiδ, GP j

Ga �
∧

i∈G P j
i a, SP

j
Ga �

∨
i∈G P j

i a and
DGδ is already defined in terms of SG as shown in its semantical definition. Note
that as the set G is finite, so are the disjunction and the conjunction for SG,
EG, GP j

G and SP j
G.



A Formal Privacy Policy Framework for Social Networks 383

Example 2. KBLSN enables the possibility of reasoning about epistemic and
deontic properties. As stated in SN showed in Example 1, D is allowed to
execute a1, which will affect B. In KBLSN we can formally check the previous
statement by checking satisfiability of the following judgement: SN,B |= PB

D a1.
We can also build more complex expressions in which we actually leverage the

reasoning power of KBLSN . For instance, we can check whether the following
holds for agent A:

SN,A |= ¬KB p1 ∧ ¬KCKA p1 =⇒ ¬SPA
{B,C} a1,

which means that if agent B does not know p1 and agent C does not know that
agent A knows p1 then it is not permitted for any of the agents B and C to
execute the action a1 to the agent A. ,�

Apart from checking properties in the model, KBLSN also permits to reason
about certain properties that hold in general. Given a social network SN , i, j ∈
Ag, and formulae φ, ψ ∈ FK

KBL, we can state and prove the following lemma on
the influence of the individuals knowledge and their combination as distributed
knowledge.

Lemma 1. SN, i |= Kiφ ∧Kjψ =⇒ D{i,j}φ ∧ ψ. ,�

2.3 The Privacy Policy Language for Social Networks PPLSN

KBLSN is an expressive language for specifying and reasoning about epistemic
and deontic properties of agents in SN models. However, the language is not
completely suitable for writing privacy policies, and thus a different language
is needed for this purpose. Privacy policies in social networks can be seen as
explicit statements in which agents specify what cannot be known about them or
what is not permitted to be executed. The syntax of the privacy policy language
PPLSN is based on that of KBLSN , but adapted to express privacy policies.

Definition 5. Given the agents i, j ∈ Ag and a nonempty set of agents G ⊆
Ag, the syntax of the privacy policy language PPLSN is inductively defined as
follows:

δ ::= δ ∧ δ | �φ =⇒ ¬ψ�i | �¬ψ�i
φ ::= ψ | ¬ψ | φ ∧ φ

ψ ::= EGγ | SGγ | DGγ | Kiγ | GP j
Ga | SP j

Ga | P j
i a | ψ ∧ ψ.

γ ::= p | γ ∧ γ

PPLSN may be seen as formed by a subset of formulae definable in KBLSN
wrapped with the � �i operator, specifying which agent has defined the privacy
policy. As before, we define FPPL to be the set of PPLSN well-formed formulae
defined as given by the grammar in the above definition. A basic privacy policy
for an agent i, given by δ in definition 5, is either a direct restriction (�¬ψ�i) or a
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Table 2. PPLSN conformance relation

SN |=C τ1 ∧ τ2 iff SN |=C τ1 ∧ SN |=C τ2
SN |=C �¬ψ�i iff SN, i |= ¬ψ
SN |=C �φ =⇒ ¬ψ�i iff SN, i |= φ then SN |=C �¬ψ�i

conditional restriction (�φ =⇒ ¬ψ�i). FC
PPL will denote sbuformulae belonging

to the syntactic category φ (conditions) and FR
PPL subformulae of the syntactic

category ψ (restrictions). Instead of defining a satisfaction relation for PPLSN ,
we define the following conformance relation to determine when a SN respects
a given privacy policy.

Definition 6. Given a SN = 〈W, {Ri}i∈C , {Ai}i∈Σ , ν,KB, π〉, an agent i ∈ Ag,
φ ∈ FC

PPL, ψ ∈ FR
PPL and τ1, τ2 ∈ FPPL; the conformance relation |=C is

defined as shown in Table 2. ,�

Example 3. The following are the privacy policies for agent A (cf. Example 1):
π(A) = {�¬S{B,C,D} p1�A, �KB p1 =⇒ ¬PA

B a1�A}. The intuitive meaning of
the first policy is that nobody can know p1 (apart from A who is the only agent
left in the SN ). The second one means that if agent B knows p1 then she is not
permitted to execute the action a1 to A. ,�

3 PPF Instantiation

In the previous section we have presented a generic framework for defining pri-
vacy policies in social networks. In order to be usable, the framework needs to
be instantiated, as specified in the following definition.

Definition 7. We say that a PPF is an instantiated privacy policy framework
iff an instantiation for the following is provided:

– The set of agents Ag;
– The set of propositions P (p ∈ P may be given a structure);
– The set of connections C;
– The set of auxiliary functions over the above connections;
– The set of actions Σ;
– A set of properties written in KBLSN (these properties may be seen as as-

sumptions on the social network);
– A set of constraints over the policies defined in the language PPLSN . ,�

We write PPFName for the instantiation of a PPF on a specific social network
Name. In what follows we show an example of instantiation.

Example 4. We present here PPFFBook-like, an instantiation of the privacy policy
framework given in Example 1 for a Facebook-like social network. (Fig. 1b shows
the SN for the instantiated PPF.)
Agents We redefine the set of agents to be Ag = {Alice, Bob, Charlie,Daniel}.
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Propositions We define a structure for the propositions, by requiring them to
be of the form owner.attribute (e.g. Alice.street).

Connections. In this particular instantiation we consider only the following
connections: C = {Friendship, Colleague,Blocked}.

Auxiliary functions. The following auxiliary functions (from Ag to 2Ag)
will help to retrieve the corresponding sets associated to the above de-
fined connections: friends(i) = {u | iRFriendshipu and uRFriendshipi};
colleagues(i) = {u | iRColleagueu and uRColleaguei}; blocked(i) = {u |
iRBlockedu}; These functions are notably useful when writing formulae (both
in KBLSN and PPLSN ), since it allows to refer to groups of agents defined
by their relationships.

Actions. The set of actions is instantiated as Σ = {sendRequest, lookup}.
Assumptions on the SN . Different social networks are characterised by dif-

ferent properties. We use KBLSN for defining these properties (or assump-
tions). In a Facebook-like social network some attributes are a composition
of others. We introduce here the notion of record, that is a complex attribute
composed by others. We assume that the attribute location of an agent is
composed by the following attributes: street, country, and city. Given agents
u, i, j, h ∈ Ag and the group G = {i, j, h} we assume the following property
holds:

SN, i |= SG u.country ∧ SG u.city ∧ SG u.street =⇒ DG u.location (1)

moreover if i = j = h we can derive the following property:

SN, i |= Ki(u.country ∧ u.city ∧ u.street) =⇒ Ki u.location (2)

In addition we can also model facts that we assume to be true in the so-
cial network. For example, we could assume that if some information is
distributed knowledge among users who are friends, then this information
becomes known to all of them individually. Formally we say that given a set
of agents G ⊆ Ag, an agent u ∈ Ag and a formula φ ∈ FK

KBL, for all i ∈ G
the following holds:

if SN, u |= DGφ and clique(SN |Friendship, G) then SN, i |= Kiφ. (3)

Constraints over privacy policies. A common constraint in social networks
is that agents can only write policies about their own data. In PPLSN it is
possible to write �¬Kj u.attribute�i where i, j, u ∈ Ag and i 
= j 
= u. This
policy, defined by agent i, forbids agent j to know attribute from agent u.
Agent i is thus constraining the accessibility of certain information about an
agent other than herself. To solve this we could add the following constraint:
Given an agent i ∈ Ag and her privacy policies,

∧
j∈1,...,n τj ∈ π(i), where

τj = �φ�i, if φ = ¬φ′ or φ = φ′′ =⇒ ¬φ′ then it is not permitted that
u.attribute ∈ φ′ for any u ∈ Ag. u 
= i, meaning that agents can only define
policies about their own data. Likewise, users should not be able to write
permission restrictions over other users. In order to address this issue we
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extend the previous restriction with the following: given an agent j ∈ Ag,
an action a ∈ Σ and the set G ⊆ Ag, it is not the case for i 
= j that P j

ua,
SP j

Ga or GP j
Ga ∈ φ′. ,�

For a given instantiation we could prove more properties besides the ones
given as assumptions. The following lemma exemplifies the kind of properties
we can prove about instantiated privacy policy frameworks in general and for
PPFFBook-like in particular.

Lemma 2. Given u ∈ Ag, if SN, u |= DG (u.country ∧ u.city ∧ u.street),
and assuming the group of agents G ⊆ Ag are all friends to each other (i.e.
clique(SN |Friendship, G)), then SN 
|=C �¬S{Ag\{u}}u.location�u. ,�

4 Case Studies

PPF may be instantiated for various social networks. We show here how to
instantiate Twitter and Facebook. Though our formalisation is expressive enough
to fully instantiate the social networks under consideration, due to lack of space
we will only show minimal instantiations which allow us to represent all the
existing privacy policies in the mentioned social networks.

Before going into the details of our instantiation, we describe some prelimi-
naries. In the rest of the section we will use i, j, u to denote agents (i, j, u ∈ Ag),
and G to denote a finite subset of agents (G ⊆ Ag), where Ag is the set of agents
registered in the instantiated social network. Given an attribute att of an agent
u (denoted by u.att), we will sometimes need to distinguish between different oc-
currences of such an attribute. In that case we will write u.attη (η ∈ {1, . . . , nu},
with nu being the maximum number of occurrences of the attribute; by conven-
tion, if there are no occurrence of u.att, we have that nu = 0). For example, if we
assume that agent u’s location changes and we want to refer to these different
locations we will write u.locationη.

4.1 Twitter Privacy Policies

Twitter is a microblogging social network. Users share information according
to the connections established by the follower relationship, which permits (de-
pending on the privacy policies) a user to access the tweets posted (or tweeted)
from the followed user. Users interact by posting (or tweeting) 140 characters
long messages called tweets. Let us define the instantiation PPFTwitter as follows.

Propositions. The proposition in PPFTwitter are defined by the set
P = {owner.email, owner.locationi, owner.tweetj , owner.retweettweetRef }
where owner ∈ Ag, and attributes are the following: email, is the user’s
email; locationη represents a location of a given user ; tweetη the tweets a
given user has tweeted; and retweettweetRef representing the fact or retweet-
ing (or sharing a tweet already tweeted by another user) where tweetRef is
the reference to the original tweet.
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Connections. The set of connections only includes the follower relationship,
C = {Follower}.

Auxiliary functions. We define the function
– followers(i) = {u | u ∈ Ag ∧ iRFolloweru}

which returns all the agents u who i is following.
Actions. Actions are defined as Σ = {tweet, lookup, sendAd}, where tweet

represents tweeting (posting a tweet), lookup represents the possibility of
reaching a user’s profile and sendAd sending an advertisement to a user.

Twitter does not have a large amount of privacy policies since the aim is to make
information accessible to as many people as possible. Yet there are important
considerations concerning privacy. These policies are specified in PPFTwitter as
follows.
– Protect my Tweets: Two cases: i) Only those in u’s group of followers can

see her tweets: �¬S{Ag\followers(u)\{u}} u.tweetη�u; ii) Only u’s followers may
see her retweets: �¬S{Ag\followers(u)\{u}}u.retweettweetRef �u.

– Add my location to my tweets: Twitter provides the option of adding the
agents’ location to their tweets. The following policy specifies that nobody
can see the user’s locations: �¬S{Ag\{u}} u.locationη�u.

– Let others find me by my email address: �¬Ki u.email =⇒ ¬Pu
i lookup�u,

meaning that if an agent i does not know u’s email, then she is not allowed
to find u by looking her up.

– Tailor ads based on information shared by ad partners: Assuming G to be
the group of ads partners, the policy is defined as �¬SPu

G sendAd�u, meaning
that none of the advertisement companies taking part in the system is able
to send advertisements to user u.

4.2 Facebook Privacy Policies

Facebook is a social network system in which people share information by means
of posts. Each user owns a timeline which contains all her posts and information
about the main events which can be handled by the social network (e.g. birthday,
new relationships, attendance to events). The main connection between users is
friendship, though it is possible to create special relations.

We show here the instantiation PPFFacebook. Since we are modelling just
the parts of Facebook relevant for defining privacy policies, we borrow the set
C from the instantiation presented in Example 4. We also borrow the set of
auxiliary functions and we add friends2(i) =

⋃
j∈friends(i) friends(j); it allows

us to write formulae about friends of friends. We extend the set Σ with the
action postT imeline (representing posting on a user’s timeline), and the actions
inviteEvent, inviteGroup and tag, which represent sending an invitation to join
an event or a group and being tagged on a picture. As for the structure of the
propositions, we define the set P = {owner.postjη, owner.likeη, owner.location,
owner.phone, owner.email} where owner ∈ Ag, owner.postjη represents the

posts owner posted on the j’s timeline (e.g. Alice.postBob
1 is the first post

of Alice in Bob’s timeline), owner.likeη are the posts owner has liked and
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owner.location, owner.phone and owner.email are, respectively, the actual lo-
cation, phone and the email attributes of owner. Similarly to PPFTwitter, we do
not specify properties for the SN nor restrictions over policies.

Privacy Settings and Tools. In what follows we go through all privacy policies
a user can define in the section ”Privacy and Tools” of Facebook, and we provide
their formalisation in PPFFacebook. The policies are defined depending on the
set of users which they affect.

Who can see my stuff? In the first section Facebook enables users to
set a default audience for their posts. In PPFFacebook we can formally
specify these restrictions as follows: [Public] no policy since everyone is
able to access the posts; [Friends] �¬S{Ag\friends(u)\{u}}u.postjn�u; [Only me]
�¬S{Ag\{u}}u.postjn�u; [Custom] �¬S{G}u.postjn�u. The intuition behind these
policies is specifying the group of agents who are not allowed to know the infor-
mation about u’s posts.

Who can contact me? In a second section users are provided with the possibility
of deciding who can send them friend requests: [Everyone] No need of privacy
policy; [Friends of Friends] �¬SPu

{Ag\friends2(u)}sendRequest�u; note that we
specify who cannot send the friend request, which in this case are the agents
who are not in the group of friends of friends.

Who can look me up? Finally, a user can be looked up by its email ad-
dress or phone number. Given a ∈ {phone, email}, specified as [Everyone]
No privacy policy is needed since; [Friends of Friends] �(¬Ki u.a =⇒
¬Pu

i lookup)�u ∧ �(¬SPu
{Ag\friends2(u)\{u}}lookup)�u, where i ∈ friends2(u);

[Friends] �¬Ki u.a =⇒ ¬Pu
i lookup�u ∧ �¬SPu

{Ag\friends(u)\{u}}lookup�u,
where i ∈ friends(u).

Timeline and Tagging. Besides the previous policies, Facebook allows to
define a set of policies related with who can post on our wall and how to manage
our tags. We show now their formalisation in PPFFacebook.

Who can post on my timeline. Facebook offers the possibility of controlling the
people allowed to write in a user’s wall: [Only me] �¬SPu

{Ag\{u}}postT imeline�u;

[Friends] �¬SPu
{Ag\friends(u)\{u}}postT imeline�u.

Who can see things on my timeline? In Facebook it is possible to establish
a bounded audience for the posts located in a user’s wall. We formally de-
fine the privacy policies as: [Everyone] No privacy policy needed; [Friends of
friends (implicitly includes friends)] �¬S{Ag\friends(u)\friends2(u)\{u}}i.postun�u;
[Friends] �¬S{Ag\friends(u)\{u}}i.postun�u; [Only me] �¬S{Ag\{u}}i.postun�u; [Cus-
tom] �¬S{Ag\G\{u}}i.postun�u.
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Manage Blocking. Facebook offers the possibility of restricting or blocking
the access to our information to a predefined set of users. It also allows to block
users from doing more concrete actions as sending apps invitations, events in-
vitations or apps. This is done by defining blocked and restricted users. Since
these policies are similar, we define only the policies related with blocked users.
Facebook defines blocking as ”Once you block someone, that person can no
longer see things you post on your timeline, tag you, invite you to events or
groups, start a conversation with you, or add you as a friend” we formally
define the previous statement in PPFFacebook with the following set of pri-
vacy policies. A blocked user cannot: i) see things you post on your time line:
�¬SBlocked(u) u.post

u
η�u; ii) tag you: �¬SPu

Blocked(u) tag�u; iii) invite to events or

to join groups: �¬SPu
Blocked(u) inviteEvent�u ∧ �¬SPu

Blocked(u) inviteGroup�u;

iv) send a friend request: �¬SPu
Blocked(u) sendRequest�u.

4.3 More Complex Policies

We have shown how to specify all the privacy policies of Twitter and Facebook.
We show here how to express other policies, which the aforementioned SN do
not offer.

A More Expressive Language One of the advantages of PPF is its flexibil-
ity when defining the structure of the propositions. It allows us to talk about
any information related to the users, which is present in the system. For in-
stance, as it has been seen in the Facebook privacy policies, the user cannot
control any information about what she likes. The normal behaviour is to as-
sign the same audience of the post she liked (clicking the ”like” button on the
post). In order to express policies about it, we can leverage the structure of the
propositions of PPFFacebook by using the attribute likeη. The privacy policy
�¬S{Ag\friends(u)} u.likeη�u means that only u’s friends can know what u liked.

Similar to retweet, in Facebook one can share a given post. Similarly to lik-
ing, sharing is available to the same audience as the post, but sharing entails
the consequence of expanding the audience of the post. Specifically, all people
included in the audience of posts of the user who is sharing will be added to
the original audience of the re-shared post. In PPFFacebook we could prevent
this by explicitly restricting the audience of our posts as we did in Who can
see my stuff? or by writing (assuming Σ to be extended with the action share)
�¬SPu

friends(u)share�u, where explicitly is stated who could share my posts but
without limiting their audience.

We have seen in Lemma 2 how distributed knowledge could be used to make
some inference on the knowledge of certain agents. Its use for defining privacy
policies would allow social network users to control information which could be
inferred by a group of agents. For instance, an agent u ∈ Ag could define the
policy �Ki u.location =⇒ ¬D{friends(u)\{i}} u.location�u for a given agent
i ∈ friends(u), meaning that if one of u’s friends already know u’s location then
the distributed knowledge between the rest of u’s friends is not allowed. This
example also exposes the usefulness of conditional privacy policies.
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Interaction among Several Social Networks SN usually focusses on one
particular kind of leisure. For instance, Twitter and Facebook both focus on
sharing information among followers and friends, while others have a completely
different focus, e.g. Spotify (music), Instagram (photos), and Youtube (videos).
We have so far shown how to formalise single SN. We discuss it what follows
some examples of privacy policies involving more than one social network.

For example, in Twitter it is possible to connect the account to a Facebook
account. If a user enables it, she can choose to post her tweets and retweets on
her Facebook timeline. The idea is that permissions should be set allowing or
disallowing Twitter to post on a user’s Facebook timeline. Due to the expressivity
of PPF we can create an instantiation being the composition of Facebook and
Twitter. For instance, if we combine PPFTwitter and PPFFacebook, assuming a
common set of agents Ag, and the union of the connections, auxiliary functions,
actions, assumptions and restrictions over policies of both SN, we can write the
following privacy policy: �¬S{Ag\(friends(u)∩Followers(u))\{u}} u.location�u. That
is, only agents who are followers of u in Twitter, and friends in Facebook are
allowed to know u’s location. More complex properties of this kind could be
formalised in PPF .

5 Related Work

The approach we have followed in this paper has been to formally define privacy
policies based on a variant of of epistemic logic [4], where it is possible to express
the knowledge of multi-agent systems (MAS). One way to give semantics to the
logic is to use possible worlds semantics (also known as Kripke models), where it
is not explicitly represented what the agents know, but rather the uncertainty in
their knowledge. This has the advantage of allowing to represent complex formu-
lae about who knows what (including nesting of knowledge and other operators
generalising the notion). Another way to give semantics to epistemic logic is
to use interpreted systems which represents agent’s knowledge as a set of runs
(computational paths). Both ways of giving semantics come with advantages and
disadvantages: Kripke models come with a heritage of fundamental techniques
allowing to prove properties about the specification, while interpreted systems
are quite intuitive to model MAS [8]. The common key in both approaches is
modelling the uncertainty of the agent by using an equivalence relation. If one
thinks about all the worlds that a given agent could consider possible in a social
network system, it is easy to see that modelling them would lead to creating an
enormous state space. Instead of modelling uncertainty we explicitly store what
the agents know. This allows a more concise representation of the individuals’
knowledge. Unlike previous work on epistemic logic, in our formalism worlds
represent agents.

Moreover we explicitly model a restricted version of permission, i.e. our model
explicitly shows which actions are allowed to be executed by the agents. Aucher
et al. [1] show a different way of combining epistemic and deontic aspects in logic.
They preserve the equivalence relation for epistemic properties and use an extra
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equivalence relation for representing permission. The logic is quite expressive
but it suffers from the aforementioned state explosion problem. Furthermore the
framework is defined as a mono agent system not being suitable for SN. We took
their idea of combining epistemic and deontic operators in one language, but we
restricted the semantic model according to the needs of SN.

In [10] Seligman et al. present a language based on epistemic logic, with the
traditional Kripke semantics for the logic extended with a friendship relationship.
By doing that they are able to reason about knowledge and friendship. Moreover
they model a set of events using general dynamic dynamic logic (GDDL) by
defining an update operation over the mentioned Kripke model. This enables
the possibility of update the model as the events in the social network occur.
Using GDDL they implement the concept of public and private announcement,
which appear regularly in the communications among the agents. Although this
approach is quite expressive, its focus is not on privacy or security issues, but
in reasoning about the general knowledge of the agents. As mentioned before
it comes with the price of having a immense state space and it complicates
a practical implementation and the definition of an efficient (computationally
speaking) model checking algorithm. Ruan and Thielscher [9] present a very
similar formalism, but only public announcement is defined. Their focus is not
on privacy either, but in the analysis of the “revolt or stay at home” effect, i.e.
how the knowledge is spread among the agents.

There are other approaches for privacy not based on epistemic logic. One of
the most interesting is Relationship-based access control (REBAC) [5]. The main
difference with epistemic logic is that in REBAC the reasoning is focused on the
resources own by the agents of the system. This approach is highly suitable for
a practical implementation of a policy checking algorithm. On the other hand
their approach would not detect certain kind of implicit knowledge flow. For
instance, certain information about a user can be known after a friend of her is
posting some information about both. The formalism is equipped with a formal
language based on hybrid logic [2].

Datta et al. present in [3] the logic PrivacyLFP for defining privacy policies
based on a restricted version of first-order logic (the restriction concerns that
quantification over infinite values is avoided by considering only relevant in-
stances of variables). The logic is quite expressive as it can represent things
others than the kind of policies we are aiming at in this paper (their applica-
tion domain being medical data). Though promising as a formalism for SN, the
authors write that the logic might need to be adapted in order to be used for
online social networks. To the best of our knowledge this has not been done.

6 Final Discussion

We have presented in this paper a framework for writing privacy policies for
social networks. Our approach allows for the instantiation of the framework to
formalise existing social networks, and other more complex privacy policies. One
particularity of our approach is that worlds represent agents, closely following
the structure of real social networks.
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This paper is a first step towards a full formalisation of privacy policies for
social networks. Our current and future work includes: Adding real-time: So
far we cannot express policies with deadlines. This might be interesting in case
policies are transient (e.g., “nobody is permitted to know my location during
the first two weeks of May”). Modeling dynamic networks: The model we
have of social networks is static, as well as the conformance relation between
policies and the network. In practice the social network evolves, new friends
come into place, others are blocked, etc. We aim at extending our formal model
to capture such temporal aspect. Adding roles and ontologies: Agents in
the SN could play different roles, e.g. individuals, companies, advertisement,
etc. Providing PPF with the ability of detecting these roles would enhance its
expressivity. Developing an enforcing mechanism: We have not mentioned
how the policies might be enforced at runtime. We will explore how to extract a
runtime monitor from the policy. Finally, we would like to explore the application
of privacy-by-design [7] to a formalisation of social networks.

Acknowledgment. Thanks to Bart van Delft, Pablo Buiras, and the anony-
mous reviewers for their useful comments on a preliminary version of this paper.
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