Dimitra Giannakopoulou
Gwen Salaiin (Eds.)

Software Engineering
and Formal Methods

12th International Conference, SEFM 2014
Grenoble, France, September 1-5, 2014
Proceedings

LNCS 8702

@ Springer

Lecture Notes in Computer Science

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg

Cornell University, Ithaca, NY, USA
Alfred Kobsa

University of California, Irvine, CA, USA
Friedemann Mattern

ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA
Gerhard Weikum

Max Planck Institute for Informatics, Saarbruecken, Germany

8702

Dimitra Giannakopoulou Gwen Salaiin (Eds.)

Software Engineering
and Formal Methods

12th International Conference, SEFM 2014
Grenoble, France, September 1-5, 2014
Proceedings

@ Springer

Volume Editors

Dimitra Giannakopoulou

NASA Ames Research Center

Mail Stop 269-2

Moffett Field, CA 94035, USA

E-mail: dimitra.giannakopoulou@nasa.gov

Gwen Salaiin

Inria Grenoble-Rhone-Alpes

655, Avenue de 1’Europe

38330 Montbonnot Saint-Martin, France
E-mail: gwen.salaun @inria.fr

ISSN 0302-9743 e-ISSN 1611-3349

ISBN 978-3-319-10430-0 e-ISBN 978-3-319-10431-7
DOI 10.1007/978-3-319-10431-7

Springer Cham Heidelberg New York Dordrecht London

Library of Congress Control Number: 2014946209

LNCS Sublibrary: SL 2 — Programming and Software Engineering

© Springer International Publishing Switzerland 2014

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication
or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location,
in ist current version, and permission for use must always be obtained from Springer. Permissions for use
may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution
under the respective Copyright Law.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

This volume contains the papers presented at SEFM 2014, the 12th International
Conference on Software Engineering and Formal Methods, which was held during
September 3-5, 2014, in Grenoble, France. The aim of the conference is to bring
together practitioners and researchers from academia, industry, and government
to advance the state of the art in formal methods, to facilitate their uptake in the
software industry, and to encourage their integration with practical engineering
methods. SEFM 2014 was organized by Inria and supported by Grenoble INP,
University Joseph-Fourier, LIG, and CNRS.

SEFM 2014 received 138 abstracts and 106 full submissions. Papers under-
went a rigorous review process, and each paper received 3 reviews. After a careful
discussion phase, the international Program Committee decided to select 23 re-
search papers and 6 tool papers. These papers cover a wide variety of topics
such as program correctness, testing, static analysis, theorem proving, model
checking, and automata learning. They also address a wide range of systems,
including component-based, real-time, embedded, adaptive, and multi-agent.

The conference featured 3 invited talks by Patrice Godefroid (Microsoft Re-
search, USA), Joost-Pieter Katoen (RWTH Aachen University, Germany), and
Xavier Leroy (Inria, France). These talks discussed the software engineering chal-
lenges of developing trusted formal tools that scale to the size of industrial sys-
tems. Extended abstracts of the invited talks can be found in this volume.

Five international workshops were colocated with SEFM 2014: the 1st Work-
shop on Human-Oriented Formal Methods (HOFM 2014), the 3rd International
Symposium on Modelling and Knowledge Management Applications: Systems
and Domains (MoKMaSD 2014), the 8th International Workshop on Foundations
and Techniques for Open Source Software Certification (OpenCert 2014), the 1st
Workshop on Safety and Formal Methods (SaFoMe 2014), and the 4th Workshop
on Formal Methods in the Development of Software (WS-FMDS 2014).

We thank the local Organizing Committee (Sophie Azzaro, Wassila Bouhadji,
Myriam Etienne, Vanessa Peregrin) for taking care of the local arrangements,
the Steering Committee chair Antonio Cerone and the Conference Chair Radu
Mateescu for their guidance, the workshop chairs (Carlos Canal, Marc Frappier,
and Akram Idani) for supervizing the workshops organization, Rim Abid for
negotiating financial support, Lina Ye for acting as publicity chair, and Hugues
Evrard for acting as Web master. We assembled an exciting technical program
that would not have been possible without the excellent work of the Program
Committee and external reviewers. Last, but not least, we thank the authors of
all submitted papers, our invited speakers, and all the participants (speakers or

VI Preface

not) of the conference in Grenoble. All these people contributed to the success of
the 2014 edition of SEFM. Finally, EasyChair made our work as program chairs
substantially easier.

June 2014 Dimitra Giannakopoulou
Gwen Salaiin

Program Committee

Wolfgang Ahrendt
Bernhard K. Aichernig
Dalal Alrajeh

Farhad Arbab

Luis Barbosa

Howard Barringer
Domenico Bianculli

Jonathan P. Bowen
Mario Bravetti
Tevfik Bultan
Hung Dang Van
Francisco Duran
George Eleftherakis

José Luiz Fiadeiro
Mamoun Filali-Amine
Marc Frappier

Martin Frinzle

Hubert Garavel

Dimitra Giannakopoulou
Stefania Gnesi

Klaus Havelund

Rob Hierons
Mike Hinchey

Falk Howar
Florentin Ipate
Martin Leucker
Peter Lindsay
Anténia Lopes
Mercedes Merayo
Stephan Merz
Mizuhito Ogawa

Organization

Chalmers University of Technology, Sweden

TU Graz, Austria

Imperial College London, UK

CWTI and Leiden University, The Netherlands

Universidade do Minho, Portugal

The University of Manchester, UK

SnT Centre - University of Luxembourg,
Luxembourg

Birmingham City University, UK

University of Bologna, Italy

University of California at Santa Barbara, USA

UET, Vietnam National University

University of Malaga, Spain

The University of Sheffield International
Faculty, CITY College, UK

Royal Holloway, University of London, UK

IRIT, France

University of Sherbrooke, Canada

Carl von Ossietzky Universitdt Oldenburg,
Germany

Inria Rhone-Alpes/VASY, France

NASA Ames, USA

ISTI-CNR, France

Jet Propulsion Laboratory, California Institute
of Technology, USA

Brunel University, UK

Lero, The Irish Software Engineering Research
Centre, Ireland

CMU/NASA Ames, USA

University of Bucharest, Romania

University of Liibeck, Germany

The University of Queensland, Australia

University of Lisbon, Portugal

Universidad Complutense de Madrid, Spain

Inria Lorraine, France

Advanced Institute of Science and
Technology, Japan

VIII Organization

Fernando Orejas
Gordon Pace
David Parker
Corina Pasareanu
Anna Philippou
Sanjiva Prasad
Jakob Rehof
Leila Ribeiro

Bernhard Rumpe
Gwen Salaiin
Augusto Sampaio
Gerardo Schneider
Marjan Sirjani
Matt Staats
Martin Steffen
Jing Sun

Jun Sun

Serdar Tasiran

Massimo Tivoli
Dongmei Zhang
Jianjun Zhao

Additional Reviewers

Alkhalaf, Muath
Aydin, Abdulbaki
Bessai, Jan

Bocic, Ivan
Bodeveix, Jeanlpauk
Bonenfant, Armelle
Bove, Ana

Colombo, Christian
Camara Moreno, Javier
D’Souza, Deepak
Dang, Duc-Hanh
Decker, Normann
Deharbe, David
Dudenhefner, Andrej
Duflot, Marie
Diidder, Boris
Fakih, Maher
Fantechi, Alessandro
Ferrari, Alessio

UPC, Spain

University of Malta, Malta

University of Birmingham, UK

CMU/NASA Ames Research Center, USA

University of Cyprus, Cyprus

Indian Institute of Technology, Delhi, India

University of Dortmund, Germany

Universidade Federal do Rio Grande do Sul,
Brazil

RWTH Aachen University, Germany

Grenoble INP, Inria, LIG, France

Federal University of Pernambuco, Brazil

Chalmers — University of Gothenburg, Sweden

Reykjavik University, Iceland

University of Luxembourg, Luxembourg
University of Oslo, Norway

The University of Auckland, New Zealand

Singapore University of Technology and Design,

Singapore
Koc University, Turkey
University of L’Aquila, Italy
Microsoft Research, China
Shanghai Jiao Tong University, China

Garnacho, Manuel
Gerwinn, Sebastian
Greifenberg, Timo
Habel, Annegret
Hojjat, Hossein
Jafari, Ali
Jaghouri, Mahdi
Johansson, Moa
Kaiser, Steffi
Khakpour, Narges
Khosravi, Ramtin
Kromodimoeljo, Sentot
Kuru, Ismail
Kiihn, Franziska
Lefticaru, Raluca
Li, Qin

Lima, Lucas

Lin, Ziyi

Lindt, Achim

Look, Markus

Lorber, Florian
Markin, Grigory
Marques, Eduardo R.B.
Martens, Moritz
Martins, Francisco
Matar, Hassan Salehe
Mateescu, Radu
Matteucci, Ilaria
Matthews, Ben
Mazzanti, Franco
Micallef, Mark

Minh Hai, Nguyen
Mostowski, Wojciech
Mousavi, Mohammadreza
Mutlu, Erdal
Mutluergil, Suha Orhun
Miiller, Klaus

Miillner, Nils

Nakajima, Shin
Narayan, Chinmay

Ngo Thai, Binh
Nguyen, Tang
Nogueira, Sidney
Ogata, Kazuhiro
Ozkan, Burcu Kulahcioglu
Pelliccione, Patrizio

Organization

Pichardie, David
Pita, Isabel

Pous, Damien
Reger, Giles
Riesco, Adrian
Rodriguez Carbonell, Enric
Russo, Alejandro
Rydeheard, David
Sabouri, Hamideh
Sanchez, Alejandro
Scheffel, Torben
Schulze, Christoph
Song, Wenhao
Spadotti, Regis
Stefanescu, Alin
Stiimpel, Annette
Thoma, Daniel
Tiran, Stefan
Tribastone, Mirco
Truong, Hoang
Tung, Vu

von Wenckstern, Michael
Wille, Robert
Winter, Kirsten
Yan, Dacong

Ye, Lina

Zhang, Sai

X

Invited Papers

Formal Proofs of Code Generation
and Verification Tools

Xavier Leroy

Inria Paris-Rocquencourt, France

Abstract. Tool-assisted verification of critical software has great po-
tential but is limited by two risks: unsoundness of the verification tools,
and miscompilation when generating executable code from the sources
that were verified. A radical solution to these two risks is the deductive
verification of compilers and verification tools themselves. In this invited
talk, I describe two ongoing projects along this line: CompCert, a veri-
fied C compiler, and Verasco, a verified static analyzer based on abstract
interpretation.

500 Machine-Years of Software Model
Checking and SMT Solving

Patrice Godefroid

Microsoft Research
pglmicrosoft.com

Abstract. I will report on our experience running SAGE for over 500-
machine years in Microsoft’s security testing labs. SAGE is a whitebox
fuzzing tool for security testing. It performs symbolic execution dynami-
cally at the binary (x86) level, generates constraints on program inputs,
and solves those constraints with an SMT solver in order to generate new
inputs to exercise new program paths or trigger security vulnerabilities
(like buffer overflows). This process is repeated using novel state-space
exploration techniques that attempt to sweep through all (in practice,
many) feasible execution paths of the program while checking simultane-
ously many properties. This approach thus combines program analysis,
testing, model checking and automated theorem proving (constraint solv-
ing).

Since 2009, SAGE has been running 24/7 on average 1004+ machines
automatically “fuzzing” hundreds of applications. This is the largest com-
putational usage ever for any SMT solver, with over 4 billion constraints
processed to date. In the process, SAGE found many new security vul-
nerabilities (missed by blackbox fuzzing and static program analysis) and
was credited to have found roughly one third of all the bugs discovered
by file fuzzing during the development of Microsoft’s Windows 7, sav-
ing millions of dollars by avoiding expensive security patches to nearly a
billion PCs.

In this talk, I will present the SAGE project, highlight connections
with program verification, and discuss open research challenges.

This is joint work with Michael Levin, David Molnar, Ella Bounimova,
and other contributors.

Model Checking Gigantic Markov Models

Joost-Pieter Katoen

Software Modelling and Verification, RWTH Aachen University, Germany
Formal Methods and Tools, University of Twente, The Netherlands

Probabilistic model checking — the verification of models incorporating random
phenomena — has enjoyed a rapid increase of interest. Thanks to the availability
of mature tool support and efficient verification algorithms, probabilistic model
checking has been successfully applied to case studies from various areas, such
as randomized (distributed) algorithms, planning and Al, security, hardware,
stochastic scheduling, reliability analysis, and systems biology [9]. In addition,
model-checking techniques have been adopted by mainstream model-based per-
formance and dependability tools as effective analysis means. Probabilistic model
checking can thus be viewed as a viable alternative and extension to traditional
model-based performance analysis [1].

Typical properties that are checked are quantitative reachability objectives,
such as: does the probability to reach a certain set of goal states (by avoiding
illegal states) exceed ;? Extra constraints can be incorporated as well that e.g.,
require the goal to be reached within a certain number of transitions, within a
certain budget, or within a real-time deadline. For models exhibiting both transi-
tion probabilities and non-determinism, maximal and minimal probabilities are
considered. Intricate combinations of numerical (or simulation) techniques for
Markov chains, optimization algorithms, and traditional CTL or LTL model-
checking algorithms result in simple, yet very efficient verification procedures |2,
10]. Verifying time-bounded reachability properties on continuous-time models
of tens of millions of states usually is a matter of seconds. Using symbolic repre-
sentation techniques such as multi-terminal BDDs, much larger systems can be
treated efficiently as well. A gentle introduction can be found in [5].

Like in the traditional setting, probabilistic model checking suffers from the
curse of dimensionality: the number of states grows exponentially in the num-
ber of system components and cardinality of data domains. This hampers the
analysis of real-life systems such as biological models involving thousands of
molecules [12], and software models of on-board aerospace systems that incor-
porate probabilistic error models of various system components on top of the
“nominal” system behaviour [3].

This talk considers the theory and practice of aggressive abstraction of discrete-
time and continuous-time Markov models. Our abstraction technique is based
on a partitioning of the concrete state space that is typically much coarser
than e.g., bisimulation minimisation. We exploit three-valued abstraction [4]
in which a temporal logic formula evaluates to either true, false, or indefi-
nite. In this setting, abstraction is conservative for both positive and negative
verification results; in our setting this means that the analysis yields bounds

XVI J.-P. Katoen

on the desired probability measures. If the verification of the abstract model
yields an indefinite answer (dont know), no conclusion on the validity in the
concrete model can be drawn. States in abstract Markov models are groups of
concrete states and transitions are either equipped with intervals or modeled as
non-deterministic choices. The resulting abstraction is shown to preserve a sim-
ulation relation: concrete states are simulated by their corresponding abstract
ones.

We present the theoretical foundations of aggressive abstraction of Markov
models [6] and show how this technique can be applied in a compositional way.
This enables the component-wise abstraction of large models [7, 11]. We present
two case studies, one from systems biology and one from queueing theory, il-
lustrating the power of this technique. This includes strategies of which states
to group, verification times of the abstract models, and the resulting accura-
cies of the quantitative results. We show that this abstraction technique enables
the verification of models larger than 102% states by abstract models of a few
hundred thousands states while obtaining results with an accuracy of 1076 [8].

Acknowledgement. This work is funded by the EU FPT7-projects SENSA-
TION and MEALS, the STW project ArRangeer, and the Excellence Program
of the German Federal Government.

References

1. Baier, C., Haverkort, B.R., Hermanns, H., Katoen, J.-P.: Performance evaluation
and model checking join forces. Commun. ACM 53(9), 76-85 (2010)

2. Baier, C., Katoen, J.-P.: Principles of Model Checking. MIT Press (2008)

3. Esteve, M.-A., Katoen, J.-P., Nguyen, V.Y., Postma, B., Yushtein, Y.: Formal
correctness, safety, dependability, and performance analysis of a satellite. In: ICSE,
pp. 1022-1031. IEEE (2012)

4. Huth, M., Jagadeesan, R., Schmidt, D.A.: Modal transition systems: A foundation
for three-valued program analysis. In: Sands, D. (ed.) ESOP 2001. LNCS, vol. 2028,
pp. 155-169. Springer, Heidelberg (2001)

5. Katoen, J.-P.: Model checking meets probability: A gentle introduction. In: Engi-
neering Dependable Software Systems. NATO Science for Peace and Security Series
- D, vol. 34, pp. 177-205. IOS Press (2013)

6. Katoen, J.-P., Klink, D., Leucker, M., Wolf, V.: Three-valued abstraction for prob-
abilistic systems. J. Log. Algebr. Program. 81(4), 356-389 (2012)

7. Katoen, J.-P., Klink, D., Neuh&ufler, M.R.: Compositional abstraction for stochas-
tic systems. In: Ouaknine, J., Vaandrager, F.W. (eds.) FORMATS 2009. LNCS,
vol. 5813, pp. 195-211. Springer, Heidelberg (2009)

8. Klink, D., Remke, A., Haverkort, B.R., Katoen, J.-P.: Time-bounded reachability
in tree-structured gbds by abstraction. Perform. Eval. 68(2), 105-125 (2011)

9. Kwiatkowska, M.Z.: Model checking for probability and time: from theory to prac-
tice. In: LICS, p. 351. IEEE Computer Society (2003)

10.

11.

12.

Model Checking Gigantic Markov Models ~ XVII

Kwiatkowska, M.Z., Norman, G., Parker, D.: Stochastic model checking. In:
Bernardo, M., Hillston, J. (eds.) SFM 2007. LNCS, vol. 4486, pp. 220-270. Springer,
Heidelberg (2007)

Shoham, S., Grumberg, O.: Compositional verification and 3-valued abstractions
join forces. Inf. Comput. 208(2), 178-202 (2010)

Wolf, V., Goel, R., Mateescu, M., Henzinger, T.A.: Solving the chemical master
equation using sliding windows. BMC Systems Biology 4, 42 (2010)

Table of Contents

Invited Papers

Formal Proofs of Code Generation and Verification Tools (Abstract). . . .

Xavier Leroy

500 Machine-Years of Software Model Checking and SMT Solving

(ADSETACE) © o vt

Patrice Godefroid

Model Checking Gigantic Markov Models (Abstract)

Joost-Pieter Katoen

Formal Proofs of Code Generation and Verification Tools

(Full Paper)ottt e

Xavier Leroy

Program Verification

Lightweight Program Construction and Verification Tools

in Isabelle/HOLt

Alasdair Armstrong, Victor B.F. Gomes, and Georg Struth

Completeness of Separation Logic with Inductive Definitions for

Program Verification

Makoto Tatsuta and Wei-Ngan Chin

A Thread-Safe Library for Binary Decision Diagrams

Alberto Lovato, Damiano Macedonio, and Fausto Spoto

Effect-Polymorphic Behaviour Inference for Deadlock Checking

Ka I Pun, Martin Steffen, and Volker Stolz

Testing

Synthesizing Parameterized Unit Tests to Detect Object Invariant

VI0lations . . .ot

Maria Christakis, Peter Miiller, and Valentin Wiistholz

Formalizing DSL Semantics for Reasoning and Conformance Testing. . . .

Sarmen Keshishzadeh and Arjan J. Mooij

Test Suite Completeness and Partial Models........................

Adilson Luiz Bonifacio and Arnaldo Vieira Moura

XIIT

20

35

50

65

81

96

XX Table of Contents

Component-Based Systems

Automated Error-Detection and Repair for Compositional Software
Specifications 111
Dalal Alrajeh and Robert Craven

A General Framework for Architecture Composability 128
Paul Attie, Eduard Baranov, Simon Bliudze, Mohamad Jaber,
and Joseph Sifakis

Trace Checking of Metric Temporal Logic with Aggregating Modalities
Using MapReduce. i 144
Domenico Bianculli, Carlo Ghezzi, and Srdan Krstié

Real-Time and Embedded Systems

Increasing Consistency in Multi-site Data Stores: Megastore-CGC and
Its Formal Analysis e 159
Jon Grov and Peter Csaba Olveczky

Evaluating the Effect of Faults in SystemC TLM Models
Using UPPA AL . .. oo 175
Reza Hagjisheykhi, Ali Ebnenasir, and Sandeep S. Kulkarni

Formal Verification of Discrete-Time MATLAB/Simulink Models Using
Boogie. 190
Robert Reicherdt and Sabine Glesner

A Formal Model for Constraint-Based Deployment Calculation and

Analysis for Fault-Tolerant Systems 205
Klaus Becker, Bernhard Schdtz, Michael Armbruster, and
Christian Buckl

Model Checking and Automata Learning

Optimising the ProB Model Checker for B Using Partial Order
Reduction. 220
Tvaylo Dobrikov and Michael Leuschel

Rapid Prototyping of a Semantically Well Founded Circus Model
Checker. . ..o 235
Alexandre Mota, Adalberto Farias, André Didier, and Jim Woodcock

Learning Extended Finite State Machines 250
Sofia Cassel, Falk Howar, Bengt Jonsson, and Bernhard Steffen

Table of Contents

Tool Papers

Translating Event-B Machines to Database Applications
Qi Wang and Tim Wahls

IKOS: A Framework for Static Analysis Based on Abstract
Interpretation
Guillaume Brat, Jorge A. Navas, Nija Shi, and Arnaud Venet

A Toolset for Support of Teaching Formal Software Development.
Stefan Korecko, Jan Sordd, Zuzana Dudldkovd, and Branislav Sobota

Execution and Verification of UML State Machines with Erlang........
Ricardo J. Rodriguez, Lars-Ake Fredlund, Angel Herranz, and
Julio Marino

A Tool for Verifying Dynamic Propertiesin B
Fama Diagne, Amel Mammar, and Marc Frappier

WeVerca: Web Applications Verification for PHP.....................
David Hauzar and Jan Kofron

Program Correctness

More Flexible Object Invariants with Less Specification Overhead
Stefan Huster, Patrick Heckeler, Hanno FEichelberger, Jirgen Ruf,
Sebastian Burg, Thomas Kropf, and Wolfgang Rosenstiel

Verified Functional Iterators Using the FoCaliZe Environment.
Catherine Dubois and Renaud Rioboo

Tool Support for Teaching Hoare Logic
Tadeusz Sznuk and Aleksy Schubert

Adaptive and Multi-Agent Systems

A Two-Phase Static Analysis for Reliable Adaptation.................
Pierpaolo Degano, Gian-Luigi Ferrari, and Letterio Galletta

Formal Modelling and Verification of Cooperative Ant Behaviour in
Event-B ...
Linas Laibinis, Elena Troubitsyna, Zeineb Graja,
Frédéric Migeon, and Ahmed Hadj Kacem

A Formal Privacy Policy Framework for Social Networks
Rail Pardo and Gerardo Schneider

Author Index

XXI

Formal Proofs of Code Generation
and Verification Tools

Xavier Leroy

Inria Paris-Rocquencourt, France

Abstract. Tool-assisted verification of critical software has great po-
tential but is limited by two risks: unsoundness of the verification tools,
and miscompilation when generating executable code from the sources
that were verified. A radical solution to these two risks is the deductive
verification of compilers and verification tools themselves. In this invited
talk, I describe two ongoing projects along this line: CompCert, a veri-
fied C compiler, and Verasco, a verified static analyzer based on abstract
interpretation.

Abstract of Invited Talk

Tool-assisted formal verification of software is making inroads in the critical soft-
ware industry. While full correctness proofs for whole applications can rarely be
achieved [6,12], tools based on static analysis and model checking can already
establish important safety and security properties (memory safety, absence of
arithmetic overflow, unreachability of some failure states) for large code bases
[1]. Likewise, deductive program verifiers based on Hoare logic or separation logic
can verify full correctness for crucial algorithms and data structures and their
implementations [11]. In the context of critical software that must be qualified
against demanding regulations (such as DO-178 in avionics or Common Crite-
ria in security), such tool-assisted verifications provide independent evidence,
complementing that obtained by conventional verification based on testing and
reviews.

The trust we can put in the results of verification tools is limited by two risks.
The first is unsoundness of the tool: by design or by mistake in its implementa-
tion, the tool can fail to account for all possible executions of the software under
verification, reporting no alarms while an incorrect execution can occur. The
second risk is miscompilation of the code that was formally verified. With a few
exceptions [3], most verification tools operate over source code (C, Java, ...) or
models (Simulink or Scade block diagrams). A bug in the compilers or code gen-
erators used to produce the executable machine code can result in an incorrect
executable being produced from correct source code [13].

Both unsoundness and miscompilation risks are known in the critical software
industry and accounted for in DO-178 and other regulations [7]. It is extremely
difficult, however, to verify an optimizing compiler or sophisticated static an-
alyzer using conventional testing. Formal verification of compilers, static ana-
lyzers, and related tools provides a radical, mathematically-grounded answer to

D. Giannakopoulou and G. Salaiin (Eds.): SEFM 2014, LNCS 8702, pp. 1-4, 2014.
© Springer International Publishing Switzerland 2014

2 X. Leroy

these risks. By applying deductive program verification to the implementations
of those tools, we can prove with mathematical certainty that they are free of
miscompilation and unsoundness bugs. For compilers and code generators, the
high-level correctness statement is semantic preservation: every execution of the
generated code matches one of the executions of the source code allowed by
the semantics of the source language. For static analyzers and other verification
tools, the high-level statement is soundness: every execution of the analyzed code
belongs to the set of safe executions inferred and verified by the tool. Combining
the two statements, we obtain that every execution of the generated code is safe.

In this talk, I give an overview of two tool verification projects I am involved
in: CompCert and Verasco. CompCert [8,9] is a realistic, industrially-usable com-
piler for the C language (a large subset of ISO C 1999), producing assembly code
for the ARM, PowerPC, and x86 architectures. It features careful code genera-
tion algorithms and a few optimizations, delivering 85% of the performance of
GCC at optimization level 1. While some parts of CompCert are not verified yet
(e.g. preprocessing), the 18 code generation and optimization passes come with
a mechanically-checked proof of semantics preservation. Verasco [2] is an ongo-
ing experiment to develop and prove sound a static analyzer based on abstract
interpretation for the CompCert subset of C. It follows a modular architecture
inspired by that of Astrée: generic abstract interpreters for the C#minor and
RTL intermediate languages of CompCert, parameterized by an abstract domain
of execution states, itself built as a combination of several numerical abstract
domains such as integer intervals and congruences, floating-point intervals, and
integer linear inequalities (convex polyhedra).

Both CompCert and Verasco share a common methodology based on interac-
tive theorem proving in the Coq proof assistant. Both projects use Coq not just
for specification and proving, but also as a programming language, to implement
all the formally-verified algorithms within Coq’s Gallina specification language,
in pure functional style. This way, no program logic is required to reason about
these implementations: they are already part of Coq’s logic. Executability is not
lost: Coq’s extraction mechanism produces executable OCaml code from those
functional specifications.

CompCert and Verasco rely crucially on precise, mechanized operational
semantics of the source, intermediate, and target languages involved, from Comp-
Cert C to assembly languages. These semantics play a crucial role in the cor-
rectness statements and proofs. In a sense, the proofs of CompCert and Verasco
reduce the problem of trusting these tools to that of trusting the semantics in-
volved in their correctness statements. An executable version of the CompCert C
semantics was built to enable testing of the semantics, in particular random test-
ing using Csmith [13].

Not all parts of CompCert and Verasco need to be proved: only those parts
that affect soundness, but not those part that only affect termination, preci-
sion of the analysis, or efficiency of the generated code. Leveraging this effect,
complex algorithms can often be decomposed into an untrusted implementation
followed by a formally-verified validator that checks the computed results for

Formal Proofs of Code Generation and Verification Tools 3

soundness and fails otherwise. For example, CompCert’s register allocation pass
is composed of an untrusted implementation of the Iterated Register Coalescing
algorithm, followed by a validation pass, proved correct in Coq, that infers and
checks equalities between program variables and registers and stack locations
that were assigned to them [10]. Likewise, Verasco’s relational domain for lin-
ear inequalities delegates most computations to the Verasco Polyhedral Library,
which produces Farkas-style certificates that are checked by Coq-verified valida-
tors [4]. Such judicious use of verified validation a posteriori is effective to reduce
overall proof effort and enable the use of sophisticated algorithms.

In conclusion, CompCert and especially Verasco are ongoing experiments
where much remains to be done, such as aggressive loop optimization in Comp-
Cert and scaling to large analyzed programs for Verasco. In parallel, many other
verification and code generation tools also deserve formal verification. A no-
table example is the verified verification condition generator of Herms et al [5].
Nonetheless, the formal verification of code generation and verification tools ap-
pears both worthwhile and feasible within the capabilities of today’s interactive
proof assistants.

Acknowledgments. This work is supported by Agence Nationale de la
Recherche, grant ANR-11-INSE-003.

References

1. Blanchet, B., Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux,
D., Rival, X.: A static analyzer for large safety-critical software. In: Programming
Language Design and Implementation 2003, pp. 196-207. ACM Press (2003)

2. Blazy, S., Laporte, V., Maroneze, A., Pichardie, D.: Formal verification of a C
value analysis based on abstract interpretation. In: Logozzo, F., Fahndrich, M.
(eds.) SAS 2013. LNCS, vol. 7935, pp. 324-344. Springer, Heidelberg (2013)

3. Ferdinand, C., Heckmann, R., Langenbach, M., Martin, F., Schmidt, M., Theiling,
H., Thesing, S., Wilhelm, R.: Reliable and precise WCET determination for a
real-life processor. In: Henzinger, T.A., Kirsch, C.M. (eds.) EMSOFT 2001. LNCS,
vol. 2211, pp. 469-485. Springer, Heidelberg (2001)

4. Fouilhe, A., Monniaux, D., Périn, M.: Efficient generation of correctness certificates
for the abstract domain of polyhedra. In: Logozzo, F., Fadhndrich, M. (eds.) SAS
2013. LNCS, vol. 7935, pp. 345-365. Springer, Heidelberg (2013)

5. Herms, P., Marché, C., Monate, B.: A certified multi-prover verification condi-
tion generator. In: Joshi, R., Miiller, P., Podelski, A. (eds.) VSTTE 2012. LNCS,
vol. 7152, pp. 2-17. Springer, Heidelberg (2012)

6. Klein, G., Andronick, J., Elphinstone, K., Heiser, G., Cock, D., Derrin, P.,
Elkaduwe, D., Engelhardt, K., Kolanski, R., Norrish, M., Sewell, T., Tuch, H.,
Winwood, S.: seL4: formal verification of an operating-system kernel. Comm.
ACM 53(6), 107-115 (2010)

7. Kornecki, A.J., Zalewski, J.: The qualification of software development tools from
the DO-178B certification perspective. CrossTalk 19(4), 19-22 (2006)

8. Leroy, X.: Formal verification of a realistic compiler. Comm. ACM 52(7), 107-115
(2009)

4

10.

11.

12.

13.

X. Leroy

Leroy, X.: A formally verified compiler back-end. J. Autom. Reasoning 43(4), 363
446 (2009)

Rideau, S., Leroy, X.: Validating register allocation and spilling. In: Gupta, R. (ed.)
CC 2010. LNCS, vol. 6011, pp. 224-243. Springer, Heidelberg (2010)

Souyris, J., Wiels, V., Delmas, D., Delseny, H.: Formal verification of avionics
software products. In: Cavalcanti, A., Dams, D.R. (eds.) FM 2009. LNCS, vol. 5850,
pp. 532-546. Springer, Heidelberg (2009)

Yang, J., Hawblitzel, C.: Safe to the last instruction: automated verification of a
type-safe operating system. In: Programming Language Design and Implementa-
tion 2010, pp. 99-110. ACM Press (2010)

Yang, X., Chen, Y., Eide, E., Regehr, J.: Finding and understanding bugs in C
compilers. In: Proceedings of the 32nd ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, PLDI 2011, pp. 283-294. ACM Press
(2011)

Lightweight Program Construction
and Verification Tools in Isabelle/HOL

Alasdair Armstrong, Victor B.F. Gomes, and Georg Struth

Department of Computer Science, University of Sheffield, UK
{a.armstrong,v.gomes,g.struth}@sheffield.ac.uk

Abstract. We present a principled approach to the development of con-
struction and verification tools for while-programs. Our verification tool
uses Kleene algebra with tests to capture the control flow of programs and
its relational semantics for their data flow. It is extended to a Morgan-
style program construction tool by adding one single axiom to the al-
gebra. Our formalisation in Isabelle/HOL makes these tools themselves
correct by construction. Verification condition generation and program
construction steps are based on simple equational reasoning and sup-
ported by powerful Isabelle tactics. Two case studies on program con-
struction and verification show our tools at work.

1 Introduction

Kleene algebras with tests [11] (KAT) support the analysis of while-programs by
simple equational reasoning. They consist of a Kleene algebra, which models se-
quential compositions, nondeterministic choices and finite iteration of programs,
and an embedded boolean algebra, which models assertions and test in condi-
tionals and while-loops. KAT can verify program transformations [11], and it
subsumes Hoare logic without the assignment rule [12]. The algebra has been
applied, for instance, in compiler optimisation [14] and static analysis [13]. This
applicability owes to its models of computational interest which include binary
relations, and guarded languages and automata.

Nevertheless the role of KAT in program verification and correctness tools has
so far been limited. One reason may be that these and similar algebras capture
the control flow of programs elegantly and concisely, while providing limited
capabilities for modelling their data flow. Only recently have KAT and similar
algebraic approaches been formalised in theorem proving environments such as
Coq [20] or Isabelle [3, 4] and first applications been explored.

A main contribution of this article lies in a principled approach by which
program construction and verification tools can be prototyped rapidly and ef-
fectively from an algebraic layer in Isabelle/HOL [18]. It benefits from Isabelle’s
support for designing algebraic hierarchies with their models and its emphasis
on proof automation through the integration of state-of-the-art first-order the-
orem proving and SMT solving technology. This technology has been optimised
for equational reasoning and it interacts very efficiently with the algebraic layer.

D. Giannakopoulou and G. Salaiin (Eds.): SEFM 2014, LNCS 8702, pp. 5-19, 2014.
© Springer International Publishing Switzerland 2014

6 A. Armstrong, V.B.F. Gomes, and G. Struth

The Isabelle infrastructure and our large libraries for KAT and similar alge-
bras [4] make our approach simple and lightweight. We use variants of KAT for
reasoning about the control flow of programs. The data flow, which appears in
assignment statements, tests and assertions, is clearly separated from this layer.
It is captured within appropriate models of KAT, in our case the standard rela-
tional semantics of imperative sequential programs. At this level we can link once
more into Isabelle’s extensive libraries and its extant verification infrastructure.
The overall approach is illustrated through two main applications:

(i) the development of a KAT-based verification tool for while-programs which
uses Hoare logic;

(ii) its extension to a program refinement tool based on Morgan’s specification
statement.

Relative to the formalisation of KAT in Isabelle, the main development step
for the verification tool consists in refining the relational model of KAT into a
detailed program semantics with program stores, in deriving assignment rules
and in integrating data structures such as lists, arrays or queues.

For our program construction tool, we first show that the addition of one single
algebraic axiom to KAT and its justification in the relational model suffices for
deriving Morgan’s basic refinement calculus.

The development in Isabelle makes both tools themselves correct by construc-
tion. It also highlights the role of algebra in program construction and verifica-
tion. First of all, it allows the derivation of inference rules or refinement laws by
equational reasoning which, in our case, is straightforward and fully automatic.
Second, the algebraic laws can be turned into powerful tactics. In the context of
verification, these support the automatic generation of verification conditions,
which can be discharged by reasoning entirely at the data level. In the context of
construction, they support the automated verification of refinement steps. Third,
the algebraic approach is essentially open. It supports the rapid prototyping of
variants and extensions, and the efficient derivation of additional inference rules
or refinement laws as needed in applications.

We have applied our tools in a series of program construction and verification
examples, two of which are presented in this article: the computation of sums of
even Fibonacci numbers, and insertion sort. These evidence a high level of proof
automation and suggest that our tools are stable enough at least for educational
purposes. Optimisations to make them comparable to Isabelle’s more advanced
verification tools and similar tools for program construction and verification
[19, 9, 7] are certainly possible, but not the purpose of this article.

The complete implementation of our tools in Isabelle and the complete pro-
gram construction and verification proofs can be obtained online'. In particular,
all mathematical statements in this article have been verified with Isabelle. Com-
prehensive libraries for variants of Kleene algebras, and in particular KAT, can
be obtained from the Archive of Formal Proofs [5, 4].

! http://www.dcs.shef.ac.uk/~victor/refinement

http://www.dcs.shef.ac.uk/~victor/refinement

Lightweight Program Construction and Verification Tools in Isabelle/HOL 7
2 Kleene Algebras with Tests

Kleene algebras with tests combine Kleene algebras for reasoning about the
control flow of while-programs with boolean algebras that capture assertions as
well as tests in conditionals or loops. Kleene algebras, in turn, are based on
dioids or idempotent semirings.

A semiring is a structure (S,+,-,0,1) such that (S,4,0) is a commutative
monoid and (5, -, 1) a monoid; the distributivity laws 2+ (y+2) = -y +z-z and
(x+y)-z=x-z+y-z, and the annihilation laws -0 =0 and 0-x = 0 hold. A
semiring is idempotent (a dioid) if z4+x = x. In that case, (S, +,0) is a semilattice
with least element 0 and semilattice order defined by x <y < x+y=1y.

A Kleene algebra is a structure (K,*) such that K forms a dioid and the star
satisfies the unfold laws and induction rules

1+az%x <a”, z4+yr <y=zzx* <y,
1+ z2* <z*, ztay <y=a'z<y.

Here and henceforth we drop the multiplication symbol.

Kleene algebras capture the control flow of programs. If K represents the
actions of a program, then + models the nondeterministic choice between actions,
- their sequential composition, and * their finite iteration; 0 represents abort
and 1 skip. The rule sz < ys = sz* < y*s, for instance, states that every
(co)simulation s from z to y is also a (co)simulation from a* to y*. It is proved
by equational reasoning with the first induction rule above.

For modelling concrete control structures such as conditionals or while-loops
and for expressing assertions, however, additional structure is needed.

A Kleene algebra with tests [11] is a pair (K, B) consisting of a Kleene algebra
K and a boolean algebra B of tests which is embedded into K. By this embed-
ding, the least and greatest element of B are respectively 0 and 1; addition +
corresponds to join and multiplication - to meet. Complementation is defined
only within B. Multiplication of tests is therefore commutative: pg = gp. We
write x, y, z for general Kleene algebra elements and p, ¢, r for tests; we write
KAT for the class of Kleene algebras with tests and the set of its axioms.

KAT yields a simple algebraic semantics for conditionals and while-loops:

if p then z else y fi = pz + py, while p do = od = (px)*p.

More precisely, it is well known that KAT is sound with respect to the standard
partial correctness semantics of while-programs in terms of binary relations.

Proposition 2.1 ([3]). Let A be a set. Then (24*4, B,U,0,* =, 0,id,) is a
KAT, where B={P € Ax A| P Cida} is the set of all subidentities in 2AXA

In this definition, o denotes relational composition, * the reflexive transitive
closure operation, =P = {(a,a)| (a,a) ¢ P}, and ida = {(a,a) | a € A} is
the identity relation. The structure (24*4, B, U,0,*,=,0),id 4) is called the full
relational KAT over A; each of its subalgebras forms again a KAT—a relational

8 A. Armstrong, V.B.F. Gomes, and G. Struth

KAT. The reflexive transitive closure of every element of a relational KAT exists
and is equal to |J;5, R’ by standard fixpoint theory.

It can be checked in relational KAT that pz models an input restriction of
program x to those states where test p holds. Thus, in the above KAT-expression
for the conditional, x is executed when p holds while y is executed when p fails.
In the KAT-expression for the loop, x is executed zero or finitely many times
after p holds, and afterwards p fails, or else the loop aborts.

3 Hoare Logic with KAT
Tests can also model assertions. Validity of Hoare triples is encoded in KAT as

F{pkz{q} < prq=0.

The right-hand side states that there are no successful terminating executions
of program x from states where assertion p holds into states where assertion ¢
fails. In other words, if x is executed from precondition p and if it terminates,
then postcondition ¢ must hold after its execution.

KAT is expressive enough for deriving the inference rules of propositional Hoare
logic (PHL), that is, Hoare logic without the assignment rule [12].

Proposition 3.1 ([12]). The inference rules of PHL are theorems of KAT :

- {plskip{p},
p<p' A <qnEA{p'ta{dt = F{pkz{ql,
Fpla{riA EArkyfal =+ {pbasy{al,
F pblz{qlA F {pbly{q} = F {p}if b then z else y fi{ql]},
F pblz{p} = + {p}while b do x od{bp}.

The proof is calculational. The while rule, e.g., expands to the KAT-formula
pbap = 0 = p(bz)*b(bp) = 0.
Since pzrq = 0 is equivalent to pzr < xq in KAT, we calculate
pbar < bap = p(ba)” < (bx)"p = p(bx)"b < (b)"pb,

using the above (co)simulation rule in the first step. This illustrates the simplic-
ity and concision of reasoning about programs in KAT. Proving the other PHL
rules is even simpler. Hoare logic supplies one inference rule per programming
construct. Its inference rules can therefore be applied deterministically, which
simplifies the generation of verification conditions.

PHL rules for total correctness can be derived in a variant of Kleene algebra
in which an operation z°° for the possibly infinite iteration of z is used instead
of * [16]. This extension is, however, not considered in this paper.

Lightweight Program Construction and Verification Tools in Isabelle/HOL 9

4 Refinement with KAT

KAT can be extended to a Morgan-style refinement calculus by adding one sin-
gle axiom. We keep the partial correctness setting, which suffices for practical
program construction tasks. Extending it to a total correctness setting with ter-
mination variants seems straightforward.

Our approach follows Morgan’s classical book on Programming from Specifi-
cations [17]. We think of specifications as programs that need not be executable.
Morgan starts from the largest program which relates a given precondition p
to a given postcondition ¢—the specification statement—and uses refinement
laws to transform it incrementally and compositionally into an executable pro-
gram which is correct by construction. In KAT, the axiomatisation of Morgan’s
specification statement is very simple.

A refinement Kleene algebra with tests (rfKAT) is a KAT expanded by an
operation [,]: B x B — K which satisfies

Fpba{al = = < [p.ql. (1)

It is easy to show that (1) implies the characteristic properties = {p}[p, q]{q}}
and F {p}z{q} = = < [p, ¢ of the specification statement. First of all, program
[p, q] relates precondition p with postcondition ¢ whenever it terminates. Second,
it is the largest program with that property.

Morgan’s basic refinement calculus provides one refinement law per program
construct. Once more we ignore assignments at this stage. Deriving these laws
in rKAT is strikingly easy. We use the refinement order C, which is the converse
of <. One may also identify p < ¢ on tests with the implication p — q.

Proposition 4.1. The following refinement laws are theorems of rKAT :

p < q=[p,q] C skip, (2)
pP<prqg<qd =[pgd Cl] (3)
0,1] C z, (4)

z C[1,0], (5)

[p,q] C [p,7]; [, dl, (6)

[p,q] C if b then [bp, q] else [bp, q] fi, (7)

[p, bp] C while b do [bp, p] od. (8)

The laws are usually derived from Hoare logic in set theory. Two typical examples
show the simplicity of deriving them with rKAT instead. For (2), we calculate

p<q=>pg<qq=0=plg=0=F{p}l{q} = 1 <[p,q] = [p,q] C skip.

For (8), we calculate with the while-rule of PHL and (1), C,

= {pbl [pb, pl{p} = F {p}while b do [bp, p| od{bp}
= [p, bp] C while b do [bp, p] od.

10 A. Armstrong, V.B.F. Gomes, and G. Struth

In (2), skip refines any specification statement provided its precondition im-
plies its postcondition. [0,1] is usually called the abort statement, [1,0] the
magic statement. For further discussion of these laws we refer to the literature.

Finally, we verify soundness of rKAT in the relational model.

Proposition 4.2. Let A be a set and let, for all P,Q Cida,
[P.Ql = J{RC AxA| - {P}R{Q}}.
The structure (24*4 B, U,0,[,],*,=,0,id) then forms a rKAT.

This structure is called the full relational rKAT over A. Again, every subalgebra
forms a rKAT; a relational rKAT over A.

5 Program Correctness Tools in Isabelle

We develop our tools within the Isabelle/HOL theorem proving environment [18].
Variants of Kleene algebras have already been formalised in Isabelle together
with their most important models, in particular the binary relation model [5].
More recently, a comprehensive Isabelle library for KAT and a related algebra
for total program correctness have been implemented [4, 3]. This includes the
soundness proof for KAT with respect to the relational model (Proposition 2.1)
and the derivation of the PHL rules (Proposition 3.1).

Formalising theory hierarchies is supported by Isabelle’s type classes, which
allow theory expansions. The class of dioids, for instance, can be specified by list-
ing its signature and axioms. Kleene algebras are obtained by expanding dioids;
fixing the star and listing its axioms. Algebras declared that way are polymor-
phic; their elements can have various types. This allows linking algebras formally
with their model by instantiation or interpretation statements, for instance KAT
and rKAT with the relational model.

By designing hierarchies like this, theorems are automatically propagated
across classes and models. Those proved for Kleene algebras, for instance, be-
come available for KAT and the relational model. Algebraic reasoning benefits
from powerful proof automation supported by Isabelle’s integrated automated
theorem provers and SMT-solvers, whose proof output is internally verified to in-
crease trustworthiness. Since these tools are highly optimised for equational rea-
soning, they interact very efficiently with the algebraic layer. Reasoning within
models may require higher-order logic. This is supported by Isabelle’s capabil-
ities for modelling and reasoning with sets, polymorphic data types, inductive
definitions and recursive functions as well as its tactics and simplifiers.

With this infrastructure, the implementation of verification tools for while-
programs is very simple. Since the relational model of KAT is polymorphic in
the underlying set, we can model the assignment rule of Hoare logic at the level
of relations between generic program stores. Together with the rules of PHL at
the algebraic level it can then be used for generating verification conditions.

Lightweight Program Construction and Verification Tools in Isabelle/HOL 11

Verifying these conditions depends on the underlying data domain, for which
Isabelle, in many cases, offers excellent library support.

Implementing the refinement tool requires, as a first step, the formalisation of
the material on rKAT from Section 4. This is straightforward and most proofs are
fully automatic. Parts of the verification tool can then be reused for reasoning
about the store and implementing Morgan’s refinement rules for assignments.

We first describe the derivation of Hoare’s assignment rule in the relational
model. We define the store as a record of program variables. For each variable
we provide a retrieve and an update function, which support variables of any
Isabelle type. Isabelle’s built-in list data type and its built-in list libraries can
thus be used, e.g., for reasoning about list-based programs. We follow Isabelle’s
existing Hoare logic closely and use many of its predefined functions.

Let S be the set of all possible states of the store. We implement assignment
statements as relations

(‘=€) ={(o, ¢ update o €) | o0 € S},

where ‘z is a program variable, x update the update function for ‘x provided by
Isabelle; o is a state and e an evaluated expression of the same type as ‘z.

As usual we identify assertions with their extensions, which are sets of states.
For the relational model we need to inject assertions into relational subidentities:

|P| ={(0,0) | o € P}.
This allows us to complete our implementation of Hoare logic in Isabelle.

Lemma 5.1. Hoare’s assignment rule is derivable in relational KAT.

PCQle/z]=H{[P]}(z:=e){[Q]],
where Qle/ ‘x| denotes substitution of variable ‘x by evaluated expression e in Q.
This yields the following soundness theorem of Hoare logic.
Theorem 5.2. The rules of Hoare logic are theorems of relational KAT.

We use the rules of Hoare logic to implement the Isabelle proof tactic hoare
which generates verification conditions automatically and tries to blast away the
entire control structure. As an enhancement of verification condition generation
we have verified an additional rule for while-loops with invariants.

p<i A pi<qAF{iblz{i} = F {p}while b inv i do = od{q].
In addition, our definition of assignment allows us to derive refinement laws.

Proposition 5.3. The following refinement laws are derivable in relational rKAT .

PCQle/a]=[|P],|Q]] E (z:=e), 9)
Q CQle/«] = [LP|,[QIEIP], Q] (z:=e), (10)
P’ C Ple/a] = [[P], Q]I E (z:=e); [|P'],[Q]]. (11)

(10) and (11) are called the following and leading refinement law for assign-
ments [17]. They are particularly useful for program construction. As in the case
of verification, we have programmed a refinement tactic which automatically
tries to apply the rules of the basic refinement calculus.

12 A. Armstrong, V.B.F. Gomes, and G. Struth

6 Sum of Even Fibonacci Numbers

We now present the first example which shows our tools at work. We construct
a program which computes the sum of even Fibonacci numbers below a given
threshold?. Its input is threshold m € N; its return value is stored in variable
‘sum. Because of typing there is no specific precondition. The postcondition
is-sum-eftb ‘sum m, which is equivalent to dn. ‘sum = sum-efib m nA fib n < m,
is specified using the standard functional program fib, which can be programmed
in Isabelle, and the recursive function

sum-efib m 0= 0,

sum-efib m n for fib n odd or fib n > m,
sum-efib m n+ fib n otherwise.

sum-efib m (n+1) = {

The specification statement for our program is therefore, in Isabelle syntax,
[True, is-sum-efib ‘sum m].
To keep track of all even Fibonacci numbers up to m, we use the function
efib 0= 2, efib 1 =8, efib (n+2) =/ * efib (n+1)+ efib n.

We have verified by induction that all numbers computed by efib are even and
that efib n = fib (3n + 1) holds for all n > 0. The following classical fact about
Fibonacci numbers then implies that efib computes indeed all even terms:

(fib n) mod 2= 0< n mod 3= 1.

After this groundwork, which is an indispensable part of program construc-
tion and verification, we can start with the program construction itself. It is
shown in Figure 1. Since Fibonacci numbers are defined recursively from their
two predecessors, we add the variables ‘¢ and ‘y to keep track of them. In (1)
we initialise ‘x to 2—the first even Fibonacci number—applying the leading re-
finement law for assignments derived in Proposition 5.3. Our refinement tactic
automatically applies the assignment law. In (2) we then initialise ‘y to &—the
second even Fibonacci number. The refinement tactic now dictates the proof
obligation fib 4 = 8, which is discharged by an integrated SMT solver. In (3) we
initialise ‘sum to 0 and state that ‘sum = sum-efib m 1 by definition.

The main idea behind this program is to add the next even Fibonacci number
to ‘sum as long as it is below m, while storing the previous numbers in ‘x and ‘y.
In the actual state of development, we also want to keep track of the indices of
these numbers in the fib and efib series. Hence in (4) we add the variables ‘n and
‘k. The facts proved about Fibonacci numbers imply that the numbers stored in
‘x and ‘y have distance 3 in the series of Fibonacci numbers. The precondition

2 The algorithm is taken from http://toccata.lri.fr/gallery/euler002.en.html.
Fibonacci numbers start as 1,2, 3,5, 8, ..., which is perhaps nonstandard.

http://toccata.lri.fr/gallery/euler002.en.html

Lightweight Program Construction and Verification Tools in Isabelle/HOL 13

[True, is-sum-efib ‘sum m]
c (1)
‘x = 2;
[‘z=efib 0 N ‘z=fib 1, is-sum-efib ‘sum m]
by refinement
C @)
‘x = 2; ‘y:=8;
[‘z=efib 0 N ‘z=fib 1 N ‘y=efib 1 N ‘Y=fib 4, is-sum-efib ‘sum m]
by refinement (smt even-fib.simps(2) even-fib-correct)
c 3)
‘= 2; ‘y = 8; ‘sum = 0,
[‘z=efib 0 A ‘z=fib I A ‘y=efib 1 N ‘y=fib 4 N ‘sum=sum-efib m 1,
is-sum-efib ‘sum m]
by refinement
c (4)
‘x = 2; y:=8; ‘sum = 0; ‘n:=0; k= 1;
[‘z=efib ‘n A ‘z=fib ‘k N ‘y=efib (‘n+1) A ‘y=fib (‘k+3)
ANn>0N‘%k>1N ‘sum=sum-efib m ‘k, is-sum-efib ‘sum m]
by refinement
C (5)
‘x = 2; ‘y:=8; ‘sum = 0; ‘n:=0; k= 1;
while { o < m |} do
[‘z=efib ‘n A ‘z=fib k A ‘y=efib (‘n+1) A ‘y=fib (‘k+3)
AN‘n>0N‘%k>1N ‘sum=sum-efib m ‘k N ‘c < m,
‘c=efib ‘n A ‘z=fib ‘k A ‘y=efib (‘n+1) A ‘y=fib (‘*k+3)
AN‘n>0AN‘%k>1N ‘sum=sum-efib m k|
od
by refinement (smt is-sum-efib-def)
c (6)
‘x = 2; ‘y = 8; ‘sum = 0; ‘n:=0; k= 1;
while { =z < m [} do
[‘z=efib ‘n A ‘z=fib k A ‘y=efib (‘n+1) A ‘y=fib (*k+3)
AN‘n>0N‘%k>1NAN ‘sum=sum-efib m ‘k N ‘c < m,
‘z=efib ‘n A ‘z=fib (k+3) N ‘y=efib (‘n+1)
A ‘y=fib (6+k) A ‘n > 0 A ‘sum=sum-efib m (‘k+3) [;
k= k+38
od
by refinement
C (7)
‘= 2; ‘y:=8; sum :=0; ‘n:=0; ‘k = 1;
while { © < m |} do
[‘z=efib ‘n A ‘z=fib ‘k N ‘y=efib (‘n+1) N ‘y=fib (k+3)
AN‘n>0AN‘%k>1NAN ‘sum=sum-efib m ‘k N ‘c < m,
‘y=efib (‘n+1) A y=fib (‘k+3) A (4*y+ z)=efib (‘n+2)
A (4xy+2)=fib (6+%k) A (‘sum+ ‘z)=sum-efib m (‘k+3) |;
tmp = ‘x; ‘T = ‘y;
Y= 4x‘y + ‘tmp;
‘sum = ‘sum + ‘tmp;
‘n:= ‘nt+1; k= k+3
od
by refinement

Fig. 1. Construction of the sum of even Fibonacci numbers program

14 A. Armstrong, V.B.F. Gomes, and G. Struth

now stores the tentative loop invariant; so we can introduce the while-loop in
(5). This requires that the precondition implies the postcondition, which follows
from the definition of the predicate is-sum-efib by setting n to ‘k.

Deriving the body of the loop in (6) and (7) is quite straightforward; we just
need to specify the variable updates. In (6), k is updated; then, in (7), ‘sum is
updated to ‘sum + ‘z, ‘z to ‘y, ‘y to the next even Fibonacci number, and so on.
This can be achieved by applying the following or leading refinement law. This
time we choose to apply the following law from Proposition 5.3, which forces a
substitution in the postcondition. In (7) we also add a new variable ‘tmp to save
the value of ‘x and proceed as before until all variables have been updated.

It now remains to eliminate the surviving specification statement. Refining
it to skip with refinement law (2) requires that its precondition implies its
postcondition. Accordingly, our refinement tactic generates the proof obligations

fib (k+6)=4xfib(k+ 3)+fibk,
even (fib k) A fib k< m = sum-efib m (k + 3) = sum-efib m k+ fib k,

which are discharged by automatic theorem proving, using induction on Fi-
bonacci numbers. This finally gives us the program in Figure 2, which is partially
correct by construction. For total correctness it remains to prove termination,
for which Isabelle provides support as well [21].

We conclude this development with three remarks. First, with good libraries
for Fibonacci numbers in place, the algebra and particular Isabelle technology
used for constructing this algorithm remain hidden behind an interface. Devel-
opers interact with Isabelle mainly by writing mathematical expressions and
pseudocode in a specification language similar to to Morgan’s, and by calling
the refinement tactic and Isabelle’s theorem provers. Alternatively, they could
invoke individual refinement rules. This is nicely supported by Isabelle’s struc-
tured proof specification language Isar.

Second, proof automation was very high. Most refinement steps were verified
by refinement alone, the others by automated theorem proving. Isabelle thus
supported a seamless refinement process at the level of textbook proofs.

Finally, it should be pointed out that we used ghost variables such as ‘n and
‘k to prove correctness, which are not displayed in the final program, but have
not been eliminated formally.

The Fibonacci algorithm can as well be verified with Hoare logic as shown
in Figure 3. Our hoare tactic generates the standard proof obligations, which

‘= 2; ‘y:=8; ‘sum = 0;
while { 2 < m |} do

tmp == ‘z; ‘x = ‘y;

Y= 4%y + tmp;

‘sum = ‘sum + ‘tmp;
od

Fig. 2. Sum of even Fibonacci numbers

Lightweight Program Construction and Verification Tools in Isabelle/HOL 15

lemma F { True |}

‘z:=2; y:=8; ‘sum:= 0; ‘n:=0; ‘k:=1;

while { o < m |}

inv {
(%6 > 1) A (‘z=efib ‘n) A (‘z=fib k) A (‘y=efib (‘n+1))
A (‘y=fib (‘k+8)) A (‘sum=sum-efib m ‘k)

b

do
mp = ‘z; ‘T = ‘y;
Y= 4y A+ tmp;
‘sum = ‘sum + ‘tmp;
‘n:= ‘n+l1; k= ‘k+3

od

{ is-sum-efib ‘sum m [}

apply (hoare, auto)

apply (smt is-sum-efib-def)

apply (metis fib-6-n)

apply (metis efib-mod-2-eq-0 sum-efib-fib)
by (smt efib.simps(2) efib-correct)

Fig. 3. Verification of the sum of even Fibonacci numbers program

can be inspected when executing our Isabelle theories, and auto discharges the
trivial ones. The survivors are then proved by Isabelle’s SMT solvers and exter-
nal theorem provers, using the built-in theorem prover metis to verify external
outputs. In this case, user interaction is restricted to calling tactics and theorem
provers. Beyond that the verification is fully automatic.

7 Insertion Sort

Our next example stems from Morgan’s book: the construction and verification
of insertion sort. It shows that our tool can handle arrays and nested loops.

We model an array A by using Isabelle’s functional lists, and therefore ben-
efit from its excellent libraries developed for this data type. This includes the
operation A ! i for retrieving the i-th element of A, the function take n A which
extracts the first n elements of A, the function list-update A i e which updates
the i-th value of A to e, and a sorted predicate. Using this, array assignments
are defined merely as syntactic sugar:

‘Ali:=e & ‘A= list-update ‘A i e.

Our insertion sort algorithm takes an array Ag of polymorphic data that can
be linearly ordered. It returns a variable ‘A which holds the sorted array; that is,
the values in Ag have been permuted so that ‘A ! 7 < ‘A ! j whenever i < j. We
write ‘A ~, Ag if ‘A stores a permutation of the values of Ayg. We also require
that Ag has positive length. This suggests the specification statement

16 A. Armstrong, V.B.F. Gomes, and G. Struth

[Aol > 0 A ‘A=Ay, sorted ‘A N ‘A ~q Ag .

The idea behind insertion sort is well known and need not be repeated. To
express that we successively sort larger prefixes, we introduce a variable ‘¢ such
that 1 < ‘i <|‘A|. For ‘¢ = 1, we have sorted (take ‘i ‘A).

Our refinement steps are similar to Morgan’s. We show only the most impor-
tant ones in Figure 4. In (1) we initialise ‘¢ := 1 and introduce a while-loop. The
resulting proof obligation is discharged by the refinement tactic. In the body
of the loop we now wish to take the ‘“-th element of the array and insert it in
position ‘j < ‘i such that sorted (take (‘i4+1) ‘A). To express this succinctly we de-
fine the predicate sorted-but A k, which states that A is sorted after removing its

[Aol > 0 A ‘A=Ao, sorted ‘A N ‘A ~x Ao] C (1)
“4:=1;
while {‘ < |'A|} do

[sorted (take ‘i ‘A) A ‘i < |‘A| A ‘A ~x Ao,

sorted (take (‘i+1) ‘A) A (i+1) < |*A| A ‘A ~x Aol

4 = “4+1
od

C (2)

1= 1

while {% < [‘A|} do
[sorted-but (take (‘i+1) ‘A) 4 A ‘4 < |'A| A ‘A ~r Ao,
4 < ‘4 A sorted-but (take (i+1) ‘A) 5 A (G#%9 — ‘Al 4§ < ‘Al (45+1))
A(a+1) < Al A (9=0V ‘Al (5—1) < ‘Al 4) A A ~q Aol
4= 9+1
od
C 3)
1= 1

while {% < |‘A|} do
“Gi=7;
while { 5#£0 A ‘A1 5 < ‘A (95—)ﬂ»do
[j< % A sorted-but (take (‘i+1) ‘A) G A (];«fé i— ‘ALY <AL (5+1)
A (94+1) < AN G#0 AN ‘AL 5 < AL (5—1) A CA ~r Ao,
§—1 < % A sorted-but (take (i+1) ‘A) (5—1) A (‘i+1) < |‘A]
A (G125 — A1 (5-1) < AV 5) A G20 A ‘A ~p Ad];
9= 9-1
od;
4= ‘9+1
od

[-..previous specification statement . ..]
c (4)
k= ‘Al Y,
Al Yy = Al (95-1);
Al (95-1) =k

Fig. 4. Construction of insertion sort algorithm (excerpts)

Lightweight Program Construction and Verification Tools in Isabelle/HOL 17

4= 1;
while {% < [‘A|} do
=7
while { 5#0 N ‘Al 4§ < ‘Al (%—1) |} do
k=AY

AL G = Al (9-1);
‘Al (95-1) = k;
4= 9-—1
od;
4= “4+1
od

Fig. 5. Insertion sort algorithm

k-th element. We then rewrite the specification statement in (2). The refinement
tactic generates four proof obligations which are discharged automatically.

Next we wish to set ‘j to ‘i and iteratively swap ‘A ! ‘j to ‘A ! (‘4 — 1) until
‘Al (j—1) <‘A !l or ‘4 = 0. This requires introducing a new while-loop in
(3) which is justified by calling refinement.

Finally, in (4) we need to prove that the remaining specification statement is
refined by swapping ‘A ! ‘j to ‘A ! (‘§ — 1). The refinement tactic generates six
proof obligations. Discharging them automatically requires proving some general
properties of sorted list and permutations absent in Isabelle’s library, e.g., that
swapping array elements yields a permutation. Construction of the insertion sort
algorithm is then complete. The result is shown in Figure 5. Again, it is partially
correct by construction; its termination can be proved by other means. Apart
from adding some general-purpose lemmas about permutations and sorted lists
to Isabelle’s libraries, the development was fully automatic.

Decorating the algorithm with the pre- and postcondition from the above
specification statement, one can also verify this algorithm with Hoare logic.
After calling the hoare tactic and auto we are left with seven proof obligations,
the proof of which is shown in Figure 6. It is mainly by automated theorem
proving. Only the unfold step does not directly call a theorem prover. It unfolds
two facts and then calls Isabelle’s auto tool.

apply (hoare, auto)

apply (metis One-nat-def take-sorted-butE-0)

apply (metis take-sorted-butE-n One-nat-def less-eq-Suc-le not-less-eq-eq)

apply (metis One-nat-def Suc-eq-plusl le-less-linear less-Suc-eg-le take-sorted-butE)
apply (unfold sorted-equals-nth-mono sorted-but-def, auto)

apply (smt nth-list-update)

apply (metis (hide-lams, no-types) One-nat-def perm.trans perm-swap-array)
apply (smt nth-list-update)

by (smt perm.trans perm-swap-array)

Fig. 6. Verification of insertion sort algorithm (proof steps)

18 A. Armstrong, V.B.F. Gomes, and G. Struth

8 Conclusion

We have used Kleene algebra with tests for developing a simple program veri-
fication tool based on Hoare logic in Isabelle. Adding one single axiom to this
algebra yielded a tool for program construction with a basic Morgan-style re-
finement calculus. Using the algebra in combination with Isabelle’s integrated
automated theorem provers and SMT solvers made this development simple and
effective. Two extended case studies show our tools at work.

Our tools form a lightweight flexible middle layer for formal methods which
can easily be adapted and extended. Programs are analysed directly on their re-
lational semantics, but most relational manipulations are captured algebraically.
Therefore our tools can be integrated directly into any formal method which uses
a relational semantics. Alternatively, imperative code can be verified by map-
ping a programming language syntax to its relational semantics. In the context
of program construction, code for a given imperative language could be gener-
ated automatically from our “relational” programs, transforming the abstract
data structures in these programs by data refinement [10].

Or approach can be enhanced and adapted flexibly to other analysis tasks.
First, equations in KAT can be decided in PSPACE. The general Horn and
first-order theories are undecidable, but universal Horn formulas of the form
rp =0A---Ar, =0 = s =1 are still decidable via a technique called hypothesis
elimination. Inference rules with Hoare triples fall into this fragment. Formally
verified decision and hypothesis elimination procedures are currently available
only in Coq [20]; they would further enhance the performance of our tools.

Second, in contrast to our semantic approach, KAT can be expanded to cap-
ture assignments at the algebraic level [1]. A flowchart equivalence proof from [1]
has already been formalised in Coq [20] and Isabelle [6] with this approach. It re-
quires, however, more work to integrate it into tools and increase its automation.
Comparing both approaches in practice is certainly interesting.

Third, while KAT captures the deductive aspect of Hoare logic, modal Kleene
algebras [8] encompass also its partial correctness semantics [15]. The integration
of our tools into these more expressive algebras will be our next step. This
supports program analysis directly via the wlp-semantics. It may also yield more
powerful inference rules and refinement laws, and support static analysis.

Finally, KAT could be replaced by algebras for total correctness reasoning, for
which Isabelle support has already been provided [3], and by rely-guarantee style
algebras for shared variable concurrency. A simple verification tool for this, which
includes a semantics of finite transition traces, has already been developed [2].

Acknowledgements. This work has been supported by the CNPq and the
EPSRC through a DTA scholarship and grant EP/J003727/1.

References

[1] Angus, A., Kozen, D.: Kleene algebra with tests and program schematology. Tech-
nical Report TR2001-1844, Cornell University (2001)

Lightweight Program Construction and Verification Tools in Isabelle/HOL 19

2]

3]

[4]
[5]

[6]

[7]
8]
[9]
[10]
[11]
[12]
[13]

[14]

[15]
[16]

[17]
18]

[19]

[20]

21]

Armstrong, A., Gomes, V.B.F., Struth, G.: Algebraic principles for rely-guarantee
style concurrency verification tools. In: Jones, C., Pihlajasaari, P., Sun, J. (eds.)
FM 2014. LNCS, vol. 8442, pp. 78-93. Springer, Heidelberg (2014)

Armstrong, A., Gomes, V.B.F., Struth, G.: Algebras for program correctness in
Isabelle/HOL. In: Hofner, P., Jipsen, P., Kahl, W., Miiller, M.E. (eds.) RAMiCS
2014. LNCS, vol. 8428, pp. 49-64. Springer, Heidelberg (2014)

Armstrong, A., Gomes, V.B.F., Struth, G.: Kleene algebras with tests and de-
monic refinement algebras. Archive of Formal Proofs (2014)

Armstrong, A., Struth, G., Weber, T.: Kleene algebra. Archive of Formal Proofs
(2013)

Armstrong, A., Struth, G., Weber, T.: Program analysis and verification based
on Kleene algebra in Isabelle/HOL. In: Blazy, S., Paulin-Mohring, C., Pichardie,
D. (eds.) ITP 2013. LNCS, vol. 7998, pp. 197-212. Springer, Heidelberg (2013)
Cavalcanti, A., Sampaio, A., Woodcock, J.: A refinement strategy for circus. For-
mal Aspects of Computing 15(2-3), 146-181 (2003)

Desharnais, J., Struth, G.: Internal axioms for domain semirings. Science of Com-
puter Programming 76(3), 181-203 (2011)

Filliatre, J.-C., Marché, C.: The Why/Krakatoa/Caduceus platform for deduc-
tive program verification. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS,
vol. 4590, pp. 173-177. Springer, Heidelberg (2007)

Haftmann, F., Krauss, A., Kuncar, O., Nipkow, T.: Data refinement in Is-
abelle/HOL. In: Blazy, S., Paulin-Mohring, C., Pichardie, D. (eds.) ITP 2013.
LNCS, vol. 7998, pp. 100-115. Springer, Heidelberg (2013)

Kozen, D.: Kleene algebra with tests. ACM TOPLAS 19(3), 427-443 (1997)
Kozen, D.: On Hoare logic and Kleene algebra with tests. ACM TOCL 1(1), 60-76
(2000)

Kozen, D.: Kleene algebras with tests and the static analysis of programs. Tech-
nical Report TR2003-1915, Cornell University (2003)

Kozen, D., Patron, M.-C.: Certification of compiler optimizations using Kleene
algebra with tests. In: Lloyd, J., et al. (eds.) CL 2000. LNCS (LNATI), vol. 1861,
pp. 568-582. Springer, Heidelberg (2000)

Moller, B., Struth, G.: Algebras of modal operators and partial correctness. The-
oretical Computer Science 351(2), 221-239 (2006)

Moller, B., Struth, G.: wp is wlp. In: MacCaull, W., Winter, M., Diintsch, I. (eds.)
RelMiCS 2005. LNCS, vol. 3929, pp. 200-211. Springer, Heidelberg (2006)
Morgan, C.: Programming from specifications, 2nd edn. Prentice Hall (1994)
Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL. LNCS, vol. 2283. Springer,
Heidelberg (2002)

Nipkow, T.: Winskel is (almost) right: Towards a mechanized semantics. Formal
Aspects of Computing 10(2), 171-186 (1998)

Pous, D.: Kleene algebra with tests and Coq tools for while programs. In: Blazy, S.,
Paulin-Mohring, C., Pichardie, D. (eds.) ITP 2013. LNCS, vol. 7998, pp. 180-196.
Springer, Heidelberg (2013)

Sternagel, C., Thiemann, R.: Certification of nontermination proofs. In: Beringer,
L., Felty, A. (eds.) ITP 2012. LNCS, vol. 7406, pp. 266-282. Springer, Heidelberg
(2012)

Completeness of Separation Logic with Inductive
Definitions for Program Verification

Makoto Tatsuta! and Wei-Ngan Chin?

! National Institute of Informatics,
2-1-2 Hitotsubashi, 101-8430 Tokyo, Japan
tatsuta@nii.ac. jp
2 Department of Computer Science,
National University of Singapore,
13 Computing Drive, Singapore 117417, Singapore
chinwn@comp.nus.edu.sg

Abstract. This paper extends Reynolds’ separation logical system for
pointer-based while program verification by adding inductive definitions.
Inductive definitions give us a great advantage for verification, since they
enable us for example, to formalize linked lists and to support the lemma
reasoning mechanism. This paper proves its completeness theorem that
states that every true asserted program is provable in the logical system.
In order to prove its completeness, this paper shows an expressiveness
theorem that states the weakest precondition of every program and every
assertion can be expressed by some assertion.

1 Introduction

Reynolds proposed a new logical system based on separation logic for pointer
program verification [17]. It enables us to have a concise specification of program
properties and a manageable proof system. Separation logic is successful in a
theoretical sense as well as a practical sense. By using separation logic, some
pointer program verification systems have been implemented [13,2].

Inductive definitions in logical systems to formalize properties of programs
have been studied widely, for example, in [7,15,18,11]. Inductive definitions play
an important role in formalizing properties of programs in logical systems. Many
important data structures such as lists and trees are naturally represented in
logical systems by using inductive definitions, since they are recursively defined
by nature. Specifications and properties of programs can be formally represented
in a natural way in a logical system with the help of inductive definitions.

Combining with separation logic, inductive definitions give a verification sys-
tem a general mechanism to formalize recursive data structures such as linked
lists and circular doubly-linked lists. Instead of manually adding these data struc-
tures one by one in an ad hoc way, the system uniformly formalizes all these
recursive data structures once we have inductive definitions in the system. Some
properties called lemmas in [14] are important for program verification. In our
system, every lemma statement corresponding to each recursive data structure is

D. Giannakopoulou and G. Salaiin (Eds.): SEFM 2014, LNCS 8702, pp. 20-34, 2014.
© Springer International Publishing Switzerland 2014

Completeness of Separation Logic with Inductive Definitions 21

also generated automatically from the description of the recursive data structure,
and the consistency of the system is automatically preserved.

One of the most important theoretical questions for a verification system is
its completeness [1,5,9,12]. The soundness of a system guarantees that if the
correctness of a program is proved in the system, then the program will indeed
run correctly. The soundness of those existing practical systems has been proved.
However, it does not mean the system can prove all correct programs are correct,
that is, there is a possibility that some programs are not proved to be correct
by the system even though they are indeed correct. The completeness is the
converse of the soundness. The completeness of the system guarantees that if a
program runs correctly, then the system surely proves the program is correct.
The completeness of a system shows how powerful the system is.

Our contributions are: (1) an extension of separation logic for pointer while
program verification by adding inductive definitions, (2) the completeness theo-
rem of separation logic with inductive definitions for pointer while programs, and
(3) the expressiveness theorem of the separation logic with inductive definitions
for pointer while programs.

We will prove the completeness by extending the completeness results of sepa-
ration logic for pointer while programs given in [19] to assertions with inductive
definitions. The main challenge is proving the expressiveness theorem.

We say that a logical system with the standard model is expressive for pro-
grams, if the weakest precondition of every program is definable in the logical
system. At first sight, the expressiveness may look trivial, but it is indeed a
subtle problem and some pathological counterexamples are known [3].

The expressiveness theorem for Peano arithmetic and separation logic was
proved in [19] based on the following idea. We code the heap information as well
as the store information by natural numbers, and simulating program executions
as well as the truth of assertions by using Peano arithmetic. The idea uses natural
numbers to encode the current store s and heap h, respectively. The store s is
coded by a list of values in distinguished variables. We can construct a heapcode
translation HEvals(m) of an assertion A. HEvals(m) is a pure formula such
that A is true at (s, h) if and only if HEvals(m) is true at s when the number
m represents the heap h.

We will extend the expressiveness proof in [19] to inductive definitions. Since
our system is proof-theoretically strictly stronger than the system in [19] because
of inductive definitions [16], we did not know a possibility of this extension. The
key in our proof of the expressiveness theorem for inductive definitions is to
observe that if A is an inductively defined predicate, we can define HEval4(m)
by using another inductively defined predicate. This idea is a similar direction to
the solutions used in an extension of type theory to inductive definitions [7,15],
and an extension of realizability interpretations to inductive definitions [18].

An extension of bunched implications with inductive definitions was studied
in [4]. Our assertion language is included in it, but ours is more specific for the
aim of pointer program verification. They discussed only an assertion language
and did not discuss asserted programs.

22 M. Tatsuta and W.-N. Chin

Recently the completeness of separation logic was actively studied [5,9,12].
However, the case of a predicate logic with inductive definitions has not been
investigated yet, since [5] and [9] discussed only propositional logic, and [12]
studied only a system without inductions.

Our long-term aim is proving completeness of the core of existing practical
verification systems for pointer programs. This paper will give a step for this
purpose. In order to analyze a verification system with built-in recursive data
structures and their properties such as the lemma reasoning mechanism in [14],
the separation logic with inductive definitions is indispensable. Since our system
in this paper is simple and general, our completeness theorem can be applied
to those systems in order to show the completeness of their core systems. This
paper will also provide a starting point for completeness theorems in extensions
with richer programming languages and assertion languages such as recursive
procedure calls.

Section 2 defines our programming language and our assertion language, and
gives examples of inductive definitions. Their semantics is given in Section 3.
Section 4 gives a logical system for proving asserted programs, and Section 5
shows our completeness theorem as well as our soundness theorem. Section 6
gives a proof sketch of the expressiveness theorem. Section 7 is the conclusion.

2 Languages

This section defines our programming language and our assertion language. Our
language is obtained from Reynolds’ paper [17] by adding inductive definitions
to the assertion language.

Our programming language is an extension of while programs to pointers. It
is the same as that of Reynolds [17].

We have variables z,y, z,w, ..., and constants 0,1, null. Its expressions are
defined as follows.
Expressions e :=x |0 |1 |null|e+e|exe.

Expressions mean natural numbers or pointers. null means the null pointer.
Its boolean expressions are propositional formulas defined as follows.
Boolean expressions b::=e=e|e<e|-b|bAb|bDVD]|b—b.

Boolean expressions are used as conditions in a program.

Programs are defined by:

Programs P ::= z := e | if (b) then (P) else (P) | while (b) do (P) | P; P |

x = cons(e,e) | x := [e] | [e] := e | dispose(e).

The statement x := cons(eq, e2) allocates two new consecutive memory cells,
puts e; and es in the cells, and puts the address into x. The statement x := [¢]
looks up the content of the memory cell at the address e and puts it into x. The
statement [e1] := e changes the content of the memory cell at the address e; by
e2. The statement dispose(e) deallocates the memory cell at the address e. We
will sometimes write the number n to denote the term 1+ (14 (1+4...(1+0)))
(n times of 1+). We will use i, j, k, [, m, n for natural numbers.

Completeness of Separation Logic with Inductive Definitions 23

Our assertion language is a first-order language extended with inductive def-
initions and the separating conjunction * and the separating implication —x. It
is an extension of assertions in [17,19] with inductive definitions. Our assertion
language is defined as follows: Terms are the same as the expressions of our
programming language and denoted by ¢. We have predicate symbols =, <,—, a
predicate constant emp, and predicate variables X,Y,.... We assume that when
we have a predicate variable X we also have a predicate variable X.

Open formulas A ::=emp |e=e|e<e|le—e| X(t,...,t) | "A|ANA]

AVA|A— A|VzA | FzA| (uX Az ..z A)(E,...,t) | AxA| A—x A,

We assume that X occurs in A only positively for (uX.Az1 ... zn . A)(t1,. .., ts).
The positivity is defined in a standard manner as follows. We define the set
FPV_,(A) of positive predicate variables and the set FPV_(A) of negative predi-
cate variables for A in a standard way. We say that X occurs only positively in A
when X ¢ FPV_(A).

We define FPV(A) as FPV(A) UFPV_(A). We call an open formula A a
formula if FPV(A) = (). We will sometimes call a formula an assertion. We call
an open formula pure when the open formula does not contain emp, e; — es,
AxB,or A—x B.

The open formula (uX. Az ... 2,.A)(t1, .. ., t,) means the inductively defined
predicate uX.A\z1 ...x,.A holds for ¢y, ..., t,. The predicate uX.Azx; ... x,.A de-
notes the least predicate X such that A <> X (x1,...,2,). An open formula may
contain some predicate variables. The meaning of an open formula depends on
the meaning of its predicate variables. A formula does not contain any predicate
variables, and its meaning is determined in an ordinary way. For an assertion,
we will use only a formula, since it does not contain any free predicate variables.

emp means the current heap is empty. e; — e2 means the current heap has
only one cell at the address e; and its content is es. A * B means the current
heap can be split into some two disjoint heaps such that A holds at one heap and
B holds at the other heap. A —x B means that for any heap disjoint from the
current heap such that A holds at the heap, B holds at the new heap obtained by
combining the current heap and the heap. Note that X (¢1,...,t,) may depend
on the current heap since X could take emp or e; — es. The other formula
constructions mean ordinary logical connectives.

FV(A) is defined as the set of free variables in A. FV(e) and FV(P) are
similarly defined. FV(Oy,...,O,) is defined as FV(O;)U...UFV(0O,) when O;
is an open formula, an expression, or a program. A < B is defined as (A — B) A
(B— A). We use Az := t] for a standard substitution without variable capture.

We use vector notation to denote a sequence. For example, @ denotes the
sequence e, ..., e, of expressions.

Example 1 (linked lists). The predicate that characterizes singly linked lists
is formalized by using inductive definitions as follows.

Node(z,y,2) =z —y*xz+1— z,
LL = pX. Azy.(x = null Ay = 0V Fzw(Node(z, z, w) * X (w,y — 1))).

24 M. Tatsuta and W.-N. Chin

LL(p, n) means that there is a singly linked list pointed by p such that its length
is n.
LL is the least predicate that satisfies

LL(p,n) <> p=null An =0V Jzq(Node(p, x, q) * LL(¢g,n — 1)).

LL(p,n) formalizes the predicate p::11<n> given in [14]. They added their
lemma properties in an ad hoc way for proof search. In our system, those prop-
erties are derived by the above general principle.

Example 2 (circular doubly-linked lists). Let

Node2(z,y,z,w) =z~ yxx+ 1 zxx +2— w,
DSN = pX \zyzuwv.(e =wAz=vAy=0
\/ay/wl(NOde2(x’ y/’ Z’ wl) * X(w/’ y -]" x’ w’ ,U)))’
DCL(z,y) = (x = null Ay = 0V
Jzw(JuNode2(z, u, z, w) * DSN(w,y — 1, x,x, 2))).

DSN(q, s, p, n,t) means that there is a doubly linked list pointed by ¢ such that
its length is s, the previous pointer in the first element is p, the next pointer in
the last element is n, and ¢ points the last element. DCL(p, s) means that there
is a circular doubly-linked list of length s pointed by p.

DSN is the least predicate that satisfies

DSN(g, s,p,n,t) <
g=nAp=tAs=0V3Irs(Node2(q,s,p,r) « DSN(r,s — 1,¢,n,t)).

Since it is the least, we can also show that one of their lemma properties
DSN(q, s,p,n,t) A s >0« Ir(DSN(q, s — 1,p, t,r) * JxNode2(t, z,r,n))

is true.

DCL(p, s) formalizes the predicate p::dcl(s), DSN(r,s,p,n,t) formalizes
r::dseqN<s,p,n,t>, and the last equivalence formula formalizes their lemma
given in [14].

Example 3 (linked list segments). The predicate that characterizes linked
list segments is formalized by using inductive definitions as follows.

LS = uX.\xy.(z = y Aemp V Fu(JuNode(z, u, v) * X (v,y)) A x # y).

LS(z, p) means that the heap is a linked list segment such that points the first
cell and p is the next pointer in the last cell.
LS is the least predicate that satisfies

LS(z,p) <» x = p Aemp V Jv(FuNode(x, u, v) * LS(v,p)) A = # p.
By this general principle we can show that
LS(x, p) » Node(p, a,b) <+ 3q(LS(x, q) » LS(q, p) * Node(p, a, b))

is true.

Completeness of Separation Logic with Inductive Definitions 25

LS(E, F) formalizes the following predicate 1s(E, F) given in [2], where we
represent E — [f1 : x, fo : y] by Node(E, z,y). These formulas are also true in
our system.

Is(E,F) < (E=FAemp)V (E # FA3y.Ew— [n:y]«1s(y, F)),
Is(Eq, E3) x1s(Eq, E3) x E3 — [p] = 1s(E1, E3) * E3 — [p].

3 Semantics

The semantics of our programming language and our assertion language is de-
fined in this section. Our semantics is obtained by combining a standard seman-
tics for natural numbers and inductive definitions and a semantics for programs
and assertions given in Reynolds’ paper [17] except the following simplification:
(1) values are natural numbers, (2) addresses are non-zero natural numbers, and
(3) null is 0. We call our model the standard model.

The set N is defined as the set of natural numbers. The set Vars is defined
as the set of variables in the language. The set Locs is defined as the set {n €
N|n > 0}.

For sets S1,S2, f : S1 — So means that f is a function from S; to Ss.
f 81 = fin So means that f is a finite function from S; to Sy, that is, there
is a finite subset S7 of S; and f : S] — Sa2. Dom(f) denotes the domain of the
function f. We use () and p(S) to denote the empty set and the powerset of the
set S respectively. For a function f : A — B and a subset C C A, the function
fle : C — B is defined by f|c(z) = f(z) for z € C.

A function f : p(S) — p(S) is called monotone if f(X) C f(Y) forall X C Y.
It is well-known that a monotone function has its least fixed point. The least
fixed point of f is denoted by lfp(f).

A store is defined as a function from Vars — N, and denoted by s. A heap is
defined as a finite function from Locs — i, IV, and denoted by h. We will write
Heaps for the set of heaps. A value is a natural number. An address is a positive
natural number. The null pointer is 0. A store assigns a value to each variable.
A heap assigns a value to an address in its finite domain.

The store s[zq :=n1, ...,z := ng| is defined by s’ such that s'(z;) = n; and
s'(y) = s(y) for y & {x1,...,2}. The heap h[mq :=nq,...,mg := nyi] is defined
by h' such that h'(m;) = n; and h'(y) = h(y) for y € Dom(h) — {m1,...,my}.

The store s[z1 := ni,...,z, = ng] is the same as s except values for the
variables x1,...,2,. The heap hlm; := ni,...,my := nyi| is the same as h
except the contents of the memory cells at the addresses my,...,mg. We will

sometimes write () for the empty heap whose domain is empty.

We will write h = hy + he when Dom(h) = Dom(hy) UDom(h2), Dom(hq) N
Dom(hz) = 0, h(z) = hi(z) for x € Dom(hy), and h(z) = ho(z) for z €
Dom(hz). The heap h is divided into the two disjoint heaps hi; and ho when
h = hy + ha.

A state is defined as (s, h). The set States is defined as the set of states. The
state for pointer program is specified by the store and the heap, since pointer
programs manipulate memory heaps as well as variable assignments.

26 M. Tatsuta and W.-N. Chin

Definition 3.1. We define the semantics of our programming language.

We define the semantics [[e]]s of our expressions e and the semantics [A])s of
our boolean expressions A under the variable assignment s by the standard model
of natural numbers and [null]] = 0. For example, [[e]]; is defined by induction on
¢ by], = s(@), [0 = 0, [1s = 1, [mll]s = 0, [ex + eals = [exls + [eals,
and so on. [[A]l, is defined in a similar way.

For a program P, its meaning [[P]] is defined as a function from StatesU{abort}
to p(States U {abort}). We will define [P]](r1) as the set of all the possible
resulting states after the execution of P with the initial state r; terminates. In
particular, if the execution of P with the initial state r; does not terminate, we
will define [[P])(r1) as the empty set, since there are no possible resulting states
in this case. Our semantics is nondeterministic since the cons statement may
choose a fresh cell address and we do not allow renaming of memory addresses.
[P]] is defined by induction on P as follows:

[P]l(abort) = {abort},

[:= €ll((s,) = {(s[z := [e]ls],)},

[if (b) then (P1) else (P2)[|((s, h)) = [P1]]((s, k) if [b]ls = true,
[P2]]((s, h)) otherwise,

[while (5) do (P)]((s, b)) = {(s, h)} if [b], = false,
U{[while (8) do (P)](r) | r € [P]((s, h))} otherwise,

1Py Pl (s,) = LIRS0 | (P]((x,).

[:= cons(er, e2)]((s. 1) = {(sle := n]. hln := [ex]leon + 1 2= [ea]l])]
n>0,n,n+1¢ Dom(h)},

[= [e]]((5: 1)) = {(sl& = h(els)}, 1)} if [, € Dom(h),
{abort} otherwise,

[lea] := e2ll((s, 7)) = {(s, hlller]ls == [e2lls)} if [ea]]s € Dom(h),
{abort} otherwise,

[dispose(e)]((5, 1)) = (5. PlDomny_ (1)} if [l € Dom(h),
{abort} otherwise.

Definition 3.2. We define the semantics of the assertion language. For an as-
sertion A and a state (s,h), the meaning [A]l(s) is defined as true or false.
[All(s,r) is the truth value of A at the state (s, h).

A predicate variable assignment ¢ is a function that maps a predicate vari-
able X with arity n to a subset of N™ x Heaps. Since an open formula A may
contain free predicate variables, in order to give the meaning of A, we will use a
predicate variable assignment for the meaning of free predicate variables in A.
The predicate variable assignment o[X; := S1,..., X, := Sy] is defined by o’
such that ¢/(X;) = S; and o/ (V) = o(Y) for Y ¢ {X1,..., X, }. We will some-
times write () for the constant predicate variable assignment such that ((X) is
the empty set for all X.

In order to define [[A]/(s,5) for a formula, we first define [[A]f;) for an open
formula by induction on A as follows:

Completeness of Separation Logic with Inductive Definitions 27

empl|f, ,,y = true if Dom(h) =0,

er = ea])7, ;) = ([ea]ls = [fea]ls),

er < ea]l7,) = ([eals < [ea]lo),

e1 = eallf, = true if Dom(h) = {[lexs} hi(fer]ls) = lleall,
X (T,) = true if ([T, h) € o(X),

~AJT, py = (ot [AJ7, 1)),

AN B,y = ([,) and [BI7, 4));
AV Bl onyz = ([Alf, ny or [BIf, n));
A= Bty = ([Alf p) implies [BI7 4));

VxA]]‘(’s py = true if [A }]‘(fs[x:n]vh) = true for all n € N,
Jw AT,) = true if [[Aﬂ‘(’s[m —n),n) = true for some n € N,
A x B}](S py = true if h = hy + ho,
[Al7s 1yy = [BI{; p,) = true for some hy, ho,
[A— B]}‘(’ = true if ho = hy + h and
AL, 1, iy = true imply HBH(S&;) true for all hq, ha,
[(pX A7 A)(Nfs,ny = trueif ([']s, h) € Up(F) where
n is the length of @,
F : p(N™ x Heaps) — p(N™ x Heaps),
- o[X:=9]
F(S) = {(Th) | TAIX5L, = true}.
(s[T:= 1 1,h)
We define [A]] (5) for a formula A as [A] ?S py- We say A'is true when [[A]J5,n) =
true for all (s, h).

Note that in the definition of [(uX.\ 7. A)(_>)]](S s since X appears only
positively in A, F' is a monotone function and there is the least fixed point of F'.

Since the inductively defined predicates are interpreted by the least fixed
points, we have the following lemma. We use A[X := A\7.C] to denote the
formula obtained from A by replacing X (7)by C[7 = ?]

Lemma 3.3. Let u be uX.\7.A.
(1) A[X =] <> p(?) is true.
(2) VZ(A[X := A7 .C] = O) = VT (u(T) — C) is true for any formula C.

They are proved by using the definition of semantics.

The claim (1) means the folding and the unfolding of inductive definitions.
The claim (2) means the inductively defined predicate is the least among C
satisfying V& (A[X := \7.C] — O).

Definition 3.4. For an asserted program {A}P{B} with assertions A and B,
its meaning is defined as true or false. {A}P{B} is defined to be true if the
following hold.

(1) for all (s, h), if [[A]](s,n) = true, then [P]|((s,h)) # abort.

(2) for all (s, h) and (s', '), if [[A]|(s,n) = true and [P]|((s,h)) > (s',h’), then
[B]((', 1)) = true.

28 M. Tatsuta and W.-N. Chin

{A}P{B} means abort-free partial correctness. It implies partial correctness
in the standard sense. It also implies that the execution of the program P with
the initial state that satisfies A never aborts, that is, P does not access to any
unallocated addresses during the execution.

Examples. (1) {0 = 1}dispose(1);[1] := 0{0 = 1} is true. Because there is no
initial state that satisfies 0 = 1.

(2) {emp}[1] := 0{0 = 0} is false. Because the abort occurs at [1] := 0.

(3) {emp}while (0 = 0) do (z := 0);[1] := 0{0 = 1} is true. Because we do
not reach [1] := 0 because of the infinite loop, and the abort does not occur.

4 Logical System

This section defines our logical system. It is an extension of Reynolds’ sys-
tem presented in [17] so that our assertion language is extended with inductive
definitions.

We will write the formula e — e1, ez to denote (e — e1) * (e + 1 — e3).

Definition 4.1. Our logical system is defined by the following inference rules.

(assignment)

{Alz := e]}x = e{A}
{ANDYP{B} {AA-D}P{B}
{A}if (b) then (Pr) else (P2){B} (
{AND}YP{A}
{Alwhile (b) do (P){A A —b}
{A}P{C} {C}P{B}

if)

(while)

(ypip(py
{A}P{B} (conseq)
{A}P{B} ¢ (A — Ay true, B; — B true)

(cons)

{Vz'((z' — e1,e2) —* Alz := 2']) }x := cons(e1, e2){A} (z' € FV(e1, ez, A))

(lookup)

{3 (e = &' * (e = &' —x Alz :=2'])) }x = [e]{A} (' € FV(e, A))

(mutation)

{(Fz(e1 — x)) * (e1 — ea — A)}e1] := ea{ A} (x € FV(e1))

{(3z(e — x)) x A}dispose(e){A} (dispose)

(z € FV(e))

We say {A}P{B} is provable and we write - {A}P{B}, when {A} P{B} can
be derived by these inference rules.

Note that in the side condition (A— A; true, B;— B true) of the rule (conseq),
the truth means one in the standard model of natural numbers and inductive

Completeness of Separation Logic with Inductive Definitions 29

definitions. Theoretically there are several interesting choices for the truth of this
side condition [1]. Since we are interested in whether a given implementation of
this logical system is indeed powerful enough in a real world, we choose the truth
of the standard model. Hence the completeness of our system means complete-
ness relative to all true formulas in the standard model of natural numbers and
inductive definitions.

5 Soundness and Completeness Theorems

Our main results are the completeness theorem and the expressiveness theorem
stated in this section. We will also show the soundness theorem. The soundness
theorem is proved in a similar way to [17] and [19]. The completeness theorem is
proved in a similar way to [19] if we have the expressiveness theorem. A proof of
the completeness theorem requires the expressiveness theorem. Since our asser-
tion language is extended with inductive definitions, the expressiveness theorem
for our assertion language is really new. For this reason, the completeness result
is also new. We will give only proof sketches of the soundness theorem and the
completeness theorem.

Theorem 5.1 (Soundness). If {A}P{B} is provable, then {A} P{B} is true.

The soundness theorem is proved by induction on the given proof of { A} P{B}.
Intuitively, we will show each inference rule preserves the truth.

Definition 5.2. For a program P and an assertion A, the weakest pre-
condition for P and A under the standard model is defined as the set
{(s, B)|Vr([P]((s,h)) > 7 — 1 # abort A [A]}, = true)}.

Our proof of the completeness theorem will use the next expressiveness theo-
rem, which will be proved in the next section.

Theorem 5.3 (Expressiveness). For every program P and assertion A, there
is a formula W such that [W]|(,) = true if and only if (s, h) is in the weakest
precondition defined in Definition 5.2 for P and A under the standard model.

Theorem 5.4 (Completeness). If {A}P{B} is true, then {A}P{B} is
provable.

This theorem says that a given asserted program {A}P{B} is true (defined
in Section 3), then this is provable (defined in Section 4). Note that it is relative
completeness in the sense that our logical system assumes all true formulas in
the standard model of natural numbers and inductive definitions. This is the
best possible completeness for pointer program verification for a similar reason
to that for while program verification discussed in [6].

We sketch the proof. The completeness theorem is proved by induction on
the program P. The goal is showing a given true asserted program is provable.
Intuitively, we will reduce this goal to subgoals for smaller pieces of the given

30 M. Tatsuta and W.-N. Chin

program that state true asserted subprograms of the given program are provable.
If we show that for each program construction a true asserted program is provable
by using the assumption that all the asserted subprograms are provable, we can
say any given true asserted program is provable.

We discuss the rule (comp). Suppose {A}P;; Po{B} is true. We have to con-
struct a proof of {A}Pr; Po{B}. In order to do that, we have to find some asser-
tion C such that {A}P1{C} is true and {C} P2{ B} is true. If we find the assertion
C, since P, and P, are smaller pieces of the given program P;; Py, we can sup-
pose {A}P1{C} and {C}P,{B} are both provable, and by the rule (comp), we
have a proof of {A}P;; P,{B}. In order to find the assertion C, we will use the
expressiveness given by Theorem 5.3, to take the weakest precondition for P
and B as the assertion C.

6 Proof Sketch of Expressiveness Theorem

This section gives a sketch of proofs of the expressiveness theorem (Theorem
5.3). We extend the expressiveness proof given in [19] to inductive definitions.
We assume the readers of this section have knowledge of [19] and [20].

In order to show the expressiveness theorem, we have to construct a formula
that expresses the weakest precondition for given a program P and a formula
A. We will follow the technique used in [19] and [20]. The main technique is
to translate separation logic into ordinary first-order logic by coding a heap by
a natural number and simulating a separation-logic formula by a pure formula
produced by its translation. First we translate a separation-logic formula A into
a pure formula HEvaly(m) such that A is true at the current heap h if and
only if HEvala(m) is true where m is a natural number that represents the
current heap h. We say m is a code of h. Secondly we give a pointer program
P a semantics Execp((n1,m1), (n2, ma)) that manipulates the code of the cur-
rent heap instead of the current heap itself. We will define the pure formula
Execp((n1,m1), (n2, ma)) such that when the current heap is represented by
my, if we execute P, then the current heap is changed into some heap repre-
sented by ms. Finally the weakest precondition for P and A is described by a
formula Wp 4 that transforms the current heap into its heap code mq, requires
Execp((n1,m1), (n2, ma)) for executing P, and requires HEval 4 (m2) for enforc-
ing A at the resulting heap ms. This formula Wp 4 proves our expressiveness
theorem.

Since our assertions include inductive definitions, it is non-trivial to make
this technique work for our system. In particular, the main challenge is to define
a translation scheme HEvaly for assertions of form A that contain inductive
definitions. This section shows it is actually possible. Similar problems occurred
in type theory and realizability interpretations. An extension of type theory to
inductive definitions was solved in [7] and [15], and an extension of realizability
interpretations to inductive definitions was solved in [18]. Their ideas were to
use another inductive definition for translating a given inductive definition. Our
solution will be similar to these ideas.

Completeness of Separation Logic with Inductive Definitions 31

We will define a heapcode translation HEvaly(m) of an assertion A such
that HEvala(m) is a pure formula for expressing the meaning of A at the heap
coded by m. The main question is how to define HEvaly(m) for inductively
defined predicates. To answer this question, we will show that we can define

- — .
HEval(MX.)\?_A)(?)(m) as (uX ATy.HEvala(y) A IsHeap(y))(?,m) by using

another inductively defined predicate X .AZy.HEvala(y) A IsHeap(y), and we
will also show that this satisfies a desired property (Lemma 6.8).

Semantics for Pure Formulas

When we simulate an inductively defined separation-logic formula by some in-
ductively defined pure formula, in order to avoid complications, we introduce the
semantics of pure formulas, which does not depend on a heap. This semantics
has the same meaning as our semantics defined in Section 3, and is a stan-
dard semantics for pure formulas with inductive definitions, for example, given
in [18,16].
Definition 6.1. For a store s, and a pure formula A, according to the standard
interpretation of a first-order language with inductive definitions, the meaning
[[A]ls is defined as true or false. [A]|; is the truth value of A under the store s.

A pure predicate variable assignment o is a function that maps a predicate
variable of arity n to a subset of N™. The pure predicate variable assignment
o[X;y :=81,..., X, := Sp] and the pure constant predicate variable assignment
() are defined in a similar way to Section 3.

In order to define [[A])s for a pure formula A, we first define [[A]] for a pure
open formula A as follows. We give only interesting cases.

[X (7)]g = true if [T]. € o(X),
[[(MX)\?A)(?)]H = true if [[?}]s € Ifp(F) where n is the length of 7,
F:p(N™) > p(N™),
F(8)={T| [A7 575, = true}.

We define [[A]]s for a pure formula A as [[A])?.

S

In order to show [A]ls = [A]ls,n) for a pure formula A, we need some
preparation.

For a pure predicate variable assignment o, we define a predicate variable
assignment o x Heaps by (o x Heaps)(X) = o(X) x Heaps. For a subset S of
N™ x Heaps, we call the subset S H-independent when S = S’ x Heaps for some
subset S’ of N™. For a predicate variable assignment o, we call the predicate
variable assignment o H-independent when o(X) is H-independent for all X.

Lemma 6.2. Suppose A is pure.
(1) {(s; h) [[A]l{s 5y = true} is H-independent if o is H-independent.

(2) [[4]2 = [A]7 P for all heaps h.

Lemma 6.3. For a pure formula A, we have [A]]; = [[A]|(s,5) for any h.
Proof. By letting o = () in Lemma 6.2 (2). O

32 M. Tatsuta and W.-N. Chin

Heapcode Translation

We define a heapcode translation of an assertion A that is a pure formula and
describes the meaning of A in terms of the heap code. This is based on the same
idea in [19]. Our key idea is to find that it is possible to define HEval4(z) for an
inductively defined predicate A by using another inductively defined predicate.

Definition 6.4. We define the pure open formula HEval4(z) for the open for-
mula A by induction on A. We give only interesting cases.

HEval — (m) = X(T,m),

(t) -
HEval (m) = (uX \Zy.HEvala(y) A IsHeap(y))(?>

WX AT A)(T) -

For a formula A, HEvala(m) means [[A]](s) = true where s is the current store
and m represents the heap h. That is, we have [HEvala(m)]ls = [A]l(s,n) if m
represents the heap h. This will be formally stated in Lemma 6.8.

Note that in the definition of HEval(MX.)\?.A)(?)(m), since X appears

only positively in A, ~X appears only positively in HEvala(y). We have
FPV(HEvala(m)) = {X|X € FPV(A)}. In particular, when (;LX.)\?.A)(?)
is a formula, (uX A7 y.HEvala(y) A IsHeap(y))(?, m) is also a formula.

Definition 6.5. We define the pure formula Eval , = (n,m) for the assertion A.
We suppose 7 includes FV(A).

Eval, 2 (n,m) = IsHeap(m) A 37 (Store— (n) A HEvaly (m)).

For a formula A, Eval, »(n, m) means [A]|,) = true where n represents the
store s and m represents the heap h.

Key Lemma

To utilize the heapcode translation defined just above, we need the key lemma
that states that the semantics of a separation-logic formula equals the semantics
of the corresponding pure formula obtained by the translation even if our system
includes inductive definitions.

We define ()* for transforming semantics for heaps between that for heap
codes.

Definition 6.6. We use Heapcode(m, h) to mean the number m is the code
that represents the heap h. For S C N™ x Heaps, we define

S = {(?Jn) | (?, h) € S,Heapcode(m, h)},

For a predicate assignment o, we define o* by o*(X) = (X)*.

The role of S* is to give the semantics of the corresponding pure formula when
S gives the semantics of a separation-logic formula.

In order to prove Lemma 6.8, we need the following key lemma, which is a
generalization of Lemma 6.8 for open formulas.

Completeness of Separation Logic with Inductive Definitions 33

Lemma 6.7 (Key Lemma). Suppose A is an open formula and y ¢ FV(A).
We have Vmh(Heapcode(m, h) — [[HEvalA(y)]]‘S’[*y::m] = [Al7; 1))-

The next lemma shows that the pure formula HEval4(m) actually has the
meaning we explained above.

Lemma 6.8. Suppose A is a formula. We have Heapcode(m,h) —
[HEvala(m)]ls = [Alls,n)-

Proof. By letting o = () in Lemma 6.7. O

Once HEval, is defined and Lemma 6.8 is shown, we can construct the for-
mula required in the expressiveness theorem in a similar way to [19]. Note that
Eval , » below is extended to inductive definitions. We will use Pair2(k,n,m) to
mean that k represents the state (s, h) when n represents s and m represents h.

Definition 6.9. We define the formula Wp 4(7') for the program P and the
assertion A. We fix some sequence 7 of the variables in FV(P, A).

Wpa(T) = Vayzw(Store— (x) A Heap(y) A Pair2(z, z,y) A Execp (2, w)
—w > 0 A Jyrz1(Pair2(w, y1, 21) A Evaly 2 (y1,21))).

Wp 4(7) means the weakest precondition for P and A. That is, Wp 4 () gives
the weakest assertion W such that {W}P{A} is true. Note that all the free
variables in Wp 4(7) are T and they appear only in Store— (z). This formula
is the formula that describes the weakest precondition, and by this formula we
can prove the expressiveness theorem (Theorem 5.3).

7 Conclusion

We have shown the completeness theorem of the pointer while program verifica-
tion system which is an extension of Reynolds’ separation logic with inductive
definitions. For this purpose, we have also proved the expressiveness theorem
of Peano arithmetic, the separation logic, and inductive definitions for pointer
while programs under the standard model.

Future work would be to find a assertion language with inductive definitions
that would be more suitable for automated deduction. For example, it would
be interesting to find what syntactical condition guarantees that the claim (1)
derives the claim (2) in Lemma 3.3. It would be also interesting to find a decidable
fragment of a logical system with inductive definitions.

Another future work would be proving completeness results of various ex-
tensions of our system such as recursive procedure calls with call-by-name pa-
rameters and global variables, which have been intensively analyzed for while
programs by several papers [1,8,10].

34

M. Tatsuta and W.-N. Chin

References

1.

10.

11.

12.

13.

14.

15.

16.
17.

18.

19.

20.

Apt, K.R.: Ten Years of Hoare’s Logic: A Survey — Part I. ACM Transactions on
Programming Languages and Systems 3(4), 431-483 (1981)

Berdine, J., Calcagno, C., O’Hearn, P.W.: Symbolic Execution with Separation Logic.
In: Yi, K. (ed.) APLAS 2005. LNCS, vol. 3780, pp. 52—-68. Springer, Heidelberg (2005)
Bergstra, J.A., Tucker, J.V.: Expressiveness and the Completeness of Hoare’s Logic.
Journal Computer and System Sciences 25(3), 267284 (1982)

Brotherston, J.: Formalised Inductive Reasoning in the Logic of Bunched Implica-
tions. In: Riis Nielson, H., Filé, G. (eds.) SAS 2007. LNCS, vol. 4634, pp. 87-103.
Springer, Heidelberg (2007)

Brotherston, J., Villard, J.: Parametric Completeness for Separation Theories. In:
Proceedings of POPL 2014, pp. 453-464 (2014)

Cook, S.A.: Soundness and completeness of an axiom system for program verifica-
tion. STAM Journal on Computing 7(1), 70-90 (1978)

Coquand, T., Paulin, C.: Inductively Defined Types. In: Martin-Lof, P., Mints, G.
(eds.) COLOG 1988. LNCS, vol. 417, pp. 50-66. Springer, Heidelberg (1990)
Halpern, J.Y.: A good Hoare axiom system for an ALGOL-like language. In: Pro-
ceedings of POPL 1984, pp. 262-271 (1984)

Hou, Z., Clouston, R., Gore, R., Tiu, A.: Proof search for propositional abstract
separation logics via labelled sequents. In: Proceedings of POPL 2014, pp. 465-476
(2014)

Josko, B.: On expressive interpretations of a Hoare-logic for Clarke’s language
L4. In: Fontet, M., Mehlhorn, K. (eds.) STACS 1984. LNCS, vol. 166, pp. 73-84.
Springer, Heidelberg (1984)

Kimura, D., Tatsuta, M.: Call-by-Value and Call-by-Name Dual Calculi with In-
ductive and Coinductive Types. Logical Methods in Computer Science 9(1), Article
14 (2013)

Lee, W., Park, S.: A Proof System for Separation Logic with Magic Wand. In:
Proceedings of POPL 2014, pp. 477-490 (2014)

Nguyen, H.H., David, C., Qin, S.C., Chin, W.N.: Automated Verification of Shape
and Size Properties Via Separation Logic. In: Cook, B., Podelski, A. (eds.) VMCAI
2007. LNCS, vol. 4349, pp. 251-266. Springer, Heidelberg (2007)

Nguyen, H.H., Chin, W.N.: Enhancing Program Verification with Lemmas. In:
Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 355-369. Springer,
Heidelberg (2008)

Paulin-Mohring, C.: Extracting F.,’s programs from proofs in the Calculus of Con-
structions. In: Proceedings of POPL 1989, pp. 89-104 (1989)

Pohlers, W.: Proof Theory. Springer (2009)

Reynolds, J.C.: Separation Logic: A Logic for Shared Mutable Data Structures. In:
Proceedings of LICS 2002, pp. 55-74 (2002)

Tatsuta, M.: Program synthesis using realizability. Theoretical Computer Sci-
ence 90, 309-353 (1991)

Tatsuta, M., Chin, W.N., Al Ameen, M.F.: Completeness of Pointer Program Ver-
ification by Separation Logic. In: Proceeding of SEFM 2009, pp. 179-188 (2009)
Tatsuta, M., Chin, W.N., Al Ameen, M.F.: Completeness of Pointer Program Ver-
ification by Separation Logic. NII Technical Report, NII-2009-013E (2009)

A Thread-Safe Library
for Binary Decision Diagrams*

Alberto Lovato!2, Damiano Macedonio!, and Fausto Spoto®:2

b Julia Srl, Verona, Ttaly
2 Dipartimento di Informatica, Universita di Verona, Verona, Italy

Abstract. We describe the motivations, technical problems and solu-
tions behind the implementation of BeeDeeDee, a new thread-safe Java
library for Binary Decision Diagrams (BDDs) manipulation. BeeDeeDee
allows clients to share a single factory of BDDs, in real parallelism, and
reduce the memory footprint of their overall execution, at a very low
synchronization cost. We prove through experiments on multi-core com-
puters that BeeDeeDee is an effective thread-safe library for BDD ma-
nipulation. As test cases, we consider multiple instances of the n-queens
problem, the construction of circuits and the parallel execution of infor-
mation flow static analyses of Java programs, for distinct properties of
variables. For sequential-only executions, BeeDeeDee is faster than other
non-thread-safe Java libraries and as fast as non-thread-safe C libraries.

Keywords: Manipulation of Boolean functions, Binary Decision Dia-
grams, Java multithreading.

1 Introduction

Binary Decision Diagrams [14] (from now on BDDs) are a well-known data
structure for the efficient representation of Boolean functions. Their first success
story is their application for symbolic model checking [16]. They have been sub-
sequently applied to static analysis: groundness analysis of logic programs [11],
aliasing analysis of Java [18], cyclicity analysis of Java [20] and information flow
analysis of Java bytecode [17]. This is because variables in Boolean functions
can be very naturally seen as properties of program states or program variables,
while implications between them can be seen as constraints between those prop-
erties. For instance, a Boolean function might express the fact that groundness
of a variable might imply groundness of another; or that aliasing between a pair
of variables might entail aliasing between other pairs; or that whenever a piece
of information flows into a variable it might flow into other variables as well.
BDDs are one of many possible representations for Boolean functions. Their
success is related to their compactness and efficiency. The key idea underlying
their definition is to represent a Boolean function as a directed acyclic graph,

* Julia Srl has been partially supported by US Air Force contract n. FA8750-12-C-0174
as subcontractor of the University of Washington.

D. Giannakopoulou and G. Salaiin (Eds.): SEFM 2014, LNCS 8702, pp. 35-49, 2014.
© Springer International Publishing Switzerland 2014

36 A. Lovato, D. Macedonio, and F. Spoto

where each non-terminal node corresponds to the evaluation of a variable and
has two outgoing edges, leading to graphs which represent the function with
the variable value fixed to 1 (true) or 0 (false), respectively; terminal nodes are
labeled 0 or 1 and correspond to the evaluation of the function once all vari-
ables has been assigned a value [14,15]. The order of variable evaluation can be
fixed, and redundant nodes can be removed, leading to a canonical BDD, that
is, a minimal representation for a class of equivalent functions. So, equivalence
of functions can be tested by checking the structural identity of their BDD rep-
resentations. Moreover, this accounts for a significant reduction in the memory
space needed to hold a BDD. Furthermore, a clever implementation might allow
distinct BDDs to share identical subgraphs.

There exist special purpose BDDs. For instance, Algebraic Decision Diagrams
(ADDs) [12] can have other terminal nodes than 0 and 1. They can efficiently
represent matrices and weighted directed graphs, by encoding their characteristic
functions. Zero-suppressed Binary Decision Diagrams (ZDDs) [19] consider as
redundant and remove the nodes whose positive edge points to terminal node 0.
They are overall larger than BDDs in size, but they become very compact when
dealing with functions that are almost everywhere 0.

C libraries, such as BuDDy [2], CUDD [4] and CAL [3], that represent and ma-
nipulate BDDs, may be used in Java via the Java Native Interface. They merely
feature an API that is poorly adapted to an object-oriented language and they
are not cross-platform since they must be recompiled on each platform. Java
libraries, such as JavaBDD [7], JDD [8] and SableJBDD [10], are built around
a common architecture, where BDDs are compactly stored in an array of inte-
gers: each integer stands for a logically distinct BDD. This array is manipulated
through a centralized controller, called factory, that uses a unique table of nodes.
Furthermore, caching is typically used to avoid re-computations

JavaBDD seems to be the current choice of the Java world and it offers in-
terfaces to the native libraries BuDDy, CAL and CUDD, as well as to JDD. It
includes a unique table implementation directly translated in Java from BuDDy.
JDD performs well with problems that only involve simple Boolean operations,
such as the n-queens problem, but performs rather badly in case of variable
replacement or quantification. Moreover, for replace, exist and forall opera-
tions, it exhibits unusual behaviors, such as exiting the JVM instead of throwing
exceptions. Consequently, it may not be suitable to production environments.
SableJBDD is in a very early stage of development and currently exhibits low
performance and very high memory consumption.

Among C libraries, CUDD can manipulate both ADDs and ZDDs. Among
Java libraries, only JDD can manipulate ZDDs.

2 Our Motivation: Parallel Information Flow Analyses

The present work was sparked from a concrete problem. We were implementing
many flavors of information flow analysis for Java bytecode inside our Julia static
analyzer [9], by using a common framework derived from [17] and based on a

A Thread-Safe Library for Binary Decision Diagrams 37

translation of the program into Boolean functions.! Each flavor was targeted at
determining where and how some specific kind of information might flow inside
a Java program. These kinds of information were inspired from the Top 25 Most
Dangerous Software Errors [1]: among them, one finds well-known issues such as
user-provided servlet parameters flowing into SQL commands (SQL-injection)
or into OS commands (command-injection); hard-coded credentials flowing into
user-visible output; internal data flowing into implementation revealing output.

These distinct analyses do share a lot: namely, most program statements
just transfer information from variables to variables and their abstraction into
Boolean functions is identical for all flavors of information flow analysis; only a
few statements have different abstraction for distinct information flow flavors.
Our first implementation was based on JavaBDD. Each information flow analy-
sis was independent from the others, that is, it was run in isolation and did not
share any data structure with the others. The result was perfectly working and
we could also run more analyses in parallel, in distinct threads, as long as each
thread allocated its own unique table of BDDs and caches. But we immediately
hit the limit of this approach as soon as we tried to analyze, in parallel, the full
codebase of Hadoop Common [5], a Java implementation of a big data engine.
While the computational cost in time was still acceptable, the memory footprint
of the parallel analyses exploded and we had to rely on their sequential rather
than parallel execution, which however takes many hours rather than minutes.

In order to reduce the memory footprint of the parallel analyses, we tried to
use a single BDD unique table, shared among all threads. But this turned up
to be impossible with JavaBDD. In fact, JavaBDD is not a thread-safe library,
in the sense that by sharing the unique table among threads one just gets a
runtime exception. This problem was present also with native C libraries. We
realized that we needed a new library for BDD manipulation, with a thread-
safe implementation. Our first version of that library was however deceiving: we
built it so that all operations on the unique table were mutually exclusive, which
made it thread-safe; however, any parallel execution was in reality completely
sequential, since one thread at most could access the unique table, at a time.
We understood that we had to allow more threads to use the unique table at
the same time and synchronize them as rarely as possible. How this could be
achieved was far from obvious and is the topic of this article.

3 The Features of Our Library

We assume the Java memory model: the runtime may introduce execution opti-
mizations as long as the result of a thread in isolation is guaranteed to be exactly
the same as it would have been if all the statements been executed in program
order. This semantics does not prevent different threads from having different
views of the data, but actions that imply communication between threads, such

! These information flow analyses are not the topic of this article and we describe
them as far as it is needed for understanding our work on BDDs.

38 A. Lovato, D. Macedonio, and F. Spoto

Fig.1. An ordered read-once branching program with order x1 < x2 < x3 for the
Boolean formula =(z1 Azz Az3) V (21 Az2) V (22 Axs)

as the acquisition or release of a lock, ensure that actions that happen prior to
them are seen by other threads.

Let us clearly state the features of our efficient thread-safe library for BDD
manipulation in Java. By thread-safe we mean that clients can run in parallel
and safely share a BDD unique table and all the needed caches. By efficient
we mean that clients do not pay a high synchronization cost for that and are
consequently blocked for a low percentage of their overall execution time.

Our library is not multithreaded, in the sense that it does not use multi-
threading itself: BDDs are manipulated exclusively via sequential algorithms. It
does use multithreading just for parallel resizing and garbage-collection, but this
is a secondary aspect that does not account very much for its efficiency.

As a matter of fact, ideal parallelism is rarely achievable, since there is gen-
erally some synchronization cost to pay for. As a consequence, the parallel ex-
ecution of many instances of the same task will cost, in general, slightly more
than the execution of a single instance, also when enough execution cores are
available. A concrete example is shown at the end of this article (see Figure 6).

4 Boolean Formulas and BDDs

Boolean formulas are generated by the grammar f =z |0 | 1| =f | f A f]
fVflf=1f|f% f, where x ranges over a given set of Boolean variables, 0
means false and 1 means true. The set of truth values is denoted as B = {0, 1}. An
assignment 7 binds each Boolean variable z to a truth value 7(z) and allows one
to evaluate a Boolean formula f into a truth value 7(f), computed by replacing
each Boolean variable in f with its value as provided by 7 and by applying the
usual truth tables for the logical operators. If we fix an ordering on the Boolean
variables, we can view f as defining a Boolean function from B"™ to B where n is
the number of variables in f. Two Boolean functions are equal if they yield the
same truth value for all assignments.

A Thread-Safe Library for Binary Decision Diagrams 39

(a) isomorphic nodes (b) useless test

Fig. 2. Types of redundancy in an ordered read-once branching program

Fig.3. BDD for =(z1 Azz Az3) V (z1Az2) V (22 Aws) with 21 < z2 < 23

We can represent a Boolean function f as a rooted, directed, acyclic graph,
consisting of decision nodes and terminal nodes. Each decision node v is labeled
with a Boolean variable x and has two children called low(v) and high(v). The
edge from v to low(v) (or high(v)) represents an assignment of x to 0 (respec-
tively, 1). Terminal nodes can be either a 0-terminal or a 1-terminal. Each truth
assignment 7 stands for a path from the root to a terminal node, the latter being
7(f)-terminal. Each variable can be evaluated at most once in a path. Such a
graph is called a read-once branching program. Moreover, it is called ordered if
the variables on a path from the root to a terminal node are ordered according to
a fixed total order, as in Figure 1. These graphs can be simplified by applying the
following rules (see Figure 2): merge any isomorphic subgraphs (merging rule)
and remove any node whose children are isomorphic (elimination rule). This
leads to reduced ordered read-once branching programs, also known as Binary
Decision Diagrams or BDDs (Figure 3).

Any Boolean function has a unique BDD representation [14], up to isomor-
phism; i.e., BDDs are a canonical representation of Boolean functions, where the
equivalence test of functions becomes an isomorphism check on acyclic graphs.

40 A. Lovato, D. Macedonio, and F. Spoto

Function MK(v,l,h)
input : A variable v and two nodes [and h
output: A node with label v, low child [and high child h

1 if [= h then

2 return [;

3 if the unique table does not contain a node n = (v,l, h) then
4 add node n = (v,l, h) to the unique table;

5 return n.

5 Architecture of a BDD Library

The first efficient BDD package of [13] has been the inspiration for subsequent
packages. The idea is to implement a BDD node as a data structure with, at
least, a variable index and two node references to low and high children.

As we anticipated, every BDD package keeps a unique table of nodes, which
contains all the already created BDDs and is used as a cache, so that isomorphic
BDDs are never recreated. This allows the achievement of strong canonicity: not
only are two equivalent functions represented by isomorphic graphs, but they
are actually the same graph in memory. Therefore BDD equivalence testing
boils down to constant-time equality checking of pointers. The unique table is
typically an array of integral values: each node is represented as a triple (v,l, h),
where v is the corresponding variable, [is the position of the low child and h is
the position of the high child inside the same array.

To retrieve already created nodes from the unique table, it is convenient to
organize it as a hash table, so that the array also contains, for each node, the
position of the next node inside the same bucket, if any.

In order to represent strongly canonical BDDs, a package defines two constants
and two functions. Constants ZERO and ONF stand for 0 and 1. Function MK
yields a node with a given variable as a label and with two given nodes as chil-
dren. Function APPLY implements a logical operation over BDDs and typically
uses a cache for efficiency, which is implemented as a hash table.

Lines 1-2 of MK implement elimination rule, while lines 3—4 implement merg-
ing rule. Thanks to the use of the unique table inside MK, function APPLY
keeps strong-canonicity, as it can be proved by induction. Since BDDs must be
ordered, variables are put in order in the result of APPLY. Time complexity is
O(|n1||n2|). In fact, if |n| denotes the number of nodes of a BDD rooted at n,
then the recursive calls in APPLY (op, n1, na) are |nl||n2| at most (see [14]).

Caching is also used for non-propositional operations on BDDs such as restric-
tion (fixing the value of a variable) and variable replacement. In fact, variables
must be kept ordered subsequently to every variable replacement and reordering
requires a complete and expensive rearrangement of BDDs: this is why a cache
is used. Universal and existential quantification are reduced to restriction and
propositional operations.

A Thread-Safe Library for Binary Decision Diagrams 41

Function APPLY (op, n1, n2)

input : A logical operator op and two nodes ni and na
output: The result of the operation ni op n2

if the result of (n1 op n2) is already cached then
return that result;

if n1, na are constants then
return op applied to n; and na;

if var(n1) = var(nz) then
result = MK (var(ni),
APPLY (op, low(ni), low(nz)), APPLY (op, high(n1), high(n2)));

else if var(ni) < var(nz) then
result = MK (var(n1),
APPLY (op, low(ni), n2), APPLY (op, high(ni), n2));

© ® N0 ook W N

-
(=]

11 else

12 result = MK (var(ns2),

13 APPLY (op, n1, low(nz))), APPLY (op, n1, high(nz2)));
14 cache result;

15 return result;

BDDs might be used for temporary operations and then become garbage,
alike all dynamically allocated data structures. However, the normal garbage
collector of Java is not in charge here: nodes are elements of an array of integers
(the unique table) and Java garbage collector deals with the array as a whole,
not with its single elements. It is hence necessary to implement a brand new
garbage collector for elements of the unique table array. This garbage collector
must run when that table is almost full, mark unr