
On Compiling CNF into Decision-DNNF

Umut Oztok and Adnan Darwiche

Computer Science Department, University of California,
Los Angeles, CA 90095, USA
{umut,darwiche}@cs.ucla.edu

Abstract. Decision-DNNF is a strict subset of decomposable negation
normal form (DNNF) that plays a key role in analyzing the complexity
of model counters (the searches performed by these counters have their
traces in Decision-DNNF). This paper presents a number of results on
Decision-DNNF. First, we introduce a new notion of CNF width and
provide an algorithm that compiles CNFs into Decision-DNNFs in time
and space that are exponential only in this width. The new width strictly
dominates the treewidth of the CNF primal graph: it is no greater and
can be bounded when the treewidth of the primal graph is unbounded.
This new result leads to a tighter bound on the complexity of model
counting. Second, we show that the output of the algorithm can be con-
verted in linear time to a sentential decision diagram (SDD), which leads
to a tighter bound on the complexity of compiling CNFs into SDDs.

1 Introduction

Decision-DNNF is a tractable propositional language that is a strict subset of
DNNF. One key role of this language is in the complexity analysis of modern
model counters. We will therefore start with a motivation of model counters.

Model counting is the problem of counting the number of satisfying assign-
ments of a Boolean formula. It has various applications, such as inference in
Bayesian networks [1,5]. Although model counting has been shown to be a hard
problem (#P-complete [21]), there are two common approaches that have proven
effective in practice.

One approach is based on DPLL [11,10], which is a family of algorithms that
were initially developed for SAT: the problem of deciding whether a Boolean
formula has a satisfying assignment. In essence, it is a systematic search algo-
rithm that searches the space of truth assignments until finding a satisfying one
or identifying that such an assignment does not exist. This search method can
easily be extended to compute the number of satisfying assignments of the for-
mula. Simply, by not stopping the search when a single satisfying assignment is
found, and exhaustively continuing to look for all other satisfying assignments,
one can obtain a naive model counter. To make this approach more practical, var-
ious sophisticated techniques were incorporated into the core exhaustive DPLL
algorithm, such as component analysis [13] and formula caching [14,1,20].

Another approach for model counting is based on knowledge compilation. The
basic idea of knowledge compilation is to compile a Boolean formula represented

B. O’Sullivan (Ed.): CP 2014, LNCS 8656, pp. 42–57, 2014.
c© Springer International Publishing Switzerland 2014

On Compiling CNF into Decision-DNNF 43

in a source language into a target language that supports model counting in
polytime. Negation normal form (NNF) circuits have been established as the
basis of a number of such languages [9]. These circuits have and nodes (repre-
senting conjunctions) and or nodes (representing disjunctions) as internal gates,
and literals or constants as inputs (see Fig. 1(c)). In [9], two fundamental prop-
erties on NNF circuits are identified to ensure the tractability of model counting:
decomposability and determinism. Decomposability is a property of and nodes,
requiring that the children of and nodes share no variables. Determinism is a
property of or nodes, requiring that each two children of an or node be mu-
tually exclusive (i.e., contradict each other). Determinism and decomposability
characterize deterministic-DNNF (d-DNNF), a strict subset of DNNF [6], which
includes other languages such as sentential decision diagrams (SDD) [8], free
binary decision diagrams (FBDD) [3], and ordered binary decision diagrams
(OBDD) [4]. Although d-DNNF is the most general language known that sup-
ports efficient model counting, a strict subset, Decision-DNNF, has been used in
state-of-the-art model counters based on knowledge compilers [7,15].

Although the approaches described above look conceptually different than
each other, a strong connection between them has been established [12]. In par-
ticular, the traces1 of the searches performed by state-of-the-art model counters
has been shown to be in Decision-DNNF. In other words, model counters based
on exhaustive DPLL effectively generates the compilation of the Boolean for-
mula in Decision-DNNF. By this result, Decision-DNNF has the role of bridging
model counters and knowledge compilers. More importantly, any new result per-
taining to Decision-DNNFs will have a possibly significant further impact on
model counters. For instance, the relationship between Decision-DNNFs and
FBDDs has been recently studied in [2]. Accordingly, Decision-DNNFs can be
converted into FBDDs with only a quasipolynomial increase in the representa-
tion size. This result allowed the authors to show new exponential lower bounds
on Decision-DNNFs, by leveraging the existing lower bounds on FBDDs, which
are immediately applicable to model counters.

In this work, we present new results on Decision-DNNFs. First, we introduce
a new notion of width for CNFs, called decision-width. We show a compilation
algorithm that can compile CNFs into Decision-DNNFs in time and space that
are exponential only in decision-width. This new width is no greater than the
treewidth of the CNF primal graph, and can be bounded while the latter is
unbounded. This result not only improves the existing complexity results on
d-DNNF compilation but also the existing results on the complexity of model
counting. Second, we show that Decision-DNNFs constructed by our algorithm
can be converted to SDDs in linear time. SDD is a recently discovered tractable
language that is a strict superset of the influential language OBDD. It comes
with many interesting properties, including a polytime Apply2 operation and
canonicity, which are two key features underlying the success of OBDDs. Our
result leads to a tighter bound on the complexity of compiling CNFs into SDDs.

1 See Section 4 for a detailed discussion of the trace of an exhaustive search algorithm.
2 Apply takes two SDDs and uses a binary operator to combine them.

44 U. Oztok and A. Darwiche

The rest of the paper is organized as follows. Section 2 starts with technical
preliminaries. Section 3 then introduces decision-width and discusses a compila-
tion algorithm that can compile CNFs into Decision-DNNFs in time and space
that are exponential only in this width. This is followed by a comparison of
decision-width and the treewidth of the CNF primal graph. Next, Section 4 dis-
cusses the importance of Decision-DNNFs in model counting by reviewing in
detail the strong connection that has been established between Decision-DNNFs
and model counters. Section 5 shows that the output of our algorithm for com-
piling CNFs into Decision-DNNFs can be transformed in linear time to SDDs.
We close with a discussion of related work and some concluding remarks. Due
to space limitations, some proofs are delegated to the full version of the paper.3

2 Technical Preliminaries

Upper case letters (e.g., X) will denote variables and lower case letters (e.g., x)
will denote their instantiations. Bold upper case letters (e.g., X) will denote sets
of variables and bold lower case letters (e.g., x) will denote their instantiations.

A Boolean function f over variables Z maps each instantiation z of variables
Z to true or false. The conditioning of f on instantiation x, written f |x, is a
subfunction that results from setting variables X to their values in x. A conjunc-
tion is decomposable if each pair of its conjuncts share no variables. A disjunction
is deterministic if each pair of its disjuncts are mutually exclusive. A negation
normal form (NNF) circuit is a rooted DAG whose internal nodes correspond
to disjunctions and conjunctions, and whose leaf nodes correspond to literals
or the constants � (true) and ⊥ (false). An NNF circuit is decomposable and
deterministic (called a d-DNNF) iff each of its conjunctions is decomposable and
each of its disjunctions is deterministic; see Fig. 1(c). We will identify an NNF
circuit by its root node N , use V ars(N) to denote the set of variables mentioned
by circuit N , and F (N) to denote the Boolean function represented by N . The
size of NNF circuit N , denoted |N |, is the total number of edges in the circuit.

The literals of variable X are denoted by x and ¬x. A conjunctive normal
form (CNF) is a set of clauses, where each clause is a disjunction of literals, and
the set represents the conjunction of its clauses (e.g., {x ∨ ¬y ∨ ¬z, y ∨ z, ¬x}
represents the Boolean formula (x∨¬y∨¬z)∧(y∨z)∧¬x). Conditioning a CNF
Δ on literal �, denoted Δ|�, amounts to removing literal ¬� from all clauses and
then dropping all clauses that contain literal �.

3 Compiling CNFs into Decision-DNNFs

The purpose of this section is to show an algorithm that compiles CNFs into
Decision-DNNFs with a complexity guarantee. To analyze the complexity of the
algorithm, we will also introduce a new notion of width and study its properties.

3 Available at http://reasoning.cs.ucla.edu.

http://reasoning.cs.ucla.edu.

On Compiling CNF into Decision-DNNF 45

1

X 5

3

Y Z

Q

(a) A vtree

or

and

¬x α

and

x β

(b) A decision node

or

and

x and

or

and

y z

and

¬y ⊥

�

and

¬x and

or

and

y ⊥

and

¬y ¬z

q

(c) A Decision-DNNF

Fig. 1. A vtree, a decision node, and a Decision-DNNF

3.1 Decision-DNNF

A decision node is a special form of an or node, which is depicted in Fig. 1(b)
where X is a variable, and α and β are arbitrary NNF nodes. A d-DNNF is
called a Decision-DNNF iff each of its or nodes is a decision node; see Fig. 1(c).
In this case, determinism is always ensured by the decision nodes.

3.2 Decision Vtrees

Both the width and the compilation algorithm we will present in this section are
driven by a tree-structure, which is introduced next. A vtree for a set Z of vari-
ables is a rooted, full binary tree whose leaves are in one-to-one correspondence
with variables in Z. Figure 1(a) depicts an example vtree. We will use vl and vr

to refer to the left and right children of an internal vtree node v. We will also use
V ars(v) to denote the set of variables at or below a vtree node v. A vtree node
is called a Shannon node iff its left child is a leaf. A vtree in which every node is
a Shannon node will be called right-linear. Given a vtree v, we will sometimes
refer to v as the root of the vtree.

A vtree for a CNF is a vtree over the CNF variables. Our focus is on a special
type of vtrees, defined next.

Definition 1 (decision vtree). A clause is compatible with an internal vtree

node v iff the clause mentions some variables inside vl and some variables inside
vr. A vtree for CNF Δ is said to be a decision vtree for Δ iff every clause in Δ
is compatible with only Shannon nodes.4

Figure 1(a) depicts a decision vtree for the CNF {y ∨¬z, ¬x∨ z, x∨¬y, x∨ q}.
We will later show that one can always construct a decision vtree for any CNF.

4 A unit clause (one containing a single literal) is not compatible with any vtree node.
Hence, a unit clause trivially satisfies the condition of being compatible with only
Shannon nodes.

46 U. Oztok and A. Darwiche

{¬x ∨ z, x ∨ ¬y, x ∨ q}

X ∅

{y ∨ ¬z}

Y Z

Q

Fig. 2. Distributing the clauses of CNF {y ∨ ¬z, ¬x ∨ z, x ∨ ¬y, x ∨ q} over a vtree

3.3 A Compilation Algorithm

We will next present an algorithm that compiles a CNF into a Decision-DNNF
using a decision vtree for the CNF. This compilation method is given by Al-
gorithm 1, which takes a decision vtree v and an auxiliary CNF S over the
variables of vtree v (S is initially empty). The CNF Δ to be compiled is passed
with the vtree as follows. Each clause of Δ is assigned to the lowest vtree node
that contains the clause variables. Figure 2 depicts an example of how clauses
are assigned to vtree nodes. Note that the (non-unit) clauses are assigned only to
Shannon nodes as the vtree is a decision vtree. We use Clauses(v) to denote the
clauses assigned to a vtree node v. We also use CNF (v) to denote the clauses
assigned to all nodes in the vtree rooted at v. A recursive call c2d(v, S) will
return a Decision-DNNF for CNF (v)∪S. The algorithm keeps a cache at every
vtree node, which is indexed by S.

Consider now a run of Algorithm 1. An or node can only be constructed on
Line 4. Accordingly, each or node created by this algorithm is a decision node.
Using this fact with an inductive argument is enough to prove the soundness of
the algorithm.

Lemma 1. Let v be a decision vtree for CNF (v). Let S be a CNF over V ars(v)
whose clauses are compatible with only Shannon nodes of v. The call c2d(v, S)
to Algorithm 1 returns a Decision-DNNF equivalent to CNF (v) ∪ S.

Proof. The proof is by induction on vtree nodes. The base case is when v is a leaf
node. This case is trivially satisfied by Line 2. Assume now that v is an internal
node. As an induction hypothesis, consider that for each vtree node v′ below v,
the call c2d(v′, S′) computes a Decision-DNNF equivalent to CNF (v′) ∪ S′,
where S′ is a CNF over V ars(v′) whose clauses are compatible with only Shannon
nodes of v′. During the call to v, we will compute a Decision-DNNF equivalent
to CNF (v)∪S by utilizing the following decomposition of a Boolean function f
(known as Shannon decomposition): f = (x ∧ f |x) ∨ (¬x ∧ f |¬x). Note that
in our context f = CNF (v) ∪ S. Assume v is a Shannon node. Then vl is a
leaf node (with variable X). The possible clauses that can be assigned to vl

are {x} and {¬x}. Lines 4–4 consider all four possible assignments of those two

On Compiling CNF into Decision-DNNF 47

Algorithm 1. c2d(v, S)
cache(v,Δ) is a hash table that maps v and Δ into a Decision-DNNF.
terminal(Δ) returns the literal or constant equivalent to Δ.

Input: v : a vtree node, S : a CNF over V ars(v).
Output: A Decision-DNNF for CNF (v) ∪ S.

1 if cache(v, S) �= nil then return cache(v, S) C ← Clauses(v)
2 if v is a leaf then return terminal(C ∪ S) if v is a Shannon node then
3 X ← variable of vl

4 if {x} and {¬x} assigned to vl then α← ⊥ else if {x} assigned to vl then

α← x ∧ c2d(vr, (C ∪ S)|x) else if {¬x} assigned to vl then
α← ¬x ∧ c2d(vr, (C ∪ S)|¬x) else
α←

(
x ∧ c2d(vr, (C ∪ S)|x)

)
∨
(
¬x ∧ c2d(vr, (C ∪ S)|¬x)

)

5 else

6 S1 ← clauses in S that only mention variables in vl

7 S2 ← clauses in S that only mention variables in vr

8 α←
(
c2d(vl, S1) ∧ c2d(vr, S2)

)

9 cache(v, S)← α
10 return α

clauses to vl: (1) both {x} and {¬x} are assigned and f = ⊥, (2) only {x}
is assigned and f = x ∧ f |x, (3) only {¬x} is assigned and f = ¬x ∧ f |¬x,
and (4) no clause is assigned and f = (x ∧ f |x) ∨ (¬x ∧ f |¬x). Except for the
first case, in which f is trivially computed as ⊥, by the induction hypothesis,
c2d(vr, (C ∪ S)|x) and c2d(vr, (C ∪ S)|¬x) compute Decision-DNNFs for f |x
and f |¬x, respectively.5 Note that we construct an or node only in the last
case, which is a decision node. So, when v is a Shannon node, we compute
a Decision-DNNF equivalent to CNF (v) ∪ S. Assume now that v is a non-
Shannon node. In this case, C must be empty because the vtree is a decision
vtree. Thus, CNF (v) = CNF (vl)∪CNF (vr). Also, S cannot contain any clause
that mentions variables from both vl and vr as no clause in S can be compatible
with v. Then, by the induction hypothesis, on Line 8, we compute a Decision-
DNNF equivalent to CNF (v) ∪ S. ��

Corollary 1. Let v be a decision vtree for CNF (v). The call c2d(v, {}) to Al-
gorithm 1 returns a Decision-DNNF that is equivalent to CNF (v).

For instance, when the vtree in Fig. 2 is passed to Algorithm 1, it computes
the Decision-DNNF in Fig. 1(c). To analyze time and space complexities of the
algorithm, we next introduce a new notion of width.

5 If a clause is not compatible with a vtree node v then every conditioning of the
clause will also not be compatible with v.

48 U. Oztok and A. Darwiche

3.4 Decision-Width

Before defining the new notion of width, we will introduce two concepts.

Definition 2. Consider a CNF and a corresponding vtree. Let v be an inter-
nal vtree node. The context clauses of v are the clauses that mention variables
inside v and outside v.

For example, consider the CNF {y ∨ ¬z, ¬x ∨ z, x ∨ ¬y, x ∨ q} and the vtree
node v = 5 in Fig. 1(a). The context clauses of v are {¬x ∨ z, x ∨ ¬y, x ∨ q}.
Definition 3. Consider a CNF Γ and a set of variables V. We denote by
CNFs(Γ,V) the set of CNFs that is obtained from conditioning Γ on each
instantiation v of V.

Consider the CNF Γ = {x ∨ y ∨ z, x ∨ y ∨ q, ¬x ∨ ¬y ∨ z, x ∨ ¬y ∨ z} and the
set of variables V = {Y }. Then,

Γ |y = {¬x ∨ z, x ∨ z},
Γ |¬y = {x ∨ z, x ∨ q},

CNFs(Γ,V) = {{¬x ∨ z, x ∨ z}, {x ∨ z, x ∨ q}}.
We are now ready to introduce the new notion of width.

Definition 4 (decision-width). Consider a CNF Δ and a corresponding de-
cision vtree. Let v be an internal vtree node with context clauses Γ . Let Y be
variables outside v. Then, the width of v is the ceiling of log(|CNFs(Γ,Y)|),
where log 0 is defined as 0. The decision-width of the decision vtree is the largest
width of any of its internal nodes minus 1. The decision-width of the CNF is the
smallest decision-width attained by any of its decision vtrees.

For instance, consider the vtree in Fig. 1(a). Assuming that the vtree corresponds
to the CNF {y ∨ ¬z, ¬x ∨ z, x ∨ ¬y, x ∨ q}, the width of node v = 5 is 1, and
the decision-width of the vtree is 0.

Having defined decision-width, we can now establish the complexity of Algo-
rithm 1.

Theorem 1. If decision vtree v is over n variables and has decision-width w,
and if CNF (v) has size m, then the call c2d(v, {}) to Algorithm 1 takes time in
O(nm2w) and returns a Decision-DNNF whose size is in O(n2w).

Proof (Sketch). Each distinct call to a Shannon node (Lines 2–4) takes time in
O(2m): we perform at most two conditionings of C ∪ S, which has at most m
clauses, on a single literal. This process contributes to the size at most three
nodes, each having two children. Each distinct call to a non-Shannon node
(Lines 5–8) takes time in O(m): we partition the set S, which has at most
m clauses, into two subsets. This case contributes to the size one node with two
children. Also, due to caching, the number of distinct calls to a vtree node v
is at most 2k where k is the width of v. As there are O(n) nodes in the vtree,
Algorithm 1 takes time in O(nm2w) and returns a Decision-DNNF whose size
is in O(n2w). ��

On Compiling CNF into Decision-DNNF 49

¬y ∨ z

a ∨ b a ∨ ¬b

y y ∨ ¬z ∨ x

(a) A dtree

{Y, Z}

∅

∅ {A,B}

∅ ∅

∅

∅ {X}

(b) Cutsets of the dtree

Y

Z

A B

X

(c) A vtree

Fig. 3. A dtree, its cutsets, and a vtree for the CNF {y, ¬y∨z, y∨¬z∨x, a∨b, a∨¬b}

3.5 Relationship to Treewidth

One of the classical parameters for characterizing the structural properties of
a CNF is treewidth [19]. This is a property of some graph abstraction of the
CNF, such as the primal, dual or incidence graph. We will now compare decision-
width with the treewidth of the CNF primal graph, and show that decision-width
strictly dominates the treewidth.

The primal graph of a CNF is obtained by treating CNF variables as graph
nodes, while adding an edge between two variables iff they appear in the same
clause. We will use twp to denote the treewidth of the primal graph.

We will now compare decision-width with twp. First, we will show that
decision-width dominates twp.

Theorem 2. Consider a CNF whose primal graph has treewidth w. We can
construct a decision vtree of this CNF whose decision-width is no greater than w.

Proof (Sketch). The primal graph must have a tree decomposition in the form of
a dtree [6] that has width w. A dtree of a CNF is a rooted, full binary tree whose
leaves are in one-to-one correspondence with the CNF clauses; see Fig. 3(a). We
define the cutset of an internal dtree node d as the variables that appear in the
left child of d and in the right child of d but not in any cutset of the ancestors
of d. Also, the cutset of a leaf dtree node d is defined as the variables of d
that do not appear in any cutset of the ancestors of d. Figure 3(b) shows the
cutsets of a dtree. We construct decision vtrees from dtrees using the following
recursive procedure. At a leaf dtree node d, we construct a right-linear vtree
from the variables appearing in the cutset of d. At an internal dtree node d, we
recursively construct a decision vtree vl for the dtree dl, and a decision vtree
vr for the dtree dr. We then create another vtree node v by assigning vl as v’s
left child and vr as v’s right child. Finally, we create and return a right-linear
vtree using the variables in the cutset of dtree node d, with vtree node v as the
right-most child of this right-linear vtree. Due to cutset properties, the resulting
vtree is a decision vtree. Figure 3(c) shows a decision vtree obtained from the
dtree in Fig. 3(a) using the method we just described. The full paper shows that
the decision-width of the resulting decision vtree is no greater than w. ��

50 U. Oztok and A. Darwiche

The above result shows that decision-width dominates twp. It also implies that
one can always construct a decision vtree for any CNF. We will next show that
decision-width can be bounded when twp is unbounded.

Theorem 3. The CNF Δn = {x1 ∨ . . . ∨ xn}, n ≥ 1, has a primal graph with
treewidth n− 1 and decision-width 0.

Proof. The primal graph of Δn is a complete graph, and complete graphs are
known to have unbounded treewidth, which is n − 1 in this case. Consider the
right-linear vtree induced by the variable ordering X1, . . . , Xn. That is, the left
child of the vtree root v is X1. The left child of vr is X2, and so on. Consider a
vtree node v′ whose left child is Xi. Let Γ be the context clauses of v′. If i = 1,
then Γ is empty and the width of v′ is 0. Otherwise, Γ = {x1 ∨ . . .∨ xn}. Let Y
be the variables outside v′. Then, the set of CNFs that are obtained from Γ |y is
{{}, {xi ∨ . . . ∨ xn}}. The width of v′ is then 1. The decision-width of the vtree
is then 0. ��

The best known upper bounds for the complexities of compiling CNFs into
both Decision-DNNFs and d-DNNFs are exponential in the treewidth of the
CNF primal graph [12]. As decision-width strictly dominates treewidth, and
also Decision-DNNFs is a strict subset of d-DNNFs, by Theorem 1, we obtain
a tighter upper bound both for Decision-DNNF and d-DNNF compilation. Fur-
thermore, as the traces of most model counters are in Decision-DNNF (see next
section), this result also provides a tighter bound for model counters based on
Decision-DNNFs (under some assumptions to be discussed next).

4 Decision-DNNFs and Model Counters

In this section, we will discuss the close relationship between Decision-DNNFs
and model counters based on exhaustive DPLL.

The original DPLL algorithm was developed for SAT. It is a systematic search
algorithm that searches the space of truth assignments until finding a satisfying
one or identifying that such an assignment does not exist. In particular, given a
Boolean formula f , it chooses a variable X of the formula, and then considers
two cases recursively, which correspond to f |x and f |¬x. It then decides that
the formula f is satisfiable when at least one of f |x and f |¬x is satisfiable. This
method can easily be extended to compute the number of satisfying assignments
of the formula by not stopping the search when a single satisfying assignment
is found. That is, by exhaustively continuing to look for all other satisfying
assignments, one can obtain a naive model counter.

The tree in Fig. 4(a) shows all the paths that are traversed during an exhaus-
tive DPLL on a Boolean formula. Each circled node represents a variable on
which two decisions are performed: the variable is set to false (dashed edge) or
set to true (solid edge). This way, paths from the root to leaf nodes represent
(partial) variable assignments. Each leaf node then represents the result of the
search when the variable assignment on the path from the root to the leaf is ap-
plied on the Boolean formula, with the label unsat being unsatisfiable and the

On Compiling CNF into Decision-DNNF 51

X

Y

unsat Z

unsat sat

Y

Z

unsat sat

sat

(a) Termination tree

or

and

or

and

⊥ ¬y
and

y
or

and

⊥ z

and

¬z �

¬x
and

x
or

and

or

and

⊥ z

and

¬z �

¬y
and

y �

(b) Equivalent NNF circuit

Fig. 4. The trace of an exhaustive DPLL

label sat being satisfiable. This tree is called the trace of the search performed
by an exhaustive DPLL [12]. Note that one can think of each circled node of the
tree as an or node, by utilizing the following conversion:

X

α β

or

and

¬x α

and

x β

Figure 4(b) is the NNF circuit obtained from Fig. 4(a) using the above conver-
sion, and also replacing each sat with �, and each unsat with ⊥. One can always
interpret the trace of an exhaustive DPLL as an equivalent NNF circuit, which
turns out to satisfy both decomposability and determinism. In fact, the traces
of the searches performed by such model counters correspond to FBDDs [12].
Moreover, when these model counters are augmented with component analysis,
their traces correspond to Decision-DNNFs [12].

This connection has two implications. First, it allows one to translate Decision-
DNNF lower bounds immediately into lower bounds on the complexity of model
counters. Second, but under some assumptions, it allows one to translate
Decision-DNNF upper bounds into ones on the complexity of model counters.
For example lower bounds, it was recently shown that Decision-DNNFs can be
converted into FBDDs with only a quasipolynomial increase in size [2]. As a
result, known lower bounds for FBDDs immediately translate into lower bounds
on model counters whose traces are in Decision-DNNF (see [2] for examples).

Translating upper bounds on Decision-DNNF to upper bounds on arbitrary
model counters, however, is not as direct. Here, one needs, for example, to assume
that the traces of the model counter are optimal, and that the time complexity
of the counter is polynomial in the size of the trace. Under these assumptions, an

52 U. Oztok and A. Darwiche

upper bound on Decision-DNNF translates directly into an upper bound on the
model counter. Interestingly enough, Algorithm 1 satisfies the second condition.
The algorithm does not satisfy the first condition, but we know that its traces
(i.e., compilations) are bounded exponentially only by the decision-width. Since
this width dominates the primal graph treewidth, we now have a tighter upper
bound on model counting in general (realized by Algorithm 1). We also have a
tighter upper bound on any model counter that satisfies the previous conditions.

5 From Decision-DNNF to SDD

We finally show a new complexity result on compiling CNFs into SDDs.6 The
existing upper bound on SDDs is exponential in the treewidth of the CNF primal
graph. We show a tighter bound that is exponential only in decision-width, which
strictly dominates treewidth as shown in Sect. 3.5. We will obtain this result by
showing that Decision-DNNFs generated by Algorithm 1 can be converted into
compressed and trimmed SDDs in linear time and by at most doubling the size.
That is, Algorithm 1 is effectively compiling SDDs.

Note that the output of Algorithm 1 is a special form of Decision-DNNF. In
particular, the vtree used in the compilation provides the generated Decision-
DNNF with a specific structure. That is, every node N in the Decision-DNNF
is associated with some vtree node v in the following way:

– an andnode is associatedwith vwhen V ars(N l) ⊆ V ars(vl) and V ars(N r) ⊆
V ars(vr), and

– an or node, (x∧α)∨ (¬x∧β), is associated with v when X ⊆ V ars(vl) and
V ars(α ∪ β) ⊆ V ars(vr).

For instance, each node of the Decision-DNNF in Fig. 1(c) is associated with a
vtree node in Fig. 1(a).

Algorithm 2 shows how to convert a Decision-DNNF into an SDD. It takes
a Decision-DNNF that is constructed by Algorithm 1 and computes two com-
pressed and trimmed SDDs that are equivalent to the Boolean functions rep-
resented by N and the negation of N . The conversion is done in a bottom-up
fashion. Terminal SDDs are obtained from leaf nodes (Line 1). Then, an or node
(Lines 1–3) or an and node (Lines 4–6) is obtained from the results of recursive
calls. To prevent redundant calculations, the results are cached (Line 7). The fol-
lowing theorem establishes the soundness and the complexity of the algorithm.

Theorem 4. If N is a Decision-DNNF generated by Algorithm 1 and has size m,
then the call d2sdd(N) takes time in O(m), and returns two compressed and
trimmed SDDs for F (N) and ¬F (N), whose sizes are in O(m).

Proof. The proof is by induction on NNF nodes. The base case is when N is a
leaf node, which is satisfied by Line 1. As an induction hypothesis (IH), assume

6 The definition of SDD and some of its properties are delegated to Appendix A.

On Compiling CNF into Decision-DNNF 53

Algorithm 2. d2sdd(N)
cache(N) is a hash table that maps N to an SDD.
terminal(N) returns the terminal SDD equivalent to F (N).
unique(α) removes an element from α if its prime is ⊥. It then returns s if
α = {(p1, s), (p2, s)} or α = {(�, s)}; p1 if α = {(p1,�), (p2,⊥)}; else the
unique SDD node with elements α.

Input: N : a Decision-DNNF generated by Algorithm 1.
Output: Two compressed and trimmed SDDs equivalent to F (N) and ¬F (N).

1 if cache(N) �= nil then return cache(N) if N is a leaf node then return
terminal(N), terminal(¬N) if N = (x ∧N1) ∨ (¬x ∧N2) then

2 s1,¬s1 ← d2sdd(N1), s2,¬s2 ← d2sdd(N2)
3 α← unique({(x, s1), (¬x, s2)}), ¬α← unique({(x,¬s1), (¬x,¬s2)})
4 else // N = N l ∧Nr

5 p,¬p← d2sdd(N l), s,¬s← d2sdd(Nr)
6 α← unique({(p, s), (¬p,⊥)}), ¬α← unique({(p,¬s), (¬p,�)})
7 cache(N)← α,¬α
8 return α,¬α

that for every NNF circuit whose root N ′ is below N , and whose size |N ′| is k,
the call d2sdd(N ′) takes time in O(k), and returns two compressed and trimmed
SDDs for F (N ′) and ¬F (N ′), whose sizes are in O(k). Suppose that N is an or
node, (x ∧ N1) ∨ (¬x ∧ N2), where N1 and N2 are NNF nodes. Let |N1| = m1

and |N2| = m2. Then, m = 6+m1+m2. By the IH, the call d2sdd(N1) (Line 2)
takes time in O(m1), and returns the SDDs for F (N1) and ¬F (N1), whose sizes
are in O(m1). Similarly, the call d2sdd(N2) (Line 2) takes time in O(m2), and
returns the SDDs for F (N2) and ¬F (N2), whose sizes are in O(m2). Then, using
the structure of N , we construct the SDD for F (N) (Line 3), whose size is at
most 2 + O(m1) + O(m2) = O(m). To compute the SDD for ¬F (N), we just
need to negate the subs of the SDD for F (N), which are already computed
by the recursive calls. So, the call to an or node takes time in O(m). Assume
now that N is an and node, N l ∧ N r, where N l and N r are NNF nodes. Let
|N l| = m1 and |N r| = m2. Then,m = 2+m1+m2. By the IH, the call d2sdd(N l)
(Line 5) takes time in O(m1), and returns the SDDs for F (N l) and ¬F (N l),
whose sizes are in O(m1). Similarly, the call d2sdd(N r) (Line 5) takes time in
O(m2), and returns the SDDs for F (N r) and ¬F (N r), whose sizes are in O(m2).
We then construct the SDD for F (N) (Line 6) by making use of the following:
F (N) =

(
F (N l) ∧ F (N r)

)∨(¬F (N l) ∧ ⊥)
. Thus, the constructed SDD has size

at most 2+O(2m1)+O(m2) = O(2m). Again, the SDD for ¬F (N) is computed
by negating the subs. Thus, the call to an and node takes time in O(m). ��
For instance, when we pass the Decision-DNNF in Fig. 1(c) to Algorithm 2, the
algorithm computes the compressed and trimmed SDDs in Fig. 5.

54 U. Oztok and A. Darwiche

5

 Q ⊥

3

Y Z ¬Y ⊥

3

¬Y ¬Z Y ⊥

3

¬Y Z Y ⊤

1

¬X

X

(a) An SDD

5

 ¬Q ⊤

3

Y ¬Z ¬Y ⊤

3

¬Y ¬Z Y ⊥

3

¬Y Z Y ⊤

1

¬X

X

(b) Negation of the SDD in (a)

Fig. 5. An SDD and its negation (both defined over the vtree in Fig. 1(a))

The result we obtained in this section shows that we can compile CNFs into
SDDs in time and space that are exponential only in decision-width. As the
best known upper bound for compiling CNFs into SDDs is exponential in the
treewidth of the CNF primal graph [8], we obtain a tighter upper bound on the
complexity of SDD compilation.

6 Related Work

The notion of decision-width is closely connected to another notion of width that
we introduced recently [16], called CV-width. In this latter work, an algorithm
was provided for compiling CNFs into structured DNNFs, based on vtrees, with
space and time guarantees that are exponential only in CV-width. This width
was defined over arbitrary vtrees. However, when restricted to decision vtrees,
it reduces to the notion of decision-width defined in this paper. In fact, when
the compilation algorithm of [16] is passed a decision vtree, it reduces to the
compilation algorithm given in this paper. This is an interesting phenomenon,
where language fragments are generated by restricting the type of vtrees passed
to a compilation algorithm. In fact, in [16], we also showed that when right-linear
vtrees are used, the compilation algorithm yields OBDD compilations (with new
complexity bounds that improve on what existed before).

When the current work is considered from the viewpoint of [16], it corresponds
to identifying a class of vtrees (decision vtree), together with a corresponding
notion of width (decision-width) and a corresponding fragment of structured
DNNF. These vtrees are particularly important given their role in model count-
ing and sentential decision diagrams.

Interestingly enough, decision vtrees and the method for constructing them
have been used twice in the past, yet without realizing the corresponding prop-

On Compiling CNF into Decision-DNNF 55

erties and guarantees that we discussed [18,8]. Moreover, no specific notion of
width has been defined before based on this restricted type of vtrees. In [18],
these vtrees were used to show an upper bound on the compilation of structured
DNNFs. Similarly, in [8], these vtrees were used to show an upper bound on
the compilation of SDDs. In both cases, the bounds were in terms of the primal
graph treewidth. In this work, we used these vtrees to provide an upper bound
on a subset of Decision-DNNF, which is included in both structured DNNF and
SDDs. Moreover, our bound (based on decision-width) is tighter than the ones
based on the primal graph treewidth. More importantly though, we have iden-
tified decision vtrees as a distinct class of vtrees for the first time, explicated
their characteristic property (clauses are compatible only with Shannon nodes),
equipped them with a corresponding notion of width, and characterized their
corresponding compilations (as a subset of Decision-DNNF).

7 Conclusion

In this paper, we presented new results on Decision-DNNFs. We showed a com-
pilation algorithm that compiles CNFs into Decision-DNNFs. To analyze the
complexity of the algorithm, we defined a new notion of width, called decision-
width, and showed that the algorithm has time and space complexities that
are exponential only in decision-width. To better evaluate decision-width, we
compared it with the treewidth of the CNF primal graph, and showed that
decision-width strictly dominates treewidth. Not only did we obtain a tighter
upper bound for compiling CNFs into d-DNNFs (through Decision-DNNFs) but
we also obtained a tighter upper bound on model counting, for which the pre-
viously best known bounds were both exponential in the treewidth. We finally
showed that Decision-DNNFs compiled by the algorithm can be transformed
into SDDs in linear time. This led to a tighter upper bound on compiling CNFs
into SDDs, for which the previously best known bound was exponential in the
treewidth of the CNF primal graph.

Acknowledgements. This work has been partially supported by ONR grant
#N00014-12-1-0423 and NSF grant #IIS-1118122.

A Sentential Decision Diagrams

Consider a Boolean function f(X,Y) with disjoint sets of variables X and Y. If
f(X,Y) = (p1(X)∧s1(Y))∨. . .∨(pn(X)∧sn(Y)), the set {(p1, s1), . . . , (pn, sn)}
is called an (X,Y)-decomposition of the function f and each pair (pi, si) is
called an element of the decomposition [17]. The decomposition is further called
an (X,Y)-partition iff the pi’s form a partition [8]. That is, pi �= ⊥ for all i;
and pi ∧ pj = ⊥ for i �= j; and

∨
i pi = �. In this case, each pi is called a

prime and each si is called a sub. An (X,Y)-partition is compressed iff its subs
are distinct, i.e., si �= sj for i �= j [8]. Compression can always be ensured by

56 U. Oztok and A. Darwiche

6

2 5

B
0

A

1

D

3

C

4

(a) A vtree

6

 ⊤ C ¬B

2

B A ¬B ⊥

2

B ¬A

5

D C ¬D⊥

(b) An SDD

Fig. 6. Function f = (A ∧ B) ∨ (B ∧ C) ∨ (C ∧D)

repeatedly disjoining the primes of equal subs. Moreover, a function f(X,Y) has
a unique, compressed (X,Y)-partition. Finally, the size of a decomposition, or
partition, is the number of its elements.

Note that (X,Y)-partitions generalize Shannon decompositions, which fall
as a special case when X contains a single variable. OBDDs result from the
recursive application of Shannon decompositions, leading to decision nodes that
branch on the states of a single variable (i.e., literals). As we show next, SDDs
result from the recursive application of (X,Y)-partitions, leading to decision
nodes that branch on the state of multiple variables (i.e., arbitrary sentences).

Consider the vtree in Fig. 6(a). Consider also the Boolean function f = (A ∧
B) ∨ (B ∧ C) ∨ (C ∧D) over the same variables. Node v = 6 is the vtree root.
Its left subtree contains variables X = {A,B} and its right subtree contains
Y = {C,D}. Decomposing function f at node v = 6 amounts to generating an
(X,Y)-partition of function f . The unique compressed (X,Y)-partition here is

{(A ∧B︸ ︷︷ ︸
prime

, �︸︷︷︸
sub

), (¬A ∧B︸ ︷︷ ︸
prime

, C︸︷︷︸
sub

), (¬B︸︷︷︸
prime

, D ∧ C︸ ︷︷ ︸
sub

)}.

This partition is represented by the root node of Fig. 6(b). This node, which is a
circle, represents a decision node with three branches. Each branch corresponds
to one element p s of the above partition. Here, the left box contains a prime
when the prime is a literal or a constant; otherwise, it contains a pointer to
a prime. Similarly, the right box contains a sub or a pointer to a sub. The
three primes are decomposed recursively, but using the vtree rooted at v = 2.
Similarly, the subs are decomposed recursively, using the vtree rooted at v = 5.
This recursive decomposition process moves down one level in the vtree with
each recursion, terminating when it reaches leaf vtree nodes. The full SDD for
this example is depicted in Fig. 6(b).

SDDs obtained from the above process are called compressed iff the (X,Y)-
partition computed at each step is compressed. These SDDs may contain trivial
decision nodes which correspond to (X,Y)-partitions of the form {(�, α)} or
{(α,�), (¬α,⊥)}. When these decision nodes are removed (by directing their
parents to α), the resulting SDD is called trimmed. Compressed and trimmed
SDDs are canonical for a given vtree [8].

On Compiling CNF into Decision-DNNF 57

References

1. Bacchus, F., Dalmao, S., Pitassi, T.: DPLL with Caching: A new algorithm
for #SAT and Bayesian Inference. In: Electronic Colloquium on Computational
Complexity (ECCC), vol. 10(003) (2003)

2. Beame, P., Li, J., Roy, S., Suciu, D.: Lower Bounds for Exact Model Counting and
Applications in Probabilistic Databases. In: Proc. of UAI (2013)

3. Blum, M., Chandra, A.K., Wegman, M.N.: Equivalence of free boolean graphs can
be decided probabilistically in polynomial time. Inf. Process. Lett. 10(2), 80–82
(1980)

4. Bryant, R.E.: Graph-Based Algorithms for Boolean Function Manipulation. IEEE
Trans. Computers 35(8), 677–691 (1986)

5. Chavira, M., Darwiche, A.: On Probabilistic Inference by Weighted Model
Counting. Artif. Intell. 172(6-7), 772–799 (2008)

6. Darwiche, A.: Decomposable Negation Normal Form. J. ACM 48(4), 608–647
(2001)

7. Darwiche, A.: New Advances in Compiling CNF into Decomposable Negation
Normal Form. In: Proc. of ECAI, pp. 328–332 (2004)

8. Darwiche, A.: SDD: A New Canonical Representation of Propositional Knowledge
Bases. In: Proc. of IJCAI, pp. 819–826 (2011)

9. Darwiche, A., Marquis, P.: A Knowledge Compilation Map. J. Artif. Intell. Res.
(JAIR) 17, 229–264 (2002)

10. Davis, M., Logemann, G., Loveland, D.W.: A Machine Program for Theorem-
Proving. Commun. ACM 5(7), 394–397 (1962)

11. Davis, M., Putnam, H.: A Computing Procedure for Quantification Theory. J.
ACM 7(3), 201–215 (1960)

12. Huang, J., Darwiche, A.: The Language of Search. J. Artif. Intell. Res. (JAIR) 29,
191–219 (2007)

13. Bayardo Jr., R.J., Pehoushek, J.D.: Counting Models Using Connected
Components. In: AAAI/IAAI, pp. 157–162 (2000)

14. Majercik, S.M., Littman, M.L.: Using Caching to Solve Larger Probabilistic
Planning Problems. In: AAAI/IAAI, pp. 954–959 (1998)

15. Muise, C., McIlraith, S.A., Beck, J.C., Hsu, E.I.: DSHARP: Fast d-DNNF Compi-
lation with sharpSAT. In: Kosseim, L., Inkpen, D. (eds.) Canadian AI 2012. LNCS,
vol. 7310, pp. 356–361. Springer, Heidelberg (2012)

16. Oztok, U., Darwiche, A.: CV-width: A New Complexity Parameter for CNFs. In:
Proc. of ECAI (to appear, 2014)

17. Pipatsrisawat, K., Darwiche, A.: A Lower Bound on the Size of Decomposable
Negation Normal Form. In: Proc. of AAAI (2010)

18. Pipatsrisawat, K., Darwiche, A.: Top-Down Algorithms for Constructing Struc-
tured DNNF: Theoretical and Practical Implications. In: Proc. of ECAI. pp. 3–8
(2010)

19. Robertson, N., Seymour, P.D.: Graph minors. III. Planar tree-width. J. Comb.
Theory, Ser. B 36(1), 49–64 (1984)

20. Sang, T., Bacchus, F., Beame, P., Kautz, H.A., Pitassi, T.: Combining Component
Caching and Clause Learning for Effective Model Counting. In: Proc. of SAT (2004)

21. Valiant, L.G.: The complexity of computing the permanent. Theor. Comput. Sci. 8,
189–201 (1979)

	On Compiling CNF into Decision-DNNF
	1 Introduction
	2 Technical Preliminaries
	3 Compiling CNFs into Decision-DNNFs
	3.1 Decision-DNNF
	3.2 Decision Vtrees
	3.3 A Compilation Algorithm
	3.4 Decision-Width
	3.5 Relationship to Treewidth

	4 Decision-DNNFs and Model Counters
	5 From Decision-DNNF to SDD
	6 Related Work
	7 Conclusion
	References

