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1 Introduction

Because of the dynamism and uncertainty associated with many real life problems,
these problems and their associated Constraint Satisfaction Problem (CSP) models may
change over time; thus an earlier solution found for the latter may become invalid.
Moreover, many approaches proposed in the literature cannot be applied when the re-
quired information about dynamism is unknown ([9], [4], [5], [11], [10], etc.). This
fact has motivated us to consider dynamic situations where, in addition, only limited
assumptions about changes can be made. Our analysis focuses on CSPs with ordered
and discrete domains that model problems for which the order over the elements of the
domain is significant. In these cases, a common type of change that problems may un-
dergo is restrictive modifications over the bounds of the solution space. A discussion of
these assumptions, their motivation and real life examples can be found in [3].

In this paper, we present an algorithm that meets the goal of combining solution sta-
bility (meaning that solutions can often be repaired using other similar values if they
undergo a value loss) and robustness (meaning that solutions have a high likelihood
of remaining solutions after changes). The desireability of this combination of features
was noted in the survey [8]. Furthermore, in this work we have extended both concepts
to apply to the type of CSP analyzed. The paper is organized as follows. Section 2
presents the new conceptions of robustness and stability. Section 3 describes our ap-
proach for finding solutions that simultaneously meet both these criteria. In Section 4
we present some experimental results. Section 5 gives conclusions.

2 Extending Robustness and Stability Concepts

Given CSPs with ordered domains, where only limited assumptions are made about
changes in the problem that are related to their inherent structure, it is reasonable to
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assume that the original bounds of the solution space (delimited by the domains and
constraints of the CSP) can only be restricted or relaxed, even if this does not cover all
possible changes. Note that the possibility of solution loss only exists in the restrictive
case. For this reason, we specialize the definition of robustness as follows.

Definition 1. The most robust solution of a CSP with ordered domains without detailed
dynamism data is the solution that maximizes the distance from all the dynamic bounds
of the solution space.

In addition, we can define the notion of stability more precisely in this framework
because it is possible to define a more specific notion of closeness between two solutions
thanks to the existent order over domain values than the one introduced in [6]. Here, we
use the Manhattan distance (

∑n
i=1 |s1i − s2i|, where s1 and s2 are solutions).

Definition 2. Given an order relationship over the values of a set of solutions, a solu-
tion s1 is more stable than another solution s2 iff, in the event of a change that inval-
idates them, there exists an alternative solution to s1 with lower Manhattan distance
than the Manhattan distance of any alternative solution to s2.

3 Searching for Robust and Stable Solutions

In this section we explain our strategy for searching for solutions that combine robust-
ness and stability according to the definitions of Section 2. The measure of the distance
from the dynamic bounds of the solution space (required for the robustness measure-
ment) is not always obvious or easy to derive, since the constraints of the CSP may
be extensionally expressed. However, some deductions about minimum distances to the
bounds can be made based on the feasibility of the neighbours of a solution. This idea
is first motivated with a very simple example and then is formalized.

Example 1. Figure 1 shows two solution spaces (composed by the variables x and y)
whose dynamic bounds are marked by contiguous lines. The most robust solutions ac-
cording to Definition 1 are highlighted. Note that there are two contiguous feasible
neighbours on both sides of each assignment (discontinuous lines).

From Example 1, we conclude that we can only ensure that a solution s is located
at least at a distance d from a bound in a certain direction of the n-dimensional space
if all the tuples at distances lower or equal to d from s in this direction are feasible.
Therefore, the number of feasible contiguous surrounding neighbours of the solution is
a measure of its robustness and also of its stability. Because if the value assigned to a
variable has at least one feasible neighbour value, then this variable is repairable.

Let Nk denote the neighbourhood of feasible contiguous surrounding values for a
given value (assuming a specific variable and a feasible partial or complete assignment)
at distance not greater than k in increasing, or decreasing, or both directions with re-
spect to the order relationship. For the general case of CSPs with ordered domains, the
desirable goal is to find contiguous surrounding feasible neighbours on both sides. For
instance, in Figure 1(b), considering the partial assignment {x = 2}, Nk = {1, 3} for
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(a) Convex Space (b) Non-convex Space

Fig. 1. Most robust solutions for different solution spaces

the value 2 in the y axis (for any k value). However, for some problems it is important
to consider the feasibility of neighbours only in an increasing/decreasing order [2].

In order to find solutions with the maximum number of contiguous feasible neigh-
bours, we implemented a Branch & Bound algorithm that maximizes the sum of the
sizes of Nk for all the variables of the assignment s. If s is an incomplete assignment,
we calculate the maximum size of Nk of the analyzed variable, for each value of its fea-
sible domain with respect s. Note that this objective function is an upper bound on the
final total number of feasible contiguous neighbours of the solution. For the inference
process, we developed an extension of the well-known Generalized Arc Consistency
(GAC) that checks the feasiblity of both the analyzed value and its Nk. An earlier de-
scription of this search algorithm can be found in [1]. For the highlighted solutions of
both Figures 1(a) and 1(b) the objective function is equal to four for k ≥ 1 (every value
assigned to each solution has two contiguous neighbours on both sides).

4 Experimental Results

In this section, we describe a very limited part of the evaluation that was carried out.
Experiments were run on an Intel Core i5-650 Processor (3.20 Ghz) with a time cutoff
of 100 seconds. Figure 2 shows, for a fixed k = 1, the solutions obtained by our search
algorithm (“neighbour solutions” and “(R)” is a variant). We also evaluated an ordinary
CSP solver (“simple solutions”) and two other methods: a WCSP modeling technique
[3] (“WCSP-mod solutions”) and the (1, 0)-super-solutions [6].

Figure 2(a) shows an analysis of robustness as a function of the tightness of the
constraints (ratio of the number of forbidden assignments to the total number possible)
of random CSPs with 25 variables, domain size 30 and 200 binary constraints. Here
we made 500 random changes to each solution by increasing or decreasing two of their
values and then checking if they were still solutions. The more neighbours that are
not solutions of the CSP, the higher the likelihood of the solution becoming infeasible
after changes over the bound/s. Note that our search algorithm outperformed the other
approaches, specially for lower tightness. At higher tightness values, there is a lower
probability of neighbour solutions (i.e. all solutions are located close to the bounds).
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Fig. 2. Robustness and stability analysis for random CSPs and scheduling problems

Figure 2(b) shows a stability analysis based on the computing time of the algorithms
(discretization of 10 seconds) of the CSPs of the “e0ddr1” scheduling benchmark [7].
The mean number of buffer times is a measure of the stability because the start time of
a task with an associated buffer can be delayed, for instance when there are delays in
previous tasks. The most noteworthy aspect is that our search algorithm clearly outper-
formed the other approaches, specially when the computation time cutoff was higher.

5 Conclusions

In this paper we extend the concept of robustness and stability to deal with CSPs
with discrete and ordered domains where only limited assumptions can be made about
changes in these problems due to a lack of detailed dynamism information. Further-
more, we present a new search algorithm that combines criteria for both robustness and
stability in this framework by searching for a solution that maximizes the sum of con-
tiguous feasible surrounding neighbours at distances of k or less from the values of the
solution. The obtained solutions have a higher probability of remaining valid after pos-
sible future restrictive changes over the constraints and domains of the original problem
(robustness criterion), and they also have a high number of variables that can be eas-
ily repaired with a value at a distance lower or equal to k if they undergo a value loss
(stability criterion).

Our experiments showed that our search algorithm outperformed other approaches
that need only limited information about dynamism, with respect to robustness and
stability as we have defined them, in cases where there were real differences in the
robustness of solutions that could be obtained. The latter occurs when the problem is
not so constrained that there are only a few valid solutions.
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